
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Programming ColdFusion MX, 2nd Edition

By Rob Brooks-Bilson

Publisher: O'Reilly

Pub Date: August 2003

ISBN: 0-596-00380-3

Pages: 1136

The first edition of this book has been praised as "the best reference book available on the subject."
This new edition, Programming ColdFusion MX, 2nd Edition, goes even further, documenting new
techniques for using ColdFusion MX 6.1 to develop and serve dynamic web page content. This
exhaustive guide covers everything from the basics to advanced topics, with numerous examples that
you can use for your own applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Programming ColdFusion MX, 2nd Edition

By Rob Brooks-Bilson

Publisher: O'Reilly

Pub Date: August 2003

ISBN: 0-596-00380-3

Pages: 1136

 Copyright

 Preface

 What's New in ColdFusion MX

 Readers of the First Edition

 Audience

 Organization

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introducing ColdFusion

 Section 1.1. What Is ColdFusion?

 Section 1.2. ColdFusion Architecture

 Section 1.3. Getting Started with ColdFusion

 Chapter 2. ColdFusion Basics

 Section 2.1. Getting Started

 Section 2.2. Datatypes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.3. Variables

 Section 2.4. Expressions

 Section 2.5. Writing Output

 Section 2.6. Conditional Processing

 Section 2.7. Looping

 Section 2.8. Including Other Templates

 Chapter 3. Passing Data Between Templates

 Section 3.1. Passing Parameters Via URL

 Section 3.2. Passing Data Using Forms

 Section 3.3. Dealing with Nonexistent Parameters

 Chapter 4. Database Basics

 Section 4.1. Configuring Data Sources

 Section 4.2. Introducing cfquery

 Section 4.3. A Quick SQL Primer

 Section 4.4. Retrieving and Displaying Data

 Section 4.5. Sorting Query Results

 Section 4.6. Grouping Output

 Section 4.7. Looping Over a Query Result Set

 Section 4.8. Formatting Techniques

 Chapter 5. Maintaining Database Records

 Section 5.1. Inserting Records

 Section 5.2. Updating Existing Records

 Section 5.3. Deleting Records

 Chapter 6. Complex Datatypes

 Section 6.1. Lists

 Section 6.2. Arrays

 Section 6.3. Structures

 Section 6.4. Query Objects

 Chapter 7. Maintaining State

 Section 7.1. Setting Up the Web Application Framework

 Section 7.2. Using Shared Scope Variables

 Section 7.3. Browser Redirection

 Section 7.4. Portal Example

 Chapter 8. Security

 Section 8.1. Security Basics

 Section 8.2. Implementing Security from Scratch

 Section 8.3. Taking Advantage of ColdFusion MX's New Security Framework

 Chapter 9. Error and Exception Handling

 Section 9.1. Basic Exception Handling

 Section 9.2. Custom Exception Handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 9.3. Rethrowing Exceptions

 Section 9.4. Error Handling Within the Web-Application Framework

 Section 9.5. Server-Wide Error Handling

 Chapter 10. Dynamic Form Controls

 Section 10.1. Combining HTML and CFML Form Controls

 Section 10.2. Basic Input Controls

 Section 10.3. Textual Input

 Section 10.4. A Selection Control

 Section 10.5. Sliders

 Section 10.6. Grids

 Section 10.7. Trees

 Section 10.8. Preserving Input

 Section 10.9. Custom Controls

 Chapter 11. Advanced Database Techniques

 Section 11.1. Display Techniques

 Section 11.2. Drilldown Queries

 Section 11.3. Query Caching

 Section 11.4. Advanced SQL

 Section 11.5. Query of Queries

 Section 11.6. Calling Stored Procedures

 Section 11.7. Transaction Processing

 Chapter 12. Manipulating Files and Directories

 Section 12.1. Working with Directories

 Section 12.2. Dealing with Files

 Section 12.3. Performing FTP Operations

 Section 12.4. Executing Command-Line Programs

 Chapter 13. Working with Email

 Section 13.1. Sending Email

 Section 13.2. Dealing with Undeliverable Email

 Section 13.3. Retrieving Messages

 Section 13.4. Building a Web-Based Email Client

 Chapter 14. Interacting with Other Web Servers Using HTTP

 Section 14.1. Retrieving Information

 Section 14.2. Parsing Data

 Section 14.3. Generating Static HTML Pages

 Section 14.4. Posting Information

 Section 14.5. cfhttp Considerations

 Chapter 15. Interfacing with LDAP-Enabled Directories

 Section 15.1. LDAP Basics

 Section 15.2. Querying an LDAP Directory

 Section 15.3. Modifying LDAP Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 15.4. Modifying the Distinguished Name

 Chapter 16. Working with the Verity Search Interface

 Section 16.1. Creating Collections

 Section 16.2. Populating Collections

 Section 16.3. Searching Collections

 Section 16.4. The Verity Search Language

 Section 16.5. Updating Collections

 Section 16.6. Maintaining Collections

 Section 16.7. Advanced Techniques

 Chapter 17. Graphing and Charting

 Section 17.1. Creating a Simple Graph

 Section 17.2. Working with Dates

 Section 17.3. Charting Dynamic Data

 Section 17.4. Charting Multiple Data Series

 Section 17.5. Drilling Down on Graph Data

 Section 17.6. Saving Charts to a Variable

 Section 17.7. Working with the Chart Cache

 Chapter 18. Regular Expressions in ColdFusion

 Section 18.1. Regular-Expression Syntax

 Section 18.2. Finding Strings

 Section 18.3. Replacing Strings

 Section 18.4. Backreferences

 Section 18.5. Useful Regular Expressions

 Section 18.6. Regular Expression Tester

 Chapter 19. Scripting

 Section 19.1. Scripting Syntax

 Section 19.2. Writing Output

 Section 19.3. Flow Control and Looping

 Section 19.4. Error and Exception Handling

 Chapter 20. User-Defined Functions

 Section 20.1. UDF Basics

 Section 20.2. Calling User-Defined Functions

 Section 20.3. Advanced Topics

 Section 20.4. Function Libraries

 Section 20.5. Script-Based UDFs

 Chapter 21. Creating Custom Tags

 Section 21.1. Getting Started

 Section 21.2. Calling Custom Tags

 Section 21.3. Passing Data

 Section 21.4. Returning Data

 Section 21.5. Attribute Validation and Error Handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 21.6. Advanced Techniques

 Section 21.7. Protecting Your Tags

 Section 21.8. CFX Tags

 Chapter 22. ColdFusion Components

 Section 22.1. Basic Concepts

 Section 22.2. Creating Components

 Section 22.3. Using Components

 Section 22.4. Advanced CFC Topics

 Chapter 23. XML and WDDX

 Section 23.1. Working with XML

 Section 23.2. Using WDDX

 Chapter 24. Web Services

 Section 24.1. Web Services Overview

 Section 24.2. Consuming Web Services

 Section 24.3. Producing Web Services

 Section 24.4. Web Services Security

 Chapter 25. Working with the System Registry

 Section 25.1. Getting Registry Keys and Values

 Section 25.2. Setting Registry Keys and Values

 Section 25.3. Deleting Registry Keys and Values

 Chapter 26. Using the ColdFusion Scheduler

 Section 26.1. Scheduling Tasks with the ColdFusion Administrator

 Section 26.2. Scheduling Tasks with cfschedule

 Section 26.3. Additional Considerations

 Chapter 27. Interacting with COM, CORBA, and Java

 Section 27.1. Working with COM

 Section 27.2. Calling CORBA Objects

 Section 27.3. Integrating ColdFusion and Java

 Chapter 28. Flash Remoting

 Section 28.1. Getting Started with Flash Remoting for ColdFusion MX

 Section 28.2. Interacting with ColdFusion Pages

 Section 28.3. Interacting with ColdFusion Components

 Section 28.4. Interacting with Server-Side ActionScript

 Section 28.5. Flash Remoting with Java Objects Hosted on the ColdFusion MX Server

 Appendix A. Tag Reference

 Section A.1. Tags by Type

 Section A.2. Alphabetical List of Tags

 Appendix B. Function Reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section B.1. Functions by Category

 Section B.2. Alphabetical List of Functions

 Appendix C. Example Database Tables

 Appendix D. ColdFusion Resources

 Section D.1. Official Macromedia Resources

 Section D.2. Magazines

 Section D.3. Mailing Lists

 Section D.4. Blogs

 Section D.5. Community Resources

 Section D.6. User Groups

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright
Copyright © 2003, 2001 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a Arctic tern and programming ColdFusion MX is a
trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
I first started using ColdFusion in early 1996. I had been hired by a company to build and manage
their external web site and their intranet. Both started as completely static sites, with a few Perl
scripts thrown in to handle such tasks as emailing HTML form submissions. But it was only a matter
of time before I was asked to add some dynamic content-the request was to "web enable" our
corporate address book, which was stored in a Microsoft Access database. My first reaction was to
develop the application in Perl. At the time, however, building an application like this in NT Perl (all of
our web servers were NT-based) wasn't feasible, so I began looking for other solutions.

I first tried a product called DB Web, from a company named Aspect Software that had just been
acquired by Microsoft. After a bit of experimentation, I realized that DB Web wasn't what I was
looking for. It was more of a tool for querying data from Microsoft Access databases (it wrote Visual
Basic code on the back end) than a real application development platform. (As a side note, Microsoft
stopped supporting DB Web shortly after I evaluated it and rereleased it as Active Server Pages
(ASP) a few months later.)

Frustrated, I decided to look into another product I had been hearing about on a web development
discussion list. The product was Allaire's ColdFusion (Cold Fusion at the time), a rapid application
development platform for creating and deploying dynamic server-based web applications.[1] Within
hours of downloading the trial version of the software, I had created a proof-of-concept for the
corporate address book application.

[1] In March 2001, Allaire and Macromedia merged, with the combined company using the Macromedia name.

Looking back, it is almost funny to imagine that I fell in love with a language that had just over 30
language elements in Version 1.5. At the time, though, ColdFusion had enough power to handle any
Internet programming task thrown my way. And as the tasks have become more complex,
ColdFusion has kept pace. Today, those initial 30 language elements have proliferated to over 355.
Each new release of ColdFusion contains features and functionality that seem to show up just as I
find myself needing or wanting them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

What's New in ColdFusion MX

ColdFusion MX represents perhaps the single most revolutionary release of ColdFusion yet. The
application server itself was completely rewritten in Java. All previous versions of ColdFusion were
written in C++. The shift to Java has allowed ColdFusion MX to take advantage of the J2EE
framework and all it has to offer in terms of standards, functionality, and scalability. So much has
changed since ColdFusion 5 that it would be redundant to list it all here. I've decided to highlight the
major enhancements instead:

Because ColdFusion code now compiles to Java, execution of most code is now significantly
faster than in previous versions of ColdFusion.

There is tighter integration between ColdFusion and JSPs, servlets, EJBs, and Java objects than
ever before.

Enhanced support for both internationalization and localization has been added, and ColdFusion
MX now supports Unicode.

ColdFusion's query of query feature has been greatly enhanced to support a wider array of
options.

ColdFusion MX uses JDBC (although it can still use ODBC) for database connectivity. In many
cases, this eliminates the need to install separate client libraries on the server.

Regular-expression support has been greatly enhanced in ColdFusion MX. Regular expressions
are now "Perl compatible."

User-defined functions have been enhanced in ColdFusion MX. In addition to CFScript-based
user-defined functions, you can now create them using CFML tags.

The introduction of ColdFusion Components (CFCs) has added object-oriented techniques to
ColdFusion.

Working with XML is easier than ever, thanks to several new tags and functions in ColdFusion
MX.

Producing and consuming web services couldn't be easier. In most cases, a single tag attribute
is all that's necessary to publish a CFC as a web service. Consuming web services can be as
simple as providing a URL to a single CFML tag.

The graphing and charting capabilities of ColdFusion have been improved. ColdFusion 5 used
Macromedia's Generator as the underlying graphing engine. ColdFusion MX takes advantage of
an underlying Java engine that offers far more options for chart and graph generation.

Application-level security has been greatly enhanced with a built-in roles-based security
mechanism.

Enhanced debugging and logging capabilities have been added.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The need for locking access to shared scope variables, an often-misunderstood practice in
previous versions of ColdFusion, has been greatly reduced.

Major enhancements to the cfmail tag in ColdFusion MX 6.1 including the ability to send

upward of 1 million messages an hour (in ColdFusion Enterprise), create multi-part mail
messages, specify backup mail servers (ColdFusion Enterprise), and spawn multiple mail
threads.

Enhancements to the cfhttp tag in ColdFusion MX 6.1 to support additional HTTP operations

beyond get and post.

ColdFusion MX is integrated more tightly with Macromedia's other MX products, especially
Dreamweaver MX and Flash MX. With regard to Flash MX, ColdFusion MX supports a new
technology called Flash Remoting, a Macromedia technology for tying a Flash front end with
ColdFusion on the server. Flash Remoting opens up a whole new category of applications known
as Rich Internet Applications (RIAs) that go beyond what's currently possible with HTML/DHTML
front ends.

Because there is so much new functionality in ColdFusion MX, as well as significant changes between
ColdFusion 5 and MX, I've gone to great lengths to highlight the differences throughout the book.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Readers of the First Edition

If I was fortunate enough to have you as a reader of the first edition of this book (Programming
ColdFusion), you'll be interested to know that the second edition has been completely revised and
updated for ColdFusion MX 6.1. Just about every chapter has been rewritten, several of them
completely. Many of the changes are the direct result of reader feedback. Four new chapters were
added to deal with totally new topics introduced in ColdFusion MX. Additionally, the majority of
examples used throughout the book have also been rewritten to reflect new and improved coding
techniques and practices.

It's worth noting that many of the changes to ColdFusion from Version 5 to MX are significant and
simple to spot, while others are subtle and easy to overlook. Wherever possible, I try to point out the
differences between the two versions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Audience

This book is for anyone who is interested in learning more about ColdFusion MX, but it is especially
aimed at web developers who are designing and building web applications with ColdFusion. I hope
this book will help you become proficient with ColdFusion and that you find ColdFusion as powerful,
easy to program with, and productive as I do.

If you are a beginning web developer, without any programming experience, you may find that the
book moves quite quickly through the basics of ColdFusion. Before you start to learn ColdFusion, you
should have some experience with web page creation, including a solid understanding of HTML. After
that, if you focus on the examples provided in the early chapters and do a lot of experimenting with
the code while you are reading, you should be able to learn ColdFusion with this book.

For intermediate developers who already have some web programming experience, this book is the
perfect place to learn ColdFusion and get up to speed quickly. You'll learn about the ColdFusion
Markup Language (CFML), which is ColdFusion's tag-based language for embedding dynamic content
in web pages. This book provides examples that use CFML to implement all the standard web tasks,
such as processing form data, performing database queries, and handling session data, so you should
be up and running with ColdFusion in no time.

And if you are an advanced ColdFusion developer, you'll find this book loaded with strategies, hints,
tips, and tricks that you can apply to your own projects. I've tried to include all the useful ColdFusion
tidbits that I've discovered over the years, so that you can benefit from my experience. The book
also includes reference material on all CFML tags and functions, so that you can have this information
at your fingertips while you are programming.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Organization

This book is divided into 28 chapters and 4 appendixes, as follows:

Chapter 1

Introduces the book and gives a high-level overview of the components that make up the
ColdFusion development platform.

Chapter 2

Gets you started using ColdFusion and covers such topics as datatypes, variables, expressions,
conditional processing, and looping.

Chapter 3

Looks at passing data between templates using HTML forms and hyperlinks.
Chapter 4

Gets you started using ColdFusion to query databases. Provides an overview of Structured
Query Language (SQL) and demonstrates its use within ColdFusion applications.

Chapter 5

Covers techniques for adding, updating, and deleting database records.
Chapter 6

Looks at the complex datatypes available in ColdFusion: lists, arrays, structures, and query
objects.

Chapter 7

Investigates methods for maintaining state in ColdFusion applications.
Chapter 8

Covers the basics of application security and discusses several methods and models for
securing your ColdFusion applications.

Chapter 9

Explains several techniques for implementing error and exception handling within your
ColdFusion applications.

Chapter 10

Gives an overview of the dynamic form controls provided by ColdFusion as an extension to
standard HTML form controls.

Chapter 11

Covers several advanced techniques for querying and displaying data as well as advanced SQL
topics.

Chapter 12

Deals with techniques for manipulating files and directories on both local and remote servers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also covers executing programs from the command line.
Chapter 13

Shows how to use ColdFusion to send email through SMTP servers and how to retrieve
messages from POP3 servers. A working example of a web-based mail client is included.

Chapter 14

Demonstrates how to interact with other web servers via the HTTP GET and POST methods
using ColdFusion.

Chapter 15

Gives a general overview of the Lightweight Directory Access Protocol (LDAP) and shows how
to use ColdFusion to interface with LDAP-enabled directories.

Chapter 16

Explains how ColdFusion interacts with a bundled version of Verity's VDK, K2 Server, and
Spider engines to index and search both file- and query-based content.

Chapter 17

Shows how to use ColdFusion's built-in server-side graphing and charting capabilities to
produce dynamic charts and graphs.

Chapter 18

Introduces regular expressions and demonstrates ways to integrate them into your ColdFusion
applications.

Chapter 19

Provides an overview of CFScript, a server-side scripting language modeled after JavaScript
that can be used in place of some of ColdFusion's tag-based language constructs.

Chapter 20

Shows how to create user-defined functions (UDFs) using both CFML tags and CFScript.
Chapter 21

Shows how to extend the core capabilities of the ColdFusion language through reusable
components called Custom Tags.

Chapter 22

Covers ColdFusion Components (CFCs), a framework for using concepts and techniques of
object-oriented programming for building your applications.

Chapter 23

Covers XML and the Web Distributed Data Exchange (WDDX), an XML-based technology for
sharing data across disparate platforms and programming languages.

Chapter 24

Discuses web services and shows how to use ColdFusion MX to both produce and consume
them.

Chapter 25

Explains how the Windows version of ColdFusion MX can be used to read and write to the
system registry.

Chapter 26

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Explains how to schedule one-time and recurring tasks using ColdFusion's built-in scheduler.
Chapter 27

Covers the basics of using ColdFusion to interact with COM, CORBA, and Java.
Chapter 28

Gives a general overview of Rich Internet Applications and how to create them by pairing
Macromedia Flash and ColdFusion MX via Flash Remoting.

Appendix A

A complete CFML tag reference that includes several previously undocumented tags.
Appendix B

A complete CFML function reference that contains numerous previously undocumented
functions. The function reference includes a working example for each function wherever
possible.

Appendix C

Contains the schema and sample data for all database tables used in the book's examples.
Appendix D

Provides a comprehensive listing of free ColdFusion resources available over the Internet.
These resources include user groups, e-zines, support forums, and other community-minded
resources.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Conventions Used in This Book

The following typographical conventions are used throughout this book:

Italic

Used for commands, URLs, filenames, file extensions, command-line utilities, directory and
folder names, and UNC pathnames, as well as new terms where they are defined.

Constant width

Used for anything that appears in a ColdFusion template, including CFML and HTML tags and
attributes, variables, and functions. Also used for code listings.

Constant-width italic

Used as general placeholders to indicate that an item should be replaced by some actual value
in your own program.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/coldfusion2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

[Team LiB]

http://www.oreilly.com/catalog/coldfusion2
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

While it is impossible to individually acknowledge everyone who had a hand in getting this book from
an idea to the printed work you now hold in your hand, I would like to recognize and thank a few of
these special people.

First, my thanks go out to the technical reviewers for this edition, Brendan O'Hara, Elishia Olsen,
Steve Rittler, Scott Varga, and Ray West. I can't begin to describe how helpful they have been. This
edition also benefited from comments and suggestions from Selene Bainum, Artur Bakhtriger, Michael
Dinowitz, Elias Jo, and Amy Wong, my technical reviewers from the first edition.

I'd also like to thank the engineers, support staff, and product managers at Macromedia for their
hard work and dedication to making ColdFusion what it is. Without access to your knowledge and
insight, writing this book would not have been possible.

My editors at O'Reilly, Paula Ferguson (first and second edition) and Laura Lewin (first edition), also
deserve recognition. Without their editorial skill and ability to help me focus in on the important
aspects of the book, you wouldn't be reading this. Finally, I'd like to thank the production staff at
O'Reilly for their hard work in getting the book to print.

And finally, my wife Persephone, for all things at all times.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. Introducing ColdFusion
In 1989, two chemists, Martin Fleischmann and Stanley Pons, claimed that their research had
uncovered a phenomenon that promised to solve the world's energy problems. What they claimed to
have accomplished was nothing short of astonishing: that they had achieved nuclear fusion at room
temperature. They called their discovery cold fusion. Unfortunately, the scientific community at large
dismissed their findings because no one was ever able to reproduce the results claimed in the original
experiment. Oh wait, wrong book...

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 What Is ColdFusion?

In 1995, J.J. and Jeremy Allaire introduced a product they believed would revolutionize application
development for the Web. They too called their creation ColdFusion. The two brothers formed the
Allaire Corporation and began selling ColdFusion. Unlike its infamous namesake, ColdFusion has
delivered on the promises put forth by its creators. In 2001, Macromedia acquired Allaire, and along
with it, ColdFusion. ColdFusion MX represents the second ColdFusion product release under the
Macromedia banner.

According to Macromedia's marketing materials, ColdFusion is "the rapid server scripting environment
for creating rich internet applications." Internet applications exist as a collection of pages, also known
as templates, which work together to allow users to perform such tasks as reading email, buying
books, or tracking packages. Internet applications often act as the front-end to back-end services,
such as legacy applications and databases, and can be accessed through various means such as web
browsers, cell phones, and other Internet-enabled devices. Some examples of web sites and
applications built using ColdFusion include Autobytel.com's application for researching and purchasing
a car (http://www.autobytel.com/), Williams-Sonoma's storefront application (http://www.williams-
sonoma.com/), and the online reservation system at the Broadmoor Hotel's web site
(http://www.broadmoor.com/).

One key aspect of an Internet application is that it is dynamic; it is not just a static collection of
pages. The benefits of dynamically driven design are obvious. If you think of it in practical terms,
which would you rather do each time a new press release has to be added to your web site? Would
you rather the marketing department send you the text for the new press release so you can convert
it to an HTML page, upload the page to your server, then go add a link to the menu of available press
releases? Or, would you rather provide an online form to the marketing department so they can enter
the text from the press release themselves and store it in a database that can then be queried to
dynamically build the press release menu and associated pages? ColdFusion allows you to create just
this kind of application.

Of course, there are a lot of different technologies you can use to create dynamic applications, from
open source technologies such as Perl/CGI scripts or PHP, to such commercial options as JavaServer
Pages and Java servlets or Microsoft's Active Server Pages. With all these choices, why use
ColdFusion MX?

One reason has to do with ease of development. Unlike most of the other technologies I mentioned,
you don't have to be a hard-core programmer to get started with ColdFusion. This doesn't, however,
mean that ColdFusion isn't powerful. Quite the contrary. ColdFusion makes it simple to do common
tasks, such as processing form data and querying a database. But when you need to perform more
complex operations, such as transaction processing and personalization, ColdFusion makes that
possible too.

ColdFusion is also designed for rapid application development (RAD). ColdFusion abstracts complex,
low-level programming tasks, such as establishing connectivity with a mail server or querying a
database, with simple HTML-like tags. The result is an application development cycle that is second to
none.

Another advantage of ColdFusion is that it is available for a broad range of popular operating systems

http://www.autobytel.com/
http://www.williams-
http://www.broadmoor.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and web servers. ColdFusion can be run on Windows 98/ME/NT 4/2000/XP/Server 2003, Linux,
Solaris, HP-UX, and the AIX operating system. Additionally, the developer version of ColdFusion MX
Enterprise can be deployed on Mac OS X when the J2EE configuration is used. ColdFusion works in
conjunction with several popular web servers including Microsoft IIS, Netscape Enterprise Server,
iPlanet Enterprise Server, Apache, and ColdFusion MX's standalone web server. In general, you can
migrate ColdFusion applications between different operating systems, web servers, and databases,
for instance, when you upgrade your databases for scalability purposes. There are, however, some
minor incompatibilities between platforms (i.e., there is no COM support in the Unix/Linux version of
ColdFusion). Although minor for the most part, these differences are explained in relevant sections of
this book.

ColdFusion MX is also an integral part of Macromedia's overall MX product line, which includes
Dreamweaver MX for authoring, Fireworks MX for web graphics, and Flash MX for developing rich
user interfaces for Internet applications. As Macromedia's cornerstone server product, ColdFusion MX
is tightly integrated with the rest of the MX products.

ColdFusion is a mature, robust product; the current version as of this writing is ColdFusion MX 6.1.
When ColdFusion was released in 1995, it provided simple database and SMTP mail connectivity and
supported basic output formatting. Each successive release of ColdFusion has added features and
functionality. Today, ColdFusion contains over 90 tags and 265 functions for handling almost any task
imaginable. Add to that scalability features such as load balancing and failover to handle high-traffic
sites, and it is easy to see why ColdFusion is so popular among developers and administrators alike.

There is a vibrant community of ColdFusion users who are active both in shaping the future direction
of the product and in supporting others who use it. A number of ColdFusion-related conferences are
held each year by both Macromedia and members of the developer community. Macromedia also
runs several web-based forums and Usenet-style newsgroups, where developers can post and answer
questions related to ColdFusion development (http://webforums.macromedia.com/coldfusion/). The
forums are monitored by Macromedia support engineers as well as a volunteer group known as Team
Macromedia. In addition, Macromedia sponsors a number of user groups around the world. Known as
CFUGs (ColdFusion User Groups) and MMUGs (Macromedia User Groups), these groups provide a
place for ColdFusion developers to get together and share information on a variety of ColdFusion-
related topics. Finally, there are a number of web sites devoted to furthering the ColdFusion
community. For a complete list of community resources, see Appendix D.

[Team LiB]

http://webforums.macromedia.com/coldfusion/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 ColdFusion Architecture

There are several components that make up the ColdFusion MX environment, from which you can
develop ColdFusion applications. As I mentioned earlier, a ColdFusion MX application is simply a
collection of templates (pages) that work together to allow a user to perform a task. By template, I
mean a file that contains a combination of hard-coded HTML (or other structure/layout code) along
with sections of ColdFusion code that replace otherwise static sections of content with "dynamic"
content pulled from a database or other data source. These templates don't exist in a vacuum,
however. To get a better idea of how a ColdFusion application is constructed, you need to understand
the components that make up the ColdFusion environment:

ColdFusion MX Application Server

TheColdFusion Application Server processes all the CFML code in the templates passed to it by
the web server. It then returns the dynamically generated results to the web server, so that
the output can be sent to the user's browser. The ColdFusion Application Server integrates with
a number of popular web servers via native APIs and is also capable of running with ColdFusion
MX's standalone web server (recommended for development only). Once the ColdFusion
Application Server is set up, it works silently in the background, so we won't be talking much
about it in this book.

Integrated Development Environment (IDE)

DreamweaverMX is the Integrated Development Environment (IDE) designed for the
ColdFusion MX Application Server. Dreamweaver MX provides developers with a visual
environment for developing, testing, debugging, and deploying ColdFusion MX applications.
Although ColdFusion MX applications can be written using any text editor capable of saving
ASCII output, Dreamweaver MX offers many advantages that make it worth considering. Prior
to the introduction of Dreamweaver MX, many ColdFusion developers used an IDE called
ColdFusion Studio (later HomeSite +). Many of the features from Studio were merged into the
Dreamweaver MX IDE; however, a large number of ColdFusion developers continue to use
ColdFusion Studio as their IDE of choice. This book doesn't concern itself with the method you
use to create your ColdFusion MX applications, so these tools aren't given much coverage.

ColdFusion Markup Language (CFML) pages and components

The ColdFusion Markup Language (CFML) is the language that you use to create ColdFusion
applications. CFML is a tag-based language, just like HTML. You use it in conjunction with HTML
and other client-side technologies, such as JavaScript and CSS (Cascading Style Sheets), to
create the templates that make up a ColdFusion application. CFML is used to determine what to
display, while the technologies such as HTML and CSS specify how to display it, an important
distinction. This book covers all the CFML tags and functions supported by ColdFusion.

Web server

The web server funnels browser requests for CFML templates through the ColdFusion MX
Application Server. The web server is also responsible for passing the output returned by the
ColdFusion MX Application Server back to the browser. As I already mentioned, ColdFusion
works the same way on all supported web servers, so your choice of web server isn't important
(as far as interoperability with ColdFusion is concerned) and won't affect your programming.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion Administrator

The ColdFusion Administrator is actually a ColdFusion application for configuring and
administering the ColdFusion Application Server. The ColdFusion Administrator handles
everything from registering and setting up data sources to logging and security. This is a book
for programmers, so it doesn't cover configuration and administration. For more information on
configuring and administering the ColdFusion Application Server, you need to consult the
documentation that comes with your edition of ColdFusion.

Data sources

ColdFusion is capable of interacting with a number of external data sources, including
databases (via JDBC and ODBC), Verity collections, LDAP directories, POP3 and SMTP mail
servers, SOAP-based web services, FTP servers, and other HTTP servers. This allows you to
create ColdFusion applications that send and receive email, transfer files with FTP, query
directory servers, and request content from other web servers. This book includes chapters
that show how to use ColdFusion to interact with all of the data sources I just mentioned.

Objects

ColdFusion can interact with various external objects, including ColdFusion Components
(CFCs), COM/DCOM objects, CORBA objects, and Java objects (including Enterprise JavaBeans
components). This allows your ColdFusion applications to interact with third-party components
as well as back-end systems written in other languages, which makes ColdFusion an excellent
choice for acting as the "glue" that ties together all sorts of disparate systems into a cohesive
application.

Extensions

CFML is extensible via custom extensions written in a variety of languages, such as C++, Java,
and even CFML. By writing an extension, you can include functionality not natively available in
the core ColdFusion language. For example, ColdFusion can't natively connect to a NNTP news
server, but if you are skilled in C++ or Java, you can easily build a CFX extension to support
such a connection. Creating custom tags using CFML is covered in Chapter 21. Custom
extensions are beyond the scope of this book, however, so for more information on developing
your own custom extensions using C++ or Java, you need to consult the documentation that
came with your edition of ColdFusion.

Flash Remoting

One of the benefits of Macromedia's tight integration between all of the products in their MX
line is the ability to easily have ColdFusion MX applications exchange data with Macromedia
Flash MX applications via a mechanism known as Flash Remoting. This opens up all sorts of
possibilities for creating Flash front-ends that interact with ColdFusion in the middle tier for
data access, processing, etc.

Now that you understand the components that comprise the ColdFusion environment, let's look at
how ColdFusion processes a typical browser-based request:

A web browser makes a request to a web server for a template with a .cfm or .cfc extension (or
another custom configured extension).

1.

The web server receives the request and forwards it to the ColdFusion MX Application Server.2.

The ColdFusion MX Application Server parses the CFML template and processes the tags and
functions accordingly, interacting with other services, such as data sources or mail servers, as

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

necessary.

3.

The ColdFusion MX Application Server combines its dynamic output with the static HTML and
CSS (and JavaScript, if any) in the template and passes the whole page back to the web server.

4.

The web server passes the dynamically generated content back to the client machine's web
browser.

5.

This entire process is illustrated in Figure 1-1.

Figure 1-1. How ColdFusion requests are processed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 Getting Started with ColdFusion

Obviously, to use this book, you need access to a ColdFusion MX server. If your company is already
developing web applications with ColdFusion, the server should already be available to you. Or, if you
are developing for a remote server, you should be all set. In either case, you just need to know
where to put your templates; check with your system administrator or webmaster.

If you don't have access to a ColdFusion server, your first step is to pick an edition of ColdFusion.
There are currently four editions of ColdFusion available to support the needs of various sized
projects and organizations; all of them are available at Macromedia's web site,
http://www.macromedia.com (as of this writing, the latest release is ColdFusion MX 6.1):

ColdFusion MX Standard (Windows and Linux only)

Formerly called ColdFusion MX Professional (through ColdFusion MX 6.0), the standard edition
is designed for departmental and small group use. It contains access to all CFML language
features, a 125KB document limit on Verity searches, and database drivers for MS Access
(Windows only), MS SQL Server, and MySQL. Email handling in ColdFusion MX 6.1 Standard
has been improved as well. The underlying engine is now capable of generating approximately
33KB emails per hour, an improvement over previous versions.

ColdFusion MX Enterprise (Windows, Linux, Solaris, HP-UX, and AIX)[1]

Contains all the functionality of ColdFusion MX Standard and adds server clustering, additional
Type IV JDBC database drivers for most popular databases, a 250KB document limit on Verity
searches, the ability to host JSP pages, servlets, EJBs, and import JSP tag libraries, as well as
additional security, management, deployment, and performance features for hosting large-
scale applications. Email handling in ColdFusion MX 6.1 Enterprise has be greatly improved. The
engine is capable of generating approximately 1 million messages per hour, and contains
additional features such as multi-threading, connection pooling, and the ability to use backup
mail servers. ColdFusion MX Enterprise can be installed in one of two configurations:

Server Configuration

Installs a single instance of ColdFusion MX Enterprise (or Developer) with an embedded
J2EE server. This is the equivalent to a "standard" or "standalone" installation of
ColdFusion from previous versions.

J2EE Configuration

Installs one or more instances of ColdFusion MX Enterprise (or Developer) on top of an
included licensed copy of Macromedia JRun, or on a third-party J2EE application server
such as IBM WebSphere, BEA Weblogic, or Sun One. This allows you to write and deploy
ColdFusion MX applications that leverage the underlying architecture of popular J2EE
application servers. For a complete list of supported J2EE application servers, see
Macromedia's web site.

ColdFusion Developer Edition (Windows, Linux, Solaris, HP-UX, and AIX for Server or J2EE
configuration; Mac OS X for J2EE configuration only)

This is a for development-only version of ColdFusion MX Enterprise (Server or J2EE

http://www.macromedia.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

configuration) that limits access to the IP address of the development machine and one
additional IP address per session. Additionally, it sets the document limit for Verity searches to
10k. ColdFusion MX Developer Edition allows you to build and test applications without having
to purchase a full ColdFusion MX Enterprise license. The trial version of ColdFusion Enterprise
automatically becomes the developer version once the 30-day trial period expires.

Hardware requirements for running ColdFusion vary depending on your platform and the edition of
ColdFusion you want to run. You should make sure the machine on which you plan to run the
ColdFusion Application Server can meet the demands you might place on it. ColdFusion generally
requires a system with 250 to 400 MB of hard disk space and between 128 and 512 MB of RAM,
depending on the platform and whether the server is for development or production. Memory
requirements are only a guideline. In general, the more physical RAM available to ColdFusion, the
better it will perform, because many tasks performed by web applications are memory-intensive,
such as intensive database queries, Verity indexing/searching, caching, and integration with other
third-party resources. For the most up-to-date system requirements, please refer to the
documentation that came with your edition of ColdFusion, or visit
http://www.macromedia.com/software/coldfusion/productinfo/system_reqs/.

If you work in an organization with an IT department, you should be able to get them to install and
configure ColdFusion. Otherwise, you'll have to perform these tasks yourself. Because ColdFusion is
available for multiple platforms, installation procedures vary. For specific instructions on installing and
configuring the ColdFusion Application Server, see the documentation provided with your edition of
ColdFusion, or visit the Macromedia ColdFusion Support Center at
http://www.macromedia.com/support/coldfusion/installation.html.

Once you have a working ColdFusion installation, you're ready to start programming. In the next
chapter, we'll dive in and learn about ColdFusion basics. For this material to make sense, though, you
need to have some basic experience with web page creation and, in particular, HTML. If you don't
have any experience with HTML, you should spend some time learning basic HTML before you try to
learn ColdFusion. For this, I recommend HTML & XHTML: The Definitive Guide, by Chuck Musciano
and Bill Kennedy (O'Reilly & Associates). If you are planning to use ColdFusion to interact with a
database, you may also find it helpful to have a general understanding of relational databases and
SQL (Structured Query Language). For more information on SQL, see SQL in a Nutshell, by Kevin
Kline with Daniel Kline, Ph.D. (O'Reilly).

[Team LiB]

http://www.macromedia.com/software/coldfusion/productinfo/system_reqs/
http://www.macromedia.com/support/coldfusion/installation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. ColdFusion Basics
Part of what makes developing web applications with ColdFusion so easy is the simplicity of the
ColdFusion Markup Language (CFML). Because CFML is a tag-based language like HTML, it is simple
to write and easy to understand. All ColdFusion code is written inside tags or within the boundaries of
paired tags (just like HTML). There are over 90 tags and 265 functions in the CFML language that you
can use to accomplish virtually any task. ColdFusion tags wrap complex functionality, such as
database connectivity and data manipulation, into simple tags that can be invoked with a minimum of
coding. CFML functions offer even more power, as they provide access to common operations, such
as string manipulation and mathematical functions, that aren't possible using HTML alone.

Because CFML is a programming language, we need to start with some basics about the language. In
this chapter, I cover how to create and save ColdFusion applications, as well as the major aspects of
the language, such as datatypes, variables, expressions, conditional processing, and more.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 Getting Started

To write a ColdFusion application, you can use virtually any text editor or an HTML authoring tool that
allows you to directly edit the code. As we discussed in Chapter 1, a ColdFusion application is a
collection of web pages, also called templates or pages that work together to allow a user to perform
a task. When you create a CFML template, you typically embed the CFML code within standard HTML
(although it is also possible to create files that contain only CFML, as you'll see later in the chapter).
A ColdFusion application can be as simple as a single page. Consider the following example, which
outputs the current date to the browser:

<html>
<head>
 <title>CFML Example</title>
</head>

<body>

<cfoutput>
<h2>Today's date is #DateFormat(Now(),'mm/dd/yyyy')#</h2>
</cfoutput>

</body>
</html>

At first glance, this template looks just like an HTML template. If you look closer, however, you'll see
embedded CFML code right in the middle of the template. The code here uses a single tag
(<cfoutput>) and two functions (DateFormat() and Now()) to output the current date to the

browser. We'll get to what this tag and the functions do in a bit. For now, we're just concerned with
running the template and understanding how CFML and HTML coexist.

2.1.1 Saving CFML Templates

To execute this template, you need to save the file on the machine that is running your web server
and the ColdFusion Application Server. You can either type in this example and save it to a file or you
can copy the file from the book's example archive (available at
http://www.oreilly.com/catalog/coldfusion/). You should put the file in a directory accessible under
the root directory of your particular web server. For example, if the root directory for your web
server is c:\inetpub\wwwroot, you can create a subdirectory two levels down such as
c:\inetpub\wwwroot\examples\chapter2 and save the template there as 2-1.cfm. Now if you use
your web browser to view this file (http://127.0.0.1/examples/chapter2/2-1.cfm), you'll see the web
page displayed in Figure 2-1.

Figure 2-1. Calling a CFML template from your web browser

http://www.oreilly.com/catalog/coldfusion/
http://127.0.0.1/examples/chapter2/2-1.cfm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, CFML files need to have the extension .cfm in order for your web server to know to send
the files to the ColdFusion engine for processing. It is possible to use an extension other than .cfm, as
long as you configure your web server to associate the new extension with the ColdFusion engine.

When you save your CFML template, you should follow the conventions set forth by your web server
for saving HTML templates. For example, in Windows environments, filenames are case insensitive.
On Unix, however, filenames are case sensitive. These differences are important to remember when
coding your applications, especially if you ever need to port your application from a Windows to a
Unix environment.

2.1.2 Tag Syntax

CFML tags are written in the same manner as HTML tags. Most CFML tags have a start tag (written
as <cfTagName>) and an end tag (written as </cfTagName>). All CFML tags begin with the letters

"cf". In keeping with XML conventions, any CFML tag that doesn't have or require an end tag may
optionally be written with a trailing forward slash, as in <cfTagName/>. CFML tags are not case
sensitive (<cfoutput> and <cfoutput> both work). However, if you are trying to code to a standard

such as XHTML, you should use all lowercase tags, as I do in this book.

Most CFML tags accept one or more attributes that affect the tag's behavior, just like HTML tags. A
tag's attributes allow you to pass values to the tag for processing. Tags can accept both required and
optional attributes. To get a better idea of how attributes affect a tag's behavior, consider the
following example, in which we call the <cfmail> tag (used to send email messages via SMTP):

<!--- Call the cfmail tag --->
<cfmail from="webmaster@example.com"
 to="you@example.com"
 subject="Test Message"
 server="127.0.0.1">
This is a test message
</cfmail>

<h2>Message Sent</h2>

In this example, we pass four attributes to the cfmail tag. The from, to, and subject attributes are
all required attributes; they specify what you'd expect about the email message. server is an

optional attribute that specifies the server name or IP address of the mail server ColdFusion should
use to send SMTP mail. Specifying a value here overrides any value set in the ColdFusion
Administrator. Several other optional attributes can be passed to the cfmail tag to further affect its

behavior. You need to pass optional parameters only if you wish to use a value other than the
default. (The cfmail tag is discussed in detail in Chapter 12.)

Attributes can accept both literal values and expressions. Literal values are generally surrounded by
double quotes, although this isn't necessary when referring to numeric values, Boolean values, or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

expressions. In the interest of style and consistency, however, I suggest that you surround all
attribute values with double quotes. Because ColdFusion is a weakly typed language, you can pass
numeric values inside quotes without causing any problems.

Attributes aren't the only way for CFML tags to get data. Many CFML tags can act on any content that
appears between its start and end tags. These tags are often referred to as container tags. If you
look at the previous example, you'll notice that the text "This is a test message" appears between the
<cfmail> and </cfmail> tags. In the case of the cfmail tag, any text appearing within the cfmail

block is used by the tag as the message body. Other container tags make different use of the text
placed between the tag pairs.

2.1.3 Comments

One final thing to note about the previous example is its use of comments. Commenting your code is
an essential part of application development. Including quality comments in your code is important
for a number of reasons:

It allows you to remember what a particular section of code does long after you have forgotten
about the application.

It helps break up sections of code into more readable chunks.

It helps other developers understand your development style in the event they inherit your
application.

There are two types of comments that can be used in your CFML templates: HTML-style comments
and CFML comments. The standard HTML-style comment takes the form:

<!--This is a comment-->

<!-- This is a comment too. -->

<!-- So is this
 it is just on two lines -->

Notice that each comment begins with <!-- and ends with -->. HTML comments contain two dashes

and may or may not have a space between the dash and the comment text.

CFML comments differ from HTML comments in four ways. First, CFML comments contain three
dashes, as opposed to the two dashes in HTML comments:

<!--- This is a CFML comment --->

<!--- This is a multi-line
 CFML comment --->

The second difference is that CFML comments must have a space between the opening and closing
comment marker and the comment text. Failure to include these spaces can result in incorrectly
parsed code and produce undesirable results when a template is executed.

The third difference between CFML comments and regular HTML comments is that CFML comments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

aren't displayed in the HTML code generated by ColdFusion. If you display the HTML code generated
by ColdFusion by using your browser's "View Source" function, you won't see any CFML comments
you wrote in the source code. You will, however, see any HTML comments you made. For this reason,
you should write your comments as CFML comments when you want to comment your code but you
don't want to let visitors to your site view the comments.

The final difference is a new feature in ColdFusion MX. CFML comments can now be placed within
tags, functions, and pound signs (discussed later). All of the following examples are valid CFML
comments in ColdFusion MX:

<cfset x = 1 <!--- I am valid --->>
<cfset y = DateFormat(Now(), 'mm/dd/yyyy' <!--- I'm valid too --->)>
<cfset z = (1 + 2<!--- still valid --->)>
<cf_mytag var="x" <!--- I'm valid too --->>
<cfoutput>
#y<!---I'm valid as well, although this looks weird--->#
</cfoutput>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 Datatypes

ColdFusion supports a number of datatypes for use in building expressions. These datatypes can be
broken into four categories: simple, complex, binary, and object. The simple datatypes are made up
of Booleans, strings, numbers (both integer and floating point), and date/time objects:

Boolean

ColdFusion uses the Boolean datatype to store the value generated by a logical operation.
Boolean values are stored as either true or false. In numeric operations, Boolean values
evaluate to 1 for true and 0 for false. When dealing with strings, Boolean values are set to
Yes for true and No for false. Note that no quotes are necessary to delimit Boolean values,

nor are Boolean values case sensitive.
Strings

ColdFusion stores text values in strings delimited by a set of single or double quotes. For
example, "This is a string." and 'So is this!' are both strings. "1000" and '1000' are

also strings so long as the numbers are delimited by a set of quotes. The empty string can be
written as either '' or "". There are certain special characters that must be escaped within
strings. These special characters are the single quote ('), double quote ("), and pound sign
(#). These characters may be escaped by doubling up on them as in the following examples:

<cfset String1 = "This is a ""good"" use of escaped double quotes">
<cfset String2 = "This is a ''good'' use of escaped single quotes">
<cfset String3 = "What is the ##1 team in the league?">

As we'll discuss in the next section, <cfset> is a CFML tag you use to set a variable to a particular

value.

Numbers

ColdFusion supports both floating-point (decimal) and integer (whole number) values. Numbers
don't need to be delimited by quotes when referenced within expressions. The range for
floating-point values in ColdFusion is 10300 (1 followed by 300 zeros) with up to 12 significant
digits. The range for integer values is -2,147,483,648 to 2,147,483,647. ColdFusion
automatically converts numbers outside this range to floating-point values.

Most ColdFusion functions can perform calculations accurate to 12 decimal places. Numbers
may be represented as either regular numbers or in scientific notation. ColdFusion formats
numbers in scientific notation as xEy (x*10y) where x is a positive real number in the range 1-
10, and y is an integer. So, 100,000 equals 1.0E5 or 1*105 while .001 equals 1.0E-3 or 1*10-3.

Date/time objects

ColdFusion allows you to specify date and time values separately or combined. Dates must
range from 100 A.D. to 9999 A.D. and can be written as:

8/15/02
08/15/2002
2002-08-15
August 15, 2002

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Aug 15, 2002
Aug. 15, 2002

ColdFusion MX uses the underlying Java Runtime Environment (JRE) as well as the current locale to
determine how to process two-digit years. For most locales, two-digit years are processed relative to
the current century. Based on this, two digit years are interpreted to within 80 years before the
current date and 20 years after. There are a few exceptions to this. The following locales interpret
two digit years to within 72 years before the current date and 28 years after: English (Australian),
English (New Zealand), German (Austrian), German (Standard), German (Swiss), Portuguese
(Brazilian), Portuguese (Standard), Swedish.

Times are accurate to the second and can be written as:

7pm
07:00pm
7:00pm
19:00:00

Combined date/time objects can be written as any combination of the previous dates and times.

Complex datatypes include query objects, lists, arrays, structures, and XML document objects:

Lists

Lists are a special type of string that contains delimited elements. For example,
"a,b,c,d,e,f,g" is a list where "a", "b", "c", "d", "e", "f", and "g" are considered the list
elements while the comma (,) is considered the delimiter. Lists are covered in Chapter 6.

Arrays

Arrays are objects that can store indexed values. Each value stored in an array is referred to as
an element of the array. Each element has an integer assigned to it that marks its position
within the array. This number is referred to as the element's index. Array elements can store
any ColdFusion datatype including additional arrays.

ColdFusion supports one-dimensional (think of this as a single column of data or a list), two-
dimensional (think of this as a spreadsheet with rows and columns), and three-dimensional
(think of this as a cube of data) arrays. Additional dimensions can be created dynamically by
nesting multidimensional arrays (creating an array of arrays). Arrays are discussed in Chapter
6.

Structures

Structures are objects that allow you to store and manipulate key/value pairs. Structures are
similar to one-dimensional arrays except elements are referenced via an alphanumeric "key"
(string) as opposed to a numeric index within the array. Structures offer an advantage over
arrays in certain situations by allowing you to reference groups of related information by key as
opposed to by numeric index. This feature allows structures to also be used as associative
arrays. Structures are covered in Chapter 6.

Query objects

Query objects are special ColdFusion data structures that hold record sets. Record sets are
most often returned by database query operations. In addition, several CFML tags return query
objects upon completion. Query objects are similar in structure to two-dimensional arrays and
are made up of rows and columns (like a spreadsheet). Query objects are discussed in Chapter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.
XML document objects

XML document objects are a special datatype ColdFusion uses to represent XML data. XML
document objects are very similar to structures containing nested arrays and structures that
represent the DOM (Document Object Model) of the XML data. XML document objects can be
easily manipulated using most of ColdFusion's structure and array functions as well as the new
XML functions introduced in ColdFusion MX. XML is discussed in Chapter 23.

The binary datatype is used to store raw data, usually from files. Binary data in its raw format
generally isn't very useful as it isn't human readable. However, it may be desirable to manipulate it in
various ways such as reading or writing values. In versions of ColdFusion prior to MX, binary data
couldn't be directly manipulated using CFML functions. It first had to be converted to Base64 using
the ToBase64() function. Base64 is an encoding scheme that uses printable characters to represent

binary data. Base64 is typically used to encode binary data before it is sent via email or stored in a
database. In ColdFusion MX, binary data is stored as a byte array that can easily be manipulated with
ColdFusion's array and string functions. For more information on working with binary data, see
Chapter 12.

Object datatypes include COM (Windows 95, 98, NT, and 2000 only), CORBA, Java, ColdFusion
Components (CFCs), and web services objects. Regardless of the type of object invoked, objects
usually consist of methods and properties that can be accessed by ColdFusion. Objects are a fairly
advanced topic and are covered in Chapter 22 and Chapter 27. CFMLprovides a number of functions
for dynamically determining the datatype of a variable: IsArray(), IsBinary(), IsBoolean(),
IsDate(), IsNumeric(), IsNumericDate(), IsObject(), IsQuery(), IsSimpleValue(),
IsStruct(), and IsXmlDoc(). Additionally, several functions exist specifically for manipulating

data specific to each particular datatype. These functions are discussed throughout the book and can
be found in Appendix B.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 Variables

A variable is a name associated with a data value; it is common to say that a variable stores or
contains a value. Variables allow you to store and manipulate data in your applications; they are
called variables because the values they represent can change throughout the life of an application.
In ColdFusion, you don't have to explicitly declare your variables, as you do in a language such as
C++. Additionally, ColdFusion variables are typeless, meaning that you can assign a value of any
datatype (string, numeric, Boolean, object, etc.) to any variable.

2.3.1 Variable Names

The following rules and guidelines apply to variable names in CFML:

Variable names must begin with a letter, an underscore, or the Unicode currency symbol ($)

and can contain only letters, numbers, underscores, and Unicode currency symbols. Variable
names can't contain spaces. For example, Test, MyVariable, My_variable, MyVariable1, and
MyDescriptive_var2 are all valid ColdFusion variables, while 4C, My Variable, Phone#, and
A/P aren't. Note that the addition of the Unicode currency symbol is new in ColdFusion MX.

In ColdFusion MX, you cannot use compound variable names delimited with a period, such as
Employee.Name. In previous versions of ColdFusion, compound variable names were allowed. In

ColdFusion MX, the same syntax is used to automatically create a structure with a specific key
and assign a value to that key. For example, <cfset Employee.Name="Pere Money"> creates a
structure named Employee and assigns "Pere Money" to a key called Name. There are two

exceptions to this rule: cookie names and client variable names may contain periods.

Avoid using variable names that are the same as ColdFusion variable scopes, scope structures,
return values, tag names, function names, operators, or SQL keywords.

Avoid using variable names that end in _date, _eurodate, _float, _integer, _range,
_required, or _time, as these are reserved suffixes for server-side form validation variables

and can cause naming conflicts.

ColdFusion variable names aren't case sensitive. In the interest of good style and readability,
however, you should keep the case of your variable names consistent.

Always try to use descriptive names for your variables. It might seem like a pain, but you will be
grateful when it comes time to debug or add a new feature.

If your application interacts with a database, you can make your code clearer by using
ColdFusion variable names that match the corresponding fields in the database.

2.3.2 Assigning Values to Variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The <cfset> tag assigns a value to a variable in ColdFusion. The variable name is followed by an

equal sign and the value or expression you want to assign to the variable. For example:

<cfset x = 1>
<cfset y = x+2>
<cfset Name = "Rob">
<cfset x = Name>
<cfset Authenticated = true>
<cfset TheDate = DateFormat(Now(),'mm/dd/yyyy')>

You can set only one variable in each cfset tag. Note that the cfset tag doesn't have a closing tag.

2.3.3 Variable Scope

ColdFusion supports a number of different variable scopes, where scope refers to the context in which
the variable exists within an application. The scope encompasses where the variable came from (such
as a form field, a URL, etc.), how it can be used, and how long it persists. As we'll discuss shortly,
when you refer to a variable in your code, you can use just the variable's simple name (MyVar) or its

fully scoped name (scope.MyVar). The variable scopes available in ColdFusion are as follows:

Local

By default, all variables created using the cfset and cfparam tags are local variables. (We
haven't discussed the cfparam tag yet; we'll get to it shortly.) Local variables are accessible

only on the page on which they are created and can be referenced by their simple names or as
variables.variable_name.

Form

Form variables are passed from HTML forms or ColdFusion Java forms to other ColdFusion
templates. Data is passed when a user fills out a form and submits it. Both the form field name
and associated data are passed from the form to the ColdFusion template specified in the
form's action attribute. Form field variables can be referenced as form.field_name. By
default, a variable called form.FieldNames is always available within the form scope; it

contains a comma-delimited list of all field names posted from a form.
URL

URL variables contain parameters passed to ColdFusion templates via URLs. For example,
consider the following hypertext link:

http://www.example.com/view_news.cfm?ArticleID=5&ViewMode=public

Clicking on this link causes a ColdFusion template named view_news.cfm to execute. Two variables,
ArticleID and ViewMode, with the values 5 and public, respectively, are available to the

view_news.cfm template. To refer to the variables in the view_mode.cfm template, you can use the
syntax URL.ArticleID and URL.ViewMode.

Query

The query scope references variables within a ColdFusion query object. For example, to
reference a field called Name from a query called Employees, you use the following syntax:
Employees.Name. Three predefined variables are always available for any query object:

queryname.ColumnList

http://www.example.com/view_news.cfm?ArticleID=5&ViewMode=public
http://lib.ommolketab.ir
http://lib.ommolketab.ir

queryname.CurrentRow
queryname.RecordCount

The query scope is covered in detail in Chapter 4.

File

File variables are automatically created by ColdFusion when you use the <cffile> tag to

upload a file. These variables are referenced as cffile.variable_name. File variables are
covered in detail in Chapter 12. For a complete list of available file variables, see the <cffile>

tag in Appendix A.[1]

[1] Prior to Version 4.5, the file scope was prefixed using the File prefix. This prefix was deprecated in

ColdFusion 5.0.

CGI

CGI variables are read-only variables that report specific information about the server and
browser environments in use. CGI variables are accessible in all ColdFusion templates; the
available variables vary depend on the combination of server and browser software being used.
CGI variables take the form CGI.variable_name. A list of some of the most common CGI

variables is shown in Table 2-1.

Table 2-1. Common CGI variables

AUTH_PASSWORD HTTP_HOST

AUTH_TYPE HTTP_USER_AGENT

AUTH_USER HTTPS

CERT_COOKIE HTTPS_KEYSIZE

CERT_FLAGS HTTPS_SECRETKEYSIZE

CERT_ISSUER HTTPS_SERVER_ISSUER

CERT_KEYSIZE HTTPS_SERVER_SUBJECTS

CERT_SECRETKEYSIZE PATH_INFO

CERT_SERIALNUMBER PATH_TRANSLATED

CERT_SERVER_ISSUER QUERY_STRING

CERT_SERVER_SUBJECT REMOTE_ADDR

CERT_SUBJECT REMOTE_HOST

CF_TEMPLATE_PATH REMOTE_USER

CONTENT_LENGTH REQUEST_METHOD

CONTENT_TYPE SCRIPT_NAME

GATEWAY_INTERFACE SERVER_NAME

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP_ACCEPT SERVER_PORT

HTTP_ACCEPT_CHARSET SERVER_PORT_SECURE

HTTP_ACCEPT_ENCODING SERVER_PROTOCOL

HTTP_ACCEPT_LANGUAGE SERVER_SOFTWARE

HTTP_CONNECTION WEB_SERVER_API

HTTP_COOKIE

It is also possible to obtain a list of the CGI variables available for your particular configuration by
turning on debugging in the ColdFusion Administrator. Once you have done this (provided you have
access to the ColdFusion Administrator), simply execute any CFML template on your server. A list of
all accessible CGI variables should appear at the bottom of the page.

Server

Server variables store data associated with the server on which ColdFusion is running. Server
variables are available to all ColdFusion applications and persist until the ColdFusion Application
Server is stopped. You can create your own server variables or reference the following
predefined ones:

server.COLDFUSION.APPSERVER
server.COLDFUSION.PRODUCTNAME
server.COLDFUSION.PRODUCTVERSION
server.COLDFUSION.PRODUCTLEVEL
server.COLDFUSION.ROOTDIR
server.COLDFUSION.SERIALNUMBER
server.COLDFUSION.SUPPORTEDLOCALES
server.COLDFUSION.EXPIRATION
server.OS.ARCH
server.OS.NAME
server.OS.ADDITIONALINFORMATION
server.OS.VERSION
server.OS.BUILDNUMBER

Server variables must always be referenced using the server prefix as in server.variable_name.

Server variables are discussed in detail in Chapter 7.

Cookie

Cookie variables hold the values of HTTP cookies retrieved from a user's web browser. Cookies
are a unique type of persistent variable that are stored on the client machine and sent to the
ColdFusion server each time a page is requested. Cookies are covered in Chapter 7.

Application

Application variables define application-wide settings such as default directories and data
source names. Application variables are usually defined in the Application.cfm file. Application
variables are available to all clients, or users, accessing the named application and are often
referred to as global variables. Application variables must always be referenced using the
application prefix, as in application.variable_name. By default, a single predefined

application variable is available:
application.ApplicationName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application variables and the cfapplication tag are discussed in detail in Chapter 7.

Session

Session variables are persistent variables that store information for a specific session. Session
variables are held in the server's memory and persist for a finite amount of time. Each session
is unique to a user and can be referenced across ColdFusion templates. Session variables are
often used for shopping carts and user authentication systems. Session variables must be
specifically set and referenced as session.variable_name. In order to use session variables,

they must be turned on in both the ColdFusion administrator and within an Application.cfm
template for the application. By default, the following predefined session variables are
available:

session.cfid
session.cftoken
session.sessionid
session.urltoken

Session variables as well as the Application.cfm template are discussed in detail in Chapter 7.

Client

Client variables store values associated with a particular user, just like session variables. Most
often they are used to maintain state across a server cluster as a user navigates from page to
page throughout an application. What makes client variables different from session variables is
that they can persist across multiple sessions. That is, client variables are stored by the
ColdFusion server and can be retrieved during subsequent visits. For example, an application
might use a client variable to remember things such as the last time a user visited your site or
their font size/color preferences. By default, client variables are stored in the system registry,
but they can also be stored in a cookie or a database. When creating client variables, the
variable name must always be referenced using the client prefix, as in

client.variable_name. This is optional when reading client variables. In addition to the client

variables you create in an application, there are several read-only client variables ColdFusion
creates automatically:

client.cfid
client.cftoken
client.hitcount
client.lastvisit
client.timecreated
client.urltoken

Client variables are discussed in Chapter 7.

Attributes

The attributes scope is unique to ColdFusion custom tags. It allows you to refer to attributes
passed from the calling template to the custom tag. Caller variables must always be referenced
using the attributes prefix as in attributes.variable_name. Custom tags and attribute

variables are discussed in detail in Chapter 21.
Caller

The caller scope is also unique to ColdFusion custom tags; it passes a value from a custom tag
back to its calling template. Caller variables must always be referenced using the caller prefix

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as in caller.variable_name. Caller variables are discussed in Chapter 21.

ThisTag

The ThisTag scope is unique to custom tags as well and is generally used with paired custom
tags, or for intertag communication. Variables in the ThisTag scope must always be referenced
with the thistag prefix, as in thistag.variable_name. There are four variables that are

automatically created by ColdFusion:
thistag.executionMode
thistag.HasEndTag
thistag.GeneratedContent

thistag.AssocAttribs[index] (only when child tag is associated with base tag)

For more information on the ThisTag scope, see Chapter 21.

Request

Request variables offer a way to store data in a structure that can be passed to nested custom
tags. Because variables in the request scope are available to all templates in a request, they
are often set in an application's Application.cfm template and used in lieu of application
variables. Request variables must always be referenced using the request prefix as in

request.variable_name. Request variables are discussed in Chapter 21.

Arguments

The arguments scope is used to reference arguments passed to user-defined functions (UDFs)
and ColdFusion Components (CFCs) methods. The arguments scope differs from other variable
scopes in that it can be accessed as both a scope structure and a scope array. Arguments
should always be referenced as arguments.variable_name or arguments[array_index].

Arguments are discussed in Chapter 20 and Chapter 22.
Function

This scope is only available within UDFs and CFC methods and is used to declare variables local
to the function. It differs from all other variable scopes in two ways. The first is that there's no
prefix for the function scope. Once a function variable has been initialized, it is referred to just
like any other unscoped variable. The second difference is that function variables must be
initialized using the var attribute of the cfset tag as in this example:

<cfset var x=10> <!--- Assigns 10 to a function variable named x --->

The function scope is discussed in Chapter 20 and Chapter 22.

Super

The super scope is unique to CFCs that use inheritance. Super is not actually used to scope
variables, but instead is used to scope component methods. The super scope contains all the
methods that the current component extends, which is useful in situations where a component
and the component it extends have like-named methods. In this case, super lets you reference
a method in the parent object, as opposed to the like-named method in the child object that
you called.

This

The this scope is unique to CFCs and is functionally equivalent to the this scope in JavaScript
and ActionScript. Variables in the this scope are available to all methods within a CFC, to any
pages they include, and to the page that calls the CFC. Within a CFC, you refer to variables in
the this scope using the this prefix: this.varName. Outside the CFC, you use the component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name to reference variables in the this scope: myComponent.varName.

Flash

The flash scope is used in conjunction with Macromedia's Flash Remoting technology to
reference values passed to ColdFusion from a Flash movie. Variables in this scope must always
be referenced with the flash prefix. For more information on Flash Remoting, see Chapter 28.

Most variable scopes can be accessed via like-named ColdFusion structures. These scope structures
are application, arguments, attributes, caller, CGI, cookie, client, file, form, local,
request, server, session, this, thistag, and URL. These structures contain all the variable names

and associated values for the particular scope and can be manipulated using any of the structure
functions listed in Appendix B.

In addition to the previously mentioned variable types, many CFML tags return variables known as
return values or return variables. These variables are usually prefixed with the name of the tag
generating them. For example, the <cfhttp> tag returns several variables, such as
cfhttp.FileContent and cfhttp.MimeType, depending on the action you have it perform.

The ColdFusion environment also defines some variables automatically in different scopes. For
example, when form data is passed to a ColdFusion template, form variables are automatically
created for all the form fields. The same holds true for URL parameters passed to a ColdFusion
template.

To get a better understanding of how these variable scopes relate to one another, consider the
relationships depicted in Figure 2-2.

Figure 2-2. Variable scope relationships

When you refer to a variable in your code, you can refer to it using just the variable's simple name
(MyVar) or its fully scoped name (scope.MyVar). Referencing a variable using its fully scoped name is

called scoping the variable. Because ColdFusion supports different variable scopes, the potential
exists for having like-named variables of different scopes within an application. ColdFusion allows you
to deal with this potential conflict in two ways.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One way to handle potential variable conflicts is to always provide the variable scope when
referencing a variable. For example, a URL variable should be referenced as URL.MyVariable, while a

form variable should be referenced as form.MyVariable. Using the variable scope has two additional

benefits. First, by identifying the variable scope right along with the variable, it makes your code
more readable. When you look through your code, you know in exactly what context a particular
variable is used. The second benefit has to do with performance. When ColdFusion encounters a
scoped variable, it is able to process the code faster because it doesn't have to take time to
determine the variable's scope.

The second way to deal with potential variable conflicts is to let ColdFusion handle them. When the
ColdFusion server encounters an unscoped variable, it attempts to evaluate it in a specific order:

Local variables (variables.MyVariable)1.

CGI variables (CGI.MyVariable)2.

File variables (cffile.MyVariable)3.

URL variables (URL.MyVariable)4.

Form variables (form.MyVariable)5.

Cookie variables (cookie.MyVariable)6.

Client variables (client.MyVariable)7.

All variables in scopes not shown in the preceding list must always be explicitly scoped. As you might
imagine, allowing ColdFusion to resolve potential conflicts can lead to unexpected results. For
example, you might refer to a variable thinking that you are getting a URL variable, but ColdFusion
resolves it to a local variable that has the same name. Of course, you can avoid this problem by
choosing your variable names more carefully. But to make things even clearer, I recommend that
you always scope your variables.

2.3.4 Specifying Default Values Using cfparam

The <cfparam> tag allows you to define a variable and set a default value in the event that the

variable doesn't already exist, such as when you expect a value to be passed into a template via a
form or URL variable. The tag can also test for the existence of a variable as well as test its datatype.
The cfparam tag is called using the following syntax:

<cfparam name="parameter_name"
 type="data_type"
 default="value">

The name attribute specifies the name of the variable to create. type is optional and is used to specify
the datatype the variable must be to be considered valid. Possible options are Any, Array, Binary,
Boolean, Date, GUID, Numeric, Query, String, Struct, UUID, and VariableName. The default value
for type is Any. VariableName is a special option; it checks to make sure the variable you are

checking contains a value that is a valid variable name according to the naming conventions we
covered earlier. The final attribute, default, assigns a default value or expression to the variable if it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doesn't exist or has no value already assigned. The cfparam tag can be used in three ways:

Test for a required variable

Use the name attribute to specify the name of the variable to test for. If the variable doesn't

exist, ColdFusion throws an error.
Test for a required variable of a specific datatype

Use the name attribute to specify the name of the variable and the type attribute to specify the

required datatype for the value assigned to the variable. If the variable doesn't exist or
contains a value of the wrong datatype, ColdFusion throws an error.

Test for an optional variable and assign a default value

Use the name attribute to specify the name of the variable and the default attribute to specify

a value assigned to the variable in the event it doesn't exist.

The following example demonstrates how the cfparam tag can assign a default value to a variable in

the event it doesn't already exist:

<cfparam name="URL.RecordID" default="12">

In this case, the cfparam tag assigns a default value of 12 to a URL variable called RecordID in the
event that the variable doesn't already exist in the template. Using cfparam lets you define a default

value to use in the event that the URL variable isn't passed (for whatever reason) so that ColdFusion
doesn't throw an error.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.4 Expressions

Expressions are the building blocks of the CFML language. In its most basic form, an expression is
nothing more than a single element such as 1, test, MyVar, or Chr(54). Compound expressions let
you to evaluate data that is acted upon by operators. For example, 1*10 is a mathematical
expression that evaluates to 10. The values 1 and 10 are both data, while the asterisk (*) is

considered an operator. On the other end of the spectrum, expressions can be complex, consisting of
one or more subexpressions:

<cfset x = 1+(10 mod (3 * (11 - acos(-1))))>

2.4.1 Operators

Operators allow you to perform calculations and make comparisons between expressions. In other
words, they allow you to combine simple expressions to form ones that are more complex. For
example, <cfset x = 10*(3+2)> uses the asterisk (*) as an operator to multiply 10 by the sum of
another expression that uses the plus (+) operator to add 3 and 2. There are four types of operators

available in ColdFusion:

Arithmetic

Performs arithmetic operations such as sign changes, addition, subtraction, etc., on numeric
values.

Comparison

Compares two values and returns a Boolean true/false.

String

There is only one string operator in the CFML language. The ampersand (&) concatenates

strings.
Boolean

Also known as logical operators, Boolean operators perform connective and negation
operations and return Boolean true/false values.

Table 2-2 lists the operators available in ColdFusion by order of precedence (P).

Table 2-2. ColdFusion operators

Operator Operation Type P

Unary +, unary - Sign change Arithmetic 1

^ Raise to a power Arithmetic 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Operation Type P

*, / Multiplication, division Arithmetic 3

\ Integer division Arithmetic 4

mod Remainder Arithmetic 5

+, - Addition, subtraction Arithmetic 6

& Concatenation String 7

is (equal, eq), Equality Comparison 8

is not (not equal, neq), Inequality

contains, Contains substring

does not contain, Doesn't contain

greater than (gt), >

greater than or equal to (gte), >=

less than (lt), <

less than or equal to (lte) <=

not Logical NOT Boolean 9

and Logical AND Boolean 10

or Logical OR Boolean 11

xor Logical XOR Boolean 12

eqv Equivalence Boolean 13

imp Implication Boolean 14

2.4.2 Functions

Functions are a type of operator that let you perform a predefined action on a piece of data. CFML
functions encapsulate a set of operations that would otherwise require a substantial amount of
programming. ColdFusion comes with several hundred predefined functions. In addition, as of
ColdFusion 5.0, you can create your own user-defined functions. Most functions take input in the
form of parameters. Functions can stand alone or be nested.

Many functions accept a single argument:

<cfset MyCharacter = Chr(76)>

String arguments may be delimited by single or double quotes:

<cfset String1 = Reverse('Hello')>
<cfset String2 = Reverse("Hello")>

*, / Multiplication, division Arithmetic 3

\ Integer division Arithmetic 4

mod Remainder Arithmetic 5

+, - Addition, subtraction Arithmetic 6

& Concatenation String 7

is (equal, eq), Equality Comparison 8

is not (not equal, neq), Inequality

contains, Contains substring

does not contain, Doesn't contain

greater than (gt), >

greater than or equal to (gte), >=

less than (lt), <

less than or equal to (lte) <=

not Logical NOT Boolean 9

and Logical AND Boolean 10

or Logical OR Boolean 11

xor Logical XOR Boolean 12

eqv Equivalence Boolean 13

imp Implication Boolean 14

2.4.2 Functions

Functions are a type of operator that let you perform a predefined action on a piece of data. CFML
functions encapsulate a set of operations that would otherwise require a substantial amount of
programming. ColdFusion comes with several hundred predefined functions. In addition, as of
ColdFusion 5.0, you can create your own user-defined functions. Most functions take input in the
form of parameters. Functions can stand alone or be nested.

Many functions accept a single argument:

<cfset MyCharacter = Chr(76)>

String arguments may be delimited by single or double quotes:

<cfset String1 = Reverse('Hello')>
<cfset String2 = Reverse("Hello")>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Functions can also accept variables as arguments:

<cfset x = -1>
<cfset absx = abs(x)>

There are a few functions that take no arguments:

<cfset TheTime = Now()>
<cfset x = CreateUUID()>

Some functions require more than one argument. Multiple arguments are separated with a comma:

<cfset x = Compare(1234, 4321)>

Other functions contain both required and optional arguments. If no value is supplied for an optional
argument, a default is used instead:

<cfset MyList = "Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday">
<cfset Length = ListLen(MyList, ';')>

In this example, the second argument passed to the ListLen() function is optional. It specifies the

delimiter that separates elements of the list. If no delimiter is specified, the function uses the default,
a comma (,).

Function calls can also be nested within other function calls. Consider this example where the Now()
function is nested within the DateFormat() function:

<cfset TodaysDate = DateFormat(Now(),'mm/dd/yyyy')>

Regardless of an expression's complexity, they all have one thing in common: functions always return
a value. This value can be of any ColdFusion datatype (Boolean, string, numeric, date/time, list,
array, structure, query object, or component object) and can be output to the browser or included as
part of another expression. There are over 265 functions in the CFML language. For a complete list,
see Appendix B. For more information on creating your own functions, see Chapter 20.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.5 Writing Output

To output the contents or results of a ColdFusion expression, you use the <cfoutput> tag. cfoutput
is a paired tag, which means that it has both start and end tags. cfoutput tells ColdFusion to parse

any text found between the tag pairs for variables and expressions that need to be evaluated. We'll
use the cfoutput tag in a variety of ways throughout the book; it is one of the most commonly used
CFML tags. For now, let's focus on how the cfoutput tag outputs simple variable values.

The following example creates a number of variables using cfset tags and then outputs the values of
the variables within cfoutput tags:

<!--- Assign values to variables --->
<cfset x = 1>
<cfset y = x+2>
<cfset Name = "Rob">
<cfset z = Name>
<cfset Authenticated = true>
<cfset TheDate = DateFormat(Now(),'mm/dd/yyyy')>

<!--- Output the variable values --->
<h2>Writing Output</h2>
<cfoutput>
x = #x#

y = #y#

Name = #Name#

z = #z#

TheDate = #TheDate#

Authenticated = #Authenticated#

</cfoutput>

Executing this template causes the value assigned to each variable to be output to the browser, as
shown in Figure 2-3. Note the use of pound signs (#) in this example. ColdFusion uses pound signs to

separate expressions from literal text. When ColdFusion encounters an expression surrounded by
pound signs, it attempts to evaluate it.

Figure 2-3. Writing output using the cfoutput tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The most common usage of pound signs occurs when evaluating expressions within cfoutput tags.

Use pound signs around variable names when you want to substitute the variable's value within your
output:

<cfoutput>
Hello #Name#, how are you today?
</cfoutput>

When you have multiple variables, each variable should be delimited by its own set of pound signs:

<cfoutput>
Hello #FirstName# #LastName#, how are you today?
</cfoutput>

In addition, expressions also need to be delimited by pound signs:

<cfoutput>
The absolute value of -1 is #abs(-1)#.
</cfoutput>

In ColdFusion MX, you can evaluate compound expressions directly between pound signs:

<cfoutput>
10*10 = #10*10#

1+5+abs(-4) = #(1+5+abs(-4))#
</cfoutput>

In older versions of ColdFusion, you need to evaluate a compound expression using the cfset tag to

perform the evaluation:

<cfset x=10*10>

<cfoutput>
10*10 = #x#
</cfoutput>

There's also the Evaluate() function, but you should rarely need to use this. Additionally, it can be

slower than alternative methods of expression evaluation:

<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10*10 = #Evaluate(10*10)#
</cfoutput>

This doesn't mean that it is always necessary to delimit your expressions with pound signs, though.
The following guidelines should help you understand when it is necessary to use pound signs in your
expressions and when it isn't. As a rule, you should try to use pound signs only when necessary, for
both aesthetic and performance reasons; unnecessary pound signs add to the time it takes
ColdFusion to parse a template.

2.5.1 Using Pound Signs Within Expressions

For the most part, you don't need to use pound signs within ColdFusion expressions. For example,
the following expressions, although valid, use pound signs unnecessarily:

<cfset #x# = 1>
<cfset x = #abs(-1)#>
<cfset x = #DateFormat(#Now()#,'mm/dd/yyyy')#>

Because the ColdFusion parser must take time to parse all text within a tag or function, it is much
more efficient (not to mention readable) to write the expressions as:

<cfset x = 1>
<cfset x = abs(-1)>
<cfset x = DateFormat(Now(),'mm/dd/yyyy')>

There are a few instances, however, where it is necessary to use pound signs within a ColdFusion
function or tag.

2.5.1.1 Including an expression within a string

You need to use pound signs when you include an expression within a string:

<cfset MyNewString = "Hello #Name#, how are you today?">

Alternately, you can achieve the same results via concatenation:

<cfset MyNewString = "Hello" & " " & Name & ", how are you today?">

In this case, you don't need to use pound signs around the variable name, nor is it necessary to
delimit the variable using quotation marks.

2.5.1.2 Including expressions within tag attributes

You need to use pound signs within tag attributes when the value being passed is contained in a
variable or expression:

<cfmail to=#DistributionList#
 from="webmaster@mycompany.com"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 subject="Hello #Name#">
Greetings!
</cfmail>

It isn't necessary (although I encourage it) to delimit the variable name DistributionList with

quotes. The same code can also be written as:

<cfmail to="#DistributionList#"
 from="webmaster@mycompany.com"
 subject="Hello #Name#">
Greetings!
</cfmail>

It is worth noting that CFML custom tags can have complex datatypes, such as queries, arrays, and
structures, passed to them via tag attributes. These datatypes are passed the same way as simple
values-with their variable names escaped by pound signs. This example assumes that #TheItems# is

a query object:

<cf_mytag name="orders"
 items="#TheItems#">

2.5.2 Nested Pound Signs

There are rare occasions where it may appear necessary to nest pound signs within other pound
signs. While there is never a situation where this is absolutely a requirement (there is always a
workaround), certain complex expressions involving string manipulation can be created using nested
pound signs:

<cfset List1="a,b,c,d">
<cfset List2="1,2,3,4">

<cfoutput>
The combined list: #List1#,#List2#

The fourth element: #ListGetAt("#List1#,#List2#", 4)#
</cfoutput>

While this code is allowable, it is preferable to write it as:

<cfset List1="a,b,c,d">
<cfset List2="1,2,3,4">
<cfset CombinedList = ListAppend(List1, List2)>

<cfoutput>
The combined list: #CombinedList#

The fourth element: #ListGetAt(CombinedList, 4)#
</cfoutput>

2.5.3 Escaping Pound Signs

There are occasions where you will find it necessary or desirable to use pound signs as plain text
within your CFML. In these instances, pound signs can be escaped by doubling them up:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
<tr>
 <td bgcolor="##FFFFCC">My phone ## is #MyPhoneNumber#</td>
</tr>
</cfoutput>

Notice that both the pound sign used for the color's hex value and the pound sign for the telephone
number abbreviation are escaped. Using a single pound sign in either case results in ColdFusion
throwing an exception.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.6 Conditional Processing

Conditional processing makes it possible to implement flow control and decision making within your
ColdFusion templates. ColdFusion provides three techniques for applying conditional processing in
your programs: if/elseif/else functionality with the <cfif>, <cfelseif>, and <cfelse> tags; a C-
style switch statement with the <cfswitch>, <cfcase>, and <cfdefaultcase> tags; and the IIF()

function for inline conditionals.

2.6.1 cfif, cfelseif, and cfelse

If/elseif/else processing allows you to add logical decision-making and flow control to your ColdFusion
applications, so you can evaluate an expression and take different actions based upon the results.
Basic if/elseif/else processing takes the following form:

<cfif expression>
 HTML and CFML...
<cfelseif expression>
 HTML and CFML...
<cfelse>
 HTML and CFML...
</cfif>

The cfif statement can evaluate any expression capable of returning a Boolean value. If the
statement evaluates true, ColdFusion processes the code associated with the cfif statement. The
cfelseif statement provides an alternate expression in the event that the expression in the cfif
statement evaluates false. Any number of cfelseif statements can provide additional decision-
making options. The cfelse statement provides a default option in the event that both the cfif
statement and any cfelseif statements all evaluate false. The following example uses if/elseif/else
logic to evaluate a URL variable called Action:

<cfif URL.Action IS "Add">
 <cfinclude template="AddRecord.cfm">
<cfelseif URL.Action IS "Edit">
 <cfinclude template="EditRecord.cfm">
<cfelseif URL.Action IS "Delete">
 <cfinclude template="DeleteRecord.cfm">
<cfelse>
 You have chosen an invalid action!
</cfif>

Depending on the value of Action, one of three additional templates is called via a <cfinclude> tag

(which we'll discuss shortly). If the value of the URL variable doesn't match one of the values in the
cfif or cfelseif statements, a default message contained within the cfelse tag is displayed.

The following rules can be applied to if/elseif/else statements:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfif/cfelseif/cfelse statements can be nested.

Multiple cfelseif statements can be used within a single cfif block.

cfif statements can contain more than one expression to evaluate, as in:
<cfif IsDefined('MyVar') and MyVar is "a">

Compound cfif statements that contain multiple expressions separated by operators such as
and and or are processed using short-circuit Boolean evaluation. This means that ColdFusion
stops processing the <cfif> statement once an expression evaluates true.

Consider using cfswitch/cfcase to speed up performance when possible.

2.6.2 cfswitch, cfcase, and cfdefaultcase

In addition to standard if/elseif/else decision-making using cfif, cfelseif, and cfelse tags,

ColdFusion also supports switch/case processing. Switch/case is often used in place of lengthy
if/elseif/else statements for both readability and performance reasons. Whenever possible,
switch/case should be used in place of if/elseif/else processing as it provides better overall
performance. The syntax used for switch/case processing is as follows:

<cfswitch expression="expression">

 <cfcase value="value_or_list_of_values" delimiters="delimiter">
 HTML and CFML...
 </cfcase>

 <cfcase value="value_or_list_of_values" delimiters="delimiter">
 HTML and CFML...
 </cfcase>
 ...
 <cfdefaultcase>
 HTML and CFML...
 </cfdefaultcase>
</cfswitch>

The cfswitch tag sets the expression to be evaluated. cfcase statements allow you to specify

individual values or delimited lists of values that can result from the expression evaluated by the
cfswitch statement. If the expression contained in the cfswitch statement evaluates to a value
contained in one of the cfcase statements, then the corresponding code is executed. The
cfdefaultcase tag allows you to specify a default action to take in the event that no cfcase value
matches the result of the expression from the cfswitch tag. The same example used in the section

on if/elseif/else processing can be easily rewritten using switch/case logic as follows:

<cfswitch expression="Url.Action">
 <cfcase value="Add">
 <cfinclude template="AddRecord.cfm">
 </cfcase>
 <cfcase value="Edit">
 <cfinclude template="EditRecord.cfm">
 </cfcase>
 <cfcase value="Delete">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfinclude template="DeleteRecord.cfm">
 </cfcase>
 <cfdefaultcase>
 You have chosen an invalid action!
 </cfdefaultcase>
</cfswitch>

cfswitch/cfcase can be used to reduce the amount of code necessary to evaluate certain types of
conditions. Consider the following example in which a number of cfif statements are used to

evaluate the current month and determine the corresponding season:

<!--- Sets TheMonth to the current month --->
<cfset TheMonth=MonthAsString(Month(Now()))>

<cfoutput>
<cfif TheMonth IS "December">
 #TheMonth# is in the winter.
<cfelseif TheMonth IS "January">
 #TheMonth# is in the winter.
<cfelseif TheMonth IS "February">
 #TheMonth# is in the winter.
<cfelseif TheMonth IS "March">
 #TheMonth# is in the spring.
<cfelseif TheMonth IS "April">
 #TheMonth# is in the spring.
<cfelseif TheMonth IS "May">
 #TheMonth# is in the spring.
<cfelseif TheMonth IS "June">
 #TheMonth# is in the summer.
<cfelseif TheMonth IS "July">
 #TheMonth# is in the summer.
<cfelseif TheMonth IS "August">
 #TheMonth# is in the summer.
<cfelseif TheMonth IS "September">
 #TheMonth# is in the fall.
<cfelseif TheMonth IS "October">
 #TheMonth# is in the fall.
<cfelseif TheMonth IS "November">
 #TheMonth# is in the fall.
</cfif>
</cfoutput>

As you can see, each month of the year requires its own cfif statement to determine whether it is

the same as the current month. While this code is perfectly acceptable, it is redundant. We can use
switch/case processing to handle the same task using considerably less code:

<!--- Sets TheMonth to the current month --->
<cfset TheMonth=MonthAsString(Month(Now()))>

<cfoutput>
<cfswitch expression="#TheMonth#">
 <cfcase value="December,January,February" delimiters=",">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #TheMonth# is in the winter.
 </cfcase>
 <cfcase value="March,April,May" delimiters=",">
 #TheMonth# is in the spring.
 </cfcase>
 <cfcase value="June,July,August" delimiters=",">
 #TheMonth# is in the summer.
 </cfcase>
 <cfdefaultcase>
 #TheMonth# is in the fall.
 </cfdefaultcase>
</cfswitch>
</cfoutput>

2.6.3 IIF

IIF() is a ColdFusion function that evaluates a condition inline and, depending on the results,

outputs one of two expressions. The function takes the form:

IIF(Condition, Expression_A, Expression_B)

If Condition evaluates true, Expression_A is processed and Expression_B is ignored. If, however,

Condition evaluates false, Expression_B is processed, and Expression_A is ignored.

Consider the following example that uses IIF() to evaluate the current day of the week. If the day
of the week is Wednesday, the message Today is Wednesday! is displayed. If the current day isn't
Wednesday, the message Today is not Wednesday, it is ___ is displayed:

<html>
<head>
 <title>IIF/DE Example</title>
</head>

<body>
<cfoutput>
#IIF(DayOfWeek(Now()) IS 4, DE("Today is Wednesday!"), DE("Today is not
 Wednesday, it is #DayOfWeekAsString(DayOfWeek(Now()))#"))#
</cfoutput>
</body>
</html>

The DE() function, which stands for delay evaluation, is used with the IIF() function to allow you

to pass it a string without having the string evaluated. This is necessary in the case of the second
expression in the IIF() function (the third parameter): it keeps ColdFusion from evaluating the
third parameter when the IIF() function is initially evaluated.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.7 Looping

Looping allows you to repeat specific blocks of code (both HTML and CFML) within your CFML
templates. ColdFusion supports a variety of looping constructs with the <cfloop> tag, including index
(for) loops, conditional (while) loops, collection loops, list loops, and query loops. For now, we are

just going to cover basic index and conditional loops. Query loops are covered in Chapter 4, while
collection and list loops are covered in Chapter 6.

2.7.1 Index Loops

Also known as a for loop, an index loop repeats a number of times specified as a range of values:

<cfloop index="index_name" from="number" to="number" step="increment">
 HTML and CFML...
</cfloop>

The index attribute of the loop specifies a variable name to hold the value corresponding to the
current iteration of the loop. The from attribute initializes the starting value for the loop. The to
attribute refers to the value at which iteration should stop. step specifies the increment value for
each iteration of the loop. step may be either a positive or a negative number. Here is an example
that uses an index loop to output all the numbers between 10 and 100 in increments of 10, with each

number on its own line:

<h2>Calling the loop...</h2>

<cfoutput>
<cfloop index="i" from="10" to="100" step="10">
 #i#

</cfloop>
</cfoutput>

<h2>We are now outside of the loop</h2>

Here, index is set to i. Since we want to begin the count at 10, we assign that value to the from
attribute. The to attribute is set to 100 because that is where we want the loop to stop iterating. In
order to get the loop to increment by multiples of 10, the step attribute is set to 10. Executing the

template results in the output shown in Figure 2-4.

Figure 2-4. Use an index loop to output the numbers between 10 and 100
in multiples of 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can easily modify this example to output all of the numbers between 1 and 100 by changing the
from attribute to 1 and the to attribute to 100:

<h2>Calling the loop...</h2>

<cfoutput>
<cfloop index="i" from="1" to="100">
 #i#

</cfloop>
</cfoutput>

<h2>We are now outside of the loop</h2>

Likewise, we can output the numbers from 1 to 100 in reverse order (100 to 1) simply by changing
the from attribute to 100, the to attribute to 1, and the step attribute to -1:

<h2>Calling the loop...</h2>

<cfoutput>
<cfloop index="i" from="100" to="1" step="-1">
 #i#

</cfloop>
</cfoutput>

<h2>We are now outside of the loop</h2>

2.7.2 Conditional Loops

Also known as a while loop, a conditional loop repeats while a specified condition is true. In order to

work, the condition being tested must change with each iteration of the loop until the condition
evaluates to false. Conditional loops allow you to keep repeating a chunk of code as long as the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specified condition is still true:

<cfloop condition="expression">
 HTML and CFML...
</cfloop>

The condition attribute may contain any valid expression that evaluates to true. The following
example uses a conditional loop to update the value of x as long as x remains less than or equal to
10:

<cfset x=1>

<h2>Calling the loop...</h2>

<cfoutput>
<cfloop condition="x lte 10">
 #x#

 <cfset x = x+1>
</cfloop>
</cfoutput>

<h2>We are now outside of the loop</h2>

In this example, x is set to 1 before the loop is executed. Next, a conditional loop is called to execute
as long as x is less than or equal to 10. With each iteration of the loop, the value of x is output to the
browser then incremented by 1. As soon as the value of x is greater than 10, the loop terminates at
the beginning of the next iteration when x evaluates equal to 10.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.8 Including Other Templates

ColdFusion allows you to embed references to other ColdFusion templates, HTML documents, and
plain-text files in your ColdFusion applications via the <cfinclude> tag. cfinclude is the ColdFusion
equivalent of Server Side Includes (SSI). cfinclude takes a single attribute, template, which

specifies a logical path to the file to be included. The logical path must be either a virtual directory or
a directory that has been explicitly mapped in the ColdFusion Administrator:

<cfinclude template="MyIncludedFile.cfm">

Or:

<cfinclude template="/MyDirectory/MyIncludedFile.txt">

Including files allows you to use repetitive code without having to cut and paste it into your template
every time you want to use it. A good example of this is header and footer files that contain things
such as site navigation, legal notices, and copyright information. By including header and footer files
with each of your templates, you can make changes to the header or footer once and have that
change instantly available to every template that includes the files. To understand how this works,
consider the following ColdFusion template that includes both a header and footer file:

<!--- Set the title for the page --->
<cfset Title="My Page">

<!--- Include the header for the page --->
<cfinclude template="_header.cfm">

<h2>Hello World!</h2>
I'm just some regular text.

<!--- Include the footer --->
<cfinclude template="_footer.cfm">

You can save this template under any name you want. For this example, I saved the template as
mypage.cfm. The template works by assigning a title for the page to a variable appropriately named
Title. Next, a template called _header.cfm is included using the cfinclude tag. I use the

underscore as the first character of any include files so that I can differentiate include files from other
templates. The next part of the template constitutes the body of the page. In this example, we just
output some simple text. The last line of code in the template uses another cfinclude tag to include

the footer for the page.

The code for the header template follows. The header sets the title for the page based on the value of
the Title variable set in the mypage.cfm template. The header also sets the background color for

the page as well as other display characteristics for various page elements. Be sure to save the
template as _header.cfm in the same directory as the previous template.

<html>
<head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfoutput><title>#Title#</title></cfoutput>
 <style>
 body {
 background: #C0C0C0;
 font-family: Arial;
 font-size: 10pt;
 text-align: center;
 }
 h2 {
 font-family: Arial;
 font-size: 16pt;
 }
 </style>
</head>

<body>

The footer file is even simpler. If contains a copyright notice to display at the end of each template
that calls it. The footer template should be saved as _footer.cfm in the same directory as the
previous two templates.

<hr width="400" noshade>
<cfoutput>
<div align="Center">Copyright 1998-#Year(now())#My company, Inc. All Rights
Reserved.</div>
</cfoutput>
</body>
</html>

When the mypage.cfm template is requested by a web browser, ColdFusion dynamically assembles
the page from the mypage.cfm, _header.cfm, and _footer.cfm templates and returns it as a single
page to the browser. This is shown in Figure 2-5.

Figure 2-5. Using the cfinclude tag to include a header and footer

Included CFML templates have access to all the variables available to the calling CFML template.
Because of this, you should make sure your include templates don't unintentionally contain variable
names that exist in your calling template as it is possible for one template to overwrite the variables
referenced in the other.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. Passing Data Between
Templates
While web applications might seem to be all about individual web pages, it is the passing of data
between pages that is key to making an application work. You need to be able to pass data between
ColdFusion templates for any form of interactivity. For example, if the user fills out an online form
requesting additional information about a product, your application needs a mechanism for passing
the data entered in the form fields to another page (or itself) that is capable of taking that data and
acting on it. Likewise, if the user clicks on a hyperlink that initiates a parameter-driven query, the
application needs a way to pass the parameters that make up the choice to the next template in the
application for processing.

There are three methods for passing data between application templates in ColdFusion. You can pass
data in the form of URL parameters, by posting it as form-field variables, or via persistent variables.
This section covers the first two methods of passing data between application templates. The use of
persistent variables is covered at length in Chapter 7.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 Passing Parameters Via URL

One way to pass data from one template to the next is through hyperlinks containing special URL
parameters. The HTTP specification allows you to append parameters to the end of a URL in the
format:

filename.cfm?param1=value1¶m2=value2¶m3=value3

The question mark immediately following the extension of the template in the URL specifies the
beginning point for appending URL parameters. Each URL parameter consists of a parameter name
followed by an equal sign, then the value assigned to the parameter. You can append more than one
URL parameter to a URL by delimiting them with ampersands. Note that no spaces may appear in the
URL string unless they are escaped first (see "Dealing with Special Characters").

When you click on a hyperlink containing one or more URL parameters, those parameters are
automatically sent to the template specified in the URL of the link and thus are available to the
template as URL variables. The following example illustrates how URL variables are passed from
template to template in ColdFusion. The first template, shown in Example 3-1, creates several
ColdFusion variables and appends them and their associated values to a URL.

Example 3-1. Creating URL parameters

<!--- Set variables to be passed to another template --->
<cfset x=1>
<cfset color="green">
<cfset Pass = True>

<h2>Passing Data via URL Parameters</h2>

<!--- Create a hyperlink containing URL parameters --->
<cfoutput>
Click
this link to pass the URL parameters
</cfoutput>

Executing this template results in a page that contains a single hyperlink. If you move your mouse
over the hyperlink and look in the status window of your browser, you should see a URL that looks
like this:

http://myserver.com/receiveurlparameters.cfm?x=1&color=green&Pass=True

As you can see, the URL contains the parameters you appended in the original code. Clicking on the
hyperlink requests the template in Example 3-2, called receiveurlparameters.cfm, and passes along
the URL parameters.

Example 3-2. Receiving URL parameters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h2>URL Parameters from the Previous Template</h2>
<cfoutput>
x: #URL.x#

Color: #URL.Color#

Pass: #URL.Pass#
</cfoutput>

receiveurlparameters.cfm does nothing more than output the value associated with each URL
parameter; you can see the results in Figure 3-1. Notice that each reference to a URL parameter is
scoped by the URL prefix. Although this isn't required, it is the preferred method for referring to
variables passed to a template via a URL.

Figure 3-1. Passing data via URL parameters

If you pass more than one URL parameter with the same name, ColdFusion creates a single URL
variable that contains a comma-delimited list of values from those passed in the URL. For example, if
the URL looks like this:

myfile.cfm?a=1&a=2&a=3

And you output the URL variable a, ColdFusion returns "1,2,3":

<cfoutput>
#URL.a#
</cfoutput>

This is a new behavior in ColdFusion MX. In previous versions, ColdFusion simply returned the value
for the last duplicate-named URL parameter passed.

3.1.1 Dealing with Special Characters

There are certain special characters, such as spaces, symbols, and other nonalphanumeric
characters, that don't lend themselves to being passed via URL. The URLEncodedFormat() function

is used to encode strings that would otherwise cause errors or truncate the URL when passed as URL
parameters. URLEncodedFormat() replaces nonalphanumeric characters with their equivalent

hexadecimal escape sequences. When a URL-encoded parameter is passed to another template,
ColdFusion automatically decodes any URL-escaped strings it encounters. You can also specify an
optional Java character set for the string encoding. Depending on the server's JRE, options typically
include UTF-8, UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1. The following template,

called encodedurl.cfm, illustrates this point. This template, shown in Example 3-3, takes three

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variables, encodes them using the URLEncodedFormat() function, and appends them to the URL of

a hyperlink. Clicking on the hyperlink causes the template to call itself, passing the URL parameters
to the template.

Example 3-3. Special characters in URL parameters using
URLEncodedFormat()

<cfif IsDefined('URL.TheDate')>
<h2>Decoded URL Parameters</h2>

<cfoutput>
TheDate: #URL.TheDate#

ItemID: #URL.ItemID#

Customer: #URL.Customer#
</cfoutput>

<cfelse>

<cfset TheDate = "08/15/2003">
<cfset ItemID = "123456">
<cfset Customer = "Caroline Smith">

Click on the link below to check out:

<p>
<cfoutput>
<a href="#CGI.Script_Name#?TheDate=#UrlEncodedFormat(TheDate, 'UTF-8')#&
ItemID=#UrlEncodedFormat(ItemID, 'UTF-8')#&
Customer=#UrlEncodedFormat(Customer, 'UTF-8')#">
Check-out

</cfoutput>
</cfif>

If you execute this template and move your mouse over the hyperlink, you should see a URL that
looks like this (assuming you named your template encodedurl.cfm):

encodedurl.cfm?TheDate=08%2F15%2F2002&ItemID=123456&Customer=Caroline%20Smith

Clicking on the link causes the template to call itself. This is done by having the link point to the CGI
variable Script_Name. Script_Name is a special CGI variable that returns the name of the current

template and is useful for building self-referencing hyperlinks and HTML forms that post to
themselves. The cfif statement at the beginning of the template checks for the existence of a URL
variable called TheDate. If it exists in the URL (which it should), all the URL variables passed in are

output to the browser. The results of clicking on the hyperlink are shown in Figure 3-2.

Figure 3-2. Automatically decoding encoded URL parameters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If for some reason you ever find yourself in the situation where you must manually decode an
encoded URL parameter, ColdFusion has a URLDecode() function to handle the task. URLDecode()

takes a single parameter, the encoded string to be decoded. Example 3-4 demonstrates how to use
the URLDecode() function.

Example 3-4. Manually decoding an encoded URL parameter using
URLDecode()

<cfset MyString="Why is the sky blue?">
<cfset EncodedString=URLEncodedFormat(MyString)>
<cfset DecodedString=URLDecode(EncodedString)>

<cfoutput>
Original String: #MyString#

URL Encoded: #EncodedString#

Decoded: #DecodedString#
</cfoutput>

In this example, a variable called MyString is assigned a value, then encoded using the
URLEncodedFormat() function. The resulting encoded value is assigned to a variable called
EncodedString. Next, EncodedString is decoded using the URLDecode() function, and the
resulting string is assigned to a variable called DecodedString. A cfoutput block then outputs the

original string, the encoded version, and the decoded version for comparison, as shown in Figure 3-3.

Figure 3-3. Manually decoding an encoded string using URLDecode()

3.1.2 Obtaining a List of All Available URL Parameters

You can obtain a list of all URL variables that have been passed to a given template without knowing
the names of any of the parameters. This is useful in situations such as debugging where you want to
view all the URL parameters that have been passed to a given page. URL variables have a ColdFusion
structure associated with them that contains a list of all URL variable names and values available to
the current template. This structure is appropriately named URL. To obtain a list of all URL variables

within a given template, you can use the code shown in Example 3-5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-5. Accessing the URL structure to obtain a list of URL
variables

<!--- This simulates URL variables being passed into the template --->
<cfset URL.x=1>
<cfset URL.y=2>
<cfset URL.Color="Yellow">

<table>
 <tr>
 <th>Variable Name</th>
 <th>Value</th>
 </tr>

<!--- Loop over the URL structure and output all of the variable names
 and their associated values --->
<cfloop collection="#URL#" item="VarName">
 <cfoutput>
 <tr>
 <td>#VarName#</td>
 <td>#URL[VarName]#</td>
 </tr>
 </cfoutput>
</cfloop>
</table>

This template uses a collection loop to iterate over the URL structure. Each variable name and its
associated value are output in an HTML table. Executing this template results in the output shown in
Figure 3-4.

Figure 3-4. Outputting the contents of the URL structure

For more information about working with structures, including how to use a collection loop, see
Chapter 6.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.2 Passing Data Using Forms

Another method for passing data from template to template involves sending the data via the HTTP
Post method as form-field data. When you create an HTML form that posts to another ColdFusion
template, each form field is automatically available as a form variable within the template specified in
the action attribute of the form tag. Within the receiving template, each form field can be referenced

by prefixing the field name with form, as in form.MyField. To see just how this works, let's look at

an example. The contactform.cfm template, shown in Example 3-6, creates a simple HTML form that
collects basic contact information and posts it to the displaycontactinfo.cfm template, shown in
Example 3-7.

Example 3-6. Template for collecting and posting contact information

<html>
<head>
 <title>Passing Variables via Form Fields</title>
</head>

<body>

<h2>Employee Contact Information</h2>
<form action="displaycontactinfo.cfm" method="post">

<table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="Name" size="25" maxlength="50"></td>
 </tr>
 <tr>
 <td>Title:</td>
 <td><input type="text" name="Title" size="25" maxlength="50"></td>
 </tr>
 <tr>
 <td>Department:</td>
 <td><input type="text" name="Department" size="25" maxlength="50"></td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td><input type="text" name="Email" size="25" maxlength="255"></td>
 </tr>
 <tr>
 <td>Phone Ext.:</td>
 <td><input type="text" name="PhoneExt" size="6" maxlength="4"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="submit" value="submit"></td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
</table>
</form>

</body>
</html>

Filling in the form fields (Figure 3-5) and clicking on the "submit" button posts the form-field
information to the displaycontactinfo.cfm template shown in Example 3-7.

Figure 3-5. HTML form for collecting employee contact information

Example 3-7. Displaying submitted form-field values

<cfoutput>
Name: #form.Name#

Title: #form.Title#

Department: #form.Department#

E-mail: #form.Email#

Phone Ext.: #form.PhoneExt#
</cfoutput>

Once the form in Example 3-6 is submitted, the template in Example 3-7 outputs the contents of
each form field in an HTML table. Each form variable name corresponds to the form-field name from
the template in Example 3-6. Note that the output is wrapped in a set of cfoutput tags, since we

need to output the values of the form variables. The results are shown in Figure 3-6.

Figure 3-6. Displaying form-field values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.1 Handling Specific Types of Form Fields

Most form fields in HTML are handled as you saw in the previous examples. One key aspect of this is
that you have to define a name attribute for each field in your form. When the user submits the form,

the value of each form field is available to the processing template in a form variable of the same
name.

Thus, with a text input field (<input type="text">), the processing template has access to a form

variable with the same name as the form field that contains the text the user entered in the input
field. This is also true of password fields (<input type="password">), file fields (<input
type="file">, single selection lists or drop-down boxes (<select> and <option> tags), text areas
(<textarea> tags), and submit buttons (<input type="submit">).

You should note with submit buttons that the value attribute of the tag controls what text is

displayed on the button as well as what value is passed to the processing template. Another feature
is that submit buttons allow you to check from the processing template whether or not a particular
submit button was pressed. This allows you to build forms with more than one submit button for
handling different tasks. For example, consider a form with the following submit buttons:

<input type="submit" name="Add" value="Add Record">
<input type="submit" name="Edit" value="Edit Record">
<input type="submit" name="Delete" value="Delete Record">

In your processing template, you can easily test to see what action the user wants to perform by
checking for the existence of a form variable corresponding to a specific button name:

<cfif IsDefined('form.Add')>
 Add record code goes here...
<cfelseif IsDefined('form.Edit')>
 Edit record code goes here...
<cfelseif IsDefined('form.Delete')>
 Delete record code goes here...
<cfelse>
 Default code goes here...
</cfif>

Some form fields are a bit more complicated than the ones we just covered, so we'll discuss them in
more detail.

3.2.1.1 Multiple selection lists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A multiple selection list is a special type of form field that allows you to choose one or more options
from a list of possible choices. They are actually the same as single selection lists (drop-down boxes)
except they contain an additional attribute, multiple, that indicates the control should allow more

than one item to be selected. Additionally, multiple selection lists generally display more than one
item from the list within their window. The number of items to display is specified by the size

attribute.

Multiple items may be chosen by holding down the Control key and clicking on each item you wish to
choose. When a form containing a multiple selection list is submitted, a single form-field parameter
that matches the name given to the selection list is passed to the template specified by the form.
This parameter contains a comma-delimited list of the values the user selected in the multiple
selection box. The multipleselect.cfm template in Example 3-8 shows how a form passes values from
a multiple select list. For simplicity, the form posts to itself using the self-posting technique covered
earlier in the chapter.

Example 3-8. Passing form-field values from a multiple select list

<h2>Multiple Selection List Example</h2>
<cfoutput>
<form action="#CGI.Script_Name#" method="Post">
</cfoutput>
<table>
 <tr>
 <th>Colors:</th>
 <td><select name="Colors" size="5" multiple>
 <option value="Red" selected>Red</option>
 <option value="Yellow">Yellow</option>
 <option value="Pink">Pink</option>
 <option value="Green">Green</option>
 <option value="Purple">Purple</option>
 <option value="Orange">Orange</option>
 <option value="Blue">Blue</option>
 </select></td>
 <td><input type="submit" name="submit" value="submit"></td>
 </tr>
 <tr>
 <td colspan="3">Use the ctrl key to select multiple colors</td>
 </tr>
</table>
</form>

<!--- If the page has been submitted to itself, output the values passed
 by the form --->
<cfif IsDefined('form.Submit')>
<hr>
<cfoutput>
You selected: #form.Colors#
</cfoutput>
</cfif>

The template creates an HTML form that contains a multiple selection list and a submit button. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multiple selection list displays seven colors (anyone remember Captain Noah?) from which to select.
As I mentioned, the form submits to itself. When this occurs, the last section of code in the template
uses a cfif statement to determine whether a variable called form.Submit exists. If it does, we

know that the template is calling itself, and the selected colors are output to the browser. Figure 3-7
shows both multiple selection lists, both before and after a selection is made. Since we are just
outputting the values, we don't have to do anything special with the form.Colors variable. But if we

needed to get at the individual values, we could do that by manipulating the list, as described in
Chapter 6.

Figure 3-7. Handling a multiple selection list

3.2.1.2 Checkboxes and radio buttons

Checkboxes (<input type="checkbox">) and radio buttons (<input type="radio">) differ from

other form controls in how they pass data from one template to the next. Both checkboxes and radio
buttons use the name attribute to specify the name of the form field to pass to the processing
template. Additionally, a value for the form field must be specified using the value attribute. Unlike

the other types of form fields we've discussed, both radio buttons and checkboxes must be checked
at the time the form is submitted for the form fields to be passed to the processing template. In
other words, if a user doesn't check any boxes or buttons associated with a particular form-field
name, that form field isn't passed to the processing template and is therefore not available as a form
variable. This is an extremely important point because attempting to reference a variable that doesn't
exist causes ColdFusion to throw an error. To get a better idea of how ColdFusion handles data
passed by radio button and checkboxes, look at the checkboxradio.cfm template shown in Example
3-9.

Example 3-9. Passing form-field values from radio buttons and
checkboxes

<html>
<head>
 <title>Passing Checkbox and Radio Button Values</title>
</head>

<body>

<h2>Checkbox and Radio Button Example</h2>

<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<form action="#CGI.Script_Name#" method="Post">
</cfoutput>

How did you hear about us? (check all that apply)

<table>
 <tr>
 <td><input type="checkbox" name="Magazine" value="Magazine">Magazine</td>
 <td><input type="checkbox" name="Internet" value="Internet">Internet</td>
 <td><input type="checkbox" name="Other" value="Other">Other</td>
 </tr>
</table>

<p>
Which product(s) would you like to receive additional information on?
(check all that apply)

<table>
 <tr>
 <td><input type="checkbox" name="Products" value="Widgets">Widgets</td>
 <td><input type="checkbox" name="Products" value="Thingies">Thingies</td>
 <td><input type="checkbox" name="Products" value="Stuff">Stuff</td>
 </tr>
 <tr>
 <td><input type="checkbox" name="Products" value="Gadgets">Gadgets</td>
 <td><input type="checkbox" name="Products"
 value="Whatchamacallits">Whatchamacallits</td>
 <td><input type="checkbox" name="Products" value="Junk">Junk</td>
 </tr>
</table>

<p>
Would you like to be added to our mailing list?
<input type="radio" name="MailingList" value="Yes" checked>Yes
<input type="radio" name="MailingList" value="No">No
<p>
<input type="submit" name="submit" value="submit">
</form>

<!--- If the page has been submitted to itself, output the values passed
 by the form --->

<!--- Check to see if each of the "how did you hear about us" values was
 passed in. This is an example of how not to code your
 checkboxes --->
<cfif IsDefined('form.Submit')>
<hr>
<cfoutput>
<cfif IsDefined('form.Magazine') or IsDefined('form.Internet') or
 IsDefined('form.Other')>
How you heard about us:
 <cfif IsDefined('form.Magazine')>
 #form.Magazine#
 </cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfif IsDefined('form.Internet')>
 #form.Internet#
 </cfif>
 <cfif IsDefined('form.Other')>
 #form.Other#
 </cfif>

</cfif>

<!--- If any products were checked, output them. This is the proper way to
 code a checkbox --->
<cfif IsDefined('form.Products')>
Products: #Products#

<cfelse>
Products: No Products Selected

</cfif>

<!--- Output the mailing list value from the radio button --->
Mailing List: #MailingList#
</cfoutput>
</cfif>

</body>
</html>

This template creates an HTML form that contains three questions the user is asked to answer using
both checkbox and radio button form controls. The form is shown in Figure 3-8.

Figure 3-8. HTML form containing checkboxes and radio buttons

The first section of the form asks how the user heard about the fictitious company providing the
form. The user may check any boxes that apply. If you look at the code that created this section,
you'll notice that each checkbox has its own name and associated value. When the form is submitted,
a form-field variable is created only for each checkbox that was selected. This is an example of how
not to code checkboxes. We'll talk about why in just a moment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

But first, let's look at the second section. Here we have another set of checkboxes that specify
products the user is interested in receiving additional information about. If you look at the code here,
you'll notice that each checkbox control has the same name but a different value. Using this
technique for coding checkboxes is the preferred method, as it passes a single form variable that
contains all the checked values in a comma-delimited list. Thus, simply by examining the list
elements, it's easy to see if a particular checkbox was checked. This is in contrast to the first method
I described, where you have no programmatic way of knowing which checkboxes are checked except
by using an individual IsDefined() statement for each form-field variable that could be passed.

The third section of the form asks users to indicate whether they wish to subscribe to a mailing list.
The yes/no choice is coded using two radio button controls. Each radio button has the same name
but a different value (Yes and No respectively). This allows you to force a choice between one or the

other option. This also guarantees that when the form is submitted, the form variable associated with
the radio button will exist and will contain a value.

When the user presses the submit button, the form template posts all the form-field data back to
itself. The code in the second half of the template determines what form variables were passed in, so
that you can output the user's choices. The results can be seen in Figure 3-9.

Figure 3-9. Displaying posted radio button and checkbox values

3.2.2 Using Hidden Form Fields

Hidden form fields allow you to pass form-field parameters without having to create an associated
input control. This lets you pass data from one template to another without having to display that
data on the page containing your HTML form. Hidden form fields are often used to pass session
information, such as a username, a primary key value, or client state information, between
templates. As far as ColdFusion is concerned, data passed via hidden form fields is treated exactly
the same as data passed using a text field. The processing template has a form variable with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

same name and value as the hidden form field. Consider a scenario where a time stamp is generated
when a user requests a particular form. In order to pass the value of the time stamp without having
to display it as a visible form field, you use a hidden form field as in the following code:

<form name="MyForm" action="Process.cfm" method="Post">
<cfoutput>
<input type="hidden" name="TimeStamp" value="#Now()#">
</cfoutput>

Name: <input type="text" name="Name">

Age: <input type="text" name="Age">

<input type="submit" name="submit" value="submit">
</form>

Note that although the data being passed via hidden form fields isn't immediately visible on the page
containing the HTML form, all hidden form fields and their associated values can easily be seen by
viewing the template source from within your web browser. Because hidden form-field data is stored
as plain text, you should never use this mechanism to pass sensitive data such as passwords or
credit-card numbers.

3.2.3 Automatically Validating Form-Field Data

HTML forms don't contain a built-in mechanism for making fields required or for validating the data
entered in form fields. ColdFusion allows you to make form fields required and perform certain data-
validation checks by appending certain suffixes to the names of special hidden form fields in your
HTML forms. Including these hidden form fields causes ColdFusion to perform a server-side check of
the data after the form is submitted but before ColdFusion processes the data. To understand how
ColdFusion's built-in data validation works, consider the validationtest.cfm template shown in
Example 3-10.

Example 3-10. Form-field validation using hidden form fields

<html>
<head>
 <title>Form Field Validation Test Form</title>
</head>

<body>

<h2>Article Submission Form</h2>
<form action="ValidationTest.cfm" method="post">
<input type="hidden" name="ArticleDate_required"
 value="You must enter an Article Date.">
<input type="hidden" name="ArticleDate_date"
 value="Date must use a valid date format (e.g., 11/11/2002).">
<input type="hidden" name="Title_required"
 value="You must enter a title for the article.">
<input type="hidden" name="Priority_required"
 value="You must enter a priority for the article.">
<input type="hidden" name="Priority_range" value="Min=1 Max=100">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<table>
 <tr>
 <td>Date:</td>
 <td><input type="text" name="ArticleDate" size="12" maxlength="10"></td>
 </tr>
 <tr>
 <td>Title:</td>
 <td><input type="text" name="Title" size="50" maxlength="255"></td>
 </tr>
 <tr>
 <td>Article:</td>
 <td><textarea COLS="43" ROWS="5" name="Article"></textarea></td>
 </tr>
 <tr>
 <td>Priority (1-100):</td>
 <td><input type="text" name="Priority" size="4" maxlength="3"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="submit" value="submit"></td>
 </tr>
</table>
</form>

</body>
</html>

This HTML form contains four fields, named ArticleDate, Title, Article, and Priority. If you
look at the code immediately following the form tag, you'll notice a number of hidden form fields.

Each of these hidden form fields is responsible for a specific type of validation for a single form field.
A suffix specifying what type of validation to perform is appended to the name of the form field
specified in the name attribute. The supported validation suffixes are:

_required

Makes the form field a required field.
_date

Checks to see that the form field contains a date. Automatically converts the date to ODBC
date format.

_eurodate

Checks to see that the form field contains a European-formatted date. Automatically converts
the date to ODBC date format.

_time

Checks to see that the form field contains a time. Automatically converts the time to ODBC
time format.

_integer

Checks to see that the form field contains a number. If the number isn't an integer, it is
automatically rounded to the nearest integer.

_float

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Checks to see that the form field contains a number.
_range

Checks to see that the form field contains a numeric value in the range specified by the
value="Min=x Max=y" attribute of the input tag.

The value attribute of each hidden field specifies a message to display in the event that a validation

rule is broken. To see how the validation violation messages are displayed, try submitting the form
without filling in any form fields. You should see output similar to that shown in Figure 3-10.

Figure 3-10. Error messages displayed when validation rules are violated

To see some of the other validation error messages, try entering bogus values in the form fields and
submit the form. Notice that the validation screen is entirely generated by ColdFusion. The only
aspect you have any control over is the bullet point message generated for each incomplete or invalid
form-field entry. Each message may be set in the value attribute of the hidden form field used to

specify the validation rule.

To prevent variable name conflicts, you should avoid choosing variable names that end in _date,
_eurodate, _float, _integer, _range, _required, or _time as they are reserved suffixes for

server-side form validation.

3.2.4 Manually Validating Form-Field Data

The automatic form-field validation provided by ColdFusion is nice, but it obviously doesn't cover
every situation in which you might like to validate form data on the server side, such as ensuring a
phone number has the correct number of digits and is formatted correctly. In cases like this, it is
necessary to manually create a validation routine at the beginning of the template that accepts the
form-field data. If you wanted to build a routine for validating a phone number to ensure it contained
the proper number of digits and was formatted correctly, you could use code like that shown in
Example 3-11.

Example 3-11. Manual form-field validation

<!--- Create a form field called form.Phone. Normally, this would be
 passed in by a form. --->
<cfset form.Phone = "302-555 1212">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Strip all non numeric values from the string --->
<cfset form.Phone = ReReplace(form.Phone, "[^0-9]", "", "ALL")>

<!--- A standard U.S. phone number has 10 digits. If there are more or
 less, assign "invalid" to the string. Otherwise, reformat the phone
 number using (xxx)xxx-xxxx as the mask. --->
<cfif Len(form.Phone) EQ 10>
 <cfset form.Phone = ReReplace(form.Phone,
 '([0-9]{3})([0-9]{3})([0-9]{4})','(\1)\2-\3')>
<cfelse>
 <cfset form.Phone = "Invalid">
</cfif>

<!--- Output the phone number --->
<cfoutput>
#form.Phone#
</cfoutput>

In order to show how to validate a form field, this example sets a form-field value called form.Phone

at the beginning of the template. Normally, all form fields are passed to the template by a submitted
form. The validation is performed in two steps. First, the ReReplace() function is used to remove
any nonnumeric values contained in form.Phone. ReReplace() uses a regular expression to specify

the data to be removed. Regular expressions are covered in Chapter 18.

The second step uses a bit of conditional logic along with the Len() function to check the number of
characters remaining in the form.Phone field. If there are exactly 10 digits in the field (the number of
digits in a U.S. phone number), the ReReplace() function is used with a different regular expression

to reformat the digits so they conform to the mask (xxx)xxx-xxxx. If the number of digits in
form.Phone isn't 10, we know the string contained in the form variable doesn't contain enough digits
to be a valid phone number, so the value Invalid is assigned to form.Phone instead. If this were an

actual application, you could include additional code to act appropriately if the phone number was
determined to be invalid.

3.2.5 Obtaining a List of All Available Form Variables

There are two methods you can use to obtain a list of all form variables that have been passed to a
given template. Just like with URL variables, form variables also have a special ColdFusion structure
named form that contains each form-field name and its associated value. To obtain a list of all form
variables within the form structure, you can use the code shown in Example 3-12.

Example 3-12. Obtaining a list of all form variables passed to a template

<table>
<tr>
 <th>Variable Name</th>
 <th>Value</th>
</tr>

<!--- Loop over the form structure and output all of the variable
 names and their associated values --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfloop collection="#form#" item="VarName">
<cfoutput>
<tr>
 <td>#VarName#</td>
 <td>#form[VarName]#</td>
</tr>
</cfoutput>
</cfloop>
</table>

This template uses a collection loop to loop over the form structure. Each variable name and its

associated value are output in an HTML table. For more information about working with structures,
see Chapter 6.

The second method for obtaining a list of every form variable passed to a template involves a special
form variable called form.FieldNames. This variable is automatically available to any ColdFusion

template and contains a comma-delimited list of form-field names that have been posted to the
current template. If the form-field variables were manually created and not created as the result of a
form post, the form.FieldNames variable does not exist. Example 3-13 shows how to access the
form.FieldNames variable and the value associated with each form field.

Example 3-13. Obtaining a list of form fields using form.FieldNames

<cfoutput>
Field Names: #form.FieldNames#
<p>
Field Values:

<cfloop index="TheField" list="#form.FieldNames#">
#TheField# = #form[TheField]#

</cfloop>
</cfoutput>

In this example, the list of field names is output on a single line. Next, a list loop loops over the list of
field names and outputs each one along with its associated value. The value for each form field is
obtained by referencing its key in the form structure.

Note that the special validation form fields (i.e., ones that have names that end with _date, _time,
etc.) aren't present in the form.FieldNames variable. They are, however, present in the form

structure.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.3 Dealing with Nonexistent Parameters

The final thing to consider when passing data between templates is how to check for and handle
missing parameters. When dealing with data passed via URL or form field, it is entirely possible that
an application template won't receive a parameter it is expecting. You should build mechanisms into
your application templates to account for this possibility. As always, there are a few ways you can go
about this.

The first method involves using the cfparam tag to assign a default value to any parameters

expected by your application template. That way, if an expected parameter isn't passed, a default
value is automatically assigned, and the application can continue processing. If you remember, the
cfparam tag was covered earlier in Chapter 2. Additional information on the cfparam tag can be

found in Appendix A.

The cfparam tag is great for assigning a default value if one doesn't exist; however, it doesn't allow

you to display an error message or perform an alternate action if an expected variable doesn't exist.
The next method uses the IsDefined() function to check for the existence of a variable before

allowing processing of the template to continue. If the expected variable exists, the template is
processed. If not, an error message is written to the browser. For example, if you have a template
that is expecting a URL parameter named ArticleID to be passed in, you can use the following code

to output an error message if the parameter isn't present:

<!--- If the parameter is present, output it to the screen --->
<cfif IsDefined('URL.ArticleID')>
<cfoutput>
The article ID is: #URL.ArticleID#
</cfoutput>

Additional program code...

<!--- Otherwise, output an error message --->
<cfelse>
A required parameter, ArticleID was not supplied!
</cfif>

In this example, the IsDefined() function checks for the existence of a URL parameter called
ArticleID. If it is present, its value is output to the browser, and any additional program code for

the page is executed. If the parameter isn't present, an error message to that effect is written to the
browser.

This technique can be extended to check additional properties of a parameter. For example, say your
application template expects a parameter called ArticleID as in our previous example. Now let's say
that ArticleID must contain a value, and that value must be numeric. We can easily test for these

conditions using the following code:

<cfif not IsDefined('URL.ArticleID') or not IsNumeric(URL.ArticleID)>
 A required parameter, ArticleID was not supplied or the supplied value
 was not numeric.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfelse>
 <!--- If If the parameter is present, output it to the screen --->
 <cfoutput>
 The article ID is: #URL.ArticleID#
 </cfoutput>
</cfif>

This time, we added another condition to the initial cfif statement to check to make sure that the
value passed in is numeric. The IsNumeric() function determines whether the value associated with
the ArticleID parameter is a numeric value. Note that quotation marks aren't used around the
variable name within the IsNumeric() function. If ArticleID doesn't contain a value, or the value

is any datatype other than numeric, a message to that effect is output to the browser. If the
ArticleID parameter does exist and it does contain a numeric value, the value of ArticleID is

written to the browser.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Database Basics
Many people begin their relationship with ColdFusion out of a need to provide web-based access to
data stored in a database. This might be as simple as wanting to output the contents of a single
database table as an HTML table or as sophisticated as a multipage report generated from several
related tables in a database. Whatever your requirements, the methods for querying the data from
the database and outputting the results to a user's web browser using ColdFusion remain the same.

ColdFusion doesn't stop with allowing you to query data from a database. Using ColdFusion, you can
perform a wide range of database operations including adding, updating, and deleting records;
adding new columns to existing tables; and creating, altering, and dropping existing tables. In this
chapter, we cover the basics you need to know in order to use ColdFusion to interact with a
database. Included in the discussion are configuring data sources, an introduction to SQL, and
techniques for retrieving and displaying data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 Configuring Data Sources

In ColdFusion, the term data source refers to a connection between ColdFusion and an information
source, such as a database, LDAP server, flat file, etc. This chapter focuses on connecting with one
specific type of data source: databases. Before you can use ColdFusion to interact with a database,
the database has to be set up as a data source that the ColdFusion server can recognize. Unlike
previous version of ColdFusion, which used ODBC, OLEDB, and native drivers to connect to
databases, ColdFusion MX handles all database connections via JDBC (Java Database Connectivity).
There are currently four distinct types of JDBC drivers, appropriately named type 1, 2, 3, and 4. Each
JDBC type works in a slightly different way:

JDBC to ODBC Bridge (Type 1)

JDBC calls are translated to appropriate ODBC calls and sent through an ODBC driver.
Native-API Partly Java Technology-Enabled Driver (Type 2)

A JDBC call is converted to a client-specific API call.
Net-Protocol Fully Java Technology-Enabled Driver (Type 3)

A JDBC call is first translated to an independent net protocol, then to a database-specific call.
Native-Protocol Fully Java Technology-Enabled Driver (Type 4)

A JDBC call is converted to the network protocol used by the specific database.

ColdFusion MX comes with JDBC drivers for connecting to several popular databases. Depending on
the version of ColdFusion MX you have, drivers may include MS Access, MS SQL Server, Oracle,
various flavors of DB2, Informix, MySQL, and Sybase. Additionally, you may connect to almost any
other database for which you have a third-party JDBC driver or an ODBC driver (through a JDBC
Type 3 socket connection). ColdFusion MX ships with Type 2, Type 3, and Type 4 JDBC drivers. For
more information on JDBC driver types, see the book Administering and Configuring ColdFusion MX
that comes with the ColdFusion documentation, or visit Sun's web site at
http://java.sun.com/products/jdbc/driverdesc.html.

Regardless of the method you choose for connecting your data source to ColdFusion, one thing
remains the same. You must register the data source with the ColdFusion Administrator in order to
take advantage of ColdFusion's database management and security features. Registering the data-
source name also tells ColdFusion which database to associate with a particular data-source name.

You should note that not all databases and connection methods are supported across all editions of
ColdFusion. For the most up-to-date listing of supported database drivers, see the Administering and
Configuring ColdFusion MX book (part of the ColdFusion documentation) for your edition of
ColdFusion.

4.1.1 Configuring a Data Source in the ColdFusion Administrator

To add a new data source via the ColdFusion Administrator, follow these steps:

1.

http://java.sun.com/products/jdbc/driverdesc.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Open the ColdFusion Administrator in your browser.1.

Click on the Datasources link under the Data & Services section.2.

Enter a name for your data source. The name you choose is up to you, but it should be
something meaningful. Names can only contain letters, numbers, underscores, Unicode
currency symbols, and spaces. Be sure not to use any ColdFusion tag, function, variable name,
or other reserved word as your data source name.

3.

Choose your driver/provider type from the drop-down list of available types. If you are
attempting to set up a connection via a third party JDBC driver, choose Other. If you want to
setup a connection through an ODBC driver, choose ODBC Socket.

4.

After you have provided a name for the data source and chosen the driver/connection type,
click the Add button. This takes you to a driver-specific page for the driver or connection type
you chose.

5.

Depending on the driver/connection type you chose, this page lets you enter information about
the data source you want to add such as its name, location (if it is a file-based database such as
MS Access), username, password, and server/port (hostname or IP address) if it is an
enterprise-level database such as SQL Server, Oracle, or DB2. For more information on various
configuration options, see the Administering and Configuring ColdFusion MX book.

6.

After you have finished entering the basic setup information, click on the Show Advanced
Settings button in the lower right corner of the page. This takes you to a new page where you
can enter information about how ColdFusion MX should access the database and the actions it
should be allowed to perform.[1]

[1] If you are adding a data source for a Microsoft Access database, and you wish to be able to retrieve
data from Memo fields, you'll need to check the box labeled "Enable long text retrieval (CLOB)". This box
is unchecked by default.

7.

Once you have finished configuring any advanced settings, click the Submit button in the middle
of the page. ColdFusion will attempt to register your data source and verify the connectivity. If
verification fails, a message that lists likely causes for the problem is displayed. If you can
connect to the data source successfully, you will be returned to the main data source
configuration page. You should see the word "OK" to the right of the data source you just
created (under the Status column).

8.

Once you have successfully created and verified the connection to your data source, you are ready to
begin using it in your ColdFusion applications.

4.1.2 Additional Resources

In the event you run into trouble trying to get a data source setup, consult the documentation that
came with ColdFusion. Additionally, there are a number of Macromedia Servers Knowledge Base
TechNotes that may help you troubleshoot the problem. These can be found at
http://www.macromedia.com/v1/support/knowledgebase/searchform.cfm.

[Team LiB]

http://www.macromedia.com/v1/support/knowledgebase/searchform.cfm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 Introducing cfquery

The cfquery tag is the main tag used by ColdFusion to interact with databases. Using cfquery, you

can pass any Structured Query Language (SQL) statement to a data source registered with the
ColdFusion Administrator. The content of your SQL statements determines what action is performed
against the data source. The next section provides a quick primer on SQL.

The cfquery tag works by establishing a connection with the specified data source, passing a series

of SQL commands, and returning query variables that contain information about the operation. The
basic syntax for using the cfquery tag is as follows:

<cfquery name="query_name"
 datasource="datasource_name">
SQL statements
</cfquery>

Each attribute in the opening cfquery tag specifies information about the data source and how
ColdFusion should access it. The name attribute assigns a name to the query. Valid query names must
begin with a letter and can contain only letters, numbers, and underscore characters. name is
required when passing an SQL SELECT statement and is optional for all other SQL operations.[2] The
datasource attribute is required in all circumstances except when dbtype is Query (covered later in

Chapter 11) and specifies the name of the data source (as it appears in the ColdFusion Administrator)
to connect to when executing the query. There are a number of additional attributes that can be used
with the cfquery tag. For a complete list, see its tag reference in Appendix A.

[2] Although the name attribute is required only for SQL SELECT statements, you may wish to use it with all

your queries. It makes debugging easier, especially for templates that contain multiple queries, because it
allows you to identify each query by name in the debug output.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.3 A Quick SQL Primer

Before we go any further, a quick primer on SQL is in order. If you are already an SQL guru, feel free
to skip this section. If, however, you are new to SQL, this section quickly covers the basic elements
that go into creating an SQL statement. This primer is by no means a substitute for a thorough
lesson on SQL. You may want to consult additional SQL references before proceeding, as a good
understanding of SQL is an essential element in ColdFusion application design. One of the surest
ways to bottleneck your applications is with poorly written SQL. Additionally, SQL is implemented in
slightly different ways across various RDBMS platforms. For this reason, it is important to consult the
documentation specific to your database to understand these differences.

With the disclaimer out of the way, let's move on and look at the elements that go into creating an
SQL statement for use in a cfquery tag. If you don't completely understand everything we are about

to cover, don't worry. Every aspect (and more) of the SQL we cover in the primer is covered in more
detail throughout this and the next chapter.

Most database transactions in a web application can be grouped into one of four categories: selecting,
inserting, updating, and deleting data. Not surprisingly, there are four commands in SQL that handle
theses tasks. They are SELECT, INSERT, UPDATE, and DELETE, respectively:

SELECT

Retrieves data from a data source
INSERT

Inserts new data in a data source
UPDATE

Updates existing data in a data source
DELETE

Deletes data from a data source

Once you have determined the type of operation you want to perform, the next step is to refine the
SQL statement by adding various clauses and operators. Depending on the action you want to
perform, the syntax of the SQL statement varies. Here are some common SQL clauses:

FROM

The table name or names you want to perform the SELECT or DELETE action against
INTO

Specifies the table name and column names you want to INSERT data into
VALUES

The values to add to the columns specified in INTO when adding data with an INSERT
SET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the column names you wish to UPDATE with new values
WHERE

Specifies one or more conditions governing what data is returned by a SELECT, what data is
changed by a UPDATE, or what data is deleted by a DELETE

ORDER BY

Determines the sort order for records returned by a SELECT
group BY

Groups related data in a SELECT. Frequently used along with aggregate functions (discussed

later in the chapter)
HAVING

Generally used in place of a WHERE clause when using the group BY clause
JOIN

Used along with a SELECT statement to retrieve data from two or more related tables
UNION

Combines the results of two record sets returned by a SELECT statement into a single record

set, provided both record sets have the same number of columns, and those columns are of
compatible or convertible datatypes

SQL provides a number of operators, such as AND, =, and OR, that can be used to construct

compound, conditional, and comparison statements. Some of the more popular operators are shown
in Table 4-1.

Table 4-1. Common SQL operators

Operator Description

= Equal to

<> Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

+ Plus (addition)

- Minus (subtraction)

/ Divided by (division)

* Multiplied by (multiplication)

AND Both conditions must be True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Description

OR One or the other condition must be True

NOT Ignores a condition

IS [NOT] NULL Value is [not] null

IN Value is in a list of values

BETWEEN Value is in the range between one value and another

LIKE Value is like a wildcarded value; wildcards are % (string) and _ (character)

EXISTS Used only with subqueries; tests for a nonempty record set

Now we can look at some SQL examples. Here's how to select all the fields from a database table:

SELECT *

FROM TableName

Here's how to select specific fields from a table where a certain field must meet a specific condition:

SELECT Field1, Field2

FROM TableName

WHERE Field1 = value

This example shows how to select fields from two different tables:

SELECT TableName1.Field1, TableName2.Field1

FROM TableName1, TableName2

This example selects two fields from a table and orders the result set by the value of Field1 in

ascending order:

SELECT Field1, Field2

FROM TableName

WHERE Field1 = Value1 AND Field2 = Value2

ORDER BY Field1 ASC

To perform the same query but have the result set ordered in descending order use this code:

SELECT Field1, Field2

FROM TableName

WHERE Field1 = Value1 OR Field1 = Value2

ORDER BY Field1 DESC

To insert a record into a table, use the INSERT clause with the INTO and VALUES operators:

INSERT INTO TableName(Field1, Field2, Field3)

VALUES('value1', value2, 'value3')

If you want to update an existing row, you can do so on a field-by-field basis using the UPDATE clause
along with the SET and WHERE operators:

OR One or the other condition must be True

NOT Ignores a condition

IS [NOT] NULL Value is [not] null

IN Value is in a list of values

BETWEEN Value is in the range between one value and another

LIKE Value is like a wildcarded value; wildcards are % (string) and _ (character)

EXISTS Used only with subqueries; tests for a nonempty record set

Now we can look at some SQL examples. Here's how to select all the fields from a database table:

SELECT *

FROM TableName

Here's how to select specific fields from a table where a certain field must meet a specific condition:

SELECT Field1, Field2

FROM TableName

WHERE Field1 = value

This example shows how to select fields from two different tables:

SELECT TableName1.Field1, TableName2.Field1

FROM TableName1, TableName2

This example selects two fields from a table and orders the result set by the value of Field1 in

ascending order:

SELECT Field1, Field2

FROM TableName

WHERE Field1 = Value1 AND Field2 = Value2

ORDER BY Field1 ASC

To perform the same query but have the result set ordered in descending order use this code:

SELECT Field1, Field2

FROM TableName

WHERE Field1 = Value1 OR Field1 = Value2

ORDER BY Field1 DESC

To insert a record into a table, use the INSERT clause with the INTO and VALUES operators:

INSERT INTO TableName(Field1, Field2, Field3)

VALUES('value1', value2, 'value3')

If you want to update an existing row, you can do so on a field-by-field basis using the UPDATE clause
along with the SET and WHERE operators:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UPDATE TableName

SET Field1 = 'value1',

 Field2 = value2,

 Field3 = 'value3'

WHERE Fieldx = valuex

This code deletes a single row of data from a table:

DELETE FROM TableName

WHERE Field = value

If you want to delete multiple rows in one operation, use the IN operator like this:

DELETE FROM TableName

WHERE field IN (field1,field2,fieldx)

String values passed using the IN operator must be surrounded by single quotes. Additionally, many
databases have a limit of 1000 items in a single IN list.

Now you should be primed and ready to jump into embedding SQL statements within the cfquery
tag. The next section looks at using the cfquery tag in conjunction with SQL to retrieve data from a

database and display the results in the browser.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.4 Retrieving and Displaying Data

When you query records from a database, the results (known as a record set) are returned in a
special ColdFusion data type called a query object. A query object stores the records within it in rows
and columns-just like a spreadsheet. Throughout this book, I'll use the terms record and row
interchangeably. Column name and field are also used interchangeably. Before we get into the
specifics of querying databases and working with query objects, we need to create a database with
some sample data to work with.

4.4.1 Creating the Example Database

The majority of examples in this chapter (and throughout the book) use a data source called
ProgrammingCF that contains several database tables including one called EmployeeDirectory. The

schema and sample data for this database are listed in Appendix C. For simplicity, I've chosen to use
a Microsoft Access database for all the examples; you can download the sample Access database
from O'Reilly's catalog page for this book (http://www.oreilly.com/catalog/coldfusion2/). Of course,
you can use any database you choose. To get started, you need to create a new database and save it
as ProgrammingCF. Next, create a new table and add the fields shown in Table 4-2.

Table 4-2. Employee directory table within the ProgrammingCF database

Field name Field type Max length

ID (primary key) AutoNumber N/A

Name Text 255

Title Text 255

Department Text 255

Email Text 255

PhoneExt Number (long int) N/A

Salary Number (double, two decimal places) N/A

Picture Memo N/A

In this example, ID is an AutoNumber field designated as the primary key for the table. A primary

key is a single field or concatenation of fields that uniquely identifies a record. In Microsoft Access,
AutoNumber is a special field type that automatically assigns a sequentially incremental number
when a record is inserted into the table.[3] If you aren't using Access as your database, and your
database doesn't have the equivalent of the AutoNumber field, consider using ColdFusion's
CreateUUID() function to generate a universally unique identifier (UUID) to use as the primary key

http://www.oreilly.com/catalog/coldfusion2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

value for your record. UUIDs are 35-character representations of 128-bit strings where each
character is a hexadecimal value in the range 0-9 and A-F.[4] UUIDs are guaranteed to be unique:

[3] Because portability from one database platform to another may be an issue, it's not desirable to use an
AutoNumber field as a table's primary key value. The examples in this book use AutoNumber fields for primary
key values as a matter of convenience.

[4] UUIDs are guaranteed to be unique and are assigned randomly on most operating systems. Note that the
format that ColdFusion uses for UUIDs is not the same format used by Microsoft and DCE's GUID (Globally
Unique Identifier). ColdFusion UUIDs follow the format xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxxxxxx (35 characters),
whereas Microsoft/DCE GUIDs are formatted as xxxxxxxx-xxxx-xxxx-xxxxxx-xxxxxxxxxx (36 characters-note

the additional dash). If you need a UUID/GUID that follows the Microsoft/DCE format, see the CreateGUID()
user defined function available at http://www.cflib.org.

<!--- Create a UUID and output it to the browser --->
<cfset MyPrimaryKeyValue = CreateUUID()>
<cfoutput>
ID: #MyPrimaryKeyValue#
</cfoutput>

When you finish adding the fields, go ahead and save the table as EmployeeDirectory. Now it is time
to populate the EmployeeDirectory table with data. Table 4-3 contains a short listing of records. For

the complete list, see Appendix C.

Table 4-3. Employee directory database table containing employee
contact information

ID Name Title Department Email Phone-ext Salary

1 Pere Money President Executive Mgmt pere@example.com 1234 400K

2 Greg Corcoran Director Marketing greg@example.com 1237 960K

3 Mark Edward VP Sales mark@example.com 1208 155K

Once you finish entering all the records, save the database to a directory on your ColdFusion server.
If you have downloaded the sample Access database, you need to make sure that it resides on the
same machine as your ColdFusion server or on a network share available to the server. Before you
can begin using the database, you need to register it as a data source with the ColdFusion
Administrator. Be sure to register the data-source name as ProgrammingCF.

4.4.2 Retrieving Data from a Data Source

The cfquery tag can retrieve data from a data source by passing an SQL SELECT statement to the
data source. The SELECT statement specifies what data to retrieve from the data source. For
example, if you want to retrieve all records from the EmployeeDirectory table in the ProgrammingCF
data source, you can use a cfquery tag with a SELECT statement like this:

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT *

http://www.cflib.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM EmployeeDirectory
</cfquery>

This SELECT statement uses a wildcard (*) to retrieve all records from the EmployeeDirectory table
in the ProgrammingCF data source.

Alternately, if you want to retrieve data from only a few columns as opposed to all columns (don't
confuse this with all rows), you can modify the SELECT statement like this:

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title
 FROM EmployeeDirectory
</cfquery>

This query retrieves only the Name and Title columns from each row of the database. This type of

query is used when you need only a subset of the data stored in a data source. Retrieving only the
data you need as opposed to the entire table contents improves the overall performance of your
queries. It is much more efficient for a database to send a small subset of data back to ColdFusion as
opposed to an entire table, especially when you need only a small portion of the larger data set to
begin with.

In general, it is not advisable to retrieve data using SELECT *. From a database standpoint, selecting

all fields using a wildcard creates a performance hit, especially on larger record sets, because the
database has to do extra work to determine what fields to return. If you really do need all the fields
from a particular table returned in your result set, still consider specifying them individually by name,
because it saves the database from having to construct the list.

You can further refine the SELECT statement to return only a limited number of rows of data based
on a condition. This is done by including the condition using the WHERE keyword. The idea at work

here is to return the smallest record set you need. The more specific the data returned by a query is
to your needs, the less work you need to have the ColdFusion server do to process it. Executing the
following cfquery returns just the names and email addresses of employees in the IT department:

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title
 FROM EmployeeDirectory
 WHERE Department = 'IT'
</cfquery>

Note the use of the single quotes around the value 'IT' in the WHERE clause. String values must

always be enclosed in single quotes. Numeric, Boolean, and date values may be specified without
quotes.

You can extend this one step further, providing a dynamic value for the condition in the WHERE

clause:

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title
 FROM EmployeeDirectory
 WHERE Department = '#Form.Department#'
</cfquery>

This example retrieves the name and title of each employee in the department specified by a form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable called Department. Using this type of technique allows you to build dynamic SQL statements

that return different results depending on form or URL input. Dynamic SQL is discussed in Chapter
11.

4.4.3 Outputting Query Results

Once you have data stored in a query object, the next step is to display it using the cfoutput tag.
The cfoutput tag allows you to display data contained in a query object by referencing the query
name in the query attribute. Example 4-1 queries the EmployeeDirectory of the ProgrammingCF
data source and outputs the results to the browser using cfoutput.

Example 4-1. Outputting the results of a query in an HTML table

<!--- Retrieve all records from the database --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
</cfquery>

<html>
<head>
 <title>Outputting query results</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h2>Employee Records</h2>
<!--- Create an HTML table for outputting the query results. This section
 creates the first row of the table - used to hold the column
 headers --->
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!--- The cfoutput tag is used in conjunction with the query attribute to
 loop over each row of data in the result set. During each iteration
 of the loop, a table row is dynamically created and populated with the
 query data from the current row. --->
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td>#ID#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 <td>#Salary#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

In this example, the cfquery tag executes a SELECT statement against the EmployeeDirectory table
of the ProgrammingCF data source. The query retrieves all the columns for all the records stored in

the table. The template then creates an HTML table and generates column headings using a series of
HTML <th> tags.

Next, the cfoutput tag is used in conjunction with the query attribute to loop over each row of data

in the result set. With each iteration of the loop, a table row is dynamically created and populated
with the query data from the current row.

4.4.4 Obtaining Additional Query Information

Whenever you perform a query using ColdFusion, four variables are automatically created that
contain information about the cfquery operation and the result set it returned, if any. Here are the

four variables:

cfquery.ExecutionTime

The amount of time in milliseconds it takes the query to execute.
queryname.ColumnList

Comma-delimited list of the query column names from the database. The list is returned in
alphabetical order, not in the order specified in the SELECT statement used to generate the

result set. Additionally, all column names are returned in uppercase.
queryname.CurrentRow

The current row of the query that is being processed by cfoutput.

queryname.RecordCount

The total number of records returned by the query.

These variables can be used in countless ways and are used heavily throughout this book for such
things as knowing how many records were returned by a particular query and breaking the display of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

query result sets into manageable chunks.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.5 Sorting Query Results

When you use a basic SQL SELECT statement to retrieve records from a database, those records are

returned in the order in which they are stored. If you want to change the order in which the records
are displayed (which you probably do), you need to use an ORDER BY clause, as shown in Example 4-

2.

Example 4-2. Sorting query results using the SQL ORDER clause

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM EmployeeDirectory
 ORDER BY Name ASC
</cfquery>

<html>
<head>
 <title>Sorting Query Results Using the SQL ORDER Clause</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 </tr>
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 </cfoutput>
</table>
</body>
</html>

The ORDER BY clause specifies which column or columns to use in ordering the query results. Sorting
can be either ASC (ascending) or DESC (descending). Example 4-2 sorts the result set by name

column, in ascending order. The output is shown in Figure 4-1.

Figure 4-1. Sorting a result set using the ORDER BY clause

Multicolumn sorts can be performed by specifying a comma-delimited list of column names and sort
orders for the ORDER BY clause as in:

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM EmployeeDirectory
 ORDER BY Title ASC, Name ASC
</cfquery>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.6 Grouping Output

The cfoutput tag has an attribute called group that lets you to group output from your record sets
before displaying it to the browser. There are two ways to use the group attribute of the cfoutput
tag. The first method uses group to remove any duplicate rows from the query result set.[5] This is

useful in situations where the result set you return from a query contains duplicate rows of data but
you want to display only unique records.

[5] Don't confuse the group attribute of the cfoutput tag with the SQL group BY keyword, because they perform
entirely different functions. The SQL group BY keyword is discussed in Chapter 11.

Example 4-3 demonstrates what happens when you query a table containing duplicate values and
output the results without using the group attribute of the cfoutput tag.

Example 4-3. Failing to use the group attribute results in duplicate values
in the output

<cfquery name="GetDepartment" datasource="ProgrammingCF">
 SELECT Department
 FROM EmployeeDirectory
 ORDER BY Department
</cfquery>

<html>
<head>
 <title>Failing to Use the group Attribute Results in Duplicate Values in the
 Output </title>
</head>

<body>
<h2>Departments:</h2>

<cfoutput query="GetDepartment">
#Department#

</cfoutput>

</body>
</html>

As you can see in Figure 4-2, executing the template results in many of the same values being output
more than once.

Figure 4-2. Duplicate records are displayed because group wasn't used

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is easy enough to fix. To remove the duplicates from the output, all you have to do is modify the
line of code containing the cfoutput tag to read like this:

<cfoutput query="GetDepartment" group="Department" groupcasesensitive="No">

Adding group="Department" to the cfoutput tag tells ColdFusion to discard any duplicate values in
the result set and output only unique values. The groupcasesensitive attribute indicates whether
grouping should be case insensitive or case sensitive. This attribute is optional and defaults to Yes.
For our example, set groupcasesensitive to No in case someone enters the name of a department

using the wrong case. The difference in output is shown in Figure 4-3.

Figure 4-3. Using group to remove duplicate records

It is important to note that using group to remove duplicates from the result set does so after the

result set is returned from the database. You should consider how this might affect the performance
of your application if you want to return only a few records from a large record set that contains

http://lib.ommolketab.ir
http://lib.ommolketab.ir

numerous duplicate values. In such a case, you should use SQL to remove the duplicates.

If you look at the code in Example 4-3, you'll notice that we included ORDER BY Department in our

SQL statement. It is necessary to sort the result set by the column being grouped. To see what
happens if you don't include the ORDER BY clause, remove it from the query and execute the

template.

As I mentioned in the beginning of this section, group can be used in two ways. The second way the
group attribute can be used is to group like records for output. This allows you to do such things as

group the output of a query by a certain field or fields such as age, gender, department, color, etc.
This is done by including (nesting) a second set of cfoutput tags without the group attribute inside
the first set. Example 4-4 shows how to use the group attribute of the cfoutput tag to group the
results of a query by Department.

Example 4-4. Using the cfoutput tag's group attribute to group records
by department

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM EmployeeDirectory
 ORDER BY Department
</cfquery>

<html>
<head>
 <title>Using the group Attribute of the cfoutput Tag to Group Records by
 Department</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 td.Group {
 background-color : #FFFFFF;
 font-size : 14pt;
 font-weight : bold;
 text-align : center;
 }
 </style>
</head>

<body>
<table cellpadding="3" cellspacing="1">
<cfoutput query="GetEmployeeInfo" group="Department" groupcasesensitive="No">
 <tr>
 <td class="Group" colspan="5">#Department#</td>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 </tr>
 <cfoutput>
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
 <tr>
 <td class="Group" colspan="5"> </td>
 </tr>
</cfoutput>
</table>

The group attribute of the cfquery tag lets you group your query's result set by the specified

column. In this case, we want to group the query results by Department. It is necessary to use the
ORDER BY clause to order the result set by the column being grouped. Failing to do so results in
unwanted output. Notice the second set of cfoutput tags nested within the pair declaring the group.

This creates an outer and inner loop for looping over the result set and grouping the output
appropriately. Nested cfoutput tags may be used only when the outermost cfoutput tag has a
value specified for the query and group attributes. If you attempt to nest cfoutput tags without

using these attributes in the outermost tag, ColdFusion throws an error. Additionally, if you omit the
nested cfoutput, the nested grouping doesn't occur, and you end up removing any duplicate records

from the result set (just like our previous example). Executing the template results in the output
shown in Figure 4-4.

Figure 4-4. Using cfoutput to group query results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is entirely possible to group data several levels deep. Doing so requires nesting several sets of
cfoutput tags using the following general syntax:

<cfoutput query="query_name" group="column">
HTML and CFML...
 <cfoutput group="different_column">
 HTML and CFML...
 <cfoutput>
 HTML and CFML...
 </cfoutput>
 </cfoutput>
</cfoutput>

When ColdFusion encounters nested cfoutput tags, it executes successive levels of nested loops to

group the query result set. In general, there are a few rules you need to keep in mind when working
with nested cfoutput tags:

The outermost cfoutput tag must have the query and group attributes defined.

The innermost cfoutput tag can't have any attributes specified.

All other cfoutput tags may have only the group attribute specified.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.7 Looping Over a Query Result Set

As I mentioned briefly in Chapter 2, a query loop (cfloop tag with the query attribute) performs
essentially the same job as using a cfoutput tag with the query attribute. A query loop iterates over

each row in a query object. Optionally, a start row and end row within the query may be specified:

<cfloop query="query_name"
 startrow="row_number"
 endrow="row_number">
...
</cfloop>

The query attribute specifies the name of a valid ColdFusion query object. startrow is optional and
may be used to specify the row within the query object where the loop should begin. endrow is also

optional and specifies the last row within a query object that should be included within the loop.

The query loop may be used instead of the query attribute of the cfoutput tag to display the

contents of a query:

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title
 FROM EmployeeDirectory
</cfquery>

<cfloop query="GetEmployeeInfo">
 <cfoutput>#Name#, #Title#
</cfoutput>
</cfloop>

Using a query loop allows you to work around limitations inherent in the cfoutput tag such as the
inability to nest additional output queries within a cfoutput block. For example, the following code
produces an error in ColdFusion because you can't nest cfoutput tags without using the group

attribute:

<cfquery name="MyQuery1" datasource="MyDSN">
 SELECT *
 FROM MyTable
 WHERE Field = Value
</cfquery>

<cfoutput query="MyQuery1">
 <cfquery name="MyQuery2" datasource="MyDSN">
 SELECT *
 FROM MyTable
 WHERE Field = Value
 </cfquery>

 <cfoutput query="MyQuery2">
 Additional processing and output code here...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfoutput>
</cfoutput>

You can get around this limitation by using a query loop within the cfoutput block:

<cfquery name="MyQuery1" datasource="MyDSN">
 SELECT *
 FROM MyTable
 WHERE Field = Value
</cfquery>

<cfoutput query="MyQuery1">
 <cfquery name="MyQuery2" datasource="MyDSN">
 SELECT *
 FROM MyTable
 WHERE Field = Value
 </cfquery>

 <cfloop query="MyQuery2">
 Additional processing and output code here...
 </cfloop>
</cfoutput>

Additionally, you can use the query loop to output a section of a record set by dynamically defining
the start row and end row of the query object to loop over:

<cfset TheStart = 3>
<cfset TheEnd = 5>

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title
 FROM EmployeeDirectory
</cfquery>

<cfloop query="GetEmployeeInfo" startrow="#TheStart#" endrow="#TheEnd#">
 <cfoutput>#Name#, #Title#
</cfoutput>
</cfloop>

This technique can be used to create a next/previous record browser in which a predetermined
number of rows from a query result set are displayed on the page. This allows users to browse a set
number of records at a time while moving forward and backward through the record set.
Next/previous browsing is discussed in detail in Chapter 11.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.8 Formatting Techniques

Once you have query data in the form of a result set, you might want to massage it a bit before
outputting it to the browser or to a file. ColdFusion provides several built-in functions for formatting a
variety of datatypes. This section covers some of the more popular functions for formatting strings,
HTML code, numbers, currency, dates, times, and Boolean values. For more information on all the
functions covered in this section, see Appendix B.

4.8.1 Formatting Plain-Text Strings

ColdFusion provides functions for formatting text strings: ParagraphFormat(), Wrap(), Ucase(),
Lcase(), JSStringFormat(), and XMLFormat(). Each function is covered in the sections that

follow.

4.8.1.1 Using ParagraphFormat

ParagraphFormat()takes a string and formats it so that single newline characters are replaced with
a space, and double newline characters are replaced with HTML <p> tags. This function is most often
used to display data that has been entered into a Textarea HTML form field. The following example
shows how the ParagraphFormat() function handles single and double newline characters:

<cfset MyText="This is my block of text.
It has both single newline characters in it like this paragraph, and double
newline characters like in the next paragraph.

This is the paragraph with the double newline characters.">

<form>
<cfoutput>
<textarea cols="50" rows="10" name="TheText" wrap="Virtual">
#ParagraphFormat(MyText)#
</textarea>
</cfoutput>
</form>

4.8.1.2 Wrapping text

As of ColdFusion MX 6.1, you can wrap a block of text with the Wrap() function so that no line
exceeds a specified number of characters. Wrap() takes two required arguments and one optional

argument:

wrap(string, limit [,strip])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string represents the string you want to wrap, limit specifies the maximum number of characters

to allow per line in string, and strip indicates whether to remove all existing line breaks before

wrapping the string. If a line is longer than the specified number of characters, an attempt is made to
break the line by inserting a line break at the nearest whitespace character (space, tab, etc) before
the character limit. If string contains no whitespace characters before the maximum number of
characters per line, a line break is inserted at the maximum line length. Wrap() uses operating

system specific line breaks. On Windows, it uses a carriage return and newline character. On
Unix/Linux, it uses a newline. Here is an example that wraps a string at 80 characters:

<cfset myString="This is a string that is so long, I probably would like to
break it up. What do you think about that? Is it a good idea?">

<cfoutput>
<pre>#Wrap(myString, 80, False)#</pre>
</cfoutput>

4.8.1.3 Changing case

You can change the case of an entire string using the Ucase() and Lcase() functions. Ucase()
converts a string to all uppercase characters, while Lcase() converts a string to all lowercase

characters. The following example demonstrates both functions:

<cfset MyString = "This Is A Mixed Case String!">

<h3>UCase/LCase</h3>
<cfoutput>
Original String: #MyString#

After UCase: #UCase(MyString)#

After LCase: #LCase(MyString)#
</cfoutput>

4.8.1.4 Making strings JavaScript-safe

On occasion, you may need to retrieve a string from a database for use in a JavaScript function
within your application. The JSStringFormat() function can be used to make the string safe for use

in JavaScript statements by automatically escaping special characters that normally cause a problem,
such as double quotes, single quotes, and the newline character (\). The following example returns a

string that has been formatted for use in a JavaScript statement:

<cfset MyString="""Escape double quotes"". Escape the \ character. 'Escape
 single quotes'">

<cfset SafeString=JSStringFormat(MyString)>

<cfoutput>
Original String: #MyString#

JavaScript Safe String: #SafeString#
</cfoutput>

4.8.1.5 Making strings safe for XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can make a string safe to use with XML by using the XMLFormat() function. XMLFormat()

takes a string as its only parameter and returns it in a format that is safe to use with XML by
escaping the following special characters:

Ampersand (&)
Double quotation mark (")
Greater-than sign (>)
Less-than sign (<)
Single quotation mark (')

The following example takes a string and makes it safe to use with XML:

<cfset MyString="Here's an example of the XMLFormat function: 5+5<20">

<cfoutput>
#XMLFormat(MyString)#
</cfoutput>

<p>
<i>View the page source to see the escaped text.</i>

4.8.2 Formatting HTML

In order to display literal HTML or CFML code, it is necessary to escape certain special characters so
that they don't cause the browser to interpret the code contained inside them. For example, if you
have a string that contains Hello World!, and you want to display the HTML code contained
in the string without having it execute, you need to escape the < and > characters. ColdFusion
provides you with two functions to do this: HTMLCodeFormat() and HTMLEditFormat().

4.8.2.1 HTMLCodeFormat

The HTMLCodeFormat() function returns a string enclosed in <pre> and </pre> tags with all carriage
returns removed and special characters (< > " &) escaped. The function takes two parameters, a

string to format and optionally, the HTML version to use for the character escape sequences. Valid
entries for the HTML version are shown in Table 4-4.

Table 4-4. HTML versions

Value Description

-1 Current HTML version

2.0 HTML v2.0 (default)

3.2 HTML v3.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example demonstrates the HTMLCodeFormat() function:

<cfset MyString="<h3>This is an example of the HTMLCodeFormat function.</h3>
View the source of this document to see the escaping of the HTML characters.">

<cfoutput>
#HTMLCodeFormat(MyString, "3.2")#
</cfoutput>

4.8.2.2 HTMLEditFormat

The HTMLEditFormat() function is almost identical in functionality to HTMLCodeFormat(). The only
difference is that it doesn't add <pre></pre> tags to the output returned by the function. The
following example demonstrates the HTMLEditFormat() function:

<cfset MyString="<h3>This is an example of the HTMLEditFormat function.</h3>
View the source of this document to see the escaping of the HTML characters.">

<cfoutput>
#HTMLEditFormat(MyString, "3.2")#
</cfoutput>

4.8.3 Formatting Numbers

ColdFusion provides three functions for formatting numbers: DecimalFormat(), NumberFormat(),
and LSNumberFormat(). These functions can format numbers in a variety of ways, as described in

the following sections.

4.8.3.1 Formatting decimal numbers

The DecimalFormat() function takes a number and returns it formatted to two decimal places, with
thousands separators. The following example formats a variety of numbers using DecimalFormat():

<cfoutput>
1: #DecimalFormat(1)#

10: #DecimalFormat(10)#

100: #DecimalFormat(100)#

1000: #DecimalFormat(1000)#

10000: #DecimalFormat(10000)#

100000: #DecimalFormat(100000)#

1000000: #DecimalFormat(1000000)#

</cfoutput>

4.8.3.2 General number formatting

The NumberFormat() function handles general number formatting in ColdFusion. NumberFormat()

allows you to format numbers using a variety of masks. The function accepts two parameters, the
number you wish to format and a mask to specify the formatting, in the form
NumberFormat(Number, 'mask'). If no mask is supplied, NumberFormat() returns the number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

formatted with thousands separators. If for any reason ColdFusion is not able to format the number
with the supplied mask, the original value is returned unformatted. Valid entries for the mask are
listed in Table 4-5.

Table 4-5. Mask Values for NumberFormat()

Mask Description

-

(underscore)
Optional digit placeholder

9 Optional digit placeholder; same as _ but better for showing decimal places

. Decimal point location

 Forces padding with zeros

() Surrounds negative numbers in parentheses

+
Places a plus sign in front of positive numbers and a minus sign in front of negative
numbers

- (hyphen)
Places a space in front of positive numbers and a minus sign in front of negative
numbers

, Separates thousands with commas

L Left-justifies the number within the width of the mask

C Centers the number within the width of the mask

$ Places a dollar sign in front of the number

^ Separates left from right formatting

The following example shows the NumberFormat() function applied to various numbers:

<!--- Assign a number to a variable to be used throughout the example --->
<cfset MyNumber = 1000.99>

<h3>Formatting Numeric Values using NumberFormat</h3>

<cfoutput>
MyNumber = #MyNumber#
<p>
NumberFormat(MyNumber, '____'): #NumberFormat(MyNumber, '____')#

NumberFormat(MyNumber, '9999.99'): #NumberFormat(MyNumber, '9999.99')#

NumberFormat(MyNumber, '09999.9900'): #NumberFormat(MyNumber, '09999.9900')#

NumberFormat(-MyNumber, '(9999.99)'): #NumberFormat(-MyNumber, '(9999.99)')#

NumberFormat(MyNumber, '+9999.99'): #NumberFormat(MyNumber, '+9999.99')#

NumberFormat(-MyNumber, '+9999.99'): #NumberFormat(-MyNumber, '+9999.99')#

NumberFormat(MyNumber, '-9999.99'): #NumberFormat(MyNumber, '-9999.99')#

NumberFormat(-MyNumber, '-9999.99'): #NumberFormat(-MyNumber, '-9999.99')#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NumberFormat(MyNumber, '$9,999.99'): #NumberFormat(MyNumber, '$9,999.99')#

NumberFormat(MyNumber, 'L999,999.99'): #NumberFormat(MyNumber, 'L999,999.99')#

NumberFormat(MyNumber, 'C999,999.99'): #NumberFormat(MyNumber, 'C999,999.99')#

NumberFormat(MyNumber, 'C_____(^___)'): #NumberFormat(MyNumber, 'C_____(^___)')#
</cfoutput>

4.8.3.3 Locale-specific number formatting

In addition to general number formatting using the NumberFormat() function, ColdFusion provides

another function for formatting numbers in a format that is locale-specific. Locale-specific formatting
allows you to format numbers for a specific language or dialect (often country-specific). For example,
in many European countries, the period (.) is used as a thousands separator instead of the comma
(,) as in the United States. The LSNumberFormat() function behaves the same as the
NumberFormat() function (using the same masks), but it takes into account the formatting used by
the default locale. If no formatting mask is supplied, LSNumberFormat() returns the number as an

integer.

The following example loops through each locale supported by ColdFusion and applies a variety of
different number masks for each locale:

<h3>Formatting Locale Specific Numeric Values using LSNumberFormat</h3>

<!--- Loop over each locale. The list of locales is obtained from the server
 variable Server.ColdFusion.SupportedLocales --->
<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
<!--- This causes the CF server to assume the locale specified by the current
 iteration of the loop --->
<cfset SetLocale(locale)>

<cfoutput>
<p>
#locale#

LSNumberFormat(1000.99, '____'): #LSNumberFormat(1000.99, '____')#

LSNumberFormat(1000.99, '9999.99'): #LSNumberFormat(1000.99, '9999.99')#

LSNumberFormat(1000.99, '09999.9900'): #LSNumberFormat(1000.99, '09999.9900')#

LSNumberFormat(-1000.99, '(9999.99)'): #LSNumberFormat(-1000.99, '(9999.99)')#

LSNumberFormat(1000.99, '+9999.99'): #LSNumberFormat(1000.99, '+9999.99')#

LSNumberFormat(-1000.99, '+9999.99'): #LSNumberFormat(-1000.99, '+9999.99')#

LSNumberFormat(1000.99, '-9999.99'): #LSNumberFormat(1000.99, '-9999.99')#

LSNumberFormat(-1000.99, '-9999.99'): #LSNumberFormat(-1000.99, '-9999.99')#

LSNumberFormat(1000.99, '$9,999.99'): #LSNumberFormat(1000.99, '$9,999.99')#

LSNumberFormat(1000.99, 'L999,999.99'):
 #LSNumberFormat(1000.99, 'L999,999.99')#

LSNumberFormat(1000.99, 'C999,999.99'):
 #LSNumberFormat(1000.99,'C999,999.99')#

LSNumberFormat(1000.99, 'C____(^___)'):
 #LSNumberFormat(1000.99, 'C____(^___)')#

</cfoutput>
</cfloop>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8.4 Formatting Currency Values

Numeric values can be automatically formatted as currency values with the help of three ColdFusion
functions: DollarFormat(), LSCurrencyFormat(), and LSEuroCurrencyFormat().

4.8.4.1 Formatting dollars

The DollarFormat() function returns a number formatted as U.S. dollars. The returned number is

formatted to two decimal places with a dollar sign and thousands separators. If the number is
negative, it is returned in parentheses. The following example formats a variety of numbers using
DollarFormat():

<cfoutput>
-1000: #DollarFormat(-1000)#

-100: #DollarFormat(-100)#

-10: #DollarFormat(-10)#

-1: #DollarFormat(-1)#

1: #DollarFormat(1)#

10: #DollarFormat(10)#

100: #DollarFormat(100)#

1000: #DollarFormat(1000)#

10000: #DollarFormat(10000)#

100000: #DollarFormat(100000)#

1000000: #DollarFormat(1000000)#

</cfoutput>

4.8.4.2 Locale-specific currency formatting

In addition to U.S. dollar formatting using the DollarFormat() function, ColdFusion provides

another function for formatting currency values specific to a particular locale. The
LSCurrencyFormat() function behaves the same as the DollarFormat() function, but it takes into

account the currency conventions used by the default locale. The function takes two parameters, a
numeric value and an optional locale-specific convention. Table 4-6 lists the valid values for the
convention.

Table 4-6. Locale-specific conventions for LSCurrencyFormat()

Value Description

None Returns the amount

Local Returns the currency amount with locale-specific currency formatting; the default

International
Returns the currency value with its corresponding three-letter international
currency prefix

The following example loops through each locale supported by ColdFusion and applies each type of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

currency mask to a currency value for each locale:

<h3>Formatting Locale Specific Currency Values using LSCurrencyFormat</h3>

<!--- Loop over each locale. The list of locales is obtained from the server
 variable Server.ColdFusion.SupportedLocales --->
<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
<!--- This causes the CF server to assume the locale specified by the current
 iteration of the loop --->
<cfset SetLocale(locale)>

<cfoutput>
<p>
#locale#

None: #LSCurrencyFormat(1000000.99, "None")#

Local: #LSCurrencyFormat(1000000.99, "Local")#

International: #LSCurrencyFormat(1000000.99, "International")#

</cfoutput>
</cfloop>

4.8.4.3 Locale-specific currency formatting with the euro

The final currency formatting function, LSEuroCurrencyFormat(), is the same as the
LSCurrencyFormat() function except it returns the formatted currency with the euro symbol for

locales using the euro. The following example displays euro currency formats for each locale:

<h3>Formatting Locale Specific Currency Values with the Euro using
 LSCurrencyFormat</h3>

<!--- Loop over each locale. The list of locales is obtained from the server
 variable Server.ColdFusion.SupportedLocales --->
<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
<!--- This causes the CF server to assume the locale specified by the current
 iteration of the loop --->
<cfset SetLocale(locale)>

<cfoutput>
<p>
#locale#

None: #LSEuroCurrencyFormat(1000000.99, "None")#

Local: #LSEuroCurrencyFormat(1000000.99, "Local")#

International: #LSEuroCurrencyFormat(1000000.99, "International")#

</cfoutput>
</cfloop>

4.8.5 Formatting Boolean Values

ColdFusion uses the Boolean datatype to store the value generated by a logical operation. Boolean
values are stored as either true or false. In numeric operations, Boolean values evaluate to 1 for
true and 0 for false. When dealing with strings, Boolean values are set to Yes for true and No for
false. Because most users are used to seeing the results of a Boolean operation as either Yes or No,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion has a function called YesNoFormat() you can use to automatically convert any Boolean
value to its equivalent Yes/No format (all nonzero values are returned as Yes, while a zero value is
returned as No). The following example demonstrates this by applying the YesNoFormat() function

to a variety of Boolean values:

<h3>Formatting Boolean Values using YesNoFormat</h3>

<cfoutput>
-1: #YesNoFormat(-1)#

-1.123: #YesNoFormat(-1.123)#

-0.123: #YesNoFormat(-0.123)#

0: #YesNoFormat(0)#

0.123: #YesNoFormat(0.123)#

1: #YesNoFormat(1)#

1.123: #YesNoFormat(1.123)#
</cfoutput>

4.8.6 Formatting Dates and Times

Depending on the database you use, date and time values returned as part of a query result set can
come in a variety of formats. ColdFusion affords a lot of flexibility in formatting date and time values
before you output them to the browser.

4.8.6.1 General date formatting

General date formatting is handled by the DateFormat() function. DateFormat() allows you to

format dates using a variety of masks. The function accepts two parameters, the date you wish to
format and a mask to specify the formatting in the format DateFormat(date, "mask"). If no mask is

supplied, DateFormat() defaults to dd-mmm-yy. Valid entries for the date mask are shown in Table

4-7.

Table 4-7. Mask values for DateFormat()

Mask Description

d Day of the month as a number with no leading zero for single-digit days

dd Day of the month as a number with a leading zero for single-digit days

ddd Three-letter abbreviation for day of the week

dddd Full name of the day of the week

gg Period/era; this mask is currently ignored

m Month as a number with no leading zero for single-digit months

mm Month as a number with a leading zero for single-digit months

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mask Description

mmm Three-letter abbreviation for the month

mmmm Full name of the month

y Last two digits of year with no leading zero for years less than 10

yy Last two digits of year with a leading zero for years less than 10

yyyy Four-digit year

gg Period/era

short Java Short date format

medium Java Medium date format

long Java Long date format

full Java Full date format

You should note that DateFormat() supports U.S. date formats only. To use locale-specific date
formats, see the LSDateFormat() function in the next section. For more information on how

ColdFusion handles dates, see Chapter 2.

The following example demonstrates the DateFormat() function utilizing a variety of different date

masks:

<cfset TheDate = Now()>

<cfoutput>
TheDate = #DateFormat(TheDate, 'mm/dd/yyyy')#
<p>
m/d/yy: #DateFormat(TheDate, 'm/d/yy')#

mm/dd/yy: #DateFormat(TheDate, 'mm/dd/yy')#

mm/dd/yyyy: #DateFormat(TheDate, 'mm/dd/yyyy')#

dd/mm/yyyy gg: #DateFormat(TheDate, 'dd/mm/yyyy gg')#

dd mmm yy: #DateFormat(TheDate, 'dd mmm yy')#

dddd mmmm dd, yyyy: #DateFormat(TheDate, 'dddd mmmm dd, yyyy')#

<p>
And these formats are new in ColdFusion MX:

short: #DateFormat(TheDate, 'short')#

medium: #DateFormat(TheDate, 'medium')#

long: #DateFormat(TheDate, 'long')#

full: #DateFormat(TheDate, 'full')#

</cfoutput>

4.8.6.2 Locale-specific date formatting

In addition to U.S. date formatting using the DateFormat() function, ColdFusion provides another
function for formatting dates specific to a particular locale. The LSDateFormat() function behaves
the same as the DateFormat() function, but it takes into account the formatting used by the default
locale. If no formatting mask is supplied, LSDateFormat() uses the locale-specific default.

mmm Three-letter abbreviation for the month

mmmm Full name of the month

y Last two digits of year with no leading zero for years less than 10

yy Last two digits of year with a leading zero for years less than 10

yyyy Four-digit year

gg Period/era

short Java Short date format

medium Java Medium date format

long Java Long date format

full Java Full date format

You should note that DateFormat() supports U.S. date formats only. To use locale-specific date
formats, see the LSDateFormat() function in the next section. For more information on how

ColdFusion handles dates, see Chapter 2.

The following example demonstrates the DateFormat() function utilizing a variety of different date

masks:

<cfset TheDate = Now()>

<cfoutput>
TheDate = #DateFormat(TheDate, 'mm/dd/yyyy')#
<p>
m/d/yy: #DateFormat(TheDate, 'm/d/yy')#

mm/dd/yy: #DateFormat(TheDate, 'mm/dd/yy')#

mm/dd/yyyy: #DateFormat(TheDate, 'mm/dd/yyyy')#

dd/mm/yyyy gg: #DateFormat(TheDate, 'dd/mm/yyyy gg')#

dd mmm yy: #DateFormat(TheDate, 'dd mmm yy')#

dddd mmmm dd, yyyy: #DateFormat(TheDate, 'dddd mmmm dd, yyyy')#

<p>
And these formats are new in ColdFusion MX:

short: #DateFormat(TheDate, 'short')#

medium: #DateFormat(TheDate, 'medium')#

long: #DateFormat(TheDate, 'long')#

full: #DateFormat(TheDate, 'full')#

</cfoutput>

4.8.6.2 Locale-specific date formatting

In addition to U.S. date formatting using the DateFormat() function, ColdFusion provides another
function for formatting dates specific to a particular locale. The LSDateFormat() function behaves
the same as the DateFormat() function, but it takes into account the formatting used by the default
locale. If no formatting mask is supplied, LSDateFormat() uses the locale-specific default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example loops through each locale supported by ColdFusion and applies a number of
different date masks to the current date for each locale:

<h3>Formatting Locale Specific Date Values using LSDateFormat</h3>

<!--- Loop over each locale. The list of locales is obtained from the server
 variable Server.ColdFusion.SupportedLocales --->
<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
<!--- This causes the CF server to assume the locale specified by the current
 iteration of the loop --->
<cfset SetLocale(locale)>

<!--- Output formatted dates using a variety of masks --->
<cfoutput>
<p>
#locale#

#LSDateFormat(Now())#

#LSDateFormat(Now(), "d/m/yy")#

#LSDateFormat(Now(), "d-mmm-yyyy")#

#LSDateFormat(Now(), "dd mmm yy")#

#LSDateFormat(Now(), "dddd, mmmm dd, yyyy")#

#LSDateFormat(Now(), "mm/dd/yyyy")#

#LSDateFormat(Now(), "mmmm d, yyyy")#

#LSDateFormat(Now(), "mmm-dd-yyyy")#

</cfoutput>
</cfloop>

4.8.6.3 General time formatting

You can format times in ColdFusion using the TimeFormat() function. TimeFormat() is similar to
the DateFormat() function in that it allows you to use a mask to control the formatting. The

function accepts two parameters, the time you wish to format and a mask to specify the formatting
in the format TimeFormat(time, "mask"). If no mask is specified, the default hh:mm tt is used. Valid

mask values are shown in Table 4-8.

Table 4-8. Mask values for TimeFormat()

Mask Description

h Hours based on a 12-hour clock with no leading zeros for single-digit hours

hh Hours based on a 12-hour clock with leading zeros for single-digit hours

H Hours based on a 24-hour clock with no leading zeros for single-digit hours

HH Hours based on a 24-hour clock with leading zeros for single-digit hours

m Minutes with no leading zero for single-digit minutes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mask Description

mm Minutes with a leading zero for single-digit minutes

s Seconds with no leading zero for single-digit seconds

ss Seconds with a leading zero for single-digit seconds

l Milliseconds with no leading zeros for single or double-digit milliseconds

t Single character meridian, either A or p

tt Multicharacter meridian, either AM or PM

short Java Short time format

medium Java Medium time format

long Java Long time format

full Java Full time format

The following example demonstrates the TimeFormat() function using a number of time masks:

<cfset TheTime = Now()>

<cfoutput>
TheTime = #TimeFormat(TheTime,'hh:mm:ss tt')#<p>

TimeFormat(TheTime, 'h:m:s'): #TimeFormat(TheTime, 'h:m:s')#

TimeFormat(TheTime, 'h:m:s t'): #TimeFormat(TheTime, 'h:m:s t')#

TimeFormat(TheTime, 'hh:mm:ss'): #TimeFormat(TheTime, 'hh:mm:ss')#

TimeFormat(TheTime, 'hh:mm:ss tt'): #TimeFormat(TheTime, 'hh:mm:ss tt')#

TimeFormat(TheTime, 'H:M:ss'): #TimeFormat(TheTime, 'H:M:s')#

TimeFormat(TheTime, 'HH:MM:ss'): #TimeFormat(TheTime, 'HH:MM:ss')#

<p>
And these formats are new in ColdFusion MX:

short: #TimeFormat(TheTime, 'short')#

medium: #TimeFormat(TheTime, 'medium')#

long: #TimeFormat(TheTime, 'long')#

full: #TimeFormat(TheTime, 'full')#

</cfoutput>

4.8.6.4 Locale-specific time formatting

In addition to U.S. time formatting using the TimeFormat() function, ColdFusion provides another
function for formatting dates specific to a particular locale. The LSTimeFormat() function behaves the
same as the TimeFormat() function, but it takes into account the formatting used by the default
locale. If no formatting mask is supplied, LSTimeFormat() uses the locale-specific default. The

following example loops through each locale supported by ColdFusion and applies a number of
different time masks to the current time for each locale:

<cfset theTime = Now()>

mm Minutes with a leading zero for single-digit minutes

s Seconds with no leading zero for single-digit seconds

ss Seconds with a leading zero for single-digit seconds

l Milliseconds with no leading zeros for single or double-digit milliseconds

t Single character meridian, either A or p

tt Multicharacter meridian, either AM or PM

short Java Short time format

medium Java Medium time format

long Java Long time format

full Java Full time format

The following example demonstrates the TimeFormat() function using a number of time masks:

<cfset TheTime = Now()>

<cfoutput>
TheTime = #TimeFormat(TheTime,'hh:mm:ss tt')#<p>

TimeFormat(TheTime, 'h:m:s'): #TimeFormat(TheTime, 'h:m:s')#

TimeFormat(TheTime, 'h:m:s t'): #TimeFormat(TheTime, 'h:m:s t')#

TimeFormat(TheTime, 'hh:mm:ss'): #TimeFormat(TheTime, 'hh:mm:ss')#

TimeFormat(TheTime, 'hh:mm:ss tt'): #TimeFormat(TheTime, 'hh:mm:ss tt')#

TimeFormat(TheTime, 'H:M:ss'): #TimeFormat(TheTime, 'H:M:s')#

TimeFormat(TheTime, 'HH:MM:ss'): #TimeFormat(TheTime, 'HH:MM:ss')#

<p>
And these formats are new in ColdFusion MX:

short: #TimeFormat(TheTime, 'short')#

medium: #TimeFormat(TheTime, 'medium')#

long: #TimeFormat(TheTime, 'long')#

full: #TimeFormat(TheTime, 'full')#

</cfoutput>

4.8.6.4 Locale-specific time formatting

In addition to U.S. time formatting using the TimeFormat() function, ColdFusion provides another
function for formatting dates specific to a particular locale. The LSTimeFormat() function behaves the
same as the TimeFormat() function, but it takes into account the formatting used by the default
locale. If no formatting mask is supplied, LSTimeFormat() uses the locale-specific default. The

following example loops through each locale supported by ColdFusion and applies a number of
different time masks to the current time for each locale:

<cfset theTime = Now()>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 TheTime = #LSTimeFormat(TheTime)#

 LSTimeFormat(TheTime, 'h:m:s'): #LSTimeFormat(TheTime, 'h:m:s')#

 LSTimeFormat(TheTime, 'h:m:s t'): #LSTimeFormat(TheTime,
 'h:m:s t')#

 LSTimeFormat(TheTime, 'hh:mm:ss'): #LSTimeFormat(TheTime,
 'hh:mm:ss')#

 LSTimeFormat(TheTime, 'hh:mm:ss tt'):
 #LSTimeFormat(TheTime, 'hh:mm:ss tt')#

 LSTimeFormat(TheTime, 'H:M:ss'): #LSTimeFormat(TheTime, 'H:M:s')#

 LSTimeFormat(TheTime, 'HH:MM:ss'): #LSTimeFormat(TheTime,
 'HH:MM:ss')#

 <p>
 And these formats are new in ColdFusion MX:

 short: #LSTimeFormat(TheTime, 'short')#

 medium: #LSTimeFormat(TheTime, 'medium')#

 long: #LSTimeFormat(TheTime, 'long')#

 full: #LSTimeFormat(TheTime, 'full')#

 </cfoutput>
</cfloop>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Maintaining Database Records
Now that we've covered the basics of retrieving records from a database, let's focus our attention on
techniques you can use to add new records, update existing records, and delete unwanted records
from a database. These techniques come into play when your web application needs to go beyond
simply displaying information from a database. For example, with our employee directory application,
we can add the ability to insert new employees into the directory, update employee information, and
delete employee records.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 Inserting Records

Inserting a new record into a database table is a two-step process. The first step involves creating a
template with an input form that collects the information you want to insert. The second step in the
process takes the form-field data and inserts it into the database table. The code for this process can
be broken up into two templates, but it is possible to use a single template (with conditional code, as
described in Chapter 3) that posts to itself if you desire. With the introduction of ColdFusion
Components (CFCs) in ColdFusion MX, several more advanced options exist for architecting this type
of functionality. CFCs are covered in Chapter 22. For now, we'll focus on the first two techniques,

5.1.1 Inputting Data Via Forms

The most popular method for collecting data to insert into a database is via an HTML form. When
creating your input form, you should name your form fields the same as their equivalent database
fields (or stored procedure parameters if you are using stored procedures, which are covered in
Chapter 11). This avoids any confusion when writing SQL statements or code that manipulates data.

Example 5-1 shows the insertform.cfm template, which creates an HTML form for inputting a new
employee record in the EmployeeDirectory table of the ProgrammingCF database.

Example 5-1. HTML input form for inserting a record into a database

<html>
<head>
 <title>Data Input Form</title>
</head>

<body>

<h2>Add a New User</h2>
<form action="insert.cfm" method="post">
<!--- Data validation --->
<input type="hidden" name="Name_Required" value="Name is a required field">
<input type="hidden" name="Title_Required"
 value="Title is a required field">
<input type="hidden" name="Department_Required"
 value="Department is a required field">
<input type="hidden" name="Email_Required"
 value="E-mail is a required field">
<input type="hidden" name="PhoneExt_Required"
 value="Phone Ext. is a required field">
<input type="hidden" name="Salary_Required"
 value="Salary is a required field">
<input type="hidden" name="PhoneExt_Integer"
 value="Phone Ext. is a numeric field">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<input type="hidden" name="Salary_Float" value="Salary is a numeric field">

<table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="Name" size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>Title:</td>
 <td><input type="text" name="Title" size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>Department:</td>
 <td><input type="text" name="Department" size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td><input type="text" name="Email" size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>Phone Ext::</td>
 <td><input type="text" name="PhoneExt" size="5" maxlength="4"></td>
 </tr>
 <tr>
 <td>Salary:</td>
 <td><input type="text" name="Salary" size="20" maxlength="12"></td>
 </tr>
</table>
<input type="submit" value="submit">
</form>
</body>
</html>

The input form uses the HTTP POST method to post the form-field data to a template called
insert.cfm. We're going to look at three different implementations of this template, in Examples 5-2,
5-3, and 5-4. The input form also uses several hidden fields to set up server-side validation rules for
the form fields. The form itself is shown in Figure 5-1.

Figure 5-1. HTML form for inserting a new employee record

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.2 Inserting Form-Field Data

When you have form-field data to be inserted into a database, you have numerous options for how to
do the actual insert. You can use the cfquery tag and write your own SQL INSERT statement, you
can use the cfinsert tag to handle the insert without writing a single line of SQL, or you can use a

stored procedure. We'll cover the first two methods here. Stored procedures are discussed in Chapter
11.

5.1.2.1 Inserting a record using cfquery

The cfquery tag lets you insert a record into a table using an SQL INSERT statement. This method

gives you the most flexibility and power in inserting records. Example 5-2 demonstrates using the
cfquery tag to insert a new record into the database. The template receives its input from the form

shown in Example 5-1. In order for the example to work, the template in Example 5-2 must be saved
as insert.cfm in the same directory as the template in Example 5-1.

Example 5-2. Using cfquery to insert data into a data source

<!--- Insert the record into the EmployeeDirectory table. --->
<cflock name="InsertNewRecord" type="exclusive" timeout="30">
<cftransaction>
<cfquery name="AddRecord" datasource="ProgrammingCF">
 INSERT INTO EmployeeDirectory(Name, Title, Department, Email,
 PhoneExt, Salary)
 VALUES('#form.Name#', '#form.Title#', '#form.Department#',
 '#form.Email#', #form.PhoneExt#, #form.Salary#)
</cfquery>

<!--- This query retrieves the primary key value of the record we
 just inserted. --->
<cfquery name="GetPK" datasource="ProgrammingCF">
 SELECT Max(ID) AS MaxID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM EmployeeDirectory
</cfquery>
</cftransaction>
</cflock>

<!--- This query uses the value returned by the GetPK query to lookup
 the full record we inserted. --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE ID = #GetPK.MaxID#
</cfquery>

<html>
<head>
 <title>cfquery Insert</title>
 <style type="text/css">
 th {
 background-color : #888888;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<h2>Record Inserted!</h2>

<h3>Here are the record details...</h3>

<table cellpadding="3" cellspacing="0">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>

<!--- Output the record --->
<cfoutput query="GetRecord">
 <tr>
 <td>#ID#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#DollarFormat(Salary)#</td>
 </tr>
</cfoutput>
</table>

</body>
</html>

If you fill out the form in Example 5-1 and submit it to this template, a new record containing all the
information from the form is inserted into the EmployeeDirectory table. The INSERT statement is
used within the cfquery tag to insert a record into the database. The INTO clause controls what fields
to insert data into by specifying them as a comma-delimited list. VALUES specifies the data to insert
into each field specified by the INTO clause. Note that numeric values aren't enclosed in single quotes
in the VALUES clause.

Notice that we are inserting the employee name, title, etc., but not the ID. That's because the ID is
specified as an AutoNumber field in our Access database. If you are using a database that doesn't
support AutoNumber fields, you can use the CreateUUID() function here to generate a unique value
on the fly. If you do this, be sure to include the ID field in the INSERT INTO clause and the UUID value
in the VALUES clause.

After the record is inserted, another cfquery is run to extract the primary key value for the record
we just inserted, so that we can look up the record we just inserted. This query uses a SELECT

statement containing a special clause, known as an aggregate function, to obtain the maximum value
in the ID column. (Aggregate functions are discussed in Chapter 11.) Because we use an AutoNumber

field that automatically increments by one each time a new record is inserted into the database, the
value returned by our query is the primary key value for the record we just inserted.

The cflock tag ensures that the code it wraps is accessible by only one request at a time. The
cftransaction tag groups the queries into a single transaction. The combination of these two

techniques prevents you from retrieving the primary key value of another user's record in the event
they insert a new record right after you do and before you retrieve the MAX ID value. The cflock tag
is covered in Chapter 7, while the cftransaction tag is covered in Chapter 11.

Once we know the primary key value for the record we inserted, we execute yet another cfquery tag
to SELECT the record from the EmployeeDirectory table whose ID field contains the primary key

value returned by our second query. The template finishes by outputting all the values stored in the
record we just inserted in a neatly formatted HTML table. The results are seen in Figure 5-2.

Figure 5-2. Inserting a record into a table using cfquery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.2.2 Inserting a record using cfinsert

If you don't want to concern yourself with the SQL necessary to insert a record into a database,
ColdFusion provides a tag called cfinsert that does most of the work for you. The tag takes most of
the parameters the cfquery tag takes but doesn't require you to include any SQL inside the tag. The
basic syntax for using the cfinsert tag is as follows:

<cfinsert datasource="datasource_name"
 tablename="table_name"
 formfields="formfield1, formfield2, ...">

The three attributes for the cfinsert tag are:

datasource

The name of the data source to connect to when performing the insert. Required.
tablename

The name of the table to insert the data into. Required. It should be noted that Oracle
database drivers require the table name to be in all uppercase. In addition, Sybase database
drivers use a case-sensitive table name.

formfields

A comma-delimited list of form fields to insert. Optional. If no form fields are supplied,
ColdFusion uses all the form fields passed from the form.

Several additional attributes are available for use with the cfinsert tag. For a complete list, see

Appendix A.

There are two ways to use the cfinsert tag. You can use the tag to insert values for every form field

passed to the template containing the tag, or you can supply a comma-delimited list of form fields
(using the formfields attribute) you want to insert.

The first method requires the least amount of code and is shown in Example 5-3. This template
receives its input from the form in Example 5-1. In order for the example to work, the template in
Example 5-3 must be saved as insert.cfm in the same directory as the template in Example 5-1.

Example 5-3. Using cfinsert without a list of fields to insert data into a
database table

<!--- Insert all of the form field data into the EmployeeDirectory
 table of the ProgrammingCF data source. --->

<cflock name="InsertNewRecord" type="exclusive" timeout="30">
<cftransaction>
<cfinsert datasource="ProgrammingCF"
 tablename="EmployeeDirectory">

<!--- This query retrieves the primary key value of the record we
 just inserted. --->
<cfquery name="GetPK" datasource="ProgrammingCF">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SELECT Max(ID) AS MaxID
 FROM EmployeeDirectory
</cfquery>
</cftransaction>
</cflock>

<!--- This query uses the value returned by the GetPK query to lookup
 the full record we inserted. --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE ID = #GetPK.MaxID#
</cfquery>

<html>
<head>
 <title>cfinsert Insert</title>
 <style type="text/css">
 th {
 background-color : #888888;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<h2>Record Inserted using cfinsert without Field Names!</h2>

<h3>Here are the record details...</h3>

<table cellpadding="3" cellspacing="0">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>

<!--- Output the record --->
<cfoutput query="GetRecord">
 <tr>
 <td>#ID#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#PhoneExt#</td>
 <td>#DollarFormat(Salary)#</td>
 </tr>
</cfoutput>
</table>

</body>
</html>

When the form in Example 5-1 posts to this template, the cfinsert tag attempts to take every form
field passed in and inserts it into the EmployeeDirectory table. This method works well when you

have a corresponding database field for each form field. If, however, there are form fields that don't
have corresponding database fields, ColdFusion throws an error. Once the record has been inserted,
the template uses the same code from Example 5-3 to retrieve the record we just inserted and
display it in the browser. As with our first implementation of insert.cfm, the value for the employee
ID is inserted automatically by Access. This version also uses cflock and cftransaction to protect

against collisions between multiple requests. If you look at the output from this template, you should
notice that it looks identical to that shown in Example 5-2 (minus the title, of course).

The second method for inserting a new record using the cfinsert tag requires one more line of code

but allows you to specify which form fields should be inserted into the database. This lets you make
sure that only the form fields you want inserted into the table are inserted. The code for this template
is shown in Example 5-4. As in the previous examples, this template receives its input from the form
in Example 5-1. In order for the example to work, the template in Example 5-4 must be saved as
insert.cfm in the same directory as the template in Example 5-1.

Example 5-4. Inserting a record using the cfinsert tag with field names
specified

<!--- Insert the data from the specified form fields into the
 EmployeeDirectory table of the ProgrammingCF data source. --->

<cflock name="InsertNewRecord" type="exclusive" timeout="30">
<cftransaction>
<cfinsert datasource="ProgrammingCF"
 tablename="EmployeeDirectory"
 formfields="Name,Title,Email">

<!--- This query retrieves the primary key value of the record we
 just inserted. --->
<cfquery name="GetPK" datasource="ProgrammingCF">
 SELECT Max(ID) AS MaxID
 FROM EmployeeDirectory
</cfquery>
</cftransaction>
</cflock>

<!--- This query uses the value returned by the GetPK query to lookup
 the full record we inserted. --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM EmployeeDirectory
 WHERE ID = #GetPK.MaxID#
</cfquery>

<html>
<head>
 <title>cfinsert Insert</title>
 <style type="text/css">
 th {
 background-color : #888888;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<h2>Record Inserted using cfinsert with Specific Field Names!</h2>

<h3>Here are the record details...</h3>

<table cellpadding="3" cellspacing="0">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>

<!--- Output the record --->
<cfoutput query="GetRecord">
 <tr>
 <td>#ID#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 <td>#DollarFormat(Salary)#</td>
 </tr>
</cfoutput>
</table>

</body>
</html>

Using the form in Example 5-1 to post to this template, the cfinsert tag inserts only the Name,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Title, and Email form fields into the EmployeeDirectory table. Once the record has been inserted,

the template uses the same code from Example 5-3 to retrieve the record we just inserted and
display it in the browser. The results are shown in Figure 5-3. Notice that the Department and
PhoneExt fields contain no values, and the Salary field contains a zero.

Figure 5-3. Inserting specific fields using cfinsert

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 Updating Existing Records

Updating a database record is a three-step process that involves a bit more work that just inserting a
new record. The first step in the process is to identify the record to be updated; there are two ways
to handle this task. Next, an HTML form containing the editable fields needs to be created. This form
must be prepopulated with the data from the record to be edited. Finally, you need another template
to take the updated form-field data and update the appropriate record in the database.

5.2.1 Choosing a Record to Update

Before you can make an update to a record, you need some sort of interface that allows you to
choose the record you wish to modify. There are two general approaches to this interface. The first
approach involves a URL-based technique for selecting the record to modify. The second approach
utilizes a forms-based technique to achieve the same goal. Both approaches begin by querying a data
source (in our case, the EmployeeDirectory table of the ProgrammingCF data source) to retrieve a

list of all the records from the database. Usually, you need to retrieve only the primary key value and
a distinguishing field or two. A primary key is necessary to ensure that you update only the record
you intend to update. In many cases, the primary key is a single field that contains a unique value
such as an auto-increment number or a UUID (Universally Unique Identifier-see CreateUUID() in

Appendix B for more information). In some cases, the primary key may be made up of a
concatenation of more than one field. In our example, we retrieve the ID field (primary key) and the
Name field from the EmployeeDirectory table. It is from this point forward that the two approaches

differ.

The first approach uses the information returned by the query to generate an HTML table listing each
employee from the database. The code for this template, updatemenu_hyperlink.cfm, is shown in
Example 5-5.

Example 5-5. URL-based menu for selecting a record to update

<!--- Query the database for all employee names and their associated
 IDs (the primary key value) --->
<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT ID, Name
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Employee Update Menu</title>
 <style type="text/css">
 th {
 background-color : #C0C0C0;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 td {
 background-color : #E7E7E7;
 }
 </style>
</head>
<body>
<div align="Center">
<h3>Employee Profiles</h3>
<table border="1">
 <tr>
 <th>Employee</th>
 <th>Action</th>
 </tr>
<!--- Output a table containing each employee's name. Create dynamic
 links to edit and delete templates. Pass the ID
 associated with each record in the URL of the link --->
<cfoutput query="GetEmployees">
 <tr>
 <td>#Name#</td>
 <td>Update |
 Delete</td>
 </tr>
</cfoutput>
 <tr>
 <td COLSPAN="2" align="Center">Add a
 new record</td>
 </tr>
</table>
</div>
</body>
</html>

Executing this template generates an HTML table that contains each employee's name in the left
column, as shown in Figure 5-4. The right column contains two hyperlinks, one labeled Update and
the other labeled Delete. Each of the Update hyperlinks contains a link to a template called
updateform.cfm. Appended to each URL is a URL parameter called ID that contains the ID associated
with the employee as returned by the GetEmployees query. Clicking on any of the "Update" links calls
the updateform.cfm template, shown later in Example 5-7, and passes the ID associated with the

employee so that the record can be retrieved for editing. If a "Delete" link is clicked on, the same
updateform.cfm template is called, but this time, a URL parameter called Action with a value of
Delete is passed so that the updateform.cfm template knows that the user want to delete a record

and what record to delete. At the bottom of the template is a hyperlink that points to the
insertform.cfm template from Example 5-1. Clicking on this link takes the user to the template for
inserting a new record into the database.

Figure 5-4. Hyperlink-based menu for selecting a record to update/delete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One drawback to the URL method becomes evident when the user needs to make a selection from a
large number of records. It becomes highly inefficient to display hundreds or thousands of employees
in an HTML table and realistically expect the user to scroll through all of them.

In this scenario, it is more efficient to use the second approach, which involves building a select list to
display the names of all the employees. While the user still has to scroll through the list of names, the
scrolling is confined to the select list, keeping the main body of the page in view at all times. Building
the select list as opposed to an entire HTML table is also a lot easier on the client's machine, as it
takes far less code and thus less system memory.[1] Using a select list also changes the way the ID
field associated with the user's record is passed to the next template. Instead of passing the ID value

in a URL, the value is submitted as a form-field value. The code for the select box method,
updatemenu_form.cfm, is shown in Example 5-6.

[1] You should note that there are limitations on how much information you can put into a select box. Although
there is no hard limit, I'd recommend against putting more than a few thousand items (if that) into a single
select box. If you have that many records, it probably makes more sense to change your interface to allow for
the selection of records in smaller batches.

Example 5-6. Form-based menu for selecting a record to update/delete

<!--- Query the database for all employee names and their associated Ids
 (the primary key value --->
<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT ID, Name
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Employee Update Menu</title>
</head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>

<div align="Center">
<h3>Employee Profiles</h3>

<table border="3" cellpadding="5" cellspacing="0" bgcolor="#c0c0c0">
 <form action="updateform.cfm" method="post">
 <tr>
 <td rowspan="3">
 <!--- Generate a dynamic select list based on the GetEmployees
 query --->
 <select name="ID" size="5">
 <cfoutput query="GetEmployees">
 <option value="#ID#" <cfif GetEmployees.CurrentRow eq 1>selected
 </cfif>>#Name#</option>
 </cfoutput>
 </select>
 </td>
 <td><input type="submit" name="Update" value="Update Record"></td>
 </tr>
 <tr>
 <td><input type="submit" name="Delete" value="Delete Record "></td>
 </tr>
 </form>
 <tr>
 <form action="insertform.cfm" method="post">
 <td><input type="submit" Name="Insert" value=" Add Record "></td>
 </form>
 </tr>
</table>
</div>

</body>
</html>

This template illustrates a new technique we haven't covered yet: how to generate a select box
containing data pulled from a query. The technique works by querying a data source and retrieving a
record set. In this case, we queried the EmployeeDirectory table of the ProgrammingCF data source
and returned a record set containing employee names (name) and their associated employee IDs
(ID). The dynamic select box is generated within the form by using a cfoutput statement to loop
over the contents of the GetEmployees query, building the option list for the SELECT statement from
the record set. Each option value is populated with the value of an ID from the record set while the
actual value displayed in the select box is derived from the corresponding name. The result is a menu

of employee names the user can use to select an employee record to update, as shown in Figure 5-5.

Figure 5-5. Dynamically generated select box for choosing an employee
record to update

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note the cfif statement that builds the option tags for the SELECT statement. It makes sure the

first option is always selected. This prevents a user from clicking the Update Record or Delete Record
buttons without first choosing a record to update or delete. This piece of code eliminates the need for
a hidden form field to make a selection from the menu required.

Highlighting an employee name and clicking on the Update Record or Delete Record button posts the
ID value to a template called updateform.cfm (Example 5-7). Clicking on the Add Record button calls

the insertform.cfm template from Example 5-1.

5.2.2 Dynamically Populating Update Forms

Once the user has selected a record to update, the next step for our application is to query the
database and retrieve all the fields associated with the chosen record. This data is then used to
populate the appropriate fields in an HTML form. As is often the case, our update form is identical to
the form that inserts a new record. Our update template can also delete a record if the appropriate
parameters are passed to the template by the record selection menu. Example 5-7 shows the
updateform.cfm template for populating the update form with the record information retrieved from
the database.

Example 5-7. Dynamically populating the update form

<!--- Check to see if we're dealing with a delete operation --->
<cfif (IsDefined('form.Delete') and Trim(form.Delete) eq "Delete Record")
 or (IsDefined('URL.Action') and URL.Action eq "Delete")>
 <cfquery name="DeleteRecord" datasource="ProgrammingCF">
 DELETE FROM EmployeeDirectory
 WHERE ID = #ID#
 </cfquery>
 <h2>Record Deleted Successfully</h2>

<cfelse>

<!--- Retrieve the record specified by the ID value passed into the
 template by form or url variable --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM EmployeeDirectory
 WHERE ID = #ID#
</cfquery>

<html>
<head>
 <title>Record Update Form</title>
</head>

<body>

<h2>Edit an Existing User</h2>
<form action="update.cfm" method="post">
<!--- Include the primary key value for this record so we know which
 record to update without SQL UPDATE (or cfupdate) statement in
 the next template --->
<cfoutput>
<input type="hidden" name="ID" value="#GetRecord.ID#">
</cfoutput>

<!--- Data validation --->
<input type="Hidden" name="Name_Required"
 value="Name is a required field">
<input type="Hidden" name="Title_Required"
 value="Title is a required field">
<input type="Hidden" name="Department_Required"
 value="Department is a required field">
<input type="Hidden" name="Email_Required"
 value="E-mail is a required field">
<input type="Hidden" name="PhoneExt_Required"
 value="Phone Ext. is a required field">
<input type="Hidden" name="Salary_Required"
 value="Salary is a required field">
<input type="Hidden" name="PhoneExt_Integer"
 value="Phone Ext. is a numeric field">
<input type="Hidden" name="Salary_Float"
 value="Salary is a numeric field">

<!--- Populate the form with the user's record --->
<cfoutput>
<table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="Name" value="#GetRecord.Name#"
 size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>Title:</td>
 <td><input type="text" name="Title" value="#GetRecord.Title#"
 size="20" maxlength="80"></td>
 </tr>
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>Department:</td>
 <td><input type="text" name="Department" value="#GetRecord.Department#"
 size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td><input type="text" name="Email"
 value="#GetRecord.Email#" size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>Phone Ext:</td>
 <td><input type="text" name="PhoneExt" value="#GetRecord.PhoneExt#"
 size="5" maxlength="4"></td>
 </tr>
 <tr>
 <td>Salary:</td>
 <td><input type="text" name="Salary" value="#GetRecord.Salary#"
 size="20" maxlength="12"></td>
 </tr>
</table>
</cfoutput>

<input type="submit" value="submit">
</form>

</body>
</html>
</cfif>

As you can see, this template isn't all that different from the template we used to insert new
employee profiles into our database. There are, however, a few important distinctions.

First, the template checks to see if a URL or form variable was passed to the template indicating a
record should be deleted. If so, the appropriate record is deleted using an SQL DELETE statement.

This code is included to show you how to create a template for adding, updating, and deleting records
from a single administrative interface. We'll cover deleting records later in this chapter. For now, let's
concentrate on updating an existing record.

Once we determine that we aren't dealing with a delete operation, we can proceed with the update
operation. Because we are going to update a specific record, we need a way to tell ColdFusion exactly
what record to update. This is done by specifying the primary key value for the record in a hidden
form field. The hidden form field that passes the value must have the same name as the primary key
field in the database. If the primary key field isn't specified, ColdFusion throws an error. In this case,
we specify the value using the ID form field. Another difference is that in the case of our update

form, we populate each HTML form field with data from the employee's record so that it can be
modified. In this example, all the fields in our form are text boxes. All you need to do to populate a
text box with a value from a query is include a value attribute containing the variable name from the
query in the input tag:

<input type="text" name="Name" value="#GetRecord.Name#>

It is important to note a couple of things here. First, populating form fields requires they be enclosed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in a cfoutput block. Second, because you aren't using the query attribute of the cfoutput tag, you

must scope your variables with the name of the query that retrieves the record. In this example, all
query variables are scoped with GetRecord:

<cfoutput>
#GetRecord.Name#
</cfoutput>

Figure 5-6 shows the form populated with an employee record from the database.

Figure 5-6. The populated employee update form

5.2.3 Performing the Database Update

When the user submits the form for the record that is being updated in the database, you have two
options for doing the actual update. You can use the cfquery tag and write your own SQL UPDATE
statement, or you can use the cfupdate tag to handle the update without writing a single line of

SQL. We'll use our update template (Example 5-7) to post the employee record to a template called
update.cfm. We're going to look at three different implementations of this template, in Examples
Example 5-8, Example 5-9, and Example 5-10.

5.2.3.1 Updating a record using cfquery

The cfquery tag offers the most power and flexibility when it comes to updating a database record.
The cfquery tag allows you to write your own SQL UPDATE statement, giving you full control over
how the update takes place. Example 5-8 demonstrates using the cfquery tag to update an existing

record with form-field data passed in by the template in Example 5-7. In order for the example to
work, the template in Example 5-8 must be saved as update.cfm in the same directory as the
template in Example 5-7.

Example 5-8. Using cfquery to update a database record

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Update the record specified by the ID field. Note that numeric
 values are not enclosed in single quotes in the SET clause. --->
<cfquery name="UpdateRecord" datasource="ProgrammingCF">
 UPDATE EmployeeDirectory
 SET Name = '#form.Name#',
 Title = '#form.Title#',
 Department = '#form.Department#',
 Email = '#form.Email#',
 PhoneExt = #form.PhoneExt#,
 Salary = #form.Salary#
 WHERE ID = #form.ID#
</cfquery>

<!--- Retrieve the record we just updated --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE ID = #form.ID#
</cfquery>

<html>
<head>
 <title>cfquery Update</title>
 <style type="text/css">
 th {
 background-color : #888888;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<h2>Record updated using cfquery!</h2>

<h3>Here are the record details...</h3>

<table cellpadding="3" cellspacing="0">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>

<!--- Output the record --->
<cfoutput query="GetRecord">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td>#ID#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 <td>#Salary#</td>
 </tr>
</cfoutput>
</table>

</body>
</html>

Submitting the form from Example 5-7 posts to the template in Example 5-8 and updates the record
in the database using the SQL UPDATE statement. Each field to be updated is specified as part of the
SET clause. Multiple fields are separated by a comma. Note that numeric fields don't need to be
surrounded by single quotes. The WHERE clause specifies the ID of the record we want to update.

After the record is updated, another cfquery is run to retrieve the record we just updated. Because
we already have the ID value for the record, it only takes a single query to retrieve the record. The

template finishes by outputting all the values stored in the record we just updated in a neatly
formatted HTML table. The results are can be seen in Figure 5-7.

Figure 5-7. Updating an existing record using cfquery

5.2.3.2 Updating a record using cfupdate

The cfupdate tag lets you update a record in a table without having to write an SQL UPDATE
statement. The tag looks and functions almost identically to the cfinsert tag and uses the following

basic syntax:

<cfupdate datasource="datasource_name"
 tablename="table_name"
 formfields="field_names">

The attributes for the cfupdate tag are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

datasource

The name of the data source to connect to when performing the update. Required.
tablename

The name of the table to perform the update on. Required. It should be noted that Oracle
database drivers require the table name to be in all uppercase. In addition, Sybase database
drivers use a case-sensitive table name.

formfields

A comma-delimited list of form fields to update. Optional. If no form fields are supplied,
ColdFusion attempts to update the database using all the form fields passed from the form. If
the form field names do not match the database field names, ColdFusion throws an exception.

Several additional attributes are available for use with the cfupdate tag. For a complete list, see

Appendix A.

Just as with the cfinsert tag, there are two ways to use the cfupdate tag to update a record. You

can use the tag to update values for every form field passed to the template containing the tag, or
you can supply a comma-delimited list of form fields you want to update. Regardless of the method
you use, it is important to make sure the primary key value for the record is passed to the cfupdate

statement as a hidden form field. The hidden form field that passes the value must have the same
name as the primary key field in the database. If the primary key field isn't specified, ColdFusion
throws an error.

The first method requires only a few lines of code and is shown in Example 5-9. This template
receives its input from the form in Example 5-7. In order for the example to work, the template in
Example 5-9 must be saved as update.cfm in the same directory as the template in Example 5-7.

Example 5-9. Updating a record with cfupdate

<!--- Update all of the form fields passed in the EmployeeDirectory
 table of the ProgrammingCF data source. --->
<cfupdate datasource="ProgrammingCF"
 tablename="EmployeeDirectory">

<!--- This query uses the form.ID value to lookup the full record
 we just updated. --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE ID = #form.ID#
</cfquery>

<html>
<head>
 <title>cfupdate Update</title>
 <style type="text/css">
 th {
 background-color : #888888;
 }
 td {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<h2>Record updated using cfupdate without Field Names!</h2>

<h3>Here are the record details...</h3>

<table cellpadding="3" cellspacing="0">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>

<!--- Output the record --->
<cfoutput query="GetRecord">
 <tr>
 <td>#ID#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 <td>#Salary#</td>
 </tr>
</cfoutput>
</table>

</body>
</html>

When the form in Example 5-7 posts to this template, the cfupdate tag attempts to take every form
field passed and updates the equivalent field in the EmployeeDirectory table. This method works

only when you have a corresponding database field for each form field. If, however, there are form
fields that don't have corresponding database fields, ColdFusion throws an error. Once the record has
been updated, the template uses the same code from Example 5-8 to retrieve the record we just
inserted and display it in the browser. If you look at the output from this template, you should notice
that it looks identical to that shown in Example 5-8 (minus the title, of course).

The second method for using the cfupdate tag involves passing one additional attribute that allows

you to specify which form fields should be updated in the database. This ensures that only the form
fields you want are updated. The code for this template is shown in Example 5-10. As in the previous
examples, this template receives its input from the form in Example 5-7. In order for the example to
work, the template in Example 5-10 must be saved as update.cfm in the same directory as the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

template in Example 5-7.

Example 5-10. Updating specific form fields using cfupdate

<!--- Update the specified form fields in the EmployeeDirectory
 table of the ProgrammingCF data source. --->
<cfupdate datasource="ProgrammingCF"
 tablename="EmployeeDirectory"
 formfields="Name,Title,Email">

<!--- This query uses the form.ID value to lookup the full record
 we just updated. --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE ID = #form.ID#
</cfquery>

<html>
<head>
 <title>cfupdate Update</title>
 <style type="text/css">
 th {
 background-color : #888888;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<h2>Record updated using cfupdate with Specific Field Names!</h2>

<h3>Here are the record details...</h3>

<table cellpadding="3" cellspacing="0">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>

<!--- Output the record --->
<cfoutput query="GetRecord">
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#ID#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 <td>#Salary#</td>
 </tr>
</cfoutput>
</table>

</body>
</html>

Using the form in Example 5-7 to post to this template, the cfupdate tag updates only the Name,
Title, and Email fields in the EmployeeDirectory table with the data from form.Name, form.Title,
and form.Email. Once the record has been updated, the template uses the same code from Example

5-9 to retrieve the record we just updated and display it in the browser. Notice that even though we
were able to make changes to all the fields in the update form, only the Name, Title, and Email

fields contain updated values.

5.2.4 Dynamically Populating Additional Form-Field Types

In Example 5-7, we dynamically populated several text boxes with data pulled from a query object. It
is also possible to dynamically populate other form-field types using techniques that vary from form-
field type to form-field type.

5.2.4.1 Populating text areas

Populating a text area with data from a query is a little different from populating a text box. In the
case of the text area, there is no value attribute. Instead, the query variable is placed between the

text area tags as shown in Example 5-11.

Example 5-11. Dynamically populating a text area

<cfquery name="GetName" datasource="ProgrammingCF">
 SELECT Name
 FROM EmployeeDirectory
 Where ID=1
</cfquery>

<h2>Populating a Text Area</h2>
<form>
Name:

<!--- Output the employee's name in a text area. Generally, text areas are
 used to store large blocks of text. --->
<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<textarea cols="50" rows="5" name="Department"
 wrap="virtual">#GetName.Name#</textarea>
</cfoutput>
</form>

This example queries the EmployeeDirectory table of the ProgrammingCF database and returns the
Name of the employee whose ID is 1. This value is then output inside a text area. The results are
shown in Figure 5-8. In general, text areas are used with large blocks of text. The Name column was

used here for illustrative purposes only.

Figure 5-8. Dynamically populating a text area

5.2.4.2 Populating select lists

Select lists are a bit trickier to handle than the other form-field types we have covered so far. In
order to dynamically generate a simple select list and automatically select the option that matches a
value from a database record, you need to run two queries, as shown in Example 5-12.

Example 5-12. Dynamically populating a simple select list

<!--- Retrieve a specific employee record --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT Name, Department
 FROM EmployeeDirectory
 WHERE ID=1
</cfquery>

<!--- Retrieve a unique list of departments from the Department column
 of the EmployeeDirectory using the DISTINCT operator --->
<cfquery name="GetDepartments" datasource="ProgrammingCF">
 SELECT DISTINCT Department
 FROM EmployeeDirectory
 ORDER BY Department
</cfquery>

<h2>Populating a Select List</h2>
<form>
<table>
 <tr>
 <td>Name:</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><cfoutput>#GetRecord.Name#</cfoutput></td>
 </tr>
 <tr>
 <td>Department:</td>
 <td><select name="Department">
 <!--- Dynamically generate the department list from the
 GetDepartments query. Use a cfif statement to determine if
 the current option tag is equal to the Department value
 retrieved as part of the employee record. If so, add the
 selected attribute to the option tag --->
 <cfoutput query="GetDepartments">
 <option value="#Department#"<cfif GetRecord.Department eq
 GetDepartments.Department>
 selected</cfif>>#GetDepartments.Department#</option>
 </cfoutput>
 </select></td>
 </tr>
</table>
</form>

The first query retrieves the record containing the Department value you want preselected in the
select list. In this example, we retrieve the Name and Department for the employee whose ID is 1.

The second query retrieves a list of unique department names from the database. The unique list is
obtained by using the DISTINCT operator in the query. DISTINCT is discussed in Chapter 11. Once
both queries have been run, the select list is dynamically generated using the GetDepartments
query. With each option tag generated, a check is made to see if the current Department (from the
GetDepartments query) matches the Department from the GetRecord query. If a match is made,
that option tag has a selected attribute added. The result is a select list with the option matching

the database record preselected, as shown in Figure 5-9.

Figure 5-9. Dynamically populating a select list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The technique for dynamically populating a multiple select list is a little different from the technique
we used for the simple select list. In this scenario, we want to dynamically generate a select list, but
instead of having one option selected, we want to have multiple items selected based on a record
retrieved from the database. Let's look at an example in which we want to build a prepopulated
multiple select list that contains a list of all employees in our EmployeeDirectory table. To make

things interesting, we'll preselect only those employees belonging to the IT department. Example 5-
13 shows the code.

Example 5-13. Dynamically populating a multiple select list

<!--- Retrieve a list of all employees who are in the IT department --->
<cfquery name="GetITEmployees" datasource="ProgrammingCF">
 SELECT Name
 FROM EmployeeDirectory
 WHERE Department = 'IT'
</cfquery>

<!--- Retrieve all the employee from the EmployeeDirectory table --->
<cfquery name="GetAllEmployees" datasource="ProgrammingCF">
 SELECT ID, Name
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<!-- The ValueList function is used to build a comma-delimited list of
 values from a query column --->
<cfset EmployeeList = ValueList(GetITEmployees.Name)>

<h2>Populating a Multiple Select Box</h2>
<form>
<table>
 <tr>
 <td>Department:</td>
 <td>IT</td>
 </tr>

 <!--- Generate the options for the multiple select list. If the option
 being generated matches a value from the list of IT employees,
 make that option a selected option. --->
 <tr>
 <td valign="top">Name:</td>
 <td><select name="Employees" size="10" multiple>
 <cfoutput query="GetAllEmployees">
 <option value="#GetAllEmployees.ID#" <cfif ListFind(EmployeeList,
 GetAllEmployees.Name)>selected</cfif>>#GetAllEmployees.Name#
 </cfoutput>
 </select></td>
 </tr>
</table>
</form>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, we use two queries to populate the multiple select list. The first query retrieves a list
of all employees in the IT department. The second query retrieves a list of all employees (their ID
and Name) in the database. Next, the ValueList() function is used to build a comma-delimited list
of values from the Name column of the GetITEmployees query. The list is assigned to a variable called
EmployeeList. The next section of the template dynamically generates a multiple select list using the
results of the GetAllEmployees query. With each option tag generated, the ListFind() function is
used to see if the current Name is in the EmployeeList list. If so, that option tag has a selected

attribute added. The result is a multiple select list with the options matching the database record
preselected, as shown in Figure 5-10.

Figure 5-10. Dynamically populating a multiple select list

5.2.4.3 Generating and selecting multiple checkboxes

Checkboxes are similar to multiple select lists in that they are typically used to select one or more
options from a list of choices. Dynamically generating checkboxes and automatically checking the
ones that match entries in a database record is similar to the technique we used to generate the
multiple select list. In fact, we'll use the same scenario to generate a checkbox for each employee in
the EmployeeDirectory table and to automatically place a check in the box of each employee

belonging to the IT department. The code to accomplish this is shown in Example 5-14.

Example 5-14. Generating and selecting multiple checkboxes

<!--- Retrieve a list of all employees who are in the IT department --->
<cfquery name="GetITEmployees" datasource="ProgrammingCF">
 SELECT Name
 FROM EmployeeDirectory
 WHERE Department = 'IT'
</cfquery>

<!--- Retrieve all the employee from the EmployeeDirectory table --->
<cfquery name="GetAllEmployees" datasource="ProgrammingCF">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SELECT ID, Name
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<!-- The ValueList function is used to build a comma-delimited list of
 values from a query column --->
<cfset EmployeeList = ValueList(GetITEmployees.Name)>

<h2>Populating Multiple Checkboxes</h2>
<form>
<table>
 <tr>
 <td>Department:</td>
 <td>IT</td>
 </tr>

 <!--- Generate the individual checkboxes by looping over the query
 results and creating a check box for each record. Check the
 appropriate boxes based on the cfif statement. --->
 <tr>
 <td valign="top">Name:</td>
 <td><cfloop query="GetAllEmployees">
 <cfoutput>
 <input type="Checkbox" name="Employees"
 value="#GetAllEmployees.ID#" <cfif ListFind(EmployeeList,
 GetAllEmployees.Name)>
 checked</cfif>>#GetAllEmployees.Name#

 </cfoutput>
 </cfloop></td>
 </tr>
</table>
</form>

The first section of this template is identical in form and function to the code we used for the multiple
select list example (Example 5-13). The second section of the template uses a query loop to generate
a checkbox for each employee in the GetAllEmployees query. With each checkbox generated, the
ListFind() function is used to see if the current Name is in the EmployeeList list. If so, the input
tag associated with the checkbox has a checked attribute added. The result is a list of checkboxes

with the checkboxes matching the database record checked. The results are shown in Figure 5-11.

Figure 5-11. Generating and selecting multiple checkboxes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that checkboxes are sometimes used to represent Boolean values such as Yes/No, True/False,
or On/Off. Although you can code checkboxes in this manner, this type of option is better

represented by radio buttons.

5.2.4.4 Generating and selecting radio buttons

The final type of form field we need to cover is radio buttons. As you know, radio buttons are used to
force a choice between several options. Dynamically generating radio buttons and automatically
selecting the one that matches an entry in a database record is similar to the technique we used to
generate the simple select list in Example 5-12.

Example 5-15 outputs the name of an employee from the EmployeeDirectory table and displays

radio buttons that correspond to the distinct departments in the database, with the radio button that
matches to the department in the database record selected.

Example 5-15. Dynamically generating radio buttons

<!--- Retrieve a specific employee record --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT Name, Department
 FROM EmployeeDirectory
 WHERE ID=3
</cfquery>

<!--- Retrieve a unique list of departments from the Department column of
 the EmployeeDirectory using the DISTINCT operator --->
<cfquery name="GetDepartments" datasource="ProgrammingCF">
 SELECT DISTINCT Department
 FROM EmployeeDirectory
 ORDER BY Department

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfquery>

<h2>Populating Radio Buttons</h2>
<form>
<table>
 <tr>
 <td>Name:</td>
 <td><cfoutput>#GetRecord.Name#</cfoutput></td>
 </tr>
 <tr>
 <td valign="top">Department:</td>
 <td><cfloop query="GetDepartments">
 <cfoutput>
 <input type="Radio" name="Department" value="#Department#" <cfif
 GetRecord.Department eq GetDepartments.Department>checked</cfif>
 >#Department#

 </cfoutput>
 </cfloop></td>
 </tr>
</table>
</form>

In this example, two queries generate a radio button for each department and select the one
corresponding to the department in the employee record. The first query retrieves the Name and
Department associated with the record that has an ID of 3. The second query retrieves a list of
unique department names from the database. The unique list is obtained by using the DISTINCT

operator in the query.

The second part of the template uses a query loop to generate a radio button for each department
returned by the GetDepartments query. With each radio button generated, a check is made to see if
the current Department (from the GetDepartments query) matches the Department from the
GetRecord query. If a match is made, the input tag associated with the radio button has a
selected attribute added. The result is a list of radio buttons, one for each department, with the
radio button matching the Department from the database record selected, as is shown in Figure 5-

12.

Figure 5-12. Generating and selecting radio buttons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 Deleting Records

The cfquery tag can be used to delete records from a data source using the SQL DELETE clause. You
can use DELETE to delete a single record or multiple records, depending on how you write the code.

Once a record has been deleted, it can't be recovered, so be extremely careful when writing code
that deletes records, as it is quite easy to accidentally delete the contents of an entire table. Because
of this, I recommend testing your code against a test database or a temporary table before deploying
it in a live application.

5.3.1 Deleting a Single Record

Deleting a single record is as simple as it gets. The SQL for the delete looks something like this:

DELETE FROM tablename
WHERE primary_key = #primary_key#

We simply instruct the database to delete the record from the specified table where the primary key
matches the one we supply. If there is such a record in the database, it is deleted. In this case, the
primary key is a numeric value called ID. Primary keys don't have to be numeric values, but they do

have to be unique.

If you look back at Example 5-7, you'll recall that it supports the ability to delete a record instead of
populating the update form, if the appropriate parameter is passed from the record selection
template. The code used to delete the record is quite simple:

<cfquery name="DeleteRecord" datasource="ProgrammingCF">
 DELETE FROM EmployeeDirectory
 WHERE ID = #ID#

To better illustrate the technique of deleting a record, let's look at a single template, deleteform.cfm,
that allows a user to select a record from a database and then delete it. Example 5-16 shows the
code.

Example 5-16. Deleting a single record from a database

<!--- Check to see if the form is calling itself to delete a single record.
 Note that by NOT scoping the ID variable in the WHERE clause, we
 Allow the template to accept both form and URL variables. --->
<cfif IsDefined('Delete')>
 <cfquery name="DeleteRecord" datasource="ProgrammingCF">
 DELETE FROM EmployeeDirectory
 WHERE ID = #ID#
 </cfquery>
</cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Query the database for all employee names and their associated Ids
 (the primary key value --->
<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT ID, Name
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Deleting a Single Record</title>
</head>

<body>

<div align="Center">
<h3>Please select the employee you wish to delete</h3>

<form action="deleteform.cfm" method="post">
<table border="0">
 <tr>
 <td>
 <select name="ID" size="5">
 <cfoutput query="GetEmployees">
 <option value="#ID#">#Name#</option>
 </cfoutput>
 </select>
 </td>
 </tr>
 <tr>
 <td align="Center">
 <input type="submit" name="Delete" value="Delete">
 </td>
 </tr>
</table>
</form>
</div>

</body>
</html>

This template first checks to see if a variable called Delete has been passed in. This is done using the
IsDefined() function. If Delete does exist, a cfquery statement deletes the record whose primary
key value (ID) was also passed as a form or URL variable. By not scoping the ID variable in the
WHERE clause, we allow the template to accept both form and URL variables. Because ID is a numeric
value, no quotes are needed around the variable name in the WHERE clause.

The next part of the template performs a SELECT query to return all the employee names as well as
their associated IDs from the database. An HTML form containing a select box and a submit button is
then constructed. The query object then generates an option tag for each record returned by the
query. The value attribute of each option tag is dynamically populated with the ID of the
corresponding record. The actual value displayed is determined by the Name field. The results are an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML form with a select box containing a list of every employee from the database. A user can select
a single employee from the select box and click on the submit button. The template then posts to
itself. If an employee is selected, that record is deleted from the database. The form is then
regenerated.

5.3.2 Deleting Multiple Records

The DELETE clause can also be used to delete more than one record at a time. There are two basic

techniques for implementing this. The first technique allows you to delete a group of records having
one or more common values. For example, to delete the records for all employees who work in the
marketing department, use the following:

<cfquery name="DeleteMarketing" datasource="ProgrammingCF">
 DELETE FROM EmployeeDirectory
 WHERE Department = 'Marketing'
</cfquery>

Here, we specify that all records with Marketing as the value for Department should be deleted.

The second technique involves passing a comma-delimited list of primary key values in the SQL
statement. The syntax is similar to what we have already covered in Example 5-16. The main
difference is that instead of using a WHERE clause like this:

WHERE ID = #ID#

we introduce a new operator, IN:

WHERE ID IN (#ID#)

In this case, the value of #ID# is either a single value or a comma-delimited list of values. The IN
operator tells the database that ID must be IN (as opposed to equal to a single ID) a list of passed
IDs. We can get a better idea of how this works by looking at an example. If you remember from

Example 5-16, we created an HTML form that allowed a user to select a single employee from the
database and subsequently deleted that employee's record. We can modify that example to allow a
user to select more than one employee at a time. Example 5-17 shows the multipledelete.cfm
template that implements this functionality.

Example 5-17. Deleting multiple records from a database

<!--- Check to see if the form is calling itself to delete record(s) --->
<cfif IsDefined('form.Delete')>
 <cfquery name="DeleteRecord" datasource="ProgrammingCF">
 DELETE FROM EmployeeDirectory
 WHERE ID IN (#form.ID#)
 </cfquery>
</cfif>

<!--- Query the database for all employee names and their associated Ids
 (the primary key value) --->
<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT ID, Name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Deleting Multiple Records</title>
</head>

<body>

<div align="Center">
<h3>Please select the employee(s) you wish to delete</h3>

<form action="multipledelete.cfm" method="post">
<table border="0">
 <tr>
 <td>
 <select name="ID" size="5" multiple>
 <cfoutput query="GetEmployees">
 <option value="#ID#">#Name#</option>
 </cfoutput>
 </select>
 </td>
 </tr>
 <tr>
 <td align="Center">
 <input type="submit" name="Delete" value="Delete">
 </td>
 </tr>
</table>
</form>
</div>

</body>
</html>

There are only two areas where Example 5-16 differs from Example 5-17. The first is in the cfquery
statement (the first one) that deletes the records selected in the form. Notice the WHERE clause is

changed to read:

WHERE ID IN (#form.ID#)

This is what allows us to delete either a single record or multiple records passed in from the select
box.

The second difference is in the code that generates the select box. If you remember, Example 5-16
allowed only a single selection. We overcome this in Example 5-17 by adding the multiple attribute
to the select tag. This small change allows us to select multiple values within the select box. When
the form is submitted, the values (in this case IDs) of the items selected are passed as a comma-
delimited list. This list is stored as the form variable form.ID.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.3 Asking for Confirmation Before Deleting

As you have seen, it is quite easy to delete records from a database table using a web-based
frontend. This means that it is also easy to accidentally delete records with the click of a button.
Because of this, you should consider including a confirmation mechanism in your application that
warns users that the action they are about to take will permanently delete records from the
database. This mechanism allows users to cancel the delete operation if they so desire.

You can easily make this functionality server-side and include it in the template that performs the
SQL DELETE. However, this requires the use of several templates and actions on the part of users as

they step screen by screen through the confirmation process. A better method is to use a single line
of JavaScript in the same template as the HTML form you use to select the record(s) you want to
delete. To include this functionality, change the input statement that creates the Delete button in

either Example 5-16 or Example 5-17 to use the following code:

<input type="submit" name="Delete" value="Delete"
 onClick="return confirm('Are you sure you want to delete the
specified record(s)?')">

Including a JavaScript onClick event handler similar to the one we just described causes a

JavaScript confirmation box to pop up whenever the Delete button is pressed. This confirmation box
displays the message "Are you sure you want to delete the specified record(s)?" along with an OK
and a Cancel button. If the OK button is clicked, the form submits, and the records are deleted. If on
the other hand, the Cancel button is clicked, the form isn't submitted, and the user is free to select
another record.

5.3.4 A Note About Referential Integrity and Cascading Deletes

Many databases have the option to enforce what's known as referential integrity between related
tables in a database. This option keeps you from adding/updating/deleting data in one table that
could cause an inconsistency in a related table. For example, if you have one table for employees and
a related table that stores related data for each employee, deleting a record in the employee table
could orphan one or more records in the related table. If your database is set up to enforce
referential integrity for the relationship between those two tables, it will not allow the delete to be
made unless both tables are deleted from.

An additional option, known as a cascading delete, is available in most databases. A cascading delete
automatically deletes any related records from a foreign table when a related record is deleted from
the primary table. For more information on these concepts, consult the documentation for your
particular database.

You may also want to consider "deactivating" records as opposed to deleting them, in case you
should ever need to recover the information. One way to deactivate a record is to add an additional
field to your primary table (usually a Boolean/Bit field), using that field to indicate a record is
inactive. That way, you can query your database as needed, selecting only records that haven't been
deactivated.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Complex Datatypes
Besides the simple datatypes covered in Chapter 2, ColdFusion supports several complex datatypes
you can use to increase the complexity and functionality of your applications. These datatypes include
lists, arrays, structures, query objects, and XML document objects. With the exception of XML
document objects (these are covered later in Chapter 23), this chapter discusses each of these
complex datatypes and provides numerous examples illustrating how they can further enhance your
applications. One tool you may find especially helpful in dealing with complex datatypes is the cfdump
tag. cfdump was added in ColdFusion 5.0 and enhanced in ColdFusion MX. The tag allows you to

"dump" the contents of virtually any ColdFusion variable or function to the browser in a nicely
formatted table. For more information on cfdump, see Appendix A.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 Lists

A list is a special type of string that contains delimited elements. For example, "a,b,c,d,e,f,g" is a list
where "a", "b", "c", "d", "e", "f", and "g" are considered the list elements while the comma (,) is
considered the delimiter. Lists are commonly used to store related items in a single variable. For
example, you might use a list to store all the primary key values for a group of database records you
want to delete.

It should be noted that ColdFusion treats list elements containing null values as though they don't
exist. For example, the list "1,2,,4" contains only three list elements (as far as ColdFusion is
concerned) even though there is a null list element ",,". The concept of a null list element shouldn't
be confused with a blank list element as in "1,2, ,4", which contains four list elements, the space
occupying list element three being counted. To further illustrate the point, consider Example 6-1,
which creates three lists using cfset tags and then uses the ListLen() function to evaluate the

number of elements in each list.

Example 6-1. Creating lists and evaluating their length

<cfset List1 = "1,2,3,4">
<cfset List2 = "1,2,,4">
<cfset List3 = "1,2, ,4">

<cfoutput>
List1 (#List1#) contains #ListLen(List1)# elements.

List2 (#List2#) contains #ListLen(List2)# elements.

List3 (#List3#) contains #ListLen(List3)# elements.
</cfoutput>

Executing the template in Example 6-1 results in the output shown in Figure 6-1.

Figure 6-1. Outputting the number of elements in various lists

In the previous example, each element in the list was delimited by a comma. Although the comma is
considered the default delimiter for lists in ColdFusion, it is possible to use any character or
combination of characters as the delimiter. This is done by specifying the delimiter as an optional
parameter in the appropriate list function:

<cfset List1 = "a;b;c;d">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset List2 = "a|b|c|d">
<cfset List3 = "a+|+b+|+c+|+d">

<cfoutput>
List1 (#List1#) contains #ListLen(List1, ";")# elements.

List2 (#List2#) contains #ListLen(List2, "|")# elements.

List3 (#List3#) contains #ListLen(List3, "+|")# elements.
</cfoutput>

In this example, the ListLen() function outputs the number of elements contained in each list.

Note that each list uses a delimiter other than the comma. Because of this, it is necessary to specify
the delimiter in the ListLen() function. If you omit the delimiter in any of these examples, the
ListLen() function returns 1 for the length of the list because no commas are found.

It's also possible to use more than one delimiter within a list:

<cfset List1 = "a,b;c,d;">
<cfset List2 = "a,b,c|d">

<cfoutput>
List1 (#List1#) contains #ListLen(List1, ",;")# elements.

List2 (#List2#) contains #ListLen(List2, ",|")# elements.
</cfoutput>

In this case, each list has two different delimiters. In order to be recognized by the ListLen()

function, each delimiter has to be specified. Note that the delimiters themselves aren't separated by
a delimiter.

6.1.1 Looping over a List

List loops iterate over the elements of a list, allowing you to manipulate each element individually:

<cfloop index="index_name"

 list="list_items"

 delimiters="delimiter">
 HTML and CFML...
</cfloop>

The index attribute of the loop specifies a variable name to hold the value corresponding to the
current position in the list. list specifies a delimited list of values or variable name (including pound
signs) over which to loop. The delimiters attribute specifies the delimiter that separates the

elements of the list. The default is the comma. Example 6-2 uses a list loop to output each element of
a list on a new line.

Example 6-2. Looping over a list using a list loop

<cfset MyList = "a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z">
<cfloop index="i"
 list="#MyList#"
 delimiters=",">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
#i#

</cfoutput>
</cfloop>

6.1.2 Manipulating Lists

A number of functions are available in ColdFusion to manipulate list elements. We've already looked
at the ListLen() function. Other commonly used list functions enable you to manipulate lists in a

number of ways.

To append an item to the end of an existing list, you can use the ListAppend() function:

<cfset MyList = "1,2,3,4">
<cfset MyList = ListAppend(MyList, 5)>

You can also prepend an item to the beginning of a list using the ListPrepend() function:

<cfset MyList = "2,3,4,5">
<cfset MyList = ListPrepend(MyList, 1)>

To insert an item into a specific position within a list, use the ListInsertAt() function:

<cfset MyList = "Monday,Tuesday,Thursday,Friday">
<cfset MyList = ListInsertAt(MyList, 3, "Wednesday")>

Note that in ColdFusion, 1 is the first position in a list.

If you want to return the first item in a list, use the ListFirst() function:

<cfset MyList = "1,2,3,4">
<cfoutput>
#ListFirst(MyList)#
</cfoutput>

Likewise, you can use the ListLast() function to return the last item in a list:

<cfset MyList = "1,2,3,4">
<cfoutput>
#ListLast(MyList)#
</cfoutput>

You can output a list item occupying a specific position within a list using the ListGetAt() function:

<cfset MyList = "1,2,3,4">
<cfoutput>
#ListGetAt(MyList, 3)#
</cfoutput>

For a complete listing as well as examples showing the usage of all list functions, see Appendix B. If
there is an operation you need to perform on a list that isn't covered by one of ColdFusion's built in
functions, chances are someone has already written a user defined function (UDF) that does the job.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Common Function Library Project at http://www.cflib.org contains a string library with dozens of
freely available list functions you can download and use in your applications.

[Team LiB]

http://www.cflib.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 Arrays

An array is an object that stores indexed values. Each value stored in an array is referred to as an
element of the array. Each element has an integer assigned to it that marks its position within the
array. This number is referred to as the element's index. Arrays elements can store any ColdFusion
datatype including additional arrays.

As previously discussed, ColdFusion supports one-dimensional (think of this as a single column of
data or a list), two-dimensional (think of this as a spreadsheet with rows and columns), and three-
dimensional (think of this as a cube of data) arrays. Additional dimensions can be created
dynamically by nesting multidimensional arrays (creating an array of arrays). ColdFusion arrays differ
slightly from traditional arrays found in other programming languages. Whereas traditional arrays are
fixed in size, ColdFusion arrays are dynamic. This means that a ColdFusion array can expand or
contract as elements are added and removed from the array.

Arrays can store groups of related data such as the contents of a visitor's shopping cart, student test
scores, or historic stock prices. Because array elements can store any ColdFusion datatype, they are
ideal for storing complex objects such as an array of query result sets or an array of structures.

6.2.1 Initializing an Array

Initializing an array in ColdFusion is accomplished using the ArrayNew() function. This function

takes a single argument that determines the number of dimensions for the array (1, 2, or 3). The
following code initializes a one-dimensional array called Grades:

<cfset Grades = ArrayNew(1)>

If you wanted to create a two-dimensional array called Grades, use the following:

<cfset Grades = ArrayNew(2)>

Similarly, a three-dimensional array called Grades is created like this:

<cfset Grades = ArrayNew(3)>

To create an array with more than three dimensions, you must nest multidimensional arrays:

<cfset MyArray = ArrayNew(3)>
<cfset NestedArray = ArrayNew(3)>
<cfset MyArray[1][1][1] = NestedArray>

You can also initialize an array using the cfparam tag, as in the following:

<cfparam name="Grades" type="Array" value="#ArrayNew(1)#>

Note that you must surround the ArrayNew() function with pound signs. This tells ColdFusion to
evaluate the ArrayNew() function as opposed to treating it as literal text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2.2 Adding Data to an Array

Once you have initialized an array, you can populate it with data. Because ColdFusion arrays are
dynamic, there is no need to predefine the size of the array. Data is added to an array using the
cfset tag to specify the index position within the array where the data should be stored. The index
position within each dimension is referenced with a set of brackets ([]). Unlike in many other

programming languages, in ColdFusion, array indexes begin with 1. Consider the following example
that populates elements in a one-, two-, and three-dimensional array:

<!--- This populates an element in a one-dimensional array --->
<cfset MyArray[1] = "cat">

<!--- This populates an element in a two-dimensional array --->
<cfset MyArray[1][1] = "dog">

<!--- This populates an element in a three-dimensional array --->
<cfset MyArray[1][1][1] = "fish">

In a one-dimensional array, the index position refers to the element's linear position within the array
(if you think of a one-dimensional array as a list of elements). In a two-dimensional array, the index
positions refer to the element's x-y position (if you think of a two-dimensional array as a grid of data
with an x and y axis). Because a three-dimensional array stores data in a three-dimensional cube
configuration, the index position of any element is referred to by its x-y-z position within the cube.

To get a better idea of how data is stored in an array, consider Example 6-3, in which a one-
dimensional array called Grades is initialized, populated with values, then output by looping over

each element in the array. A visual representation of the array is also provided by dumping the array
with the cfdump tag.

Example 6-3. Grades for a single student stored in a one-dimensional
array

<cfset Grades = ArrayNew(1)>

<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<cfloop index="Element" from="1" to="#ArrayLen(Grades)#">
 <cfoutput>
 Grade #Element#: #Grades[Element]#

 </cfoutput>
</cfloop>

<cfdump var="#Grades#">

In this example, an index loop is used to loop over the elements in the Grades array. This is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accomplished by setting the to attribute of the cfloop tag to the total number of elements in the
array. This number is derived using the ArrayLen() function. Executing this template results in the

output shown in Figure 6-2.

Figure 6-2. Outputting the contents of the one-dimensional Grades array

It's just as easy to create a two-dimensional array. The next example creates a two-dimensional
array called Grades. This array also holds student Grades, but instead of holding the Grades for a

single student, the array holds multiple Grades for multiple students. Each student is represented by
the first dimension of the array while each corresponding grade is represented by the second
dimension. The code in Example 6-4 initializes the Grades array, populates it with data, and then

uses a nested loop technique to output the contents to the browser, along with a visual
representation of the array using the cfdump tag.

Example 6-4. Grades for more than one student stored in a two-
dimensional array

<!--- Create a two dimensional array of student Grades. Each student
 (represented by the first dimension) has Grades for multiple tests
 (represented by the second dimension). --->
<cfset Grades = ArrayNew(2)>

<cfset Grades[1][1] = 95>
<cfset Grades[1][2] = 93>
<cfset Grades[1][3] = 87>
<cfset Grades[2][1] = 100>
<cfset Grades[2][2] = 74>
<cfset Grades[2][3] = 86>
<cfset Grades[3][1] = 90>
<cfset Grades[3][2] = 94>
<cfset Grades[3][3] = 96>

<!--- This looping technique utilizes an outer and an inner loop (designated
 o and i respectively) for looping through each element in each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dimension of the array --->
<cfloop index="o" from="1" to="#ArrayLen(Grades)#">
 <cfloop index="i" from="1" to="#ArrayLen(Grades[o])#">
 <cfoutput>
 Student #o#, Grade #i#: #Grades[o][i]#

 </cfoutput>
 </cfloop>
</cfloop>

<cfdump var="#Grades#">

Executing this template results in the output shown in Figure 6-3.

Figure 6-3. Outputting the contents of the two-dimensional Grades array

6.2.3 Manipulating Array Elements

A number of functions are available in ColdFusion to manipulate arrays. We've already covered the
ArrayNew() and ArrayLen() functions as well as how to create array elements. There are other

common array functions worth mentioning.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To append an element to the end of an existing array, use the ArrayAppend() function:

<cfset ArrayAppend(Grades, "66")>

You may have noticed that the cfset tag in the previous example doesn't assign a value to a

variable:

<cfset ArrayAppend(Grades, "66")>

This is a special circumstance in which the cfset tag executes a function without assigning the

results to a variable. There are only a handful of functions that allow you to execute them in this
manner. These functions are shown in Table 6-1.

Table 6-1. Functions not requiring variable assignment with cfset

ArrayAppend() CF_SetDataSourcePassword() SetProfileString()

ArrayClear() Cfusion_Disable_DBConnections() SetVariable()

ArrayDeleteAt() Cfusion_SetODBCIni() StructAppend()

ArrayInsertAt() CFusion_Settings_Refresh() StructClear()

ArrayPrepend() CFusion_DBConnections_Flush() StructDelete()

ArrayResize() QueryAddColumn() StructGet()

ArraySet() QueryAddRow() StructInsert()

ArraySort() QuerySetCell() StructUpdate()

ArraySwap() ReleaseComObject() SetVariable()

CF_SetDataSourceUsername() SetLocale()

You can just as easily use a variable on the left side of the expression:

<cfset temp = ArrayAppend(Grades, "66")>

Whichever method you use is a matter of personal choice and style. There is no noticeable
performance gain (other than having to write less code) by omitting the variable assignment.

If you want to prepend a value to the beginning on an array, use ArrayPrepend():

<cfset ArrayPrepend(Grades, "66")>

You can also insert an element anywhere within an array using the ArrayInsertAt() function. For
example, to insert the value 66 as the third element in an array named Grades, use the following

syntax:

<cfset ArrayInsertAt(Grades, 66, 3)>

Deleting an element is just as simple and is done using the ArrayDeleteAt() function. For example,
to delete the third element in an array named Grades, use:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset ArrayDeleteAt(Grades, 3)>

Because ColdFusion arrays are dynamic, adding or deleting an element from the middle of an index
results in a shift in the index position of other elements in the array.

You can remove all data from an array using ArrayClear():

<cfset ArrayClear(Grades)>

If you need to determine whether an array contains any data, use the ArrayIsEmpty() function:

<cfif ArrayIsEmpty(Grades)>
 There are no Grades to process
</cfelse>
Processing Grades...
</cfif>

Sorting an array is done using the ArraySort() function. You can specify a sort type (Numeric,
Text, or TextNoCase) as well as a sort order (the default, Asc, or Desc):

<cfset SortedGrades = ArraySort(Grades, 'Numeric', 'Asc')>

If you are dealing with numeric elements in an array, you can find the average value using the
ArrayAvg() function:

<cfset TheAverage = ArrayAvg(Scores)>

You can just as easily determine the minimum value or maximum value using ArrayMin() or
ArrayMax():

<cfset MinValue = ArrayMin(Scores)>
<cfset MaxValue = ArrayMax(Scores)>

If you want to add the numeric values in an array, use the ArraySum() function:

<cfset TheSum = ArraySum(Scores)>

For a complete listing as well as examples showing the usage of each array function, see Appendix B.
Many additional array functions are available as UDFs from the Common Function Library Project at
http://www.cflib.org.

[Team LiB]

http://www.cflib.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 Structures

A structure is a ColdFusion datatype that allows you to store and manipulate key/value pairs.
Structures are similar to one-dimensional arrays, except each element is referenced via an
alphanumeric "key" (string) as opposed to a numeric index within the array. Structures are also
commonly known as associative arrays or hashes. Structures offer an advantage over arrays in
certain situations, by allowing you to reference groups of related information by key as opposed to by
numeric index. Structures are useful for storing sets of related data in a single variable. For example,
you can easily store an employee's contact information in a structure called Employee. That structure
can contain keys such as Name, Address, City, State, and Zip. Additionally, a number of ColdFusion

variable scopes are accessible as structures. For example, you can access all form variables available
to a page by referencing a structure named form. A similar structure is also available for most other

variable scopes.

6.3.1 Creating a Structure

Structures are created using the StructNew() function. Unlike with arrays, you don't have to pass
any information to this function. To create a new structure called Employee, you use the following

code:

<cfset Employee = StructNew()>

Just like arrays, structures can also be created using the cfparam tag:

<cfparam name="Employee" type="Struct" default="#StructNew()#">

Be sure to wrap the StructNew() function with hash marks to avoid having ColdFusion treat the

function as literal text.

In ColdFusion MX, you can also create a structure by using a compound variable name separated by
a period. For example, the following code creates a structure named Employee, adds a key called
Name, and populates the key with a value:

<cfset Employee.Name="Pere Money">

In previous versions of ColdFusion, this code would simply create a variable in the local variables
scope named Employee.Name. In ColdFusion MX, compound variable names separated by a period

automatically create the appropriate substructures should they not already exist. This can be used to
nest structures any number of levels:

<cfset Company.Department.Marketing="Pat Irving">

<cfdump var="#Company#">

Doing a cfdump of the Company structure displays a visual representation of the nested data. If you

are upgrading to ColdFusion MX from a previous version, you should run the code compatibility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

analyzer included in the ColdFusion Administrator to find any existing code that might pose a
compatibility problem due to this change in functionality.

6.3.2 Populating a Structure with Data

Once you have created a structure with the StructNew() function, it is ready to be populated with

key/value pairs. Structures are a unique datatype in that you can reference structure elements using
three styles of notation:

Function notation

Elements within structures can be indirectly referenced using structure functions as opposed to
directly using one of the other methods of notation:

<cfset StructInsert(Employee, "Name", "Pere Money")>

Object notation

Structure values are referenced as object.property where object is the name of the

structure, and property is the name of the key. All references using object notation are case

insensitive.
<cfset Employee.Name = "Pere Money">

Associative array notation

You can use associative array notation to refer to structure elements much as you refer to
elements within an array. The difference is that in the case of associative arrays, the indexes
are strings as opposed to numbers:

<cfset Employee["Name"] = "Pere Money">

Example 6-5 uses function notation to create a structure called Employee and populate it with
key/value pairs. Each key/value pair is added using the StructInsert() function.

Example 6-5. Populating a structure using function notation

<cfset Employee=StructNew()>
<cfset StructInsert(Employee, "Name", "Pere Money")>
<cfset StructInsert(Employee, "Title", "President")>
<cfset StructInsert(Employee, "Department", "Executive Management")>
<cfset StructInsert(Employee, "Email", "pmoney@example.com")>
<cfset StructInsert(Employee, "PhoneExt", "1234")>

<cfset MyKeyList = StructKeyList(Employee)>

<table>
<tr>
 <th>Key</th><th>Value</th>
</tr>

<cfloop index="Key" list="#MyKeyList#">
 <cfoutput>
 <tr>
 <td>#Key#</td><td>#StructFind(Employee,Key)#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 </cfoutput>
</cfloop>

</table>

<cfdump var="#Employee#">

In this example, once the structure has been populated, the StructKeyList() function generates a
delimited list of all keys in the Employee structure. A list loop is then used to iterate over each key

in the list. A table containing each key/value pair is dynamically generated by obtaining the key from
the list and the value from the structure. The structure is also dumped using cfdump so you can get a

better idea of how a structure is put together. The output from this template is shown in Figure 6-4.

Figure 6-4. Outputting the contents of a structure using a list loop and
the StructFind() function

Example 6-6 shows how to populate the same Employee structure with object notation.

Example 6-6. Populating a structure using object notation

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<table>
 <tr>
 <th>Key</th><th>Value</th>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfoutput>
 <tr><td>Name</td><td>#Employee.Name#</td></tr>
 <tr><td>Title</td><td>#Employee.Title#</td></tr>
 <tr><td>Department</td><td>#Employee.Department#</td></tr>
 <tr><td>Email</td><td>#Employee.Email#</td></tr>
 <tr><td>PhoneExt</td><td>#Employee.PhoneExt#</td></tr>
 </cfoutput>
</table>

Once the Employee structure has been populated, the contents of the structure are output by

referencing each element individually using object notation. Executing the example results in the
same output (minus the cfdump) as shown in Figure 6-4.

Working with the same Employee structure from our previous examples, we can use associative array

notation to populate the structure with key/value pairs as in Example 6-7.

Example 6-7. Populating a structure using associative array notation

<cfset Employee = StructNew()>
<cfset Employee["Name"] = "Pere Money">
<cfset Employee["Title"] = "President">
<cfset Employee["Department"] = "Executive Management">
<cfset Employee["Email"] = "pmoney@example.com">
<cfset Employee["PhoneExt"] = "1234">

<cfset MyKeyArray = StructKeyArray(Employee)>

<table>
<tr>
 <th>Key</th><th>Value</th>
</tr>
<cfloop index="position" from="1" to="#ArrayLen(MyKeyArray)#">
 <cfoutput>
 <tr>
 <td>#MyKeyArray[position]#</td>
 <td>#Employee[MyKeyArray[position]]#</td>
 </tr>
 </cfoutput>
</cfloop>
</table>

We use a third technique here to output the contents of the Employee structure. The
StructKeyArray() function is used to create an array called MyKeyArray() that contains all the
keys in the structure. An index loop is then used to iterate over each of the keys in the array. A table

containing each key/value pair is dynamically generated by obtaining the key from the array and the
value from the structure. The results, minus the cfdump, are the same as those shown in Figure 6-4.

6.3.3 Using a Collection Loop to Loop over the Contents of a Structure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection loops can iterate over a COM collection object or a ColdFusion structure. To better
understand how collection loops allow you to loop over structures, let's look at the general syntax
that codes a collection loop:

<cfloop collection="COM_object_or_structure"
 item="collection_or_key">
 HTML and CFML...
</cfloop>

The collection attribute specifies the name of a registered COM object or a ColdFusion structure
object. item specifies the name of the variable that holds each item in the COM collection or structure

object that is referenced by the loop. Example 6-8 uses a collection loop to output each key/value
pair contained in a structure object called Employee.

Example 6-8. Using a collection loop to loop over a structure

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<table>
<tr>
 <th>Key</th><th>Value</th>
</tr>

<cfloop collection="#Employee#" item="Key">
 <cfoutput>
 <tr>
 <td>#Key#</td><td>#Employee[Key]#</td>
 </tr>
 </cfoutput>
</cfloop>
</table>

Here, a collection loop iterates over each of the keys in the structure. The value for each key is

output using the associative array notation we discussed earlier in the section. This is the preferred
method for referencing unknown structure key/value pairs and should be used instead of the
StructFind() function as it is better performing. The output from this template is the same as
shown in Figure 6-4 (minus the cfdump).

6.3.4 Creating an Array of Structures

If you look at all the structure examples we've created so far, you'll probably come to the conclusion
that while structures appear to be a great way to store and reference data, their ability to store
multiple sets of similar data seems limited. For example, while you can store all the information about
a particular employee in a structure, you can't store information about additional employees in the
same structure. You can create a separate structure for each employee, but that could get unwieldy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to manage, especially if you need to pass the data to another template. The solution is to create an
array of structures to hold the information about each employee. Example 6-9 shows the code to do
just this.

Example 6-9. Creating an array of structures to hold employee
information

<!--- Create an array called Employees --->
<cfset Employees = ArrayNew(1)>

<!--- Create a structure as the first array element --->
<cfset Employees[1] = StructNew()>
<cfset Employees[1].Name = "Pere Money">
<cfset Employees[1].Title = "President">
<cfset Employees[1].Email = "pmoney@example.com">

<!--- Create a structure as the second array element --->
<cfset Employees[2] = StructNew()>
<cfset Employees[2].Name = "Pat Irving">
<cfset Employees[2].Title = "Vice President">
<cfset Employees[2].Email = "pirving@example.com">

<!--- Create a structure as the third array element --->
<cfset Employees[3] = StructNew()>
<cfset Employees[3].Name = "Ray Roy">
<cfset Employees[3].Title = "Instructor">
<cfset Employees[3].Email = "rroy@example.com">

<h2>Employees in an Array of Structures</h2>
<table>
<tr>
 <th>Name</th><th>Title</th><th>Email</th>
</tr>

<cfloop index="i" from="1" to="#ArrayLen(Employees)#">
 <cfoutput>
 <tr>
 <td>#Employees[i].Name#</td>
 <td>#Employees[i].Title#</td>
 <td>#Employees[i].Email#</td>
 </tr>
 </cfoutput>
</cfloop>
</table>

<cfdump var="#Employees#">

The template begins by initializing a one-dimensional array called Employees. Next, cfset tags are

used to assign values to each index in the array. Instead of assigning string values, a new structure
is created for each employee. The structure is then populated with the employee's name, title, and
email address. Once the array of structures has been populated, an HTML table containing the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information from each structure is constructed on the fly by looping over each array element.
Additionally, the cfdump tag is used to output a visual representation of the array of structures.

Executing the template results in the output shown in Figure 6-5.

Figure 6-5. Outputting employee information from an array of structures

6.3.5 Manipulating Structures

A number of functions are available in ColdFusion to manipulate structures. We've already seen the
StructInsert(), StructKeyList(), StructKeyArray(), and StructFind() and functions.

There are a few others worth mentioning here.

Use the StructClear() function to remove all data from a structure named Employee:

<cfset StructClear(Employee)>

To delete a specific key named Name (and its associated value) from a structure named Employee,
use StructDelete():

<cfset StructDelete(Employee, "Name")>

You can obtain a count of the number of key/value pairs in a structure using the StructCount()

function:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset TheCount = StructCount(Employee)>

If you want to determine whether a given structure contains data, use StructIsEmpty():

<cfif StructIsEmpty(Employee)>
 The Employee structure doesn't contain any data.
<cfelse>
 The Employee structure contains data.
</cfif>

You can determine whether a particular key exists within a structure using the StructKeyExists()

function:

<cfif StructKeyExists(Employee, Name)>
 <cfoutput>
 The employee's name is #Name#
 </cfoutput>
<cfelse>
 There is no name for this employee.
</cfif>

You can make a copy of a structure in a number of ways. The easiest way is through simple
assignment:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">

<cfset EmployeeCopy = Employee>

<cfdump var="#EmployeeCopy#">

There is one thing to be aware of, however, when it comes to copying structures. Structures (as well
as query objects) are copied by reference instead of by value. Thus, any changes made to the copy
of the structure result in changes to the original. The converse is also true: changes to the original
result in changes to the copy. To get around this, you can use the StructCopy() function:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">

<cfset EmployeeCopy = StructCopy(Employee)>

<cfdump var="#EmployeeCopy#">

This technique creates a copy of the structure by value as opposed to by reference. Here, changes to
the copy do not result in changes to the original structure, with one exception. For nested structures
or other complex values containing nested structures, the StructCopy() function should not be
used. Instead, use Duplicate(). In fact, it's my preference always to use Duplicate() instead of
StructCopy(), because Duplicate() always creates a copy by value regardless of the type or

complexity of the variable, and it can be used with any ColdFusion datatype with the exception of
COM, CORBA, and Java objects. Here's an example that uses both StructCopy() and Duplicate(
) to copy a nested structure:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">

<cfset EmployeeCopy = Employee>

<cfdump var="#EmployeeCopy#">

<!--- Create a nested structure --->
<cfset Company=StructNew()>
<cfset Company.Employee=StructNew()>
<cfset Company.Employee.Name="Pere Money">
<cfset Company.Employee.Title="President">
<cfset Company.Employee.Department="Executive Management">
<cfset Company.Employee.Email="pmoney@example.com">
<cfset Company.Employee.PhoneExt="1234">

<!--- Create a copy and a duplicate of the structure --->
<cfset CompanyCopy = StructCopy(Company)>
<cfset CompanyDuplicate = Duplicate(Company)>

<cfoutput>
Name: #Company.Employee.Name#

Original Title: #Company.Employee.Title#

<cfset Company.Employee.Title = "CEO">
Copied Title: #CompanyCopy.Employee.Title#

Duplicate Title: #CompanyDuplicate.Employee.Title#
</cfoutput>

Notice in this example that setting Company.Employee.Title="CEO" after the Company structure is
copied (with StructCopy()) results in a change to the copied structure, but not to the one copied
using Duplicate().

For a complete listing as well as examples showing the usage of each structure function, see
Appendix B. Additional user-defined structure functions can be downloaded from the Common
Function Library Project at http://www.cflib.org.

[Team LiB]

http://www.cflib.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.4 Query Objects

Query objects are special ColdFusion data structures that hold record sets. Query objects are similar
in structure to two-dimensional arrays and are made up of rows and columns (like a spreadsheet).
There are three ways to create a query object:

Using the cfquery or cfstoredproc tag to retrieve a record set from a data source. We haven't
covered the cfstoredproc tag yet; we'll get to it in Chapter 11. For now, just be aware that the
tag can return a record set just like the cfquery tag.

Certain CFML tags such as cfftp and cfhttp return information stored in a query object.

Query objects can be manually created using QueryNew() and other associated query

manipulation functions.

By this point, you should be quite familiar with the first method, in which query objects are
automatically returned by the cfquery tag. The second method has to do with certain CFML tags

returning information stored as query objects. These tags are covered in detail later in the book.
We're going to focus on the third method in this section, creating and manipulating query objects
using QueryNew() and several other CFML functions. Creating a query in this way is useful when you

want to make application-generated data available as a query object. This technique is especially
useful when used within custom tags and components to return a query result set. Custom tags are
covered in Chapter 21, components in Chapter 22. The query manipulation functions can also add
additional data to an existing query.

To create a query object, you use the QueryNew() function. QueryNew() takes a single

argument-a comma-delimited list of column names for the query object. If you want to create a
query object called Products with column headers for the product name, color, price, and quantity

on hand, you can use the following code:

<cfset Products = QueryNew("ProductName, Color, Price, Qty")>

Once you have created a query object, the next step is to populate it with data. This is done using
various query-manipulation functions. Example 6-10 shows how to use the most popular query
manipulation functions to manually create a query object, populate it with data, and output the
contents to the browser.

Example 6-10. Manually creating a query object and outputting to the
browser

<!--- Create a new query object called Products and add four column
 headers --->
<cfset Products = QueryNew("ProductName, Color, Price, Qty")>

<!--- Add three blank rows of data --->
<cfset NewRows = QueryAddRow(Products, 3)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Populate each blank row with data for each column --->
<cfset QuerySetCell(Products, "ProductName", "Widget", 1)>
<cfset QuerySetCell(Products, "Color", "Silver", 1)>
<cfset QuerySetCell(Products, "Price", "19.99", 1)>
<cfset QuerySetCell(Products, "Qty", "46", 1)>

<cfset QuerySetCell(Products, "ProductName", "Thingy", 2)>
<cfset QuerySetCell(Products, "Color", "Red", 2)>
<cfset QuerySetCell(Products, "Price", "34.99", 2)>
<cfset QuerySetCell(Products, "Qty", "12", 2)>

<cfset QuerySetCell(Products, "ProductName", "Sprocket", 3)>
<cfset QuerySetCell(Products, "Color", "Blue", 3)>
<cfset QuerySetCell(Products, "Price", "1.50", 3)>
<cfset QuerySetCell(Products, "Qty", "460", 3)>

<!--- Create a one-dimensional array called ShippingArray to hold shipping
 prices to be appended to the query object --->
<cfset ShippingArray = ArrayNew(1)>
<cfset ShippingArray[1] = "1.99">
<cfset ShippingArray[2] = "3.48">
<cfset ShippingArray[3] = "5.00">

<!--- Create a new column called Shipping and populate it with the data from
 the ShippingArray array --->
<cfset MyNewColumn = QueryAddColumn(Products, "Shipping", ShippingArray)>

<!--- Create a table and output the contents of the query object --->
<table>
<tr>
 <th>Product</th>
 <th>Color</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Shipping</th>
</tr>
<cfoutput query="Products">
<tr>
 <td>#ProductName#</td>
 <td>#Color#</td>
 <td>#Price#</td>
 <td>#Qty#</td>
 <td>#DollarFormat(Shipping)#</td>
</tr>
</cfoutput>
</table>

<cfdump var="#Products#">

In this example, the QueryNew() function is used to create an empty query object named Products
and give it four column headers, ProductName, Color, Price, and Qty. Three empty rows are then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

added to the query object using QueryAddRow(), which takes the name of a query and an optional

number of rows. If the number is omitted, one blank row is added.

Next, each row is populated with data using the QuerySetCell() function to populate each

individual cell in the given row with data. This function takes the name of a query, a column name, a
value, and an optional row number. The cell specified by the column name and row number is set to
the given value. If no row number is specified, the last row in the query is used.

After this, a one-dimensional array called ShippingArray is created and populated with three prices.
The QueryAddColumn() function is used to create a new column called Shipping and populate it
with the contents of the ShippingArray array.

Finally, the cfoutput tag is used to output the contents of the query object in a nicely formatted
HTML table. The cfdump tag is used to help us visualize the query object's structure. You can see the

results of the outputted query in Figure 6-6.

Figure 6-6. Outputting the contents of a manually created query

6.4.1 Manipulating Query Objects

Although we've already covered the main functions available for creating, appending to, and updating
query objects, you should be aware of several additional techniques for working with query objects.

You can find out the total number of records in a query object by referencing
QueryName.RecordCount:

<cfoutput>
There are #Products.RecordCount# products in the Products query.
</cfoutput>

To obtain a list of all the column names in the Products query object, use QueryName.ColumnList:

<cfoutput>
The Products query contains these columns: #Products.ColumnList#
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can reference the current row in a query object using QueryName.CurrentRow:

<cfloop query="Products">
 <cfoutput>Row #Products.CurrentRow#: #ProductName#</cfoutput>

</cfloop>

For query objects returned by the cfquery tag, you can get the time taken to execute the query
using cfquery.ExecutionTime:

<cfoutput>
It took #cfquery.ExecutionTime# milliseconds to execute the query.
</cfoutput>

Note that this does not work for query objects manually created with the QueryNew() function, or
with query objects returned by other tags such as cfpop and cfhttp. Attempting to reference
cfquery.ExecutionTime for a query object created in any of these ways causes ColdFusion to throw
an exception. If your query object is generated by calling a stored procedure via cfstoredproc, you
can reference the execution time by using cfstoredproc.ExecutionTime:

<cfoutput>
It took #cfstoredproc.ExecutionTime# milliseconds to execute the stored procedure.
</cfoutput>

For more information on working with stored procedures, see Chapter 11.

Just as with structures, you can copy a query object by reference using simple assignment:

<cfset Products = QueryNew("ProductName, Color")>
<cfset NewRows = QueryAddRow(Products, 1)>
<cfset QuerySetCell(Products, "ProductName", "Widget", 1)>
<cfset QuerySetCell(Products, "Color", "Silver", 1)>

<cfset Products2 = Products>

To make a true copy (a copy by value) of a query object, use Duplicate():

<cfset Products2 = Duplicate(Products)>

ColdFusion treats query columns like one-dimensional arrays. This means you can use array syntax
to access the data in any query cell using array syntax. Consider the following query object:

<cfset Products = QueryNew("ProductName, Color, Price, Qty")>
<cfset NewRows = QueryAddRow(Products, 3)>

<cfset QuerySetCell(Products, "ProductName", "Widget", 1)>
<cfset QuerySetCell(Products, "Color", "Silver", 1)>
<cfset QuerySetCell(Products, "Price", "19.99", 1)>
<cfset QuerySetCell(Products, "Qty", "46", 1)>

<cfset QuerySetCell(Products, "ProductName", "Thingy", 2)>
<cfset QuerySetCell(Products, "Color", "Red", 2)>
<cfset QuerySetCell(Products, "Price", "34.99", 2)>
<cfset QuerySetCell(Products, "Qty", "12", 2)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset QuerySetCell(Products, "ProductName", "Sprocket", 3)>
<cfset QuerySetCell(Products, "Color", "Blue", 3)>
<cfset QuerySetCell(Products, "Price", "1.50", 3)>
<cfset QuerySetCell(Products, "Qty", "460", 3)>

Using array syntax, you can easily refer to any query cell using the syntax
queryName.columnName[row] or queryName['columnName'][row]. Thus, if you want to get the
ProductName in row 3 of the query, you can do so like this:

<cfoutput>
#Products.ProductName[3]#

-OR-

#Products['ProductName'][3]#
</cfoutput>

You should be aware that you cannot, however, use array syntax to output all columns for a specific
row. Specifying Products.ProductName returns the first product name in the Products query.
Specifying Products['ProductName'] causes ColdFusion to throw an exception.

In ColdFusion MX, you can now store any ColdFusion datatype in a query cell, including complex
types such as arrays and structures. Say, for example, you have a query object that contains
columns for product name, color, price, and quantity. If your products come in multiple colors, you
could easily store the colors as an array within the Colors column:

<cfset Colors = ArrayNew(1)>
<cfset Colors[1]="Red">
<cfset Colors[2]="Silver">
<cfset Colors[3]="Blue">

<cfset Products = QueryNew("ProductName, Color, Price, Qty")>
<cfset NewRows = QueryAddRow(Products, 3)>

<cfset QuerySetCell(Products, "ProductName", "Widget", 1)>
<cfset QuerySetCell(Products, "Color", Colors, 1)>
<cfset QuerySetCell(Products, "Price", "19.99", 1)>
<cfset QuerySetCell(Products, "Qty", "46", 1)>

<cfset QuerySetCell(Products, "ProductName", "Thingy", 2)>
<cfset QuerySetCell(Products, "Color", Colors, 2)>
<cfset QuerySetCell(Products, "Price", "34.99", 2)>
<cfset QuerySetCell(Products, "Qty", "12", 2)>

<cfset QuerySetCell(Products, "ProductName", "Sprocket", 3)>
<cfset QuerySetCell(Products, "Color", Colors, 3)>
<cfset QuerySetCell(Products, "Price", "1.50", 3)>
<cfset QuerySetCell(Products, "Qty", "460", 3)>

<cfdump var="#Products#">

You can get a visual representation of the data in the query object by dumping it using the cfdump

tag. The results are shown in Figure 6-7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-7. Storing an array within a query cell

You should be aware, however, that queries with cells containing complex datatypes cannot be used
in memory queries with ColdFusion's query of query functionality. Query of query is covered in
Chapter 11.

For more information on all of ColdFusion's query-manipulation functions, including the ones shown
here, see Appendix B. Additional user-defined query functions can be downloaded from the Common
Function Library Project at http://www.cflib.org.

[Team LiB]

http://www.cflib.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Maintaining State
By design, the Web is a stateless environment. This means that each request from a web browser to
a web server is independent of every other request. While this might make for efficient use of
bandwidth, it is the bane of web developers, who must be able to keep track of users as they
navigate their way through an application. Without the ability to maintain state, applications have no
way of knowing what information belongs to which user. To borrow a metaphor, this means that a
shopping cart can't remember what items it contains, let alone which user is pushing the cart!

ColdFusion handles the stateless nature of the Web via a mechanism known as the Web Application
Framework. The Web Application Framework enables you to build and manage virtually any type of
application, from a simple employee directory to amazingly complex business-to-business systems
and everything in between. Specifically, the Web Application Framework was devised as a means for
maintaining state, setting application constants, handling errors, and managing security.

In this chapter, we'll discuss the state maintenance features of the Web Application Framework.
Chapter 8 covers the security features, and Chapter 9 explores exception and error handling.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 Setting Up the Web Application Framework

The first question you might be asking is, "Why do I need an application framework in the first place?
" The answer is simple: the Web Application Framework allows you to group your CFML templates
logically into a cohesive application or group of applications capable of maintaining state, utilizing
constants, handling errors and exceptions, and enforcing security. Sound complicated? It really isn't.
As usual, ColdFusion abstracts the low-level programming that would normally be required to
accomplish all of the tasks I just mentioned by providing two templates that serve as the foundation
for the Web Application Framework. These templates, named Application.cfm and
OnRequestEnd.cfm, are responsible for setting up and controlling every aspect of the Web Application
Framework.

7.1.1 The Application.cfm File

In order to use the Web Application Framework, you have to create a template named
Application.cfm, a special filename reserved by ColdFusion for use in the Web Application Framework.
The initial Application.cfm template (there can be more than one) should be placed in the root
directory of your ColdFusion application. Note that the filename is spelled with a capital "A". This is
especially important if you are running ColdFusion for Unix or Linux, where filenames are case
sensitive.

When a CFML template is requested, ColdFusion checks to see whether there is an Application.cfm
file in the same directory as the requested template. If so, the application template is included at the
beginning of the requested template. In other words, if ColdFusion finds an Application.cfm file, it
essentially uses cfinclude at the beginning of the page request to include this file. If no

Application.cfm file is found, ColdFusion traverses up the directory tree looking for an Application.cfm
file until it finds one.

This system allows you to specify a single Application.cfm file for all your ColdFusion code regardless
of where the code resides in your application's directory structure, as shown in Figure 7-1.

Figure 7-1. A single Application.cfm file placed in the application's root
directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It also means that you can use different Application.cfm files to control different segments of your
application within the directory structure, as shown in Figure 7-2, because ColdFusion uses the first
Application.cfm file it finds. (A child Application.cfm file does not inherit from an Application.cfm in a
parent directory, although it is possible for one Application.cfm to include another via cfinclude.)

Regardless of where you place your Application.cfm file or how many you have in your application's
directory structure, only one Application.cfm file is processed per page request. Thus, if your
application template includes additional templates with cfinclude, ColdFusion still performs just one

search for an Application.cfm file as part of the initial request; it doesn't search for additional
Application.cfm files for each included file.

Figure 7-2. Each directory has its own Application.cfm file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that you understand how to create an Application.cfm file and where to save it, let's look at
what it consists of. As I mentioned earlier, the Application.cfm template is used for a number of tasks
within the Web Application Framework, including:

Maintaining state by providing a means for creating application, client, and session variables

Setting application constants, such as data-source names, source directories, and style
elements

Handling errors that occur within your application

Providing security services such as user authentication and entitlements

At the most basic level, the Application.cfm template should contain a cfapplication tag. The
cfapplication tag names the application and sets state management options. Here's the syntax for
the cfapplication tag:

<cfapplication name="application_name"
 clientmanagement="Yes|No"

 clientstorage="client_storage_type"
 loginstorage="cookie|session"
 sessionmanagement="Yes|No"

 sessiontimeout="#CreateTimeSpan(days, hours, minutes, seconds)#"

 applicationtimeout="#CreateTimeSpan(days, hours, minutes, seconds)#"
 setclientcookies="Yes|No"
 setdomaincookies="Yes|No">

The name attribute specifies the name of the ColdFusion application. It is only required when using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application or session variables. We'll be discussing the rest of the attributes of the cfapplication

tag in more detail as we proceed through this chapter. Example 7-1 shows what a typical
Application.cfm file looks like.

Example 7-1. A typical Application.cfm file

<cfsilent>
<!--- Set the app name, turn on session management, enable cookies, and set
 application and session variable timeouts of 30 minutes each --->
<cfapplication name="MyApplication" sessionmanagement="Yes"
 setclientcookies="Yes" sessiontimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 applicationtimeout="#CreateTimeSpan(0, 0, 30, 0)#">

<!--- Check to see if the application has been initialized. If not, set the
 necessary application variables and initialize the app --->
<cflock timeout="30" throwontimeout="No" type="ReadOnly" scope="Application">
 <cfset IsInitialized = IsDefined('application.Initialized')>
</cflock>

<cfif not IsInitialized>
 <cflock timeout="30" throwontimeout="No" type="Exclusive" scope="Application">
 <cfif not IsDefined('application.Initialized')>
 <!--- Determine whether server is beta or production and set application
 variables appropriately --->
 <cfif CGI.server_name is "beta.example.com">
 <cfset application.TheDatasource = "TestDSN">
 <cfset application.AdminEmail = "dev@example.com">
 <cfset application.UploadDirectory = "D:\uploads\">
 <cfelse>
 <cfset application.TheDatasource = "ProdDSN">
 <cfset application.AdminEmail = "webmaster@example.com">
 <cfset application.UploadDirectory = "E:\uploads\">
 </cfif>
 <!--- Set the application.initialized variable to true so that this block
 of code does not execute every time the Application.cfm file is
 called --->
 <cfset application.Initialized = true>
 </cfif>
 </cflock>
</cfif>
</cfsilent>

7.1.2 The OnRequestEnd.cfm File

The OnRequestEnd.cfm template is executed after every template request. The main purpose for this
template is to allow you to include a common footer at the bottom of each requested page.

The OnRequestEnd.cfm template must be located in the same directory as the Application.cfm file
used by ColdFusion. You may not have an OnRequestEnd.cfm template without a corresponding
Application.cfm. It is also important to note that the "O", "R", and "E" in the filename must be
capitalized. This is especially true on Linux- and Unix-based ColdFusion servers where filenames are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

case sensitive. If a ColdFusion template throws an error during execution, the OnRequestEnd.cfm
template doesn't execute. Likewise, if a cfabort or cfexit tag is encountered in the calling

template, the OnRequestEnd.cfm template isn't executed.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Using Shared Scope Variables

As I mentioned in the introduction, the Web is a stateless environment. ColdFusion addresses this
problem by providing five variable scopes you can use to maintain state within your application:
application, client, cookie, session, and server. These are known as shared variable scopes because
the variables you set within them can exist from template to template, in spite of the stateless nature
of the Web. This allows you to build applications that can share data across multiple templates
without having to pass the values via form fields or URL variables.

Here's an overview of the types of shared scope variables you can use in your ColdFusion
applications:

Application

Application variables define application-wide settings for your application, such as data-source
names and other constants. Application variables are stored in the server's RAM and are most
often defined in the Application.cfm template. Application variables are available to all users
accessing the named application and are often referred to as global variables. Application
variables must always be referenced using the application prefix, as in

application.variable_name. By default, a single predefined application variable is available:
application.ApplicationName

application.ApplicationName returns the name of the application as defined in the name attribute
of the cfapplication tag.

Client

Client variables store values associated with a particular user across multiple sessions. An
application might use a client variable to remember things such as the last time a user visited a
site or their font size/color preferences. By default, client variables are stored in the system
registry on Windows servers or in a text file on Solaris, Linux, and HP-UX servers, but they can
also be stored in a cookie or a database. Client variables are often used in conjunction with
database storage for clustered ColdFusion applications. When creating client variables, the
variable name must always be referenced using the client prefix, as in

client.variable_name. This is optional when reading client variables. In addition to the client

variables you create in an application, there are several read-only client variables that
ColdFusion creates automatically:

client.CFID
client.CFToken
client.HitCount
client.LastVisit
client.TimeCreated
client.URLToken

Cookie

Cookie variables hold the values of HTTP cookies retrieved from a user's web browser. Cookies
are a unique type of shared scope variable that are stored on the client machine and sent to
the ColdFusion server each time a page is requested. By default, ColdFusion uses cookies to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

store the CFID and CFToken values associated with client and session variable management.

Additional uses for cookies typically include storing a unique identifier (such as a user ID or
UUID) for a particular user that is used by each page request to determine what content to
deliver to the user.

Session

Session variables are shared scope variables that store information for a specific user session.
Session variables are held in the server's memory and exist for a finite amount of time (as
specified in the Application.cfm template or in the ColdFusion Administrator). Each session is
unique to a user and can be referenced across all ColdFusion templates in a given application.
Session variables are often used for things like shopping carts and user authentication systems.
Session variables must be specifically set and must be referenced as session.variable_name.

By default, the following predefined session variables are available:
session.CFID
session.CFToken
session.SessionID
session.URLToken

Server

Server variables, as their name implies, store data associated with the server on which
ColdFusion is running. Server variables are stored in the server's RAM and are available to all
ColdFusion applications and users. Additionally, server variables exist until the ColdFusion
Application Server is stopped. Server variables are often used in multiplatform ColdFusion
applications where the application behaves differently depending on what platform the code is
running on. You can create your own server variables using cfset or cfparam, or you can

reference the following predefined ones:
server.ColdFusion.Appserver (MX Only)
server.ColdFusion.ProductName
server.ColdFusion.ProductVersion
server.ColdFusion.ProductLevel
server.ColdFusion.RootDir (MX Only)
server.ColdFusion.SerialNumber
server.ColdFusion.SupportedLocales
server.ColdFusion.Expiration
server.OS.AdditionalInformation
server.OS.Arch (MX Only)
server.OS.BuildNumber
server.OS.Name
server.OS.Version

Server variables must always be referenced using the server prefix, as in server.variable_name.

Because server variables exist until the ColdFusion server is stopped, you should try to limit the
number of server variables you create, as the memory consumption required might negatively affect
performance.

7.2.1 Locking

Before we can discuss the details of the different kinds of shared scope variables in ColdFusion, we
need to spend a little time talking about a concept known as locking. Because ColdFusion is a
multithreaded application server, it is possible for multiple threads to attempt to access the same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable at the same time. For application, session, and server variables, this can be a problem. In
versions of ColdFusion prior to MX, this could lead to server instability and crashes due to memory
collisions. In ColdFusion MX, the underlying Java architecture for managing shared scopes is thread
safe. This means you no longer have to worry about memory collisions when two threads attempt to
access the same shared scope variable at the same time. You do, however, have to worry about a
situation known as a race condition.

A race condition occurs when two or more threads try to access the same data at relatively the same
time. This can result in unexpected behavior, as the actual timing of each read/write may not happen
in the desired order. A common example of this is two threads that try to access the same file at the
same time. If thread A tries to write to the file at the same time that thread B is trying to read from
it, there is no way of knowing whether thread B is reading the old data, the new data, or a corrupted
version of the data. This same concept can be applied to shared scope variables as well. It's easy to
imagine a situation in which the value stored in a session, application, or server variable could be
misrepresented if a race condition occurred.

Fortunately, ColdFusion's locking mechanism can prevent race conditions. When I talk about locking,
what I'm really referring to is ColdFusion's ability to manage concurrent access to specific chunks of
code. Locking can be broken down into two types, exclusive and read-only. Exclusive locking means
that ColdFusion single-threads access to a particular chunk of code; only one thread at a time is
allowed to access code that has been exclusively locked. Any other threads that attempt to access an
exclusively locked block of code are queued until the initial request completes. Exclusive locks should
be used when writing to application, session, and server variables in order to prevent race conditions.
They should also be used when writing to nonthread-safe objects or when using file-manipulation
tags such as cffile, cfindex, and cfcollection. Because exclusive locks single-thread concurrent

requests, they have a negative impact on performance. For this reason, it is important to use them
sparingly.

The other type of lock you can use is a read-only lock. When you place a read-only lock around a
particular piece of code, ColdFusion doesn't automatically single-thread access to that code. Instead,
it prevents an exclusive lock from being placed on the code while it is being read from. In other
words, if you have a read-only lock placed around a chunk of code that reads a shared scope
variable, multiple threads can read the variable's value, but a concurrent request to write to the
variable isn't processed until the read operations complete. Conversely, if an exclusive lock is already
in effect, a read-only lock waits until the exclusive lock is released before proceeding. Because of this,
read-only locks don't generally result in degraded performance. Read-only locks should be used any
time you read data from a shared scope variable or perform a file-based operation in which the
potential exists for concurrent write access by another thread. For clarity and consistency, all
examples in this book use locking when dealing with application, session, and server variables.

Now that you understand the why of locking, let's discuss the how. ColdFusion allows you to deal with
locking via the cflock tag. The cflock tag provides a programmatic means or protecting access to
shared scope variables as well as other blocks of code. cflock should be used when reading and
writing application, session, and server variables within your ColdFusion applications. cflock can also

be used to lock access to non-thread-safe objects (such as CFX tags, covered in Chapter 21, and
COM objects, covered in Chapter 27) and to file-manipulation operations (cffile, cfdirectory,
cfcollection, and cfindex) that could result in multiple threads attempting to access an already

open file.

The cflock tag uses different attribute combinations depending on the context it is used in. The tag

usage and syntax can be divided into three categories based on these combinations: locking shared
scope variables at the scope level, locking shared scope variables using named locks, and locking

http://lib.ommolketab.ir
http://lib.ommolketab.ir

access to blocks of code (such as file and object access) using named locks.

7.2.1.1 Locking shared scope variables at the scope level

The most common use for the cflock tag is for locking access to shared persistent scope variables

(application, session, and server variables). As we already discussed, you should lock access to all
reads and writes of these types of variables. The following example demonstrates one way to lock
application, session, or server variables using scope-level locking:

<cflock scope="Session" type="Exclusive" timeout="30" throwontimeout="Yes">
 <cfset session.Username="pmoney">
 <cfset session.AccessLevel=5>
</cflock>

<cflock scope="Session" type="ReadOnly" timeout="30" throwontimeout="Yes">
 <cfoutput>
 Username: #session.Username#

 Access Level: #session.AccessLevel#
 </cfoutput>
</cflock>

The first thing you'll notice is that the example uses two sets of cflock tags. We'll get to the reason
for this in just a moment. For now, look at the first cflock tag used. The scope attribute references
the scope of the variable you are attempting to lock access to. Possible values are Application,
Server, and Session. In this case, we are locking access to a session variable, so we set scope to
Session.

The next attribute, type, specifies the type of lock to employ. Possible entries are ReadOnly or
Exclusive. ReadOnly allows more than one read request to access the block of code within the
cflock tag at a time. This option should be used when reading application, session, and server
variables. This is the faster of the two options. Exclusive allows only one request at a time to access
the block of code within the cflock tag. This option should be used when writing data to persistent
variables, as is the case with the first cflock tag in our example.

The timeout attribute specifies the time in seconds that ColdFusion should wait when attempting to
obtain an exclusive lock before timing out. It is a required attribute. throwontimeout indicates how
ColdFusion should behave in the event that a cflock request times out. If set to Yes and a timeout
occurs, ColdFusion throws an error that can be caught with cftry/cfcatch (which are discussed in
more detail in Chapter 9). If No, the template continues execution after skipping the code within the
cflock tag. The throwontimeout attribute is optional and defaults to Yes.

7.2.1.2 Locking shared scope variable access using named locks

Using scope-level locking to lock access to shared scope variables is an easy way to ensure access to
shared scope variables. This convenience does come with a performance cost, though. When you use
a shared scope lock, you tell ColdFusion to use a single lock for all scope-locked code that accesses
the specified scope. For session variables, this means that access is locked for a particular user's
session (not all sessions). For application variables, access is locked for the entire named application.
Using a scoped lock for server variables effectively locks access for the entire server. An exclusive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lock to an entire scope means that no other threads can access that scope until the exclusive lock is
released. This can negatively affect performance, especially under load, as multiple threads have to
queue while waiting for the exclusive lock to be released.

A better solution is to use named locks to lock access to shared scope variables. Named locks give
you finer control over how and when code is locked. It offers better overall performance than scoped
locks, but it comes at the cost of convenience. When you use named locks, you must make sure you
use the same lock name for all code that accesses a particular variable. To illustrate this, we can
rewrite the code we used in our scope-level locking example to use a named lock instead:

<cflock name="AccessLevel" type="Exclusive" timeout="30" throwontimeout="Yes">
 <cfset session.Username="pmoney">
 <cfset session.AccessLevel=5>
</cflock>

<cflock name="AccessLevel" type="ReadOnly" timeout="30" throwontimeout="Yes">
 <cfoutput>
 Username: #session.Username#

 Access Level: #session.AccessLevel#
 </cfoutput>
</cflock>

As you can see, we used the same lock name for both read and write access to the
session.Username and session.AccessLevel variables. We must lock access to these variables

using the same lock name throughout our application.

7.2.1.3 Locking access to nonthread-safe objects and file operations

Besides locking access to shared scope variables, the cflock tag can also be used to lock access to
nonthread-safe objects and file-manipulation operations such as cffile, cfcollection, and
cfindex. In each of these instances, the name attribute should specify a name for the lock. All locks

for code accessing the same object or file should have the same name in order to be effective. Failure
to use the same lock name opens the possibility for data corruption as locks to the same variable,
object, or file without the same name aren't able to synchronize.

In the case of nonthread-safe objects, locking is important to guard against potential data corruption
resulting from concurrent access. Since these objects aren't designed to handle concurrent access
from multiple threads, all access to them should be exclusively locked. For example, to lock access to
a nonthread-safe CFX tag called cfx_mytag, use the following code:

<cflock name="cfx_mytag_Lock" type="Exclusive" timeout="10" throwontimeout="Yes">
 <cfx_mytag SomeAttribute="Some value">
</cflock>

File-manipulation operations should be locked to prevent multiple threads from concurrently trying to
read/write to the same file because of the possibility of data corruption. If there is a possibility that a
particular file can be written to by multiple threads concurrently, you need to place read locks around
all code that reads the file and exclusive locks on all operations that write to the file. You should be
sure to keep lock naming (both read-only and exclusive) consistent across your applications. The
most common file-manipulation operations that require locking are cffile, cfdirectory,
cfcollection, and cfindex. Additionally, you may want to lock calls to cfhttp and cfftp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

depending on how you use these tags. Locking examples for each tag are given in the chapters
dealing with the specific tags.

7.2.1.4 Additional locking considerations

Now that we've talked about the basics of locking in ColdFusion, let's turn our attention to a few
scenarios that developers inevitably run into. The first scenario involves a situation where you need
to both read and write to a shared scope variable in a block of code. Let's say we have a situation in
which we need to evaluate whether or not an application variable called application.Initialized

exists. If the variable doesn't exist, two application variables are written to. For example:

<cfif not IsDefined(application.Initialized')>
 <cfset application.TheDatasource = "MyDatasource">
 <cfset application.DefaultDir = "c:\temp">
</cfif>

Based on what we discussed earlier, it is obvious that you'll need to place a read-only lock on the
code that evaluates application.Initialized and an exclusive lock around the code that writes to

the two other application variables. One way to do this is to place a single exclusive lock around the
entire operation:

<cflock name="Globals_Lock" type="Exclusive" timeout="30" throwontimeout="No">
<cfif not IsDefined('application.Initialized')>
 <cfset application.TheDatasource = "MyDatasource">
 <cfset application.DefaultDir = "c:\temp">
</cfif>
</cflock>

Using an exclusive lock forces ColdFusion to single-thread access to this particular piece of code each
time it is requested. Normally, you won't experience very much of a performance hit by single
threading such a basic operation. However, in the case of a more complex operation, such as a long
running query, you run a greater risk of queued requests timing out while waiting to obtain an
exclusive lock. To get around this problem, you can use another technique that involves making a
local copy of the shared scope variable in the request scope, thus allowing you to avoid the excessive
use of read locks:

<cflock name="Globals_Lock" type="Readonly" timeout="30">
 <cfset request.Initialized = IsDefined('application.Initialized')>
</cflock>

<cfif not request.Initialized>
 <cflock name="Globals_Lock" type="Exclusive" timeout="30">
 <cfif not IsDefined('application.Initialized')>
 <cfset application.TheDatasource = "MyDatasource">
 <cfset application.DefaultDir = "c:\temp">
 <cfset application.Initialized = true>
 </cfif>
 </cflock>
</cfif>

Another situation where you can use this technique is with code that appears to need nested locks in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

order to lock differently scoped variables, such as:

<cfquery name="GetRecord" datasource="#application.dsn#"
 username="#application.dbusername#"
 password="#application.dbpassword#">
 SELECT * FROM MyTable WHERE Name = '#session.Name#'
</cfquery>

As you can see, this example presents a bit of a challenge. Because the query uses both application
and session variables, you can't place a single scope-level lock on the entire operation. The solution
seems to call for nested locks, as follows:

<cflock scope="Session" type="Readonly" timeout="10">
 <cflock scope="Application" type="Readonly" timeout="10">
 <cfquery name="GetRecord" datasource="#application.dsn#"
 username="#application.dbusername#"
 password="#application.dbpassword#">
 SELECT * FROM MyTable WHERE Name = '#session.Name#'
 </cfquery>
 </cflock>
</cflock>

While this solution does indeed work, it isn't recommended, for a number of reasons. First, you really
don't want to place a lock around an operation such as a query, as the time it takes to complete the
query can be rather long compared to other typically locked operations, such as variable reads and
writes. Second, nesting locks can lead to a problem known as a deadlock, where no request can
access a locked piece of code, resulting in a timeout. Deadlocks occur when you have inconsistencies
in how nested locks are implemented. As a rule, it is recommended you always follow this sequence
when nesting locks:

Lock the session scope.1.

Lock the application scope.2.

Lock the server scope.3.

Strict adherence to these guidelines helps ensure you don't unintentionally create a potential
deadlock in your application.

The preferred way to solve the problem from the previous example is to copy both the application
and the session variables to the request scope, eliminating both the need to place a lock around the
query operation and the need for nested locks:

<cflock name="DSN_Lock" timeout="30" throwontimeout="No" type="Readonly">
 <cfset request.dsn = application.dsn>
 <cfset request.dbUsername = application.dbusername>
 <cfset request.dbPassword = application.dbpassword>
</cflock>

<cflock name="DSN_Lock" timeout="30" throwontimeout="No" type="Readonly">
 <cfset request.Name = session.Name>
</cflock>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfquery name="GetRecord" datasource="#request.dsn#"
 username="#request.dbusername#" password="#request.dbpassword#">
 SELECT * FROM MyTable WHERE Name = '#request.Name#'
</cfquery>

An even simpler solution here is simply to use the request scope for all of your application's
constants. You can easily set the request variables in your Application.cfm template. Even though
they are set each time a page is requested, the overhead is minimal, and it may be worth not having
to mess with locks and scope copying.

There is one exception to these techniques you need to be aware of. If you want to copy a structure
to a different variable scope such as the request scope, you can't do it using the cfset tag alone.

This is because structures aren't really copied to the new scope. Instead, a pointer is created in the
new scope that points to the variable in the old scope. Because of this, any time you reference the
variable in the new scope, you are actually referencing the original variable. This means you can't
simply move a variable containing a structure to the request scope to avoid having to lock access to
that variable.

In order to copy a structure without creating a pointer to it, you need to use the Duplicate()
function. Consider a structure named Grades that is stored as a session variable. If you attempt to
assign session.Grades to the request scope using the cfset tag, you end up with a pointer to the

variable in the session scope:

<cfset request.Grades = session.Grades>

Instead, to create a true copy of the Grades structure, you need to use the Duplicate() function:

<cflock name="Grades_Lock" type="ReadOnly" timeout="10">
 <cfset request.Grades = Duplicate(session.Grades)>
</cflock>

Copying a structure using the Duplicate() function ensures you have a true copy of the structure,

not a pointer.

One final scenario worth mentioning is known as write once, read many. This is common when
dealing with shared scope variables that you write to once, but read from many times. The writing
usually takes place in an Application.cfm template when the variables are first assigned values. After
that, they are not updated again. They are, however, frequently read from in other application
templates. In this scenario, you only need to lock the write to the variables with an exclusive lock,
but you do not need to lock any reads from the variables. This scenario is most common when
dealing with application variables.

7.2.2 Application Variables

You can think of application variables as global variables within a ColdFusion application, because
they are available to all templates within an application without regard to user sessions. Application
variables typically define application-wide settings such as default directories and data-source names.
Any ColdFusion datatype may be assigned to an application variable. Application variables are most
often set in the Application.cfm file. Like session and server variables, application variables exist in
the server's RAM and have a set timeout period. This timeout period can be set using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applicationtimeout attribute of the cfapplication tag. The following example shows how to set

application variables within the Application.cfm file:

<cfsilent>
<cfapplication name="MyApplication"
 applicationtimeout="#CreateTimeSpan(0, 2, 0, 0)#">

<cflock scope="Application" type="Readonly" timeout="30">
 <cfset request.Initialized = IsDefined('application.Initialized')>
</cflock>

<cfif not request.Initialized>
 <cflock scope="Application" type="Exclusive" timeout="30">
 <cfif not IsDefined('application.Initialized')>
 <cfset application.TheDatasource = "MyDatasource">
 <cfset application.AdminEmail = "webmaster@mydomain.com">
 <cfset application.BGColor = "##FFFFCC">
 <cfset application.Initialized = true>
 </cfif>
 </cflock>
</cfif>
</cfsilent>

In this example, the cfsilent tag suppresses any output that might be generated by the tags within

the Application.cfm file. This is because ColdFusion has a tendency to generate unnecessary
whitespace in the output returned to the browser, resulting in pages that take longer to download.
Suppressing the whitespace results in smaller files that, in turn, translate into faster downloads.

The cfapplication tag simply sets the application name and a timeout for any application variables

used in the application. In this case, we set the timeout for application variables to two hours. This is
done using the CreateTimeSpan() function. CreateTimeSpan() allows us to specify a date/time
object that can be added to and subtracted from other date/time objects. The CreateTimeSpan()

function creates the date/time object from a comma-delimited list of four values: days, hours,

minutes, and seconds. Next, we test for the existence of a variable called
application.Initialized and store the result (either true or false) in a request scope variable
called request.Initialized. This is done to make locking the code easier. The next block of code
starts with a cfif statement that checks to see if an application variable named
request.Initialized is false. If it is, the code within the cfif tags is executed. (You'll see the

importance of this in just a second.) If not, the block of code is skipped.

If request.Initialized is false, four application variables are set using the cfset tag. Before

these variables can be set, however, write access must first be locked. This is accomplished using the
cflock tag. The scope attribute is set to Application since we want to lock access while we set
application variables. Because we are writing values to application variables, we set the type
attribute to Exclusive. This ensures that no one else can access these application variables while we
assign them values. The timeout attribute is required and specifies the time in seconds that

ColdFusion should wait when attempting to obtain an exclusive lock before timing out. Note the use
of a second check for the existence of application.Initialized. This is done to guard against the

possibility that two requests for the Application.cfm template at the same moment could cause a race
condition.

The first application variable we set is called application.TheDatasource; it contains the name of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the data source used throughout the application. Setting the data-source name here allows us to
insert the variable name into cfquery statements as opposed to the actual data-source name. This

makes it easy to change the data-source name at a later point. Instead of having to open every
template within your application to change the hardcoded data-source name, all you have to do is
open the Application.cfm file and change the name of the data source you assigned to the
application.TheDatasource variable.

The next two application variables, application.AdminEmail and application.BGColor, store an

administrator's email address and a default background color for the web site. Again, the value here
isn't in the one-to-one substitution but in the ability to change any of these values once and have the
changes reflected across your application.

The final application variable we set, application.Initialized, is used as a control variable to

indicate whether the application variables within the Application.cfm file have already been set.
Because the Application.cfm file is called with each request for a CFML template, it is important that
we have a way to determine whether application variables have already been set. Resetting the
application variables every time the Application.cfm file is called is a waste of resources and
processing time, as application variables need to be set only once within an application. The solution
is to set an application variable called application.Initialized to true the first time the

Application.cfm file is called. Once this variable has been created, it is easy to check whether it exists
each time Application.cfm is executed. If the variable exists, there is no need to set the application
variables. If the variable doesn't exist, we know that the application variables haven't been set yet,
and we can execute the appropriate code to set them.

You should note that application variables shouldn't be used within a clustered environment, as they
are stored in the RAM of a single ColdFusion server and may not be available to other servers within
the cluster. The exception to this is in the case of session-aware or "sticky" clusters. We'll talk more
about session-aware clusters later in the chapter.

Because application variables are stored in a structure object called application, you can

manipulate application variables using structure functions. For example, to delete an application
variable (e.g., for debugging purposes) called application.Datasource, you can use the
StructDelete() function:

<cflock scope="Application" type="Exclusive" timeout="60" throwontimeout="No">
 <cfset StructDelete(application,"Datasource")>
</cflock>

7.2.3 Client Variables

Client variables store values associated with a particular client or, to use the more common term,
user. Most often, they are used to maintain state as a user navigates from page to page throughout
an application. What makes client variables different from session variables is that they can live
across multiple sessions. That is, client variables are stored by the ColdFusion server and can be
retrieved during subsequent visits by the user. By default, client variables are stored in the system
registry on Windows servers or in a text file on Unix, Linux, and HP-UX servers, but they can also be
stored in a cookie or a database.[1] Client variables are commonly used to store things such as user
preferences for highly personalized applications. These preferences often include background and text
colors as well as font faces and sizes. Client variables can also be used in place of session variables in
clustered environments where it is essential to maintain state in the event that a user is redirected
from one server to another. In order to use client variables, you have to enable them using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfapplication tag within your application's Application.cfm file:

[1] In versions of ColdFusion prior to MX, Unix, Linux, and HP-UX versions of ColdFusion stored client variables in
a "pseudo-registry." In ColdFusion MX, this is no longer the case. On these platforms, client variables are stored
in a text file. For performance reasons, using the "registry" setting to store client variables is not recommended
on these platforms.

<cfsilent>
 <cfapplication name="MyApplication" clientmanagement="Yes"
 setclientcookies="Yes" clientstorage="Registry">
</cfsilent>

In this example, there are four attributes for the cfapplication tag to consider. The name attribute

specifies the name to associate with the application and all its shared scope variables. The
clientmanagement attribute must be set to Yes in order to use client variables. setclientcookies
determines whether to save the CFID and CFToken values as HTTP cookies on the user's machine. If
you set this attribute to No, you must be sure to manually pass the CFID and CFToken values from

template to template. Techniques for doing this are described later in this section. The final attribute,
clientstorage, determines which method to use for storing the client variables. Possible options
include Registry (the default), Database, and Cookie. Each of these methods will be described in

detail shortly.

Besides the client variables you create yourself, ColdFusion creates several client variables
automatically:

client.CFID

An incremental ID number created by the ColdFusion Application Server for each client
accessing the server.

client.CFToken

A random token that combines with the CFID to form a unique identifier for each client visiting

your site.
client.HitCount

An integer that represents the number of times a client has visited the web site.
client.LastVisit

The time and date of a client's last visit to the web site.
client.TimeCreated

The time and date that the CFID and CFToken were created.
client.URLToken

A concatenation of the CFID and CFToken values that can be appended to a URL when cookies

aren't used for client variable storage.

By default, ColdFusion MX uses an eight-digit random number for the value of CFToken. Although
sufficient for most purposes, this method doesn't guarantee a unique CFToken value. You can
guarantee a unique CFToken value by making a small configuration change in the ColdFusion

Administrator. In the Settings section, simply check the box labeled "Use UUID for cftoken."

Making this change causes ColdFusion to generate a CFToken consisting of a random 16-digit

hexadecimal number prepended to a UUID (Universal Unique Identifier). To understand how this all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

looks, consider the following UUID generated by ColdFusion:

777A3190-6D65-11D4-BC6B00105A16C3AD

If the same UUID were used in generating a CFToken value, it might look something like this:

003cdf23ce012fdb-777a3190-6d65-11d4-bc6b-00105a16c3ad

Like all shared scope variables in ColdFusion MX, client variables are stored in a named structure
called client. You can manipulate this structure just as you would any other. You can also obtain a

list of all currently available client variables (excluding the system-generated ones) using the
GetClientVariablesList() function:

<cfoutput>
Client Variables available within this application: #GetClientVariablesList()#
</cfoutput>

7.2.3.1 Client-variable storage options

ColdFusion offers three options for client-variable storage: the system registry, browser cookies, or
an external data source. A default storage mechanism can be set within the ColdFusion
Administrator. Figure 7-3 shows the ColdFusion Administrator page for managing client-variable
storage options.

Figure 7-3. Managing client-variable storage options within the
ColdFusion Administrator

You can override the default client-variable storage mechanism set in the ColdFusion Administrator
by using the clientstorage attribute of the cfapplication tag to specify the method you wish to

use. You should note that you can access client variables only for the storage method specified for a
particular application, even if you have client variables stored in another storage type. To help you
decide which client-variable storage option is right for you, here are some pros and cons of each of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the three storage methods:

System registry (default)

Setting clientstorage to Registry stores all client variables in the system registry on

Windows servers, or in a text file on Unix, Linux, and HP-UX servers. This method is the easiest
to implement and offers relatively good performance on Windows but sub-par performance on
the other platforms. Additionally, size limitations of the system registry can affect scalability.
Also, client variables stored in the registry can't be used in a clustered environment. Client
variables stored in the registry are automatically purged after 10 days of inactivity by the
client. This 10-day period can be modified using the ColdFusion Administrator.

Cookie

Specifying Cookie for clientstorage causes client variables to be stored in browser cookies.

This storage mechanism places the responsibility for variable storage on the client as opposed
to the server. If you choose to store client variables in cookies, ColdFusion stores any client
variables you set in a special cookie. This cookie is named cfclient_appname, where appname

is the name of your application as specified in the Application.cfm template. Additionally,
ColdFusion stores the automatically created client variables HitCount, LastVisited, and
TimeCreated in a special cookie called CFGlobals.

While this may seem like the ideal situation from a performance standpoint, there are a
number of potential problems with this storage method. First, you can't set client variables for
users that can't or choose not to accept cookies. The second issue is that ColdFusion limits the
amount of data set as a cookie to 4 KB. In addition, many browsers have a 20-cookie-per-host
limit. This means that only 20 cookies can be set by your server at any one time. If the 20-
cookie limit is reached, any new cookies that are added automatically overwrite older cookies.
Because ColdFusion automatically uses three of these cookies (CFID, CFToken, CFGlobals) to

store read-only client information, only 17 cookies are available per host. The default timeout
for cookies is 38 years.

External data source

Setting clientstorage to External stores client variables in an external data source, which

allows you to keep your client data in a platform-independent format. It also allows you to use
client variables within a clustered environment. However, using an external data source to
store client variables can negatively impact performance because each read or write of a client
variable requires a database transaction. If you choose to use an external data source to store
your client variables, ColdFusion can automatically create the necessary database tables for
you. It is recommended that whatever data source you use be dedicated to the storage and
retrieval of client variables. The default timeout for client variables stored in an external
database is 90 days. This timeout period can be modified using the ColdFusion Administrator.

7.2.3.2 Creating an external data source for client variable storage

If you decide to use an external data source to store your client variables, you need to create the
necessary database tables and register the data source with the ColdFusion Administrator. You may
manually create the tables, or you can have ColdFusion create them for you. Whichever method you
choose, the first step is to register the data source with the ColdFusion Administrator. To do this, you
need to go to the Data Sources section of the ColdFusion Administrator and register the data source.
The second step is to access the Client Variables section of the ColdFusion Administrator, as shown in
Figure 7-3. To add a new data source for storing client variables, highlight the data-source name in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the drop-down box and click the Add button. You will then be presented with three options for
configuring your data source. These choices can be seen in Figure 7-4.

Figure 7-4. Configuring an external data source to store client variables

At this time, you need to decide whether you want to manually create the database tables necessary
to store client variables or let ColdFusion create the tables for you. The preferred method is to let
ColdFusion create the tables for you. However, depending on your database platform and the level of
access you are allowed to the database, it may be necessary to manually create the necessary
tables. If you choose to manually create the tables, you need to create two tables, as shown in
Tables Table 7-1 and Table 7-2.

Table 7-1. CDATA table

Field name Datatype Max length

CFID Text 64

APP Text 64

DATA Memo N/A

Table 7-2. CGLOBAL table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Field name Datatype Max length

CFID Text 64

DATA Memo N/A

LVISIT Date N/A

Note that the datatypes listed in Tables Table 7-1 and Table 7-2 are Microsoft Access datatypes.
Depending on the database you use to store your client variables, you may need to use different
datatypes (i.e., Memo is a datatype specific to MS Access). Additionally, if you use Access, you need to
modify the DATA field in the CDATA table to allow zero-length strings. This is necessary to avoid errors

in the event you attempt to delete all application-defined client variables associated with a particular
user.

If you don't want to create the tables yourself, you can have ColdFusion do it for you automatically.
To have ColdFusion create the tables for you, simply check the box labeled "Create Client Database
Tables."

The other two choices on the screen allow you to determine how often ColdFusion automatically
purges client variables and how often it should update the global (read-only) client variables. Purging
client variables is an important function for two reasons. First, it keeps your database from
accumulating unnecessary and irrelevant data. The second reason is that you usually want to expire
data associated with a particular client after some predetermined period of inactivity. For example,
say you run a public web site that allows users to customize certain aspects of the site to their own
liking. If you use client variables to keep track of these preferences, you probably want to delete the
preferences of visitors that haven't visited your site for a predetermined amount of time. You can
specify the amount of time in days before ColdFusion purges inactive client variables by checking the
box labeled "Purge data for clients that remain unvisited for x days" and specifying the number of
days in the text box.

The "Disable Global Client Variable Updates" option allows you to indicate whether ColdFusion should
update global client variables such as HitCount, LastVisited, and TimeCreated each time a

ColdFusion template is requested or only when the variables are set or updated. If the box is checked
(the default), global client variables are updated only when they are set or updated, not with each
page request.

7.2.3.3 Using client variables without cookies

By default, the CFID and CFToken variables for each user are stored as cookies on the user's hard

drive. In order to make your application work with users who can't or don't accept cookies, you must
pass the CFID and CFToken values via URL to each template within your application. To pass CFID
and CFToken from template to template, all you need to do is append the URLToken variable to each
URL that you use in your application. For example, to pass the CFID and CFToken along in a form,

you can use the following code:

<cfoutput>
<form name="MyForm" action="MyTemplate.cfm?#Client.URLToken#" method="Post">
</cfoutput>

If you want to pass the CFID and CFToken using standard hyperlinks, the code looks like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
MyTemplate
</cfoutput>

It is important to remember that after users who do not accept cookies leave your site, their client
variables are effectively abandoned, because when they return, ColdFusion has no way of
determining who they are (unless they return via a bookmark that has their CFID and CFToken

values in it).

You can also automatically determine whether a particular client accepts cookies by using the
URLSessionFormat() function. If the client does not accept cookies, URLSessionFormat()
appends appropriate client identification parameters (CFID, CFToken, jsessionid) to the end of the

specified URL. Otherwise, the URL is returned as is. This function provides similar functionality to the
addtoken attribute of the cflocation tag. However, URLSessionFormat() is more powerful and

versatile in that it appends identification information only in the event a client does not support
cookies. Additionally, URLSessionFormat() can be used anywhere a URL is coded, whereas
cflocation is used only to redirect a user to another location. Here's an example that uses
URLSessionFormat() to create a link that passes identification parameters only if the user's

browser doesn't support cookies:

<cfoutput>
Check Out
</cfoutput>

7.2.3.4 Storing complex datatypes in client variables

Because client variables must be stored in a physical medium such as the system registry, a
database field, or a cookie, it isn't possible to assign complex datatypes such as arrays, structures, or
query objects to them. There is a workaround, however. Using the cfwddx tag, you can serialize a

complex datatype and assign the resulting WDDX packet to a client variable. For more information on
using WDDX to serialize and deserialize complex datatypes, see Chapter 23.

7.2.3.5 Client variables and clustering

In order to effectively use client variables within a clustered environment, you need to have
ColdFusion store them in an external data source or as cookies. By storing the client variables in
either fashion, they become accessible from any server in your cluster.

If you choose to store your client variables in an external data source, you should be sure to set the
setdomaincookies attribute to Yes in the cfapplication tag of your Application.cfm template.
Setting this attribute to Yes causes ColdFusion to create a new cookie variable at the domain level
called CFMagic. CFMagic tells ColdFusion that cookies have been set at the domain level and contains
the values of the CFID and CFToken cookies. Existing host-level cookies are automatically compared
to the values stored in CFMagic and migrated to domain-level cookies if the values don't match.

There are a few additional considerations when configuring your clustered servers to use client
variables. First, if you want to have ColdFusion automatically purge client variables stored in a data
source after a set period of inactivity, you need to make sure that this option is set on only one of the
ColdFusion servers in your cluster. To enable or disable this option, click on the name of the data
source in the Variables section of the ColdFusion Administrator, and check or uncheck the box labeled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Purge data for clients that remain unvisited for x days."

The second consideration has to do with setting up the external data source for each of your
clustered servers. If you want ColdFusion to automatically create the database tables for you, you
need to make sure to check this option in the ColdFusion Administrator during the setup of the first
server only. If you attempt to have ColdFusion create tables for the same data source more than
once, the ColdFusion Administrator generates a database error.

7.2.3.6 Deleting client variables

Several scenarios exist in which you might find it necessary to delete one or more client variables,
such as a login application in a clustered environment. There are different techniques you can use to
delete client variables depending on the number and type you want to delete. To delete a single client
variable, use the DeleteClientVariable() function:

<cfset DeleteClientVariable("MyClientVar")>

You can also use the StructDelete() function:

<cfset StructDelete(MyStruct, "MyClientVar")>

If you want to delete all client variables for the current user associated with your application, you can
use a list loop to loop over the contents of the list of client variables returned by the
GetClientVariableList() function, deleting each variable one at a time:

<!--- Loop over the list of client variables, deleting them one by one --->
<cfloop index="i" list="#GetClientVariablesList()#">
 <cfset DeleteClientVariable(i)>
</cfloop>

Note that the DeleteClientVariable() function can't be used to delete any of the automatically
created client variables such as CFID, CFToken, and HitCount.

You can also use a loop to delete all of a user's client variables, including the automatically generated
ones. Do this using a collection loop:

<cfloop collection="#client#" item="i">
 <cfset StructDelete(client, i)>
</cfloop>

This can also be accomplished using the StructClear() function:

<cfset StructClear(client)>

You can "delete" all of a user's client variables by expiring the CFID, CFToken, and CFGlobals cookies
for that user. To do this, set the expiration for each cookie to Now:

<cfcookie name="CFID" expires="Now">
<cfcookie name="CFToken" expires="Now">
<cfcookie name="CFGlobals" expires="Now">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.4 Cookies

As I mentioned earlier in the chapter, cookies are a unique type of shared scope variable in that they
are stored on the client machine and sent to the ColdFusion server each time a page is requested.
Cookies are available to every ColdFusion template provided they exist and are set within the domain
from which they are being requested. Cookies typically store identifying information about a user,
such as a user ID or other unique value. Because cookies exist as plain text on a user's system, they
should never be used to store sensitive information, such as passwords or credit-card numbers.
Cookies can be both set and read by ColdFusion. All cookie operations are performed using the
cfcookie tag.

7.2.4.1 Setting cookies

ColdFusion allows you to set cookies via the cfcookie tag. Before you decide to use cookies in your

application, please keep in mind the following considerations:

You can't set cookies for users that can't or choose not to accept them. This has the potential to
limit the audience for your application.

ColdFusion limits the amount of data set in a cookie to 4 KB.

Some browsers have a 20-cookie-per-host limit. As more cookies are added, older ones are
pushed out.

The following example sets a cookie called UserID on the client's browser:

<cfcookie name="UserID" value="123456" path="/MyPath;/MyOtherPath"
domain=".example.com" expires="Never" secure="No">

The name attribute is required and specifies the name for the cookie. value refers to the value you

want to set for the cookie. Cookie names may contain any printable ASCII characters with the
exception of commas, semicolons, and whitespace. The path attribute is also optional and specifies

which URL(s) the cookie applies to. Multiple paths are separated by semicolons. If you specify values
for path, you also have to use the domain attribute. domain lists domains for which the cookie can be

read or written. Entries must always start with a dot. Multiple domains can be specified provided they
are separated by semicolons. The expires attribute allows you to set an expiration for the cookie.
You have a lot of flexibility here. You can specify the expiration as an integer, a specific date, Never,
or Now. Specifying an integer for expires causes the cookie to expire in that number of days. For
example, setting expires="14" causes the cookie to expire 14 days from when it is set. Likewise,
setting expires="1/1/2099" causes the cookie to expire on January 1, 2099. Setting
expires="Never" causes the cookie to exist forever, while setting expires="Now" causes the cookie
to expire immediately. Omitting the expires attribute altogether causes the cookie to be set as an

in-memory-session-only cookie. This means that the cookie is never written to the user's hard drive
and automatically expires when the browser is closed. The final attribute, secure, indicates whether
the cookie must be transmitted securely via SSL. This attribute is optional and defaults to No.

7.2.4.2 Retrieving cookies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To retrieve a cookie, all you have to do is reference it by name using the cookie variable scope. The
following example shows you how to retrieve the value of the UserID cookie that we set in the

previous example:

<cfoutput>
The Value of the UserID cookie is: #Cookie.UserID#
</cfoutput>

You can see a list of all cookies and their associated values by turning on debugging for the current
template and viewing the list of CGI variables available, or by referencing the cookie structure.

7.2.4.3 Deleting cookies

To delete a cookie, simply set the expires attribute of the cfcookie tag to Now, as in the following

example:

<cfcookie name="UserID" expires="Now">

Setting the expires attribute to Now causes the cookie to expire and therefore deletes it from the

user's system.

7.2.5 Session Variables

Session variables are shared scope variables that store information for a specific user session.
Session variables are held in the server's memory and exist for a finite amount of time. Each session
variable is unique to a user and can be referenced across all ColdFusion templates within an
application. Session variables must be specifically set and are scoped as session.variable_name.

Any ColdFusion datatype may be assigned to a session variable. Session variables are commonly
used in applications where information about a particular user needs to accompany the user from
page to page for the duration of the visit to the site or application. Session variables are commonly
used to store information such as authentication information, shopping cart contents, and other data
specific to an individual user.

Session management in ColdFusion MX can be broken into two categories: ColdFusion session
management and J2EE session management. In ColdFusion session management mode, session
variables are accessible only by CFML pages and CFCs. J2EE session management lets you share your
session variables with JSP templates and Java servlets in addition to CFML templates and CFCs. J2EE
session management also offers additional benefits not found in the standard ColdFusion session
management:

J2EE session variables automatically expire when a user closes his or her browser.

J2EE session variables can be made to persist after server restarts provided the underlying J2EE
server is configured for this.

In order to use either type of session variables, they must be enabled both in the ColdFusion
Administrator and within an Application.cfm template for the application. Additionally, J2EE session
variables must be explicitly enabled in the ColdFusion Administrator. You do this by checking "Use
J2EE Session Variables" in the Memory Variables section. This example shows how to enable session

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variables within the Application.cfm file:

<cfsilent>
 <cfapplication name="MyApplication" sessionmanagement="Yes"
 setclientcookies="Yes"
 sessiontimeout="#CREATETIMESPAN(0, 0, 30, 0)#">
</cfsilent>

In this case, the cfapplication tag turns on session variables by setting the sessionmanagement
attribute to Yes. setclientcookies determines whether to save the CFID and CFToken values as
HTTP cookies on the user's machine. Since the CFID and CFToken values are used by both session
and client variables, it is important to note that the value you specify for setclientcookies affects
both session and client management. If you set this attribute to No, you must be sure to manually
pass the CFID and CFToken values from template to template. Techniques for doing this are
described later in this section. The sessiontimeout attribute sets the timeout for any session

variables used in the application. In this case, the timeout for session variables is set to 30 minutes
using the CreateTimeSpan() function.

Besides the session variables you create throughout your application, ColdFusion automatically
creates the following session variables whenever ColdFusion session management is enabled:

session.CFID

An incremental ID number created by the ColdFusion Application Server for each client
accessing the server.

session.CFToken

A random token that combines with the CFID to form a unique identifier for each client visiting

your site.
session.SessionID

A concatenation of the application name (as specified in the Name attribute of the
cfapplication tag), the CFID, and the CFToken. SessionID is used to uniquely identify each

session within an application.
session.URLToken

A concatenation of the CFID and CFToken values that can be appended to a URL when cookies

aren't used for session variable storage.

If you are using J2EE session management instead of ColdFusion session management, ColdFusion
only sets two default variables:

session.SessionID

The J2EE session ID (maps to a special variable called jsessionid) assigned for the user's

session.
session.URLToken

A string containing jsessionid=sessionID where sessionID is the J2EE session ID for the

current session. If client variable management is also enabled, or a domain-level cookie exists
for the domain, session.URLToken may also contain values for CFID and CFToken even though

the J2EE session management doesn't use them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is a structure object associated with session variables that contains a list of all available
session-variable names within a given application. This structure is appropriately named session and

can be manipulated just like any other structure object.

7.2.5.1 Using session variables without cookies

As with client variables, by default the CFID and CFToken variables for each ColdFusion session are
stored on the client's hard drive. For J2EE session variables, the jsessionid variable is stored as a

nonpersistent cookie. In order to make your application work with users who can't or don't accept
cookies, you must pass the CFID and CFToken or jsessionid values via URL to each template within

your application. To pass these variables and their associated values from template to template, all
you need to do is append the URLToken variable to each URL you use in your application. For
example, to pass the CFID and CFToken or jsessionid along in a form, you can use the following

code:

<cflock name="URLToken_Lock" type="ReadOnly" timeout="60">
<cfoutput>
<form name="MyForm" action="mytemplate.cfm?#session.URLToken#" method="Post">
</cfoutput>
</cflock>
...
</form>

If you prefer, you can also pass the values of CFID and CFToken as hidden form fields as opposed to

URL parameters:

<form name="MyForm" action="mytemplate.cfm" method="Post">
<cflock name="SessionID_Lock" type="ReadOnly" timeout="60">
<cfoutput>
<input type="Hidden" name="CFID" value="#session.CFID#">
<input type="Hidden" name="CFToken" value="#session.CFToken#">
</cfoutput>
</cflock>
...
</form>

To pass the J2EE SessionID as a hidden form field, use this code instead:

<input type="Hidden" name="SessionID" value="#session.SessionID#">

If you want to pass the CFID and CFToken or jsessionid using standard hyperlinks, the code looks

like this:

<cflock name="URLToken_Lock" type="ReadOnly" timeout="60" throwontimeout="No" >
<cfoutput>
MyTemplate
</cfoutput>
</cflock>

As with client variables, you can also use the URLSessionFormat() function with session variables

to determine whether a particular client accepts cookies, and you can automatically append the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CFID/CFToken and/or jsessionid values to the URL string if necessary:

<cfoutput>
Check Out
</cfoutput>

7.2.5.2 Deleting session variables

Sometimes, you may find it necessary to delete one or more session variables, such as when a user
logs out of an application. Because session variables are stored in a structure object called session,
you can delete individual session variables using the structure function StructDelete(). For
example, to delete a session variable called session.Username, you can use the StructDelete()

function as shown in the following example:

<cflock Name="Session_Lock" type="Exclusive" timeout="60" throwontimeout="No" >
 <cfset StructDelete(session,"Username")>
</cflock>

Remember that you should use cflock whenever you read or write a session variable. In this
example, we set the lock type to Exclusive because we are writing to a session variable.

You can also delete all the session variables contained within the current session (without expiring
the session) by looping through the session structure and individually deleting each variable. It is
necessary to loop through the structure, excluding the preset session variables CFID, CFToken,
SessionID, and URLToken, because ColdFusion sets these variables only at the start of the session:

<cflock scope="Session" type="Exclusive" timeout="60" throwontimeout="No" >
<cfloop collection="#session#" item="Key">
 <cfif not ListFindNoCase('CFID,CFToken,SessionID,URLToken', Key)>
 <cfset StructDelete(session, Key)>
 </cfif>
</cfloop>
</cflock>

The same code can be used if you are using J2EE session management even though there are no
CFID and CFToken values in the session scope.

You can take things one step further and terminate a user's session using the StructClear()

function:

<cflock scope="Session" type="Exclusive" timeout="60" throwontimeout="No" >
 <cfset StructClear(session)>
</cflock>

Using StructClear() deletes all session variables, including the CFID and CFToken variables,
effectively terminating the user's session. You should note that while using StructClear() clears all
session variables from the session structure, it doesn't delete the session structure itself.

7.2.5.3 Session variables and clustering

Because session variables are stored in the ColdFusion server's RAM, they can't be shared across

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multiple servers in a clustered environment. Many clustering products (including Macromedia's
ClusterCATS, part of the ColdFusion Enterprise Server) offer "sticky" or session-aware load-balancing
options. This type of load balancing allows you to use memory-resident variables (session,
application, and server) in your applications by ensuring that a user isn't bumped from the server
they are originally routed to regardless of the amount of load on the server. In the event that a
server fails in a session-aware cluster, all memory-resident variables on that server are lost, resulting
in a loss of all active user sessions. For more information on using ClusterCATS, see the Macromedia
documentation.

You may have additional clustering options for session variables if you are using J2EE sessions. Many
J2EE servers, including Macromedia's JRun 4, allow you to configure the application server to retain
jsessionid values in the event a server goes down and is restarted. For more information, consult

the documentation for your particular application server and version of ColdFusion for J2EE.

7.2.6 Server Variables

Server variables are the final type of shared scope variable in ColdFusion. Server variables store data
associated with the server on which ColdFusion is running. Server variables are stored in the
ColdFusion server's RAM and are available to all ColdFusion applications and users. Server variables
exist until the ColdFusion Application Server is stopped. You can create your own server variables
using the cfset and cfparam tags, or you can reference the following predefined ones:

server.ColdFusion.Appserver

Name of the underlying J2EE application server that ColdFusion sits on top of. For standalone
versions of ColdFusion MX, the value is JRun 4. New as of ColdFusion MX.

server.ColdFusion.Expiration

Date (in ODBC date format) on which the ColdFusion server expires. Applies only to trial
versions of ColdFusion.

server.ColdFusion.ProductLevel

The level of the ColdFusion product running on the server (Developer, Professional, Enterprise,
etc.).

server.ColdFusion.ProductName

The name of the ColdFusion product running on the server.
server.ColdFusion.ProductVersion

The version number of the ColdFusion product running on the server.
server.ColdFusion.RootDir

The full path to the directory where ColdFusion MX is installed; new as of ColdFusion MX.
server.ColdFusion.SerialNumber

The serial number registered to the ColdFusion server.
server.ColdFusion.SupportedLocales

A comma-delimited list of locales supported by the server.
server.OS.AdditionalInformation

Any additional information specified by the operating system on the ColdFusion server, such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

service packs installed, etc.
server.OS.Arch

The processor architecture of the underlying server; new as of ColdFusion MX.
server.OS.BuildNumber

The build number of the operating system installed on the ColdFusion server.
server.OS.Name

The name of the operating system installed on the ColdFusion server.
server.OS.Version

The version number of the operating system running on the ColdFusion server.

Server variables are often used in multiplatform ColdFusion applications in which the applications
behave differently depending on what platform the code is running on.

When you read or write a server variable, it is important to consider using the cflock tag to guard
against problems arising from race conditions. Remember to set the type of lock to ReadOnly when
reading server variables and Exclusive when writing them. The following example writes several

server variables, then displays them:

<cflock scope="Server" type="Exclusive" timeout="60" throwontimeout="No" >
 <cfset server.Location = "West Chester">
 <cfset server.Function = "B2B Applications">
</cflock>

<cflock scope="Server" type="ReadOnly" timeout="60" throwontimeout="No" >
 <cfoutput>
 This server is located in #server.Location#

 This server is used for #server.Function#
 </cfoutput>
</cflock>

Typically, server variables aren't used within a clustered environment unless "sticky" or session-
aware load balancing is used. Another possible use is when the server variables are written to once
and an initialization flag is provided (similar to the method used in the Application.cfm template
covered earlier in the chapter), because they are exclusive to the server on which they are created.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Browser Redirection

At times, you may wish to redirect a user's browser to a location other than the current template.
This is generally handled using the cflocation tag. The following example creates a drop-down box

listing several web sites. Choosing one of the sites and clicking the Go button posts the form to itself
and uses the cflocation tag to redirect the user to the selected web site.

<cfif IsDefined(form.Go')>
 <cflocation URL="http://#form.Goto#" addtoken="No">
</cfif>

<h2>Please choose a location:</h2>
<cfoutput>
<form action="#CGI.Script_Name#" method="Post">
</cfoutput>
 <select name="Goto">
 <option value="www.macromedia.com" Selected>Macromedia</option>
 <option value="www.yahoo.com">Yahoo</option>
 <option value="www.amkor.com">Amkor</option>
 </select>
<input type="Submit" name="Go" value="Go">
</form>

The URL attribute specifies an absolute or relative path to the page you want to redirect the user's
browser to. addtoken is an optional attribute and indicates whether to append client variable
information (CFID and CFToken values) to the end of the URL specified in the URL attribute. In order
to use the addtoken attribute, clientmanagement must be turned on in the Application.cfm file. The
default value for addtoken is Yes.

You can also redirect to a different page using the cfheader tag:

<cfheader name="Refresh" value="0; URL=http://www.example.com/mytemplate.cfm">

This code uses the cfheader tag to generate a custom HTTP header with a Refresh element that

contains the number of seconds to wait before refreshing the page, as well as the URL of the page to
retrieve when the refresh occurs. Another alternative is to send an HTTP 302 status code that tells
the browser that the document has moved and provides the new location (most browsers will
automatically redirect to the new location):

<cfheader name="Location" value=" http://www.example.com/mytemplate.cfm ">
<cfheader statuscode="302" statustext="Document Moved">

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.4 Portal Example

Because state management is such an important part of web application development, I think it's
appropriate to end the chapter with an example application that showcases the material we've just
covered. I've opted to create a portal application that allows a registered visitor to create a
personalized home page from a list of pre-built modules, as it is simple enough to allow me to
demonstrate a number of techniques. Figure 7-5 shows an overview of how the portal application is
put together, including relationships between the various templates. The application uses all the
shared variable scopes we discussed with the exception of the server scope. We'll cover all of the
templates used in the application except for login.cfm. This template is discussed in Chapter 8 (you
should go ahead and grab it now, though, and save it in the same directory as the rest of the
templates in the portal example).

Figure 7-5. Application flow for the portal example

7.4.1 Web Application Framework

The Application.cfm template shown in Example 7-2 has four functions in the portal application: it
turns on client and session management, handles authentication, logs the user out when appropriate,
and initializes application and client variables. This template, along with all others in this example,
should be saved in a directory called /programmingcf/examples/7/portal off of the web root
directory.

Example 7-2. Application.cfm template for the portal application

<cfsilent>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfapplication name="MyPortal" clientmanagement="Yes"
 sessionmanagement="Yes" setclientcookies="Yes"
 sessiontimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 applicationtimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 clientstorage="Registry">

<!--- Set the default session state to false, meaning that by default,
 users are not logged into the application --->
<cflock name="sLogin_Lock" type="Exclusive" timeout="10">
 <cfparam name="session.LoggedIn" default="false">
</cflock>

<!--- If the user isn't logged in or they aren't currently on the login
 page, send them to the login page --->
<cflock name="sLogin_Lock" type="ReadOnly" timeout="10">
 <cfif (not session.LoggedIn) and (CGI.script_name is
 not "/programmingcf/examples/7/portal/login.cfm")>
 <cflocation URL="login.cfm" addtoken="No">
 </cfif>
</cflock>

<cfif IsDefined('URL.Logout') and URL.Logout>
 <!--- Terminate the user's session by deleting all session variables --->
 <cflock scope="Session" type="Exclusive" timeout="10">
 <cfset StructClear(Session)>
 </cflock>

 <cflocation URL="login.cfm?Message=#URLEncodedFormat("Thank you for logging
 out. Please visit again soon!")#" addtoken="No">
</cfif>

<!--- Reset the CFID and CFToken cookies to expire session and client
 variables after the user's browser closes. This is not necessary
 if you are using J2EE Session Management. --->
<cfif IsDefined("cookie.CFID") and IsDefined("cookie.CFToken")>
 <cfcookie name="CFID" value="#cookie.CFID#">
 <cfcookie name="CFToken" value="#cookie.CFToken#">
</cfif>

<!--- Check to see if the application has been initialized. If not, set the
 necessary application variables and initialize the app --->
<cflock timeout="30" throwontimeout="No" type="ReadOnly" scope="Application">
 <cfset IsInitialized = IsDefined('application.Initialized')>
</cflock>

<cfif not IsInitialized>
 <cflock type="Exclusive" scope="Application" timeout="10">
 <cfif not IsDefined('application.Initialized')>
 <cfset application.DSN = "ProgrammingCF">
 <cfset application.AdminEmail = "webmaster@example.com">
 <cfset application.Initialized = true>
 </cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cflock>
</cfif>

<!--- Set default values for client variables --->
<cfparam name="client.Email" default="Yes">
<cfparam name="client.Stocks" default="Yes">
<cfparam name="client.News" default="Yes">
<cfparam name="client.Bookmarks" default="Yes">
<cfparam name="client.BGColor" default="FFFFFF">
<cfparam name="client.FontFace" default="Arial">
<cfparam name="client.HeaderFontColor" default="000000">
<cfparam name="client.HeaderBGColor" default="6666FF">
<cfparam name="client.FontColor" default="000000">
</cfsilent>

The first task in Application.cfm is to turn on both client and session management for the application.
For simplicity, the application uses the system registry to store client variables, but you can use any
storage option you choose. Both application and session variables are set to time out after 30
minutes. Additionally, client cookies are enabled.

Because the Application.cfm template is invoked each time a template is requested, it is well suited
to handle authentication for the portal. Although we'll be discussing the entire login process in
Chapter 8, it is important to understand that the Application.cfm template prescreens all user
requests to see whether a user is logged into the application. It does this by checking for a session
variable called session.LoggedIn. If this variable exists and is set to true, the requested template is
sent to the user. If the variable isn't present or is set to false (as it is by default), the user is
rerouted to the login.cfm template via a cflocation tag.

The third function of this Application.cfm template is to log a user out if she has clicked on the Logout
link on the main portal page. This is done by checking to see whether a URL variable called
URL.Logout is present and set to true. If so, the session structure is cleared using StructClear(
). Because this is where the session.CFID, session.CFToken, and session.LoggedIn values

associated with the user's session are stored, clearing these values terminates the user's session.
The user is then automatically rerouted back to the login screen.

The next chunk of code expires a user's session in the event the browser is closed. This is done so
that in a shared environment, another user can't simply open the previous user's browser and start
using the application. The technique used to accomplish this involves resetting the CFID and CFToken

cookies so that they are never written to the user's system. This in effect terminates a user's session.
You should note that this technique works only if the CFID and CFToken values aren't passed via URL.

This code is not necessary if J2EE session management is used, as the cookie set by J2EE session
management is not a persistent cookie.

The next function of this Application.cfm template checks for the existence of an application variable
called application.Initialized. If it doesn't exist (which it won't the first time a CFML template is

invoked), ColdFusion responds by setting a number of constants for the application. After the
constants are set, application.Initialized is set to true so the next time the Application.cfm

template is called, it isn't necessary to set all the constants again (since you only need to set
application variables once).

The final section of code in the template sets default values for the client variables used by the
application. These client variables define the look and feel for the portal and specify what types of
content should be displayed. Because these values are stored in client variables, they are specific to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

individual users. This allows you to provide a personalized portal experience for each user.

7.4.2 Main Template

When a user successfully logs in to the application via the login.cfm template (discussed in Chapter
8), two session variables are set, session.LoggedIn (set to true) and session.FullName (set to

the full name of the user who logged in). The user is then redirected to the index.cfm template
shown in Example 7-3. The index.cfm template is the main template for the portal. It displays all the
user's content and contains links to customize the portal, remove specific content modules, and log
out of the portal.

Example 7-3. The main application template, index.cfm

<html>
 <head>
 <title>My Portal</title>
 <cfinclude template="_stylesheet.cfm">
 </head>
<body>
<cfoutput><h1>Welcome #ListFirst(session.FullName, " ")#</h1></cfoutput>
<table width="100%" border="0" cellpadding="0" cellspacing="5">
 <tr>
 <cfoutput>
 <td class="CustomizeLink">Customize</td>
 <td class="CustomizeLink" align="Right">Logout</td>
 </cfoutput>
 </tr>
 <tr>
 <td width="19%" valign="Top">
 <table width="100%" border="0" cellspacing="0" cellpadding="5">
 <cfif client.Email>
 <cfinclude template="_email.cfm">
 </cfif>
 <cfif client.Stocks>
 <cfinclude template="_stock.cfm">
 </cfif>
 </table>
 </td>
 <td width="81%" valign="Top">
 <table width="100%" border="0" cellspacing="0" cellpadding="5">
 <cfif client.News>
 <cfinclude template="_news.cfm">
 </cfif>
 <cfif client.Bookmarks>
 <cfinclude template="_bookmarks.cfm">
 </cfif>
 </table>
 </td>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</table>
<hr>
<cfoutput>
<div class="Footer">Please email questions or concerns to <a href="mailto:
 #application.AdminEmail#">#application.AdminEmail#.</div>
</cfoutput>
</body>
</html>

The index.cfm template begins by using a cfinclude tag to include an inline stylesheet for the

application. The stylesheet defines such things as the font face and size for various sections of the
portal. These attributes are dynamically populated based on values stored in the various client
variables specified at the beginning of the template. The code for the stylesheet (_stylesheet.cfm) is
shown in Example 7-4.

Example 7-4. _stylesheet.cfm template for defining the stylesheet for the
portal

<style type="text/css">
 <!--
 <cfoutput>
 body {background-color: ###client.BGColor#; font-family: #client.FontFace#;
 font-size: 10pt; color: ###client.FontColor#}
 h1 {font-family: #client.FontFace#; font-size: 16pt; font-weight: bold}
 .Message {font-family: #client.FontFace#; font-weight: bold; color: red;}
 .SectionHeader {font-family: #client.FontFace#; font-size: 12pt;
 font-weight: bold; background-color: ###client.HeaderBGColor#;
 color: ###client.HeaderFontColor#}
 .LeftTableBody {font-family: #client.FontFace#; font-size: 9pt;
 font-weight: normal; background-color: ##CCCCCC;
 color: ###client.FontColor#}
 .TableRemove {font-family: #client.FontFace#; font-size: 8pt;
 text-decoration: underline;
 background-color: ###client.HeaderBGColor#; text-align: right;
 color: ###client.FontColor#}
 .ListItems {font-family: #client.FontFace#; font-size: 10pt;
 list-style-type: circle; color: ###client.FontColor#}
 .CustomizeLink {font-family: #client.FontFace#; font-size: 8pt;
 text-decoration: underline; color: ###client.FontColor#}
 .Ticker {font-family: #client.FontFace#; font-size: 9pt; font-weight: bold}
 .Quote {font-family: #client.FontFace#; font-size: 9pt}
 .Footer {font-family: #client.FontFace#; font-size: 8pt}
 </cfoutput>
 -->
</style>

The rest of the index.cfm template displays the various types of content the user has specified for
inclusion in the portal. By default, all content is displayed the first time the user logs into the
application. This is accomplished by setting defaults for all the client variables in the beginning of the
template. Each type of content (email, stock quotes, news, and bookmarks) is pulled into the
template via cfinclude tags. This allows the design of the portal to remain modular and makes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

editing any of the individual content modules easy. The code for the various content modules is
shown in Example 7-5 (_email.cfm), Example 7-6 (_stock.cfm), Example 7-7 (_news.cfm), and
Example 7-8 (_bookmarks.cfm). Figure 7-6 shows how the portal looks the first time a user logs in.

Figure 7-6. Displaying the portal the first time a user logs in

Example 7-5. _email.cfm template for the email module

<tr>
 <td class="SectionHeader">E-mail</td>
 <td class="TableRemove">
 <cfoutput>
 Remove
 </cfoutput></td>
</tr>
<tr>
 <td class="LeftTableBody" colspan="2">Check Email (6 new)</td>
</tr>

Example 7-6. _stock.cfm template for displaying stock quotes

<tr>
 <td bgcolor="#CCCC66" class="SectionHeader">Stocks</td>
 <td class="TableRemove">
 <cfoutput>
 Remove
 </cfoutput>
 </td>
</tr>
<tr bgcolor="#CCCCCC">
 <td class="LeftTableBody" colspan="2">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <table border="0" cellpadding="4" cellspacing="0" width="100%"
 bgcolor="#EEEEEE">
 <tr bgcolor="#C0C0C0">
 <td width="100%" class="Ticker">As of 3:35 PM</td>
 </tr>
 <tr>
 <td>
 <table width="100%" cellspacing="0" cellpadding="1">
 <tr>
 <td class="Ticker">MACR</td><td class="Quote">39.40625</td>
 <td class="Quote">+0.15625</td>
 </tr>
 <tr>
 <td class="Ticker">AMKR</td><td class="Quote">22.50</td>
 <td class="Quote">-0.453125</td>
 </tr>
 <tr>
 <td class="Ticker">INTC</td><td class="Quote">39.50</td>
 <td class="Quote">+0.50</td>
 </tr>
 <tr>
 <td class="Ticker">YHOO</td><td class="Quote">37.625</td>
 <td class="Quote">+0.625</td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
</tr>

Example 7-7. _news.cfm template for displaying news headlines

<tr>
 <td class="SectionHeader">News Headlines</td>
 <td class="TableRemove">
 <cfoutput>
 Remove
 </cfoutput>
 </td>
</tr>
<tr>
 <td colspan="2">

 Macromedia announces next version of
 ColdFusion
 Next ColdFusion developer's
 conference announced
 Latest ColdFusion benchmarks
 released

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </td>
</tr>

Example 7-8. _bookmarks.cfm template for displaying links to other sites

<tr>
 <td class="SectionHeader">Bookmarks</td>
 <td class="TableRemove">
 <cfoutput>
 Remove
 </cfoutput>
 </td>
</tr>
<tr>
 <td colspan="2">

 O'Reilly and Associates
 Macromedia
 Amkor Technology

 </td>
</tr>

7.4.3 Customization

From the main page of the portal (index.cfm), a user can customize the portal by clicking on the
Customize link in the upper left corner of the screen. Clicking this link takes the user to the
customize.cfm template. Example 7-9 contains the code for the customize.cfm template.

Example 7-9. customize.cfm template customizes the portal's look/feel,
content

<cfif CGI.request_method is "Post">
 <h1>Saving Changes...</h1>
 <cfparam name="form.Email" default="No">
 <cfparam name="form.Stocks" default="No">
 <cfparam name="form.News" default="No">
 <cfparam name="form.Bookmarks" default="No">

 <cfset client.BGColor = form.BGColor>
 <cfset client.FontFace = form.FontFace>
 <cfset client.FontColor = form.FontColor>
 <cfset client.HeaderBGColor = form.HeaderBGColor>
 <cfset client.HeaderFontColor = form.HeaderFontColor>
 <cfset client.Email = form.Email>
 <cfset client.Stocks = form.Stocks>
 <cfset client.News = form.News>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfset client.Bookmarks = form.Bookmarks>
 <cflocation URL="index.cfm" addtoken="No">
<cfelse>
 <cfif IsDefined('URL.Action') and URL.Action is "Remove">
 <cfswitch expression="#Section#">
 <cfcase value="Email">
 <cfset client.Email = "No">
 </cfcase>
 <cfcase value="Stocks">
 <cfset client.Stocks = "No">
 </cfcase>
 <cfcase value="News">
 <cfset client.News = "No">
 </cfcase>
 <cfcase value="Bookmarks">
 <cfset client.Bookmarks = "No">
 </cfcase>
 </cfswitch>

 <cflocation URL="index.cfm" addtoken="No">
 <cfelse>
 <h1>Customize Your Portal</h2>
 <cfoutput>
 <form action="#CGI.script_name#" method="Post">
 <table>
 <tr>
 <td>Background color:</td>
 <td><input type="Text" name="BGColor" size="6" maxlength="6"
 value="#client.BGColor#"></td>
 </tr>
 <tr>
 <td>Font face:</td>
 <td><select name="FontFace">
 <option value="Arial" <cfif client.FontFace eq
 "Arial">selected</cfif>>Arial</option>
 <option value="Helvetica" <cfif client.FontFace eq
 "Helvetica">selected</cfif>>Helvetica</option>
 <option value="Sans-serif" <cfif client.FontFace eq
 "Sans-serif">selected</cfif>>Sans-Serif</option>
 <option value="Comic Sans MS" <cfif client.FontFace eq
 "Comic Sans MS">selected</cfif>>Comic Sans MS</option>
 </select></td>
 </tr>
 <tr>
 <td>Header font color:</td>
 <td><input type="Text" name="HeaderFontColor" size="6" maxlength="6"
 value="#client.HeaderFontColor#"></td>
 </tr>
 <tr>
 <td>Header background color:</td>
 <td><input type="Text" name="HeaderBGColor" size="6" maxlength="6"
 value="#client.HeaderBGColor#"></td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 <tr>
 <td>Font color:</td>
 <td><input type="Text" name="FontColor" size="6" maxlength="6"
 value="#client.FontColor#"></td>
 </tr>
 </cfoutput>
 <tr>
 <td colspan="2">Content:</td>
 </tr>
 <tr>
 <td colspan="2">
 <table>
 <tr>
 <td><input type="Checkbox" name="Email"
 value="Yes" <cfif client.Email>checked</cfif>>Email</td>
 <td><input type="Checkbox" name="News"
 value="Yes" <cfif client.News>checked</cfif>>News</td>
 </tr>
 <tr>
 <td><input type="Checkbox" name="Stocks"
 value="Yes" <cfif client.Stocks>checked</cfif>>Stocks</td>
 <td><input type="Checkbox" name="Bookmarks"
 value="Yes" <cfif client.Bookmarks>checked</cfif>>Bookmarks</td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="Submit" name="Customize" value="Save"></td>
 </tr>
 </table>
 </form>
 </cfif>
</cfif>

The customize.cfm template checks to see whether it was called via a POST (form post) or a GET
(hyperlink) method because the template has three functions. The first function, called via hyperlink
from the main portal page, is to generate a form that allows the user to customize the portal. The
second function is to process the customizations set by the user (the template is a self-posting form).
The third function of the template is to remove a content module from the user's main portal page
when a Remove link is clicked on the main portal page.

Figure 7-7 shows the HTML form that lets the user change the background color, font face, font color,
header background color, and header font color for the portal. Additionally, checkboxes are provided
next to the name of each available content module. Unchecking a box removes the specified module
from the user's portal display, while checking a box adds the specified module. All the values used to
populate this page come from the client variables associated with the user. Clicking on the Save
button at the bottom of the page self-posts the changes, and the user's client variables are updated
with the new values.

Figure 7-7. Customizing the portal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the user came to the template by clicking on one of the Remove links on the index.cfm page, the
client variable controlling the display of that particular content module is set to No, so that it is no

longer displayed. Regardless of how the user arrived, once the template has finished executing, the
user is sent back to the index.cfm template via a cflocation tag.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Security
Security is a key part of any web application. As more and more aspects of daily life are conducted
online, users want to be sure that the information they provide to web applications is handled
securely. On the flip side, businesses want to make sure that the people who use their web
applications are who they say they are. In this chapter, we'll cover two keys aspects of security:
authentication and authorization. Authentication is the process of verifying the identity of a user,
while authorization is the process of limiting access to resources to particular users.

In this chapter, we'll look at two approaches to application security. The first approach uses a
combination of database tables and application code to manage authentication and user entitlements,
in effect implementing security from scratch. Because the Application.cfm template is automatically
invoked with each page request, it is the ideal place to handle security tasks in your ColdFusion
applications. The second approach uses ColdFusion MX's new security tags and functions for
authenticating users and authorizing access to resources. Each method has its pros and cons, which
will be discussed.

Note that there is Sandbox Security within ColdFusion, but it has a different purpose than the
application-level security we'll be discussing in this chapter. Sandbox Security is configurable only
from within the ColdFusion Administrator and is used to control access to various ColdFusion
resources such as CFML templates, tags, functions, data sources, etc. For more information on
Sandbox Security, refer to the Macromedia documentation specific to your flavor of ColdFusion MX.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 Security Basics

Before we dive into the different security techniques, let's look at some general dos and don'ts to
consider when designing and implementing a security solution for your ColdFusion applications:

Don't base security solely on a user's IP address. IP addresses are easily spoofed and can often
change during a user's session (especially in the case of AOL users because of the way AOL's
network works). Additionally, dialup users most likely won't have the same IP address the next
time they dial in and use your application because most ISPs use DHCP.

Do use SSL wherever necessary to encrypt the session between the server and the browser.
Because SSL is handled at the web-server level and not by ColdFusion, you need to consult the
documentation for your particular web server to determine how to set it up.

Do require users to choose passwords that aren't easily guessed or found in the dictionary. If
possible, require users to choose a password that contains a combination of letters, numbers,
and possibly symbols. One way to handle this is by automatically assigning passwords to users.
If you let users choose their own passwords, you can still ensure they contain certain characters
by using ColdFusion ReFind() function (described in Chapter 18).

Do include error and exception handling in your applications to prevent users from receiving
server and application information when an error or exception occurs. These concepts are
covered in Chapter 9.

Don't store passwords as clear text if you store them in a database or LDAP directory. Use the
Hash() function or some other method to obfuscate the password before storing it.

Don't pass usernames and passwords from template to template in URLs or as hidden form
fields because this increases the potential for compromise. Use session variables to store and
pass usernames and passwords from template to template, because they are stored in the
ColdFusion server's memory and expire when a user's session expires.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 Implementing Security from Scratch

As I mentioned in the introduction, it is entirely possible and quite easy to build a robust security
model using nothing more than a simple database table and a small bit of CFML code. Consider the
portal example we created at the end of Chapter 7. This application is the perfect candidate for
implementing security from scratch.

If you refer back to Chapter 7 for a moment, to Figure 7-5, you'll remember that we said security for
the portal could be handled by two templates: Application.cfm and login.cfm. Both authentication and
authorization functions are handled by these templates. If you look at Figure 8-1, you'll see the basic
flow of the authentication/authorization process. Note that this view differs slightly from the one in
Chapter 7 due to the addition of a new template that handles user registration. Don't worry about
this template for the time being; we'll get to it soon enough.

Figure 8-1. Security scheme for the portal application

8.2.1 Creating a Simple Security Table in the Database

The first step to building security into the portal application is to create a database to store
username, password, and role information. Table 8-1 shows the schema for a single table called
Users that will store our profile and security information.

Table 8-1. Setup for the user security table

Field name Field type Max length

Username (primary key) Text 50

Salt Text 12

Password Text 50

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Field name Field type Max length

FullName Text 255

Roles Text 255

The field names should be self-descriptive. In our table, Username holds an individual's username,
and the Password field stores the user's password. Because it isn't a good idea to store passwords as

plain text in the database, we'll be storing salted hashes (a type of one-way encryption) of the
passwords instead. The Salt and Password fields are used in combination to make this possible.
We'll cover how this works later in the chapter. We decided to include a field called FullName to store
the full name of the user associated with the Username and Password. The Roles field stores a

comma-delimited list of roles the user is assigned.[1] This table is about as bare bones as you can
get. You could easily expand it to include all sorts of additional profiling information such as the user's
address, phone number, email address, etc.

[1] Roles are stored as a comma-delimited list here as a matter of convenience and simplicity. In a real-world
situation, where you could have numerous roles, it would probably be more appropriate to add two additional
tables, one to store roles, and another to act as a lookup table matching usernames to roles.

8.2.2 Setting Up the Application.cfm Template

Now that we have a security table, we need an Application.cfm template to serve as the foundation
for our security model. In Chapter 7, we designed an Application.cfm template to handle security for
our portal application. We are going to use the same Application.cfm template here, with one minor
modification. Example 8-1 shows the modified code for our Application.cfm template.

Example 8-1. Application.cfm file for setting up application security

<cfsilent>
<cfapplication name="MyPortal" clientmanagement="Yes"
 sessionmanagement="Yes" setclientcookies="Yes"
 sessiontimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 applicationtimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 clientstorage="Registry">

<!--- Set the default session state to false, meaning that by default,
 users are not logged into the application --->
<cflock name="sLogin_Lock" type="Exclusive" timeout="10">
 <cfparam name="session.LoggedIn" default="false">
</cflock>

<!--- If the user isn't logged in or they aren't currently on the login
 page or registration page, send them to the login page --->
<cflock name="sLogin_Lock" type="ReadOnly" timeout="10">
 <cfif (not session.LoggedIn) and
 (CGI.script_name is not "/programmingcf/examples/7/portal/login.cfm") and
 (CGI.script_name is not "/programmingcf/examples/7/portal/registration.cfm")>
 <cflocation URL="login.cfm" addtoken="No">
 </cfif>

FullName Text 255

Roles Text 255

The field names should be self-descriptive. In our table, Username holds an individual's username,
and the Password field stores the user's password. Because it isn't a good idea to store passwords as

plain text in the database, we'll be storing salted hashes (a type of one-way encryption) of the
passwords instead. The Salt and Password fields are used in combination to make this possible.
We'll cover how this works later in the chapter. We decided to include a field called FullName to store
the full name of the user associated with the Username and Password. The Roles field stores a

comma-delimited list of roles the user is assigned.[1] This table is about as bare bones as you can
get. You could easily expand it to include all sorts of additional profiling information such as the user's
address, phone number, email address, etc.

[1] Roles are stored as a comma-delimited list here as a matter of convenience and simplicity. In a real-world
situation, where you could have numerous roles, it would probably be more appropriate to add two additional
tables, one to store roles, and another to act as a lookup table matching usernames to roles.

8.2.2 Setting Up the Application.cfm Template

Now that we have a security table, we need an Application.cfm template to serve as the foundation
for our security model. In Chapter 7, we designed an Application.cfm template to handle security for
our portal application. We are going to use the same Application.cfm template here, with one minor
modification. Example 8-1 shows the modified code for our Application.cfm template.

Example 8-1. Application.cfm file for setting up application security

<cfsilent>
<cfapplication name="MyPortal" clientmanagement="Yes"
 sessionmanagement="Yes" setclientcookies="Yes"
 sessiontimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 applicationtimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 clientstorage="Registry">

<!--- Set the default session state to false, meaning that by default,
 users are not logged into the application --->
<cflock name="sLogin_Lock" type="Exclusive" timeout="10">
 <cfparam name="session.LoggedIn" default="false">
</cflock>

<!--- If the user isn't logged in or they aren't currently on the login
 page or registration page, send them to the login page --->
<cflock name="sLogin_Lock" type="ReadOnly" timeout="10">
 <cfif (not session.LoggedIn) and
 (CGI.script_name is not "/programmingcf/examples/7/portal/login.cfm") and
 (CGI.script_name is not "/programmingcf/examples/7/portal/registration.cfm")>
 <cflocation URL="login.cfm" addtoken="No">
 </cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cflock>

<cfif IsDefined('URL.Logout') and URL.Logout>
 <!--- Terminate the user's session by deleting all session variables --->
 <cflock scope="session" type="Exclusive" timeout="10">
 <cfset StructClear(session)>
 </cflock>

 <cflocation URL="Login.cfm?Message=#URLEncodedFormat("Thank you for logging
 out. Please visit again soon!")#" addtoken="No">
</cfif>

<!--- Reset the CFID and CFToken cookies to expire session and client
 variables after the user's browser closes. This is not necessary
 if you are using J2EE session Management. --->
<cfif IsDefined("cookie.CFID") and IsDefined("cookie.CFToken")>
 <cfcookie name="CFID" value="#cookie.CFID#">
 <cfcookie name="CFToken" value="#cookie.CFToken#">
</cfif>

<!--- Check to see if the application has been initialized. If not, set the
 necessary application variables and initialize the app --->
<cflock timeout="30" throwontimeout="No" type="ReadOnly" scope="Application">
 <cfset IsInitialized = IsDefined('application.Initialized')>
</cflock>

<cfif not IsInitialized>
 <cflock type="Exclusive" scope="Application" timeout="10">
 <cfif not IsDefined('application.Initialized')>
 <cfset application.DSN = "ProgrammingCF">
 <cfset application.AdminEmail = "webmaster@example.com">
 <cfset application.Initialized = true>
 </cfif>
 </cflock>
</cfif>

<!--- Set default values for client variables --->
<cfparam name="client.Email" default="Yes">
<cfparam name="client.Stocks" default="Yes">
<cfparam name="client.News" default="Yes">
<cfparam name="client.Bookmarks" default="Yes">
<cfparam name="client.BGColor" default="FFFFFF">
<cfparam name="client.FontFace" default="Arial">
<cfparam name="client.HeaderFontColor" default="000000">
<cfparam name="client.HeaderBGColor" default="6666FF">
<cfparam name="client.FontColor" default="000000">
</cfsilent>

Once we name the application and set up session and application variable management, the next
thing to do is make sure all users are logged out by default. This is accomplished by creating a
session variable called session.LoggedIn and setting it to false. This ensures that any user request

to a template governed by the Application.cfm template from a user who isn't yet logged in will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

treated as such. The next bit of code says that if session.LoggedIn is false, and the user isn't

currently in one of the login, validation, registration, or registration-processing templates, the user
isn't logged in and should be redirected to the login screen. The addition of the registration form and
registration-processing template to the list of templates exempt from the login requirement is the
only difference between this Application.cfm template and the one from Chapter 7. This is the most
important part of this type of security model, as it determines who is logged in and who isn't and
responds appropriately. If session.LoggedIn is true, we know that the user has successfully logged

in.

The next action taken by the Application.cfm template is to take the CFID and CFTOKEN cookies set by

ColdFusion and reset them to their current values. Doing this changes the expiration date of the
cookies used by ColdFusion to maintain session state so that they expire as soon as the user closes
his or her browser. This prevents the potentially negative consequences of a user's session persisting
after they have closed their browser.

The final section of this Application.cfm template checks for the existence of an application variable
called Application.Initialized. If it doesn't exist (which it won't the first time a CFML template is

invoked), ColdFusion responds by setting a number of constants for the application. After the
constants are set, Application.Initialized is set to true so the next time the Application.cfm

template is called, it isn't necessary to set all the constants again (since you only need to set
application variables once).

8.2.3 Creating Login and Registration Screens

The portal application is designed so that an anonymous user (a user who is not authenticated)
attempting to access the portal is automatically redirected to a login screen, unless the user is
already on the login screen or registering to become a user of the portal. A template containing a
self-posting form handles the login process. The form collects the user's username and password and
posts the data to itself for processing. Because this is a portal application, it's appropriate to allow
users who aren't yet registered with the site to enroll themselves. To do this, a link to a registration
form (registration.cfm) is provided. Example 8-2 shows the code for the login.cfm template.

Example 8-2. login.cfm template for authenticating users

<cfif CGI.request_method is "Post">
 <cfquery name="ValidateUser" datasource="#application.DSN#">
 SELECT FullName, Salt, Password
 FROM Users
 WHERE Username = <cfqueryparam value="#form.UserName#"
 cfsqltype="CF_SQL_VARCHAR"
 maxlength="255">
 </cfquery>

 <!--- If the login is successful, log the user in. Otherwise, redirect
 them back to the login.cfm page --->
 <cfif (ValidateUser.RecordCount eq 1) and
 (ValidateUser.Password is Hash(ValidateUser.Salt & form.Password))>
 <!--- Set session.LoggedIn to true, logging the user in --->
 <cflock name="sLogin_Lock" timeout="30" type="Exclusive">
 <cfset session.LoggedIn = true>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfset session.FullName = ValidateUser.FullName>
 </cflock>
 <!--- If save username box is checked, set cookie --->
 <cfif IsDefined('form.SaveUsername')>
 <cfcookie name="Username" value="#form.Username#">
 </cfif>
 <!--- Redirect the user to the index.cfm page of our application --->
 <cflocation URL="index.cfm" addtoken="No">
 <cfelse>
 <!--- Redirect the user back to the login page and display the error
 message --->
 <cflocation URL="login.cfm?Message=#UrlEncodedFormat("Invalid Login.
 Please Try Again")#&username=#form.Username#" addtoken="No">
 </cfif>
<cfelse>
 <cfparam name="form.Username" default="">

 <cfif IsDefined('cookie.Username')>
 <cfset form.Username = cookie.Username>
 </cfif>

 <!--- If there was an invalid login, reuse the username --->
 <cfif IsDefined('URL.Username')>
 <cfset form.Username = URL.Username>
 </cfif>

 <div align="center">
 <h2>Portal Login</h2>
 <cfif IsDefined('URL.Message')>
 <cfoutput>#Trim(URL.Message)#</cfoutput>
 <p>
 </cfif>

 <cfoutput>
 <form name="ValidateUser" action="#CGI.script_name#" method="Post">
 </cfoutput>
 <input type="hidden" name="Username_required"
 value="You must supply a username">
 <input type="hidden" name="Password_required"
 value="You must supply a password">
 <table border="0">
 <tr>
 <td>Username:</td>
 <td>
 <cfoutput>
 <input type="Text" name="Username" size="15"
 maxlength="255" value="#form.Username#">
 </cfoutput>
 </td>
 </tr>
 <tr>
 <td>Password:</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><input type="Password" name="Password" size="15" "maxlength="255"></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="Checkbox" name="SaveUsername"
 value="Yes">Remember my username for future logins</td>
 </tr>
 <tr>
 <td colspan="2" align="Center">
 <input type="Submit" name="Submit" value="Submit">
 </td>
 </tr>
 </table>
 </form>
 *This site is for registered users. If you are not currently a member,
 you may register here.
 </div>
</cfif>

This template creates a simple login screen that allows the user to enter a username and password
(Figure 8-2). The password field uses the HTML password form control so that the user's password is
obfuscated as it is typed.

Figure 8-2. login.cfm template for logging in to the portal

When this form is submitted, the information is posted to the login.cfm template for processing (we'll
discuss the authentication process in the next section, when we discuss authenticating users). If the
user doesn't yet have an account, however, and wishes to register for one, he may do so by clicking
on the "register here" link at the bottom of the page. Doing so takes the user to the registration
form, registration.cfm, shown in Example 8-3.

Example 8-3. registration.cfm template for enrolling users

<cfif CGI.request_method is "Post">
 <!--- Check to see that passwords match in case the user had JavaScript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 disabled --->
 <cfif form.Password neq form.Password2>
 The passwords you entered on the registration screen do not match. Please
 hit your browser's back button and try again.
 <cfabort>
 </cfif>

 <!--- Check to make sure the username (the primary key) doesn't already
 exist. If it does, make the user go back and enter a different
 username --->
 <cfquery name="CheckPK" datasource="#application.DSN#">
 SELECT Username
 FROM Users
 WHERE Username = <cfqueryparam value="#form.UserName#"
 cfsqltype="CF_SQL_VARCHAR"
 maxlength="255">
 </cfquery>
 <cfif CheckPK.RecordCount GT 0>
 <cflocation URL="Registration.cfm?Message=#URLEncodedFormat("The
 username you chose already exists, please choose a different
 username.")#&FullName=#URLEncodedFormat(form.FullName)#"
 addtoken="No">
 </cfif>

 <!--- Create Salt for the password hash --->
 <cfset Salt="">
 <cfloop index="i" from="1" to="12">
 <cfset Salt = Salt & chr(RandRange(65,90))>
 </cfloop>

 <!--- Insert the user profile, into the database. Note that the
 password is salted and then hashed using the Hash() function --->
 <cfquery name="AddUser" datasource="#application.DSN#">
 INSERT INTO Users(FullName, Username, Salt, Password)
 VALUES('#form.FullName#', '#form.Username#', '#Salt#',
 '#Hash(Salt & form.Password)#')
 </cfquery>

 <cflocation URL="login.cfm?Message=#URLEncodedFormat("Profile successfully
 created. Please login below")#" addtoken="No">
<cfelse>
 <cfparam name="form.FullName" default="">

 <!--- Function that ensures passwords match and that they aren't blank --->
 <script language="JavaScript">
 function formCheck()
 {
 if (document.PortalRegistration.Password.value !=
 document.PortalRegistration.Password2.value) {
 alert("The passwords you entered do not match. Please reenter them.");
 document.PortalRegistration.Password.value = '';
 document.PortalRegistration.Password2.value = '';

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return false;
 }
 if (document.PortalRegistration.Password.value = = "" ||
 document.PortalRegistration.Password2.value = = "") {
 alert("You can not leave either password field blank.");
 return false;
 }
 }
 </script>

 <div align="Center">
 <h2>Portal Account Registration</h2>
 <cfif IsDefined('URL.Message')>
 <cfoutput>#URL.Message#</cfoutput>
 <p>
 </cfif>

 <cfoutput>
 <form name="PortalRegistration" action="#CGI.script_name#" method="POST"
 onSubmit="return formCheck()">
 </cfoutput>
 <input type="hidden" name="FullName_required"
 value="You must supply a Name for the user">
 <input type="hidden" name="Username_required"
 value="You must supply a username">
 <input type="hidden" name="Password_required"
 value="You must supply a password">

 <table border=0>
 <tr>
 <td>Full Name:</td>
 <td><cfoutput><input type="Text" name="FullName" size="15" maxlength="255"
 value="#form.FullName#"></cfoutput>
 </td>
 </tr>
 <tr>
 <td>Username:</td>
 <td>
 <input type="Text" name="Username" size="15" maxlength="50">
 </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td>
 <input type="Password" name="Password" size="15" maxlength="50">
 </td>
 </tr>
 <tr>
 <td>Confirm Password:</td>
 <td>
 <input type="Password" name="Password2" size="15" maxlength="50">
 </td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 <tr>
 <td colspan="2" align="Center">
 <input type="Submit" name="Submit" value="Submit">
 </td>
 </tr>
 </table>
 </form>
 </div>
</cfif>

This template creates a self-posting form that takes four inputs: Full Name, Username, Password,
and Confirm Password (Figure 8-3). The reason for two password fields is to ensure that the person
entering the password gets it right (since the password is obfuscated by asterisks when it is typed).

Figure 8-3. registration.cfm template for the portal application

When the form is submitted, a JavaScript onSubmit event handler is invoked from the form tag. This
event handler calls a short JavaScript function called formCheck() at the beginning of our template.

Note that JavaScript is case sensitive, so it is important to reference field names and other functions
with the proper case. The formCheck() function checks to see that the values entered for Password
and Confirm Password (Password2) are the same and that they aren't blank. If either test fails, a

JavaScript alert box pops up letting the user know. After the user clicks the OK button, the function
clears the Password and Confirm Password fields and returns the user to the form so that he can
reenter the password. If both passwords match, the form information is submitted back to the
registration.cfm template.

The form processing code in the template has two functions. The first is to ensure that the passwords
passed from the entry form match. Even though this task was handled by our JavaScript function in
the entry form, there are instances where a user's browser doesn't support JavaScript or has it
disabled. In case of this, we provide a server-side check by checking to see if Form.Password and
Form.Password2 are the same. If they aren't, a message is displayed to the user telling him to hit

the back button on his browser and reenter the passwords, and processing of the template is halted.

If the passwords do match, a cfquery is executed to insert the information from the form into the

database. Before the password is inserted, a randomly generated 12-character string called a salt is
generated and concatenated with the form.Password value. The resulting "salted" string is then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hashed using ColdFusion's Hash() function. The Hash() function encrypts a string one way using

the MD5 hash algorithm. The resulting string is a 32-character hexadecimal representation of the
original string. Because the MD5 algorithm is a one-way hash, there is no way to decrypt the
encrypted string. This makes it ideal for storing passwords in database tables, where you wouldn't
want anyone to be able to open a table and view a list of user passwords. You should note, though,
that using hashes makes it impossible to implement a system for recovering a lost or forgotten
password. When dealing with hashes, you'll need to reset a user's password should he forget it.

Salting the password before hashing it makes it virtually impossible to launch a successful dictionary-
style attack against the hashed password values stored in the database, because an attacker would
have to try all of the possible salt values for each hash value in their dictionary. In our example, we
use a 12-character string consisting of uppercase letters from A to Z. This means there are 2612

possible salt combinations for each password!

Let's go ahead and add two records to the database using the form we just created. Use the data
supplied in Table 8-2.

Table 8-2. User profile information to enter for security table

Username Password FullName

gcorcoran dog Greg Corcoran

pmoney cat Pere Money

Once you have entered the data, open up your database and look at the data you just entered.
Notice that each Password field is populated with a 32-character string (as shown in Table 8-3).
These strings are the hashed versions of the passwords you initially entered. Note that the Salt and
Password values shown in Table 8-3 will differ from what you see in your database table due to the
fact that the Salt is randomly generated. We'll cover how to validate a password entered by a user

on the login screen against the hashed value stored in the database in a few moments.

Table 8-3. User profile as it appears in the database after having the
passwords salted and hashed

Username Salt Password FullName

gcorcoran TLQKYTPRJKSW CAFC92F41D23D58CEA80E0EA3061F71B Greg Corcoran

pmoney LUMLATYEFUHR 3CD608EBCB054FD49079A18CD9680432 Pere Money

8.2.4 Authenticating Users

Once a user is registered for our portal, the next step is to allow him to log in to the system. You've
already seen the login form from Example 8-2. When a user enters a username and password in the
login form and clicks the submit button, the information is self-posted back to the login.cfm template.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The form processing code in Example 8-2 queries the Users table of the database using the
username posted by the login form in Example 8-2 as parameters for the WHERE clause. Because the

password stored in the database is a salted hash of the user's password, we need a way to make
sure the password entered in the login form matches the password stored in the database. This is
done by looking up the salt value for the username entered in the login form, concatenating it with
the password entered in the login form, hashing the concatenated string, and then comparing it with
the hashed value stored in the database. If a record was found for the username entered in the login
form, and the salted, hashed password matches the value stored in the database, we consider this a
valid login and set the session variable session.LoggedIn to true.

Next, a check is performed to see whether the user checked the "Remember my username for future
logins" box. If so, her username (form.Username) is stored in a cookie called Username. The user is

then redirected to our portal's index.cfm template (Example 7-3 in Chapter 7). If no records are
found, ValidateUser.RecordCount evaluates to 0. At this point, we know that the

username/password combination is invalid, so we redirect the user back to the login page where the
message "Invalid Login. Please Try Again" is displayed along with the login form. As a courtesy to
users, the Username box is populated with the username originally submitted by the form. This is
accomplished by passing the Username back as a URL variable.

As you can see, it really wasn't much work to add basic security features to our portal application. We
simply made a database table to hold our user profiles and created a few simple CFML templates to
handle the authentication and authorization functions required for the application.

8.2.5 Securing Non-CFML Files

The security model we used in our portal application works well for controlling access to CFML
templates, but what about other types of files, such as HTML templates, Microsoft Word documents,
or Adobe PDF files? The problem is that if you place any file type other than a CFML template in a
directory under the control of the security model, the user can still access the file by entering its URL,
because the Application.cfm template is included only for CFML templates. Because these files aren't
parsed by ColdFusion, they aren't subject to the control of our security model. So, how can you
secure non-CFML files while still using the security model?

The trick is to store the files you want to secure in a directory above your web root directory where
they can't be accessed by a URL. For example, if your web root directory is c:\inetsrv\wwwroot, you
can store the files you wish to secure in c:\inetsrv, c:\inetsrv\securedfiles, c:\securedfiles, or any
other directory above c:\inetsrv\wwwroot, keeping the files inaccessible via URL provided you don't
create a virtual directory to any of those directories.

Since files stored above the web root are inaccessible via URL, you need to use another method to
retrieve them. This is where the cfcontent tag comes in. The cfcontent tag sends content (in this

case a file) of a specified MIME type to the browser. This allows you to grab the file from its location
above the web root and send it to the user's browser. The cfcontent tag accepts the following

attributes:

<cfcontent type="MIME_type"
 file="filename"
 reset="Yes|No"
 deletefile="Yes|No">

The type attribute is required and specifies the MIME type or character set of the content to be sent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the browser. file is optional and specifies the name of the file being sent to the browser. The
reset attribute is another optional attribute and accepts a Yes/No value. Specifying Yes results in the
suppression of any output preceding the call to the cfcontent tag, while No preserves the output.
The reset attribute is ignored if a value is specified for file. The default is Yes. The final attribute,
deletefile, is also optional and determines whether to delete the file after it has been sent to the
browser. deletefile is valid only if a file is specified in the file attribute. The default is No.

To demonstrate how the cfcontent tag can retrieve secured files, look at the code in Example 8-4.

The template creates three hyperlinks, one for a Word document, one for a PDF file, and one for an
HTML file.

Example 8-4. Displaying a menu of secured files

<!--- You may use other files here. Simply change the file name and MIME
 type to match the file you wish to use --->
<cfset File1 = "MyDocument.doc">
<cfset MIME1 = "application/msword">
<cfset File2 = "MyPDF.pdf">
<cfset MIME2 = "application/pdf">
<cfset File3 = "MyHTML.htm">
<cfset MIME3 = "text/html; charset=utf-8">

<h2>Secure File Download</h2>
<cfoutput>
<table>
<tr>
 <td><a href="display.cfm?Filename=#URLEncodedFormat(File1)#&
MIMEType=#URLEncodedFormat(MIME1)#">Word Document</td>
</tr>
<tr>
 <td><a href="display.cfm?Filename=#URLEncodedFormat(File2)#&
MIMEType=#URLEncodedFormat(MIME2)#">PDF Document</td>
</tr>
<tr>
 <td><a href="display.cfm?Filename=#URLEncodedFormat(File3)#&
MIMEType=#URLEncodedFormat(MIME3)#">HTML File</td>
</tr>
</table>
</cfoutput>

Although the list in this example is static, you can imagine how to easily pull the information used to
construct the list from a database. This allows you to basically control who sees what file. Each link
points to a template called display.cfm, shown in Example 8-5. Two URL parameters are appended to
each link. The first parameter, Filename, specifies the filename (including extension) of the file you
want to download or display. The second URL parameter is MIMEType and specifies the MIME type of

the file. You'll see why this is important in a moment. For now, look at the output generated by the
template, shown in Figure 8-4.

Figure 8-4. Displaying links to secured files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clicking on any of the links generated by Example 8-4 passes the associated URL parameters to the
display.cfm template in Example 8-5.

Example 8-5. Displaying secured files using cfcontent

<!--- Check to make sure the filename and mime type were passed in
 before processing --->
<cfif IsDefined('URL.MIMEType') and IsDefined('URL.FileName')>
 <!--- send the specified file to the browser. You will need to store
 your files in a directory called c:\SecuredFiles for this
 example to work. If you wish to use a different directory,
 change the directory name In the file attribute of the cfcontent
 tag. --->
 <cfcontent type="#URL.MIMEType#"
 file="c:\SecuredFiles\#URL.Filename#">
<cfelse>
 <h2>The specified file does not exist</h2>
</cfif>

When the display.cfm template receives the Filename and MIMEType URL parameters, it uses them
to dynamically populate the type and file attributes of the cfcontent tag. If the user clicks on the
hyperlink to the Word document, the cfcontent tag retrieves the Word document and returns it to

the browser. If the user has Word associated with the web browser, Word should launch
automatically and display the document. If not, a Save As dialog box should pop up, allowing the user
to save the Word document to his system. If the user clicks on the hyperlink to the Adobe PDF
document and has the Adobe Acrobat reader installed on the system, the PDF file should
automatically display in the browser. If Acrobat reader isn't installed, the same Save As dialog box
appears. Finally, if the user clicks on the link to the HTML file, the cfcontent tag retrieves it and

displays it directly in the browser.

The technique presented here isn't the only way to use the cfcontent tag to serve secured files.

Instead of passing the filename and MIME type in the URL, you could pass a file ID (such as a UUID)
and use it to look up a database record containing the filename and MIME type as well as any
additional information such as the directory on the server where the file is stored. Regardless of the
technique you use, it is important to make sure you control access to the template(s) used to
retrieve the secured files.

8.2.6 Levels of Access

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The security model we've been discussing is great for granting and denying access to an application
based on a user login. If a user is granted access, she is given access to the entire application and all
its functionality. There are instances, however, where you might want to grant different levels of
access to an application depending on who the user is. This can be handled easily in the security
model we just described with the introduction of a few additional lines of code and the Roles field we

created in our Users database table. In each template of your application, include a bit of logic to
check the user's session.Roles against the role required for access to the page or section of code.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.3 Taking Advantage of ColdFusion MX's New Security
Framework

Before we get into the new security framework in ColdFusion MX, it's important that we cover a few
important changes from previous versions of ColdFusion. In versions prior to MX, ColdFusion supported
a set of Advanced Security services that integrated with an OEM version of Netegrity's popular
SiteMinder (Version 3.51 for ColdFusion 4.5.x and Version 4.11 for ColdFusion 5.0) security product for
providing granular control within ColdFusion applications. Advanced Security was a bear to use and a
nightmare to administer, to say the least. Macromedia dropped the Advanced Security services in
ColdFusion MX in favor of a simpler system that uses Java as the underlying service.

This system makes uses of several new tags and functions to provide authentication and authorization
functionality in your applications. Additionally, the new system is roles based, meaning that group-level
permissions are inherent in its design. To get an idea of just how this new system works and how it
differs from the security framework we built in the previous section, let's rework our portal application
to make use of ColdFusion MX's built-in security framework. We'll start by rewriting the authentication
piece of the portal.

8.3.1 Authenticating Users

ColdFusion MX supports two different types of authentication, application-based and HTTP (web
server)-based. We'll cover both methods in this chapter, but I'd like to start out with a discussion of
application-based authentication as it's the method that ColdFusion MX's security framework was
primarily designed around.

8.3.1.1 Application-based authentication

In the previous section, we used a session-based mechanism for authenticating and authorizing portal
users. With ColdFusion MX's security framework, a session-based model is no longer necessary.
Instead, two tags, cflogin and cfloginuser , are used to authenticate a user and log that person

into the system. Most commonly, these tags are used in an Application.cfm template to provide the
security framework for an entire application. As such, let's rewrite the Application.cfm template for our
portal application to use these new tags. The code for our new Application.cfm template can be seen in
Example 8-6 .

Example 8-6. Application.cfm template for implementing advanced
security

<cfapplication name="MyPortal" clientmanagement="Yes"
 sessionmanagement="Yes" setclientcookies="Yes"
 sessiontimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 applicationtimeout="#CreateTimeSpan(0, 0, 30, 0)#"
 clientstorage="Registry" loginstorage="Session">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Check to see if the application has been initialized. If not, set the
 necessary application variables and initialize the app --->
<cflock timeout="30" throwontimeout="No" type="ReadOnly" scope="Application">
 <cfset IsInitialized = IsDefined('application.Initialized')>
</cflock>

<cfif not IsInitialized>
 <cflock type="Exclusive" scope="Application" timeout="10">
 <cfif not IsDefined('application.Initialized')>
 <cfset application.DSN = "ProgrammingCF">
 <cfset application.AdminEmail = "webmaster@example.com">
 <cfset application.Initialized = true>
 </cfif>
 </cflock>
</cfif>

<!--- set default values for client variables --->
<cfparam name="client.Email" default="Yes">
<cfparam name="client.Stocks" default="Yes">
<cfparam name="client.News" default="Yes">
<cfparam name="client.Bookmarks" default="Yes">
<cfparam name="client.BGColor" default="FFFFFF">
<cfparam name="client.FontFace" default="Arial">
<cfparam name="client.HeaderFontColor" default="000000">
<cfparam name="client.HeaderBGColor" default="6666FF">
<cfparam name="client.FontColor" default="000000">

<!--- If the user clicked the logout link, log them out --->
<cfif IsDefined("URL.Logout")>
 <!--- Log out the user --->
 <cflogout>

 <cfset URL.Message="Thank you for logging out. Please visit again soon!">
</cfif>

<cflogin idletimeout="1800" applicationtoken="MyPortal"
 cookiedomain="example.com">
 <!--- If the cflogin structure does not exist, send the user to the login
 form. --->
 <cfif not IsDefined("cflogin")>
 <cfinclude template="login.cfm">
 <cfabort>
 <!--- Validate the user and assign roles --->
 <cfelse>
 <!--- If for some reason username or password is blank, send the user back
 to the login form. --->
 <cfif cflogin.Name is "" or cflogin.Password is "">
 <cfset URL.Message = "You must enter text in both the Username and Password
 fields">
 <cfinclude template="login.cfm">
 <cfabort>
 <!--- Perform the user validation --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfelse>
 <cfquery name="ValidateUser" datasource="#application.DSN#">
 SELECT FullName, Salt, Password, Roles
 FROM Users
 WHERE Username = <cfqueryparam value="#cflogin.Name#"
 cfsqltype="CF_SQL_VARCHAR"
 maxlength="255">
 </cfquery>

 <!--- If the username and salted hashed password match, the user is
 authenticated and their role(s) assigned --->
 <cfif (ValidateUser.RecordCount) and
 (ValidateUser.Password is Hash(ValidateUser.Salt & cflogin.Password))>
 <!--- If the user has no assigned roles, assign them to the generic
 "user" role. --->
 <cfif ValidateUser.Roles is "">
 <cfset ValidateUser.Roles = "User">
 </cfif>

 <cfloginuser name="#cflogin.Name#" password="#cflogin.Password#"
 roles="#ValidateUser.Roles#">
 <cflock name="sLogin_Lock" timeout="30" type="Exclusive">
 <cfset session.FullName = ValidateUser.FullName>
 </cflock>

 <!--- If save username box is checked, set cookie --->
 <cfif IsDefined('form.SaveUsername')>
 <cfcookie name="Username" value="#cflogin.Name#">
 </cfif>
 <cfelse>
 <cfset URL.Message = "Invalid Login. Please Try Again">
 <cfinclude template="login.cfm">
 <cfabort>
 </cfif>
 </cfif>
 </cfif>
</cflogin>

This Application.cfm template differs from the one we previously created for our portal application
(Example 8-1) in a number of ways. The cfapplication tag establishes an application called
MyPortal . Session and client management are enabled, and session and application timeouts of 30

minutes are set. Application and client variable defaults are set just as they were in our first portal
example.

The optional loginstorage attribute is new in ColdFusion MX 6.1. It specifies whether login information
associated with the cflogin scope should be stored in a cookie or session variable. If the attribute is
set to session , the login is tied directly to a user's ColdFusion session and it remains active for as long
as the session exists. If it is set to cookie (the default), the cflogin scope is stored in a cookie, and
the session timeout is not tied to the user's ColdFusion session. In this case, we tie the cflogin scope

to the session scope.

Next, a check for a URL variable called URL.Logout is made. If the variable exists, we know that the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user clicked on the logout link in the portal application, so we need to log that person out. In our
session-based application, we simply cleared the contents of the session structure, which essentially

deleted the user's session, causing him to be logged out of the system. In our new security framework,
however, we aren't using session variables to determine whether a user is logged in or not, so we need
a different way to log a person out. Here's where the cflogout tag comes into play. cflogout is a new

tag in ColdFusion MX. Its sole purpose is to log a user out of ColdFusion MX's security framework. If a
cflogout tag is not used, a user is automatically logged out when his ColdFusion session times out or
when his cflogin "session" ends as defined by the idletimeout attribute in the cflogin tag, which

we'll cover in just a moment. After the user is logged out, we still clear the session structure, because
session variables are used to store the user's full name.

The next part of the Application.cfm template is where the actual user authentication is performed. The
first thing you should notice is the cflogin tag. cflogin is new in ColdFusion MX and acts as a
container for ColdFusion MX's built-in security framework. The cflogin tag provides a facility for

authenticating users against a database, an LDAP directory, or another authentication store. The body
of the tag gets executed only if the user is not logged in. Code to authenticate the user, such as a
database or cfldap query, is executed within the cflogin tags. A cfloginuser tag is used to

establish the user's identity and any roles he might have. In this case, we're going to use the same
database query we used in the first portal application, only with a slight twist.

Notice that the cflogin tag has three attributes, idletimeout , applicationtoken , and
cookiedomain . All three attributes are optional. idletimeout specifies the number of seconds of idle

time (no page interactivity) ColdFusion should wait before logging the user off. The default is 1,800 (30
minutes). When the cflogin tag is used in conjunction with the cfloginuser tag and the
loginstorage attribute of the cfapplication tag is set to cookie , an in-memory cookie identifying

the security session is set. When the user closes his browser, this cookie is automatically destroyed,
effectively logging the user out within the context of the ColdFusion MX security framework. If
loginstorage is set to session , the lesser of the idletimeout value set in cfloginuser or the
session timeout period set in the cfapplication tag (or ColdFusion Administrator) is used to

determine the timeout value for the session. This behavior is new in ColdFusion MX 6.1; in ColdFusion
MX 6.0, the cflogin scope can only be tied to a cookie and not to the session scope. The
applicationtoken attribute specifies a unique identifier for the application that the security framework
should apply to. The default is the application name as specified in the name attribute of the
cfapplication tag. The final attribute, cookiedomain , specifies the domain for which the security

framework cookie can be read and written. Entries must always start with a dot. For example,
cookiedomain=".oreilly.com" is a valid entry. Multiple entries should be separated by semicolons.

The default is no domain restrictions.

The first thing that happens within the cflogin container in our code is a check for the existence of a
structure called cflogin . This structure exists only if HTTP Basic, HTTP Digest, or NTLM Authentication
is used, or if form or URL variables named j_username and j_password are used to pass the username
and password, respectively, to the cflogin tag. If so, a special scope structure named cflogin is

available that contains the following key/value pairs:

cflogin.Username

The username passed via HTTP Basic, HTTP Digest, or NTLM Authentication or a j_username

form or URL variable.
cflogin.Password

The password passed via HTTP Basic Authentication or a j_password form or URL variable. Both

HTTP Digest and NTLM Authentication do not usually supply the password. If you use either of
these methods, cflogin.Password usually contains an empty string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In order to take advantage of the cflogin scope, you must either use HTTP Basic, HTTP Digest, or

NTLM Authentication (via your web server) or name the username and password fields in your login
form j_username and j_password as I'll show you in just a moment. For now, the important thing to
note in our example is the check for the cflogin structure. If it doesn't exist, we know than no

username and password has been passed via our login form, so we redirect the user to a login form
using the cflocation tag.

If the cflogin structure does exist, we know that someone is trying to log in and has submitted a
username and password via our login form. If this is the case, we execute a cfquery to look up the

user in the database. We use the same salted, hashed password check we used in the first portal
security example to handle our user authentication. If the user doesn't check out, he is sent back to
the login form with a message to try again. If the user does authenticate, the cfloginuser tag is used

to identify the user to the ColdFusion MX security framework and to assign him access roles.
cfloginuser takes three required attributes: name for the username of the user, password for the
user's password, and roles for a comma-delimited list of roles for the user. Be sure that there are no

spaces between commas and list elements; otherwise, ColdFusion processes them as part of the list
element.

In our example, the Name and Password values stored in the cflogin structure are used to populate
the like-named attributes of the cfloginuser tag. The user's roles are pulled from the Roles field in
the Users table in our database. If the user doesn't have any roles assigned in the database, our
Application.cfm template sets a default role of User . Finally, a session variable is set that contains the

user's full name as pulled from the database. This completes our revised Application.cfm template.

With that out of the way, let's take a look at Example 8-7 , which contains the new login form for our
portal. You can replace the existing login.cfm template with this new version.

Example 8-7. Replacement login.cfm template

<cfparam name="form.j_username" default="">

<cfif IsDefined('cookie.Username')>
 <cfset form.j_username = cookie.Username>
</cfif>

<div align="center">
<h2>Portal Login</h2>
<cfif IsDefined('URL.Message')>
 <cfoutput>#Trim(URL.Message)#</cfoutput>
 <p>
</cfif>

<cfoutput>
<form name="ValidateUser" action="index.cfm" method="Post">
</cfoutput>
<input type="hidden" name="j_username_required"
 value="You must supply a username">
<input type="hidden" name="j_password_required"
 value="You must supply a password">
<table border="0">
<tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>Username:</td>
 <td>
 <cfoutput>
 <input type="Text" name="j_username" size="15"
 maxlength="255" value="#form.j_username#">
 </cfoutput>
 </td>
</tr>
<tr>
 <td>Password:</td>
 <td><input type="Password" name="j_password" size="15" "maxlength="255"></td>
</tr>
<tr>
 <td colspan="2">
 <input type="Checkbox" name="SaveUsername"
 value="Yes">Remember my username for future logins</td>
</tr>
<tr>
 <td colspan="2" align="Center">
 <input type="Submit" name="Submit" value="Submit">
 </td>
</tr>
</table>
</form>
*This site is for registered users. If you are not currently a member,
you may register here.
</div>

Because we are handling the actual authentication process in our Application.cfm template, it isn't
necessary to code any of that logic into our login form. All the login form needs to do now is provide a
place for the user to enter his username and password and submit the page. Note that the username
and password fields are named j_username and j_password respectively. This is necessary to make
use of the cflogin structure in the Application.cfm template.

The Application.cfm template handles all the form processing. The login form posts to the portal's
index.cfm page. This allows us to route the user to the main portal page upon successful login, as the
Application.cfm template with the authentication check runs before the index.cfm template executes. If
the user authenticates successfully, index.cfm is allowed to run. If authentication fails, index.cfm never
runs, and the user is sent back to the login form. With the Application.cfm and login.cfm templates
rewritten, you can go ahead and test them out to see how they handle the authentication tasks for the
portal. When you are finished, we'll look at how we can use this framework to control access to specific
pages or sections of code based on user roles.

8.3.1.2 HTTP authentication

As I mentioned earlier in the chapter, ColdFusion MX also supports HTTP-based authentication in
addition to, or combined with, application-based authentication. HTTP authentication is a standardized
authentication method supported by most web servers on the market. It's an HTTP-based mechanism
for prompting a user for username and password information and supplying those credentials to each
requested page via a standard HTTP header. HTTP authentication can easily be used in concert with
ColdFusion MX's security framework to provide the login prompt instead of using a standard HTML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

form.

In order to make use of HTTP authentication, you use the cfheader tag to pass two standard HTTP

headers to the user's browser. The first header should specify a 401 status code (Unauthorized); the
second should pass the header WWW-Authenticate: Basic realm=" My Realm " . This causes the

browser to pop up a standard HTTP username/password dialog box. When submitted, the information
entered in the dialog box is automatically passed to the cflogin structure and is available as
cflogin.Username and cflogin.Password , respectively. You should note that when using HTTP Basic

Authentication, username and password values are Base64 encoded and passed in the clear. This
means that the values can easily be intercepted and converted back to string values with a minimum of
effort. If you require an additional level of security, consider using HTTP Digest or NTLM Authentication,
as those methods pass password values as a one-way hash. Additionally, consider using SSL in order
to further secure the communication between a user's browser and your server. Example 8-8 shows
how we can once again rewrite our portal's login.cfm template to use HTTP authentication instead of
the HTML form we used in previous examples.

Example 8-8. Using HTTP authentication with ColdFusion MX

<cfheader statuscode="401">
<cfheader name="WWW-Authenticate" value="Basic realm=""MyPortal""">
<h3>You are not authorized to access the portal</h3>

The code in this example sends the two headers we described earlier to the user's browser, causing the
authentication popup box to appear. Entering an invalid username and/or password causes the "You
are not authorized to access the portal" message to appear.

Technically, you should also modify the Application.cfm and index.cfm templates if you are going to
use this authentication method. These templates should be modified to remove the code for logging
out a user. This is necessary because of how the HTTP authentication mechanism works. Once a
successful login is made, the username and password information are cached and automatically passed
along in the HTTP header for each subsequent page the user requests. Using the cflogout tag
removes the login credentials from the cflogin scope, but the next time the user requests a page, his

username and password will be passed along in the HTTP header, and the user will automatically be
logged back into the system! The only way to reliably log out when HTTP authentication is used is to
close the browser (the idletimeout attribute in the cflogin tag has no effect either). For this reason

alone, I tend to shy away from using HTTP authentication in favor of using a standard HTML login form.

8.3.2 Role-Based Permissions

Besides authenticating users, ColdFusion MX's security framework allows you to grant and deny access
to individual users based on roles you assign to them. You can think of roles as having the same
purpose as groups. In other words, you can assign a user a role such as "user" or "administrator," then
grant or deny access to portions of your application based on these roles. Roles are assigned to users
using the cfloginuser tag's roles attribute. As I mentioned earlier, users can be assigned a single
role, or they can be assigned multiple roles by providing a comma-delimited list to the roles attribute.

It's important to note that roles are case sensitive as well. Also, if you are providing a list of roles for a
user, you need to make sure there are no spaces between each role and the comma used to delimit
the list. Failing to do this will cause you problems, as ColdFusion interprets those spaces as part of the
role name. The granularity of this type of security framework lets you be as relaxed or as strict with
security as you need to be.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Earlier in the chapter, we created a field called Roles in our Users table. It's time to populate that field

for our two user records. Table 8-4 shows the roles you should add to the two user records stored in
the table.

Table 8-4. Adding roles to the Users table

Username Roles

Pmoney Administrator,User

Gcorcoran User

With the roles added to the database, let's look at how we can take advantage of these roles to secure
application functionality in ColdFusion MX. Two new functions are available to make writing your
authorization code easier: GetAuthUser() and IsUserInRole() . GetAuthUser() simply returns
the name of the currently authorized user as was provided to the cfloginuser tag. If no user is
currently authorized, the function returns an empty string. IsUserInRole() , on the other hand, is

used to determine whether a particular user's role(s) match the role(s) you pass to the function. This
allows you to grant or deny access to particular sections of code based on a user's role(s). For
example, going back to our portal application, it's easy to create an administrator's widget and include
it only if a user has "Administrator" as one of his roles. Example 8-9 shows a modified index.cfm
template that uses the GetAuthUser() function to display the user's username and the
IsUserInRole() function to determine whether the current user should see the administration

widget.

Example 8-9. Using GetAuthUser() and IsUserInRole()

<html>
 <head>
 <title>My Portal</title>
 <cfinclude template="_stylesheet.cfm">
 </head>
<body>
<cfoutput>
<h1>Welcome #ListFirst(session.FullName, " ")# (#GetAuthUser()#)</h1>
</cfoutput>
<table width="100%" border="0" cellpadding="0" cellspacing="5">
 <tr>
 <cfoutput>
 <td class="CustomizeLink">Customize</td>
 <td class="CustomizeLink" align="Right">Logout</td>
 </cfoutput>
 </tr>
 <tr>
 <td width="19%" valign="Top">
 <table width="100%" border="0" cellspacing="0" cellpadding="5">
 <!--- If a user is an Administrator, show them the admin widget --->
 <cfif IsUserInRole("Administrator")>
 <cfinclude template="_admin.cfm">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfif>
 <cfif client.Email>
 <cfinclude template="_email.cfm">
 </cfif>
 <cfif client.Stocks>
 <cfinclude template="_stock.cfm">
 </cfif>
 </table>
 </td>
 <td width="81%" valign="Top">
 <table width="100%" border="0" cellspacing="0" cellpadding="5">
 <cfif client.News>
 <cfinclude template="_news.cfm">
 </cfif>
 <cfif client.Bookmarks>
 <cfinclude template="_bookmarks.cfm">
 </cfif>
 </table>
 </td>
 </tr>
</table>
<hr>
<cfoutput>
<div class="Footer">Please email questions or concerns to <a href="mailto:
 #application.AdminEmail#">#application.AdminEmail#.</div>
</cfoutput>
</body>
</html>

The code for the administration widget is shown in Example 8-10 . The first thing you should notice is
that we use a second IsUserInRole() function around all of the code. Although this may seem

redundant, it's done because the administration widget is a simple included file. If we didn't have this
second check, any logged-in user, regardless of her role, could simply type the URL to the
administrator widget into her browser and execute the code. This is, of course, only one way to do
things. There are other ways (many of them superior to this method) to build a portal-type application.
The techniques shown here are meant only to provide an example of how to authorize access to
functionality, as opposed to being an endorsement for any particular type of development practice.

Example 8-10. Secured administrator widget

<cfif IsUserInRole("Administrator")>
<tr>
 <td class="SectionHeader" colspan="2">Administration</td>
</tr>
<tr>
 <td class="LeftTableBody" colspan="2">

 User Management
 Roles Management

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Content Management

 </td>
</tr>
</cfif>

You should note that passing more than one role to the IsUserInRole() function means a user must

possess at least those roles (not any single role) to be authorized. Thus,
IsUserInRole("Editor,Writer") returns true only if the authenticated user has both the "Editor"

and "Writer" roles.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Error and Exception Handling
Structured exception handling lets you gracefully catch and handle exceptions that occur in your
ColdFusion applications. Exceptions can include anything from a page timeout or a missing file to a
database error or a problem with an external object. Using the techniques discussed in this chapter,
you can build extremely robust exception-handling capabilities into your ColdFusion applications.

There are a number of different levels at which you can handle exceptions and errors in a ColdFusion
application. At the most basic level, you can use the cftry and cfcatch tags in a template, to test
for and trap exceptions right where they occur. With the cfthrow tag, you can also define, throw,

and catch custom exceptions in your application.

Of course, catching every exception when it occurs can become quite tedious, so ColdFusion provides
a couple of different mechanisms for handling exceptions at a higher level. With the cferror tag, you
can define generic error handlers for different kinds of errors. The cferror tag is normally used in

the Application.cfm template, so that error handling occurs in the context of the Web Application
Framework. This ability to provide "catch all" error handling for an application is quite convenient and
powerful.

In addition, a site administrator can set up error and exception handling at the server level, using the
ColdFusion Administrator. We'll cover all these different techniques for error and exception handling
in this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 Basic Exception Handling

Exception handling allows you to test for and trap exceptions when they happen, so that your
applications can respond to problems appropriately, as opposed to just throwing an error or invoking
a separate error-handling template. With exception handling, it is usually possible to allow your
application to continue functioning despite the fact that an exception has occurred.

Basic exception handling in ColdFusion uses two tags, cftry and cfcatch. These tags allow you to

identify potentially problematic areas of your application code and deal with anticipated exceptions
where they are most likely to occur. The basic syntax for using cftry/cfcatch is:

<cftry>

Potentially problematic code...

 <cfcatch type="exception_type">

 Code to implement in the event the exception is caught...
 </cfcatch>

 <cfcatch type="exception_type">
 ...
 </cfcatch>

</cftry>

The cftry/cfcatch syntax is straightforward. First, you wrap the section of code for which you wish
to provide exception handling by a set of cftry tags. Immediately following the potentially
problematic code, you use one or more cfcatch blocks to test for various types of exceptions. This

means that you can protect individual sections of your code from more than one exception at a time.
Within a cfcatch block, you can include any HTML and CFML you want, including cfcatch variables
(which we'll cover in just a few moments). It is also possible to nest additional cftry/cfcatch tags
within a cfcatch block for.

Let's consider an example. Say you have an application that uses the cfhttp tag to retrieve data

from a text file that is generated and stored on your server on a regular basis. There is a chance that
your application might attempt to access the text file at the same time that the file is being updated,
resulting in an error. To prevent this, you can wrap your cfhttp call with cftry/cfcatch tags to

catch any problems that might come up when trying to access the text file. If an exception does
occur, you can handle it by displaying a page that tells the user that the file is in the process of being
updated and to try back again in a few minutes. Example 9-1 illustrates this technique.

Example 9-1. cftry/cfcatch block for handling any exception generated
by a cfhttp call

<!--- Attempt to use the cfhttp tag to retrieve the stock quotes file --->
<cftry>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfhttp URL="http://www.example.com/myfile.txt" method="Get"
 columns="Ticker, Time, Price" delimiter=","
 resolveurl="False" throwonerror="Yes">

 <!--- Catch any exceptions and let the user know the file is being updated --->
 <cfcatch type="Any">
 <h2>Stock quotes are currently being updated. Please check back again in a
 few minutes...</h2>
 </cfcatch>
</cftry>

The cfcatch tag takes a single attribute called type, which specifies the type of exception to watch
for. Possible values for type include the following:

Any

Catches any unexpected exceptions. In versions of ColdFusion prior to MX, this exception type
had to be coded as the last cfcatch within a cftry block if more than one cfcatch was used.
As of ColdFusion MX, this is no longer true. You can code your cfcatch blocks in any order you

want. If an exception occurs, ColdFusion MX automatically chooses the most appropriate
cfcatch type.

Application

Catches application-level exceptions, which are defined using the Application type in the
cfthrow tag. This type is covered in detail in the next section.

CustomType

Catches developer-specified exceptions as defined with the cfthrow tag. This type is covered

in detail in the next section.
Database

Catches exceptions raised when interacting with data sources.
Expression

Catches exceptions that occur when the evaluation of an expression results in an error.
Lock

Catches exceptions associated with the cflock tag, such as timeouts, etc.
MissingInclude

Catches exceptions that occur when an included template isn't found. This exception type
covers exceptions thrown by the cfinclude, cfmodule, and cferror tags.

Object

Catches exceptions associated with external objects, such as COM/DCOM, CORBA, and Java
objects.

SearchEngine

Catches exceptions thrown by the cfcollection, cfindex, and cfsearch tags associated with
the Verity search engine. This type is new in ColdFusion MX.

Security

Catches exceptions that result when authentication fails within the ColdFusion security

http://lib.ommolketab.ir
http://lib.ommolketab.ir

framework.
Template

Catches general application errors associated with ColdFusion templates.

Besides the values already listed for the type attribute, ColdFusion also supports a number of

additional structured exception types. These exception types are generated by very specific
conditions, such as request timeouts or by exceptions encountered as the result of a call to various
ColdFusion tags. These exceptions types are listed under cftry in Appendix A.

Additionally, as of ColdFusion MX, you can now specify Java exception classes in the type attribute.

This gives you even more granular control over error handling, as every exception thrown by
ColdFusion belongs to one of these classes. An exception's class can be viewed by turning debugging
on in the ColdFusion Administrator and looking at the first line in the stack trace of the error output.
As an additional benefit of this type of exception handling, you can use it to handle exceptions thrown
by non-CFML Java objects.

As I already mentioned, you can refer to several cfcatch variables inside a cfcatch block. These
variables are automatically generated whenever an exception is trapped by a cfcatch block; they
are stored in a read-only structure called cfcatch. The cfcatch variables are available to use within
the trapping cfcatch block only and can perform any number of tasks, such as evaluating additional

processing options, writing log entries, and providing custom error or informational messages to
users. Additionally, any valid HTML, CFML, or JavaScript can be used within a cfcatch block in
conjunction with the cfcatch return variables. The following variables are available regardless of the

exception type raised:

cfcatch.Type

The type of exception that occurred.
cfcatch.Message

The error message generated by the exception, if any.
cfcatch.Detail

A detailed error message generated by the CFML interpreter.
cfcatch.RootCause

Returns a Java object containing the Java servlet exception generated by the JVM as the
exception's root cause. This variable is new in ColdFusion MX.

cfcatch.TagContext

The name and position of each tag in the tag stack, as well as the full pathnames of the files
containing the tags as an array of structures. Each structure in the TagContext array contains

the following:

type

The type of page generating the exception. type always returns "CFML". This key is new

in ColdFusion MX.
ID

The name of the tag within the stack where the exception occurred. If the exception
occurs within cfscript tags, ID returns "??".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

template

The full path to the template containing the tag.
line

The line number within the template where the tag was found.
column

No longer supported in ColdFusion MX. This key is still available for backward
compatibility with previous versions of ColdFusion, but it always returns 0. In previous
versions of ColdFusion, column returned the column number within the template where

the tag was found
raw_trace

The raw Java stack trace for the exception. This key is new in ColdFusion MX.

In versions of ColdFusion prior to MX, CFML Stack Trace must be enabled in the
Debugging section of the ColdFusion Administrator in order to populate this variable. If
this option isn't enabled, ColdFusion returns a zero-length array for
cfcatch.TagContext.

In addition to these variables, there are some cfcatch variables that are available only for specific
exception types. These variables are detailed under cftry in Appendix A.

The next three examples step through the process of trapping different types of exceptions and offer
different strategies for handling them. Example 9-2 generates an exception by attempting to use an
undefined variable (y) in an expression. Because the type of exception it's set to catch is Any, the
cfcatch tag that handles the exception is an example of a general exception handler.

Example 9-2. Using cftry/cfcatch to catch unexpected exceptions

<cftry>
 <cfset x=y+1>

 <cfcatch type="Any">
 <cfdump var="#cfcatch#">
 </cfcatch>
</cftry>

The cfcatch block in this template is set to catch any type of exception that occurs (type is Any).
Generally, you should trap for specific types of exceptions before implementing a cfcatch tag to
handle Any exceptions. As a matter of style, and to make code easier to debug, setting type to Any
should be done as the last cfcatch tag in a multi cfcatch scenario. I've used it alone in this example

mainly for illustrative purposes.

If we execute the template in Example 9-2, it generates a nicely formatted table that contains all the
cfcatch error variables and their associated values. The table is created using the cfdump tag to
dump the cfcatch structure (remember that the cfcatch variables are all stored in a special read-
only structure called cfcatch). Using cfdump provides us with a simple way to quickly view the
nested contents of the cfcatch structure.

Example 9-3 takes a different approach to exception handling. It attempts to include a template
called mybogusheader.cfm at the beginning of the template via cfinclude. The cfinclude tag is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

wrapped in a cftry block. A cfcatch tag with type set to MissingInclude is used to deal with the

exception generated in the event that the included file doesn't exist (which it doesn't).

Example 9-3. Handling a missing include and notifying the site
administrator of the problem

<cftry>
<cfinclude template="mybogusheader.cfm">

<cfcatch type="MissingInclude">
Error loading header template. Notifying site administrator...

<cfmail to="siteadministrator@example.com"
 from="webmaster@example.com"
 subject="Missing Header Template">
Site Administrator,

The following template: #cfcatch.MissingFileName# seems to be missing from the
Web site. Please investigate as soon as possible.

Regards,

The Webmaster
</cfmail>
</cfcatch>
</cftry>

<center>
<h2>Hello World!</h2>
</center>

When this template is invoked, the cfcatch is triggered, and an email message is automatically
generated (via cfmail) and sent to the site administrator informing her of the error. The name of the

missing template is included in the email. Although executing the template in Example 9-3 generates
an exception, the template can still continue processing (thanks to the cftry/cfcatch handlers).

As I mentioned earlier, it is possible to use more than one cfcatch tag within a single cftry block.

Example 9-4 illustrates this point by providing two different types of exception handling for the same
piece of code.

Example 9-4. Anticipating multiple exception types with cftry/cfcatch

<cftry>

<!--- Set the default log file write status to successful --->
<cfparam name="LogFileStatus" default="Log entry successful.">

<h2>Attempting to write a log file entry...</h2>

<!--- Lock the cffile call so that only one call can be attempted at a time.
 If you want to purposely generate an exception for the second cfcatch

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tag to catch, change the directory in the file attribute of the cffile
 tag to a directory that does not exist on your server. --->
<cflock timeout="30" throwontimeout="Yes" type="Exclusive">

<!--- Write an entry to the log file --->
<cffile action="Append" file="c:\temp\logfile.txt"
 output="This is a test entry" addnewline="Yes">
</cflock>

<!--- Catch lock exceptions --->
<cfcatch type="Lock">
 <cfset LogFileStatus = "There was a problem obtaining a file lock. Log
 entry not written.">
</cfcatch>

<!-- Catch any other type of exception that might occur --->
<cfcatch type="Any">
 <cfset LogFileStatus = "An unknown exception occurred. Log entry not
 written.">
</cfcatch>
</cftry>

<p>
<cfoutput>
Processing Complete: #LogFileStatus#
</cfoutput>

This template uses the cffile tag to attempt to write a simple log file entry. The cffile tag is
wrapped by a cflock tag so that the log file can be accessed only one process at a time. Failing to
use the cflock tag can result in a file-access error or corruption of the log file. The call to the cffile
tag is also wrapped by a cftry tag and two cfcatch tags. The first cfcatch tag catches exceptions
related to the cflock tag we used around our cffile call. This is done by specifying Lock for the
type attribute of this cfcatch tag. Any exceptions resulting from the lock (such as a timeout) are
handled by this tag. If an exception is generated, the value of LogFileStatus is set to "There was a

problem obtaining a file lock. Log entry not written".

A second cfcatch tag is used as a backup to catch any unforeseen exceptions. This is facilitated by
setting the type attribute of the second cfcatch tag to Any. If any exception not caught by the first
cfcatch tag is thrown, this cfcatch tag handles it by setting the value of LogFileStatus to "An
unknown exception occurred. Log entry not written". Once the cftry/cfcatch section has
completed, a message containing the value of LogFileStatus is output to the browser.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 Custom Exception Handling

In the previous section, we covered the basics of using cftry/cfcatch to handle predefined types of

exceptions that might occur within a ColdFusion application. While these general exception types can
handle any type of exception, they do so in a generic, one-size-fits-all manner. Fortunately,
ColdFusion also allows you to specify custom exception types that can be caught with the same
cftry/cfcatch techniques we already covered.

As I mentioned in the previous section, the cfcatch tag can accept a custom exception type for its
type attribute. That custom exception type is defined using the cfthrow tag. The cfthrow tag
generates a custom exception type that can be caught by a cfcatch tag when the type attribute is
set to Application, Any, or the custom type you specified in the cfthrow tag. In other words, when

something goes wrong in your application, and you need to generate a custom exception, use
cfthrow. The general syntax for using cfthrow is as follows:

<cfthrow type="custom_exception_type"

 message="error_message"

 detail="detailed_event_description"

 errorcode="error_code"

 extendedinfo="extended_information"

 object="name">

The cfthrow tag accepts the following optional attributes:

type

Specifies a name for the exception type. You may give the exception type a custom name or
use the predefined type Application.

message

Message describing the event that triggered the exception.
detail

Specifies additional information about the exception.
errorcode

A custom error code (numeric) you want to make available.
extendedinfo

Specifies additional information regarding the error you want made available.
object

Used to throw a Java exception from a CFML page. name specifies the name of the object
throwing the exception. This must be the same as the name attribute of the cfobject tag. If
the object attribute is used, all other attributes are ignored.

When you have CFML code that can possibly generate a custom exception with the cfthrow tag, you
obviously want to use a cfcatch block to test for the custom exception. This is done by setting the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type attribute of the cfcatch tag to the name specified in the type attribute of the cfthrow tag or
by setting it to Application (the default).

You can name custom exception types in a hierarchical manner, so that you can reference groups of
custom exception types with a single cfcatch tag. ColdFusion uses pattern matching to search from
the most specific to the least specific name. Consider the following cfthrow tag:

<cfthrow type="MyApp.RequiredParameters.MyVar">

Any of the three following cfcatch tags can catch the exception:

<cfcatch type="MyApp.RequiredParameters.MyVar ">
<cfcatch type="MyApp.RequiredParameters">
<cfcatch type="MyApp">

Note that this behavior results in a potential backward compatibility problem with versions of
ColdFusion prior to 4.5. In these older versions, a custom exception coded as:

<cfthrow type="MyApp.RequiredParameters.MyVar">

can be caught only by an identically named cfcatch tag, as in:

<cfcatch type="MyApp.RequiredParameters.MyVar">

but not by these:

<cfcatch type="MyApp.RequiredParameters">
<cfcatch type="MyApp">

This behavior can be manually overridden in versions of ColdFusion prior to MX by including the
cfsetting tag in your Application.cfm template with the catchexceptionsbypattern attribute set
to No, as in:

<cfapplication name="MyApplication">
<cfsetting catchexceptionsbypattern="No">

Note that the catchexceptionsbypattern attribute is not supported in ColdFusion MX.

Now that we've covered the basics of how the cfthrow tag works in conjunction with cftry/cfcatch,
let's look at an example that ties everything together. Example 9-5 uses the cfthrow tag to define a
custom exception to throw in the event that a variable called form.MyVar doesn't exist.

Example 9-5. Trapping a custom exception type using cfthrow

<style type="text/css">
 th {
 background-color : #0000FF;
 font-weight : bold;
 color : #FFFFFF;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 td.TagStack {
 background-color : #D3D3D3;
 }
</style>

<cftry>
 <!--- see if the form variable MyVar exists. If not, throw a custom
 exception --->
 <cfif not IsDefined('form.MyVar')>
 <cfthrow type="MyApp.RequiredParameters.MissingMyVar"
 message="The form variable MyVar does not exist!"
 detail="This variable must be present for this template to
 function"
 errorcode="10"
 extendedinfo="This is all the information available.">
 </cfif>

 <!--- catch the custom exception --->
 <cfcatch type="MyApp.RequiredParameters.MissingMyVar">
 <h2>Ooops - your variable (form.MyVar) was not found! Diagnostic
 information is shown below:</h2>

 <h3>cfcatch Exception Information</h3>

 <table border="0">
 <tr>
 <th>Variable</th>
 <th>Value</th>
 </tr>

 <cfoutput>
 <tr>
 <td>cfcatch.Type</td><td>#cfcatch.Type#</td>
 </tr>
 <tr>
 <td>cfcatch.Message</td><td>#cfcatch.Message#</td>
 </tr>
 <tr>
 <td>cfcatch.Detail</td><td>#cfcatch.Detail#</td>
 </tr>
 <tr>
 <td>cfcatch.TagContext</td>
 <td>
 <table border="0">
 <tr>
 <th colspan="3">Tag Stack</th>
 </tr>
 <tr>
 <th>Tag</th>
 <th>Position</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <th>Template</th>
 </tr>
 <cfloop index="element" from="1" to="#ArrayLen(cfcatch.TagContext)#">
 <cfset TheStack = #cfcatch.TagContext[element]#>
 <tr>
 <td class="TagStack">#TheStack["ID"]#</td>
 <td class="TagStack">(#TheStack["Line"]#:#TheStack["Column"]#)</td>
 <td class="TagStack">#TheStack["Template"]#</td>
 </tr>
 </cfloop>
 </table>
 </td>
 </tr>
 <tr>
 <td>cfcatch.ErrorCode</td><td>#cfcatch.ErrorCode#</td>
 </tr>
 <tr>
 <td>cfcatch.ExtendedInfo</td><td>#cfcatch.ExtendedInfo#</td>
 </tr>
 </cfoutput>
 </table>
 </cfcatch>
</cftry>

In this example, a cfif statement is used within a cftry block to check for the existence of a form
variable called form.MyVar. If the form variable doesn't exist (which it doesn't), a cfthrow tag

generates a custom exception. The tag uses several attributes to identify the exception and provide
detailed error information. After the exception has been defined with the cfthrow tag, a cfcatch
block tests for the custom exception. Notice the type attribute of the cfcatch tag is set to the same
name as specified in the type attribute of the cfthrow tag. The cfcatch block catches the error and

writes a table out to the browser containing the information related to the exception.

When cfthrow is used in conjunction with the cftry and cfcatch tags, a number of variables are

made available when an exception is thrown. If these variables look familiar, it is because they are.
The variables are the same as those available for a regular cfcatch tag, except that most of the
values are provided by the cfthrow tag as opposed to the CFML interpreter:

cfcatch.Type

The type of exception that occurred.
cfcatch.Message

The error message specified in the message attribute of the cfthrow tag, if any.
cfcatch.Detail

A detailed error message generated by the CFML interpreter.
cfcatch.TagContext

The name and position of each tag in the tag stack as well as the full pathnames of the files
containing the tags. In versions of ColdFusion prior to MX, CFML Stack Trace must be enabled
in the Debugging section of the ColdFusion Administrator in order to populate this variable.

cfcatch.ErrorCode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The contents of the ErrorCode attribute, if any, from the cfthrow tag.
cfcatch.ExtendedInfo

The contents of the ExtendedInfo attribute, if any, from the cfthrow tag.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 Rethrowing Exceptions

Now that we've discussed the framework for building robust error- and exception-handling
capabilities into your ColdFusion applications, let's look at a technique you can use to create more
advanced exception-handling systems for your applications. On occasion, it may be desirable to
rethrow an exception that can't be handled adequately by a cfcatch tag. For example, you may
have a cfcatch block that catches an error that it isn't explicitly designed to handle. In this case, it's

desirable to rethrow the exception so that a more qualified error handler can deal with the exception.
This can be accomplished using the cfrethrow tag. The cfrethrow tag is used within a cfcatch
block to rethrow the active exception while preserving the cfcatch.Type and cfcatch.TagContext

return variables. This lets you build an additional level of decision making into your exception-
handling routines.

To get a better idea of how the cfrethrow tag can be used, consider an example in which you want

to provide a backup data source to use in the event that a query to your main data source fails. This
type of functionality is highly desirable in cases where your entire database is refreshed (i.e., in the
case of an extract file) or when you use a file-based database such as MS Access or FoxPro where
updating the database often means overwriting the production version with a new version. It is also a
good idea when you just want to provide redundancy, as you would in any sort of e-commerce or
mission-critical application that requires 100% uptime.

Example 9-6 shows how to create this type of functionality using nested cftry/cfcatch tags and the
cfrethrow tag.

Example 9-6. Using cfrethrow

<html>
<head>
 <title>Using cfrethrow</title>
 <style type="text/css">
 th {
 background-color : #0000FF;
 font-weight : bold;
 color : #FFFFFF;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 td.TagStack {
 background-color : #D3D3D3;
 }
 </style>
</head>

<body>
<cftry>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Try to query the first database. Note that the query points to a bogus
 table, so it will fail. --->
<cftry>
<cfquery name="GetData" datasource="ProgrammingCF">
 SELECT * FROM BogusTable
</cfquery>

<!--- Catch any database errors resulting from the attempt to query the first
 database. --->
<cfcatch type="database">
 <h3>First data source failed. Attempting to use alternate...</h3>

 <!--- Write out a table containing all cfcatch variables except for
 tagcontext and raw_trace --->
 <cfset MyKeyArray = StructKeyArray(cfcatch)>
 <table border="0">
 <tr>
 <th>Name</th><th>Value</th>
 </tr>
 <cfloop index="position" from="1" to="#ArrayLen(MyKeyArray)#">
 <cfoutput>
 <cfif IsSimpleValue(cfcatch[MyKeyArray[position]])>
 <tr>
 <td>#MyKeyArray[position]#</td>
 <td>#cfcatch[MyKeyArray[position]]# </td>
 </tr>
 </cfif>
 </cfoutput>
 </cfloop>
 </table>

 <cftry>
 <!--- Try querying the second database. Note that this also points to a
 bogus data source, so it will fail. We do this to illustrate the use
 of the cfrethrow tag. --->
 <cfquery name="GetData" datasource="ProgrammingCF">
 SELECT * FROM EmployeeDirectory
 </cfquery>

 <!--- If there is a problem with the second database, rethrow the exception
 so that it can be handled by the general cfcatch handler --->
 <cfcatch type="database">
 <h3>Alternate data source failed. Rethrowing exception...</h3>

 <cfset MyKeyArray = StructKeyArray(cfcatch)>
 <table border="0">
 <tr>
 <th>Name</th><th>Value</th>
 </tr>
 <cfloop index="position" from="1" to="#ArrayLen(MyKeyArray)#">
 <cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfif IsSimpleValue(cfcatch[MyKeyArray[position]])>
 <tr>
 <td>#MyKeyArray[position]#</td>
 <td>#cfcatch[MyKeyArray[position]]# </td>
 </tr>
 </cfif>
 </cfoutput>
 </cfloop>
 </table>
 <!--- This is where the exception is rethrown --->
 <cfrethrow>
 </cfcatch>
 </cftry>
</cfcatch>
</cftry>

<!--- Catch any exception not already planned for. Write out a table containing
 all cfcatch variables except for tagcontext and raw_trace --->
<cfcatch type="Any">
 <h3>Unexpected exception caught. Detailed information follows:</h3>

 <cfset MyKeyArray = StructKeyArray(cfcatch)>
 <table border="0">
 <tr>
 <th>Name</th><th>Value</th>
 </tr>
 <cfloop index="position" from="1" to="#ArrayLen(MyKeyArray)#">
 <cfoutput>
 <cfif IsSimpleValue(cfcatch[MyKeyArray[position]])>
 <tr>
 <td>#MyKeyArray[position]#</td>
 <td>#cfcatch[MyKeyArray[position]]# </td>
 </tr>
 </cfif>
 </cfoutput>
 </cfloop>
 </table>
</cfcatch>
</cftry>
</body>
</html>

The template works by attempting to query the primary data source. If an exception is thrown, an
attempt is made to query a backup data source. If an exception occurs while trying to query the
backup data source, the cfrethrow tag rethrows the exception, which can then be caught by a
general cfcatch tag with type set to Any. To get a better idea of what is happening, consider the

following pseudocode:

try {
 query database
}
catch(database){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 output exception information
 try{
 query alternate database
 }
 catch(database){
 output exception information
 rethrow exception
 }
}
catch(any){
 output exception information
}

For illustrative purposes, each time an exception is detected in Example 9-6, all the associated
cfcatch variables are written to the browser so that you can see what is happening.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.4 Error Handling Within the Web-Application Framework

While cftry and cfcatch provide a granular means of handling errors and exceptions within your

applications, they can be cumbersome to code. Trying to identify all the potential trouble spots in
your applications where cftry/cfcatch code should be placed only compounds the problem.

Fortunately, ColdFusion provides a way to handle errors at a more general level. By including
ColdFusion's cferror tag within your application's Application.cfm template, you can implement

application-specific "catch all" error handlers.

Although the cferror tag can be used in other templates besides Application.cfm, it makes the most
sense to use it in this template. The cferror tag is generally placed directly below the
cfapplication tag:

<cfapplication name="MyApplication">

<!--- Implement error handling --->
<cferror type="Exception" template="exception_handler.cfm"
 exception="Any" mailto="webmaster@example.com">

The cferror tag can implement one of four types of error handling, depending on the value specified
in the type attribute. The template attribute is also required; it specifies the relative path to a

custom error template to execute in the event that an error or exception occurs. Depending on the
value specified in the type attribute, different options are available to the error-handling template.
Here are the values for type and the corresponding options that are available in the error template:

Exception

Handles a specific exception type as specified in the exception attribute of the cferror tag.

Any ColdFusion tags may be used in the exception-handling template. Exception-handling
templates may also be invoked by specifying a Site-wide Error Handler within the Server
Settings section of the ColdFusion Administrator.

Monitor

This type is no longer supported in ColdFusion MX. In ColdFusion 5, setting type to Monitor
sets up an exception monitor for the exception type specified in the exception attribute of the
cferror tag. Used to monitor and debug ColdFusion applications. With this type of exception

handling, ColdFusion invokes the specified error-handling template before processing any
cftry/cfcatch error handling that may be in the executing template.

Request (default)

Handles any errors generated during a template request. Only certain error variables are
available to the error-handling page. No other CFML tags may be used in the template.

Validation

Handles form-field validation errors that occur when a form is submitted. This type is useful
only when the cferror tag is included within an Appplication.cfm template. Only certain error

variables are available to the error-handling page. No other CFML tags or functions may be
used in the template.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you set the type attribute to Exception, you should specify the type of exception that the cferror
tag should watch for in the exception attribute. You may specify the same exception types as for the

cfcatch tag: Any (the default), Application, CustomType, Database, Expression, Lock,
MissingInclude, Object, SearchEngine, Security, and Template. And just as with the cfcatch
tag, the cferror tag also supports a number of additional structured exception types. These
exception types are listed under cftry in Appendix A.

The final attribute, mailto, is optional and provides the email address of the person who should be
notified if an error occurs. The value of mailto is available to the custom error handler specified in
the template attribute.

Depending on the type of error handling you implement in your application, ColdFusion makes
several variables available to the template specified in the template attribute that can be referenced
within a cfoutput block. These variables can be referenced individually or as key/value pairs within a
ColdFusion structure called error.[1] For Exception and Request error handling, the available

variables are:

[1] You can use the cferror prefix instead of the error prefix if you have type set to Exception, as in

cferror.Browser or cferror.Template. The cferror prefix may be more intuitive to use as it matches

the cferror tag name and makes identifying variable names and scopes easier. Just like error, cferror
can also be referenced as a structure.

error.Browser

The browser in use when the error occurred
error.DateTime

The date and time when the error occurred
error.Diagnostics

A detailed error message provided by the ColdFusion server
error.HTTPReferer

The page that contains the link to the template where the error occurred
error.MailTo

The email address specified in the mailto attribute of the cferror tag
error.RemoteAddress

The IP address of the remote client
error.QueryString

The URL query string, if any, from the client's request
error.Template

The page that was in the process of executing when the error occurred

Additionally, if type is set to Exception, the following variables are available:

error.Message

Abbreviated error message thrown by the ColdFusion server. The detailed message is available
in error.Diagnostics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

error.RootCause

Returns a Java object containing the Java servlet exception generated by the JVM as the
exception's root cause. This variable is new in ColdFusion MX.

error.TagContext

The name and position of each tag in the tag stack as well as the full pathnames of the files
containing the tags as an array of structures. Each structure in the TagContext array contains

the following elements:

type

Type of page generating the exception. type always returns "CFML". This key is new in

ColdFusion MX.
ID

The name of the tag within the stack where the exception occurred. If the exception
occurs within cfscript tags, ID returns "??".

template

The full path to the template containing the tag.
line

The line number within the template where the tag was found.
column

No longer supported in ColdFusion MX. This key is still available for backward
compatibility with previous versions of ColdFusion, but it always returns 0. In previous
versions of ColdFusion, column returned the column number within the template where

the tag was found.
raw_trace

The raw Java stack trace for the exception. This key is new in ColdFusion MX.

In versions of ColdFusion prior to MX, CFML Stack Trace must be enabled in the Debugging
section of the ColdFusion Administrator in order to populate this variable. If this option isn't
enabled, ColdFusion returns a zero-length array for error.TagContext.

error.Type

The exception type thrown by the server

You can also use any of the cfcatch return variables available to the exception specified in the
exception attribute of the cferror tag. The variables are discussed in the section on
cftry/cfcatch.

When type is set to Validation, the following variables are available:

error.ValidationHeader

Predefined header text for the validation error page
error.InvalidFields

An HTML unordered () list of validation errors
error.ValidationFooter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Predefined footer text for the validation error page
error.MailTo

In versions of ColdFusion prior to MX, the email address specified in the mailto attribute of the
cferror tag

Now that we've covered what the cferror tag can do, let's look at some specific examples of how it

can be used. We'll discuss each type of exception handling and provide examples.

9.4.1 Form Validation Errors

Validation errors occur when you use ColdFusion's built-in form-field validation routines to handle
form submissions. As you may recall from Chapter 3, ColdFusion allows you to embed special hidden
form fields within your HTML forms for validating user input. To refresh your memory, here are the
built-in validation suffixes: _required, _date, _eurodate, _time, _integer, _float, and _range.

Under normal circumstances, if a validation rule is violated, ColdFusion displays a generic error page
that lets the user know that the input violated a validation rule. While this is a handy feature, the
generic page displayed by ColdFusion leaves something to be desired. There is no way to customize
the generic error page displayed when a validation rule is violated. By using the cferror tag with
type set to Validation, however, you can overcome this limitation (to a degree). Although you can
place the cferror tag directly in the page responsible for processing the form post, it makes more

sense to place it in your Application.cfm template, as you generally want to apply this type of error
handling to an entire application as opposed to a single form. The following examples show how to
set up a custom validation handler for your application. To begin, we need to create an
Application.cfm template with the code for calling the validation error handler. This code is shown in
Example 9-7.

Example 9-7. Application.cfm file with cferror tag set to handle validation
errors

<cfapplication name="MyApplication">

<!--- Handle any form field validation errors --->
<cferror type="Validation" template="validationhandler.cfm"
 mailto="webmaster@example.com">

All that's necessary to set up the custom validation handler is a single cferror tag. type is set to
Validation so that any validation errors are handled by the template specified by the tag. The
template attribute specifies the relative path to a ColdFusion template to invoke in the event a

validation error occurs. In this case, we want to invoke a template called validationhandler.cfm that
resides in the same directory as our Application.cfm template. The final attribute, mailto, is optional

and provides the email address of the person who should be notified if an error occurs. The value of
mailto is available to the custom error handler specified in the template attribute.

With the Application.cfm template all set up, let's look at the validationhandler.cfm template our
cferror tag calls when a validation error occurs. The code for this template is shown in Example 9-8.

Example 9-8. validationhandler.cfm template for custom handling of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

validation errors

<html>
<head>
 <title>Validation Error Handler</title>
</head>

<body>

<div align="Center">
<h2>Validation Handler</h2>

<table border="1" cellpadding="10">
 <tr>
 <td>
 #error.ValidationHeader#

 #error.InvalidFields#

 #error.ValidationFooter#
 <p>
 Please send any questions or comments to
 webmaster@example.com
 </td>
 </tr>
</table>
</div>
</body>
</html>

As I already mentioned, only the variables passed by the cferror tag can be referenced in the
validationhandler.cfm template. It isn't necessary to use a cfoutput tag. No additional CFML tags or

functions may be used. For our template, I chose to add a background color and create a centered
table for holding the rest of our content. A header displaying "Form Entries Incomplete or Invalid.
One or more problems exist with the data you have entered" is automatically placed on the page by
the error.ValidationHeader variable. If you want to preset a different header, simply omit this

variable and supply your own text. Next, an unordered (bulleted) list of validation errors is presented
within the table using the error.InvalidFields variable. The bullets are automatically created by

ColdFusion and can't be modified. The footer "Use the Back button on your web browser to return to
the previous page and correct the listed problems" is automatically included by referencing
error.ValidationFooter.

Now that we have our Application.cfm and validationhandler.cfm templates set up, we need to create
a template to test them. The code for the form that tests the validation error handler is shown in
Example 9-9. This template should be called validationtest.cfm and placed in the same directory as
the other templates for this example.

Example 9-9. HTML form for testing custom validation error handling

<h2>Article Submission Form</h2>
<form action="validationtest.cfm" method="Post">
<input type="hidden" name="ArticleDate_date" value="You must supply a valid date
 format (ex. 11/11/2000).">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<input type="hidden" name="Title_required" value="You must enter a title for the
 article.">
<input type="hidden" name="Priority_required" value="You must enter a priority
 for the article.">
<input type="hidden" name="Priority_range" value="Min=1 Max=100">

<table>
 <tr>
 <td>Date:</td>
 <td><input type="text" name="ArticleDate" size="12" maxlength="10"></td>
 </tr>
 <tr>
 <td>Title:</td>
 <td><input type="text" name="Title" size="50" maxlength="255"></td>
 </tr>
 <tr>
 <td>Article:</td>
 <td><textarea cols="43" rows="5" name="Article"></textarea></td>
 </tr>
 <tr>
 <td>Priority (1-100):</td>
 <td><input type="text" name="Priority" size="4" maxlength="3"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="submit" value="submit"></td>
 </tr>
</table>
</form>

Note the four hidden form fields declared after the form tag. These form fields use some of the built-
in form validation suffixes. These suffixes apply validation rules to the form fields listed in each name

attribute. When the form is submitted, ColdFusion checks the values supplied for each form field
against the validation rules defined by each hidden form field. If any rules are violated, the cferror

tag in the Application.cfm template invokes the validationhandler.cfm template, displaying the
custom error message to the user. An example of this can be seen in Figure 9-1.

Figure 9-1. Custom validation error page invoked when a validation rule
is violated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.2 Request Errors

Setting type to Request allows you to handle any application-related errors that occur during a page
request. If you are going to use the cferror tag to catch Request errors, you have two options.
First, you can include the cferror tag at the beginning of every template for which you want to

provide error handling. While this option works fine, it is a pain to have to put the code (or a
cfinclude to the code) at the beginning of each CFML template. A more logical solution is to place
the cferror tag in your Application.cfm template to provide error checking for your entire
application. Example 9-10 shows the fragment of an Application.cfm template that sets up Request

error handling.

Example 9-10. cferror tag set to handle request errors

<cfapplication name="MyApplication">

<!--- Handle Request Errors --->
<cferror type="Request" template="requesthandler.cfm"
 mailto="webmaster@example.com">

All you have to do to set up a custom-request error handler is place a single cferror tag inside your
Application.cfm template. type is set to Request so that any application errors are handled by the
requesthandler.cfm template specified by the template attribute. As before, specify the mailto

attribute to set an email address for notification about any errors.

With the Application.cfm template taken care of, let's focus our attention on the requesthandler.cfm
template our cferror tag calls when a request error occurs. The code for this template is shown in

Example 9-11.

Example 9-11. requesthandler.cfm template for custom handling of
request errors

<html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<head>
 <title>Custom Handling of Request Errors</title>
 <style type="text/css">
 th {
 background-color : #0000FF;
 font-weight : bold;
 color : #FFFFFF;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>
<body>

<div align="Center">
<h3>An error has occurred while requesting a CFML template</h3>
<h4>Diagnostic information is shown below</h4>

<table border="0">
 <tr>
 <th>Error Variable</th>
 <th>Value</th>
 </tr>
 <tr>
 <td>Browser</td><td>#error.Browser# </td>
 </tr>
 <tr>
 <td>Date/Time</td><td>#error.DateTime# </td>
 </tr>
 <tr>
 <td>Diagnostics</td><td>#error.Diagnostics# </td>
 </tr>
 <tr>
 <td>HTTP Referer</td><td>#error.HTTPReferer# </td>
 </tr>
 <tr>
 <td>Mailto</td><td>#error.MailTo# </td>
 </tr>
 <tr>
 <td>Remote Address</td><td>#error.RemoteAddress# </td>
 </tr>
 <tr>
 <td>Query String</td><td>#error.QueryString# </td>
 </tr>
 <tr>
 <td>Template</td><td>#error.Template# </td>
 </tr>
</table>
</div>
</body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</html>

The requesthandler.cfm template creates a custom page for reporting details of the request error to
the user. Only the variables passed by the cferror tag can be referenced in the requesthandler.cfm
template. It isn't necessary to reference the error variables within a cfoutput block. Just like
Validation handling, no additional CFML tags or functions may be used within the template. The

actual details of the error are output in a nicely formatted table with the error variables in the left
column and their values in the right column.

Now that we've created our Application.cfm and requesthandler.cfm templates, let's test them.
Here's some code that tests our templates:

<!--- Try to cfinclude a template that does not exist --->
<cfinclude template="nonexistanttemplate.cfm?ID=123">

Executing this template causes the cferror tag in our Application.cfm template to invoke the
requesthandler.cfm template (because of the cfinclude call to a nonexistent template). The results

of this can be seen in Figure 9-2.

Figure 9-2. Custom request error handler

9.4.3 Specific Exceptions

The cferror tag can catch specific exceptions at either the application or template level when type is
set to Exception. Exception handling differs from Request handling in three important ways. First,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using Exception allows you to specify an exception to trigger the cferror response. If type is set to
Request, ColdFusion responds to any error or exception by invoking the cferror tag.

The second difference has to do with the information the cferror tag makes available to the error-
handling template specified in the template attribute. In addition to the error variables available to a
Request handler, an Exception handler also has access to all the error variables available to the
cfcatch tag.

The third difference is perhaps the most significant. Unlike the template specified by the cferror tag
when type is Request, the template specified when type is Exception has access to all CFML tags

and functions. This gives you the ability to code much more sophisticated and customized error
handlers than using the Request type because you can include any ColdFusion tags (such as cfmail)

or functions you wish.

The next series of examples demonstrate how to set up multiple exception handlers for your
application. The first step is to create an Application.cfm template to define the types of exceptions to
catch, as shown in Example 9-12.

Example 9-12. Application.cfm template with multiple cferror tags for
handling various exceptions

<cfapplication name="MyApplication">

<!--- Catch POP authentication exceptions --->
<cferror type="Exception" template="exceptionhandler.cfm"
 exception="COM.Allaire.ColdFusion.POPAuthFailure"
 mailto="webmaster@example.com">

<!--- Catch a custom exception called MyApp.MyException defined by a cfthrow
 tag. Call a more advanced error handler --->
<cferror type="Exception" template="customexceptionhandler.cfm"
 exception="MyApp.MyException" mailto="webmaster@example.com">

<!--- Catch any exception not previously covered --->
<cferror type="Exception" template="exceptionhandler.cfm"
 exception="Any" mailto="webmaster@example.com">

This Application.cfm template differs from the ones we have previously created in this chapter in that
it contains not one but three cferror tags. You can include as many cferror tags in your

Application.cfm template as necessary to handle the exceptions you expect to encounter. In this
example, we set three. The first cferror tag catches the exception
COM.Allaire.ColdFusion.POPAuthFailure. This exception occurs when the cfpop tag can't

successfully authenticate a user with a POP server. If our Application.cfm template detects this error,
it invokes a template called exceptionhandler.cfm, shown in Example 9-13.

The second cferror tag catches a custom exception called MyApp.MyException that is defined using
the cfthrow tag. If the exception is detected, a template called customexceptionhandler.cfm is

invoked to handle the error, as shown in Example 9-14.

The third and final cferror tag catches any exceptions not handled by our other two cferror tags.
By setting the type attribute to Any, we effectively create a backup exception handler for dealing with
unforeseen exceptions. This type of error handler should always be included as the last cferror tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in your Application.cfm template. If an exception occurs that isn't caught by either specific exception
handler, the exceptionhandler.cfm template (the same template used by our first cferror tag) is

invoked to deal with the exception.

Let's turn our attention now to the two exception-handling templates we just mentioned,
exceptionhandler.cfm and customexceptionhandler.cfm. The exceptionhandler.cfm template is used
by both the first and third cferror tags in our Application.cfm template to handle a
COM.Allaire.ColdFusion.POPAuth-Failure exception as well as any exception other than a
custom one called MyApp.MyException (the second cferror tag). The code for the

exceptionhandler.cfm template is shown in Example 9-13.

Example 9-13. Displaying exception error variables

<h3>Generic Exception Handler</h3>
<cfdump var="#cferror#">

The exceptionhandler.cfm template generates a table containing all the error variables and their
associated values by the cfdump tag. This allows you to easily see the nested hierarchy of the
cferror.RootCause and cferror.TagContext values. The output of this template is in Figure 9-3.

Figure 9-3. Handling a POP authentication exception with cferror

The next example we have to look at is the customexceptionhandler.cfm template. This template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

highlights the level of customization you can achieve using the cferror tag. Unlike the Request and
Validation examples given earlier, this type of exception handler has access to the full range of

CFML tags and functions. The code for the customexceptionhandler.cfm template is shown in
Example 9-14.

Example 9-14. Emailing error information to the site administrator

<!--- Email the administrative contact and let them know that an exception
 occurred. Include the details in the message. --->
<cfmail to="#cferror.MailTo#" from="webmaster@example.com"
 subject="Application Exception Encountered">
An exception occurred with one of our applications. Details follow:

Browser: #cferror.Browser#
DateTime: #cferror.DateTime#
Detail: #cferror.Detail#
Diagnostics: #cferror.Diagnostics#
Error Code: #cferror.ErrorCode#
Extended Info: #cferror.ExtendedInfo#
Generated Content: #cferror.GeneratedContent#
Handler Type: #cferror.Handler_Type#
HTTPREFERER: #cferror.HTTPReferer#
Mailto: #cferror.MailTo#
Message: #cferror.Message#
Query String: #cferror.QueryString#
Remote Address: #cferror.RemoteAddress#
Template: #cferror.Template#
Type: #cferror.Type#
</cfmail>

<!--- Display an error page to the user --->
<html>
<head>
 <title>Error Handler</title>
</head>

<body>
<div align="Center">
<h2>Custom Exception Handler</h2>

<table border="1" width="400" cellpadding="10">
 <tr>
 <td>An error has occurred while trying to process your request. The error has
 been logged and an e-mail notifying the system administrator has automatically
 been sent.
 <p>
 Please e-mail questions or comments to
 <cfoutput>#cferror.Mailto#</cfoutput>.</td>
</tr>
</table>
</div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</body>
</html>

The customexceptionhandler.cfm template uses the exception information it receives from the
cferror tag to generate an email (using cfmail) that is automatically sent to the contact specified in
the mailto attribute of the cferror tag. This email contains information about the exception (from
the Error variables) such as the time and date the error occurred, diagnostic information, and the

template executing when the exception happened. A message is also displayed to the user telling him
that an error has occurred and that an email message has been sent to the site administrator.

Now let's look at some templates for generating exceptions that can be caught by the cferror tags

in our Application.cfm template. Here's some code that generates a POP authentication exception; in
order to use this example, you must change the server attribute to the name of a valid POP server:

<!--- make sure to change the server attribute to a valid POP server. Be sure
 to use a username and password you know to be invalid --->
<cfpop action="GetHeaderOnly" name="test" server="my.popserver.com"
 username="test" password="test">

Executing this template causes the first cferror tag in our Application.cfm template to invoke the

exceptionhandler.cfm template (Example 9-13). The results can be seen in Figure 9-3.

Here's a template that generates a custom exception called MyApp.MyException (defined using the
cfthrow tag) if a variable called form.MyVar doesn't exist:

<cfif not IsDefined('form.MyVar')>
<cfthrow message="<h2>My variable does not exist!</h2>"
 type="MyApp.MyException" detail="Here are the details:"
 errorcode="100"
 extendedinfo="No extended information is available.">
</cfif>

When this template is executed, ColdFusion checks for the existence of a form variable called
form.MyVar. If the variable doesn't exist (which it doesn't in this example), a custom exception
named MyApp.MyException is generated using the cfthrow tag. Once the exception is thrown, the
cferror tag in our Application.cfm template invokes the customexceptionhandler.cfm template from

Example 9-14.

Our final example causes a database exception to occur, triggering the third cferror tag in our

Application.cfm template:

<!--- perform a bogus query --->
<cfquery name="Test" datasource="ProgrammingCF">
 SELECT * FROM BogusTable
</cfquery>

As you may recall, the third cferror tag has its type attribute set to Any so it can handle any
exceptions not caught by the first two cferror tags. Since our database exception isn't handled by
either of the first two cferror tags, it is automatically caught by the final one.

9.4.4 Monitors (ColdFusion 5 Only)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In ColdFusion 5, when ColdFusion's CFML interpreter first detects an exception, it searches for an
exception monitor to invoke before it starts looking for cfcatch blocks or other cferror tags to

handle the exception. Exception monitors are useful for monitoring and debugging exception handling
within ColdFusion applications. To create a monitor, you simply place a cferror tag with the type
attribute set to Monitor in your Application.cfm template. If an exception occurs, and a monitor is
found, the template specified in the template attribute of the cferror tag is executed. Once the

template has finished executing, the exception is rethrown to allow any additional error and exception
handling code to deal with the exception. Because of this, it is necessary to have additional
cftry/cfcatch or cferror tags in place to handle the rethrown exception. Exception monitors are
most often used to log errors to a log file, while still allowing other cferror tags or cfcatch blocks to

deal with the actual exception.

Example 9-15 shows an Application.cfm template that creates a basic exception monitor to write all
available exception information to a log file in the event an exception occurs.

Example 9-15. Application.cfm template containing cferror code for
invoking an exception monitor

<cfapplication name="MyApplication">

<!--- Call an exception monitor for any type of exception --->
<cferror type="Monitor" template="monitorhandler.cfm" exception="Any"
 mailto="webmaster@example.com">

<!--- After the exception monitor has finished executing, this cferror tag will
 execute. It calls the ExceptionHandler.cfm template from Example 9-13 --->
<cferror type="Exception" template="exceptionhandler.cfm" exception="Any"
 mailto="webmaster@example.com">

This Application.cfm template contains two cferror tags. The first cferror tag makes the call to the
monitorhandler.cfm template in the event that any exception occurs. This is done by setting the type
attribute to Monitor and the exception attribute to Any.

Because of the way that the Monitor exception type works, it is necessary to include a second
cferror tag with the type attribute set to Exception and the exception attribute set to Any. This is

because ColdFusion automatically rethrows the original exception after the monitorhandler.cfm
template has finished executing. Because of this, we need a second cferror tag to handle the
rethrown exception. If the second cferror isn't there, the exception is rethrown, an error is written

out to the browser, and all processing halts.

With the Application.cfm template set up, it's time to move to the monitorhandler.cfm template we
specified in the template attribute of our first cferror tag. This template is used to write an entry in
a log file called monitorlog.txt each time it is invoked by the cferror tag. The code for

monitorhandler.cfm is shown in Example 9-16.

Example 9-16. Writing exception information to a log file with cffile

<!--- Basic exception monitor for writing a log file with cffile --->

<!--- Initialize a variable to hold the log entry --->
<cfset TheException = "">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Loop over the error structure and build the log entry --->
<cfloop collection=#Error# item="Message">
 <cfif IsSimpleValue(Error[Message])>
 <cfset TheException = ListAppend(TheException, Error[message], "|")>
 </cfif>
</cfloop>

<!--- Write the exception info in the log file --->
<cflock timeout="60" throwontimeout="Yes" type="Exclusive">
<cffile action="append" file="c:\temp\Monitor_log.txt"
 output="#TheException#" addnewline="Yes">
</cflock>

Once invoked, the monitorhandler.cfm template initializes a variable called TheException. The
template then loops over the Error structure, appending each value to TheException and delimiting
values with the pipe (|) character. The pipe is used as a delimiter because we know that it is unlikely

to show up as a character in any of the error variable values. Each value is tested with the
IsSimpleValue() function before it is appended to the list. If the value isn't a simple value, we
know it is part of the cferror.TagContext variable, and we omit it from the log file (for simplicity's
sake). Finally, the cffile tag is used to write the contents of our exception string (TheException) to

a file called monitorlog.txt. A newline character is added at the end of each entry so that the next
time an entry is written, it begins on a new line. The cflock tag is used around the cffile tag so

that no two exceptions can write to the monitorlog.txt file at the same time.

Our exception monitor example wouldn't be complete without a template to test everything out. The
following code causes a database exception by attempting to query a nonexistent data source:

<cfquery name="test" datasource="asd">
 SELECT * FROM Test
</cfquery>

Executing this template causes the first cferror tag to invoke the monitorhandler.cfm template and

write the exception information to the log file. After that is complete, the exception is rethrown and
caught by the second cferror tag in our Application.cfm template. That cferror tag calls the

exceptionhandler.cfm template from Example 9-13.

9.4.5 Exception Logging

When handling exceptions, you might find it desirable to write relevant information to a log file. You
can do this using the cffile tag, or you can make it easy on yourself and use ColdFusion's cflog
tag. cflog allows you to log messages to ColdFusion's default Application.log, to Scheduler.log, or to

a custom log file that you specify. Example 9-17 shows a simple example that writes some of the
contents of the error scope to a log file called exceptionlog.txt using the cflog tag.

Example 9-17. Writing exception information to a log file with cflog

<!--- Basic exception handler for writing a log file with cflog. Name this
 template exceptionlogger.cfm --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Initialize a variable to hold the log message --->
<cfset TheException = "">

<!--- Loop over the error structure and build the log entry --->
<cfloop collection="#error#" item="Message">
 <cfif IsSimpleValue(error[Message])>
 <cfset TheException = ListAppend(TheException, error[message], "|")>
 </cfif>
</cfloop>

<!--- Write the exception info in the log file --->
<cflog text = "#TheException#"
 file = "exceptionlog"
 type = "Error"
 application = "Yes">

When this exception handler is invoked, it builds the message to add to the log file by looping over
the error scope and concatenating all of the simple values into a list separated by pipe characters.
The cflog tag is then used to write the message to a log file. The log files generated by cflog follow

a standard format. The first line of each log file contains a comma-delimited list of column headers
qualified with double quotes that looks like this:

"Severity","ThreadID","Date","Time","Application","Message"

When an entry is made to the log file, the values that are written to each column are also qualified
with double quotes and delimited with commas. Some column values are based on the values
specified for the various attributes of the cflog tag. text is the only required attribute and specifies
the message to be written to the file. Here, we use the exception string (TheException). The file

attribute specifies the name of the log file (without the extension) you want to write the log entry to.
You must specify the name of a file with a .log extension. If the file doesn't exist, ColdFusion
automatically creates it in the default log file directory specified in the Logging section of the
ColdFusion Administrator. In this case, we are going to write our log entry to a log file called
exception.log.

If you don't want to write your entry to a custom log file, you may omit the file attribute and use
the log attribute instead (not shown in the example). The log attribute specifies one of two standard

ColdFusion log files to write the entry to:

Application

The entry is written to the Application.log file. This file is automatically created by ColdFusion
and is used to log application-specific messages.

Scheduler

The entry is written to the Scheduler.log file. This file is used by ColdFusion to log execution
information concerning scheduled tasks.

The type attribute lets you assign a severity level to the log entry. Possible entries are Information
(the default), Warning, Error, and Fatal. Specifying Yes (the default) for the application attribute
writes the application name to the log file if a name is specified in a cfapplication tag for the
application. The ThreadID, Date, and Time columns are all automatically populated by ColdFusion
when a log entry is made. ThreadID corresponds to the ID of the service thread responsible for

logging the message in the log entry. Service threads typically handle a particular page request from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

request through completion before moving to the next queued request. Logging thread IDs can be
useful (especially to Macromedia technical support) for identifying server activity patterns. date and
time correspond to the system date and time, respectively, when the log entry was made. To test
this example, change the third cferror tag in the Application.cfm template from Example 9-12 to the

following:

<!--- Call the exception logger --->
<cferror type="Exception" template="exceptionlogger.cfm"
 exception="Any" mailto="webmaster@example.com">

For more information on the cflog tag, see Appendix A.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.5 Server-Wide Error Handling

ColdFusion provides site administrators with a way to handle errors and exceptions at the server
level. Via the ColdFusion Administrator, you can designate a template to handle requests for CFML
templates that don't exist on the server. You can also specify an additional template that is invoked
when an error or exception occurs anywhere within your ColdFusion application.

9.5.1 Missing Template Handler

Within the Settings section of the ColdFusion Administrator, there is a place for you to specify a
Missing Template Handler. This template is called if a requested ColdFusion template can't be found
on the server, allowing you to avoid the dreaded "404 Object Not Found" error that otherwise results.
Note that the Missing Template Handler isn't invoked for template types other than CFML. In other
words, requests for missing HTML templates are handled by the web server, not ColdFusion. When
setting the Missing Template Handler, you should provide the relative path (in ColdFusion MX) such
as /MissingTemplateHandler.cfm or the physical path (in ColdFusion 5) such as
d:\inetpub\errorhandlers\MissingTemplateHandler.cfm to the template's location on your ColdFusion
server. If you are using ColdFusion MX, the relative path is relative to your web root directory.[2]

[2] Storing an error handler in a directory relative to the web root means that the error-handling template itself
is accessible via URL. For security reasons, it makes more sense to store your error-handling templates in a
directory that cannot be directly accessed. In order to make a directory above your web root accessible, you'll
need to first create a mapping for the directory in the ColdFusion Administrator

If the template you are calling attempts to call another template that doesn't exist, such as a custom
tag call, cfmodule, or cfinclude, ColdFusion generates a MissingInclude exception but doesn't

invoke the Missing Template Handler. This exception can be trapped by placing the following code in
the Application.cfm template of your application:

<cferror type="Exception" exception="MissingInclude"
 template="missing_include_handler.cfm">

9.5.2 Site-wide Error Handler

There are times when you might want to display a generic error page in the event that an unforeseen
error occurs somewhere in your application. The Site-wide Error Handler setting, again in the Settings
section of the ColdFusion Administrator, lets you specify a ColdFusion template to invoke in the event
that an error occurs within any of your ColdFusion applications. This feature is useful in situations
where you have applications that don't contain their own internal error and exception handling or
where you want to provide a backup error handler.

Using the Site-wide Error Handler is equivalent to placing the following code in your Application.cfm
file:

<cferror type="Exception" exception="Any" template="error_handler.cfm">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note, however, that using a Site-wide Error Handler overrides the use of any instances of the
cferror tag when the type attribute of cferror is set to Exception.

When setting the Site-wide Error Handler, you should provide the relative path (ColdFusion MX) or
physical path (ColdFusion 5) to the template's location on your ColdFusion server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Dynamic Form Controls
Anyone who has ever worked with HTML forms knows their importance. Forms are the basis for much
of the interaction between users and web applications. Yet, for all of their benefits, HTML forms leave
a lot to be desired from a development standpoint. For starters, HTML forms are all alike-from a
data-gathering perspective and from a user-interface perspective. A text box is a text box is a text
box. Nothing you can do can change that. With regular HTML forms, you are limited to a standard set
of input types, each identical in style and function to those used by every other HTML developer.
Sure, you can make your forms unique, but the form controls themselves are completely devoid of
customization. The second limitation (if you want to call it that) of HTML form controls is the lack of
data-validation capabilities. HTML form controls do nothing more than gather data and post it to
another template for processing. Sure, you can write JavaScript routines to validate each form field
individually, but do you really want to? This is where ColdFusion comes in.

ColdFusion includes a set of tags for extending the capabilities of regular HTML forms. These tags
provide additional functionality to forms such as data validation, new data views, and new input
types. Not only can you customize the appearance of many of the form controls, but there are
several additional ColdFusion form controls, including Java applet-based tree, grid, and slider
controls. The following list details the form controls available under cfform:

cfinput

Creates text boxes, password entry boxes, radio buttons, and checkboxes with optional
JavaScript validation routines. Not a Java applet.

cftextinput

Java applet-based text box. Allows more formatting options than a standard text box.
cfselect

Creates drop-down lists from query results with optional JavaScript validation routines. Not a
Java applet.

cfslider

Java applet-based slider control for selecting a value from a range of numeric values.
cfgrid

Java applet-based grid control for displaying, entering, and editing tabular data.
cftree

Java applet-based tree control for displaying and selecting hierarchical data.
cfapplet

Allows you to use custom Java controls as if they were native ColdFusion tags.

Version 5.0 of ColdFusion introduced a number of significant architectural, behavioral, functional, and
cosmetic changes to the various cfform controls. The most significant change had to do with the

architecture of the controls themselves. Different versions of different web browsers each have a
different Java Runtime Environment (JRE), making it impossible to guarantee that the pre-ColdFusion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.0 applets will run as intended on all browser version/JRE combinations. Because of this, all the Java
applet-based cfform controls (cftextinput, cfgrid, cfslider, and cftree) were rewritten for

ColdFusion 5.0 and further enhanced in ColdFusion MX. The new versions of the controls require the
Sun Java web browser plugin, which allows the applets to function across the widest possible
spectrum of browsers. When a user requests a page containing any of the new applet controls,
ColdFusion automatically attempts to send and install the Java plugin if it isn't already present on the
user's system. Depending on what browser the user has and the version they are running,
installation can be completely seamless, or it can require a few additional steps on the part of the
user.

The requirement that users download and install a plugin in order to use Java-based cfform controls

is worth considering when designing your applications. While this may not be a concern for intranet
applications, where a company may have strict control over what software users have installed, it
may present a barrier to Internet/extranet users who are unwilling or unable to download and install
the plugin.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 Combining HTML and CFML Form Controls

The cfform tag enables you to create dynamic forms using controls that include such HTML controls

as input boxes, drop-down boxes, and radio buttons, as well as a number of specialized Java applet-
based controls, such as trees, grids, and sliders. Forms created using the cfform tag are coded in the
same manner as regular HTML forms. In fact, the cfform tag allows you to mix standard HTML and

CFML form controls in the same form.

The following example creates a form using cfform and places a standard HTML submit button on the

page:

<cfform action="MyFormProcessor.cfm" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <input type="submit" name="submit" value="submit">

</cfform>

The cfform tag has many of the same attributes as the HTML form tag. The action attribute is
required and specifies where the form should be submitted upon completion. name is optional and
specifies a name for the form. You should specify a value for name if you plan to reference the form
later in your application. In previous versions of ColdFusion, the cfform tag used an attribute called
enablecab to make Java-based form controls available to Microsoft Internet Explorer users as
Microsoft cabinet files. In Version 5.0, the enablecab attribute was deprecated and made
nonfunctional. In its place, two new optional attributes have been added to the cfform tag to
enhance performance of the Java-based cfform controls:

codebase=" url"

Specifies the URL to a downloadable JRE plugin for MS Internet Explorer. The default URL is
/CFIDE/classes/cf-j2re-win.cab.

archive=" url"

Specifies the URL to a downloadable Java archive file containing Java-based cfform controls.

The default URL is /CFIDE/classes/CFJava2.jar.

The enctype attribute is also optional and specifies the MIME type for data being submitted via the
POST method. The default enctype is application/x-www-form-urlencoded. If, however, you plan
to allow file uploads via your form, you must specify multipart/form-data for the enctype. For

more information on uploading files via forms, see Chapter 12.

There are several additional attributes, all optional and available to the cfform tag, that aren't shown
in the example. For instance, the target attribute allows you to specify the name of a frame or
window for the target template to be opened in. Another attribute, onsubmit, allows you to designate

a JavaScript function that should be executed after validation occurs but before the form is
submitted. This is useful in situations where you want to use JavaScript to clean up or reformat data
before submitting it. Another useful optional attribute, passthrough, allows you to pass any
additional HTML attributes that aren't directly supported by the cfform tag. For example, you can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pass an additional parameter called MyParameter with a value of Yes by adding the following code to
your cfform tag:

passthrough="MyParameter=""Yes"""

Note that in order to pass quoted values through cfform, you must escape the quotation marks by

doubling up on them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 Basic Input Controls

The cfinput tag closely resembles the HTML input tag and can be used for creating text boxes,
password entry boxes, radio buttons, and checkboxes. At the most basic level, the cfinput tag
behaves exactly like the HTML input tag. Consider the following HTML input tags:

<input type="text" name="MyText" size="10" maxlength="10" value="MyValue">
<input type="password" name="MyPassword" size="10" maxlength="10">
<input type="radio" name="MyRadioButton" value="MyValue" checked>
<input type="checkbox" name="MyCheckbox" value="MyValue" checked>

Here are the equivalent cfinput tags:

<cfinput type="text" name="MyText" size="10" maxlength="10" value="MyValue">
<cfinput type="password" name="MyPassword" size="10" maxlength="10">
<cfinput type="radio" name="MyRadioButton" value="MyValue" checked>
<cfinput type="checkbox" name="MyCheckbox" value="MyValue" checked>

As you can see, the tags are virtually identical. What sets a cfinput tag apart from its HTML
counterpart is built-in data validation. The cfinput tag can require input for a given form field as well

as validate the data against a predefined or custom validation routine. Example 10-1 demonstrates
how to use the cfinput tag to require data entry for various input types.

Example 10-1. Creating a form with cfform and cfinput

<cfif IsDefined('form.FieldNames')>
 <h3>You submitted:</h3>
 <cfloop index="Field" list="#form.Fieldnames#">
 <cfoutput>#Field#: #form[Field]#
</cfoutput>
 </cfloop>
 <hr noshade>
</cfif>

<cfform action="#CGI.Script_Name#"name="MyForm"
 enctype="application/x-www-form-urlencoded">
<table>
<tr>
 <td>Name:</td>
 <td><cfinput type="text" name="Name" required="Yes"
 message="You must enter your name." size="10" maxlength="10">
 </td>
</tr>
<tr>
 <td>Password:</td>
 <td><cfinput type="password" name="password" required="Yes"
 message="You must enter your password." size="10" maxlength="10">
 </td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</tr>
</table>

<table>
<tr>
 <td>Do you like programming with ColdFusion?</td>
 <td><cfinput type="radio" name="LikeCF" value="Yes" checked="Yes">Yes <cfinput
 type="radio" name="LikeCF" value="No">No
 </td>
</tr>
<tr>
 <td colspan="2">Which database(s) do you use?</td>
</tr>
<tr>
 <td colspan="2"><cfinput type="checkbox" name="Access" value="Yes">Access

 <cfinput type="checkbox" name="DB2" value="Yes">DB2

 <cfinput type="checkbox" name="Informix" value="Yes">Informix

 <cfinput type="checkbox" name="Oracle" value="Yes">Oracle

 <cfinput type="checkbox" name="SQL_Server" value="Yes">SQL Server
 </td>
</tr>
</table>

<p>
<input type="submit" name="submit" value="submit">
</cfform>

Example 10-1 starts by using a cfif statement to see if a form variable called form.FieldNames was
passed to the template. form.FieldNames is a special ColdFusion variable that is automatically

created whenever a ColdFusion template receives information via an HTTP POST operation.
form.FieldNames contains a comma-delimited list of all the field names passed from the form
making the POST to the ColdFusion template. If the variable form.FieldNames exists, the template

loops through the list of field names and outputs each field name from the list as well as the value it
contains. This technique allows you to submit the form to itself and display the results without
knowing what form fields were passed. You could just as easily reference the special form scope

structure that contains all available form fields. However, because this variable always exists, even
when it contains no form fields, it's easier to check for the existence of form.FieldNames.

The form itself is set up using the cfform tag. The first cfinput tag collects a user's name. The
required attribute indicates whether or not to require that data be entered before the form can be
successfully submitted. In this case, we set required to Yes. The message attribute contains the text

to display in a JavaScript alert box in the event that a user submits the form without filling in a
required field. You can use the required and message attributes with any of the cfinput controls.

Besides the attributes already mentioned, there are two additional attributes available to the cfinput
tag worth mentioning. These attributes are onerror and passthrough. onerror allows you to

designate the name of a JavaScript function that is executed if validation fails for any reason. You can
use passthrough to pass any additional HTML attributes that aren't directly supported by the
cfinput tag.

10.2.1 Data Validation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the big benefits of using cfform over standard HTML forms is the built-in data validation that
is available. Both the cfinput and cftextinput tags have an attribute called validate that accepts

any of the following values:

CreditCard

Validates the form-field data using the mod10 algorithm. A credit-card number can be entered
as a single value or with dashes or spaces and must be between 12 and 16 digits in length.
ColdFusion automatically strips dashes and spaces before validating.

Date

Requires the form-field value to be in the U.S. date format mm/dd/yyyy.
EuroDate

Requires the form-field value to be in the European date format dd/mm/yyyy.
Float

Requires the form-field value to be a floating-point number.
Integer

Requires the form-field value to be an integer.
Regular_Expression

Validates the form-field data against a JavaScript regular expression specified in the tag's
pattern attribute.

Social_Security_Number

Requires the form-field value to be a U.S. social security number in the format xxx-xx-xxxx or

xxx xx xxxx.
Telephone

Requires the form-field value to be a U.S. telephone number formatted either xxx-xxx-xxxx or

xxx xxx xxxx. The area code and exchange are required to begin with a number in the range of

1-9.
Time

Requires that the form-field value be entered as a valid time using the format hh:mm:ss.
ZipCode

Requires that the form-field value be entered as a five- or nine-digit U.S. ZIP code using the
format xxxxx, xxxxx-xxxx, or xxxxx xxxx.

Example 10-2 demonstrates the cfinput tag along with some of the predefined data validation

settings we just discussed.

Example 10-2. Using predefined data validation with cfinput

<cfif IsDefined('form.FieldNames')>
 <h3>You submitted:</h3>
 <cfloop index="Field" list="#form.FieldNames#">
 <cfoutput>#Field#: #form[Field]#
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfloop>
 <hr noshade>
</cfif>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
<table>
<tr>
 <td>Date:</td>
 <td><cfinput type="text" name="MyDate" validate="Date" required="Yes"
 message="You must enter a valid Date." size="10" maxlength="10"></td>
</tr>
<tr>
 <td>EuroDate:</td>
 <td><cfinput type="text" name="MyEuroDate" validate="Eurodate"
 message="You must enter a valid EuroDate." size="10" maxlength="10"></td>
</tr>
<tr>
 <td>Time:</td>
 <td><cfinput type="text" name="MyTime" validate="Time"
 message="You must enter a valid Time." size="10" maxlength="10"></td>
</tr>
<tr>
 <td>Float:</td>
 <td><cfinput type="text" name="MyFloat" validate="Float"
 message="You must enter a valid floating point number." size="10"
 maxlength="255"></td>
</tr>
<tr>
 <td>Integer (range 1-100):</td>
 <td><cfinput type="text" name="MyInteger" validate="Integer" range="1,100"
 message="You must enter a valid integer between 1 and 100." size="10"
 maxlength="255"></td>
</tr>
<tr>
 <td>Phone Number:</td>
 <td><cfinput type="text" name="MyPhone" validate="Telephone"
 message="You must enter a valid phone number (xxx-xxx-xxxx, xxx xxx xxxx)."
 size="15" maxlength="25"></td>
</tr>
<tr>
 <td>Zip code:</td>
 <td><cfinput type="text" name="MyZip" validate="Zipcode"
 message="You must enter a valid zip code (xxxxx, xxxxx-xxxx, xxxxx xxxx)."
 size="15" maxlength="15"></td>
</tr>
<tr>
 <td>Credit Card Number:</td>
 <td><cfinput type="text" name="MyCreditCard" validate="CreditCard"
 message="You must enter a valid credit card number." size="10"
 maxlength="255"></td>
</tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<tr>
 <td>Social Security Number:</td>
 <td><cfinput type="text" name="MySSN" validate="Social_Security_Number"
 message="You must enter a valid SSN (xxx-xx-xxxx, xxx xx xxxx)."
 size="13" maxlength="11"></td>
</tr>
</table>

<p>
<input type="submit" name="submit" value="submit">
</cfform>

Each cfinput tag in Example 10-3 performs a different type of validation against the data it accepts.
The type of validation performed is determined by the value specified by the validate attribute.
message specifies a message to display in a JavaScript alert box in the event that validation for a
particular field fails. You can set an additional attribute, range, with the Integer validation type.
range allows you to specify a range of acceptable values for the form field. range is specified as

range(m,n) where m is the beginning value in the range, and n is the ending value.

In addition to the validate attribute, the cfinput and cftextinput tags as well as the cfgrid,
cfslider, and cftree tags support an additional attribute for data validation. The onvalidate

attribute allows you to designate your own JavaScript validation function that should be executed
before the form is submitted. You don't need to know all the ins and outs of JavaScript to use the
onvalidate function (although it sure helps!). Example 10-3 demonstrates how to use onvalidate

to call a custom JavaScript function.

Example 10-3. Using onvalidate

<script language="JavaScript">
 <!--
 function PasswordCheck() {
 if (document.MyForm.Password.value != document.MyForm.Password2.value)
 return false;
 else
 return true;
 }
 //-->
</script>

<cfif IsDefined('form.Fieldnames')>
 <h3>You submitted:</h3>
 <cfloop index="Field" list="#form.Fieldnames#">
 <cfoutput>#Field#: #form[Field]#
</cfoutput>
 </cfloop>
 <hr noshade>
</cfif>

<!--- Submit the form to itself --->
<cfform action="#CGI.SrciptName#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
<table>
<tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>User Name:</td>
 <td><cfinput type="text" name="MyTime" required="Yes"
 message="You must enter a User Name." size="10" maxlength="10"></td>
</tr>

<tr>
 <td>Password:</td>
 <td><cfinput type="password" name="password" required="Yes"
 message="You must enter a Password." size="10" maxlength="10"></td>
</tr>
<tr>
 <td>Confirm:</td>
 <td><cfinput type="password" name="Password2"
 message="Passwords don't match, please re-enter them and submit again."
 onvalidate="PasswordCheck" size="10" maxlength="10"></td>
</tr>
</table>

<p>
<input type="submit" name="submit" value="submit">
</cfform>

What happens in Example 10-3 is straightforward. We define a JavaScript function called
PasswordCheck at the beginning of the template. It contains the JavaScript code to be called by the
password confirmation field (the last cfinput statement in the template). The second section of the

code is a conditional block of code that executes only if the template is called via a POST operation.
The code loops through any form fields passed to the template and outputs them along with their
corresponding values.

The third section of code is the cfform section. This section of code creates a form with three text-

input fields and a submit button. The fields allow a user to enter a username, a password of his
choice, and a confirmation of that password. When the user submits the form, the first cfinput tag

automatically checks to see that a value has been entered. If not, a JavaScript alert box is displayed
along with the text in the message attribute of the tag. Next, the Password field is evaluated to

ensure that a value has been entered. If one hasn't, a similar JavaScript alert box is displayed.
Finally, the cfinput tag containing the Password2 field calls the PasswordCheck JavaScript function
via the onvalidate attribute. The PasswordCheck function evaluates the value of Password1 against
Password2. If they are equal, the form is submitted. If, however, the values aren't equal, a
JavaScript alert is displayed along with the text from the message attribute of the cfinput tag. The

form can't successfully be submitted until all the validation conditions have been met.

When ColdFusion calls out to a custom JavaScript function via the onvalidate attribute, the form

object, input object, and input object value are all automatically passed to the specified JavaScript
function. The JavaScript function should return true if the validation is successful and false if it fails.
Using the onvalidate attribute overrides any options specified in the validate attribute.

10.2.2 Data Validation with JavaScript Regular Expressions

ColdFusion 5.0 added JavaScript regular expressions as a means for validating data entered in
cfinput and cftextinput tags. Regular expressions allow you to specify patterns to match data

input against. For example, you can write regular expressions to validate things such as valid email

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address formats, string lengths, file-naming conventions, and anything else that follows a pattern. To
use a JavaScript regular expression as a validation mechanism in your cfinput or cftextinput tags,
you need to do two things. First, you must specify Regular_Expression in the validate attribute of
your tag. Regular_Expression lets ColdFusion know you want to use a JavaScript regular expression

to validate the input for the form control.

The second thing you need to do is specify the JavaScript regular expression you want to validate
against. This done using a new attribute called pattern. The pattern attribute accepts any

combination of characters comprising a valid JavaScript regular expression. There are, however, a
few rules that you need to be aware of:

You shouldn't enter the forward slashes (/) normally used to surround a JavaScript regular

expression as ColdFusion does this behind the scenes for you.

ColdFusion variables and expressions can dynamically construct the regular expression as they
are evaluated before the regular expression validates the form-field input.

Although there are similarities between JavaScript regular expressions and those native to ColdFusion
(covered in Chapter 18), enough of a difference exists to warrant separate coverage. However, a
thorough discussion of JavaScript regular expressions is beyond the scope of this book, so I
recommend consulting the following resources to learn more:

JavaScript: The Definitive Guide by David Flanagan (O'Reilly)

Chapter 10, Pattern Matching with Regular Expressions
Developing ColdFusion MX Applications with CFML (ColdFusion documentation)

Chapter 27, Building Dynamic Forms
Netscape JavaScript Guide

http://developer.netscape.com/docs/manuals/communicator/jsguide/regexp.htm
CNet's Builder.com

http://www.builder.com/Programming/Kahn/050698/

For those already familiar with JavaScript regular expressions, Example 10-4 shows how to use this
feature to perform a few simple validation tasks.

Example 10-4. Using JavaScript regular expressions to validate form
input

<cfform action="#CGI.Script_Name#" name="MyForm" preservedata="Yes"
 enctype="application/x-www-form-urlencoded">
<table>
 <tr>
 <td>Employee ID:</td>
 <td><cfinput type="text" name="Name" required="Yes"
 message="You must enter your 5 digit employee ID."
 validate="Regular_Expression" pattern="^\d{5}$"></td>
 </tr>
 <!--- Note that there should not be a line break in the message attribute.
 Having one causes the validation not to work. --->

http://developer.netscape.com/docs/manuals/communicator/jsguide/regexp.htm
http://www.builder.com/Programming/Kahn/050698/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td>Password:</td>
 <td><cfinput type="password" name="Password" required="Yes"
 message="Password must be at least 8 characters, consisting of letters,
numbers, and underscores only."
 validate="Regular_Expression" pattern="^\w{8,}$"></td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td><cfinput type="text" name="Email" required="Yes"
 message="You must enter your e-mail address."
 validate="Regular_Expression"
 pattern="^[A-Za-z0-9_\.\-]+@([A-Za-z0-9_\.\-]+\.)+[A-Za-z]{2,4}$">
 </td>
 </tr>
</table>
<p>
<input type="submit" name="submit" value="submit">
</cfform>

The form in this example expects three inputs: a five-digit employee number, a password at least
eight characters long that is made up of letters, numbers, and underscores only, and a correctly
formatted (notice I didn't say valid) email address.

To validate that the user has entered exactly five digits and nothing else, the first cfinput tag uses

this regular expression:

^\d{5}$

The ^ character anchors the expression to the beginning of the string while \d matches any single
digit from 0-9. The {5} tells the regular expression to match the last group of characters (in this
case, a single digit) five times. Finally, the $ character anchors the regular expression to the end of

the string.

The next cfinput tag uses a similar regular expression to make sure the form input is at least eight

characters long and contains only letters, digits, and underscores:

^\w{8,}$

In this case, the ̂ and $ characters perform the same job as in the previous example. The \w tells

the regular expression to match any single letter, digit, or underscore character. Adding the comma
to the repetition character makes the regular expression match eight or more occurrences of the last
group of characters.

The final cfinput tag uses a slightly more complicated regular expression to ensure that a correctly

formatted email address is entered:

^[A-Za-z0-9_\.\-]+@([A-Za-z0-9_\.\-]+\.)+[A-Za-z]{2,4}$

This regular expression also uses the ̂ and $ characters for the same purpose as the previous two
regular expressions. The [A-Za-z0-9_\.\-]+@ means that the regular expression should match one
or more letters (regardless of case), digits, underscores, periods, or dashes followed by an @
character. The next part, ([A-Za-z0-9_\.\-]+\.)+ matches one or more sets of letters (again,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

regardless of case), digits, underscores, periods, or dashes followed by a period. The final part of the
regular expression matches a string containing at least two letters (regardless of case) but not more
than four. This allows the user to enter email addresses such as me@example.com and
me.oh.my@my.example.ru. While this regular expression doesn't prevent people from entering
invalid email addresses, it does cut down on the number of accidental formatting mistakes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.3 Textual Input

The cftextinput tag offers a Java control for accepting basic text input. Although it provides the
same basic functionality as the cfinput and HTML input tags, cftextinput differs in that it allows

you to specify a number of attributes affecting the look of both the text box and the data entered into
it. Consider Example 10-5, in which two cftextinput tags are used to solicit information from a

user.

Example 10-5. Creating a form using cfform and cftextinput

<!--- Check to see if form field data is being passed and if so, display it --->
<cfif IsDefined('form.Fieldnames')>
 <h3>You submitted:</h3>
 <cfoutput>
 MyName: #form.MyName#

 PhoneNumber: #form.PhoneNumber#
 </cfoutput>
 <hr noshade>
</cfif>

<cfform action="#CGI.Script_Name#" enablecab="Yes" name="MyForm"
 enctype="application/x-www-form-urlencoded">
<table>
<tr>
 <td>Name:</td>
 <td><cftextinput name="MyName" align="AbsMiddle"
 height="25" width="250" bgcolor="##C0C0C0"
 font="Arial" fontsize="14" bold="Yes" italic="No"
 textcolor="##000000" maxlength="255" required="Yes"
 message="You must enter your name"></td>
</tr>
<tr>
 <td>Phone Number:</td>
 <td><cftextinput name="PhoneNumber" value="xxx-xxx-xxxx"
 align="AbsMiddle" height="25" width="100"
 bgcolor="##C0C0C0" font="Arial" fontsize="14" bold="Yes"
 italic="Yes" textcolor="##000000" maxlength="12"
 required="Yes" validate="telephone"
 message="You must enter your phone number as xxx-xxx-xxxx">
 </td>
</tr>
<tr>
 <td colspan="2"><input type="submit" name="submit" value="submit"></td>
</tr>
</table>
</cfform>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-5 uses two cftextinput tags that solicit information from a user, as shown in Figure 10-

1. The first tag creates a text box for a user to enter his name. The second collects a user's phone
number. In both cases, the name attribute is required to name the form field. The value attribute is

optional, and you can use it to specify a default value to appear in the text box. In the case of the
text box called PhoneNumber, a default value of xxx-xxx-xxxx is used. You can specify the
positioning of the text-input box by using the align attribute. Possible values are top, texttop,
bottom, absbottom, baseline, middle, AbsMiddle, left, and right. The height and width of the
text boxes is set using the height and width attributes, respectively. You can specify a background
color for the control by entering the color name or appropriate hex color code in the bgcolor

attribute. If you specify a hex value, you must escape the pound sign, or ColdFusion will throw an
error.

Figure 10-1. cfform using cftextinput

One nice feature of the cftextinput control that isn't available in regular HTML forms is the ability to
control font characteristics with the form control itself. The font attribute specifies the font to use

when representing the text entered in the form control. The size of the font is controlled by the
fontsize attribute. Bold and italic effects may be used by indicating Yes or No within the bold and
italic attributes. Text color is specified using the textcolor attribute and may be entered as the

color name or as a valid hex color value.

You can specify a maximum number of characters that can be entered in the text control with the
maxlength attribute. This prevents users from entering more data in the form than your
corresponding database field allows. Setting the required attribute to Yes makes the text-box field a
required form field. As shown in Figure 10-1, in the case of the PhoneNumber field, additional
validation is performed by setting the validate field to "Telephone". This requires any value
entered for PhoneNumber to follow the U.S. telephone format before the form can be submitted. The
message attribute is used when the required attribute is set to Yes; the validate attribute is used

to require a specific type of validation be performed. You specify a text message to display in the
event that validation fails for the given field.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.4 A Selection Control

The cfselect tag extends the functionality provided by the HTML select tag by including data

validation as well as a mechanism for quickly and easily building dynamic drop-down boxes from
query results. Example 10-6 shows a simple use of cfselect with static option values.

Example 10-6. Using cfselect with static option values

<cfif IsDefined('form.Selectbox')>
 <cfoutput>You submitted #form.Selectbox#.</cfoutput>
 <hr noshade>
</cfif>

<cfform action="#CGI.Script_Name#" name="MyForm"
enctype="application/x-www-form-urlencoded">

<cfselect name="Selectbox" size="5"
 message="You must select at least one item from the selection box."
 required="Yes" multiple="Yes">
 <option value="January">January</option>
 <option value="February">February</option>
 <option value="March">March</option>
 <option value="April">April</option>
 <option value="May">May</option>
 <option value="June">June</option>
 <option value="July">July</option>
 <option value="August">August</option>
 <option value="September">September</option>
 <option value="October">October</option>
 <option value="November">November</option>
 <option value="December">December</option>
</cfselect>
<p>
<input type="submit" name="submit" value="Submit Form">
</cfform>

In Example 10-6, a drop-down box is created within a cfform using the cfselect tag. We specify
the name of the select-box field using the name attribute. Setting the size to 5 creates a select box
five rows high. Note that size must be set to at least 2 for the required validation to work. The
multiple attribute allows the user to select multiple values from the select box. By setting the
required attribute to Yes, we can require the user to select at least one value from the list. The
message attribute specifies a message to appear in a JavaScript alert box should the user fail to
choose at least one option. In the case of this example, all option values for the select box are

hardcoded.

While the data-validation capabilities of cfselect are a good reason to use the tag, the real benefit
of cfselect becomes evident when you use it to dynamically populate the options of a select box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with the results of a query. By adding a few additional attributes to the cfselect tag, it is possible to
generate all the option tags necessary for the select list dynamically. Example 10-7 shows the basic
syntax for populating the cfselect tag with the results of a query.

Example 10-7. Populating a cfselect box with dynamic values from a
query

<cfif IsDefined('form.Selectbox')>
 <cfoutput>You submitted #form.Selectbox#.</cfoutput>
 <hr noshade>
</cfif>

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT ID,Name
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

<cfselect name="Selectbox" size="5"
 message="You must select at least one item from the selection box."
 query="GetPeople" value="ID" display="Name"
 selected="Pere Money" required="Yes" multiple="Yes">
</cfselect>
<p>
<input type="submit" name="submit" value="Submit Form">
</cfform>

In Example 10-7, the cfselect tag takes on four additional attributes: query, value, display, and
selected. The query attribute specifies the name of the query to use to populate the tag. In this
case, we used GetPeople. The value attribute determines which field from the query to use to fill in
the option values. For this example, we use the ID field, which happens to be the primary key for the
table. The next attribute, display, allows us to choose an alternate field from the query to display in
the select box itself. We chose the name field in this case. The final new attribute, selected, allows us

to supply a value that is selected automatically when the template is called. In this example, we
chose Pere Money, a value known to be in the database under the name column.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.5 Sliders

The cfslider tag is a Java slider control you can embed in your applications. It offers an efficient

and user-friendly way to select a value from a range of numeric values. Possible uses include volume
controls, time lines, and dollar amounts. The control works by allowing users to drag the slider bar to
the left to decrease the value or to the right to increase the value. The slider control is shown in
Figure 10-2.

Figure 10-2. A horizontal slider control

To better illustrate how the cfslider control works, consider Example 10-8.

Example 10-8. Using the cfslider control

<cfif IsDefined('form.Slider')>
 <cfoutput>You submitted a slider value of #form.Slider#.</cfoutput>
 <hr noshade>
</cfif>

<cfform action="#CGI.Script_Name#" method="POST" name="MyForm"
 enctype="application/x-www-form-urlencoded">
1 <cfslider name="Slider" label="Current slider value: %value%"
 refreshlabel="Yes" range="1,100" value="50" scale="1"
 align="Baseline" height="50" width="500"
 font="Arial" fontsize="14" bold="Yes" italic="Yes"
 textcolor="##000000" bgcolor="##FFFFFF"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets">100
<p>
<input type="submit" name="submit" value="Submit Form">
</cfform>

The cfslider tag accepts several parameters that determine how to display the slider control. The
name attribute specifies a name for the form field. label is used to display a label for the slider

control as well as the current value associated with the slider's position. By default, the value
associated with the slider's current position is shown to the right of the label text. refreshlabel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

indicates whether the value specified in label should be refreshed as the slider control is moved from

one side to the other. You can specify the beginning and ending values for the slider control by the
range attribute. A default value for the slider control can be specified with the value attribute. The
scale attribute allows you to specify an increment value for the slider control. When choosing a
scale, be sure to pick a number that corresponds with the values you specified in range. For
example, it doesn't make sense to have a range of 1-100 with a scale of 7. align determines how to
position the slider control. Possible values are Top, TextTop, Bottom, AbsBottom, Baseline, Middle,
AbsMiddle, Left, and Right. The height and width attributes specify a size in pixels for the slider

control.

The font attribute specifies the font to use for the slider label. The size of the font is controlled by the
fontsize attribute. You can use bold and italic effects by indicating Yes or No within the bold and
italic attributes. You can specify text color with the textcolor attribute by entering the color name

or a valid hex color value (remember the pound sign). A background color may be specified for the
control by entering the color name or appropriate hex color code in the bgcolor attribute. The final
attribute, notsupported, specifies a text message to display in the event that the browser accessing

the form containing the slider control doesn't support Java.

Several additional attributes were added to the cfslider tag in ColdFusion 5 that affect both the

look and feel of the control and its functionality. One of the most significant additions is an attribute
named vertical that allows you to specify whether the control should slide vertically as opposed to
horizontally. The default is No. Example 10-9 shows the code to generate a vertical slider control. The

slider is shown in Figure 10-3.

Figure 10-3. Vertical slider control with major and minor tick marks and
tick mark labels

Example 10-9. Creating a vertical slider

<cfform action="#CGI.Script_Name#" name="MyForm" preservedata="Yes"
 enctype="application/x-www-form-urlencoded">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfslider name="Slider" label="Current value: %value%"
 refreshlabel="Yes" range="0,100" scale="10"
 value="50" align="Top" height="250" width="115"
 vertical="Yes" lookandfeel="Motif" tickmarkmajor="Yes"
 tickmarkminor="Yes" tickmarklabels="Yes">
<p>
<input type="submit" name="submit" value="Submit Form">
</cfform>

In this example, the vertical attribute tells ColdFusion to create a vertical slider. The lookandfeel
attribute specifies an overall look and feel for the slider control. Options are Windows (the default),
Metal, and Motif. For this example, the cfslider control is sporting a Motif look. Setting
tickmarkmajor to Yes causes a large tick mark to display at every increment value along the axis of

the slider control. In this case, the major tick marks are at every 10 places along the slider. The
tickmarkminor attribute determines whether to display smaller tick marks between the major tick
marks along the slider control. For this example, we set it to Yes. The final attribute is
tickmarklabels. It indicates whether to display labels next to each major tick mark. If Yes, the

numeric value corresponding to the tick mark is displayed. Instead of numeric values, you may
choose to display string values instead. This is done by specifying a string or comma delimited list of
string values, one for each major tick mark between the minimum value and the maximum value for
the slider. If you don't provide enough tick mark strings, the cfslider control repeats the last value

until enough have been displayed.

Instead of (or in addition to) using the standard tick marks that come standard with the cfslider
tag, you can use custom images. This is accomplished with the tickmarkimages attribute, which

accepts a single URL or comma-delimited list of URLs (absolute or relative) to images you want to
use as tick marks for the slider control. Figure 10-4 shows another vertical slider control that uses an
image from the ColdFusion Administrator as the tick-mark image. The code is shown in Example 10-
10.

Figure 10-4. Using an image as a tick mark

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-10. Specifying an image to use as a tick mark

<cfform action="#CGI.Script_Name#" name="MyForm" preservedata="Yes"
 enctype="application/x-www-form-urlencoded">
 <cfslider name="Slider" label="Current value: %value%"
 refreshlabel="Yes" range="0,100" scale="10" value="50"
 align="Top" height="250" width="115" vertical="Yes"
 lookandfeel="Metal" tickmarklabels="Yes"
 tickmarkimages="/cfide/administrator/images/back.gif">
<p>
<input type="submit" name="submit" value="Submit Form">
</cfform>

Here you'll notice that we still include the tickmarklabels attribute, giving us the numeric value

corresponding to each of our custom tick-mark images. The images are specified by providing the
URL to the image in the tickmarkimages attribute. For this example, I chose an image from the

ColdFusion Administrator that just happens to line up nicely on the slider control.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.6 Grids

The cfgrid tag provides a Java-based grid control for displaying and editing tabular data. cfgrid

allows you to display data sets in a familiar spreadsheet format that makes scrolling through and
updating multiple records easy. A sample cfgrid control for displaying data can be seen in Figure 10-
5. Example 10-11 queries a database and subsequently populates a cfgrid control with the record

set data.

Figure 10-5. The cfgrid control

Example 10-11. Creating a basic grid control

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cfgrid name="MyGrid" width="600" height="250" autowidth="Yes"
 query="GetPeople" selectmode="Browse"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets">
 </cfgrid>
</cfform>

The name attribute specifies the name of the grid control. height and width specify the height and
width (in pixels) for the grid's display area. autowidth indicates whether the grid should adjust the

width of each column automatically so that all columns appear within the grid without having to scroll

http://lib.ommolketab.ir
http://lib.ommolketab.ir

horizontally. The default is No. hspace and vspace specify the amount of padding in pixels above,

below, to the left, and to the right of the grid control; we're allowing the grid to use its default values
of pixels for both. The align attribute determines the grid's alignment on the page. Possible values
are Left, Right, Top, TextTop, Bottom, AbsBottom, Baseline, Middle, and AbsMiddle. We're
relying on the default value of Baseline. The query attribute specifies the name of a query that
should be used to populate the grid with data. selectmode determines the selection mode to use for

items in the grid. Valid entries are:

Browse (default)

Allows browsing of data only
Edit

Allows editing of data
Single

Confines selections to a single cell
Column

Selections automatically include the entire column
Row

Selections automatically include the entire row

In Example 10-11, we set the selection mode to Browse, preventing users from selecting or editing
data displayed in the grid. The last attribute in this example, notsupported, specifies a text message

to display in the event that the browser accessing the grid control doesn't support Java.

Before we continue, there are several behaviors in the cfgrid control you should be aware of:

The user may rearrange the order in which columns are displayed by clicking on a column
header and dragging it left or right.

The user may sort the grid data by double-clicking the column header of the column you wish to
sort by. The first time the user sorts, the data is sorted in ascending order. Double-clicking
again resorts the data in descending order.

When selectmode is Edit, Row, Column, or Single, clicking once on a noneditable cell causes

the background color of that cell (or row or column) to turn pink with a yellow border. Clicking
once on an editable cell turns the background color of the cell white with a yellow border.

To edit the contents of an editable cell, the user can double click on it. Pressing the Enter key or
clicking on a different cell finishes the editing.

Now that you see how simple it is to display query data using the grid control, let's look at some
formatting options that are available to the grid control. These formatting options allow you to tailor
the display of text within the grid and include both font and positioning options. Example 10-12 takes
the same grid we built in Example 10-11 and adds formatting. You can see the results in Figure 10-6.

Figure 10-6. Result of adding additional formatting to a cfgrid

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-12. Using the cfgrid control to present query data

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cfgrid name="MyGrid" height="250" width="600" autowidth="Yes" hspace="10"
 vspace="10" query="GetPeople" font="Arial" textcolor="##000000"
 fontsize="12" bold="No" italic="No" griddataalign="Left"
 gridlines="Yes" rowheight="12" rowheaders="Yes"
 rowheadertextcolor="##0000FF" rowheaderalign="Left"
 rowheaderitalic="Yes" rowheaderbold="Yes" rowheaderfont="Courier"
 rowheaderfontsize="12" colheaders="Yes" colheadertextcolor="##0000FF"
 colheaderalign="Left" colheaderitalic="No" colheaderbold="Yes"
 colheaderfont="Courier" colheaderfontsize="16" bgcolor="##FFFFCC"
 selectmode="Browse"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets.">
 </cfgrid>
</cfform>

As you can see, we have introduced several new attributes to the cfgrid tag. Each attribute controls

a different aspect of the grid's display properties. Many attributes have names that are fairly self-
explanatory, so I'm not going to explain each one. One group of attributes control how row headings
appear, while another group controls the column headings. The griddataalign attribute specifies
alignment for the grid data. Choices are Left, Right, or Center. The default value is Left. The
gridlines attribute indicates whether or not to add row and column lines to the grid. The default
value is Yes. For a complete listing of all attributes available to the cfgrid tag, see Appendix A.

10.6.1 Customizing Column Data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can get even more control of the data displayed within the grid by using a child tag of cfgrid
called cfgridcolumn. cfgridcolumn allows you to specify individual column data and formatting
options. Example 10-13 shows cfgridcolumn used in the most basic context.

Example 10-13. Populating a cfgrid using cfgridcolumn

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT Name, Title, Department
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cfgrid name="MyGrid" autowidth="Yes" width="600" height="250"
 query="GetPeople" griddataalign="Left" gridlines="Yes"
 rowheight="12" rowheaders="Yes" colheaders="Yes"
 bgcolor="##FFFFCC" selectmode="Browse"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets.">
 <cfgridcolumn name="Name" header="Full Name">
 <cfgridcolumn name="Title" header="Title">
 <cfgridcolumn name="Department" header="Department">
 </cfgrid>
</cfform>

In Example 10-13, rather than let the cfgrid tag determine which columns of data to display, we
leave that task up to the cfgridcolumn tag. In Example 10-12, all the columns present in the
database were displayed in the grid. In Example 10-13, only the Name, Title, and Department
columns are present. The name attribute of each cfgridcolumn tag determines which query column
to display. The actual column header that appears in the grid is specified in the header attribute. If
header is omitted, ColdFusion uses the column name from the database.

We can specify additional formatting options for each grid column by including other attributes within
the cfgridcolumn tags. Example 10-14 shows how to apply this additional formatting.

Example 10-14. Formatting individual columns with cfgridcolumn

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT Name, Title, Department
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cfgrid name="MyGrid" autowidth="Yes" width="600" height="250"
 query="GetPeople" griddataalign="Left" gridlines="Yes"
 rowheight="12" rowheaders="Yes" colheaders="Yes"
 bgcolor="##FFFFCC" selectmode="Browse"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfgridcolumn name="Name" header="Full Name" headertextcolor="##0000FF"
 headerfont="Arial" headerfontsize="14" headeritalic="Yes"
 headerbold="Yes" headeralign="Left" width="125"
 font="Arial" fontsize="12" italic="No" bold="No"
 dataalign="left" select="No" display="Yes"
 type="String_NoCase">

 <cfgridcolumn name="Title" header="Title" headerfont="Arial"
 headerfontsize="14" headeritalic="Yes" headerbold="Yes"
 headeralign="Left" font="Arial" fontsize="12" italic="No"
 bold="No" dataalign="left" select="No" display="Yes"
 type="String_NoCase">

 <cfgridcolumn name="Department" header="Department" headerfont="Arial"
 headerfontsize="14" headeritalic="Yes" headerbold="Yes"
 headeralign="left" font="Arial" fontsize="12" italic="No"
 bold="No" dataalign="Left" select="No" display="Yes"
 type="String_NoCase">
 </cfgrid>
</cfform>

Note that all the formatting attributes used with the cfgridcolumn tag are optional. Most of these

attributes do exactly what their names imply and are used to control the appearance of column
headers and column data. A few attributes require further explanation. select indicates whether or
not to allow users to select column data to be edited. select is ignored when the selectmode
attribute of the cfgrid tag is set to Row or Browse. The select attribute indicates whether or not to
display the column in the grid. The default is Yes. Finally, the type attribute specifies the type of

column data to display. Choices for this attribute are:

Image

Specifies an image corresponding to the column value to display. You may specify a path to
your own image or use one of the images supplied with ColdFusion by referencing the image
name. Valid options are CD, Computer, Document, Element, Folder, Floppy, Fixed, and
Remote. If the image is larger than the cell in which it is being displayed, the image is

automatically cropped to fit within the cell.
Numeric

Allows data in the grid to be sorted by the user as numeric data, rather than as text.
String_NoCase

Allows data in the grid to be sorted by the user as case-insensitive text rather than case-
sensitive, which is the default.

Boolean

Places a checkbox in the grid column. Useful in situations where you want to represent Boolean
data in a grid column. If the grid column containing the checkbox is editable, the checkbox may
be checked and unchecked; otherwise it is read-only. New as of ColdFusion 5.0.

A few additional attributes aren't used in Example 10-14 but are worth mentioning here. The href

attribute specifies a URL to associate with the grid item. The URL can be absolute or relative. You can
specify the name of a frame or window in which the template specified in the href attribute should be
opened using the target attribute. You may apply a mask to numeric values using the numberformat

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute. For valid options, see the NumberFormat() function in Appendix B. hrefkey specifies the
name of a query column to use as the Key when a query is used to populate the grid. For a complete
list of all attributes associated with the cfgridcolumn tag, see Appendix A.

Figure 10-7 shows some of the different effects you can achieve using the cfgrid control.

Figure 10-7. cfgrid with embedded hyperlinks and a numberformat mask

10.6.2 Specifying Row Data

cfgridrow is another child tag of cfgrid you can use to populate a grid with query data. You can opt
for cfgridrow instead of the query attribute in the cfgrid tag. When you do use the query attribute
in the cfgrid tag, the cfgridrow tag is ignored. Example 10-15 illustrates this technique.

Example 10-15. Using cfgridrow

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cfgrid name="MyGrid" autowidth="Yes" width="600" height="250"
 griddataalign="Left" gridlines="Yes" rowheight="12" rowheaders="Yes"
 colheaders="Yes" bgcolor="##FFFFCC" selectmode="Browse"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets.">

 <cfgridcolumn name="Name" header="Name">
 <cfgridcolumn name="Title" header="Title">
 <cfgridcolumn name="Department" header="Department">
 <cfgridcolumn name="Email" header="E-mail">
 <cfgridcolumn name="PhoneExt" header="Extension">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfloop query="GetPeople">
 <cfgridrow DATA="#Name#,#Title#,#Department#,#Email#,#PhoneExt#">
 </cfloop>
 </cfgrid>
</cfform>

Example 10-15 differs only slightly from our previous examples. In this example, we leave out the
query attribute in the cfgrid tag, and we make use of the cfgridrow tag instead. Column headers
are still defined using the cfgridcolumn tag. The actual column data is output using the cfgridrow

tag. The query must be looped over so that each row of data from the query can be output. If you
want to perform any additional formatting or further massage the data, you can use this method of
populating the grid.

10.6.3 Creating Updateable Grids

You can also use the cfgrid tag to build updateable grids for adding, editing, and deleting individual

cells and records. Creating an editable grid is an easy way to allow your users to quickly make
database additions and updates. Making a grid editable is simply a matter of setting the selectmode
attribute of the cfgrid tag to Edit.

10.6.3.1 Updating a grid using cfgridupdate

The simplest way to update the data contained in a data source is via the cfgridupdate tag.[1] This
tag takes all the data posted from a cfgrid control and automatically makes the necessary updates

to the data source. Example 10-16 demonstrates how to create an editable grid that updates the
data source using the cfgridupdate tag.

[1] There is a bug with the cfgridupdate tag in both ColdFusion MX 6.0 and 6.1 that causes an error when

cfgridupdate attempts to insert a new record into a database containing an auto-increment field for its

primary key. This may or may not be addressed in a future updater. For now, the recommended work-around is

to use the technique outlined in the section "Updating a Grid using cfquery."

Example 10-16. Creating an updateable grid using cfgridupdate

<!--- If the grid has been changed, update it --->
<cfif IsDefined('form.MyGrid.rowstatus.action')>
 <cfgridupdate grid="MyGrid" datasource="ProgrammingCF"
 tablename="EmployeeDirectory" keyonly="No">
</cfif>

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cfgrid name="MyGrid" autowidth="Yes" width="600" height="250"
 query="GetPeople" insert="Yes" delete="Yes" sort="Yes" font="Arial"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bold="No" italic="No" appendkey="No" highlighthref="No"
 griddataalign="Left" gridlines="Yes" rowheaders="Yes"
 rowheaderalign="Left" rowheaderitalic="No" rowheaderbold="No"
 colheaders="Yes" colheaderalign="Left" colheaderitalic="No"
 colheaderbold="No" selectcolor="Red" selectmode="Edit"
 picturebar="No" insertbutton="Add New Record" deletebutton="Delete"
 sortascendingbutton="Sort ASC" sortdescendingbutton="Sort DESC"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets.">

 <cfgridcolumn name="ID" header="ID" dataalign="Left" bold="No" italic="No"
 select="No" display="No" headerbold="No" headeritalic="No">

 <cfgridcolumn name="Name" header="Name" headeralign="Left" dataalign="Left"
 bold="Yes" italic="No" select="Yes" display="Yes"
 headerbold="No" headeritalic="Yes">

 <cfgridcolumn name="Title" header="Title" headeralign="Left"
 dataalign="Left" bold="No" italic="No" select="Yes"
 display="Yes" headerbold="No" headeritalic="No">

 <cfgridcolumn name="Department" header="Department" headeralign="Left"
 dataalign="Left" font="Times" bold="No" italic="No"
 select="Yes" display="Yes" headerbold="No" headeritalic="No">

 <cfgridcolumn name="Email" header="E-mail" headeralign="Left"
 dataalign="Left" bold="No" italic="No" select="Yes"
 display="Yes" headerbold="No" headeritalic="No">

 <cfgridcolumn name="PhoneExt" header="Phone ext." headeralign="Left"
 dataalign="Left" bold="No" italic="No" select="Yes"
 display="Yes" headerbold="No" headeritalic="No">
 </cfgrid>

<input type="submit" name="submit" value="Submit Changes">
</cfform>

In Example 10-16, the cfgridupdate tag takes the information submitted by the form and makes
the necessary updates to the data source. The grid attribute specifies the name of the cfgrid

control supplying the data for the update. The data source to update is specified using the
datasource attribute. The database table within the data source that is to be updated is specified
using the tablename attribute. Setting keyonly to No causes the WHERE clause of the SQL statement

that ColdFusion generates to contain both the key values as well as the original values from any
changed cells within the grid. The default for keyonly is Yes.

In addition to the attributes already mentioned, the cfgridupdate tag also accepts a number of

optional attributes that allow you to specify more detailed information about the database being
used. See Appendix A for more details.

10.6.3.2 Updating a grid using cfquery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using cfgridupdate isn't the only way to update your data source with data from a cfgrid control.
You can also use the cfquery tag to handle updates. When an editable grid (with selectmode set to
Edit) is submitted, three one-dimensional arrays are returned containing information about the

changes to the data:

form. gridname. columnname[RowIndex]

Contains the new value of an edited grid cell
form. gridname.Original. columnname[RowIndex]

Contains the original value of the edited grid cell
form. gridname.RowStatus.Action[RowIndex]

Contains the type of edit made to the grid cell: I for insert, U for update, and D for delete

To update your data source using cfquery, you can loop through the arrays passed by the cfgrid
tag and generate the necessary cfquery tags to insert, update, and delete data as necessary. This

technique is shown in Example 10-17.

Example 10-17. Updating a grid using cfquery

<!--- Check to see if data was added, updated, or deleted from the grid --->
<cfif IsDefined('form.MyGrid.rowstatus.action')>

<!--- Loop over each instance of a grid action --->
<cfloop index="i" from="1" TO="#ArrayLen(form.MyGrid.rowstatus.action)#">

 <!--- If the action is Insert, insert a new record --->
 <cfif form.MyGrid.rowstatus.action[i] is "I">
 <cfquery name="InsertNewEmployee" datasource="ProgrammingCF">
 INSERT INTO EmployeeDirectory (Name, Title, Department, Email, PhoneExt)
 values ('#form.MyGrid.Name[i]#', '#form.MyGrid.Title[i]#',
 '#form.MyGrid.Department[i]#', '#form.MyGrid.Email[i]#',
 #form.MyGrid.PhoneExt[i]#)
 </cfquery>

 <!--- If the action is Update, update the record --->
 <cfelseif form.MyGrid.rowstatus.action[i] is "U">
 <cfquery name="UpdateExistingEmployee" datasource="ProgrammingCF">
 UPDATE EmployeeDirectory
 SET Name='#form.MyGrid.Name[i]#',
 Title='#form.MyGrid.Title[i]#',
 Department='#form.MyGrid.Department[i]#',
 Email='#form.MyGrid.Email[i]#',
 PhoneExt=#form.MyGrid.PhoneExt[i]#
 WHERE ID=#form.MyGrid.original.ID[i]#
 </cfquery>

 <!--- If the action is Delete, Delete the record --->
 <cfelseif form.MyGrid.rowstatus.action[i] is "D">
 <cfquery name="DeleteExistingEmployee" datasource="ProgrammingCF">
 DELETE FROM EmployeeDirectory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WHERE ID=#form.MyGrid.original.ID[i]#
 </cfquery>
 </cfif>
</cfloop>
</cfif>

<!--- Create/recreate the grid from a query --->
<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <cfgrid name="MyGrid" autowidth="Yes" width="600" height="250"
 query="GetPeople" insert="Yes" delete="Yes" sort="Yes" font="Arial"
 bold="No" italic="No" appendkey="No" highlighthref="No"
 griddataalign="Left" gridlines="Yes" rowheaders="Yes"
 rowheaderalign="Left" rowheaderitalic="No" rowheaderbold="No"
 colheaders="Yes" colheaderalign="Left" colheaderitalic="No"
 colheaderbold="No" selectcolor="Red" selectmode="Edit" picturebar="No"
 insertbutton="Add New Record" deletebutton="Delete"
 sortascendingbutton="Sort ASC" sortdescendingbutton="Sort DESC">

 <!--- Hide the ID (primary key) field, but make the value available for
 updates and deletes. --->
 <cfgridcolumn name="ID" display="No" headeritalic="No">

 <cfgridcolumn name="Name" header="Name" headeralign="Left" dataalign="Left"
 bold="Yes" italic="No" select="Yes" display="Yes"
 headerbold="No" headeritalic="Yes">

 <cfgridcolumn name="Title" header="Title" headeralign="Left"
 dataalign="Left" bold="No" italic="No" select="Yes"
 display="Yes" headerbold="No" headeritalic="No">

 <cfgridcolumn name="Department" header="Department" headeralign="Left"
 dataalign="Left" font="Times" bold="No" italic="No"
 select="Yes" display="Yes" headerbold="No" headeritalic="No">

 <cfgridcolumn name="Email" header="E-mail" headeralign="Left"
 dataalign="Left" bold="No" italic="No" select="Yes"
 display="Yes" headerbold="No" headeritalic="No">

 <cfgridcolumn name="PhoneExt" header="Phone ext." headeralign="Left"
 dataalign="Left" bold="No" italic="No" select="Yes"
 display="Yes" headerbold="No" headeritalic="No">
</cfgrid>

<input type="submit" name="submit" value="Submit Changes">
</cfform>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Example 10-17, the form data submitted by the cfgrid control comes across in three one-

dimensional arrays:

form.MyGrid.RowStatus.Action[i]

form.MyGrid.ID[i]
form.MyGrid.Name[i]
form.MyGrid.Title[i]
form.MyGrid.Department[i]
form.MyGrid.Email[i]
form.MyGrid.PhoneExt[i]

form.MyGrid.Original.ID[i]
form.MyGrid.Original.Name[i]
form.MyGrid.Original.Title[i]
form.MyGrid.Original.Department[i]
form.MyGrid.Original.Email[i]
form.MyGrid.Original.PhoneExt[i]

Each cell's data from the grid is represented in an index of the array, specified by i in the code. The

arrays then dynamically generate the SQL necessary to update the database. The template loops
over each element in the form.MyGrid.RowStatus.Action array. For each iteration of the loop,
ColdFusion checks to see if the Action is set to I for insert, U for Update, or D for delete. Depending
on the Action value, ColdFusion performs the corresponding query action (add, update, or delete)

using the value stored in the appropriate array index of the other two arrays. When all of the query
actions have been performed, the grid control is redrawn using the updated data from the database.

10.6.3.3 Advanced editable grid controls

The cfgridcolumn tag has several advanced attributes you can use to enhance individual columns of
data within your grids. These advanced attributes are textcolor, bgcolor, values, valuesdisplay,
and valuesdelimiter. In addition to these attributes, the type attribute now accepts an additional
value called Boolean. Rather than explain each new attribute and value individually, let's look at an

example that utilizes all of them. Example 10-18 creates a grid that provides just such an example.

Example 10-18. Grid showing advanced cfgridcolumn attributes and
values

<!--- If the grid has been changed, update it --->
<cfif IsDefined('form.MyGrid.rowstatus.action')>
 <cfgridupdate grid="MyGrid" datasource="ProgrammingCF"
 tablename="EmployeeDirectory" keyonly="No">
</cfif>

<cfquery name="GetPeople" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfquery name="GetDepartments" datasource="ProgrammingCF">
 SELECT DISTINCT Department
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <cfgrid name="MyGrid" width="600" height="250" autowidth="Yes" query="GetPeople"
 selectmode="Edit" insert="No" delete="No">

 <cfgridcolumn name="ID" display="No">
 <!--- If the employee is the president, change the
 text color to blue. Otherwise, leave it alone --->
 <cfgridcolumn name="Name" bold="Yes" headertextcolor="Blue"
 textcolor="(C2 eq President ? blue : black)"
 bgcolor="LightGray">

 <cfgridcolumn name="Title" textcolor="(CX eq President ? blue : black)"
 headertextcolor="Blue">

 <!--- Here's where we create a dropdown list of departments --->
 <cfgridcolumn name="Department" headertextcolor="Blue"
 values="#ValueList(GetDepartments.Department)#"
 valuesdisplay="Off" valuesdelimiter=",">

 <cfgridcolumn name="Email" header="E-mail" headertextcolor="Blue">
 <cfgridcolumn name="PhoneExt" header="Phone ext." headertextcolor="Blue">

 <!--- Use a checkbox to represent Boolean values --->
 <cfgridcolumn name="Exempt" headertextcolor="Blue" type="Boolean">
 </cfgrid>

<input type="submit" name="submit" value="Submit Changes">
</cfform>

This example creates an updateable grid loosely based on the one we created in Example 10-16.
There are, however, some significant differences. Before you run this template, you'll have to add a
new field to the EmployeeDirectory table in the ProgrammingCF database. Call the new field Exempt,
and make it a Yes/No (Boolean) data type. This new field is necessary to demonstrate one of the
advanced features of cfgridcolumn. Don't worry about populating the new column with data just

yet; we'll get to that in just a moment.

The next advanced attribute you should see in the first cfgridcolumn tag is textcolor. This

attribute lets you specify the text color for all data in the column. It follows the same color-name
rules as the headertextcolor attribute. Instead of a color, you can specify an expression that

returns a color based on its evaluation, as we do in this example. The expression uses the following
format:

(CX|Cn gt|lt|eq string ? color_true : color_false)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CX represents the current column while Cn specifies a specific column where n is the index position of
the column (only displayed columns are available). Operator can be gt, lt, or eq for both string and
numeric comparisons. The ? separates the expression from the values you wish to return.

color_true is the color to return in the event the expression evaluates true while color_false is
the color to return if the expression evaluates false. Colors are specified using a color name or hex

code (without the pound signs). The two return values are separated with a colon. Note that
whitespace is ignored within the expression except for within string. In our example, we use the
expression (C2 eq President ? blue : black). What this says is if the value in the corresponding
row in column 2 (Title) equals President, make the text color for this item blue; otherwise, leave it

as black.

The final attribute in our first cfgridcolumn tag is bgcolor. bgcolor specifies a background color for
all the cells in the column or, like textcolor, an expression that returns a color based on its
evaluation. For color choices, see the textcolor attribute.

If you look at the fourth cfgridcolumn tag, the one for the Department column, you'll notice three
new attributes, values, valuesdisplay, and valuesdelimiter. These attributes place a drop-down
box for each cell in the column provided the grid is an editable grid (which ours is). The values
attribute accepts a delimited list of values, a range of numeric values, or Off. It determines the

actual value to pass when the form containing the grid is submitted. For a delimited list of values, the
default delimiter is the comma. To specify a range of numeric values, use the format n-m where n is

the minimum value in the range, and m is the maximum value. The default is Off. In our example,
we use the results of the GetDepartments query to generate a list of unique department names. The
ValueList() function converts the values in the query to a comma-delimited list of values. The
valuesdisplay attribute allows you to provide a delimited list or range of values to display in lieu of
the values specified in values. This works like the HTML select control in that it allows you to

display one set of values in the drop-down box while associating them with different values behind
the scenes. The valuesdisplay attribute may also be set to Off. If you want to use a delimiter other
than the default comma with the values and valuesdisplay lists, you can specify it using the
valuesdelimiter attribute.

The final new feature of the cfgridcolumn tag is demonstrated in the tag that displays the new
Exempt field we created. Setting the type attribute to Boolean causes the grid to display a checkbox

representing the Boolean value in the grid column. Because the grid is editable, you can check and
uncheck the box. If the grid isn't editable, the checkbox is read-only. Figure 10-8 shows the grid with
all of the new features visible. Changing any values in the grid and clicking the Submit Changes
button updates the database with the edited data. For more information on any of the attributes
covered in this example, see Appendix A.

Figure 10-8. Advanced cfgridcolumn display controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.7 Trees

You can use the cftree tag to create a Java-based tree control within your cfform. Tree controls are

useful in a number of data display and selection scenarios. Because they allow the user to expand
and collapse branches, tree controls are particularly well suited for displaying large amounts of
hierarchical data in a relatively small amount of screen space. You can build tree controls using the
cftree tag, plus multiple cftreeitem tags for defining the individual branches. The following
example uses the cftree tag to create the display area for a tree control:

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cftree name="MyTree" height="200" width="300" border="Yes"
 hscroll="Yes" vscroll="Yes" lookandfeel="Windows"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets">
 </cftree>
</cfform>

This example does nothing more than create an empty shell for the tree control. The name attribute
specifies a name for the tree control. The height and width attributes specify the height and width in
pixels for the tree control. border indicates whether to include a border around the tree control. The
default is Yes. hscroll and vscroll each indicate whether or not to allow users to scroll horizontally

and vertically, respectively, in the event the tree takes up more space than the boundaries of the
control. Just as with the cfslider tag, lookandfeel controls the overall appearance of the tree
control. Choices are Windows, Motif, and Metal. If no value is specified, ColdFusion first tries
Windows, then uses the platform default. Finally, the notsupported attribute specifies a text
message to display in the event the user's browser doesn't support Java. By itself, the cftree tag
doesn't do a whole lot. It must be combined with one or more cftreeitem tags to build a useable

tree control.

10.7.1 Populating a Tree Control

Individual cftreeitem tags are used within the <cftree> and </cftree> tags to populate a tree
control. cftreeitem tags may have their values hardcoded, or they may obtain them from query

data.

10.7.1.1 Creating a static tree

Example 10-19 hard codes several cftreeitemtags within a cftree tag to create a tree control

containing several branches of nested values. This method of building a tree allows you to control
exactly what goes into the tree as well as how to display it. The results can be seen in Figure 10-9.

Figure 10-9. cftree control built with hardcoded cftreeitem tags

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-19. Populating a tree control with static values

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">
 <cftree name="MyTree" height="200" width="300" font="Arial" fontsize="12"
 bold="No" italic="No" border="Yes" hscroll="Yes" vscroll="Yes"
 required="Yes" message="You must select an item from the tree."
 highlighthref="Yes" completepath="Yes" appendkey="No"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets">

 <cftreeitem value="ColdFusion Links" parent="MyTree" expand="Yes"
 img="Fixed">

 <cftreeitem value="Macromedia Home Page" parent="ColdFusion Links"
 href="http://www.macromedia.com" expand="No" img="Document">

 <cftreeitem value="Developer" parent="ColdFusion Links" expand="No">

 <cftreeitem value="Macromedia Designer & Developer Center"
 parent="Developer"
 href="http://www.macromedia.com/desdev/"
 expand="No" img="Document">

 <cftreeitem value="Macromedia Developer Exchange" parent="Developer"
 href="http://devex.macromedia.com/developer/gallery/"
 expand="No" img="Document">

 <cftreeitem value="Support" parent="ColdFusion Links" expand="No">

 <cftreeitem value="ColdFusion Support Center" parent="Support"
 href="http://www.macromedia.com/support/coldfusion/"
 expand="No" img="Document">

 <cftreeitem value="ColdFusion Support Forums" parent="Support"
 href="http://webforums.macromedia.com/coldfusion/"
 expand="No" img="Document">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cftree>
</cfform>

In Example 10-19, we added a few optional attributes to the cftree tag. You can set data displayed
within the tree to any font residing on the ColdFusion server if you specify the font name in the font
attribute. Likewise, the size of the font can be set with the fontsize attribute. Bold and italic text
effects can be applied to all data displayed within the tree by setting the bold and italic attributes
to Yes. The required attribute requires a user to make a selection from the tree before being
allowed to submit the form to the ColdFusion server. message specifies the text message to display if
the form is submitted without making a selection from the tree. The highlighthref attribute
indicates whether to highlight URLs specified in the href attribute of associated cftreeitem tags.
Setting the completepath attribute to Yes tells ColdFusion to pass the root level of the Path form
variable (form.TreeName.Path) when the cfform containing the cftree is submitted. Although we
specify Yes in this example, the attribute isn't used as we don't include a button to submit the form
containing the tree control. The final attribute in the cftree tag, appendkey, indicates whether to
append the cftreeitemkey variable to the end of the value of a selected cftreeitem.

You can build the tree itself by nesting a series of cftreeitem tags. The cftreeitem tag accepts
several attributes for defining its position within the tree. The value attribute specifies a value to be
associated with the tree item. The parent attribute allows you to specify the name of another tree
item to use as the parent for the current tree item. The value you specify for parent should match
the value attribute of the tree item you wish to use as the parent. The href attribute allows you to

specify a hyperlink (URL or mailto) to associate with the tree item. You can indicate whether to
expand a particular tree branch via the expand attribute. If expand is omitted, it is automatically set
to Yes. Another optional attribute, img, allows you to specify an image to display alongside the tree

item. You may specify a path to your own image or use one of the images supplied with ColdFusion
by referencing the image name. Valid options for img are CD, Computer, Document, Element, Folder,
Floppy, Fixed, and Remote. The default image is Folder.

10.7.1.2 Dynamically populating a tree control with query data

The cftree control can also be populated dynamically from a database query. The big advantage to

populating a tree from a query instead of hardcoding it is in the amount of code you use. Using a
query to populate the tree requires a minimum amount of CFML to get the job done. Example 10-20
shows how to populate a cftree control using the results of a cfquery. The results can be seen in

Figure 10-10.

Figure 10-10. Dynamically populating a tree with query data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-20. Populating cftree with dynamic values from a query

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <cftree name="MyTree" height="300" width="300" border="Yes"
 hscroll="Yes" vscroll="Yes"
 notsupported="Your web browser must support Java to view ColdFusion
 Java Applets">

 <cftreeitem query="GetEmployeeInfo" value="Name" queryasroot="Employees"
 img="Fixed, Folder" expand="Yes">
 </cftree>
</cfform>

Example 10-20 creates a tree control with the cftree tag and then populates the tree with a single
cftreeitem tag. The query attribute allows us to specify the name of a query to use to populate the
tree. In this case, we used GetEmployeeInfo, referring to the query we executed at the top of the
template. Setting value to Name populates the tree with the name of each employee. queryasroot
lets us specify a title to appear as the root of the tree. queryasroot accepts Yes or No as possible
values-indicating whether or not to use the value specified in query as the title for the root. Besides
Yes|No, queryasroot also allows you to specify an arbitrary string you want to be used as the title
for the query root. Therefore, in Example 10-20, we set queryasroot to Employees as it is a little
more aesthetically pleasing than using GetEmployeeInfo. The next attribute, img, lets us specify a
comma-delimited list of image types to use when building our tree. Setting img equal to Fixed,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Folder results in the Fixed image being used for the root level and the Folder image being used for
all branches off the root. Finally, expand is set to Yes, resulting in every level of the tree (all two of

them in this case) being fully expanded in the display.

There is another technique for generating a tree from a query that uses cfloop to let you specify

additional sublevels within your tree. Let's say you want to take the tree we built in Example 10-21
and expand it to include each employee's title, department, hyperlinked email address, and phone
extension as sub-branches below each employee within the tree. The most obvious way to do this is
to pull the data used to populate the cftreeitem tags from a query. What isn't so obvious, however,

is the fact that you can't use the same technique we used in Example 10-21 to build the tree. This is
because the technique used in that example is only capable of producing a tree with a single
parent/child relationship. The way around this is to use cfloop to loop over the query data and build
the appropriate cftreeitem tags with each iteration of the loop. This technique is shown in Example

10-21.

Example 10-21. Populating a cftree using cfloop

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <cftree name="MyTree" height="300" width="300" border="Yes" hscroll="Yes"
 vscroll="Yes" highlighthref="Yes"
 notsupported="Your web browser must support Java to view
 ColdFusion Java Applets">

 <cftreeitem value="Employees" expand="Yes" img="Fixed">
 <cfloop query="GetEmployeeInfo">
 <cftreeitem value="#Name#" parent="Employees" expand="No">
 <cftreeitem value="#Title#" parent="#Name#" img="document" expand="No">
 <cftreeitem value="#Department#" parent="#Name#" img="document"
 expand="No">
 <cftreeitem value="#Email#" display="#Email#" parent="#Name#"
 img="Document" href="mailto:#Email#" expand="No">
 <cftreeitem value="ext: #PhoneExt#" parent="#Name#" img="Document">
 </cfloop>
 </cftree>
</cfform>

After the query is run, the shell for the tree is built with the cftree tag. Next, we specify the root
level for the tree using a static cftreeitem tag. For this example, we set the root to Employees. The
next step involves using a cfloop to loop over the query results from the GetEmployeeInfo query.
For each record in the query, a series of cftreeitem tags are created. The first cftreeitem tag
anchors the tree item to the root of the tree. This is done by setting the parent attribute to
Employees-the name of our root tree item. Each of the rest of the cftreeitem tags are populated
with values from the current query row. The second to last cftreeitem uses a new attribute, href,

to specify a hyperlink to display within the tree control. In order to use this feature, the
highlighthref attribute of the cftree tag must be set to Yes. In our example, we want to use this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tree item to display the employee's email address as a mailto link. We do this by setting href to
mailto:#Email#. The output of this template can be seen in Figure 10-11.

Figure 10-11. Populating a tree control from query data

Another method for populating the cftree control is to specify the tree items as a comma-delimited

list of values. In this scenario, the information that populates the tree is queried from a database. A
cftreeitem tag then populates the tree control. Instead of coding a cftreeitem tag for each
sublevel in the tree, multiple values are specified within the value, expand, and img attributes. This

technique is shown in Example 10-22.

Example 10-22. Specifying multiple tree items using a comma-delimited
list

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Department, Name, Title
 FROM EmployeeDirectory
 ORDER BY Department
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <cftree name="MyTree" height="300" width="300" font="Arial" bold="No"
 italic="No" border="Yes" hscroll="Yes" vscroll="Yes"
 highlighthref="Yes">
 <cftreeitem query="GetEmployeeInfo" value="Department,Name,Title"
 queryasroot="Org Chart" expand="Yes,No"
 img="Fixed,Folder,Folder,Document">
 </cftree>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfform>

In Example 10-22, we create the shell for the tree control using the cftree tag. The tree is then
populated using a single cftreeitem tag. The query attribute specifies the name of the query to use
to populate the tree. In value, we specify a comma-delimited list of query columns to use in building

the tree. Each value in the list represents a different level within the tree. In our example,
Department is the first branch from the main root. Name is a sublevel of Department, and Title is a
sublevel of Name. The root of the tree is specified in the queryasroot attribute. expand specifies

which levels of the tree should be expanded by default.

Although undocumented, the expand attribute can accept a comma-delimited list of Yes/No values

indicating whether or not to expand additional sublevels in the tree. In this case, we opted to expand
the root level but nothing beyond that. The img attribute accepts a comma-delimited list of images to
display the various levels and sublevels within the tree. In Example 10-22, we set the root to Fixed,
the first level to Folder, the second to Folder, and the third to Document. Note that it is extremely
important to include the ORDER BY Department clause in the SQL statement in this example. Failing to

do so results in incorrectly grouped data. The results can be seen in Figure 10-12.

Figure 10-12. Building a multilevel tree using delimited data

10.7.2 Submitting a Tree Selection

Up to this point in the chapter, we have built tree controls that only display data. Because the cftree
tag is used within the context of cfform, the tree control can also select and submit data. When you
submit a cfform containing a cftree control, two variables are made available to the template being

posted to:

form. TreeName.Node

Returns the node selected by the user from the tree.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

form. TreeName.Path

If the completepath attribute of the cftree tag is set to Yes, form.TreeName.Path returns

the user's selection specified as root\node1\noden\value. Otherwise, form.TreeName.Path

returns the path from the first node. The delimiter can be changed by specifying a value for the
delimiter attribute.

An example demonstrating what happens when you submit a form containing a cftree is shown in

Example 10-23.

Example 10-23. Submitting a tree selection

<cfif IsDefined('form.Submit')>
 <cfoutput>
 <h3>You chose:</h3>
 Node: #form.MyTree.Node#

 Path: #form.MyTree.Path#

 </cfoutput>
</cfif>

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Department, Name, Title
 FROM EmployeeDirectory
 ORDER BY Department
</cfquery>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <cftree name="MyTree" height="300" width="300" font="Arial" bold="No"
 italic="No" border="Yes" hscroll="Yes" vscroll="Yes"
 highlighthref="Yes">

 <cftreeitem value="Department,Name,Title" query="GetEmployeeInfo"
 queryasroot="Org Chart" expand="Yes,No"
 img="Fixed,Folder,Folder,Document" parent="Org Chart">
 </cftree>
<input type="submit" name="submit" value="submit">
</cfform>

Example 10-23 is essentially the same as Example 10-22 with two small additions. At the bottom of
the template, we added a standard submit button for the form. At the top of the template, we added
a short bit of code wrapped within a cfif statement that checks to see if the template is being called
as a result of being submitted to itself. If so, the Node and Path of the user's selection from the tree

are written to the browser. The results can be seen in Figure 10-13.

Figure 10-13. Processing the results of a cftree form submission

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.7.3 Creating a Tree Via Recursion

Tree controls are the perfect way to represent nested levels of data. In many cases, you might not
know in advance how many sub branches the tree contains. The key to handling this in your
applications is a technique known as recursion. Recursion is the ability to traverse all the relationships
within a tree. All trees can be represented as a series of parent/child relationships. If you start at the
root of the tree, each branch off of the main branch can be thought of as a child of the root.
Conversely, the root is the parent to all the main branches. Now, if you look at each of the branches
growing off the root, they may or may not have child branches. This pattern can potentially repeat
itself for any number of sub-branches within a tree.

Modeling this pattern in a database is a straightforward process that can be accomplished with a
single table. Table 10-1 shows the structure necessary to build a database table for storing all data
required to build a tree of infinite sublevels.

Table 10-1. Database design for a parent/child tree

Field name Field type Max length

ItemID (primary key) AutoNumber N/A

ParentItemID Numeric N/A

ItemName Text 255

LinkURL Text 255

The model shown in Table 10-1 is generic enough that it can be used to build a tree for practically
any type of data that can be grouped in multiple levels. Let's populate the database with categories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and hyperlinks so that we can build a tree containing categorized hyperlinks-similar to the
bookmarks concept seen in web browsers (see Table C-6 in Appendix C).

Each record in the database has a unique number assigned to it in the ItemID field, which ensures
that no two items are identical. The parent-child relationship is established using the ParentItemID
field. You can create a top-level tree branch by setting ParentItemID to 0. You can then create child
branches off these top-level branches by setting their ParentItemID values to an appropriate
ItemID. This process is repeated for n number of branches and sub branches within the tree.

Now that we have described the setup and expected output of the application, let's look at the actual
code necessary to build it. The code consists of two templates. The first template (shown in Example
10-24) displays any selected items from the tree and creates the shell for the tree control and calls
the custom tag (shown in Example 10-25) that populates it.

Example 10-24. Setting up the tree control and calling the recursion
custom tag

<cfif IsDefined('form.Submit')>
 <cfoutput>
 <h3>You chose:</h3>
 Node: #form.Links.Node#

 Path: #form.Links.Path#

 </cfoutput>
</cfif>

<cfform action="#CGI.Script_Name#" name="MyForm"
 enctype="application/x-www-form-urlencoded">

 <cftree name="Links" height="350" width="300"hspace="0" vspace="6"
 hscroll="Yes" vscroll="Yes" border="Yes" required="Yes"
 appendkey="No" message="You must choose a category or item from the
 tree.">

 <!--- Insert the root level tree item --->
 <cftreeitem value="0" parent="0" display="Links" expand="Yes"
 img="Computer">

 <!--- Call the recursion tag to generate the rest of the tree --->
 <cf_recurse>

 </cftree>

<input type="submit" name="submit" value="submit">
</cfform>

Example 10-24 begins with a cfif statement that checks to see if the form is submitting data to

itself. If so, the user's tree selection is written to the browser. Next, a tree control is created with the
cftree tag. The root level of the tree is then created using a static cftreeitem tag. The value of the
node is set to 0. The actual value displayed is configured by setting value to Links. Once the root
level has been established, a call to the cf_recurse custom tag is made. We'll cover the specifics of

building custom tags later in Chapter 21. For now, all you need to know is that the custom tag is
responsible for the recursion algorithms necessary to build the rest of the tree.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The custom tag should be named recurse.cfm and saved in the same directory as Example 10-24 or
in the Custom Tags directory (usually \mx_root\CustomTags). The code for the cf_recurse tag is

shown in Example 10-25.

Example 10-25. Recursion custom tag for creating individual tree items

<!--- Check to see if a ParentItemID was passed in. If so, this is a recursive
 call to this tag, so we set the ParentItemID to the value passed in. If
 ParentItemID does not exist, this is a request for a top level tree item,
 so we set the ParentItemID to 0. --->
<cfparam name="attributes.ParentItemID" default="0">

<!--- Get the info for each parent item for the current level. Items directly
 under the root have a ParentItemID of 0. This info is passed in with each
 iteration of this tag. By default, the ParentItemID is set to 0. --->
<cfquery name="GetParents" datasource="ProgrammingCF">
 SELECT ItemID, ParentItemID, ItemName, LinkURL
 FROM Links WHERE ParentItemID = #attributes.ParentItemID#
 ORDER BY ItemName
</cfquery>

<!--- Loop through the GetParents query and create a tree item for each
 parent --->
<cfloop query="GetParents">
 <!--- If the parent is a category, set image to Folder. If it is a link,
 set the image to Document --->
 <cfif LinkURL is "">
 <cfset Image="Folder">
 <cfelse>
 <cfset Image="Document">
 </cfif>

 <!--- Create the tree item --->
 <cftreeitem value="#ItemID#" parent="#attributes.ParentItemID#"
 display="#ItemName#" href="#LinkURL#" img="#Image#" expand="No">

 <!--- Find children of the current parent --->
 <cfquery name="GetChildren" datasource="ProgrammingCF">
 SELECT ItemID, ParentItemID, ItemName, LinkURL
 FROM links
 WHERE ParentItemID = #GetParents.ItemID#
 </cfquery>

 <!--- If there is a child for the parent, call the recurse tag again, but
 this time make the parentitemid equal to the itemid of the current
 child item. This is what recursion is all about. --->
 <cfif GetChildren.RecordCount gt 0 >
 <cf_recurse
 parentitemid="#GetParents.ItemID#">
 </cfif>
</cfloop>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-25 begins by checking to see if an attribute called attributes.ParentItemID was
passed to the custom tag. This is done using the cfparam tag. If attributes.ParentItemID doesn't
exist, we know that this is the first time the tag is being called, and attributes.ParentItemID is

initialized and assigned a value of zero (0)-the value we assigned to the root level of the tree. The
next action taken by the tag is to kick off a query that gets all items in the database associated with
the level specified by the ParentItemID value. Items directly under the root have a ParentItemID of
zero (0). Once this is accomplished, the query results are looped over using a cfloop, which allows
us to work with the query data one row at a time. First the LinkURL field from each row of the query

is checked to see if it is empty. If so, we know that the item in question isn't a hyperlink. We thus set
a local variable called Image to Folder. If LinkURL isn't empty, we know that the item is a hyperlink,
and we set the Image to Document. Next, a cftreeitem tag is created for each record. The img
attribute is populated with the image specified in the Image variable we set a moment ago. After the
initial cftreeitem tag is created, another query is run to determine if the current item (parent) has

any child items. If there are child items associated with the parent, the custom tag calls itself and
passes the child item's ItemID as the parentitemid attribute and the process of setting up the

parent tree item and stepping through all its child items begins again. This is what recursion is all
about. The pattern continues until there are no more parent/child relationships in the database. The
results of this example are shown in Figure 10-14.

Figure 10-14. Using recursion to display hyperlinks

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.8 Preserving Input

In ColdFusion 5.0, a new attribute called preservedata was added to the cfform tag. Setting
preservedata to Yes causes ColdFusion to retain and display data submitted from a cfinput,
cftextinput, cfslider, or cftree control when a form is submitted to itself or to another page with
like-named cfform controls. The exact effect of the preservedata attribute depends on the type of
form control you use in your cfform. For cfinput and cftextinput controls, setting preservedata
to Yes allows you to display the data entered by the user after the form has been submitted without
any additional coding. For cfslider controls, the slider is set automatically to the position from the
previous form post. For cftree controls, the tree expands automatically to the branch containing the
previously selected item. For preservedata to work with a tree control, the completepath attribute
of the cftree tag must be set to Yes.

Example 10-26 shows how the preservedata attribute works with each type of form control it is
compatible with. Using CGI.Script_Name for the action attribute of the cfform tag causes the form

to post to itself, regardless of the filename you use to save the file.

Example 10-26. Using the preservedata attribute of cfform

<cfform action="#CGI.Script_Name#" name="MyForm" preservedata="Yes"
 enctype="application/x-www-form-urlencoded">
<table>
 <tr>
 <td>cfinput (text):</td>
 <td><cfinput type="text" name="teex" size="10" maxlength="10"></td>
 </tr>
 <tr>
 <td>cfinput (password):</td>
 <td><cfinput type="password" name="password" size="10" maxlength="10"></td>
 </tr>
 <tr>
 <td>cfinput (radio)</td>
 <td><cfinput type="radio" name="radio" value="Yes" checked="Yes">Yes
 <cfinput type="radio" name="radio" value="No">No</td>
 </tr>
 <tr>
 <td>cfinput (checkbox)</td>
 <td><cfinput type="checkbox" name="checkbox" value="1">One

 <cfinput type="checkbox" name="checkbox" value="2">Two

 <cfinput type="checkbox" name="checkbox" value="3">Three</td>
 </tr>
 <tr>
 <td>cftextinput:</td>
 <td><cftextinput name="textinput" height="25" bgcolor="##C0C0C0"
 textcolor="##000000" maxlength="255"></td>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td>cfslider</td>
 <td>1 <cfslider name="Slider" label="Current slider value: %value%"
 refreshlabel="Yes" range="1,100" value="50"
 scale="1" align="Absmiddle" height="50"
 width="200">100</td>
 </tr>
 <tr>
 <td>cftree</td>
 <td><cftree name="Tree" height="150" width="250" completepath="Yes">
 <cftreeitem value="ColdFusion Links" parent="MyTree" img="Fixed"
 expand="Yes">
 <cftreeitem value="Executive" parent="ColdFusion Links" expand="No">
 <cftreeitem value="Macromedia Home Page" parent="Executive"
 img="Document">
 <cftreeitem value="Developer" parent="ColdFusion Links" expand="No">
 <cftreeitem value="Macromedia Designer & Developer Center"
 parent="Developer"
 img="Document">
 <cftreeitem value="Macromedia Developer Exchange"
 parent="Developer" img="Document">
 </cftree></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="submit"></td>
 </tr>
</table>
</cfform>

For a complete list of the attributes available in the cfform tag, see Appendix A.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.9 Custom Controls

The cfapplet tag allows you to use custom Java controls within your ColdFusion pages as if they
were native ColdFusion tags, like cftree and cfgrid. Although it isn't required that you use
cfapplet within a cfform block, this is generally where the tag is used the most. For example, you

might have a Java applet called Menu that acts as an expandable/collapsible menu you'd like to use
in a ColdFusion application. In order to call a custom Java applet, it first has to be registered with the
ColdFusion Administrator (Figure 10-15).

Figure 10-15. The applets section of the ColdFusion Administrator

To register a custom Java applet, you need to complete the following steps:

Open the ColdFusion Administrator, and click on the Java Applets link.1.

Click the Register New Applet button.2.

Enter information into the applet registration page, which is shown in Figure 10-16. When you
are finished filling in the form, click the Submit Changes button to save your selection.

3.

Figure 10-16. The applet registration page of the ColdFusion
Administrator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following list explains each option on the registration page:

Applet Name

Enter a name for your Java control.
Code

Enter the name of your Java .class file. You don't need to list the .class extension. (e.g.,
myapplet).

Codebase

Enter the base URL to the Java applet. (e.g., http://www.myserver.com/javaor/java).
Archive

Enter the location of a compressed file (.jar) relative to the Codebase. This is an optional

attribute and is currently supported only by Netscape browsers.
Method

If your Java applet provides a method that returns a string value, enter the name of that
method here. The value you specify for Method is also the value you should specify for the
name attribute of the cfapplet tag.

Height

Enter a height in pixels for the applet's display area.
Width

http://www.myserver.com/javaor/java
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enter a width in pixels for the applet's display area.
VSpace

Enter a height in pixels for the padding above and below the applet.
HSpace

Enter a width in pixels for the padding to the left and right of the applet.
Align

Enter an alignment for the applet. Valid entries are Left, Right, Top, TextTop, Bottom,
AbsBottom, Baseline, Middle, and AbsMiddle.

Java Not Supported Message

Enter a message to display in the event that a user's browser doesn't support Java or Java has
been disabled.

Parameter

Enter the names of any additional parameters the applet is capable of accepting. Enter each
parameter name in a separate Parameter box.

Value

Provide a default value for each parameter entered.

Once an applet has been registered, it is a simple process to call it. As default values for each
parameter have already been registered in the ColdFusion Administrator, it's possible to call the tag
with nothing more than the following code line:

<cfapplet appletsource="Menu" name="MyFormFieldName">

The cfapplet tag has only two required attributes: appletsource and name. appletsource refers to
the applet's registered name as entered in the ColdFusion Administrator, while name specifies the
name to use for the form field. If a method was specified for the applet in the ColdFusion
Administrator, it should match the value specified for name in the cfapplet tag.

Besides the two required attributes, the cfapplet tag also accepts a number of optional attributes.

These optional attributes correspond to the information entered in the ColdFusion Administrator.
Because default values have already been specified for each attribute, if you include any of the
optional attributes in the cfapplet tag, you will overwrite the default value listed in the ColdFusion

Administrator. For example, if you registered the Menu applet we previously described, you can call
the applet and specify values for all the default parameters using a single cfapplet tag:

<cfapplet appletsource="vslider" name="MySlider"
 height="250" width="100" hspace="10" vspace="10"
 align="middle" notsupported="You need Java to see my applet!"
 fontface="Arial" fontsize="12" fontcolor="Black" bgcolor="LightGray">

For more information on the cfapplet tag, see Appendix A.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Advanced Database
Techniques
This chapter attempts to strengthen the concepts we have already covered while adding several
advanced techniques to your bag of ColdFusion tricks. These techniques include advanced ways to
display query results, query-caching strategies, and advanced SQL topics. The advanced display
techniques we'll cover allow you to enhance the way you display dynamically generated data beyond
simple HTML table dumps. Taking advantage of ColdFusion's query-caching abilities allows you to
shave precious processing time off your frequently run queries. The advanced SQL topics cover the
essentials necessary for building dynamic, highly scalable applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 Display Techniques

This section focuses on techniques you can use to enhance the display of dynamic data. Some of these
techniques include displaying limited record sets, creating dynamic HTML tables with alternating row
colors, working with various multicolumn output displays, and browsing records with next/previous.
You will also learn several methods for controlling whitespace in dynamic pages in order to optimize
page-download times.

11.1.1 Flushing Page Output

A complaint often heard regarding web applications is the amount of time it takes to return data to a
user once a page is requested, be it by a form submission or a URL the user clicks on. Often this is due
to the large amount of data a particular operation must sift through and return to the user. In
situations such as this, it is often desirable to present the user with a "Please Wait" message while their
request processes or to provide incremental amounts of data as results from a large query result set
become available. ColdFusion lets you handle these tasks with a new tag introduced in Version 5.0
called cfflush . The cfflush tag provides a means to send incremental amounts of data from your

ColdFusion server to a user's browser as they become available.

The first time a cfflush tag is encountered on a page, it sends all the HTTP headers for the request

along with any generated content up to the position in the template where the tag is encountered.
Successive cfflush tags return any content generated since the previous flush. Because of this,
cfflush is usually used within loops or output queries to send results back to the browser in
incremental chunks. The following example shows the cfflush tag used to incrementally return the

results of a database query:

<h1>Outputting Query Results</h1>
Please be patient as this may take a few moments...
<p>
<!--- Flush the output up to this point --->
<cfflush>

<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<cfset Stall=0>
<cfloop query="GetEmployees">
 <!--- Flush the rest of the output as it is generated in chunks of 100
 bytes --->
 <cfflush interval="100">
 <!--- Use this loop to exaggerate the processing time --->
 <cfloop index="i" from="1" to="3500">
 <cfset Stall = Stall+1>
 </cfloop>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfoutput>
 #Name#

 </cfoutput>
</cfloop>

If you run this example, you'll notice all of the content before the first cfflush tag is output almost
immediately. After that, the next cfflush tag is used in a loop and specifies that the rest of the

content generated by the page should be sent to the browser in chunks of 100 bytes. This is achieved
by setting the interval attribute of cfflush to 100 . The code in the example contains an index loop

that essentially ties up processing time for 3,500 iterations between the output of each name returned
by the query. This results in an artificially inflated amount of time required to output the query results,
which is perfect to demonstrate how the cfflush tag incrementally sends data back to the browser in
chunks as it becomes available. This is done because the EmployeeDirectory table doesn't contain
enough records to effectively demonstrate the cfflush tag.

Once a cfflush tag has been used in a template, you can't use any other CFML tags that write to the

HTTP header; doing so causes ColdFusion to throw an error because the header has already been sent
to the browser. These tags include cfcontent , cfcookie , cfform , cfheader , cfhtmlhead , and
cflocation . In addition, attempting to set a variable in the cookie scope with the cfset tag results in

an error. This is because cookies are passed from the server to the browser in the HTTP header.

11.1.2 Displaying Limited Record Sets

You may decide that for a given application, it's more effective not to display the contents of an entire
record set. For these applications, you can use two additional optional attributes of the cfoutput tag to

display a subset of the full record set returned by a query:

startrow

Specifies what query row to begin outputting from
maxrows

Specifies the maximum number of rows to output

Example 11-1 uses the startrow and maxrows attributes of the cfoutput tag to output a subset of a

full record set.

Example 11-1. Displaying a limited record set using cfoutput

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM EmployeeDirectory
</cfquery>

<html>
<head>
 <title>Displaying a Limited Record Set Using cfoutput</title>
 <style type="text/css">
 th {
 background-color : #888888;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<!--- Display the total number of records returned by the query --->
<h2>Displaying a Limited Record Set</h2>
<cfoutput>
<h3>#GetEmployeeInfo.RecordCount# total records - Displaying records 6-10</h3>
</cfoutput>

<!--- Output rows 6-10 of the query result set --->
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Record Number</th>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 </tr>
 <cfoutput query="GetEmployeeInfo" startrow="6" maxrows="5">
 <tr>
 <td>#CurrentRow#</td>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

In Example 11-1 , a query is performed against the EmployeeDirectory table. Setting the startrow
attribute to 6 and the maxrows attribute to 5 results in records 6 to 10 of the query result set getting

output to the browser.

11.1.3 Alternating Row Color in HTML Tables

Another popular way to display tabular data is to alternate the background color of the rows being
displayed. The technique is easy to implement and offers an attractive way to display tabular data so
that it stands out. Example 11-2 generates an HTML table of alternating row color from a database
query. The results can be seen in Figure 11-1 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-1. A dynamically generated table with alternating row colors

Example 11-2. Alternating row color in HTML tables with CSS

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM EmployeeDirectory
</cfquery>

<html>
<head>
 <title>Alternating Row Color in HTML Tables with CSS</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 tr.Odd {
 background-color : #E6E6E6;
 }
 tr.Even {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 </tr>

 <cfoutput query="GetEmployeeInfo">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr class="#IIF(GetEmployeeInfo.CurrentRow mod 2, DE('Odd'), DE('Even'))#">
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

We alternate the row color by using the IIF() and DE() functions along with the mod operator to

determine whether the row number for the current record is odd or even. Depending on the outcome
of the evaluation, one color or the other is used as the background color for the current row. Using
Cascading Style Sheets (CSS) makes changing the colors easy.

11.1.4 Multicolumn Output

Another popular formatting technique involves outputting a query result set in more than one column,
similar to how a newspaper story is printed. There are several techniques you can use to achieve
multicolumn output. Two of the more popular methods are covered in the following sections.

11.1.4.1 Sorting multicolumn output from left to right

One technique for outputting a result set in more than one column involves sorting the results from left
to right, then top to bottom. You can see the technique for sorting multicolumn output from left to
right in Example 11-3 .

Example 11-3. Sorting multicolumn output from left to right

<!--- Retrieve a list of employee names from the employeedirectory table --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<!--- Initialize the StartNewRow variable as true --->
<cfset StartNewRow = true>

<h2>Two column output sorted left to right</h2>

<!--- The cfprocessingdirective tag suppresses extra whitespace as much as possible.
 To remove the max amount of whitespace, remove these comments as
 well. --->
<table border="1">
<cfprocessingdirective suppresswhitespace="Yes">
<cfoutput query="GetEmployeeInfo">
<!--- Add a tr if we are supposed to start a new row. Otherwise, continue

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 adding tds --->
<cfif StartNewRow ><tr></cfif>
 <td>#Name#</td>
<!--- Set StartNewRow to the opposite of its currnet true/false value --->
<cfset StartNewRow = not(StartNewRow)>
<!--- If StartNewRow is true, add a /tr to close the row --->
<cfif StartNewRow>
 </tr>
</cfif>
</cfoutput>
</cfprocessingdirective>
</table>

After the query is performed, a variable called StartNewRow is initialized and set to true .
cfprocessingdirective helps limit the amount of whitespace created by ColdFusion during the

generation of the table. Using this tag helps reduce the overall size of the file generated by ColdFusion
and sent to the browser. The cfoutput tag loops over the result set specified in the query attribute. If
the value of StartNewRow is still true , a <tr> tag is dynamically inserted, beginning a new row in the
table. Next, we output an employee name in a table cell using <td>#Name#</td> . The value of
StartNewRow is then set to the opposite of its current value (either false or true). A cfif statement
determines the value of StartNewRow . If StartNewRow evaluates true , a </tr> tag is dynamically
inserted into the table, ending the current row. If StartNewRow is false , another <td>#Name#</td> is

inserted into the table, adding another employee name to the current row. This process continues until
there are no more rows of data in the result set for the cfoutput tag to loop over. The two-column

output generated by this example is shown in Figure 11-2 . The table border is intentionally set to one
so you can see that each name is contained within its own table cell.

Figure 11-2. Multicolumn result set display sorted left to right

11.1.4.2 Sorting multicolumn output from top to bottom

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is also possible to sort multicolumn output from top to bottom, then left to right, as opposed to the
sequence in the previous section. In this example, we also specify the number of columns to display on
the page. Example 11-4 shows how to sort multicolumn output from top to bottom.

Example 11-4. Sorting multicolumn output from top to bottom

<!--- Thanks to Sean Clairmont for helping to refine the original code --->
<!--- Query the employeedirectory table for a list of employee names --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name,Email
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<!--- Columns sets the total number of output columns. --->
<cfset Columns = 3>
<cfset CurrentColumn = 0>
<cfset RowCompleted = 0>
<!--- Set the total number of rows equal to the number of records divided by
 the number of columns. --->
<cfset Rows=Int(GetEmployeeInfo.RecordCount/Columns)>
<!--- Set a variable to hold the number of columns with extra records --->
<cfset OddColumns = GetEmployeeInfo.RecordCount mod Columns>
<!--- If there are columns with extra records, increase the number of rows by
 one --->
<cfif OddColumns neq 0>
 <cfset Rows = Rows+1>
</cfif>
<cfset Increment = Int(GetEmployeeInfo.RecordCount/Columns)+1>

<h2>Multicolumn Query Output Sorted Top to Bottom</h2>

<table border=0>
<cfprocessingdirective suppresswhitespace="Yes">
<!--- Create a loop that iterates a number of times equal to the total number
 of output rows needed --->
<cfloop from="1" to="#Rows#" index="Row">
 <cfset LeftOverIncrement = 0>
 <tr>
 <!--- Create an inner loop for handling each column --->
 <cfloop index="Column" from="1" to="#Columns#">
 <cfif Column gt (OddColumns + 1) >
 <cfset LeftOverIncrement = LeftOverIncrement+1>
 </cfif>
 <!--- Set the current row and column --->
 <cfset CurrentRow = (Row + (Increment * CurrentColumn) - LeftOverIncrement)>
 <cfif CurrentColumn eq (Columns-1)>
 <cfset CurrentColumn = 0>
 <cfelse>
 <cfset CurrentColumn = (CurrentColumn+1)>
 </cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!--- Output the current row --->
 <cfoutput>
 <td><cfif (Row lt Increment or OddColumns gt 0) and (CurrentRow lte
 GetEmployeeInfo.Recordcount)>#GetEmployeeInfo.name[CurrentRow]#
 <cfelse> </cfif></td>
 </cfoutput>

 <cfif Row eq Increment>
 <cfset RowCompleted = RowCompleted+1>
 </cfif>
 <cfif RowCompleted is OddColumns>
 <cfset OddColumns = 0>
 </cfif>
 </cfloop>
 </tr>
</cfloop>
</cfprocessingdirective>
</table>

Before the individual columns are created and populated with data, a number of variables are
initialized. You specify the number of columns to display the result set using the Columns variable. You

may display the result set using any number of columns you desire, up to the total number of records
returned. If you specify a number greater than the total number of records returned by the query,
ColdFusion throws an exception. In Example 11-4 , we display the result set in three columns.

We set the next variable, CurrentColumn , to specify a starting point for our output. RowCompleted is

created and assigned an initial value of 0. We'll get back to the purpose for this variable in a moment.
Rows is set to the total number of rows containing a record for each column. This is calculated by

taking the total number of records and dividing it by the number of columns we want to use to display
the output. The next variable we initialize is OddColumns . If a remainder is present when we calculate
Rows , we use OddColumns to store the value. The value is important in determining how many cells
need to be populated with data in the last row of the table. The final variable we initialize is Increment
. Increment is used in the calculation that determines the index position of the next record to be

output. Its initial value is set by adding 1 to the integer value of the total number of records divided by
the number of columns to be output.

Once all of the variables have been initialized, an HTML table is started. A loop generates the
appropriate number of rows for the table based on the value of the Rows variable. A second loop

iterates over each column in the current row and populates it with the appropriate value from the
query. After each table cell is built, the index position in the Rows loop is compared to the Increment
value. If they are the same, the value of the RowCompleted variable is incremented by 1. This only
happens in the last row of data generated for the table. Next, the value of RowCompleted is compared
to the value of OddColumns . If they are the same, we set the value of OddColumns to 0. When the
number of records is evenly divisible by the number of desired columns, OddColumns is always 0.

Otherwise, it is 0 only for odd cells within the last row.

11.1.5 Next/Previous Record Browsing

One question of great concern to most ColdFusion developers is how to implement next/previous
record browsing in ColdFusion. When building web applications with ColdFusion, you will inevitably
create an application that queries a database and returns a record set with too many rows to display in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a single browser window. To display thousands of rows of data in the browser at once is an unrealistic
task, for a number of reasons. Sending thousands of rows of data to the browser eats up a lot of
bandwidth. And no one likes to sit around waiting for a browser to download and render a 1 MB web
page when the probability of the end user reading through thousands of rows of data is slim. So, what
are our options? The solution is to break up the record sets returned to the browser into manageable
chunks that allow the user to browse through the query results one chunk at a time. This type of
interface is known as next/previous record browsing.

Implementing next/previous record browsing in ColdFusion might seem tricky at first glance. However,
thanks to ColdFusion's query caching and the partial record set display capabilities we just covered,
implementing a next/previous solution is a lot simpler than you might think.

The template in Example 11-5 shows how to build a next/previous record browser that can easily be
modified to work with any query. The larger the query, the more benefit to this type of interface.

Example 11-5. Creating a next/previous record browser

<!--- StartRow is the default starting row for the output.
 DisplayRows determines how many records to display at a time --->
<cfparam name="StartRow" default="1">
<cfparam name="DisplayRows" default="4">

<!--- Query the EmployeeDirectory table. Cache the result set for 15 minutes. --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF"
 cachedwithin="#CreateTimeSpan(0,0,15,0)#">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM EmployeeDirectory
</cfquery>

<!--- Set a variable to hold the record number of the last
 record to output on the current page. --->
<cfset ToRow = StartRow + (DisplayRows - 1)>
<cfif ToRow gt GetEmployeeInfo.RecordCount>
 <cfset ToRow = GetEmployeeInfo.RecordCount>
</cfif>

<html>
<head>
 <title>Next/Previous Record Browsing</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>
<body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Output the range of records displayed on the page as well as the total
 number of records in the result set --->
<cfoutput>
<h4>Displaying records #StartRow# - #ToRow# from the
#GetEmployeeInfo.RecordCount# total records in the database.</h4>
</cfoutput>

<!--- Create the header for the table --->
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 </tr>
 <!--- Dynamically create the rest of the table and output the number of
 records specified in the DisplayRows variable --->
 <cfoutput query="GetEmployeeInfo" startrow="#StartRow#"
 maxrows="#DisplayRows#">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
</table>

<!--- Update the values for the next and previous rows to be returned --->
<cfset Next = StartRow + DisplayRows>
<cfset Previous = StartRow - DisplayRows>

<!--- Create a previous records link if the records being displayed aren't the
 first set --->
<cfoutput>
<cfif Previous GTE 1>
 Previous #DisplayRows#
 Records
<cfelse>
Previous Records
</cfif>

|

<!--- Create a next records link if there are more records in the record set
 that haven't yet been displayed. --->
<cfif Next lte GetEmployeeInfo.RecordCount>
 Next
 <cfif (GetEmployeeInfo.RecordCount - Next) lt DisplayRows>
 #Evaluate((GetEmployeeInfo.RecordCount - Next)+1)#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfelse>
 #DisplayRows#
 </cfif> Records
<cfelse>
Next Records
</cfif>
</cfoutput>
</body>
</html>

The first thing Example 11-5 does is initialize two variables. StartRow specifies the starting row for the
record set being displayed. The default value is set to 1 . DisplayRows specifies the number of rows of
data to display per page. We set DisplayRows to 4 . Next, a query is run to retrieve all the records
from the EmployeeDirectory table. The query is then cached for 15 minutes using the cachedwithin
attribute of the cfquery tag. If you feel your users will use the record browser for more or less than 15

minutes on average, feel free to change this value.

Note that every cached query in ColdFusion takes up some of the server's memory. Depending on the
amount of RAM on your server and the number of cached queries you allow (configurable in the
ColdFusion Administrator), you may run into memory issues when dealing with cached queries. If you
plan to use cached queries extensively, you should add additional RAM to your server so it can handle
the anticipated load.

Next we set a variable called ToRow to hold the record number of the last record to be output on the
current page. If ToRow is greater than the total number of records in the result set, it is set equal to

the total number of records.

The next part of the template uses the cfoutput tag to output the first chunk of records to the
browser. The startrow and maxrows attributes determine the starting row and number of rows to
output, respectively. These values are dynamically populated by the StartRow and DisplayRows

variables we set in the beginning of the template. The results are shown in Figure 11-3 . If you turn on
debugging in the ColdFusion Administrator, you should be able to see that the query is being cached.

Figure 11-3. Implementing a next/previous record browser

The final section of Example 11-5 calculates the starting and previous row number for the next or
previous batch of records to output. Depending on how many records have already been displayed,
appropriate Next and Previous links are created for the user to click on to retrieve the next or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

previous set of records.[1] Clicking on one of the Next or Previous links causes the template to call
itself (the template self-references by linking to the CGI variable CGI.Script_Name) and pass the

starting row number for the next/previous chunk of records as a URL variable. When the template calls
itself, instead of performing a fresh query and potentially wasting a lot of time waiting for the database
to generate and return a record set, the template uses the cached query and returns the next set of
records almost instantaneously! If it weren't for the cached query, you would have to query the
database for the full record set every time you clicked on a Next or Previous link. It doesn't take

much to imagine the enormous amount of wasted overhead just to display a few records at a time.

[1] This example can easily be modified to use HTML form buttons. If you prefer to use buttons instead of links,

simply pass the StartRow value as a hidden form field and have the form post to itself.

11.1.6 Controlling Whitespace

If you have ever looked at the HTML generated by a ColdFusion template (by viewing the source within
your web browser), you may have noticed a lot of extraneous whitespace. Though whitespace in the
HTML won't affect the display of your page, it can affect the overall file size of the page that is sent to
the browser. File size can have a considerable impact on the time it takes for a page generated by
ColdFusion to download.

When a CFML template is requested by a web browser, the web server that fulfills the request first
passes the CFML template to the ColdFusion Application Server. Before the ColdFusion Application
Server can process the instructions in the CFML template, the language processor within the
application server must parse the CFML template and compile it to Java byte-code that can be
executed by the application server. It is during the conversion of CFML and HTML code into byte-code
that the extraneous whitespace is generated. The specifics of how this all happens aren't important for
our purposes. What is important is realizing that there are several techniques you can use to suppress
whitespace in the pages generated by your ColdFusion application.

11.1.6.1 Optimizing output

The cfsetting tag is a sort of "catch-all" tag when it comes to optimizing output. There are three

different functions currently handled by the tag: controlling whitespace, enabling/disabling the display
of debug information, and overriding ColdFusion's default page timeout value. To accomplish these
tasks, the cfsetting tag has three attributes:[2]

[2] In versions of ColdFusion prior to MX, the requesttimeout attribute did not exist. Additionally, there was

another attribute that is no longer available in MX, CATCHEXCEPTIONSBYPATTERN . This attribute took a

Yes|No value indicating whether to override structured exception handling.

<cfsetting enablecfoutputonly="Yes|No"
 showdebugoutput="Yes|No"

 requesttimeout="seconds">

The first attribute, enablecfoutputonly , suppresses all HTML output, including whitespace, within a
cfsetting block. When enablecfoutputonly is set to Yes , only HTML code generated within a
cfoutput block is output to the browser:

<cfsetting enablecfoutputonly="Yes">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
You should be able to see this...
</cfoutput>
But not this...
<cfsetting enablecfoutputonly="No">
Of course you can see this!

When the enablecfoutputonly attribute is used, cfsetting tags must occur in matched pairs, where
the first tag turns on the output suppression (Yes) and the second tag turns it off (No). cfsetting

tags may be nested any number of levels as long as there are always matching tag pairs.

The second attribute you can use with the cfsetting tag is showdebugoutput . This optional attribute
takes a Yes/No value that indicates whether to suppress debugging information normally output to

ColdFusion templates when debugging is turned on in the ColdFusion Administrator. The default value
for showdebugoutput is Yes . You don't need to use paired cfsetting tags with the showdebugoutput
attribute unless you are using it in combination with an enablecfoutputonly attribute.

The third attribute, requesttimeout , is new in ColdFusion MX and specifies the number of seconds

ColdFusion should wait for the page to process before marking the thread as unresponsive and timing
out the request. This attribute is designed to replace the technique used in previous versions of
ColdFusion whereby RequestTimeout= x was passed as part of the query string to a ColdFusion
template in order to specify how long the page should run before timing out. If the requesttimeout

attribute is used, it overrides the value set in the ColdFusion Administrator. If you have older code that
uses the URL parameter RequestTimeOut , you can avoid having to recode all of your templates by

placing the following code at the beginning of your Application.cfm template:

<cfif IsDefined('URL.RequestTimeOut')>
 <cfsetting requesttimeout = "#URL.RequestTimeout#">
</cfif>

This code checks to see if a URL.RequestTimeOut exists, and if it does, its value is assigned to the
requesttimeout attribute of the cfsetting tag. If you don't have an Application.cfm template, you

can create one and save it in your application's root directory. For more information on Application.cfm
files, see Chapter 7 .

11.1.6.2 Suppressing output

The cfsilent tag suppresses all output produced between cfsilent tag pairs. cfsilent can suppress

generated whitespace in Application.cfm templates as well as in instances where your template does a
lot of looping but doesn't produce any output. cfsilent is similar to the cfsetting tag except that it

doesn't allow any content to be generated. The following code shows how the tag can be used with a
typical loop to suppress whitespace:

<cfsilent>
<cfloop index="i" from="1" to="1000">
 <cfset i = i+1>
</cfloop>
</cfsilent>

<cfoutput>
#i#
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you execute this template and view the source in your web browser, notice that the number 1001
appears at the top of the page. If you remove the cfsilent tags, rerun the template, and view the

source again, notice that an awful lot of whitespace appears at the top of the page, resulting in the
need to scroll considerably to reach the number 1001 in the source code.

Although it may appear to make more sense to use the cfsetting tag instead of cfsilent , the
cfsilent tag is better at eliminating whitespace than cfsetting and should be used when output

generation isn't a factor.

11.1.6.3 Suppressing whitespace

The cfprocessingdirective tag has two purposes. First, it can be used to specify a compiler
processing option via the suppresswhitespace attribute to suppress all whitespace produced by
ColdFusion within the cfprocessingdirective tag pairs. In ColdFusion MX, a new attribute called
pageencoding was added, allowing you to specify a character encoding to use to read the page.
cfprocessingdirective tags must occur in matched pairs (i.e., have an end tag) when used to

suppress whitespace (this is not necessary if you are only setting the page encoding) and may also be
nested. cfprocessingdirective settings don't apply to templates called via cfimport , cfobject ,
cfinvoke , cfinclude , or cfmodule or as custom tags. Macromedia recommends using either the
suppresswhitespace attribute or the pageencoding attribute within a single cfprocessingdirective
tag, but not both at the same time. The syntax for using the cfprocessingdirective tag to suppress

whitespace is as follows:

<cfprocessingdirective suppresswhitespace="yes/no">
...CFML...
</cfprocessingdirective>

In this case, the suppresswhitespace attribute is required and indicates whether ColdFusion should
suppress all whitespace between cfprocessingdirective tag pairs. The ColdFusion Administrator

contains an option in the Settings section that allows you to enable this suppression of whitespace by
default. If this option is enabled, it may be overridden by setting a cfprocessingdirective tag pair to
No within a CFML template.

For more information on using cfprocessingdirective to set the character encoding for a page, see

Section 4.8 .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 Drilldown Queries

A drilldown query (sometimes referred to as master-detail) is one that starts by retrieving and
displaying a relatively broad or general result set. Then, hyperlinks from one or more columns in the
result set are used to call another template that performs a query based on URL parameters passed
by the hyperlinks. This process is designed to narrow the number of records returned until a desired
level of granularity is achieved, hence the name drilldown query.

For drilldown queries, you usually need two templates, but it is possible to use as many as you want
to achieve the level of granularity you need. In a two-template drilldown application, the first
template queries a data source and displays a summary (usually just a few fields) of every record in
the data source meeting the user's criteria. Hyperlinks from some of the fields in these results pass
the primary key values of records to the second template. The second template then performs a
query using the primary key value passed in via URL in the WHERE clause of the SELECT statement.

The results (usually the full record) are then output to the browser. Example 11-6 demonstrates how
a two-template drilldown query works by querying the EmployeeDirectory table and generating an
HTML table containing the Name, Title, and Department of each employee.

Example 11-6. Initial screen listing partial information about each record

<!--- Retrieve a list of all employees in the EmployeeDirectory table --->
<cfquery name="GetEmployeeList" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department
 FROM EmployeeDirectory
</cfquery>

<html>
<head>
 <title>Drilldown Example - Master</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<h2>Drilldown Query Example</h2>
Click on an employee's name to retrieve the full employee record as well
as a list of all incentive awards granted to the employee.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p>
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 </tr>

 <!--- Dynamically build an HTML table containing the list of employees from
 the GetEmployeeList query. Create a hyperlink for the Name field
 that points to a template called DrillDown.cfm and pass the value
 of the ID field as a query parameter, identifying the record --->
 <cfoutput query="GetEmployeeList">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

Example 11-6 queries the EmployeeDirectory table and returns a result set containing the Name,
Title, and Department of every employee in the table. The result set dynamically generates an

HTML table with a row for each record. Each name is displayed as a hyperlink that points to a
template called drilldown.cfm (shown in Example 11-7). Clicking on any one of the names calls the
drilldown.cfm template and passes the ID value (the primary key) associated with the name as a URL

parameter so that the drilldown.cfm template knows which record to drill down on. The initial results
screen is shown in Figure 11-4.

Figure 11-4. Initial results screen with hyperlink to drilldown template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the drilldown.cfm template in Example 11-7 is called, the first thing it does is execute a query
to retrieve all the fields in the record whose ID matches the value specified by the URL.ID parameter.

These values could also be passed by form field, but for our example we'll do it this way. Just for fun,
a second query is made to the IncentiveAwards table to retrieve any awards the employee has

been granted.

Example 11-7. Drilldown screen for displaying detail information

<!--- Retrieve the full record of the employee whose ID was passed in
 as a URL parameter. --->
<cfquery name="GetEmployeeRecord" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE ID = #URL.ID#
</cfquery>

<!--- Query the IncentiveAwards table and retrieve all records for
 for the ID passed in as a URL parameter. This query can return
 0 or more records --->
<cfquery name="GetIncentiveAwards" datasource="ProgrammingCF">
 SELECT DateAwarded, Category, Amount
 FROM IncentiveAwards
 WHERE ID = #URL.ID#
</cfquery>

<html>
<head>
 <title>Drilldown Example - Detail</title>
 <style type="text/css">
 th {
 background-color : #888888;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h2>Employee Profile</h2>
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>
 <!--- Generate an HTML table containing the employee record from the
 GetEmployeeRecord query. --->
 <cfoutput>
 <tr>
 <td>#GetEmployeeRecord.Name#</td>
 <td>#GetEmployeeRecord.Title#</td>
 <td>#GetEmployeeRecord.Department#</td>
 <td>
 #GetEmployeeRecord.Email#</td>
 <td>#GetEmployeeRecord.PhoneExt#</td>
 <td>#GetEmployeeRecord.Salary#</td>
 </tr>
 </cfoutput>
</table>

<h3>Incentive Awards</h3>
<!--- Only display the table if 1 or more awards are found in the database --->
<cfif GetIncentiveAwards.RecordCount gt 0>
 <table cellpadding="3" cellspacing="1">
 <tr>
 <th>Date Awarded</th>
 <th>Incentive Type</th>
 <th>Amount</th>
 </tr>

 <!--- Generate an HTML table listing the awards granted the employee --->
 <cfoutput query="GetIncentiveAwards">
 <tr>
 <td>#DateFormat(DateAwarded, 'mm/dd/yyyy')#</td>
 <td>#Category#</td>
 <td>#DollarFormat(Amount)#</td>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfoutput>
 </table>
<cfelse>
 No incentive awards granted.
</cfif>
</body>
</html>

Next, two HTML tables are generated from the query results. The first table contains all the
information about the employee stored in the EmployeeDirectory table. The second table lists any

awards the employee has earned. If no awards are found for the employee, a message to that effect
is output in lieu of the table. The results of the drilldown.cfm template are shown in Figure 11-5.

Figure 11-5. Drilldown template displaying entire employee record

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 Query Caching

If you want to squeeze every last bit of performance out of your ColdFusion applications (and who
doesn't?), you might want to consider query caching. Query caching allows you to retrieve query
result sets from memory as opposed to requiring a round trip to the database. This can significantly
reduce the amount of time it takes to return a result set in your application. Query caching is
implemented using the cfquery tag and one of two optional attributes:

cachedafter

Specifies a date for using cached query data. Cached query data is used only if the date of the
original query is after the date specified in cachedafter.

cachedwithin

Specifies a time span (using the CreateTimeSpan() function) for using cached query data.

Query caching is especially useful in situations where you repeatedly execute the same query to
obtain a result set that remains static for a known period of time. Some examples of queries that are
candidates for caching include:

A query that retrieves a "what's new" list that is updated once a day

A query that retrieves a company's closing stock price on a heavily trafficked intranet site that is
updated once a day

A query that retrieves a list of users to use in an administration application

Regardless of the type of query you want to cache, one guideline is absolute: the cfquery statement

(including the SQL) that references the cached data must be exactly the same every time. For this
reason, queries that use dynamic SQL aren't candidates for caching, unless you can create a cached
query for every possible query combination. Additionally, you may not want to use cached queries if
you are running ColdFusion in a clustered environment that doesn't have "sticky sessions" enabled
because of the potential for the user to be bounced from box to box in the server, potentially
negating the purpose of a cached query.

Because cached queries take up server memory, the ColdFusion Administrator has a setting under
Caching that allows you to specify the maximum number of cached queries to keep in memory.
Cached queries are managed in a FIFO (first in, first out) manner so that when the threshold for
allowable queries is reached, older queries are pushed out as newer ones are brought in. To disable
query caching, set the maximum number of cached queries to 0.

Example 11-8 queries the EmployeeDirectory table of the ProgrammingCF database. If a cached

query exists that is less than one hour old, the cached result set is used. If not, a live query is
performed, and the result set is then cached.

Example 11-8. Using cachedwithin to cache a query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Query the employeedirectory table. If a cached result set that is less
 than 1 hour old, use it. Otherwise, perform a new query and cache the
 result set. --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF"
 cachedwithin="#CreateTimeSpan(0,1,0,0)#">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM EmployeeDirectory
</cfquery>

<html>
<head>
 <title>Using cachedwithin to Cache a Query</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<!--- Output the result set. If you have debugging turned on, you will be able
 to see whether the query was live or cached --->
<table cellpadding="3" cellspacing="0">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 </tr>
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

The cachedwithin attribute of the cfquery tag handles all the caching. Use the CreateTimeSpan()

function to specify the amount of time the cached query should persist. In our example, we set the
cached query to persist for one hour. Every time the query is called, the ColdFusion checks to see if
the time associated with the cached query is more than one hour older than the time associated with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the current request. If not, the cached data is used. If, however, it is older, a new query is run, the
results are cached, and the timer is refreshed.

We can easily rewrite this example to use cachedafter instead of cachedwithin. Instead of
providing a time span for the cached query, cachedafter provides a date after which all queries

should be cached:

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF"
 cachedafter="06/15/2003">

Persistent queries created with cachedafter don't expire automatically as do those created with
cachedwithin.

To see the difference between a normal query and a cached query, run the template in Example 11-8
(make sure debugging is turned on in the ColdFusion Administrator). The first time you run the
template, you will see a processing time associated with the query of approximately 30 milliseconds.
This is to be expected, as the query wasn't actually cached until after you executed it for the first
time. If you hit the reload button on your browser and refresh the page, you should see something
different (as shown in Figure 11-6).

Figure 11-6. Reloading the template retrieves cached data

This time, the words "Cached Query" should appear where the processing time for the query was
previously displayed. This lets you know that the query you just ran came from the cache and not
from the data source.

One final thing to note: if you use the cfqueryparam tag to bind query parameters (discussed later in

the chapter), you can't cache the query using the techniques we just discussed. You should keep this
in mind as it isn't well documented in any of the ColdFusion documentation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.4 Advanced SQL

This section moves beyond the basic database manipulation techniques we discussed in earlier
chapters. Here, we'll cover methods for creating dynamic SQL, creating and modifying database
tables using SQL, using aggregate and scalar functions, performing table unions and joins, and
several other database-manipulation techniques. These are the kinds of operations that allow you to
interact with databases at a higher level. Most advanced applications such as shopping carts,
threaded discussion lists, and business-to-business applications use one or more of the techniques
described in this section.

11.4.1 Dynamic SQL

An extremely powerful feature of ColdFusion is the ability to generate dynamic SQL queries based on
a variety of inputs. In Chapter 3, you learned how to pass a single dynamic value in an SQL
statement:

SELECT Name, Title, Department
FROM EmployeeDirectory
WHERE ID = #ID#

We extend this concept a bit in Example 11-9 to allow for completely dynamic SQL in the WHERE

clause of a SQL statement.

Example 11-9. HTML form for searching database records

<!--- Query the EmployeeDirectory table for a list of departments --->
<cfquery name="GetDepartments" datasource="ProgrammingCF">
 SELECT DISTINCT Department
 FROM EmployeeDirectory
 ORDER BY Department
</cfquery>

<h2>Locate a User</h2>
<form action="search.cfm" method="post">
<table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="Name" size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>Title:</td>
 <td><input type="text" name="Title" size="20" maxlength="80"></td>
 </tr>
 <tr>
 <td>Department:</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><select name="Department" size="5" multiple>
 <cfoutput query="GetDepartments">
 <option value="#Department#">#Department#</option>
 </cfoutput>
 </select>
 </tr>
</table>
<input type="submit" value="Submit">
</form>

Example 11-9 generates an HTML form for the user to specify search criteria when constructing a
dynamic SQL statement to retrieve matching records from the EmployeeDirectory table. The form

contains a field where the user can enter a name, another for title, and a multiple select list where he
can choose one or more departments to narrow down the search. The list of department names in
the multiple select list is obtained by performing a query using the DISTINCT keyword against the
Department column in the EmployeeDirectory table. The DISTINCT keyword is covered in more
detail later in this chapter. Note that the variable name in the value attribute of the option tag is
enclosed in a set of single quotes. Because we'll be passing the values from the Department field as a

delimited list of text values, it is necessary to enclose each value in the list in single quotes. If the
values were numeric, this wouldn't be necessary.

Once you fill out and submit the search form, the search criteria are posted to the search.cfm
template shown in Example 11-10.

Example 11-10. Searching database records using dynamically generated
SQL

<!--- Set a default of "" for form.Department since the parameter isn't
 passed if no department is selected --->
<cfparam name="form.Department" default="">

<!--- Query the EmployeeDirectory table with an SQL statement dynamically
 generated by the parameters passed in as form field values. --->
<cfquery name="GetRecords" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE 0=0
<!--- If a value is passed for Name, use the SQL LIKE command and the %
 wildcard to include a wildcarded search for the Name, including it
 in the SQL statement using the and operator. --->
<cfif Len(form.Name)>
 and Name LIKE '%#form.Name#%'
</cfif>

<!--- If a value is passed for Title, use the SQL LIKE command and the %
 wildcard to include a wildcarded search for the Title, including it
 in the SQL statement using the and operator. --->
<cfif Len(form.Title)>
 and Title LIKE '%#form.Title#%'
</cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- If the value passed for Department is "", omit the and statement
 for Department, removing Department as a criteria. If Department
 contains any values other than "", use those values to construct
 the dynamic and for Department. --->
<cfif Len(form.Department)>
 and Department IN (#ListQualify(form.Department, "'")#)
</cfif>
</cfquery>

<html>
<head>
 <title>Searching Database Records Using Dynamically Generated SQL</title>
 <style type="text/css">
 b {
 font-weight : bold;
 }
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<cfoutput>
#GetRecords.RecordCount# records matched your search criteria:

 Name like: #form.Name#

 Title like: #form.Title#

 Department: #form.Department#
</cfoutput>

<p>
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>
 <!--- Generate an HTML table containing all of the records matching the
 search criteria --->
 <cfoutput query="GetRecords">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Email#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#PhoneExt#</td>
 <td>#Salary#</td>
 </tr>
</cfoutput>
</table>

Example 11-10 queries the EmployeeDirectory table with a dynamically generated SQL statement.

The exact contents of the SQL statement may vary depending on the form-field values passed into
the template. Note that the WHERE 0=0 clause is necessary in the cfquery tag, in order to build the
dynamic WHERE statement. 0=0 is another way of saying true and provides the initial condition to
which to attach any dynamically generated and statements. If no search parameters are passed, the
0=0 prevents ColdFusion from throwing an error.

cfif statements evaluate the form-field values and generate the necessary SQL. If values are passed
for Name and Title, the SQL LIKE clause adds wildcarded searches to the WHERE statement. Note

how the wildcard appears both before and after the values we are searching for. This allows the value
to appear anywhere in the field being searched. If we wanted to match only the beginning of a field,
we could remove the trailing wildcard. For example, to match only names that begin with the letter
"p", the SQL would need to look like WHERE Name = 'p%'. Finally, we have to deal with the
Department. Because the Department form control is a multiple selection list that passes a delimited
list of string values, we have to use the ListQualify() function to delimit the values we passed in
with single quotation marks, so they can be used in the IN statement. Once we've built up the query,

it is a simple matter to output the results to the browser.

Note that in general, it is preferable not to use the SQL LIKE operator to perform wildcard searches

of fields that contain large amounts of text because of the amount of database overhead associated
with full-text searching. SQL (as a query language) was never meant to handle full-text searching
(there are very few operators that facilitate text searches). For serious full-text indexing and
searching, consider the Verity search interface included with ColdFusion and discussed in more detail
in Chapter 16. Additionally, some databases such as MS SQL Server (7.0 and up) contain extensions
to the database to facilitate full-text searching. Consult your database documentation for more
information on how full-text searching is handled by your database.

11.4.2 Creating and Modifying Tables

It is possible to use SQL to handle such tasks as creating a new table, creating a new table and
populating it with data from an existing table, modifying the design of a table, and deleting a table.
These options are especially useful for developers working remotely without physical access to their
data sources. Four SQL commands are available to facilitate these tasks: CREATE TABLE, SELECT
INTO, ALTER TABLE, and DROP TABLE. The descriptions and examples given in this section are meant

to provide a general overview of each function. Actual implementation and syntax varies from
database to database. Consult your database documentation for specific information on how your
particular database handles each function.

11.4.2.1 Creating new tables

The CREATE TABLE statement creates a new database table in the specified data source. Example 11-
11 creates a new table called EmployeeDirectory2 with the same structure as the
EmployeeDirectory table referred to throughout this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 11-11. Creating a new table in Microsoft Access using CREATE
TABLE

<!--- Create the EmployeeDirectory table --->
<cfquery name="CreateTable" datasource="ProgrammingCF">
 CREATE TABLE EmployeeDirectory2 (
 ID counter,
 Name varchar(255),
 Title varchar(255),
 Department varchar(255),
 Email varchar(255),
 PhoneExt integer,
 Salary numeric,
 CONSTRAINT ID PRIMARY KEY (ID)
)
</cfquery>

Employee Directory table created.

Each column you wish to add to the newly created table takes the syntax:

column_name data_type[(length)] [constraint]

Datatypes vary depending on the database you are using. Some of the more common datatypes are
Bit, Byte, Char, Character, Dec, Date, DateTime, Decimal, Float, Int, Integer, Long, Memo,
Numeric, Real, Short, SmallInt, Text, Time, TimeStamp, TinyInt, and Varchar. Constraints also
vary from database to database. Some common constraints are CHECK, DEFAULT, FOREIGN KEY,
IDENTITY, INDEX, PRIMARY KEY, [NOT] NULL, and UNIQUE.

11.4.2.2 Populating new tables with existing data

The SELECT INTO statement creates a new database table and populates it with data from an existing
table. Example 11-12 demonstrates the SELECT INTO statement by selecting the name, title, email
address, and phone extension for each employee in the EmployeeDirectory table who belongs to the
IT department. The resulting record set is then used to populate a new table called ITDirectory.

Example 11-12. Using SELECT INTO to create a copy of a table

<!--- Select the name, title, email, and phone ext for each employee in
 the EmployeeDirectory table that belongs to the IT department and
 use it to populate a new table called ITDirectory --->
<cfquery name="MakeITDirectory" datasource="ProgrammingCF">
 SELECT Name, Title, Email, PhoneExt
 INTO ITDirectory
 FROM EmployeeDirectory
 WHERE Department = 'IT'
</cfquery>

<!--- Retrieve all of the records from the ITDirectory table we just

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 created --->
<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT Name, Title, Email, PhoneExt
 FROM ITDirectory
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Using SELECT INTO to Create a Copy of a Table</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h2>ITDirectorty table successfully created and populated with data:</h2>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>E-mail</th>
 <th>Phone Ext.</th>
 </tr>

 <!--- Dynamically generate a table containing all of the records returned
 by the query --->
 <cfoutput query="GetEmployees">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

11.4.2.3 Altering table design

The ALTER TABLE statement alters the design of an existing database table. You can use ALTER TABLE

to add, modify the properties of, or delete a column from a specified table. The syntax for using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ALTER TABLE is similar to the syntax used by CREATE TABLE as shown in the following code fragments:

<!--- Add new column called DateHired to the Employee Directory Table --->
<cfquery name="AddDateHired" datasource="ProgrammingCF">
 ALTER TABLE EmployeeDirectory
 ADD COLUMN DateHired Varchar(8)
</cfquery>

<!--- Modify the datatype of the DateHired column from varchar to date --->
<cfquery name="AlterDateHired" datasource="ProgrammingCF">
 ALTER TABLE EmployeeDirectory
 ALTER COLUMN DateHired Date
</cfquery>

<!--- Drop (remove) the DateHired column from the table --->
<cfquery name="RemoveDateHired" datasource="ProgrammingCF">
 ALTER TABLE EmployeeDirectory
 DROP COLUMN DateHired
</cfquery>

Column added, altered, and deleted!

As you can see, you can perform three different actions with ALTER TABLE. You can choose to ADD,
ALTER, or DROP a particular column to/from your table. Some databases let you use an additional
clause called DROP CONSTRAINT to remove a named constraint from your schema.

11.4.2.4 Deleting tables

The DROP TABLE statement deletes an existing table (including all data) from a database:

<cfquery name="DropITDirectory" datasource="ProgrammingCF">
 DROP TABLE ITDirectory
</cfquery>

You should exercise caution when using the DROP TABLE statement. Once a table has been dropped, it
is permanently deleted from the database. Before we go on, you should also note that DROP TABLE,
ALTER TABLE, and CREATE TABLE can be used with stored procedures, triggers, views, and any other

objects supported by your database.

11.4.3 Retrieving Unique Values

The DISTINCT keyword is used in a SELECT statement to retrieve all unique values stored in a

specified column. Any duplicate values in the specified column are discarded. For example, if you
want to retrieve all the unique department names stored in the Departments column of the
EmployeeDirectory table, you can use the DISTINCT keyword:

<!--- Query the employeedirectory table for a list of departments --->
<cfquery name="GetDepartment" datasource="ProgrammingCF">
 SELECT DISTINCT Department

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FROM EmployeeDirectory
 ORDER BY Department
</cfquery>

11.4.4 Using Column Aliases

Aliases allow you to provide an alternate name to reference a particular query column. Aliases have
three general uses:

In situations where the field names used in a database aren't descriptive

To deal with nonsupported column names, such as those that contain spaces or special
characters

With scalar and aggregate functions (covered later in this chapter)

To create an alias for a field name you use the AS operator in a SELECT statement:

SELECT ItmN AS ItemNumber
FROM MyTable

You specify the original name of the column to retrieve, in this case ItmN, followed by the AS operator
and the alias name, ItemNumber.

To get a better idea of how an alias works, consider the code in Example 11-13.

Example 11-13. Creating aliases for query column names

<!--- Retrieve all records from the database. Provide aliases for some of the
 field names. Note that the Name field (not the alias) is used in the SORT
 BY clause. --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT Name AS EmployeeName, Title, Department,
 Email AS EmailAddress, PhoneExt AS PhoneExtension
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Creating Aliases for Query Column Names</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</head>

<body>
<h3>Using Column Aliases</h3>
<!--- Create an HTML table for outputting the query results. This section
 creates the first row of the table - used to hold the column
 headers --->
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Employee Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail Address</th>
 <th>Phone Extension</th>
 </tr>

 <!--- Output the query results. Use the new field names to refer to the
 aliases column names. --->
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td>#EmployeeName#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#EmailAddress#</td>
 <td>#PhoneExtension#</td>
 </tr>
</cfoutput>
</table>
</body>
</html>

Example 11-13 queries the EmployeeDirectory table of the ProgrammingCF data source and assigns
aliases for the Name, Email, and PhoneExt fields. Next, an HTML table is dynamically generated from

the query results. The aliased column names are used in place of the original column names to
generate the output.

To escape nonsupported column names (such as those containing spaces, characters, and especially
pound signs), you can use the back quote (̀) character. In this case, the SQL AS keyword is used to

alias column name as in the following example:

SELECT `Item Number` AS ItemNumber
FROM MyTable

You can also use the back quote (̀) character to escape field names containing pound signs. To keep

ColdFusion from throwing an error, be sure to escape the pound sign by doubling it up as in this
example:

SELECT `Item ##` AS ItemNumber
FROM MyTable

Depending on the database you are working with, you may need to use a character or characters
other than the back quote to identify special fields. If you get an error using the back quote, try
surrounding the field name in square brackets as in [Item Number], brackets with single or double

http://lib.ommolketab.ir
http://lib.ommolketab.ir

quotation marks, ["Item Number"], or parentheses with double quotation marks ("Item Number").

11.4.5 Scalar Functions

Scalar functions let you format record-set data at the database level before it is returned to your
ColdFusion application. These functions can be grouped into one of several categories including
string, math, date/time, system, and type conversion. Many scalar functions have equivalent
functions in ColdFusion (even identical names for some). For example, the scalar function Left() is
the same as the Left() function in ColdFusion. Because support for these functions varies from

driver to driver and from database to database, it is important that you consult your database and
database driver's documentation for a list of supported scalar functions.

At this point, you may be asking yourself why bother using scalar functions in your SQL statements
when you can just code the functions in CFML. There is an inherent advantage to using scalar
functions on the database side, as opposed to waiting until the data has been transferred. If you
think in terms of performance, it makes sense to let the database handle any data manipulation and
formatting so that ColdFusion is free to process other tasks. To illustrate the point, let's consider two
examples.

The following example retrieves all the article titles from a table called News, then outputs the first 50
characters using the CFML Left() function:

<cfquery name="GetTitles" datasource="ProgrammingCF">
 SELECT Title
 FROM News
</cfquery>

<cfoutput query="GetTitles">
#Left(Title, 50)#

</cfoutput>

Now look at the same example using the scalar function Left() instead:

<cfquery name="GetTitle" datasource="ProgrammingCF">
 SELECT {fn Left(Title, 50)} As ShortTitle
 FROM News
</cfquery>

<cfoutput query="GetTitle">
#ShortTitle#

</cfoutput>

In this case, using the Left() scalar function saves processing time and memory on the ColdFusion

server, since the result set returned by the query contains only the first 50 characters of each title as
opposed to the entire title as in the previous example. Note the use of {fn ...} around the scalar
Left() function. While this notation isn't always necessary (it depends on your database driver), I

recommend you use it (if it's supported) to help visually separate scalar functions from CFML
functions in your code and avoid any confusion. This scenario obviously shows just a simple example
of how to use scalar functions to improve performance. It all comes down to one thing-returning the
minimum amount of data possible in the most useful format.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4.6 Aggregate Functions

You can use aggregate functions to summarize data within a database. Aggregate functions are most
often used to create reports that answer such questions as the following: How many employees are
in each department? How many widgets were sold in the month of March? Can you break down
widget sales by region? What was the date of the first press release issued by the company? What is
the average employee salary?

Here are the aggregate functions commonly associated with most databases. Consult your database's
documentation for implementation-specific aggregate functions that may be available:

NIN(Fieldname)

Returns the minimum value (numeric, date, or character) in a column.
MAX(fieldname)

Returns the maximum value (numeric, date, or character) in a column.
AVG(Fieldname)

Returns the average value in a column of numeric values.
SUM(Fieldname)

Returns the sum of all values in a column of numeric values.
COUNT(Fieldname)

Returns the number of rows for a given column name that don't contain null values. To count
the number of unique row values for a given column, use the DISTINCT keyword as in
COUNT(DISTINCT Fieldname).

COUNT(*)

Returns the total number of rows in a table. If you use a WHERE clause, this function provides

the number of rows returned in the result set.

Although ColdFusion has its own functions that can provide the same functionality as the aggregate
functions, you should let the database handle calculations whenever possible. From a performance
standpoint, databases are optimized to manipulate data whereas ColdFusion is less so. For this
reason alone, it makes sense to offload as much processing as you can from ColdFusion to your
database. To see how simple aggregate functions can make life easier, consider the following code,
which uses the COUNT(*) function to retrieve the total number of records in the EmployeeDirectory

table:

<!--- Retrieve a count of the total number of records in the EmployeeDirectory
 table of the database. You should use COUNT(*) as opposed to COUNT for
 this operation as it is faster. --->
<cfquery name="GetTotalRecords" datasource="ProgrammingCF">
 SELECT Count(*) AS TotalRecords
 FROM EmployeeDirectory
</cfquery>

<h3>Using COUNT(*)</h3>
<cfoutput>
Total Records in the EmployeeDirectory Table: #GetTotalRecords.TotalRecords#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>

Of course, you can do the same thing by querying an arbitrary column using the cfquery tag, then

using the queryname.RecordCount variable to output the total number of records retrieved by the
query. As simple as this seems, it actually wastes a fair amount of resources. Using the cfquery tag

to query a single field returns all the data associated with that field. So, if you query a table that
happens to have one million rows of data in it, you are going to get a result set back that contains
one million records. From a performance standpoint, not only will the process take forever, but your
server will most likely run out of memory as ColdFusion attempts to store the entire result set. By
using the COUNT(*) method instead, the database does all the work and returns only a single record

back to ColdFusion that contains the total number of rows in the table.

You can also use aggregate functions to provide summarization on groups of related data. For
example, if you want to know how many employees are in each department, you could use the COUNT
(not COUNT(*)) function along with the GROUP BY clause to find out, as shown in Example 11-14.

Example 11-14. Counting employees in each department

<!--- Retrieve a count of the number of employees for each department in
 the EmployeeDirectory table of the database --->
<cfquery name="GetDepartment" datasource="ProgrammingCF">
 SELECT COUNT(Name) AS TotalEmployees, Department
 FROM EmployeeDirectory
 GROUP BY Department
</cfquery>

<html>
<head>
 <title>Counting Employees in Each Department</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h3>Using COUNT and GROUP BY to return the Total Number of Employees for
 each Department</h3>
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Department</th>
 <th>Total Employees</th>
 </tr>

 <cfoutput query="GetDepartment">
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#Department#</td>
 <td>#TotalEmployees#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

You can provide additional filtering of grouped data with a HAVING clause. HAVING works just like the
WHERE clause except the filtering takes place after the data has been grouped. In addition, HAVING
allows you to specify an aggregate function, whereas the WHERE statement doesn't. Example 11-15

modifies the code in from Example 11-14 so that only departments that have two or more employees
are returned by the query.

Example 11-15. Displaying departments that have two or more
employees

<!--- Retrieve a count of the number of employees for each department in
 the EmployeeDirectory table of the database where the total number
 of employees is greater than or equal to two. --->
<cfquery name="GetDepartment" datasource="ProgrammingCF">
 SELECT COUNT(Name) AS TotalEmployees, Department
 FROM EmployeeDirectory
 GROUP BY Department
 HAVING COUNT(Name) >= 2
</cfquery>

<html>
<head>
 <title>Displaying Departments That Have Two or More Employees</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h3>Using COUNT, GROUP BY, and HAVING to return the Total Number of Employees
 for each Department where the total number of employees is greater than or
 equal to two </h3>
<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Department</th>
 <th>Total Employees</th>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfoutput query="GetDepartment">
 <tr>
 <td>#Department#</td>
 <td>#TotalEmployees#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

11.4.7 Subqueries

As the name implies, a subquery is a query that exists within another query. Subqueries can be used
inside the SELECT, INSERT, UPDATE, and DELETE queries. In the case of SELECT queries, subqueries

are often used along with aggregate functions to create a summarized column from data contained in
the other columns. Subqueries can also associate data from different tables (much like a join, which
we'll cover shortly).

Example 11-16 uses a subquery along with an aggregate function to calculate the average salary of
all employees in the EmployeeDirectory table.

Example 11-16. Using a subquery along with an aggregate function

<!--- Retrieve employee records from the EmpoloyeeDirectory. Employ a
 subquery to obtain the average salary of all employees --->
<cfquery name="GetSalaries" datasource="ProgrammingCF">
 SELECT Name, Title, Department,
 Salary, (SELECT AVG(Salary)
 FROM EmployeeDirectory) AS AverageSalary
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Using a Subquery Along with an Aggregate Function</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 td.Total {
 background-color : #D3D3D3;
 font-weight : bold;
 }
 </style>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</head>

<body>
<h3>Average Salary Report</h3>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>Salary</th>
 </tr>
 <!--- Output the employee records --->
 <cfoutput query="GetSalaries">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td style="text-align: right;">#DollarFormat(Salary)#</td>
 </tr>
 </cfoutput>

 <!--- Output the average employee salary. Note that the query attribute of
 the cfoutput tag was not used. The query name is prepended to the
 AverageSalary salary variable --->
 <cfoutput>
 <tr>
 <td class="Total">Average Salary</td>
 <td class="Total" style="text-align: right;"
 colspan="3">#DollarFormat(GetSalaries.AverageSalary)#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

In Example 11-16, a query is run to retrieve the Name, Title, Department, and Salary of each
employee in the EmployeeDirectory table. A subquery is used within the SELECT statement to obtain
the average of all salaries using the AVG aggregate function. Subqueries returning more than one
record can be used only in the WHERE clause. The results are written to the browser in an HTML table

that contains a listing of all the employees in the table along with their salaries. The average salary is
given at the bottom of the table.

You can also include subqueries in the WHERE clause of a query. One way to do this is with the EXISTS
keyword. EXISTS is used only with subqueries and tests for a nonempty record set (you can test for
an empty record set by using NOT EXISTS). To see how this is useful, consider Example 11-17, in
which we retrieve a list of all employees from the EmployeeDirectory table who have received

individual incentive awards of less than $5,000 each in 2003.

Example 11-17. Using EXISTS with a subquery

<!--- Retrieve a list of employees who received individual incentive awards

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 of less than $5000 each in 2003 --->
<cfquery name="GetSalaries" datasource="ProgrammingCF">
 SELECT ID, Name, Title, Department
 FROM EmployeeDirectory
 WHERE EXISTS
 (SELECT ID
 FROM IncentiveAwards
 WHERE IncentiveAwards.ID = EmployeeDirectory.ID
 and Amount < 5000
 and {fn YEAR(DateAwarded)} = 2003)
 ORDER BY Name
</cfquery>

<html>
<head>
 <title>Using EXISTS with a Subquery</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h3>Incentive Awards under $5000 Granted in 2003</h3>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 </tr>

 <!--- Output the employee records --->
 <cfoutput query="GetSalaries">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

Example 11-17 uses a few of the advanced techniques we covered so far. In plain English, the query
works by saying "select the employees from the Employee-Directory table where a matching record

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exists in the IncentiveAwards table that meets the criteria set in the subquery."

Subqueries can also be used in the WHERE clause of a SELECT query by using the equal sign (=) or the
[NOT] IN operator. Use the equal sign when only one record will be returned by the subquery. If
more than one record can be returned, use IN. Here are some example WHERE clauses:

WHERE MyField = (SELECT SomeField
 FROM SomeTable
 WHERE OtherField = Value)

WHERE MyField IN (SELECT SomeField
 FROM SomeTable
 WHERE OtherField = Value)

WHERE MyField NOT IN (SELECT SomeField
 FROM SomeTable
 WHERE OtherField = Value)

11.4.8 Unions

The UNION clause is used with a SELECT statement to merge result sets from two or more queries into
a single result set. In order to use the UNION clause, each result set must contain the same number

of columns, with each matching column being of the same datatype. Additionally, each column must
have been SELECT'ed in the same order during the formation of the original result sets. Example 11-

18 demonstrates how this works.

Example 11-18. Using the UNION clause to merge two result sets

<!--- Retrieve records from both the ITDirectory and HRDirectory tables
 and merge them using the UNION clause. This example is somewhat
 impractical as the user's department is not stored in the
 database --->
<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT Name, Title, Email, PhoneExt
 FROM ITDirectory
 UNION
 SELECT Name, Title, Email, PhoneExt
 FROM HRDirectory
</cfquery>

<html>
<head>
 <title>Using the UNION Clause to Merge Two Result Sets</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h2>Combined IT Directory and HR Directory:</h2>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>E-mail</th>
 <th>Phone Ext.</th>
 </tr>

 <!--- Dynamically generate a table containing all of the records returned
 by the query --->
 <cfoutput query="GetEmployees">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

In order to get Example 11-18 to work, you need to go back to the code in Example 11-12 and
modify it to create a new table called HRDirectory. Simply substitute HRDirectory for ITDirectory
in the FROM clause and 'HR' for 'IT' in the WHERE clause and execute the template. You should now
have an ITDirectory and an HRDirectory table containing IT employees and HR employees

respectively.

Once you have these two tables in your database, go ahead and execute Example 11-18. The
template retrieves a list of all employees from both tables and merges the result sets using the UNION

clause. An HTML table containing the records from the merged result set is dynamically generated.

11.4.9 Joins

Relational database design allows you to create database tables that maintain relationships. These
relationships are usually defined in terms of primary and foreign key values. For example, in our
EmployeeDirectory table, the ID value for each employee is the primary key value. The
IncentiveAwards table contains a field named ID as well. The ID field in the IncentiveAwards table
is known as a foreign key. Records in the IncentiveAwards table are related to records in the
EmployeeDirectory table by their ID values. Each record in the IncentiveAwards table should have
a corresponding record in the EmployeeDirectory table.

A join operation lets you select records from two or more tables where a relationship between

http://lib.ommolketab.ir
http://lib.ommolketab.ir

primary key and foreign key values exists. Most joins fall into one of two categories: inner or outer
joins.

11.4.9.1 Inner joins

Inner joins are the most common type of join and are used to retrieve records from two or more
tables where values in the joined columns match. There are many ways to implement inner joins in
SQL, and support for these methods varies from database to database. Consult your database
documentation to find out which methods are supported by your database.

One common method involves using the equal sign (=) in the WHERE statement to join the tables by a

related column, as shown in Example 11-19.

Example 11-19. Inner join performed in the WHERE statement

<!--- Query the EmployeeDirectory and IncentiveAwards tables and only return
 records where the ID from the EmployeeDirectory table matches the ID in
 the IncentiveAwards table, The inner join is performed by the equal
 sign. --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT EmployeeDirectory.ID, EmployeeDirectory.Name,
 IncentiveAwards.ID, IncentiveAwards.Category,
 IncentiveAwards.DateAwarded, IncentiveAwards.Amount
 FROM EmployeeDirectory, IncentiveAwards
 WHERE EmployeeDirectory.ID = IncentiveAwards.ID
</cfquery>

<html>
<head>
 <title>Inner Join Performed in the WHERE Statement</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h3>Incentive Awards</h3>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Award Type</th>
 <th>Date Awarded</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <th>Amount</th>
 </tr>

 <!--- Dynamically generate a table containing all of the records returned
 by the query --->
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td>#Name#</td>
 <td>#Category#</td>
 <td>#DateFormat(DateAwarded, 'mm/dd/yyyy')#</td>
 <td>#DollarFormat(Amount)#</td>
 </tr>
 </cfoutput>
</table>

Example 11-19 queries the EmployeeDirectory and IncentiveAwards tables and returns only
records in which the ID value from the EmployeeDirectory table matches the ID value in the
IncentiveAwards table. The inner join is performed using the equal sign in the WHERE clause.

Executing this template results in the output shown in Figure 11-7.

You can also perform an inner join using INNER JOIN in the FROM clause of the SELECT statement, as

shown in Example 11-20. The results of this query will mimic the results of Example 11-19 (shown in
Figure 11-7).

Figure 11-7. Inner join performed using the equal sign in the WHERE
clause

Example 11-20. Inner join performed in the FROM statement

<!--- Query the EmployeeDirectory and IncentiveAwards tables and only return
 records where the ID from the EmployeeDirectory table matches the ID in
 the IncentiveAwards table. The inner join is performed by the INNER
 JOIN operator. --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT employee.ID, employee.Name, incentive.ID,
 incentive.Category, incentive.DateAwarded, incentive.Amount
 FROM EmployeeDirectory employee
 INNER JOIN IncentiveAwards incentive
 ON employee.ID = incentive.ID
</cfquery>

<html>
<head>
 <title>Inner Join Performed in the FROM Statement</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h3>Incentive Awards</h3>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Award Type</th>
 <th>Date Awarded</th>
 <th>Amount</th>
 </tr>

 <!--- Dynamically generate a table containing all of the records returned
 by the query --->
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td>#Name#</td>
 <td>#Category#</td>
 <td>#DateFormat(DateAwarded, 'mm/dd/yyyy')#</td>
 <td>#DollarFormat(Amount)#</td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

Example 11-20 introduces another technique known as table aliasing. If you look at the first query,
you'll notice that we refer to the EmployeeDirectory table as employee and the IncentiveAwards
table as incentive:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SELECT employee.ID, employee.Name, incentive.ID,
 incentive.Category, incentive.DateAwarded, incentive.Amount
FROM EmployeeDirectory employee
INNER JOIN IncentiveAwards incentive
ON employee.ID = incentive.ID

SQL lets us alias table names when working with multiple tables. To create an alias for a table name,
simply specify the alias immediately following the table name in the FROM clause.

11.4.9.2 Outer joins

Outer joins differ from inner joins in that they let you query all the records from one table even if
corresponding records don't exist in the other table. There are two types of outer joins: left and right.

As its name implies, a left outer join returns all the records from the left table (as specified in the
WHERE or FROM clause) and only the records from the right table where the values in the joined fields
match. All empty rows from the right table are assigned NULL values.

Example 11-21 uses a left outer join in the FROM clause to query the EmployeeDirectory and
IncentiveAwards tables and return all records from the left table (EmployeeDirectory) and only
those from the right table (IncentiveAwards) that match ID values.

Example 11-21. Using LEFT OUTER JOIN in the FROM clause

<!--- Query the EmployeeDirectory and IncentiveAwards tables and return all
 records from the left table (EmployeeDirectory) and only those from
 the right table (IncentiveAwards) where the ID values are equal. The
 left outer join is performed by the LEFT OUTER JOIN operator. --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT employee.ID, employee.Name, incentive.ID,
 incentive.Category, incentive.DateAwarded, incentive.Amount
 FROM EmployeeDirectory employee
 LEFT OUTER JOIN IncentiveAwards incentive
 ON employee.ID = incentive.ID
</cfquery>

<html>
<head>
 <title>Using LEFT OUTER JOIN in the FROM Clause</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>
<h3>Incentive Awards</h3>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Award Type</th>
 <th>Date Awarded</th>
 <th>Amount</th>
 </tr>

 <!--- Dynamically generate a table containing all of the records returned
 by the query. Substitute NULL for any blanks (NULLs) returned by
 the Left Outer Join --->
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td>#Name#</td>
 <td><cfif Category is "">NULL<cfelse>#Category#</cfif></td>
 <td><cfif DateAwarded is "">NULL<cfelse>
 #DateFormat(DateAwarded, 'mm/dd/yyyy')#</cfif></td>
 <td><cfif Amount is "">NULL<cfelse>#DollarFormat(Amount)#</cfif></td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

Executing the template in Example 11-21 results in the output shown in Figure 11-8.

Figure 11-8. Results of using a left outer join in the FROM clause

A right outer join is the exact opposite of a left outer join. Right outer joins return all records from
the right table and only the records from the left table where the values in the joined fields match. All
empty rows from the left table are assigned NULL values.

Example 11-22 uses a right outer join to query the EmployeeDirectory and IncentiveAwards
tables. A result set containing all records from the right table (IncentiveAwards) and only those
from the left table (EmployeeDirectory) where the ID values are equal is returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 11-22. Using RIGHT OUTER JOIN in the FROM clause

<!--- Query the EmployeeDirectory and IncentiveAwards tables and return all
 records from the Right table (IncentiveAwards) and only those from
 the left table (EmployeeDirectory) where the ID values are equal. The
 right outer join is performed by the RIGHT OUTER JOIN operator. --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT employee.ID, employee.Name, incentive.ID,
 incentive.Category, incentive.DateAwarded, incentive.Amount
 FROM EmployeeDirectory employee
 RIGHT OUTER JOIN IncentiveAwards incentive
 ON employee.ID = incentive.ID
</cfquery>

<html>
<head>
 <title>Using RIGHT OUTER JOIN in the FROM Clause</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>
<h3>Incentive Awards</h3>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Award Type</th>
 <th>Date Awarded</th>
 <th>Amount</th>
 </tr>

 <!--- Dynamically generate a table containing all of the records returned
 by the query. Substitute NULL for any blanks (NULLs) returned by
 the Right Outer Join --->
 <cfoutput query="GetEmployeeInfo">
 <tr>
 <td><cfif Name is "">NULL<cfelse>#Name#</cfif></td>
 <td><cfif Category is "">NULL<cfelse>#Category#</cfif></td>
 <td><cfif DateAwarded is "">NULL<cfelse>#DateFormat(DateAwarded,
 'mm/dd/yyyy')#</cfif></td>
 <td><cfif Amount is "">NULL<cfelse>#DollarFormat(Amount)#</cfif></td>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfoutput>
</table>

Executing the template in Example 11-22 results in the output shown in Figure 11-9.

Note that there are various shorthand techniques you can use to specify left outer joins and right
outer joins in the WHERE clause. The syntax varies from database to database. Refer to your specific

database's documentation for guidelines on specific syntax for outer joins.

Figure 11-9. Using a right outer join in the FROM clause

There are several other types of joins that can be performed in SQL. Most of these are variations on
the joins we already covered. Many are highly specialized and rarely employed. Some are exclusive
to specific database platforms. For more information on joins, see your database documentation or
pick up a good SQL reference book, such as SQL in a Nutshell by Kevin Kline and David Kline
(O'Reilly).

11.4.10 Data Binding and Preventing Malicious Query Code

You can use the cfqueryparam tag to check the datatype of a query parameter and optionally

validate it against a specific SQL type. This allows you to prevent arbitrary code from being passed to
your queries and can also speed up performance. You can also use the cfqueryparam tag to update
long text fields. The cfqueryparam tag must be nested within a cfquery tag and appears on the
right side of the equal sign in the WHERE clause:

<cfquery name="MyQUERY" datasource="MyDatasource">
 SELECT *
 FROM MyTable
 WHERE MyValue =
 <cfqueryparam value="parameter_value"
 cfsqltype="parameter_data_type"
 maxlength="number"
 scale="number_of_decimal_places"
 separator="seperator_character"
 list="Yes|No"
 null="Yes|No">
</cfquery>

The value attribute is required and specifies the value that ColdFusion should pass to the right of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

comparison operator in the WHERE clause. cfsqltype is also required and specifies the SQL type the

parameter should be bound to. Possible entries are listed in Table 11-1. The default value for
cfsqltype is CF_SQL_CHAR.

Table 11-1. Values for cfsqltype

CF_SQL_BIGINT CF_SQL_FLOAT CF_SQL_REFCURSOR

CF_SQL_BIT CF_SQL_IDSTAMP CF_SQL_SMALLINT

CF_SQL_BLOB CF_SQL_INTEGER CF_SQL_TIME

CF_SQL_CHAR CF_SQL_LONGVARCHAR CF_SQL_TIMESTAMP

CF_SQL_CLOB CF_SQL_MONEY CF_SQL_TINYINT

CF_SQL_DATE CF_SQL_MONEY4 CF_SQL_VARCHAR

CF_SQL_DECIMAL CF_SQL_NUMERIC

CF_SQL_DOUBLE CF_SQL_REAL

The maxlength attribute specifies the maximum length of the parameter being passed and is an
optional attribute. scale is also optional and, if you use a numeric datatype, specifies the number of
decimal places for the parameter. The separator attribute is optional and specifies the character
used to delimit the list of values when the list attribute is set to Yes. The default is the comma (,).
The list attribute is optional and accepts a Yes/No value indicating whether the value attribute of
the cfqueryparam tag should be treated as a list of values separated by the character specified in the
separator attribute. If set to Yes, a SQL parameter is generated for each value in the list. Each list
item is validated separately. If a value is specified for the maxlength attribute, the maxlength applies
to each item in the list as opposed to the list as a whole. If the value passed is NULL, it is treated as a
single NULL value. The default is No.

The final attribute is null. null is optional and specifies a Yes/No value indicating whether the value
passed is a NULL. If Yes, ColdFusion ignores the value attribute. The default value for null is No.

If the database being used doesn't support the binding of parameters, validation is still performed
with the validated parameter being written back to the string. If for any reason validation fails,
ColdFusion throws an exception. The following rules determine the validation performed:

CF_SQL_SMALLINT, CF_SQL_INTEGER, CF_SQL_REAL, CF_SQL_FLOAT, CF_SQL_DOUBLE,
CF_SQL_TINYINT, CF_SQL_MONEY, CF_SQL_MONEY4, CF_SQL_DECIMAL, CF_SQL_NUMERIC, and
CF_SQL_BIGINT can be converted to numbers.

CF_SQL_DATE, CF_SQL_TIME, and CF_SQL_TIMESTAMP can be converted to a valid date format.

If the maxlength attribute is used, the length of the value for the specified parameter can't

exceed the specified length.

The actual SQL that is generated by the cfqueryparam tag is dependent on the database used.
Example 11-23 uses the cfqueryparam tag to validate the value of a variable called ID. Changing the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

value of ID from numeric to a text character causes ColdFusion to throw an error.

Example 11-23. Using cfqueryparam for data binding and validation

<!--- Set URL.ID=1. Normally, this value would come as a URL parameter or
 form post (then it would be form.ID) --->
<cfset URL.ID = 1>

<!--- Retrieve the full record of the employee whose ID is specified.
 Use the cfqueryparam tag to bind URL.ID to a numeric value. --->
<cfquery name="GetEmployeeRecord" datasource="ProgrammingCF">
 SELECT Name, Title, Department, Email, PhoneExt, Salary
 FROM EmployeeDirectory
 WHERE ID = <cfqueryparam value="#URL.ID#"
 cfsqltype="CF_SQL_INTEGER">
</cfquery>

<html>
<head>
 <title>Using cfqueryparam for Data Binding and Validation</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>
<body>

<h2>Employee Profile</h2>

<table cellpadding="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>E-mail</th>
 <th>Phone Extension</th>
 <th>Salary</th>
 </tr>
<!--- Generate an HTML table containing the employee record from the
 GetEmployeeRecord query. --->
<cfoutput>
 <tr>
 <td>#GetEmployeeRecord.Name#</td>
 <td>#GetEmployeeRecord.Title#</td>
 <td>#GetEmployeeRecord.Department#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#GetEmployeeRecord.Email#</td>
 <td>#GetEmployeeRecord.PhoneExt#</td>
 <td>#GetEmployeeRecord.Salary#</td>
 </tr>
</cfoutput>
</table>
</body>
</html>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.5 Query of Queries

Now that you have an understanding of advanced SQL, it's time to introduce a new concept known as
"query of queries" or CFSQL (ColdFusion SQL). Introduced in ColdFusion 5.0 and greatly enhanced in
MX, query of queries allows you to use the cfquery tag to query an already existing query object

using a subset of ANSI SQL 92. This feature makes it easy to program functionality previously difficult
or impossible to implement in ColdFusion. Some potential uses for query of queries include:

Manipulate query objects (sort, summarize, group, etc.) returned by other ColdFusion tags such
as cfhttp, cfftp, cfldap, cfpop, cfsearch, or cfstoredproc as well as the various query

functions

Perform joins and unions between tables from different data sources

Resorting a query result set without having to go back to the data source

Moving entire tables into memory (Macromedia recommends no more than 50,000 rows in
ColdFusion MX or 10,000 rows in ColdFusion 5), effectively speeding up query times because
ColdFusion no longer has to make a round trip to the database for each query performed

Regardless of what you decide to use this feature for, you need to know what SQL constructs are
available. For starters, query of queries can only be used to perform an SQL SELECT. This means that
query of queries can be used only to select records, not INSERT, UPDATE, or DELETE them. This makes

sense, as the purpose of query of queries is to allow you to perform a query against an already
existing query object. When you perform your SELECT, a number of SQL keywords are available to
help you construct your query. These keywords are FROM, WHERE, ORDER BY, GROUP BY, HAVING, and
UNION. Query of queries does not support the INNER JOIN or OUTER JOIN statement. However, you
can still perform an inner join by using the equal sign in the WHERE clause as was discussed in the

section on joins.

A number of comparison and Boolean operators are also available: =, <>, <, >, <=, >=, AND, OR, NOT,
IN, BETWEEN, LIKE, and EXISTS. In addition, query of queries supports several aggregate functions
including COUNT, SUM, AVG, MAX, and MIN. You should note that query of queries doesn't support

nested aggregate functions nor does it support ODBC formatted dates in comparison operations.

To perform a query of a query, you set the dbtype attribute of the cfquery tag to Query and
reference the name of one or more existing queries in the FROM clause of your SQL statement. The
datasource attribute isn't used when performing a query of a query. Example 11-24 shows a useful
way to use query of a query to build an "A to Z" list of employees in the EmployeeDirectory table.

Example 11-24. Perform a query of a query

<cfparam name="Letter" default="A">

<cfquery name="GetAllUsers" datasource="ProgrammingCF"
 cachedwithin="#CreateTimeSpan(0,0,15,0)#">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SELECT Name, {fn LEFT(Name, 1)} AS Initial, Email
 FROM EmployeeDirectory
 ORDER BY Name
</cfquery>

<cfquery name="GetAllInitials" dbtype="query"
 cachedwithin="#CreateTimeSpan(0,0,15,0)#">
 SELECT DISTINCT Initial
 FROM GetAllUsers
 ORDER BY Initial
</cfquery>

<cfquery name="GetSpecificLetter" dbtype="query">
 SELECT Name, Email
 FROM GetAllUsers
 WHERE Name LIKE '#Letter#%'
 ORDER BY Name
</cfquery>

<cfoutput>
<h3>#GetAllUsers.RecordCount# users in the database</h3>
<p>
<cfloop list="#ValueList(GetAllInitials.Initial)#" index="i">
<cfif i is Letter>
#i#
<cfelse>
#i#
</cfif>
</cfloop>
</cfoutput>
<p>
<cfoutput query="GetSpecificLetter">
#Name# (#Email#)

</cfoutput>

In this example, the first cfquery retrieves the name, first initial, and email address of each user in
the EmployeeDirectory table into a query called GetAllUsers. The results are cached for 15

minutes. The next query uses a query of a query to retrieve all of the distinct first initials from the
GetAllUsers query. This information is also cached. The third query is also uses a query of a query.
It retrieves all of the users from the GetAllUsers query whose first initial matches the value stored
in Letter (the default is "A"). Notice that Letter is not scoped. This is to allow the value to be

passed in by form post or URL. Once all of the queries have been run, the list of initials is output at
the top of the page. Each letter is displayed as a hyperlink. Thanks to our second query, only those
letters matching the first initial of an employee are displayed in the list. Each employee's name and
email address is then listed below the A to Z list by using cfoutput to loop over the
GetSpecificLetter query. Clicking on one of the letters causes the template to be rerun, pulling the

employee records for the letter you clicked on. Because the first two queries are cached, the
execution time for the entire page is very fast.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.6 Calling Stored Procedures

Most enterprise-level databases (MS SQL Server, DB2, Oracle, Informix, Sybase) support creating special
programs within the database called stored procedures. Stored procedures allow you to encapsulate SQL
and other database-specific functions in a wrapper that can be called from external applications. There are
several reasons to use stored procedures whenever possible in your applications:

Stored procedures generally execute faster than identical code passed using the cfquery tag because

they are precompiled on the database server.

Stored procedures support code reuse. A single procedure needs to be created only once and can be
accessed by any number of templates, even different applications and those written in other
languages.

Stored procedures allow you to encapsulate complex database manipulation routines, often utilizing
database-specific functions.

Security is enhanced by keeping all database operations encapsulated within the stored procedure.
Because ColdFusion passes parameters only to the stored procedure, there is no way to execute
arbitrary SQL commands.

There are two ways to call stored procedures in ColdFusion. You can use the cfquery tag or the
cfstoredproc tag (generally the preferred method). Unfortunately, material on writing stored procedures

is beyond the scope of this book. For more information on creating stored procedures, consult the
documentation for your specific database.

11.6.1 Using cfstoredproc

The preferred method for calling stored procedures in ColdFusion is via the cfstoredproc tag. This tag

takes several attributes that allow you to specify information about the data source on which you want to
execute the stored procedure, as well as the stored procedure itself. The three most commonly used
attributes are:

<cfstoredproc procedure="procedure_name"

 datasource="datasource_name"
 returncode="Yes|No">
</cfstoredproc>

procedure is a required attribute and specifies the name of the stored procedure on the database server
that you want to execute. The datasource attribute is also required and specifies the data source that
contains the stored procedure. The final attribute, returncode , is optional and accepts a Yes /No value. If
set to Yes , cfstoreproc populates cfstoredproc.StatusCode with the status code returned by the
stored procedure. The default value for ReturnCode is No . There are a number of additional attributes that
can be used with the cfstoredproc tag. For a complete list, see Appendix A .

The cfstoredproc tag calls only the stored procedure you want to execute. You still need a way to pass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

values in and receive data back from the stored procedure. These functions are handled by two child tags
of the cfstoredproc tag, the cfprocparam and cfprocresult tags respectively.

When a stored procedure is executed using the cfstoredproc tag, two return values are automatically

created by ColdFusion. These variables are:

cfstoredproc.StatusCode

Returned when returncode is set to Yes ; contains the status code returned by the stored

procedure
cfstoredproc.ExecutionCode

The number of milliseconds it took for the stored procedure to execute

11.6.1.1 Passing parameters using cfprocparam

The cfprocparam tag specifies parameter information to send to the stored procedure named in the
cfstoredproc tag. You may specify multiple cfprocparam tags within a single cfstoredproc tag.
cfprocparam tags must be nested within the cfstoredproc tag and use the following syntax:

<cfprocparam type="In|Out|InOut"
 variable="variable_name"

 value="parameter_value"
 cfsqltype="parameter_data_type"
 maxlength="length"
 scale="decimal_places"
 null="Yes|No">

The type attribute is optional and specifies whether the variable being passed is an input (In), output
(Out), or input/output (InOut) variable. The default type is input (In). variable is required when type
is Out or InOut and specifies the name of the ColdFusion variable used to reference the value returned by
the output parameter after the stored procedure is called. The value attribute is required when type is In
or InOut . It specifies the value to pass to the stored procedure.

The next attribute, cfsqltype , is required and specifies the SQL type of the parameter being passed to
the stored procedure. Possible values are listed back in Table 11-1 . The default value for cfsqltype is
CF_SQL_CHAR . The maxlength attribute specifies the maximum length of the parameter being passed and
is an optional attribute. scale is also optional and specifies the number of decimal places for the
parameter should it be a numeric datatype. The final attribute is null . null is optional and specifies a
Yes/No value indicating whether the value passed is a NULL . If Yes , ColdFusion ignores the value
attribute. The default value for null is No .

ColdFusion MX passes values to stored procedures using positional notation. This means that cfprocparam

tags must be specified in the same order as the parameters are expected by the stored procedure.
Previous versions of ColdFusion allowed parameters to be passed using named notation via an attribute of
the cfprocparam tag called dbvarname . Named notation is not supported in JDBC, and subsequently, the
dbvarname attribute is no longer supported. If you specify a value for dbvarname , ColdFusion MX ignores

it.

11.6.1.2 Specifying result sets using cfprocresult

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The cfprocresult tag specifies the name for a given result set returned by the cfstoredproc tag. This

allows other ColdFusion tags to reference the result set returned by the stored procedure. Because stored
procedures can return more than one result set, the cfprocresult tag allows you to specify which result
set to use. Because of this feature, it is possible to nest multiple cfprocresult tags within a
cfstoredproc tag, provided you assign a different name for each cfprocresult set:

<cfprocresult name="query_name"
 resultset="1-n"
 maxrows="number">

The name attribute is required and specifies a name for the query result set returned by the stored
procedure. resultset is an optional attribute and specifies the result set to use if the stored procedure
returns more than one result set. The default value for resultset is 1 . The final attribute is maxrows .
maxrows is also optional and specifies the maximum number of rows to return with the result set. By

default, all rows are returned.

Example 11-25 uses the cfstoredproc tag, several cfprocparam tags, and the cfprocresult tag to
execute a stored procedure called sp_AddEmployee that adds a new employee record to a database.

Example 11-25. Executing a stored procedure using cfstoredproc

<!--- Assign blank default values for any fields not passed in --->
<cfparam name="form.Name" default="">
<cfparam name="form.Title" default="">
<cfparam name="form.Department" default="">
<cfparam name="form.Email" default="">
<cfparam name="form.PhoneExt" default="">
<cfparam name="form.Salary" default="">

<!--- Call the sp_AddEmployee stored procedure --->
<cfstoredproc procedure="sp_AddEmployee"
 datasource="ProgrammingCF"
 returncode="Yes">
<!--- Pass each parameter. If the field being passed contains a blank value,
 make it NULL. Thanks to Dan Switzer for the YesNoFormat() tip. --->
<cfprocparam type="In" cfsqltype="CF_SQL_VARCHAR" value="#form.Name#"
 maxlength="255" null="#YesNoFormat(form.Name is "")#">
<cfprocparam type="In" cfsqltype="CF_SQL_VARCHAR" value="#form.Title#"
 maxlength="255" null="#YesNoFormat(form.Title is "")#">
<cfprocparam type="In" cfsqltype="CF_SQL_VARCHAR" value="#form.Department#"
 maxlength="255" null="#YesNoFormat(form.Department is "")#">
<cfprocparam type="In" cfsqltype="CF_SQL_VARCHAR" value="#form.Email#"
 maxlength="255" null="#YesNoFormat(form.Email is "")#">
<cfprocparam type="In" cfsqltype="CF_SQL_DECIMAL" value="#form.PhoneExt#"
 null="#YesNoFormat(form.PhoneExt is "")#">
<cfprocparam type="In" cfsqltype="CF_SQL_DECIMAL" value="#form.Salary#"
 null="#YesNoFormat(form.Salary is "")#">

<!--- Assign a query object named InsertRecord to the first result set
 returned --->
<cfprocresult name="InsertRecord" resultset="1">
</cfstoredproc>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Output status information --->
<cfif cfstoredproc.StatusCode is 1>
 <cfoutput>
 Record inserted successfully. The employee ID assigned is: #InsertRecord.ID#

 The stored procedure executed in #cfstoredproc.ExecutionTime# milliseconds.
 </cfoutput>
<cfelse>
 There was an error inserting the record!
</cfif>

In Example 11-25 , if the stored procedure returns a StatusCode of 1, the record was inserted

successfully, and you can output the ID value assigned to the newly inserted record. Returning this value
is part of the stored procedure. If it returns any other StatusCode , an error occurred. The value of
StatusCode is set inside of the stored procedure, allowing you to assign any status codes you intend.

11.6.2 Using cfquery

Prior to the introduction of the cfstoredproc tag in ColdFusion 4.0, the only way to call a stored
procedure from ColdFusion was with the cfquery tag. The syntax for calling a stored procedure using
cfquery is:

<cfquery name="MyQuery" datasource="MyDataSource">
 CALL MyDB.dbo.sp_mysp (#var1#, '#Var2#')
</cfquery>

There are several drawbacks to using the Call statement with cfquery to call stored procedures. For

example, parameters must be passed in the order in which they appear in the stored procedure, and you
can't specify input parameters by name or bind parameters to datatypes. There is no way to explicitly pass
a NULL , and you can't specify the length for a given parameter. There is also no way to access return

codes or output parameters created by the stored procedure, nor can you return multiple result sets.

Depending on your database, you may be able to use a native function to call a stored procedure with the
cfquery tag. Several databases allow you to call stored procedures using the EXECUTE or EXEC keyword
instead of CALL , as in:

<cfquery name="MyQuery" datasource="MyDataSource">
 EXECUTE MyDB.dbo.sp_mysp
 @Var = #var#,
 @Var2 = '#Var2#'
</cfquery>

Using a native database function for calling a stored procedure allows you to overcome some of the
problems associated with using the CALL method, such as referring to input parameters by name, passing
NULL s, and data binding. For example, you can use the cfqueryparam tag with a stored procedure called
using cfquery with the EXECUTE statement:

<cfquery name="GetCustomer" datasource="dclive">
 EXECUTE MyDB.dbo.sp_mysp
 @cunu=<cfqueryparam value="1" cfsqltype="CF_SQL_INTEGER" maxlength="4">
</cfquery>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, this in and of itself isn't justification for using the cfquery tag to call stored procedures. Unless

you are running a version of ColdFusion prior to Version 4.0, you should consider calling your stored
procedures using the cfstoredproc tag.

There is one benefit to using the cfquery method over the cfstoredproc tag and that's query caching.
The cfstoredproc tag doesn't allow you to cache queries like cfquery does. Depending on your database

platform, however, the stored procedure may actually cache the query on the database, making
subsequent calls to the procedure execute faster. This is something you might have to weigh when
deciding on which method to use. If query caching is extremely important to your application, that may be
a compelling enough reason to use cfquery to execute your stored procedures.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.7 Transaction Processing

ColdFusion provides support for database transaction processing using the cftransaction tag. The
cftransaction tag lets you treat all query operations with the <cftransaction> and
</cftransaction> tags as a single transaction. Changes to the database aren't committed until all

queries in the transaction have executed successfully. In the event a query within the transaction
fails, all previous queries are automatically rolled back. The exception to this occurs when the
database itself is changed, as in the case when a table or column is created or deleted.

The cftransaction tag accepts two optional attributes for controlling how transactions are
processed, action and isolation:

action

Specifies the transaction action to take. Valid options include:
Begin (default)

Specifies the beginning of the block of code to execute
Commit

Commits a pending transaction
Rollback

Rolls back a pending transaction
isolation

Specifies the ODBC lock type to use for the transaction. The following ODBC lock types are
supported: Read_Uncommitted, Read_Committed, Repeatable_Read, and Serializable.

Note that not all databases and/or database drivers support isolation levels. Many support only a
subset of those listed. Refer to your particular database/driver's documentation for more information
on the isolation levels supported.

Example 11-26 shows how to use the cftransaction tag with two queries that delete records from
different tables within the same data source. You need to use the cftransaction tag to ensure that

both queries are treated as a single transaction. If either query fails, any changes made are
automatically rolled back.

Example 11-26. Simple cftransaction usage

<!--- Use the cftransaction tag to ensure that both queries are treated
 as a single transaction. If either query fails, any changes made
 are automatically rolled back --->
<cftransaction>
 <!--- Delete an employee from the EmployeeDirectory table where the
 employee's ID is equal to the ID value passed in as a form var --->
 <cfquery name="DeleteEmployee" datasource="ProgrammingCF">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DELETE FROM EmployeeDirectory
 WHERE ID = #form.ID#
 </cfquery>

 <!--- Delete any entries for the employee from the IncentiveAwards table.
 This table is described later in the chapter. --->
 <cfquery name="DeleteBonusRecords" datasource="ProgrammingCF">
 DELETE FROM IncentiveAwards
 WHERE ID = #form.ID#
 </cfquery>
</cftransaction>

In Example 11-25, the cftransaction tag ensures that both DELETE queries are treated as a single

transaction. If either query fails, any changes made are automatically rolled back. Note that both
queries are made to the same data source, but not to the same table.

A particularly useful feature of the cftransaction tag is that it can be nested to allow portions of a
transaction to be committed or rolled back within the main cftransaction block as the code

executes. The syntax for a nested transaction differs slightly from the syntax used to call most other
tags. To commit a transaction within a nested cftransaction tag, use the following syntax:

<cftransaction action="Commit" />

Note the trailing forward slash at the end of the tag. This lets ColdFusion know you have nested the
cftransaction tag and no end tag is necessary. Rolling back a transaction uses similar syntax:

<cftransaction action="Rollback" />

Using nested cftransaction tags and exception handling with cftry/cfcatch gives you full control
over how queries are committed and rolled back within cftransaction blocks. This technique also
lets you write to more than one database within a single cftransaction block, if each transaction is

committed or rolled back prior to writing a query to the next database. Example 11-27 demonstrates
how to use nested cftransaction tags to create a new table populated with data from an existing
table (using SELECT INTO) and then add another record to the table.

Example 11-27. Using nested cftransaction tags with multiple queries

<!--- Initialize a variable called Continue to control the transaction --->
<cfset Continue = true>

<!--- Begin transaction --->
<cftransaction action="begin">
 <!--- Wrap the INSERT in a cftry block --->
 <cftry>
 <!--- Select the name, title, email, and phone ext for each employee in
 the EmployeeDirectory table that belongs to the Sales department
 and use it to populate a new table called SalesDirectory --->
 <cfquery name="MakeSalesDirectory" datasource="ProgrammingCF">
 SELECT Name, Title, Email, PhoneExt
 INTO SalesDirectory
 FROM EmployeeDirectory
 WHERE Department = 'Sales'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfquery>

 <!--- If a database error occurs, rollback the transaction and set the
 Continue variable to false. --->
 <cfcatch type="Database">
 <cftransaction action="Rollback" />
 <cfset ProblemQuery = "MakeSalesDirectory">
 <cfset Continue = false>
 </cfcatch>
 </cftry>

 <!--- If the INSERT was successful, commit the transaction and execute another
 query to insert a new record into the table we created with the last
 query. --->
 <cfif Continue>
 <cftry>
 <cftransaction action="Commit" />
 <cfquery name="InsertRecord" datasource="ProgrammingCF">
 INSERT INTO SalesDirectory(Name, Title, Email, PhoneExt)
 VALUES('Lynda Newton', 'Account Manager', 'lynda@example.com', 1261)
 </cfquery>

 <!--- If a database error occurs, rollback the transaction and set the
 Continue variable to false. --->
 <cfcatch type="Database">
 <cftransaction action="Rollback" />
 <cfset ProblemQuery = "InsertRecord">
 <cfset Continue = false>
 </cfcatch>
 </cftry>
 </cfif>

 <!--- If the record was successfully added, commit the transaction --->
 <cfif Continue>
 <cftransaction action="Commit" />
 </cfif>
</cftransaction>

<html>
<head>
 <title>Using Nested cftransaction Tags with Multiple Queries</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>

<!--- If both transactions were successful, generate a table containing all
 of the records from the new table. If not display a message letting
 the user know there was a problem. --->
<cfif Continue>
 <!--- Retrieve all of the records from the Sales Directory table we just
 created --->
 <cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT Name, Title, Email, PhoneExt
 FROM SalesDirectory
 ORDER BY Name
 </cfquery>

 <h2>All queries in the transaction executed successfully</h2>
 <h3>Below is the data from the new table:</h3>
 <table cellpadding="3" cellspacing="0">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>E-mail</th>
 <th>Phone Ext.</th>
 </tr>

 <!--- Dynamically generate a table containing all of the records returned
 by the query --->
 <cfoutput query="GetEmployees">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Email#</td>
 <td>#PhoneExt#</td>
 </tr>
 </cfoutput>
 </table>
<cfelse>
 <cfoutput>
 <h2>An Error has occurred. All queries have been rolled back</h2>
 The query that caused the error is: <I>#ProblemQuery#</I>.
 </cfoutput>
</cfif>
</body>
</html>

In Example 11-27, the Continue variable controls the transaction. At the start of the template, this
variable is initialized to true. As long as queries within the cftransaction block execute
successfully, Continue keeps the value of true. Each subsequent query checks the status of this
variable before executing. If at any point Continue is false, the transaction is rolled back, and no
other queries with the cftransaction block are executed.

Executing the template in Example 11-27 results in the output shown in Figure 11-10. If you execute
the template a second time, however, you should see the error message generated by the template.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-10. Successful completion of queries within a nested
cftransaction block

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Manipulating Files and
Directories
ColdFusion comes with three tags that make it possible to manipulate files and directories on both
local and remote servers and an additional tag that can be used to execute command-line programs
on a local ColdFusion server. These tags enable you to build sophisticated applications such as
document management systems, forms capable of accepting file uploads, FTP clients, and more.

The cfdirectory and cffile tags allow you to manipulate directories and files on your local
ColdFusion server, while the cfftp tag makes it possible to conduct file transfers between your
ColdFusion server and remote FTP servers. The cfexecute tag lets you execute command-line
programs. cffile, cfdirectory, and cfexecute present a potential security hazard, as these tags

have direct access to the filesystem of the ColdFusion server. Therefore care should be taken with
their use and deployment. Depending on the configuration of your web server and operating system,
it may also be possible to upload executable code via the cffile tag and execute it on your server.

The consequences can be potentially devastating to a system as a user could easily upload malicious
code to the server and subsequently execute it. Therefore, both tags can be disabled from the
ColdFusion administrator, should you decide not to make them available to developers on your
server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 Working with Directories

The cfdirectory tag lists directory contents and creates, renames, and deletes directories on your

ColdFusion application server. In an application such as a document management system, the
cfdirectory tag allows you to do such tasks as list all the documents stored in a particular folder or
build a Windows Explorer-style view of files and folders on your server. Because the cfdirectory tag

provides direct access to your ColdFusion server's filesystem, it may represent a security concern
depending on the nature of your server environment. If you wish, the tag can be disabled from the
Sandbox Security section in the ColdFusion Administrator.

12.1.1 Listing Directory Contents

As just noted, the cfdirectory tag lists the contents of any directory on the ColdFusion server.
Example 12-1 uses the cfdirectory tag to list the contents of the root directory on the C drive of

the ColdFusion server.

Example 12-1. Listing a directory with cfdirectory

<cflock name="CLock" type="ReadOnly" timeout="30">
<cfdirectory action="List"
 directory="c:\"
 name="MyQuery"
 filter="*.*"
 sort="Type Asc, Name Asc">
</cflock>

<table border="1">
 <tr>
 <th>Name</th><th>Size</th><th>Type</th><th>Last Modified</th>
 <th>Attributes</th><th>Mode</th>
 </tr>

<cfoutput query="MyQuery">
 <tr>
 <td>#Name#</td><td>#Size#</td><td>#Type#</td><td>#DateLastModified#</td>
 <td>#Attributes#</td><td>#Mode#</td>
 </tr>
</cfoutput>
</table>

The first attribute, action, tells ColdFusion what cfdirectory operation to perform. In this case, we
want to list the contents of a particular directory on our ColdFusion server. Valid entries for action
are List, Create, Rename, and Delete. The directory attribute specifies the full path (including

drive letter) to the directory that we want to list the contents of. In this case, we want to list the
contents of the root directory on drive C. The name attribute specifies the name assigned to the query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object returned by the cfdirectory operation. The filter attribute is optional and allows us to

specify a file extension to filter the results returned. Only one file extension can be used with the
filter attribute. For our example, we set the filter attribute to *.* so that all files and directories
are listed. The final attribute in our example is the sort attribute. sort is an optional attribute that

allows us to specify how we want to sort each query column returned by the operation. Note that the
sort attribute can take a single query column or a comma-separated list. The actual direction for the
sort is specified as Asc for ascending and Desc for descending.

The cflock tag places a read-only lock on the cfdirectory operation. Each individual directory you
read from or write to via cfdirectory should have a unique name assigned for it in the cflock tag to

keep locking consistent. This means that all read/write operations to the same directory should use
the same name.

When the tag executes, a number of query columns are returned as part of the ColdFusion query
object specified in the name attribute of the cfdirectory tag:

Attributes

The attributes, if any, for the given object.
DateLastModified

The time/date stamp that the object was last modified.
Mode

This column applies only to the Unix and Linux versions of ColdFusion and specifies the
permissions set for the file or directory. The Mode is the same as the permissions set by the

Unix chmod command.
Name

The name of the directory or file.
Size

The size in bytes of the directory or file.
Type

Dir if the object is a directory or File if it is a file.

12.1.2 Creating a Directory

Creating a directory using the cfdirectory tag is quick and easy to do. The following example shows

the syntax for creating a directory on your ColdFusion application server:

<cflock name="Lock_Name" type="Exclusive" timeout="30">
 <cfdirectory action="Create"
 directory="d:\MyCreatedDirectory"
 mode="777">
</cflock>

Setting the action attribute to Create tells ColdFusion that you want to create a new directory. The
directory to be created is referenced in the directory attribute. Note that you must specify the full
path to the directory you want to create. The mode attribute is optional and is used only with the Unix

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and Linux versions of ColdFusion. The mode attribute allows you to set permissions the way you would
with the Unix chmod command. For example, setting the mode equal to 777 as in our example assigns

read, write, and execute permissions to the directory for everyone.

As shown in this example, we use an exclusive cflock so that only one process can access the

directory at a time. This ensures that multiple operations don't step on each others' toes, potentially
resulting in an error or corrupted directory.

12.1.3 Renaming a Directory

The cfdirectory tag can also rename an existing directory on the ColdFusion server. For example,

to change the name of the directory d:\MyOldDirectoryName to d:\MyNewDirectoryName, use the
cfdirectory tag as follows:

<cflock name="Lock_Name" type="Exclusive" timeout="30">
 <cfdirectory action="Rename"
 directory="d:\MyOldDirectoryName"
 newdirectory="MyNewDirectoryName">
</cflock>

Setting the action attribute to Rename lets ColdFusion know that we want to change the name of the
directory specified in the directory attribute. Note that the full path, including the drive letter, is
required in the directory attribute. The newdirectory parameter specifies the new name we want

to use for the directory being changed. The name for the new directory doesn't require a full path.
Again, note the use of cflock to exclusively lock access to the directory while it is renamed.

12.1.4 Deleting a Directory

The cfdirectory tag can also delete directories. The following is an example of a typical delete
operation using the cfdirectory tag.

<cflock name="Lock_Name" type="Exclusive" timeout="30">
 <cfdirectory action="Delete"
 directory="c:\MyDirectory">
</cflock>

Setting the action attribute to Delete lets ColdFusion know we want to use the cfdirectory tag to
delete a directory. The actual directory to delete is specified in the directory attribute. In this case,

we are using the tag to delete c:\MyDirectory. As with the other operations that change the directory
structure, we use cflock here.

Before a directory can be deleted, it must be completely empty. If you try to delete a directory that
isn't empty, ColdFusion throws an error and halts processing. Therefore, it is a good idea to include
code to check if a particular directory is empty before you attempt to delete it. One technique for
checking to see if a directory is empty is shown here:

<!--- Get a list of the directory contents --->
<cflock name="TestLock" type="ReadOnly" timeout="30">
 <cfdirectory action="List"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 name="MyDirectory"
 directory="D:\test">
</cflock>

<!--- Check the record count for the query object. --->
<cfif MyDirectory.RecordCount is 0>
 <cflock name="TestLock" type="Exclusive" timeout="30">
 <cfdirectory action="Delete"
 directory="d:\test">
 </cflock>
 Directory deleted!
<cfelse>
 The directory wasn't empty!
</cfif>

The first cfdirectory tag gets a list of the contents of d:\test. Next, we check to see if the directory
list operation returned exactly two objects. This is done by using a cfif statement to evaluate the
value stored in the RecordCount query column. If the value of RecordCount is two, we know that the
directory is empty, and we use the cfdirectory tag to delete the directory by setting the action
attribute to Delete. If any number other than zero is returned for the RecordCount, the directory

isn't deleted, and a message is sent back to the user letting them know that the directory wasn't
empty.[1]

[1] In Windows versions of ColdFusion prior to MX, all directories contained two subdirectories representing the
current directory and parent directory, (.) and (..) respectively. These two directories were always present in

any listing returned by the cfdirectory tag. Because of this, QueryName.RecordCount returned 2 for an

empty directory.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 Dealing with Files

The cffile tag handles all file manipulation that takes place on the local ColdFusion server. The
cffile tag has three purposes. First, it makes it possible to upload files to the ColdFusion server via

an HTML form. This means you can design forms that allow users to upload files from their machines
directly to your ColdFusion server. This lets you create things such as web-based email clients,
document management systems, and other applications that require users to upload files to your
server. The second purpose of the cffile tag is to allow you to manipulate files located on your
ColdFusion server. The cffile tag allows you to rename, move, copy, and delete files on the
ColdFusion server. The final purpose of the cffile tag is to allow you to read, write, and append

both text and binary files.

12.2.1 Uploading Files

Enabling file uploads is one of the more popular uses for the cffile tag. To do this, you first have to

include a file input type in an HTML form. This allows a user to select a file from their system and
post it along with the other form fields. When the form is submitted, the file is posted to the
server/template specified in the action attribute of the form tag. The receiving template then uses a
cffile tag to process the uploaded file.

You should exercise extreme caution when implementing the cffile tag's Upload action within your

ColdFusion applications. Because the tag allows users to upload files directly to your ColdFusion
server, you need to make sure that the security of your server is given the proper attention. Files
uploaded via the cffile tag should be written only to directories that aren't accessible via a URL. In

addition, execute permissions should be turned off in the directory where files are being uploaded.
These two steps help to keep executable files from being uploaded to the server and subsequently
run.

Example 12-2 shows how to build a simple two-template application for uploading a file from your
machine to your ColdFusion server. The first template consists of an HTML form for choosing the file
to be uploaded. It can be saved as a ColdFusion template or a regular HTML file.

Example 12-2. HTML form for uploading a file

<html>
<head>
 <title>HTML File Upload Form</title>
</head>

<body>
<form action="Example12-2.cfm" method="POST" enctype="multipart/form-data">
<table>
 <tr>
 <td>File:</td>
 <td><input type="file" name="FileToUpload" size="25" maxlength="255"></td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="Submit" value="Upload"></td>
 </tr>
</table>
</form>

</body>
</html>

In Example 12-2, one thing you might notice right away is the use of the enctype attribute in the
<form> tag. In order to upload files via HTML forms, it is necessary to specify
enctype="multipart/form-data". Another feature unique to file uploads is the use of File as the

input type. This input type tells the browser to allow the user to select a file from her system. You
should note that not all web browsers support File as an input type. While Netscape browsers have

supported file uploading since Version 2.0, Microsoft Internet Explorer didn't begin full support until
Version 4.0. Other browsers may or may not support file uploading. There is no programmatic way to
determine whether a particular browser supports file uploading. You need to keep this in mind when
implementing file uploading in your applications.

Once the user selects a file and clicks on the submit button, the form data is passed to the
ColdFusion template specified in the action attribute of the <form> tag. You should be aware that

there are limitations on the size of a file that can be uploaded. File size is limited by the amount of
physical memory that you have installed on the server running ColdFusion. Although there isn't an
exact formula for determining the amount of memory necessary to handle file uploads, it is necessary
to have more physical RAM available than the largest file size that you intend to upload. Attempting
to upload a file with a file size greater than the available amount of physical RAM results in an error
and causes ColdFusion to halt processing of the template.

It is possible to check the file size of a file after it has been uploaded to the web server and before it
is permanently written to the filesystem, by checking the CGI environment variable
CGI.content_length. In a file upload scenario such as ours, the CGI.content_length variable
contains the length of the file being passed from the form template. By using a cfif statement, we

can evaluate the length of the file after it has been uploaded to the web server, before it is written to
the specified directory by ColdFusion. Because ColdFusion is a server-side language, there is no way
to know the size of an uploaded file before it reaches the server. The only way to assess file size on
the client machine before an upload is via a signed Java applet or ActiveX control. Another
workaround would be to write a filter at the web-server level to filter incoming HTTP uploads based
on file size. The technique shown here is still useful, however, as it allows you to limit the size of files
accepted by your application. Example 12-3 illustrates the ColdFusion template for processing an
uploaded file with code to ensure that no files over 100 KB in size are committed to the server.

Example 12-3. Uploading a file using cffile

<!--- Check the CGI environment variable content_length to make sure the file
 being uploaded is less than 100k in size. If it is not, halt
 processing --->
<cfif Val(CGI.content_length) gt 100000>
The file you are attempting to upload exceeds the maximum allowable size of
100k and cannot be uploaded to this server! Please choose a smaller file and
try again.
<cfabort>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfif>

<!--- Use the cffile tag to upload the file passed from the form to our
 ColdFusion server --->
<cffile action="Upload"
 filefield="FileToUpload"
 destination="c:\temp"
 nameconflict="Overwrite"
 accept="text/html,text/plain"
 attributes="Normal">

<!--- Output the results with cfdump --->
<h2>cffile Upload Results:</h2>

<cfdump var="#cffile#">

The first part of Example 12-3 uses a cfif statement to compare the number stored in the
CGI.content_length variable to 100,000. Val() is a ColdFusion function that returns a number
that a particular string can be converted to. In this case, Val(CGI.content_length) returns the

length in bytes of the file being uploaded via the form in Example 12-2. If the length in bytes is
greater than 100,000, we know that the file is over 100 KB and we don't want to save it to our
ColdFusion server. A message is written back to the browser letting the user know that the file was
too big to upload, and processing of the ColdFusion template is halted before the file can be
uploaded. If, however, the value of CGI.content_length is less than or equal to 100,000, the

template continues processing uninterrupted.

In the next part of Example 12-3, we use the cffile tag to actually perform the file upload from the
client's machine to our ColdFusion server. We set the action attribute in the cffile tag to Upload to
begin the operation. In the filefield attribute, we specify the name we gave to the file upload form
field from Example 12-2. The destination attribute specifies the full directory path to the location to

which we want to store the uploaded file. If the full path is omitted, ColdFusion uses a path relative to
the ColdFusion temp directory. To determine the location of this directory, use the
getTempDirectory() function. nameconflict is used to specify how ColdFusion should proceed if the
file being uploaded has the same name as a file already existing in the destination directory. There
are four possible values for the nameconflict attribute:

Error

Generates a ColdFusion error if the file already exists on the server.
MakeUnique

Assigns a unique name to the file being uploaded if the file already exists on the server.
Overwrite

Overwrites the file already on the server with the file being uploaded.
Skip

Results in the uploaded file not being saved to the server. No error message is returned,
however.

The accept attribute specifies a comma-separated list of MIME types the ColdFusion server should be

allowed to accept. This attribute is optional and set to allow all MIME types by default. For our
example, we set the accept attribute to text/html,text/plain to allow both HTML and plain-text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

files to be uploaded. MIME type is determined by file extension. The final attribute, attributes, is

also optional and is used to specify a single attribute on Windows ColdFusion servers or a comma-
separated list of attributes on non-Windows platforms for the file. Valid entries are Hidden, Normal,
and ReadOnly. If Normal is specified along with other attributes, they automatically override it. If
attributes is omitted, the original attributes of the file are maintained. In previous versions of
ColdFusion, three additional values for attributes were supported: Archive, System, and
Temporary. These values for attributes are no longer supported in ColdFusion MX.

One thing you'll notice here is that we didn't include a cflock tag around the cffile operation. In
the case of file uploads, it isn't necessary to lock the cffile tag, as you aren't reading or writing to a

file already on the ColdFusion server. ColdFusion handles the possibility of uploading a file with the
same name as a file already on the server with the nameconflict attribute of the cffile tag.

Once the file has been uploaded to the server, the template in Example 12-3 displays the results of
the file upload transaction using the cfdump tag to dump the contents of the cffile structure, which

can be seen in Figure 12-1.

Figure 12-1. Sample output from a cffile upload operation

When the cffile tag is executed, a number of ColdFusion variables are created to hold information

about the transaction. These variables are read-only and can be referenced using the file scope as in
cffile.VariableName.[2] Most of these variables have self-explanatory names, as you can see from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12-3 and Figure 12-1. For more information on these variables, see the cffile entry in

Appendix A.

[2] Prior to Version 4.5, the file scope was prefixed using the file prefix. The file prefix was deprecated in

ColdFusion 5, and should not be used in ColdFusion MX.

12.2.2 Renaming Files

The cffile tag can also rename files already on the server. The syntax for renaming a file is as

follows:

<cflock name="Lock_Name" type="Exclusive" timeout="30">
 <cffile action="Rename"
 source="D:\myoldfilename.txt"
 destination="D:\mynewfilename.txt"
 attributes="Normal">
</cflock>

Setting the action attribute to Rename lets the ColdFusion server know that we want to use the
cffile tag to rename a file. The full path to the file being renamed is listed in the source attribute.
The destination attribute contains the full path including the new filename that we want to use for
the file. The attributes attribute is optional and is set to Normal. If attributes is omitted,

ColdFusion maintains the original attributes of the file being renamed.

The cflock tag should be used with all cffile operations that read and write to the filesystem so

that only one process at a time can write to the file. This ensures that multiple file operations will not
step on each others' toes, potentially resulting in a corrupted file. Each individual file you access via
cffile should have a unique name assigned for it in the cflock tag to keep locking consistent. This

means that all read/write operations to the same file should use the same name.

12.2.3 Moving Files

Another function of the cffile tag is to move files from one directory to another on the ColdFusion
server. The following example shows the syntax for using the cffile tag to move a file:

<cflock name="Lock_Name" type="Exclusive" timeout="30">
 <cffile action="Move"
 source="d:\myfile.txt"
 destination="d:\temp "
 attributes="Normal"
 charset="UTF-8">
</cflock>

This time, the action attribute is set to Move. The source attribute includes the full path to the
current location of the file that we want to move. The destination attribute contains the path to the

destination where we want to move the file. In previous versions of ColdFusion, it was necessary to
supply a trailing slash on the destination directory. This is not necessary in ColdFusion MX. The
attributes attribute is optional and is set to Normal. If attributes is omitted, ColdFusion maintains
the original attributes of the file being renamed. The charset attribute is optional and new in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion MX. It lets you specify a Java character set for the contents of the file and can be used
when the action attribute of the cffile tag is set to Move, Read, Write, or Append. The most
common character sets are UTF-8 (the default), UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-
8859-1. You may use any character set supported by your JRE. Again, note the use of the cflock tag

to exclusively lock access to the file while we move it.

12.2.4 Copying Files

The cffile tag is also capable of copying files from one directory to another. For example, to copy
the file d:\myfile.txt to d:\temp\myfile.txt, you can use the following syntax within your cffile tag:

<cflock name="Lock_Name" type="Exclusive" timeout="30">
 <cffile action="Copy"
 source="d:\myfile.txt"
 destination="d:\temp\myfile.txt">
</cflock>

In this case, we set the action attribute to Copy. The source attribute specifies the full path to the
file we want a copy of. The destination attribute contains the path to the directory where the file

will be saved. The filename here is optional. In previous versions of ColdFusion, it was necessary to
supply a trailing slash on the destination directory. This is not necessary in ColdFusion MX.
attributes is optional and set to Normal for our example. If attributes is omitted, ColdFusion

maintains the original attributes of the file being copied.

12.2.5 Deleting Files

The cffile tag can delete a tag from the server by setting the action attribute to Delete and the
file attribute to the full path of the file you want to delete. For example, to delete the file
d:\myfile.txt, use the following cffile statement:

<cflock name="Lock_Name" type="Exclusive" timeout="30">
 <cffile action="Delete"
 file="D:\myfile.txt">
</cflock>

You should exercise caution when using the cffile tag with the action attribute set to Delete, as

the tag has direct access to the entire filesystem of the server. Care should also be taken to secure
from unauthorized use all ColdFusion templates that perform delete functions.

12.2.6 Reading Text Files

The cffile tag can read the contents of a text file and store the data in a variable that is accessible

to ColdFusion. The following example shows how to read and store the contents of a text file called
MyFile.txt inside a ColdFusion variable called TheFileContents. The contents of TheFileContents

are then output to the screen.

<cflock name="Lock_Name" type="ReadOnly" timeout="30">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cffile action="Read"
 file="D:\temp\MyFile.txt"
 variable="TheFileContents"
 charset="UTF-8">
</cflock>

<cfoutput>
#TheFileContents#
</cfoutput>

The action attribute is set to Read so that ColdFusion knows to use the cffile tag to read the
contents of a text file. The actual text file we want to read gets specified in the file attribute. For

this example, we want to read the contents of a file called MyFile.txt that is located in d:\temp.
Setting the variable attribute to TheFileContents causes ColdFusion to read the contents of
MyFile.txt and store them in a variable called TheFileContents. The charset attribute is optional

and lets you specify a Java character set for the contents of the file and can be used when the
action attribute of the cffile tag is set to Move, Read, Write, or Append. The most common
character sets are UTF-8 (the default), UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1.
You may use any character set supported by your JRE. When a text file is read using cffile, a check

is performed to determine whether the first character is a byte order marker (BOM). If so, ColdFusion
uses this to automatically determine the character encoding for the file. If the file contains a BOM and
a value is also specified for the charset attribute, ColdFusion throws an error. The cfoutput section
simply writes the contents of TheFileContents to the screen. Note the use of the read-only cflock

to ensure we don't try to read the file at the same moment another process is writing to it.

12.2.7 Reading Binary Files

ColdFusion also can read a binary file and store its contents in a variable that can be manipulated by
ColdFusion. In versions of ColdFusion prior to MX, a binary file had to be converted to its Base64
representation before ColdFusion could perform any additional functions on it. Base64 is a method of
encoding that takes a binary string and converts the binary data to printable characters. This is
useful in situations where you want to store a binary file in a database or send it via email. In
ColdFusion MX, however, binary files can now be manipulated directly.

To illustrate the differences, we'll consider two examples. The first reads a binary file and converts
the object to a Base64 representation, which is then output to the screen. This technique is useful in
all versions of ColdFusion, as Base64-encoded data can easily be stored in a database or emailed:

<cflock name="Lock_Name" type="ReadOnly" timeout="30">
 <cffile action="ReadBinary"
 file="d:\cfusionmx\wwwroot\cfide\administrator\images\cfmx.gif"
 variable="MyBinaryFile">
</cflock>
<cfset MyBase64 = ToBase64(MyBinaryFile)>

Base64 encoded binary file:

<form>
<cfoutput>
<textarea cols="50" rows="25" wrap="virtual">#MyBase64#</textarea>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>
</form>

The binary file is read by setting the action attribute of the cffile tag to ReadBinary. The file

attribute specifies the full path to the file to be read. The file object is stored in the ColdFusion
variable specified in the variable attribute. Once the file has been read into memory by ColdFusion,
it is converted to its Base64 representation using the ToBase64() function. The results are then

written out to the browser.

Example 12-4 shows how ColdFusion MX can directly manipulate binary data. In this example, we
read a GIF image and output some of the metadata stored in the image file, such as its width and
height.

Example 12-4. Working directly with binary data

<cfscript>
/**
 * Decodes a 2's complement base 10 (decimal) value into an unencoded base 10
 * value.
 *
 * @param num 2's complement you want to convert back to its original decimal
 * value.. (Required)
 * @param bits Number of bits in the original decimal value. (Optional)
 * @return Returns a numeric value.
 * @author Stephen Rittler (srittler@exostechnology.com)
 * @version 1, May 31, 2002
 */
function TwosCompToDec(num, bits){
 var isNegative = 0;
 var varBase10 = num;
 var varBase2 = 0;
 var varBase2Rev = "";
 var strLen=0;
 // capture whether or not the input value is negative
 if (varBase10 LT 0) {
 isNegative = 1;
 varBase10 = abs(varBase10);
 }
 // convert to base 2
 varBase2 = NumberFormat(Right(FormatBaseN(varBase10,2), bits),
 RepeatString("0", bits));
 // switch sign bit to 0
 varBase2 = "0" & Right(varBase2, (bits - 1));

 if(isNegative) {
 // if the number was negative, we have to invert the value and add one
 // invert; swap 0 for 1 and 1 for 0
 strLen = len(varBase2);
 for(i=1; i LE bits; i=i+1){
 if(Mid(varBase2, i, 1) eq 0) {
 varBase2Rev = varBase2Rev & 1;
 } else {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 varBase2Rev = varBase2Rev & 0;
 }
 }
 // convert back to base 10
 varBase10 = InputBaseN(varBase2Rev, 2);
 //add 1
 return (varBase10 + 1);
 } else {
 // if number was positive, convert straight back to base 10
 return InputBaseN(varBase2, 2);
 }
}
</cfscript>

<cffile action="ReadBinary"
 file="d:\cfusionmx\wwwroot\cfide\administrator\images\cfmx.gif"
 variable="BinFile">
<cfset Width = TwosCompToDec((BinFile[7]) + (BinFile[8] * 256), 8)>
<cfset Height = TwosCompToDec((BinFile[9]) + (BinFile[10] * 256), 8)>

<cfoutput>
Width: #Width#

Height: #Height#
</cfoutput>

At first glance, this example might seem a bit confusing. For now, ignore the first section of code (the
stuff between the <cfscript>/</cfscript> tags). It's a user-defined function (UDF) called
TwosComplementToDec()[3] that's used to manipulate the binary data read in by the cffile tag.

Both CFScript and UDFs are advanced topics covered later on in Chapter 19 and Chapter 20. If you
would like to read up on them, feel free. However, you should be able to understand what's going on
in this example even without much knowledge of either.

[3] TwosComplementToDec() is an open source UDF written by Stephen Rittler

(srittler@exostechnology.com) and available from http://www.cflib.org, the largest site for open source
ColdFusion UDFs.

The first thing the code does after declaring the UDF is use the cffile tag to read in a GIF image

that's automatically installed as part of the ColdFusion MX server installation. In ColdFusion MX, a
binary file is stored as a byte array that can be manipulated with any of the standard ColdFusion
array functions. You should remember from Chapter 6 that unlike other languages such as Java, the
first index position in a ColdFusion array is 1 instead of 0.

Once we have the file read in, we can calculate the width and height of the GIF using the values
stored in the seventh, eighth, ninth, and tenth elements of the byte array. Why is that? you may be
wondering. Simple. The GIF specification, available at http://www.w3.org/Graphics/GIF/spec-
gif89a.txt among other places, states that certain information about the graphic file, such as width
and height, must be stored in certain bit positions within the binary file. A simple calculation can then
be used to convert the values stored in these positions within the byte array back to their original
decimal (base 10) values. These values are calculated by calling the TwosComplementToDec()

function we declared at the beginning of the template. This function accepts two parameters: a two's
complement that you want to convert back to its original decimal value and the number of bits in the
original value. This conversion is necessary because of the way binary data is stored. You can read
more about two's complement at a number of web sites, including

http://www.cflib.org
http://www.w3.org/Graphics/GIF/spec-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://mathforum.org/library/drmath/view/54344.html. Once the calculations have been performed,
the height and width of the GIF image are output to the browser.

12.2.8 Writing Text Files

In addition to reading files, the cffile tag can also write files to the server. This is useful for a

number of purposes, including writing log files for your applications and creating static HTML files
from dynamic content. Example 12-5 shows how to create a static HTML file from the results of a
cfhttp operation that returns the contents of a dynamically generated page.

Example 12-5. Writing a text file with cffile

<!--- Execute the remote cfm file via cfhttp --->
<cfhttp method="GET"
 URL="http://www.example.com/dir/file.cfm">
</cfhttp>

<!--- Write the output of the cfhttp operation to a static html file on
 the server --->
<cflock name="MyFileLock" type="Exclusive" timeout="30">
 <cffile action="write"
 file="d:\inetpub\wwwroot\myfile.htm"
 output="#cfhttp.FileContent#"
 attributes="Normal"
 mode="777"
 addnewline="Yes"
 charset="UTF-8">
</cflock>

The cfhttp operation executes a ColdFusion template called file.cfm and stores the resulting page in
the cfhttp.FileContent variable. cfhttp.FileContent is automatically created by the cfhttp
operation. This is all you need to understand about cfhttp for now; we'll cover this tag in more detail

in Chapter 14.

The cffile tag then creates a text file by setting the action attribute to Write. The file attribute

contains the filename and directory where we want to write our new text file. In this case, we are
creating a text file called myfile.htm. The actual content to be written to the file is specified in the
output attribute. Because we want to create a static web page from the results of the ColdFusion
template we accessed with cfhttp, we assign #cfhttp.FileContent# to the output attribute. It is
important to include the pound signs around the cfhttp.FileContent variable so that ColdFusion

knows to treat it as a variable as opposed to literal text.

attributes is optional and can specify a single attribute on Windows ColdFusion servers, or a

comma-delimited list of attributes on non-Windows platforms, for the newly created text file. In this
case, we are making the file a Normal file. The mode attribute can define file permissions on a Unix or
Linux server. In this example, the mode attribute is set to 777, so that everyone has read, write, and
execute permissions for the file. Setting addnewline to Yes causes ColdFusion to add a trailing
newline character to the end of the output string. addnewline is an optional attribute and is set to
Yes by default. The charset attribute is optional and lets you specify a Java character set for the
contents of the file and can be used when the action attribute of the cffile tag is set to Move,

http://mathforum.org/library/drmath/view/54344.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Read, Write, or Append. The most common character sets are UTF-8 (the default), UTF-16, UTF-
16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may use any character set supported by your JRE.

12.2.9 Writing Binary Files

The cffile tag can also write binary files to the server. There is only one difference between writing

a text file to the server and writing a binary file. The contents making up a binary file must be
converted to a binary object in order to be written as a binary file. Example 12-6 illustrates the point
by creating a GIF image of the letter "R" from its Base64 equivalent.

Example 12-6. Writing a binary file with cffile

<cfset MyBase64="R0lGODlhGQAZAPcAAP////v7+/Pz8+7u7uLi4t3d3dnZ2dXV1cTExLe3t6qqqp6e
npGRkYmJiYiIiH9/f3t7e25ubmZmZllZWVZWVlFRUURERDw8PDQ0NC8vLyIiIhUVFREREQwMDAQEBAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAACwAAAAAGQAZAEcIiwABCBxIsKDBgwQffPigAIHDBh4+YEBoUOGHAgMlLHRAsaPHjyApWlxI8sMEA
SFTqlwpkIGGlzAxUECQ0iLGgRc+cAhpE4CBDR86HKi58KbABQsrsFzKtKlTkCNLfvCQgGdRghUWWv0Q4c
EDCBYWRthaoQKHoFWJXhSYYGGGAFuNDgDagcDTu3gpBgQAOw= =">

<cfset MyBinary=ToBinary(MyBase64)>

<cflock name="MyBinaryLock" type="Exclusive" timeout="30">
 <cffile action="write"
 file="c:\temp\mybinary.gif"
 output=#MyBinary#>
</cflock>

<cflock name="MyBinaryLock" type="Exclusive" timeout="30">
 <cfcontent type="image/gif"
 file="c:\temp\mybinary.gif"
 deletefile="Yes">
</cflock>

The first section of this example sets a variable called MyBase64 to the Base64 representation of a

binary object (in this case, a GIF image of the letter "R"). This information could have been pulled
from a database or read directly from a file. The second section of the example converts the Base64
string to a binary object using the ToBinary() function. Once that is done, the binary object is
written out to a file using the cffile tag with the output attribute set to the value of the binary
object we created. Finally, the cfcontent tag takes the file specified in the file attribute and sends
it to the browser using the MIME type specified in the type attribute. Setting deletefile to Yes tells

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion to delete the GIF file from the server once it has been sent to the browser. Note that a
cflock tag is placed around the cfcontent tag. This is done because in this particular case, the
cfcontent tag deletes the file it grabs after sending it to the browser.

12.2.10 Appending Text Files

Data can be appended to the end of an existing text file by setting the action attribute of the cffile
tag to Append. The following example shows how to use the cffile tag to append additional

information to a file called MyFile.txt:

<cfset MyString="This is the line to be added!">

<cflock name=" Lock_Name" type="Exclusive" timeout="30">
 <cffile action="Append"
 file="d:\temp\MyFile.txt"
 output="#MyString#"
 addnewline="Yes"
 charset="UTF-8">
</cflock>

The file attribute specifies the file we want to append additional information to. We use the output
attribute to specify the data that we want to append to the end of the text file. The output attribute

can contain text or a previously defined ColdFusion variable. In our example, we use a ColdFusion
variable that has been previously defined with a cfset statement. Note the use of pound signs

around the ColdFusion variable name; they are necessary in this case, to differentiate between a
variable and literal text. To finish the operation off, we use the optional addnewline attribute. Setting
addnewline to Yes causes ColdFusion to add a trailing new line character to the end of the output
string. The charset attribute is optional and lets you specify a Java character set for the contents of
the file and can be used when the action attribute of the cffile tag is set to Move, Read, Write, or
Append. The most common character sets are UTF-8 (the default), UTF-16, UTF-16BE, UTF-16LE, US-
ASCII, and ISO-8859-1. You may use any character set supported by your JRE.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 Performing FTP Operations

As we've already discussed, the cffile tag allows you to upload files from a client machine to the

ColdFusion server and perform file and directory operations on your ColdFusion server. When you
need to work with files and directories on a remote server, however, you need to use the cfftp tag

instead.

12.3.1 Connecting to a Remote Server

FTP operations using the cfftp tag begin by opening a connection to the remote FTP server. The
following example shows how to connect to an anonymous FTP server using the cfftp tag:

<cfftp action="Open"
 server="ftp.microsoft.com"
 port="21"
 username="anonymous"
 password="YourEmailAddress@yourdomain.com"
 connection="MyConnection"
 proxyserver="MyProxyServer"
 proxybypass="127.0.0.1"
 retrycount="3"
 timeout="60"
 stoponerror="No"
 passive="No">

To open the connection to the remote FTP server, we set the action parameter of the cfftp tag to
Open. There are several additional parameters available for the action attribute that will be
discussed later in this section. The server attribute specifies the hostname or IP address of the

remote server with which to open an FTP session. In this case, we want to connect to Microsoft's
public FTP server at ftp.microsoft.com. The port attribute specifies what port the cfftp tag should

try to connect to. This attribute is optional and defaults to the standard FTP port 21. Because
Microsoft allows anonymous access to their FTP server, we set the username attribute to Anonymous.
As a matter of convention and netiquette, your email address should be entered in the password

attribute for anonymous FTP connections. We could just as easily connect to a non-anonymous FTP
site by specifying an actual username and password in the username and password attributes,

respectively.

The connection attribute is optional and set to MyConnection. connection is used to let the

ColdFusion server know that the FTP connection should be cached so that we can perform batch
operations without having to reestablish a new connection for each task. agentname is an optional

attribute that allows us to declare a name for the application or entity making the FTP connection.[4]

The proxyserver attribute is also optional and allows us to list the IP address or hostname of a proxy
server if it is required. If this attribute is NULL, ColdFusion attempts to obtain proxy server
information from the registry. proxybypass is another optional attribute and provides a list of IP
addresses or hostnames that don't need to be routed through the proxy server. If the proxybypass
attribute is NULL, ColdFusion attempts to obtain the proxy bypass list from the registry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[4] agentname was an attribute of the cfftp tag since ColdFusion 3, but was ignored in ColdFusion 5, and is

no longer supported in ColdFusion MX.

The next several attributes deal with how ColdFusion should behave if there is trouble connecting to
the remote server. The retrycount is an optional attribute that determines the number of times the

FTP operation should be attempted before an error is reported. The default number of retries is 1.
The timeout attribute is also an optional attribute and defaults to 30 seconds. It determines the
length in seconds that an operation has to execute before the request is timed out. The stoponerror
attribute is optional and set to No (the default) so that the application continues to process in the
event an error in the FTP operation occurs. If you set the stoponerror attribute to Yes, ColdFusion
throws an error and ceases processing if an FTP operation fails. The final attribute, passive, specifies

whether ColdFusion should initiate a passive transfer with the remote FTP server. This is an optional
attribute and set to No by default.

If you plan to utilize the same FTP connection across multiple ColdFusion templates, you should store
the connection caching information in a session variable. To do this, all you need to do is modify the
connection attribute in your cfftp statement to reflect the assignment to the session variable. It is

also necessary to make sure that session management is enabled for your application. Here's how we
can modify our previous example to accomplish this within the context of a session:

<cflock scope="Session" type="Exclusive" timeout="60" throwontimeout="Yes">
<cfftp action="open"
 server="ftp.microsoft.com"
 username="anonymous"
 password="YourEmailAddress@yourdomain.com"
 connection="Session.MyConnection"
 stoponerror="No">
</cflock>

By establishing the cached connection as a session variable, it is possible to maintain the FTP
connection across multiple ColdFusion templates. The use of cflock around the cfftp tag is

necessary when reading and writing session variables, to ensure the integrity of the session. Setting
the type attribute to Exclusive ensures single-threaded access when writing the session variable.

12.3.2 Automatically Opening a Connection

If you are only planning to perform a single FTP action, such as obtaining a directory list or
downloading a file, you can combine the steps into a single cfftp call in which opening and closing

the connection are handled automatically. For example, this code opens a connection, gets a list of all
files/directories in the root directory of a remote server, then closes the connection:

<cfftp action="ListDir"
 server="ftp.microsoft.com"
 username="anonymous"
 password="YourEmailAddress@yourdomain.com"
 stoponerror="No"
 name="ListFiles"
 directory="/">

Here, instead of setting action to Open, we simply provide the action we want to perform. In this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

case, we want to obtain a list of all files and directories in the root folder of Microsoft's web site, so
we set action to ListDir. ColdFusion knows that in order to obtain the directory list it must open an

FTP connection to the server, so it does so automatically. After the directory list is obtained, the
connection is automatically closed.

12.3.3 Closing the Connection

Before we can talk about doing anything interesting with an FTP connection, I want to discuss how
you close a connection. When you are finished with all your cfftp operations for a cached
connection, it is a good idea to close the FTP connection. You can do this by setting the action
attribute of the cfftp tag to Close. Failing to explicitly close a cached FTP connection causes the
connection to remain open until the connection times out. Depending on the server your cfftp

operation connects to, this can take quite a while. It isn't necessary to close noncached FTP
operations as the connection is automatically dropped after each operation. The following example
shows how to close a cached FTP connection:

<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">
<cfftp action="Close"
 connection="Session.MyConnection"
 stoponerror="Yes">
</cflock>

Once again, the cfftp operation is wrapped within a cflock tag to ensure exclusive reading of the
session variable used to cache the FTP connection. In this case, the type attribute of the cflock tag
is set to ReadOnly, so that more than one request can access the locked code at a time.

Setting the action to Close tells ColdFusion to close the FTP connection. The connection attribute

specifies the exact connection we want to close. In this case, we are closing the connection from our
previous example, so we use Session.MyConnection as the parameter. Finally, we set stoponerror
to Yes. Setting this attribute to Yes causes ColdFusion to throw an error and halt processing in the

event that an error occurs while closing the connection.

12.3.4 Performing File and Directory Operations

Now that we know how to open and close FTP sessions with the cfftp tag, it is time to move on to
file and directory operations. Once a connection to a remote FTP server has been made, the cfftp

tag can perform a variety of file and directory operations on the remote server. In the previous
example, we opened a cached FTP session called Session.MyConnection by setting the action
attribute to Open. To perform directory and file operations, all we need to do is change the value of
the action attribute to reflect the operation we want the cfftp tag to perform. The following list
describes the action parameters you have available for working with remote files and directories
using the cfftp tag:

ChangeDir

Changes the directory the cfftp tag has access to on the remote FTP server. Requires that you
specify the directory in the directory attribute.

CreateDir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creates a new directory on the remote server. The CreateDir parameter requires the use of
the directory attribute.

Exists

Returns Yes if the value specified in the item attribute exists or No if it doesn't. The value for
the item attribute can be any file, directory, or object.

ExistsDir

Returns Yes if the value specified in the directory attribute exists or No if it doesn't.
ExistsFile

Returns Yes if the value specified in the remotefile attribute exists or No if it doesn't.
GetCurrentDir

Returns the current directory being accessed by the cfftp tag.
GetCurrentURL

Returns the URL to the current location being accessed by the cfftp tag.
GetFile

Gets a file from the remote server and downloads it to the ColdFusion server. Using this action
requires that you also specify values for the remotefile and localfile attributes.

ListDir

Lists the directories specified in the name and directory attributes.
PutFile

Takes a file from the ColdFusion server and uploads it to the remote FTP server. Using this
action requires that you also specify values for the localfile and remotefile attributes.

Remove

Deletes a file on the remote FTP server. Using this action requires that you also specify values
for the server and item attributes.

Removedir

Deletes a directory on the remote FTP server. Using this action requires that you also specify
a value for the directory attribute.

Rename

Renames a file on the remote FTP server. Using this action requires that you also specify
values for the existing and new attributes.

12.3.4.1 Obtaining a directory listing

Example 12-7 uses everything we have learned so far about the cfftp tag to open a connection to a

remote FTP server, cache the connection, obtain a directory listing, and close the connection. Before
you execute Example 12-7, make sure you have an Application.cfm template that enables session
management in the directory in which you saved the example template.

Example 12-7. Obtaining a file and directory listing from a remote FTP
server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Open the FTP connection --->
<cflock scope="Session" type="Exclusive" timeout="60" throwontimeout="Yes">
 <cfftp action="Open"
 server="ftp.microsoft.com"
 username="anonymous"
 password="YourEmailAddress@yourdomain.com"
 connection="Session.MyConnection"
 stoponerror="No">
</cflock>

<!--- If there is an error, display it to the user and stop processing the
 template --->
<cfif not cfftp.Succeeded>
 Connection aborted!

 <cfoutput>
 Error number #cfftp.ErrorCode#: #cfftp.ErrorText#
 </cfoutput>
 <cfabort>
</cfif>

Connection opened successfully!

<!--- Get a list of the files and directories in the current directory --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">
 <cfftp action="ListDir"
 stoponerror="No"
 name="ListFiles"
 directory="/"
 connection="Session.MyConnection">
</cflock>

<!--- If there is an error, display it to the user and stop processing --->
<cfif not cfftp.Succeeded>
 Connection aborted!

 <cfoutput>
 Error number #cfftp.ErrorCode#: #cfftp.ErrorText#
 </cfoutput>
 <cfabort>
</cfif>

<!--- Close the ftp connection --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">
 <cfftp action="Close"
 connection="Session.MyConnection"
 stoponerror="No">
</cflock>

<!--- If there is an error, display it to the user and stop processing --->
<cfif not cfftp.Succeeded>
 Connection aborted!

 <cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Error number #cfftp.ErrorCode#: #cfftp.ErrorText#
 </cfoutput>
 <cfabort>
<cfelse>
 Connection closed successfully!

</cfif>

<style type="text/css">
 th {
 background-color : #0000FF;
 font-weight : bold;
 color : #FFFFFF;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }

</style>

<!--- Build a table of the directory contents --->
<p>
<h3>Directories and files at ftp.microsoft.com</h3>
<p>
<table border="0" cellspacing="1" cellpadding="3">
 <tr>
 <th>Name</th>
 <th>Path</th>
 <th>URL</th>
 <th>Length</th>
 <th>Last Modified</th>
 <th>Directory or File</th>
 <th>Attributes</th>
 <th>Mode</th>
 </tr>
<cfoutput query="ListFiles">
 <tr>
 <td>#name#</td>
 <td>#path#</td>
 <td>#url#</td>
 <td>#length#</td>
 <td>#DateFormat(lastmodified,'mm/dd/yyyy')#</td>
 <td><cfif IsDirectory>Directory<cfelse>File</cfif></td>
 <td>#Attributes#</td>
 <td>#Mode#</td>
 </tr>
</cfoutput>
</table>

Example 12-7 begins by opening the connection to the anonymous FTP server at ftp.microsoft.com
and caching the connection in a session variable called session.MyConnection. This code follows the

guidelines that were used in our previous example on opening a connection. Once the attempt to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

open the FTP connection has been made, we check to see if the connection was successful by
checking for the existence of a special variable called cfftp.Succeeded. cfftp.Succeeded is
automatically created each time a cfftp action is performed; it contains true if the operation was

successful. In our case, if the FTP session is opened successfully, we allow the application to continue
processing. If, however, the FTP session isn't opened successfully, an error is generated and reported
back to the user in the variables cfftp.ErrorCode and cfftp.ErrorText, and processing is aborted
with a cfabort tag. The values for cfftp.ErrorCode and cfftp.ErrorText are listed under the
cfftp tag in Appendix A.

Now Example 12-7 uses the cfftp tag to get a list of the files and directories from ftp.microsoft.com.
This is done by setting the action attribute to ListDir. Because we are using connection caching,
there is no need to respecify the server, username, or password attributes. We set the stoponerror
attribute to No so that processing of the template continues in the event an error occurs. The name
attribute is required when the action attribute is set to ListDir and specifies a name for the
ColdFusion query object created by the ListDir action. Another attribute that is required for
ListDir operations is the directory attribute. The directory attribute specifies the directory from
which to obtain the file and directory listing. In our case, we set the directory attribute to / to
obtain a listing for the root directory at ftp.microsoft.com. The final attribute, connection is set to
MyConnection and specifies the name of the cached connection to use for the action.

Next comes another bit of error-checking code that is identical to the code we used earlier. It is
important to build in error checking like this since we set the stoponerror attribute to No to allow

ColdFusion to continue processing our template in the event of an error. If the FTP operation fails for
any reason, the error-checking code gives us a way to handle the error gracefully.

Now we build an HTML table that contains a list of the files and directories found in the directory
specified in the directory attribute of the cfftp tag. Each row of the table is dynamically populated
with information from the ColdFusion query object created by the cfftp operation. Query objects
created by the cfftp tag contain the following query columns:

Attributes

Returns the attributes, if any, for the given object.
IsDirectory

Returns true if the object is a directory, false if it isn't.
LastModified

Date that the file or directory was last modified.
Length

Length in bytes of the file or directory.
Mode

This column applies only to the Unix and Linux versions of ColdFusion and specifies the
permissions set for the file or directory. The Mode is the same as the permissions set by the

Unix chmod command.
Name

The name of the file or directory.
Path

Path without drive-letter designation to the file or directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URL

URL to the file or directory.

Example 12-7 uses a cfif statement to evaluate the contents of the variable IsDirectory (note
that IsDirectory is a variable and not a function) for each row returned by the query. If
IsDirectory evaluates to true, we know the object is a directory and list it as such. If IsDirectory
evaluates to false, the object is a file and is listed that way instead. Figure 12-2 shows the directory

listing from Microsoft's FTP site as returned by Example 12-7.

Figure 12-2. Directory listing from ftp.microsoft.com using cfftp tag

The rest of the code in Example 12-7 closes our cached FTP connection the same way we did in our
earlier example on closing connections. As with our other FTP operations, we also perform some error
checking after closing the connection.

12.3.4.2 Uploading files

Example 12-8 shows how to upload a file to a remote FTP server using the cfftp tag. For this

example to work, it is necessary to have access to an FTP server that is capable of accepting file
uploads. Although the example uses 127.0.0.1 (the local host) as the FTP server, you can change this
attribute to any FTP server you have write access to.

Example 12-8. Uploading a file to a remote server with cfftp

<!--- Open the FTP connection --->
<cflock scope="Session" type="Exclusive" timeout="60" throwontimeout="Yes">

<cfftp action="Open"
 username="myusername"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 connection="MyConnection"
 password="mypassword"
 server="127.0.0.1"
 stoponerror="Yes">
</cflock>

<p>Connection opened

<!--- Take the file from the ColdFusion server and upload it via FTP to the
 remote machine. put the file in a directory off the root directory
 called incoming. --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">
<cfftp action="PutFile"
 transfermode="Auto"
 stoponerror="No"
 localfile="d:\temp\myfile.txt"
 remotefile="\incoming\myfile.txt"
 connection="MyConnection">
</cflock>

<p>
<cfif cfftp.Succeeded>
 File successfully uploaded!
<cfelse>
 The following error occurred while attempting to upload your file:

 <cfoutput>
 <i>Error number #cfftp.ErrorCode#: #cfftp.ErrorText#</i>
 </cfoutput>
</cfif>

<!--- Close the ftp connection --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">

<cfftp action="Close"
 connection="MyConnection"
 stoponerror="Yes">
</cflock>

<p>Connection closed

As you would expect, this example uses a cfftp tag to open an FTP session and caches the
connection as MyConnection. Once the connection is opened, we use another cfftp tag to carry out
the file upload from the ColdFusion server to the FTP server. This is done by setting the action
attribute of the cfftp tag to PutFile. transfermode specifies the FTP transfer mode to use when
retrieving the file from the FTP server. Valid options are Text, Binary, and Auto. In this case, we set
transfermode to Auto. stoponerror is set to No so that ColdFusion continues to process the

template in the event an error occurs.

localfile is a required attribute for a PutFile operation and specifies the file on the local

ColdFusion server we want to upload to our FTP server. The full path to the file on the ColdFusion
server should be used. In this case, the file we want to upload gets referenced as d:\temp\myfile.txt.
The next attribute, remotefile is also a required attribute for a PutFile operation and determines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the location to save the uploaded file on the remote FTP server. Setting the remotefile attribute to

\incoming\myfile.txt results in ColdFusion uploading the file and saving it as myfile.txt in \incoming
on the FTP server. The connection attribute is set to MyConnection, the cached connection we

defined at the beginning of the code.

After the cfftp upload completes, a cfif tag evaluates the status of the transaction. If it is

successful, a message is written to the browser informing the user. If the upload isn't successful, an
error code and error message are written back to the browser. Finally, another cfftp tag closes the

cached FTP connection.

12.3.4.3 Downloading files

The cfftp tag can also download files from remote servers to your ColdFusion server. Example 12-9
uses the cfftp tag to download a file called disclaimer.txt from Microsoft's anonymous FTP server.

This is a powerful feature in that it allows your ColdFusion applications to download data files from
remote FTP servers that would otherwise require a manual download using a standard FTP client.

Example 12-9. Downloading a file from a remote server with cfftp

<!--- Open the FTP connection --->
<cflock scope="Session" type="Exclusive" timeout="60" throwontimeout="Yes">

<cfftp action="Open"
 username="anonymous"
 connection="MyConnection"
 password="username@domain.com"
 server="ftp.microsoft.com"
 stoponerror="Yes">
</cflock>

<p>Connection opened

<!--- Get the file called disclaimer.txt from the root directory of the
 Microsoft FTP site and download it to a temp directory on the
 ColdFusion server --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">

<cfftp action="GetFile"
 transfermode="Auto"
 stoponerror="No"
 remotefile="disclaimer.txt"
 localfile="d:\temp\disclaimer.txt"
 connection="MyConnection">
</cflock>

<p>
<cfif cfftp.Succeeded>
 File successfully downloaded!
<cfelse>
 The following error occurred while attempting to download the file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfoutput>
 <i>Error number #cfftp.ErrorCode#: #cfftp.ErrorText#</i>
 </cfoutput>
</cfif>

<!--- Close the ftp connection --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">

<cfftp action="Close"
 connection="MyConnection"
 stoponerror="Yes">
</cflock>

<p>Connection closed

As before, this example uses the cfftp tag to open an FTP connection to Microsoft's FTP server and

caches the connection. Once the connection has been opened and verified, we perform the actual file
transfer from Microsoft's FTP server to our local ColdFusion server. This is done by setting the action
attribute of the cfftp tag to GetFile. transfermode specifies the FTP transfer mode to use when
retrieving the file from the FTP server. Valid options are Text, Binary, and Auto. In this case, we set
transfermode to Auto. We also set the stoponerror attribute to No so that ColdFusion continues to

process the template in the event that an error occurs.

The remotefile attribute specifies the filename, including the path, of the file we want to download

from the remote FTP server. In our case, we want the disclaimer.txt file located in the root directory
of Microsoft's FTP server. If we wanted to download a file from a directory other than the root
directory, we would have to specify the path to the file as part of the remotefile attribute. The
localfile attribute specifies the filename, including the path, where you want to save the

downloaded file on your ColdFusion server. For our example, we'll save the file as disclaimer.txt to a
directory on our D drive called temp. The final attribute for our cfftp operation is the connection
attribute. The connection attribute is set to MyConnection, the name we assigned to our cached
connection in the previous cfftp operation.

12.3.4.4 Deleting files

Another common task that can be performed with the cfftp tag is deleting files that exist on a

remote FTP server. To do this, you first have to make sure that you have write access to the files you
want to delete on the remote FTP server. Assuming that you have write access, you can use cfftp to

perform the delete, as shown in Example 12-10.

Example 12-10. Using cfftp to delete a file on a remote server

<!--- Open the FTP connection --->
<cflock scope="Session" type="Exclusive" timeout="60" throwontimeout="Yes">

<cfftp action="Open"
 username="myusername"
 connection="MyConnection"
 password="mypassword"
 server="127.0.0.1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 stoponerror="Yes">
</cflock>

<p>Connection opened

<!--- Remove the file called myfile.txt from the incoming directory on the
 remote FTP server --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">

<cfftp action="Remove"
 stoponerror="No"
 item="/incoming/myfile.txt"
 connection="MyConnection">
</cflock>

<p>
<cfif cfftp.Succeeded>
 File successfully removed!
<cfelse>
 The following error occurred while attempting to remove your file:

 <cfoutput>
 <i>Error number #cfftp.ErrorCode#: #cfftp.ErrorText#</i>
 </cfoutput>
</cfif>

<!--- Close the ftp connection --->
<cflock scope="Session" type="ReadOnly" timeout="60" throwontimeout="Yes">

<cfftp action="Close"
 connection="MyConnection"
 stoponerror="Yes">
</cflock>

<p>Connection closed

This template starts by opening the FTP session with the remote server and caching the connection.
Since the stoponerror attribute of the cfftp tag is set to Yes, ColdFusion throws an error and halts

processing if the connection fails.

Next comes the cfftp tag that deletes the remote file. This is accomplished by setting the action
attribute to Remove. The file we want to delete is specified in the item attribute by referencing the full
path and filename. We set the connection attribute to MyConnection because we are using a cached
FTP connection. Once the cfftp tag has executed, we use a cfif statement to evaluate whether or

not the file was deleted successfully. If it wasn't, an error code and message are output to the screen
before the FTP connection is closed in section three.

You should note that the cfftp tag can delete both files and directories. To delete a directory instead
of a file, specify Removedir for the action parameter and provide the directory you want to delete
using the directory attribute. You don't need to use the item attribute when deleting a directory.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.4 Executing Command-Line Programs

You can use the cfexecute tag to execute command-line programs residing on the same machine as

the ColdFusion Application Server. This tag allows you to call external programs, such as batch
utilities, from within your ColdFusion application. The following syntax calls an external program using
cfexecute:

<cfexecute name="path_to_program_to_execute"

 arguments="argument_string"

 variable="variable_name"

 outputfile="path_to_output_file"

 timeout="timeout_in_seconds">
</cfexecute>

The name attribute is required and specifies the full path, including filename, to the file you want to

execute. Depending on the program you are attempting to execute, you may be able to specify just
the program name without the full path. arguments allows you to specify any optional arguments
you want to pass to the external program. arguments can be either a string or an array and adheres

to the following conventions:

String

On Windows platforms, the entire string is passed to the Windows process control subsystem
for processing.

On Unix and Linux systems, the string is tokenized into an array of strings, delimited by
spaces. If spaces occur in the array elements, they are escaped by double quotes.

Array

On Windows platforms, the elements of the array are concatenated into a space-delimited
string of tokens, which is then passed to the Windows process control subsystem for
processing.

On Unix and Linux systems, the elements of the array are copied into an array of exec()

arguments.

The next attribute, variable, is optional and specifies a variable name to hold any output

generated by the executed program. This attribute is new in ColdFusion MX 6.1. If you would
rather save any output to a file instead of a variable, use the optional outputfile parameter

to specify the path to an output file. If a relative path is used, it is relative to the ColdFusion
temp directory. If both the variable and outputfile attributes are omitted, the output is
returned to the browser. The final attribute, timeout, is also optional and specifies the time in

seconds ColdFusion should wait before timing out the call to the external program. Setting the
timeout attribute to 0 equates to a nonblocking execution mode. This causes ColdFusion to

spawn a thread for the process and immediately return without waiting for the process to end.
By contrast, setting the timeout attribute to an arbitrarily high value equates to a blocking
execution mode. The default value for timeout is 0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that there shouldn't be any HTML or CFML appearing between the start and end of the
cfexecute tags. As a result, you can refer to the cfexecute tag using the following shorthand

notation instead of including an explicit end tag:
<cfexecute name="c:\example.exe"/>

If for some reason an exception is thrown while attempting to execute the cfexecute tag, the

following rules apply:

If the application specified in the name attribute can't be found, an "Application File Not Found"

exception is thrown.

If the ColdFusion user trying to execute the application doesn't have permission to do so, a
security exception is thrown.

If a value is specified for outputfile and the file can't be opened, an "Output File Cannot be

Opened" exception is thrown.

Example 12-11 demonstrates how to use the cfexecute tag to run the ipconfig.exe program on a

Windows server.

Example 12-11. Using cfexecute to run ipconfig.exe

<!--- Execute the windows ipconfig.exe program. Write the results to a
 variable called ipconfig and display in the browser. --->
<cftry>
 <cfexecute name="ipconfig.exe" arguments="/all"
 variable="ipconfig" timeout="30"/>
 <cfcatch type="Any">
 There was an error trying to execute the program specified in the
 cfexecute tag. Details follow:
 <p>
 <cfoutput>
 Type: #cfcatch.Type#

 Message: #cfcatch.Message#

 Details: #cfcatch.Detail#
 </cfoutput>
 <cfabort>
 </cfcatch>
</cftry>

<cfoutput>
<pre>#ipconfig#</pre>
</cfoutput>

Example 12-11 uses the cfexecute tag to execute the ipconfig.exe utility on a Windows system. The
/All switch is passed along with the request using the arguments attribute. The output generated by
the ipconfig program is written to a variable named ipconfig. The contents of the variable are then
output using the cfoutput tag. The HTML pre tags preserve whitespace formatting for the output.

If any errors or exceptions are thrown during the execution of the cfexecute tag, they are caught
using the cftry/cfcatch tags in the code. Executing the code in Example 12-11 results in output

http://lib.ommolketab.ir
http://lib.ommolketab.ir

similar to that shown in Figure 12-3.

Figure 12-3. Executing the ipconfig.exe utility using cfexecute

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Working with Email
It's no wonder that email is considered one of the Internet's "killer applications." The ability to send
and receive text messages as well as binary file attachments to locations around the globe has
revolutionized the way we communicate. ColdFusion wouldn't be a complete development platform
without a way to tap the power of email. As such, several tags are provided for working with email,
three for sending messages (cfmail, cfmailparam, and cfmailpart) and another for retrieving
messages (cfpop).

There are lots of ways to integrate email into your ColdFusion applications. For example, you can
allow users to enter feedback about your web site via an HTML form and have the feedback
automatically emailed to the appropriate people. You can send email confirmation message to users,
such as a registration confirmation when the user signs up for an account or an order confirmation
after the user places an order with your e-commerce application. You can also allow users to sign up
to receive periodic information via email, such as announcements of new products.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 Sending Email

ColdFusion uses the cfmail tag to send email messages using an Internet standard known as Simple

Mail Transport Protocol (SMTP). In order for ColdFusion to send email, an SMTP server must be
specified in the ColdFusion Administrator under the Mail option. If you don't have access to the
ColdFusion Administrator, the cfmail tag provides an optional attribute, server, where you can

provide a hostname or IP address to your SMTP server. The following example shows how to use the
cfmail tag to send a simple email message. The example assumes that you are using the SMTP

server specified in the ColdFusion Administrator.

<cfmail to="postmaster@example.com"
 from="webmaster@example.com"
 cc="administrator@example.com"
 bcc="postmaster@example.com"
 replyto="system@example.com"
 failto="bounced@example.com"
 subject="ColdFusion can send email!"
 mailerid="My Email Engine"
 server="mail.example.com,mail2.example.com"
 username="pmoney"
 password="cat"
 spoolenable="Yes"
 timeout="900"
 charset="UTF-8"
 wraptext="72">
I just wanted to let you know that ColdFusion MX is now sending email! Isn't this
the greatest thing?

-Webmaster
</cfmail>

The first attribute in the cfmail tag is to, which you use to specify the addressee of the email. The
to attribute is required and can accept a single email address or a comma-separated list of email

addresses. In ColdFusion MX, email addresses must not contain spaces. If an email address
containing a space is encountered, the cfmail tag throws an exception. Email address may be

specified using any of the following formats:

pmoney@example.com
<pmoney@example.com>
pmoney@example.com (Pere Money)
"Pere Money" <pmoney@example.com>
Pere Money <pmoney@example.com>

The from attribute is also required and contains the sender's email address or other string. The cc
attribute is optional and can add additional email recipients. Like the to attribute, the cc attribute
can also accept a comma-separated list of email addresses. bcc stands for blind carbon copy and

specifies an optional comma-delimited list of recipients that should also receive the email but whose

http://lib.ommolketab.ir
http://lib.ommolketab.ir

email addresses shouldn't appear in the email's header. The replyto and failto attributes are both
optional and are new in ColdFusion MX 6.1. replyto specifies an email address or comma-delimited
list of email addresses to which a mail client should send replies to the message. failto provides an
email address to which mail servers should send delivery failure messages. The subject attribute is

required and contains the subject for our email message.

The mailerid attribute specifies a mailer ID to pass along in the X-Mailer SMTP header. The X-Mailer
header identifies the program generating the SMTP message. If mailerid is not specified, it defaults
to ColdFusion MX Application Server. server allows you to pass a server address or comma-

delimited list of server addresses (ColdFusion MX 6.1 Enterprise only) ColdFusion should use to send
SMTP mail. If more than one address is specified, ColdFusion attempts to connect to the first mail
server in the list. If that fails, it attempts to connect to the second server, etc. ColdFusion will not
attempt to connect to a mail server if it was previously unavailable within the previous 60 seconds.
This behavior is new in the Enterprise version of ColdFusion MX 6.1. If you specify multiple server
addresses in ColdFusion MX 6.1 Standard, only the first server address is tried. Specifying a value for
server overrides any values set in the ColdFusion Administrator. Additionally, you may prepend a

username and password and/or append a port number to the server address
(username:password@servername:port) if desired. If you specify a port number in this way, it
overrides any value set in the ColdFusion Administrator. You must set a server value either in the
ColdFusion Administrator or the cfmail tag; otherwise, ColdFusion throws an error.

The username and password attributes are also new in ColdFusion MX 6.1. They allow you to pass a

username and password to your SMTP server should it require they be provided for authentication.
Setting spoolenable to Yes tells ColdFusion to save a copy of the message to disk until it can be
sent. Setting spoolenable to No causes the messages to queue in memory until they can be sent.

Although this option may be faster than writing the messages to disk, it is not fault-tolerant, meaning
if the ColdFusion server goes down before the messages can be sent, they are lost. The default value
for spoolenable is Yes.

The timeout attribute provides an optional number of seconds that ColdFusion should wait for the
cfmail operation to execute before timing out the connection to the SMTP server. Specifying a value

for timeout overrides the default timeout value you set in the ColdFusion Administrator.

The final two attributes are optional and are both new in ColdFusion MX 6.1. charset lets you specify
the character set to use in encoding the message. The most common character sets are UTF-8, UTF-
16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may use any character set supported by

your JRE. The default is the character encoding specified in the Mail section of the Server Settings
area in the ColdFusion Administrator. By default, this is set to UTF-8. wraptext specifies the

maximum number of characters to allow per line in the mail message. If a line is longer than the
specified number of characters, an attempt is made to break the line by inserting a line break at the
nearest whitespace character (space, tab, etc) before the character limit. If the line contains no
whitespace characters before the maximum number of characters per line, a line break is inserted at
the maximum line length. The default is no text wrapping.

The space between the start and end cfmail tags is where the email message goes. Unlike the space
between most HTML and CFML tags, the area between the start and end cfmail tags is sensitive to

whitespace. This means that ColdFusion interprets carriage returns and spaces between text as they
are typed.

If you don't have access to the SMTP mail server specified in the ColdFusion Administrator or just
want to send the email via a different SMTP server than the default, you can specify the server and
associated port within the cfmail tag as shown here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfmail to="postmaster@example.com"
 from="webmaster@example.com"
 cc="administrator@example.com"
 bcc="postmaster@example.com"
 subject="ColdFusion can send email!"
 timeout="900"
 server="127.0.0.1"
 port="25">
I just wanted to let you know that ColdFusion is now sending email!

-Webmaster
</cfmail>

In this example, the server attribute is set to the IP address of the SMTP server we want to use to
send our message. The value for server can be either the IP address or the hostname of the SMTP
server. The port attribute is optional and tells the cfmail tag what port the SMTP server is listening
on for incoming requests. The default port is 25.

Note that when a ColdFusion application creates an email message using the cfmail tag, the
ColdFusion server doesn't send it right away (unless spoolenable is set to Yes). Instead, a

temporary file is created and stored in a spool directory on the ColdFusion server. ColdFusion then
pipes the messages from the spool directory to the SMTP server as a background process. ColdFusion
looks for new messages in the spool directory at an interval that can be set in the Mail section of the
ColdFusion Administrator. The default is every 60 seconds.

In ColdFusion MX 6.1, ColdFusion's mail engine was totally overhauled. As such, several new options
to improve performance were added to the ColdFusion Administrator. Among these are backup mail
servers, the ability to keep a connection to the mail server open between messages, and the ability
to specify multiple threads for sending messages. To learn more about these features, consult your
Macromedia ColdFusion MX documentation or see the ColdFusion MX 6.1 release notes.

13.1.1 Sending HTML Mail

In addition to the standard text-based email messages, ColdFusion can also send HTML-formatted
email messages. HTML-formatted messages are readable by many popular email clients and allow
you to embed HTML formatting tags within the body of the message, as shown in the following
example:

<cfmail to="postmaster@example.com"
 from="webmaster@example.com"
 subject="ColdFusion can send HTML email too!"
 type="HTML">
<center>
 <h2>This is an HTML formatted email message</h2>
</center>
<hr>

I just wanted to let you know that
ColdFusion is now sending HTML
Formatted email!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-Webmaster
</cfmail>

The type attribute specifies the MIME type of the message. You can specify text (text/plain), plain
(text/plain), html (text/html), or any valid MIME type you wish. The default is text/plain. In this
example, setting the type attribute to HTML tells ColdFusion to format the email message using HTML.

An entry is made in the header of the email to let email clients know that the incoming message is
formatted using HTML. In order to view the email message correctly, the recipient of the message
must be using an email client capable of reading HTML email, such as Netscape Communicator or
Microsoft Outlook.

13.1.2 Sending Multi-Part Messages

ColdFusion MX 6.1 adds the capability to send multi-part messages via the new cfmailpart tag.

Multi-part messages are typically used to send multiple versions of the same message. For example,
it may be desirable to send both a plain text and an HTML version of a message. To specify multiple
parts, use one cfmailpart tag pair for each part. If you send a multi-part message using
cfmailpart, all message contents must appear within cfmailpart tags. Any content outside the tag

body is ignored. Here's an example that sends both a plain text and HTML version of the same
message:

<cfmail to="foo@bar.com"
 from="webmaster@example.com"
 subject="ColdFusion MX 6.1 can send multi-part email messages!"
 server="127.0.0.1">
<cfmailpart type="text" charset="UTF-8" wraptext="72">
This is a text formatted email message

I just wanted to let you know that
ColdFusion is now sending multi-part email!

-Webmaster
</cfmailpart>

<cfmailpart type="html" charset="UTF-8" wraptext="72">
<center>
<h2>This is an HTML formatted email message</h2>
</center>
<hr>
I just wanted to let you know that
ColdFusion is now sending multi-part email!
<p>
-Webmaster
</p>
</cfmailpart>
</cfmail>

The type attribute of each cfmailpart is optional. It specifies the MIME type of the message part.
You can specify text (text/plain), plain (text/plain), html (text/html), or any valid MIME type you
wish. charset servers the same purpose as it does in the cfmail tag, except it applies only to the
specific message part. If charset is not specified, the value used by the cfmail tag is used instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

wraptext also serves the same purpose as in the cfmail tag, again, applying just to the specific

message part.

13.1.3 Emailing Form Contents

One of the most popular uses of the cfmail tag is for emailing the contents of an HTML form once it

has been submitted. Although the practical applications of this feature are virtually unlimited, the
technique for sending the message is simple. A typical scenario involves emailing the contents of a
feedback form to the appropriate department or person within a company. The following example
shows how this is accomplished using two templates. The first template, shown in Example 13-1,
contains the feedback form.

Example 13-1. HTML feedback form

<html>
<head>
 <title>Feedback form</title>
</head>

<body>
<h2>Feedback form</h2>
<form action="Example13-2.cfm" method="post">
Name: <input type="text" name="Name" size="15" maxlength="255">

Email: <input type="text" name="Email" size="15" maxlength="255">
<p>
Who should recieve this feedback?

<select name="SendTo">
 <option value="marketing@example.com" selected>Marketing</option>
 <option value="sales@example.com">Sales</option>
 <option value="customerservice@example.com">Customer Service</option>
</select>
<p>
Comments:

<textarea cols="40" rows="4" name="Comments" wrap="Virtual"></textarea>

<input type="submit" name="Submit" value="Send">
</form>
</body>
</html>

The template in Example 13-1 is a basic HTML form that collects a user's name, email address,
comments, and the department they would like the email sent to. Once the information is collected
and the form is submitted, the template shown in Example 13-2 takes over.

Example 13-2. Generating an email from an HTML form submission

<cfmail from="webmaster@example.com"
 to="#form.SendTo#"
 subject="Feedback form">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following information was submitted via our feedback form:

Name: #form.Name#
Email: #form.Email#
Comments:
#form.Comments#
</cfmail>

<html>
<head>
 <title>Feedback form Processor</title>
</head>

<body>
<h2>The feedback form has been processed successfully!</h2>
The following information was submitted:

<cfoutput>
To: #form.SendTo#

Name: #form.Name#

Email: #form.Email#

Comments:

#form.Comments#
</cfoutput>

</body>
</html>

Example 13-2 takes the information posted from the form in Example 13-1 and uses it to generate an
email. The cfmail to attribute is populated with the SendTo form field value passed from the

feedback form. The body of the message is created by referencing the rest of the form fields from the
feedback form. The values entered in the feedback form are also output to the browser so that you
can see what values were passed.

13.1.4 Adding Query Results to Email

Another feature of the cfmail tag is the ability to include query results in cfmail generated email

messages. Say you want to send an email to your HR department that contains a listing of the
contact information for each employee in the company. You can use ColdFusion to query the
database and then use the cfmail tag to generate an email message containing the query results in

the body of the message, as shown in Example 13-3.

Example 13-3. Including query results in an email message

<cfquery name="GetMailingList" datasource="ProgrammingCF">
 SELECT Name, Title, Email, PhoneExt, Department
 FROM EmployeeDirectory Order BY Name
</cfquery>

<cfmail query="GetMailingList"
 to="hr@example.com"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from="webmaster@example.com"
 subject="Employee Contact Listings"
 timeout="900"
 type="HTML">
Here is the employee contact information you requested:
<p>
<table border="1">
<tr>
 <th>Name</th><th>Title</th><th>Department</th><th>Email</th>
 <th>Phone Ext.</th>
</tr>
<cfoutput>
<tr>
 <td>#Name#</td><td>#Title#</td><td>#Department#</td><td>#Email#</td>
 <td>#PhoneExt#</td>
</tr>
</cfoutput>
</table>
<p>
Best regards,
<p>
The Webmaster
</cfmail>

As you can see in Example 13-3, including the query results in the message body is simple. The only
real difference between using a query result set in an email message and outputting the result set to
a browser is that you don't have to specify a query attribute in the cfoutput tag because it is
already specified within the cfmail tag.

13.1.5 Including Grouped Query Results

On occasion, you may want to group query results in the body of your email message. For example,
you need to send an email message to a contact in your human-resources department listing every
employee in your employee database. You can list them in alphabetical order by creating a simple
cfquery that orders the results by the employee's name. But you may want to list all the current

employees grouped by department. This process gets a little more complicated.

Example 13-4 demonstrates how to query the EmployeeDirectory table of the database and then

output each employee record to the browser. The query results are grouped by department using the
group attribute of the cfoutput tag. Notice the nesting of the second cfoutput tag within the
cfoutput tag that accompanies the query attribute.

Example 13-4. Grouping data using cfoutput

<cfquery name="GetMailingList" datasource="ProgrammingCF">
 SELECT Department, Name, Title, Email, PhoneExt
 FROM EmployeeDirectory Order BY Department
</cfquery>

<cfoutput query="GetMailingList" group="Department">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h3>#Department#</h3>

<cfoutput>
#Name#

#Title#

#Email#

x#PhoneExt#<p>
</cfoutput>
</cfoutput>

Now that you see how to group the query results using the group attribute of the cfoutput tag, let's
apply the same logic to an email message generated by the cfmail tag. The syntax for grouping
within a cfmail message is slightly different from the syntax used in the previous example. Example
13-5 shows the syntax for grouping within a cfmail generated message.

Example 13-5. Grouping query results within a cfmail message

<cfquery name="GetMailingList" datasource="ProgrammingCF">
 SELECT Department, Name, Title, Email, PhoneExt
 FROM EmployeeDirectory Order BY Department
</cfquery>

<cfmail query="GetMailingList"
 group="Department"
 to="you@example.com"
 from="me@example.com"
 subject="Employees grouped by department">
#Department#
= = = = = = = = = = = = = = = = = = = =
<cfoutput>
#Name#
#Title#
#Email#
x#PhoneExt#

</cfoutput>
</cfmail>

<h2>The message has been sent...</h2>

The first part of this template simply queries the EmployeeDirectory table and stores the results in a
query object called GetMailingList. Next, the cfmail tag is used to construct the actual message to
be sent. The first cfoutput tag sets the outermost loop for the output. This loop iterates for each
unique value contained in the column specified in group. In this case, the loop iterates for each

unique department. The second step sets the innermost loop for the output. This loop iterates for
each employee within the current group. The results are added to the message until the entire query
object has been output.

13.1.6 Sending Customized Email to Multiple Recipients

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The real power of the cfmail tag lies in its ability to send email to multiple recipients based on

information from a ColdFusion query object, which in effect allows you to send customized email
messages to multiple recipients using very few lines of code. With this technique, you can perform
such tasks as mail merges and mass emailings (not spam, of course!). Example 13-6 shows the basic
method for sending out multiple emails with information pulled from a query.

Example 13-6. Sending email to multiple recipients based on a query

<!--- Query the sample database for all of the names and email addresses of
 people stored in the recipients table --->
<cfquery name="GetMailingList" datasource="ProgrammingCF">
 SELECT Email, Name FROM EmployeeDirectory
</cfquery>

<!--- Use the cfmail tag in conjunction with the above query to email a
 personalized message to each person in the database --->
<cfmail query="GetMailingList"
 to="#email#"
 from="webmaster@example.com"
 subject="Hello!"
 timeout="900">
#Name#,

We just wanted to let you know that a new page on the wonderful widget has
been added to our web site. To visit the new page, point your browser here:

http://www.example.com/widget.cfm

Best regards,

The Webmaster
</cfmail>

Example 13-6 uses a standard cfquery to select the Name and Email fields from the database. The
name of the query is then specified in the query attribute of the cfmail tag. By specifying the Email
variable from the query in the to attribute of the cfmail tag, ColdFusion sends a message to the

email address listed in each row of the record set returned by the query. Each recipient receives a
copy of the message addressed specifically to that recipient, with no other recipients appearing in the
to header. The body for each email message can be personalized with the name of the recipient if
you reference the Name variable from the query. Additional fields from the database can also be

added depending on your requirements.

13.1.7 Sending File Attachments

ColdFusion can send file attachments via email. Files are attached to a message using the
cfmailparam tag nested within the cfmail tag. The following example shows the proper syntax to

get this done:

<cfmail to="webmaster@example.com"
 from="rbils@example.com"

http://www.example.com/widget.cfm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 subject="Test cfmail file attachments">
This is a test. There should be two file attachments included in this email.

-Rob

<cfmailparam file="d:\myfile.txt" type="text">
<cfmailparam file="d:\mydoc.doc" type="application/msword">
</cfmail>

The cfmailparam tag uses the file attribute to specify the full path (on your ColdFusion server) to
the file you'd like to attach to your email message. type is a new optional attribute in ColdFusion MX
6.1. It lets you set the MIME type of the file attachment. You can specify text (text/plain), plain
(text/plain), html (text/html), or any valid MIME type you wish. To specify more than one file to
attach, use one cfmailparam tag for each file.

There are two additional items related to message attachments you should be aware of. First, to
attach a file to a cfmail-generated message, the file must reside on the local ColdFusion server or on

a network drive accessible from that server. If you are building an application such as a web-based
email client that allows users to attach files to their messages, the attachment must first be uploaded
to the ColdFusion server with the cffile tag before it can be included as an attachment. There will

be more on this technique later on in this chapter. The second issue is that ColdFusion does not make
a copy of any file attachments before sending them. If you attach a file to a mail message, you must
wait until after the message is sent before deleting the file. If ColdFusion tries to send a message
with an attachment and it cannot find the attachment, an exception is raised and the message is not
sent.

13.1.8 Specifying Additional Header Information

The cfmailparam tag also lets you specify additional SMTP header information not natively supplied
by the cfmail tag. The following example uses the cfmailparam tag to append a delivery
Importance value to the message header generated by the cfmail tag:

<cfmail to="webmaster@example.com"
 from="rbils@example.com"
 subject="cfmail Test">
 <cfmailparam name="Importance" value="High">
This email specifies additional header information!

-Rob
</cfmail>

In this case, the cfmailparam tag uses the name attribute to specify the name for the header entry.
The value attribute passes the actual value for the header entry. Multiple header entries can be
made using multiple cfmailparam tags.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 Dealing with Undeliverable Email

Every now and then, something goes wrong when ColdFusion attempts to send an email. Problems
can range from a missing email address in the to attribute, to a problem connecting to the SMTP

server. Regardless of the cause of the problem, ColdFusion deals with undeliverable email in a
consistent and simple manner. All undeliverable email messages are written to temporary files with a
.cfmail extension and saved to a folder on the ColdFusion server called \undelivr.[1] The \undelivr
folder is usually located in \cfusionmx\mail\undelivr\.

[1] There's a bug in the ColdFusion MX release (fixed in Updater 2) that causes the mail spool to append
"Undelievered_" to the beginning of a mail message each time an attempt to send it fails. This can results in
very long filenames if an automated attempt (such as this program) is made to resend the file unsuccessfully.
Also, note the extra "e" in the word "Undelievered_". It's not a typo here; it's a bug in the pre-Updater 2 release
of ColdFusion MX.

To resend a message that has been moved to the \undelivr folder, the temporary file must be moved
back to the \spool folder, which is usually located in \cfusionmx\mail\spool. This can be done
manually or via ColdFusion. Obviously, using ColdFusion to monitor the \undelivr directory for
undelivered mail is more convenient than manually checking the directory every time an email is
generated. To do this, you need to create a template that scans the \undelivr folder and schedule it
to run at set intervals. Example 13-7 contains a template you can use to scan your \undelivr folder
and move any files found back to the \spool folder so that attempts can be made to resend them.
Using the Scheduler within the ColdFusion Administrator, the template can be set to run at
predetermined intervals.

Example 13-7. CFML template for dealing with undeliverable mail

<!--- Get the mail root directory --->
<cfset MailRoot="#server.ColdFusion.RootDir#\mail">

<!--- set the date trigger to 7, one week --->
<cfset DateTrigger=7>

<!--- Read all of the files from the undeliverable directory for processing --->
<cfdirectory action="List"
 directory="#MailRoot#\undelivr"
 name="Undeliverables"
 filter="*.cfmail">

<cfif Undeliverables.RecordCount eq 0>
 <cfset FilesMoved = 0>
 <cfset FilesDeleted = 0>
 <cfset UndeliveredMail = QueryNew("FileName, FileSize, LastMod, Status")>
 <cfset QueryAddRow(UndeliveredMail)>
 <cfset QuerySetCell(UndeliveredMail, "FileName", "N/A", 1)>
 <cfset QuerySetCell(UndeliveredMail, "FileSize", "N/A", 1)>
 <cfset QuerySetCell(UndeliveredMail, "LastMod", "N/A", 1)>
 <cfset QuerySetCell(UndeliveredMail, "Status", "N/A", 1)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfelse>
 <!--- Set Constants --->
 <cfset FilesMoved = 0>
 <cfset FilesDeleted = 0>
 <cfset UndeliveredMail=QueryNew("FileName, FileSize, LastMod, Status")>
 <cfset QueryAddRow(UndeliveredMail, Undeliverables.RecordCount)>

 <cfloop Query="Undeliverables">
 <!--- if the last modified date of the file in the undelivr directory is
 older than the date trigger, or if the file size is 0, delete it.
 Otherwise, move the file to the spool directory to be resent. --->
 <cfif (DateDiff("y", DateLastModified, Now()) gt DateTrigger)
 or (Size eq 0)>
 <cffile action="Delete"
 file="#MailRoot#\undelivr\#Name#">
 <cfset QuerySetCell(UndeliveredMail, "FileName", Name,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "FileSize", Size,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "LastMod", DateLastModified,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "Status", "Deleted",
 Undeliverables.CurrentRow)>
 <cfset FilesDeleted = FilesDeleted + 1>
 <cfelse>
 <!--- There's a bug in the CF MX release (fixed in Updater 2) that causes the
 mail spool to append Undelievered_ to the beginning of a mail
 message each time an attempt to send it fails. This can results in
 very long file names if an automated attempt (such as this program)
 is made to resend the file unsuccessfully. Also, note the extra "e"
 in the word "Undelievered_" - it's not a typo here, it's a bug in
 the pre updater 2 release of CF MX --->
 <!--- Strip out Undelievered_ from the filename in case CFMX Updater 2 or
 later isn't installed --->
 <cffile action="Move"
 source="#MailRoot#\undelivr\#Name#"
 destination="#MailRoot#\spool\#ReplaceNoCase(Name, "Undelievered_",
 "", "All")#">
 <cfset QuerySetCell(UndeliveredMail, "FileName", Name,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "FileSize", Size,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "LastMod", DateLastModified,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "Status", "Moved",
 Undeliverables.CurrentRow)>
 <cfset FilesMoved = FilesMoved+1>
 </cfif>
 </cfloop>
</cfif>

<cfif FilesMoved gte 1 or FilesDeleted gte 1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfmail query="UndeliveredMail"
 to="webmaster@example.com"
 from="webmaster@example.com"
 subject="Undeliverable Mail Report for Server #CGI.Server_Name#">
Total Files Moved: #FilesMoved#
Total Files Deleted: #FilesDeleted#

These are the files affected:
<cfoutput>
#Status#: #FileName# (#filesize# bytes, #DateFormat(LastMod,'mm/dd/yyyy')#)
</cfoutput>
</cfmail>
</cfif>

<h2>Task Completed<h2>

This template works by setting a variable called DateTrigger to specify the number of days

ColdFusion should attempt to move the file back into the spool directory before deleting it. Next, the
cfdirectory tag obtains a list of all undeliverable mail files in the undelivr directory. This is done by
setting the filter attribute to "*.cfmail". If files exist in the directory, their last-modified dates are
compared to the number of days specified in the DateTrigger. If the file is older than the specified

number of days, it is deleted. If not, the file is moved back to the spool directory so ColdFusion can
attempt to send it again. Finally, an email is sent out listing the number of files deleted and the
number moved as well as the names of the files affected along with other identifying information.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 Retrieving Messages

You have seen that ColdFusion can send email via the cfmail tag. In addition to sending email,
ColdFusion can also retrieve email messages using the Post Office Protocol (POP3) via the cfpop tag.

Using this tag, ColdFusion can retrieve message headers, message contents including multi-part
messages (this is new in ColdFusion MX 6.1), and file attachments. In essence, this allows you to use
ColdFusion to create a web-based email system, like Yahoo! Mail or Hotmail. The cfpop tag can also

create applications such as auto-responders and mailing-list managers.

13.3.1 Retrieving Message Headers

The cfpop tag can retrieve just the header portion of email messages stored on a POP server. This is

useful when you want to retrieve summary information such as the message title for more than one
message. Retrieving just the message headers allows you to avoid the overhead associated with
retrieving the entire contents of each message you retrieve. In the context of a web-based email
client, this technique is used to build a list of messages in a user's mailbox. You can retrieve the
headers for a group of messages by setting the action attribute of the cfpop tag to GetHeaderOnly

as shown in Example 13-8.

Example 13-8. Retrieving message headers

<cfpop action="getheaderonly" name="GetMessageHeaders"
 server="wcpamh01.amkor.com" port="110" timeout="600"
 username="rbils" password="leb##sggy"
 startrow="1" maxrows="100">

<html>
<head>
 <title>Example 13-8: Retrieving Message Headers</title>
 <style type="text/css">
 th {
 background-color : #0000FF;
 font-weight : bold;
 color : #FFFFFF;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>

<body>

<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <h3>Retrieved #GetMessageHeaders.RecordCount# messages from the server</h3>
</cfoutput>

<table border="0" cellpadding="5" cellspacing="1">
<tr>
 <th>From</th><th>Date</th><th>Subject</th>
</tr>

<!--- Output the message header contents --->
<cfoutput query="GetMessageHeaders">
<tr>
 <td>#HTMLEditFormat(From)#</td>
 <td>#DateFormat(ParseDateTime(Date),'mm/dd/yyyy')#
 #TimeFormat(ParseDateTime(Date),'hh:mm:ss tt')#</td>
 <td>#HTMLEditFormat(Subject)#</td>
</tr>
</cfoutput>
</table>
</body>
</html>

Example 13-8 calls the cfpop tag and sets the action attribute to GetHeaderOnly. This tells

ColdFusion to retrieve only message headers from the POP server. Message headers contain
information such as who the message is from, the time and date it was sent, and the subject of the
message. The name attribute specifies the name to give the query object created to hold the header
information. In this example, we'll call our query GetMessageHeaders. The server attribute is set to
the hostname or IP address of the POP server you want to retrieve messages from. port is an

optional attribute that specifies the port the POP server listens on for requests. The default port is
110. timeout specifies an amount of time in seconds that you want ColdFusion to wait while

processing a request before timing out the connection to the POP server. This attribute is optional
and defaults to 60 seconds.

The username and password attributes send the username and password to the POP server you want

to retrieve messages from. The remote POP server authenticates access and determines which
messages should be returned to the ColdFusion application. Both startrow and maxrows are optional
attributes. startrow tells ColdFusion where to start retrieving messages from. maxrows specifies the
maximum number of messages to return starting from the row specified in startrow. In this

example, we've instructed ColdFusion to retrieve the first 100 messages from the server. If these
attributes are both omitted, ColdFusion retrieves all messages. For more information on all of the
attributes available when action="GetHeaderOnly", see the cfpop tag in Appendix A.

After the cfpop tag executes (assuming no errors occur), the message headers retrieved from the
POP server are output to the browser as a simple HTML table. Note the use of the HTMLEditFormat(
) function on the From and Subject query columns. This function is used to escape any HTML that

might be in these fields so that they render properly in the browser. Only a subset of the available
return variables are used in our example. See the cfpop tag in Appendix A for the complete list of

variables returned when retrieving message headers.

13.3.2 Retrieving Message Contents

Besides retrieving message headers, the cfpop tag can also retrieve the rest of a message's content,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such as the body text and any attachments included with the message. In the context of a web-
based email system, this functionality allows you to display an email message and build links to any
file attachments. To retrieve everything associated with a particular message, set the action
attribute of the cfpop tag to GetAll as in Example 13-9.

Example 13-9. Retrieving a complete message

<cfpop action="GetAll" name="GetMessage" messagelabel="1"
 server="popserver.example.com"
 timeout="600" username="username" password="password">

<html>
<head>
 <title>Example 13-9: Retrieving a Complete Message</title>
 <style type="text/css">
 th {
 font-weight : bold;
 color : #0000FF;
 text-align : left;
 }
 </style>
</head>

<body>
<cfoutput>
<table>
 <tr>
 <th>From:</th>
 <td>#HTMLEditFormat(GetMessage.From)# on #HTMLEditFormat(GetMessage.Date)#</td>
 </tr>
 <tr>
 <th>To:</th>
 <td>#HTMLEditFormat(GetMessage.To)#</td>
 </tr>
 <tr>
 <th>Cc:</th>
 <td>#HTMLEditFormat(GetMessage.Cc)#</td>
 </tr>
 <tr>
 <th>Subject:</th>
 <td>#HTMLEditFormat(GetMessage.Subject)#</td>
 </tr>
</table>
<p>
#HTMLCodeFormat(GetMessage.Body)#

</cfoutput>
</body>
</html>

In Example 13-9, the action attribute of the cfpop tag is set to GetAll, which lets ColdFusion know
that we want to retrieve an entire message as opposed to just the message header. The name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute lets us specify a name for the query object that will hold the contents of the retrieved
message. Because we are retrieving the full contents of a single message, we need to specify the
actual message to retrieve using the messagenumber attribute.[2] In Example 13-9, we hardcode the
value for messagenumber, setting it to 1, so that it retrieves the first message stored in the user's

account. If you wish to retrieve a full message in an application, the value assigned to
messagenumber is dynamic, most likely passed in via URL. We'll look at how this is done at the end of

the chapter when we cover how to build a web-based mail client.

[2] As an alternative to the messagenumber attribute, ColdFusion offers an optional attribute called UID. The

UID attribute allows you to specify the unique identifier (UID) assigned to a mail message (or comma-delimited

list of UIDs) as opposed to the message number. UID can be used instead of the messagenumber attribute in

cases where the specified POP server doesn't support message numbers (as in the case of the Mercury POP
server).

If you look at the output section in Example 13-9, you can see that we used the same output
variables as were used in our previous example with one exception. In this case, we displayed the
body of the message using the variable Body. The HTMLCodeFormat() function escapes any HTML
that might be contained in the message body while wrapping the contents in HTML <pre>/</pre>

tags to preserve the messages layout. This is generally a good idea if you want to keep HTML tags
embedded in the message body from being rendered by the browser. It is also a good way to avoid
potential security exploits from malicious code embedded within a message.

13.3.3 Dealing with Attachments

When you retrieve the contents of a message with the action attribute set to GetAll, ColdFusion
allows you to use an optional attribute, attachmentpath, to specify a path where any attachments

retrieved should be stored. ColdFusion creates two additional variables to store the filenames as they
are retrieved from the POP server and written to the ColdFusion server, respectively:

queryname.Attachments

Returns a tab-delimited list of the original filenames of all attached files
queryname.AttachmentFiles

Returns a tab-delimited list of the names of the attachment files as they were written to the
directory specified in the attachmentpath attribute of the cfpop tag

Now that you know what variables are offered for dealing with file attachments, let's look at how to
use them. Example 13-10 uses the cfpop tag to retrieve an email message along with any attached

files.

Example 13-10. Retrieving multiple attachments with cfpop

<!--- Set a variable called tab to the chr value of tab --->
<cfset Tab = Chr(9)>

<!--- Set the message number to retrieve to 1. This is used as an example only.
 in an actual application, the message number to retrieve would most likely
 be passed in as a URL variable from a hyperlinked message header --->
<cfset Message = 1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Set the attachment path for the retrieved attachments. --->
<cfset AttachmentPath = "d:\cfusionmx\wwwroot\programmingcf\13">

<!--- Retrieve the message from the POP server --->
<cfpop action="GetAll" name="GetMessage" messagelabel="#Message#"
 server="popserver.example.com"
 timeout="600" username="username" password="password"
 attachmentpath="#AttachmentPath#"
 generateuniquefilenames="yes">

<!--- Output the message header info as well as the body --->
<html>
<head>
 <title>Example 13-10: Retrieving Multiple Attachments with cfpop</title>
 <style type="text/css">
 th {
 font-weight : bold;
 color : #0000FF;
 text-align : left;
 }
 </style>
</head>

<body>

<cfoutput>
<table>
 <tr>
 <th>From:</th>
 <td>#HTMLEditFormat(GetMessage.From)# on #HTMLEditFormat(GetMessage.Date)#</td>
 </tr>
 <tr>
 <th>To:</th>
 <td>#HTMLEditFormat(GetMessage.To)#</td>
 </tr>
 <tr>
 <th>Cc:</th>
 <td>#HTMLEditFormat(GetMessage.Cc)#</td>
 </tr>
 <tr>
 <th>Subject:</th>
 <td>#HTMLEditFormat(GetMessage.Subject)#</td>
 </tr>
</table>
<p>
#HTMLCodeFormat(GetMessage.Body)#

<!--- If there are file attachments, display them and provide links to the
 attachments --->
<cfif GetMessage.Attachments is not "">
 <p>
 Attachments:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfloop from="1" to="#ListLen(GetMessage.Attachments,Tab)#"
 index="TheAttachment">
 <a href="#GetFileFromPath(ListGetAt(GetMessage.AttachmentFiles,
 TheAttachment,tab))#">#ListGetAt(GetMessage.Attachments, TheAttachment,
 tab)#

 </cfloop>
</cfif>
</cfoutput>

The first thing we do in Example 13-10 is create a variable called Tab and set it equal to Chr(9), the

ASCII value for the tab character. This allows us to represent the tab as a delimiter without having to
actually include a hard tab in our code. This might seem like a trivial step, but it solves a problem
that often occurs when trying to include tabs in programming code. Depending on the editor you use
to write your code and the platform you develop on, the tab character may not be preserved when
you save your code. Using Chr(9) instead of a hard tab eliminates the possibility of this occurring.
The next step involves creating a variable called Message that holds the message number to be

retrieved. Please note that this is used as an example only. In an actual application, the message
number to retrieve would most likely be passed in as a URL variable from a hyperlinked message
header. We'll cover this technique later in the chapter when we build a complete POP mail client.

The third step is to create a variable called AttachmentPath, to specify the location on your

ColdFusion server where file attachments should be stored after they are retrieved from the POP
server. It is important that this path be within your web server's root directory, so that it can be
viewed/downloaded without having to call a separate template to retrieve the file(s).

Once all the constants have been defined, the next step is to use the cfpop tag to retrieve the

message, including attachments, from the POP server. To do this, you need to include a new attribute
within the tag. The attachmentpath attribute specifies a location on the ColdFusion server where any

attachments retrieved from the POP server should be stored. In our example, we set this attribute to
the value of the AttachmentPath variable we defined at the beginning of the template. A second new
attribute, generateuniquefilenames, is set to Yes, causing ColdFusion to automatically generate

unique filenames for any attachment retrieved from the POP server so that any name conflicts can be
avoided. Generated names are guaranteed to be unique within the directory specified in
attachmentpath.

Once the message and associated attachments have been retrieved, the message header and body
are output to the browser. Next, a cfif statement determines if there are any attachments
associated with the message. If there are, the Attachments variable is looped over, and a link to

each file attachment in the list is provided.

13.3.4 Deleting Messages

The cfpop tag can delete unwanted messages from the POP server. Deleting messages is a simple

process and takes only a few short lines of code:

<cfpop action="Delete"
 messagelabel="1,2,6,9"
 server="popserver.example.com"
 timeout="600"
 username="username"
 password="password">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, we set the action attribute of the cfpop tag to Delete. messagenumber specifies the

message number or comma-delimited list of message numbers to delete.[3] Message numbers are
usually passed to the tag via a URL or form variable. We'll cover this technique in more detail in the
next section. The POP server to delete the message from is specified using the server attribute. An
optional timeout value for the operation can be set with the timeout attribute. The username and
password attributes are required and specify which account on the POP server the message(s) should

be deleted from. You should note that once a message has been deleted from the POP server,
message numbers are automatically reassigned. This isn't true of UIDs, which are unique and persist
for the life of each message.

[3] You can use the UID attribute in place of the messagenumber attribute to specify message(s) to delete.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.4 Building a Web-Based Email Client

Now that you have a feel for how the cfmail and cfpop tags work, let's take a look at a more complex

example that showcases most features of both tags. In our example, we shall build a basic web-based
email client. Before beginning, let's outline the functionality and features we'll need for the application.
Remember, this is a basic email client with bare-bones functionality. We'll need:

A login screen for users to enter POP server, SMTP server, email address, username, and password

A method for passing login information from template to template (in a relatively secure manner)
without using persistent variables

An Inbox for listing all emails belonging to the user on the POP server with next/previous
functionality

The ability to read a message and download any associated file attachments

The ability to forward a message to other recipients, including file attachments

The ability to reply to a message

The ability to create a new message and attach a file to that message

The ability to delete messages from the POP server

With the list of requirements for the application defined, let's map out exactly how the application should
flow. The application consists of three templates for handling all POP client functions. The first template,
named login.cfm , gathers login information for the POP server and posts to the inbox.cfm template.
The inbox.cfm template creates the user's inbox. The inbox consists of a list of the email messages in
the user's mailbox. It is here that a user can choose what message to read, delete a message, or create
a new message. The action.cfm template handles the bulk of the mail client's functionality. It is
responsible for reading, creating, forwarding, replying to, and deleting messages.

Now that we have the basic flow of the application, let's look at the templates. Example 13-11 shows
login.cfm , the user login screen for the application.

Example 13-11. Email client login screen

<html>
 <head>
 <title>ColdFusion Mail Client - Login</title>
 </head>
<body>

<h2>Email Login</h2>
<form action="inbox.cfm" method="post">
<table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td>Your email address:</td>
 <td><input type="text" name="EmailAddress" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>POP server:</td>
 <td><input type="text" name="POPServer" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>SMTP Server:</td>
 <td><input type="text" name="SMTPServer" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>Username:</td>
 <td><input type="text" name="UserName" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="Password" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="Submit" value="Submit"></td>
 </tr>
</table>
</form>

</body>
</html>

There isn't much to the login screen. It is just a simple HTML form that gathers the user's email
address, POP and SMTP server addresses, username, and password. The results are then sent to the
next template, inbox.cfm , shown in Example 13-12 .

Example 13-12. inbox.cfm for the mail client

<!--- Initialize constants --->
<cfparam name="NumDisplayMessages" default=10>
<cfparam name="CurrentMessageNumber" default=1>

<!--- If the Password is sent encrypted by URL, decrypt it --->
<cfif IsDefined('URL.Password')>
 <cfset Password = Decrypt(URL.Password,"z815$98")>
</cfif>

<!--- Create a url parameter string. Encrypt the password. This is not strong
 encryption --->
<cfset Parameters = "EmailAddress=#URLEncodedFormat(EmailAddress)#&PopServer=
#URLEncodedFormat(PopServer)#&SMTPServer=#URLEncodedFormat(SMTPServer)#&Username=
#URLEncodedFormat(Username)#&Password=#URLEncodedFormat(Encrypt(Password,"z815$98"))#">

<!--- Retrieve and display all message headers, 10 at a time. The number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 displayed per screen can be increased here by increasing the value of the
 NumDisplayMessages variable --->
<cfpop action="GetHeaderOnly" name="GetMessageHeaders" server="#popserver#"
 timeout="600" username="#username#" password="#password#"
 startrow="#CurrentMessageNumber#" maxrows="#NumDisplayMessages#">

<html>
<head>
 <title>Email Client - Inbox</title>
 <style type="text/css">
 body {
 background-color : #C0C0C0;
 }
 th {
 background-color : #0000FF;
 font-weight : bold;
 color : #FFFFFF;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 font-size : 10pt;
 }
 td.Main {
 background-color : #FFFFFF;
 }
 .Nav {
 background-color : #C0C0C0;
 font-weight: bold;
 }
 </style>
</head>
<body>

<div align="Center">
<table border="1" cellpadding="5" cellspacing="1">
 <tr>
 <td class="Main">
 <table border="1" cellpadding="5" cellspacing="0">
 <tr>
 <!--- allow the user to refresh the page or create a new message --->
 <cfoutput>
 <td class="Nav">Refresh</td>
 <td class="Nav">Create
 Message</td>
 </cfoutput>
 </tr>
 </table>

 <div align="Center">
 <h2>Email Client - Inbox</h2>
 </div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!--- Create next/previous buttons as necessary for the messages displayed in
 the inbox. If you want to display more than 10 messages at a time, you
 need to increase the value in the constants section. --->
 <cfoutput>
 <cfif (CurrentMessageNumber - NumDisplayMessages) gte 0>
 <a href="inbox.cfm?CurrentMessageNumber=#(CurrentMessageNumber
 - 10)#&#Parameters#">Previous |
 </cfif>

 <cfif GetMessageHeaders.RecordCount eq NumDisplayMessages>
 <a href="Inbox.cfm?CurrentMessageNumber=#(CurrentMessageNumber
 + NumDisplayMessages)#&#Parameters#">Next
 </cfif>
 </cfoutput>

 <!--- If there are messages to be displayed, do so and make the page a form so
 that multiple messages can be deleted. --->
 <cfif GetMessageHeaders.RecordCount gt 0>
 <cfoutput>
 <form action="action.cfm?action=delete&#Parameters#" method="Post">
 </cfoutput>
 <input type="submit" value="Delete">
 <table border="0" cellpadding="5" cellspacing="1">
 <tr>
 <th> </th><th>From</th><th>Date</th><th>Subject</th>
 </tr>

 <!--- Output the message headers --->
 <cfoutput query="GetMessageHeaders">
 <tr>
 <td><input type="Checkbox" name="Message" value="#MessageNumber#"></td>
 <!--- Link the message to the action.cfm page where the full message
 can be retrieved --->
 <td>
 #From#</td>
 <!--- This date is not formatted because some mail messages contain
 non standard date formats that cause ColdFusion to throw an
 error when attempting to format them --->
 <td>#DateFormat(ParseDateTime(Date), 'mm/dd/yyyy')#
 #TimeFormat(ParseDateTime(Date), 'hh:mm tt')#</td>
 <td>#Subject#</td>
 </tr>
 </cfoutput>
 </table>
 <input type="submit" value="Delete">
 </form>

 <!--- If no messages are found, let the user know --->
 <cfelse>
 <h3>No messages found...</h3>
 </cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </td>
 </tr>
</table>
</div>
</body>
</html>

The first thing that Example 13-12 does is initialize a few constants to be used throughout the template.
These constants make it easy to customize the application without having to replace multiple instances
of the same value. After the constants are initialized, the template checks to see if a user's POP account
password has been passed in via an encrypted URL variable. If it has, ColdFusion decrypts the password
using the key z815$98 (this is arbitrary and can be changed to anything you want provided it is used

consistently throughout the application) so that it can be used by the application. Next, a variable called
Parameters is created to hold all the URL parameters that will be passed from template to template

throughout the application. The URL parameters contain the user's email address, POP server, SMTP
server, username, and encrypted password.

The next section of Example 13-12 retrieves a list of the message headers from the user's POP account
using the cfpop tag with the action attribute set to GetHeaderOnly . Only the first 10 message headers
are retrieved by setting the startrow and maxrows attributes to 1 and 10, respectively. These values

are set in the constants section of the template. This is also how next/previous functionality is enabled.
After the first 10 message headers are retrieved, next/previous links are automatically created that
recalculate the values for startrow and maxrows . Clicking on one of the next/previous links causes the

inbox.cfm template to be reloaded with the attribute values necessary to grab the next/previous set of
message headers.

Once the messages have been retrieved, the inbox page is dynamically assembled and output to the
browser, as shown in Figure 13-1 . The message headers are listed in table format with the From part of
the header displayed as a hyperlink. The From addresses are linked to the next template in the
application, action.cfm , shown in Example 13-13 . The links pass several variables as URL parameters.
These variables contain all the user's login information, as well as the message number to be retrieved
and the action to be performed by the action.cfm template. The inbox template also adds a checkbox
next to each message header displayed, which allows users to select multiple messages to be deleted at
one time, a very useful feature for web-based mail clients.

Figure 13-1. Inbox page generated by inbox.cfm

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The action.cfm template (shown in Example 13-13) performs the majority of the tasks available in the
application. This template is responsible for displaying message contents, creating, forwarding, replying
to, and deleting messages.

Example 13-13. action.cfm file for the POP mail client

<!--- Initialize constants --->
<cfparam name="Action" default="Invalid"> <!--- Sets default action --->
<cfparam name="ReSubject" default=""> <!--- Default Re: subject --->
<cfparam name="Message" default="0"> <!--- Default message number for delete --->
<!--- Set the attachment path to the same directory where the application
 resides. --->
<cfset TheAttachmentPath = GetDirectoryFromPath(GetCurrentTemplatePath())>
<cfset Tab = Chr(9)> <!--- Sets a tab character --->

<!--- If the Password is sent encrypted by URL, decrypt it --->
<cfif IsDefined('URL.Password')>
 <cfset Password = Decrypt(URL.Password,"z815$98")>
</cfif>

<!--- Create a url parameter string containing the user's email address, POP
 server, SMTP server, username, and password. Encrypt the password using
 the encrypt() function. This is not strong encryption --->
<cfset Parameters = "EmailAddress=#URLEncodedFormat(EmailAddress)#&PopServer=
#URLEncodedFormat(PopServer)#&SMTPServer=#URLEncodedFormat(SMTPServer)#&Username=
#URLEncodedFormat(Username)#&Password=#URLEncodedFormat(Encrypt(Password,"z815$98"))#">

<html>
<head>
 <title>Pop Client</title>
 <style type="text/css">
 body {
 background-color : #C0C0C0;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 th {
 font-weight : bold;
 color : #0000FF;
 text-align : left;
 }
 .Attachments {
 color : #0000FF;
 }
 .Nav {
 background-color : #C0C0C0;
 font-weight: bold;
 }
 </style>
</head>
<body>

<div align="Center">
<table border="1" cellpadding="5">
 <tr>
 <td style="background-color : #FFFFFF;">
 <cfswitch expression="#Action#">

 <!--- Read a message --->
 <cfcase value="Read">
 <cfpop action="GetAll" name="GetMessages" messagelabel="#Message#"
 server="#Popserver#" timeout="600" username="#Username#"
 password="#Password#" attachmentpath="#TheAttachmentPath#"
 generateuniquefilenames="Yes">

 <!--- Output action options --->
 <table border="1" cellpadding="5" cellspacing="0">
 <tr>
 <cfoutput>
 <td class="Nav">Inbox</td>
 <td class="Nav">
 Create Message</td>
 <td class="Nav">

 Reply</td>
 <td class="Nav">

 Forward</td>
 <td class="Nav">

 Delete</td>
 </cfoutput>
 </tr>
 </table>

 <cfoutput query="GetMessages">
 <hr noshade>
 <p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <table>
 <tr>
 <th>From:</th>
 <td>#HTMLEditFormat(GetMessages.From)# on
 #HTMLEditFormat(GetMessages.Date)#</td>
 </tr>
 <tr>
 <th>To:</th>
 <td>#HTMLEditFormat(GetMessages.To)#</td>
 </tr>
 <tr>
 <th>Cc:</th>
 <td>#HTMLEditFormat(GetMessages.Cc)#</td>
 </tr>
 <tr>
 <th>Subject:</th>
 <td>#HTMLEditFormat(GetMessages.Subject)#</td>
 </tr>
 </table>
 <p>
 #HTMLCodeFormat(Trim(GetMessages.Body))#

 <!--- If there are attachments, display links to them --->
 <cfif GetMessages.Attachments is not "">
 Attachments:

 <cfloop from="1" to="#ListLen(GetMessages.Attachments, Tab)#"
 index="TheAttachment">
 <a href="#GetFileFromPath(ListGetAt(GetMessagesAttachmentFiles,
 TheAttachment, Tab))#">#ListGetAt(GetMessagesAttachments,
 TheAttachment, Tab)#

 </cfloop>
 </cfif>
 </cfoutput>
 </cfcase>

 <!--- Reply to, forward, or create a message --->
 <cfcase value="Reply,Forward,Create">
 <table border="1" cellpadding="5" cellspacing="0">
 <tr>
 <cfoutput>
 <td class="Nav">Inbox</td>
 </cfoutput>
 </tr>
 </table>
 <cfif Action is "Reply" or Action is "Forward">
 <cfpop action="GetAll" name="GetMessage" messagelabel="#Message#"
 server="#Popserver#" timeout="600" username="#Username#"
 password="#Password#" attachmentpath="#TheAttachmentPath#"
 generateuniquefilenames="yes">

 <!--- Preface the subject with Re: --->
 <cfif FindNoCase("Re:", Left(Trim(GetMessage.Subject), 3)) is 0>
 <cfset ReSubject = "Re: " & Trim(GetMessage.Subject)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfelse>
 <cfset ReSubject = Trim(GetMessage.Subject)>
 </cfif>
 </cfif>

 <cfoutput>
 <form action="action.cfm?action=send&#Parameters#" method="POST"
 enctype="multipart/form-data">
 <cfif IsDefined('GetMessage.Attachments')>
 <!--- Include the attachment info --->
 <input type="hidden" name="ForwardedAttachmentFiles"
 value="#GetMessage.AttachmentFiles#">
 <input type="hidden" name="ForwardedAttachments"
 value="#GetMessage.Attachments#">
 </cfif>
 </cfoutput>
 <input type="Submit" value="Send">
 <cfoutput>
 <table>
 <tr>
 <th>To:</th>
 <td><input type="text" name="To" value="<cfif Action is
 "Reply">#HTMLEditFormat(Trim(GetMessage.From))#</cfif>"
 size="50"></td>
 </tr>
 <tr>
 <th>Cc:</th>
 <td><input type="text" name="Cc" size="50"></td>
 </tr>
 <tr>
 <th>Bcc:</th>
 <td><input type="text" name="Bcc" size="50"></td>
 </tr>
 <tr>
 <th>Subject:</th>
 <td><input type="text" name="Subject" value="<cfif Action is not
 "Create">#HTMLEditFormat(ReSubject)#</cfif>" size="50"></td>
 </tr>
 </table>

 <p>
 <textarea name="Body" cols="70" rows="15" wrap="Virtual"><cfif Action is
 not "Create">#Chr(10)##Chr(13)#>>#GetMessage.Body#</cfif></textarea></p>
 </cfoutput>

 <!--- If forwarding, include attachments --->
 <cfif Action is "Forward" and GetMessage.Attachments is not "">
 Current File
 Attachments:

 <cfoutput>

 <cfloop from="1"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 to="#ListLen(GetMessage.Attachments, Tab)#"
 index="TheAttachment">
 #ListGetAt(GetMessage.Attachments, TheAttachment, Tab)#

 </cfloop>
 </cfoutput>
 </cfif>
 <p>
 File
 Attachment:

 <input type="File" name="Attachment">
 <p>
 <input type="Submit" value="Send">
 </form>
 </cfcase>

 <!--- Delete a message. --->
 <cfcase value="Delete">
 <cfpop action="Delete" messagelabel="#Message#" server="#popserver#"
 timeout="600" username="#username#" password="#password#">
 <cflocation URL="inbox.cfm?#Parameters#">
 </cfcase>

 <!--- Send the message --->
 <cfcase value="Send">
 <!--- Check to see if there is an attachment to upload before sending --->
 <cfif IsDefined('form.Attachment') and form.Attachment is not "">
 <cffile action="Upload" filefield="Attachment"
 destination="#TheAttachmentPath#"
 nameconflict="MakeUnique">
 </cfif>

<!--- Send the message --->
<cfmail to="#form.To#"
 from="#EmailAddress#"
 subject="#form.Subject#"
 cc="#form.cc#"
 bcc="#form.bcc#"
 server="#SMTPServer#"
 timeout="600">
#form.Body#
<!--- Include the new attachment if necessary --->
<cfif IsDefined('form.Attachment') and form.Attachment is not "">
 <cfmailparam file="#TheAttachmentPath#\#cffile.ServerFile#">
</cfif>

<!--- Include any forwarded attachments if necessary --->
<cfif IsDefined('ForwardedAttachments')>
 <cfloop from="1" to="#ListLen(ForwardedAttachments, Tab)#"
 index="TheAttachment">
 <cfmailparam file="#ListGetAt(ForwardedAttachmentFiles, TheAttachment, Tab)#">
 </cfloop>
</cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfmail>
 <cflocation URL="Inbox.cfm?#Parameters#">
 </cfcase>

 <!--- No Action selected. Redirect back to inbox --->
 <cfdefaultcase>
 <cflocation URL="Inbox.cfm?#Parameters#">
 </cfdefaultcase>
 </cfswitch>
 </td>
 </tr>
</table>
</div>
</body>
</html>

Example 13-13 begins in much the same way as Example 13-12 . First, constants are assigned for the
entire template. If an encrypted password is received, it is unencrypted. Next, a variable called
Parameters is created to hold all the URL parameters that will be passed from template to template

throughout the application. The URL parameters contain the user's email address, POP server, SMTP
server, username, and encrypted password.

After these preliminary steps, the template evaluates the Action variable passed from the previous

template (either inbox.cfm or the action.cfm template calling itself) and performs the appropriate
action. Possible actions for the action.cfm template are:

Action="Read"

If Action is set to Read , the cfpop tag retrieves the entire message including attachments. The

message number to retrieve is supplied from the Inbox.cfm template as a URL variable. If there
are file attachments associated with the message, they are displayed by looping through the
contents of the Attachments and AttachmentFiles variables and creating hyperlinks to the

actual files. A menu is generated at the top of the page allowing the user to create a new
message, reply to, forward, or delete the message being read, or return to the inbox.

Action="Create"

When the Action is set to Create , the template displays a form for creating a mail message. The
form allows you to specify values for To , Cc , Bcc , Subject , Body , and a single file attachment.

Action="Reply"

If Action is set to Reply , the template displays a form for creating a new message with the To

field already populated with the email address of the sender of the original message. In addition,
the body of the original message is included in the body of the new message.

Action="Forward"

Forwarding a message works exactly like replying to a message, except that the To field isn't

automatically populated. Additionally, any file attachments included with the original message are
automatically sent along with the message that is forwarded.

Action="Delete"

If Action is set to Delete , the template permanently deletes one or more messages from the

POP server. Messages are selected for deletion from the inbox page (one message or multiple
messages) or from the "Read Message" page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Action="Send"

If Action is set to Send , ColdFusion physically sends the message that was created, replied to, or

forwarded. If a file attachment is specified, it is uploaded from the client machine to the
ColdFusion server, so that it can be sent along with the message. File attachments associated with
forwarded messages are also included.

13.4.1 Moving Beyond a Basic Email Client

As I mentioned earlier, the email client we just built is designed to showcase the functionality of the
cfpop and cfmail tags. It is by no means a feature-rich email client, nor is it architected in the most

efficient and secure manner. Here are some general ideas for improving the application, should you
desire to do so:

Architect the application using ColdFusion Components (CFCs). This approach makes it easier to
segment functionality as well as maintain code. For more information on CFCs, see Chapter 22 .

Instead of passing configuration and security information around in the URL, store these values in
a persistent variable scope such as the client or session scope.

Currently, operations such as replying to and forwarding a message require another round trip to
the POP server to retrieve the message a second time to populate the forward/reply screen. This
functionality could be changed so that clicking the forward or reply link when reading a message
uses JavaScript to perform a form post with hidden form fields containing the message data. That
way, on the forward/reply screen, a second call to the POP server wouldn't be necessary.

Build in additional functionality to handle things like message folders, message priority, displaying
read vs. unread messages, etc.

Add SSL functionality for more secure transmission of data between the client and the server.

Include the ability to maintain a name and address book for selecting message recipients.

Attach personalized email signatures to the end of outgoing messages.

Allow users to attach multiple file attachments to each outbound message.

Add exception handling to deal with problems connecting to the POP/SMTP server and other
unforeseen exceptions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Interacting with Other Web
Servers Using HTTP
One of ColdFusion's most powerful features is its ability to interact with other web servers via the
cfhttp tag. cfhttp allows a ColdFusion application to perform standard HTTP operations (Delete,
Get, Head, Options, Post, Put, and Trace) on remote servers. Using cfhttp, you can perform a wide

range of functions, such as retrieving text and binary files, reading the contents of delimited text files
into query objects, and posting information such as form-field data or XML to forms and applications
on remote servers. Some of the more common uses include generating static HTML pages from
dynamic data, gathering content such as news articles and press releases from remote sites,
automatic form submissions, and intelligent agents capable of interacting with remote services such
as stock quote and news feeds. For example, you can use cfhttp to write an agent that can gather

information related to a particular company from various services including news sources, search
engines, and financial service providers. The information gathered by the agent can be presented to
users in any number of ways such as in an email, on a personalized web page, or even in an
alphanumeric message sent to a pager. The uses for the cfhttp tag are limited only by your

imagination.

Because cfhttp has the ability to grab content from remote sites, questions of copyright, trademark,

and intellectual property infringement can come up. It is important to remember that much of what is
out on the Internet is protected by copyright. When using cfhttp to gather information from remote

sites, you should have a clear understanding of what is protected and what is considered to be under
public domain. When in doubt, consider contacting the publisher of the information for permission.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 Retrieving Information

cfhttp uses the HTTP GET method to initiate a one-way request for information from a remote

server. The transaction mimics the one that a standard web browser uses to request a web page. The
only difference is that in the case of cfhttp, the requested page is stored in a ColdFusion variable or

in a query object, as opposed to being displayed in the user's browser. Let's look at the different
ways in which you can use cfhttp to request information from a remote server.

14.1.1 Saving Information to a Variable

In its most simplistic form, cfhttp can grab an entire file (either plain text or HTML) and store it in a
single variable called cfhttp.FileContent. You can access and manipulate the information stored in
cfhttp.FileContent as you can with any other ColdFusion variable. cfhttp.FileContent is only
one return variable made available by the cfhttp tag. All cfhttp operations return a structure called
cfhttp that contains information returned by the target server. Depending on the HTTP operation
performed (as defined by the method attribute) as well as the response returned by the target server,
the cfhttp structure may or may not contain values for the following keys:

cfhttp.charset

Character encoding specified by the response Content-Type header.
cfhttp.errorDetail

In the event of a connection failure, contains details related to the failure. If no failure occurs,
this key contains an empty string.

cfhttp.fileContent

Contains the response body resulting from an HTTP operation. If the response is saved as a
file, cfhttp.fileContent is blank.

cfhttp.header

A string that contains the complete HTTP header in raw form. Contains the same information
as cfhttp.responseHeader.

cfhttp.mimeType

MIME type of the response as specified by the Content-Type header.
cfhttp.responseHeader

A ColdFusion structure that contains the names and values from the HTTP response header. If
a particular key appears only once in the header, it is stored as a simple value within the
structure. If a key appears more than once, it is stored as an array within the structure. In
ColdFusion MX 6.0, keys that appeared more than once in the response header were stored as
a structure within the cfhttp.responseHeader structure. This is important to note for

backward compatibility.
cfhttp.statusCode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the HTTP status code and associated message relating to the status of the HTTP
operation.

cfhttp.text

Boolean indicating whether the response body Content-Type is text. For a list of the rules used
to determine whether the response body is text, see the getasbinary attribute.

The following example illustrates how to use cfhttp to retrieve a remote web page and store it as a

variable:

<cfhttp method="Get"
 getasbinary="No"
 proxyserver="myproxy.example.com"
 proxyport="80"
 proxyuser="pmoney"
 proxypasswrod="cat"
 URL="http://www.yahoo.com/"
 port="80"
 resolveurl="Yes"
 redirect="Yes"
 useragent="Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"
 charset="UTF-8"
 multipart="No"
 timeout="180"
 throwonerror="Yes" />

<cfoutput>
#cfhttp.FileContent#
</cfoutput>

The first cfhttp attribute you see is the required method attribute. This specifies the type of HTTP
operation to perform. Options are Delete, Get, Head, Options, Post, Put, and Trace. Delete, Head,
Options, Put, and Trace are new in ColdFusion MX 6.1. For more information on each of these
methods, see Appendix A. getasbinary is a new optional attribute in ColdFusion MX 6.1. It indicates
whether to convert the response body returned by a cfhttp operation to the ColdFusion binary data
type. If Yes, ColdFusion converts the response body to the binary data type. If No (the default), a

response body not recognized by ColdFusion as text is automatically converted to a ColdFusion
object. If Auto, a response body not recognized as text is automatically converted to the binary data

type. ColdFusion recognizes a response body as text if it meets one or more of the following criteria:

The header doesn't specify a content type

The content type starts with "text" or "message"

The content type is set as "application/octet-stream"

If you must pass through a proxy server for Internet access, the hostname or IP address of that
server may be specified in the proxyserver attribute. If the proxy server uses a port other than 80,
specify the port number using the proxyport attribute. Likewise, if the proxy server requires a
username and password for authentication, you may specify them using the proxyuser and
proxypassword attributes, respectively. Both proxyuser and proxypassword are new in ColdFusion

MX 6.1. If you don't use a proxy server, don't include this attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next attribute, URL, is also required; it specifies the full URL, including the protocol (http:// or

https://) and host name or IP address of the remote web page you are accessing. Additionally, you
may append a port number to the URL (e.g., http://www.myserver.com:8080/). In this case, we've
used cfhttp to retrieve the home page from Yahoo!'s web site. The port attribute specifies what
port the cfhttp tag should try to connect to. This attribute is optional and defaults to the standard
HTTP port 80. If used in conjunction with the resolveurl attribute, the port number is automatically
appended to all resolved URLs. The port attribute is ignored if a port number is specified in the URL

attribute.

Setting the resolveurl attribute to Yes specifies that any partial or relative URLs embedded in the

retrieved document are fully resolved, so that all links in the document remain valid. If you want to
resolve a URL that doesn't end in a filename (such as http://www.example.com), and you set the
resolveurl attribute to Yes, you need to supply a trailing forward slash (http://www.example.com/)
for the URL attribute in order for certain URLs (such as those in img tags) to resolve properly. Since
we are outputting the retrieved page to the screen using cfoutput, it is important that all the links

function properly.

redirect is an optional attribute that indicates whether or not to allow a cfhttp request to be
automatically redirected. If set to No, the cfhttp request fails upon encountering a redirect. If
throwonerror is set to Yes, the error code and message associated with the error are written to the
cfhttp.StatusCode variable. The cfhttp tag can follow as many as four redirections per request. If
this limit is exceeded, ColdFusion treats the next redirect as if the redirect is set to No. The
useragent attribute specifies the user agent to pass in the HTTP request header when cfhttp makes
a request to a remote web server. In this example, we set useragent to Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.0) so that the request appears to the remote web server as if it originated

from an Internet Explorer 6.0 browser running on Windows 2000. This feature is especially useful
when the information you are trying to retrieve varies depending on the browser making the request.

multipart is a new optional Boolean attribute in ColdFusion MX 6.1. If Yes, ColdFusion sends all
form field data (set using the cfhttpparam tag which we'll cover soon) as non-URL encoded multipart
form data (Content-Type=multipart/form-data). Additionally, the request's charset is sent along
in each Content-Type description, and each form field must be encoded using the same charset. If
No, form field data is sent as Content-Type=application/x-www-form-urlencoded unless file type
data is also included, in which case all parts are sent using Content-Type=multipart/form-data.
The default is No. The charset attribute is optional and new in ColdFusion MX. It lets you specify a
Java character set for the file or URL the cfhttp tag is getting or posting. The most common
character sets are UTF-8 (the default), UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1.

You may use any character set supported by your JRE.

Another optional attribute, timeout,[1] specifies a timeout in seconds for the cfhttp operation. If a
cfsetting requesttimeout value is used in conjunction with the template employing the cfhttp
tag, and the timeout attribute of the cfhttp tag is used, ColdFusion uses the lesser of the two
values. If, however, no URL timeout value is passed, no cfhttp timeout attribute is used, and no

default timeout value is set in the ColdFusion Administrator, ColdFusion will wait indefinitely for the
cfhttp tag to process. Because each instance of the cfhttp tag being processed requires a thread of

its own, this can have serious performance consequences. Depending on your server and ColdFusion
configuration, the potential to hang the server exists if the cfhttp tag utilizes all available threads on

the system.

[1] In ColdFusion MX, the timeout attribute is not functional with versions of the SUN JDK prior to Version

1.4.0.

https://
http://www.myserver.com:8080/
http://www.example.com
http://www.example.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, the throwonerror attribute specifies whether ColdFusion should generate an exception that
can be caught with cftry/cfcatch tags should an error occur when executing the cfhttp request.
throwonerror is optional and defaults to No. If the throwonerror attribute is set to No, you can still
use the cfhttp.StatusCode return variable to detect and handle any errors raised by the operation.
cfhttp.StatusCode returns an HTTP 1.1 status code along with a descriptive message. There are 37

status codes detailed in the HTTP 1.1 specification outlined in RFC-2068. For a list of the status
codes, see the listing for the cfhttp tag in Appendix A. The complete text of RFC 2068 is available at

http://www.w3.org/Protocols/rfc2068/rfc2068. In order to get detailed information in the event the
cfhttp tag throws an exception, throwonerror must be set to Yes. More information on error and

exception handling can be found in Chapter 9.

The use of the closing </cfhttp> tag is only required when cfhttp is used in conjunction with one or
more cfhttpparam tags. In the interest of good style and to be compatible with XML standards,
however, it is a good idea to use the closing shorthand syntax for cfhttp Get operations:

<cfhttp method="Get" URL="www.example.com" />

14.1.2 Saving Information to a File

You may opt to save a retrieved file directly to the local filesystem. By adding the path and file

attributes to the previous example, we can store the page we retrieved from Yahoo!'s web site right
on the hard drive of our ColdFusion server:

<cfhttp method="Get" URL="http://www.yahoo.com/"
 file="index.htm" path="c:\temp" />

Note that the resolveurl attribute is intentionally left out. Setting the file and path attributes
causes the resolveurl attribute to be ignored. When retrieving a file, ColdFusion uses an additional
variable, cfhttp.MimeType, to contain the MIME type of the downloaded file. This is especially useful

when downloading a file with an unknown MIME type.

You can also use cfhttp to retrieve binary files from a remote server. Here's how to use cfhttp to

retrieve a binary file, in this case a GIF file from the local ColdFusion server:

<cfhttp method="Get"
 URL="http://localhost/cfide/administrator/images/cfmx.gif"
 path="c:\temp" />

<cfoutput>
The MIME type of the downloaded file is #cfhttp.MimeType#
</cfoutput>

After the file is downloaded, its MIME type is returned to the screen via cfoutput. Note that the file
attribute has been left out this time. By default, cfhttp uses the filename from the URL if no file

attribute is specified. To save the file under a different name from the default, simply add the new
name using the file attribute.

14.1.3 Retrieving HTTP Header Information

The cfhttp tag returns the response header associated with all HTTP operations. The HTTP response

http://www.w3.org/Protocols/rfc2068/rfc2068
http://lib.ommolketab.ir
http://lib.ommolketab.ir

header is returned as a ColdFusion structure called cfhttp.ResponseHeader. The exact contents of
the cfhttp.ResponseHeader structure vary depending on the web server in use where the page is

requested. If a particular key appears only once in the header, it is stored as a simple value within
the structure. If a key appears more than once, it is stored as an array within the structure.[2] Other
special header keys, such as the Set-Cookie header, are also stored as structures regardless of the
number of times they appear in the header. Another variable, cfhttp.Header, is also returned and

contains the raw HTTP response header as a string as opposed to a structure. Example 14-1
illustrates a method for requesting a remote web page and outputting all the data in the HTTP
response header without knowing the specific keys in the cfhttp.ResponseHeader structure.

[2] In ColdFusion MX 6.0, keys that appeared more than once in the response header were stored as a structure

within the cfhttp.ResponseHeader structure. This is important to note for backward compatibility.

Example 14-1. Outputting the HTTP response header

<cfhttp URL="http://www.macromedia.com" method="Head">

<table border="1" cellspacing="0" cellpadding="5">
 <tr>
 <th>Key</th><th>Value</th>
 </tr>

<cfloop collection="#cfhttp.ResponseHeader#" item="Key">
 <cfset Value = cfhttp.ResponseHeader[Key]>

 <cfif IsStruct(Value)>
 <cfloop collection="#cfhttp.ResponseHeader[Key]#" item="i">
 <cfoutput>
 <tr>
 <td>#key#</td><td>#value[i]#</td>
 </tr>
 </cfoutput>
 </cfloop>
 <cfelse>
 <cfoutput>
 <tr>
 <td>#Key#</td><td>#value#</td>
 </tr>
 </cfoutput>
 </cfif>
</cfloop>
</table>

In this example, the cfhttp tag retrieves the header for the home page of Macromedia's web site
using the cfhttp Head method. The Head method is useful because it allows you to retrieve the
header without having to bring back the entire content of the page. The cfhttp.ResponseHeader is
then looped over using the cfloop tag. Each value in the structure is then evaluated to determine

whether it is a string or a structure. If the value is a string, it is output directly to the browser. If,
however, the value is a structure (as is the case for the Set-Cookie key in the response header

obtained from Macromedia's web site), the elements of the structure must be looped over individually
and output one at a time. You can also get a good visual representation of the contents of the
cfhttp.ResponseHeader structure by dumping it out with cfdump:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfhttp URL="http://www.macromedia.com" method="Head">
<cfdump var="#cfhttp.ResponseHeader#">

14.1.4 Creating Query Objects from Text Files

One of the most useful features of the cfhttp tag is its ability to construct a query object from data

contained in a delimited text file. This essentially allows you to use any delimited text file accessible
via a URL as a "pseudo" ColdFusion data source; in other words, you don't need a database driver. I
say a "pseudo" data source because although a query object can be built from a delimited text file
using cfhttp, the cfhttp tag itself can't execute a ColdFusion query against the text file.

There are a number of different scenarios for having cfhttp import the contents of a delimited text

file into a query object. Some of the more common ones include working with flat files, interfacing
with legacy systems, and handling news and stock feeds. For instance, say that the Human
Resources department of a particular company uses an outdated personnel program that stores
personnel data as a comma-delimited text file on the server. As your company is serious about web-
enabling all your legacy data, your boss decides that a contact list application needs to be built that
queries the Human Resources personnel database and displays the results as a web page. Using
cfhttp, you can construct a small program to read in the contents of the text file and dynamically

generate a nicely formatted web page listing all the employees and their contact information.

Here's a typical comma-delimited text file with column headers:

Name,Title,Department,Extension
Joe Smith,Lead Salesperson,Sales,5515
Nancy Jones,Liaison,Marketing,5596
Tom White,Mechanical Engineer I,Engineering,5525
Jen Brown,Collection Specialist,Billing,5543

Getting cfhttp to import the contents of such a delimited text file into a query object is easy. The

following example shows the proper syntax for building a query object from the data:

<cfhttp URL="http://127.0.0.1/programmingcf/14/myfile.txt"
 method="get" name="MyQuery" delimiter="," textqualifier="">
</cfhttp>

<table>
 <tr>
 <th>Name</th><th>Title</th><th>Department</th><th>Extension</th>
 </tr>
<cfoutput query="MyQuery">
 <tr>
 <td>#Name#</td><td>#Title#</td><td>#Department#</td><td>#Extension#</td>
 </tr>
</cfoutput>
</table>

We use the name attribute to specify the name of the query. Note that this attribute tells cfhttp to
construct a query object. We set the delimiter attribute to a comma, since we are dealing with a
comma-delimited text file. Because no text qualifier is used in the text file, the textqualifier
attribute is set to "". A text qualifier is sometimes used in a delimited text file to mark the beginning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and end of a column. The default value for the textqualifier attribute is the quotation mark (").
Because the quotation mark is a reserved character, if you code it directly in the textqualifier
attribute it must be escaped as textqualifier="""".

By default, cfhttp uses the values found in the first row of a delimited text file as column headers.

These headers are used as column names for the query unless alternate names are specified with the
columns attribute. To ensure that all column headers remain unique within a given query, ColdFusion

automatically adds an underscore character (_) to any duplicate column header it finds in the
delimited text file. For example, if two column headers called Name are found, ColdFusion leaves the
first one alone and adds an underscore to the second one, making it Name_. In ColdFusion MX, the

column names specified in the first row of data do not need to be enclosed in double quotation
marks, even if the rest of the column data in the text file is.

Once we have the data stored as a query object, displaying the data is only a matter of using the
variables in a cfoutput tag. Our example displays the data stored in the query as an HTML table.
Note that the column headers used in the <th> tags are arbitrary and must be created manually.

In addition to creating a ColdFusion query, the cfhttp operation creates a number of other variables

that give information about the query object itself:

queryname.ColumnList

A comma-delimited list of column headers for the query
queryname.CurrentRow

The current row of the query that is being processed by cfoutput

queryname.RecordCount

The total number of records returned by the query

If for some reason you decide you don't like the column headers that accompany the delimited text
file, you can change them with the columns attribute. You can use any value as a column header,

provided it begins with a letter and contain only letters, numbers, and the underscore character. You
must be careful to use the same number of column headers as there are columns in the delimited
text file. Failure to do so causes cfhttp to return an error.

Because you may not always know the column names being used in a text file, ColdFusion provides a
variable called queryname.ColumnList that holds all the column headers contained in a specified

query. As always, you access this variable through the query name:

#queryname.ColumnList#

With access to the column names, it is fairly easy to construct a single ColdFusion template that can
use cfhttp to retrieve the contents of any delimited text file that contains column headers and

output the results to the screen. All this can be accomplished without knowing anything other than
the location of the text file and the delimiter used, as illustrated in Example 14-2.

Example 14-2. Displaying the contents of any comma-delimited text file
with cfhttp

<!--- Use cfhttp GET to grab the delimited text file. Assume that the comma
 is the delimiter and there is no text qualifier --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfhttp method="Get"
 URL="http://127.0.0.1/programmingcf/14/myfile.txt"
 name="MyQuery" delimiter="," textqualifier="">

<html>
<head>
 <title>Example 14-2: Displaying the Contents of Any Comma-Delimited Text File
 with cfhttp</title>
 <style type="text/css">
 th {
 background-color : #888888;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>
<body>
<!--- Build an HTML table with the column headers parsed from the first line
 of the delimited text file --->
<table border="0" cellpadding="3">
 <tr>
<!--- Dynamically build the column headers by looping through the column
 headers returned in the MyQuery.ColumnList variable --->
<cfloop index="ThePosition" from="1" to="#ListLen(MyQuery.ColumnList)#">
 <cfoutput>
 <th>#ListGetAt(MyQuery.ColumnList, ThePosition)#</th>
 </cfoutput>
</cfloop>
 </tr>

<!--- Dynamically build the columns and rows to be output by looping over the
 column names listed in the MyQuery.ColumnList variable. The values
 contained in the column headers are extracted using array notation. --->
<cfloop query="MyQuery">
 <tr>
 <cfloop index="ListElement" list="#MyQuery.ColumnList#">
 <cfset ColumnValue = MyQuery[ListElement]>
 <td><cfoutput>#ColumnValue#</cfoutput></td>
 </cfloop>
 </tr>
</cfloop>
</table>
</body>
</html>

This template uses the cfhttp tag to grab a text file called textfile.txt and store its contents in a
query called MyQuery. To obtain the column names, we use a list loop to loop over
MyQuery.ColumnList and output each column name as a cell in the first row of an HTML table.
Remember that ColumnList is a special variable created by ColdFusion that contains a list of all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

columns in a given query object. Once we have the column names, all that is left is to dump the
contents of the query object into the HTML table. This is done by looping over the column names
listed in the MyQuery.ColumnList variable. The values contained in the column headers are

extracted using array notation. Executing the template in Example 14-2 results in the output shown
in Figure 14-1.

Figure 14-1. Using cfhttp to display the contents of a comma-delimited
text file

There may be cases where the text file you retrieve with cfhttp does not contain column headers in
the first row of the file. If you find yourself in this situation, use the cfhttp tag's optional
firstrowasheaders attribute to tell the cfhttp tag not to treat the first row of the file as data. If the
attribute is set to No (the default is Yes) and columns is not specified, the first row of the text file is
treated as data, and column names are automatically generated using the convention column_1,

column_2, ..., column_n.[3] If firstrowasheaders is set to No and columns is specified, ColdFusion
uses the values passed in columns as the column headers for the query and treats the first row in

the text file as data. This functionality is new in ColdFusion MX. For a real world example of how this
is useful, take a look at Example 14-3.

[3] Due to a bug in the initial release of ColdFusion MX, specifying firstrowasheaders="No" and omitting

the columns attribute causes ColdFusion to treat the first row of data in the text file as column headers (just

as if the attribute was set to Yes). This issue has been fixed in ColdFusion MX 6.1.

Example 14-3. Handling delimited text files without column headers

<!--- Use cfhttp to get the delimited text file from Yahoo's web site. Note
 that the material at yahoo.com is copyrighted. Also note there are no
 line breaks in any of the attribute values in the cfhttp tag. --->
<cfhttp method="Get"
 URL="http://quote.yahoo.com/d/quotes.csv?s=yhoo+amkr+macr&f=sl1d1t1c1ohgv&e=.csv"
 name="MyQuery"
 columns="Symbol,Last_Traded_Price,Last_Traded_Date,Last_Traded_Time,
Change,Opening_Price,Days_High,Days_Low,Volume"
 delimiter=","
 firstrowasheaders="No">

<html>
<head>
 <title>Example 14-3: Handling Delimited Text Files Without Column

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Headers</title>
 <style type="text/css">
 th {
 background-color : #FFCC99;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #EFD6C6;
 }
 </style>
</head>
<body>
<!--- Build an HTML table with the results from the query --->
<div align="center">
<h2>Stock Quotes From Yahoo</h2>
<table border="1" cellpadding="3">
 <tr>
 <th>Symbol</th><th>Price</th><th>Change</th><th>Time</th><th>Date</th>
 <th>Open</th><th>High</th><th>Low</th><th>Volume</th>
 </tr>
<cfoutput query="MyQuery">
 <tr>
 <td>#Symbol#</td><td>#Last_Traded_Price#</td><td>#Change#</td>
 <td>#Last_Traded_Time#</td><td>#Last_Traded_Date#</td><td>#Opening_Price#</td>
 <td>#Days_High#</td><td>#Days_Low#</td><td>#Volume#</td>
 </tr>
</cfoutput>
</table>
</div>
</body>
</html>

The code in this example works by calling a special CGI program on Yahoo!'s web site via URL that
returns a delimited text file containing stock quotes. The quotes returned are determined by the
ticker symbols that are passed in the URL. The delimited text file returned by the CGI program is
converted to a query object by the cfhttp tag. Because the first line of the text file doesn't contain
any column headers, we specify some using the columns attribute and setting firstrowasheaders to
No. Additionally, because the text file uses double quotes to distinguish text from numeric values, we
don't need to explicitly set a value for the textqualifier attribute since it defaults to double quotes.

Once the contents of the text file are stored in a query object, an HTML table is dynamically
constructed by outputting the contents of the query.

14.1.5 Passing Parameters

With a cfhttp GET operation, you can pass URL parameters to a remote page that you are

attempting to retrieve. This means you can retrieve a page that is dynamically generated from a
script based on the parameters passed to it, such as a search page. Here's an example that shows
the use of cfhttp to retrieve the results page from a search for "ColdFusion" on Yahoo!'s web site:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfhttp URL="http://search.yahoo.com/bin/search?p=ColdFusion"
 method="Get" resolveurl="Yes">
</cfhttp>

<cfoutput>
#cfhttp.FileContent#
</cfoutput>

Note the URL we are using. It contains the parameters needed to perform the search. Normally,
searches on the Yahoo! web site are performed by filling out and submitting an HTML form. The HTML
form uses an HTTP GET operation to pass the search criteria as URL parameters to a CGI script. The
script returns a dynamically generated HTML page that contains the search results. By passing the
search criteria in the URL for our cfhttp operation, we can completely bypass the search form. Of

course, to do this, you need to understand exactly what parameters a remote page is expecting and
in what form.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Parsing Data

As shown in the previous examples, cfhttp is great for importing the contents of a text file into a

query object and allowing for output of results to the screen. This process is useful if you want to
dump the results of the file into another database or output the results to a simple HTML table. But
what if the data you import requires a little cleaning up beforehand? Take, for example, the following
delimited text file containing employee information for a fictitious company:

Name,Title,Department,Extension,JobCode
Joe Smith,Lead Salesperson,Sales,5515,A:001
Nancy Jones,Liaison,Marketing,5596,b:003
Tom White,Mechanical Engineer I,Engineering,5525,A:002
Jen Brown,Collection Specialist,Billing,5543,C:004
Mike Johnson,Security Guard,Security,5512,E:012

Note that this text file is very similar to the one we used earlier, but there is an added field called
JobCode. This new field is used for a number of purposes within the company, including classifying an
employee's position. Suppose that we want to use cfhttp to put the contents of this text file into a
query object. Nothing tricky needed; it's just a simple cfhttp GET operation.

Once we have the contents of the file in a query object, however, we will want to append an
additional column of data called Status and populate it based on each employee's job code. Because

the data is already contained within a query, there is no simple way to make the additions. We can
wait until the results are output and make the additions inside the cfoutput section, but that will

work only if the data is output to the screen and not if you want to save the results of the query to
another database. Making additions or changes within the query is the most efficient method.
Example 14-4 details a method for inserting additional information into an existing query. In this
case, we append an additional column, Status, to the query. This column is populated with data
based on the value of the JobCode column.

Example 14-4. Parsing the contents of a cfhttp query

<!--- Use cfhttp GET to grab the delimited text file --->
<cfhttp method="Get"
 URL="http://127.0.0.1/programmingcf/14/hrdata.txt"
 name="MyQuery"
 delimiter=","
 textqualifier="">
</cfhttp>

<!--- Create a one-dimensional array called StatusArray to hold the
 status value to be appended to the query object --->
<cfset StatusArray = ArrayNew(1)>

<!--- Loop over the query object checking the first letter of the jobcode.
 Assign a value to the StatusArray depending on the jobcode. --->
<cfloop query="MyQuery">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfswitch expression="#Left(MyQuery.JobCode, 1)#">
 <cfcase value="A,b">
 <cfset StatusArray[CurrentRow]="Exempt">
 </cfcase>
 <cfcase value="C">
 <cfset StatusArray[CurrentRow]="Non-exempt">
 </cfcase>
 <cfcase value="D">
 <cfset StatusArray[CurrentRow]="Temporary">
 </cfcase>
 <cfdefaultcase>
 <cfset StatusArray[CurrentRow]="Other">
 </cfdefaultcase>
 </cfswitch>
</cfloop>

<!--- Create a new column called Status and populate it with the data from
 the StatusArray. --->
<cfset MyNewColumn = QueryAddColumn(MyQuery, "Status", StatusArray)>

<html>
<head>
 <title>Example 14-4: Parsing the Contents of a cfhttp Query</title>
 <style type="text/css">
 th {
 background-color : #8A8A8A;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 }
 </style>
</head>
<body>

<!--- Output the results of the modified query to an HTML table. --->
<table border="0" cellpadding="3">
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Department</th>
 <th>Extension</th>
 <th>Job Code</th>
 <th>Status</th>
 </tr>
<cfoutput query="MyQuery">
 <tr>
 <td>#Name#</td>
 <td>#Title#</td>
 <td>#Department#</td>
 <td>#Extension#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#JobCode#</td>
 <td>#Status#</td>
 </tr>
</cfoutput>
</table>
</body>
</html>

This template uses cfhttp to grab a delimited text file and store its contents in a query object called
MyQuery. Next a one-dimensional array called StatusArray is created to hold the status value we are

going to append to each record in the query. The actual status value is assigned by looping over
MyQuery and evaluating the first character of the JobCode column for each row. A status is then
assigned for each row based on JobCode and written to the StatusArray array. Once the loop has
completed, the values in the array are appended to the MyQuery query object using the
QueryAddColumn() function. Finally, an HTML table containing the appended Status column is

produced.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.3 Generating Static HTML Pages

Another popular use for cfhttp is to generate static HTML pages from dynamic content. As useful as

dynamically generated pages are, there are still times when using static HTML pages makes more
sense, because static pages load faster than dynamic pages. Dynamic pages require more processing
overhead, because each request must be passed to the ColdFusion Application Server in addition to
the web server. This doesn't include the added time it takes to process all the CFML code contained in
each template. The differences in load time between static and dynamic pages becomes clear.

Yet, it isn't practical or even desirable to convert every page in a site to a static page. There are
some amazing things that can be done with dynamic pages that just can't be re-created with static
HTML pages. How do you decide which pages in a site or application should be static and which
dynamic? There is no simple answer, but there are some useful guidelines to help you decide:

Data that is infrequently refreshed is a prime candidate for static page material. For instance, if
you have a ColdFusion template that outputs a table of sales figures that change only once per
month, it makes more sense to have the page exist as a static page. Why tie up your server
with the additional overhead of running the exact same query over and over only to return the
same result set each time? It's much simpler to write a small ColdFusion template that performs
the query and outputs the results to a static page. The template can even be scheduled to run
on an automated basis via the ColdFusion Administrator. This completely eliminates the need for
any further administrator involvement.

Queries that take a long time to process are another candidate for static page generation. If
there is one thing that drives users nuts, it is having to wait long periods of time while a query
executes or a page loads. Creating static pages from ColdFusion templates that contain
unusually long queries, long execution times, or complex CFML code is a service to your users
that should definitely be considered.

Making your site more visible to search engines is the third reason to consider generating static
pages from your ColdFusion templates. While many of the popular search engines on the Web
can now index ColdFusion pages, some still have problems following links that contain URL
parameters. If search-engine exposure is a high priority for your site, you should consider
making at least some of your pages static.

Creating a static HTML page from dynamic content is easy. Say your company web site has a
dynamically generated press release page that gets its data from a small database residing on the
server (in this case, Microsoft Access). The CFML template shown in Example 14-5 is used to query
the database for a list of press release titles for the current year. Note that ArticleID is the primary

key for the table. The other two field names are self-explanatory. Example 14-5 also queries the
database for a list of previous years' press releases. Each time a user on the Internet requests this
page with their web browser, both queries must be run against the database, and a results page
must be dynamically constructed before it can be sent back to the user. This process has the
potential to tie up a lot of the server's processing time. Because the query is the same each and
every time this page is accessed, it is a perfect candidate for a static page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 14-5. Listing press-release headers in a database

<cfsetting showdebugoutput="No">
<!--- Assign the current year to the variable whichyear --->
<cfparam name="WhichYear" default="#Year(Now())#">

<!--- Query the database for all articles from the current year --->
<cfquery name="GetTitles" DATASOURCE="ProgrammingCF">
 SELECT ArticleID,Title,DatePosted
 FROM News
 WHERE {fn YEAR(DatePosted)} = #CreateODBCDate(WhichYear)#
 ORDER BY DatePosted
</cfquery>

<!--- Query the database for all years besides the current year --->
<cfquery name="GetArchiveDates" DATASOURCE="ProgrammingCF">
 SELECT DISTINCT {fn YEAR(DatePosted)} AS PreviousYears
 FROM News
 WHERE {fn YEAR(DatePosted)} <> #CreateODBCDate(WhichYear)#
</cfquery>

<html>
<head>
 <title>Company Press Releases</title>
</head>
<body>

<div align="Center">
<cfoutput><h2>Press Releases for #WhichYear#</h2></cfoutput>

<!--- Output all of the article headers from the selected year. Make the
 headers links to another template which displays the entire article from
 the database --->
<cfif GetTitles.RecordCount gt 0>
 <table cellspacing="0" cellpadding="3" border="0">
 <cfoutput query="GetTitles">
 <tr>
 <td valign="center">#DateFormat(DatePosted,'mm/dd/yyyy')# </td>
 <td valign="top">#Title#</td>
 </tr>
 </cfoutput>
 </table>
<cfelse>
 <h3>There are no press releases for this year</h3>
</cfif>
<!--- List other years available for display. If another year is chosen, it
 reloads the page with the press releases from that particular year --->
<p>
Other Years

<cfoutput query="GetArchiveDates">
 #PreviousYears#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>
</div>
</body>
</html>

The actual process of creating a static page from the output of a CFML template is easily achieved
using cfhttp. Example 14-6 shows the code necessary to create a static HTML page from the output

of any CFML page. This template can be manually run once a day, included as part of an application
for adding new press releases to the database, or scheduled to run via the Scheduler in the
ColdFusion Administrator.

Example 14-6. Creating a static HTML page from the content

<cfhttp method="Get"
 URL="http://localhost/programmingcf/14/14-5.cfm"
 resolveurl="yes">
</cfhttp>

<!--- Write the file grabbed by cfhttp to a new html file on the server --->
<cffile action="write"
 file="c:\inetpub\wwwroot\press_releases\index.htm"
 output="#cfhttp.FileContent#">
Completed

It is worth noting that you need to turn off debugging options before attempting to create static
pages from ColdFusion templates residing on your local server. Having debug information turned on
will cause your static pages to contain all the debug information at the bottom of every page-not a
pretty sight. In Example 14-5, we turn off debugging for the template using the cfsetting tag. The

option to display debug information can also be turned off site-wide from in the ColdFusion
Administrator.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.4 Posting Information

Besides allowing you to retrieve information, you can also post information to remote web sites with
cfhttp. By setting the method attribute to Post, you can use cfhttp to pass information such as

files, URLs, CGI variables, cookies, and form fields to other web applications, such as a ColdFusion
page or CGI program, on a remote server. cfhttp post operations are considered two-way

transactions because they pass variables to remote applications, which usually process the input and
return data.

When performing cfhttp post operations, you have to specify an additional tag, cfhttpparam, for
each value you are passing in the transaction. In other words, if you are using cfhttp to post two
form-field variables to a remote form, you need to use two cfhttpparam tags in conjunction with the
cfhttp tag. By specifying the variable type in each cfhttpparam tag, ColdFusion allows you to

interact with applications that require multipart form data, such as cookies, text, and file fields, in the
same operation. Note that cfhttpparam tags are always nested within a cfhttp tag. Here is the
syntax for using the cfhttpparam tag:

<cfhttpparam name="name"

 type="transaction_type"

 value="variable_value"
 encoded="Yes|No"

 mimetype="MIME_type[and_charset]"

 file="filename">

The type attribute specifies the type of information you are passing to the remote application.

Possible values are:

Body

Body of an HTTP request. Only one cfhttpparam tag with type="Body" can be used per
cfhttp request. Additionally, no other cfhttpparam tags with a type of File, Formfield, or
XML may be used in the same request when type="Body". Body cannot be used when the
method attribute of cfhttp is set to Trace. This option is new in ColdFusion MX 6.1.

CGI

Sends a variable as a URL encoded HTTP header.
Cookie

Cookie data to send as an HTTP header. The value is automatically URL encoded.
File

Sends the contents of the specified file without URL encoding. File may only be used when the
cfhttp method attribute is set to Post or Put.

Formfield

Form field to send. By default, ColdFusion URL encodes the form field value. Formfield is only
used when the method attribute of cfhttp is set to Get or Post.

Header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sends a non-URL-encoded HTTP header. This option is new in ColdFusion MX 6.1.
URL

Appends a URL parameter to the query string on the URL specified in the URL attribute of the
CFHTTP tag. The query string is URL encoded.

XML

Sets a Content-Type header of "text/xml" for the request. Automatically sets the body of the
request to the XML specified in the value attribute. The XML data is not URL encoded. Only one
cfhttpparam tag with type="XML" can be used per cfhttp request. Additionally, no other
cfhttpparam tags with a type of Body, File, or Formfield may be used in the same request
when type="XML". XML cannot be used when the method attribute of cfhttp is set to Trace.

This option is new in ColdFusion MX.

14.4.1 Sending Form-Field Data

Probably the widest use for the cfhttp post method is posting form-field information to remote
applications and scripts. cfhttp allows you to pass variables to an application that takes its input
from an HTML form. In Example 14-7, we use cfhttp to pass information to a ColdFusion application

on the Macromedia.com web site.

Example 14-7. Using cfhttp post to obtain TechNote articles

<cfhttp URL="http://www.macromedia.com/v1/support/KnowledgeBase/Search.cfm"
 method="Post" resolveurl="Yes">
 <cfhttpparam type="FormField" name="SearchString" value="cfhttp">
 <cfhttpparam type="FormField" name="FilterKeywords" value="330, 649, 690, 334">
</cfhttp>

<cfoutput>
#cfhttp.FileContent#
</cfoutput>

This application takes the information posted by cfhttp and uses it to find all articles in the
Macromedia TechNote database pertaining to the cfhttp tag. The application then dynamically
constructs an HTML page that contains the results of the search and passes it back to cfhttp.
cfhttp stores the HTML file in the cfhttp.FileContent variable, as always, so we can use cfoutput

to display the results.

14.4.2 Sending URL Variables

Using a type of URL allows you to post URL variables to an application that resides on a remote
server. Passing a type="URL" also allows you to exploit cfhttp GET functionality in cfhttp post

operations. This is done by passing URL variables in conjunction with form fields, cookies, CGI
environment variables, or file variables. This technique is useful for interacting with applications that
require multipart form data such as cookies and URL parameters in the same operation. Example 14-
8 demonstrates how to pass URL parameters along with a cookie to a remote application. You will
find here that we make a cfhttp request to Macromedia's TechNote application and pass it two URL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parameters as well as two cookie parameters.

Example 14-8. Posting URL and cookie variables to the TechNote
application

<!--- Use cfhttp to retrieve TechNote 22811 from Macromedia's web
 site. Also pass two cookies, CFID and CFToken so the web site knows
 who the user is --->
<cfhttp URL="http://www.macromedia.com/v1/handlers/index.cfm"
 method="Post" resolveurl="yes">
 <cfhttpparam type="URL" name="ID" value="22811">
 <cfhttpparam type="URL" name="method" value="full">
 <cfhttpparam type="Cookie" name="CFID" value="1181774">
 <cfhttpparam type="Cookie" name="CFToken" value="2159">
</cfhttp>

<cfoutput>
#cfhttp.FileContent#
</cfoutput>

Note that attempting to post URL variables as parameters in the URL itself causes an error unless at
least one cfhttpparam tag is declared within the cfhttp operation (of course, you can pass

parameters in the URL itself if you are using the GET method, as we discussed earlier). Likewise,
attempting to pass URL variables in both the URL and in a cfhttpparam tag causes an error.

14.4.3 Sending CGI Variables

Most CGI applications don't require that actual CGI environment variables be passed to them
(although there are some that do). The CGI variables that are available to an application depend on
the server and browser software being used for the request. As a result, the cfhttp tag provides a

method for passing user-defined CGI environment variables to remote applications regardless of the
browser or server software being used. It should be noted, however, that the CGI environment
variables are read-only and thus can't be overwritten. This means that if a CGI environment variable
already exists in your particular environment, its value can't be changed. A common mistake is to
attempt to pass variables to a remote CGI application such as a Perl script in the form of CGI
variables. More often than not, the application requires form-field variables, not CGI environment
variables. You should use a type of CGI only when you need to pass CGI environment variables to a
remote application. For example, an application might need the value of the HTTP_USER_AGENT

variable to check what browser is being used, so that it can determine what browser-specific features
to include in its output. The following example shows how to pass two CGI environment variables,
HTTP_USER_AGENT and REMOTE_HOST, to a remote template for processing. While you can pass the
HTTP_USER_AGENT value with the useragent attribute of the cfhttp tag, it can also be passed via the
cfhttpparam tag, as shown here:

<cfhttp URL="http://127.0.0.1/programmingcf/14/cgi.cfm"
 method="Post" resolveurl="yes">
 <cfhttpparam type="CGI" name="HTTP_USER_AGENT" value="ColdFusion MX">
 <cfhttpparam type="CGI" name="REMOTE_HOST" value="10.32.34.21">
</cfhttp>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
#cfhttp.FileContent#
</cfoutput>

14.4.4 Sending Cookies

cfhttp can also post cookies to remote sites, which is a useful feature in situations where you want
your cfhttp operations to mimic those of an actual user. For example, if you have an application that
uses cookies to track users, you can have your cfhttp post operation pass the value of the cookie to

the remote application each time it posts information there. This enables your application to
differentiate hits caused by your cfhttp operation from hits made by actual users. cfhttp can only
send cookies to remote servers; there's currently no mechanism for cfhttp to receive cookies from
remote servers (except in the HTTP header returned by a cfhttp request). For an example showing
how to pass cookie values using cfhttpparam, refer to Example 14-8.

14.4.5 Sending Files

You can also use cfhttp to post files to remote web servers using the HTTP protocol. You should use

this functionality when you want to send a file from your local ColdFusion server to an application
located on a remote server for processing. In other words, a type of file supports moving files only

from your local ColdFusion server to a remote applications. Once the file has been posted, it is up to
the remote program to handle the actual processing of the file. cfhttp can't upload files from client
browsers or send files to FTP servers; those operations are handled by the cffile and cfftp tags,

respectively. Consider the following scenario. Imagine you have a ColdFusion application that uses an
HTML form to allow users to upload files to a particular directory on the ColdFusion server. Now
imagine that every week the same file must be manually uploaded to the ColdFusion server from the
local development server. This menial process can easily be automated using cfhttp to send the file

from the local development server to the remote ColdFusion server. The following template can be
called manually or scheduled via the Scheduler in the ColdFusion Administrator:

<!--- Post the file to the application that processes the HTML form on the remote
 ColdFusion server --->
<cfhttp URL="http://127.0.0.1/programmingcf/14/TemplateThatProcessesFile.cfm"
 method="Post">

<!--- Picks the file from the specified directory on the server hosting this
 template --->
<cfhttpparam type="File" name="File_Variable"
 file="c:\cfusionmx\wwwroot\programmingcf\14\myfile.txt">
</cfhttp>

As of ColdFusion MX 6.1, you can also use the Put method to send a file to a server.

14.4.6 Sending XML

ColdFusion MX added a new type of data that can be posted using the cfhttpparam tag: XML. You
can use the cfhttp tag in conjunction with cfhttpparam to post raw XML in the HTTP header sent
with the post. Only one cfhttpparam tag maybe used when posting XML data. XML sent in the HTTP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

header is not automatically URL-encoded. Here's an example that uses two templates to demonstrate
how to post XML data with cfhttp. The first template, shown in Example 14-9, gets an XML news

feed from Macromedia.com and posts it to a template named xmlaccept.cfm using the
cfhttp/cfhttpparam tags.

Example 14-9. Posting XML using the cfhttp/cfhttpparam tags

<cfsetting showdebugoutput="No">
<cfhttp URL="http://www.macromedia.com/desdev/resources/macromedia_resources.xml"
 method="Get">

<!--- Post the XML to a second page which dumps the header --->
<cfhttp URL="http://localhost:8500/programmingcf/14/xmlaccept.cfm"
 method="Post" resolveurl="false">
 <cfhttpparam name="TheXML" type="Xml" value="#cfhttp.FileContent#">
</cfhttp>

<cfoutput>
#cfhttp.FileContent#
</cfoutput>

The template that Example 14-9 posts to does nothing more than dump the contents of the HTTP
header using the cfdump tag:

<!--- Save as xmlaccept.cfm --->
<cfsetting showdebugoutput="No">
<cfdump var="#GetHTTPRequestData()#">

The dumped output is displayed in the browser by outputting the contents of the
cfhttp.FileContent variable (as shown in Example 14-9).

14.4.7 Sending Header and Body Content

In ColdFusion MX 6.1, you can send header and/or body content using cfhttp. You may send any

number of custom headers using this technique. Additionally, you can send along a single message
body if you wish. If you send a body along with the request, no other cfhttpparam tags with a type
of File, Formfield, or XML may be used in the same request. You should also note that you can't
use type="Body" when the cfhttp tag's method attribute is set to Trace. For more information on
these parameter types, see the entry for the cfhttpparam tag in Appendix A.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.5 cfhttp Considerations

While cfhttp is extremely powerful, it is worth mentioning some limitations in the various versions of
ColdFusion. If you plan to make heavy use of cfhttp, you should carefully consider the issues

discussed here.

14.5.1 JRE-Related Issues in ColdFusion MX

Depending on the JRE you are using with ColdFusion MX, there are several issues you need to be
aware of that have the potential to affect your use of the cfhttp tag:

The IBM JRE does not properly support SSL connections. If you need to make an SSL
connection, consider using the SUN JRE instead.

The SUN JRE does not always return a 404 status code when an attempt is made to GET or
POST a nonexistent page.

As mentioned earlier, the timeout attribute of the cfhttp tag is not supported in versions of

the SUN JRE prior to version 1.4.0.

14.5.2 Authentication

cfhttp supports Basic (plain text), Digest, and NTLM Authentication. This means you can use cfhttp

to access password-protected pages and files residing on remote servers. Authentication is performed
by entering a valid username and password in the username and password attributes of the cfhttp

tag, as shown here:

<cfhttp method="method"

 URL="url_to_server"

 username="username"

 password="password">

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Interfacing with LDAP-Enabled
Directories
This chapter covers techniques for accessing both public and private Lightweight Directory Access
Protocol (LDAP) servers and provides examples of searching directories, displaying results, and
adding, editing, and deleting entries. You can use Cold Fusion's cfldap tag to access information

stored in LDAP-enabled directories (including X.500 directories). LDAP is quickly becoming a standard
for delivering directory-based information over the Internet. Popular uses for the cfldap tag include

creating search interfaces for public and private user directories and creating administrative
interfaces for managing LDAP directories.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 LDAP Basics

LDAP, currently at Version 3, originated at the University of Michigan. LDAP is a specification that
defines a standardized way for organizations to store and access directory information over TCP/IP.
Information stored in an LDAP directory is arranged in a hierarchical manner as depicted in Figure
15-1.

Figure 15-1. A typical LDAP structure

LDAP makes it possible to create complex directories of information that can be searched quickly and
easily. LDAP directories are most commonly (although by no means exclusively) used to maintain
"white pages" information such as names, addresses, and telephone numbers, or organizational
structures and contact information. Regardless of the information contained in an LDAP directory, the
structure defined by LDAP makes it simple to find the information within the directory.

For clarity and consistency, all the examples used in this chapter assume you are using the Netscape
Directory Server 6.01 and that you've installed the included sample LDAP directory for the fictitious
company, example.com. The examples can be modified easily to work with other directory servers
such as those from Lotus, Microsoft, and Novell. For more information on installing and configuring
Netscape Directory Server, consult the documentation included with the program. Both the server
and the documentation are available for download at
http://enterprise.netscape.com/products/identsvcs/directory.html.

15.1.1 LDAP Attributes

To understand how an LDAP server stores information, you can think of it in database terms. The
common descriptive element in a database is a field. In an LDAP directory, fields are called attributes.
Although an LDAP server can be configured with any number of custom attributes, several common

http://enterprise.netscape.com/products/identsvcs/directory.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

attributes can be found on most servers being used to store white-pages information. Table 15-1 lists
the common attributes along with their descriptions.

Table 15-1. Attributes common to most LDAP directories

Attribute Description

c Country

st State/province

l Locality/state

o Organization

ou Organizational unit

cn Common name (full name)

givenname Given name (first name)

sn Surname (last name)

dn Distinguished name

dc Domain component

uid User ID

In addition to these attributes, the sample LDAP directory used in this chapter contains the attributes
shown in Table 15-2.

Table 15-2. Additional attributes used with the example.com sample
LDAP directory

Attribute Description

mail Email address

telephonenumber Telephone number

facsimiletelephonenumber Fax number

roomnumber Room number

15.1.2 Public LDAP Servers

There are a number of public LDAP servers on the Internet that can be queried with the cfldap tag.

Available attributes vary from server to server. A decent list of publicly accessible LDAP servers is
available at http://www.emailman.com/ldap/public.html.

http://www.emailman.com/ldap/public.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before continuing, you should be thoroughly familiar with the ins and outs of LDAPv3. For more
information on the protocol, associated concepts, and terminology, check out the following web sites:

OpenLDAP

http://www.openldap.org
The Internet Engineering Task Force's (IETF) LDAP Extension (ldapext) charter and related
information

http://www.ietf.org/html.charters/ldapext-charter.html
LDAPzone.com

http://www.ldapzone.com

[Team LiB]

http://www.openldap.org
http://www.ietf.org/html.charters/ldapext-charter.html
http://www.ldapzone.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.2 Querying an LDAP Directory

The cfldap tag can query an LDAP directory and return the results as a ColdFusion query object.

This gives you tremendous flexibility in how you use the data. The query object can be output to the
browser using cfoutput or used to feed directory information to other functions or templates.

15.2.1 Performing an LDAP Query

Once you know the available attributes of a given LDAP server, you can easily perform a basic query
against the directory and output the results to the browser. Example 15-1 shows how to perform a
simple query against the example.com sample directory included with the Netscape Directory Server.

Example 15-1. Querying an LDAP directory

<!--- query the LDAP server for all entries where the surname of the person
 begins with 's' and their location is 'Santa Clara'. Sort the results
 by surname and given name. --->
<cfldap action="Query"
 name="MyLDAPQuery"
 server="localhost"
 port="389"
 attributes="cn,sn,givenname,ou,mail,l"
 maxrows="100"
 start="dc=example,dc=com"
 scope="Subtree"
 filter="(&(sn=s*)(l=Santa Clara))"
 sort="sn, givenNnme"
 sortcontrol="nocase, ASC"
 timeout="90">

<html>
<head>
 <title>Example 15-1: Querying an LDAP Directory</title>
 <style type="text/css">
 th {
 background-color : #C0C0C0;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #9999FF;
 }
 </style>
</head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>
<!--- output the query results --->
<table cellspacing="3" cellspacing="1">
 <tr>
 <th>Common Name (cn)</th>
 <th>Surname (sn)</th>
 <th>Given Name (givenname)</th>
 <th>Organizational Unit (ou)</th>
 <th>Email (mail)</th>
 <th>Locality (l)</th>
 </tr>

 <cfoutput query="MyLDAPQuery">
 <tr>
 <td><cfif cn is ""> <cfelse>#cn#</cfif></td>
 <td><cfif sn is ""> <cfelse>#sn#</cfif></td>
 <td><cfif givenName is ""> <cfelse>#givenName#</cfif></td>
 <td><cfif ou is ""> <cfelse>#ou#</cfif></td>
 <td><cfif mail is ""> <cfelse>#mail#</cfif></td>
 <td><cfif l is ""> <cfelse>#l#</cfif></td>
 </tr>
 </cfoutput>
</table>
</body>
</html>

In Example 15-1, the first attribute, action, is required to specify what action the cfldap tag should
perform. In this case, we want to use the tag to query an LDAP server, so we set action to Query.
Other possible values for the action attribute are Add, Modify, ModifyDN, and Delete. Each action
is covered later in this chapter. name is another required attribute and specifies the name of the query

ColdFusion should create to hold the results of the LDAP query. The hostname or IP address of the
LDAP server you want to perform the search against is specified in the required server attribute. Our
LDAP server resides on the same machine as our ColdFusion server, so we set server to localhost.

If the LDAP server you are trying to query listens on a port other than the default 389, you enter that
value in the port attribute. If port isn't specified, the cfldap tag defaults to port 389.

attributes specifies a comma-delimited list of attributes to be returned by the query. Specifying a
wildcard (*) returns all the attributes associated with the query. In this case, we want to retrieve the
common name (cn), surname, (sn), organizational unit (ou), and locality (l) for each person listed in
the directory. The maximum number of results returned by the query is set using the maxrows
attribute. We set a limit of 100 records for our query. filter specifies the search criteria to use
when performing the query. filter entries are referenced as:

(attribute operator value)

The default value for filter is (objectclass=*). In our example, we set the filter attribute so
that only entries having a surname (sn) beginning with "s" and a locality (l) of Santa Clara are

returned. Table 15-3 lists all filter operators.

Table 15-3. Filter operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Usage

=
Returns entries where the attribute equals the specified value. For example, searching
for sn=smith returns entries where the surname of the person is smith.

~=
Returns entries where the attribute approximates the specified value. For example,
searching for sn~=smith returns entries where the surname of the person approximates
smith.

<=
Returns entries where the entry is equal to or comes before the value specified by the
attribute. For example, searching for st<=de returns entries where the state equals or
comes before de.

>=
Returns entries where the entry is equal to or comes after the value specified by the
attribute. For example, searching for st>=de returns entries where the state equals or
comes after de.

*

Acts as a wildcard. For example, searching for sn=* returns all entries that have a
surname attribute, sn=sm* returns entries that have a surname beginning with the
letters sm, and searching for sn=*ith returns entries that have a surname ending with
the letters ith.

&
Returns entries only when all attributes are found. For example, searching for
(&(sn=smith) (st=de)) returns only entries that contain both the surname smith and
the state de.

|
Returns entries when any of the attributes are found. For example, searching for
(|(sn=smith) (st=de)) returns entries containing only the surname smith, only the
state de, or both the surname smith and the state de.

!
Returns entries that don't contain the value specified in the attribute. For example,
searching for (!(email=*)) returns all entries that don't have an email address.

If the pattern you are trying to match with filter contains any of the special characters in Table 15-

4, you must use an escape sequence in place of the special character.

Table 15-4. Escape sequences for the filter attribute

Special character Escape sequence

* \2A

(\28

) \29

\ \5C

NULL \00

The next attribute, start, specifies the distinguished name to use as the start of the search. In
Example 15-1, we use dc=example,dc=com to begin the search at the domain component level in our
sample LDAP directory. We use the scope attribute to specify the scope of the search in relation to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the value listed in start. Possible entries for scope include:

OneLevel (default)

Searches one level below the entry specified in the start attribute
Base

Searches just the entry specified in the start attribute
Subtree

Searches the entry specified in the start attribute and all entries below it

sort is optional and specifies the attribute or comma-delimited list of attributes to use when sorting
query results. In this example, the query results are sorted by the surname (sn) then given name
(givenname) attributes. The sortcontrol attribute is also optional and specifies how the results
should be sorted. If you wish to perform a case-insensitive sort, sortcontrol should be set to
Nocase. Additionally, sort order may be specified as Asc (ascending, the default) or Desc

(descending). Case sensitivity and sort order may be combined as in our example
sortcontrol="Nocase, Asc". Sorting is case sensitive by default.

The final attribute, timeout, is also optional and specifies the maximum amount of time in seconds
that ColdFusion should wait when processing the query. If no timeout is specified, ColdFusion

defaults to 60 seconds.

There are several additional attributes available in the cfldap tag that aren't covered in this

example. For a complete list, see Appendix A.

Once the cfldap tag has finished querying the LDAP server, the results are returned in a ColdFusion

query object that is subsequently output in an HTML table. The results can be seen in Figure 15-2.

Figure 15-2. Outputting the results of a cfldap query

15.2.2 Obtaining the LDAP Server Schema

In the previous example, we knew ahead of time what attributes were available on our LDAP server.
This isn't always the case. If you aren't fortunate enough to have an LDAP server administrator who
can provide you with a list of available attributes, you have to query the LDAP server directly and
request its schema. LDAPv3 provides a mechanism for obtaining a directory's schema via a special
entry in the root DN. Example 15-2 shows how to obtain the schema from an LDAPv3-compliant

server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 15-2. Retrieving the schema from an LDAPv3-compliant server

<cfldap name="GetEntries"
 action="Query"
 server="localhost"
 attributes="subschemasubentry"
 scope="Base"
 start="">

<cfldap name="GetSubEntries"
 action="Query"
 server="localhost"
 attributes="dn, objectclasses, attributetypes"
 scope="Base"
 filter="objectclass=*"
 start=#GetEntries.SubSchemaSubEntry#>

<!--- Because the comma is the delimiter in the returned lists, and the comma
 can also appear in the list elements, we change the delimiter to the
 pipe --->
<cfset GetSubEntries.ObjectClasses =
 Replace(GetSubEntries.ObjectClasses, "),", ")|", "All")>
<cfset GetSubEntries.AttributeTypes =
 Replace(GetSubEntries.AttributeTypes, "),", ")|", "All")>

<html>
<head>
 <title>Example 15-2: Retrieving the Schema from a LDAP v3 Compliant
 Server</title>
 <style type="text/css">
 th {
 background-color : #C0C0C0;
 font-weight : bold;
 text-align : center;
 }
 td {
 background-color : #9999FF;
 }
 </style>
</head>

<body>

<cfoutput>
<h2>DN: #GetSubEntries.dn#</h2>
</cfoutput>

<h2>Object Classes</h2>
<table cellspacing="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Description</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <th>Superior</th>
 <th>Must</th>
 <th>May</th>
 </tr>
<cfoutput>
<cfloop index="i" list="#GetSubEntries.ObjectClasses#" delimiters="|">
 <cfset Name=Refind("name '([^']*)'", I, 1, "True")>
 <cfset Desc=Refind("DESC '([^']*)'", I, 1, "True")>
 <cfset Sup=Refind("SUP ([A-Za-z0-9]*) ", I, 1, "True")>
 <cfset Must=Refind("MUST ([A-Za-z0-9]*) ", I, 1, "True")>
 <cfset May=Refind("MAY ([A-Za-z0-9]*) ", I, 1, "True")>
 <tr>
 <cfif ArrayLen(Name.Pos) gt 1>
 <td>#Mid(i, name.pos[2], name.len[2])#</td>
 <cfelse>
 <td> </td>
 </cfif>

 <cfif ArrayLen(Desc.Pos) gt 1>
 <td>#Mid(i, desc.pos[2], desc.len[2])#</td>
 <cfelse>
 <td> </td>
 </cfif>

 <cfif ArrayLen(Sup.Pos) gt 1>
 <td>#Mid(i, sup.pos[2], sup.len[2])#</td>
 <cfelse>
 <td> </td>
 </cfif>

 <cfif ArrayLen(Must.Pos) gt 1>
 <td>#Mid(i, must.pos[2], must.len[2])#</td>
 <cfelse>
 <td> </td>
 </cfif>

 <cfif ArrayLen(May.Pos) gt 1>
 <td>#Mid(i, may.pos[2], may.len[2])#</td>
 <cfelse>
 <td> </td>
 </cfif>
 </tr>
</cfloop>
</cfoutput>
</table>

<h2>Attribute Types</h2>
<table cellspacing="3" cellspacing="1">
 <tr>
 <th>Name</th>
 <th>Description</th>
 <th>Single Value?</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
<cfoutput>
<cfloop index="i" list="#GetSubEntries.AttributeTypes#" delimiters="|">
 <cfset Name=Refind("NAME '([^']*)'", i, 1, "True")>
 <cfset Desc=Refind("DESC '([^']*)'", i, 1, "True")>
 <cfset SingleValue=Find("SINGLE-value", i, 1)>
 <tr>
 <cfif ArrayLen(Name.Pos) gt 1>
 <td>#Mid(i, name.pos[2], name.len[2])#</td>
 <cfelse>
 <td> </td>
 </cfif>

 <cfif ArrayLen(Desc.Pos) gt 1>
 <td>#Mid(i, Desc.Pos[2], Desc.Len[2])#</td>
 <cfelse>
 <td> </td>
 </cfif>

 <cfif SingleValue eq 0>
 <td>No</td>
 <cfelse>
 <td>Yes</td>
 </cfif>
 </tr>
</cfloop>
</cfoutput>
</table>
</body>
</html>

In Example 15-2, the cfldap query queries the LDAP server specified in the server attribute. server

is required and accepts the IP address or hostname of the LDAP server you want to connect to. We
set the action attribute to Query, letting ColdFusion know we want to use the tag to query an LDAP
server. The name attribute sets up a query object to hold the result set of the query. In attributes,
we specify dn, subschemasubentry as they are the attributes we want to retrieve. The scope
attribute is set to Base so that the query searches just the entry specified by the start attribute.
filter is set to the default objectclass=*, resulting in all entries for the attribute being returned.
The final attribute, start, specifies the distinguished name (DN) to use as the start of the search. In
Example 15-2, we set start to "".

We use the second instance of the cfldap tag to query the actual attribute values returned by the
first cfldap call. We do this by setting the start attribute of the second cfldap tag to
#GetEntries.SubSchemaSubEntry#. Note that in this instance, we set attributes to dn,
objectclasses, attributetypes.

Both the objectclasses and attributetypes attributes return a comma-delimited list of values. If

we output these directly to the browser, they would be difficult to read. A much easier-to-read
representation of the schema can be had with a little extra parsing. The output code used in Example
15-2 parses out the most relevant parts of the schema and outputs them in a nicely formatted table.
For the object type table, the following columns are displayed:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name

Name of the object class
Description

Description for the object class
Superior

Superior class from which the object class is derived
Must

Any attribute types required by the object class for entries
May

Any optional attribute types available to the object class for entries

Note that there are additional values for each object class, but for the purposes of this example, only
the most relevant ones are displayed.

The attribute types table consists of the following columns:

Name

Name of the attribute type
Description

Description of the attribute type
Single Value

Yes if the attribute type is a single value, No if it is multivalued

As with the object type table, the attribute type table contains only the most relevant information
from the schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.3 Modifying LDAP Entries

The best way to illustrate adding, updating, and deleting LDAP entries is to build an example
administrative interface that can perform these tasks. The main template of the application is a
template named index.cfm, which is shown in Example 15-3. This template contains an HTML form
with a single select box control containing the common names (first and last names) of each entry in
the LDAP server. Below the select box are three buttons-one for adding a new entry, one for
modifying an existing entry, and one for deleting an entry.

Example 15-3. Main LDAP administration template

<!--- Query the ldap server for all entries --->
<cfldap action="Query" name="GetEntries" server="localhost"
 attributes="dn,cn,sn,givenName" filter="(sn>=A)"
 start="dc=example,dc=com" scope="subtree" sort="sn, givenname">

<html>
<head>
 <title>LDAP Administration</title>
</head>

<center>
<h2>LDAP Administration</h2>

<!--- If a message was passed from the action form, display it --->
<cfif IsDefined('URL.Message')>
 <cfoutput>
 <h3 style="color: red;">#Message#</h3>
 </cfoutput>
</cfif>

<!--- Display the common name for each entry in a multi-select box. Assign
 the DN to each option value --->
<form name="MyForm" action="Action.cfm" method="post">

<select name="dn" size="5">
 <cfoutput query="GetEntries">
 <option name="DN" value="#DN#">#CN#</option>
 </cfoutput>
</select>

<input name="submit" type="Submit" value="Add">
<input name="submit" type="Submit" value="Update">
<input name="submit" type="Submit" value="Delete Entry">
</form>
</center>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</body>
</html>

The index.cfm template dynamically populates the select box form control by using the cfldap tag to
query the LDAP server specified in the server attribute. The query object designated to hold the
results of the LDAP query is specified in the name attribute. Here we set name to GetEntries.

attributes takes a comma-delimited list of attributes to be returned with the query. In this case, we
want to get the distinguished name (dn), common name (cn), surname (sn), and given name
(givenname) for each entry. The filter attribute specifies the search criteria to use for the query.
Because we want to return only names (and not blanks and groups), we set the filter to (sn>=A)
so that only entries containing a surname (sn) are returned. start specifies the distinguished name
to use as the beginning of the search. We set start to dc=example,dc=com because we want to
search entries that fall under the example domain component. The scope attribute determines the
scope of the search in relation to the value we set in scope. We set scope to SubTree because we
want our search to encompass the entry specified in start as well as all the entries below it. The final
attribute, sort, specifies the list of attributes to use when sorting the query results. We chose to sort
our results by surname (sn), then given name (givenname) in ascending order.

When an administrator opens the index.cfm template in a browser window, highlights a user in the
select box, or adds a new user by clicking one of the buttons at the bottom of the page, the form
posts to the action.cfm template shown in Example 15-4.

Example 15-4. Taking the appropriate action

<cfparam name="form.Submit" default="Invalid">

<cfswitch expression="#form.Submit#">
 <!--- Include the add/update form --->
 <cfcase value="Add,Update">
 <cfinclude template="_addupdateform.cfm">
 </cfcase>

 <!--- Include the add/update/delete code --->
 <cfcase value="Add Entry,Update Entry,Delete Entry">
 <cfinclude template="_addupdatedelete.cfm">
 </cfcase>

 <!--- Invalid action, redirect to main menu --->
 <cfdefaultcase>
 <cflocation URL="index.cfm?Message=#URLEncodedFormat("Invalid Action")#"
 addtoken="No">
 </cfdefaultcase>
</cfswitch>

The action.cfm template in Example 15-4 uses a series of cfcase statements to evaluate the value of

the Submit form field passed to the template. Depending on the value passed in, the template
includes an appropriate CFML template to handle the requested function. If no passed parameter
meets the cfcase criteria, a final cfdefaultcase statement redirects the user back to the index.cfm

template and passes a message stating "Invalid Action." This message also displays if an
administrator clicks on the Update or Delete buttons on the index.cfm template in Example 15-3
without choosing an entry from the select box.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3.1 Adding/Updating Entries

If the user clicks on the Add or Update button in the administration template, the action.cfm template
includes the _addupdateform.cfm template, as shown in Example 15-5.

Example 15-5. _addupdateform.cfm template

<cfif form.Submit is "Add">
 <!--- Set default values for all form fields --->
 <cfset GetEntry=StructNew()>
 <cfset GetEntry.dn="">
 <cfset GetEntry.givenname="">
 <cfset GetEntry.sn="">
 <cfset GetEntry.ou="">
 <cfset GetEntry.l="">
 <cfset GetEntry.telephonelabel="">
 <cfset GetEntry.mail="">
<cfelse>
 <cfif not IsDefined('form.dn')>
 <cflocation URL="Index.cfm?Message=#URLEncodedFormat("You must select a
 record to update.")#" addtoken="No">
 </cfif>
 <!--- Query the ldap server for the user --->
 <cfldap name="GetEntry" action="Query" server="localhost"
 attributes="dn,cn,sn,givenName,ou,l,telephonenumber,mail"
 scope="subtree" start="dc=example,dc=com"
 filter="(#ListFirst(form.DN)#)">
</cfif>

<html>
<head>
 <title>Add/Update LDAP Entry</title>
</head>

<body>

<h2>Add/Update LDAP Entry</h2>
<form action="action.cfm" method="post">
<cfoutput>
<input type="hidden" name="dn" value="#GetEntry.dn#">

<table>
 <tr>
 <td>First Name:</td>
 <td><input type="text" name="givenName" value="#GetEntry.givenname#"
 size="15" maxlength="50"></td>
 </tr>
 <tr>
 <td>Last Name:</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><input type="text" name="sn" size="15" value="#GetEntry.sn#"
 maxlength="50"></td>
 </tr>
 <tr>
 <td>Organizational Unit (ou):</td>
 <td><input type="text" name="ou" size="15" value="#GetEntry.ou#"
 maxlength="50"><td>
 </tr>
 <tr>
 <td>Locality:</td>
 <td><input type="text" name="l" value="#GetEntry.l#" size="15"
 maxlength="50"><td>
 </tr>
 <tr>
 <td>Phone</td>
 <td><input type="text" name="telephonenumber"
 value="#GetEntry.telephonenumber#" size="15" maxlength="50"><td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td><input type="text" name="mail" value="#GetEntry.mail#" size="25"
 maxlength="50"><td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="Submit"
 value="#IIF(Form.Submit is 'Add',
 DE('Add'), DE('Update'))# Entry"></td>
 </tr>
</table>
</cfoutput>
</form>
</body>
</html>

This template is a dual-purpose form and can be used to add a new record or update an existing one.
If a new record is going to be added, we want to display a blank form. However, if the form is being
used to update an existing record, we want to populate the form fields with the data from the record.
The technique used here allows us to combine both these functions in a single template that
intelligently handles either task.

The template uses a cfif statement to determine whether it's being called to add a new record or to
update an existing one. If it is being called to add a new record, a structure called GetEntry is

created, and a key is added that corresponds to each form field. The value for each form field is set
to blank. If the _addupdateform.cfm template is called as an update form, the template uses the
cfldap tag to query the directory server for the entry matching the one the administrator selected.

In order to retrieve just the record the administrator selected, the filter attribute is set to uid=x,

where x is a unique identifier for the entry similar to a database's primary key. The uid=x string is
extracted from the form.dn field passed from the index.cfm template. Because the dn contains three
values delimited by commas, we use the ListFirst() function to retrieve just the first list item,
which we know to be the uid.

Next, the template either creates a blank HTML form or one populated with the record returned by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the LDAP query. The form contains fields for an entrant's given name, surname, organizational unit,
locality, phone number, and email address. If the form is being used to create a new entry, the value
attribute of each form field is populated with a corresponding value from the GetEntry structure.

Because each of the structure keys contains a blank value, all of the form fields appear blank.
Structure values are referenced by calling them as GetEntry.Fieldname, much the same way as the

values of a query object are output (you'll see the relevance in a minute). The sample directory
included with Netscape's LDAP server contains many more attributes than we use here, but I have
decided to keep our application simple.

If the form is used to update an existing record, it is populated with the values from the GetEntry
query object. The DN from the selected entry is assigned to a hidden form field so that it can be

passed to the next template and used to identify the entry to be updated in the database.

Notice how the form outputs each value as GetEntry.Fieldname: it doesn't care whether GetEntry

is a structure (for adding a new record) or a query object (for updating an existing record). This
powerful technique allows us to use the same form for either purpose in a clean and elegant way. It
definitely beats using a bunch of cfif statements to check whether a value exists before deciding

whether or not to display it in the form.

The value attribute of the submit button that appears at the bottom of the form is dynamically

generated based upon whether the form is an add form or an update form. Clicking on the button at
the bottom of the page posts the form information back to the action.cfm template in Example 15-4.
The action.cfm template then includes the _addeditdelete.cfm template. The _addeditdelete.cfm
template takes the information posted by the form, including the value passed by the submit button,
and performs either the add or the update as specified by the form (deleting an entry is covered in
the next section). Example 15-6 shows the code for performing the add/update/delete of a record.

Example 15-6. Adding, updating, or deleting an LDAP entry

<cfswitch expression="#form.Submit#">
 <!--- Add a new entry --->
 <cfcase value="Add Entry">
 <cfldap action="Add" server="localhost"
 username="cn=Directory Manager" password="administrator"
 attributes="objectclass=top, person, organizationalPerson,
 inetOrgPerson; cn=#form.givenname# #form.sn#;
 givenName = #form.givenName#;
 sn=#form.sn#; mail=#form.mail#;
 telephonenumber=#form.Telephonenumber#; ou=#form.OU#;
 l=#form.l#"
 DN="uid=#CreateUUID()#, ou=People, dc=example,dc=com">

 <cfset Message=UrlEncodedFormat("Entry Successfully Added")>
 </cfcase>

 <!--- Update the entry --->
 <cfcase value="Update Entry">
 <cfldap server="localhost" action="Modify"
 username="cn=Directory Manager" password="administrator"
 attributes="objectclass=top, person, organizationalPerson,
 inetOrgPerson; cn=#form.givenName# #form.sn#;
 givenName = #form.givenName#;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sn=#form.sn#; mail=#form.mail#;
 telephonenumber=#form.Telephonenumber#; ou=#form.ou#;
 l=#form.l#"
 DN="#form.dn#">

 <cfset Message=UrlEncodedFormat("Entry Successfully Updated")>
 </cfcase>

 <!--- Delete the entry from the LDAP server. Use the DN passed from the form
 on the Index.cfm page --->
 <cfif not IsDefined('form.dn')>
 <cflocation URL="index.cfm?Message=#URLEncodedFormat("You must select a
 record to delete.")#" addtoken="No">
 </cfif>

 <cfcase value="Delete Entry">
 <cfldap action="Delete" server="localhost" username="cn=Directory Manager"
 password="administrator" DN="#Form.DN#">

 <cfset Message=UrlEncodedFormat("Entry Successfully Deleted")>
 </cfcase>

 <cfdefaultcase>
 <cfset Message=URLEncodedFormat("Invalid Action")>
 </cfdefaultcase>
</cfswitch>

<!--- send the user back to the index page and display a message the
 appropriate message --->
<cflocation URL="index.cfm?Message=#Message#" addtoken="No">

If the value of form.Submit is "Add Entry", the template takes the information posted by the form
and adds the entry to the LDAP directory using the cfldap tag with the action set to Add. Because
our LDAP server is set up on the same machine as our ColdFusion server, we set server to
localhost. If your LDAP server is on another machine, enter the hostname or IP address of that
machine instead. The username attribute specifies the common name (cn) of a user with authority to
add/update/delete entries. Note that you must prepend cn= to the username you specify. If you don't

provide it, ColdFusion throws an error stating that you don't have permission to execute the action on
the server. The user's password is specified with the password attribute.

The attributes to be added are specified as a semicolon-delimited list in attributes. DN is required

and specifies the distinguished name of the entry to be added. For the sample LDAP directory, the
distinguished name consists of three attribute/value pairs: uid, ou, and o. For new entries in this
example, only user id (uid) is a dynamic value. uid is used as a unique identifier for each individual
entry. You can think of the uid attribute as a database's primary key. Netscape's sample LDAP
directory creates the uid as a concatenation of the first letter of the user's given name and their last

name. This obviously causes problems when there are multiple users whose given names begin with
the same letter. To account for this, we assign a UUID for each added user's uid using ColdFusion's
CreateUUID() function to guarantee a unique value for each entry that is added. Once the entry is

added, the administrator is sent back to the index.cfm template, and the message "Entry
Successfully Added" is displayed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the value of form.Submit is "Update Entry", the template takes the information posted by the
form, including the hidden form.DN field, and uses the cfldap tag with the action set to Modify to
update the selected entry in the LDAP directory. The username attribute specifies the common name
(cn) of a user with authority to update entries. The user's password is specified with the password
attribute. The attributes to be updated are specified as a semicolon-delimited list in attributes. DN

is required and specifies the distinguished name of the entry to be updated. Once the entry is
updated, the administrator is sent back to the index.cfm template, and the message "Entry
Successfully Updated" is displayed.

15.3.2 Deleting Entries

If an administrator selects an entry on the index.cfm page and clicks the Delete button, the
action.cfm template includes the _addeditdelete.cfm template in Example 15-6. The Switch/Case logic
in the template then executes the code for deleting an entry. Deleting an entry is simple once you
have its DN.

Setting action to delete lets ColdFusion know to pass the DELETE command to the LDAP server
specified in the server attribute. The distinguished name of the entry to be deleted is specified in DN.
We take the form variable form.DN passed to this template from the index.cfm template. Once the

entry is deleted, the user is sent back to the index.cfm template, and the message "Entry
Successfully Deleted" is displayed.

You should note that you can delete only one entry at a time with the cfldap tag. In order to delete

more than one entry (if you allow administrators to select more than one user from the main user
administration screen), you have to loop over each DN and perform a separate delete.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.4 Modifying the Distinguished Name

The cfldap tag can modify the distinguished name (DN) for a given entry by setting the action
attribute to ModifyDN. Our example LDAP directory uses a distinguished name (DN) consisting of

three parts:

uid=x, ou=People, dc=example,dc=com

The uid portion of the dn is known as the leaf relative distinguished name (RDN). The LDAP protocol
specifies that when modifying the dn, only the leaf RDN may be modified. This means that you can
only change the value of uid using the cfldap tag with the action set to ModifyDN. If you need to
change any of the non-leaf RDN values (effectively moving the location of the entry in the directory),

you have to delete the entry and re-create it under the correct branch.

To better understand how this works, consider Example 15-7, in which we modify the distinguished
name by changing each entry's current user ID (uid) to a unique one created with ColdFusion's
CreateUUID() function. This method of generating a uid guarantees a unique identifier (unlike

concatenating strings like the user's given name and surname).

Example 15-7. Modifying the DN for each entry with a new uid

<!--- Query the LDAP directory for all of the user entries --->
<cfldap action="query" name="GetUsers" attributes="dn,cn"
 start="dc=example,dc=com" scope="Subtree" filter="sn>=a"
 server="localhost" timeout="90">

<!--- Output before changing the DN --->
<h3>Original list of user entries</h3>
<cfoutput query="GetUsers">
#cn#: #dn#

</cfoutput>

<!--- Loop over each entry and attempt to change the DN so that the current uid
 is replaced with a UUID created by ColdFusion. Write an error message to
 the screen for any entries that can not be updated for whatever reason --->
<h3>Modifying the DN for each entry to update the UID</h3>
<cfloop query="GetUsers">
 <cftry>
 <cfldap action="ModifyDN" server="localhost" username="cn=Directory Manager"
 password="administrator" attributes="uid=#CreateUUID()#"
 DN="#GetUsers.DN#" timeout="90">
 <cfcatch type="any">
 <cfoutput>
 Error: Couldn't modify DN for entry: #GetUsers.DN#

 </cfoutput>
 </cfcatch>
 </cftry>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfloop>

<!--- Query the LDAP directory for all of the user entries --->
<cfldap action="query" name="GetModifiedUsers" attributes="dn,cn"
 start="dc=example,dc=com" scope="Subtree" filter="sn>=a"
 server="localhost" timeout="90">

<!--- Output the modified entries --->
<h3>Modified list of user entries</h3>
<cfoutput query="GetModifiedUsers">
#cn#: #dn#

</cfoutput>

The template in Example 15-7 works by first querying the LDAP server for all entries under
dc=example,dc=com. A table containing each entry's common name (cn) and distinguished name
(DN) is output so you can see the original value for each DN.

Next, cfloop loops over each entry in the query object returned by the first call to the cfldap tag.
With each iteration of the loop, another call is made to the cfldap tag with the action set to
ModifyDN, so that an attempt can be made to change the DN for each entry. We want to modify the
DN such that the current user id (uid) is replaced with a UUID created by ColdFusion. The
cftry/cfcatch tags can trap any errors that occur and allow processing to continue in case of an

error or exception.

Finally, a third call to cfldap is made to query the directory for all of the entries we just changed.
Another table is generated containing each entry's common name (cn) and distinguished name (DN),
so you can see the changes that were made to each DN.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 16. Working with the Verity Search
Interface
There is hardly a useful web site out there that doesn't contain a mechanism for allowing users to
search through the site for information they are interested in. Not to be left out, ColdFusion MX
comes bundled with a set of tags that leverage Verity Developer's Kit (VDK) 2.6.1 technology[1] to
allow you to build powerful search interfaces into your own ColdFusion applications.

[1] Prior to Version 5.0, ColdFusion shipped with an older version of the VDK.

This chapter covers methods for setting up and indexing searchable collections using the ColdFusion
Administrator and various CFML tags. Once you are familiar with these operations, we will explore
techniques for searching collections and returning search results. Additional techniques for
maintaining and optimizing collections are also discussed. The chapter concludes with several
advanced techniques including methods for synchronizing database and document collections and
scheduling automatic indexing of your data.

In addition to the VDK 2.6.1 engine, ColdFusion MX comes with a restricted version of Verity's
enterprise-level K2 server. The K2 server offers features that appeal to large-scale and clustered
sites, such as simultaneous searching of distributed collections, concurrent queries, and an overall,
approvimately ten-fold performance gain over VDK 2.6.1. The version of K2 server that comes with
ColdFusion MX is limited to searching 250,000 documents for ColdFusion MX Enterprise and 125,000
documents for ColdFusion MX Professional. Users of Macromedia's Spectra product have a search
limit of 750,000 documents. Procedures for searching collections on the K2 server are the same as
for the VDK engine. There is no difference in the implementation of the cfsearch tag. ColdFusion

uses the VDK server to search collections unless they have been specifically configured to use the K2
server. Setting up, configuring, and running the Verity K2 server is a completely separate process
and beyond the scope of this chapter. For more information on administering the K2 server, consult
the "Working with Verity Tools" section of the Configuring and Administering ColdFusion MX book that
comes with the Macromedia documentation for your version of ColdFusion.

Additionally, there are several command-line utilities for creating, indexing, maintaining, and
troubleshooting Verity collections. Although a thorough examination of each of these tools is well
beyond the scope of this chapter, they are listed here as a reference. For complete documentation,
see the "Working with Verity Tools" section of the Configuring and Administering ColdFusion MX book
that comes with the documentation for your version of ColdFusion:

mkvdk

Utility for creating, indexing, and maintaining collections from the command line.
rcvdk

Performs command-line searching of collections using the VDK engine.
rck2

Performs command-line searching of collections using the K2 engine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

didump

Utility for viewing collection word lists.
browse

Utility for browsing the contents of document tables.
merge

Utility for combining multiple collections into a single collection or for splitting a single collection
into smaller collections. In order to merge collections, all the smaller collections must have
been created with the same schema.

Verity Spider

Creates and indexes collections by crawling filesystems. Spidering is limited to the same
domain the ColdFusion server is installed on.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.1 Creating Collections

The first step in creating a search interface for your ColdFusion application is to define a Verity
collection and register it with ColdFusion. A Verity collection is actually a specialized database that
stores metadata about a group of documents or a ColdFusion query object that you specify. Instead
of searching through each of your documents or query objects every time a search is performed,
Verity searches through the metadata stored in the collection you created. Because the metadata is
highly optimized, Verity can quickly and efficiently locate your search criteria. Collections can be
created and subsequently registered via the ColdFusion Administrator or created programmatically
with the cfcollection tag or via command-line utilities such as Verity's mkvdk or Spider tools.

Consult your ColdFusion documentation for more information on creating and indexing collections
with Verity's command-line tools.

16.1.1 Creating Collections with the ColdFusion Administrator

Creating a Verity collection using the ColdFusion Administrator is a quick and painless process. The
steps for creating a new collection in the ColdFusion Administrator are as follows:

Click on the Verity Collections link in the Data & Services section of the ColdFusion
Administrator.

1.

Type a unique name for the new collection in the Name text box under the Add New Verity
Collections section. Names should contain only letters, numbers, and underscores. In
ColdFusion MX, collection names may now contain spaces. However, I'd discourage you from
using spaces in collection names in order to preserve backward compatibility with older versions
of ColdFusion.

2.

Enter a path on the server for the new Verity collection to be stored in. The default path for
Verity collections is \cfusionmx\verity\collections\.

3.

Choose the language for the new collection. English is the default language. To create an index
in a language other than English requires the Verity Search Pack. This add-on is available for
download from Macromedia's web site.

4.

Click the Create Collection button to create the new collection. Your new collection should
appear in the Connected Local Verity Collections table.

5.

The ColdFusion Administrator also allows you to register a Verity collection that resides on another
ColdFusion server (as in a clustered environment) or a collection that was created with a tool other
than ColdFusion. The steps for mapping an existing Verity collection are similar to those for creating a
new collection. The only difference is that you specify the location to the existing collection in the
Path text box of the Add New Verity collections form.

Note that collections created using the retail version of Verity cannot be mapped and searched using
the VDK engine, regardless of whether you own a license for the retail version of Verity. To search

http://lib.ommolketab.ir
http://lib.ommolketab.ir

these types of collections, you need to use the K2 server engine.

16.1.2 Creating Collections with the cfcollection Tag

The cfcollection tag allows you to create or map a Verity collection programmatically without

having to use the ColdFusion Administrator. This method offers the advantage of allowing your
ColdFusion applications to register their own Verity collections. It also allows developers without
access to the ColdFusion Administrator to exploit all the administrative functions from within CFML
templates.

To create a Verity collection using the cfcollection tag, all you have to do is specify a name for the

collection, the path to the collection on the ColdFusion server, and the language that the information
is in. The following example shows how to create a Verity collection using the cfcollection tag:

<cflock name="cfcollection_Lock" type="Exclusive" timeout="30">
 <cfcollection action="Create"
 collection="MyVerityCollection"
 path="c:\cfusionmx\verity\collections"
 language="English">
</cflock>

It is a good idea to use the cflock tag with all cfcollection operations so that only one process

can access the collection at a time. This ensures that multiple operations don't step on each others'
toes, potentially resulting in a corrupted Verity collection. Each collection you access via
cfcollection should have a unique name assigned to it in the cflock tag

The first attribute, action, is required and tells the cfcollection tag what action to perform on the
specified Verity collection. In this case, we are telling the cfcollection tag we want to create a new
collection. Other values for the action attribute are discussed later in the chapter. The collection
attribute is also required and specifies a name for the collection being created. path, another

required attribute, specifies the path to the Verity collection on the server. This must be a physical
path accessible by the ColdFusion server. The language attribute is optional. It determines the

language to be used when creating the collection. As noted above, to specify a language other than
English (the default), you must download and install the appropriate Verity Search Pack from
Macromedia's web site.

The cfcollection tag also lets you register an already existing Verity collection, just as you can do

with the ColdFusion Administrator. To map an already existing Verity collection, that collection must
be available to the ColdFusion server via the local filesystem. The following example demonstrates
how to map an existing Verity collection using the cfcollection tag:

<cflock name="cfcollection_Lock" type="Exclusive" timeout="30">
 <cfcollection action="Create"
 collection="MyVerityCollection"
 path="c:\cfusion\verity\collections"
 language="English">
</cflock>

As you can see, the syntax for mapping a collection is exactly the same as that for creating a
collection from scratch. ColdFusion MX is automatically able to determine whether a collection is
being created internally or maps to an external collection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.2 Populating Collections

The next step after creating a Verity collection is to populate it with indexed data. Populating a Verity
collection is accomplished with the cfindex tag. With the cfindex tag, ColdFusion can index data

from a number of sources including numerous file types and query results from any ColdFusion
query. What this means is that you can use the cfindex tag to index everything from HTML files and

word-processed documents to relational databases, LDAP directories, and POP mail accounts.

16.2.1 Indexing Files

The great thing about bundling Verity's search technology with ColdFusion is that you can build
applications capable of searching a wide range of document types, including both text and binary
formats. The Verity engine comes with the KeyView Filter Kit, allowing it to index and search over 45
popular document types, including most popular text, word processing, spreadsheet, and
presentation formats. For a complete list of supported formats, see the ColdFusion MX documentation
at http://livedocs.macromedia.com.

Note that versions of ColdFusion through 4.5.1 contain the VDK 2.4.1 engine. Because VDK 2.4.1 is
an older technology, Microsoft Office 2000 documents aren't supported. ColdFusion 5.0 and MX
include the newer VDK 2.6.1 as well as the Verity K2 Server. These versions of the Verity engine
include support for MS Office 2000 documents. You should also be aware that, due to a limitation in
the Verity engine, the Linux versions of ColdFusion through 5.0 and MX can't index Adobe PDF
documents.

16.2.1.1 Indexing files with the ColdFusion Administrator

The ColdFusion Administrator provides an interface for indexing files. To follow is a quick and easy
way to index a single file or group of files without having to write any code to do it:

Click the Index icon in the Connected Local Verity Collections table next to the collection you
want to index.

1.

Enter a comma-delimited list of file extensions for the Verity engine to index.2.

Enter the full directory path for the directory in which you would like the indexing to take place.3.

If you want Verity to recursively index documents below the directory you specified in the
Directory Path field, check the box. Otherwise, Verity indexes only the documents contained in
the Directory Path field.

4.

You can add a URL to be appended to the beginning of all files indexed by the Verity server. This
is useful because it allows you to easily create links to the files indexed by the Verity engine.
This technique will be discussed later in this chapter.

5.

6.

http://livedocs.macromedia.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

If you have installed a Verity Search Pack, you can specify an alternate language for the
indexing process.

6.

Click on the Submit button to begin indexing your collection. The indexing time varies depending
on the number, type, and size of the files being indexed.

7.

16.2.1.2 Indexing files programmatically with cfindex

Indexing files programmatically with the cfindex tag allows you to exert more fine-grained control

over your Verity collections. Suppose you have a web site consisting of nothing but HTML pages that
you want to index. The following bit of code is all that is necessary to populate a Verity collection
from all your HTML pages:

<cfindex collection="MyWebsite" type="Path" action="Refresh"
 key="c:\inetsrv\wwwroot\" urlpath="http://127.0.0.1/"
 extensions=".htm, .html" recurse="Yes">
<h2>Finished Indexing The Web Site...</h2>

The first thing you should notice here is that we didn't use the cflock tag to lock access to the

indexing process. This is because Verity is designed to allow indexing and searching to take place
simultaneously. The only time you need to use cflock with Verity is when using the cfcollection

tag.

The collection attribute specifies the name of the collection (as created with the ColdFusion
Administrator or the cfcollection tag) we want to populate. We set the type attribute equal to
Path to let ColdFusion know we want to index a group of files located in a particular path. The type
attribute is optional and defaults to Custom if none is specified. The second attribute, action, is also
optional and is set to Update in our example. Setting the action attribute to Refresh purges the

collection of any existing data and then repopulates it with new data.

We set the key attribute to the path where the files that we are indexing are located. In the previous
example, we set key equal to the root directory of our web site. urlpath is also optional and is set to

the URL path for the files on our fictitious web site. When this collection is searched using the
cfsearch tag, the value specified in the urlpath attribute is added to the beginning of all filenames
and returned as the URL attribute. The extensions attribute is optional and should be used when
type="Path". It specifies a comma-delimited list of file extensions to be included in the indexing
operation. In our example, we set the extensions attribute to .htm and .html so that only HTML files
on our web site get indexed. Setting extensions="*." indexes all files without extensions. Finally,
recurse is set to Yes so that our indexing operation indexes all HTML files below the path specified in
the key attribute.

Note that the cfindex tag can populate only an existing Verity collection. If the collection you want

to populate doesn't exist, you have to create it using the ColdFusion Administrator or the
cfcollection tag. The examples throughout this chapter assume you have already created a Verity
collection with the name specified in the collection attribute of the cfindex tag.

Sometimes you may need to index only a single file contained in a particular directory as opposed to
the whole directory. The cfindex tag can accommodate this by setting the type attribute to File as
opposed to Path. This lets ColdFusion know to index only a single file as opposed to every file in the

designated path. The following example shows how to index a single file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfindex action="Refresh" collection="MyCollection"
 key="D:\inetsrv\wwwroot\myfile.htm"
 type="File" urlpath="http://127.0.0.1">

As you can see from the example, the value assigned to the key attribute now contains the filename
to index as well as the path to it on the server. Because the filename is specified as part of the key
attribute, the extensions attribute can be omitted from the operation.

16.2.2 Indexing Query Results

Besides being able to index files, the Verity engine can also index the contents of any ColdFusion
query object. This means that you can create collections from databases, LDAP directories, and POP
mail accounts. Query objects can be indexed programmatically only via the cfindex tag. There is no

means for indexing them through the ColdFusion Administrator.

16.2.2.1 Indexing database query results

Why would you want to index the contents of a relational database when you can use SQL to perform
searches of the database? The answer is simple. Standard SQL just wasn't designed to efficiently
handle full-text searching. Searching for text-based information using the Verity search interface is
generally more powerful and faster than using standard SQL queries.[2]

[2] Many popular database servers include extensions that allow for various types of full-text searching. The
latest versions of both Oracle and MS SQL Server come with such extensions. Before using Verity to handle full-
text searching of database data, you might want to explore what options may be available to you in the
database itself, as having the database server perform the majority of the work required for the search frees
your ColdFusion server to perform other tasks.

Suppose we have a Microsoft Access database that stores news-related articles. The database
consists of a single table called News that contains the fields shown in Table 16-1.

Table 16-1. News table schema

Field name Field type Max length

ArticleID (primary key) AutoNumber N/A

ArticleType Text 255

Title Text 255

Article Memo N/A

DatePosted Date/Time N/A

The article titles are stored in the Title field while the actual text of the articles is stored in the
Article field. Let's say that we want to make the database searchable by either the Title field or
the Article field. Creating a Verity collection that contains the contents of both the Title and
Article fields is easy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are some differences between indexing files and indexing the contents of a relational database.
For starters, you aren't actually indexing the database itself but rather a subset of the data existing
as a query object. In other words, you are creating your Verity collection from the results of a
ColdFusion query against a data source. Example 16-1 demonstrates the method for indexing the
contents of a database query object.

Example 16-1. Indexing the contents of a database query result set using
cfindex

<!--- Query the database for each of the news items to get the ArticleID, Title,
 and Article body --->
<cfquery name="IndexNews" datasource="ProgrammingCF">
 SELECT ArticleID, Title, Article
 FROM News
</cfquery>
<!--- Index the contents of the query object using cfindex --->
<cfindex collection="News" action="Refresh" type="Custom" body="Title,Article"
 key="ArticleID" title="Title" query="IndexNews">

<h2>Finished Indexing The News Database</h2>

The first part of the template in Example 16-1 creates a query object containing the ArticleID,
Title, and Article for each news item in the database. The second part of the template in Example
16-1 is the actual cfindex operation. This time, we change the type attribute to Custom. This lets

ColdFusion know we want to index the contents of a query object as opposed to a group of files. The
body attribute contains the column names from the query that we want to index and is a required
attribute when type is set to Custom. In our case, we want to index both the Title and Article
fields so we define them in the body attribute as a comma-delimited list. When indexing query
objects, the key attribute should be set to a unique identifier, usually the primary key for the table.
The key attribute differentiates records found during a cfsearch. In our example, we set the key
attribute equal to the ArticleID field (primary key) from our database.

16.2.2.2 Indexing cfldap query results

LDAP directories are another candidate for indexing using ColdFusion and the Verity engine.
ColdFusion can index the results of cfldap queries against both public and private LDAP directories.

Although most public LDAP servers provide a web page for browser-based searching, the Verity
search interface offers a more powerful and flexible way of finding and presenting the information
you need for your applications. The cfindex tag makes it easy to index the results of a query
performed with the cfldap tag. Example 16-2 shows how to populate a collection with the results of
a cfldap query. Because the contents of LDAP directories are subject to frequent change, it may be

necessary to update the collection on a regular basis to avoid inaccurate searches. Example 16-2
shows how to use cfldap in conjunction with cfindex to create a small collection from the

Example.com LDAP directory we discussed in Chapter 15.

Example 16-2. Creating a collection from the results of a cfldap query

<!--- Use cfldap to query the example.com directory for people in Santa Clara --->
<cfldap action="Query"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 name="MyLDAPQuery"
 server="127.0.0.1"
 attributes="dn,cn,mail,l"
 start="dc=example,dc=com"
 scope="Subtree"
 filter="(&(sn=s*)(l=Santa Clara))">
<!--- Populate the ldap_test collection with the results of the cfldap
 query --->
<cfindex action="Refresh" collection="LDAP_Test" key="dn"
 type="Custom" title="cn" body="cn,mail,l" query="MyLDAPQuery">
<h2>Done Indexing the LDAP Query</h2>

In this case, we use cfldap to query the example.com directory for all people in the Santa Clara
office. The results of the query are then added to a Verity collection. In the cfindex operation, we
set the action attribute to Refresh. This causes ColdFusion to clear out the contents of the entire
collection before repopulating it with the data from the query. Setting the action to Refresh is a

good idea in situations where the data being indexed changes frequently.

16.2.2.3 Indexing cfpop query results

The cfindex tag can also index the contents of a POP mailbox. This is useful in situations where you

want to allow users to search through the contents of a particular POP mailbox such as a mailing list
or customer service request archive. Example 16-3 shows a simple template for querying and
indexing the contents of a POP mailbox. To get the template to work with your POP server, all you
have to do is change the values of the server, username, and password attributes to those of your

choosing.

Example 16-3. Populating an index based on the results of a cfpop query

<!--- Query the POP server --->
<cfpop action="GetAll" name="GetMessages" server="127.0.0.1"
 username="username" password="password">
<!--- Populate the pop_test collection with the results of the cfpop query --->
<cfindex action="Refresh" collection="pop_test" key="Messagenumber"
 type="Custom" title="Subject" query="GetMessages" body="Body">
<h2>Done Indexing the POP Query</h2>

Because of the way POP servers work, message numbers tend to change frequently as messages are
added or deleted from the server. In order to avoid searching through a collection that is out of sync
with the data residing on the POP server, you should probably reindex your POP collection before
performing each search operation against it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.3 Searching Collections

Once you have created and populated a Verity collection, you will naturally want to provide a means
for users to search its contents. The cfsearch tag provides just such capability. Using the cfsearch

tag, ColdFusion allows you to build sophisticated searching into your applications. In its simplest
form, cfsearch can perform the searching operation directly against a Verity collection without the

user having to enter anything for the search criteria. A popular use for this technique is in the
creation of "top ten" lists of search terms. This technique is covered later in the Section 16.7 section
of this chapter. For now, let's take a look at a basic example that demonstrates how to use the
cfsearch tag to search a Verity collection without the user having to enter the search criteria:

<cfsearch collection="cfdocumentation" name="MySearchQuery" type="Simple"
 criteria="Verity" language="English" external="No">
<cfoutput query="MySearchQuery">
 #MySearchQuery.Title#

</cfoutput>

The collection attribute is required and specifies the name of the collection you wish to search or,

in the case of externally generated collections, the full path to the collection directory. Multiple
collections may be searched provided the collection names or paths are separated by commas. When
specifying multiple collections, you can't mix internal and external collections, nor can you have VDK
and K2 collections in the same search operation. As of ColdFusion MX, collection names may contain
spaces. Entering the name of a Verity collection that doesn't exist causes ColdFusion to throw an
error. name is also a required attribute and assigns a name to the query object created by the search

operation.

The type attribute is optional and defines the type of search to be performed against the Verity
collection. Valid types are Simple (the default) and Explicit. In this case, we set the type to
Simple, which means that the search returns matches for the word the user specifies and any

stemmed variations. (You will find more information on different types of searches later in this
chapter.) We define exactly what we want to search for with the criteria attribute. In this example,
we want to find all documents that contain the word "verity". The criteria attribute can contain

single words or expressions. This attribute is explained in full detail later in the chapter. Leaving the
criteria attribute blank causes all records in the Verity collection to be returned. The language

attribute is optional and requires the use of the Verity Search Pack for languages other than English.
It specifies which language to use in searching a particular Verity collection.

Every cfsearch operation returns a number of variables that can build various types of search result

templates, as listed in Appendix A. We'll use some of these variables in upcoming examples.

16.3.1 Building a Search Interface

Creating a search interface for your Verity collections is most often a two- or three-template process.
The first template usually contains a form that allows a user to specify their search criteria. The
second template (unless the template posts to itself) takes the search criteria from the first template,
uses it to search the Verity collection, and returns the results to the user in a meaningful way. In the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

case of a search against a file collection, the second template typically displays the filename or title of
the file, the score assigned to the file, and possibly a short summary of the files contents. For
searches against database collections, the second template usually displays the value placed in the
title attribute, with a hyperlink to a third template that drills down to a database record identified
by the key value in the hyperlink.

16.3.1.1 Searching file collections

Examples 16-4 and 16-5 illustrate the two-template approach with a search interface that searches
the ColdFusion documentation that is installed as part of the standard ColdFusion installation. You'll
need to create a Verity collection named cfdocumentation using one of the techniques we covered

earlier in the chapter. You'll also need to populate the collection. To do so, run the following code.
You may need to tweak the URL and path attributes to match your existing environment:

<cfindex action="Refresh"
 collection="cfdocumentation"
 key="d:\cfusionmx\wwwroot\cfdocs"
 type="Path"
 urlpath="http://localhost:8500/cfdocs"
 extensions=".cfm,.htm,.html"
 recurse="Yes">

The template in Example 16-4 creates a simple HTML form that allows the user to specify a string
they want to search for. A checkbox is provided to allow them to optionally have the summary for
each document displayed on the search results page.

Example 16-4. Verity search form for searching a document collection

<div align="Center">
<h2>ColdFusion MX Documentation Search</h2>
<form action="16-5.cfm" method="post">
<table border="0">
 <tr>
 <td>Search For:</td>
 <td><input type="text" name="Criteria" size="25" maxlength="255"></td>
 </tr>
 <tr>
 <td>Include Summary:</td>
 <td><input type="checkbox" name="Summary" value="Yes"></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input type="submit" name="Search" value="Search">
 </td>
 </tr>
</table>
</form>
</div>

The second template in our scenario (Example 16-5) receives the form-field data from the template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in Example 16-4. It performs the actual search and outputs any matches that it finds.

Example 16-5. Verity document collection search results template

<!--- If no search criteria is passed, assume user wants all documents in the
 collection, so assign a wildcard (*) to the search criteria --->
<cfif form.Criteria is "">
 <cfset form.Criteria = "*">
</cfif>
<!--- Perform the search of the Verity collection(s) based on the parameters
 passed from the search criteria form. In this case, we are searching
 the Verity collection created by ColdFusion the first time you attempt
 to search the ColdFusion documentation using the interface that ships
 with ColdFusion. --->
<cfsearch collection="cfdocumentation" name="Results"
 type="Simple" criteria="#form.Criteria#">
<html>
<head>
 <title>Example 16-5: Verity Document Collection Search Results Template</title>
 <style type="text/css">
 b {
 font-Weight: bold;
 }
 .boldRed {
 color : #FF0000;
 font-weight : bold;
 }
 </style>
</head>
<body>
<h2>Search Results</h2>
<cfoutput>
Your search for: #form.Criteria# turned up
#Results.RecordCount# documents out of #Results.RecordsSearched#
documents searched.
</cfoutput>
<!--- If no records match the search criteria, inform the user --->
<cfif Results.RecordCount lte 0>
 <cfoutput>
 <p>Sorry. No instances of #form.Criteria# were
 found in the specified collection(s). Please hit the back button on your
 browser and try again.
 </cfoutput>
<!--- Otherwise, output the search results including linbks to the
 documents --->
<cfelse>
 <table border="0" cellpadding="3" cellspacing="3" width="75%">
 <tr>
 <td>Document Title</td>
 <td>Score</td>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td colspan="2"><hr></td>
 </tr>
 <cfoutput query="Results">
 <tr>
 <td>
 <cfif Results.Title is "">Untitled><cfelse>
 #Results.Title#</cfif>
 </td>
 <td>
 <cfif Results.Score is not "">#(Results.Score
 * 100)#%</cfif>
 </td>
 </tr>
 <cfif IsDefined('form.Summary')>
 <tr>
 <td><div align="justify">#Results.Summary#</div></td>
 <td> </td>
 </tr>
 </cfif>
 </cfoutput>
 <tr>
 <td colspan="2"><hr></td>
 </tr>
 </table>
</cfif>
</body>
</html>

The template in Example 16-5 takes the search string from the form in Example 16-4 and uses it as
the criteria in the cfsearch routine. Once the search has been performed, the template checks to

see if there were any matches and if so, presents them to the user. The template presents the results
as a table containing the document's title as a hyperlink to the actual document as well and a score
for the document. The score is calculated based on Verity's internal set of rules and is returned as a
number between 0 and 1. The search results are automatically sorted by score. If you wish to change
the sort order, you can do so as of ColdFusion 5.0 by writing a query of a query to resort the results
based on a different sort criteria. The template checks to make sure a score was returned, and if so
multiplies the number returned by 100, which results in a percentage score for each match. Finally, if
the user checks the summary box in the search template, a short summary of each document is
included in the table. The output from Example 16-5 can be seen in Figure 16-1.

Figure 16-1. Output from a cfsearch of a document collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.3.1.2 Searching database collections

Searching a database collection is just as simple as searching a file collection with a few notable
differences. Since we are now searching the contents of a query as opposed to a file collection, we
need to change the way the search results are displayed and subsequently acted upon. This is
relatively easy to do. Examples 16-6 through 16-18 show a common three-template method for
displaying the results of a search against a query collection. The examples use the collection we
created back in Example 16-1, which indexed data from the same sample database we have been
using throughout the book.

Example 16-6. Specifying database search criteria

<form action="16-7.cfm" method="Post">
<table border="0">
 <tr>
 <td>Search For:</td>
 <td>
 <input type="Text" name="Criteria" size="25" maxlength="255">
 <input type="Submit" name="Search" value="Search">
 </td>
 </tr>
</table>
</form>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The template in Example 16-6 creates the search screen that the user sees in his browser. The
search screen is simply an HTML form that contains a single text- input box for entering a search
string. Once the user enters a search string and clicks on the submit button, the form data is passed
on to the template shown in Example 16-7.

Example 16-7. Displaying the results of a query collection search

<!--- If no search criteria is passed, assume user wants all documents in the
 collection, so assign a wildcard (*) to the search criteria --->
<cfif form.Criteria is "">
 <cfset form.Criteria = "*">
</cfif>
<!--- Perform the search of the Verity collection(s) based on the parameters
 passed from the search criteria form. In this case, we are searching
 the Verity collection created by ColdFusion the first time you attempt
 to search the ColdFusion documentation using the interface that ships
 with ColdFusion. --->
<cfsearch collection="news" name="Results"
 type="Simple" criteria="#form.Criteria#">
<html>
<head>
 <title>Example 16-7: Displaying the Results of a Query Collection Search</title>
 <style type="text/css">
 b {
 font-Weight: bold;
 }
 .boldRed {
 color : #FF0000;
 font-weight : bold;
 }
 </style>
</head>
<body>
<h2>Search Results</h2>
<cfoutput>
Your search for: #form.Criteria# turned up
#Results.RecordCount# documents out of #Results.RecordsSearched#
documents searched.
</cfoutput>
<!--- If no records match the search criteria, inform the user --->
<cfif Results.RecordCount lte 0>
 <cfoutput>
 <p>Sorry. No instances of #form.Criteria# were
 found in the specified collection(s). Please hit the back button on your
 browser and try again.
 </cfoutput>
<!--- Otherwise, output the search results including linbks to the
 documents --->
<cfelse>
 <table border="0" cellpadding="3" cellspacing="3" width="75%">
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>Title</td>
 <td>Score</td>
 </tr>
 <tr>
 <td colspan="2"><hr></td>
 </tr>
 <cfoutput query="Results">
 <tr>
 <td>#Results.Title#</td>
 <td>
 <cfif Results.Score is not "">
 #(Results.Score * 100)#%</cfif>
 </td>
 </tr>
 </cfoutput>
 <tr>
 <td colspan="2"><hr></td>
 </tr>
 </table>
</cfif>
</body>
</html>

The template in Example 16-7 works the same way as the search and results template from Example
16-5, with one notable difference. Instead of returning the title of the document as a link to the
actual document, the template returns the value placed in the title attribute as a hyperlink to the
template in Example 16-8. A parameter called ID is appended to the URL in the link so that the

template in Example 16-8 knows which record to drill down to.

Example 16-8. Displaying database record from search results page

<!--- Query the news table for the record specified by the ID
 parameter passed in the URL from the previous template --->
<cfquery name="GetRecord" datasource="ProgrammingCF">
 SELECT Title,Article
 FROM News
 WHERE ArticleID=<cfqueryparam value="#Val(URL.ID)#"
 cfsqltype="CF_SQL_INTEGER">
</cfquery>
<cfoutput query="GetRecord">
#Title#
<p>
#Article#
</cfoutput>

Example 16-8 takes the value in the URL parameter (the primary key value for the record) passed to
it from the template in Example 16-7 and uses it to look up the actual news article in the example
database. The article itself is retrieved from the database via a cfquery and output to the browser
using a corresponding cfoutput statement.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.4 The Verity Search Language

When you search a Verity collection using the cfsearch tag, you specify a number of parameters,
including the criteria used for the search. The search criteria consists of zero or more words and/or

phrases. The search criteria can also include operators and modifiers to further refine the search.
We'll cover all of this in the next section.

It should be noted that Verity handles case sensitivity in the following way:

If your search string is in all lowercase characters or all uppercase characters, the search is
treated as a case-insensitive search.

If your search string consists of mixed-case characters, the search is treated as a case-sensitive
search.

This default behavior can be changed via the <case> modifier (which is addressed in the following

section) to specify the case for the search.

16.4.1 Simple Versus Explicit Searches

Simple searches allow you to use single words, comma-delimited lists of words, and phrases as the
criteria for a cfsearch. For example, if you want to return all documents containing the word
"fish", specify the word "fish" in the criteria attribute of the cfsearch tag. Similarly, entering a

comma-delimited list such as "trout, bass, carp" returns all documents containing "trout", "bass", or
"carp". Simple searches treat the comma as a Boolean or. Phrases can also be used as criteria in a
cfsearch. Phrases are searched for by entering the phrase as it appears in the criteria attribute.

For example, entering the phrase "I like fishing" returns only documents that contain that complete
phrase.

By default, simple searches employ the stem and many modifiers. This means that searching for the
word "fish" returns all documents containing "fish" as well as "fishes" and "fishing". stem is

considered an evidence operator and causes the Verity engine to return documents containing
derivatives of the word or words in the criteria attribute. The many modifier counts the number of

times a particular search term is encountered within a record being searched. A score is then
calculated based on the number of times it appears and the density of the search term within the
record.

Simple searches can also use wildcards. For example, entering con* as the criteria returns all

words beginning with "con" such as "construction," "condominium," and "conundrum."

Explicit searches differ from simple searches in that the Verity search engine interprets each search
term as a literal. So, a search for the word "test" returns only records containing the word "test", not
"tests" or "testing." In an explicit search, the stem and many modifiers must be called explicitly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.4.1.1 Operators

Operators apply logic and rules to a Verity search. Operators determine the criteria a record must
meet before it can be considered a match. Operators can be invoked by the user when using a form-
based search interface or behind the scenes when hardcoded into the application. Operators can be
used in both simple and explicit searches.

With the exception of and, or, and not, all operators must be enclosed in angle brackets. Enclosing

operators in angle brackets keeps the Verity engine from treating the operator as a literal search
term. For example, to search for the word "TEST" in uppercase, it is necessary to enter the search
criteria as <case> as opposed to case. The latter causes Verity to look for the word "case" as

opposed to interpreting it is an operator. Operators themselves aren't case sensitive.

16.4.1.1.1 Order of evaluation

Like expressions, the use of operators is also governed by a set of rules for establishing an order of
evaluation. By default, certain operators are given more weight when evaluating search criteria. For
instance, the and operator is evaluated before an or operator. Like the order of evaluation in math,

parentheses take precedence over all other factors. When nested parentheses are encountered,
evaluation begins with the innermost set.

16.4.1.1.2 Prefix and infix notation

Excluding evidence operators, any search string that contains operators can be represented using
either prefix or infix notation.

Prefix notation means that the operator being used gets specified before the search string. For
example, setting the search criteria to and (test, exam, final) returns records only if they

contain the words "test", "exam", and "final".

Infix notation requires that an operator be placed between each search term. Using the previous
search criteria of "test", "exam", and "final", if you want to search for them using infix notation, you
would specify test and exam and final or test <and> exam <and> final as the search criteria.

16.4.1.1.3 Quotation marks

Single or double quotation marks are used to search for operators as literal words. For example, to
search for the word "not", it needs to be surrounded in quotes to avoid having the Verity engine
interpret it as an operator. I prefer to use single quotes as they don't need to be escaped when
specifying a literal criteria such as criteria="'not'".

16.4.1.1.4 Special characters

There are several characters considered "special" by the Verity engine that must be escaped to be
searched as literals. The backslash (\) is used to escape all special characters. To specify a backslash
as a literal search character, it must be escaped by another backslash (\\). The following is a list of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

special characters that require escaping:

At/for sign (@)

Backslash (\)

Backquote (')

Comma (,)

Double quotation mark (")

Left and right angle bracket (<>)

Left and right bracket ([])

Left and right curly bracket ({ })

Left and right parentheses (())

In addition to the backslash character, special characters can also be searched as literals if they are
included within backquotes. For example, to search for "webmaster@example.com", you specify the
search criteria as "'webmaster@example.com'". To search for the backquote as a literal, it must be
escaped with another backquote.

16.4.1.1.5 Concept operators

Concept operators identify a concept in a document by linking a group of search terms using criteria
specified by the operator. Records retrieved using concept operators are ranked by relevance. The
following concept operators are available for use in your search criteria:

accrue

Causes records to be returned when they contain at least one of the search terms specified.
accrue differs from or in that ranking is based on the number of times each search term is

found.
all

Causes records to be returned only when all search terms are found. Same as the and operator

except a score of 1.00 is always returned for matches.
and

Causes records to be returned only when all search terms are found. For example, searching
for "dog and cat" returns only records that contain both the word "dog" and the word "cat".

any

Causes records to be returned when any of the search terms are found. Same as the or

operator except a score of 1.00 is always returned for matches.
or

Causes records to be returned when any one word is found. For example, searching for "cat or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dog" returns records containing only "cat", only "dog", or both "cat" and "dog".

16.4.1.1.6 Evidence operators

Evidence operators differentiate between basic and intelligent word searches. Basic word searches
look only for the particular word specified. Intelligent word searches look for additional words related
to the search term based on derivatives and wildcards. Here are the evidence operators:

soundex

Finds words that sound alike or have a similar structure to the specified word. soundex uses

the AT&T standard soundex algorithm. For example, searching for "<soundex> there" typically
returns records containing words such as "their" and "they're". In order to use soundex, you

must edit the style.prm file located in either c:\cfusionmx\lib\common\style\custom or
c:\cfusionmx\lib\common\style\file, depending on the type of collection that you are working
with. Change the line that reads:

$define word-IDXOPTS "Stemdex Casedex"

to:

$define word-IDXOPTS "Stemdex Casedex Soundex"

Once you have done this, purge and reindex the collection. You can now perform soundex searches
using the soundex operator.

stem

Finds words that derive from the search term(s). Searching for "<stem>list" returns records
containing the words "list", "lists", and "listing", etc. Simple searches employ the stem operator

by default.
thesaurus

Allows you to search for synonyms of search terms. For example, searching for
"<thesaurus>run" returns records containing the word "run" as well as synonyms such as
"sprint", "jog", and "dash".

typo/ N

Searches for words that are spelled similarly. For example, searching for "<typo>special" finds
all documents with words spelled similarly to the word "special". The /N is optional and specifies

the maximum number of spelling errors to allow between the search word and any matched
words. If no value is specified, a default of two errors is used.

wildcard

Returns all records matching wildcard characters used in the search criteria. The search string
used with the wildcard operator should be enclosed in backquotes (`). For example, searching

for "<wildcard>'test*'" returns all records containing words such as "test", "testing", and
"tested". Table 16-2 shows a list of all wildcard characters that can be used in your Verity
searches.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 16-2. Wildcards

Wildcard Description

*
The asterisk specifies zero or more alphanumeric characters in a particular search
string. Asterisks are ignored inside [] and { } wildcard searches.

?
A question mark specifies a single alphanumeric character. For example,
searching for "<wildcard>'test?'"; returns records containing "test" and "tests",
but not "testing".

[]
Square brackets specify one of any characters appearing in a set. For example,
searching for "<wildcard>'st[a,i,o]ck'"; returns records containing "stack", "stick",
and "stock".

{ }
Curly brackets specify one of a group of characters appearing in a set. For
example, searching for "<wildcard>'stock{s,ed,ing}'" returns any records
containing the word "stocks", "stocked", and "stocking".

^

The caret is used with the square brackets to specify one of any character that
isn't listed in the set so that a search for "<wildcard>'st[^io]ck'"; matches
records containing "stack" or "stuck" but not "stick" or "stock". The caret must be
the first character following the left bracket; otherwise it is matched as a literal
character.

-
A hyphen is used in conjunction with square brackets and specifies a range of
characters such that a search for "<wildcard>'b[a-z]d'" returns "bad", "bed",
"bid", and "bud".

It should be noted that in order to search for a wildcard character as a literal, it must be
escaped. To escape a wildcard character, it must be preceded with a backslash. For example,
to search for the sentence "What?", you need to escape it as "What\?". Asterisks must be
escaped by two backslashes as in "test*".

word

Used when you want to have Verity match a specific word without resorting to wildcards or
stemming. For example, if you want to search for the word "why?" including the question mark
(Normally a wildcard), you enter your search criteria as "<word>why?"

16.4.1.1.7 Proximity operators

Proximity operators are used to specify the proximal location of words within a record. Using
proximity operators allows you to search for records that contain search terms within the same
phrase, sentence, paragraph, or zone. Zones apply to documents created with markup languages
such as XML, HTML, and SGML. Zones allow you to match search criteria to specific tags (zones)
within a document. Retrieved records are ranked according to the proximity of the words specified in
the search criteria. Here's a list of the proximity operators that can be used by the Verity search
engine:

in

Finds documents that contain the search term in a specified document zone. Document zones

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are specially defined areas within a document such as the title, body, or, in the case of
documents containing markup language, tags, and are internally defined by Verity. For
example to match XML documents containing "Pere Money" in a tag pair (zone) named
"<name>", you would use "(Pere Money) <in> name" as the search criteria. To specify more
than one zone for the search, surround the zones in parentheses and delimit each zone with a
comma as in "(ColdFusion) <in> (title, subject)". Note that Verity finds documents matching
the search criteria, and not individual nodes within a document containing markup language.
For more information on customizing document zones, see the "Using Verity Search
Expressions" chapter in the Developing ColdFusion MX Applications documentation.

near

Causes the Verity engine to retrieve records containing the specified search terms. Records are
scored based on the proximity of the search terms. The closer the terms are, the higher the
score. Records with search terms more than 1,000 words apart aren't counted in the scoring
process.

near/ N

Finds documents that contain two or more search terms within N number of words of each

other, where N is an integer between 1 and 1,024. Retrieved records are scored based on their

proximity. The closer the words are, the higher the assigned score. Multiple search terms can
be specified as long as the same value is used for N. For example, to search for the words

"fish" and "carp" and "bass" within 10 words of each other, set the search criteria to "fish
<near/10> carp <near/10> bass" or "<near/10>(fish,carp,bass)".

paragraph

Tells the Verity search engine to select records that contain all the specified search terms
within the same paragraph. For example, to search for records containing the words "exam"
and "professor" in the same paragraph, you specify "exam <paragraph> professor" as the
search criteria. You may use the paragraph operator to search for three or more terms
provided you separate each term with a paragraph operator.

phrase

Selects records that contain the phrase specified in the search criteria. A phrase is defined as
two or more words that occur in a specific order. For instance, to search for the phrase "open
standards", you would use "open <phrase> standards" as the search criteria.

sentence

Selects records that contain all the words specified within the same sentence. So, to look for
the words "ColdFusion" and "Macromedia" in the same sentence, you could use
"<sentence>(ColdFusion, Macromedia)" as the search criteria.

16.4.1.1.8 Relational operators

Relational operators search specific document fields within Verity collections. The five Verity
document fields, title, key, url, custom1, and custom2 are referenced as cf_title,[3] cf_key,
cf_url, cf_custom1, and cf_custom2, respectively.

[3] There was a bug in ColdFusion MX that affected the ability to search the cf_title field. Instead of

searching cf_title, you needed to instead search title (without the cf_ prefix). This bug was fixed in

ColdFusion MX Updater 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The many modifier can't be used with relational operators. Records retrieved using relational

operators aren't ranked by relevance. Relational operators can be broken down into two categories,
text comparison operators and numeric/date relational operators.

The following operators are used for text comparisons:

contains

Finds records by matching a word or phrase within a specific document field. For example, to
find records that contain the word "pickle" anywhere in the title field of a Verity collection,

you use "cf_title <contains> pickle". Likewise, you could search for a word within an HTML
meta keyword tag (meta tags are indexed as fields as opposed to zones) by searching for
"keyword <contains> pickle".

ends

Similar to the starts operator except that it returns only records that have values stored in

the specified document field that end in the same values specified in the search criteria. For
example, searching for "cf_title <ends> ime" returns only records that have words like "time",
"grime", and "lime" as the last word in the title field.

matches

Finds records by matching the search criteria with values stored in the specified document field.
In order for a record to be a match, the search term must exactly match the contents of the
document field. For example, using "cf_title <matches> untitled" finds records that contain
only "untitled" in the title field.

starts

Finds records by matching the characters in your search criteria with records that have the
same characters as the starting values in a specified document field. For example, searching
for "cf_title <starts> el" turns up records with titles beginning with "elephant" and "elevator".

substring

Finds documents that contain the search criteria as a substring of a word or phrase within a
document field. For example, searching for "cf_title <substring> exam" returns records with
"exams", "examination", or "I have an exam today" as the title.

Table 16-3 shows the operators that can make numeric and date comparisons.

Table 16-3. Comparison operators

Operator Description

< Less than

> Greater than

= Equals

<= Less than or equal to

>= Greater than or equal to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, to search for records that have a value stored in the key field greater than 77, use

"cf_key > 77" as the search criteria.

16.4.1.1.9 Score operators

Score operators determine how the Verity engine calculates the score it assigns to records that
match the search criteria. Documents are assigned a score as a decimal percentage between 0 and
1.000 (100%) based on the operators and modifiers applied to the search criteria. Optionally, the
score can be set to display the value to four decimal places. The following is a list of the score
operators available to the Verity search engine:

complement

Causes the Verity engine to return the complement value for the score of a matching record.
The complement value is arrived at by subtracting 1 from the matched record's original score.
For example, if a search for "tea" resulted in a score of .25 being assigned to a matching
document, a search for "<complement> tea" results in a score of .75. It is worth noting that
the complement operator causes all records with a score of 0 (all records not matching the

search criteria) to have a recalculated score of 1 (a perfect match!). At the same time, all
documents originally having a score of 1 get their score recalculated to 0. Why exactly you
would want to use this feature is beyond me, but Verity makes it available nonetheless!

product

Multiplies the scores of each term found in a particular Verity record. Records with higher
scoring matches score significantly higher than records with lower scoring matches. For
example, a document with two terms that scored .5 and .75 respectively receives an overall
score of .375, while a record with two terms scoring .25 and .5, respectively, receives an
overall score of .125. Use of the product operator has a tendency to result in fewer overall

matches being returned. This can be useful in reducing the number of matches returned when
searching large collections that tend to result in a high number of matches regardless of the
search terms used.

sum

Adds the scores together for records matching the search criteria. For example, specifying
"<sum>(tea, coffee)" results in the scores for both search terms being added together. The
maximum value a score can reach using the sum operator is 1. Use of the sum operator has a

tendency to return more "100 percent" matches.
yesno

Forces the score of a matching search term to 1 if the term's calculated score isn't 0. For
example, using the search term "<yesno> test", where a search for the term "test" normally
results in a score of .50, causes Verity to force the score to 1. This means that if your search
term appears anywhere in a document that is being searched, it will receive a score of 1
regardless of how many times the search term appears. The yesno operator can return search

results without ranking them by relevance.

16.4.1.1.10 Modifiers

Modifiers are always combined with operators to change the behavior of operators in a predetermined

http://lib.ommolketab.ir
http://lib.ommolketab.ir

way. For instance, you can use the case modifier with an operator to specify the case for the

particular term to be matched. The following modifiers, commonly referred to as search modifiers,
are available for use in your searches:

case

Specifies a case-sensitive search. For example, to search for the word "Bill" in the Title field of
a collection, you set the criteria attribute in cfsearch to "cf_title <contains> <case>Bill".

many

Causes the Verity engine to rank results by relevance (score) based on the frequency and
density of the search terms found. The many modifier is employed by default whenever a
Simple search is performed. It should be noted that the many modifier can't be used with the
concept operators and, or, and accrue, nor can it be used with relational operators.

not

Causes the Verity engine to ignore records that contain the specified search terms. For
example, searching for "space not shuttle" causes Verity to return records containing the word
"space" but not the word "shuttle".

order

Specifies that your search criteria be found in a specified order to be considered a match. The
order modifier is usually used in conjunction with the paragraph, sentence, near, and near/N

operators. For example, to search for records containing the words "space" and "exploration",
in order and in the same paragraph, you set your search criteria to "<order> <paragraph>
(space, exploration)".

16.4.2 Building an Advanced Search Interface

Now that we have covered all the operators and modifiers used in the Verity search language, let's
look at an example that puts some of these techniques to work. To show you how easy it is to use
operators and modifiers in your search interfaces, we are going to build an advanced search interface
for the documentation that installs with the ColdFusion application server. In order to do this, you
first have to make sure that a Verity collection for the ColdFusion documentation exists on your
server. This is the same collection we created for Examples 16-4 and 16-5. If you do not already
have this collection, refer to those examples for more information on setting it up.

Once you have determined that you have the necessary Verity collection on your server, it is time to
build the actual search interface. In Example 16-9, we build an interface that allows a user to enter a
search string. It also allows users to choose case sensitivity and decide whether to search document
titles only or both document titles and contents. Example 16-9 shows the template for specifying the
search criteria.

Example 16-9. Advanced search form

<div align="Center">
<h2>ColdFusion MX Documentation Advanced Search</h2>
<form action="16-10.cfm" method="POST">
<table>
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>Search Criteria:</td>
 <td><input type="text" name="Criteria" size="20"></td>
 </tr>
 <tr>
 <td>Search What?</td>
 <td>
 <select name="SearchIn">
 <option value="Title" selected>Title Only</option>
 <option value="Both">Title and Body</option>
 </select>
 </td>
 </tr>
 <tr>
 <td>Case Sensitive?</td>
 <td><input type="radio" name="CaseSensitive" value="Yes">Yes

 <input type="radio" name="CaseSensitive" value="No" checked>No
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="Submit" name="Search1" value="Search"></td>
 </tr>
</table>
</form>
</div>

Now that we have the search form created, we need to pass the parameters to another template so
that the actual search can be performed. This is done by posting the form-field entries from Example
16-9 to the template shown in Example 16-10 for processing.

Example 16-10. Advanced search using operators and modifiers

<!--- If no search string is passed, assume user wants all documents in the
 collection, so assign a wildcard (*) to the search string --->
<cfif form.Criteria is "">
 <cfset form.Criteria = "*">
</cfif>
<!--- Check to see if search is for titles only. If you are running a
 version of CFMX prior to Updater 3, there's a bug with the cf_title
 field. You'll need to change the code from cf_title to just title to
 get it to work. All other fields can be referenced with their cf_
 prefix. --->
<cfif form.SearchIn is "Title">
 <cfset form.Criteria="cf_title <contains> " & form.Criteria>
</cfif>
<!--- Check to see if search is to be case sensitive --->
<cfif not form.CaseSensitive>
 <cfset form.Criteria = Lcase(form.Criteria)>
<cfelse>
 <cfset form.Criteria = "<case> " & form.Criteria>
</cfif>
<cfsearch name="Results" type="Simple" collection="cfdocumentation"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 criteria = "#form.Criteria#">
<html>
<head>
 <title>Example 16-10: Advanced Search Using Operators and Modifiers</title>
 <style type="text/css">
 b {
 font-Weight: bold;
 }
 .boldRed {
 color : #FF0000;
 font-weight : bold;
 }
 </style>
</head>
<body>
<h2>Search Results</h2>
<cfoutput>
Your search for: #HTMLEditFormat(form.Criteria)#
turned up #Results.RecordCount# documents out of #Results.RecordsSearched#
documents searched.
</cfoutput>
<!--- If no records match the search criteria, inform the user --->
<cfif Results.RecordCount lte 0>
 <cfoutput>
 <p>Sorry. No instances of <span
 class="boldRed">#HTMLEditFormat(form.Criteria)#
 were found in the specified collection(s). Please hit the back button on your
 browser and try again.
 </cfoutput>
<!--- Otherwise, output the search results including linbks to the
 documents --->
<cfelse>
 <table>
 <tr>
 <td>Title</td>
 <td>Score</td>
 </tr>
 <tr>
 <td colspan="2"><hr></td>
 </tr>
 <cfoutput query="Results">
 <tr>
 <td>#Title#</td>
 <td><cfif Score is not "">#(Score * 100)#%</cfif></td>
 </tr>
 </cfoutput>
 </table>
</cfif>
</body>
</html>

Example 16-10 first ensures that the user enters a value for the form.Criteria form variable. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is done using a cfif statement to check that form.Criteria isn't blank. If it is, a cfset statement
assigns an asterisk (*) to form.Criteria. The asterisk is a wildcard character that causes the Verity

engine to return all records contained in the collection being searched. Next, we need to see if the
user wants to search only the document titles or both the titles and the actual contents of the files.
The ColdFusion documentation is in HTML, so the titles being searched are the actual HTML titles of
the files. If the user chooses to search only the document titles, a cfset statement adds the
<contains> operator to form.Criteria:

<cfset form.Criteria="cf_title <contains> " & form.Criteria>

Earlier in the chapter, you learned that cf_title is a special document field in a Verity collection that
contains the title of the document being indexed. In this case, cf_title contains the HTML title of

each document in the ColdFusion documentation collection.

The third cfif statement checks the value of form.CaseSensitive. If the value is No,
form.Criteria is converted to lowercase using the Lcase() function inside a cfset statement. If
the value of form.CaseSensitive is Yes, a cfset statement inserts the <case> operator before the

search term, making the search case sensitive.

The next part of the template in Example 16-10 performs the actual search of the Verity collection
using our modified form.Criteria as the search criteria. After the search is run, the results are

output to the user's web browser in an HTML table containing a hyperlinked title and a percentage
score for each matching document.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.5 Updating Collections

Unless your Verity collection is indexed from data that never changes, at some point in time you will
need to make updates to it. Whether it is to add a new record to the collection or delete one,
updating a Verity collection is an important part of keeping your searchable content current.

16.5.1 Adding New Records to a Collection

New records can easily be added to an existing Verity collection using one of two methods. The first
method consists of purging the Verity collection of all records and repopulating it. This is done by
setting the action attribute of the cfindex tag to Refresh. This method ensures that your Verity

collections always contain the most up-to-date information. The disadvantage to this method is that it
can be relatively time-consuming for larger collections because it has to completely reindex a
collection just to add a single record. The following syntax shows how to use the cfindex tag to

purge and reindex a collection:

<!--- Purge and repopulate a collection using the refresh property of the
 action attribute --->
<cfquery name="IndexNews" datasource="ProgrammingCF">
 SELECT ArticleID, Title, Article
 FROM News
</cfquery>
<cfindex collection="News" action="Refresh" type="Custom"
 body="Title,Article" key="ArticleID" title="Title" query="IndexNews">

The second method is to add the new record by appending it to the end of the collection. This is
simple to do using the cfindex tag and offers the advantage of a relatively quick update time. By
setting the action attribute to Update, ColdFusion appends the referenced record to the end of the

Verity collection. The disadvantages to this technique include the possibility of duplicate entries in the
collection and collection information that becomes "out of sync" with the actual information being
indexed because of changes made to the database from other templates or applications. The
following example illustrates the technique for appending a record to the end of a Verity collection:

<!--- Update the Verity collection by appending the queried record to the end
 of the collection --->
<cfquery name="IndexNews" datasource="ProgrammingCF">
 SELECT ArticleID, Title, Article
 FROM News
 WHERE ArticleID = #URL.ArticleID#
</cfquery>
<cfindex collection="News" action="Update" type="Custom" body="Title,Article"
 key="ArticleID" title="Title" query="IndexNews">

16.5.2 Deleting Records from a Collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can delete an individual record from a collection using the cfindex tag in conjunction with a
cfquery. The following example demonstrates a method for deleting a single record from a Verity

collection that was created from a database query:

<!---This query deletes the Article from the database where ArticleID equals the
 ArticleID value passed in as a URL parameter --->
<cfquery name="RemoveArticle" datasource="ProgrammingCF">
 DELETE *
 FROM News
 WHERE ArticleID = #URL.ArticleID#
</cfquery>
<!--- Remove the reference from the verity collection --->
<cfindex collection="News" action="Delete" key="#URL.ArticleID#">

Setting the action="Delete" for the cfindex operation tells ColdFusion that we want to delete a
record from the Verity collection. The actual record is specified by setting the key attribute to the
value that was stored during the indexing of the collection. In this case, we use URL.ArticleID as
the key value. The code can easily be modified to delete more than one record from the collection
simply by modifying the WHERE clause in the cfquery to return more than one record.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.6 Maintaining Collections

Once you have your Verity collection up and running, you may be tempted to sit back and leave well
enough alone. However, as with any collection of information, Verity collections require periodic
maintenance to keep them running in top form. ColdFusion provides several tools for accomplishing
these tasks.

16.6.1 Optimizing Collections

Like relational databases, the contents of a Verity collection require periodic optimization for
efficiency and streamlining. Because the data in a Verity collection is updated incrementally, over
time the collection can become fragmented, which can result in bloated file sizes and slow search
performance. Optimization compresses the data stored in a Verity collection, reducing the overall
footprint of the collection and providing for more efficient searching. ColdFusion gives you two options
for optimizing your Verity collections.

The first method for optimizing a Verity collection is through the ColdFusion Administrator. To
optimize a Verity collection via the ColdFusion Administrator, all you need to do is click the Optimize
icon next to the desired Verity collection name in the Verity Collections section of the ColdFusion
Administrator. A JavaScript confirmation box asks you if you are sure you want to do this. If you
choose to continue, ColdFusion carries out the optimization. The optimization process can last from a
few seconds to several minutes depending on the size and type of data being optimized.

The second method for optimizing a Verity collection is to do it programmatically with the
cfcollection tag. To optimize a collection called MyCollection located in the default Verity

collection location, you create a template containing the following:

<cflock name="cfcollection_Lock" type="Exclusive" timeout="30">
 <cfcollection action="Optimize" collection="MyCollection">
</cflock>

As you can see from the example, the only thing that differs in this cfcollection operation is that
we set the action attribute to Optimize. Programmatic optimization can easily be scheduled in the

ColdFusion administrator for automatic and consistent results.

16.6.2 Repairing Collections

Occasionally, Verity collections may become corrupt. This can happen for any number of reasons,
such as an interrupted indexing or optimizing operation, and the problems are often fixable. To repair
a corrupted collection using the ColdFusion Administrator, all you need to do is click the Repair icon
next to the name of the Verity collection you want to repair. A JavaScript confirmation box asks you if
you are sure you want to do this. If you choose to continue, ColdFusion attempts to repair the
collection. The repair process can last from a few seconds to several minutes depending on the size
and type of the collection being repaired.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Repairs to corrupted Verity collections can also be made programmatically by setting the action
attribute of the cfcollection tag to Repair, as shown in the following example:

<cflock name="cfcollection_Lock" type="Exclusive" timeout="30">
 <cfcollection action="Repair" collection="MyCollection">
</cflock>

You should note that although ColdFusion is often able to repair a corrupted collection, it is usually
better to delete a questionable collection and recreate it. Doing this ensures that the quality and
integrity of the data in your Verity collection is up to par.

16.6.3 Purging Collections

Purging a Verity collection results in the removal of all data stored within a particular collection
without deleting the collection itself. This is useful when you want to clear out a collection and
repopulate it without having to create the collection all over again. Purging a collection before
repopulating it is the best way to ensure that the contents remain as up to date as possible.

Collections can be purged from the ColdFusion Administrator or programmatically. To purge a
collection from the Cold Fusion Administrator, all you have to do is click on the Purge icon next to the
Verity collection name you want to purge. A JavaScript confirmation box will ask if you are sure you
want to purge the collection. If you choose to continue, ColdFusion executes the purge.

To purge a collection from within a CFML template, you need to use the cfindex tag with the action
attribute set to Purge. Setting the action attribute to Purge causes ColdFusion to clear all data in
the specified collection without deleting. The following example illustrates using the cfindex tag to

purge a collection:

<cflock name="cfcollection_Lock" type="Exclusive" timeout="30">
 <cfindex action="Purge" collection="MyCollection">
</cflock>

16.6.4 Deleting Collections

Deleting a Verity collection is a simple task and can be done from the ColdFusion Administrator or
programmatically. To delete a Verity collection from inside the ColdFusion Administrator, simply click
on the Delete icon next to the Verity collection you want to delete. A JavaScript confirmation box will
ask you to confirm the operation. If you choose to continue, the Verity collection is permanently
deleted from the system. If the collection was created by the ColdFusion Administrator or a
cfcollection tag with the action set to Create, deleting the collection unregisters it and deletes all

files and directories created for the collection. If the collection was created externally and mapped,
the collection is simply unregistered, and all files and directories associated with the collection are left
intact.

Verity collections can also be deleted programmatically using the cfcollection tag. To delete a
collection using cfcollection, you need to set the action attribute to Delete and specify the
collection name in the collection attribute like so:

<cflock name="cfcollection_Lock" type="Exclusive" timeout="30">
 <cfcollection action="Delete" collection="MyCollection">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cflock>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.7 Advanced Techniques

Now that you understand the basics of using the Verity search engine with ColdFusion, it is time to
take a look at a couple of advanced techniques to help you get the most out of the technology. This
section covers several advanced topics including how to build top-ten lists for your Internet or
intranet site, custom attributes, modifying the Verity summary attribute, and searching database and

document collections simultaneously.

16.7.1 Creating a Top-Ten List

A cool feature that you can add to your Internet or intranet site to help your visitors find information
fast is a top-ten list. Top-ten lists are nothing more than a list of the ten most frequently searched
terms on your site. The list appears as a series of links that execute a Verity search when clicked.
The user need not enter a search criteria as the cfsearch tag is automatically populated based on

the link clicked from the top-ten list.

Before you can actually start using a top-ten list on your site, you have to compile a list of the most
frequently searched-for terms on the site. This is a relatively easy task requiring a simple database
table, a small bit of coding, and time to allow users to add terms to the list.

The first step in creating a top-ten list is to create a database table to store all the search terms that
users enter as search criteria in your search page. Start by creating a table in your database called
Keywords. For this example, I used Microsoft Access, but feel free to use the database of your choice.
In the Keywords table, create a field called SearchString and make it a text field with a maximum

length of 255 characters. You may optionally create a primary key field if you wish to, though it isn't
necessary. Once you have the table created, save it and exit from your database program.

The second step towards creating a top-ten list is to add a snippet of code to your search page that
captures and saves the terms users enter as search criteria. Add the following snippet of code to the
beginning of your search template. It is important to add it before your cfsearch code:

<cfif IsDefined('SearchString') and Searchstring is not "">
<cfquery name="AddKeyWords" datasource="ProgrammingCF">
 INSERT INTO Keywords (SearchString)
 VALUES('#SearchString#')
</cfquery>
</cfif>

The snippet works by first checking to make sure that a search string is passed from the search form
and that it isn't blank. If these two conditions are met, the search string is saved to the Keywords
table using cfquery to add the information.

Depending on how much traffic your site gets and how often users search, it may take anywhere
from a few hours to a few weeks before your table contains enough keywords to make the top-ten
list useable. Once you feel that you have a sufficient number of search strings in your database, you
can implement the top-ten list, as shown in Example 16-11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 16-11. Creating a top-ten list of commonly used search terms

<!--- Query the keywords table in the database and use aggregate functions to
 get the n most frequently used words or phrases --->
<cfquery name="GetTopTen" datasource="ProgrammingCF" maxrows="10">
 SELECT SearchString, COUNT(SearchString) AS TheCount
 FROM keywords GROUP BY SearchString order BY COUNT(SearchString) DESC
</cfquery>
<!--- Present the output to the user. The search terms are hyperlinks that
 run the search template and automatically pass the search criteria --->
Top 10 Search terms:
<p>
<table border="1">
 <tr>
 <th>Search term</th><th>Number of times</th>
 </tr>
<cfoutput query="GetTopTen">
 <tr>
 <td>
 #SearchString#</td>
 <td>#TheCount#</td>
 </tr>
</cfoutput>
</table>

The first part of the template in Example 16-11 uses cfquery to select the search strings from the
keywords table. COUNT is an aggregate function in SQL that allows us to count the number of times a
particular string appears in a given field. In this case, we want to get a COUNT for each string in our
SearchString field. The results are then ordered by the count from highest to lowest. Using the
maxrows[4] attribute of the cfquery tag allows us to limit the result set to the top-ten records.

[4] Although this example uses the maxrows attribute to limit the results to the top ten matches, there might be

a better way depending on your database platform. For example, if you use MS Access or SQL Server, you can

use TOP(n) in your SQL SELECT statement to limit the results to the top n items, forgoing the maxrows
attribute.

The second part of the template displays the results to the browser. It takes the output of the query
and displays it as an HTML table containing the search string in the left column and the number of
times the string was searched in the right column.

The search string itself appears as a hyperlink. Clicking on the link results in SearchString being
passed to your Verity search template via a URL parameter. Because SearchString can contain
spaces, it is important to use the URLEncodedFormat() function when appending its value to the

URL. This allows visitors to your site to search for the most popular terms without having to know
how to spell them or having to enter them correctly in a search form.

16.7.2 Custom Attributes

ColdFusion provides two additional user-defined attributes that can be populated with data during a
cfindex operation and subsequently searched using cfsearch. These two attributes, custom1 and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

custom2, can be populated with any data you desire provided you are indexing query-based data.
The value in using the custom1 and custom2 attributes comes in being able to store additional
information about a particular query object that would otherwise have to be lumped in with the body

attribute. For instance, when indexing a collection of database records, you might want to expose
each record's creation date to the cfsearch tag so that you can search for records that were created
within a certain time frame. The custom1 and custom2 attributes allow you to gain fine-grained

control over your Verity searches.

16.7.2.1 Populating the custom attributes

Populating the custom1 and custom2 attributes with data is done during a cfindex operation. Table

16-4 shows the sample database we described earlier in this chapter, populated with a few records.

Table 16-4. Populating the news table with data

ArticleID ArticleType Title Article DatePosted

1 HTML Article 1
Body of Article
1

12/31/1997

2 TEXT Article 2
Body of Article
2

06/12/1998

3 XML Article 3
Body of Article
3

08/22/1999

4 HTML Article 4
Body of Article
4

10/10/2000

5 HTML Article 5
Body of Article
5

11/07/2000

6 HTML Article 6
Body of Article
6

12/23/2000

In a typical cfindex operation, we use the ArticleID as the key attribute, the Title as the title
attribute, and the Article as the body attribute. This exposes the title and body fields to
searching, but what if we also want to search the collection based on ArticleType or DatePosted?
Here is where the custom attributes come in. By populating custom1 with the ArticleType and
custom2 with the DatePosted, we make both of those fields searchable in our Verity collection.
Example 16-12 shows how to populate the custom1 and custom2 attributes based on our example

database.

Example 16-12. Populating the custom1 and custom2 attributes

<!--- Query the news table for all articles --->
<cfquery name="MyQuery" datasource="ProgrammingCF">
 SELECT ArticleID,ArticleType,Title,Article,DatePosted
 FROM News

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfquery>
<!--- Purge and populate the Verity collection with the data from the above
 query --->
<cfindex action="Refresh" collection="News" key="ArticleID" type="Custom"
 title="Title" query="MyQuery" body="Article" custom1="ArticleType"
 custom2="DatePosted">

<h2>Done Indexing the Collection</h2>

Note that it isn't necessary to use pound signs to enclose variable names inside the custom1 and
custom2 attributes.

16.7.2.2 Searching the custom attributes

Both the custom1 and custom2 attributes are searchable via the cfsearch tag. To reference either
custom attribute in a cfsearch operation, you need to include them in the criteria attribute.
Because they are special attributes, they need to be referenced as cf_custom1 and cf_custom2,
respectively. Example 16-13 demonstrates the use of the custom1 and custom2 attributes by
searching the news collection for articles that have HTML stored in the custom1 attribute. The
example outputs a table of all matching records and includes the values stored in the custom1 and
custom2 fields in the table.

Example 16-13. Searching the values of custom1 and custom2

<!--- Search the collection for articles that are in HTML --->
<cfsearch collection="News" name="MyQuery" type="Simple"
 criteria="CF_Custom1=HTML" language="English">
<!--- Output the results --->
<table>
 <tr>
 <th>Key</th><th>Title</th><th>Custom1</th><th>Custom2</th>
 </tr>
<cfoutput query="MyQuery">
 <tr>
 <td>#Key#</td><td>#Title#</td><td>#Custom1#</td>
 <td>#DateFormat(Custom2,'mm/dd/yyyy')#</td>
 </tr>
</cfoutput>
</table>

16.7.2.3 Extending the usefulness of custom attributes

In case you haven't noticed, there are only two custom attributes available for you to populate with
additional information. What if you have three, four, or more additional bits of information that you
want to make available to your search operation? The answer lies in lists. Although you have only the
custom1 and custom2 attributes at your disposal, you can squeeze quite a few additional pieces of

information into these attributes by creating delimited lists of values and subsequently parsing them
out when necessary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Take our previous example in which we populated the Custom1 attribute with ArticleType and
Custom2 with DatePosted. Now, suppose we add one more field to our sample database called
Status. Status is a text field that contains "Public" if the article is for public viewing or "Private" if
the article is for private distribution. Because there are only two custom attributes, if we want to put
the value of Status as well as the values of ArticleType and DatePosted in the custom attributes,

we are going to have to concatenate two of the fields into a list, as shown in Example 16-14.

Example 16-14. Template for populating a collection and including
custom attributes

<!--- Query the News table for all articles and create a new field called
 MultipleValues as a comma delimited concatenation of ArticleType and
 Status --->
<cfquery name="MyQuery" datasource="ProgrammingCF">
 SELECT *, ArticleType & ',' & Status AS MultipleValues
 FROM News
</cfquery>
<!--- Purge and populate the Verity collection with the data from the above
 query --->
<cfindex action="Refresh" collection="News" key="ArticleID" type="custom"
 title="Title" query="MyQuery" body="Article" custom1="MultipleValues"
 custom2="DatePosted">

<h2>Done Indexing the Collection</h2>

Example 16-14 populates the collection with data from the query. It also populates the custom1 and
custom2 fields with the values contained in the MultipleValues and DatePosted variables,
respectively. Concatenating the ArticleType and Status fields from the database into a comma-
separated list creates the MultipleValues variable.

The next template, shown in Example 16-15, searches the collection for any news article that has
"HTML" as the ArticleType and "Public" as the Status. All articles matching those criteria are then

displayed to the user. Although this template is being run as a standalone search that doesn't require
any user input to run, you can easily build a front-end search form to allow users to enter their own
search criteria.

Example 16-15. Searching a collection

<!--- Search the collection based on the criteria that custom1 must contain
 HTML and Public --->
<cfsearch collection="News" name="MyQuery" type="Explicit"
 criteria="(CF_Custom1 <contains> 'HTML' and cf_custom1 <contains> 'Public')"
 language="English">
<!--- Output the results --->
<table>
 <tr>
 <th>Key</th><th>Title</th><th>Custom1</th><th>Custom2</th>
 </tr>
<cfoutput query="MyQuery">
 <tr>
 <td>#Key#</td><td>#Title#</td><td>#Custom1#</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>#DateFormat(Custom2,'mm/dd/yyyy')#</td>
 </tr>
</cfoutput>
</table>

In Example 16-15, the criteria attribute in the cfsearch tag contains the following line:

criteria="(CF_Custom1 <contains> 'HTML' and cf_custom1 <contains> 'Public')"

This line tells the cfsearch tag to look for records that contain both "HTML" and "Public" in the
custom1 field.

16.7.3 Modifying the Verity Summary Attribute

By default, the summary variable returned during a cfsearch of a Verity collection contains the best

three sentences determined by score, up to 500 characters in length. Although this is acceptable for
many applications, there are times when you might wish the summary feature behaved differently.
For example, you might have a collection of files that contains a short two-sentence description
followed by numerous tables of data. Chances are that the summary values returned after a search of
those files may contain a useless bunch of text as the summary that is built from a sampling of all the

data contained in the file. In this case, it would be much more beneficial if Verity would return the
first two sentences in the document as opposed to the best three sentences.

Although there is no way to accomplish this using CFML, it is possible to modify a specific Verity
configuration file named style.prm to achieve the desired results. By default, the style.prm file can be
found under c:\cfusionmx\lib\common\style\custom or c:\cfusionmx\lib\common\style\file depending
on the type of collection that you are attempting to modify. By changing the contents of the
style.prm file in either of these directories, all subsequent indexing operations will take into account
the modifications. If you want to modify the settings for a single collection as opposed to all
collections, you need to make the changes to the style.prm file located in the individual collection
directory: either c:\cfusionmx\verity\collections\my_collection_name\file\style for file collections or
under c:\cfusionmx\verity\collections\my_collection_name\custom\style for database collections.

Regardless of the type of collection you have indexed, you need to open the style.prm file for editing.
Once you have the file opened, scroll to the bottom and find the block of code that matches the
following:

Document Summarization is enabled by uncommenting one of
the DOC-SUMMARIES lines below. The summarization data is
stored in the documents table so that it might easily be
shown when displaying the results of a search.
See the discussions on Document Summarization in the
Collection Building Guide for more information.
The example below stores the best three sentences of
the document, but not more than 500 bytes.
$define DOC-SUMMARIES "XS MaxSents 3 MaxBytes 500"
The example below stores the first four sentences of
the document, but not more than 500 bytes.
#$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 500"
The example below stores the first 150 bytes of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the document, with whitespace compressed.
#$define DOC-SUMMARIES "LB MaxBytes 150"

As I stated earlier, by default, Verity is set to create a summary for each item indexed based on the
best three sentences not to exceed 500 characters. That parameter can be modified by commenting
out the line using a pound sign and uncommenting one of the other configurations listed in the
example. Further combinations can be created by changing the values for MaxSents and MaxBytes.

16.7.4 Tweaking Verity's XML Filter

The version of the Verity engine bundled with ColdFusion has been able to index and search XML
documents for some time now. However, because XML is a completely flexible tag-based markup
language that lets users define their own tags, there is no standard "Title" field returned when a
search is performed against a collection containing XML documents. Fortunately, it is possible to
tweak Verity's XML filter a bit to allow you to make any XML tag in a well-formed XML document
populate the cf_title or any other variable returned by the cfsearch tag.

To make Verity populate the cf_title variable with the value of an XML tag, there are a few things

you need to do. First, you need to decide what tag in your XML document you want to use to
populate the cf_title variable. For this example, let's assume your XML document (my_xml.xml)
has a tag called <title> and looks something like this:

<?xml version="1.0"?>
 <book>
 <title>Programming ColdFusion</title>
 <author>Rob Brooks-Bilson</author>
 <publisher>O'Reilly</publisher>
 </book>

If you index this file, Verity is smart enough to index the content and leave out the tags, but it isn't
smart enough (without a little help) to take the contents of the <title> tag and use it to populate
the cf_title variable. To do this, you need to create a special text file called style.xml and save it in

your style directory: either c:\cfusionmx\lib\common\style\file for all file-based collections or
c:\cfusionmx\verity\collections\my_collection_name\file\style where my_collection_name is the
name of the Verity collection containing the index for your XML files. The style.xml file should look
like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<style.xml version="2.6.1">
 <field xmltag = "title" fieldname = "cf_title" index = "override" />
</style.xml>

The file tells Verity to index the contents of XML tags named <title> and place the contents in the
ColdFusion variable cf_title, overriding the default value that is supposed to go there (in the case

of XML, nothing goes there by default). Using this syntax, it is very easy to change both the XML tag
that Verity indexes as well as the ColdFusion variable it places the content in. It is important to note
that you must use an existing ColdFusion return variable for cfsearch. In other words, you can't go

and make up your own variables; ColdFusion won't recognize them.

Once you save the file, you need to stop and restart your ColdFusion server and reindex your
collection in order for the changes to take effect. The newly indexed collection should now return the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

title field from an XML document in the cf_title variable.

There's a lot more you can do with the style.xml file that isn't well documented. I don't really have
the space to cover all of the ins and outs of hacking Verity here. However, so you don't feel as
though I've left you hanging, here is a list of the tags (and their attributes) supported in the style.xml
file. Note that a style.xml file can contain one or more of these tags:

<field xmltag="xmltag" fieldname="fieldname" index="override" />

Specifies the XML tag to map to a specific field name (such as cf_title, cf_custom1, etc.).
The index attribute is optional and can be used to tell Verity to override any existing values

that might be set for the field.
<suppress xmltag=" xmltag" />

Suppresses indexing of any XML tags nested within the specified start and end tag.
<ignore xmltag="xmltag" />

Ignores indexing the specified XML tag but indexes its content.
<preserve xmltag="xmltag" />

Indexes the specified XML tag as a zone if it is preceded by an ignore tag.

16.7.5 Searching Database and Document Collections Simultaneously

Chances are, sooner or later you are going to run into a situation where you want to search the
contents of both a database collection and a document collection. A common scenario involves a web
site that contains dynamic pages as well as static files. On the surface, it appears as though
ColdFusion and the Verity engine won't provide a way to index both types of information in a single
operation. The truth is, there is an easy way to get around this apparent problem using a little
creative programming.

The first step in creating an interface capable of searching both database and document collections
simultaneously is to create a single collection to hold both types of data to be searched. That is, you
need to create a single collection for both your database information and your documents. Example
16-16 shows how to do this in a single template. The example uses the same database used in
previous examples, and it assumes that you have already created a new collection,
MyDualCollection, using the techniques described earlier.

Example 16-16. Indexing a database query and a group of documents at
the same time

<!--- Query the news table for all articles --->
<cfquery name="IndexArticle" datasource="ProgrammingCF">
 SELECT ArticleID,Title,Article
 FROM News
</cfquery>
<!--- Populate the database collection from the indexarticle query --->
<cfindex collection="MyDualCollection" action="Refresh" type="Custom"
 body="Title,Article" key="ArticleID" title="Title" query="IndexArticle">
<!--- Populate the documents collection --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfindex action="Update" collection="MyDualCollection"
 key="D:\cfusionmx\wwwroot\programmingcf\16\dual\" type="Path"
 urlpath="http://127.0.0.1:8500/programmingcf/16/dual"
 extensions=".htm, .html, .doc, .pdf" recurse="No">
<h2>Finished Indexing</h2>

Once you have created and populated the collections, you need to build a search interface that can
return results for both types of data at the same time. The trick here is to conditionally output
different results to the user depending on which type of data each match comes from. Examples
Example 16-17 and Example 16-18 show the technique for searching database and document
collections simultaneously.

Example 16-17. Searching database and document collections
simultaneously

<form action="16-18.cfm" method="Post">
Search for: <input type="Text" name="Criteria" size="31" maxlength="255">
 <input type="Submit" name="Submit" value="Search">
</form>

Example 16-17 creates a basic search form for passing a search string to the template in Example
16-18. The search performed in Example 16-18 differs from all of the other searches we have
performed so far in that it searches both custom and path data from the same collection at the same

time.

Example 16-18. Simultaneous search of a database and a document
collection

<!--- If no search criteria is passed, assume user wants all records in the
collection, so assign a wildcard (*) to the search criteria --->
<cfif form.Criteria is "">
 <cfset form.Criteria = "*">
</cfif>
<!--- Search the collections --->
<cfsearch name="Results" collection="MyDualCollection" type="Simple"
 criteria="#form.Criteria#">
<!--- If no records match, display message --->
<cfif Results.RecordCount is 0>
 No records found matching your search criteria.

<!--- Otherwise, process search --->
<cfelse>
 <!--- Output matches to the user --->
 <cfoutput>
 #Results.RecordCount# records found out of #Results.RecordsSearched# records
 searched.
 </cfoutput>

 <p>
 <table border="0" width="500">
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <th>Title</th><th>Score</th>
 </tr>
 <cfoutput query="Results">
 <tr>
 <td>
 <cfif IsNumeric(Results.Key)>
 #Results.Title#
 <cfelse>
 #Results.Title#
 </cfif>

 #Results.Summary#
 </td>
 <td>
 <cfif Score is not "">#(Score * 100)#%</cfif>
 </td>
 </tr>
 </cfoutput>
 </table>
</cfif>

As you can see, the technique used for searching both types of data at the same time is fairly
straightforward. Example 16-18 uses conditional logic to determine if the value of the key attribute is
numeric or not. If the value of key is numeric, the template knows that the record comes from a
database (custom) collection because the value of key in the database collection is always a number.
If the value of key isn't numeric, the template knows that they record comes from the document
(path or file) collection. The value of key in the document collection is always the path to the file on

the server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 17. Graphing and Charting
Graphs and charts are a great way to visually represent data. Because of this, including business-
style graphs and charts is a standard part of many of today's web applications. ColdFusion MX comes
with a powerful engine that allows you to include professional-looking charts and graphs in your
ColdFusion applications with relative ease. For those of you interested in the technical details,
Macromedia chose to OEM WebCharts3D from GreenPoint, Inc.
(http://www.gpoint.com/WebCharts3D/) for ColdFusion MX's charting engine.

[Team LiB]

http://www.gpoint.com/WebCharts3D/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.1 Creating a Simple Graph

Regardless of the type of chart or graph you want to create, you need to start with the cfchart tag.
cfchart acts as a container tag for setting up the chart's basic characteristics, such as height, width,
and background color. The cfchart tag is a paired tag and must have both an opening and closing

tag.

The cfchartseries tag determines what type of chart or graph to create for a particular series of

static or dynamic data and allows you to specify attributes for the series, such as labels, color, etc.
ColdFusion MX 6.1 can graph multiple data series in a single chart. The number of data series is
limited only by the size of the chart.[1] The cfchartseries tag is also paired and requires an

opening and closing tag. Additional static data points may be added to a chart series by nesting one
or more cfchartdata tags inside a cfchartseries pair. Example 17-1 shows how to generate a bar

chart from static data using all three tags just mentioned.

[1] In ColdFusion MX 6.0, the charting engine was limited to 16 data series in a single chart.

Example 17-1. Creating a simple graph from static data

<cfchart format="Flash" chartheight="400" chartwidth="400"
 foregroundcolor="##000000" backgroundcolor="##C0C0C0"
 databackgroundcolor="##0000FF" rotated="No" showborder="Yes"
 scalefrom="0" scaleto="100000" gridlines="11" showxgridlines="Yes"
 showygridlines="Yes" seriesplacement="Default" font="Arial" fontsize="12"
 fontbold="Yes" fontitalic="Yes" xaxistitle="Salary" yaxistitle="Employee"
 xaxistype="scale" yaxistype="scale" sortxaxis="No"
 labelformat="Currency" showlegend="No" show3d="Yes" xoffset=".1"
 yoffset=".1" tipstyle="MouseOver" tipbgcolor="##008000">
 <cfchartseries type="bar" serieslabel="Employee Salaries"
 seriescolor="Yellow" paintstyle="Plain">
 <cfchartdata item="Greg" value="96000">
 <cfchartdata item="Nick" value="54000">
 <cfchartdata item="Jen" value="41000">
 <cfchartdata item="Christine" value="80000">
 </cfchartseries>
</cfchart>

The cfchart tag has over 30 attributes you can use in various combinations depending on the type

of chart you want to generate and how you want it to look. All of these attributes are optional; the
cfchart tag has no required attributes. In Example 17-1, I use attributes common to most of the

graph formats. The remaining attributes are chart type-specific or are used for other special-case
situations, such as passing parameters to drill-down templates (covered later in the chapter) or
saving the chart to a variable for use in Macromedia Flash Remoting (covered in Chapter 28).

The format attribute determines what format to use when sending the graph to the browser. You can
choose Flash (.swf), PNG (.png), or JPG (.jpg). The default format, and the one we use in this
example, is Flash. graphheight and graphwidth specify the height and width for the graph in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pixels. The default height is 240 pixels, and the default width is 320 pixels. You can specify a
background color for the chart using the backgroundcolor attribute. Colors may be specified by one
of 16 names (See Appendix A for a complete list) or hex code in the form FFFFCC or ##FFFFCC. The

default background color is white. The double pound signs are necessary to keep ColdFusion from
throwing an error. The foreground color (foregroundcolor) and the background color for the data
area of the chart (databackgroundcolor) can be set using the same color choices as the
backgroundcolor attribute. The default foreground color is black, and the default data background

color is white.

The next set of attributes determines how the data area of the chart or graph is displayed. The
rotated attribute specifies whether the chart should be rotated 90 degrees clockwise. This is usually
done to display horizontal bar charts, but it can be used with any chart type except Pie. The default
is No. You can specify a border for the chart by setting the showborder attribute to Yes. The
minimum and maximum values to be displayed on the vertical (y) axis are set using the scalefrom
and scaleto attributes. If values aren't passed, the scalefrom and scaleto value defaults to a

value determined by the graphing server, based on the minimum and maximum values in the set of
data points. In this example, we scale the graph from 0 to 100,000 along the y-axis. The gridlines

attribute allows you to specify the number of gridlines, including the axis, that should be displayed on
the value axis. In order to have gridlines placed every 10,000 dollars on our graph, we set
gridlines="11" (100,000/10,000 + 1 for the axis gridline). showxgridlines and showygridlines
both act as their names imply. Setting either to No results in the suppression of gridlines for the
specified axis. The default value for showxgridlines is No, but for showygridlines, it's Yes.

You can control the relative positions of multiple series of data using the seriesplacement attribute.

Since we're only graphing a single data series in this example, we'll leave it set to the default value of
Default, which automatically determines the best placement. Other options include Stacked,
Cluster, and Percent, which we'll see later in the chapter. Display characters for all text displayed
in the graph are handled by the font, fontsize, fontbold, and fontitalic attributes. Titles for the
x-axis and y-axis are set using the xaxistitle and yaxistitle attributes, respectively. The
xaxistype and yaxistype attributes are new in ColdFusion MX 6.1 and specify how values along
these axes are handled. Options are category (the default for xaxistype) and scale (the default for
yaxistype). category specifies that the axis values should be displayed in the order in which they
are coded, while scale tells the charting engine to display the values according to their numeric
order. If scale is used, all axis values must be numeric, otherwise ColdFusion throws an error. Note
that yaxistype is currently ignored by ColdFusion, as the y-axis must always have numeric values.

Optionally, you can tell ColdFusion to sort the value labels along the x-axis in alphabetical order by
setting sortxaxis to Yes. The default is to leave the x-axis labels unsorted. sortxaxis is ignored if
xaxistype="scale". Note that there is not an equivalent attribute for sorting y-axis labels since

these are usually the values being graphed. You can specify formatting for the axis values using the
labelformat attribute. Valid options are Number, Currency, Date, and Percent. The default is
Number. You can also display an optional legend for charts containing more than one data series by
setting showlegend to Yes (the default value). Legend placement depends on the type of chart you

create.

You can give your charts and graphs a 3-D appearance by setting the show3d attribute to Yes.
xoffset and yoffset determine how many units along the horizontal and vertical axis the chart
should be rotated when show3d is Yes. These attributes accept a value between -1 and 1 where -1 is

90 degrees left, 0 is no rotation, and 1 is 90 degrees right rotation. The default value for each is 0.1.

Whenever you move your mouse over a data element in a chart, a small popup window appears with
details about the data point. If your chart type is set to Flash, you can customize certain features of
the popup window. The tipstyle attribute specifies how the tip popup window is called. Options are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MouseDown, MouseOver, and None. MouseDown displays the popup when the mouse pointer is placed
over a chart element and the mouse button is pressed and held. MouseOver is the default and
displays the popup when the mouse pointer moves over a chart element. None disables tip popup

windows (this works for all chart formats, not just Flash). The background color for the tip popup
window can be changed using the tipbgcolor attribute. This attribute follows the same color value
rules as the backgroundcolor attribute. The default background color is white.

Once the chart container is set up using the cfchart tag, you can use the chchartseries tag to
specify the type of chart to generate other information about the data series. Like cfchart, this is
also a container tag and must contain both a start and end tag. In Example 17-1, the cfchartseries
tag is used to define a bar chart. This is done by setting type="Bar". Other types are Line, Area,
Pyramid, Cone, Curve, Cylinder, Step, Scatter, and Pie. The serieslabel attribute specifies a

name for the data series. This name is used in the tip popup box generated for all chart types except
Pie. Additionally, if the showlegend attribute of cfchart is set to Yes, the series label is also
displayed in the legend for all chart types except Pie (because pie charts don't support multiple
series). seriescolor specifies the color to use for all data points in the series. The same color rules
apply as for the cfchart tag. The cfchartseries tag doesn't allow you to specify different colors for

each data point in the series. There is, however, a workaround that I'll discuss later in the chapter.
The final attribute used in this example is paintstyle. This attribute lets you specify a style for
rendering each data point in the chart. Options are Plain (solid color fill), Raise (beveled
appearance), Shade (gradient filling darker toward the edges), and Light (gradient filled lighter
shade of color). The default is Plain. There are several other attributes available in the
cfchartseries tag, many of which are covered later on in the chapter. For a complete list of all

attributes, see Appendix A.

The actual data points are set up using individual cfchartdata tags, one for each data point we want
to chart. Notice that the cfchartdata tags are nested inside the cfchartseries tag. Each individual
data point's value is specified by the value attribute, while the label for the data point value is
specified by item. Executing the code in Example 17-1 results in the chart shown in Figure 17-1.

Figure 17-1. Creating a bar chart from static values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To see how ColdFusion renders the same data as different chart types, try changing the type
attribute of the cfchartseries tag to the various supported chart types. The results should be

similar to the charts shown in Figure 17-2.

Figure 17-2. Generating various charts from the same static data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.2 Working with Dates

One thing that's worth giving special mention to in this chapter is the way in which cfchart handles

date values when they're on the y-axis. If you remember from Example 17-1, you can use
labelformat="Date" to tell cfchart to format the values along the value axis as dates. If you try

the following code, however, you'll probably notice something strange:

<cfchart format="Flash" labelformat="Date">
 <cfchartseries type="Scatter" serieslabel="New Years Eve Party Hosts">
 <cfchartdata item="Zack" value="12/31/1972">
 <cfchartdata item="Becky" value="12/31/1996">
 <cfchartdata item="Joe" value="12/31/1984">
 <cfchartdata item="Lynda" value="12/31/2002">
 </cfchartseries>
</cfchart>

If you look at the dates on the vertical axis, you should notice that they are all 12/31/69.
Additionally, if you move your mouse over any of the data points, they are also all 12/31/69. The
issue here is that cfchart does not accept formatted dates (such as mm/dd/yyyy) as data-point

values. If you have dates you want to plot on the y-axis of a chart, you'll have to reformat them for
cfchart. cfchart expects dates passed as values be formatted in epoch seconds, adjusted for your

UTC (Coordinated Universal Time) offset. What's more, the resulting number must be multiplied by
1000 (presumably to account for milliseconds?). So, how do you do all of this? The simple solution is
to create a user-defined function to handle the conversion for you. This allows you to call the function
repeatedly, without the need for cutting and pasting the conversion formula each time you need to
perform the calculation. Example 17-2 shows the code for a user-defined function called
cfchartDateFormat() that handles the date conversion required by cfchart, as well as a cfchart

example that makes use of the function.

Example 17-2. Plotting dates along the y-axis in cfchart

<cfscript>
/**
 * Formats a date/time value for use on the y-axis in cfchart.
 *
 * @param date Date/time value you want formatted for cfchart. (Required)
 * @return Returns a numeric value.
 * @author Rob Brooks-Bilson (rbils@amkor.com)
 * @version 1, October 18, 2002
 */
function cfchartDateFormat() {
 var datetime = 0;
 if (ArrayLen(Arguments) eq 0) {
 datetime = Now();
 }
 else {
 datetime = arguments[1];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 // numberFormat prevents scientific notation from breaking cfchart
 return numberFormat(DateDiff("s", DateConvert("utc2Local",
 "January 1 1970 00:00"), datetime) * 1000, '_');
}
</cfscript>

<cfchart format="Flash" labelformat="Date">
 <cfchartseries type="Scatter" serieslabel="New Years Eve Party Hosts">
 <cfchartdata item="Zack" value="#cfchartDateFormat("12/31/1972")#">
 <cfchartdata item="Becky" value="#cfchartDateFormat("12/31/1996")#">
 <cfchartdata item="Joe" value="#cfchartDateFormat("12/31/1984")#">
 <cfchartdata item="Lynda" value="#cfchartDateFormat("12/31/2002")#">
 </cfchartseries>
</cfchart>

As you can see in the example code, each date value placed in the value attribute of the
cfchartdata tags is formatted using the cfchartDateFormat() function first. This ensures the
value used to generate the chart is in a format cfchart can handle. Running the example results in

the chart shown in Figure 17-3.

Figure 17-3. Plotting date values along the y-axis

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.3 Charting Dynamic Data

In the previous examples, you saw how simple it is to chart static values supplied by the
cfchartdata tag. We'll take things one step further now and talk about charting dynamic values

obtained from a query. The process is similar to what we did in the previous section. This time,
however, instead of hardcoding each data point, we'll specify a query to use to populate the chart.
Example 17-3 shows how to use query data to graph the average salary for each department in the
EmployeeDirectory table.

Example 17-3. Charting dynamic data

<cfquery name="GetSalary" datasource="ProgrammingCF">
 SELECT Department, AVG(Salary) AS AvgSalary
 FROM EmployeeDirectory
 GROUP BY Department
</cfquery>

<h3>Average Salary by Department</h3>
<cfchart format="Flash" chartheight="360" chartwidth="480" scalefrom="0"
 scaleto="500000" gridlines="11" labelformat="Number"
 xaxistitle="Department" yaxistitle="Salary" rotated="Yes">
 <cfchartseries type="Bar" query="GetSalary" itemcolumn="Department"
 valuecolumn="AvgSalary" serieslabel="Average Salary by
 Department"
 seriescolor="##0000FF" paintstyle="Plain" />
</cfchart>

The query in this example retrieves the average salary for each department in the
EmployeeDirectory table using the AVG aggregate function. Two columns of data are returned, the
department name (Department) and the average salary for that department (AvgSalary). This time,

we're going to create a bar graph and rotate it 90 degrees clockwise, making it a horizontal bar
graph. We set up the cfchart tag using some of the same attributes we used in Example 17-1. The
only difference here is that we set the rotated attribute to Yes, effectively creating a horizontal

instead of vertical bar chart.

With the cfchart tag set up, we can move on and define the type of chart we want to generate and
specify the query data to use. Since we're creating a bar chart, we set the type attribute of the
cfchartseries tag to Bar. The query attribute is required for dynamic graphs and specifies the

name of the query we want to pull the data from to populate the graph. The name of the query
column containing the data to graph is specified in valuecolumn. Here we use AvgSalary.
itemcolumn specifies the name of the query column containing item labels that correspond to the
data points from the query column specified in valuecolumn. Since we're graphing the average
salary by department, we use Department as the itemcolumn. For nonrotated charts, item labels are

displayed on the horizontal axis. For rotated charts, the labels appear on the vertical axis. Pie charts
display item labels in an optional legend. Executing the template in Example 17-3 results in the
output shown in Figure 17-4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 17-4. Generating a horizontal bar graph from query results

You can easily see what other charts generated using query data look like by changing the type
attribute of the cfchartseries tag to any of the alternate values it accepts. You could also include

additional static values in the example we just covered by specifying the individual data points using
cfchartdata tags. This lets you mix both static and dynamic data in the same chart.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.4 Charting Multiple Data Series

In ColdFusion 5, one of the biggest complaints about the cfgraph tag was its inability to graph more

than a single series of data. For many developers looking to use ColdFusion for creating graphical
representations of their data, this limitation was a disappointment. The engineers at Macromedia took
this to heart when integrating ColdFusion MX's new charting engine used by cfchart.

As I mentioned earlier in the chapter, the cfchart tag is capable of graphing up to 16 different series

of data in a single chart. When graphing more than one series of data, you can mix and match chart
types, with one exception. If you choose to create a pie chart, it can contain only one series of data,
and it's not possible to have both a pie chart and another chart type overlaid.

Consider the need to graph both the average salary in each department and the maximum salary in
each department. You can write a single query to return both the average salary and the maximum
salary for each department using the AVG() and MAX() aggregate functions discussed in Chapter

11. Example 17-4 shows the code for the query as well as the code for generating both data series.

Example 17-4. Graphing more than one data series

<cfquery name="GetSalary" datasource="ProgrammingCF">
 SELECT Department, AVG(Salary) AS AvgSalary, MAX(Salary) AS MaxSalary
 FROM EmployeeDirectory
 GROUP BY Department
</cfquery>

<h3>Average vs. Max Salary by Department</h3>
<cfchart format="Flash" chartheight="360" chartwidth="480" scalefrom="0"
 scaleto="500000" gridlines="11" labelformat="Currency"
 xaxistitle="Department" yaxistitle="Salary">
 <cfchartseries type="Line" query="GetSalary" itemcolumn="Department"
 valuecolumn="AvgSalary" serieslabel="Average Salary by
 Department" seriescolor="Blue" markerstyle="Diamond" />
 <cfchartseries type="Line" query="GetSalary" itemcolumn="Department"
 valuecolumn="MaxSalary" serieslabel="Max Salary by Department"
 seriescolor="Red" markerstyle="Rectangle" />
</cfchart>

Once the query is run, the chart container is set up using the cfchart tag, just as it was in all of our

previous examples. The first data series is used to plot a line graph that represents the average
salary for each department. This is done by setting the type attribute in the cfchartseries tag to
Line. The color for each data point and the lines connecting them is set to Blue using seriescolor.
The markerstyle attribute sets the style for each data point marker in 2D charts. Options are
Circle, Diamond, Letterx, Mcross, Rcross, Rectangle, Snow, and Triangle. The default is
Rectangle. In the case of the first data series, the markerstyle is set to Diamond.

The second cfchartseries tag is used to overlay another line chart over the first one we created.

This chart plots the maximum salary for each department. This time, the data point markers are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rendered as red rectangles. Using a different markerstyle for the second series makes it easier to

identify overlapping data points (ones that have the same value).

The overall effect here is that we created a chart that represents two distinct sets of data, shown in
Figure 17-5. To see how different combinations of attributes affect each data series as well as the
overall chart, try changing the values of the type and markerstyle attributes.

Figure 17-5. Graphing more than one series of data

17.4.1 Multiple Data Point Colors in a Single Series

One thing you've probably noticed is that in all of the charts we've created so far (with the exception
of pie charts), all data points within a given series are the same color. This is a limitation of the
cfchart implementation. Colors are limited to one per series when you generate a chart from query
data using the cfchartseries tag. There is a way around this, however. Instead of using a single
cfchartseries tag to output query data, you can use a query loop to iterate over the query data,
creating a different cfchartseries tag for each data point to be graphed. This allows you to specify
a different color for each "series". The actual data point is graphed using the cfchartdata tag.

Example 17-5 shows how to render the same chart from Example 17-3 with different colored bars.

Example 17-5. Generating different color data points

<cfquery name="GetSalary" datasource="ProgrammingCF">
 SELECT Department, AVG(Salary) AS AvgSalary
 FROM EmployeeDirectory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GROUP BY Department
</cfquery>

<h3>Average Salary by Department</h3>
<cfchart format="Flash" chartheight="360" chartwidth="480" scalefrom="0"
 scaleto="500000" gridlines="11" seriesplacement="Stacked"
 labelformat="Number" xaxistitle="Department" yaxistitle="Salary"
 showlegend="No">
 <cfloop query="GetSalary">
 <cfchartseries type="Bar">
 <cfchartdata item="#Department#" value="#AvgSalary#">
 </cfchartseries>
 </cfloop>
</cfchart>

Note that it's necessary to specify seriesplacement="Stacked" in the cfchart tag. If you use
Default or set it to Cluster, the bar chart may not appear as you would expect. Executing the code

in Example 17-5 results in the chart shown in Figure 17-6.

Figure 17-6. Generating a chart with more than one data point color in a
series

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.5 Drilling Down on Graph Data

Another useful feature of the cfchart tag is the ability to create graphs with clickable data points

that can link to other templates. This allows you to implement drill-down functionality as we did in
Chapter 11, using a graph instead of an HTML table. In order to create a clickable graph, you have to
set format to Flash. Examples 17-6 and 17-7 demonstrate how to create a pie chart with drill-down

capabilities. The pie chart displays the total amount of incentive award dollars given out per
department, and it allows you to click on any pie slice and have it drill down to that specific
department's data.

Example 17-6. Pie chart displaying total incentive awards by department
with drill-down capability

<cfquery name="GetAwards" datasource="ProgrammingCF">
 SELECT EmployeeDirectory.Department, Sum(IncentiveAwards.Amount) AS TheAmount
 FROM EmployeeDirectory, IncentiveAwards
 WHERE EmployeeDirectory.ID = IncentiveAwards.ID
 GROUP BY Department
</cfquery>

<h2>Total Incentive Awards by Department</h2>
<cfchart format="Flash" chartheight="300" chartwidth="450"
 show3d="Yes" pieslicestyle="Sliced"
 URL="17-7.cfm?department=$itemlabel$">
 <cfchartseries type="Pie" query="GetAwards" itemcolumn="Department"
 valuecolumn="TheAmount" colorlist="Red, Yellow, Green, Purple,
 Aqua, Blue, Silver, Maroon, Navy, Olive" />
</cfchart>

In this example, a query is run that returns the sum of all the incentive awards for each department.
The results are stored in two columns, Department and TheAmount. With these columns, a Pie chart
is constructed (Figure 17-7) with the Amount going in the valuecolumn and the Department going in
the itemcolumn of the cfchartseries tag. The pieslicestyle attribute in the cfchart tag specifies
how to display pie slices only if a cfchartseries tag is used with type="Pie" (which in our case, it
is). Solid displays a solid pie chart, while Sliced draws each slice segmented. The default is Sliced.
The colors for the pie slices are specified in the colorlist attribute of the cfchartseries tag.
colorlist accepts a comma-delimited list of colors to use for the data points in Pie charts. Color
names follow the same rules as in the seriescolor attribute. If there are more data points than
colors specified in colorlist, the list is simply reused once all the options have been exhausted. If
no colorlist is specified, ColdFusion uses a default list of colors.

Figure 17-7. Drilling down on a pie chart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The URL attribute in the cfchart tag specifies a URL to link to or a JavaScript function to call to when
a data point on the chart is clicked. URL is valid only when format is Flash. There are three special
variables you can use with the URL attribute to pass information about the data point to the URL or
JavaScript target. These variables are $value$ (value of the data point selected), $itemlabel$ (item
label associated with the selected data point), and $serieslabel$ (series label associated with the
selected data point). In our example, the URL points to the template in Example 17-7. Note the ?
Department=$itemlabel$ parameter appended to the end of the URL. This allows us to pass the

name of the department associated with a particular data point as a URL parameter to the template
in Example 17-7 for processing. Query columns whose values contain spaces and other special
characters are automatically URL-encoded before being appended to the URL string.

Clicking on any of the pie wedges calls the template in Example 17-7 and passes the department
name corresponding to the pie wedge as a URL parameter. The template takes the department name
contained in the URL variable and uses it to retrieve the total amount of incentive awards for each
employee in the department.

Example 17-7. Detail page for the drill-down pie chart

<!--- Retrieve all of the incentive awards for each employee in the
 department specified from the previous graph --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT EmployeeDirectory.Name, Sum(IncentiveAwards.Amount) AS TheAmount
 FROM EmployeeDirectory, IncentiveAwards
 WHERE EmployeeDirectory.ID = IncentiveAwards.ID
 AND EmployeeDirectory.Department = '#URL.Department#'
 GROUP BY EmployeeDirectory.Name
</cfquery>

<cfchart gridlines="11" scalefrom="0" scaleto="10000">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfchartseries type="Bar" query="GetEmployeeInfo" valuecolumn="TheAmount"
 itemcolumn="Name" />
</cfchart>

The resulting data is returned in two columns, Name and TheAmount. A Bar graph is then generated
based on the values in the TheAmount query column. Figure 17-8 shows the graph generated by this

example.

Figure 17-8. Detail page for drill-down chart

17.5.1 Passing Chart Parameters to JavaScript

The same technique that's used to create clickable data points for drill-down charts can also be used
to call JavaScript functions when a data point is clicked. This allows you to do all sorts of things with
your chart, including creating alert boxes when a data point is clicked. Example 17-8 shows you how
to do this by embedding the call to a JavaScript function directly in the URL attribute of the cfchart

tag; the function creates an alert box containing the data point values .

Example 17-8. Passing chart values to a JavaScript function

<script language="JavaScript">
<!--
 function chartAlert(Series, Item, Value){
 alert(Series + " " + Item + " = " + Value);
 }
//-->
</script>

<cfquery name="GetAwards" datasource="ProgrammingCF">
 SELECT EmployeeDirectory.Department, Sum(IncentiveAwards.Amount) AS TheAmount
 FROM EmployeeDirectory, IncentiveAwards
 WHERE EmployeeDirectory.ID = IncentiveAwards.ID
 GROUP BY Department

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfquery>

<h2>Total Incentive Awards by Department</h2>
<cfchart format="Flash" chartheight="300" chartwidth="450"
 show3d="yes" pieslicestyle="Sliced"
 URL="javascript:chartAlert('$serieslabel$','$itemlabel$','$value$');">
 <cfchartseries type="Pie" query="GetAwards" itemcolumn="Department"
 valuecolumn="TheAmount" colorlist="Red, Yellow, Green, Purple,
 Aqua, Blue, Silver, Maroon, Navy, Olive" serieslabel="Total
 incentive awards for" />
</cfchart>

This example runs a query that obtains the total dollar amount of incentive awards given for each
department and draws a pie chart representing the breakout. The URL attribute of the cfchart tag is
set to call a JavaScript function named chartAlert(), passing it the values for $serieslabel$,
$itemlabel$, and $value$. The chartAlert() function pops up a JavaScript alert box that

contains the values passed by the chart. The results of clicking on a pie slice are shown in Figure 17-
9.

Figure 17-9. Alert box created by a JavaScript function

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.6 Saving Charts to a Variable

In all the examples we've created so far, the cfchart tag has always been used to render the chart
directly to the browser. Behind the scenes, cfchart is generating a SWF, JPG, or PNG file and sending

the necessary HTML code to the browser to render the file. For example, if you run the code in Example
17-1 and do a "View Source" in your web browser, you'll see that ColdFusion MX automatically generated
the necessary HTML object and embed tags to display the SWF (Flash) version of the chart:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://active.macromedia.com/flash2/cabs/swflash.cab#version=4,0,2,0"
 ID=Images_100007_SWF name=Images_100007_SWF width=400 height=400>
 <param name=movie value="/CFIDE/GraphData.cfm?graphID=Images/100007.SWF">
 <param name=quality value=high>
 <param name=bgcolor value=#FFFFFF>
<embed src="/CFIDE/GraphData.cfm?graphID=Images/100007.SWF"
 quality=high bgcolor=#FFFFFF width=400 height=400 type="application/x-shockwave-flash"
 pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Version=
ShockwaveFlash">
</embed>
</object>

If you change the format attribute to JPG instead of Flash , execute the code, and view the source
again, you'll see that ColdFusion automatically generates an HTML img tag for the chart created by
cfchart :

<img src="/CFIDE/GraphData.cfm?graphID=Images/100008.JPG"
 id=Images_100008_JPG name=Images_100008_JPG usemap="#Images_100008_JPG_map"
 border=0>

By specifying a variable name in the name attribute of the cfchart tag, you can have ColdFusion write

the chart to a variable as ISO-8859-1-encoded binary data. Because the chart is stored in a variable, no
image is displayed in the browser. Storing the chart data in a variable opens up a number of options,
including writing the data out to a file, sending it to the browser, storing it in a database, or making the
chart available to Flash Remoting users. Example 17-9 shows how to generate a chart, save it to disk,
and display it in the browser using an HTML img tag.

Example 17-9. Writing a chart image to disk

<cfquery name="GetSalary" datasource="ProgrammingCF">
 SELECT Department, AVG(Salary) AS AvgSalary
 FROM EmployeeDirectory
 GROUP BY Department
</cfquery>

<h3>Average Salary by Department</h3>
<cfchart format="JPG" chartheight="360" chartwidth="480" scalefrom="0"
 scaleto="500000" gridlines="11" labelformat="Number"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xaxistitle="Department" yaxistitle="Salary" name="TheChart">
 <cfchartseries type="Bar" query="GetSalary" itemcolumn="Department"
 valuecolumn="AvgSalary" serieslabel="Average Salary by
 Department"
 seriescolor="##0000FF" paintstyle="Plain" />
</cfchart>

<cffile action="Write"
 charset="ISO-8859-1"
 file="d:\cfusionmx\wwwroot\programmingcf\17\AvgSal.jpg"
 output="#TheChart#">

Note that when you save a chart as a JPG or PNG file, the associated code used to generate the tip
rollovers and URL drill-downs does not carry over. However, if you generate and save the chart as a SWF
file, all rollovers and drill-down capabilities are preserved.

The same image we created in Example 17-9 could just as easily have been rendered straight to the
browser, without the need to write it to disk first, by using the cfcontent tag. To see how this works,
remove the cffile and img tags from Example 17-9 and insert the following code instead:

<cfcontent type="image/jpeg"><cfoutput>#TheChart#</cfoutput>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.7 Working with the Chart Cache

When ColdFusion MX generates a chart via the cfchart tag, the actual image, whether it is a SWF,

PNG, or JPG file, is rendered from a memory cache or a disk cache. By default, all images generated
by cfchart are cached to disk. If you have access to the ColdFusion Administrator, you can configure
exactly how the cfchart tag caches images that it creates. To do this, log into the ColdFusion

Administrator, and choose the Charting link on the left hand side of the screen. This takes you to the
Charting Settings section of the ColdFusion Administrator, shown in Figure 17-10.

Figure 17-10. Charting Settings in the ColdFusion Administrator

In the Charting Settings section, you can set the caching mechanism via a dropdown box to either
Disk (the default) or Memory. The next section allows you to specify the maximum number of images
to allow in the cache at any one time. Caching images allows multiple requests that generate the
same image to process much more quickly than having cfchart generate a new image every time

someone requests the same chart. In the third section, you can set the maximum number of charts
that can be processed concurrently. The higher the number, the more memory is required for the
operation. The final section allows you to specify a directory location to use to store chart files if you
set ColdFusion to use a disk cache. Note that the default values for all of these settings should suffice
in most situations.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 18. Regular Expressions in
ColdFusion
Anyone who has ever worked with regular expressions knows what an indispensable tool they can be
for parsing and manipulating text. Without them, text-processing operations such as search and
replace can be very difficult, to say the least. Those with experience in Unix-based languages such as
Perl, awk, or Tcl are probably already familiar with regular expressions, as they are used extensively
in those languages. For those new to the world of regular expressions, don't worry. This chapter
shows you everything you need to know to start using regular expressions in your ColdFusion
applications.

ColdFusion provides you with two sets of ColdFusion functions for finding and replacing strings using
regular expressions. REFind() and REFindNoCase() search for strings within blocks of text, while
REReplace() and REReplaceNoCase() perform search and replace operations. Both sets of

functions are extremely powerful and allow you to add a whole host of useful text-manipulation
features to your ColdFusion applications.

Before we get into the mechanics of regular expressions, it is important for you to gain a basic
understanding of the regular-expression language and how it is used by ColdFusion. Note that the
regular-expression engine in ColdFusion MX differs significantly from the engine in all previous
versions of ColdFusion. The new engine is "Perl compatible" for the most part, and it uses an
underlying Java library for processing regular expressions. Because of this, if you are migrating an
application from a previous version of ColdFusion to MX, be sure to read this chapter thoroughly and
test your existing code with the new engine.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.1 Regular-Expression Syntax

In their most basic form, regular expressions match characters on a one-for-one basis. Thus, you can
match the first occurrence of the letter "a" in a search string as follows:

REFind("a", "abcdefg")

Likewise, you can search for the letters "can" in succession with:

REFind("can", "Watch the candle burn")

Using "can" as your regular expression matches "can", "candle", and "scan". Regular expressions that
look for individual characters in this manner are said to be single-character regular expressions.

Single-character regular expressions are great when you know the exact series of characters that you
want to match. But what if you don't know? What if you need to find and remove all the HTML tags in
a particular block of text? You certainly don't want to have to code a regular expression for every
single HTML tag. Instead, you can use what is known as a multicharacter regular expression.
Multicharacter regular expressions use special characters (covered in a moment) to define ranges of
characters to be matched. The following example takes the contents of a form variable
(Form.MyString) and removes all HTML from it:

<cfset NoHTML = REReplace(Form.MyString, "<[^>]*>", "", "All")>

At first glance, the regular expression looks like a string of unrelated and meaningless characters. If
you take the regular expression and break it down, it is easier to see what is happening. In this case,
the first part of the expression, "<", matches the open angle bracket used to denote the beginning of
an HTML tag. Adding "[^>]*" after the open angle bracket tells ColdFusion to match zero or more
occurrences of any character other than the closed angle bracket ">". The square brackets denote a
set of characters. In this case, they are used in conjunction with the caret followed by the closed
angle bracket. This tells ColdFusion to exclude the closed angle bracket from the match criteria. The
asterisk tells ColdFusion to match zero or more occurrences of the set contained inside the square
angle brackets. The final part of the regular expression matches the closing angle bracket of an HTML
tag.

18.1.1 Commenting Regular Expressions

Although you can use standard CFML and HTML comments above, below, and beside your regular
expressions, the regular-expression language also contains a comment syntax that can be used inside
the regular expression. Regular expressions allow for two types of comments: inline and end of line.

Inline comments can make it easier for you to see what's going on in otherwise complicated regular
expressions. Regular expression comments in ColdFusion take the form (?##< Your comment goes

here >) . Consider the following example:

<cfset MyString = "The big cat is fat.">
<cfset Link =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 REFindNoCase("<a [^>]*>(?##<match the href anchor>)([^<]*)(?##<match
 between href tags>)(?##<match closing /a>)",
 MyString, 1 ,"true")>

<cfoutput>
#Mid(MyString, Link.Pos[2], Link.Len[2])#
</cfoutput>

Note the use of the escaped pound sign. Although the standard Perl-compatible commenting syntax
uses a single pound sign, you must escape it by using a second pound sign or ColdFusion throws an
error. You may include as many comments within your regular expression as you like.

End-of-line comments are a special case: you must use the (?x) operator discussed later in the

chapter to tell ColdFusion to ignore all whitespace within the regular expression. End-of-line
comments are denoted with two pound signs:

ReFindNoCase("(?x)
 bad\ cat ##this is line 1
 |good\ cat ##line 2. Note spaces must be escaped
 ", "The cat is a good cat.")

18.1.2 Operators

There are several operators in the regular-expression language. These special characters perform
functions within the regular-expression language and therefore must be escaped if you wish to search
for them as literals. The following is a list of the operators along with their functions:

Dollar sign ($)

The dollar sign anchors a regular expression to the end of a string. For example, searching for
"[abc]$" matches the first occurrence of "abc" when it is at the end of a string.

Caret (^)

The caret is used to exclude characters from being matched or to anchor a regular expression
to the beginning of a string. Searching for "[^abc]" matches any characters in a string except
for "a", "b", and "c". Similarly, searching for "[^0-9]" matches any characters in a string except
for numbers. Searching for "^[abc]" matches "abc" only when it appears at the beginning of a
string. In order for the caret to work within a set, it must be used as the first character in the
set or range of characters.

Question mark (?)

The question mark signifies zero or one matches of a regular expression within a given string.
For example, searching for "ab?c" matches "ac" as well as "abc". Likewise, searching for "[ab]?
c" matches "c" as well as "ac" and "bc". Using the question mark in your regular expressions
essentially makes the expression optional. The question mark is a maximal, or "greedy,"
quantifier.

Asterisk (*)

The asterisk is used to signify zero or more matches of a regular expression within a given
string. For example, searching for "[a-z]*" matches zero or more lowercase characters in a
string. Like the question mark, the asterisk effectively makes the expression optional and is
also considered a maximal or "greedy" quantifier.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Plus (+)

The plus sign signifies one or more matches of a regular expression within a given string. For
example, searching for "[a-z]+" matches one or more lowercase characters in a string. The plus
sign is a maximal or "greedy" quantifier.

Parentheses (())

Parentheses group segments of regular expressions together. These groups are known as
subexpressions. Grouping subexpressions extends the capabilities of regular expressions by
allowing you to apply special characters to the subexpressions as opposed to single characters.
For example, searching for "(ab)+" matches one or more occurrences of "ab" within a string.
Using parentheses to create subexpressions also enables you to take advantage of back
referencing, which is covered later in the chapter.

Curly braces ({ })

Curly braces are used to specify repeating characters to match and are considered maximal or
"greedy" quantifiers. There are three ways to use curly braces:

{ min , max }

Specifies the number of times, as a range, that a regular expression should be matched, where
min is an integer greater than or equal to zero that specifies the start of the range and max is

a positive integer greater than or equal to min that specifies the end of the range. For example,

searching for "(ab){1,4}" matches from one to four occurrences of "ab". Note that specifying
{0,1} is the same as using the ? character.

{ min ,}

Specifies that the regular expression should match at least min occurrences, where min is an

integer greater than or equal to 0.
{ n }

Specifies that the regular expression should match exactly n occurrences, where n is an

integer greater than or equal to 0.
Open square bracket ([)

The open square bracket is used in conjunction with the closed square bracket (not a special
character) to define a set of characters (called a character class) to be matched. For example,
searching for "[abc]" matches any "a", "b", or "c" in a string. A hyphen (-) can also be used in
conjunction with the square brackets to signify a range of characters to be matched, such that
searching for "[a-z]" matches any single lowercase letter.

Pipe (|)

The pipe represents a logical OR, such that searching for "tra(in|iner)" matches "train" or
"trainer".

Backslash (\)

A backslash escapes special characters so they can be searched as literal characters. For
example, "\+12" finds the string "+12". To search for the backslash character, it must also be
escaped. For example, "c:\\" finds the string "c:\".

Period (.)

A period matches any single character, including a newline character. For example, ".am"
matches both "cam" and "ham".

(?i)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Performs a case-insensitive comparison when used at the beginning of a regular expression in
ReFind() or ReReplace() . For example, searching for "(?i)cat" will match the first instance

of "cat", regardless of case.
(?m)

Used at the beginning of a regular expression to specify multiline mode for either the ̂ or $
character. Used with ̂ , the matched string can be at the start of the search string or at the
start of new lines. A new line is denoted by the linefeed character CHR(10) . For example, to

match the word "cat" across multiple lines, you would use a regular expression like the
following:

REFind("(?m)^cat", "the#CHR(10)#cat#CHR(10)#meows")

Carriage returns (CHR(13)) are not recognized as newline characters. When used with $, the

matched string can be at the end of the search string or at the end of new lines.

(?x)

Used at the beginning of a regular expression to specify that whitespace should be ignored
when performing the match, (you can allow spaces by escaping them), and to allow end-of-line
comments in the regular expression. End-of-line comments are denoted with two pound signs.
For example:

ReFindNoCase("(?x)
 bad\ cat ##this is line 1
 |good\ cat ##line 2. Note spaces must be escaped
 ", "The cat is a good cat.")

This matches the first occurrence of either "bad cat" or "good cat".

(?= string)

Used at the beginning of a regular expression to denote a positive lookahead when searching. A
positive lookahead allows you to include a subexpression in your regular expression for a
match, but does not include the matched text in the result. For example, the following code
searches for the string "Robert" but only returns the length of the string "Rob":

<cfset MyString="Is Robert a robber">
<cfset Nickname=REFind("Rob(?=ert)", MyString, 1, "Yes")>

<cfoutput>
#mid(MyString, Nickname.pos[1], Nickname.len[1])#
</cfoutput>

Note that because lookaheads do not capture text, their results are not included in backreferences.

(?! string)

Used at the beginning of a regular expression to denote a negative lookahead when searching.
A negative lookahead is similar to a positive lookahead, but it tests for the absence of a match.
Like a positive lookahead, results do not include the matched text from the negative lookahead
and are omitted from backreferences.

(?: string)

Excludes the matched subexpression from inclusion in backreferences. For example, if you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

search for the string "(?:cat)", ColdFusion matches the first occurrence of "cat", but it is not
available in a backreference.

To escape any special character, simply place a backslash (\) before the character. When a regular

expression encounters an escaped special character, it is treated as a literal search value.

18.1.3 POSIX Classes

Rather than requiring use of multicharacter classes such as "[A-Za-z]" in your regular expressions,
ColdFusion allows you to use Portable Operating System Interface (POSIX) character classes to make
coding and reading your regular expressions easier. POSIX character classes are referenced within
ColdFusion regular expressions by enclosing them inside two sets of square brackets, as in the
following example:

<cfset NewFilename = REReplace("My Filename.doc","[[:space:]]","_","All")>

This example replaces all spaces in the filename with underscores and creates a variable called
NewFilename that contains "My_Filename.doc". Here's another example:

<cfset NewString = REReplace("T8h3i53s i9s5 8a3 t3e2s9t.", "[[:digit:]]", "", "All")>

This example takes the string "T8h3i53s i9s5 8a3 t3e2s9t." and replaces all digits with a blank. The
result is the string "This is a test."

The following POSIX character classes are supported by ColdFusion MX:

[:alpha:]

Matches any letter regardless of the case used. Using alpha is the same as specifying [A-Za-z]

.
[:alnum:]

Matches any letter or number regardless of the case used. Using alnum is the same as
specifying [A-Za-z0-9] or \w .

[:blank:]

Matches a space or tab character.
[:cntrl:]

Matches any character that isn't included in any of the other POSIX character classes (alpha ,
alnum , digit , graph , lower , print , punct , space , upper , xdigit).

[:digit:]

Matches any digit. Using digit is the same as specifying [0-9] or \d .
[:graph:]

Matches any printable character except for those listed in the space control set (carriage

return, form feed, newline, space, or tab).
[:lower:]

Matches any lowercase letter, including lowercase accented letters.
[:print:]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Matches any printable character.
[:punct:]

Matches any punctuation character in the following set: ! ' # $ % & ' () * + , - . / : ;
< = > ? @ [/] ^ _ { | } ~

[:space:]

Matches any carriage return, form feed, newline, space, or tab. Same as specifying \s .
[:upper:]

Matches any uppercase letter, including accented uppercase letters.
[:xdigit:]

Matches any hexadecimal digit. Using xdigit is the same as specifying [0-9A-Fa-f] .

18.1.4 Character Classes

Another technique you can use to make reading and writing regular expressions easier is the use of
character classes. Character classes, also known as character shorthand, provide you with an easy
way to abstract more complex regular expressions. Many character classes perform the same tasks
as character sets or POSIX character classes. Others are unique. Note that character classes are
case-sensitive. The following list represents all of the character classes supported in ColdFusion MX:

\A

Similar to the ̂ special character in that it is used to anchor a regular expression to the
beginning of a string. However, unlike the caret, \A cannot be combined with (?m) to specify

the start of a newline.
\Z

Similar to the $ operator in that it is used to anchor a regular expression to the end of a string.
However, unlike the dollar sign, \Z cannot be combined with (?m) to specify the end of a

newline.
\b

Matches a word boundary. A word boundary is defined as a position with an alphanumeric
character on one side (\w) and a nonalphanumeric character, such as a space, on the other
(\W) . \b is also used to denote a backspace when used inside a set: [\b] .

\b

Matches a nonword boundary. Two alphanumeric or two nonalphanumeric characters in a row
indicate a nonword boundary.

\d

Matches a digit. Same as [0-9] or [[:digit:]] .
\D

Matches any nondigit. Same as [^0-9] or [^[digit:]] .
\ddd

Matches any 8-bit octal value in the range \000 to \377 .
\xdd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Matches any hexadecimal digit. Same as [0-9A-Fa-f] .
\w

Matches any alphanumeric character, including the underscore. Same as [A-Za-z0-9_] .
Similar to [[:alnum:]] except \w also matches the underscore.

\W

Matches any nonalphanumeric character. Same as [^A-Za-z0-9_] . Similar to [^[:alnum:]]
except \W will not match an underscore.

\f

Matches a form feed.
\n

Matches the newline character
\r

Matches a carriage return.
\s

Matches any whitespace character. Same as [[:space:]] or [\t\n\r\f] .
\S

Matches any character not considered a whitespace character. Same as [^[:space:]] or [^
\t\n\r\f] .

\t

Matches a tab.

18.1.5 Unsupported Perl Regular-Expression Conventions

Although the regular expression engine in ColdFusion MX is said to be Perl compatible, there are a few
differences. There are a handful of Perl-compatible features that are not supported in ColdFusion MX:

Lookbehind (?<=) (<?!)

\p\

\x{hhhh}

\C

\N

There are a few other minor differences between ColdFusion regular expressions and the Perl variety:

In ColdFusion MX, the period always matches a newline character.

Use \n instead of $n to specify the replace string in a backreference. ColdFusion automatically
escapes the $ in replacement strings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You don't have to escape the backslash character in replacement strings. ColdFusion does it
automatically except for case-conversion characters (\L should be escaped as \\ , etc.).

\Q , \u\L , and \l\U are not supported in replacement strings.

Embedded modifiers such as (?i) always operate on the entire expression, even when used

inside a bracketed group.

All of these differences need to be kept in mind, especially if you are using reference material other
than the ColdFusion documentation for constructing your regular expressions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.2 Finding Strings

To find a string in a block of text, you use the REFind() or REFindNoCase() functions. REFind()
and REFindNoCase() are used when you want to know the position of the expression being
searched for within a string. REFind() performs a case-sensitive search; REFindNoCase()

performs a case-insensitive search. Regardless of the function used, they both use the same syntax:

REFind(RegularExpression, String [, StartPosition] [, ReturnSubExpressions])

REFindNoCase(RegularExpression, String [, StartPosition] [, ReturnSubExpressions])

Both the REFind() and REFindNoCase() functions accept the same parameters. The following

example finds the first occurrence of "tom" regardless of case:

<cfset MyString="This is a red tomato.">
<cfset ThePosition=REFindNoCase("tom", MyString)>

<cfoutput>
The Position: #ThePosition#
</cfoutput>

In this example, we use REFindNoCase() to find the starting position of "tom" within the string

"This is a red tomato." This is done by assigning the result of the regular expression to a variable-in
this case, ThePosition. The actual regular expression is embedded within the REFindNoCase()
function. In its basic form, REFindNoCase() accepts two parameters, the regular expression and the

string. In this example, the regular expression is simply the three characters "tom", and the string is
"This is a red tomato." Upon execution, the value returned for ThePositon should be 15, as the first

occurrence of "tom" begins at position 15 of the string.

Now that you see how the REFindNoCase() function is used, let's take a look at another example
that uses REFind() to perform a case-sensitive search. This code finds the first case-sensitive

occurrence of "Tom":

<cfset MyString="This is Tom's red tomato.">
<cfset ThePosition = ReFind("Tom", MyString)>

<cfoutput>
The Position: #ThePosition#
</cfoutput>

The syntax for REFind() is the same as that for REFindNoCase(). The only difference between the
two tags is REFind() is case-sensitive. This time, the value of ThePosition is 9, the position at
which "Tom" first occurs in MyString. If we modify the example a bit so that the regular expression
is "tom" instead of "Tom", ThePosition returns 19 because the first case-sensitive occurrence of

"tom" is found at position 19 (the "tom" in "tomato").

Now that you've seen the mechanics of both tags, let's take a look at some additional examples that
utilize the REFind() and REFindNoCase() tags:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Find the first occurrence of the letter "a" in the string:
ReFind("a", "zzxxyaabbccdd")

Returns 6 because the first occurrence of "a" is in the sixth position of the string.

Use a case-sensitive search to find the first occurrence of any character followed by "ar":
ReFind(".ar", "There are a lot of aardvarks around here.")

Returns 6 because the first occurrence of any character followed by the letters "ar" is in the
sixth position of the string, where a space precedes the word "are".

Find the first case-sensitive occurrence of one or more "a" followed by one or more "b":
ReFind("a+b+", "zzxxyaabbccdd")

Returns 6 as "aabb" starts in the sixth position of the string.

Find the first letter regardless of case:
ReFind("[A-Za-z]", "1234567890asdfghjkl")

Returns 11 because the first letter, "a", occurs in the eleventh position of the string.

Find the first case-sensitive occurrence of "a" followed by one or more lowercase letters:
ReFind("a[a-z]+", "Is there a doctor around here?")

Returns 19 because the word "around", which begins in the nineteenth position, is the first
occurrence of the letter "a" followed by one or more occurrences of another lowercase letter.

Find the first occurrence of "to", "two", or "too", regardless of case:
ReFindNoCase("(to|two|too)", "She said that he likes to rock climb.")

Returns 24 because the word "to" occurs in the twenty-fourth position of the string.

Find the first character in the string, regardless of case, that isn't a number:
ReFindNoCase("[^0-9]", "50 miles to the beach!")

Returns 3 because the first nonnumber (a space) is encountered at the third position of the
string.

Both the REFind() and REFindNoCase() functions can accept two optional parameters in addition

to the regular expression and the string. The first optional parameter allows you to specify a start
position for the regular expression to begin its evaluation of the string. For example, to search the
string "This cat is fat" for the first occurrence of "is" beginning at the fifth position, your regular
expression looks like this:

<cfset ThePosition = ReFindNoCase("is", "This cat is fat", 5)>

In this case, the value returned for ThePosition is 10. The regular expression begins searching for

the first occurrence of "is" at the fifth position in the string, which happens to be the blank space

http://lib.ommolketab.ir
http://lib.ommolketab.ir

after "This" in our example.

The second optional parameter available to the REFind() and REFindNoCase() functions allows

you to specify whether to return matched subexpressions if any are found during the search. This
means that if a match for your regular expression is found, ColdFusion returns a structure containing
two arrays, one for the position of the first occurrence of the match and a second for the matched
subexpression's length in characters. These values are stored in the keys Pos and Len, respectively.

Here is an example to help illustrate the point:

<cfset MyString="This cat is a fat cat">
<cfset Matches = REFind("cat", MyString, 1, "true")>

<cfdump var="#Matches#">

<cfoutput>
String: #MyString#

Regex: REFind("cat", MyString, 1, "true")

Position: #Matches.Pos[1]#

Length: #Matches.Len[1]#
</cfoutput>

This example uses the REFind() function to perform a case-sensitive search for "cat" in the string

"This cat is a fat cat". The search begins at the first position in the string. Setting the optional
ReturnSubExpressions parameter to true causes the value of Matches to be returned as a
structure containing the keys Pos and Len. The cfdump tag is used to graphically illustrate the

structure of arrays returned by the regular expression. The values contained in the structure are
output by referencing them within a cfoutput section. In this example, the values output for Pos[1]
and Len[1] are 6 and 3, respectively. The results are shown in Figure 18-1.

Figure 18-1. Obtaining the length and position of a matched expression

If your regular expression contains one or more subexpressions, the Pos and Len arrays contain an
index for the first occurrence of each subexpression matched, in addition to the Pos and Len for the

first match of the entire regular expression. For example, consider the following regular expression
that looks for the first occurrence of an <a href>/ tag pair in a string, as well as the text

between the tags:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset MyString="This is a test.">
<cfset Matches=REFindNoCase("<a [^>]*>([[:print:]]*)", MyString, 1,
 "true")>

<cfdump var="#Matches#">

<cfoutput>
#HTMLEditFormat(Mid(MyString, Matches.Pos[1], Matches.Len[1]))#

#Mid(MyString, Matches.Pos[2], Matches.Len[2])#

</cfoutput>

In this example, the regular expression contains a subexpression that matches any text between <a
href>/ tags. Figure 18-2 shows a dump of the contents of the structure created by the
REFindNocase() function. The output also contains the actual string values returned by the whole
regular expression and the subexpression. The string values are obtained using the Mid() function

seeded with the start position and length for the expression and sub expression.

Figure 18-2. Obtaining the length and position of a matched expression

18.2.1 Maximal Versus Minimal Matching

By default, ColdFusion applies what is known as maximal or "greedy" matching when using the *, +,

?, {min,max}, {min,}, and {n} quantifiers. This means that ColdFusion finds the greatest number of

characters possible in a search string that matches a regular expression. You can force ColdFusion to
use minimal (nongreedy or "lazy") matching by appending a question mark to any of the greedy
quantifiers (+?, *?, ??, {min,max}?, {min,}?, and {n}?).[1] Minimal matching causes ColdFusion to

find the smallest number of characters in a search string that match a regular expression. To
illustrate the difference between maximal and minimal matching, consider the following example:

[1] {n}? is functionally no different than {n} and is supported for syntactic consistency.

<cfset MyString="hocus pocus abraabracadabra poof!">
<cfset Greedy=REFind("\w*abra", MyString, 1, "true")>
<cfset Lazy=REFind("\w*?abra", MyString, 1, "true")>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput><h3>String: "#MyString#"</h3></cfoutput>

<h3>Greedy: "\w*abra"</h3>
<cfoutput>#Mid(MyString, Greedy.Pos[1], Greedy.Len[1])#</cfoutput>
<cfdump var="#Greedy#">

<h3>Lazy: "\w*?abra"</h3>
<cfoutput>#Mid(MyString, Lazy.Pos[1], Lazy.Len[1])#</cfoutput>
<cfdump var="#Lazy#">

In this example, we use a greedy and a lazy regular expression to match zero or more alphanumeric
characters ([A-Za-z0-9_]) followed by "abra". Because ColdFusion employs maximal matching by

default, the first regular expression matches "abraabracadabra". Switching the regular expression
from "\w*abra" to "\w*?abra" tells ColdFusion to perform a minimal match, returning just "abra"
from the very beginning of the "abraabracadabra" portion of the string. Figure 18-3 shows the output
comparison.

Figure 18-3. Maximal versus minimal matching

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.3 Replacing Strings

String replacement is performed with the REReplace() and REReplaceNoCase() functions.
REReplace() performs case-sensitive search and replace functions, while REReplaceNoCase() is

used for case-insensitive search and replace. Regardless of which tag you use, they have the same
syntax:

REReplace(String, RegularExpression, Substring [, Scope])

REReplaceNoCase(String, RegularExpression, Substring [, Scope])

Both functions take three required parameters and one optional parameter. The first required
parameter is the string to perform the regular expression on. The string can be either a block of text
enclosed in single or double quotes or a variable that contains the text that you want to search. The
second required parameter is the regular expression you want to use for your search. Any valid
ColdFusion regular expression can be used. The third required parameter is the substring. The
substring contains the string to replace any matches made by the regular expression. The final
parameter is optional and determines the scope of the search-and-replace operation. The scope can
be set to One or All. Setting the scope to One (the default) replaces only the first occurrence of the
substring; setting it to All replaces all occurrences of the substring. The following two examples
show the use of the REReplace() and REReplaceNoCase() functions:

Replace all occurrences of the number 7 with the word "seven":
REReplace("There are 7 words in this string.", "7", "Seven", "All")

Replace all numbers with an asterisk character:
REReplace("My Social Security number is 999-99-9999.", "[0-9]", "*", "All")

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.4 Backreferences

Backreferences allow your regular expressions to refer to previously matched subexpressions. This is
useful in situations where you want your regular expression to use a match as part of the criteria for
an additional regular-expression function. A commonly used scenario illustrating backreferencing
involves using a regular expression to remove doubled words within a sentence. For example,
suppose you have the string "I would like to go to to the park." The word "to" appears twice in a
row-a common typing mistake. The regular expression to remove any doubled words from the
sentence looks like this:

<cfset NoDupes = REReplaceNoCase("I would like to go to to the park.",
" \b([\w]+)[]+\1", "\1", "All")>

Let's break this example down so that we can get a better understanding of what is going on. We use
the REReplaceNoCase() function to perform the search and replace without regard to case. The first

parameter of the function is the string we want to perform the search and replace on. The second
parameter is the actual regular expression. The "\b([\w]+)" tells ColdFusion to look for any word.
Notice that this part of the regular expression is enclosed in parentheses, making it a subexpression.
The next part of the regular expression "[]+" tells ColdFusion to look for one or more spaces. The
third part of the regular expression, \1, is the backreference and tells ColdFusion to refer back to the

first subexpression and use it as part of the search criteria. In this case, the regular expression is
looking for any word followed by a space followed by the word from the first subexpression. The third
parameter is the substring with which to replace the match made by the regular expression. Using \1

as the substring tells ColdFusion to replace any doubled words with the corresponding subexpression.
Using All as the fourth parameter tells ColdFusion to apply the search and replace to all repeated

words in the string.

Let's take a look at another example of back-referencing:

<cfset NewString = REReplaceNoCase("<!-- This is a comment -->",
"<!--([[:print:]]*)-->", "<!--- \1 --->", "All")>

In this case, we use the REReplaceNoCase() function to search for the opening of an HTML

comment tag, followed by any number of printable characters, followed by a closing HTML comment
tag. Any matches are replaced by the opening of a ColdFusion comment tag, followed by the text
matched by the first parenthesized subexpression (in this case "This is a comment"), followed by a
closing ColdFusion comment tag. The \1 allows us to refer to all the text matched between the <!--
and --> tags.

In the previous examples, we used a single parenthesized subexpression along with a matching
backreference to find and refer back to a particular string. If your regular expression contains more
than one parenthesized subexpression, you can back-reference the additional subexpressions by
referring to them as \2, \3, etc. To determine the numbering for your parenthesized subexpressions,

simply number them from left to right across your regular expression.

It is important to note that backreferences can only refer back to parenthesized subexpressions.
Attempting to refer to subexpressions not enclosed by parentheses results in an error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.4.1 Replacement String Case Conversion

There may be times when you want to change the case of backreferenced replacement text.
ColdFusion lets you do this via a set of special characters that can be used in the replacement string
portion of the REReplace() and REReplaceNoCase() functions:

\l

Converts the subsequent character to lowercase.
\u

Converts the subsequent character to uppercase.
\L

Converts all subsequent characters to lowercase until \E is encountered.
\U

Converts all subsequent characters to uppercase until \E is encountered.
\E

Terminates case conversion started by \L or \U.

Let's look at an example that uses case conversion in the replacement string portion of the
REReplaceNoCase() function. We'll use the regular expression to replace all occurrences of mixed-

case HTML comments with lowercase CFML comments:

<cfset NewString = REReplaceNoCase("<!-- This is a comment -->",
"<!--([[:print:]]*)-->", "<!--- \L\1\E --->", "All")>

The first thing you'll notice is that this example is very similar to the previous one we used to
demonstrate backreferences. The difference here is that we use \L\1\E to tell ColdFusion to convert
the backreferenced part of the replacement string to lower case. The \L denotes the start of the text
that should be lowercase, and the \E marks the end.

18.4.2 Excluding Subexpressions from Backreferences

There may be times where you find that you don't want to include a particular parenthesized
subexpression in a backreference. You can instruct ColdFusion not to include a particular
subexpression as a numbered backreference by placing ?: as the first characters following the open

parenthesis. Here's an example that illustrates the point:

<cfset NewString = REReplaceNoCase("This and that", "(this)(?:and|or)(that)",
"\1 before \2", "All")>

This code matches the string "this and that" or "this or that" and replaces it with "this before that".
Note that the second parenthesized subexpression is not included in the numbered backreferences.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.5 Useful Regular Expressions

Now that you have a better idea of how regular expressions work, let's take a look at how you can
actually use them in your own ColdFusion applications. Here are some regular expressions that
perform common search-and-replace tasks:

Replace all characters in a string that aren't numbers, letters, or underscores with an
underscore:
<cfset NewString = REReplaceNoCase("This is a test", "\W", "_",
 "All")>

Replace all spaces in a filename with the underscore character; this is useful in situations where
you allow users to upload files to your ColdFusion server via their web browsers:
<cfset NewFilename = REReplace("My File Name.txt", " ", "_", "All")>

Return the full directory path from a string containing a full path including filename:
<cfset TheDirectory = REReplaceNoCase(MyPath, "\w+\.\w+", "", "All")>

Return the filename from a string containing a full path including filename:
<cfset TheFileName = REReplaceNoCase(MyPath, "([A-Z]:\\)|\w+\\+", "", "All")>

Remove all doubled words in a string:
<cfset NoRepeats = REReplaceNoCase("I want to to go to the park.",
 "\b([a-z]+)[]+\1","\1","All")>

Strip all HTML tags from a string; this is useful for removing HTML from form-field submissions:
<cfset NoHTML = REReplace(MyString, "<[^>]*>", "", "All")>

Remove all HTML anchors in a string, leaving just the text, if any:
<cfset NoHTMLLinks =
 REReplaceNoCase(MyString, "<a [^>]*>([[:print:]]*)","\1",'All')>

Format all email addresses in a string as HTML mailto: links. Note that this regular expression

allows for up to six characters in the domain suffix to allow for the .museum top-level domain:
<cfset MailtoLinks = REReplaceNoCase(MyString,
 "([\w\.\-]+@([\w\.\-]+\.)+[[:alpha:]]{2,6})",
 "\1", "All")>

Remove all ASCII character codes, such as " and •:
<cfset NoASCIICodes = REReplaceNoCase(MyString,
 "&(##[0-9]{1,3}|[[:alpha:]]*[[:alnum:]]+);", "", "All")>

Format a 10-digit number as a Social Security number:
<cfset FormattedSSN = REReplace("123456789", "([0-9]{3})([0-9]{2})([0-9]{4})",
 "\1-\2-\3")>

Escape all special characters in the Verity search language:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset EscapedSearchString =
 REReplace(SearchString, '([]<>\\@\`\,\(\)"\{ }\[])',"\\1", "All")>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.6 Regular Expression Tester

Writing a regular expression is often a trial-and-error process. The process typically goes something
like this:

Create a ColdFusion template that contains a string and a regular expression to perform the task
you want.

1.

Save the ColdFusion template.2.

Open your web browser, point it to the ColdFusion template, and see if the regular expression
behaves as intended.

3.

If the regular expression is successful, great! If not, you then have to modify the regular
expression in the template and repeat Steps 2 through 4.

4.

Some regular expressions are simple and can be worked out relatively quickly. Others, however, are
more complicated and require you to repeat the trial-and-error process over and over. Constantly
having to switch from the browser to the development environment can be a real pain.

With this in mind, let's look at a ColdFusion-based solution for building search-and-replace regular
expressions. The template in Example 18-1 , called expressiontester.cfm , creates a form for collecting
information about the regular expression you want to test and uses the information to dynamically
generate REReplace() or REReplaceNoCase() code.

Example 18-1. Regular-expression tester

<cfparam name="form.Operation" default="REReplace">
<cfparam name="form.MyString" default="">
<cfparam name="form.MyRegex" default="">
<cfparam name="form.MySubString" default="">
<cfparam name="form.MyScope" default="All">

<cftry>
 <cfif form.Operation is "REReplace">
 <cfset MyOutput=REReplace(form.MyString, form.MyRegex,
 form.MySubString, form.MyScope)>
 <cfelse>
 <cfset MyOutput=REReplaceNoCase(form.MyString, form.MyRegex,
 form.MySubString, form.MyScope)>
 </cfif>

 <cfcatch type="Expression">
 <cfset MyOutput="Invalid Regular Expression!">
 </cfcatch>
</cftry>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h2>Regular Expression Builder</h2>

<cfoutput>
<form method="Post" action="#CGI.Script_Name#">
<table>
 <cfif IsDefined('form.Submit')>
 <tr>
 <td>Original string:</td>
 <td>#form.MyString#</td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td>After Regex:</td>
 <td>#MyOutput#</td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td>Your Regex:</td>
 <td><textarea name="Text" cols="75" rows="3"
 wrap="Virtual">#form.Operation#("#form.MyString#", "#form.MyRegex#", "#form.
MySubstring#", "#form.MyScope#")</textarea></td>
 </tr>
 </cfif>

 <tr>
 <td>String</td>
 <td><textarea name="MyString" cols="50"
 rows="3">#form.MyString#</textarea></td>
 </tr>
 <tr>
 <td>Operation</td>
 <td><select name="Operation">
 <option value="REReplace"<cfif form.Operation is
 "REReplace"> selected</cfif>>REReplace</option>
 <option value="REReplaceNoCase"<cfif form.Operation is
 "REReplaceNoCase"> selected</cfif>>REReplaceNoCase</option>
 </select>
 </td>
 <tr>
 <td>Regex</td>
 <td><input type="text" name="MyRegex" value="#form.MyRegex#" size="52"
 maxlength="255"></td>
 </tr>
 <tr>
 <td>Substring</td>
 <td><input type="text" name="MySubstring"
 value="#form.MySubString#" size="52"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 maxlength="255"></td>
 </tr>
 <tr>
 <td>Scope</td>
 <td><select name="MyScope">
 <option value="One"<cfif form.MyScope is "One"> checked</cfif>>One</option>
 <option value="All"<cfif form.MyScope is "All"> checked</cfif>>All</option>
 </select>
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="Submit" value="Submit"></td>
 </tr>
</table>
</form>
</cfoutput>

The template in Example 18-1 creates the user interface for the regular-expression tester and can be
seen in Figure 18-4 . The program uses an HTML form to allow the user to enter a string to perform
the regular expression on. A drop-down box is used to choose whether the operation should use the
REReplace() or REReplaceNoCase() function. The template also contains a text box for entering the

regular expression as well as the replacement string to use. Finally, a drop-down box is used to select
the scope attribute for the regular expression.

Figure 18-4. Regular-expression tester wizard

Upon submission, the data entered in the form is self-posted. The template takes the parameters from
the form submission and uses them to evaluate the regular expression. The resulting output can be
seen in Figure 18-5 .

Figure 18-5. Regular-expression tester result screen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 19. Scripting
When ColdFusion 4.0 was released, it introduced a new server-side scripting language called
CFScript. CFScript is similar in appearance to JavaScript and allows you to write sections of code in
your templates using a more concise format than tag-based CFML. CFScript isn't meant to replace
the CFML language; it just provides you with a choice of styles for coding your pages. ColdFusion 5.0
introduced developers to user-defined function. Now, in ColdFusion MX, CFScript adds the ability to
trap and handle errors with try/catch constructs. Those used to programming in JavaScript will find
the CFScript constructs quite familiar. This chapter covers everything you need to know about the
CFScript language, along with examples.

CFScript-based user defined functions (UDFs) were added to the ColdFusion language in Version 5.
This functionality allows you to use CFScript to write custom functions that can be used just like any
of ColdFusion's built-in functions. To facilitate this, three additional CFScript statements, function,
var, and return, were added to the language. These statements are covered in detail in Chapter 20.

For now, all you need to know is that they are considered reserved words in CFScript.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.1 Scripting Syntax

The <cfscript> and </cfscript> tags are at the heart of the CFScript language. All CFScripting in a

template takes place between these tags. There are a few general guidelines that will help you write
your CFScripts:

cfscript tag pairs can be placed anywhere in your template.

More than one set of cfscript tags can be placed in your template.

cfscript tags may not be nested.

Code (including variable names) placed between cfscript tag pairs is case-insensitive.

CFML tags may not be used within a cfscript tag block.

CFML functions may be used within a cfscript block.

CFML variables created outside a cfscript block are automatically available within the block.

Not all CFML variables created inside the cfscript block are automatically available outside of

the block.

CFScript statements end in a semicolon.

Curly braces ({ }) are used to group related statements.

19.1.1 Working with Variables

Assigning values to variables in CFScript is simple. Assignment statements take the following form:

variable = expression;

Here, variable is the name of the variable, and expression is the value you wish to assign to the

variable. The semicolon marks the end of the statement. For comparison sake, consider the following
example in which we assign values to a number of variables using the cfset tag:

<cfset x = 1>
<cfset y = 1+2>
<cfset MyMessage = "Hello World">
<cfset MyStructure = structNew()>

The same functionality can be rewritten using CFScript syntax like so:

<cfscript>
 x = 1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 y = 1+2;
 MyMessage = "Hello World";
 MyStructure = structNew();
</cfscript>

As you can see, setting values within a cfscript block takes less code and is generally easier to read
than the equivalent code done using cfset. Also, notice that you can use any ColdFusion functions
(but not tags) that you want within a cfscript block.

19.1.2 Commenting Your Code

ColdFusion provides two conventions for commenting code within a cfscript block that mimic

JavaScript's commenting syntax. Comments can be single-line:

// this is a single line comment
x = 1;
x = 1+2; //This is a comment too

Comments that need to span multiple lines can be written using the // syntax:

// This is the first line of the comment
// This is the second

Alternately, multiline comments can be written using paired notation like this:

/* This is the first line of the comment
 This is the second line
 This is the third line */

To keep things more readable, an asterisk is typically used at the beginning of each line between the
open and close comment markers:

/* This is the first line of the comment
 * This is the second line
 * This is the third line
 */

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.2 Writing Output

You can't directly output text or variable values to the browser within a cfscript block. There is,
however a function called WriteOutput() that you can use to write directly to the page output
stream. This technique can output both variable values and plain text from within a cfscript block.
Example 19-1 demonstrates the WriteOutput() function.

Example 19-1. Using the WriteOutput() function within a cfscript block

<h2>Using WriteOutput Within cfscript</h2>

<cfscript>
 x = 1;
 y = 2;
 MyMessage = "Hello World";

 WriteOutput("x = #x#
");
 WriteOutput("MyMessage = #MyMessage#
");
 WriteOutput(x+y);
</cfscript>

In this case, because there is no way to embed HTML directly within the cfscript block, all
formatting is done by embedding the HTML code within the WriteOutput() function. Executing

Example 19-1 results in the output shown in Figure 19-1.

Figure 19-1. Using WriteOutput() within a CFScript block to write to the
page output stream

It is also possible to output the value of variables set within a cfscript block outside of the
cfscript tags. This is accomplished by using a cfoutput block outside the cfscript block to handle

the actual output, as shown in Example 19-2.

Example 19-2. Outputting CFScript variables outside the cfscript block

<h2>Using cfoutput To Output Variables Created Within cfscript</h2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfscript>
 x = 1;
 y = 2;
 MyMessage = "Hello World";
</cfscript>

<cfoutput>
x = #x#

MyMessage = #MyMessage#

#(x+y)#
</cfoutput>

The template in Example 19-2 generates the same output shown in Figure 19-1.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.3 Flow Control and Looping

CFScript contains a number of statements to handle flow control and looping, as we'll discuss in this
section. Note that you can't use any CFML tags within a cfscript block.

19.3.1 if/else

The if/else statement has the same functionality as the cfif and cfelse (and by extension,
cfelseif) tags in regular CFML. The if statement can be used alone, as in:

if (expression)

 statement;

Or it can be used with the else statement, as in:

if(expression)

 statement;
else

 statement;

You can also use the else and if statements in combination to achieve the same results as the
cfelseif tag:

if (expression)

 statement;

else if (expression)
 statement;
else

 statement;

To understand the differences between the cfif/cfelse tags and the ifelse statement, let's first
consider an example that uses the cfif and cfelse tags. Example 19-3 assigns the current year to a
variable called TheYear. The cfif and cfelse tags are then used to determine whether the current

year is a leap year. The results are then written to the browser.

Example 19-3. Determining if the current year is a leap year using
cfif/cfelse

<!--- Set a variable equal to the current year --->
<cfset TheYear=Year(Now())>

<!--- Check to see if the current year is a leap year. --->
<cfif IsLeapYear(TheYear)>
 <cfset ReturnOutput="is a leap year.">
<cfelse>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfset ReturnOutput="is not a leap year.">
</cfif>

<cfoutput>
#TheYear# #ReturnOutput#
</cfoutput>

The same code can easily be rewritten using CFScript. Example 19-4 shows the ported code.

Example 19-4. Using if/else to determine if the current year is a leap
year

<cfscript>
// set a variable equal to the current year
TheYear=Year(Now());

// Check to see if the current year is a leap year.
if (IsLeapYear(TheYear)){
 ReturnOutput="is a leap year.";
 }
else {
 ReturnOutput="is not a leap year.";
 }
</cfscript>

<cfoutput>
#TheYear# #ReturnOutput#
</cfoutput>

As you can see, the code is almost identical. The only noticeable difference is that the CFScript
version uses slightly less code and may be a bit easier to read.

Note that in Example 19-4 curly braces surround the code that gets executed in the event the if or
else statement evaluates true. Although not necessary in this example (because we are executing
only a single statement in our if and else statements), it is recommended you always use the curly

braces as they do become necessary when you wish to execute more than one statement within an
if or else statement.

19.3.2 switch/case

The switch/case statement has the same basic functionality as do the cfswitch, cfcase, and
cfdefaultcase tags in regular CFML. switch/case can simplify the coding process in situations
where you would otherwise have to use multiple ifelse statements. To get a better idea of how
switch/case is implemented in CFScript, let's see how it is handled in regular CFML. Example 19-5
shows how the cfswitch, cfcase, and cfdefaultcase tags are used.

Example 19-5. Determining what quarter of the year the current month is
in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Assign the quarter associated with the current month to
 TheQuarter --->
<cfset TheQuarter = Quarter(Now())>

<!--- Evaluate the current quarter --->
<cfswitch expression="#TheQuarter#">
 <cfcase value="1">
 <cfset q="1st">
 </cfcase>

 <cfcase value="2">
 <cfset q="2nd">
 </cfcase>

 <cfcase value="3">
 <cfset q="3rd">
 </cfcase>

 <cfdefaultcase>
 <cfset q="4th">
 </cfdefaultcase>
</cfswitch>

<cfoutput>
#MonthAsString(Month(Now()))# is in the #q# quarter of the year.
</cfoutput>

Example 19-6 shows the same code written using CFScript syntax.

Example 19-6. Implementing switch/case in CFScript

<cfscript>
// Assign the quarter associated with the current month to TheQuarter
TheQuarter = Quarter(Now());

// Evaluate the current quarter
switch(TheQuarter) {
 case 1: {
 q='1st';
 break;
 }
 case 2: {
 q='2nd';
 break;
 }
 case 3: {
 q='3rd';
 break;
 }
 default: {
 q='4th';

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;
 }
}
</cfscript>

<cfoutput>
#MonthAsString(Month(Now()))# is in the #q# quarter of the year.
</cfoutput>

In Example 19-6, the switch statement evaluates the value of TheQuarter. TheQuarter contains the
quarter of the year that the current month belongs to (1, 2, 3, or 4). Each case statement allows you
to specify an individual value that can result from the expression evaluated by the switch statement.

Case values must be static values and can't be variables or expressions. If the expression contained
in the switch statement evaluates to a value contained in one of the case statements, the

corresponding code is executed. In this case, the text describing the quarter is assigned to the
variable q, which is later output to the browser.

The default statement allows you to specify a default action to take in the event that no case value
matches the result of the expression from the switch statement. In our example, because we didn't
provide a case statement for the number 4, the default statement is invoked only if the current

month falls in the fourth quarter of the year.

Note that in Example 19-6, each case statement tests for a numeric value. You can also test for a

string by enclosing it in quotation marks, such as:

case "myval":

You can also test for a Boolean value, such as

case true:

You can't, however, test for both a Boolean and a numeric value in the same switch statement.

The break statement at the end of each case statement is used to exit the switch/case statement.
If you omit the break statements from the code, each case statement after the intended one will
execute, regardless of whether it evaluates true or not. This is known as "falling through", and is

generally not a desired result.

Unlike the cfcase tag, it isn't possible to specify a delimited list of values for a single case statement
in CFScript. This was done to keep the behavior and syntax of the switchcase statement inline with

its JavaScript equivalent.

19.3.3 for Loops

A for loop in CFScript is the equivalent of an index loop created by the cfloop tag and is used to
repeat a block of code a specific number of times. Although for loops and index loops function

identically, the syntax is a bit different. To understand the difference, look at the following index loop
shown in Example 19-7.

Example 19-7. Index loop created with cfloop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h2>Index Loop Using Regular CFML</h2>
<cfloop index="i" from="10" to="100" step="10">
 <cfoutput>
 #i#

 </cfoutput>
</cfloop>

This loop loops from 10 to 100 by increments of 10. The results of each iteration are output to the
browser.

Example 19-8 shows the same loop written within CFScript as a for loop.

Example 19-8. Creating a for loop in CFScript

<h2>For (Index) Loop Using cfscript</h2>
<cfscript>
for (i=10; i lte 100; i=i+10) {
 WriteOutput(i & "
");
 }
</cfscript>

In Example 19-8, the for statement takes three arguments, an initial expression that determines the

starting value for the loop, a test expression that determines what condition is necessary for the loop
to continue iterating, and an increment expression that specifies how the value in the initial
expression of the loop should be incremented. In this case, the initial expression within the for loop
sets i=10. The initial expression can be a variable assignment, any valid ColdFusion expression, or
blank. The test expression causes the loop to iterate as long as i is less than or equal to 100. The

test expression can be any valid ColdFusion expression or blank. The increment expression sets an
increment value of 10 for the loop by setting i=i+10. The increment expression can be any variable
assignment, valid ColdFusion expression, or blank. A for loop containing blanks for all three

arguments it expects is shown in Example 19-9.

Example 19-9. for loop with blank arguments

<cfscript>
i=10;

for(; ;){
 WriteOutput(i & "
");
 i=i+10;
 if(i gt 100)
 break;
}
</cfscript>

In Example 19-9, a break statement is used to exit the loop when the value of i is greater than 100.
The break statement is covered later in this chapter.

19.3.4 for/in Loops

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for/in loops allow you to loop over ColdFusion structures and offer similar functionality to collection
loops in regular CFML. Example 19-10 uses the cfloop tag to loop over the contents of a structure.

Example 19-10. Looping over a structure using cfloop

<cfset Stock = StructNew()>

<cfset Stock.MACR = 30>
<cfset Stock.AMKR = 35>
<cfset Stock.YHOO = 20>

<h2>Collection Loop Using Regular CFML</h2>
<table>
<tr>
 <th>Ticker</th>
 <th>Price</th>
</tr>

<cfloop collection="#Stock#" item="Ticker">
<cfoutput>
<tr>
 <td>#Ticker#</td>
 <td>#StructFind(Stock,Ticker)#</td>
</tr>
</cfoutput>
</cfloop>
</table>

Example 19-11 shows the same functionality rewritten using a for/in loop in CFScript.

Example 19-11. Looping over a structure using a for/in loop in CFScript

<h2>For-In (Collection) Loop Using cfscript</h2>
<cfscript>
Stock = StructNew();
Stock.MACR = 30;
Stock.AMKR = 35;
Stock.YHOO = 20;

WriteOutput("<table><tr><th>Ticker</th><th>Price</th></tr>");

for (Ticker in Stock) {
 WriteOutput("<tr><td>#Ticker#</td>
 <td>#StructFind(Stock,Ticker)#</td></tr>");
 }
WriteOutput('</table>');
</cfscript>

Notice that in Example 19-11, the HTML table is created within the cfscript block by including the
HTML code inside WriteOutput() statements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for/in loops can also be used to loop over COM collections, giving CFScript the same looping

capabilities as the tag-based collection loop (cfloop collection="CollectionName"). This behavior

is new in ColdFusion MX. In previous versions, for-in loops were only capable of looping over
structures. To get a better understanding of what I'm talking about, consider Example 19-12, which
uses the tag based cfloop to iterate over a COM collection, outputting a list of disk drives available

to the server.

Example 19-12. Looping over a COM collection using cfloop

<cfobject type="COM" name="FSO" class="Scripting.FileSystemObject"
 action="Create">

<cfloop collection="#FSO.Drives#" item="i">
 <cfoutput>#i.DriveLetter#
</cfoutput>
</cfloop>

Now, consider the same functionality written using CFScript. Example 19-13 shows you how it's done
using a for/in loop.

Example 19-13. Looping over a COM collection using a for/in loop in
CFScript

<cfscript>
 fso = CreateObject("COM", "Scripting.FileSystemObject");

 for (i in fso.drives) {
 WriteOutput(i.DriveLetter &"
");
 }
</cfscript>

Executing either of these examples should output a list of drives on your ColdFusion server. For more
information on working with COM, see Chapter 27.

19.3.5 while Loops

A while loop offers the same functionality as a conditional cfloop. In a while loop, the loop repeats
while a specified condition is true. In order to work, the condition being tested must change with
each iteration of the loop until the condition evaluates to false. Example 19-14 demonstrates a
conditional loop written using the cfloop tag.

Example 19-14. Conditional loop using cfloop

<cfset x = 1>

<h2>Conditional (While) Loop Using Regular CFML</h2>
<cfloop condition="x lte 10">
 <cfoutput>
 #x#

 </cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfset x = x+1>
</cfloop>

Example 19-15 shows the same code rewritten using a while loop in CFScript.

Example 19-15. Creating a while loop using CFScript

<h2>While Loop Using cfscript</h2>
<cfscript>
 x = 1;
 while (x lte 10) {
 writeoutput(x & "
");
 x = x+1;
 }
</cfscript>

In Example 19-15, while x is less than or equal to 10, the loop continues to iterate. With each
iteration, the value of x is output to the browser. Once x is equal to 11, the loop stops iterating.

19.3.6 do/while Loops

do/while loops are similar in appearance to while loops, but the conditional statement appears at

the end of the loop as opposed to the beginning. While at first glance, there appears to be no
functional difference between a do/while loop and a plain while loop, a subtle difference does exist.
In the case of a while loop, that loop may never iterate if the expression being tested evaluates
false before the first iteration occurs. A do/while loop, on the other hand, is guaranteed to iterate

at least once because the condition being tested appears at the end of the loop. Example 19-16
demonstrates how a do/while loop is guaranteed to iterate at least once even when the condition
being tested for is false before the loop begins iterating.

Example 19-16. A do/while loop in CFScript

<h2>Do-While Loop Using cfscript</h2>

<cfscript>
x = 11;
do {
 WriteOutput(x & "
");
 x = x+1;
} while (x lte 10);
</cfscript>

In this case, the loop iterates once because the condition that checks to see if x is less than or equal

to 10 appears at the end of the loop.

19.3.7 Using break Within a Loop

The break statement is used within a loop to exit the loop if a certain condition is met. It has the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

same functionality as the cfbreak tag.

Example 19-17 uses an index (for) loop to output the numbers between 10 and 100 in increments of
10. As soon as the loop gets to 50, the cfbreak tag causes the program to exit the loop before the
number 50 can be output.

Example 19-17. Breaking out of a loop using the cfbreak tag

<h2>Using cfbreak Within Regular CFML</h2>
<cfloop index="i" from="10" to="100" step="10">
 <cfif i eq 50>
 <cfbreak>
 </cfif>

 <cfoutput>
 #i#

 </cfoutput>
</cfloop>

The equivalent code written in CFScript is shown in Example 19-18.

Example 19-18. Using the break statement within a for loop in CFScript

<h2>Using Break Within cfscript</h2>
<cfscript>
for (i=10; i lte 100; i=i+10) {
 // this line breaks out of the loop before "50" can be output to the
 // browser
 if (i eq 50) {
 break;
 }
 WriteOutput(i & "
");
}
</cfscript>

19.3.8 Using continue

The continue statement resembles the break statement, but instead of breaking out of the loop
altogether, continue allows the loop to skip over the code associated with the current iteration of the

loop and pick back up with the next iteration. There is no CFML tag with equivalent functionality to
the continue statement. Example 19-19 shows how the continue statement is used.

Example 19-19. Using continue within a loop to skip an iteration

<h2>Using Continue Within cfscript</h2>
<cfscript>
for (i=10; i lte 100; i=i+10) {
 /* This line skips the iteration of the loop that would produce "50",
 * then continues iterating. Notice the output contains 10,20,30,40,
 * 60,70,80,90,100.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */
 if (i eq 50) {
 continue;
 }
 WriteOutput(i & "
");
}
</cfscript>

In Example 19-19, a for loop outputs the number from 10 to 100 in increments of 10. An if

statement is used within the loop to test if the number produced by the current iteration of the loop is
50. If 50 is encountered, the continue statement is executed, and that iteration of the loop is

skipped.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.4 Error and Exception Handling

New in ColdFusion MX is the ability to trap errors and exceptions within CFScript code using
try/catch statements similar to the cftry and cfcatch tags described in Chapter 9. If you were
writing exception-handling code using the cftry and cfcatch tags, it might look something like the

code in Example 19-20.

Example 19-20. Exception handling with cftry and cfcatch

<cftry>
 <cfset x=y+1>

 <cfcatch type="Expression">
 <cfoutput>
 Expression Error: #cfcatch.Message#
 </cfoutput>
 </cfcatch>

 <cfcatch type="Any">
 <cfoutput>
 General Error: #cfcatch.Message#
 </cfoutput>
 </cfcatch>
</cftry>

This code attempts to set the variable x equal to y+1. It then includes cfcatch code for handling
Expression type errors, and another cfcatch block for catching Any exception that is not caught by
the Expression type. In this case, the exception handling comes in the form of a semi-custom error

message written to the browser.

The same code rewritten in CFScript is shown in Example 19-21.

Example 19-21. Exception handling with try and catch in CFScript

<cfscript>
try {
 x=y+1;
}

 catch("Expression" exception) {
 writeOutput("Expression Error: " & exception.Message);
 }

 catch("Any" exception) {
 writeOutput("General Error: " & exception.Message);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfscript>

The CFScript equivalent try/catch code is slightly different than the tag-based version. In CFScript,
catch statements do not need to be nested in the try code as cfcatch statements do in an
equivalent cftry tag. The syntax for the catch code is:

cfcatch("ExceptionType", ErrorVar)

ExceptionType names the type of exception the catch block is designed to trap. The list is the same
as that for the cfcatch tag and can be found in Chapter 9 or Appendix A. ErrorVar lets you specify
a variable name to hold the exception structure returned should the catch code execute. The
exception structure is identical to the cfcatch structure returned by the cfcatch tag.

Although CFScript contains equivalents for the cftry and cfcatch tags, there is no equivalent for the
cfthrow or cfrethrow tags.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 20. User-Defined Functions
Since their introduction in ColdFusion 5.0, user-defined functions (UDFs) have become a cornerstone
of the CFML language. UDFs give you the ability to create custom that can be called inline, just like
other ColdFusion functions. UDFs allow you to extend ColdFusion's core set of functions with custom
functions that encapsulate programming tasks not currently addressed by CFML. For example, there
is no CFML function for calculating the mean (average value) of a delimited list of numeric values.
Rather than writing code that uses multiple functions each time you want to calculate the mean for a
given list of numbers, you can create a UDF that can be called inline in your template as often as you
want.

This chapter covers everything you need to know to create your own UDFs. Included in the discussion
are good practices for developing, organizing, and deploying user-defined functions. We'll also talk
about advanced topics such as error- and exception-handling strategies.

In ColdFusion MX, you have two options for creating user-defined functions. You can write UDFs using
the new cffunction, cfargument, and cfreturn tags, or you can use the older and less feature-rich

CFScript-based syntax.[1] There are pros and cons to both options, which you should carefully
consider when deciding which method to use. The major differences are shown in Table 20-1.

[1] As of ColdFusion MX, you can create UDFs using CFML tags or CFScript. In ColdFusion 5, you were limited to
defining your tags using CFScript only.

Table 20-1. Differences between tag- and script-based UDFs

Tag-based UDFs Script-based UDFs

Tag syntax may be more comfortable
for a broader range of developers.

Scripting syntax is more concise.

Compatible with ColdFusion MX only. Compatible with ColdFusion 5.

Built-in argument validation. Argument datatypes must be manually validated.

Optional arguments may be declared.
No declaration of optional arguments; additional code is
required to work around this.

Full range of CFML tags and functions
can be used inside function.

No CFML tags allowed within CFScript.

Try/catch/throw exception handling.
Try/catch error handling only;[2] no throw statement in
CFScript.

Access to UDF can be controlled via
roles attribute.

No built-in security mechanism; access control has to be
manually coded using IsUserInRole() (see Chapter 8).

[2] This is valid only for ColdFusion MX. ColdFusion 5 does not contain try/catch functionality in CFScript.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter focuses on writing user-defined functions using the tag-based syntax introduced in
ColdFusion MX. Don't worry, though: we'll still cover script-based UDFs, albeit to a lesser degree.

Before we get things moving, I want to point out a few general rules related to the use of UDFs,
regardless of the method you use to create them:

UDFs can be used anywhere you use a normal CFML function: within a cfoutput block, within
cfset tags, in any tag attributes, and within CFScript code.

UDFs can be called recursively, which means that a UDF can call itself.

UDFs can call other UDFs.

Although it's possible to assign a UDF to a variable, it's generally not advisable to do so in the
case of persistent variables (session, application, server) due to the locking issues this may
present.

UDFs referenced within custom tags must be coded inside the custom tag or assigned to a
scope such as the request scope before being called by the custom tag.

It is not necessary for a UDF to return a value.

With this in mind, let's turn our attention to what's needed to create a user-defined function.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.1 UDF Basics

To create a tag-based UDF, you use the cffunction tag. Optionally, one or more cfargument tags

can be used to define both required and optional arguments the function should expect as input. Data
can be returned from the UDF using the cfreturn tag. Here's some code that shows the basic syntax

for a tag-based UDF:

<cffunction name="function_name"
 output="Yes|No"

 returntype="return_type"

 roles="authorized_roles">

 <cfargument name="arg1" type="arg_type" required="Yes|No"

 default="default_val">

 <cfargument name="arg2" type="arg_type" required="Yes|No"

 default="default_val">
 ...

 additional CFML

 <cfreturn expression>
</cffunction>

The cffunction tag pair acts as a container for the UDF. The name attribute is required; it specifies

the name for the function. There are several guidelines you should think about when deciding what to
name your function, to avoid both errors and organizational problems:

Function names must begin with a letter, underscore, or Unicode currency symbol ($) and can

contain only letters, numbers, underscores, and Unicode currency symbols.

1.

UDF names cannot contain periods.2.

UDFs can't have the same name as existing CFML functions.3.

You can't have more than one UDF with a given name available on the same template.4.

When deciding on a name for your UDF, consider the naming conventions used by ColdFusion's
built-in functions. For example, list functions all begin with the word "list": ListLen(),
ListLast(), etc.

5.

The next attribute in the cffunction tag is an optional Boolean attribute called output. If output is
set to Yes, contents of the function body are processed as if surrounded by cfoutput tags. If the
attribute is set to No, the function body is processed as if surrounded by cfsilent tags. If output is
omitted, contents of the function body are processed as regular CFML. returntype is also an optional

attribute. It specifies the datatype for the data returned by the function. Options for functions are
Any, Array, Binary, Boolean, Date, GUID, Numeric, Query, String, Struct, UUID, VariableName,
and Void (doesn't return a value). Although this attribute isn't required, it's a good practice to include
it. If you pass a value for returntype that isn't in the aforementioned list of values, ColdFusion

treats it as a component (CFC) name. For more information on CFCs, see Chapter 22. The final

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute, roles, is also optional. It specifies a comma-delimited list of roles that are allowed to

access the UDF within the context of ColdFusion MX's security framework (covered in Chapter 8). This
security feature is usually used when the cffunction tag is used to define a component method

within a ColdFusion Component (CFC), but it can also be used to secure a tag-based UDF, if desired.
Note that there is no built-in equivalent functionality in script based UDFs. You can approximate the
same functionality, but you'll need to code it yourself using the IsUserInRole() function.

20.1.1 Function Arguments in Tag-Based UDFs

Tag-based functions can be written to accept zero or more required arguments and any number of
optional arguments. Each argument should be given a name and should be explicitly declared in the
function body using a cfargument tag. cfargument has several attributes. name is the only required
attribute. It's used to specify the name for the argument. type is an optional attribute for specifying
the argument's type. Valid options are Any, Array, Binary, Boolean, Date, GUID, Numeric, Query,

String, Struct, UUID, VariableName, and ComponentName (a valid CFC name). The default is Any.
For information on how GUID differs from UUID, see the CreateUUID() function in Appendix B. You
can indicate whether the argument should be required or optional using the required attribute. The
default is No. If you do decide to make an argument optional, you can supply a default value to

assign to the argument in the event no argument is passed to the function when it is called. There
are several other attributes for the cfargument tag that are specific to using the tag with CFCs. For

more information on these attributes, see Appendix A.

Although it's good practice, you are not required to declare your function arguments explicitly with
the cfargument tag. The cfargument tag, if used, must be the first tag to appear after the
cffunction tag. Argument names follow the same naming conventions as the function name.

For example, to declare a function called Mean that accepts a single required argument called Values,

you would code it like this:

<cffunction name="Mean" output="No" returntype="Numeric">
 <cfargument name="Values" type="String" required="Yes">
 ...
</cffunction>

Within the function body of a UDF, all arguments, both optional and required, are available via a
special variable called Arguments. Arguments is special in that it exists as both a one-dimensional

array and as a structure. This means that you can refer to the arguments passed into a UDF in
multiple ways. Take the argument Arg1, for example. Within the function body, you can refer to
Arg1 several ways:

Arg1
Arguments.Arg1
Arguments["Arg1"]
Arguments[1]

The first method refers to the argument by name alone. Because arguments are automatically placed
in the local function scope, it isn't necessary to prefix them unless you want to. Let's look at a full
version of our Mean() UDF. This UDF takes two arguments. The first is either a delimited list of

numeric values or a one-dimensional array of numeric values. The second argument allows the UDF
to accept an optional delimiter if the values passed in were a delimited list of values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!---
 // Mean(values [, delimiter])
 // Returns the mean (average) for an array or list of delimited values
 --->
<cffunction name="Mean" returntype="Numeric" output="No">
 <cfargument name="Values" type="Any" required="Yes">
 <cfargument name="Delimiter" type="String" required="No" default=",">

 <cfif IsArray(Values)>
 <cfreturn ArrayAvg(Values)>
 <cfelse>
 <cfreturn ArrayAvg(ListToArray(Values, Delimiter))>
 </cfif>
</cffunction>

Notice that the code refers to Value and Delimiter as if they were local variables.

The second and third methods refer to the arguments using structure notation. In this case, the
argument name corresponds to a structure key of the same name. Arguments should be referred to

using structure notation only when all required and optional arguments are declared using
cfargument tags. We can easily modify our previous Mean() example to use structure notation to

refer to the named arguments:

<!---
 // Mean(values [, delimiter])
 // Returns the mean (average) for an array or list of delimited values
 --->
<cffunction name="Mean" returntype="Numeric" output="No">
 <cfargument name="Values" type="Any" required="Yes">
 <cfargument name="Delimiter" type="String" default=",">

 <cfif IsArray(Arguments.Values)>
 <cfreturn ArrayAvg(Arguments.Values)>
 <cfelse>
 <cfreturn ArrayAvg(ListToArray(Arguments.Values,
 Arguments.Delimiter))>
 </cfif>
</cffunction>

In this case, we refer to the arguments as Arguments.Values and Arguments.Delimiter. This is the

easiest syntax to use when you declare all the arguments expected by the UDF, both required and
optional.

The fourth method uses array notation to refer to the argument by its index position within the array.
Array notation can be used with both declared and undeclared arguments. The minimum number of
elements in the Arguments array is always equal to the number of required arguments for a given
function. For example, if a UDF takes three required arguments, the Arguments array contains three

elements. In the event of unnamed optional arguments, each optional argument's value is added to
the Arguments array in the order in which it is passed. In the case of named optional arguments, the

array index corresponds to the order in which the arguments are declared in the function body. The
following example uses a combination of structure notation (for the required argument) and array
notation for an optional second argument:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!---
 // Mean(values [, delimiter])
 // Returns the mean (average) for an array or list of delimited values
 --->
<cffunction name="Mean" returntype="Numeric" output="No">
 <cfargument name="Values" type="Any" required="Yes">

 <cfset Var Delimiter = ",">

 <cfif ArrayLen(Arguments) gt 1>
 <cfset Delimiter = Arguments[2]>
 </cfif>

 <cfif IsArray(Arguments.Values)>
 <cfreturn ArrayAvg(Arguments.Values)>
 <cfelse>
 <cfreturn ArrayAvg(ListToArray(Arguments.Values, Delimiter))>
 </cfif>
</cffunction>

Note the line of code in this example that uses <cfset Var TheDelimiter = ",">. Don't worry

about this yet; we'll cover it in the next section.

20.1.2 Local Function Variables (The Function Scope)

A special variable scope called the function scope exists for variables that are local to UDFs. This
scope differs slightly from the other variable scopes in ColdFusion in that there is no special prefix
such as variables or client to identify the function scope. Variables within the function scope are

accessible only within the UDF and can't be referenced by the template in which the UDF is called.
The function scope consists of arguments passed to the function, variables created with the Var
statement, and the Arguments array/structure.

Any variables available in the template calling the UDF are automatically available (and can be
modified) inside the UDF. Likewise, variables created or modified within the UDF (except for those in
the function scope) are available to the calling template after the function has been called. If a
particular variable name exists in both the function scope and in another scope within the calling
template, the function scope takes precedence within a UDF. Because of this, it's important always to
scope variables outside the function scope when referencing them within a UDF.

To create a local variable within a function, you use the Var attribute of the cfset tag like this:

<cfset Var State = "Delaware">
<cfset Var Person = StructNew()>

Var is a new attribute in ColdFusion MX and is only used when creating UDFs. There are several rules

to keep in mind regarding the setting of local variables:

Always Var your variables. By this, I mean that you should always Var any variables that are
local to a function. Failure to Var your variables will cause you untold frustration when it comes

time to debug a UDF related problem.

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

All variables declared in the local function scope must be initialized with a value. You may assign
an empty string ("") to the variable if you desire. Don't forget that variables created as the
result of a tag operation such as cffile, cfdirectory, cfquery, etc. must also be initialized
with Var.

2.

Any valid expression can be assigned to the variable being declared in the local function scope.3.

There is no limit to the number of variables that can be declared in the local function scope.4.

All local functions must be declared at the beginning of the UDF, directly after any cfargument
tags. Attempting to declare local function variables anywhere else within the cffunction

container causes ColdFusion to throw an error.

5.

20.1.3 Returning Data from a Function

As I mentioned earlier, and, you have probably figured out by now, the cfreturn tag is used to
return data from a function. The cfreturn tag is optional and determines what value(s) to return
when the function has finished executing.[3] You may specify any valid expression in the cfreturn
tag. If no cfreturn tag is present, ColdFusion returns the last value encountered before the Return

statement (assuming there is one):

[3] In ColdFusion 5, the Return statement was required. This behavior is new in ColdFusion MX.

<cfreturn>
<cfreturn x>
<cfreturn x-y>
<cfreturn DateFormat(MyVar, 'mm/dd/yyyy')>

UDFs can return any ColdFusion datatype, including complex types such as arrays, structures, and
queries. The simplest form of UDF is one in which all the functionality is contained in a single
cfreturn tag. To demonstrate this, consider yet another version of our UDF for calculating the mean

(average) of a comma-delimited list of numeric values:

<!--- // Mean(values)
 // Returns the mean (average) value of a list of comma delimited
 values.
--->
<cffunction name="Mean" returntype="Numeric" output="No">
 <cfargument name="Values" type="String" required="Yes">
 <cfreturn ArrayAvg(ListToArray(Arguments.Values))>
</cffunction>

In this example, the first line uses the cffunction tag to declare a function named Mean. The
cfargument tag declares a single argument called Values. A single cfreturn tag is all that's required
to convert the list of values to an array using the ListToArray() function and subsequently obtain
the average value using the ArrayAvg() function.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.2 Calling User-Defined Functions

Regardless of whether you are dealing with a tag- or script-based UDF, you call it the same way you
do any other CFML function-within a cfoutput block, within a cfset tag, in any tag attribute, and

within CFScript code:

<cfoutput>
 #MyFunction("test", 12)#
</cfoutput>

<cfset x = MyFunction()>

<cfmytag value="#MyFunction('test')#">

<cfscript>
 x = MyFunction(MyOtherFunction());
</cfscript>

The simplest way to call a UDF is to define it, then call it in the same template. A function defined in
the template in which it is called may be defined anywhere on the page, including after it has already
been referenced (ColdFusion parses the entire page before processing the instructions). If you use
this method, you should define all functions at the top of the page for readability and consistency.
Using one of the Mean() functions we created, you can define it inline and call it like this:

<!--- // Mean(values [, delimiter])
 // Returns the mean (average) value of a list of delimited values.
--->
<cffunction name="Mean" returntype="Numeric" output="No">
 <cfargument name="Values" type="String" required="Yes">
 <cfargument name="Delimiter" type="String" required="No" default=",">

 <cfreturn ArrayAvg(ListToArray(Arguments.Values, Arguments.Delimiter))>
</cffunction>

<cfset MyValues="1|2|3|4|5|6|7|8|9|10">

<cfoutput>
The mean is: #Mean(MyValues, "|")#
</cfoutput>

Notice that when we call the Mean() function, we call it with two arguments. This is known as

positional notation. ColdFusion expects that the arguments passed to the function be passed in the
same order in which they are declared within the function body using cfargument tags. This is the

same way that all of ColdFusion's built-in functions work.

In addition to calling a function and passing arguments via the standard positional syntax, you can
also pass named arguments as key/value pairs. This means that you can call functions with syntax

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that looks like this:

<cfset MyValues="1|2|3|4|5|6|7|8|9|10">

<cfoutput>
The mean is: #Mean(values=MyValues, delimiter='|')#
</cfoutput>

Or like this:

<cfset MyValues="1|2|3|4|5|6|7|8|9|10">

<cfoutput>
The mean is: #Mean(delimiter='|', values=MyValues)#
</cfoutput>

Both are valid. The named argument syntax can be useful in situations where you want to vary the
order in which the parameters are passed into the function (such as when you can remember the
arguments a function takes, but you can't remember their order and are too lazy to look them up!).
Here's a more useful example. Consider what's necessary to create a structure in ColdFusion and
populate it with key/value pairs. The code typically looks something like this:

<cfset Person = StructNew()>
<cfset Person.Name = "Pere Money">
<cfset Person.Title = "President">
<cfset Person.Email = "pmoney@example.com">

Not a huge amount of code, but imagine you needed to create a dozen or even a hundred structures
like this. You can see that the amount of code you would need to write would be a real pain. This can
easily be simplified with a CreateStruct() UDF that accepts named arguments:

<cffunction name="CreateStruct" returntype="Struct" output="No">
 <cfset Var MyStruct = Arguments>
 <cfreturn MyStruct>
</cffunction>

This UDF does nothing more than return as a structure any arguments passed to it. This allows you
to both initialize and populate a structure in a single step when you call the UDF using named
arguments:

<cfset Person = CreateStruct(Name='Pere Money', Title='President',
Email='pmoney@example.com')>

<cfdump var="#Person#">

This code calls the CreateStruct() UDF, passing it the key/value pairs for Name, Title, and Email.
The resulting structure is assigned to a variable named Person. Using this technique, you can create

a structure containing an arbitrary number of keys, all in a single line of code.

20.2.1 A Note About Datatypes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Different datatypes are passed to UDFs in different ways. Strings, numbers, date/time values, and
arrays are passed by value. This means that any values passed to the UDF are actually copies of the
original value. Any changes made to the value inside the UDF do not result in changes to the original
value in the calling template.

Queries, structures, CFCs, and objects (e.g., COM, CORBA, and Java), on the other hand, are passed
to UDFs by reference. In this case, the value passed to the UDF isn't actually the value, but rather a
reference to the original value outside of the function. Because of this, any change made to a value
passed by reference results in a change to the original value back in the calling template. You can
avoid having the original value changed by making a copy of the variable using the Duplicate()
function and passing the copy to the UDF. This is because the Duplicate() function creates an

exact copy of the original variable, as opposed to a pointer back to the original.

There are certain instances where you can actually pass a variable partially by value and partially by
reference. For example, in cases where you pass an array of structures to a UDF, the array is passed
by value while each structure in the array is actually a reference to the original structure.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.3 Advanced Topics

There are several advanced UDF topics worth covering here, including recursion, error and exception
handling, and assigning UDFs to other variable scopes. Each of these topics covers techniques that
you can use to maximize the benefit of using UDFs in your applications.

20.3.1 Recursion

As I mentioned in the beginning of the chapter, UDFs can be called recursively. This means that a
UDF can call itself until a specific condition is met. Before you start creating recursive UDFs, there are
a few things you should be aware of. First, too much recursion can be a bad thing. Recursion is both
processor- and memory-intensive so recursively calling a UDF too many times has the potential to
drain your server's system resources to the point where it crashes the server. The ColdFusion
engineering team recommends limiting recursive calls to fewer than 800 levels. If you have a
situation where you know your recursive function call has the potential to exceed 800 levels, consider
using a loop instead.

Here's a classic example that uses recursion to calculate the factorial for a given number. The
factorial for a positive integer is defined as the product of all of the positive integers between 1 and n.

So, 5! equals 1*2*3*4*5. Written as a tag-based UDF, it looks something like this:

<cffunction name="Factorial">
 <cfargument name="Integer" type="Numeric" required="Yes">
 <cfif Arguments.Integer le 1>
 <cfreturn 1>
 <cfelse>
 <cfreturn Integer * Factorial(Arguments.Integer-1)>
 </cfif>
</cffunction>

<cfset n=5>

<cfoutput>
Given n=5

n! is #Factorial(n)#
</cfoutput>

Because we have no idea what value someone may enter for n (possibly causing a stack overflow
because of too many levels of recursion), we can easily rewrite the Factorial() UDF using a loop

instead of recursion:

<cffunction name="Factorial">
 <cfargument name="Integer" type="Numeric" required="Yes">

 <cfset Var myFactorial = 1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfloop condition="Arguments.Integer gt 0">
 <cfset myFactorial = myFactorial*Arguments.Integer>
 <cfset Arguments.Integer = Arguments.Integer-1>
 </cfloop>

 <cfreturn myFactorial>
</cffunction>

<cfset n=5>

<cfoutput>
Given n=5

n! is #Factorial(n)#
</cfoutput>

20.3.2 Error and Exception Handling

A custom function framework wouldn't be complete without a means to handle errors and exceptions
that may occur both when calling and within the functions. There are several techniques you can use
to deal with issues that may arise with custom functions.

First, you can use a function called IsCustomFunction() to determine whether a particular name is
that of a UDF. IsCustomFunction() takes a single argument, the name you want to check. Note

that the name isn't surrounded by quotes.

<cfif IsDefined('Mean') and IsCustomFunction(Mean)>
 Mean is a custom function!
<cfelse>
 Mean is not a custom function!
</cfif>

The IsDefined() function makes sure the name exists before testing it with IsCustomFunction(
). If you attempt to evaluate a name that doesn't exist with IsCustomFunction(), ColdFusion

throws an error.

Second, you can use cfif statements within your custom functions to deal with errors inside the

function and return an error code, error message, or both in the event an error occurs. For example,
if your UDF takes a single argument and expects it to be an array, you can return an error message if
the value of the argument is anything other than an array:

<cffunction name="MyFunction" returntype="String" output="No">
 <cfset Var ErrMsg = "Error! You must supply an array.">

 <cfif IsArray(Arguments[1])>
 <cfreturn True>
 <cfelse>
 <cfreturn ErrMsg>
 </cfif>
</cffunction>

<cfoutput>
#MyFunction("test")#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>

Of course, you could just as easily perform the same basic validation using a named argument with
the type attribute set to Array:

<cffunction name="MyFunction" returntype="String" output="No">
 <cfargument name="Value" type="Array" required="Yes">

 <cfreturn Value>
</cffunction>

<cfoutput>
#MyFunction("test")#
</cfoutput>

In this case, failure to pass an array to the function causes ColdFusion to throw an error.

A third method is to use cftry/cfcatch tags within your UDF to handle errors. This functionality is
new in ColdFusion MX. Using cftry/cfcatch within the UDF body allows for granular control over
both expected and unexpected errors and exceptions. The following code uses cftry/cfcatch code

to handle an exception (in this case, a database exception) within the UDF itself:

<cffunction name="getPerson">
 <cfargument name="PersonID" type="Numeric" required="Yes">

 <cftry>
 <cfquery name="Test" datasource="Bogus">
 SELECT *
 FROM MyTable
 WHERE PersonID = #Arguments.PersonID#
 </cfquery>

 <cfcatch type="Any">
 <cfreturn "Error!">
 </cfcatch>
 </cftry>
 <cfreturn Test.RecordCount>
</cffunction>

<cfoutput>
There are #GetPerson(12)# people in the database.
</cfoutput>

The fourth and final method is to use the cftry/cfcatch tags outside of the UDF to handle potential
exceptions. A good way to do this is to use one cfcatch tag to handle Expression exceptions and a
second cfcatch tag as a backup (type="Any") to catch any exceptions not caught by the first
cfcatch tag:

<cftry>
 <cfoutput>
 #Mean()#
 </cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfcatch type="Expression">
 Caught an exception using type="Expression"
 <cfabort>
 </cfcatch>

 <cfcatch type="Any">
 Caught an exception using type="Any"
 <cfabort>
 </cfcatch>
</cftry>

This is the method I prefer when working with regular CFML as it gives you more control over how
you deal with an exception. This method tends to require less code than inline error handling and
therefore generally offers better performance. It is also similar to the way errors and exceptions are
handled within native CFML functions.

If you combine techniques three and four, you can throw a custom exception from within the UDF
using the cfthrow tag, and the exception can be handled outside the UDF using the method I just

described.

20.3.3 Assigning UDFs to Other Variable Scopes

UDFs can be assigned to other variable scopes besides the local scope they are created in. This
means you can do things such as assigning a UDF to the application scope so it can be stored in the
server's RAM for as long as the application scope exists. In general, I don't recommend assigning
UDFs to scopes other than the request scope (I'll explain why in the next section). This especially
applies to the shared scopes (application, session, and server). It doesn't really buy you a
performance gain, and you may have to deal with the locking issues surrounding the use of shared
scope variables if the potential for a race condition exists (see Chapter 7 for a detailed discussion on
locking in ColdFusion MX). If you decide for whatever reason that you still want to do this, here's an
example that assigns a UDF to the application scope:

<cffunction name="UpdateCount" returntype="Numeric" output="No">
 <cfargument name="CurrentCount" type="Numeric" required="Yes">
 <cfreturn Arguments.CurrentCount + 1>
</cffunction>

<!--- Copy the UDF to the Application scope --->
<cflock name="appLock" type="Exclusive" timeout="5">
 <cfset Application.UpdateCount = UpdateCount>
</cflock>

<cflock name="appLock" type="Readonly" timeout="5">
 <cfoutput>
 The updated count is is #Application.UpdateCount(3)#
 </cfoutput>
</cflock>

Note the use of cflock tags both when the UDF is assigned (written) to the application scope and

later when it is output (read). The additional code required to accomplish this should be enough to
dissuade you from doing so without a good reason. The one exception to assigning a UDF to another

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable scope has to do with calling a UDF within a custom tag and; it is discussed in the next
section.

20.3.4 UDFs and Custom Tags

Because UDFs exist in the local variable's scope, they are not automatically available within your
custom tags. Thus, if you define or include a UDF in a template that calls a custom tag, and the
custom tag tries to reference the UDF, ColdFusion will throw an error.

There are two ways around this. The first is to code the UDF within the custom tag template itself.
This makes the UDF available only to the custom tag and not to the template calling it. The second
option is to copy the UDF to the request scope, thereby making it available to the custom tag and
any other templates that are part of the original page request. To copy a UDF to the request scope,

the syntax looks like this:

<cffunction name="AreaCircle" returntype="Numeric" output="No">
 <cfargument name="Radius" type="Numeric" required="Yes">
 <cfreturn Pi()*(Arguments.Radius^2)>
</cffunction>

<!--- Copy the UDF to the Request scope --->
<cfset request.AreaCircle = AreaCircle>

In your custom tag template, to call the AreaCircle() function in the request scope, you would

use the following code:

<cfoutput>
The area of a circle with a radius
of 3 is #request.AreaCircle(3)#
</cfoutput>

Although both methods of dealing with UDFs within custom tags work, I prefer the first method as it
allows you to keep your custom tags portable and self-contained. This is especially true if you
distribute your custom tags outside of your organization. On the flip side, however, you may have to
maintain multiple versions of a given UDF if that UDF is used both within your custom tag and by
other pages in your application.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.4 Function Libraries

One of the great things about UDFs is that you can have more than one in a single template. This
gives you the ability to take all of the UDFs that you use in a particular application or web site and
keep them in a single template, commonly referred to as a library. Depending on the number of UDFs
used by your application, you may want to create one or more libraries, grouping your UDFs by
functionality. The more UDFs you have, the more it may make sense to create multiple UDF libraries.

Here's an example of a small UDF library with several UDFs for calculating the area of various
geometrical shapes:

<cffunction name="AreaCircle" returntype="Numeric" output="No">
 <cfargument name="Radius" type="Numeric" required="Yes">
 <cfreturn Pi() * Arguments.Radius^2>
</cffunction>

<cffunction name="AreaRectangle" returntype="Numeric" output="No">
 <cfargument name="Length" type="Numeric" required="Yes">
 <cfargument name="Width" type="Numeric" required="Yes">
 <cfreturn Arguments.Length * Arguments.Width>
</cffunction>

<cffunction name="AreaTriangle" returntype="Numeric" output="No">
 <cfargument name="Base" type="Numeric" required="Yes">
 <cfargument name="Height" type="Numeric" required="Yes">
 <cfreturn 0.5 * Arguments.Base * Arguments.Height>
</cffunction>

To use any of these functions in any of your templates, just cfinclude the template at the beginning

of the page that needs them. If you save the library we just created as _areaLib.cfm, you call it like
this:

<cfinclude template="_areaLib.cfm">

<cfoutput>
The area of a circle with a radius of 5 is: #AreaCircle(5)#
</cfoutput>

Perhaps the biggest advantage to storing your UDFs in a library has to do with code reuse and ease
of management. Using a library gives you a central point from which to manage your UDFs. If you
need to make a change to a particular UDF, you need to change it only in your UDF library file instead
of having to track down each individual template that has the UDF coded inline.

If you find yourself frequently using cfinclude to include the same UDF library over and over
throughout your application, you have the option of placing the cfinclude inside your application's

Application.cfm template. Doing this makes all of the UDFs in your library available to all templates
(except custom tags) in your application without having to place individual cfinclude tags in every

template.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There's a common misconception that placing a bunch of UDFs in a tag library and including it within
your Application.cfm template causes a lot of unnecessary overhead, especially in cases where only a
fraction of the UDFs in the library are used in any given page. My tests show that while there is a
small amount of additional overhead the first time an application page is called, all subsequent page
calls incur zero additional overhead.

The next time you need a UDF for a particular task, you might consider checking to see whether one
with the desired functionality already exists. The Common Function Library Project
(http://www.cflib.org/) is an open-source repository of ColdFusion UDFs that you can download and
use in your applications free of charge. The site is run by me and Raymond Camden, a well-known
ColdFusion author and developer. The site maintains several libraries containing hundreds of
functions for everything from string manipulation, statistics, and scientific calculations, to file
operations and more. Because it's an open-source project, the source code for each function is
available unencrypted. In addition, each function comes with documentation as well as an example
showing common usage.

The site also contains several tools for working with UDFs, including the UDFDoc custom tag for
autogenerating UDF documentation based on JavaDoc, a ColdFusion Studio (ColdFusion's IDE)
extension for interacting with UDFs on the site from directly within Studio, and a UDF generator for
automatically generating custom function libraries from the UDFs available on the site.

Because the site is a community project, submissions for new UDFs and improvements to existing
UDFs from the ColdFusion community are always welcome. Each UDF submission is tested before
being accepted or rejected, ensuring a high level of quality in the available code. As of this writing,
there are over 600 UDFs hosted on the site, with more added all the time. For more information on
the project or to download the libraries, visit http://www.cflib.org.

[Team LiB]

http://www.cflib.org/
http://www.cflib.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.5 Script-Based UDFs

CFScript-based UDFs look a little different than their tag-based siblings. The first thing you should
notice is that all script-based UDFs must be written within a cfscript tag block:

<cfscript>
function function_name([arg1][,arg2]...)
{
 CFScript statements
}
</cfscript>

Script-based UDFs begin with the function statement. The name of the function is defined by

function_name and follows the same naming conventions as tag based UDFs. Script-based functions

can be written to accept zero or more required arguments and any number of optional arguments.
Each required argument must be given a name and explicitly declared in the function statement. For
example, to declare a function called Mean that accepts a single parameter called Values, you would

code it like this:

function Mean(Values)

Within the body of the function, you may use any CFScript statements you wish. Var is used to
declare variables that are local to the function. Variables declared with Var must be defined at the

top of the function, before any other CFScript statements, and they take precedence over any other
variable with the same name, regardless of the variable's scope. The syntax for declaring a variable
using Var in CFScript is:

Var variable = expression;

The Return statement is optional and determines what value(s) to return when the function has
finished executing.[4] You may specify any valid expression in the Return statement. If no expression
is given in the Return statement, ColdFusion returns the last value encountered before the Return

statement (assuming there is one):

[4] In ColdFusion 5, the Return statement was required. This behavior is new in ColdFusion MX.

Return;
Return x;
Return x-y;
Return DateFormat(MyVar, 'mm/dd/yyyy');

Script-based UDFs can return any ColdFusion datatype, including complex types such as arrays,
structures, and queries. The simplest form of UDF is one in which all the functionality is contained in a
single Return statement. To demonstrate this, consider the script-based version of our Mean() UDF:

<cfscript>
// Mean(values)
// Returns the mean (average) value of a list of comma delimited values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function Mean(Values)
{
 Return ArrayAvg(ListToArray(Arguments.Values));
}
</cfscript>

In this example, the first line uses the function statement to declare a function named Mean that
accepts a single argument called Values. The body of the UDF contains a single statement. In this
case, it is a Return statement that converts the list of values to an array using the ListToArray()
function and subsequently obtains the average value using the ArrayAvg() function.

Because CFScript-based UDFs lack an equivalent to the cfargument tag, optional arguments can only

be referred to by their index position and not by name. Additionally, you'll have to code the
assignment of default values for optional arguments. Here's a modified version of the Mean()

function that accepts a delimiter as an optional argument:

<cfscript>
// Mean(values [, delimiter])
// Returns the mean (average) for an array or list of delimited values
function Mean(Values)
{
 Var Delimiter = ",";
 if (ArrayLen(Arguments) gt 1){
 Delimiter = Arguments[2];
 }
 if (IsArray(Values)){
 Return ArrayAvg(Arguemnts.Values);
 }
 else{
 Return ArrayAvg(ListToArray(Arguments.Values, Delimiter));
 }
}
</cfscript>

In this example, we've modified our Mean() UDF to accept a one-dimensional array of numeric
values or a delimited list of numeric values as well an optional argument called Delimiter.
Delimiter allows an optional delimiter to be passed to the function in the event that the list of values
is separated with a delimiter other than the comma. The argument name Delimiter isn't actually
relevant, because all optional arguments are referred to by their index position within the Arguments

array. I use it here just as a placeholder to make it easier to describe.

The first part of the function uses a Var statement to define a variable called TheDelimiter. The
comma "," serves as the default delimiter. Remember that because we used the Var statement,
TheDelimiter is available only within the Mean() UDF.

Since we are expecting only one required argument and one optional one, we use an if statement to
determine whether there is more than one element in the Arguments array. If there is, we know the
optional Delimiter argument is present, so we assign the value of Arguments[2] (the delimiter) to
the function variable Delimiter.

Next another if statement is used to check whether Arguments.Values is an array. If it is, we know
that an array of values, as opposed to a list of values, was passed in, so we use the ArrayAvg()

function to calculate the mean for the values and return it using the Return statement. If Values isn't

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an array, we assume it is a list and use the ListToArray() function to convert it to an array before
using the ArrayAvg() function to calculate the mean anda return it. The value of Delimiter is used in
the ListToArray() function to specify the delimiter for the list.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 21. Creating Custom Tags
One of the most powerful features of ColdFusion is the ability to extend the core capabilities of the
platform through custom tags. Custom tags allow you to encapsulate code in a neat wrapper that can
then be invoked from within any CFML template. Those familiar with other programming languages
can think of custom tags as similar to subroutines or procedures.

There are two varieties of custom tags: custom CFML tags (referred to as custom tags) and CFX
tags. Because developing CFX tags requires C++ or Java experience, this chapter focuses on the
development and use of custom tags, since they are written in CFML. A brief section at the end of the
chapter discusses installing and calling CFX tags.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.1 Getting Started

Custom tags are just like regular CFML templates and can contain any combination of CFML, HTML,
JavaScript, or other markup code. What makes them different is how they are called and how they
interact with the template that calls them. Custom tags allow you to pass attributes to them (just like
other CFML and HTML tags), perform some sort of processing based on the attributes passed in, and
can return data in the form of variables that can be used by the calling template in any number of
ways. Let's first look at the benefits of custom tags.

21.1.1 Why Custom Tags?

Right now, you are probably wondering about the specific types of situations that might warrant the
use of custom tags. Here are four reasons to use custom tags in your ColdFusion applications:

Code reuse

Custom tags give you a way to reuse frequently used code. You can create a single custom tag
that can be called by any application residing on your server whenever the functionality it
provides is needed. This allows you to develop your applications more quickly by reducing the
amount of redundancy in your coding. It also improves development time in shared
development environments where multiple developers have access to the same code base.
Using custom tags, you can create a shared library of tags for handling various programming
tasks that can be used by any developer on a given project.

Abstraction

Using a custom tag allows you to abstract complex code and programming logic. To understand
what we mean by abstraction, consider the cfmail tag. The cfmail tag provides a simple, tag-

based interface for creating and sending SMTP messages. The tag abstracts the low-level
programming that is typically required to create and send an SMTP message. Like the cfmail

tag, custom tags allow you to abstract functionality (albeit written in CFML) using the same
sort of tag-based interface.

Code distribution

Custom tags provide a way to distribute your code to others. Because custom tags are self-
contained, they provide an ideal framework for distributing functional code to other developers
with a minimum of additional support.

Security

Custom tags can also be used to keep developers away from back-end systems and processes
you might not want them to have full access to. It is possible to secure access to these back-
end systems and processes by providing developers with an encrypted version of a custom tag
that accesses them.

If you need any more incentive to use custom tags in your applications, consider this. As of this
writing, there are over 3,000 custom tags, many of them free of charge with source code that can be
downloaded from an area of Macromedia's web site called the Developer Exchange. For example, a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

couple of my favorite tags are ones that handle complex user interface tasks that usually require
JavaScript coding, such as relating select boxes (Nate Weiss's CF_TwoselectsRelated) or moving
items from one list box to another (Shlomy Gantz's CF_DoubleBox). The Developer Exchange is a
central resource for collecting and distributing custom tags and other ColdFusion-based applications.
The Developer Exchange can be found at http://devex.macromedia.com/developer/gallery/.

21.1.2 Custom Tags Versus Other Options

ColdFusion provides several additional ways to abstract, encapsulate, repurpose, and reuse code.
With additional choices including included files (cfinclude), user-defined functions (UDFs), and

components (CFCs), you may be wondering where custom tags fit in. In fact, with the introduction of
CFCs in ColdFusion MX, you may even have heard that custom tags are dead. This couldn't be further
from the truth. While it's true that much of what used to be done in custom tags can now be done
more efficiently in CFCs or UDFs, custom tags still have many uses. Table 21-1 outlines some of the
situations you may come across in your applications and provides very general recommendations for
appropriate techniques.

Table 21-1. Code reuse matrix

Scenario
Custom

tag
cfinclude UDF CFC

Headers and footers Yes Yes No No

Generating output Yes Yes No Yes

Calculations, string parsing, data manipulation, etc. No No Yes No

Segmenting large templates into more logical and/or
manageable chunks

No Yes No No

Including static code No Yes No No

Package and distribute code Yes No Yes Yes

Use recursion Yes No Yes Yes

Provide parent/child functionality Yes No No No

Need to provide start and end tag processing Yes No No No

Building web services No No No Yes

While this table is by no means exhaustive, it does provide some general guidelines for which
technology may be appropriate in a given situation.

[Team LiB]

http://devex.macromedia.com/developer/gallery/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.2 Calling Custom Tags

There is no real installation process for custom tags other than to save them on your ColdFusion
server. There are, however, different locations on the server where you can save the tags that affect
whether they can be called locally by a single application or shared across all applications.

To call a custom tag from within a CFML template, you simply prefix the template name of the tag
with cf_. Therefore, if you have a custom tag saved on your server as mytag.cfm, you call it like

this:

<cf_mytag>

When you call a custom tag from an application template, ColdFusion looks for the tag in the same
directory as the calling template. For example, if your template resides in \inetsrv\wwwroot\myapp
and tries to call a custom tag called cf_mytag, ColdFusion looks for the tag in the \myapp directory

first. Saving a custom tag in the same directory as its calling template makes the tag a local tag.
That is, the tag is available only to templates residing in the same directory as the application. Using
the local-tag technique allows you to use custom tags in hosted environments where you might not
have access to a shared custom tags directory.

The very nature of custom tags makes them ideal for sharing among multiple applications on the
server. In order to facilitate this, a default custom tags directory is automatically created when you
install ColdFusion on your server. This directory is \cfusionmx\customtags by default. Any custom
tags saved in this directory or any of its subdirectories are automatically available to any applications
you create on the entire server.

You can map additional shared custom tag directories from within the ColdFusion Administrator. This
allows you to use directories other than the default for making your tags available to multiple
applications. To add a new custom tag path in the ColdFusion Administrator, follow these simple
steps:

Click the Custom Tag Paths link under Extensions on the main ColdFusion Administrator page.1.

Enter the full path to your directory in the text box labeled Register New Custom Tag Paths or
use the Browse Server button to select a path from your ColdFusion server's filesystem.

2.

Click the Add Path button when you are finished.3.

Note that you must start and stop the ColdFusion Application Server before the changes will take
effect.

As I mentioned earlier, when a template calls a custom tag, ColdFusion starts its search for the
custom tag in the same directory as the calling template. If ColdFusion can't find a tag with the name
you specified, it moves its search to the default custom tags directory, and then any subdirectories. If
the tag isn't found in the default custom tags directory, the search is extended to additional custom
tag directories registered in the ColdFusion Administrator. These directories (and their subdirectories)
are searched in the order they appear in the ColdFusion Administrator until a tag with the name you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specified is found. In the event no tag is found during any of these searches, an exception is thrown.

The fact that the custom tag framework lets you store your custom tags in different locations
suggests that you can have two or more different tags with the same name on your server. In the
event that this happens, the order of evaluation states that ColdFusion use the first tag it encounters
in its search. A method for using the cfmodule tag to give you greater control over invoking custom

tags is discussed in the "Advanced Techniques" section later in this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.3 Passing Data

Just like HTML and CFML tags, custom tags receive parameters via tag attributes. When you call a
custom tag, you can pass parameters that automatically become available as variables within the
custom tag. ColdFusion has a special variable scope called the attributes scope that refers to

reference attributes that have been passed to a custom tag. For example, you can call a custom tag
named cf_mytag like this:

<cf_mytag name="Pere Money"
 title="President">

Both name and title are tag attributes. Once the tag is called, these attributes and their associated
values are available within the custom tag as attributes.Name and attributes.Title,

respectively. Because the custom tag exists within its own scope, you must scope any variables with
the attributes prefix in order to access them. Any ColdFusion datatype may be passed to a custom

tag as an attribute. This allows you to create custom tags that can manipulate data from a variety of
sources, including query objects, arrays, and structures, as well as such simple values as strings and
numbers.

Let's look at a simple example that demonstrates how to pass a few attributes to a custom tag.
Example 21-1 calls a custom tag called cf_states (Example 21-2). The tag is used to generate a

select box containing U.S. state names along with their associated abbreviations. A number of
attributes are passed to the tag: selectname, defaultvalue, defaultlabel, and selected.

Example 21-1. Passing attributes to the cf_states custom tag

<cfif IsDefined('form.Submit')>
<cfoutput>
You selected: #form.TheState#
</cfoutput>
</cfif>

<cfoutput>
<form name="MyForm" method="Post" action="#CGI.script_name#">
</cfoutput>
 State: <cf_states selectname="TheState"
 defaultvalue="NULL"
 defaultlabel="Please Select">
 <input type="Submit" name="Submit" value="Submit">
</form>

Once the cf_states tag is called, the attributes passed to it are automatically available as attributes

variables within the tag. These variables can be manipulated in the same way that ColdFusion
variables can be manipulated. In this case, they are used to specify attributes for the select box that
is then output to the browser. Note that the variables are always referenced using the attributes
scope. Failing to scope the variables results in an error. The CFML code for the cf_states tag is

shown in Example 21-2. Be sure to save the template as states.cfm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 21-2. Generating a select list of states

<!--- Set attribute defaults --->
<cfparam name="attributes.selectname" default="State">
<cfparam name="attributes.defaultvalue" default="">
<cfparam name="attributes.defaultlabel" default="">
<cfparam name="attributes.selected" default="#attributes.defaultvalue#">

<!--- Initialize a 2D array to hold the states --->
<cfset State = ArrayNew(2)>
<cfset State[1][1] = attributes.defaultvalue>
<cfset State[1][2] = attributes.defaultlabel>
<cfset State[2][1] = "AL"><cfset State[2][2] = "Alabama">
<cfset State[3][1] = "AK"><cfset State[3][2] = "Alaska">
<cfset State[4][1] = "AZ"><cfset State[4][2] = "Arizona">
<cfset State[5][1] = "AR"><cfset State[5][2] = "Arkansas">
<cfset State[6][1] = "CA"><cfset State[6][2] = "California">
<cfset State[7][1] = "CO"><cfset State[7][2] = "Colorado">
<cfset State[8][1] = "CT"><cfset State[8][2] = "Connecticut">
<cfset State[9][1] = "DE"><cfset State[9][2] = "Delaware">
<cfset State[10][1] = "DC"><cfset State[10][2] = "District of Columbia">
<cfset State[11][1] = "FL"><cfset State[11][2] = "Florida">
<cfset State[12][1] = "GA"><cfset State[12][2] = "Georgia">
<cfset State[13][1] = "HI"><cfset State[13][2] = "Hawaii">
<cfset State[14][1] = "ID"><cfset State[14][2] = "Idaho">
<cfset State[15][1] = "IL"><cfset State[15][2] = "Illinois">
<cfset State[16][1] = "IN"><cfset State[16][2] = "Indiana">
<cfset State[17][1] = "IA"><cfset State[17][2] = "Iowa">
<cfset State[18][1] = "KS"><cfset State[18][2] = "Kansas">
<cfset State[19][1] = "KY"><cfset State[19][2] = "Kentucky">
<cfset State[20][1] = "LA"><cfset State[20][2] = "Louisiana">
<cfset State[21][1] = "ME"><cfset State[21][2] = "Maine">
<cfset State[22][1] = "MD"><cfset State[22][2] = "Maryland">
<cfset State[23][1] = "MA"><cfset State[23][2] = "Massachusetts">
<cfset State[24][1] = "MI"><cfset State[24][2] = "Michigan">
<cfset State[25][1] = "MN"><cfset State[25][2] = "Minnesota">
<cfset State[26][1] = "MS"><cfset State[26][2] = "Mississippi">
<cfset State[27][1] = "MO"><cfset State[27][2] = "Missouri">
<cfset State[28][1] = "MT"><cfset State[28][2] = "Montana">
<cfset State[29][1] = "NE"><cfset State[29][2] = "Nebraska">
<cfset State[30][1] = "NV"><cfset State[30][2] = "Nevada">
<cfset State[31][1] = "NH"><cfset State[31][2] = "New Hampshire">
<cfset State[32][1] = "NJ"><cfset State[32][2] = "New Jersey">
<cfset State[33][1] = "NM"><cfset State[33][2] = "New Mexico">
<cfset State[34][1] = "NY"><cfset State[34][2] = "New York">
<cfset State[35][1] = "NC"><cfset State[35][2] = "North Carolina">
<cfset State[36][1] = "ND"><cfset State[36][2] = "North Dakota">
<cfset State[37][1] = "OH"><cfset State[37][2] = "Ohio">
<cfset State[38][1] = "OK"><cfset State[38][2] = "Oklahoma">
<cfset State[39][1] = "OR"><cfset State[39][2] = "Oregon">
<cfset State[40][1] = "PA"><cfset State[40][2] = "Pennsylvania">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset State[41][1] = "RI"><cfset State[41][2] = "Rhode Island">
<cfset State[42][1] = "SC"><cfset State[42][2] = "South Carolina">
<cfset State[43][1] = "SD"><cfset State[43][2] = "South Dakota">
<cfset State[44][1] = "TN"><cfset State[44][2] = "Tennessee">
<cfset State[45][1] = "TX"><cfset State[45][2] = "Texas">
<cfset State[46][1] = "UT"><cfset State[46][2] = "Utah">
<cfset State[47][1] = "VT"><cfset State[47][2] = "Vermont">
<cfset State[48][1] = "VA"><cfset State[48][2] = "Virginia">
<cfset State[49][1] = "WA"><cfset State[49][2] = "Washington">
<cfset State[50][1] = "WV"><cfset State[50][2] = "West Virginia">
<cfset State[51][1] = "WI"><cfset State[51][2] = "Wisconsin">
<cfset State[52][1] = "WY"><cfset State[52][2] = "Wyoming">

<!--- Generate the select box with attributes --->
<cfoutput><select name="#attributes.selectname#"></cfoutput>
 <cfloop index="i" from="1" to="#ArrayLen(State)#">
 <cfoutput><option value="#State[i][1]#"<cfif State[i][1] is
 #attributes.selected#> selected</cfif>>#State[i][2]#</option></cfoutput>
 </cfloop>
</select>

The tag works by creating a two-dimensional array containing the state abbreviations in the first
dimension and the full state names in the second dimension. The selectname attribute allows you to

pass in a name to be used for the generated select box. If no value is passed in for this attribute, the
default "State" is used instead. defaultvalue and defaultlabel let you pass in a default value and

label, respectively, to display as the first item in the select box. In this case, we passed in "NULL" as
the default value and "Please Select" as the label. Each of these attributes defaults to an empty string
("") if no value is passed. The final attribute, selected, lets you specify a state abbreviation (or
defaultvalue) to act as the default selected value in the list box generated by the tag. If no value is
passed for this attribute, it defaults to the value specified for defaultvalue.

Figure 21-1 shows the results of calling the custom tag. Note that in Example 21-2, the custom tag
(as opposed to the calling template) creates the select box that is output to the browser.

Figure 21-1. Outputting attribute values in a custom tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.4 Returning Data

The caller scope passes data from inside a custom tag back to the calling template. Because custom
tags exist within their own scope, you must use the caller scope if you want to make variables you
create within your custom tag available to the calling template.

Setting a caller variable is just like setting any other type of ColdFusion variable. You may assign any
datatype to a variable in the caller scope. This means that you can pass both simple and complex
datatypes from inside a custom tag back to the template that called it.

Let's create a quick example that demonstrates passing an attribute to a custom tag, acting on that
attribute, and passing variables back using the caller scope. If you remember back to Chapter 13,
you'll recall that we created a CFML file for moving undeliverable email from the \undelivr folder to
the \spool folder so that an attempt could be made to resend it. That template was actually based on
a custom tag I wrote (and updated over the years) for the same purpose. Having the functionality as
a custom tag makes it much easier to reuse the code. Example 21-3 shows the code from Chapter 13
rewritten as a custom tag called cf_resendundeliverablemailmx. Be sure to save the template as

resendundeliverablemailmx.cfm on your server

Example 21-3. Resending undeliverable email

<cfsilent>
<!---
NAME: cf_resendundeliverablemailmx
FILE: resendundeliverablemailmx.cfm
CREATED: 03/30/1998
LAST MODIFIED: 02/10/2003
VERSION: 3.1
CF VERSION: MX
AUTHOR: Rob Brooks-Bilson (rbils@amkor.com)
DESCRIPTION: This tag, when used in conjunction with the Scheduler
 in Cold Fusion MX, will scan the \undelivr directory
 of your Cold Fusion Application server for e-mail that was
 designated undeliverable. If it finds any messages there,
 it moves them into the \spool folder so that another attempt
 to mail them can be made. The tag also returns summary
 information about each file moved. Because some e-mail
 messages may never be deliverable, the tag will delete
 messages that are older than a user defined date range.
KNOWN ISSUES: There's a bug in the CF MX release (fixed in Updater 2) that
 causes the mail spool to append Undelievered_ to the beginning
 of a mail message each time an attempt to send it fails. This
 results in very long file names if an automated attempt (such as
 this program) is made to resend the file unsuccessfully multiple
 times. Also, note the extra "e" in the word "Undelievered_"
 - it's not a typo here, it's a bug in the first release of
 CF MX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-->

<!--- Check to see if a date range for mail deletion was specified, and
 if not, assign it to 7 (one week) --->
<cfparam name="attributes.datetrigger" type="Numeric" default="7">

<!--- See if a query name was passed and if so, use it. If not, assign the
 query the name "MovedQuery" --->
<cfparam name="attributes.queryname" type="VariableName" default="MovedQuery">

<!--- See if a name for the summary structure was passed. In not, assign the
 structure the name "Summary" --->
<cfparam name="attributes.SumamryName" type="VariableName" default="Summary">

<!--- Get the mail root directory --->
<cfset MailRoot="#Server.coldfusion.rootdir#\mail">

<!--- Read all of the files from the undeliverable directory for processing --->
<cfdirectory action="List"
 directory="#MailRoot#\undelivr"
 name="Undeliverables"
 filter="*.cfmail">

<cfif Undeliverables.RecordCount eq 0>
 <cfset FilesMoved = 0>
 <cfset FilesDeleted = 0>
 <cfset UndeliveredMail = QueryNew("FileName, FileSize, LastMod, Status")>
 <cfset QueryAddRow(UndeliveredMail)>
 <cfset QuerySetCell(UndeliveredMail, "FileName", "N/A", 1)>
 <cfset QuerySetCell(UndeliveredMail, "FileSize", "N/A", 1)>
 <cfset QuerySetCell(UndeliveredMail, "LastMod", "N/A", 1)>
 <cfset QuerySetCell(UndeliveredMail, "Status", "N/A", 1)>
<cfelse>
 <!--- Set Constants --->
 <cfset FilesMoved = 0>
 <cfset FilesDeleted = 0>
 <cfset UndeliveredMail=QueryNew("FileName, FileSize, LastMod, Status")>
 <cfset QueryAddRow(UndeliveredMail, Undeliverables.RecordCount)>

 <cfloop Query="Undeliverables">
 <!--- If the last modified date of the file in the undelivr directory is
 older than the date trigger, or if the file size is 0, delete it.
 Otherwise, move the file to the spool directory to be resent. --->
 <cfif (DateDiff("y", DateLastModified, Now()) gt attributes.datetrigger)
 or (Size eq 0)>
 <cffile action="Delete"
 file="#MailRoot#\undelivr\#Name#">
 <cfset QuerySetCell(UndeliveredMail, "FileName", Name,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "FileSize", Size,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "LastMod", DateLastModified,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "Status", "Deleted",
 Undeliverables.CurrentRow)>
 <cfset FilesDeleted = FilesDeleted + 1>
 <cfelse>
 <!--- Strip out Undelievered_ from the filename in case CFMX Updater 2 or
 later isn't installed --->
 <cffile action="Move"
 source="#MailRoot#\undelivr\#Name#"
 destination="#MailRoot#\spool\#ReplaceNoCase(Name, "Undelievered_",
 "", "All")#">
 <cfset QuerySetCell(UndeliveredMail, "FileName", Name,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "FileSize", Size,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "LastMod", DateLastModified,
 Undeliverables.CurrentRow)>
 <cfset QuerySetCell(UndeliveredMail, "Status", "Moved",
 Undeliverables.CurrentRow)>
 <cfset FilesMoved = FilesMoved+1>
 </cfif>
 </cfloop>
</cfif>

<!--- Create the summary structure --->
<cfset TempSummary = StructNew()>
<cfset TempSummary.FilesMoved = FilesMoved>
<cfset TempSummary.FilesDeleted = FilesDeleted>

<!--- Send back the results --->
<cfset "caller.#attributes.queryname#" = UndeliveredMail>
<cfset "caller.#attributes.summaryname#" = TempSummary>
</cfsilent>

The cfsilent tag is used at the beginning and end of the custom tag. This suppresses any output,

including whitespace, generated by the tag during its execution. If the tag produced any output
within its body (such as error messages), you would need to use the cfsetting tag instead of
cfsilent, and the output would have to be surrounded by cfoutput tags to avoid being suppressed.

The tag is designed to accept three attributes, datetrigger, queryname, and summaryname.
datetrigger specifies the age (in days) an undeliverable message can be before the tag deletes it.
queryname lets you pass a variable name for the query returned by the tag. The query contains

information about each file that is moved or deleted, such as its filename, size, and last modified
date. summaryname lets you provide a different variable name to be used to return a structure
containing two keys, FilesMoved and FilesDeleted. These keys contain the number of files moved

by the tag and the number deleted, respectively. Once called, the tag scans the /undelivr folder for
undeliverable email to move back to the /spool folder. The summary variables are then populated
and returned back to the calling page.

It is a good idea to get in the habit of allowing developers to specify the names of any caller variables
returned by the custom tag as attributes that can be passed into the tag. This helps avoid any
potential variable name conflicts between variables in the calling template and hard-coded caller

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variables returned by a custom tag. If a variable with the same name as a caller variable returned by
a custom tag already exists in the calling template, its value is overwritten by the value in the caller
variable with the same name.

As you can see in Example 21-3, instead of returning hard-coded caller variable names back to the
calling template, we dynamically create them like this:

<cfset "caller.#attributes.queryname#" = UndeliveredMail>
<cfset "caller.#attributes.summaryname#" = TempSummary>

Allowing caller variable names to be specified also lets you call the same tag multiple times from a
single page.

One other thing here is worth noting. Every custom tag you write (save a few of the smaller
examples in this book) should have a header section that explains what the tag does, who created it,
when it was last updated, what attributes it takes, and what caller variables it returns. Taking the
time to add this information to your custom tags in the beginning will save you (and potentially
others) a lot of time down the road when you need to look at the code behind the tag.

To test the cf_resendundeliverablemailmx custom tag, create the template shown in Example 21-

4 and save it to the same directory you saved the resendundeliverablemailmx.cfm template to. You
may name the template anything you desire.

Example 21-4. Calling the custom tag cf_resendundeliverablemailmx

<cfset Tab = CHR(9)>
<cfset br = CHR(13) & CHR(10)>

<cf_resendundeliverablemailmx
 datetrigger="5"
 queryname="UndeliveredMail"
 summaryname="Summary">

<cfif Summary.FilesMoved gte 1 or Summary.FilesDeleted gte 1>
<cfmail query="UndeliveredMail"
 to="webmaster@example.com"
 from="webmaster@example.com"
 subject="Undeliverable Mail Report for Server #CGI.Server_Name#">
Total Files Moved: #Summary.FilesMoved#
Total Files Deleted: #Summary.FilesDeleted#

These are the files affected:

Action#Tab#Filename#Tab##Tab#FileSize#Tab#Date Modified
= =
<cfoutput>
#Status# #Tab##FileName##Tab##filesize# bytes#Tab##DateFormat(LastMod)##br#
</cfoutput>
</cfmail>
</cfif>

This template becomes even more useful when you schedule it to run automatically on a recurring

http://lib.ommolketab.ir
http://lib.ommolketab.ir

basis. To learn more about scheduling tasks in ColdFusion, see Chapter 26.

Now that you've got a general idea how the attribute and caller scopes work, let's take things one
step further and examine the separation between the variables created in a calling template and
those created within a custom tag. As always, an example helps illustrate the concepts.

Example 21-5 shows a template that calls a custom tag called cf_variabledemo, then passes it
some attributes, and outputs the results returned by the tag. We include the cfapplication tag

because this example makes use of session, client, and application variables. Normally, this tag would
go in the Application.cfm template, but I've included it here in order to keep things simple. You also
need to make sure that client and session management are enabled in the ColdFusion administrator.

Example 21-5. Calling the cf_variabledemo tag and outputting the results

<cfapplication name="MyApp"
 clientmanagement="Yes"
 sessionmanagement="Yes"
 setclientcookies="Yes"
 sessiontimeout="#CreateTimeSpan(0,0,10,0)#"
 applicationtimeout="#CreateTimeSpan(0,0,10,0)#">

<!--- Create a variable to hold a query object --->
<cfset QueryVariable = QueryNew("Text")>
<cfset NewRows = QueryAddRow(QueryVariable, 1)>
<cfset QuerySetCell(QueryVariable, "Text", "I am a Query variable", 1)>

<!--- Assign values to all other variable types with the exception of CGI as
 CGI variables are read only --->
<cfset application.ApplicationVariable = "I am an Application variable">
<cfset session.SesssionVariable = "I am a Session variable">
<cfset client.ClientVariable = "I am a Client variable">
<cfset server.ServerVariable = "I am a Server variable">
<cfset variables.LocalVariable = "I am a Local variable">
<cfset form.FormVariable = "I am a Form variable">
<cfset URL.URLVariable = "I am a URL variable">
<cfcookie name="CookieVariable" value="I am a Cookie variable">
<cfset request.RequestVariable = "I am a Request variable">

<html>
<head>
 <title>Variable Demo</title>
</head>

<body>
<!--- Display all of the variable/values from the calling (this) template --->
<h2>Set in the calling template...</h2>
<cfoutput>
<table border="1">
<tr>
 <th>Variable</th><th>value</th>
</tr>
<tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>application.ApplicationVariable</td><td>#application.ApplicationVariable#</td>
</tr>
<tr>
 <td>QueryVariable.Text</td><td>#QueryVariable.Text#</td>
</tr>
<tr>
 <td>session.SesssionVariable</td><td>#session.SesssionVariable#</td>
</tr>
<tr>
 <td>client.ClientVariable</td><td>#client.ClientVariable#</td>
</tr>
<tr>
 <td>server.ServerVariable</td><td>#server.ServerVariable#</td>
</tr>
<tr>
 <td>variables.LocalVariable</td><td>#variables.LocalVariable#</td>
</tr>
<tr>
 <td>form.FormVariable</td><td>#form.FormVariable#</td>
</tr>
<tr>
 <td>cookie.CookieVariable</td><td>#cookie.CookieVariable#</td>
</tr>
<tr>
 <td>CGI.http_user_agent</td><td>#CGI.http_user_agent#</td>
</tr>
<tr>
 <td>request.RequestVariable</td><td>#request.RequestVariable#</td>
</tr>
</table>
</cfoutput>

<!--- Call the VariableDemo custom tag and pass two attributes in. The custom
 tag will generate some output on its own in this example. --->
<cf_variabledemo attributevariable="I am an Attribue variable"
 outvar="CallerVariable">

<!--- Display all variables set inside of the custom tag as well as the caller
 variable returned by the tag --->
<h2>Set inside the custom tag..</h2>
<cfoutput>
<table border="1">
<tr>
 <th>Variable</th><th>value</th>
</tr>
<tr>
 <td>Application Variable:</td>
 <td><cfif IsDefined('application.Tag_ApplicationVariable')>
 #application.Tag_ApplicationVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<tr>
 <td>Query Variable:</td>
 <td><cfif IsDefined('Tag_QueryVariable.Text')>#Tag_QueryVariable.Text#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Session Variable:</td>
 <td><cfif IsDefined('session.Tag_SesssionVariable')>
 #session.Tag_SesssionVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Client Variable:</td>
 <td><cfif IsDefined('client.Tag_ClientVariable')>#client.Tag_ClientVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Server Variable:</td>
 <td><cfif IsDefined('server.Tag_ServerVariable')>#server.Tag_ServerVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Local Variable:</td>
 <td><cfif IsDefined('variables.Tag_LocalVariable')>
 #variables.Tag_LocalVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Form Variable:</td>
 <td><cfif IsDefined('form.Tag_FormVariable')>#form.Tag_FormVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Cookie Variable:</td>
 <td><cfif IsDefined('cookie.Tag_CookieVariable')>#cookie.Tag_CookieVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>CGI Variable:</td>
 <td><cfif IsDefined('CGI.http_user_agent')>#CGI.http_user_agent#
 <cfelse>Not Available</cfif>
</td>
</tr>
<tr>
 <td>Request Variable:</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><cfif IsDefined('request.Tag_RequestVariable')>
 #request.Tag_RequestVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>CallerVariable</td>
 <td><cfif IsDefined('CallerVariable')>#CallerVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
</table>
</cfoutput>
</body>
</html>

Before the custom tag is invoked, the calling template creates a number of differently scoped
variables. A table is then output (shown in Figure 21-2) containing all the values associated with
these variables while in the calling template.

Figure 21-2. Variables set and viewable in the calling template

Next, the cf_variabledemo tag is called, and two attributes, attributevariable and outvar, are
passed to it from the calling template. The cf_variabledemo tag, shown in Example 21-6, evaluates

each variable that is set in the calling template and generates a table (shown in Figure 21-3)
demonstrating which variables from the calling tag can be "seen" inside the custom tag.

Figure 21-3. Variables set in the calling template and available for use by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the custom tag

The cf_variabledemo tag then creates all the previous variable types (with the exception of an

attribute variable) within the space of the custom tag. A caller variable is also created and
automatically passed back to the calling template. Example 21-6 shows the CFML code for
cf_variabledemo; be sure this file is saved as variabledemo.cfm.

Example 21-6. The cf_variabledemo (variabledemo.cfm) custom tag

<!--- Attempt to output all of the variables set in the calling template. If a
 variable is not accessible to the custom tag, note it. In addition,
 output the attribute variable and set a caller and another request
 variable --->
<h2>Output from inside the custom tag...</h2>
<cfoutput>
<table border="1">
<tr>
 <th>Variable</th><th>value</th>
</tr>
<tr>
 <td>Attribute Variable:</td><td>#attributes.attributevariable#</td>
</tr>
<tr>
 <td>Application Variable:</td>
 <td><cfif IsDefined('application.ApplicationVariable')>
 #application.ApplicationVariable#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Query Variable:</td>
 <td><cfif IsDefined('QueryVariable.Text')>#QueryVariable.Text#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Session Variable:</td>
 <td><cfif IsDefined('session.SesssionVariable')>#session.SesssionVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Client Variable:</td>
 <td><cfif IsDefined('client.ClientVariable')>#client.ClientVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Server Variable:</td>
 <td><cfif IsDefined('server.ServerVariable')>#server.ServerVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Local Variable:</td>
 <td><cfif IsDefined('variables.LocalVariable')>#variables.LocalVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Form Variable:</td>
 <td><cfif IsDefined('form.FormVariable')>#form.FormVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>Cookie Variable:</td>
 <td><cfif IsDefined('cookie.CookieVariable')>#cookie.CookieVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
<tr>
 <td>CGI Variable:</td>
 <td><cfif IsDefined('CGI.http_user_agent')>#CGI.http_user_agent#
 <cfelse>Not Available</cfif>
</td>
</tr>
<tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>Request Variable:</td>
 <td><cfif IsDefined('request.RequestVariable')>#request.RequestVariable#
 <cfelse>Not Available</cfif>
 </td>
</tr>
</table>
</cfoutput>

<!--- Create a variable to hold a query object --->
<cfset Tag_QueryVariable = QueryNew("Text")>
<cfset NewRows = QueryAddRow(Tag_QueryVariable, 1)>
<cfset temp = QuerySetCell(Tag_QueryVariable, "Text", "I am a Query
 variable", 1)>

<!--- Create variables within the scope of the custom tag to see which ones
 are available back in the calling template --->
<cfset application.Tag_ApplicationVariable = "I am an Application variable">
<cfset session.Tag_SesssionVariable = "I am a Session variable">
<cfset client.Tag_ClientVariable = "I am a Client variable">
<cfset server.Tag_ServerVariable = "I am a Server variable">
<cfset variables.Tag_LocalVariable = "I am a Local variable">
<cfset form.Tag_FormVariable = "I am a Form variable">
<cfset URL.Tag_URLVariable = "I am a URL variable">
<cfcookie name="Tag_CookieVariable" value="I am a Cookie variable">
<cfset request.Tag_RequestVariable = "I am a Request variable">

<!--- Create a Caller variable --->
<cfset "caller.#attributes.outvar#" = "I am a Caller variable">

Once the tag has finished processing, the calling template (shown in Example 21-5) resumes. An
attempt is made to see if each of the variables set within the custom tag is now available to the
calling template. Another HTML table (shown in Figure 21-4) is then generated to reveal the results.

Figure 21-4. Variables set in the cf_variabledemo custom tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from the results, all variables created within the calling template are available to the
custom tag, with the exception of local and query variables. Conversely, the same holds true for
variables created within the custom tag (with the exception of attribute variables that can't be set in
the custom tag). Our examples have demonstrated the following:

Shared scope variables (application, client, session, server, cookie) are available to both regular
templates and custom tags, regardless of where they are created.

CGI variables are available to all templates and tags because they are read-only variables
created by the system.

Form and URL variables are available to both templates and custom tags regardless of where
they are created.

Attribute variables are created in a calling template and explicitly passed to a custom tag and
are available only within the custom tag.

Caller variables are created in custom tags and are available only to the template that calls the
custom tag.

The request scope is a special variable scope that is shared by both the calling template and any
custom tags for the duration of a single request.

Local variables and query variables are available only within the templates or tags they are
created in unless they are explicitly passed using a variable scope accessible to both calling
templates and custom tags.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.4.1 Returning Multiple Values from a Custom Tag

If your tag is designed to return multiple caller variables, you might consider returning them as a
structure rather than individual variables. Returning a single structure lets you keep everything in a
neat package and lets you specify the name of the caller variable (the structure) to return while still
letting the tag return multiple values. For example, consider a custom tag that returns information
about a person, such as their name, age, hair color, and eye color. Instead of returning four
individual variables, you could return a single structure with the person's traits as keys:

<!--- Create the person structure --->
<cfset Person = StructNew()>
<cfset Person.Name = "Rob">
<cfset Person.Age = 30>
<cfset Person.HairColor = "Brown">
<cfset Person.EyeColor = "Brown">

<!--- Send back the results --->
<cfset "caller.#attributes.OutVarName#" = Person>

The key/value pairs contained in the structure returned by this tag can be referenced individually in
the calling page like this (assuming the output variable name passed to the custom tag is ThePerson:

<cfoutput>
Name: #ThePerson.Name#

Age: #ThePerson.Age#

Hair Color: #ThePerson.HairColor#

Eye Color: #ThePerson.EyeColor#
</cfoutput>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.5 Attribute Validation and Error Handling

In the previous section, we touched briefly on the idea of attribute validation when we used the
cfparam tag to validate and set default values for a custom tag's attributes. This section takes things

a step further by demonstrating various techniques you can use to create both required and optional
attributes for your tags. Additionally, we'll look at error- and exception-handling strategies you can
use to deal with problems that occur in your custom tags.

21.5.1 Handling Required Attributes

Depending on the type of custom tag you create, you may want or need to require certain attributes
to be passed in order for the tag to do its job. Making a tag attribute required is as simple as using a
cfif statement inside the custom tag to evaluate whether the tag exists. This is usually handled by
the IsDefined function:

<cfif IsDefined('attributes.MyRequiredAttrib')>

If the required attribute exists, IsDefined() returns true, and your tag can continue processing. If,
however, IsDefined() returns false, the required attribute hasn't been passed to the tag. At this

point, you have a few choices:

Assign a default value for the missing attribute and allow processing to continue. This is one of
the approaches we have used in some of the examples up to this point.

Return a message to the browser letting the user know that a required attribute wasn't passed,
and abort all processing using the cfabort tag. This is an approach we used in some previous

examples.

Use the cfexit tag to exit the custom tag and continue processing the calling template. The
cfexit tag is discussed in detail later on in this chapter.

Throw an exception using cfthrow and let the calling template handle the exception based on

the exception information provided by the tag.

The cfparam tag can also handle a required attribute that isn't passed into the custom tag by

assigning a default value for the attribute:

<cfparam name="attributes.MyRequiredAttrib" default="MyValue">

If the attribute is passed to the custom tag, the cfparam tag does nothing. However, if the attribute
isn't passed to the custom tag, the cfparam tag assigns the default value to the variable specified in
name. The disadvantage to using the cfparam method is that you can't really take any additional

action if the required attribute isn't present.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.5.2 Handling Optional Attributes

In some instances, you may want to allow optional attributes to be sent to your custom tags.
Optional attributes are generally handled by initializing a variable using the cfparam tag and

specifying a default value in case the attribute is not passed to the tag:

<cfparam name="attributes.MyOptionalAttribute" type="String" default="Test">

You can also handle an optional attribute by checking to see if it was passed in using the IsDefined(
) function and then executing the appropriate code if it is found to exist:

<cfif IsDefined('attributes.MyOptionalAttribute')>
HTML and CFML...
</cfif>

Using this technique, if the optional attribute is passed in, it is detected, and a block of code is run
related to the processing of the optional attribute. If the attribute isn't passed in, the tag ignores the
code specific to the optional attribute and continues processing.

21.5.3 Validating Datatypes

Just because a value is passed in for a particular attribute doesn't mean it is the type of value your
custom tag is expecting. For example, if you have a custom tag that expects a particular attributes
value to be numeric, passing a string full of text may cause the tag to throw an error. ColdFusion
provides several built-in tags and functions you can use to evaluate the type of value contained in a
particular variable. For one, you can use the cfparam tag to validate a datatype:

<cfparam name="attributes.Age" type="Numeric">

This code requires an attribute called Age to be of type Numeric. If it isn't, ColdFusion will throw an

error when the tag is called.

You can also use functions to validate datatypes within the custom tag body. Some of the more
common functions include the following:

IsArray(value [, dimension])

Returns true if the value specified is an array or false if it isn't. In addition, IsArray can

check to see if the array is of a specified dimension (1, 2, or 3).

IsBinary(+)

Returns true if the specified value is binary or false if it isn't.

IsBoolean(value)

Returns true if the specified value can be converted to a Boolean or false if it can't.

IsDate(string)

Returns true if the specified string can be converted to a valid date/time object or false if it

can't.
IsNumeric(string)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns true if the specified string can be converted to a number or false if it can't.

IsQuery(value)

Returns true if the specified value is a valid ColdFusion query or false if it isn't.

IsSimplevalue(value)

Returns true if the specified value is a number, string, Boolean, or date/time object or false if

it isn't.
IsStruct(variable)

Returns true if the specified variable is a ColdFusion structure or false if it isn't.

These functions are most effective when used with the IsDefined() function. For example, suppose
you have a custom tag that is expecting the value of an attribute named Quantity to be numeric.
You can use the following code to make sure the Quantity attribute exists and its value is numeric:

<cfif IsDefined('attributes.Quantity') and IsNumeric(attributes.Quantity)>
 Continue processing...
<cfelse>
 You attempted to pass a non-numeric value for the attribute Quantity.
 <cfabort>
</cfif>

In order for processing to continue, attributes.Quantity must exist, and it must be numeric. If
either condition is false, a message is written to the browser, and all processing (of both the custom

tag and the calling template) is aborted.

21.5.4 Error and Exception Handling

It is generally a good idea to use some form of error and exception handling both when you build and
when you call custom tags. Using the cftry, cfcatch, and cfthrow tags discussed in Chapter 9

makes it possible to include robust error- and exception-handling capabilities in your custom tags and
the templates that call them.

Typically, a cfthrow tag is used inside a custom tag in an area where an error or exception is likely

to occur. For example:

<cfif not IsDefined('attributes.MyAttrib')>
 <cfthrow message="You failed to pass a required attribute: MyAttrib"
 type="custom.tag.mytag">
</cfif>

Any template that calls the custom tag can then use cftry/cfcatch to trap the error generated by
the cfthrow tag:

<cftry>
 <cf_mytag>

 <cfcatch type="custom.tag.mytag">
 <cfoutput>
 #cfcatch.Message#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfoutput>
 </cfcatch>
</cftry>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.6 Advanced Techniques

There are several advanced features of the custom tag framework you can use to greatly expand the
power of custom tags. You can:

Use two new methods to call custom tags

Pass multiple attributes to a custom tag via a single attribute

Create tag pairs

Create a framework for creating nested tags

Devise a method to halt the processing of custom tags without halting the processing of the
calling template

This section covers each advanced technique and gives examples of how you can use them to extend
the power of your ColdFusion applications.

21.6.1 Calling Custom Tags Via cfmodule

As I mentioned earlier in the chapter, the cfmodule tag provides another way to invoke custom tags.
Using cfmodule to call your custom tags allows you to call tags located in directories other than the
\cfusionmx\customtags directory or the directory the calling template resides in. cfmodule also

enables you to resolve potential name conflicts among custom tags by allowing you to reference
different custom tags that might have the same name but reside in different directories. The syntax
for using cfmodule follows:

<cfmodule template="template"

 name="name"

 attributecollection="structure_containing_attributes"

 attribute1="value"

 attribute2="value"
 ...

 attributen="value">
[</cfmodule>]

The following attributes are available to the cfmodule tag:

template

Specifies the path to the ColdFusion template to use as a custom tag. Relative paths are
automatically expanded from the current page while absolute paths are expanded using the
mappings defined in the ColdFusion Administrator. Optional. If a value is specified for
template, the name attribute isn't used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name

Specifies the name of the custom tag you want to use. The default location for custom tag
storage is \cfusion\customtags. Custom tags residing in this location may be referenced using
dotted notation. For example, a custom tag called mycustomtag (mycustomtag.cfm) residing in
the default custom tags directory (\cfusionmx\customtags) is referenced as mycustomtag. The
same tag residing under a subdirectory of the customtags directory called \specialtags is
referenced as specialtags.mycustomtag. This dotted notation may be used to reference
custom tags residing in or any number of levels below the default customtags directory.
Optional. If a value is specified for name, the template attribute isn't used.

attributecollection

Specifies the name of a ColdFusion structure containing attribute names and their associated
values. Optional.

attribute n

Additional attributes and their associated values as required by the custom tag. Optional.

Now that you know the syntax for the cfmodule tag, let's look at a few examples of how to use it to
call custom tags. Suppose for a moment that we have a custom tag called cf_mytag (mytag.cfm)
that is located in \cfusionmx\customtags\subtags\subsubtags. To call this tag using cfmodule, we

use the following code:

<cfmodule name="subtags.subsubtags.mytag">

In this scenario, the name attribute is used with the cfmodule tag to specify a subdirectory under the

\cfusionmx\customtags directory where the custom tag resides. The path to the custom tag is
specified using a special dot notation to separate the directories.

However, what if cf_mytag isn't stored under the \cfusionmx\customtags directory? This is where the
template attribute comes in. Instead of invoking the custom tag with the name attribute, it is possible
to use the template attribute to reference the tag no matter where it is located on the local

filesystem. If the custom tag is located in the same directory as the calling template, it can be
invoked directly as in the following example:

<cfmodule template="mytag.cfm">

If, however, the custom tag is located outside the current directory, it can be referenced using a
relative path to the tag (the same way the cfinclude tag works). For example, the following
cfmodule tag would call the mytag.cfm custom tag located two directories above the location of the

calling template:

<cfmodule template="../../mytag.cfm">

If you close your cfmodule tag with a trailing slash or include an end tag for cfmodule, the tag you

are calling actually executes twice, once for the start tag and once for the end tag. This is an
important consideration when using cfmodule in this manner to call custom tags, as the custom tag

must be properly coded in order to handle both calls. Techniques for handling start and end tag calls
are covered later in the section entitled "Creating Tag Pairs."

21.6.2 Importing Custom Tags as a Tag Library

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another option for calling custom tags is to import an entire directory of them as a tag library. This
allows you to organize and call your custom tags more effectively. To import a directory of custom
tags, you use the cfimport tag:

<cfimport prefix="UI" taglib="/tags/ui">

The prefix attribute specifies a prefix to use for referring to imported tags. You refer to an imported

tag using syntax like this:

<prefix:tagname>

Prefix names follow the same naming conventions as ColdFusion variables, with a few exceptions.
First, the prefix can't be "cf", and it can't end in an underscore. Additionally, if a blank prefix ("") is
specified or the prefix attribute is omitted altogether, the tag is referred to using only its name:
<tagname>. taglib is a required attribute and is used to specify the path to the directory containing

the custom tags you want to import. By default, the path is relative to the web root. To see how this
works, take the cf_states (states.cfm) template we created earlier and copy it to a directory in your

web root called /programmingcf/21. Then, create and save the template shown in Example 21-7. You
can save the template anywhere you desire.

Example 21-7. Importing a custom tag library

<cfimport prefix="UI" taglib="/programmingcf/21">

<cfif IsDefined('form.Submit')>
<cfoutput>
You selected: #form.TheState#
</cfoutput>
</cfif>

<cfoutput>
<form name="MyForm" method="Post" action="#CGI.script_name#">
</cfoutput>
 State: <ui:states selectname="TheState"
 defaultvalue="NULL"
 defaultlabel="Please Select">
 <input type="Submit" name="Submit" value="Submit">
</form>

The cfimport tag imports any custom tags you have stored in the /programmingcf/21 directory and
gives them a prefix of UI (for "user interface"). Instead of calling the custom tag as cf_state or with
the cfmodule tag, we call it as <ui:state>. Attributes are passed just as they are for any other tag.

You can also import more than one tag library in the same namespace. This lets you pull tags from
different directories together into the same library. If multiple imported tags share the same name,
the first one imported is used:

<cfimport prefix="UI" taglib="/tags/ui/javawidgets">
<cfimport prefix="UI" taglib="/tags/ui/flashwidgets">

You should be aware of a few additional considerations for using the cfimport tag to import custom

tag libraries:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can't place the cfimport tag in a file that is called by cfinclude.

The cfimport tag can't be used within an Application.cfm template to include the tag library for

all templates in an application.

As with cfmodule, if you use an end tag for your prefixed tag call, the custom tag will execute

twice: once for the start tag and once for the end tag. Be sure that your custom tag is coded to
handle start and end tags.

21.6.2.1 A noteworthy cfimport bug

There's a bug in the cfimport tag (not fixed as of Updater 3) that causes ColdFusion to ignore

ColdFusion mappings when trying to import tags from a directory that's outside the web root
directory. Normally, ColdFusion allows you to create mappings for just this reason-so that you can
have tags like cfimport get files from outside the web root without having to expose those templates

via URL.

There are basically three workarounds to the mapping bug. The first is to use a web server mapping.
This may or may not be desirable as it then opens your tags up to access via URL. The second option
is to put the tags you want to import into the /WEB-INF directory. I prefer not to do this because
ColdFusion MX creates this directory in its own directory structure, and its location will vary
depending on where you install ColdFusion MX. I'd also hate to see ColdFusion MX overwrite any of
my files or directories at a later point.

The third workaround is to create the mapping in the jrun-web.xml file in addition to the ColdFusion
Administrator:

<virtual-mapping>
<resource-path>/web-sys</resource-path>
<system-path>E:/inetsrv/intranet/web-sys</system-path>
</virtual-mapping>

That works, but it is obviously a problem for applications that need to be easily deployed to different
servers and environments. Hopefully, this is something that's easy for Macromedia to fix and can be
included in the next ColdFusion MX Updater.

21.6.3 Adaptive Tags

In the previous section, I mentioned that it's possible to leave the prefix attribute out of a cfimport
call (or specify prefix=""). This bit of functionality lets you use the cfimport tag as a server-side
HTML preprocessor. In other words, you can use cfimport to create what are known as adaptive

tags that replace existing HTML tags with custom functionality.

To understand what I mean, let's create an adaptive tag to replace the HTML input tag. Our tag
should have all the functionality in the existing input tag, and let's add in the ability to specify a new
input type: State. Specifying type="State" should create a select box that contains the 50 U.S.
states and the District of Columbia, just like the cf_states custom tag we created earlier in the

chapter. Example 21-8 shows one way we could do this. Be sure to save the template as
\programmingcf\21\input.cfm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 21-8. Replacing the HTML input tag with an adaptive tag

<cfparam name="attributes.Type" default="Text">

<!--- Build a string with all passesed attributes --->
<cfset TheAttributes="">
<cfloop collection="#attributes#" item="i">
 <cfset TheAttributes = TheAttributes & i & "=" & """#attributes[i]#""" & " ">
</cfloop>

<cfswitch expression="#attributes.Type#">
 <!-- If the input type is "State" --->
 <cfcase value="State">
 <cfparam name="attributes.Name" default="#attributes.Type#">
 <select name="#attributes.Name#">
 <option value="AL">Alabama</option>
 <option value="AK">Alaska</option>
 <option value="AZ">Arizona</option>
 <option value="AR">Arkansas</option>
 <option value="CA">California</option>
 <option value="CO">Colorado</option>
 <option value="CT">Connecticut</option>
 <option value="DE">Delaware</option>
 <option value="DC">District of Columbia</option>
 <option value="FL">Florida</option>
 <option value="GA">Georgia</option>
 <option value="HI">Hawaii</option>
 <option value="ID">Idaho</option>
 <option value="IL">Illinois</option>
 <option value="IN">Indiana</option>
 <option value="IA">Iowa</option>
 <option value="KS">Kansas</option>
 <option value="KY">Kentucky</option>
 <option value="LA">Louisiana</option>
 <option value="ME">Maine</option>
 <option value="MD">Maryland</option>
 <option value="MA">Massachusetts</option>
 <option value="MI">Michigan</option>
 <option value="MN">Minnesota</option>
 <option value="MS">Mississippi</option>
 <option value="MO">Missouri</option>
 <option value="MT">Montana</option>
 <option value="NE">Nebraska</option>
 <option value="NV">Nevada</option>
 <option value="NH">New Hampshire</option>
 <option value="NJ">New Jersey</option>
 <option value="NM">New Mexico</option>
 <option value="NY">New York</option>
 <option value="NC">North Carolina</option>
 <option value="ND">North Dakota</option>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <option value="OH">Ohio</option>
 <option value="OK">Oklahoma</option>
 <option value="OR">Oregon</option>
 <option value="PA">Pennsylvania</option>
 <option value="RI">Rhode Island</option>
 <option value="SC">South Carolina</option>
 <option value="SD">South Dakota</option>
 <option value="TN">Tennessee</option>
 <option value="TX">Texas</option>
 <option value="UT">Utah</option>
 <option value="VT">Vermont</option>
 <option value="VA">Virginia</option>
 <option value="WA">Washington</option>
 <option value="WV">West Virginia</option>
 <option value="WI">Wisconsin</option>
 <option value="WY">Wyoming</option>
 </select>
 </cfcase>

 <!--- All other input types --->
 <cfdefaultcase>
 <cfoutput><input #Left(TheAttributes, Len(TheAttributes)-1)#></cfoutput>
 </cfdefaultcase>
</cfswitch>

The first thing you should know is that you have to make the filename for an adaptive tag the same
as the HTML tag whose functionality you want to replace. In our example, since we want to replace
the HTML input tag, we need to save our tag as input.cfm.

Our adaptive tag works by checking for an attribute called type. Not so coincidentally, the HTML
input tag also has an attribute called type. Because our adaptive tag should behave exactly like the
HTML input tag unless they type attribute is set to State, we need a way to preserve any additional
attributes that might be passed to the tag. This is handled by looping over the attributes structure

and appending each passed attribute to a temporary list variable we'll use in just a moment.

Next, a cfswitch/cfcase is used to evaluate the value of type. If it's State, a select box containing
the 50 states and the District of Columbia is output.[1] Otherwise (the cfdefaultcase), an HTML
input tag is returned with all of the attributes contained in the temporary list we created earlier. You

can call the adaptive tag using the following code:

[1] We use a different technique here to output the 50-state select box than we did in the cf_states custom

tag. In the latter we used a two-dimensional array to hold the state abbreviations and names, using a loop to

dynamically construct the option tags. Example 21-8 uses a simpler but less elegant and extensible approach

in which we simply hardcode each option tag.

<cfimport prefix="" taglib="/programmingcf/21">

Please complete:

<form method="Post" action="<cfoutput>#CGI.Script_Name#</cfoutput>">
 State: <input type="State" name="State">

 Name: <input type="Text" name="Name" width="15" maxlength="255">

 <input type="Submit" name="Submit" value="Submit">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</form>

As you can see, by using cfimport to import our input.cfm template (saved in /programmingcf/21)
and assigning it no prefix, when the HTML input tag is used, ColdFusion actually uses our tag instead
of the HTML input tag. This is the essence of adaptive tags.

21.6.4 Passing Attributes via Structures

The custom tag scope provides an advanced way to pass attribute information from a calling
template to the custom tag. Instead of passing attributes individually, you can use a special attribute
named attributecollection to pass in a structure containing attribute/value pairs. Example 21-9
demonstrates this by creating a structure containing an employee record called Employee and
passing the structure to a custom tag called CF_DisplayEmployee via the attributecollection

attribute.

Example 21-9. Passing attributes using attributecollection

<!--- Create a structure called Employee and populate it with the contact
 info for a single employee --->
<cfset Employee = StructNew()>
<cfset Employee.Name = "Pere Money">
<cfset Employee.Title = "President">
<cfset Employee.Department = "Executive Management">
<cfset Employee.Email = "pere@mycompany.com">
<cfset Employee.PhoneExt = "1234">

<!--- Call the displayemployee custom tag. Pass the Employee structure to
 the tag as a list of attribute/value pairs using the attributecollection
 attribute. --->
<cf_displayemployee attributecollection = "#Employee#">

Alternately, you can make the same tag call using the cfmodule tag in place of
cf_displayemployee:

<cfmodule template="displayemployee.cfm"
 attributecollection="#Employee#">

Regardless of the method you use to call the custom tag, once the structure containing the attributes
is passed to the custom tag, it is available inside the tag individually. The cf_displayemployee tag is

shown in Example 21-10. Note that we don't have to reference the attribute names as part of the
structure. This is what makes the attributecollection attribute so convenient.

Example 21-10. The cf_displayemployee (displayemployee.cfm) custom
tag

<!--- Display the contents of the attributecollection attribute. --->
<h2>Employee Detail</h2>
<cfoutput>
<table>
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td>Name</td><td>#attributes.Name#</td>
 </tr>
 <tr>
 <td>Title</td><td>#attributes.Title#</td>
 </tr>
 <tr>
 <td>Department</td><td>#attributes.Department#</td>
 </tr>
 <tr>
 <td>E-mail</td><td>#attributes.Email#</td>
 </tr>
 <tr>
 <td>Phone Ext.</td><td>#attributes.PhoneExt#</td>
 </tr>
</table>
</cfoutput>

Note that an explicitly named attribute takes precedence over a like-named attribute contained in the
structure passed by the attributecollection attribute, resulting in the value from the structure

being overwritten.

21.6.5 Creating Tag Pairs

The next advanced feature of the custom tag framework is tag pairs. Until now, every custom tag
you have created has been called something like:

<cf_mytag attribute="value">

If you look at HTML and CFML, both languages use end tags to allow you to wrap the functionality of
the tag around some sort of arbitrary content. For example, in HTML, almost every tag comes in a
pair. That is, each tag has a begin tag and an end tag. Take any of the heading-level tags, for
example:

<h1>This is a heading level 1</h1>

Each heading-level tag contains a begin tag (<h1>) and an end tag (</h1>). Whatever content

appears between the tag pairs is marked up by the tags. The same holds true for many CFML tags.
Take the cfmail tag, for example:

<cfmail from="me@example.com"
 to="you@example.com"
 subject="Tag Pairs">
All of this content falls between the cfmail tag pairs!
</cfmail>

In this case, all the content between the <cfmail> and </cfmail> tags is used as the body of an

email message.

The custom tag framework gives you the means to create tags like these by providing a special
structure called ThisTag. It contains four key/value pairs that can be used with any custom tag to

establish a tag pair:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ThisTag.AssocAttribs

Returns an array of structures containing all the attributes of all nested tags associated with
the base tag, as long as the subtags were associated using cfassociate. This variable is
returned only if the cfassociate tag is used to associate a nested tag with the base tag (this

is covered later in the chapter).
ThisTag.ExecutionMode

Returns the current execution mode of the tag. ThisTag.ExecutionMode returns Start when
the tag is opened, End when the tag is closed, and Inactive if subtags of the base tag are

being processed.
ThisTag.GeneratedContent

Returns any content between the start and end tags. ThisTag.GeneratedContent is a

read/write variable and can therefore be written to by your application.
ThisTag.HasEndTag

Returns true if the tag has an associated end tag and false if it doesn't.

The best way to understand how tag pairs work within the context of custom tags is to look at an
example. One use for paired custom tags is something I like to call a site wrapper. A site wrapper is
basically a site header and footer all wrapped into a single file. There are a couple of advantages to
using a paired custom tag instead of using cfinclude to include a header and footer file. First, using

a paired custom tag allows you to put all your header and footer code in a single file instead of using
separate files for the header and the footer. The second advantage is that using a custom tag allows
you to pass attributes to the page such as a page title and background colors, which isn't possible
with includes. Here's the code used to call a basic site wrapper tag we'll call cf_sitewrapper:

<cf_sitewrapper>
All your page content goes here...
</cf_sitewrapper>

As you can imagine, this type of tag layout is extremely flexible, as it allows you to specify between
the tag pairs any text or a variable containing the text. The tag can be used to wrap any page
content, and it allows you to pass in a single attribute called title. As you probably guessed already,
the value supplied for title is used to populate the page's HTML title tag. The code for the
cf_sitewrapper tag (sitewrapper.cfm) is shown in Example 21-11.

Example 21-11. cf_sitewrapper custom tag

<cfsetting enablecfoutputonly="Yes">
<!---
NAME: cf_sitewrapper
FILE: sitewrapper.cfm
CREATED: 02/13/2003
LAST MODIFIED:
VERSION: 1.0
AUTHOR: Rob Brooks-Bilson (rbils@amkor.com)
DESCRIPTION: cf_sitewrapper is a custom CFML tag that implements a site's
 header and footer as a wrapper.
ATTRIBUTES: Title: HTML title for the page
KNOWN ISSUES: None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

--->

<!--- Set attribute defaults --->
<cfparam name="attributes.Title" default="Example.com">

<cfif ThisTag.ExecutionMode is "Start">
 <cfif not ThisTag.HasEndTag>
 <cfabort showerror="The cf_sitewrapper tag requires an end tag.">
 </cfif>

 <cfoutput>
 <html>
 <head>
 <title>#attributes.Title#</title>
 </head>

 <body>
 <table>
 <tr>
 <td>
 Home |
 Products |
 Services |
 Contact
 </td>
 </tr>
 <tr>
 <td><hr noshade></td>
 </tr>
 <tr>
 <td>

 </cfoutput>
<cfelse>
 <cfoutput>

 </td>
 </tr>
 <tr>
 <td><hr noshade></td>
 </tr>
 <tr>
 <td>
 Copyright #Year(Now())#, All Rights Reserved
 </td>
 </tr>
 </table>
</body>
</html>
</cfoutput>
</cfif>
<cfsetting enablecfoutputonly="No">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a paired custom tag is called, ColdFusion actually calls the tag twice, once for the start tag and
once when the end tag is encountered. Because we don't want the entire functionality of a custom
tag actually to execute twice, we need a mechanism to determine when the tag is called and when it
ends so that we can program the tag's functionality accordingly. To determine whether a custom tag
is being called as a start tag or end tag, you can look at the value of ThisTag.ExecutionMode. If it is
Start (as it would be when the opening tag is encountered), we use a cfif statement to evaluate
ThisTag.HasEndTag. If it evaluates false, we know that no end tag is present, so an error message
is written to the browser, and all processing is halted. If the value is true, we know that an end tag
is present, and processing continues. The rest of the code that runs when ThisTag.ExecutionMode is
Start writes out the header text for the page, which in this case is just a navigation bar. The HTML
title tag is populated with the value passed in via the title attribute. If no title attribute is

passed, a default value is used instead.

The actual page content (the stuff between the start and end tag of our custom tag call) outputs as
soon as the end of the code in the cfif statement finishes. The second time the tag is called (when
the end tag is detected), ThisTag.ExecutionMode is End, and the code following the cfelse tag

executes. In this case, the code is our footer code that displays a page break and a copyright notice
for the page.

To test the cf_sitewrapper tag, create the template shown in Example 21-12 and save it to the

same directory you saved the custom tag in.

Example 21-12. Template for calling the cf_sitewrapper tag

<cf_sitewrapper title="Welcome to my page">
<h2>Welcome to my site</h2>

Today's date is <cfoutput>#DateFormat(Now(),'mm/dd/yyyy')#</cfoutput>
<p>
Please feel free to look around...
</p>
</cf_sitewrapper>

Executing the template in Example 21-12 results in the output shown in Figure 21-5.

Figure 21-5. Providing a header and footer via custom tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.6.6 Nesting Custom Tags

Another benefit to creating tag pairs is the ability to create nested custom tags. Nested custom tags
allow you to create sets of tags that can share data with one another. In CFML, a good example is
the cfhttp and cfhttpparam tags. The tags can be nested as in the following example:

<cfhttp URL="http://127.0.0.1/foo.cfm"
 method="Post">
 <cfhttpparam type="Formfield" name="Name" value="Pere Money">
 <cfhttpparam type="Formfield" name="Title" value="President">
</cfhttp>

In this case, the cfhttp tag is the parent tag while the two cfhttpparam tags are considered the
children. The cfhttpparam tags can pass the information contained in their attributes to the cfhttp
tag so that it can be posted to another template specified by the cfhttp tag.

There are several metaphors that describe the relationships between nested custom tags. The most
commonly used terms to describe the nesting relationship are ancestor/descendant, base/sub, and
parent/child tags. These terms are used interchangeably throughout this section.

Another important concept to understand in ancestor/descendant tag relationships is that a single tag
can be both an ancestor and a descendant. Consider the following example:

<cf_basetag>
 <cf_subtag>
 <cf_subsubtag>
 </cf_subtag>
</cf_basetag>

In this example, cf_basetag is a parent tag. cf_subtag is a child tag of cf_basetag, but it is also a
parent tag of cf_subsubtag. cf_subsubtag is a child tag of both cf_subtag and cf_basetag. What

is interesting about how ColdFusion handles nested-tag communication is the fact that you can have
any parent or child tag pass information to any of its parent or child tags. How is this done?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion provides you with one tag and two functions that make the inter-tag communication
possible.

The cfassociate tag associates a child tag with a parent by saving all the child tag's attributes to a
special structure that is available to the parent tag. cfassociate takes two attributes, basetag and
datacollection. basetag specifies the name of the parent tag to associate with the child tag.
datacollection specifies a name for the structure used to pass all the attribute information from
the child tag to the parent tag. If datacollection isn't specified, ColdFusion uses the default
structure AssocAttribs.

It is also possible for a child tag to request information about its ancestors. There are two functions
that facilitate this:

GetBaseTagList()

Returns a comma-delimited list (in uppercase) of ancestor tag names. GetBaseTagList is

meant for use in custom CFML tags for inter-tag data exchange. The first element in the
returned list of ancestor tags is always the top-level parent tag.

GetBaseTagData(ta[,instance])

Returns an object containing data from the specified ancestor tag. An optional instance

number may be set to specify the number of ancestor tag levels to skip through before
returning data. The default value for instance is 1.

As always, the best way to explain the interaction between nested tags is with an example. In this
case, we'll need to create three templates to accomplish the task. Example 21-13 through Example
21-15 show how to create a simple demonstration of how nested tags communicate and how you can
use the functions and tags we just discussed to abstract the underlying complexity.

Example 21-13. Nesting custom tags

<h3>We start in the calling template</h3>

<!--- Call the cf_basetag custom tag and nest a number of cf_subtag tags. Also
 call two cf_subtag tags outside the cf_basetag to demonstrate how to
 handle orphaned cf_subtag tags --->
<cf_basetag title="Colors">
 <cf_subtag title="Red">
 <cf_subtag title="Yellow">
 <cf_subtag title="Green">
 <cf_subtag title="Blue">
 <cf_subtag>
</cf_basetag>
<cf_subtag title="Orange">
<cf_subtag title="Silver">
<h3>We end up back in the calling template</h3>

<!--- If there are any orphaned cf_subtag tags, output their attributes here --->
<cfif IsDefined('request.OrphanList')>
 <cfoutput>
 <h3>There were #ListLen(request.OrphanList)# orphaned sub tags found:</h3>
 </cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfloop index="i" list="#request.OrphanList#">
 <cfoutput>
 #i#
 </cfoutput>
 </cfloop>

</cfif>

Example 21-13 shows the caller template used to call our nested tags. Executing the template results
in the output shown in Figure 21-6.

Figure 21-6. Demonstrating communication between nested custom tags

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that you have an idea of what the output looks like, let's discuss what went on behind the
scenes to make it happen. Once the template in Example 21-13 is executed, a call to cf_basetag is

made. Five child tags are nested within the parent tag. Each tag (with the exception of one child tag)
passes an attribute called title. To understand what happens next, let's examine the cf_basetag

tag (basetag.cfm) shown in Example 21-14.

Example 21-14. cf_basetag (basetag.cfm) custom tag

<!--- If an attribute called title exists, create a local copy of it. title is
 the only attribute used by the tags in this example. --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfif IsDefined('attributes.title')>
 <cfset title = attributes.title>
</cfif>

<!--- This code executes when the cf_parent tag is first opened --->
<cfswitch expression = "#ThisTag.ExecutionMode#">
 <cfcase value="Start">
 <!--- Check to make sure an end tag for cf_basetag is present. If not, write
 a message out to the browser and abort processing. This is necessary
 because you can't nest tags without using an end tag. --->
 <cfif not ThisTag.HasEndTag>
 No end tag for the cf_basetag tag was found. This tag can only be
 invoked when both a <cf_basetag> and a </cf_basetag> are
 present.
 <p>
 Processing Aborted...
 <cfabort>
 </cfif>

 <h3>Begin cf_basetag tag</h3>
 Call cf_subtag Tags

 </cfcase>

 <!--- When the cf_parent end tag is detected, this code executes --->
 <cfcase value="End">

 Finished Calling cf_subtag Tags
 <p>
 <!--- Check to see if any attributes were passed back from a sub tag
 associated with this base tag --->
 <cfif IsDefined('ThisTag.AssocAttribs')>
 Still in the cf_basetag Tag...
 <p>
 <!--- Output the total number of sub tags associated with this tag --->
 <cfoutput>
 #title# has #ArrayLen(ThisTag.AssocAttribs)# sub tags.
 </cfoutput>

 <!--- Output the title attribute of each sub tag associated with this
 tag --->

 <cfloop index="i" from="1" to="#ArrayLen(ThisTag.AssocAttribs)#">
 <cfoutput>
 Sub tag #i# is #ThisTag.AssocAttribs[i].title#
 </cfoutput>
 </cfloop>

 </cfif>

 <h3>End cf_basetag Tag</h3>
 </cfcase>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfswitch>

The tag starts by checking to see if an attribute called title is passed in. If so, a local variable called
title is set. Next, ThisTag.ExecutionMode is checked to see if the value is Start. If so, the
template checks to make sure an end tag for cf_basetag is present by evaluating the value of
ThisTag.HasEndTag. If no end tag is found, a message is written out to the browser, and all

processing of both the custom tag and the calling template is aborted. This is necessary because you
can't nest tags without using an end tag. If everything up through here is okay, a message that
processing of the custom tag has begun and that the subtags are being called is output to the
browser.

At this point, any subtags located between the start and end tags of cf_basetag are processed. Let's

examine what happens inside the subtags in Example 21-15. Then we'll come back to the rest of the
code in cf_basetag.

Example 21-15. cf_subtag (subtag.cfm) custom tag

<!--- If no title attribute is passed with a sub tag, specify "not titled" for
 the title. If you wanted to make title a required attribute, you could
 use IsDefined to check for its existence here. If title wasn't passed,
 processing could be aborted or exited --->
<cfparam name="attributes.title" default="not titled">

<!--- Initialize a request variable called OrphanList. This variable is used
 to hold a comma delimited list of orphaned cf_subtag titles in the event
 that there are any. The request scope is used so that the list can be
 available to the calling template (or any other template) within the
 scope of this page request --->
<cfparam name="request.OrphanList" default="">

<!--- Retrieve a list of all ancestor tags --->
<cfset AncestorTags = GetBaseTagList()>
<!--- Look for cf_basetag in the list of retrieved ancestor tags. If it is
 found, get all of the base tag's information and assign it to a variable
 called ParentTagData. Then, output the title for each cf_subtag as
 well as the sub tag's base tag name --->
<cfif ListFindNoCase(AncestorTags, "cf_basetag")>
 <cfoutput>
 <cfset BaseTagData = GetBaseTagData("cf_basetag")>
 Sub Tag Title: <I>#attributes.title#</I>

 Base Tag Title: <I>#BaseTagData.title#</I>
 </cfoutput>
 <!--- Associate this tag with the base tag (cf_basetag) --->
 <cfassociate basetag="cf_basetag">
<cfelse>
 <!--- If there are any orphaned sub tags, append their names to the
 request.OrphanList variable we initialized earlier. This variable
 is automatically available to any template within the scope of this
 request, including the calling template --->
 <cfoutput>
 <cfset request.OrphanList = ListAppend(request.OrphanList,
 attributes.title)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </cfoutput>
</cfif>

In Example 21-15, the first thing each cf_subtag does is assign a default value for the title
attribute that can be passed to the tag. If no title exists, not titled is assigned as the default.

Next, a default value of "" is assigned to a request variable called request.OrphanList. This
variable holds a comma-delimited list of the title attributes of any cf_subtag tags that are called
outside the cf_basetag tag. Child tags called outside the scope of their parent tag are more

commonly known as orphaned tags. The request scope is used so that the list of orphaned tags is
available to any template (including and especially the calling template) within the scope of this page
request.

The next part of the template calls the GetBaseTagList() function. The function returns a comma-

delimited list of ancestor tag names for the subtag. The list is written to a variable called
AncestorTags.

The ListFindNoCase() function looks for cf_basetag in the list of ancestor tags stored in the
AncestorTags variable. If it is found, all the base tag's information is assigned to a variable called
BaseTagData. Next, the title for each cf_subtag as well as the subtag's parent tag title is output
to the browser. Finally, the subtag is associated with cf_basetag using the cfassociate tag. This

lets the subtag share all of its information with the parent tag.

If cf_basetag isn't found in the list of ancestor tags, we know that the subtag is an orphaned tag, so
we write its title to the request.OrphanList variable so that it can be passed back to the calling

template.

When the last cf_subtag has finished processing, control is returned back to the cf_basetag tag. At
that point, evaluating ThisTag.GeneratedContent returns End. A message is written to the browser

that we have finished calling all the subtags. Next, the total number of child tags associated with the
cf_basetag tag is output by evaluating the length of the variable ThisTag.AssocAttribs. If you
remember from earlier, ThisTag.AssocAttribs is an array of structures that contain all the attribute
values from each child tag. The ArrayLen() function returns the length of the array, which

represents the number of structures returned (one for each subtag).

Next, the title of each subtag is output to the browser by looping over each structure in the
ThisTag.AssocAttribs array. When the loop is finished, a message is output to the browser letting
you know that the cf_basetag has finished processing. At this point, processing reverts to the calling

template.

The calling template in Example 21-13 finishes up by outputting a message that processing has been
passed back to it. Finally, a check is made to see if the variable request.OrphanList exists. If it

does, we know that there were some orphaned tags encountered. The list is looped over, and the title
from each orphaned tag is output to the browser.

21.6.6.1 Extending cf_sitewrapper with child tags

To understand how you might use child tags in a real-world application, consider the
cf_sitewrapper custom tag we created earlier in the chapter. As you'll recall, cf_sitewrapper

allows us to wrap any content with a standard header and footer. While this is a great way to provide
a common header and footer for a site, it could be better. For instance, the navigation bar in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

header portion of the cf_sitewrapper tag is hard-coded. This means that it displays the same links

for every page that uses the tag. It also means that in order to add a new page to the navigation
bar, you must modify the custom tag. By using child tags, however, we can rewrite the
cf_sitewrapper tag to allow us to pass in the items that should appear on the navigation bar as
subtags of the cf_sitewrapper tag. Here is one way to do this:

<cf_sitewrapper>
 <cf_sitewrapperlink linkname="Home" location="index.cfm" target="_self">
 <cf_sitewrapperlink linkname="Help" location="help.cfm" target="_self">
 ...
Page content goes here...
</cf_sitewrapper>

And here is another:

<cfmodule template="sitewrapper.cfm">
 <cfmodule template="sitewrapperlink.cfm" linkname="Home" location="index.cfm"
 target="_self" />
 <cfmodule template="sitewrapperlink.cfm" linkname="Help" location="help.cfm"
 target="_self" />
 ...
Page content goes here...
</cfmodule>

Using this syntax, we can pass any number of links for use in the cf_sitewrapper tag's navigation
bar. The code for the cf_sitewrapperlink tag is simple:

<cfsilent>
<!--- Associate this tag with cf_sitewrapper as the parent --->
<cfassociate basetag="cf_sitewrapper">
<cfparam name="attributes.linkname">
<cfparam name="attributes.location">
<cfparam name="attributes.target" default="_self">
</cfsilent>

All the cf_sitewrapperlink tag does is associate itself with its parent tag (in this case, the
cf_sitewrapper tag), and cfparam attributes for the link's linkname, location, and target. You'll

see how these attributes are used in just a moment.

The bulk of the work is still done by the cf_sitewrapper tag. You'll need to modify it slightly from

the one we created earlier. The new version needs to handle the data passed in by each
cf_sitewrapperLink child tag, using it to construct the navigation menu dynamically. The code for
the modified cf_sitewrapper tag is shown in Example 21-16.

Example 21-16. Using child tags with cf_sitewrapper

<cfsetting enablecfoutputonly="Yes">
<!---
NAME: cf_sitewrapper
FILE: sitewrapper.cfm
CREATED: 02/13/2003
LAST MODIFIED:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VERSION: 1.0
AUTHOR: Rob Brooks-Bilson (rbils@amkor.com)
DESCRIPTION: cf_sitewrapper is a custom CFML tag that implements a site's
 header and footer as a wrapper.
ATTRIBUTES: Title: HTML title for the page
KNOWN ISSUES: None
--->

<!--- Set attribute defaults --->
<cfparam name="attributes.title" default="Example.com">
<cfparam name="ThisTag.AssocAttribs" default=#ArrayNew(1)#>
<!--- Default links go here. This is where defaults can be "hard coded".
 Multiple links should be delimited with a comma (no spaces). If
 you don't want any defaults, set Links="". --->
<cfparam name="Links" default="Home">
<!--- Create a temp var to hold the page content between tag pairs --->
<cfset LocalContent = ThisTag.GeneratedContent>
<!--- Clear the generated page content --->
<cfset ThisTag.GeneratedContent = "">
<!--- Loop over the passed in links (subtags), appending them to a list --->
<cfloop from="1" to="#ArrayLen(ThisTag.AssocAttribs)#" index="i">
 <cfset Links = ListAppend(Links, "<a href=""#ThisTag.AssocAttribs[i].Location#""
 target=""#ThisTag.AssocAttribs[i].Target#"">
 #ThisTag.AssocAttribs[i].LinkName#", "|")>
</cfloop>
<!--- Replace the commas in the list with pipes for cosmetics --->
<cfset Links = Replace(Links, "|", " | ", "All")>

<cfswitch expression="#ThisTag.ExecutionMode#">
 <cfcase value="Start">
 <cfif not ThisTag.HasEndTag>
 <cfabort showerror="The cf_sitewrapper tag requires an end tag.">
 </cfif>
 </cfcase>

 <cfcase value="End">
 <cfoutput>
 <html>
 <head>
 <title>#attributes.title#</title>
 </head>

 <body>
 <table>
 <tr>
 <!--- Output the links passed by the child tags --->
 <td>#Links#</td>
 </tr>
 <tr>
 <td><hr noshade></td>
 </tr>
 <tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!--- Output the content between the cf_sitewrapper tags --->
 <td>
#LocalContent#
</td>
 </tr>
 <tr>
 <td><hr noshade></td>
 </tr>
 <tr>
 <td>
 Copyright #Year(Now())#, All Rights Reserved
 </td>
 </tr>
 </table>
 </body>
 </html>
 </cfoutput>
 </cfcase>
</cfswitch>
<cfsetting enablecfoutputonly="No">

The modified cf_sitewrapper tag works just like the original, with one exception. Instead of

generating the navigation bar with hardcoded links, the tag uses the information from any
cf_sitewrapperlink tags to dynamically build the navigation bar. This is done by looping over the
ThisTag.AssocAttribs array and generating the necessary link code from the data passed in by the

child tags. You can predefine any links you want to appear regardless of what's passed in by adding
them to the links variable created with the cfparam tag.

To test out the new cf_sitewrapper tag, call the following code, which passes three links (in addition

to the default hardcoded link) to the tag:

<cf_sitewrapper title="Welcome to my page">
 <cf_sitewrapperlink linkname="Products" location="products.cfm">
 <cf_sitewrapperlink linkname="Services" location="services.cfm">
 <cf_sitewrapperlink linkname="Contact" location="contact.cfm" target="_blank">

<h2>Welcome to my site</h2>

Today's date is <cfoutput>#DateFormat(Now(),'mm/dd/yyyy')#</cfoutput>
<p>
Please feel free to look around...
</p>
</cf_sitewrapper>

21.6.7 Aborting Tag Processing

Sometimes, it is desirable to halt processing within a custom tag. There are many reasons why you
might opt to do so, including error handling, attribute validation, and conditional processing. You can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use the cfabort tag inside a custom tag to halt processing, but doing that terminates the processing

of the calling template or tag as well. There is, however, a tag you can use that allows you to halt
processing of a custom tag, exit the tag gracefully, and resume processing of the template or tag
that made the original call to the custom tag. That tag is cfexit.

The cfexit tag is similar in functionality to the cfabort tag except that it is intended for use within
custom tags. If the cfexit tag is used outside a custom tag, it behaves the same as the cfabort
tag. The syntax for calling the cfexit tag is:

<cfexit method="method">

The tag takes a single attribute, method, that specifies the method to use in exiting the custom tag.
Each method produces different results depending on where you locate the cfexit tag within your
custom tag. Possible entries for method are:

ExitTag (default)

When placed in the base tag, processing of the custom tag is halted, and control returns to the
calling template. If placed within a block of code where ThisTag.ExecutionMode is Start or
ThisTag.ExecutionMode is End, processing continues after the end tag.

ExitTemplate

When placed in the base tag, processing of the custom tag is halted, and control returns to the
calling template. If placed within a block of code where ThisTag.ExecutionMode is Start,
processing continues from the first child tag of the calling tag. If ThisTag.ExecutionMode is
End, processing continues after the end tag.

Loop

Reexecutes a block of code in the currently executing custom tag (emulates a cfloop). This
method can be used only when ThisTag.ExecutionMode is End. Using it in any other location

results in an error.

The cfexit tag is most commonly used to halt the processing of a custom tag, exit the custom tag,

and then resume processing of the calling template. Example 21-17 creates a custom tag called
cf_exittagtest. Make sure to save the template as exittagtest.cfm in the directory you intend to

call it from.

Example 21-17. cf_exittagtest custom tag

<cfif IsDefined('attributes.Name')>
 <cfset Local_Name = attributes.Name>
<cfelse>
You failed to pass a required attribute: Name
<cfexit method = "ExitTag">
</cfif>

<cfoutput>
Hello #attributes.Name#!
</cfoutput>
<!--- The rest of your tag goes here --->

The cf_exittagtest tag checks to see if an attribute called Name was passed in by the tag call. If it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exists, the custom tag simply outputs the value of the attribute. If, however, the Name attribute

doesn't exist, execution of the tag is halted, the tag is exited, and processing of the calling template
resumes.

You can test cf_exittagtest by creating the template shown in Example 21-18. Be sure to save it in

the same directory you saved the exittagtest.cfm template in.

Example 21-18. Template for calling the cf_exittagtest custom tag

<h2>Exiting a custom tag using <cfexit method="Tag"></h2>
This is in the Calling Template
<p>
<!--- Call the ExitTagTest custom tag. --->
<cf_exittagtest>
<p>
We're back to the Calling Template again

You can also use cfexit to emulate the behavior of a conditional cfloop within the context of a
custom tag. By setting the method attribute of the cfexit tag to Loop, you can have ColdFusion

iterate over the same block of code in the custom tag until a specific condition is met. The template
shown in Example 21-19 creates a custom tag called cf_exitlooptest (save it as exitlooptest.cfm)
that demonstrates using the cfexit tag with the method set to Loop.

Example 21-19. cf_exitlooptest custom tag

<cfswitch expression = "#ThisTag.ExecutionMode#">
 <cfcase value="Start">
 <cfset Count=1>
 Start Tag Execution...

 </cfcase>

 <cfcase value="End">
 <cfif Count lte 10>
 <cfoutput>Iteration #Count#
</cfoutput>
 <cfset Count = Count + 1>
 <!--- This cfexit tag causes the body of the End ExecutionMode to execute
 again and again until Count=10. When Count = 10, the tag is exited
 and processing is returned to the calling template. --->
 <cfexit method="Loop">
 </cfif>
 End Tag Execution.
 </cfcase>
</cfswitch>

The custom tag in Example 21-19 begins by checking the value of ThisTag.ExecutionMode. If it is
Start, a counter variable called Count is set to 1, and a message is written back to the calling

template that reads "Start Tag Execution".

If ThisTag.ExecutionMode is End, a cfif statement evaluates the value of Count. If Count is less
than or equal to 10, its value is output to the browser. The value of Count is then incremented by 1.
Setting method to Loop reprocesses the contents of the cfcase statement, effectively creating a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

conditional loop until the value of Count is equal to 10. Once Count is greater than 10, the cfif
statement evaluates false, and the custom tag returns processing control back over to the calling

template.

To call the cf_exitlooptest tag, create the template shown in Example 21-20 and save it to the

same directory you saved the exitlooptest.cfm template to. Note the tag is called using the syntax
<cf_exitlooptest/>. The trailing forward slash indicates an end tag without actually having to code
the opening and closing <cf_exitlooptest> and </cf_exitlooptest> tags.

Example 21-20. Template for calling the cf_exitlooptest custom tag

<h2>Exiting a custom tag using <cfexit method="Loop"></h2>
This is in the Calling Template
<p>
<!--- Call the ExitLoopTest custom tag. Note the trailing forward slash used to
 call the tag. This indicates a start and end tag without having to write
 two lines of code --->
<cf_exitlooptest/>
<p>
We're back to the Calling Template again

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.7 Protecting Your Tags

ColdFusion comes with a command-line utility called CFEncode you can use to obfuscate the source
code in your CFML templates so that it can't be easily viewed. The obfuscation process is designed to
be one-way, so you should make sure you have a backup copy of any templates you wish to encode
before proceeding. You should also be aware that the mechanism used to encode tags is relatively
weak and has been broken in the past. For this reason, you shouldn't rely on the encoding
mechanism as the sole means for protecting your source code.

To run the CFEncode utility (located in \cfusionmx\bin by default), simply execute it using the
following syntax:

cfencode infile outfile [/r /q] [/h "header"] /v"2"

The following list explains each parameter and switch:

infile

Specifies the name of the CFML template to be encoded. Optionally, you may specify a
wildcarded filename if you wish to encode more than one template at a time.

outfile

Specifies the full path to the output file for the encoded file. If you fail to specify an output file,
the CFEncode utility overwrites the original file with the encoded version. For this reason, it is
important that you always keep a backup copy of any templates you wish to encode.

/r

Specifies that encoding should be recursive. This switch is used when you use a wildcard as the
infile parameter, and you wish to have the CFEncode utility recurse subdirectories.

/q

Specifying this optional switch turns off any warning messages usually generated by the utility.
/h

Specifies a custom header to include at the beginning of the encoded file. This is an optional
switch.

/v

This switch allows you to use version-specific encoding. Possible values are 1 and 2. Specifying
1 sets the encoding level at ColdFusion 3.x. Specifying 2 sets the encoding level at ColdFusion

4.0 or later. Unless you are encoding the tag to be used exclusively with ColdFusion 3.x, you
should set this switch to 2.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.8 CFX Tags

As I mentioned in the beginning of the chapter, ColdFusion can be extended through another type of
custom tag called a CFX tag. CFX tags differ from CFML custom tags in a number of ways:

They are created in Visual C++ or Java.

They are compiled (.dll for Visual C++, .class for Java).

They must be registered in the ColdFusion Administrator before they can be used.

They may or may not be cross-platform.

They can extend the capabilities of the ColdFusion Application Server in ways that CFML tags
can't by performing tasks not native to ColdFusion.

They generally execute faster than CFML tags (because they are compiled).

21.8.1 Registering CFX Tags

Before a CFX tag can be used, it must be registered in the ColdFusion Administrator. The following
steps outline the procedure for ColdFusion MX. If you use an earlier version, the actual registration
process and screens may vary slightly. Save the tag to your ColdFusion server. The default directory
for custom tags is \cfusionmx\customtags.

Under the Extensions section of the ColdFusion Administrator, click on the CFX Tags link. This
takes you to the Registered CFX Tags page (shown in Figure 21-7).

1.

Click the button corresponding to the type of CFX tag you wish to register. Choose C++ for tags
written in C++ or choose Java for tags written in Java.

2.

Depending on whether you are registering a C++ CFX tag or a Java CFX tag, follow the
additional steps outlined in the appropriate following section.

3.

Figure 21-7. Registering a CFX tag in the ColdFusion Administrator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.8.1.1 Registering C++ CFX tags

After clicking the Register C++ CFX button on the Registered CFX Tags page, you are taken to
Add/Edit C++ CFX Tag (Figure 21-8). Here you must fill in a few details about your CFX tag before it
can be registered:

Choose a name to register for your CFX tag. The name can be anything you want as long as it
begins with cfx_ and contains only letters, numbers, and underscores.

1.

Enter the location to the CFX tag's .dll file on your server in the Server Library (DLL) field. If
you don't know the location, you can click the Browse button to search through the local
filesystem.

2.

Make sure the Keep Library Loaded checkbox is checked; otherwise ColdFusion has to reload
the tag into memory each time the tag is requested

3.

You may enter an optional description for the tag in the Description field. The description is
viewable only within the ColdFusion Administrator and generally serves as a reminder so you
don't later forget what the tag is used for.

4.

When you have finished adding all the setup information about the tag, click on the Submit
Changes button to complete the registration process and to return to the Registered CFX Tags
page.

5.

Figure 21-8. Registering a C++ CFX Tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.8.1.2 Registering Java CFX tags

If you choose to register a Java CFX tag from the Registered CFX Tags, you do so from the Add/Edit
Java CFX Tag page shown in Figure 21-9. Here's what you need to do to register:

Choose a name to register for your CFX tag. The name can be anything you want as long as it
begins with cfx_ and contains only letters, numbers, and underscores.

1.

In the Class Name field, enter the name of the CFX tag's Java class file. The Class Path for Java
CFX tags is defined in the Java section of the ColdFusion Administrator.

2.

You may enter an optional description for the tag in the Description field. The description is
viewable only within the ColdFusion Administrator and generally serves as a reminder so you
don't later forget what the tag is used for.

3.

When you have finished adding all the setup information about the tag, click on the Submit
Changes button to complete the registration process and to return to the Registered CFX Tags
page.

4.

Figure 21-9. Registering a Java CFX tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.8.2 Calling CFX Tags

Calling a CFX tag is simple and follows the same basic syntax used to call a custom CFML tag:

<cfx_mycustomtag attribute1="value"

 attributen="value">

In this example, the CFX tag is named cfx_mycustomtag (mycustomtag.dll). We differentiate calling
a CFX tag from calling a regular custom tag by prefixing the call with cfx_.

21.8.3 Additional Resources

A thorough discussion on building CFX tags is well beyond the scope of this book. For more
information on how you can create your own CFX tags, see the ColdFusion documentation from
Macromedia.

The Macromedia Developer's Exchange (http://devex.macromedia.com/developer/gallery/) is a good
place to look for preexisting CFX tags. At last count, there were several dozen CFX tags that were
available for download free of charge as well as links to several other commercial tags.

[Team LiB]

http://devex.macromedia.com/developer/gallery/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 22. ColdFusion Components
ColdFusion Components (CFCs) are new in ColdFusion MX. CFCs offer an additional way to
encapsulate code beyond the capabilities provided by includes, user-defined functions, and custom
tags. CFCs give you a framework for leveraging object-oriented principles and techniques to better
organize and reuse your code. CFCs also serve as the primary interface for web services in
ColdFusion MX, as well as for integration between Flash MX and ColdFusion MX via Flash Remoting.

In previous versions of ColdFusion, if you wanted to encapsulate your code, you basically had three
options. You could put your code in a separate file and cfinclude it, you could write it as a UDF, or

you could create a custom tag. Each technique had its advantages and disadvantages, as well as
appropriate usages.

A CFC-based architecture offers several advantages over previous methods for developing ColdFusion
applications. Because CFCs take an object-oriented approach to ColdFusion application development,
they offer a formalized, structured framework for developing application functionality. This not only
tends to make your ColdFusion code easier to read, but it also generally makes your code easier to
maintain.

If you are at all hesitant about object-oriented programming, don't be. A large chunk of what you
need to know to work with CFCs, you already learned back in Chapter 20. In fact, user-defined
functions serve as the basis for creating component methods, as you'll learn shortly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.1 Basic Concepts

Before we continue, I'd like to throw out a few terms from the object-oriented world that you'll see
used throughout the chapter. If you are coming from an object-oriented background, you may notice
that some of these concepts are implemented differently in ColdFusion than they are in other object-
oriented languages, such as Java. Conversely, if you are new to object-oriented programming, you
should be aware that some of the terms here have slightly different meanings or implementations
outside of ColdFusion MX:

Object

The foundation of object-oriented programming is the object. An object is an abstraction that is
essentially a function containing variables and methods. Objects usually model actual entities in
the real world. Using our employee directory as an example, you can model an individual
employee as an object. In ColdFusion MX, we generally refer to objects as component (CFC)
instances.

Class

A class is a template that is used to create a new object (the new object is called an instance).
That is, a class defines the variables and methods for all objects of a certain type. In
ColdFusion MX, classes are implemented as CFCs. Individual objects are defined as instances of
a particular CFC (class). For example, you may have a CFC called employee that contains
variables (instance variables) and methods common to all employees. With an employee class,
it's easy to create individual employee objects.

Component

In ColdFusion, we refer to CFCs as components. In other object-oriented environments,
"component" has a different meaning.

Method

Methods are essentially functions that are part of an object. Methods allow the object to do
something such as query an employee record from a database or move an employee to a
different department. In ColdFusion MX, CFC methods are written exactly like tag-based
UDFs-using the cffunction tag.

Property

Properties are attributes of an object (instance variables). In CFCs, properties are variables you
set in the this (public) scope or the variables/unnamed (private) scope. You can think of
properties as defining a "has a" relationship. For example, an employee object may contain
properties such as name (an employee has a name), title, email address, etc. Don't confuse
this type of property with ColdFusion cfproperty tag. The cfproperty tag is used purely for

declaring component metadata.
Instance

An instance is an object of a particular class. In ColdFusion terms, you get a component
instance when you call a CFC using the cfobject tag or the createObject() function.

Constructor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In object-oriented programming, constructors are pseudo-methods that are used to create an
instance of an object. In Java, constructors are methods with the same name as the class. In
ColdFusion MX, a constructor is any code contained in a CFC that is not part of a method or
property. Constructor code executes in ColdFusion MX each time an instance of the CFC is
created. Because you cannot pass arguments to a CFC's constructor, use of constructors is
fairly limited in ColdFusion. Most people prefer to create an init() method to act as the

default constructor for their CFCs. I'll explain this in greater detail later in the chapter.
Inheritance

Inheritance refers to an object's ability to automatically inherit the variables and methods of its
parent (super or base) class. In ColdFusion MX, this translates to a CFC's ability to inherit all
methods, variables set in the constructor area, and cfproperty metadata tags in another CFC

(and anything that CFC inherits as well), defined as the CFC's parent.
Introspection

Introspection is the ability for a component (or class) to examine itself. In ColdFusion MX,
introspection is supported in several ways. First, both Dreamweaver MX and Flash MX have
component browsers that can be used to introspect CFCs. Additionally, CFML contains a
function called getMetaData() that can be used to return a structure containing all the

properties, methods, arguments, return types, and other metadata for a given CFC.
Design patterns

Design patterns are formalized solutions to recurring problems in object-oriented software
design. CFCs allow you to make use more easily of design patterns in your ColdFusion
applications. Although no books on design patterns for ColdFusion exist (yet), you can typically
apply generalized patterns to ColdFusion development. For more information on design
patterns, I suggest searching for "design patterns" on the Internet, or pick up the book Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (Addison-Wesley), often referred to as the Gang of Four
book.

There are literally dozens of additional object-oriented concepts that I could throw around here, but
for the purposes of getting started with CFCs, the aforementioned terms should get you well on your
way.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.2 Creating Components

Creating a CFC is easy. You simply define the component using the cfcomponent tag and save the file
with a .cfc extension. cfcomponent is a paired tag that acts as a container for the CFC. Within the
component, you can have any number of properties (defined by the cfproperty tag) and methods
(each defined using a pair of cffunction tags). Each method can accept zero or more arguments,
defined with cfargument tags. If a CFC returns any data, it does so with the cfreturn tag.
Essentially, a component is a collection of related UDFs grouped within a cfcomponent container.

Syntactically, a basic CFC looks like this:

<cfcomponent>
 <cfproperty />

 constructor code...

 <cffunction>
 <cfargument>

 CFML
 <cfreturn>
 </cffunction>

 <cffunction>
 <cfargument>

 CFML
 <cfreturn>
 </cffunction>
</cfcomponet>

The cfcomponent tag has four optional attributes:

displayname=" display_name"

Used to display a descriptive name for the component in ColdFusion MX's Component Browser
or when the component is introspected using the getMetaData() function. These concepts are

discussed later in the chapter.
hint=" text"

Used to display a hint describing what the component does in ColdFusion MX's Component
Browser or when the component is introspected using the getMetaData() function.

extends=" component_name"

Name of a parent component from which the component should inherit methods and
properties.

output="yes|no"

Indicates whether the component's constructor code (any area within the cfcomponent
container that is outside a cffunction container) allows output. If yes, expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(surrounded with pound signs) are automatically evaluated without the need for cfoutput tags
within component methods, and the method is permitted to display output. If no, ColdFusion

suppresses any output within the constructor. If output is not specified, ColdFusion allows
output within the constructor, but all expressions must be within cfoutput tags.

Besides the named attributes listed for the cfcomponent tag, you can pass any additional desired

attributes to the tag as user-defined attributes. Although these attributes don't do anything, they are
available as metadata when the component is introspected using the getMetaData() function. The
getMetaData() function returns a structure containing key/value pairs for all the attributes in the
cfcomponent tag. getMetaData() is discussed in the section on introspection. You may use any
attribute names you wish with the exception of those reserved by cfcomponent: name, displayname,
hint, output, path, properties, and functions.

Example 22-1 shows a simple CFC (employee.cfc) that accepts a numeric ID as an argument and
returns the employee record for that ID from a database table.

Example 22-1. A simple employee CFC

<cfcomponent displayname="Employee" hint="I'm for working with employees">
 <cffunction name="getEmployee" returnType="any" output="no" access="public">
 <cfargument name="id" type="numeric" required="true">

 <cfquery name="selectEmployee" datasource="programmingCF">
 SELECT *
 FROM employeeDirectory
 WHERE ID=#arguments.id#
 </cfquery>

 <cfreturn selectEmployee>
 </cffunction>
</cfcomponent>

22.2.1 Adding Metadata to Components

Although cfproperty is designed for use with web services authoring (see Chapter 24), it can also be
used to expose additional metadata about a CFC. cfproperty tags must be positioned as the first
code in a cfcomponent container. If they are not, ColdFusion throws an exception. Any metadata
defined by the cfproperty tag is stored as an array of structures in the properties key of the
structure returned by the getMetaData() function for a given component. The cfproperty tag has

one required attribute and three optional ones:

name=" property_name"

The name of the property. name must be a static value and is required.

displayname=" display_name"

Used to display a descriptive name for the property in ColdFusion MX's Component Browser or
when the component is introspected using the getMetaData() function.

hint=" text"

Used to display a hint describing what the property is for in ColdFusion MX's Component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browser or when the component is introspected using the getMetaData() function.

type=" data_type"

Type of property. Valid options are Any, Array, Binary, Boolean, Date, GUID, Numeric, Query,

String, Struct, UUID, VariableName, and ComponentName. The default is Any. For information
on how GUID differs from UUID, see the createUUID() function in Appendix B.

Besides the named attributes listed here, you can pass any additional desired attributes to the
cfproperty tag as user-defined attributes. They are then available as metadata when the
component is introspected using the getMetaData() function. You may use any attribute names
you wish with the exception of those reserved by cfproperty: name, displayname, hint, and type.

A typical use for the cfproperty tag is to include metadata for variables you set in the constructor
code. Any CFML code outside a cffunction container is considered part of the constructor code and

is automatically executed when the component is instantiated. Any variables set in the local
(variables) scope or the this scope are automatically available to all methods in the component (we'll
discuss scope shortly). For example, if you set a variables-scoped variable to hold your DSN, you
could also set a cfproperty tag for it, as shown in Example 22-2.

Example 22-2. Using cfproperty to store variable metadata

<cfcomponent displayname="Employee" hint=" I'm for working with employees">
 <cfproperty name="dsn" type="string">
 <cfset variables.dsn="programmingCF">

 <cffunction name="getEmployee" returnType="any" output="no" access="public">
 <cfargument name="id" type="numeric" required="true">

 <cfquery name="selectEmployee" datasource="#variables.dsn#">
 SELECT *
 FROM employeeDirectory
 WHERE ID=#arguments.id#
 </cfquery>

 <cfreturn selectEmployee>
 </cffunction>
</cfcomponent>

Without the cfproperty tag, variables.dsn (and any other variables set in the constructor)

wouldn't be visible if you introspected the CFC. We'll talk more about introspection later in the
chapter.

22.2.2 Component Methods

Component methods are defined using the cffunction tag. cffunction is another container tag that

you should be familiar with, as it's the same tag used to create user-defined functions. Optionally,
one or more cfargument tags can be used to define both required and optional arguments the
method should expect as input. If desired, data can be returned from the method using the cfreturn

tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The cffunction tag pair acts as a container for the method. The cffunction tag takes one required

and several optional attributes:

name=" Name"

Name for the method (required). Method names follow the same naming rules as ColdFusion
variables. They must begin with a letter, underscore, or Unicode currency symbol ($) and can

contain only letters, numbers, underscores, and Unicode currency symbols. Compound variable
names such as My.Method are not allowed. Method names also may not begin with CF, CF_,
ColdFusion, or ColdFusion_. Additionally, you may not give a method the same name as a

built-in ColdFusion function.
displayname=" display_name"

Used to display a descriptive name for the method in ColdFusion MX's Component Browser or in
the structure returned by the getMetaData() function.

hint=" text"

Used to display a hint describing the method's purpose. The hint is displayed in ColdFusion MX's
Component Browser or in the structure returned by the getMetaData() function.

returntype=" return_type"

The datatype for the data returned by the method. Options are any, array, binary, boolean,
date, GUID, numeric, query, string, struct, UUID, variableName, void (doesn't return a

value), and componentName (for a custom return type). Required when component method is

callable as a web service; optional otherwise.
roles=" roles"

Comma-delimited list of roles defined in the ColdFusion security framework that is authorized
to invoke the component method. If roles is not specified, the method is accessible by anyone.

Roles are discussed later in the section on security.
access="private|package|public|remote"

Specifies the context within which the component method can be accessed. The default is
public. Options are:

private

Method is available only to the component that declares it.
package

Method is available to the component that declares it as well as to any other component
in the same package (directory). We'll cover component packages later in the chapter.

public

Method is available to a locally executing page or other component on the server.
remote

Method is available to locally executing pages, to other components on the server, via
URL invocation, via form post invocation, Flash Remoting, or as a web service. This
access type is required to publish the method as a web service.

output="yes|no"

If yes, contents of the method body are processed as if surrounded by cfoutput tags. If no,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the method body is processed as if surrounded by cfsilent tags. If output is omitted,

contents of the method body are processed as regular CFML.

In addition to the attributes just listed, you may use any user-defined attribute names you wish with
the exception of those reserved by cffunction: name, displayname, hint, returntype, roles,
access, output, and arguments. User-defined attribute names are used for metadata purposes and
are available when using the Component Browser or the getMetaData() function.

22.2.2.1 Method arguments

Methods can be written to accept zero or more required arguments and any number of optional
arguments. You should give each argument a name and explicitly declare it in the method body using
a cfargument tag, just as you would do for a UDF. cfargument has several attributes. name is the
only required attribute, used to specify the name for the argument. type is an optional attribute for
specifying the argument's type; valid options are Any, Array, Binary, Boolean, Date, GUID,

Numeric, Query, String, Struct, UUID, VariableName, and ComponentName (a valid CFC name). The
default is Any. (For information on how GUID differs from UUID, see the CreateUUID() function in

Appendix B.) You can indicate whether the argument should be required or optional using the
required attribute. The default is no. If you do decide to make an argument optional, you can supply

a default value to assign to the argument in the event no argument is passed to the method when it
is called.

Although it's good practice, it isn't required to declare your method arguments explicitly with the
cfargument tag. The cfargument tag, if used, must be the first tag to appear after the cffunction

tag. Argument names follow the same naming conventions as the function and argument names in
UDFs. Like the cfcomponent tag, the cfargument tag also has displayname and hint attributes.

Additionally, the same rules as those for adding additional user-defined metadata attributes apply.

22.2.2.2 Returning data from methods

Data is returned from a component method using the cfreturn tag. Just as with UDFs, the cfreturn

tag is optional. You aren't required to return any data from a component method if you don't want to.
However, if you choose not to return data from a method, you should set the returntype attribute of
your cffunction tag to void. If you do choose to return data from your component method, the

same rules that apply to UDFs apply to component methods.

22.2.2.3 Method includes

We all know that large files full of code can be come unwieldy, both to read and to manage.
Fortunately, CFCs let you include the code that makes up a method body. This allows you to define
your CFC as a skeleton while storing each component method as a separate CFML file that can be
included in the appropriate component method body. To include a component method within a CFC,
use code like that shown in Example 22-3.

Example 22-3. Including component methods

<cfcomponent displayname="Employee" hint=" I'm for working with employees">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfproperty name="dsn" type="string">
 <cfset variables.dsn="programmingCF">

 <cffunction name="getEmployee" returnType="any" output="no" access="public">
 <cfinclude template="_methodGetEmployee">
 </cffunction>
</cfcomponent>

The actual method code would look like this (save it as _methodGetEmployee):

<cfargument name="id" type="numeric" required="true">

<cfquery name="selectEmployee" datasource="#variables.dsn#">
 SELECT *
 FROM employeeDirectory
 WHERE ID=#arguments.id#
</cfquery>

<cfreturn selectEmployee>

22.2.3 Variable Scope in CFCs

All ColdFusion variable scopes can be used within a CFC. Within a component, however, the behavior
of various variable scopes may be different than you would expect. To avoid any potential confusion,
here's a breakdown of how various variable scopes interact with the page that called them when they
are used inside a CFC:

Application, CGI, Client, Cookie, Flash, Form, Request, Server, Session, URL

Any variables placed in these scopes inside the component are automatically available to the
calling page and any pages included by the CFC.

Arguments

Variables in the arguments scope are only available within the component method they are
passed to, as well as any pages included by that method. Variables in the arguments scope can
be accessed either as a structure (arguments.myVar) or as an array (arguments[1]).

Variables in the arguments scope do not last between method calls.
Local

Variables in the local scope are created using the var keyword (just like in UDFs) and are

available only to the method in which they are defined and any pages included by that method.
Additionally, local variables do not last beyond the life of the method call. The local variable
scope differs from other variable scopes in that there is no scope prefix used for the variable.
Note that if you do not define the variable with the var keyword, the variable exists in the

variables scope, not the local scope.
Super

The super scope is unique to CFCs that use inheritance via the extends attribute of the
cfcomponent tag. Super is not actually used to scope variables. Instead, it is used to scope a

component method. The super scope contains all the methods that the current component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

extends. This is useful in situations where a component and the component it extends have
like-named methods. In a situation such as this, super lets you reference a method in the
parent object as opposed to the like-named method in the child object that you called.

This

The this scope is also unique to CFCs and is functionally equivalent to the this scope in
JavaScript and ActionScript.[1] Variables in the this scope are available to the constructor code,
all methods within a CFC, any pages they include, and the page that calls the CFC. Within a
CFC you refer to variables in the this scope using the this prefix: this.varName. Outside the

CFC, you use the component name to reference variables in the this scope:
myComponent.varName. Note that this applies only when the CFC is instantiated as an object
via the cfobject tag or createObject() function, not when a component method is invoked
using the cfinvoke tag, without the CFC being instantiated separately.

[1] Because ColdFusion is built on top of Java, it is often assumed that the this scope is modeled after
Java's this scope, which is not actually the case.

Variables

Variables in the variables scope are available only within the CFC. They are available to the
constructor code, and to all component methods and any pages they include. They may be
prefixed with the variables prefix or left unscoped (often called the unnamed scope).

Variables in the variables scope that are set within the calling page are not automatically
available within the component's variables scope. Additionally, variables in the variables scope
exist as long as the component object exists. This allows them to persist between method calls.

22.2.4 Saving Components

CFCs differ from other CFML files in that you save them with a .cfc extension instead of the standard
.cfm extension. Other than that, they share the same naming conventions as CFML files. Once you've
created a component, you need to decide where to store it on your ColdFusion server. You have
several choices:

You can save the CFC in your web root directory or any directory below that.

You can save the CFC in a directory above your web root directory, provided you create a
mapping for the directory in the ColdFusion Administrator.

You can save the CFC in the default custom tags directory (c:\cfusionmx\customtags by default)
or any of its subdirectories, or in any custom tag directory defined in the ColdFusion
Administrator.

You can save the CFC in \WEB-INF or any subdirectory of the \WEB-INF directory
(c:\cfusionmx\wwwroot\WEB-INF by default).

The location you choose to store your CFC may have an effect on how it can be called. CFCs stored in
the same directory are part of a special grouping called a package. We'll talk more about packages in
the section on using components.

Depending on where you store your CFC, you may or may not have to include the path when you
instantiate it or invoke a method on it. Options for calling CFCs are covered later in the chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.3 Using Components

Now that you understand how to create a basic component, let's discuss how to use them in your
applications. Typically, you create an instance of a component and then call a method on it, passing
data in the form of arguments. The component does something based on the arguments passed and
may return data to the calling page. That's component interaction in a nutshell. You have quite a bit
of choice, however, in how you make it all work. There are seven basic ways in which you can call a
component. These include the following:

cfinvoke tag

Instantiates a CFC and/or invokes a method on an instantiated CFC.
cfobject tag

Instantiates a CFC. Properties must be explicitly set, and methods explicitly called.
createObject() function

Instantiates an object via cfset, cfparam, or cfscript. Properties must be explicitly set, and

methods explicitly called.
URL

Invokes a component method directly via an HTTP GET. The CFC filename is specified in the
URL along with the method name as a URL parameter.

Form post

The Action attribute of an HTML form or cfform tag posts directly to a CFC. The method to

call must be specified by a form field.
Web service

CFCs can be consumed as web services. For more information, see Chapter 24.
Flash Remoting

Flash MX animations can call ColdFusion components via Flash Remoting. For more
information, see Chapter 28.

22.3.1 Using cfinvoke

In an effort to make working with CFCs and methods as simple as possible, let's break each of these
techniques down. Example 22-4 shows a simple CFC called employee (save it as employee.cfc) that
we'll use to demonstrate the various ways to instantiate and call methods on a CFC. employee
contains three methods: getDepartments(), getEmployees(), and getEmployee().

Example 22-4. Simple employee CFC with three methods

<cfcomponent>
 <cffunction name="getDepartments" access="remote" returntype="query">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfquery name="qryDepartments" datasource="programmingcf">
 select distinct(department)
 from employeeDirectory
 </cfquery>

 <cfreturn qryDepartments>
 </cffunction>

 <cffunction name="getEmployees" access="remote" returntype="query">
 <cfquery name="getEmployees" datasource="programmingcf">
 select ID,Name
 from employeeDirectory
 </cfquery>

 <cfreturn getEmployees>
 </cffunction>

 <cffunction name="getEmployee" access="remote" returntype="query" output="no">
 <cfargument name="id" type="numeric" required="yes">
 <cfquery name="getEmployee" datasource="programmingcf">
 select *
 from employeeDirectory
 where id = #id#
 </cfquery>

 <cfreturn getEmployee>
 </cffunction>
</cfcomponent>

Here's one way to call the getDepartments() method of the employee CFC using the cfinvoke tag:

<cfinvoke component="employee"
 method="getDepartments"
 returnvariable="myDepts" />

<cfdump var="# myDepts #">

The component attribute is required and specifies the name of the component to instantiate or invoke

a method on. If the component exists in the same directory as the page invoking it, you need only
specify the component name (without the .cfc extension). If the component resides in a different
location, you'll need to use dot notation to reference the location relative to the web root or a
ColdFusion mapping. This is known as package notation. In the Java world, it's typical to create
packages for storing your class files. For example, for the example.com company we've been using
throughout the book, you might create a package off the web root called com.example

(webroot\com\example). In the \example subdirectory, you would categorize your CFCs according to
functionality. For example, you might have a subdirectory called \utils for utility CFCs, \news for
news-related CFCs, etc. To refer to CFCs in a package, you use dot notation in the component
attribute, such as com.example.utils.employee to refer to the employee CFC.

The method attribute is also required and specifies the CFC method we want to invoke. In this case,
it's the getDepartments() method. The returnvariable attribute is optional. It specifies a variable

name to hold the results of the method call to the CFC invocation. In our example, we assign the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

results of the call to getDepartments() to a variable called myDepts.

You can pass arguments to a CFC method using the argumentcollection attribute or the
cfinvokeargument tag, or as an attribute of the cfinvoke tag. If more than one passed argument

has the same name, ColdFusion uses the aforementioned order of precedence. Here's an example
that passes an argument called id as part of the cfinvoke tag:

<cfinvoke component="employee"
 method="getEmployee"
 id="1"
 returnvariable="myEmployee" />

<cfdump var="#myEmployee#">

That same id argument could just as easily be passed using the cfinvokeargument tag, which is a
child tag of cfinvoke:

<cfinvoke component="employee"
 method="getEmployee"

 returnvariable="myEmployee">
 <cfinvokeargument name="id" value="1">
</cfinvoke>

<cfdump var="#myEmployee#">

Using argumentcollection is a little different from the techniques we've just seen. It allows you to

aggregate several arguments to pass as a single ColdFusion structure. Each name/value pair in the
structure is considered a single argument. If your CFC method expects two arguments- name and
title, respectively-you can pass them using argumentcollection like this:

<cfset args = structNew()>
<cfset args.name="Pere Money">
<cfset args.title = "President">

<cfinvoke component="employee"
 method="setEmployee"
 argumentcollection="#args#" />

Or like this:

<cfset args = structNew()>
<cfset args.name="Pere Money">
<cfset args.title = "President">

<cfset myObj = createObject("component", "employee")>
<cfset myObj.setEmployee(argumentcollection=args>

22.3.2 Using cfobject and createObject()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Besides the cfinvoke tag, you can also create instances of CFCs using the cfobject tag or the
createObject() function. This gives you tremendous flexibility in how you integrate CFCs into your
ColdFusion applications. To create an instance of the employee CFC using the cfobject tag, your

code would look like this:

<!--- Create an instance of the employee component --->
<cfobject name="myObj" component="employee">

<!--- Call the getEmployee() method on the instance --->
<cfset myEmployee = myObj.getEmployee(1)>

<cfdump var="#myEmployee#">

Here, the cfobject tag creates an instance of the employee component. The component attribute
specifies the name of the component to instantiate. The name attribute specifies the name of a

variable to store the instance of the component. Methods of the component are invoked using dot
notation. In our example, we call the getEmployee() method, passing in a value for id (the
argument the method expects). The results of the getEmployee() operation are assigned to
myEmployee.

If you are using CFScript, you can call a CFC using the createObject() function:

<cfscript>
 myObj = createObject("component", "employee");
 myEmployee = myObj.getEmployee(1);
</cfscript>

<cfdump var="#myEmployee#">

The first parameter of the createObject() function tells ColdFusion to create an instance of a

component. The second parameter specifies the location of the CFC. The instance of the CFC is
assigned to a variable called myObj. Dot notation is used to invoke the getEmployee() method of
the component. Arguments are passed the same way as with the cfobject tag.

It's also possible to combine cfobject/createObject() with the cfinvoke tag. This is sometimes

done when you need to invoke multiple methods on a component but only want to instantiate it once.
Here's an example that creates an instance of the employee CFC and invokes two methods:

<cfset myObj = createObject("component", "employee")>

<cfinvoke component="#myObj#"
 method="getEmployees"
 returnvariable="myEmployees" />

<cfloop query="myEmployees">
 <cfinvoke component="#myObj#"
 method="getEmployee"
 id="#myEmployees.id#"
 returnvariable="myEmployee" />
 <cfoutput>
 #myEmployee.Name#: #myEmployee.Title#

 </cfoutput>
</cfloop>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.3.3 Calling a CFC Method Via URL

It's also possible to invoke a CFC method directly from a browser (or other HTTP GET-style
operation). To do this, you must set the access attribute of the CFC method you want to invoke to
remote. For example, let's add a new method to employee.cfc called dumpEmployee():

<cffunction name="dumpEmployee" access="remote" output="yes" returntype="void">
 <cfargument name="id" type="numeric" required="no" default="0">
 <cfdump var="#getEmployee(arguments.id)#">
</cffunction>

This code dumps a call to the getEmployees() method within the employee CFC. Within a CFC,

methods can call other methods by referencing them as if they were functions (which, of course, they
are).

To call the dumpEmployee() method on the employee CFC from your browser, enter this URL:

http://localhost/programmingcf/22/employee.cfc?method=dumpemployee

You shouldn't see much more than an empty cfdump since the method expects an id, and if it
doesn't get one, it defaults to 0 (no record has id equal to 0).

You can pass arguments to the dumpEmployee() method in the URL string as URL parameters. For
example, you can pass the id argument expected by the method in the URL like this:

http://localhost/programmingcf/22/employee.cfc?method=dumpemployee&id=1

If you paste the URL into your browser, you should see output like that shown in Figure 22-1.

Figure 22-1. Calling a CFC method from a URL

22.3.4 Calling a CFC Method Via Form Post

In addition to the techniques we've discussed so far, it's also possible to invoke component methods
via form post (HTTP POST). To post from a form to a component method, you specify the URL to the
CFC in the action attribute of the form tag. You'll also need to post a form field called method to

specify which method you want your form post to invoke. This is typically done by specifying the

http://localhost/programmingcf/22/employee.cfc?method=dumpemployee
http://localhost/programmingcf/22/employee.cfc?method=dumpemployee&id=1
http://lib.ommolketab.ir
http://lib.ommolketab.ir

method as a hidden form-field value. Any additional form-field variables posted to the CFC method
are treated as arguments.

On the ColdFusion side, the CFC method accepting the form post invocation must have the access
attribute of its cffunction tag set to remote. We can use the same dumpEmployee() method we

created in the last section to demonstrate invoking a component method via form post. All we need
now is a simple HTML form that posts to our employee CFC:

<h2>Get Employee Record</h2>
<form action="employee.cfc" method="post">
 <input type="hidden" name="method" value="dumpemployee">
 ID: <input type="text" name="id" maxlength="2">
 <input type="submit">
</form>

If you save the form and open it in your browser, you'll see a screen that looks like the one shown in
Figure 22-2.

Figure 22-2. Form for posting to a CFC method

Entering a numeric value (from 1 to 20) and clicking Submit generates output similar to that from
Figure 22-1.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.4 Advanced CFC Topics

I mentioned several advanced CFC topics briefly earlier in this chapter. These topics included introspection,
inheritance, CFC security, and assigning component instances to shared variable scopes. This section
presents a more detailed exploration of each of these topics.

22.4.1 Introspection

One of the coolest features of CFCs is that they are self-documenting. All of the various tag attributes we
discussed throughout the chapter, along with any user-defined attributes, are available as component
metadata. This metadata exists as a ColdFusion structure that can be used for all sorts of purposes.
ColdFusion MX comes with a tool called the CFC Explorer that you can use to introspect any CFC on your
ColdFusion server. To use the CFC Explorer, simply fire up a browser and enter the URL to the CFC you
want to introspect. You should be presented with the CFC Explorer login screen shown in Figure 22-3 .

Figure 22-3. ColdFusion Administrator RDS password prompt for accessing
the CFC Explorer

You'll need to enter the RDS password for the server to use the CFC browser Once you've entered a valid
RDS password, ColdFusion MX allows you to proceed to the CFC Explorer. The CFC Explorer displays a nicely
formatted screen containing the component's metadata, including the component's name, path on the
server, properties, and methods. A sample CFC Explorer screen is shown in Figure 22-4 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 22-4. Introspecting a CFC with the CFC Explorer

If your ColdFusion server is used by multiple people, chances are you may not want to give everyone the
RDS password for the server. The CFC Explorer and Component Browser both require this password to
operate, which may put you in a bind, but fortunately there is a workaround. Simply replace the
Application.cfm file located in (by default) c:\cfusionmx\wwwroot\CFIDE\componentutils with your own
Application.cfm file that contains customized authentication routines, and you'll be all set. Unfortunately you
can't just modify the default Appliction.cfm file because it's encrypted. If this isn't a viable option (if you are
in a shared hosting environment, for example), you may want to look into a tool called the
CFCRemoteDocumenter, by Nathan Dintenfass. The CFCRemoteDocumenter is a CFML file you can include
in your CFCs. It contains several methods for generating a nicely formatted page containing everything you
ever wanted to know about a CFC. In fact, you might find it even more useful than the CFC Explorer that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

comes with ColdFusion MX. You can download a copy of the CFCRemoteDocumenter, along with
documentation and examples, from Nathan's web site at
http://www.changemedia.org/cfcremotedocumenter/ .

You can use another tool included with ColdFusion MX called the Component Browser to list all packages and
CFCs hosted on your server. To launch the Component Browser, open your web browser and point it to the
following URL:

http://localhost/CFIDE/componentutils/componentdoc.cfm

As with the CFC Explorer, you'll be presented with a login screen where you'll need to enter the RDS
password for your ColdFusion MX server before being able to proceed. Once your RDS server has been
validated, you'll be presented with the Component Browser, shown in Figure 22-5 .

Figure 22-5. Introspecting a CFC with the ColdFusion Component Browser

Clicking on a package name in the upper left-hand frame displays a list of all CFCs in that package in the
lower left-hand frame. If you click on a component name, the CFC Explorer view of that component is
displayed in the main frame.

Component metadata can also be introspected programmatically using the getMetaData() function. When
used within a CFML page, getMetaData() returns metadata such as properties, methods, and parameters
for the specified ColdFusion Component (CFC). When used within a CFC, pass GetMetaData() the this

scope and it returns all the metadata for the component. Metadata is returned as a structure containing
various key/value pairs depending on the contents of the CFC. Values within the metadata structure may
contain additional datatypes.

http://www.changemedia.org/cfcremotedocumenter/
http://localhost/CFIDE/componentutils/componentdoc.cfm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The best way to understand what metadata is available for a particular object is to retrieve the metadata
for it and output the results to your browser with cfdump . Here's a piece of code that does just that for the

CFC Explorer component that ships with ColdFusion MX:

<cfscript>
 myObj = createObject("component", "cfide.componentutils.cfcexplorer");
 metadata = getMetaData(myObj);
</cfscript>

<h2>Metadata for the CFC Explorer</h2>
<cfdump var="#metadata#">

Running the example produces output similar to that in Figure 22-6 .

Figure 22-6. Using getMetaData() to introspect a CFC

If you are a Dreamweaver MX or Flash MX user, you can introspect CFCs from a version of the Component
Browser included with those tools. For Dreamweaver MX, follow these steps:

Expand the Applications panel and choose the Components tab.1.

If you have not already defined a site, do so now (for more information on creating a new site, see the
Dreamweaver documentation).

2.

Choose CF Components from the list box in the Components tab.

You should see a tree view of all component packages (directories containing components) on the site

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you defined (Figure 22-7).

3.

Click on the plus sign next to a package name to list all of the components for that package.4.

To view the properties and methods for a specific component, click on the plus sign next to it.

You can view the arguments for a method, or individual properties by clicking the plus sign next to the
method name or properties label.

To view the details for any property, method, or argument, highlight the item and click the Get Details
icon (looks like a page) under the Components tab heading.

You can drag method names from the tree view and drop them in the document window.
Dreamweaver MX automatically generates the necessary CFML code to invoke the method of the
component and includes code for any related arguments.

5.

Figure 22-7. The Dreamweaver MX Component Browser

For information on using the Component Browser in Flash MX, see Chapter 28 .

22.4.2 Inheritance

Earlier, I defined inheritance as it relates to CFCs as the ability for one component to inherit the properties
and methods of another component. Inheritance is useful in situations where you have an object that
contains properties or methods that are useful to other objects. Inheritance is often said to create an "is a"
relationship between objects. For example, an employee CFC could inherit from a person CFC. This meets
the "is a" test: an employee "is a" type of person.

CFCs support inheritance via the extends attribute of the cfcomponent tag. When one CFC extends

another, it automatically inherits all the other CFC's variables (in the constructor), properties, and methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(and the variables, properties, and methods of any CFCs it extends). If you have a property, metadata
cfproperty tag, or method in the CFC doing the extending, it automatically overrides any like-named
properties, metadata cfproperty tags, and methods in the inherited CFC(s). This is known as method
overriding.[2] To avoid confusion, think of it like this: when a component (call it subclass) extends another
component (call it baseclass), the code for subclass looks like this:

[2] Although ColdFusion MX supports method overriding, it does not support method overloading (having a CFC with
more than one method with the same name).

<cfcomponent extends="baseclass">
...
</cfcomponent>

Any variables, methods, and properties in baseclass are inherited by subclass . If both components

contain a variable, method, or property with the same name, the value in the component doing the
extending (subclass) takes precedence.

How can you use inheritance? One way is to create a base class to be inherited by all the CFCs you write for
a particular application (or group of applications on a server). The base class you create can do a number of
things, such as set default properties like a data source or working directory for your CFCs. The base class
can also be used to define debug or error-handling methods for all CFCs that inherit the base class. Example
22-5 shows an example base class that sets a DSN in the constructor and provides a few different debug
methods that can be inherited.

Example 22-5. baseClass.cfc containing inheritable properties and methods

<cfcomponent displayName="baseClass"
 hint="I'm the base class all other classes in my app should inherit">

 <cfproperty name="dsn" type="string">
 <cfset variables.dsn = "programmingCF">

 <cffunction name="dumpThis"
 access="public"
 hint="Dumps the this scope"
 output="true">
 <cfdump var="#this#" label="This Scope">
 </cffunction>
</cfcomponent>

To use baseClass.cfc , you need another CFC that can inherit its properties, methods, and metadata
cfproperty tags. Example 22-6 shows just such a CFC. It's yet another incarnation of the employee CFC

we've used throughout the chapter.

Example 22-6. Inheriting a CFC

<cfcomponent extends="baseclass"
 displayname="Employee"
 hint="I'm for working with employees">
 <cffunction name="getEmployee" returnType="any" output="no" access="public">
 <cfargument name="id" type="numeric" required="true">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfquery name="selectEmployee" datasource="#variables.dsn#">
 SELECT *
 FROM employeeDirectory
 WHERE ID=#arguments.id#
 </cfquery>

 <cfreturn selectEmployee>
 </cffunction>
</cfcomponent>

If you look at the code in Example 22-6 , you'll notice that the datasource attribute is set to
variables.dsn . That value isn't set in our employee.cfc . It's inherited from baseclass.cfc . To see how we
can make use of the dumpThis() method in the inherited baseClass CFC, consider the code in Example

22-7 .

Example 22-7. Dumping the this scope by calling an inherited debug method

<cfset myObj = createObject("component", "employee")>
<!--- dump the this scope --->
<cfset myObj.dumpThis()>

In this example, we create an instance of the employee CFC from Example 22-6 . Because employee.cfc
extends baseclass.cfc , it automatically has access to all of its methods. We use the dumpThis() method to

dump the this scope, a useful debugging tool.

When you extend an object, you may want to reference an overridden method in the parent class. As of
ColdFusion MX 6.1, it's possible to do this using the super scope. Although not a true variable scope, the
super scope contains all of a parent object's methods available when it is extended. Say you have a CFC
called subclass that extends another CFC called baseclass , and both have a method called getEmployee(
) . You can reference the getEmployee() method in the parent object (baseclass) by prefixing it with
super when calling it from the subclass CFC. To illustrate this, consider the following baseClass CFC (save

it as baseClass.cfc):

<cfcomponent displayName="baseClass">
 <cffunction name="getEmployee">
 <cfreturn "I'm in the base class">
 </cffunction>
</cfcomponent>

The baseClass.cfc simply returns the string "I'm in the base class" when called. It is extended by
subClass.cfc as follows:

<cfcomponent extends="baseclass">
 <cffunction name="getEmployee">
 <cfreturn "I'm in the subclass">
 </cffunction>

 <cffunction name="getTheEmployee">
 <cfreturn super.getEmployee()>
 </cffunction>
</cfcomponent>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The subClass CFC has two methods, getEmployee() and getTheEmployee() . If the cfreturn
statement returned getEmployee() instead of super.getEmployee() , the method would return "I'm in
the subclass" when called. However, by specifying super.getEmployee in the cfreturn tag, the CFC calls
the method in the baseClass CFC (its parent CFC). This results in the CFC returning "I'm in the base class".

To test this, save the following code as callSuper.cfm and launch it from your browser:

<cfset myObj = createObject("component", "subclass")>
<cfset myEmp = myObj.getTheEmployee()>

<cfoutput>
#myEmp#
</cfoutput>

22.4.2.1 Global component inheritance with component.cfc

There may be cases where it would be useful to have one or more methods available to all of the
components on your server. Ideas that come to mind are debugging methods, server-wide settings, etc. As
of ColdFusion MX 6.1, you can modify a special component called component.cfc that all components on the
server automatically extend. Out of the box, the component.cfc file can be found in the \WEB-INF\cftags
directory and is completely empty. Any methods or properties you place in the file are automatically
available to every CFC on your server.

22.4.3 Component Security

ColdFusion supports component security in two ways, at the web-server level and using ColdFusion's built-in
security framework.

22.4.3.1 Securing access using HTTP Basic Authentication

At the web-server level, you can protect a web service using HTTP Basic Authentication. This is done by
restricting access to the directory containing the CFC you want to expose as a web service. For more
information on using HTTP Basic Authentication, see Chapter 8 and the documentation for your particular
web server.

For CFCs that restrict access based on HTTP Basic Authentication, you can provide a username and
password to pass along with the call to the component in the cfinvoke tag:

<cfinvoke component="addressLookup"
 returnvariable="myAddress"

 username="username"

 password="password">
 <cfinvokeargument name="userID" value="pmoney">
</cfinvoke>

The username and password values are Base64-encoded and passed as username : password in the

authorization header to the target server.

22.4.3.2 Securing access using ColdFusion's built-in security framework

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can control access to your CFC methods at a much more granular level using ColdFusion MX's built-in
security framework. This framework allows you to control access based on assigned roles at the invocation
level.

Example 22-8 shows the code for a secure CFC method. The method can be invoked only by clients with an
"Administrator" role.

Example 22-8. A secure CFC method

<cfcomponent>
 <cffunction name="returnStr" access="remote" returntype="string"
 roles="Administrator" output="false">

 <cfreturn "You have gained access">
 </cffunction>
</cfcomponent>

The framework for authenticating clients is the same one we discussed in Chapter 8 . Using an
Application.cfm file, we can leverage ColdFusion MX's security framework and HTTP Basic Authentication to
provide a means to authenticate clients before allowing them to access a CFC method. Example 22-9 shows
one way to do this.

Example 22-9. Authenticating a client for access to a CFC method

<cfapplication name="MySecureCFC">

<cflogin idletimeout="600">
 <cfif not isdefined("cflogin")>
 <cfheader statuscode="401">
 <cfheader name="WWW-Authenticate" value="Basic realm=""MyCFC""">
 You are noy authorized to access the CFC method.
 <cfabort>
 <cfelse>
 <cfquery name="validateUser" datasource="programmingcf">
 SELECT Roles, Salt, Password
 FROM Users
 WHERE Username = <cfqueryparam value="#cflogin.name#"
 cfsqltype="CF_SQL_VARCHAR"
 maxlength="255">
 </cfquery>

 <cfif (validateUser.recordCount eq 1) and
 (validateUser.password is hash(validateUser.salt & cflogin.password))>
 <cfset userRoles = valueList(validateUser.roles)>
 <cfloginuser name="#cflogin.name#" password="#cflogin.Password#"
 roles="#userRoles#">
 <cfelse>
 <cfheader statuscode="401">
 <cfheader name="WWW-Authenticate"
 value="Basic realm=""MyCFC""">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 You are noy authorized to access the CFC component.
 <cfabort>
 </cfif>
 </cfif>
</cflogin>

When a CFC method is called, a check is made to see whether there is an Application.cfm file that should be
run first, just as there is when a CFML file is called from the browser. This lets you use the same
mechanisms you are already familiar with to build a security framework for your CFC-based applications.
When our Application.cfm file is called, a number of things happen.

First, a check is made to see whether the cflogin structure exists. If not, an HTTP 401 status code is sent
back to the client, telling them they are not authorized to access the web service. If the cflogin structure

does exist, we know that the call to the CFC method also included an authorization header containing (we
hope) a username and password. Those values are automatically available inside the cflogin structure as
cflogin.name and cflogin.password . A query is made to see whether the username exists in the Users
table of our example database. If so, the salt value associated with the cflogin.name (from the database
query) is concatenated with password provided by cflogin.password . The resulting string is hashed and

then compared to the hashed value stored in the database. If a record was found for the username, and the
salted, hashed password matches the value stored in the database, we consider this a valid login. The
cflogin tag is then used to log the user in and assign her roles from the database. In this example, when

we look up the username "pmoney," we find she is assigned the roles "Administrator, User."

The code for invoking the secure CFC method is shown in Example 22-10 .

Example 22-10. Invoking a secure CFC method

<cfinvoke method="returnStr"
 returnvariable="retVal"
 component="ProgrammingCF.22.secure.secure.cfc "
 username="pmoney"
 password="cat">
</cfinvoke>

<cfoutput>
#retVal#
</cfoutput>

If you run this code, you should see a message in your browser that reads "You have gained access." If you
wait 30 minutes (the time specified in the idletimeout attribute of the cflogin tag) and change the

username or password to a different value, you should be able to generate an authentication error if you
attempt to call the web service as an unauthorized user.

22.4.4 Assigning Component Instances to Shared Variable Scopes

Earlier in the chapter, I mentioned that it's possible to assign a component to a shared variable scope. While
you may never need to do this, there are several scenarios in which it is highly desirable. For example, if
you model an entire application using CFCs, it makes sense that you would want to avoid the overhead of
instantiating the various CFCs as a user navigated through the application. Likewise, if you built a multiuser
blogging application, you would most likely want an instance of the blog CFC for each user. In both these
cases, it makes sense to store instances of your CFCs in a shared scope. In ColdFusion MX, it's possible to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assign CFC instances to the server, application, and session scopes.

To give you a better feel for how this works, we're going to rework an example from earlier in the book as a
CFC-based application. In Chapter 13 , we built a POP email client using a series of CFML templates.
Rewriting the POP email client as a CFC-based application is a relatively straightforward process. Here are
the general requirements (updated from Chapter 13):

A login screen for users to enter their POP server, SMTP server, email address, username, and
password. This data should persist across client requests in a shared variable scope. For this
application, we'll store instances of the CFC in the session scope.

In the template-based application from Chapter 13 , login credentials were passed from page to page
as encrypted URL variables. In our CFC example, we'll store the login credentials as variables in
individual instances of popClient CFC.

An Inbox with next/previous functionality for listing all emails belonging to the user on the POP server.

The ability to read a message and download any associated file attachments.

The ability to forward a message to other recipients, including file attachments.

The ability to reply to a message.

The ability to create a new message and attach a file to that message.

The ability to delete messages from the POP server.

Given these requirements, it's relatively easy to map them to a CFC-based application. The first step is to
handle the user authentication. Since this is still a basic mail client, we'll keep the functionality as simple
(and at times, crude) as possible. I've chosen to use an Application.cfm file to handle the authentication.
Example 22-11 shows the code for the Application.cfm file.

Example 22-11. Application.cfm for the POP email client

<cfapplication
 name="popClient"
 sessionmanagement="Yes"
 sessiontimeout="#createTimeSpan(0,0,30,0)#">

<!--- if a username and password are submitted from a form, consider it
 a valid "login" --->
<cfif isDefined('form.username') and isDefined('form.password')>
 <cfset session.loggedIn = "true">
 <cfset args = structNew()>
 <cfset args.numDisplayMessages ="10">
 <cfset structAppend(args,form)>
 <!--- Instantiate the popClient CFC and cache the instance. Notice the method
 chaining where we tack the init() method on --->
 <cfif not isDefined('session.popClient')>
 <cfset session.popClient =
 createObject("component","popClient").init(argumentCollection=#args#)>
 </cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfif>

<!--- Set the default login state to false, meaning that by default,
 users are not logged into the application --->
<cfparam name="session.loggedIn" default="false">

<!--- If the user isn't logged in, give 'em the login screen --->
<cfif (not session.loggedIn)>
 <html>
 <head>
 <title>ColdFusion Mail Client - Login</title>
 </head>
 <body>

 <h2>Email Login</h2>
 <form action="index.cfm" method="post">
 <table>
 <tr>
 <td>Your e-mail address:</td>
 <td><input type="text" name="emailAddress" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>POP server:</td>
 <td><input type="text" name="popServer" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>SMTP Server:</td>
 <td><input type="text" name="smtpServer" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>Username:</td>
 <td><input type="text" name="username" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="password" size="30" maxlength="255"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" name="submit" value="Submit"></td>
 </tr>
 </table>
 </form>
 </body>
 </html>
 <cfabort>
</cfif>

<cfif isdefined('url.logout')>
 <!--- Terminate the user's session by deleting all session variables --->
 <cfset structClear(session)>
 <cflocation url="index.cfm" addtoken="no">
</cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This Application.cfm file is called with every page request in the application. The first thing it does is check
to see whether a username and password were passed in the form scope (from the authentication form
post). If so, it automatically considers this a valid login. We aren't worried here about truly securing this
application. The actual login to the POP server will serve as enough security for demonstration purposes. If
form.username and form.password are both defined, session.loggedIn is set to true . This tells the
Application.cfm file that the user is an authenticated user. Next, a structure called args is created.
args.numDisplayMessages is an argument that we'll use to determine how many messages to display per
page in our mail client's inbox. The form scope is then appended to the args structure. This is done so we

can pass all of the user's login information, such as username, POP server, etc., to the CFC that controls the
bulk of the application's functionality.

The next bit of code checks to see whether session.popClient exists. Session.popClient is an instance
of the popClient CFC stored in the session scope. If it doesn't already exist, the createObject() function

is called to create an instance of the component and assign it to the session scope. If you look closely at the
createObject() call, you'll notice an extra bit of code appended to the end of the call:

<cfset session.popClient =
createObject("component","popClient").init(argumentCollection=#args#)>

The addition of the .init() method to the end of the createObject() call is known as method chaining

. The technique allows you to create an instance of an object and call a method on it at the same time. This
technique requires a small amount of additional code in the init() method of our CFC, which we'll talk

about shortly.

Next, a check is made to see whether the user is logged in. If so, they are allowed to proceed to the
index.cfm page, the main template for the application. If they are not yet logged in, a login form is
displayed.

The Application.cfm template contains one final bit of code. From anywhere in the application, a user can
log out by clicking a Logout link or by manually appending a URL variable called logout to the URL of the
application. When the Application.cfm file detects a URL parameter called logout , it clears the session
scope using the structClear() function. This essentially logs a user out of the application and clears their

instance of popClient.cfc . They are then automatically sent back to the login screen.

Once a user has authenticated and an instance of the popClient CFC has been created, the user is sent to

index.cfm , the main (and only) CFML template of the application. The index.cfm file is used as the user
interface for all aspects of the mail client. The code for the index.cfm page is shown in Example 22-12 .

Example 22-12. index.cfm page for the POP mail client

<!--- Set the default action to refresh the inbox --->
<cfparam name="url.action" default="refresh">

<html>
<head>
 <title>E-mail Client</title>
 <style type="text/css">
 body {
 background-color : #C0C0C0;
 }
 th {
 background-color : #0000FF;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 font-weight : bold;
 color : #FFFFFF;
 text-align : center;
 }
 td {
 background-color : #C0C0C0;
 font-size : 10pt;
 }
 td.Main {
 background-color : #FFFFFF;
 }
 .Attachments {
 color : #0000FF;
 }
 .Nav {
 background-color : #C0C0C0;
 font-weight: bold;
 }
 </style>
</head>

<body>
<div align="Center">
<table border="1" cellpadding="5" cellspacing="1" width="90%">
 <tr>
 <td class="Main">

<cfswitch expression="#url.action#">
 <cfdefaultcase>
 <cfparam name="url.currentMessageNumber" default="1">
 <cfset messageHeaders =
session.popClient.getMessageHeaders(currentMessageNumber=url.currentMessageNumber)>
 <table border="1" cellpadding="5" cellspacing="0">
 <tr>
 <!--- allow the user to refresh the page or create a new message --->
 <cfoutput>
 <td class="Nav">Refresh</td>
 <td class="Nav">Create Message</td>
 <td class="Nav">Logout</td>
 </cfoutput>
 </tr>
 </table>

 <div align="Center">
 <h2>E-mail Client - Inbox</h2>
 </div>

 <!--- Create next/previous buttons as necessary for the messages displayed in
 the inbox. If you want to display more than 10 messages at a time, you
 need to increase the value in the constants section. --->
 <cfoutput>
 <cfif (session.popclient.getcurrentmessagenumber() -

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 session.popclient.getnumdisplaymessages()) gte 0>
 <a href=
"index.cfm?CurrentMessageNumber=#(session.popClient.getCurrentMessageNumber() -
session.popClient.getNumDisplayMessages())#">Previous |
 </cfif>

 <cfif messageheaders.recordcount eq session.popclient.getnumdisplaymessages()>
 <a href=
"index.cfm?CurrentMessageNumber=#(session.popClient.getCurrentMessageNumber() +
session.popClient.getNumDisplayMessages())#">Next
 </cfif>
 </cfoutput>

 <!--- If there are messages to be displayed, do so and make the page a form so
 that multiple messages can be deleted. --->
 <cfif messageheaders.recordcount gt 0>
 <cfoutput>
 <form action="index.cfm?action=delete" method="Post">
 </cfoutput>
 <input type="Submit" value="Delete">
 <table border="0" cellpadding="5" cellspacing="1" width="100%">
 <tr>
 <th> </th><th>From</th><th>Date</th><th>Subject</th>
 </tr>

 <!--- Output the message headers --->
 <cfoutput query="messageHeaders">
 <tr>
 <td><input type="Checkbox" name="messageNumber" value="#messageNumber#"></td>
 <!--- Link the message to the index.cfm page where the full message
 can be retrieved --->
 <td><a href=
 "index.cfm?action=read&messagenumber=#messageNumber#">#From#</td>
 <!--- This date is not formatted because some mail messages contain
 non standard date formats that cause ColdFusion to throw an
 error when attempting to format them --->
 <td>#dateFormat(parseDateTime(date), 'mm/dd/yyyy')#
 #timeFormat(parseDateTime(date), 'hh:mm tt')#</td>
 <td>#subject#</td>
 </tr>
 </cfoutput>
 </table>
 <input type="submit" value="Delete">
 </form>

 <!--- If no messages are found, let the user know --->
 <cfelse>
 <h3>No messages found...</h3>
 </cfif>
 </td>
 </tr>
 </table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </div>
 </cfdefaultcase>

 <!--- Read a message --->
 <cfcase value="Read">
 <cfparam name="url.messageNumber" default="1">
 <cfset message = session.popclient.getMessage(messageNumber=url.messageNumber)>

 <!--- Output action options --->
 <table border="1" cellpadding="5" cellspacing="0">
 <tr>
 <cfoutput>
 <td class="Nav">Inbox</td>
 <td class="Nav">Create Message</td>
 <td class="Nav"><a href=
 "index.cfm?action=reply&messagenumber=#url.messageNumber#">Reply</td>
 <td class="Nav"><a href=
 "index.cfm?action=forward&messagenumber=#url.messageNumber#">Forward</td>
 <td class="Nav"><a href=
 "index.cfm?action=delete&messagenumber=#url.messageNumber#">Delete</td>
 <td class="Nav">Logout</td>
 </cfoutput>
 </tr>
 </table>

 <cfoutput query="message">
 <hr noshade>
 <p>
 <table width="100%">
 <tr>
 <th>From:</th>
 <td>#HTMLEditFormat(message.From)# on
 #HTMLEditFormat(message.Date)#</td>
 </tr>
 <tr>
 <th>To:</th>
 <td>#HTMLEditFormat(message.To)#</td>
 </tr>
 <tr>
 <th>Cc:</th>
 <td>#HTMLEditFormat(message.Cc)#</td>
 </tr>
 <tr>
 <th>Subject:</th>
 <td>#HTMLEditFormat(message.Subject)#</td>
 </tr>
 </table>
 <p>
 <table width="100%">
 <tr>
 <td>
 #HTMLCodeFormat(Trim(message.Body))#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!--- If there are attachments, display links to them --->
 <cfif message.attachments is not "">
 Attachments:

 <cfloop from="1" to="#ListLen(message.Attachments, chr(9))#"
 index="TheAttachment">
 <a href="#GetFileFromPath(ListGetAt(message.AttachmentFiles,
 TheAttachment, chr(9)))#">#ListGetAt(message.Attachments,
 TheAttachment, chr(9))#

 </cfloop>
 </cfif>
 </td>
 </tr>
 </table>
 </cfoutput>
 </cfcase>

 <!--- Reply to, forward, or create a message --->
 <cfcase value="Reply,Forward,Create">
 <table border="1" cellpadding="5" cellspacing="0">
 <tr>
 <td class="Nav">Inbox</td>
 <td class="Nav">Logout</td>
 </tr>
 </table>
 <cfif action is "Reply" or action is "Forward">
 <cfparam name="url.messageNumber" default="1">
 <cfset message = session.popclient.getMessage(messageNumber=url.messageNumber)>

 <!--- Preface the subject with Re: --->
 <cfif findnocase("Re:", left(trim(message.subject), 3)) is 0>
 <cfset resubject = "Re: " & trim(message.subject)>
 <cfelse>
 <cfset resubject = trim(message.subject)>
 </cfif>
 </cfif>

 <cfoutput>
 <form action="index.cfm?action=send" method="POST"
 enctype="multipart/form-data">
 <cfif isdefined('message.attachments')>
 <!--- Include the attachment info --->
 <input type="Hidden" name="ForwardedAttachmentFiles"
 value="#message.AttachmentFiles#">
 <input type="Hidden" name="ForwardedAttachments"
 value="#message.Attachments#">
 </cfif>
 </cfoutput>
 <input type="Submit" value="Send">
 <cfoutput>
 <table>
 <tr>
 <th>To:</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <td><input type="Text" name="To" value="<CFIF Action IS
 "reply">#HTMLEditFormat(Trim(message.From))#</cfif>" SIZE="50"></td>
 </tr>
 <tr>
 <th>Cc:</th>
 <td><input type="Text" name="Cc" size="50"></td>
 </tr>
 <tr>
 <th>Bcc:</th>
 <td><input type="Text" name="Bcc" size="50"></td>
 </tr>
 <tr>
 <th>Subject:</th>
 <td><input type="TEXT" name="Subject" value="<CFIF Action IS NOT
 "create">#HTMLEditFormat(ReSubject)#</cfif>" SIZE="50"></td>
 </tr>
 </table>

 <p>
 <textarea name="Body" cols="70" rows="15" wrap="VIRTUAL"><cfif action is
 not "Create">#Chr(10)##Chr(13)#>>#message.Body#</cfif></textarea></p>
 </cfoutput>

 <!--- If forwarding, include attachments --->
 <cfif action is "Forward" and message.attachments is not "">
 Current File
 Attachments:

 <cfoutput>

 <cfloop from="1"
 to="#ListLen(message.Attachments, chr(9))#"
 index="TheAttachment">
 #ListGetAt(message.Attachments, TheAttachment, chr(9))#

 </cfloop>
 </cfoutput>
 </cfif>
 <p>
 File
 Attachment:

 <input type="File" name="Attachment">
 <p>
 <input type="Submit" value="Send">
 </form>
 </cfcase>

 <!--- Delete a message. --->
 <cfcase value="Delete">
 <cfparam name="url.messageNumber" default="0">
 <cfif isDefined('form.messageNumber')>
 <cfset url.messageNumber = form.messageNumber>
 </cfif>
 <cfset message = session.popClient.deleteMessages(messageNumber=url.messageNumber)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cflocation url="index.cfm" addtoken="no">
 </cfcase>

 <!--- Send the message --->
 <cfcase value="Send">
 <cfset args = structNew()>
 <cfset args.to = form.to>
 <cfset args.subject = form.subject>
 <cfset args.cc = form.cc>
 <cfset args.bcc = form.bcc>
 <cfset args.body = form.body>
 <!--- Check to see if there is an attachment to upload before sending --->
 <cfif isdefined('form.attachment') and form.attachment is not "">
 <!--- Note we are passing the name of the form field and not its value --->
 <cfset args.attachment = 'attachment'>
 </cfif>

 <cfif isdefined('form.forwardedAttachmentFiles') and
 form.forwardedAttachmentFiles is not "">
 <!--- Note we are passing the form field values this time --->
 <cfset args.forwardedAttachmentFiles = #forwardedAttachmentFiles#>
 <cfset args.forwardedAttachments = #forwardedAttachments#>
 </cfif>

 <!--- Upload the file --->
 <cfset session.popClient.sendMessage(argumentCollection=args)>
 <cflocation url="index.cfm" addtoken="no">
 </cfcase>
</cfswitch>
 </td>
 </tr>
</table>
</div>
</body>
</html>

The index.cfm page here combines the functionality of the inbox.cfm and action.cfm templates from
Chapter 13 . However, instead of placing all of the various cfpop , cfmail , and cffile tags (for
attachment sending and viewing) inline, all of that functionality has been moved into the popClient CFC,

leaving only display and method calls in the index.cfm file.

The guts of the application lie in the popClient CFC. This file contains all of the properties and methods

used to get mail headers, get individual mail messages, deal with file attachments, etc. The code for
popClient.cfc is shown in Example 22-13 .

Example 22-13. The POP mail client's popClient.cfc

<cfcomponent>
 <!--- Initialize constants --->
 <cfset variables.currentMessageNumber = 1>
 <cfset variables.theAttachmentPath = getDirectoryFromPath(getCurrentTemplatePath())>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfset variables.username = "">
 <cfset variables.password = "">
 <cfset variables.smtpServer = "">
 <cfset variables.popServer = "">
 <cfset variables.emailAddress = "">
 <cfset variables.numDisplayMessages = 0>

 <!--- init() method should be called when component is instantiated. It
 acts as the default constructor --->
 <cffunction name="init" output="no" access="remote" returntype="struct">
 <cfargument name="username" type="string" required="yes">
 <cfargument name="password" type="string" required="yes">
 <cfargument name="smtpServer" type="string" required="yes">
 <cfargument name="popServer" type="string" required="yes">
 <cfargument name="emailAddress" type="string" required="yes">
 <cfargument name="numDisplayMessages" type="numeric" requierd="yes">

 <cfset variables.username = arguments.username>
 <cfset variables.password = arguments.password>
 <cfset variables.smtpServer = arguments.smtpServer>
 <cfset variables.popServer = arguments.popServer>
 <cfset variables.emailAddress = arguments.emailAddress>
 <cfset variables.numDisplayMessages = arguments.numDisplayMessages>
 <!--- Return an instance of the CFC --->
 <cfreturn this>
 </cffunction>

 <!--- Retrieve message headers --->
 <cffunction name="getMessageHeaders" output="yes" returntype="query" access="remote"
 hint="I retrieve n message headers at a time">
 <cfargument name="currentMessageNumber" type="numeric" required="false" default="1">
 <cfset var qryMessageHeaders = "">
 <cfset variables.currentMessageNumber = arguments.currentMessageNumber>
 <cfpop action="getHeaderOnly" name="qryMessageHeaders" server="#variables.popServer#"
 timeout="600" username="#variables.username#" password="#variables.password#"
 startrow="#arguments.currentMessageNumber#"
 maxrows="#variables.numDisplayMessages#">
 <cfreturn qryMessageHeaders>
 </cffunction>

 <!--- Retrieve a full message --->
 <cffunction name="getMessage" output="no" returntype="query" access="remote">
 <cfargument name="messageNumber" type="numeric" required="false" default="1">
 <cfset var qryGetMessage = "">
 <cfpop action="getAll" name="qryGetMessage" messagelabel="#arguments.messageNumber#"
 server="#variables.popServer#" timeout="600" username="#variables.username#"
 password="#variables.password#" attachmentpath="#variables.theAttachmentPath#"
 generateuniquefilenames="yes">
 <cfreturn qryGetMessage>
 </cffunction>

 <!--- Delete one or more messages --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cffunction name="deleteMessages" output="no" returntype="void" access="remote">
 <cfargument name="messageNumber" type="string" required="false" default="1">
 <cfpop action="delete" messagelabel="#arguments.messageNumber#"
 server="#variables.popServer#"
 timeout="600" username="#variables.username#" password="#variables.password#">
 </cffunction>

 <!--- Send a message --->
 <cffunction name="sendMessage" output="yes" returntype="struct" access="remote">
 <cfargument name="to" type="string" required="yes">
 <cfargument name="subject" type="string" required="yes">
 <cfargument name="cc" type="string" required="yes">
 <cfargument name="bcc" type="string" required="yes">
 <cfargument name="attachment" required="no" type="string">
 <cfargument name="forwardedAttachmentFiles" required="no" type="string">
 <cfargument name="forwardedAttachments" required="no" type="string">

 <cfif isdefined('arguments.attachment') and arguments.attachment is not "">
 <cffile
 action="upload"
 filefield="#arguments.attachment#"
 destination="#variables.theAttachmentPath#"
 nameconflict="makeunique">
 </cfif>

 <!--- Send the message --->
 <cfmail
 from="#variables.emailAddress#"
 to="#arguments.to#"
 subject="#arguments.subject#"
 cc="#arguments.cc#"
 bcc="#arguments.bcc#"
 server="#variables.smtpServer#">
 #arguments.body#
 <!--- Include the new attachment if necessary --->

 <cfif isdefined('arguments.attachment') and arguments.attachment is not "">
 <cfmailparam file="#variables.theAttachmentPath#\#cffile.serverfile#">
 </cfif>

 <!--- Include any forwarded attachments if necessary --->
 <cfif isdefined('arguments.ForwardedAttachments')>
 <cfloop from="1" to="#ListLen(arguments.forwardedAttachments, chr(9))#"
 index="TheAttachment">
 <cfmailparam
 file="#ListGetAt(arguments.forwardedAttachmentFiles, TheAttachment, chr(9))#">
 </cfloop>
 </cfif>
 </cfmail>
 <cfreturn cffile>
 </cffunction>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!--- Get the number of messages to display at a time --->
 <cffunction name="getNumDisplayMessages" output="no" returntype="numeric"
 access="remote">
 <cfreturn variables.numDisplayMessages>
 </cffunction>

 <!--- Get the current message number --->
 <cffunction name="getCurrentMessageNumber" output="no" returntype="numeric"
 access="remote">
 <cfreturn variables.currentMessageNumber>
 </cffunction>

 <!--- Set the current message number --->
 <cffunction name="setCurrentMessageNumber" output="no" returntype="void"
 access="remote">
 <cfargument name="currentMessageNumber" type="numeric" required="no" default="1">
 <cfset variables.currentMessageNumber = arguments.currentMessageNumber>
 </cffunction>

 <!--- Get the previous starting message number for paging back --->
 <cffunction name="getPreviousMessageNumber" output="no" returntype="numeric"
 access="remote">
 <cfreturn variables.currentMessageNumber - variables.numDisplayMessages>
 </cffunction>

 <!--- get the next starting message number for paging forward --->
 <cffunction name="getNextMessageNumber" output="no" returntype="numeric"
 access="remote">
 <cfreturn variables.currentMessageNumber + variables.numDisplayMessages>
 </cffunction>

The popClient CFC is pretty well documented. However, it's worth discussing a few key sections of the

code. First, the constructor area of the CFC is used to set variables that can be used throughout the life of
the CFC instance. We set these in the variables scope so they would be private to the CFC (i.e., available
only in the constructor and within component methods).

The second feature worth mentioning is the init() method. Earlier in the chapter, we discussed the fact

that the CFC's constructor area leaves a lot to be desired, as you cannot pass arguments to it. To get
around this, a common technique among ColdFusion developers is to create an init() method that you

call when you create an instance of the component. If you remember, we created an instance of the
popClient CFC by using the createObject() function and chaining the init() method on the end. If
you look at the function body of the init() method, you'll see that the method's main purpose is to create

instance variables from the user profile information submitted in the login form. Simply placing these values
in instance variables, however, is not enough. We need to return an instance of the object for things to
work correctly. This is done by setting the cfreturn tag to return this . As you may recall, in addition to
being a variable scope, this can also be used to return an instance of an object.

Just like the POP mail client we built back in Chapter 13 , this application leaves a lot to be desired in terms
of both functionality and robustness. Improving it would certainly make for an excellent exercise in applying
many of the principles and techniques we've covered throughout the book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 23. XML and WDDX
As the Internet continues to evolve, XML is playing an increasingly important role. It is often referred
to as the de facto language of the Internet and indeed is worthy of this title. It seems as though
everywhere you turn, XML is there. Perhaps XML's most appealing feature is its simplicity. After all,
it's a plain-text format that does nothing more than describe data. What could be simpler?

This chapter is divided into two main themes, working with XML and using Web Distributed Data
Exchange, or WDDX as it's commonly referred to. We're going to cover a lot of ground fairly quickly.
As simple as the concept of XML is, working with it in a meaningful way is often anything but. Luckily,
ColdFusion makes the tasks you are likely to encounter-creating, parsing, searching, and
transforming XML-far easier than any other language I know of. As we've come to expect from
ColdFusion, what are often high-level programming tasks in other languages are cleverly abstracted
in ColdFusion. This does not mean they are any less powerful, just that ColdFusion makes them
easier to implement. And as you know, in programming, easier to implement tends to mean faster to
accomplish.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

23.1 Working with XML

As I mentioned in the introduction, ColdFusion MX makes working with XML easy. With ColdFusion
MX, you can easily do things such as generate your own XML, parse existing XML using native
ColdFusion functions, search through XML using XPath, and transform XML using XSLT and XSL.

Because this chapter does not cover XML itself in any great detail, I recommend reading up on the
topic if you aren't already familiar with it. Two excellent resources to consider are O'Reilly's
http://xml.com web site and the O'Reilly book Learning XML by Erik T. Ray.

23.1.1 A 30-Second XML Primer

The basics of XML are simple to learn. Because you'll need a basic understanding of XML for the rest
of this chapter to make any sense, I'm including what I call a 30-second XML primer to get you
started. It doesn't teach you everything, but it should set you well on your way.

In its most basic form, XML is simply a tag-based markup language for describing data. Both HTML
and XML are subsets of SGML (Standard Generalized Markup Language). Although similar in
appearance to HTML, XML differs in that it doesn't have anything to do with how the data it describes
is displayed. HTML, on the other hand, is designed to specify how data should be displayed in a
hierarchical manner. Another difference between XML and HTML is that XML is extensible. In HTML,
you are limited to using the tags that are officially part of the HTML specification (or are supported as
browser extensions). In XML, you can create any tags you want. XML uses a document type definition
(DTD) or schema to describe the content of an XML document. For more information on these
concepts, I recommend visiting http://www.w3.org/tr/REC-xml and
http://www.w3.org/XML/Schema, respectively.

Now that we've covered what XML is, let's look at a basic XML file describing a company and its three
employees. Example 23-1 shows how the XML might look.

Example 23-1. A simple XML document

<?xml version="1.0" encoding="utf-8"?>
<!-- employees for Example.com -->
<company name="Example.com">
 <employee id="1">
 <name>Pere Money</name>
 <title>President</title>
 </employee>
 <employee id="2">
 <name>Aaron Ridge</name>
 <title>Analyst</title>
 </employee>
 <employee id="3">
 <name>Martin Grant</name>

http://xml.com
http://www.w3.org/tr/REC-xml
http://www.w3.org/XML/Schema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <title>Manager</title>
 </employee>
</company>

There are two additional concepts I should explain before we continue. The first is the concept of
well-formed XML. An XML document is said to be well formed if it adheres to the rules outlined in the
XML specification-mainly that all tags must contain a start and end tag (or be self-closing like
<article type="news" />) and that proper nesting of elements is observed. By definition, all XML

documents must be well formed to be considered XML. The second concept you need to understand is
that of valid XML. For an XML document to be considered valid, it must first be well formed.
Additionally, it must match up against a specified DTD or schema. This means that the elements in
the XML document must be explicitly defined within the DTD or schema. All the examples we'll be
dealing with in this chapter are considered well-formed XML.

The first line in the XML document is called the XML declaration. This is necessary for the document
to be considered valid. It simply states what version of XML the document conforms to and,
optionally, what character encoding is used. In this example, the XML document conforms to the 1.0
version of XML (see http://www.w3.org/tr/REC-xml) and is encoded using the UTF-8 character set.
An XML declaration is not an element of the XML document and therefore does not require an end
tag.

The second line in our XML file is a comment. In XML, comments are written just as they are in
HTML. Comments may appear anywhere in an XML document except within a tag. In other words,
<employee <!-- comment -->> is not a legal comment in XML.

The third line (the <company> tag) in this XML document is known as the root element of the
document. The root element acts as a container for the entire document. Notice how the <company>

tag has both a start and an end tag: in XML, all tags are required to have an associated end tag.
Additionally, XML tags are case sensitive. This means that <employee /> is not the same as
<Employee />. Further, the case of the start and end tag of an XML element must match.

Within the root element of the document, you can nest any number of child elements (tags). In our
example, we create three child elements, each called <employee>. These child elements are said to

be siblings of each other because they are nested at the same level. All elements in XML are related
to one another in various ways. Each <employee> element contains two child elements, <name> and
<title>. In this case, <employee> is said to be a parent element of <name> and <title>. In XML, it's

possible to nest this parent-child relationship as necessary to structure your data. Correct nesting is
strictly enforced in XML.

If you look at the <employee> elements, you'll also notice that each has an attribute called id
(<employee id="x">). Like HTML, XML tags can have one or more attributes. Unlike HTML, however,

all XML tag attributes must be quoted (you can use either double or single quotes).

In XML, end-of-line characters are always represented as a single linefeed (ASCII character code 10),
regardless of whether the end-of-line was coded as a combination of carriage return (ASCII character
code 13) and linefeed, as in most Windows systems, or as a single linefeed, as in most UNIX
systems. Additionally, when a browser interprets HTML, it ignores additional whitespace beyond a
single space within an element. XML parsers, on the other hand, preserve all whitespace within an
element (although you could configure them not to).

23.1.2 XML Document Object

http://www.w3.org/tr/REC-xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XML document object is a new datatype in ColdFusion MX. It allows ColdFusion to represent XML
in a format akin to a ColdFusion structure containing nested element structures. This is a very useful
way to represent XML, as it allows you to perform all sorts of operations using standard ColdFusion
structure functions. Additionally, you can use ColdFusion MX's new XML document object functions to
further manipulate XML.

ColdFusion is capable of referencing an XML document object in two distinct ways. The first is called
the basic view. In the basic view, the document object is an object that contains a structure for the
root element of the XML document. Each XML tag pair within the root element is represented as an
element structure. These element structures contain the contents of the parent element and can
include additional nested element structures. You can think of the basic view as a shoebox that
contains additional boxes of different sizes. Some of these boxes contain items, while others contain
additional boxes that may contain items or more boxes.

ColdFusion can convert any valid XML document to an XML document object using the XmlParse()

function. To get a better idea of how an XML document looks as an XML document object, you can
use the cfdump tag to give you a visual representation. Example 23-2 shows the code for reading the

XML file we created in Example 23-1, parsing it into an XML document object, then dumping it out
using the cfdump tag. The results are shown in Figure 23-1. You can toggle the dump of the XML

document object between short and long versions by clicking on the version name at the top of the
table.

Example 23-2. Parsing an XML document into an XML document object

<cffile action="read"
 file="c:\cfusionmx\wwwroot\programmingcf\23\employee.xml"
 variable="theXML">

<cfset myXml = xmlParse(theXml)>

<cfdump var="#myXml#">

Figure 23-1. An XML document as displayed by cfdump

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The cffile tag is used to read the XML file and store it in a variable called theXml. Next, the
xmlParse() function is used to convert the raw XML (stored as a string) into an XML document

object. An optional parameter allows you to specify whether the original case of the XML document
elements and attributes should be maintained. The default value is No (in our example, we omit this

parameter). Note that XML encoded in character sets other than ASCII or Latin-1 must have the
character set explicitly defined to ColdFusion. If you are using the cffile tag to read an XML file, the
character set can be defined using the charset parameter of the cffile tag. If the XML file is

retrieved using another method, it may be necessary to first change the encoding. No explicit
encoding is required in our example.

The final part of the code uses the cfdump tag to dump the contents of the XML document object. As
you can see, using cfdump to output an XML document object is an excellent way to visualize the

basic view structure of the document. The top-level document object contains three name/value pairs
(only two are visible in the output produced by cfdump):

XmlComment

String containing all comments (concatenated) outside of the root element.
XmlRoot

Contains the root element of the document. In our example, this is the <company> tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XmlDocType

Contains the DocType attribute (if any) of the document. If no DocType is specified in the XML
document, this name/value pair does not exist. Additionally, XmlDocType isn't included in the
output generated by the cfdump tag.

Within ColdFusion's XML document object, XmlRoot contains all of the XML elements (tags) for a

given XML document. Each XML element is itself a structure that contains the following name/value
pairs:

XmlName

Name of the XML element (tag).
XmlNsPrefix

Prefix of the corresponding namespace.
XmlNsURI

URI of the namespace.
XmlText

String containing all text and CDATA (concatenated) from within an XML element, but not its

child elements.
XmlComment

String containing all comments (concatenated) within the element, but not within any child
elements.

XmlAttributes

Structure containing all of the element's attributes as name/value pairs.
XmlChildern

Array containing all of the element's child elements.
XmlParent

The parent DOM node of the current element. XmlParent is not displayed in the output
generated by cfdump.

XmlNodes

Array containing all the XmlNode DOM nodes contained in the current element. XmlNodes is not
displayed in the output generated by cfdump.

To access elements of the XML document object, you can use many of the structure and array
functions you are already familiar with. Example 23-3 should give you a general idea of the types of
things you can do with structure and array functions.

Example 23-3. Using structure and array functions to parse XML

<!--- Read in XML file --->
<cffile action="read"
 file="c:\cfusionmx\wwwroot\programmingcf\23\employee.xml"
 variable="theXML">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Convert XML string to XML document object --->
<cfset myXml = xmlParse(theXml)>

<!--- Get the root element --->
<cfset theRoot = myXml.XmlRoot>

<!--- Get the number of child elements off of the root --->
<cfset numChildren = arrayLen(theRoot.XmlChildren)>

<!--- Output everything we've parsed --->
<cfoutput>
Is myXml a valid XML document object: #isXmlDoc(myXml)#

The name of the root element is: #theRoot.XmlName#

Is #theRoot.XmlName# really the root element? #isXmlRoot(theRoot)#

Is #theRoot.XmlName# also an XML element? #isXmlElem(theRoot)#

The #theRoot.XmlName# name is #theRoot.XmlAttributes["Name"]#

The root element (#theRoot.XmlName#) has #numChildren# child elements:

<cfloop index="i" from="1" to="#numChildren#">
 #theRoot.XmlChildren[i].XmlName#[#i#]:
 #theRoot.XmlChildren[i]["Name"].XmlText#

 <!--- Loop over all attributes in the 2nd level (Employee) element --->
 <cfloop collection="#theRoot.XmlChildren[i].XmlAttributes#" item="j">
 #j#: #theRoot.XmlChildren[i].XmlAttributes[j]#

 </cfloop>
</cfloop>

The index position of the 2nd occurence of "employee" is: #xmlChildPos(theRoot,
"employee", 2)#
</cfoutput>

At first glance, all of the dots and brackets in the code may look complicated. If we break the code
down step by step, however, I think you'll see that it all makes sense. The code first reads the same
XML file we've been using (Example 23-1) and converts it to an XML document object. Next, we get
the root element (the structure, not the name) of the document by referencing myXml.XmlRoot and
assign it to a variable called theRoot. This will save us a lot of extra typing since just about

everything we reference from here on out will be at least as deep as the root level element. The next
line of code gets the total number of child elements one level under the root-level element. Because
XmlChildren is an array, we can use the arrayLen() function to determine the number of child

elements.

Armed with this information, outputting various details about the XML file is trivial. First, we use the
isXmlDoc() function to determine whether myXML is an XML document object. To get the actual tag

name (remember, we only have the structure so far) of the root element, we reference the
theRoot.XmlName. This gives us company. Next, we check to see whether company is really the
document root using the isDocRoot() function, and we use isXmlElem() to determine whether
it's also an XML element. Our root element also has an attribute called name. To get the value of the
name attribute, we reference theRoot.XmlAttributes["Name"]. Recall that XmlAttributes is a

structure that contains all the attributes of the referenced element. In this case, we know that the
attribute we want to grab is called name, so we specify it using bracket notation. We could just as

easily reference it using dot notation:

theRoot.XmlAttributes.name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although many coders prefer the readability of dot notation, you have to be careful that the structure
key you are referencing doesn't violate any of ColdFusion's variable naming rules. For example,
theRoot.XmlAttributes.name is fine, but theRoot.XmlAttributes.first-name is not, as hyphens

are not allowed in ColdFusion variable names. Because of this, you are generally better off using
bracket notation when dealing with XML unless you can be absolutely sure you won't encounter tag
or attribute names that violate ColdFusion's variable naming conventions.

The next section of code uses a loop to iterate over the child elements below the root. We know the
number of child elements to loop over from the previous code, in which we checked the length of the
XmlChildren array. For each child element under the root, we output the element's tag name from
XmlName (employee), its index position in the XmlChildren array, and the value stored in XmlText
for the name element under the employee element. A second (inner) loop is used to output the names
and values of any child tags of the employee elements. The collection loop is just another example of

the different techniques you can use to access data inside an XML document object.

Once this is completed, we use the xmlChildPos() function to return the index position of the
second occurrence of the employee element within the XmlChildren array. The results output to the

browser are shown in Figure 23-2.

Figure 23-2. Accessing XML document object data using array and
structure functions

For more information on using array, structure, and XML functions, including examples, see the
function reference in Appendix B.

23.1.3 XML DOM Nodes

A second way ColdFusion can reference an XML document object is using a DOM (Document Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Model) node view. The DOM is a W3C recommendation for modeling documents. Under the covers,
ColdFusion MX uses the Apache Crimson XML parser (http://xml.apache.org/crimson/). This means
that ColdFusion MX adheres to the DOM Level 2 Core specification. You can read more about this
specification and its particulars at http://www.w3.org/tr/DOM-Level-2-Core. In the DOM node view,
XML documents are represented as a hierarchical tree of nodes. Each node in the tree consists of a
node name, a node type, and a node value:

XmlType[1]

Type of XML DOM node. Possible return values are CDATA, COMMENT, DOCUMENT, FRAGMENT,
DOCTYPE, ELEMENT, ENTITY, ENTITYREF, NOTATION, PI (processing instruction), and Text.

XmlName

Name of the XML DOM node. For return values, see Table 23-1.
XmlValue

Value stored in the XML DOM node. XmlValue only contains values for CDATA, COMMENT, and
Text nodes.

Because of this, the DOM node view of an XML document gives you much more granular access to
elements in the document than does the basic view.

Table 23-1 shows the possible values for XmlType as well as the corresponding DOM node name
(XmlName) and the value the node contains.

Table 23-1. DOM XML types, names, and associated values

XmlType XmlName Node value

CDATA #cdata-section Content of the CDATA section

COMMENT #comment Content of the comment

DOCUMENT #document Empty string

FRAGMENT #document-fragment Empty string

DOCTYPE Document type name Empty string

ELEMENT Tag name Empty string

ENTITY Entity name Empty string

ENTITYREF Name of entity referenced Empty string

NOTATION Notation name Empty string

PI (processing instruction) Entire content excluding target Empty string

Text #text Content of the text node

Using the XML document from Example 23-1, we can use DOM node syntax to access data in an XML
document object, as shown in Example 23-4.

http://xml.apache.org/crimson/
http://www.w3.org/tr/DOM-Level-2-Core
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 23-4. Accessing XML DOM nodes

<!--- Read in XML file --->
<cffile action="read"
 file="c:\cfusionmx\wwwroot\programmingcf\23\employee.xml"
 variable="theXML">

<!--- Convert XML string to XML document object --->
<cfset myXml = xmlParse(theXml)>

<table border="1">
 <tr>
 <th>Node</th>
 <th>XmlType</th>
 <th>XmlName</th>
 <th>XmlValue</th>
 </tr>
 <cfoutput>
 <tr>
 <td>myXml</td>
 <td>#myXml.XmlType#</td>
 <td>#myXml.XmlName#</td>
 <td>#myXml.XmlValue#</td>
 </tr>
 <tr>
 <td>myXml.XmlRoot</td>
 <td>#myXml.XmlRoot.XmlType#</td>
 <td>#myXml.XmlRoot.XmlName#</td>
 <td>#myXml.XmlRoot.XmlValue#</td>
 </tr>
 <tr>
 <td>myXml.XmlRoot.XmlNodes[2]</td>
 <td>#myXml.XmlRoot.XmlNodes[2].XmlType#</td>
 <td>#myXml.XmlRoot.XmlNodes[2].XmlName#</td>
 <td>#myXml.XmlRoot.XmlNodes[2].XmlValue#</td>
 </tr>
 </cfoutput>
</table>

This time around, instead of referencing each element as if it were a structure member, we reference
the actual node in the XML DOM. This allows a finer degree of control over exactly what we are
accessing. The code in Example 23-4 accesses three different nodes in the XML document object and
outputs the XmlType, XmlName, and XmlValue for each. For more information on working with DOM

nodes, see the web sites mentioned earlier in this section.

23.1.4 Generating Your Own XML

Now that you understand the structure of an XML document and its corresponding XML document
object in ColdFusion, let's look at how we can generate our own XML in ColdFusion. In this section,
we'll cover different methods for generating XML from scratch as well as techniques for modifying

http://lib.ommolketab.ir
http://lib.ommolketab.ir

existing XML. We'll also cover sending XML to the browser and writing XML out to a file.

The easiest way to generate XML in ColdFusion MX is with the new cfxml tag. cfxml is a container

tag that creates a ColdFusion XML document object from the XML and CFML code between the
<cfxml></cfxml> tags. Any CFML code inside the container is executed, and the results are assigned
to appropriate elements in the XML document object. The cfxml tag takes two attributes, variable
and casesensitive. variable is a required attribute and specifies a variable name for holding the
resulting XML document object. casesensitive is an optional Boolean attribute. It indicates whether
ColdFusion should maintain the case of XML document elements and attributes. The default is no.
Example 23-5 shows how to use the cfxml tag to generate XML identical to the XML file we used in

Example 23-1.

Example 23-5. Generating XML using the cfxml tag

<cfxml variable="myXml">
 <!-- employees for example.com -->
 <company name="example.com">
 <!-- begin employee listings -->
 <employee id="1" years-service="10">
 <name>Pere Money</name>
 <title>President</title>
 </employee>
 <employee id="2" years-service="5">
 <name>Aaron Ridge</name>
 <title>Analyst</title>
 </employee>
 <employee id="3" years-service="4">
 <name>Martin Grant</name>
 <title>Manager</title>
 </employee>
 </company>
</cfxml>

One thing you may notice right away is that we don't include an XML type declaration such as <?xml
version="1.0" encoding="utf-8"?>. This is because the cfxml tag automatically creates it for us.

If we had included the line, ColdFusion would have thrown an error.

If you run this code, what you end up with is a blank page. This is because the cfxml tag stores the
generated XML as an XML document object (no xmlParse() necessary). If you add the following
cfdump tag to the end of Example 23-5 and run the code again, you should see output identical to

that in Figure 23-1:

<cfdump var="#myXml#">

Alternatively, you could output the XML directly to the browser by using the cfcontent tag instead of
cfdump. You can replace the cfdump tag with this code instead:

<cfcontent type="text/xml"><cfoutput>#toString(myXml)#</cfoutput></cfcontent>

Here, cfcontent sets the MIME type for the output stream to text/xml. The toString() function

is used to convert the XML document object to a string that can be output. If your browser is capable
of displaying XML (as most modern browsers are), you should see XML that looks identical to the XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in Example 23-1.

If you don't want to output your XML to the browser, you can just as easily save it to disk using the
cffile tag (or upload it somewhere with cfftp, or post it using cfhttp):

<cffile action="write" file="c:\myXml.doc" output="#toString(myXml)#">

It's also possible to combine static XML tags with data dynamically generated by ColdFusion. Example
23-6 shows how you can use a query result set from the EmployeeDirectory database table in

conjunction with static XML tags to dynamically generate an XML document.

Example 23-6. Combining static and dynamically generated XML

<cfquery name="getEmployees" datasource="programmingcf">
 SELECT ID, Name, Title
 FROM EmployeeDirectory
</cfquery>

<cfxml variable="myXml">
 <!-- employees for example.com -->
 <company name="example.com">
 <!-- begin employee listings -->
 <cfoutput query="getEmployees">
 <employee id="#id#" years-service="#randRange(1,20)#">
 <name>#name#</name>
 <title>#title#</title>
 </employee>
 </cfoutput>
 </company>
</cfxml>

<cfcontent type="text/xml"><cfoutput>#toString(myXml)#</cfoutput></cfcontent>

In this template, a database query is performed to fetch the ID, Name, and Title of each employee
in the EmployeeDirectory table. Next, the cfxml tag is used to set up the XML document object. The

comments and root element of the document are hardcoded. Each child element, however, is
dynamically generated by looping over the result set returned by the query.[2] The resulting XML
document object is then converted to a string and output to the browser using the cfcontent tag.

Running the example results in the output shown in Figure 23-3.

[2] There is no years-service field in the EmployeeDirectory table. The randRange() function is

used to generate a random number to populate this attribute with.

Figure 23-3. Generating XML from static and dynamic content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to the cfxml tag, you can also create an XML document object using the xmlNew()

function. An optional Boolean parameter lets you specify whether XML document elements should
maintain their case. The default is no. By itself, xmlNew() simply creates an empty XML document

object. You need to use additional structure, array, and/or XML functions to populate the XML
document object. Example 23-7 shows one method of using xmlNew() to create a new XML

document object from a query result set.

Example 23-7. Creating a new XML document object using xmlNew()

<cfquery name="getEmployees" datasource="programmingcf">
 SELECT ID, Name, Title
 FROM EmployeeDirectory
</cfquery>

<!--- create the empty XML doc object, give it a root element, and add an
 attribute called name to the root element --->
<cfset myXml = xmlNew("no")>
<cfset myXml.xmlRoot = xmlElemNew(myXml,"company")>
<cfset myXml.xmlRoot.xmlAttributes["name"] = "Example.com">

<!--- loop over the query result set, creating a child "employee" element for
 each employee in the ercord set --->
<cfloop index="i" from="1" to="#getEmployees.recordCount#">

 <!--- create a new employee element --->
 <cfset myXml.xmlRoot.xmlChildren[i] = xmlElemNew(myXml, "employee")>

 <!--- add id and years-service attributes to the employee element --->
 <cfset myXml.xmlRoot.xmlChildren[i].xmlAttributes["id"] = getEmployees.ID[i]>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfset myXml.xmlRoot.xmlChildren[i].xmlAttributes["years-service"] =
 randRange(1,20)>

 <!--- add name and title (child) elements under the current employee element
 and populate them with data from the query result set --->
 <cfset myXml.xmlRoot.xmlChildren[i].name = xmlElemNew(myXml, "name")>
 <cfset myXml.xmlRoot.xmlChildren[i].name.xmlText = getEmployees.name[i]>
 <cfset myXml.xmlRoot.xmlChildren[i].title = xmlElemNew(myXml, "title")>
 <cfset myXml.xmlRoot.xmlChildren[i].title.xmlText = getEmployees.title[i]>
</cfloop>

<cfcontent type="text/xml"><cfoutput>#toString(myXml)#</cfoutput></cfcontent>

This example generates nearly the same XML as Example 23-6. The difference is in how the XML
document object is constructed. In this example, the xmlNew() function creates a new XML

document object. Each element, including the root and all of its child elements, are added to the XML
document object using the xmlElemNew() function. xmlElemNew() takes the name of an XML

document object and a name for the element to create as its parameters and creates a
corresponding empty XML element. The empty element is populated by assigning it a value, just as
you would for any other variable.

Just like HTML, XML has special characters that can cause problems if you try to place them inside an
element without escaping them first. You must always escape greater-than signs (>) and less-than
signs (<) as this is strictly enforced in XML. Additionally, ColdFusion MX requires you to escape
ampersands (&). It is also recommended you escape single and double quotes.

The xmlFormat() function can be used to sanitize strings that may include these characters. It

automatically escapes all five of the aforementioned special characters, replacing them with their
corresponding entity reference (>, <, &, ', and "), making it safe to insert
them into your XML elements. You should seriously consider using the xmlFormat() function

whenever creating your own XML, especially when working with dynamically generated data where
you might not have control over the characters used. Using the code from Example 23-6, we can
easily modify it to use xmlFormat() on all of the query columns containing string values (name and

title in this case):

<cfquery name="getEmployees" datasource="programmingcf">
 SELECT ID, Name, Title
 FROM EmployeeDirectory
</cfquery>

<cfxml variable="myXml">
 <!-- employees for example.com -->
 <company name="example.com">
 <!-- begin employee listings -->
 <cfoutput query="getEmployees">
 <employee id="#id#" years-service="#randRange(1,20)#">
 <name>#xmlFormat(name)#</name>
 <title>#xmlFormat(title)#</title>
 </employee>
 </cfoutput>
 </company>
</cfxml>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfcontent type="text/xml"><cfoutput>#toString(myXml)#</cfoutput></cfcontent>

Another option for escaping text in an XML element is to declare it as a CDATA section. A CDATA

section is a special XML interface specifically designed to escape blocks of text (as opposed to
individual characters) that could be confused with markup. CDATA sections are especially useful for

putting snippets of code in XML elements. As per the XML specification, parsers are instructed to
ignore the contents of a CDATA section when encountered. You declare a CDATA section like this:

<![CDATA[
Text goes here...
]]>

The <![CDATA[marks the start of the CDATA section and]]> ends it. It's important to note two
things. First, CDATA sections cannot be nested. Second, the delimiter that marks the end of the CDATA

section cannot contain any whitespace. The characters must always appear as a continuous string.
Example 23-8 shows an XML file that contains two CDATA sections that contain CFML code.

Example 23-8. XML file containing CDATA sections

<?xml version="1.0" encoding="utf-8"?>
<library name="math">
 <udf name="areaCircle">
 <author>Rob Brooks-Bilson</author>
 <code><![CDATA[
 <cffunction name="areaCircle">
 <cfargument name="radius" type="numeric" required="true">
 <cfreturn pi()*(arguments.radius^2)>
 </cffunction>
]]>
 </code>
 </udf>
 <udf name="factorial">
 <author>Rob Brooks-Bilson</author>
 <code><![CDATA[
 <cffunction name="factorial">
 <cfargument name="integer" type="numeric" required="true">
 <cfset var myFactorial = 1>
 <cfloop condition="arguments.Integer gt 0">
 <cfset myFactorial = myFactorial*arguments.integer>
 <cfset arguments.integer = arguments.integer-1>
 </cfloop>
 <cfreturn myFactorial>
 </cffunction>
]]>
 </code>
 </udf>
</library>

Save this XML file as cflib.xml. Once you've done that, save the code shown in Example 23-9 in the
same directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 23-9. Displaying XML containing CDATA

<cffile action="read"
 file="#expandPath("cflib.xml")#"
 variable="theXML">

<cfcontent type="text/xml"><cfoutput>#theXml#</cfoutput></cfcontent>

If you run this code in Internet Explorer, you should see the XML, including CDATA sections nicely

formatted on the screen. Figure 23-4 shows how this should look. If you View Source in the browser,
you'll see that the CFML code in the CDATA section is perfectly intact.

Figure 23-4. XML document containing CDATA sections as rendered in
Internet Explorer

23.1.5 Matching XML Data with XPath

The XML Path language, or XPath, is a W3C recommendation outlining a language for addressing
parts of an XML document. It was specifically designed to work with XSLT (which we cover in the next
section) as well as other XML parsers. A thorough discussion of XPath is beyond the scope of this
chapter. As a result, this section assumes a working knowledge of the XPath language. If you need to
brush up on XPath first, I'd suggest starting with the W3C recommendation at
http://www.w3.org/tr/xpath. I've also found the O'Reilly http://xml.com web site to be a rich source
of free articles and tutorials on XPath (and other XML technologies).

http://www.w3.org/tr/xpath
http://xml.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion MX supports XPath as a query tool for extracting data from XML document objects via the
xmlSearch() function. The xmlSearch() function is easy to use. It accepts two parameters, the

name of an XML document object (or element of a document object) to search and the XPath
expression to use. It searches the specified ColdFusion XML document object using the provided
XPath expression. If a successful match is made, the function returns an array of XML document
object nodes that match the search criteria.

Conceptually, XPath treats an XML document as a tree of nodes. This hierarchical relationship makes
it easy to navigate the structure of an XML document using a simple path notation similar to that
used to refer to directories in a file system. Take the XML document from Example 23-1. If you parse
this into an XML document object, you can use the xmlSearch() function along with various XPath

expressions to return different portions of the document object. Table 23-2 shows you a few example
expressions along with what you can expect them to return.

Table 23-2. XPath Expressions and their expected results

XPath expression Expected result

/ Array containing a single index holding the entire XML document object

/company Single index array containing the company element and its child elements

/company/employee
Array with three indexes; each index holds an employee element and its child

elements

To get a better idea of how this looks, you can run this snippet of code:

<cffile action="read"
 file="c:\cfusionmx\wwwroot\programmingcf\23\employee.xml"
 variable="theXML">

<cfset myXml = xmlParse(theXml)>

<cfset results = xmlSearch(myXml, "/")>
<cfdump var="#results#">
<cfset results = xmlSearch(myXml, "/company")>
<cfdump var="#results#">
<cfset results = xmlSearch(myXml, "/company/employee")>
<cfdump var="#results#">

It applies all of the XPath expressions from Table 23-2 and dumps the results so you can see how the
data structures returned by xmlSearch() look.

Here's another example that goes one step further. It uses what's known as a predicate to filter a set
of nodes into a new set. In this case, Example 23-10 reads in a public XML news feed from
macromedia.com, parses it into an XML document object, uses XPath to return only the XML nodes
containing articles, and outputs the results to the browser.

Example 23-10. Using XPath to query an XML document object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfhttp url="http://www.macromedia.com/devnet/resources/macromedia_resources.xml"
 method="get">

<cfset devNet = xmlParse(cfhttp.fileContent)>
<cfset searchResults =
 xmlSearch(devNet, "/macromedia_resources/resource[attribute::type='Article']")>

<h2>Available Articles</h2>
<cfloop index="i" from="1" to="#arrayLen(searchResults)#">
 <cfoutput>
 #SearchResults[i].Title.XmlText#

 </cfoutput>
</cfloop>

The cfhttp tag is used to fetch an XML file containing a list of articles, tutorials, and other items on
Macromedia's public DevNet site. The results are parsed into an XML document object called devNet.
The xmlSearch() function uses the XPath expression:

"/macromedia_resources/resource[attribute::type='Article']"

This matches any child elements off of the macromedia_resources document root that have an
attribute called type with a value of "Article" (the predicate is the part in square brackets). The

resulting array is looped over, and the results are output to the browser as links to the actual article.
The output is shown in Figure 23-5.

Figure 23-5. Using XPath to parse the macromedia.com DevNet XML feed

Of course, these examples only scratch the surface of what you can accomplish with XPath. The
language contains several additional features such as functions and operators, as well as more
advanced constructs that allow you to search and manipulate the contents of an XML file beyond your
wildest dreams.

23.1.6 Transforming XML with XSLT

XSLT stands for Extensible Stylesheet Language Transformation. It's a W3C recommendation for
rules used to transform XML data into alternate formats, such HTML, WML, and other XML
vocabularies. XSLT works in conjunction with the Extensible Stylesheet Language (XSL) to perform
the actual transformation. The XSL and XSLT specifications are both fairly involved, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unfortunately, it isn't possible to thoroughly cover all of the ins and outs of each in a single chapter.
Before proceeding, I recommend you familiarize yourself with the concepts laid out in both
specifications. For more information on XSLT and XSL, see the W3C specifications at
http://www.w3.org/tr/xslt/ and http://www.w3.org/tr/xsl/, respectively. Another good resource for
articles and tutorials is the O'Reilly http://xml.com web site. I can't recommend it enough.

That said, let's again consider the XML file we created previously in Example 23-1. Suppose you
wanted to create a basic HTML table displaying the name and title of each employee in the file. You
could use ColdFusion to read in the XML file, parse it into an XML document object, and loop through
the various nodes, constructing the table as it goes along. You could, but there's an easier, more
elegant solution: use an XSL stylesheet to specify how the data should be presented, then pass it
through an XSLT engine to handle the transformation.

ColdFusion MX uses the xmlTransform() function to perform an XSLT transformation on an XML

string or document object using an XSL stylesheet. The results are returned as a string. From the
ColdFusion perspective, there's nothing to the process. You provide some XML and an XSL stylesheet,
and one line of code later, ColdFusion has transformed the XML according to the instructions
contained in the stylesheet. Example 23-11 shows the code to load the employee.xml file from
Example 23-1, apply an XSL stylesheet for converting the XML into an HTML table (which we'll create
in a moment), and output the results to the browser.

Example 23-11. Using xmlTransform() to perform an XSLT
transformation

<cffile action="read"
 file="c:\cfusionmx\wwwroot\programmingcf\23\employee.xml"
 variable="MyXml">

<cffile action="read"
 file="c:\cfusionmx\wwwroot\programmingcf\23\html_employee.xsl"
 variable="MyXsl">

<cfset Transformed = xmlTransform(myXml, myXsl)>

<cfoutput>
#Transformed#
</cfoutput>

Example 23-12 shows a simple XSL stylesheet you can use to transform the data in the
employee.xml file into a simple HTML table. Save the template as html_employee.xsl.

Example 23-12. An XSL stylesheet to transform data into an HTML table

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:output method="html"/>

 <xsl:template match="/company">
 <html>

http://www.w3.org/tr/xslt/
http://www.w3.org/tr/xsl/
http://x
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <head>
 <title>Example.com Employees</title>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 </tr>
 <xsl:apply-templates select="employee"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="employee">
 <tr>
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="title"/></td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

The first line in the XSL stylesheet is the same XML declaration we've used in our other XML
documents. Although ignored by XSLT parsers, it's considered good form to include it. Since XSL is an
XML format, it follows the same rules as other XML documents. The actual stylesheet starts with the
root element on the second line. The root element in XSL is used to declare that the document is a
stylesheet. In XSL, a namespace (prefix) is used to distinguish transformation instructions from other
markup. The xsl:output element specifies how the result should be output. In this case, we specify
html.

The next tag, xsl:template, defines a template rule for the node(s) matched by the XPath
expression in the match attribute. In this example, we want to apply the template rule to the
company element. The plain HTML sets up the table we want to create. Within the stylesheet, it is

treated as plain text, to become part of the transformed document.

The xsl:apply-templates element is used to process the child elements of company recursively.

Since there are three child elements in our XML document, the instruction generates a new table row
for each of the employee child elements. The values for the cells in each row are obtained by the
xsl:value-of elements.

If you run the template from Example 23-11, you should be presented with a small HTML table
containing the names and titles of the three employees from the XML file, shown in Figure 23-6.

Figure 23-6. Results of using XSLT to transform XML to HTML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

23.2 Using WDDX

In 1998, Macromedia (then Allaire) created an XML-based technology called the Web Distributed Data
Exchange, or WDDX. WDDX is an open technology for exchanging both simple and complex datatypes
using a language-independent representation of the data based on an XML 1.0-compliant DTD. It is
designed to be used by any number of programming languages without regard to the platforms they
are running on. A number of serialization/deserialization modules have been written for a variety of
popular programming and scripting languages and are freely available. For the most up-to-date
information on WDDX or to obtain the SDK, please visit http://www.openwddx.org .

23.2.1 What Can You Do with WDDX?

The first question you are probably asking is "What the heck can I do with WDDX?" Well, to put it
simply, you can do a hell of a lot with it. Because WDDX allows you to represent data in a completely
neutral and open format, WDDX is the perfect vehicle for sharing data between applications written in
different languages. Imagine that you have an application written in Perl that performs some heavy-
duty massaging on a large record set. Now suppose that you want to make the cleaned-up data
available to another application within your company that is built in ColdFusion. How are you going to
do that? You could write the data to a database and then query the database in ColdFusion, but what
if the database isn't accessible to your ColdFusion application, say because it is behind a firewall?
What then? You can save the record set as a delimited text file, then allow the ColdFusion application
to grab it using CFHTTP or CFFTP , but that won't work because you need the datatypes of each field

in the database to be preserved. Using WDDX, you can take the record set you created in your Perl
application, convert it to the WDDX format, and send it to your ColdFusion application while
preserving the datatypes of all of the data. Your ColdFusion application can then easily convert the
data from the WDDX format into a query object that can be used in any way the application needs.

Along the same lines, WDDX can enable content syndication between web sites. Syndication allows
one site to make selected content available to other sites. Syndication can be open and public, or a
closed endeavor between trading partners, clients, vendors, etc. Via syndication, a content
aggregator (such as Yahoo!, Excite, CNN, etc.) can provide other web sites with content such as
news, weather, stock quotes, or sports scores using WDDX (an open format).[3] The sites receiving
the syndicated content can then use it in their applications and web sites regardless of what tools they
use to build them.

[3] Increasingly, syndication of news type information (actual news headlines and stories, blogs, wikis, etc.) is
being done via an XML dialect known as RSS (Really Simple Syndication). While this doesn't negate content
syndication via WDDX, it certainly outpaces it. You can learn more about RSS on O'Reilly's xml.com web site.

So far, we've mentioned two important ways in which you can use WDDX for server-to-server
communication. But WDDX can be used for server-to-browser communication as well. If you use
WDDX in conjunction with JavaScript, it is possible to create sophisticated user interfaces for browsing
and manipulating data stored as WDDX.

Now that you have a better idea of what you can do with WDDX, let's look at how it works and how
you can start using it within your own applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.2.2 How Does It Work?

WDDX itself is nothing more than an XML representation of data. As such, you are probably
wondering how to convert data to and from the WDDX format. The process looks something like this:

Data Serialization WDDX Packet Deserialization Data

You'll notice three new terms: serialization, WDDX packet, and deserialization. Serialization consists
of taking a chunk of data and converting it into the WDDX format. Data that has been converted to
WDDX is referred to as a WDDX packet . A WDDX packet can represent a range of both simple and
complex datatypes. The simple datatypes are made up of string, numeric, Boolean, null, and
date/time values. Complex datatypes consist of arrays, structures, record sets (query objects in
CFML), and binary data. The process of converting the contents of a WDDX packet back to their
native datatype(s) is known as deserialization .

While this chapter primarily deals with WDDX within the context of the ColdFusion Markup Language
(which has native support for WDDX), there are components available for several other languages. A
COM component is available that can be used by any COM-enabled language, such as ASP, Visual
Basic, Delphi, Visual C++, and PowerBuilder. Additionally, native modules now exist for Java, Perl,
and PHP. Within each of these implementations (CFML, COM, Java, and Perl), support for client-side
JavaScript objects capable of working with WDDX is provided. Server-side JavaScript is also
supported via the COM implementation.

23.2.3 Show Me the WDDX!

Now that we've covered the how and why of WDDX, let's take a moment to examine the syntax of a
WDDX packet. Because WDDX uses an XML DTD, a WDDX packet is just a collection of tags and data
elements. The following is a WDDX packet containing a single string value:

<wddxPacket version='1.0'>
 <header></header>
 <data>
 <string>Programming ColdFusion</string>
 </data>
</wddxPacket>

All WDDX packets are considered well-formed XML in the sense that their syntax conforms to the XML
1.0 specification. Every WDDX packet must be enclosed in the <wddxPacket></wddxPacket> tags.
The current version of the WDDX DTD is 1.0a and is specified along with the <wddxPacket> tag. The

full WDDX DTD may be obtained by visiting http://www.openwddx.org and downloading the WDDX
SDK. The next tag pair, <header></header> isn't currently used in WDDX, but it has been included in
case a need for it arises in the future. The <data></data> tag pair marks the start and end of all
serialized data within the WDDX packet. In this example, only a single string, Programming
ColdFusion , is serialized within the packet. It is delimited appropriately using the
<string></string> tags. Other datatypes include <number> , <null> , <Boolean> , <dateTime> ,
<recordset> , <array> , <struct> , and <binary> . These are covered later in the chapter.

There is no concept of whitespace in WDDX. The prior example in which we neatly indented the tag
pairs of the WDDX packet and separated them with newlines is just as valid as a WDDX packet
containing no whitespace at all. In fact, most WDDX packets that are created using the cfwddx tag

contain no whitespace between the pairs of tags. Although more difficult to read, this is actually a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

desirable format for transporting WDDX packets, as whitespace can add to the overall bulk of the
packet (eating up precious bandwidth and additional storage space).[4]

[4] If you use ColdFusion Studio/Homesite+ as your development environment, you can open any WDDX packet
residing in a file and apply the WDDX CodeSweeper (located under Tools CodeSweeper WDDX
Sweeper) to it. The WDDX Sweeper takes an unformatted (all whitespace stripped) WDDX packet and formats it
for easy readability.

One of the great things about using WDDX with ColdFusion is that you don't really have to do much
work to serialize and deserialize WDDX packets. ColdFusion uses the cfwddx tag to handle the
serialization and deserialization of the data for you according to the WDDX XML DTD. The cfwddx tag

can also be used to create JavaScript statements that instantiate equivalent JavaScript objects (more
on this later). The general syntax for using the cfwddx tag is as follows:

<cfwddx action="action"

 input="data_to_be_serialized/de-serialized"

 output="variable_name_for_results"

 toplevelvariable="top_level_variable_name_for_javascript_object"
 usetimezoneinfo="Yes/No">

The action attribute is required and specifies the action to be performed by the tag. Possible values

include the following:

CFML2WDDX

Serializes CFML to WDDX
WDDX2CFML

Deserializes WDDX to CFML
CFML2JS

Serializes CFML to WDDX, then automatically deserializes it to JavaScript in a single step
WDDX2JS

Deserializes WDDX to JavaScript

The input attribute specifies the data to be serialized/deserialized. As you might expect, output
specifies a variable to hold the serialized/deserialized data. output is required when action is
WDDX2CFML . For all other actions, if no value is specified for output , the results of the

serialization/deserialization are output directly to the browser in the HTML stream. The
toplevelvariable attribute is required when action is set to CFML2JS or WDDX2JS . It specifies the

name of the top-level JavaScript object created when deserialization occurs.

The final attribute is usetimezoneinfo . This attribute is optional, can be set to Yes or No, and

indicates whether to use time-zone information when serializing CFML to WDDX. If this attribute is set
to Yes , ColdFusion calculates the hour/minute offset for all date/time objects in the WDDX packet. If
usetimezoneinfo is set to No , local time is used for all date/time objects. The default value for
usetimezoneinfo is Yes .

23.2.4 Serializing and Deserializing Data

In CFML, the process of serializing and deserializing data is handled by the cfwddx tag. The following

sections step through the process of using the tag to serialize and deserialize various simple and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

complex datatypes. Numerous examples are provided to make the concepts as clear as possible.

23.2.4.1 Serializing and deserializing simple values

The easiest types of values to work with are simple values, as simple values only consist of numbers,
strings, Boolean, date/time values, and null datatypes. The process of serializing and deserializing
simple values then is straightforward. Example 23-13 serializes an example of each simple datatype
(boolean , dateTime , null , number , and string) and displays the resulting WDDX packets in an

HTML table so that you can see how the structure of each packet varies depending on the datatype
represented.

Example 23-13. Serializing simple datatypes to WDDX

<!--- serialize a boolean --->
<cfwddx action="CFML2WDDX" input="#IsDefined('y')#" output="WDDX_boolean">

<!--- serialize a dateTime --->
<cfwddx action="CFML2WDDX" input="#now()#"
 output="WDDX_dateTime" usetimezoneinfo="Yes">

<!--- serialize a number --->
<cfwddx action="CFML2WDDX" input="#Val(123.456)#" output="WDDX_Number">

<!--- serialize a null ColdFusion style (an empty string) --->
<cfwddx action="CFML2WDDX" input="" output="WDDX_Null">

<!--- serialize a string --->
<cfwddx action="CFML2WDDX" input="I am a string!" output="WDDX_String1">

<!--- serialize a string with a newline character --->
<cfwddx action="CFML2WDDX" input="I am a string! So am I."
 output="WDDX_String2">

<!--- serialize a string with a tab --->
<cfwddx action="CFML2WDDX" input="I am a string!#CHR(9)#So am I."
 output="WDDX_String3">

<h2>Simple datatypes serialized as WDDX packets</h2>

<!--- output all of the wddx packets for the simple datatypes --->
<cfoutput>
<table border="1" cellpadding="3">
<tr>
 <th>Data Type</th><th>WDDX Packet</th>
<tr>
<tr>
 <td>boolean:</td><td>#HTMLEditFormat(WDDX_boolean)#</td>
</tr>
<tr>
 <td>dateTime:</td><td>#HTMLEditFormat(WDDX_dateTime)#</td>
</tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<tr>
 <td>null (CFML) as an empty string</td><td>#HTMLEditFormat(WDDX_null)#</td>
</tr>
<tr>
 <td>null (COM, Java and JavaScript)</td>
 <td><wddxPacket version='1.0'><header></header><data>
 <null/></data></wddxPacket></td>
</tr>
<tr>
 <td>number</td><td>#HTMLEditFormat(WDDX_number)#</td>
</tr>
<tr>
 <td>string</td><td>#HTMLEditFormat(WDDX_String1)#</td>
</tr>
<tr>
 <td>string with newline character encoded</td>
 <td>#HTMLEditFormat(WDDX_String2)#</td>
</tr>
<tr>
 <td>string with tab encoded</td><td>#HTMLEditFormat(WDDX_String3)#</td>
</tr>
</table>
</cfoutput>

Figure 23-7 shows how the various simple datatypes are represented in WDDX. Each chunk of data is
delimited by a set of tags declaring the datatype. Strings are delimited by <string></string> ,
numbers by <number></number> , and date/time objects by <dateTime></dateTime> . Null and

Boolean values are handled slightly differently. Instead of tag pairs, null values are represented by
<null/> while Boolean values are represented by <boolean value='false'/> or <boolean
value='true'/> .[5]

[5] Because some programming languages (including CFML) have no concept of null, deserialized null values are
automatically converted to empty strings where appropriate.

Figure 23-7. Simple values as represented by WDDX packets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the HTMLEditFormat() is used with each output variable that is written to the browser. It
is necessary to do this because the WDDX packets contain special characters such as < and > that
must be escaped before they can be displayed by a browser. The HTMLEditFormat() function

ensures that all special characters are escaped before the WDDX packet is displayed. This technique is
especially important if you plan to pass WDDX packets between templates as form variables.

Now that you understand the basics of serializing simple datatypes, let's turn our attention to the
deserialization process. As I mentioned earlier, deserialization is the process of taking the data stored
in a WDDX packet and converting it back to its native format. Thanks to the cfwddx tag,

deserialization involves only a single tag call. Example 23-14 demonstrates deserialization of a string
stored in a WDDX packet.

Example 23-14. Deserializing a WWDX packet with a single string value

<!--- first we need to serialize the string into a wddx packet --->
<cfwddx action="CFML2WDDX" input="I am a string!" output="MyWDDXPacket">

<!--- output the wddx packet in a text area so you can see the entire packet --->
<h3>WDDX Packet Containing A Simple Value (string)</h3>
<form>
<cfoutput>
<textarea rows="6" cols="50" wrap="virtual">#HTMLEditFormat(MyWDDXPacket)#
</textarea>
</cfoutput>
</form>

<!--- deserialize the wddx packet containing the string. The entire
 deserialization process is performed with this single tag call. --->
<cfwddx action="WDDX2CFML" input="#MyWDDXPacket#"
 output="DeserializedSimpleValue">

<h3>Here Is The Deserialized Simple Value:</h3>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
#DeserializedSimpleValue#
</cfoutput>

In Example 23-14 , the string "I am a string!" is serialized to a WDDX packet and output to the
browser so you can see what it looks like. The cfwddx tag is then called a second time, but the
action attribute is set to WDDX2CFML . This tells ColdFusion that we want to use the WDDX tag to
deserialize a WDDX packet. The packet to deserialize is specified using the input attribute. In our
example, the packet is contained in a variable called MyWDDXPacket . The output attribute specifies a
variable to hold the deserialized value. We set output to DeserializedSimpleValue . The template
ends by outputting the value of DeserializedSimpleValue to the browser so we can see that the

deserialization was successful.

23.2.4.2 Datatype conversion issues

Because CFML is considered a typeless language, you can run into problems with certain datatypes
not serializing as you would expect them to. In these cases, you may need to "convert" certain values
before having them properly serialized as the intended datatype by the cfwddx tag. For example,
both the cfwddx calls shown in the following example serialize the date as a <string> as opposed to
a <dateTime> value:

<cfwddx action="CFML2WDDX" input="03/03/2003"
 output="MyWDDXPacket1" usetimezoneinfo="Yes">

<cfoutput>
#HTMLEditFormat(MyWDDXPacket1)#
</cfoutput>

<cfwddx action="CFML2WDDX" input="#DateFormat('03/03/2003','mm/dd/yyyy')#"
 output="MyWDDXPacket2" usetimezoneinfo="Yes">

<cfoutput>
#HTMLEditFormat(MyWDDXPacket2)#
</cfoutput>

In order to get the date to serialize as a <dateTime> as opposed to a <string> , it is necessary to
use a date function such as CreateDate() , ParseDateTime() , or Now() (but not
CreateODBCDate() or DateFormat()) before serializing the date. It is also possible to use the
Now() function as in the following examples:

<!--- use the CreateDate function to create a dateTime datatype --->
<cfwddx action="CFML2WDDX" input="#CreateDate(2003,08,15)#"
 output="MyWDDXPacket1" usetimezoneinfo="Yes">

<cfoutput>
#HTMLEditFormat(MyWDDXPacket1)#
</cfoutput>

<!--- use the Now function to create a dateTime datatype --->
<cfwddx action="CFML2WDDX" input="#Now()#"
 output="MyWDDXPacket2" usetimezoneinfo="Yes">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p>
<cfoutput>
#HTMLEditFormat(MyWDDXPacket2)#
</cfoutput>

<!--- use the ParseDateTime function to create a dateTime datatype --->
<cfwddx action="CFML2WDDX"
 input="#ParseDateTime('Sat, 15 Aug 2003 19:00:00 +0400', 'POP')#"
 output="MyWDDXPacket3" usetimezoneinfo="Yes">

<p>
<cfoutput>
#HTMLEditFormat(MyWDDXPacket3)#
</cfoutput>

Because CFML is typeless, issues like this do arise with <boolean> and <number> datatypes. The
following example shows one way to overcome this problem using a Boolean function (IsDefined()
) and the Val() function, respectively:

<!--- using a boolean function such as IsDefined ensures a boolean datatype
 during serialization. Simply specifying "yes" or "No" for the input
 attribute will result in the value being serialized as a string. --->
<cfwddx action="CFML2WDDX" input="#IsDefined('y')#" output="MyWDDXPacket1">

<cfoutput>
#HTMLEditFormat(MyWDDXPacket1)#
</cfoutput>

<!--- use the val function to ensure that a number is serialized as a numeric
 type and not as a string --->
<cfwddx action="CFML2WDDX" input="#Val(123.456)#" output="MyWDDXPacket2">

<p>
<cfoutput>
#HTMLEditFormat(MyWDDXPacket2)#
</cfoutput>

23.2.4.3 Testing for well-formed WDDX

The cfwddx tag is capable of Deserializing only well-formed WDDX packets. If you attempt to

deserialize a non-well-formed WDDX packet, ColdFusion throws an error. Because of this, you need a
way to test whether a WDDX packet is well-formed. This is especially true in the case of WDDX
packets retrieved from other servers over which you have no control. There are two methods for
determining whether a value is a well-formed WDDX packet. The first method uses a function called
IsWDDX() :

<cfif IsWDDX(MyWDDXPacket)>
 Is a well-formed WDDX packet!
<cfelse>
 Is not a well-formed WDDX packet!
</cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IsWDDX() function uses a validating XML parser with the WDDX DTD to determine whether a
specified value is a well-formed WDDX packet. It returns true if the value is a well-formed WDDX
packet; false if it isn't. For more information on IsWDDX() , see Appendix B .

The second method involves an optional attribute of the cfwddx tag:

<cfwddx action="WDDX2CFML" input="#MyWDDXPacket#"
 output="DeserializedSimpleValue" validate="Yes">

validate can be set to either Yes or No and indicates whether to use a validating XML parser with the
WDDX DTD to determine whether the value specified in input is a well-formed WDDX packet when
action is WDDX2CFML or WDDDX2JS . If the value is a well-formed WDDX packet, deserialization takes
place. If the value isn't well-formed WDDX, an exception is thrown. The validate parameter
performs the same job as the IsWDDX function.

23.2.4.4 Serializing and deserializing complex datatypes

WDDX can also represent more complex datatypes than the ones we've covered so far. As such, it is
possible to serialize and deserialize complex datatypes such as record sets (query objects), arrays,
structures, and binary objects. Part of what makes WDDX so attractive to developers is that the
process for serializing and deserializing complex datatypes is the same as it is for serializing simple
values. The difference lies in how each datatype is represented within the WDDX packet. Throughout
this section, we'll look at serializing and deserializing complex datatypes.

23.2.4.4.1 Record sets

The first complex datatype we'll cover is the record set. In ColdFusion terms, a record set is
synonymous with a query object. Throughout the rest of this chapter, we'll use the terms
interchangeably. With the cfwddx tag, it is easy to take a ColdFusion query object and serialize it to a

WDDX packet. Deserializing the packet is just as simple. Example 23-15 shows just how easy it is to
deserialize a packet.

Example 23-15. Serializing and deserializing a query object (record set)
using cfwddx

<!--- get all employee records --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT * FROM EmployeeDirectory
</cfquery>

<!--- serialize the employee records to a wddx packet --->
<cfwddx action="CFML2WDDX" input="#GetEmployeeInfo#"
 output="QueryObject" usetimezoneinfo="Yes">

<!--- output the wddx packet in a text area so you can see the entire packet --->
<h3>WDDX Packet Containing a Query Object</h3>
<form>
<cfoutput>
<textarea rows="15" cols="80" wrap="virtual">#HTMLEditFormat(QueryObject)#
</textarea>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>
</form>

<!--- deserialize the wddx packet containing the query object --->
<cfwddx action="WDDX2CFML" input="#QueryObject#"
 output="DeserializedQueryObject">

<h3>Here Is The Deserialized Query Object:</h3>
<table cellpadding="3" cellspacing="0">
<tr bgcolor="#888888">
 <th>Name</th><th>Title</th><th>Department</th><th>E-mail</th>
 <th>Phone Extension</th>
</tr>
<cfoutput query="DeserializedQueryObject">
<tr bgcolor="##C0C0C0">
 <td>#Name#</td><td>#Title#</td><td>#Department#</td>
 <td>#Email#</td><td>#PhoneExt#</td>
</tr>
</cfoutput>
</table>

In Example 23-15 , the EmployeeDirectory table of the ProgrammingCF data source is queried. The
resulting record set is serialized to a WDDX packet by setting the action attribute of the cfwddx tag
to CFML2WDDX . Setting input to #GetEmployeeRecords# tells the cfwddx tag to serialize the record
set contained in the GetEmployeeRecords variable. The output attribute allows us to specify a

variable to hold the WDDX packet created by the serialization process. We set our output variable to
QueryObject .

Once we have the WDDX packet, it is displayed to the browser in a textarea form element so we can

see the packet in its entirety, as shown in Figure 23-8 .

Figure 23-8. Serialization and deserialization of a record set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 23-8 , you'll notice this tag in the WDDX packet:

<recordset rowCount='12' fieldNames='ID,name,TITLE,DEPARTMENT,EMAIL,PHONEEXT'>

This line (it ends with the </recordset> tag) identifies the data that follows as a record set. The
rowCount attribute defines the record set consisting of twelve records (rows). The field names
(column headers) for the record set are specified by the rowCount attribute. The data from the record
set is then included in the WDDX packet, within the <recordset></recordset> tags, one column at a

time:

<field name='ID'><number>1</number><number>2</number><number>3</number>
<number>4</number><number>5</number><number>6</number><number>7</number>
<number>8</number><number>9</number><number>10</number><number>11</number>
<number>18</number></field>

Each data element within the record set is marked with the appropriate tag for its datatype. Strings
are marked up with <string></string> , numbers with <number></number> , etc. Only strings

(including Base64-encoded binary strings), numbers, and data/time values are allowed within record
sets.

The next part of the template is used to deserialize the packet we just created. This is done by calling
the cfwddx tag and setting action to WDDX2CFML . This time, the input attribute is set to
QueryObject , the variable that contains the serialized WDDX packet. The output attribute specifies a
variable to hold the deserialized data-in this case a ColdFusion query object. We set our output
variable to DeserializedQueryObject .

Once we have our query object, the next step is to output the contents to the browser. Our query
object has all the same properties as any query object you would obtain using the cfquery tag. As

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such, we can create an HTML table of the values in the query object using the cfoutput tag, and the

results are shown in Figure 23-8 .

23.2.4.4.2 Arrays

Arrays are a complex datatype that use numeric (integer) indexes to store data of varying types.
Arrays can consist of any number of dimensions but typically are limited to one, two, or three. As far
as the WDDX DTD is concerned, you may nest any number of arrays to achieve the desired number of
dimensions.

Example 23-16 takes a one-dimensional array that contains student grades and serializes them into a
WDDX packet. The results are then output in a textarea HTML form element so you can see what

the resulting packet looks like. Next, the packet is deserialized back to a one-dimensional array and
the results (shown in Figure 23-9) are output to the browser.

Example 23-16. Serializing and deserializing a one-dimensional array

<!--- create a one-dimensional array of student grades --->
<cfset Grades = ArrayNew(1)>

<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<!--- serialize the grades array to a wddx packet --->
<cfwddx action="CFML2WDDX" input="#Grades#" output="GradesArray">

<!--- output the wddx packet in a text area so you can see the entire packet --->
<h3>WDDX Packet Containing A One-dimensional Array</h3>
<form>
<cfoutput>
<textarea rows="6" cols="80" wrap="virtual">#HTMLEditFormat(GradesArray)#
</textarea>
</cfoutput>
</form>

<!--- deserialize the gradesarray wddx packet back to an array --->
<cfwddx action="WDDX2CFML" input="#GradesArray#" output="DeserializedArray">

<h3>Here Are The Deserialized Grades:</h3>
<cfloop index="i" from="1" to="#ArrayLen(DeserializedArray)#">
<cfoutput>
Grade #i#: #DeserializedArray[i]#

</cfoutput>
</cfloop>

Figure 23-9. WDDX packet containing a one-dimensional array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Looking at the WDDX packet shown in Figure 23-9 , it is easy to see how a one-dimensional array is
represented within the packet. The line:

<array length='5'><string>95</string><string>93</string><string>87</string>
<string>100</string><string>74</string></array>

defines a one-dimensional array that is five elements in length. Each element in the array (in this
case, all strings) is marked up by <string></string> tags. One of the advantages to using an array

is that its elements can be made up of any datatype, simple or complex, that can be represented by
WDDX.

Multidimensional arrays differ only slightly from their one-dimensional siblings in how they are
represented within a WDDX packet. Consider Example 23-17 , in which we create a two-dimensional
array of student grades. Each student, represented by the elements in the first dimension of the
array, has grades for three different tests, represented by the elements in the second dimension of
the array. The array is serialized to a WDDX packet and output in a textarea element of an HTML

form so that you can study the packet. After the packet is displayed, it is deserialized back into a two-
dimensional array that is in turn presented to the browser, as shown in Figure 23-10 .

Example 23-17. Serializing and deserializing a two-dimensional array

<!--- create a two dimensional array of student grades. Each student
 (represented by the first dimension has grades for more than one test
 (represented by the second dimension). --->
<cfset Grades = ArrayNew(2)>

<cfset Grades[1][1] = 95>
<cfset Grades[1][2] = 93>
<cfset Grades[1][3] = 87>
<cfset Grades[2][1] = 100>
<cfset Grades[2][2] = 74>
<cfset Grades[2][3] = 86>
<cfset Grades[3][1] = 90>
<cfset Grades[3][2] = 94>
<cfset Grades[3][3] = 96>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- serialize the grades array to a wddx packet --->
<cfwddx action="CFML2WDDX" input="#Grades#" output="GradesArray">

<!--- output the wddx packet in a text area so you can see the entire packet --->
<h3>WDDX Packet Containing A Two-dimensional Array</h3>
<form>
<cfoutput>
<textarea rows="8" cols="80" wrap="virtual">#HTMLEditFormat(GradesArray)#
</textarea>
</cfoutput>
</form>

<!--- deserialize the gradesarray wddx packet back to an array --->
<cfwddx action="WDDX2CFML" input="#GradesArray#" output="DeserializedArray">

<h3>Here Are The Deserialized Grades:</h3>

<!--- this looping technique utilizes an outer and an inner loop (designated o
 and i respectively) for looping through each element in each dimension of
 the array --->
<cfloop index="o" FROM="1" TO="#ArrayLen(DeserializedArray)#">
 <cfloop index="i" FROM="1" TO="#ArrayLen(DeserializedArray[o])#">
 <cfoutput>
 Student #o#, Grade #i#: #DeserializedArray[o][i]#

 </cfoutput>
 </cfloop>
</cfloop>

Figure 23-10. Serializing and deserializing a multidimensional array

Look at the resulting WDDX packet shown in Figure 23-10 , paying particular attention to the part

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that reads:

<array length='3'><array length='3'><string>95</string><string>93</string>
<string>87</string></array><array length='3'><string>100</string>
<string>74</string><string>86</string></array><array length='3'>
<string>90</string><string>94</string><string>96</string></array></array>

You will notice that the WDDX packet represents multidimensional arrays as an array of arrays! This
allows you to create arrays of as many dimensions as you want.

Once the WDDX packet is deserialized, outputting the contents of the two-dimensional array is just a
matter of performing an outer and inner loop over the array.

23.2.4.4.3 Structures

Structures are similar to arrays in their architecture except that they are indexed by strings known as
keys instead of integer values. Structures are also known as associative arrays, dictionaries, or maps
depending on the programming language being used.

You should be careful when serializing and deserializing structures as WDDX handles them without
regard to case. Because of this, if your structure contains two or more keys with the same name
(regardless of case), only the last value is set when serializing or deserializing the structure. This is
necessary as some programming languages with WDDX serializers/deserializers are case-insensitive.

The template in Example 23-18 creates a structure called Employee that contains a single employee
record. The structure is serialized, and the resulting WDDX packet is output within a textarea HTML

form element so that you can study its structure (no pun intended). After the WDDX packet is
displayed, it is deserialized back to a structure called DeserializedEmployeeStructure . The
contents of that structure are then output to the browser (shown in Figure 23-11) using the cfdump

tag.

Example 23-18. Serializing and deserializing a structure

<!--- create the employee structure --->
<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<!--- serialize the employee structure to a wddx packet --->
<cfwddx action="CFML2WDDX" input="#Employee#" output="EmployeeStructure">

<!--- output the wddx packet in a text area so you can see the entire packet --->
<h3>WDDX Packet Containing a Structure</h3>
<form>
<cfoutput>
<textarea rows="10" cols="80" wrap="virtual">#HTMLEditFormat(EmployeeStructure)#
</textarea>
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</form>

<!--- deserialize the wddx packet containing the structure --->
<cfwddx action="WDDX2CFML" input="#EmployeeStructure#"
 output="DeserializedEmployeeStructure">

<cfdump var="#DeserializedEmployeeStructure#">

Figure 23-11. Serialization and deserialization of a structure

Looking at the WDDX packet shown in Figure 23-11 , you'll notice that the structure is marked up
using <struct></struct> :

<struct>
<var name='department'><string>Executive Management</string></var>
<var name='title'><string>President</string></var>
<var name='name'><string>Pere Money</string></var>
<var name='phoneext'><string>1234</string></var>
<var name='email'><string>pmoney@example.com</string></var>
</struct>

Each key within the structure is defined by a set of <var></var> tags. The value for each key is
marked up within the <var></var> tags using the tags appropriate for the datatype. Just like arrays,

you can nest structures as well as store any datatype available in WDDX.

23.2.4.4.4 Binary data

The ability to serialize and deserialize binary data allows you to send and receive binary files as WDDX
packets. The WDDX DTD specifies that all binary data included in a WDDX packet must be Base64-
encoded. All the serializers/deserializers included with the WDDX SDK as well as the cfwddx tag

handle the encoding automatically. Future versions of WDDX may allow additional encoding schemes,
but for now, only Base64 encoding is supported.

Example 23-19 demonstrates serializing and deserializing a binary file. To keep things simple, we use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a GIF file, which is installed by default when you install the ColdFusion MX server. Realistically,
sending just a binary file as a WDDX packet makes little sense as the deserializer has no way of
knowing anything about the binary data other than its length (we'll talk about this in a few moments).
When sending binary data, you'll probably want to include more descriptive information about the
data, such as a filename, MIME type, creation date, etc. All this information and more (as much as
you want to include) can be included in the WDDX packet. To do this, all you need to do is create a
structure to hold both the descriptive information and the Base64 representation of the binary file as
name/value pairs within the structure. The structure, including the binary data, can then be serialized
into a WDDX packet. Example 23-19 shows a simple way to create the structure.

Example 23-19. Serializing and deserializing a binary file

<!--- read in the binary file using cffile --->
<cffile action="ReadBinary"
 file="c:\cfusionmx\wwwroot\cfide\administrator\images\cfmx.gif"
 variable="MyBinaryFile">

<!--- create a structure to hold descriptive information about the file as well
 as the Base64 encoded binary file --->
<cfset FileInfo = StructNew()>
<cfset FileInfo.MyBinaryFile = MyBinaryFile>
<cfset FileInfo.FileName = "cfmx.gif">
<cfset FileInfo.MIMEType = "image/gif">

<!--- convert the structure to wddx. The binary is automatically Base64
 encoded --->
<cfwddx action="CFML2WDDX" input="#FileInfo#" output="MyWDDX">

<!--- output the wddx packet in a text area so you can see the entire packet --->
<h3>WDDX Packet Containing Binary Representation of a GIF File</h3>
<form>
<cfoutput>
<textarea rows="15" cols="80" wrap="virtual">#HTMLEditFormat(MyWDDX)#</textarea>
</cfoutput>
</form>

<!--- deserialize the wddx packet back to a structure --->
<cfwddx action="WDDX2CFML" input="#MyWDDX#" output="myFile">

<!--- write the binary object out to a file --->
<cffile action="WRITE"
 file="c:\cfusionmx\wwwroot\cfide\administrator\images\new_#myFile.FileName#"
 output="#myFile.MyBinaryFile#">

<h3>Here Is The Deserialized Binary:</h3>
<!--- display the file to to browser. This could be done using cfcontent as
 well, but then you wouldn't be able to see the rest of the content that
 was displayed prior to the cfcontent call --->
<cfoutput>
FileName: #myFile.FileName#

MIME Type: #myFile.MIMEType#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>

The first task that the template in Example 23-19 performs is to read the GIF file into a binary object
using the cffile tag's ReadBinary action . Next, a structure is created to hold the binary object, the
file's name, and its MIME type. After that is accomplished, the cfwddx tag serializes the structure into

a WDDX packet. During serialization, the binary object within the structure is automatically Base64-
encoded. Once the WDDX packet has been created, it is displayed in the browser (Figure 23-12) so
that you can see how the packet is constructed.

Figure 23-12. Serializing and deserializing a structure containing a binary
file

There are two things worth mentioning here. The first is the <binary length='5071'> tag that

appears near the beginning of the packet. This tag provides the deserializer with the length of the
binary value being deserialized. The second important thing to notice here is that the <binary>
datatype is nested within the <var> tag of a <struct> . As mentioned previously, complex datatypes

such as arrays and structures afford a lot of flexibility and power in an incredibly simple and easy-to-
use way.

After the WDDX packet has been displayed, it is deserialized back into a structure. Next, the cffile

tag writes a copy of the GIF image back to the ColdFusion server. Finally, the filename and MIME type
stored in the structure are both output along with the image itself.

If you want to include more than one binary file in your WDDX packet, all you need to do is create an
array of structures with each array element containing a single structure holding the binary file and its
descriptive information.

23.2.5 Storing WDDX Packets

So far, in this chapter, we have covered all sorts of techniques for serializing and deserializing WDDX
packets. All our examples have shown the serialization and deserialization process occurring on the
same page. While great for illustrative purposes, the examples have little practical application. After
all, why would you want to serialize and then deserialize a packet on the same page? This leads us to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the topic for this section-storing your WDDX packets so that you can refer to them later. There are
two ways you can store WDDX packets: in a text file or in a database (including LDAP directories).
The next two sections discuss these two methods and provide examples of both storing and retrieving
packets.

23.2.5.1 Storing packets in a text file

One of the most interesting things about WDDX is you can use it to store data without having to write
the data to a database. For example, record-set data stored in a WDDX packet is much more useful
than it is when it's stored in a delimited text file. Example 23-20 takes a query object and serializes it
to a WDDX packet. The resulting WDDX packet is then written to a text file using the cffile tag.

Example 23-20. Storing a WDDX packet containing a record set in a text
file

<!--- get all employee records --->
<cfquery name="GetEmployeeInfo" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
</cfquery>

<!--- serialize the employee records to a wddx packet --->
<cfwddx action="CFML2WDDX" input="#GetEmployeeInfo#"
 output="QueryObject" usetimezoneinfo="Yes">

<!--- store the wddx packet in a text file on the server --->
<cffile action="Write" file="c:\temp\QueryObject.txt"
 output="#QueryObject#" addnewline="No">

<!--- Let the user know the file has been written --->
<h3>The WDDX packet has been written to a text file</h3>

Once you have the WDDX packet saved in the text file, you need a way to retrieve the packet and
deserialize it. Example 23-21 uses the cffile tag to read the contents of the text file into a variable
that is then fed to the cfwddx tag and deserialized. The results are then output to the browser.

Example 23-21. Retrieving and deserializing a WDDX packet from a text
file

<!--- store the wddx packet in a text file on the server --->
<cffile action="Read" file="c:\temp\QueryObject.txt" variable="MyWDDX">

<!--- deserialize the wddx packet containing the query object --->
<cfwddx action="WDDX2CFML" input="#MyWDDX#" output="DeserializedQueryObject">

<!--- output the results of the deserailized query object --->
<h3>Here Is The Deserialized Query Object Read From A Text File:</h3>
<table cellpadding="3" cellspacing="0">
<tr bgcolor="#888888">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <th>Name</th><th>Title</th><th>Department</th><th>E-mail</th>
 <th>Phone Extension</th>
</tr>
<cfoutput query="DeserializedQueryObject">
<tr bgcolor="##C0C0C0">
 <td>#Name#</td><td>#Title#</td><td>#Department#</td>
 <td>#Email#</td><td>#PhoneExt#</td>
</tr>
</cfoutput>
</table>

23.2.5.2 Storing packets in a database

There may be times when you want to store WDDX packets in a database. A classic example involves
using a long text field (a memo field in MS Access) to store a WDDX packet for each record in the
database, which allows you to add additional data to the database without modifying its original
structure. This provides you with a mechanism for storing complex datatypes (such as arrays and
structures) inside a database. Another possibility includes using WDDX to store binary files (such as
GIF and JPEG images) inside a database.

Example 23-22 takes a GIF image (obtained from the sample applications that you can choose to
have installed when you install ColdFusion) and stores it in a ColdFusion structure along with the
filename and the file's MIME type. The structure is then serialized, and the resulting WDDX packet is
saved in the Picture field in the EmployeeDirectory table used in many of our previous examples.
The Picture field is set up as a Memo field (since our example database is an MS Access database).

Example 23-22. Serializing a binary file and storing it in a database

<!--- read in the binary file using cffile --->
<cffile action="ReadBinary"
 file="c:\cfusionmx\wwwroot\cfdocs\exampleapps\old\employee\images
\people\ls003081_comp.jpg"
 variable="MyBinaryFile">

<!--- create a structure to hold descriptive information about the file as well
 as the Base64 encoded binary file --->
<cfset FileInfo = StructNew()>
<cfset FileInfo.MyBinaryFile = MyBinaryFile>
<cfset FileInfo.FileName = "coldfusion.gif">
<cfset FileInfo.MIMEType = "image/gif">

<!--- convert the structure to wddx. The binary is automatically Base64
 encoded --->
<cfwddx action="CFML2WDDX" input="#FileInfo#" output="MyWDDX">

<cfquery name="SaveImage" datasource="ProgrammingCF">
 UPDATE EmployeeDirectory
 SET Picture = '#MyWDDX#'
 WHERE Name = 'Pere Money'
</cfquery>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h3>Finished updating the database</h3>

If you look at the cfquery statement in Example 23-21 , you'll notice that we use an UPDATE

statement to add the picture to an already existing database record. In this case, we add a picture for
the employee named Pere Money, so we include:

WHERE Name = 'Pere Money'

Once we have a WDDX packet stored in our database, we need a way to retrieve it and deserialize it.
Example 23-23 shows how to do this.

Example 23-23. Retrieving a WDDX packet from a database and
deserializing it

<!--- query the database and retrieve the WDDX packet --->
<cfquery name="GetEmployee" datasource="ProgrammingCF">
 SELECT *
 FROM EmployeeDirectory
 WHERE Name = 'Pere Money'
</cfquery>

<!--- deserialize the wddx packet back to a structure --->
<cfwddx action="WDDX2CFML" input="#GetEmployee.Picture#"
 output="DeserializedImage">

<!--- write the image out to a file --->
<cffile action="Write"
 file="c:\cfusionmx\wwwroot\cfdocs\images\#DeserializedImage.FileName#"
 output="#DeserializedImage.MyBinaryFile#">

<h3>From our employee directory:</h3>
<!--- display the file to to browser. This could be done using cfcontent as
 well, but then you wouldn't be able to see the rest of the content that
 was displayed prior to the cfcontent call --->
<cfoutput query="GetEmployee">

#Name#

#Title#

#Email#
</cfoutput>

The template in Example 23-23 works by retrieving the entire record from the database using
cfquery . Next, the WDDX packet contained in the Picture field is deserialized using the cfwddx tag.
Because the deserialized packet contains a structure holding the binary image, the cffile tag is used

to write the image to a file. After this step is complete, an HTML page is constructed, and the contents
of the query are output to the browser. Using the information stored in the deserialized structure, an
img tag is dynamically constructed to retrieve the saved image from the database. The image is

output along with the rest of the record.

23.2.6 Server-to-Browser WDDX Using JavaScript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WDDX has fantastic possibilities that extend well beyond server-to-server data sharing. If you use
WDDX along with client-side JavaScript, it becomes possible to offload data processing of complex
datatypes to a historically underused resource-the browser. What does this mean for you as a web
developer? For starters, it means that you now have the ability to easily convert complex datatypes,
such as arrays, structures, and record sets from CFML, to JavaScript objects that can then be
manipulated by the browser. This opens a whole range of possibilities for building more sophisticated
and dynamic user interfaces to your application data. It also means you can potentially improve the
performance of applications that involve heavy data browsing and editing by moving the records to
the browser and using JavaScript to let the user scroll through and edit as necessary. Once all
changes have been made, the data can be serialized (using Java Script) back to a WDDX packet and
then posted back to the server using a hidden form field.

23.2.6.1 Passing data to JavaScript on the browser

The cfwddx tag provides two mechanisms for passing data to JavaScript on the browser. The first
mechanism involves using cfwddx to serialize CFML data into a WDDX packet, then using the cfwddx

tag to deserialize the WDDX packet to an equivalent JavaScript object. Example 23-24 shows how to
do this by serializing a structure containing an employee record to WDDX, then deserializing the
WDDX packet containing the structure to a JavaScript struct . The JavaScript code that creates the
struct object is created dynamically using the cfwddx tag. The JavaScript struct is then looped over

and the contents output to the browser.

Example 23-24. Generating dynamic JavaScript using the cfwddx tag

<!--- create an employee structure --->
<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<!--- first we need to serialize the structure into a wddx packet --->
<cfwddx action="CFML2WDDX" input="#Employee#" output="MyWDDXPacket">

<!--- output the wddx packet in a text area so you can see the entire packet --->
<h3>WDDX Packet Containing A Simple Value (string)</h3>
<form>
<cfoutput>
<textarea rows="6" cols="50" wrap="virtual">#HTMLEditFormat(MyWDDXPacket)#
</textarea>
</cfoutput>
</form>

<h3>Deserialize it to a JavaScript variable (view the source)</h3>
<!--- deserialize the wddx packet containing the string to a JAvaScript
 variable --->
<cfwddx action="WDDX2JS" input="#MyWDDXPacket#"
 output="MyJavaScript" toplevelvariable="theEmployee">

<!--- use JavaScript to output the contents of the WDDX packet containing the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 serialized employee structure. Note that the JavaScript code that creates
 the employee struct is created dynamically --->
<script language="JavaScript">
/** This line generates the dynamic JavaScript
 * necessary to create our "struct" object.
 */
<cfoutput>#MyJavaScript#</cfoutput>

// Loop through the employee "struct" and output each key/value
 for (i in theEmployee) {
 document.write([i] + ': ' + theEmployee[i] + '
');
 }
</script>

Looking at Example 23-24 , you'll notice that the first call to the cfwddx tag converts the Employee
structure to a WDDX packet. This is done by setting action to CFML2WDDX . At this point, nothing has

happened that involves any JavaScript or anything else we haven't covered so far. That all changes,
however, with the next call to the cfwddx tag. This time, we set action to WDDX2JS . The input
attribute specifies the WDDX packet we just created. output holds the dynamic JavaScript that is
created automatically by the cfwddx tag. If we were to leave out the output attribute, the JavaScript
is output in place automatically as part of the HTML stream. Specifying a variable name for output

allows us to decide exactly where in our template to output the dynamic JavaScript code. The final
attribute, toplevelvariable , names the top-level JavaScript object created when the WDDX packet
is deserialized to JavaScript. In Example 23-23 , we set our toplevelvariable to theEmployee .

The final section of the template in Example 23-24 creates the JavaScript necessary to output the
contents of the WDDX packet. First, we output the dynamic JavaScript we created in the previous
section. This is done by putting the MyJavaScript variable (specified in the output attribute)
containing the JavaScript code within a set of cfoutput tags. Next, we use a simple for loop to loop
over the contents of the struct object and write each key/value pair to the browser.

If you choose View Source in your browser, you will see the dynamic JavaScript code that is
generated by the cfwddx tag. It should look something like this:

<script language="JavaScript">
/** This line generates the dynamic JavaScript
 * necessary to create our "struct" object.
 */
theEmployee = new Object();
theEmployee["department"] = "Executive Management";
theEmployee["title"] = "President";
theEmployee["name"] = "Pere Money";
theEmployee["phoneext"] = "1234";
theEmployee["email"] = "pmoney@example.com";

// Loop through the employee "struct" and output each key/value
 for (i in theEmployee) {
 document.write([i] + ': ' + theEmployee[i] + '
');
 }
</script>

Note that the JavaScript code might not be visible in all browser versions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.2.6.2 Simplifying the process

As I mentioned at the beginning of this section, the cfwddx tag provides two mechanisms for passing

data to JavaScript on the browser. In Example 23-24 we used a two-step process to convert a CFML
structure to an equivalent JavaScript struct object. First, we used the cfwddx tag to serialize the
CFML structure to a WDDX packet. Then we used the cfwddx tag a second time to deserialize the
WDDX packet to a JavaScript struct object. There is a more effective way to do this. The cfwddx tag

can serialize data directly from CFML to WDDX, then automatically deserialize it to JavaScript in a
single step by setting action to CFML2JS , as shown in Example 23-25 , which modifies the code we

used in Example 23-24 .

Example 23-25. Going from CFML to JavaScript in a single step

<!--- create an employee structure --->
<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<!--- Serialize the CFML structure to WDDX then automatically deserialize it to
 a JavaScript object. This is all done in the background, so the WDDX
 packet is never available for viewing or use. --->
<cfwddx action="CFML2JS" input="#Employee#" output="MyJavaScript"
 toplevelvariable="theEmployee">

<h3>Create a JavaScript struct object from a CFML structure (view the source)</h3>

<!--- use JavaScript to output the contents of the WDDX packet containing the
 serialized Employee structure. Note that the JavaScript code that creates
 the employee struct is created dynamically --->
<script language="JavaScript">
/** This line generates the dynamic JavaScript
 * necessary to create our "struct" object.
 */
<cfoutput>#MyJavaScript#</cfoutput>

// Loop through the employee "struct" and output each key/value
 for (i in theEmployee) {
 document.write([i] + ': ' + theEmployee[i] + '
');
 }
</script>

The template in Example 23-25 produces the same output as the template in Example 23-24 . The
difference here is that we can accomplish the task using less code. Let's hear it for efficiency!

23.2.6.3 Passing data from JavaScript to ColdFusion

In the previous sections, we discussed methods for getting simple and complex datatypes from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion to JavaScript using WDDX so that the data could be manipulated from within the browser.
Now we need to look at how we can get that data back to ColdFusion from JavaScript once it is
finished being manipulated. As always, the solution is close at hand.

A file called wddx.js is automatically installed into \cfide\scripts\ when you install the ColdFusion
Application server. The wddx.js file contains two JavaScript objects (each with numerous functions)
that can be used to manipulate WDDX data within JavaScript:

WddxSerializer

The WddxSerializer object contains a single function, serialize() , that can serialize any

JavaScript datatype into WDDX. Once a value or object has been serialized, the resulting WDDX
is available as a JavaScript string value.

WddxRecordset

The WddxRecordset object contains functions that can construct and manipulate WDDX record

sets. Think of a record set as the same thing as a CFML query object.

To use the objects contained in the wddx.js template, you need to include the file from within your
application code:

<script language="JavaScript" src="/cfide/scripts/wddx.js"></script>

A detailed discussion of the objects contained in the wddx.js file and their related functions is beyond
the scope of this book. For more information, you can open the wddx.js file (located in \cfide\scripts\
by default when the ColdFusion server is installed) and read the detailed comments included with
each function. Additional information can be found in Chapter 8 , "WDDX JavaScript Objects," from
the CFML Language Reference that comes with the ColdFusion documentation or by visiting
http://www.openwddx.org .

Let's look at Example 23-26 , in which we use the WddxRecordset object to convert form-field data to

a WDDX record set object. The form allows you to enter information about a new employee. Once the
information has been entered, you can serialize it without having to refresh the current template by
clicking on the button labeled Serialize, which is shown in Figure 23-13 .

Figure 23-13. Serializing form data to WDDX using JavaScript

http://www.openwddx.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once the Serialize button is clicked, the form-field information is converted to a WDDX record set
object using the WddxRecordset object from the wddx.js file. The record set object is then serialized
to a WDDX packet using the WddxSerializer object from the same file. Once the record set has been
serialized, the resulting packet is placed in a Textarea form field called WDDX packet (shown in

Figure 23-13).

Example 23-26. Serializing a record set to a WDDX packet using
JavaScript

<h2>Employee</h2>

<!--- Include the wddx.js file containing the serialize function --->
<script language="JavaScript" src="/cfide/scripts/Wddx.js"></script>

<!--- serialize the contents of the form to a WDDX packet --->
<script language="JavaScript">
 /** this function calls the wddxSerializer object from
 * the wddx.js file to serialize the Recordset object
 * after it is created
 */
 function SerializeEmployee() {
 var MySerializer = new WddxSerializer;
 /** create a recordset using the wddxRecordset object
 * in the wddx.js file. Normally, if you were only
 * going to serialize a single record, you would be
 * better off using s structure. However, we wanted
 * to demonstrate the use of the wddxRecordset object
 */
 var Employee = new WddxRecordset;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Employee.addColumn("Name");
 Employee.addColumn("Title");
 Employee.addColumn("Department");
 Employee.addColumn("Email");
 Employee.addColumn("PhoneExt");
 Employee.addRows(1);
 Employee.setField(0, "Name", document.forms[0].Name.value);
 Employee.setField(0, "Title", document.forms[0].Title.value);
 Employee.setField(0, "Department", document.forms[0].Department.value);
 Employee.setField(0, "Email", document.forms[0].Email.value);
 Employee.setField(0, "PhoneExt", document.forms[0].PhoneExt.value);
 var WDDXPacket = MySerializer.serialize(Employee);

 // return the newly created WDDX packet to the form
 return WDDXPacket;
 }
</script>

<!--- Form for inputting a new employee --->
<form action="DeserializeFormPost.cfm" method="Post">
<table>
<tr>
 <td>Name:</td><td><input type="Text" name="Name"></td>
</tr>
<tr>
 <td>Title:</td><td><input type="Text" name="Title"></td>
</tr>
<tr>
 <td>Department:</td><td><input type="Text" name="Department"></td>
</tr>
<tr>
 <td>E-mail:</td><td><input type="Text" name="Email"></td>
</tr>
<tr>
 <td>Phone Ext:</td><td><input type="Text" name="PhoneExt"></td>
</tr>
<tr>
 <!--- clicking on the button calls the SerializeEmployee function that
 serializes the form contents to a WDDX packet --->
 <td colspan="2">
 <input type="Button" value="Serialize"
 onClick="this.form.WDDXPacket.value = SerializeEmployee()"></td>
</tr>
</table>

<!--- display the WDDX packet and provide a submit button for the user to submit
 the packet to be deserialized --->
<hr>
WDDX Packet:

<textarea name="WDDXPacket" rows="8" cols="50" wrap="virtual"></textarea>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<input type="Submit" value="Submit Packet for Processing">
</form>

After serializing the form data, you can click on the "Submit Packet for Processing" button to post the
serialized WDDX packet to the template in Example 23-27 to be deserialized (Figure 23-14). Example
23-27 should be saved as deserializeformpost.cfm .

Figure 23-14. Deserializing a WDDX packet received from a form post

Example 23-27. Deserializing a posted WDDX packet with a record set

<form>
<h3>Your posted packet:</h3>
<cfoutput>
<textarea name="WDDXPacket" rows="8" cols="50"wrap="virtual">#HTMLEditFormat(Form.
WDDXPacket)#</textarea>
</cfoutput>
</form>

<cfwddx action="WDDX2CFML" input="#Form.WDDXPacket#" output="DeserializedPost">

<h3>Deserialized:</h3>

<!--- loop over the deserialized record set. This technique allows you to output
 the contents of the record set without knowing any of the field names --->
<cfloop list="#DeserializedPost.ColumnList#" index="ThisField">
<cfoutput>
#ThisField#: #Evaluate("DeserializedPost." & ThisField)#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>
</cfloop>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 24. Web Services
There's no doubt that web services are hot. It's impossible to pick up a trade publication without
seeing at least half a dozen articles extolling the virtues of the web services revolution. Although still
considered an immature technology, web services offer a great deal of promise in many spaces. Fully
realized, the web services vision seeks to provide a global object repository where applications can be
assembled from self-contained software components using relatively simple protocols and a
ubiquitous transport mechanism-the Internet. In ColdFusion MX, web services are built using
ColdFusion Components (CFCs).

Web services have many uses. Besides the potential to reduce the amount of code you have to write
(by providing an existing web service that fits your needs), they also offer interesting possibilities for
enterprise application integration, modernizing legacy applications, and providing access to data in
new and interesting ways. As the idea of web services continues to evolve, so too will the ways in
which they are used. For now, ColdFusion MX gives you the power to work with what's available,
while at the same time maintaining the flexibility to include new pieces of the web services pie as
they mature.

This chapter starts with an overview of web services. It then covers consuming web services,
producing web services, and web services security.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

24.1 Web Services Overview

Web services provide a new way to build loosely coupled applications from components. At a basic
level, a call to a web service is similar to a remote procedure call. A client makes a request of a
remote object, the object performs some action, and a response is sent back to the client. At a
higher level, applications built from web services may be assembled from components local to the
organization or geographically distributed across the Internet. Web services provide a framework for
standardizing both the interface and transport layer for these applications. Figure 24-1 shows a basic
web services architecture.

Figure 24-1. Web services architecture

Web services are really an aggregation of several technologies layered on top of common Internet
protocols such as HTTP. To better understand just what web services are, as well as how they work,
let's break the architecture down into its major parts. There are four main components that make up
a web service:

Extensible Markup Language (XML)

XML can be considered the foundation of the web services stack. It provides a standardized
platform- and language-neutral format for exchanging data among applications. More
information about XML can be found at http://www.w3.org/XML/. Additional information on
working with XML in ColdFusion MX can be found in Chapter 22.

Web Services Description Language (WSDL)

WSDL is an XML format for describing a web service. It describes the purpose of the web
service, where and how you can access it, and what functionality (methods) it exposes. We'll
be discussing various parts of the WSDL throughout the chapter.

Simple Object Access Protocol (SOAP)

SOAP provides an XML-based messaging framework for web services. A SOAP message is
essentially an XML document made up of an envelope containing an optional header and
required body. Although not yet a W3C recommendation, Version 1.1 does have standing as a
W3C note. You can read more about SOAP at http://www.w3.org/TR/SOAP/. You don't need to
know SOAP to make use of web services in ColdFusion MX, as messaging is handled
automatically by ColdFusion MX's underlying implementation of the Apache Axis SOAP engine.

http://www.w3.org/XML/
http://www.w3.org/TR/SOAP/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[1]

[1] ColdFusion MX 6.1 contains Apache Axis 1.1.

Universal Description, Discovery, and Integration (UDDI)

UDDI is basically a directory service for web services. It provides a standardized interface for
registering and querying web service metadata. There are currently four global public UDDI
directories:

IBM: http://uddi.ibm.com/

Microsoft: http://uddi.microsoft.com/

SAP: http://uddi.sap.com/

NTT Communications: http://www.ntt.com/uddi/index-e.html

Besides global public directories, many specialized private directories exist. One of the
most popular is XMethods (http://www.xmethods.net). It's also possible to set up your
own private UDDI directory (say for use within your organization). A number of tools are
available for doing this, including UDDI4J (http://www-
124.ibm.com/developerworks/oss/uddi4j/).

ColdFusion MX does not support UDDI directly. However, it is possible to register web
services you publish using ColdFusion MX with UDDI directories. Additionally, you can
manually search UDDI directories for available web services you may wish to use.

As ColdFusion MX has the potential to be both a consumer and a producer of web services, it's
important for you to see how this all fits together. Figure 24-2 shows how ColdFusion MX fits into the
web services picture.

Figure 24-2. ColdFusion and web services

[Team LiB]

http://uddi.ibm.com/
http://uddi.microsoft.com/
http://uddi.sap.com/
http://www.ntt.com/uddi/index-e.html
http://www.xmethods.net
http://www-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

24.2 Consuming Web Services

When a client makes a request to a web service, it is said to be a consumer of that service.
ColdFusion MX makes consuming web services simple. There are three ways to consume a web
service in ColdFusion MX. You can use the cfinvoke tag, the cfobject tag, or the createObject()
function. It's also possible to use the cfhttp tag to manually consume a web service. Because of the

complexity involved with that method, I'm going to limit my coverage to the first three methods.

In many cases, you don't need to know anything about the web service you want to consume other
than the URL of its WSDL file. This is especially true if you use Dreamweaver MX to develop your
ColdFusion MX applications. Generating the necessary CFML code to consume a web service using
Dreamweaver MX is literally a point and click process:

Open the Components tab under the Application panel.1.

Choose Web Services from the dropdown box in the Components tab.2.

Click the plus (+) button next to the dropdown box where you selected Web Services. This
opens the Add Using WSDL dialog box.

3.

Enter the URL to the desired WSDL file and click OK.4.

Dreamweaver MX automatically generates a proxy for the web service and makes it available in the
Components tab. From here, you can expand the proxy to show the web service's fields, methods,
and properties as defined by the WSDL file.

If you don't use Dreamweaver MX, that's okay too. You can visually inspect a WSDL file by entering
its URL into your web browser. Most modern browsers are capable of displaying the contents of a
WSDL file inline. Regardless of whether you are using Dreamweaver MX, enter the URL to the
XMethods currency exchange web service in your browser:

http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl

The resulting WSDL should look something like this:

<?xml version="1.0"?>
<definitions name="CurrencyExchangeService"

 targetNamespace="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"

 xmlns:tns="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="getRateRequest">
 <part name="country1" type="xsd:string"/>
 <part name="country2" type="xsd:string"/>
 </message>
 <message name="getRateResponse">

http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl
http://www.xmethods.net/sd/CurrencyExchangeService.wsdl
http://www.xmethods.net/sd/CurrencyExchangeService.wsdl
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <part name="Result" type="xsd:float"/>
 </message>
 <portType name="CurrencyExchangePortType">
 <operation name="getRate">
 <input message="tns:getRateRequest" />
 <output message="tns:getRateResponse" />
 </operation>
 </portType>
 <binding name="CurrencyExchangeBinding"
 type="tns:CurrencyExchangePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getRate">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output >
 <soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="CurrencyExchangeService">
 <documentation>Returns the exchange rate between the two
 currencies</documentation>
 <port name="CurrencyExchangePort"
 binding="tns:CurrencyExchangeBinding">
 <soap:address location="http://services.xmethods.net:80/soap"/>
 </port>
 </service>
</definitions>

Before we continue, I'd like to briefly cover the pieces of a WSDL file. This is especially important if
you aren't using Dreamweaver MX, as you'll need to know this to determine what methods are
available in the web service, what, if any, parameters they take (and their datatypes), and any
values you can expect to be returned. Since a WSDL file is nothing more than an XML file, let's break
it down by its elements:

<definitions>

Root element of the WSDL document. This element specifies namespace definitions for the web
service.

<types>

Although not shown in our example WSDL, the types element can be used to specify datatype

definitions for the exchanged messages.
<message>

Message elements define the data being exchanged. Messages are typically used to define
input, output, and input/output parameters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<part>

Parts describe the contents of messages. They are typically used to name parameters.
<portType>

The portType element defines one or more operations that the web service can be called to

perform. It acts as a wrapper for individual operations, just as a CFC acts as a wrapper for
individual functions (methods). This element and its child elements, operation, input, and
output, are the elements you should be most concerned with as together they tell you what

the web service can do as well as what input and output parameters it has.
<operation>

The operation element defines an operation that can be invoked within the web service.

Operations are akin to functions (methods) in a CFC.
<input>

Specifies an input parameter for its parent operation.
<output>

Specifies an output parameter for its parent operation.
<fault>

Specifies a message to be returned by its parent operation in the event an error occurs. Note
that the fault element is not shown in our example.

<binding>

Defines a protocol for accessing the specified portType. Protocols include HTTP GET, HTTP
POST, MIME, and SOAP. Any number of bindings may be defined for a given portType.

<service>

Defines a group of related ports.
<documentation>

Optional element for specifying human-readable documentation. The documentation element
may be a child element of any WSDL element.

<port>

Defines an individual endpoint for a binding.

If we apply these definitions to the currency exchange web service, we can easily determine that the
method we want to invoke is called getRate().[2] It accepts two input parameters of type string:
country1 (currency converting from) and country2 (currency converting to), respectively. By
looking at the WSDL, we also know that we can expect the getRate() method to return a
parameter of type float (the exchange rate). Based on this information, it's simple to write the
ColdFusion code to call the web service and invoke the getRate() method, passing in the names of

the country whose currency we want to convert from and the country whose currency we want to
convert to.

[2] One web site I can't give enough praise to is XMethods (http://www.xmethods.net). Besides acting as a
private UDDI registry, the site has several fantastic resources, including a WSDL analyzer
(http://www.xmethods.net/ve2/Tools.po) that allows you to enter the URL for a WSDL file for analysis. The
analyzer validates the WSDL file and outputs a series of HTML pages that detail the operations and information
on input and output parameters.

http://www.xmethods.net
http://www.xmethods.net/ve2/Tools.po
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using Dreamweaver MX, you can have it write most of the code for you. Simply expand the
CurrencyExchangeService web service under the Components tab, then grab the float getRate label

and drag and drop it onto the main code editing area. Dreamweaver MX automatically creates the
ColdFusion code necessary to call the web service and invoke the getRate() method. The code

should look like this:

<cfinvoke
 webservice="http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl"
 method="getRate"
 returnvariable="aRate">
 <cfinvokeargument name="country1" value="enter_value_here"/>
 <cfinvokeargument name="country2" value="enter_value_here"/>
</cfinvoke>

At this point, all you need to do is replace the enter_value_here placeholders for the country1 and
country2 parameters with the names of the countries you wish to use in the currency conversion

(for a list of available countries, see http://www.xmethods.net/ve2/ViewListing.po?
key=uuid:D784C184-99B2-DA25-ED45-3665D11A12E5).

If you aren't using Dreamweaver MX as your development environment, you can just as easily write
the CFML code to call the web service yourself. Example 24-1 shows the code necessary to call the
currency exchange web service and convert 1 USD (U.S. dollar) to euros.

Example 24-1. Calling the currency exchange web service

<cfinvoke
 webservice="http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl"
 method="getRate"
 returnvariable="aRate"
 timeout="30">
 <cfinvokeargument name="country1" value="united states"/>
 <cfinvokeargument name="country2" value="euro"/>
</cfinvoke>

<cfoutput>
1 USD = #aRate# Euros
</cfoutput>

This code should already look somewhat familiar to you. It's basically the same code used to
instantiate a CFC, but instead of using the component attribute of the cfinvoke tag as we did for
instantiating a CFC, we use the webservice attribute to specify an absolute URL to the web service's

WSDL file or the name of the web service if it is already registered in the ColdFusion Administrator
(we'll talk about this shortly). The method attribute is also required and specifies the method in the
web service we want to invoke. In this case, it's the getRate() method. The returnvariable

attribute is optional. It specifies a variable name to hold the results of the method call to the web
service invocation. In our example, we assign the results of the call to getRate() to a variable
called aRate. The timeout attribute is new in ColdFusion MX 6.1. It is an optional attribute that lets

you specify the amount of time in seconds ColdFusion should wait for a web service request to
complete before timing out.

If your ColdFusion server sits behind a firewall and you must go through a proxy server to connect to
external web services, you can use the following optional attributes, all new in ColdFusion MX 6.1:

http://www.xmethods.net/ve2/ViewListing.po?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

proxyserver=" proxy_server"

The IP address or hostname of a proxy server or servers if required for connecting to a web
service. If this attribute is omitted, ColdFusion attempts to obtain proxy server information
from the JVM startup arguments (configurable from the ColdFusion Administrator).

proxyport="port"

A port number on the proxy server specified in the proxyserver attribute.

proxyuser="username"

A username, if any, required by the proxy server.
proxypassword="password"

A password, if any, required by the proxy server.

Just as when passing arguments to a CFC, you can pass arguments to a web service's invoked
method using the argumentcollection attribute, cfinvokeargument tag, or as an attribute of the
cfinvoke tag. If more than one passed argument has the same name, ColdFusion uses the
aforementioned order of precedence. In this example, we use cfinvokeargument tags to pass
arguments to the web service. The cfinvokeargument tags are child tags of cfinvoke. Since we
know that the currency exchange web service expects two input parameters, country1 and
country2, we use the cfinvokeargument tags to pass these to the web service.

Besides the cfinvoke tag, you can also call web services using the cfobject tag or the
createObject() function. This gives you tremendous flexibility in how you integrate web services
into your ColdFusion applications. To call the currency exchange web service using the cfobject tag,

your code would look like this:

<cfobject
 webservice="http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl"
 name="ce">

<cfset aRate = ce.getRate("united states", "euro")>

<cfoutput>
1 USD = #aRate# Euros
</cfoutput>

Here, the cfobject tag calls the currency exchange web service. The webservice attribute specifies

the absolute URL to the web service's WSDL file or the name of the web service as registered in the
ColdFusion Administrator. The name attribute specifies the name of a variable to store the instance of

the web service. Methods of the web service are invoked using dot notation. In our example, we call
the getRate() method, passing in values for country1 and country2. The results of the getRate(
) operation are assigned to aRate.

If you are using CFScript, you can call a web service using the createObject() function:

<cfscript>
 ce = createObject("webservice",
 "http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl");
 aRate = ce.getRate("united states", "euro");
</cfscript>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
1 USD = #aRate# Euros
</cfoutput>

The first parameter of the createObject() function tells ColdFusion to call a web service. The

second parameter specifies the absolute URL to the web service's WSDL file or the name of the web
service as registered in the ColdFusion Administrator. The call to the instance of the web service call
is assigned to a variable called ce. Dot notation is used to invoke the getRate() method of the web
service. Arguments are passed the same way as with the cfobject tag.

No matter which method you choose to call the currency exchange web service, the output, shown in
Figure 24-3, remains the same.

Figure 24-3. Invoking a currency converter web service from ColdFusion
MX

24.2.1 Registering Web Services in the ColdFusion Administrator

In the previous section, I mentioned that to call a web service, you must provide either the absolute
URL to the web service's WSDL file or the name of the web service as registered in the ColdFusion
Administrator. All of the examples I gave used the first method. The second method consists of
registering the web service with the ColdFusion Administrator and assigning it a name. This allows
you to refer to frequently accessed web services using an alias, as opposed to having to remember
the (often verbose) URL to the WSDL file. It also allows you to avoid having to hardcode the URL to a
web service's WSDL file in your application code. By registering the URL in the ColdFusion
Administrator, you merely have to update a changed URL once in the ColdFusion Administrator, as
opposed to everywhere you use it within your application code.

So, how do you go about registering web services in the ColdFusion Administrator? Well, registration
happens automatically, at least partially. What I mean by this is that the first time you call a web
service using any of the methods we've already discussed, the web service is automatically registered
in the ColdFusion Administrator. All you have to do is go in and provide a name (alias) for the web
service. To do this, follow these steps:

Open the ColdFusion Administrator and click on the Web Services link under the Data & Services
heading. You should see a table listing all web services that have already been registered with
the server (Figure 24-4).

1.

If you want to edit the information for an existing web service, click on the Edit icon under the
Actions header, or click the name of the web service under the Web Service Name heading for
the appropriate web service. This will load the web services information into the Add/Edit
ColdFusion Web Service form

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Change the name of the web service in the Web Service Name field from the URL currently
displayed (it should be the URL to the WSDL file) to a more easily remembered alias. For
example, in the case of the currency exchange web service from Example 24-1, an appropriate
alias might be currencyExchange. Remember, the point is to register the web service with an

easy-to-remember name that you can use in your application code to simplify the calling of web
services.

3.

For web services that restrict access based on HTTP Basic Authentication, you can provide a
username and password to pass along with the call to the web service. These values are
Base64-encoded and passed as username:password in the authorization header to the target

server. By specifying the username and password here, you avoid having to provide the
parameters when using the cfinvoke tag to call a secured web service. For more information,

see Section 24.4 at the end of the chapter.

4.

Click Update Web Service when you have finished making your changes.5.

Figure 24-4. Registering a web service in the ColdFusion Administrator

Using the steps provided, it's also possible to register a new web service that hasn't yet been called
from your ColdFusion server.

Once you have created an alias for your registered web service, you can use the alias instead of the
full URL to the WSDL file whenever you need to consume the web service. Thus, to invoke the
currency exchange web service (assuming you registered its alias as currencyExchange), you would

use the following:

<cfinvoke
 webservice="currencyExchange"
 method="getRate"
 returnvariable="aRate">
 <cfinvokeargument name="country1" value="united states"/>
 <cfinvokeargument name="country2" value="euro"/>
</cfinvoke>

<cfoutput>
1 USD = #aRate# Euros
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.2.2 Consuming a ColdFusion MX Web Service

Although we haven't yet covered publishing your own web services using ColdFusion MX, it is
important that we talk about how to consume them, since there are two main differences between a
ColdFusion MX web service and web services created using other technologies.

The first difference is the URL to the web service's WSDL file. Because ColdFusion MX web services
are really just CFCs, they generally end in a .cfc extension as opposed to .wsdl. In ColdFusion MX,
you don't have to manually create a WSDL file for each of your web services (although you could) the
server does it for you automatically. Whereas a typical URL to a WSDL file looks something like
http://www.example.com/myWebService.wsdl, the equivalent URL for a ColdFusion MX-based web
service looks like http://www.example.com/myWebService.cfc?wsdl. Note that it's the CFC and not a
WSDL file that's referenced in the URL. The ?wsdl URL parameter tells ColdFusion that you want to

invoke the CFC as a web service and that it should generate the appropriate WSDL for the service. If
you leave off the ?wsdl, referencing the CFC directly, ColdFusion thinks you are trying to call the CFC

directly and will attempt to invoke the CFC Explorer to show you the CFCs self-documentation.

The second difference between consuming a regular web service and one written in ColdFusion MX
has to do with the datatypes of input and output parameters. Because you are using ColdFusion MX
to consume a ColdFusion MX-based web service, there is no need for datatype mapping. This means
that your web service can accept and return any valid ColdFusion datatype without worrying about
conversion issues. While this may seem like a benefit, you need to be careful if you plan to let clients
other than ColdFusion consume your web service, as it can be quite difficult for clients to handle data
mapping for some of ColdFusion's datatypes.

24.2.3 Dealing with Complex Datatypes

All of the examples we've worked with thus far have used simple datatypes as both input and output
parameters. For the most part, ColdFusion MX provides a one-to-one mapping of simple datatypes.
ColdFusion strings map to strings in WSDL, Boolean to Boolean, etc. Complex datatypes are, well, a
little more complex. By complex datatypes, I mean types such as arrays, structures, binary data, etc.
In fact, the web services framework is designed in such a way that you can pass almost any kind of
data structure, even ones you arbitrarily define.

Using ColdFusion, it's possible to pass complex datatypes as input parameters and receive complex
datatypes as output parameters. Before we get into the specifics of how this is done, it's important
you understand how ColdFusion automatically attempts to convert certain ColdFusion datatypes to
WSDL datatypes and vice-versa when consuming web services. Table 24-1 shows the mapping
between WSDL and ColdFusion datatypes.

Table 24-1. WSDL to ColdFusion datatype mapping

WSDL datatype ColdFusion datatype

SOAP-ENC:string String

SOAP-ENC:double Numeric

http://www.example.com/myWebService.wsdl
http://www.example.com/myWebService.cfc?wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

WSDL datatype ColdFusion datatype

SOAP-ENC:boolean Boolean

SOAP-ENC:Array Array

xsd:base64Binary Binary

xsd:dateTime Date/time

Complex type Pseudo structure[3]

[3] When a web service specifies a complex type as an output parameter, ColdFusion receives it as a special type
of object that can be assigned to a variable and referenced using dot notation, like a structure. However, the
returned object is not a true ColdFusion structure.

24.2.3.1 Complex types as return values

Let's start by looking at another real-world example of a web service that returns a complex datatype
when called. In this case, the web service is called the XMethods Query Service. It's a web service
that allows you to directly query the XMethods directory. It has several methods that allow you to
perform various operations. For the purposes of our example, we want to call the
getServiceSummariesByPublisher() method. This method takes a single argument, publisherID
of type string, and uses the argument to return a complex datatype containing a summary of each

published web service by the specified publisher. The datatype in this case happens to be of type
SOAP-ENC:Array, an array for all intents and purposes. What's particularly interesting about this

array, though, is that each element in the array is actually a complex type defined in the WSDL as
ServiceSummary:

<complexType name="ServiceSummary">
 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 <element name="id" nillable="true" type="xsd:string"/>
 <element name="shortDescription" nillable="true" type="xsd:string"/>
 <element name="wsdlURL" nillable="true" type="xsd:string"/>
 <element name="publisherID" nillable="true" type="xsd:string"/>
 </sequence>
</complexType>

The ServiceSummary datatype is akin to a ColdFusion structure, but it does not directly map to a

ColdFusion structure. It can be accessed using dot notation just like a ColdFusion structure can;
however, it must be converted to a ColdFusion structure manually before it can be manipulated by
the full spectrum of structure functions available in CFML. Example 24-2 shows the code for calling
the getServiceSummariesByPublisher() method of the XMethods Query Service for all web

services published by xmethods.net. The results, shown in Figure 24-5, are output to the browser
using the cfdump tag.

Example 24-2. Returning a complex datatype from a web service

<cfinvoke
 webservice="http://www.xmethods.net/wsdl/query.wsdl"
 method="getServiceSummariesByPublisher"

SOAP-ENC:boolean Boolean

SOAP-ENC:Array Array

xsd:base64Binary Binary

xsd:dateTime Date/time

Complex type Pseudo structure[3]

[3] When a web service specifies a complex type as an output parameter, ColdFusion receives it as a special type
of object that can be assigned to a variable and referenced using dot notation, like a structure. However, the
returned object is not a true ColdFusion structure.

24.2.3.1 Complex types as return values

Let's start by looking at another real-world example of a web service that returns a complex datatype
when called. In this case, the web service is called the XMethods Query Service. It's a web service
that allows you to directly query the XMethods directory. It has several methods that allow you to
perform various operations. For the purposes of our example, we want to call the
getServiceSummariesByPublisher() method. This method takes a single argument, publisherID
of type string, and uses the argument to return a complex datatype containing a summary of each

published web service by the specified publisher. The datatype in this case happens to be of type
SOAP-ENC:Array, an array for all intents and purposes. What's particularly interesting about this

array, though, is that each element in the array is actually a complex type defined in the WSDL as
ServiceSummary:

<complexType name="ServiceSummary">
 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 <element name="id" nillable="true" type="xsd:string"/>
 <element name="shortDescription" nillable="true" type="xsd:string"/>
 <element name="wsdlURL" nillable="true" type="xsd:string"/>
 <element name="publisherID" nillable="true" type="xsd:string"/>
 </sequence>
</complexType>

The ServiceSummary datatype is akin to a ColdFusion structure, but it does not directly map to a

ColdFusion structure. It can be accessed using dot notation just like a ColdFusion structure can;
however, it must be converted to a ColdFusion structure manually before it can be manipulated by
the full spectrum of structure functions available in CFML. Example 24-2 shows the code for calling
the getServiceSummariesByPublisher() method of the XMethods Query Service for all web

services published by xmethods.net. The results, shown in Figure 24-5, are output to the browser
using the cfdump tag.

Example 24-2. Returning a complex datatype from a web service

<cfinvoke
 webservice="http://www.xmethods.net/wsdl/query.wsdl"
 method="getServiceSummariesByPublisher"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 returnvariable="aServiceSummaryArray">
 <cfinvokeargument name="publisherID" value="xmethods.net"/>
</cfinvoke>

<cfdump var="#aServiceSummaryArray#">

Figure 24-5. cfdump of an array of complex types returned by a web
service

As you can see, aServiceSummaryArray is automatically converted from a SOAP array to a

ColdFusion array, and each array element is shown as an object and not a ColdFusion structure. A
quick look back at the WSDL for the complex type known as ServiceSummary shows that the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returned "structure" contains five members: name, id, shortDescription, wsdlURL, and
publisherID. These can be referred to using dot notation, just as you would for a ColdFusion

structure, as shown in Example 24-3.

Example 24-3. Referencing data elements in a complex type using dot
notation

<cfinvoke
 webservice="http://www.xmethods.net/wsdl/query.wsdl"
 method="getServiceSummariesByPublisher"
 returnvariable="aServiceSummaryArray">
 <cfinvokeargument name="publisherID" value="xmethods.net"/>
</cfinvoke>

<table border="1">
 <tr>
 <th>Is Structure?</th>
 <th>id</th>
 <th>name</th>
 <th>publisherID</th>
 <th>shortDescription</th>
 <th>wsdlURL</th>
 </tr>
<cfloop index="i" from="1" to="10">
 <cfoutput>
 <tr>
 <td>#isStruct(aServiceSummaryArray[i])#</td>
 <td>#aServiceSummaryArray[i].id#</td>
 <td>#aServiceSummaryArray[i].name#</td>
 <td>#aServiceSummaryArray[i].publisherID#</td>
 <td>#aServiceSummaryArray[i].shortDescription#</td>
 <td>#aServiceSummaryArray[i].wsdlURL#</td>
 </tr>
 </cfoutput>
</cfloop>
</table>

In this example, a loop is used to iterate over the first ten elements in the aServiceSummaryArray
array. A table row is generated for each ServiceSummary structure in the array. The table row

contains columns corresponding to each element in the array. An additional column is used to output
the results of a test (using isStruct()) to evaluate whether each ServiceSummary structure is a

ColdFusion structure. Figure 24-6 shows the output. As you can see, the answer is no,
ServiceSummary structures are not the same as ColdFusion structures.

Figure 24-6. Referencing data elements in a pseudo structure using dot
notation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is possible to manually convert a complex type to a ColdFusion structure. Example 24-4 shows how
we can convert the ServiceSummary structures contained in the aServiceSummaryArray to

ColdFusion structures.

Example 24-4. Manually converting a complex type to a ColdFusion
structure

<cfinvoke
 webservice="http://www.xmethods.net/wsdl/query.wsdl"
 method="getServiceSummariesByPublisher"
 returnvariable="aServiceSummaryArray">
 <cfinvokeargument name="publisherID" value="xmethods.net"/>
</cfinvoke>

<cfset myArray = arrayNew(1)>

<cfloop index="i" from="1" to="10">
<cfscript>
myStruct = StructNew();
myStruct.id = aServiceSummaryArray[i].id;
myStruct.name = aServiceSummaryArray[i].name;
myStruct.publisherID = aServiceSummaryArray[i].publisherID;
myStruct.shortDescription = aServiceSummaryArray[i].shortDescription;
myStruct.wsdlURL = aServiceSummaryArray[i].wsdlURL;

MyArray[i] = myStruct;
</cfscript>
</cfloop>

<cfdump var="#myArray#">

Here, we create a new array (just for demonstration purposes) to mimic the original
aServiceSummaryArray array. Next, we loop over the first ten elements (ServiceSummary
structures) in aServiceSummaryArray. During each iteration, we create a new structure called
myStruct and assign the ServiceSummary structure values to new ColdFusion structure keys. The
resulting ColdFusion structure is then inserted into the new myArray array. When the loop is finished
iterating, the contents of myArray are output to the browser using cfdump. The results can be seen in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 24-7.

Figure 24-7. Manually converting a complex type to a ColdFusion
structure

Now the contents of each ServiceSummary structure are contained in ColdFusion structures.

24.2.3.2 Complex types as input parameters

In the previous section, we discussed how to handle complex datatypes returned by a web service.
Using similar techniques, we can also pass complex datatypes as input parameters to a web service.

For example, if the web service you are trying to consume expects an input parameter called
serviceSummary that's defined as a complex type (and just happens to look like a ColdFusion

structure), you can create a ColdFusion structure containing the key/value pairs that
serviceSummary is made up of:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset serviceSummary = structNew()>
<cfset serviceSummary.id = "uuid:9BEDDB80-60DE-36F7-3957-9DBC8C235B67">
<cfset serviceSummary.name = "Currency Exchange Rate">
<cfset serviceSummary.publisherID = "xmethods.net">

When invoking our fictitious web service, we would pass the complex type like this:

<cfinvoke
 webservice="http://www.example.com/myBogusService.wsdl"
 method="setService"
 returnvariable="sService">
 <cfinvokeargument name="serviceSummary" value="#serviceSummary#"/>
</cfinvoke>

You can just as easily create even more complex data structures to pass. It's usually just a matter of
studying the web services WSDL file and using combinations of ColdFusion structures, arrays, and
other datatypes to model the complex type expected by the web service.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

24.3 Producing Web Services

Producing (or publishing, as it's sometimes referred to) web services in ColdFusion MX is a very
simple proposition. In fact, many people have made the claim that it is the easiest way to create and
publish web services. While I won't go that far, I can say that claim is not far from the mark. In
essence, you already know everything necessary to publish a simple web service: you learned it back
in Chapter 22, ColdFusion Components.

To convert a CFC into a web service, all you need to do is set to remote the access attribute of any
component methods (cffunction) you want to expose as web services. That's all there is to it. To

show you just how easy it is to produce a web service in ColdFusion MX, consider the code shown in
Example 24-5. After you've entered the code, save it under webroot\programmingcf\ch24 as
helloworld.cfc.

Example 24-5. Producing a simple web service in ColdFusion MX

<cfcomponent>
 <cffunction name="getMessage" access="remote" returntype="string"
 output="no">
 <cfargument name="name" type="string" required="yes">

 <cfreturn "Hello " & arguments.name &"! " & "I've been invoked as a web
 service.">
 </cffunction>
</cfcomponent>

After looking at this code, your first reaction was probably that it looks just like a regular CFC. That's
because it is a regular CFC. All that really separates a CFC from a web service is setting the access
attribute of whatever method(s) you want to expose to remote. There are a few additional rules for

creating web services from CFCs that you need to know about:

Every CFC method published as a web service must have a returntype specified. If your web
service does not return a value, set returntype="void".

The output attribute of each cffunction tag should be set to no. Web services are not

designed to output directly to a browser. They are, however, designed to return values which
can then be output by the client making the call.

Optional input parameters are not supported in web services. Therefore, if you have any
cfargument tags with the required attribute set to no, the setting is ignored and the argument

treated as required.

Because CFCs published as web services ultimately compile to Java classes, you may not name
your CFC file the same name as a Java keyword. For a list of Java keywords, see
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You must also be careful where you save CFC files you plan to publish as web services. Because
they compile to Java classes that reference a package (location), directory names cannot begin
with a digit and can contain only alphanumeric characters. If you look at Example 24-6, you'll
see that we saved the CFC in a subdirectory called /ch24 instead of the usual chapter number
(/24) as we've done throughout the book. Failure to observe this rule results in a runtime
error.[4]

[4] This was true in ColdFusion MX 6.0. However, in ColdFusion MX 6.1, the Macromedia engineering team
made changes to ColdFusion that invalidate this rule.

Example 24-6 calls the web service you just created, using the cfinvoke tag just as you have

throughout the chapter.

Example 24-6. Calling a web service produced in ColdFusion MX

<cfinvoke
 webservice="http://localhost/programmingcf/ch24/helloworld.cfc?wsdl"
 method="getMessage"
 returnvariable="aString">
 <cfinvokeargument name="name" value="Rob"/>
</cfinvoke>

<cfoutput>
#aString#
</cfoutput>

Running this example results in the output shown in Figure 24-8.

Figure 24-8. Invoking a web service produced in ColdFusion MX

24.3.1 Handling Datatype Mapping in ColdFusion-Produced Web
Services

To see the WSDL for the web service we created in Example 24-5, point your browser to
http://localhost/programmingcf/ch24/helloworld.cfc?wsdl. The results should look like those in Figure
24-9.

Figure 24-9. WSDL for a ColdFusion-based web service

http://localhost/programmingcf/ch24/helloworld.cfc?wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This WSDL file looks a little bit different than the one we saw earlier for the currency exchange
service. Don't worry. The basic parts of a WSDL you learned about are still there. ColdFusion MX
merely adds additional web service information that you would otherwise have to generate yourself.

One thing to note is the way in which ColdFusion datatypes are represented in the WSDL file
generated by ColdFusion MX. Every ColdFusion datatype with the exception of structures and queries
maps directly to a WSDL datatype, as shown in Table 24-2.

Table 24-2. ColdFusion datatype to WSDL mapping

ColdFusion datatype WSDL datatype

String SOAP-ENC:string

Numeric SOAP-ENC:double

Boolean SOAP-ENC:boolean

Array SOAP-ENC:Array

Binary xsd:base64Binary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion datatype WSDL datatype

Date xsd:dateTime

Guid SOAP-ENC:string

Uuid SOAP-ENC:string

structure* Map

query* QueryBean

Any Complex type

component definition Complex type

void (operation returns nothing)

When you use a ColdFusion structure as an input or output parameter, the corresponding WSDL
datatype is defined as a complex type named Map. This is necessary because the SOAP specification

currently does not have an equivalent datatype for the ColdFusion structure. Example 24-7 shows a
simple ColdFusion web service that returns a structure (Map).

Example 24-7. Returning a structure (Map) from a ColdFusion web
service

<cfcomponent>
 <cffunction name="getStruct" access="remote" returntype="struct"
 output="no">
 <cfset var employee = structNew()>
 <cfset employee.name = "Pere Money">
 <cfset employee.title = "President">
 <cfset employee.department = "Executive Management">

 <cfreturn employee>
 </cffunction>
</cfcomponent>

The resulting WSDL file contains the Map mapping, as follows:

<complexType name="Map">
 <sequence>
 <element name="item" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <all>
 <element name="key" type="xsd:anyType"/>
 <element name="value" type="xsd:anyType"/>
 </all>
 </complexType>
 </element>
 </sequence>
</complexType>

This complex type represents an arbitrary number of key/value pairs. Note that keys and values can

Date xsd:dateTime

Guid SOAP-ENC:string

Uuid SOAP-ENC:string

structure* Map

query* QueryBean

Any Complex type

component definition Complex type

void (operation returns nothing)

When you use a ColdFusion structure as an input or output parameter, the corresponding WSDL
datatype is defined as a complex type named Map. This is necessary because the SOAP specification

currently does not have an equivalent datatype for the ColdFusion structure. Example 24-7 shows a
simple ColdFusion web service that returns a structure (Map).

Example 24-7. Returning a structure (Map) from a ColdFusion web
service

<cfcomponent>
 <cffunction name="getStruct" access="remote" returntype="struct"
 output="no">
 <cfset var employee = structNew()>
 <cfset employee.name = "Pere Money">
 <cfset employee.title = "President">
 <cfset employee.department = "Executive Management">

 <cfreturn employee>
 </cffunction>
</cfcomponent>

The resulting WSDL file contains the Map mapping, as follows:

<complexType name="Map">
 <sequence>
 <element name="item" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <all>
 <element name="key" type="xsd:anyType"/>
 <element name="value" type="xsd:anyType"/>
 </all>
 </complexType>
 </element>
 </sequence>
</complexType>

This complex type represents an arbitrary number of key/value pairs. Note that keys and values can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be any datatype (xsd:anyType).

The WSDL representation of a ColdFusion query is a little more complex. It is represented as a
complex type called a QueryBean. A QueryBean is essentially an object containing a one-dimensional

array of column names and a two-dimensional array containing the actual query data. Example 24-8
shows a simple ColdFusion web service that returns a query (QueryBean).

Example 24-8. Returning a query (QueryBean) from a ColdFusion-based
web service

<cfcomponent>
 <cffunction name="getQuery" access="remote" returntype="query"
 output="no">
 <cfquery name="getEmployees" datasource="programmingcf">
 select *
 from employeeDirectory
 </cfquery>

 <cfreturn getEmployees>
 </cffunction>
</cfcomponent>

The resulting WSDL file contains the QueryBean mapping, as follows:

<complexType name="QueryBean">
 <sequence>
 <element name="columnList" nillable="true" type="impl:ArrayOf_xsd_string"/>
 <element name="data" nillable="true" type="impl:ArrayOfArrayOf_xsd_anyType"/>
 </sequence>
</complexType>

<complexType name="ArrayOf_xsd_string">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

<complexType name="ArrayOfArrayOf_xsd_anyType">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:anyType[][]"/>
 </restriction>
 </complexContent>
</complexType>

24.3.2 Creating Custom Datatypes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the interesting features of web services is the ability to create custom datatypes. In the
XMethods Query Service example from the section on consuming web services, we dealt with a web
service that returned an arbitrary datatype called ServiceSummary. If you recall, the WSDL for the

complex type looked like this:

<complexType name="ServiceSummary">
 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 <element name="id" nillable="true" type="xsd:string"/>
 <element name="shortDescription" nillable="true" type="xsd:string"/>
 <element name="wsdlURL" nillable="true" type="xsd:string"/>
 <element name="publisherID" nillable="true" type="xsd:string"/>
 </sequence>
</complexType>

ColdFusion MX also has a mechanism for creating arbitrary datatypes. This allows you to create your
own datatypes to use as input or output parameters within your ColdFusion-based web services. To
create an arbitrary datatype, you create a shell CFC for the datatype and define it using cfproperty
tags. For example, to create a complex type called EmployeeDetail, you would create a CFC that

looks like Example 24-9.

Example 24-9. Defining a custom datatype as a CFC

<cfcomponent>
 <cfproperty name="name" type="string">
 <cfproperty name="title" type="string">
 <cfproperty name="department" type="string">
 <cfproperty name="phoneExt" type="numeric">
</cfcomponent>

The file should be saved as EmployeeDetail.cfc in a directory under your web root. Once you have the
EmployeeDetail.cfc file created, you can use it within your other CFCs as a custom datatype. It can
be used as a value for the type attribute of the cfargument tag (as a type for an input parameter) or
in the returntype attribute of the cffunction tag (as a type for an output parameter). For example,
to use EmployeeDetail as a datatype for an input parameter, your CFC code would look like that in

Example 24-10.

Example 24-10. Web service using a custom datatype as both input and
output parameter

<cfcomponent>
 <cffunction name="addEmployee" access="remote"
 returntype="EmployeeDetail" output="no">
 <cfargument name="employee" type="EmployeeDetail" required="yes">

 <cfquery name="getEmployees" datasource="programmingcf">
 insert into employeeDirectory (name,title,department,phoneExt)
 values ('#arguments.employee.name#', '#arguments.employee.title#',
 '#arguments.employee.department#',
 #arguments.employee.phoneExt#)
 </cfquery>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfreturn arguments.employee>
 </cffunction>
</cfcomponent>

You'll need to save this CFC as employee.cfc, preferably in the same directory as the
EmployeeDetail.cfc file. When called as a web service, this CFC accepts an input parameter of type
EmployeeDetail. It then uses the data in that data structure to perform an insert query in the
EmployeeDirectory table of our example database. Next, the same EmployeeDetail data structure

is returned back to the client that called the web service. The code to call the web service is shown in
Example 24-11.

Example 24-11. Invoking a ColdFusion-based web service and passing in
a custom datatype

<cfset myEmployee = structNew()>
<cfset myEmployee.name = "Joe Blow">
<cfset myEmployee.title = "Guy Friday">
<cfset myEmployee.department = "Administrative">
<cfset myEmployee.phoneExt = "1323">

<cfinvoke
 webservice="http://localhost/programmingcf/ch24/employee.cfc?wsdl"
 method="addEmployee"
 returnvariable="aEmployeeDetail">
 <cfinvokeargument name="employee" value="#myEmployee#"/>
</cfinvoke>

<cfdump var="#aEmployeeDetail#">

<cfoutput>
#aEmployeeDetail.name#
</cfoutput>

The EmployeeDetail datatype is coded as a ColdFusion structure. The web service is invoked, and
the EmployeeDetail datatype passed along as an input parameter. Executing the code in Example
24-11 results in the output shown in Figure 24-10. Notice that the variable aEmployeeDetail is a

complex type, not a true ColdFusion structure.

Figure 24-10. Passing and returning a custom datatype

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

24.4 Web Services Security

Although several competing standards for handling security within the web services framework are
under development, as of this writing there is no accepted standard. That said, there are existing
technologies you can use to secure access to your web services. ColdFusion supports web service
security in two ways, at the web server level and using ColdFusion's built-in security framework.

24.4.1 Securing Access Using HTTP Basic Authentication

At the web-server level, you can protect a web service using HTTP Basic Authentication. This is done
by restricting access to the directory containing the CFC you want to expose as a web service. For
more information on using HTTP Basic Authentication, see Chapter 8, as well as the documentation
for your particular web server.

For web services that restrict access based on HTTP Basic Authentication, you can provide a
username and password to pass along with the call to the web service in the cfinvoke tag or by

registering the web service in the ColdFusion Administrator:

<cfinvoke webservice="http://www.example.com/addressLookup.wsdl"
 returnvariable="myAddress"

 username="username"

 password="password">
 <cfinvokeargument name="userID" value="pmoney">
</cfinvoke>

The username and password values are Base64-encoded and passed as username:password in the

authorization header to the target server.

24.4.2 Securing Access Using ColdFusion's Built-in Security Framework

You can control access to your web services at a much more granular level using ColdFusion MX's
built-in security framework. This works for web services the same way as it does for CFCs, by
controlling access based on assigned roles at the invocation level. Example 24-12 shows the code for
a secure CFC accessible as a web service. The web service can only be invoked by clients with a role
of Administrator.

Example 24-12. A web service restricted to clients with a role of
Administrator

<cfcomponent>
 <cffunction name="returnStr" access="remote" returntype="string"
 roles="Administrator" output="false">

http://www.example.com/addressLookup.wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfreturn "You have gained access">
 </cffunction>
</cfcomponent>

The framework for authenticating clients is the same one we discussed back in Chapter 8. Using an
Application.cfm file, we can leverage ColdFusion MX's security framework and HTTP Basic
Authentication to provide a means to authenticate clients before allowing them to access a web
service. Example 24-13 shows one way to do this.

Example 24-13. Authenticating clients before they access a web service

<cfapplication name="MyWebService">

<cflogin idletimeout="600">
 <cfif not isdefined("cflogin")>
 <cfheader statuscode="401">
 <cfheader name="WWW-Authenticate" value="Basic realm=""MyWebService""">
 You are noy authorized to access the web service.
 <cfabort>
 <cfelse>
 <cfquery name="validateUser" datasource="programmingcf">
 SELECT Roles, Salt, Password
 FROM Users
 WHERE Username = <cfqueryparam value="#cflogin.name#"
 cfsqltype="CF_SQL_VARCHAR"
 maxlength="255">
 </cfquery>

 <cfif (validateUser.recordCount eq 1) and
 (validateUser.password is hash(validateUser.salt & cflogin.password))>
 <cfset userRoles = valueList(validateUser.roles)>
 <cfloginuser name="#cflogin.name#" password="#cflogin.Password#"
 roles="#userRoles#">
 <cfelse>
 <cfheader statuscode="401">
 <cfheader name="WWW-Authenticate"
 value="Basic realm=""MyWebService""">
 You are noy authorized to access the web service.
 <cfabort>
 </cfif>
 </cfif>
</cflogin>

When a client calls a ColdFusion-based web service, a check is made to see if there is an
Application.cfm file that should be run first-just as there is when a CFML file is called from the
browser. This lets you use the same mechanisms you are already familiar with to build a security
framework for your CFC-based web services. When our Application.cfm file is called, a number of
things happen.

First, a check is made to see if the cflogin structure exists. If not, an HTTP 401 status code is sent
back to the client, telling them they are not authorized to access the web service. If the cflogin

structure does exist, we know that the call to the web service also included an authorization header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

containing (hopefully) a username and password. Those values are automatically available inside the
cflogin structure as cflogin.name and cflogin.password. A query is made to see if the username
exists in the Users table of our example database. If so, the salt value associated with cflogin.name
(from the database query) is concatenated with the password provided by cflogin.password. The

resulting string is hashed and then compared to the hashed value stored in the database. If a record
is found for the username, and the salted, hashed password matches the value stored in the
database, we consider this a valid login. The cflogin tag is then used to log the user in and assign
the role from the database. In this example, when we lookup the username pmoney, we find she is
assigned the roles Administrator, User.

The code for invoking the secured web service is shown in Example 24-14. Note that it's necessary to
create a subdirectory off the /programmingcf directory called /ch24 instead of the /24 format we've
used before. This is because directory names that begin with numbers cause ColdFusion to throw an
error when dealing with web services.

Example 24-14. Invoking the secured web service

<cfinvoke method="returnStr"
 returnvariable="retVal"
 webservice="http://localhost/ProgrammingCF/ch24/secure/secure_ws.cfc?wsdl"
 username="pmoney"
 password="cat">
</cfinvoke>

<cfoutput>
#retVal#
</cfoutput>

If you run this code, you should see a message in your browser that reads "You have gained access".
If you wait 30 minutes (the time specified in the idletimeout attribute of the cflogin tag), and

change the username or password to a different value, you should be able to generate an
authentication error if you attempt to call the web service as an unauthorized user.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 25. Working with the System
Registry
Anyone running ColdFusion on the Windows platform has probably encountered the system registry
at one point or another. The registry is a database of sorts that contains configuration information on
virtually every user and every piece of hardware and software (including ColdFusion) on your system.
The registry is organized in a hierarchical fashion like that of a tree. ColdFusion provides you with a
tag for working with the system registry, the cfregistry tag, which is capable of querying

information from the registry, as well as setting new values and deleting unwanted ones.

Before we get into the specifics of manipulating registry data, let's look at how the registry is
organized. There are two basic units that make up the registry, keys and values. A key is a logical
container similar to a filesystem's directory. Like a directory that contains files and additional
subdirectories, keys can contain values and/or subkeys. A registry key and the subkeys and values
below it are referred to as a branch. If we were to write out the structure of a typical registry branch,
it might look something like this:

HKEY_LOCAL_MACHINE\Software\Allaire\ColdFusion\CurrentVersion\Mail

This branch stores values used by ColdFusion to interface with mail servers. As you can see, the
key/subkey relationship looks exactly like a directory structure might (in DOS anyway).

Values (like files) are actually a representation for name/value pairs. Values are also known as
entries. The following registry branch:

HKEY_LOCAL_MACHINE\Software\Allaire\ColdFusion\CurrentVersion\Mail

contains several entries such as BaseDirectory, LogEntries, and MailServer. In turn, each of

these entries contains a value. If you are running ColdFusion on Windows, you can use a GUI tool
called the Registry Editor (which has a Windows Explorer-like interface) to view and manipulate
registry keys and values.

Because the system registry contains configuration information on critical system resources, you
need to be extremely careful when using the cfregistry tag to change or delete registry

information. Always keep a current backup of your registry and limit access to the tag when possible.
This is especially important for administrators using ColdFusion in a multihost environment (such as
an ISP). In general, it is recommended that you disable the cfregistry tag from the Sandbox

Security section of the ColdFusion Administrator if you don't plan to use it.

If you are running ColdFusion on a non-Windows operating system, such as Unix or Linux, the
cfregistry tag is no longer available in ColdFusion MX. In previous versions of ColdFusion, an

abbreviated version of the system registry was automatically created when you first installed
ColdFusion. This scaled-down registry stored information about the configuration of your ColdFusion
application server. That same information is now stored in various XML configuration files. This
applies to all versions of ColdFusion on all platforms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

25.1 Getting Registry Keys and Values

The cfregistry tag gives you two methods for retrieving keys and values from the registry. You can
set the action attribute to GetAll to retrieve all the particular keys/values associated with a
particular branch, or you can set action="Get" to retrieve the value associated with a specific entry.

Let's consider a scenario where we want to look up information about any ODBC data sources set up
on the same machine as ColdFusion. There is a registry branch we can access that contains this
information. The branch is:

HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI

It contains a list of every ODBC data source registered on the system. Each key contains several
other subkeys relating to the ODBC connection. Example 25-1 shows how to perform the registry
lookup.

Example 25-1. Retrieving a list of registry keys

<cfregistry action="GetAll" branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI"
 name="GetODBC" type="Key" sort="Entry Asc">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI</h3>

<table border="1">
<tr>
 <th>Entry</th><th>Type</th><th>Value</th>
</tr>

<cfoutput query="GetODBC">
<tr>
 <td>#Entry#</td><td>#Type#</td><td>#Value#</td>
</tr>
</cfoutput>
</table>

In Example 25-1, we set the action attribute of the cfregistry tag to GetAll. This action results in
ColdFusion retrieving all the registry keys and values that fall under the branch specified in branch.
The name attribute allows us to specify a name for the query object that holds all the information we
retrieve from the registry. type is an optional attribute and specifies the type of registry entry to be
accessed. Possibilities include Key, DWord, String (the default), and Any. In this case, we set type to
Key because we want to return only registry keys in our result set.

The final attribute, sort, is also optional and determines the sort order for the results returned from
the registry. Results may be ordered by Entry, Type, and Value. Multiple sort criteria can be entered

as a comma-delimited list. In addition, the sort type may be specified after each column name as
either Asc (ascending) or Desc (descending). In Example 25-1, we sort the results by Entry, in

ascending order.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Executing the template results in an HTML table (shown in Figure 25-1), which contains all the
subkeys contained in the specified registry branch. Note that the table contains three columns,
Entry, Type, and Value. These column headers match up with the three query columns returned by
the cfregistry tag:

queryname.Entry

Returns the name of the registry entry
queryname.Type

The type of registry entry returned
queryname.Value

The value of the registry entry if type is set to String or DWord

You should note that ColdFusion doesn't currently support the retrieval of binary values using the
cfregistry tag. If you have type set to Any, and a binary value is returned, queryname.Type is set

to "Unsupported" and queryname.Value returns blank.

Figure 25-1. Retrieving a list of entries from the registry

As of ColdFusion MX, the cfregistry tag allows you to specify startrow and maxrows attributes
when the action is set to GetAll and type is Key. This lets you break up potentially large result sets
containing many keys in a manner that's similar to the way you can in other tags such as cfquery.

To illustrate this, we can modify the code from Example 25-1 to return only the first 5 registry keys
by setting startrow="1" (the default) and maxrows="5" (default is to return all remaining rows):

<cfregistry action="GetAll" branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI"
 name="GetODBC" type="Key" sort="Entry Asc"
 startrow="1" maxrows="5">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI</h3>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<table border="1">
<tr>
 <th>Entry</th><th>Type</th><th>Value</th>
</tr>

<cfoutput query="GetODBC">
<tr>
 <td>#Entry#</td><td>#Type#</td><td>#Value#</td>
</tr>
</cfoutput>
</table>

Building further on Example 25-1, let's delve one level deeper in the registry. Let's look at what you
get if you use action="GetAll" to retrieve all the subkeys from one of the keys (branches) we

originally returned. We'll use the exact same code as in Example 25-1, except this time, we'll set the
branch attribute to HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\ExampleApps and we'll set the
type attribute to Any.

ExampleApps is the name of the sample database that installs by default when you install ColdFusion
MX. If you don't have the ExampleApps database installed on your machine, don't worry. You can

reference any valid ODBC data source you have installed on your server. The complete template for
retrieving a list of registry values can be seen in Example 25-2.

Example 25-2. Retrieving a list of registry values

<cfregistry action="GetAll"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\ExampleApps"
 name="GetODBC" type="Any" sort="Entry Asc">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\ExampleApps</h3>

<table border="1">
<tr>
 <th>Entry</th><th>Type</th><th>Value</th>
</tr>

<cfoutput query="GetODBC">
<tr>
 <td>#Entry#</td><td>#Type#</td><td>#Value#</td>
</tr>
</cfoutput>
</table>

If you run the template in Example 25-2, you see the output shown in Figure 25-2. Note that the
table that is generated is similar to the one we created earlier in Figure 25-1, except that this time
there are other values in the type column besides Key. Also, notice that the Value column now

contains data for some of the entries we retrieved.

Figure 25-2. Retrieving a list of entries containing values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As I mentioned earlier, cfregistry can also retrieve values for specific registry keys. For example,

say you want your application to retrieve the description for the ODBC data source used in the
previous example. You know the entry for Description is stored in the registry branch:

HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\ExampleApps

By setting the action attribute to Get, you can retrieve the value associated with the key, as shown

in Example 25-3.

Example 25-3. Retrieving a specific registry value

<cfregistry action="Get"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\ExampleApps"
 entry="Description" variable="TheDescription" type="String">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\ExampleApps</h3>

<cfoutput>
The value of Description is: #TheDescription#
</cfoutput>

In Example 25-3, we set action to Get so that ColdFusion knows we want to retrieve a single value.
The name of the registry branch containing the entry to be accessed is specified in branch. entry is

required and specifies the entry in the registry we want to look up the value for. In this instance, we
want to look up the value for Description. The variable attribute allows us to specify a variable
name to hold the value we retrieve from the registry. We set our variable to TheDescription. The
final attribute, type, is optional and specifies the type of registry data being retrieved. Valid options
include String (the default), DWord, and Key. We set type equal to String. Once the cfregistry
tag has executed, we output the value to the browser using the TheDescription variable.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

25.2 Setting Registry Keys and Values

Besides retrieving registry keys and values, the cfregistry tag can also create new registry keys as

well as set and update registry values. This allows you, for example, to store application-specific
information in the system registry as opposed to in a database. It also allows you to add/update
ODBC data sources that normally must be added/updated through the Windows Control Panel's
ODBC Data Source Administrator. Example 25-4 shows how to add a key called MyDataSource to the

registry.

Example 25-4. Creating a registry key

<!--- This creates a new key called MyDataSource under the ODBC.INI branch --->
<cfregistry action="Set"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI"
 type="Key" entry="MyDataSource">

<!--- Query the branch so that we can show it was added --->
<cfregistry action="GatAll"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI"
 name="GetDSNs" type="Any" sort="Asc">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI</h3>

<table border="1">
<tr>
 <th>Entry</th><th>Type</th><th>Value</th>
</tr>

<cfoutput query="GetDSNs">
<tr>
 <td>#Entry#</td><td>#Type#</td><td>#Value#</td>
</tr>
</cfoutput>
</table>

Example 25-4 uses the cfregistry tag to create a new registry key called MyDataSource by setting
the action attribute to Set. branch specifies the registry branch to create the new key under. We

decide to create our new key under the registry branch:

HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI

The type attribute is optional and specifies the type of registry data to be set. Possible entries are
Key, DWord, and String (the default). In Example 25-4, we set type to Key. The name of the key to
create is specified by the entry attribute. Once the registry key has been created, we use another
cfregistry tag to get a list of all the subkeys (including the one we just created) under ODBC.INI.

As I mentioned, the cfregistry tag can also set registry values. Example 25-5 creates an entry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

called Description and populates it with the string value "This is a test database."

Example 25-5. Setting a registry value

<!--- Set a string value for the Description key --->
<cfregistry action="Set"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource"
 entry="Description" type="String" value="This is a test database.">

<!--- Query the key so that we can show a value was set --->
<cfregistry action="GET"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource"
 entry="Description" variable="GetDesc" type="String">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource</h3>

<cfoutput>
The value of Description is: <i>#GetDesc#</i>
</cfoutput>

In Example 25-5, the action is still Set. branch specifies the registry branch where we want to
create our new key/value pair. The entry attribute is required and specifies the key or value in the
registry to be set. We set entry to Description, telling ColdFusion that we want to set an entry
called Description. type is an optional attribute and specifies the type of registry data to be set.
Possible entries are Key, DWord, and String (the default). In this example, we set type to String.
The actual value we want to set is specified by the value attribute. The second cfregistry call gets

the value we just set and outputs it to the browser.

If you use cfregistry to set a value for an entry that already exists, ColdFusion overwrites the old

value with the one you supply. Example 25-6 updates an already existing registry entry with a new
value and outputs the results to the browser.

Example 25-6. Updating a registry value

<!--- Query the Description key so that we can show the original value --->
<cfregistry action="Get"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource"
 entry="Description" variable="GetOriginalDesc" type="String">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource</h3>

<cfoutput>
The original value of Description: <i>#GetOriginalDesc#</i>

</cfoutput>
Change the value...

<!--- Set a string value for the Description key --->
<cfregistry action="Set"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource"
 entry="Description" type="String" value="This is an updated description.">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!--- Query the Description key so that we can show the new value --->
<cfregistry action="Get"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource"
 entry="Description" variable="GetDesc" type="String">

<cfoutput>
The new value of Description: <i>#GetDesc#</i>
</cfoutput>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

25.3 Deleting Registry Keys and Values

There are times when you might find it desirable to delete information from the system registry, for
example, if you want to delete a data source without having to go through the ColdFusion
Administrator. The cfregistry tag can delete a registry value, a single registry key or an entire
registry branch by setting the action attribute to Delete. But it is extremely important to know what

you are doing with regards to the registry before you use this action. You should also have a current
backup of your registry before using the cfregistry tag to delete registry entries. Example 25-7

deletes an entry from the registry.

Example 25-7. Deleting a registry value

<cfregistry action="Delete"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource"
 entry="Description">

<cfregistry action="GetAll"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource"
 name="GetAll" type="Any" sort="Asc">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource</h3>

<table border="1">
<tr>
 <th>Entry</th><th>Type</th><th>Value</th>
</tr>

<cfoutput query="GetAll">
<tr>
 <td>#Entry#</td><td>#Type#</td><td>#Value#</td>
</tr>
</cfoutput>
</table>

In Example 25-7, we set the action attribute of the cfregistry tag to Delete. branch specifies the
branch containing the entry we want to delete. The entry attribute specifies the name of the entry
we want to delete, in this case, an entry named Description. Note that if the entry specified in
Entry doesn't exist, ColdFusion returns an error.

cfregistry can also delete a single registry key or an entire registry branch, including all

subbranches and their associated keys and values. Example 25-8 deletes all the subbranches and
key/value pairs below the key:

HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource

Example 25-8. Deleting an entire registry branch

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfregistry action="Delete"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI\MyDataSource">

<cfregistry action="GetAll"
 branch="HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI"
 name="GetAll" type="Any" sort="Asc">

<h3>HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI</h3>

<table border="1">
<tr>
 <th>Entry</th><th>Type</th><th>Value</th>
</tr>

<cfoutput query="GetAll">
<tr>
 <td>#Entry#</td><td>#Type#</td><td>#Value#</td>
</tr>
</cfoutput>
</table>

In Example 25-8, the cfregistry tag needs only two attributes, action and branch. As in Example
25-7, we set action to Delete to let ColdFusion know we want to delete information from the
registry. The key to begin recursively deleting from is specified by branch. All keys, subkeys, and

values in or below the specified branch are deleted. If the branch doesn't exist, ColdFusion throws an
error.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 26. Using the ColdFusion
Scheduler
The ColdFusion Scheduler allows you to incorporate a whole new level of functionality into your CFML
applications. With the Scheduler, you can set up various templates to run automatically on a
recurring basis. Scheduled template execution has numerous uses including automatic report
generation, maintenance, and system monitoring. You can also automate so-called intelligent
agents-templates that are capable of retrieving information from other sites and applications without
user intervention.

The Scheduler comes standard as part of the ColdFusion Application Server and can be accessed via
the ColdFusion Administrator or programmatically. Using the Scheduler, it is possible to schedule the
execution of templates on a recurring basis, e.g., daily, weekly, or monthly. In addition, tasks can be
set to execute at a particular time or interval or to run only a single time. Additionally, the Scheduler
can automatically generate static HTML files from dynamic content.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

26.1 Scheduling Tasks with the ColdFusion Administrator

The fastest way to schedule the execution of a template is through the ColdFusion Administrator. The
ColdFusion Administrator provides a clean and intuitive interface for managing scheduled tasks. Using
the ColdFusion Administrator interface, you can specify general settings for the Scheduler as well as
add, update, and delete scheduled tasks. Scheduled tasks can also be run directly from within the
ColdFusion Administrator, which makes it possible to test your scheduled tasks or execute them
manually.

26.1.1 Logging Scheduled Tasks

Before you begin to use the Scheduler, it is important to take note of an administrative setting that
impacts the logging of scheduled task execution. If you open the ColdFusion Administrator in your
browser and click on the Logging Settings link under the Debugging & Logging section, you will see a
screen that allows you to set various logging options. This configuration screen is shown in Figure 26-
1.

Figure 26-1. Enabling/disabling logging of scheduled tasks

Checking the "Enable logging for scheduled tasks" box causes the ColdFusion Server to write a log
entry to the scheduler.log file each time a new task is added to the list or an existing task is modified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Whenever a scheduled task is run, an entry is written to a log file called scheduler.log, regardless of
whether or scheduled task logging is enabled or not. This file resides in the directory specified in the
Logging Settings page under the Debugging & Logging section of the ColdFusion Administrator. Log
entries vary depending on whether task execution was successful. Here's an example of what you
can expect to see in the scheduler.log file:

"Information","scheduler-3","05/08/03","14:51:00",,"[test2] Executing at Thu
May 08 14:51:00 EDT 2003"
"Information","scheduler-3","05/08/03","14:51:00",,"[test2] Rescheduling for :Thu
May 08 14:52:00 EDT 2003 Now: Thu May 08 14:51:00 EDT 2003"
"Information","scheduler-3","05/08/03","14:51:00",,"[Test_badURL] Executing at
Thu May 08 14:51:00 EDT 2003"
"Information","scheduler-3","05/08/03","14:51:13",,"Error while executing task"

You can view the scheduler.log file from the Log Files section of the ColdFusion Administrator, under
Debugging & Logging.

26.1.2 Adding a Task

To add a new task to the Scheduler, click on the Scheduled Tasks link under the Debugging & Logging
section of the ColdFusion Administrator. You are then presented with a page listing all currently
scheduled tasks (shown in Figure 26-2). To add a new task, click the Schedule New Task button.

Figure 26-2. Adding a new task name to the Scheduled Tasks Menu

Submitting the form in Figure 26-2 takes you to the Add/Edit Scheduled Task page shown in Figure
26-3. This page allows you to specify all the details concerning the task you wish to schedule. The
first thing you need to enter is a name for your task. The next element you need to enter is a
Duration for your task. The Duration specifies a Start Date and an optional End Date corresponding
with the dates you want the scheduled execution to begin and optionally end. If you want the task to
remain scheduled indefinitely, omit the End Date.

Figure 26-3. Adding a new task to the Scheduler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next section of the form in Figure 26-3 lets you specify an interval for your scheduled task. This
interval determines how often the task is to be scheduled. You have three options:

One Time

The scheduled task executes a single time on the Start Date you specified. The time you wish
the task to execute can be specified here. After the task executes, it remains in the list of
scheduled tasks, although it doesn't execute again.

Recurring

This option allows you to specify how frequently the scheduled task should execute. Possibilities
include Daily, Weekly, and Monthly. Execution begins on the Start Date with the task executing
at the time specified in the Daily Start Time field.

Daily every n hours/minutes/seconds

With this option, you can schedule your task to repeat every n hours/minutes/seconds
beginning on the Start Date. Optionally, you can specify a Daily Start Time and a Daily End
Time for the task so that it executes only within the given time period each day.

The next option you can specify is URL. The value you enter for URL should be the absolute URL
(http:// or https://) to the template you want the scheduled task to execute. If you are attempting to
execute a template over a port other than 80, make sure to specify the port in the URL attribute
(http://www.example.com:8500/). The template can reside on any server accessible by URL. If the
remote template requires authentication, you can specify a Username and Password in the
appropriate fields.

You should note that the ColdFusion Scheduler uses the cfhttp tag behind the scenes to execute the
template you specify. As such, the same issues that apply to the cfhttp tag also apply to tasks

scheduled through the ColdFusion Scheduler.

The Timeout field is optional and lets you specify an amount of time in seconds to wait before timing
out the scheduled task. This field is important because it allows you to extend the amount of time a

https://
http://www.example.com:8500/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

request has to execute beyond the value set in the Server Settings section of the ColdFusion
Administrator.

The next two fields are both optional. They allow you to specify the hostname or IP address of a
proxy server you must pass your request through if your ColdFusion server is behind a firewall. If the
template you are trying to execute sits behind a proxy server, you can specify the port number used
by the proxy server as well. If a port value is specified, it is automatically appended to any resolved
URLs within the executed template. This allows you to preserve links within a template that resolve to
a port other than 80.

The last section of the Add/Edit Scheduled Task page gives you the option to have the output from
the template you request automatically saved as a file on your ColdFusion server. This allows you to
schedule tasks that call dynamically generated content and have the results saved as a static HTML
template.

In order to save the output of your scheduled task, you must check the box labeled "Save output to a
file". Next, enter the full path (e.g., c:\inetsrv\wwwroot\file.htm) to the directory where you want to
save the file in the File field. You can give the file any extension you want. Checking the box next to
Resolve URL results in any relative links in the output file being converted to absolute URLs. This
ensures that no broken links appear in the file you create. This is especially useful when you schedule
a task to retrieve dynamic content from a remote server.

Once you have finished setting up the options for your scheduled task, click the Submit button at the
bottom of the page to create the task. If you decide for some reason that you don't want to create
the task, click the Cancel button to return to the main Scheduled Tasks menu.

26.1.3 Manually Executing a Task

You can manually execute a scheduled task from within the ColdFusion Administrator. This is useful
when you need to execute a scheduled task at a time other than originally scheduled, or when you
want to execute a task for troubleshooting purposes. To manually execute a task from the ColdFusion
Administrator, click on the Schedule Task link, then on the run icon (under the Actions column.) If the
task can be executed, a page displaying a message to that effect is displayed.

26.1.4 Updating and Deleting Tasks

The ColdFusion Administrator provides you with a way to update existing tasks with new information
and to delete tasks you no longer want or need. All editing and deleting of scheduled tasks starts by
choosing a task from the Scheduled Tasks menu in the ColdFusion Administrator.

26.1.4.1 Updating a task

To edit an existing task, click on the task name link or edit icon from the Scheduled Task menu. This
action takes you to a page labeled Add/Edit Scheduled Task. This is the same as the page shown in
Figure 26-3, except all the information about the task is already filled in the form fields. And you can
now make changes to the task information. When you are finished, click on the Submit button at the
bottom of the page. If you change your mind and don't want to save the changes, click on the Cancel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

button.

26.1.4.2 Deleting a task

To delete a task, click on the delete icon next to the task name on the Scheduled Task menu. A
JavaScript confirmation box will appear asking to you to confirm that you want to delete the task.
Once you delete a task, the operation can't be undone.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

26.2 Scheduling Tasks with cfschedule

Besides being able to schedule tasks with the ColdFusion Administrator, you can use the cfschedule
tag to do it programmatically. With the cfschedule tag, you can add, update, delete, and run

scheduled tasks. Scheduling tasks programmatically lets you add a whole new level of functionality to
your applications. For example, you can create a reporting application that allows users to have
automatic email delivery of their reports on a scheduled basis. With the cfschedule tag, it is easy to

set things up so that your application automatically schedules a task for each user. And each task can
automatically generate a report and email it to the user at a chosen interval.

The attributes used by the cfschedule tag roughly coincide with the form fields from the Add/Edit

Scheduled Task page in the ColdFusion Administrator, as you can see in Appendix A.

26.2.1 Adding Tasks

Adding a task to the Scheduler using cfschedule is a lot like adding a task via the ColdFusion

Administrator. The information you enter in the ColdFusion Administrator is the same information you
specify for the cfschedule tag attributes. For example, to schedule a task called MyTask that calls

the template located at http://www.example.com/myscript.cfm once a day at 1:30 p.m., you can use
the following code:

<cfschedule action="Update" task="MyTask" operation="HTTPRequest"
 URL="http://www.example.com/myscript.cfm"
 startdate="#DateFormat(Now(),'mm/dd/yyyy')#"
 starttime="13:30:00" interval="Daily" requesttimeout="60">

<h2>Task scheduled successfully</h2>

The action attribute is required and specifies the action you want the Scheduler to perform. Possible
actions are Update, Delete, and Run. Update can be used to create a new task or update an existing
task. In this case, we use Update to create a new task. When action attribute is set to Update,
several required attributes are expected. These attributes are task, operation, URL, startdate,
starttime, and interval. The task attribute allows you to specify a name for the task. The name

you assign to the task is used by the ColdFusion Scheduler to uniquely identify the task-similar to
how a database uses a primary key. Before adding a task using cfschedule, it is a good idea to see

if a task by the same name already exists. If it does, and you try to add a new task with the same
name, you will overwrite the original task. To look up a task name, you can use a simple UDF that
checks the XML file ColdFusion uses to store information about scheduled tasks:

<cffunction name="IsScheduledTask" return="Boolean">
 <cfargument name="TaskName" required="True" type="String">
 <!--- Var local vars for the func --->
 <cfset Var TaskXML="">
 <cfset Var GetTasks="">

 <!--- Get the scheduler xml file. It's stored as WDDX --->

http://www.example.com/myscript.cfm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cffile action="Read"
 file="#Server.ColdFusion.RootDir#\lib\neo-cron.xml"
 variable="TaskXML">

 <!--- Convert the WDDX to CFML - and array of structs --->
 <cfwddx action="WDDX2CFML" input="#TaskXML#" output="GetTasks">

 <!--- Search the array of structs for the name passed to the func --->
 <cfif ListContainsNoCase(StructKeyList(GetTasks[1]), Arguments.TaskName) EQ 0>
 <cfreturn False>
 <cfelse>
 <cfreturn True>
 </cfif>
</cffunction>

To test whether a scheduled task already exists, you simply call the IsScheduledTask() UDF,

passing it the name of the task you want to check:

<cfoutput>
#IsScheduledTask("MyTaskName")#
</cfoutput>

The operation attribute specifies the operation the Scheduler should perform when action is
Update. The only operation currently supported is HTTPRequest. URL points to the absolute URL

(http:// or https://) of the template to be executed when the scheduled task runs. Optionally, a port
other than port 80 may be specified by using the PORT attribute. The starting date for the scheduled
task is specified by startdate. In this case, we use #DateFormat(Now(),'mm/dd/yyyy')# to

indicate that the scheduled task should start on the current day. The time that the scheduled task
gets executed is governed by the starttime. interval indicates how often a scheduled task should
be executed. Intervals can be set in seconds or as Once, Daily, Weekly, or Monthly. The default
interval is one hour (3,600 seconds). The minimum interval allowed is 1 second. Note that in
previous versions of ColdFusion, the minimum value for interval was 60 seconds. requesttimeout

is an optional attribute that can extend the time allowed for execution of the scheduled task beyond
the default set in the ColdFusion Administrator.

There are several additional optional attributes available to the cfschedule tag. For more

information, see Appendix A.

Let's look at a more advanced example that demonstrates the power of using the cfschedule tag to

let your applications schedule tasks on their own. Consider a scenario in which you want to allow an
administrator to schedule the automatic delivery of reports to various users within your organization.
These reports can contain any sort of information. In Example 26-1, we'll send the employee a copy
of their contact information.

The first step is to create a form for the administrator to select an employee and enter information on
when the report should run, and how it should be delivered (either via email or published to a static
HTML page).

Example 26-1. Choosing an employee and scheduling delivery of a report

<!--- Get all of the employees from the EmployeeDirectory table. This query
 is used to populate the employee drop down box --->

https://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfquery name="GetEmployees" datasource="ProgrammingCF">
 SELECT ID, Name FROM EmployeeDirectory
</cfquery>

<h2>Schedule Report</h2>

<form action="ScheduleTheTask.cfm" method="Post">
<table border=0 >
<tr>
 <!--- Populate the employee drop down with the query results from earlier --->
 <td>Employee:</td>
 <td><select me="Employee">
 <cfoutput query="GetEmployees">
 <option value="#ID#">#Name#</option>
 </cfoutput>
 </select>
 </td>
</tr>
<tr>
 <td>Task Name:</td>
 <td><input name="TaskName" type="text" size="20" maxlength="255"></td>
</tr>
<tr>
 <!--- Specifies the type of report to schedule --->
 <td>Delivery Format:</td>
 <td><select name="DeliveryFormat">
 <option value="Email" selected>E-mail
 <option value="HTMLPage">HTML Page</select>
 </td>
</tr>
<tr>
 <td>Start Date:</td>
 <td><cfoutput><input name="StartDate" type="text" value="#DateFormat(Now(),
 'mm/dd/yy')#" size=10></cfoutput></td>
</tr>
<tr>
 <td>Schedule to run </td>
 <td><select name="Interval">
 <option value="Daily">Daily
 <option value="Weekly">Weekly
 <option value="Monthly">Monthly
 </select> at
 <cfoutput>
 <!--- Output the refresh interval in minutes --->
 <input name="StartTime" type="text" value="#TimeFormat(DateAdd("N", 15,
 Now()),'HH:mm:ss')#" size=10> (EST)
 </cfoutput>
 </td>
</tr>
<tr>
 <td colspan="2" align="center"><input name="Create" type="submit"
 value="Schedule">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </td>
</tr>
</table>
</form>

The template in Example 26-1 creates a form for the administrator to set up the scheduled task
(shown in Figure 26-4). A query is performed to obtain a list of the employee names. The names are
then used to dynamically populate a drop-down box in the form. The next field in the form allows the
administrator to choose a delivery format for the report. Valid options here are Email and HTML Page.

The rest of the fields specify a name for the scheduled task as well as the start date and frequency
with which the task should run.

Figure 26-4. Choosing an employee and scheduling delivery of a report

Once the administrator finishes filling out the form, she can click the Schedule button at the bottom
of the form to schedule the task. Clicking on the button posts the form-field information to a template
called ScheduleTheTask.cfm, shown in Example 26-2.

Example 26-2. Scheduling the report delivery using cfschedule

<!--- Get the employee name associated with the ID we passed in --->
<cfquery name="GetEmployee" datasource="ProgrammingCF">
 SELECT Name
 FROM EmployeeDirectory
 WHERE ID = #form.Employee#
</cfquery>

<!--- Assign defaults in case of blanks --->
<cfparam name="form.TaskName" default="#CreateUUID()#">
<cfparam name="form.StartDate" default="#DateFormat(Now(),'mm/dd/yyyy')#">
<cfparam name="form.StartTime" default="#TimeFormat(Now(),'HH:mm:ss')#">

<!--- If the delivery format is Email, schedule the task --->
<cfif form.DeliveryFormat IS "Email">
 <cfschedule action="Update" task="#form.TaskName#" operation="HTTPRequest"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 startdate="#DateFormat(form.StartDate,'mm/dd/yyyy')#"
 starttime="#TimeFormat(form.StartTime,'HH:mm:ss')#"
 URL="http://127.0.0.1/RunScheduledReport.cfm?ID=#form.Employee#&
 DeliveryFormat=#form.DeliveryFormat#"
 interval="#form.interval#" requesttimeout="60">
<!--- If the delivery format is HTML, schedule the generation of the static
 HTML file --->
<cfelse>
 <cfschedule action="Update" task="#form.TaskName#" operation="HTTPRequest"
 startdate="#DateFormat(form.StartDate,'mm/dd/yyyy')#"
 starttime="#TimeFormat(form.StartTime,'HH:mm:ss')#"
 URL="http://127.0.0.1/RunScheduledReport.cfm?ID=#form.Employee#&
 DeliveryFormat=#form.DeliveryFormat#"
 interval="#form.interval#" requesttimeout="3600"
 resolveurl="Yes" publish="Yes"
 file="#Replace(GetEmployee.Name, ' ', '_', 'All')#.htm"
 path="e:\inetsrv\wwwroot\#Replace(GetEmployee.Name, ' ', '_', 'All')#">
</cfif>

<h2>Report Successfully Scheduled</h2>

The template in Example 26-2 takes the form-field data posted to it and uses it to create the
scheduled task. A cfquery is run at the beginning of the template to look up the name of the
employee the task is being scheduled for. This is done because the value passed with form.Employee
is the ID number (primary key from the database) of the employee as opposed to her name. (I'll

show you why I did this in just a moment.)

The next part of the template assigns default values for any of the required form fields in case they
are left blank. This prevents the template from throwing an error or scheduling a task that can never
be executed because it is missing a start time and date. If a name for the task isn't passed, a UUID is
created to serve as the name. A UUID is used because it is guaranteed to be unique.

The third part of the template uses a cfif statement to determine whether or not the delivery format

for the report generated by the scheduled task should be an email or an HTML file. Regardless of the
format, a task is scheduled using the cfschedule tag that runs a template called

RunScheduledReport.cfm. Note that two URL variables are appended to the end of the URL. The first
URL variable, ID, specifies the ID of the employee (see, I told you I would get to this) for whom the
report should be generated. The second URL variable, DeliveryFormat, specifies the delivery format
for the report. If form.DeliveryFormat is HTMLPage, a few additional attributes are used with the
cfschedule tag to specify that the output generated by the RunScheduledReport.cfm template

should be saved as a static HTML file. The filename and path for the generated file are both
dynamically created using the name of the employee (with spaces stripped out). Once the task has
been created, a message is output to the browser letting the administrator know that the task has
been successfully added.

The template in Example 26-3 is the RunScheduledReport.cfm template, which is the template that is
called by any scheduled task created by the two previous templates. The template takes the ID URL

variable passed in by the scheduled task and uses it to look up the employee for whom the report is
supposed to be run. It then checks the value of the DeliveryFormat URL variable to determine the
delivery format for the report. If the delivery format is email, the cfmail tag sends the report to the

appropriate employee. If, however, the report format is an HTML page, a table is output to the
"browser." The cfhttp tag then writes the contents of the page to a static HTML file on the server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the directory the Scheduler is supposed to write to must already exist. You could get
sophisticated and have this template check to make sure the directory exists using the cfdirectory

tag, and if not create it first, but for the purposes of this example, let's keep it simple. Once the static
file has been created, an email is then sent using cfmail to notify the employee that her report is

ready. The email contains a link to the newly created report. The RunScheduledReport.cfm template
is shown in Example 26-3.

Example 26-3. RunScheduledReport.cfm for creating and delivering
reports

<!--- Check the desired delivery format from URL.DeliveryFortmat and act
 accordingly --->
<cfswitch expression="#URL.DeliveryFormat#">
<cfcase value="HTMLPage">
<!--- create the page to be written as a static page. --->
<html>
<head>
 <cfoutput>
 <title>Report for #GetRecord.Name#</title>
 </cfoutput>
</head>

<body>

<cfoutput>
<h2>Employee Information for #GetRecord.Name#</h2>
</cfoutput>

<table cellpadding="3" cellspacing="0">
<tr bgcolor="#888888">
 <th>Name</th><th>Title</th><th>Department</th><th>E-mail</th>
 <th>Phone Extension</th>
</tr>
<cfoutput query="GetRecord">
<tr bgcolor="##C0C0C0">
 <td>#Name#</td><td>#Title#</td><td>#Department#</td>
 <td>#Email#</td><td>#PhoneExt#</td>
</tr>
</cfoutput>
</table>
</body>
</html>

<!--- Now send an e-mail to the employee letting them know where their page
 is --->
<cfmail to="#GetRecord.Email#" from="webmaster@example.com"
 subject="Your scheduled report is ready">
#GetRecord.Name#,

Your scheduled report is now ready for viewing. You may see it by pointing your
browser to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://127.0.0.1/#Replace(GetRecord.Name, ' ', '_',
'All')#/#Replace(GetRecord.Name, ' ', '_', 'All')#.htm

Best regards,

The Webmaster
</cfmail>
</cfcase>

<!--- Or, send an e-mail report to the employee --->
<cfcase value="Email">
<cfmail TO="#GetRecord.Email#" from="webmaster@example.com"
 subject="Your scheduled report" query="GetRecord">
#Name#,

Here is your employee report:

Name: #Name#
Title: #Title#
Department: #Department#
E-mail: #Email#
Phone Ext: #PhoneExt#

Best regards,

The Webmaster
</cfmail>
</cfcase>
</cfswitch>

26.2.2 Updating Tasks

As far as the cfschedule tag is concerned, updating an existing task and adding a new task are the
same operation. Both operations are performed by setting action to Update. To successfully update
an existing task, make sure to provide the exact task name in the task attribute of the cfschedule
tag. For example, if you want to take an existing task named MyTask and update the interval for
the task from Daily to Weekly, all you need is the following code:

<cfschedule action="Update" task="MyTask" interval="Weekly">

The only two attributes required for an update are action and task. Beyond that, you may choose to

update as few or as many attributes as you like. If you wish to change the name of the task, you
have to delete it first, then re-create it under the new task name.

It is possible to pull up all the existing attributes for a record so that it is easier for a user to edit
them. This can be done with a simple UDF, which retrieves the information about the scheduled task
from the XML file ColdFusion uses to store scheduled task information. Examples 26-4 and 26-5 show
how to update tasks programmatically.

Example 26-4. Obtaining information about a scheduled task

http://127.0.0.1/#Replace(GetRecord.Name, ' ', '_',
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cffunction name="GetScheduledTaskNames">
 <!--- Var local vars for the func --->
 <cfset Var TaskXML="">
 <cfset Var GetTasks="">
 <cfset Var i=0>
 <cfset Var Task="">
 <cfset Var ListOfNames="">
 <cfset Var ReturnQuery=QueryNew("Task")>
 <!--- Get the scheduler xml file. It's stored as WDDX --->
 <cffile action="Read"
 file="#Server.ColdFusion.RootDir#\lib\neo-cron.xml"
 variable="TaskXML">

 <!--- Convert the WDDX to CFML - and array of structs --->
 <cfwddx action="WDDX2CFML" input="#TaskXML#" output="GetTasks">

 <!--- Grab the task names --->
 <cfset ListOfNames = StructKeyList(GetTasks[1])>

 <!--- Add the appropriate number of empty rows to the query object --->
 <cfset QueryAddRow(ReturnQuery, ListLen(ListOfNames))>

 <!--- Loop over the list of task names, adding each one to the query --->
 <cfloop index="i" from="1" to="#ListLen(ListOfNames)#">
 <cfset QuerySetCell(ReturnQuery, "Task", ListGetAt(ListOfNames, i), i)>
 </cfloop>

 <cfreturn ReturnQuery>
</cffunction>

<cfset GetScheduledTasks=GetScheduledTaskNames()>

<h2>Scheduled Tasks</h2>
<h3>Please choose a task to edit</h3>

<table border="0" cellspacing="1">
<tr>
<th bgcolor="#0000FF">Task Name</th>
</tr>

<!--- Output the scheduled tasks. Create a link to the EditTask.cfm template
 and pass the name of the entry to retrieve from the XML file --->
<cfoutput query="GetScheduledTasks">
<tr>
<td bgcolor="##C0C0C0">
 #Task#</td>
</tr>
</cfoutput>
</table>

The template in Example 26-4 uses a short UDF to retrieve the list of scheduled task names from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML file ColdFusion uses to store scheduled task information. Once a list of all the tasks is obtained,
the UDF converts the list to a query object. A table containing each task name is output to the
browser. Each task name is displayed as a hypertext link with the name of the task appended to the
URL as a parameter named Task. Clicking on the link passes the task name to the EditTask.cfm

template shown in Example 26-5.

Example 26-5. EditTask.cfm template for editing a scheduled task

<!--- Retrieve all of the information from the entry passed in via URL --->
<cffunction name="GetScheduledTask">
 <cfargument name="TaskName" required="True" type="String">
 <!--- Var local vars for the func --->
 <cfset Var TaskXML="">
 <cfset Var GetTasks="">

 <!--- Get the scheduler xml file. It's stored as WDDX --->
 <cffile action="Read"
 file="#Server.ColdFusion.RootDir#\lib\neo-cron.xml"
 variable="TaskXML">

 <!--- Convert the WDDX to CFML - and array of structs --->
 <cfwddx action="WDDX2CFML" input="#TaskXML#" output="GetTasks">

 <!--- Grab the structure for the task name passed to the func --->
 <cfreturn GetTasks[1][Arguments.TaskName]>
</cffunction>

<cfset GetTaskInfo =GetScheduledTask(URL.Task)>

<cfoutput>
<h2>Edit Task: #URL.Task#</h2>
</cfoutput>

<form action="UpdateTask.cfm" method="Post">
<cfoutput>
<!--- Need to pass the task name along to the next template --->
<input type="hidden" name="Task" value="#URL.Task#">
</cfoutput>

<table border="0" cellspacing="1">
<!--- Dynamically create the edit form by looping over all of the key/value
 pairs from the structure --->
<cfloop collection="#GetTaskInfo#" item="Key">
 <cfoutput>
 <tr>
 <td BGCOLOR="##C0C0C0">#Key#</td>
 <td BGCOLOR="##C0C0C0"><input type="text" name="#Key#"
 value="#GetTaskInfo[Key]#" size="#(Len(GetTaskInfo[Key]) + 8)#"></td>
 </tr>
 </cfoutput>
</cfloop>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td colspan="2"><input type="submit" name="Submit" value="Submit Changes"></td>
 </tr>
</table>
</form>

The EditTask.cfm template then takes the Task URL parameter passed from the

GetScheduledTasks.cfm template in Example 26-4 and uses it to retrieve the specific record for the
scheduled task that requires editing. The record is returned as a structure and contains the name of
each Scheduler attribute along with its value. An HTML form containing all the Scheduler attribute
names and their associated values is dynamically constructed by looping over the structure returned
by the GetScheduledTask() UDF. This isn't the prettiest way to construct an edit form, but it's

expedient. At this point, the user can make any edits to the scheduled task they desire.

Submitting the form created by Example 26-5 posts all the task information to the UpdateTask.cfm
template shown in Example 26-6. The UpdateTask.cfm template takes the information posted to it
and uses it to update the scheduled task using the cfschedule tag.

Example 26-6. Updating a scheduled task using cfschedule

<!--- Set defaults so empties don't cause errors --->
<cfparam name="form.Task" default="">
<cfparam name="form.URL" default="">
<cfparam name="form.Start_Date" default="">
<cfparam name="form.Start_Time" default="">
<cfparam name="form.End_Date" default="">
<cfparam name="form.End_Time" default="">
<cfparam name="form.Username" default="">
<cfparam name="form.Password" default="">
<cfparam name="form.Interval" default="">
<cfparam name="form.Request_Time_Out" default="">
<cfparam name="form.Proxy_Server" default="">
<cfparam name="form.Resolve_URL" default="No">
<cfparam name="form.Publish" default="No">
<cfparam name="form.File" default="">
<cfparam name="form.Path" default="">
<cfparam name="form.HTTP_Port" default="80">
<cfparam name="form.HTTP_Proxy_Port" default="80">

<!--- Update the scheduled task posted by the edit form. If this were a
 production application, we would add code before this call to validate
 that appropriate values were passed before attempting to update the
 task. --->
<cfschedule action="Update" task="#form.Task#" operation="HTTPRequest"
 URL="#form.URL#" startdate="#form.Start_Date#"
 starttime="#form.Start_Time#"
 enddate="#form.End_Date#"
 endtime="#form.End_Time#"
 username="#form.Username#" password="#form.Password#"
 interval="#form.Interval#" requesttimeout="#form.Request_Time_Out#"
 proxyserver="#form.Proxy_Server#" resolveurl="#form.Resolve_URL#"
 publish="#form.Publish#" file="#form.File#" path="#form.Path#"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 port="#form.HTTP_Port#" proxyport="#form.HTTP_Proxy_Port#">

<h3>Task successfully updated</h3>

26.2.3 Deleting a Task

Deleting a task using cfschedule requires only two attributes, action and task. The action
attribute should be set to Delete, and the task attribute should be set to the task name you wish to

delete:

<!--- Delete a task named MyTask from the task list --->
<cfschedule action="Delete" task="MyTask">

Once you delete a task using cfschedule, it is permanently removed from the task list.

26.2.4 Running Tasks

The cfschedule tag can execute any scheduled task independent of the Scheduler in the ColdFusion
Administrator. To do this, set the action attribute in the cfschedule tag to Run. Provide the name of
the task to run using the task attribute:

<!--- Run a task named MyTask from the task list --->
<cfschedule action="Run" task="MyTask">

When you run a task using cfschedule, any additional attributes specified for the task in the

ColdFusion Administrator (such as Timeout, Publish, etc.) are automatically applied.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

26.3 Additional Considerations

As useful as the ColdFusion Scheduler is, it does have its limitations. One of the most notable
limitations of the Scheduler is that there is no built-in redundancy. That is, if a scheduled task fails to
execute for whatever reason (say the server is down) the Scheduler has no way of knowing this
condition and only attempts to execute the task again the next time it is scheduled for execution.

It is possible to build redundancy into your scheduled tasks, but it takes work. One solution involves
creating a small database that contains a record for each entry in the Scheduler. Each time you
execute a scheduled task, you cfinclude a file or call a custom tag that updates a field in the

database with the time and date that the task should be executed next. A second template scans the
database of scheduled tasks and checks to make sure none of the tasks have a time/date for next
execution that is older than the current time/date. If so, you know that the task didn't execute for
some reason, and you can call the cfschedule tag to immediately try to run that task again. The

template that performs the scan should itself be scheduled to run at an interval that is appropriate
for your particular needs (i.e., every 15 minutes, every 30 minutes, etc.).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 27. Interacting with COM, CORBA,
and Java
If you had to choose a single word to describe ColdFusion, it just might be connectivity. So far, we've
talked about using ColdFusion to talk to databases, LDAP servers, FTP servers, HTTP servers, SMTP
servers, POP servers, Web Services, CFCs, custom tags, and the local filesystem. Well, you'll be
happy to know that the list doesn't stop there. ColdFusion can also communicate with a number of
other technologies including COM objects, CORBA objects, Java classes, JavaBeans, Enterprise
JavaBeans, Java Servlets, JSP pages, and JSP tag libraries. This chapter discusses how to use
ColdFusion to communicate with several types of external objects to expand the functionality of
ColdFusion to unlimited heights.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

27.1 Working with COM

The Component Object Model (COM) is a Microsoft-sponsored specification for creating distributed
software components.[1] There are a large number of third-party COM objects, most of which can be
used by ColdFusion. COM is supported only in the Windows version of ColdFusion.[2]

[1] Although COM is a widely adopted technology, Microsoft is moving away from it in favor of its newer .NET
architecture. ColdFusion interacts with .NET applications primarily via SOAP-based web services, as covered in
Chapter 24.

[2] Because ColdFusion MX is built on top of J2EE, it must use a Java-to-COM bridge bridge (J-Integra from
Intrinsyc Software) to communicate with COM objects. Because of this architectural change over previous
versions of ColdFusion, connecting to COM objects in ColdFusion MX may be slower than in previous versions.

The cfobject tag can call COM objects located on the same machine as the ColdFusion server or on
other machines connected to the network. cfobject can also communicate with objects residing

anywhere on the network using Distributed COM (or DCOM). In order to connect to a COM object
using ColdFusion, the object must first be registered. You register a COM object using the regsvr32
command from the Windows command line, as in:

C:\> regsvr32 myobject.dll

Once a COM object is registered, you can connect to it using ColdFusion. To understand how to use
the cfobject tag to communicate with a COM object, you first need to understand the tag's syntax:

<cfobject type="COM"

 name="name"

 class="progID"

 action="action"

 context="context"

 server="server_name">

When connecting to a COM object, the type attribute must always be set to COM. The name attribute

is required and specifies a name for the object to be used when referencing the object's attributes
and methods in your code. class is a required attribute and specifies the program ID for the object

you want to invoke. If you don't know the program ID for your object, consult the object's
documentation. You can also use Microsoft's OLEView program to view any object's program ID,
properties, and methods as long as the object is registered on your system. If you don't have
OLEView, you can download if for free (along with instructions for use) from
http://www.microsoft.com/com/resources/oleview.asp.

The action attribute is also required and has two possible values, Create or Connect. Create
instantiates the COM object (usually a .dll) before assigning properties or invoking methods. Connect
connects to a COM object (usually an .exe) that is already running on the server. context is optional
and specifies the context the object is running in. Valid entries are InProc, Local, or Remote. InProc

specifies an in-process server object (usually a .dll) running in the same process space as the
ColdFusion server. Local specifies an out-of-process server object (usually an .exe) that is still
running on the same server as ColdFusion, but not in the same process space. Remote specifies an
out-of-process server object (usually an .exe) that is running on another machine. If Remote is

http://www.microsoft.com/com/resources/oleview.asp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

specified, the server attribute is required. When no value is specified, ColdFusion uses the registry
setting for the object. The final attribute, server, specifies a valid server.

Once an object has been instantiated, you can access the properties and methods of the object. An
object's properties are similar to an HTML or CFML tag's attributes. Properties allow you to pass
values to objects that can be referenced as variables inside the object. Methods are similar to CFML
functions in the sense that they cause the object to perform an action and return (sometimes) a
value that you can reference.

To see the properties and methods of an object, instantiate it with the cfobject tag, then use
cfdump.[3] This example calls the Windows Scripting.FileSystemObject (used for interacting with

the filesystem) and displays all of its properties and methods:

[3] The ability to dump the properties and methods of COM objects was added in ColdFusion MX 6.1.

<!--- Connect to the Windows Scripting.FileSystemObject --->
<cfobject type="com" name="fso" class="Scripting.FileSystemObject"
 action="create">
<cfdump var="#fso#">

To set a property, you use the following syntax:

<cfset MyObject.MyProperty = "Value">

Conversely, you can read a property's value using the following syntax:

<cfset MyValue = MyObject.Property>

There are a few ways to invoke a method depending on the number and type of arguments it
expects. To invoke a method that doesn't expect any arguments, use the following syntax:

<cfset MyVariable = MyObject.MyMethod()>

Methods that require one or more arguments are said to have their arguments passed by value and
are invoked like this:

<cfset MyVal = 123>
<cfset MyVariable = MyObject.MyMethod (MyVal, "Hello World", 1)>

Methods can also have their arguments passed by reference. Arguments passed by reference usually
have their values changed by the method being called. In this case, MyVal is enclosed in double
quotes and passed to MyObject.MyMethod by reference:

<cfset MyVal = 123>
<cfset MyVariable = MyObject.MyMethod("MyVal", "Hello World")>

Outputting the value of MyVal after the method is called generally results in a different value than
123.

You should note that in versions of ColdFusion prior to MX, you can't directly access nested objects.
Instead, you must access the outermost object first and work your way to the innermost object. For
example, although you can directly access the object TheObject.TheNestedObject.TheProperty in

ColdFusion MX, in previous versions such as ColdFusion 5, you can't. In order to act on
MyNestedObject.MyProperty in older versions of ColdFusion, you need to use syntax like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset MyNestedObject = TheObject.TheNestedObject>
<cfset MyProperty = MyNestedObject.TheProperty>

When ColdFusion makes a connection to a COM object, that connection consumes system resources,
especially RAM. When ColdFusion finishes using a COM object, it doesn't immediately release the
resources that the object was consuming. Because ColdFusion is built on top of Java, it uses Java's
garbage collection features to deal with the cleanup of the COM connection. This often takes longer
than developers would like it to.

Many COM objects have a method you can call to explicitly close the connection to the object,
typically close() or quit(). While this explicitly tells ColdFusion to terminate the connection to

the COM object, it does not immediately release the resources it was consuming. It still has to wait
for the garbage collection to occur. You can use the releaseComObject() function to force

ColdFusion to both terminate a connection with a COM object and immediately return any resources
it was using to the server. This function is new in ColdFusion Red Sky. releaseComObject() should

only be used once you have finished with the COM object. If you call the function while the COM
object is still in use, ColdFusion throws an exception. To use the function, call it like this:

<cfset releaseComObject(myObject)>

or this:

<cfscript>
releaseComObject(myObject);
</cfscript>

Now that you have a basic understanding of how ColdFusion uses the cfobject tag to interact with

COM objects, let's look at an example you can test on your server that demonstrates many of the
concepts we just covered. Example 27-1 shows how to invoke the Microsoft Word COM object and
use its methods and properties to convert a preexisting Word document to HTML. In order for this
example to work, you must have Microsoft Word 97 or 2000 installed on the same server as
ColdFusion. You don't need to worry about registering any COM objects as that is handled
automatically when Microsoft Office is installed.

Example 27-1. Using cfobject to call the Microsoft Word COM object to
convert a Word document to HTML

<!--- Instantiate the COM object --->
<cfobject type="COM" name="MyWord" class="Word.Application"
 action="Create" context="Local">

<!--- Turn off window visibility --->
<cfset MyWord.Visible = False>

<!--- Open the document and convert it to HTML. You can change the
 path and filename to a document on your server --->
<cfset OriginalDoc = MyWord.Documents>
<cfset OriginalDoc.Open("d:\cfusionmx\wwwroot\programmingcf\27\test.doc")>
<cfset ConvertedDoc = MyWord.ActiveDocument>

<!--- Save the converted HTML file. Use this line for Word 2000.
 Comment it out and use the line below for Word 97 --->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset
 ConvertedDoc.SaveAs("d:\cfusionmx\wwwroot\programmingcf\27\test.htm",Val(8))>

<!--- Uncomment this line to use with Word 97
<cfset
 ConvertedDoc.SaveAs("d:\cfusionmx\wwwroot\programmingcf\27\test.htm",Val(10))>
--->

<!--- Close the COM connection --->
<cfset MyWord.Quit()>
<!--- Release the COM object --->
<cfset releaseComObject(myWord)>

Conversion complete...

Executing the template in Example 27-1 causes the Microsoft Word COM object to open a Word
document called test.doc (you can test this with any Word document on your server), convert it to
HTML, and save it back to the server. The same example could easily be written using CFScript and
the CreateObject() function instead, as shown in Example 27-2.

Example 27-2. Calling the Microsoft Word COM object using CFScript
notation and the CreateObject function

<cfscript>
// Instantiate the COM object
MyWord = CreateObject("COM","Word.Application");

// Turn off window visibility
MyWord.Visible = False;

/* Open the document and convert it to HTML. You can change the
 * path and filename to a document on your server
 */
OriginalDoc = MyWord.Documents;
OriginalDoc.Open("d:\cfusionmx\wwwroot\programmingcf\27\test.doc");
ConvertedDoc = MyWord.ActiveDocument;

/* Save the converted HTML file. Use this line for Word 2000.
 * Comment it out and use the line below for Word 97
 */
ConvertedDoc.SaveAs("d:\cfusionmx\wwwroot\programmingcf\27\test.htm",Val(8));

/* Uncomment this line to use with Word 97
 * ConvertedDoc.SaveAs("d:\cfusionmx\wwwroot\programmingcf\27\test.htm",Val(10));
 */

// Close the COM connection
MyWord.Quit();
// Release the COM Object
releaseComObject(myWord);
</cfscript>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conversion complete...

In the case of the CFScript code in Example 27-2, you can't use CFML tags inside a cfscript block;
therefore, the CreateObject() function instantiates the COM object. For more information on using
the CreateObject() function, see Appendix B.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

27.2 Calling CORBA Objects

The Common Object Request Broker Architecture (CORBA) is a specification put forth by the Object
Management Group (OMG) for creating platform-neutral distributed software objects. CORBA objects
can be written using any number of languages and are supported only on the Windows and Unix
versions of ColdFusion. ColdFusion supports CORBA Version 2.3.

ColdFusion uses the cfobject tag to access CORBA objects via a piece of middleware called an

Object Request Broker (ORB). Because an ORB is required to access CORBA objects, ColdFusion
comes bundled with the Borland VisiBroker 4.5 ORB Java libraries. Because ColdFusion uses a
connector to load the ORB, it is possible to use third-party ORBs with ColdFusion, provided they come
with a ColdFusion-specific connector. You can contact Macromedia directly for connectors for several
of the more popular ORB providers.

Before you can begin using CORBA with ColdFusion, you'll need to register and configure your ORB
connector with the ColdFusion Administrator. This is true for third party ORB connectors as well as
the VisiBroker ORB connector included with ColdFusion. For step-by-step instructions on registering
and configuring an ORB connector, see the Administering and Configuring ColdFusion MX book that is
included with the ColdFusion documentation.

Once your connector has been configured and registered, you are ready to begin using CORBA with
ColdFusion. All CORBA connectivity is handled via the cfobject tag or the CreateObject()
function. When a request is made to a CORBA object by the cfobject tag, ColdFusion uses the ORB

libraries to handle every aspect of finding the specified object, passing attributes, invoking methods,
and returning results. To get a better idea of how the cfobject tag connects to CORBA objects, let's

look at the tag's syntax:

<cfobject type="CORBA"

 name="name"
 context="IOR|NameService"

 class="file_or_naming_service"

 locale="-type_value_pair_1 -type_value_pair_n">

When you invoke a CORBA object, the type attribute must be set to CORBA. name is a required

attribute and is used to specify a name for the object when referencing its attributes and methods.
The context attribute specifies the context to use for accessing the CORBA object. Valid entries

include:

IOR

ColdFusion uses the Interoperable Object Reference to access the CORBA object.
NameService

ColdFusion uses the naming service to access the CORBA object.

Depending on the value of context, the class attribute can specify one of two things. If context is
IOR, class specifies the name of a file that contains the stringified version of the IOR. If context is
NameService, class specifies a period-delimited naming context for the naming service. class is a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

required attribute.

The final attribute, locale, specifies type-value pairs of arguments to pass to init_orb(). This

feature is specific to VisiBroker ORBs and has been tested to work with the 3.2 C++ version only.
Note that all type-value pairs must begin with a minus sign (-).

In CORBA, Interface Definition Language (IDL) is used to define the interface to a CORBA object. The
interface describes what parameters (properties) and methods are available to the object. The
methods for working with these parameters and methods is similar to the methods we used to work
with COM objects. One notable difference is the ability to pass structures and arrays to parameters
and methods in CORBA.

Because there is no easy way to create a CORBA object for demonstration purposes, the complexities
of creating specific examples using cfobject with CORBA are beyond the scope of this book. For
more information on using cfobject to call CORBA objects, refer to the ColdFusion MX

documentation from Macromedia.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

27.3 Integrating ColdFusion and Java

Because ColdFusion MX is built on top of J2EE, integration between ColdFusion and Java is better
than ever before. ColdFusion is capable of interoperating with Java on several levels. With ColdFusion
MX, you can interact with:

Java objects, including JavaBeans and Enterprise JavaBeans (EJBs)

Servlets and JSP pages

JSP tags and tag libraries

Although you certainly don't have to know Java in order to make use of these capabilities, the more
you understand about Java, the easier it is going to be, and the more likely you are to find new and
interesting ways to extend your ColdFusion applications. The rest of this section assumes you have
some knowledge of how Java works. If you don't, you may want to spend some time reading up on
the fundamentals. One resource I recommend in particular (in addition to the great series of Java
books O'Reilly puts out) is Bruce Eckel's Thinking in Java, 3rd Edition, available as a free download
from http://www.mindview.net/Books/. While this book doesn't cover J2EE, it does do an excellent
job of introducing the reader to both object-oriented programming and the Java language.

27.3.1 Calling Java Objects

ColdFusion has the ability to invoke Java class files, JavaBeans, and by extension Enterprise
JavaBeans (EJBs), using the cfobject tag (or createObject() function). With the explosive

growth of Java, this opens up a completely new realm of possibilities for your ColdFusion applications.
To call a Java class file or EJB using the cfobject tag, you use the following syntax:

<cfobject type="Java"
 action="Create"

 class="Java_class"

 name="object_name">

The type attribute specifies the type of object to call. To call a Java object or EJB, type must be set
to Java. action currently accepts only one value, Create. This creates the connection to the Java
object or the EJB environment. The class attribute is required and specifies the Java object to

create. You may specify the path to the object (.class or .jar) in the Class Path section of the Java
and JVM area of the ColdFusion Administrator. Alternatively, you can save the .jar file in
web_root/WEB-INF/lib or you can save the .class file in web_root/WEB-INF/classes. For EJBs, class
specifies the path to the environment for the EJB. To use cfobject to connect to EJBs, you must

have an EJB server such as JRun 4 or ColdFusion MX for J2EE (in which case the underlying J2EE
application server is used).[4] The EJB server can reside on the same server as your ColdFusion
server or on any other server accessible via the network. Additionally, the EJB you wish to invoke
must be deployed appropriately. The final attribute, name, is also required and specifies the name to

use to reference the Java object in subsequent operations.

http://www.mindview.net/Books/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[4] The exact method for using an EJB varies depending on the EJB server you are using with ColdFusion.
Because of this, the best advice I can offer you is to consult the documentation for your particular version of
ColdFusion MX.

Using the cfobject tag to call a Java object loads the class but doesn't automatically create an
instance of the object. Once you have created the Java object with the cfobject tag, you can access

any static methods and fields in the object. You can make an explicit call to a constructor using a
special ColdFusion "method" called init():

<cfset MyVar = MyObject.init(argument1, argument2)>

The reason I put "method" in quotes is that init() is not a method of the object you are calling. It
is a special construct used by ColdFusion to call the new() method on the class constructor. In the
event that your object actually has a method named init(), a naming conflict will arise, and
ColdFusion will be unable to call the init() method of the object.

Calling a public method within an object without first calling init() results in an implicit call to the

default constructor. Arguments and return values may be of any valid Java datatype. When
ColdFusion passes data to a Java object, the data is automatically converted to the appropriate Java
datatype (when possible). Table 27-1 shows the conversion between ColdFusion datatypes and
equivalent Java datatypes that takes place.

Table 27-1. Conversion from ColdFusion datatypes to Java datatypes

ColdFusion
datatype

Java datatype

String or list
string, int, float, long, double, boolean, or java.util.Date (when string is

a date/time value)

Date/Time java.util.Date

Boolean boolean

Integer short, int, long

Real float, double

Array

java.util.Vector unless the ColdFusion array contains data of a single
datatype that can be converted to the Java array's datatype: boolean[], byte[
], char[], double[], float[], int[], long[], Object[], or String[]

Structure java.util.Map

Query Object java.util.Map

ColdFusion
Component
(CFC)

N/A

XML Document
Object

Not supported

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a Java object returns data back to ColdFusion, an attempt is made to automatically convert the
Java datatype to an appropriate ColdFusion datatype. Table 27-2 shows how Java datatypes map to
ColdFusion datatypes.

Table 27-2. How Java datatypes are converted to ColdFusion datatypes

Java datatype ColdFusion datatype

boolean/Boolean Boolean

byte/Byte String

char/Char String

double/Double Real

float/Float Real

int/Integer Integer

long/Long Integer

short/Short Integer

String String

java.util.Date Date/time

java.util.List Comma-delimited list

java.util.Map Structure

java.util.Vector Array

byte[] Array

char[] Array

boolean[] Array

String[] Array

Just like in our COM examples, to set a property, you use the following syntax:

<cfset obj.myProperty = "Value">

You can get a property's value using the following syntax:

<cfset myVar = obj.myProperty>

To invoke a method that doesn't expect any arguments, use the following syntax:

<cfset myVar = obj.myMethod()>

Methods that require one or more arguments can be invoked like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset myVal = 5>
<cfset myVar = obj.myMethod (myVal, "Hello World")>

Nested objects can be called like this:

theObject.theNestedObject.theProperty

You should note that in versions of ColdFusion prior to MX, you can't directly access nested objects.
Instead, you must access the outermost object first and work your way to the innermost object. In
ColdFusion 5, you would need to access the previous nested object like this:

<cfset myNestedObject = theObject.theNestedObject>
<cfset myProperty = myNestedObject.theProperty>

If the Java object is a JavaBeans component, you can call getProperty() and setProperty()

methods by referring to their property names. So, if the JavaBeans component contains a method
called getEmployeeName(), you could reference it like this:

<cfset theEmployee = myObj.EmployeeName()>

It is sometimes possible to reference getProperty() and setProperty() methods in Java objects

that have them, but aren't JavaBeans. You should take great care in doing this as many standard
Java classes (and their derivatives) can't be referenced this way.

To demonstrate some of the concepts we've just covered, we need a Java object we can experiment
with. Example 27-3 can be compiled using the Java compiler of your choice. It is important that the
resulting class file be placed in your class path or one of the alternate locations we discussed earlier.
You should save the file as sum.java and compile it as sum.class.

Example 27-3. Java code to compile to the sum.class file

public class sum{
 public int a;
 public int b;

 // default constructor
 public sum() {
 a = 0;
 b = 0;
 }

 // alternate constructor
 public sum(int x, int y) {
 a = x;
 b = y;
 }

 // getResult method for summing two numbers
 public int getResult() {
 return (a+b);
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This Java class file allows you to pass in two integer values (a and b) and call a method that returns

the sum of those values.

Once you have compiled the code, you are ready to call the object. Example 27-4 shows how to call
the Java object you just created using cfobject.

Example 27-4. Calling a Java object using cfobject

<!--- Load the Java class --->
<cfobject action="create" type="java" class="sum" name="add">

<!--- Call the default constructor --->
<cfset add.init()>

<!--- Set properties --->
<cfset add.a = 5>
<cfset add.b = 10>

<!--- Call the getResult method to return the result --->
<cfset result = add.getResult()>

<cfoutput>
#Result#
</cfoutput>

The example works by loading the sum.class file using the cfobject tag. The object is then assigned
to a variable called add. The default constructor is called using the special init() method. Next,
two properties of the object are set, a and b, respectively. After that, the getResult() method is
called and the results assigned to a variable called Result that is then output to the browser.

Example 27-5 shows the same example written using CFScript.

Example 27-5. Calling a Java object using CFScript

<cfscript>
 add = createObject("Java", "sum");
 add.init();
 add.a = 10;
 add.b = 5;
 Result = add.getResult();
</cfscript>

<cfoutput>
#Result#
</cfoutput>

In this case, the CreateObject() function calls the Java class file from within the cfscript block.
CreateObject() works identically to the cfobject tag, except that it isn't necessary to specify an
action attribute as you would using cfobject.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3.1.1 Overloading methods

It's possible for a Java object to have more than one method (including constructors) with the same
name. When you access a method like this, the JVM (Java Virtual Machine) automatically determines
which method to call based on the number and datatypes of the parameters passed to the method.
This is known as method overloading. ColdFusion supports method overloading when calling methods
on Java objects. However, because ColdFusion is not a strongly typed language, care must be taken
to explicitly cast the datatypes of the parameters passed when invoking an overloaded method. For
example, if a Java object contains two methods called getEmployee(), one taking an integer and

the other a string, calling the method from ColdFusion could result in confusion. Consider this code:

<cfset employee = obj.getEmployee("123")>

In this example, the getEmployee() method has no way of knowing whether "123" is a string or an

integer. Because it is unclear what datatype is being passed, ColdFusion will throw an exception when
it encounters this type of uncertainty. The JavaCast() function should be used in situations such as

this to cast a ColdFusion variable before it's passed to an overloaded method:

<cfset employee = obj.getEmployee(javaCast("int", 123))>

Or:

<cfset employee = obj.getEmployee(javaCast("string", 123))>

JavaCast() accepts two parameters, the datatype to cast to and the data. Possible datatypes are
boolean, int, long, double, or string. The JavaCast() function can't cast complex objects, such

as query objects, arrays, and structures, nor can it cast to a superclass.

If you look at the sum.class file we used in our previous examples, you'll notice in the comments that
we declared both a default and an alternate constructor. The default constructor is called by default
when ColdFusion's special init() method is used, or implicitly the first time a public method is
called on the object when init() is not used. If you want to use a different constructor, you can do

so via overloading. The following code loads the sum.class file and calls the alternate constructor by
overloading the call with two int parameters cast using JavaCast():

<cfscript>
 add = createObject("Java", "sum");
 add.init(JavaCast("int", 10), JavaCast("int", 5));
 Result = add.getResult();
</cfscript>

<cfoutput>
#Result#
</cfoutput>

27.3.1.2 Handling exceptions

The GetException() function can be used in conjunction with cftry/cfcatch tags (or try/catch in

CFScript) to deal with exceptions thrown within Java objects. The function takes a single argument
specifying the name of the Java object to retrieve the exception information from.

The following code calls a hypothetical Java object called MyObject. If an exception is thrown within

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the class, the cfcatch tag catches the exception.

<cfobject type="Java" action="Create" class="MyClass" name="MyObject">

<cftry>
<cfset Test = MyObject.CauseError() >

<cfcatch type="Any">
 <cfset MyException = GetException(MyObject)>
 <!--- call the GetErrCode and GerErrMsg methods within the exception
 object --->
 <cfset ErrorCode = MyException.GetErrCode()
 <cfset ErrorMessage = MyException.GetErrMsg()>

 <cfoutput>
 Error Code: #ErrorCode#

 Error Message: #ErrorMessage#
 </cfoutput>
</cfcatch>
</cftry>

Within the cfcatch block, the GetException() function retrieves the Java exception object from
MyObject and assigns it to a variable called MyException. Next, two methods in the object are
called, MyException.GetErrCode() and MyException.GetErrMssg(). Each method returns a

string (the error code and an error message, respectively), which is then output to the browser.

27.3.1.3 The Java API

One of the biggest potential untapped resources available to ColdFusion MX developers is the Java
API itself. Since ColdFusion runs on top of J2EE, it has access to the majority of the underlying Java 2
API. This means that you can have ColdFusion use Java to perform all sorts of nifty tasks that are
difficult or impossible to do with CFML alone. To get an idea of what's available, I suggest checking
out the Java documentation on Sun's web site. The documentation for the JVM installed by default
with ColdFusion MX is available at http://java.sun.com/j2se/1.4.2/docs/api/index.html. If you have
upgraded your JVM, be sure to consult the documentation for your particular installation.

Because I'd hate to leave you without a usable example, let's take a look at the java.io package.

Among other things, this package gives you access to your ColdFusion server's filesystem. The
particular class we're interested in is the File class. This class allows you to manipulate all aspects of

the server's filesystem. Say you want to get a file's size in kilobytes. You can easily do this with the
File class:

<cfobject action="create" type="java" class="java.io.File" name="fileObj">
<cfset fileObj.init("d:\cfusionmx\releasenotes.htm")>
<cfset fileLen = fileObj.length()>

<cfoutput>
d:\cfusion\releasenotes.htm is #fileLen# bytes.
</cfoutput>

This example loads the java.io.File class and assigns it to fileObj. Next, an alternate constructor

http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

(there are three possible constructors in this class) is called by providing the path to the file whose
length we want to get (the file path is passed as a string). The length() method gets the length for

the file passed to the constructor. The result is then output to the browser.

Although this is a simple example, it demonstrated how easy it is to use Java objects already part of
the underlying J2EE framework. All it takes is a little knowledge, not necessarily a thorough
understanding of Java.

27.3.1.4 Taking advantage of the PageContext object

The GetPageContext() function acts as a wrapper for the Java PageContext object. This function

returns an object containing the attributes, methods and other configuration information available to
the current page. Using this object, it's possible to look up various information concerning the current
page, such as scope and variable values. This function can also be useful for integrating ColdFusion
with J2EE applications as it provides access to request and response objects. Additionally, include(
) and forward() methods are exposed, making it possible to communicate with JSP pages using
the equivalent of jsp.forward and jsp.include (we'll cover this in the next section). To see the
contents of the object for the current page, simply dump it using the cfdump tag:

<cfdump Var="#GetPageContext()#">

Method objects can be viewed by dumping them as well:

<cfdump Var="#GetPageContext().getRequest()">

This retrieves the server name from the getRequest method:

<cfdump Var="#GetPageContext().getRequest().getServerName()#">

27.3.2 Communicating with Servlets and JSP Pages

ColdFusion has always been able to invoke servlets and JSP pages by calling them through a
standard URL-either as a hyperlink or via the cfhttp tag (Get or Post). This gave you the ability to

call a servlet/JSP page, even passing it form or URL data. What it didn't give you, though, was a
meaningful way to handle any data returned by the servlet or JSP page.[5]

[5] Prior to ColdFusion MX, it was possible to communicate with servlets (but not JSP pages) bidirectionally via

two tags, cfservlet and cfservletparam. These tags are no longer supported in ColdFusion MX and have

been replaced by the GetPageContext() function. For more information on cfservlet and

cfservletparam, see Appendix A.

ColdFusion MX changes all of this by providing a mechanism for bidirectional communication with
both Java servlets and JSP pages. This means it's possible to call servlets/JSP pages from a
ColdFusion page, or a ColdFusion page from a servlet or JSP page. It also means that you can share
data in certain variable scopes between ColdFusion and servlets/JSP pages.

The preferred way for ColdFusion to interact with Servlets and JSP pages is through the
GetPageContext() function. The GetPageContext() function acts as a wrapper for the Java
PageContext class.[6] The PageContext class provides access to the attributes, methods, and other

configuration information available to the current page. For interacting with servlets and JSP pages,
we're primarily interested in two methods of the PageContext class, include() and forward().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Within the context of Java, these methods allow you to include a resource as part of the calling
thread or forward the request to another component while preserving certain information from the
calling thread. What that means for you as a ColdFusion developer is you can use these methods,
exposed through ColdFusion's GetPageContext() function to include a servlet/JSP page in your

ColdFusion page, or forward a request from a ColdFusion page to a servlet/JSP page. The syntax for
including a servlet or JSP page in a CFML page looks like this:

[6] See http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/jsp/PageContext.html for more

information on the Java PageContext class.

GetPageContext().include("url_to_servlet_or_jsp_page")

To forward a request from a CFML page to a servlet or JSP page, the code looks like this:

GetPageContext().forward("url_to_servlet_or_jsp_page")

The first thing you should notice is that the syntax for using the GetPageContext() function is a

little different than other CFML functions. I can't tell you why Macromedia decided to implement it
this way, but I can tell you that the syntax more closely resembles how things are called in Java.
Don't get hung up on this, however; it's easy to deal with once you've used it a few times. That said,
let's look at how you can use GetPageContext() to include and redirect to an actual JSP page from

within a ColdFusion page. We'll also look at the difference between including and forwarding. The
code shown in Example 27-6 is for a simple JSP page that creates a variable of type string

(remember, Java is a strongly typed language, so you have to declare a variable's type when you
declare the variable) and then outputs its value to the browser. Note that JSP (and Java) is case-
sensitive. Be sure to save your file as test.jsp.

Example 27-6. A simple JSP page

<%
String myString = "Look at me, I'm JSP!";
%>

<%= myString %>

Now, to include the test.jsp page from within a ColdFusion page, look at the code in Example 27-7.

Example 27-7. Using GetPageContext() to include a JSP page in a
ColdFusion page

Look at me, I'm CFML

<cfoutput>
#getPageContext().include("test.jsp")#
</cfoutput>

Look at me, I'm CFML again

This simple CFML page outputs some text, makes a call to include our test.jsp page (provided both
are placed in the same directory), and outputs some additional text. JSP pages can be placed in any
directory accessible via URL-the same as for your CFML files. Servlets are a little different. By
default, servlets go in the /webroot/WEB-INF/classes directory and are accessed at

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/jsp/PageContext.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

/servlet/servletname. If you run the code in Example 27-7, you'll see output similar to that shown in
Figure 27-1.

Figure 27-1. Including a JSP page from within a CFML page

To see how a forward works in contrast to an include, change the getPageContext() code as

follows:

#getPageContext().forward("test.jsp")#

Now, call the modified code from your browser. This time, you'll notice that the output is a little
different. All you should see is the output generated by the JSP page. This is because the forward
causes the server to redirect the page request to the JSP page provided to the function. In a CFML
page that contains a forward to a JSP page, all of the CFML code before the forward gets executed.
This means that if you have code that does something like insert data into a database, write out to a
text file, or write a cookie, it still gets executed before the server is redirected to the servlet/JSP
page. Any code in the CFML template after the forward call is made does not get executed. This is the
fundamental difference between an include and a forward.

If you are working in JSP, you can easily forward to or include a CFML page using code using the
jsp:include or jsp:forward directive like this:

<%@page import="java.util.*" %>

Look at me, I'm JSP

<jsp:include page="test.cfm" />

Look at me, I'm JSP again

27.3.2.1 Sharing data between ColdFusion and servlets/JSP pages

Earlier, I mentioned that one of the benefits of the java PageContext class was the ability to share

data stored in certain scopes between ColdFusion pages and servlets/JSP pages. ColdFusion and
servlets/JSP are capable of sharing URL, request, application, and session scoped variables.

Passing URL variables from ColdFusion to servlets/JSP pages is easy. All you need to do is append the
URL variables to the URL you provide to getPageContex().include() or getPageContext(
).forward(), like this:

<cfoutput>
#getPageContext().include("test.jsp?name=Rob")#
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Or like this:

<cfset parameters = "name=Pere Money&title=President">

<cfset getPageContext().include("urlparams.jsp?#parameters#")>

Within your JSP page (urlparams.jsp), you simply refer to the passed URL parameters by name (case
sensitive):

<%@page import="java.util.*" %>

Name: <%= request.getParameter("name")%>

Title: <%= request.getParameter("title")%>

Sharing request-scoped variables is just as easy. ColdFusion's request scope maps directly to Java's
request scope. Here's a simple CFML page that sets two request scoped variables and then includes a
JSP page that outputs their values:

<cfset request.dsn = "ProgrammingCF">
<cfset request.username = "admin">

<cfset getPageContext().include("requestscope.jsp")>

The corresponding JSP page (save it as requestscope.jsp) simply outputs the values of the two
request variables set in the CFML template by accessing the getAttribute() method of the Java
PageContext object and passing it the name of the request variable you want to retrieve the value

for. Note that variable names for request variables are case-sensitive within your JSP code. Here's
the JSP code we just discussed:

<%@page import="java.util.*" %>

<h2>Request Scope Variables in JSP:</h2>
request.dsn: <%= request.getAttribute("dsn")%>

request.username: <%= request.getAttribute("username")%>

Sharing application and session scoped variables between ColdFusion and servlets/JSP is a little more
involved, but still straightforward. Before we start, there are a couple of considerations that need to
be addressed. First, if you are going to share session data between ColdFusion and Java, you have to
have J2EE session management enabled in the ColdFusion Administrator. If you need more
information on J2EE session management, see Chapter 7.

Second, if you are going to share data stored in the application scope, you have two options for
setting up your application on the ColdFusion side. When ColdFusion shares application-scoped data
with Java servlets and JSPs, the application data is represented as an attribute of Java's
ServletContext interface named by the application name (as defined by the cfapplication tag).
The application scope data is stored as a hash table in the ServletContext's attribute. If you don't
provide a name for your application in a cfapplication tag, your application is called an unnamed

application. You are only allowed one unnamed application per ColdFusion server. If you have more
than one unnamed application on your server, they all share the same application scope. This would
most likely result in unwanted application behavior, as your servlet/JSP page would have access to
potentially conflicting application variables from multiple applications. In the case of an unnamed
application, the ColdFusion application scope maps directly to the J2EE application scope.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using a named ColdFusion application to pass application or session scoped data to a
servlet or JSP page, the code to do so would look something like this:

<!--- The cfapplication tag could also reside in an Application.cfm file -[Symbol_
Wingdings_224]
<cfapplication name="test" sessionmanagement="yes">

<cfset application.bgcolor = "Black">
<cfset session.employee = "Pere Money">

<cfset getPageContext().include("varscope.jsp")>

As you can see, there is really nothing special you need to do in your CFML code.

The JSP code you write to access the application and session scope is equally as simple:

<%@page import="java.util.*" %>

<h2>In JSP:</h2>
application.bgcolor: <%= ((Map)(application.getAttribute("test"))).get("bgcolor")%>

session.employee: <%= ((Map)(session.getAttribute("test"))).get("employee")%>

In this case, the bgcolor application variable is accessed by using the getAttribute() method of
the test application object. The value of the employee session variable is obtained by using the
getAttribute() method of the session object to get the named application (test) object.

The same code can easily be written to get the values from an unnamed application. Here's the CFML
code to pass the application and session variables. Notice that the cfapplication tag omits the

name attribute:

<cfapplication sessionmanagement="yes">
<cfset application.bgcolor = "Black">
<cfset session.employee = "Pere">

<cfset getPageContext().include("unnamedapp.jsp")>

The JSP page that is included should be saved as unnamedapp.jsp:

<%@page import="java.util.*" %>

<h2>In JSP:</h2>
application.bgcolor: <%= application.getAttribute("bgcolor")%>

session.employee: <%= session.getAttribute("employee")%>

Here, the code to access the application and session variable is a little different. Since the application
wasn't named in the CFML page, no named application object exists on the JSP side. In this case,
ColdFusion's application and session scope map directly to Java's application and session scopes.

It's just as easy to share request, application, and session variables in a JSP page or servlet with a
CFML page. The same rules for named and unnamed applications apply. The following code sets a
request, application, and session variable for an unnamed application, then includes a CFML page
that outputs the values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@page import="java.util.*" %>

<% request.setAttribute("dsn", "ProgrammingCF");%>
<% application.setAttribute("bgcolor", "Red");%>
<% session.setAttribute("employee", "Pere Money");%>

<jsp:include page="varscope.cfm" />

The corresponding CFML page looks just like you would expect it to. Remember, though, that in this
case we are sharing the variables with an unnamed application, so it's important to leave the name
attribute out of the cfapplication tag:

<cfapplication sessionmanagement="yes">

<h2>In CFML:</h2>
<cfoutput>
request.dsn: #request.dsn#

application.bgcolor: #application.bgcolor#

session.employee: #session.employee#
</cfoutput>

27.3.3 Using JSP Tags and Tag Libraries

In addition to JSP pages, ColdFusion is also capable of using JSP tags. JSP tags can be broken down
into two types, native JSP tags and JSP custom tags. Native JSP tags are generally not of interest to
ColdFusion developers since for the most part, they mimic the functionality already present in the
CFML language. Like ColdFusion's custom tags, JSP also has a convention for extending the core JSP
language known as JSP custom tags. A JSP tag can exist standalone or as part of a tag library. JSP
tags and tag libraries offer JSP developers a means for encapsulating more complex Java
functionality in a simpler tag-based wrapper.

You can easily make use of JSP tag libraries in ColdFusion[7] using the cfimport tag. Before you

begin, however, there are a few steps you need to take for ColdFusion to use the tag library:

[7] JSP tag libraries can only be imported in the Developer and Enterprise versions of ColdFusion MX 6.1.
ColdFusion Standard does not offer support for importing JSP tag libraries.

Place the .tld and/or JAR file in the desired directory. Although it isn't required, the default
location for JSP tag libraries is in the webroot/WEB-INF/bin directory.

1.

Make sure the path to the tag library is registered in the CLASSPATH field of the Java and JVM

section of the ColdFusion Administrator.

2.

Stop and restart the ColdFusion MX Server service.3.

The following example uses an open-source JSP tag library from the Apache Jakarta project called
Scrape. Scrape is like a specialized version of the cfhttp tag. It allows you to specify a URL to grab
via HTTP. What it does that cfhttp can't is allow you to specify a beginning and ending anchor that it

will parse the document for. It then returns all content up to and optionally including the anchors you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set. Using Scrape, it's possible to grab a specific chunk of content from the specified site. Here's an
example that uses the Scrape JSP tag library to retrieve the list of new book titles from the O'Reilly
web site. The list is then output to the browser.

<!--- Import the Jakarta Scrape JSP tag library. The tag library can be found
 at http://jakarta.apache.org/taglibs/doc/scrape-doc/intro.html --->
<cfimport taglib="/WEB-INF/lib/jakarta-taglibs/scrape/taglibs-scrape.jar"
 prefix="scrp">

<!--- Grab the oreilly.com new & upcoming titles page, and scrape the list of
 new titles. --->
<scrp:page>
 <scrp:url>http://www.oreilly.com/catalog/new.html</scrp:url>
 <scrp:scrape id="newTitles" begin="<!-- New titles -->" end="</td>"
 anchors="false"/>
</scrp:page>

<!--- Output the list of new titles --->
<cfoutput>
#newTitles#
</cfoutput>

The cfimport tag takes two attributes, taglib and prefix. taglib is required when using cfimport

to import a JSP tag library. It specifies the URL to the JAR file containing the tags or to the tag library
descriptor file (.tld) if it is not included in the JAR file. It's customary to place JSP tag libraries in the
webroot/WEB-INF/lib directory. The prefix attribute is optional. It specifies a namespace to use for
referring to your imported tags. You refer to an imported tag using the syntax <prefix:tagname>. If
a blank prefix ("") is specified, or the prefix attribute is omitted altogether, the tag is referred to
using only its name <tagname>. This means that you could rewrite the code like this:

<!--- Import the Jakarta Scrape JSP tag library. The tag library can be found
 at http://jakarta.apache.org/taglibs/doc/scrape-doc/intro.html --->
<cfimport taglib="/WEB-INF/lib/jakarta-taglibs/scrape/taglibs-scrape.jar"
 prefix="">

<!--- Grab the oreilly.com new & upcoming titles page, and scrape the list of
 new titles. --->
<page>
 <url>http://www.oreilly.com/catalog/new.html</url>
 <scrape id="newTitles" begin="<!-- New titles -->" end="</td>"
 anchors="false"/>
</page>

<!--- Output the list of new titles --->
<cfoutput>
#newTitles#
</cfoutput>

For more information on Scrape, see http://jakarta.apache.org/taglibs/doc/scrape-doc/intro.html.
You can download other JSP tag libraries from the Apache Jakarta project from
http://jakarta.apache.org/taglibs/doc/scrape-doc/intro.html. SourceForge.net
(http://sourceforge.net) is another good resource for open source JSP tag libraries.

http://jakarta.apache.org/taglibs/doc/scrape-doc/intro.html
http://jakarta.apache.org/taglibs/doc/scrape-doc/intro.html
http://sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 28. Flash Remoting
When Macromedia and Allaire merged back in 2001, hopes were high that great things would come
out of the merger. After all, Macromedia had great client-side technologies and tools such as Flash
and Dreamweaver, and Allaire had world-class server products such as ColdFusion and JRun. Little
did anyone anticipate just how innovative the product marriage would be.

In late 2002, Macromedia launched a completely redesigned product suite, branded with the now
famous MX moniker. Included in this launch was a new concept known as a Rich Internet Application
(RIA). RIAs use the Flash 6 player and Flash MX on the client side, combined with the Flash Remoting
gateway coupled with an application server such as ColdFusion MX, Java, ASP, or PHP, to create an
entirely new class of applications. Because an RIA makes use of Flash MX on the front end, user
interface options aren't limited to the confines of HTML. Further, the Flash MX player enjoys a much
larger installed base than the JVMs necessary to run comparable Java applets, making it available to
the majority of users out there on the Internet.

While we don't have enough room in this chapter to cover programming Flash MX in any detail, we
can explore the various components of Flash Remoting as they relate to ColdFusion. Topics include a
general overview of Flash MX, placing Flash movies in your ColdFusion pages, and passing data
between a Flash movie and ColdFusion MX via Flash Remoting. Throughout the chapter, we'll use the
terms "RIA" and "Flash Remoting application" interchangeably.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

28.1 Getting Started with Flash Remoting for ColdFusion
MX

You may be thinking that Flash is only an animation tool. While that used to be the primary use for
Flash, with the launch of Flash MX, Flash is now a full-blown application development platform.
Macromedia's vision for Flash MX is as the front end (GUI) for RIAs. RIAs are made up of several
components:

Flash 6 player

The Flash 6 player provides the container in which a Flash movie runs. It can run as a web
browser plug-in or as a standalone player. One of the great things about the Flash 6 player is
the relative ubiquity it enjoys.[1]

[1] For more information on the adoption rate of the Flash 6 player, see
http://www.macromedia.com/software/player_census/flashplayer/version_penetration.html

Flash movie

A Flash movie runs inside the Flash player. It contains user interface controls and ActionScript
code for controlling both the behaviors in the movie and any interactivity with ColdFusion via
Flash Remoting. Flash movies are developed in the Flash MX authoring tool, compiled, and then
deployed as .swf files.

ActionScript

ActionScript is the programming language used by Flash. ActionScript looks a lot like
JavaScript. In fact, if you already know JavaScript, you should have no trouble picking up
ActionScript. Within a Flash movie, ActionScript is used to control virtually all aspects of
interactivity between the movie and ColdFusion and within the movie itself. There's just too
much to ActionScript to even begin to cover it in this chapter. If you want an excellent
reference, I recommend ActionScript for Flash MX: The Definitive Guide by Colin Mook
(O'Reilly). It really is considered the definitive guide.

Flash Remoting

Flash Remoting acts as a bridge between a Flash movie on the client side and ColdFusion on the
server side. Flash Remoting consists of two pieces. The first is a set of components that install
in the Flash MX authoring environment; the components contain the ActionScript APIs and
debugging services for developing Flash Remoting applications. The second piece is a
communications gateway that is automatically installed as part of the ColdFusion MX server.

ColdFusion MX

ColdFusion MX provides the back-end services, such as querying a data source, interacting with
a shopping cart, etc. Preferably, Flash MX interacts with CFCs running on the ColdFusion server
(although it's also possible to interact with ColdFusion pages and server-side ActionScript, which
we'll explore later).

To understand how these components fit together to form an RIA, consider Figure 28-1 .

http://www.macromedia.com/software/player_census/flashplayer/version_penetration.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 28-1. Architecture of a Rich Internet Application

Now that you have a better understanding of the components involved in a Flash Remoting
application, let's look at the ways in which a Flash MX front end can interact with ColdFusion on the
back end. When you use Flash Remoting, you have several choices for how to write the ColdFusion
code on the back end. These choices include CFML pages, CFCs, server-side ActionScript, and Java
objects hosted on the ColdFusion server. We'll cover each of these to varying degrees throughout the
chapter.

28.1.1 Setting Up Flash Remoting

I generally don't like to write about installation procedures, as they tend to be clearly explained in the
documentation that ships with the product being discussed. I'm going to make an exception here
because there tends to be some confusion about what needs to be installed where and how to
connect it all together. I also think some general setup advice is warranted as both Flash Remoting
and Flash MX are new to many ColdFusion developers.

That said, let's look at what you need in order to get going. For starters, you'll need a copy of Flash
MX (the authoring environment). If you haven't already purchased Flash MX, you can download a trial
copy from http://www.macromedia.com. Before you can develop Flash Remoting applications, you'll
need to download both the Flash Remoting Components for Flash MX and the most current version of
the Flash Remoting Components Updater from
http://www.macromedia.com/software/flashremoting/downloads .These components add the
ActionScript APIs used for Flash Remoting along with an excellent debugger called the NetConnection
Debugger (which we'll cover later).

Once you have downloaded the Flash Remoting Components for Flash MX and Flash Remoting
Components Updater, you are ready to start building Flash Remoting applications. You don't need to
install anything on your ColdFusion server because the Flash Remoting gateway comes preinstalled.

28.1.2 Working with the Flash MX Editor

http://www.macromedia.com/software/flashremoting/downloads
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before we can progress, you'll need to familiarize yourself with the Flash MX editor. In the event you
aren't already familiar with the Flash MX editor, I suggest opening it up and going through all of the
included tutorials. The tutorials do a decent job of familiarizing you with both the components of the
editor and the terminology we'll be using throughout the chapter.

Once you are familiar with the Flash MX editor, it's time to get started. We first need to concern
ourselves with creating a basic movie, saving it, and then including it within a ColdFusion page. The
Flash Remoting Components for Flash MX make it easy to get started building a Flash Remoting
application. The components install a generic template in Flash MX that you can use to get started. To
use this template, open up Flash MX, select File New From Template, choose Web from the
Category box and Basic from the Category Items box, then click the Select button. You should see a
blank stage (the area where you add drawing elements, UI elements, and text). You should also see a
single layer called Actions. This layer contains a template for the ActionScript you'll need to do Flash
Remoting. Don't worry about it yet, though. For now, let's just concentrate on creating a Flash movie
and embedding it within a ColdFusion page. Here are the basic steps:

Select the text tool from the tools menu (it's the capital "A" icon).1.

Move your cursor onto the stage and click your mouse button. Enter something like "Flash
Remoting Demo" in the area that appears on the stage (make sure you are on the Actions
layer).

2.

Choose File Save to save the document (note that this is the source code and not the
compiled movie). The Flash MX document saves with an extension of .fla . This differs from the
.swf file used for the actual Flash movie. We'll cover this in just a moment.

3.

To save the file you are working on as a Flash movie, choose File Publish Movie. Flash MX will
automatically create the Flash movie file (.swf) and a supporting HTML file for calling the movie
in the same directory you previously saved the Flash document.

4.

By default, when you publish a Flash MX document as a Flash movie, an HTML file is also created. This
HTML file contains the code necessary to embed the Flash movie within a web page. Open the HTML
file in your HTML editor. The HTML file should have the same name as the Flash movie you exported
(28-1.html). The HTML code should look something like this:

<HTML>
 <HEAD>
 <meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
 <TITLE>28-1</TITLE>
 </HEAD>
<BODY bgcolor="#FFFFFF">
<!-- URL's used in the movie-->
<!-- text used in the movie-->
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=6,0,0,0"
 WIDTH="550" HEIGHT="400" id="28-1" ALIGN="">
 <PARAM NAME=movie VALUE="28-1.swf">
 <PARAM NAME=quality VALUE=high>
 <PARAM NAME=bgcolor VALUE=#FFFFFF>
 <EMBED src="28-1.swf" quality=high bgcolor=#FFFFFF WIDTH="550"
 HEIGHT="400" NAME="test" ALIGN=""

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>
</OBJECT>
</BODY>
</HTML>

To use the Flash movie in a ColdFusion page, just copy and paste the code contained between the
<object> /</object> tags (be sure to include the object tags themselves, as well). This code tells
the browser to embed the Flash movie specified by one of the param tags. The embed tag is used to
ensure browser compatibility as some browsers don't recognize the object tag. Copy the object tag

code and paste it into a new ColdFusion page now. Save the CFML page as 28-1.cfm in the same
directory as your Flash movie. If you open the ColdFusion page in your browser, you should see
output similar to that in Figure 28-2 . Congratulations: you just created your first Flash movie.

Figure 28-2. Embedding a Flash movie in a ColdFusion page

28.1.3 Writing ActionScript for Flash Remoting

In the previous section, we created a simple Flash movie using a predefined Flash Remoting template.
We didn't actually use any of the Flash Remoting capabilities in that movie. In fact, all our example
movie did was display some text on the screen-hardly what you would call a Rich Internet
Application. In this section, we'll look at the ActionScript code that was created as part of the Flash
Remoting template we used to create the movie in Example 28-1 .

Open the example file we created earlier (28-1.fla) and click on the Actions layer in the Timeline
panel. You should see ActionScript code like that shown in Example 28-1 in the Actions panel of your
Flash MX editor.[2] If the Actions panel isn't already expanded, you may need to do so (F9 is the
keyboard shortcut).

[2] Although this template does not show it, it's considered a "best practice" to always var local variables in Flash
with a "var" keyword - just as you do in JavaScript or in ColdFusion UDFs.

Example 28-1. Generic template for creating Flash Remoting applications

#include "NetServices.as"

// uncomment this line when you want to use the NetConnect debugger
//#include "NetDebug.as"

// --
// Handlers for user interaction events
// --

// This gets called when the "aaaa" button is clicked

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function aaaa_Clicked ()
{
 // ... put code here

 // For example, you could call the "bbbb" function of "my.service" by doing:
 // myService.bbbb(123, "abc");
}

// --
// Handlers for data coming in from server
// --

// This gets called with the results of calls to the server function "bbbb".
function bbbb_Result (result)
{
 // ... put code here

 // For example, if the result is a RecordSet, you could display it in a ListBox by
doing:
 // myListBox.setDataProvider(result);
}

// --
// Application initialization
// --

if (inited = = null)
{
 // do this code only once
 inited = true;

 // set the default gateway URL (this is used only in authoring)
 NetServices.setDefaultGatewayUrl("http://localhost:8100/flashservices/gateway");

 // connect to the gateway
 gateway_conn = NetServices.createGatewayConnection();

 // get a reference to a service
 myService = gateway_conn.getService("my.service", this);
}

stop();

We won't go into every line of code in the template in detail (besides, the comments are actually
pretty good), but we will walk through the basic sections.

The first line of code includes an ActionScript file called NetServices.as . This file is installed as part of
the Flash Remoting Components for Flash MX and contains ActionScript code used for Flash Remoting.
The next section of code defines an event handler (similar to a CFC method) that can be called from
an event such as a user clicking a button in the Flash movie. The third section consists of a result
handler. A result handler is automatically invoked when a call to an event handler returns results. The
_result portion of the function name tells Flash that the function should be invoked when function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"bbbb" returns a result.

The final section of code is used to instantiate a connection to the Flash Remoting gateway. The code
is designed to execute a single time and places the instantiated connection in an object called
myService . This object can be called anywhere it's needed in the ActionScript code (I'll cover this in

later examples).

Now that you've seen what an ActionScript template for Flash Remoting looks like, we're going to
focus our attention on how you can use it to pass data back and forth between Flash MX and
ColdFusion MX via Flash Remoting. On the client side, the ActionScript you write in the Flash MX
editor is pretty straightforward. On the opposite end, however, you have several choices for coding
the server-side functionality. These choices include ColdFusion pages, ColdFusion Components,
server-side ActionScript and Java objects hosted on the ColdFusion MX server. Each of these options
is discussed in detail the remaining sections of this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

28.2 Interacting with ColdFusion Pages

Prior to Flash Remoting, communication between Flash and ColdFusion was a little awkward. On the
Flash end, you wrote ActionScript code that called a ColdFusion page via the Flash loadVars object.
This object had a method called load() that took the URL of a page (in this case ColdFusion) that

output variable names and values in a format that Flash could understand. Interaction using this
method was fairly cumbersome, on both the Flash and ColdFusion sides. Additionally, it was difficult
to pass complex datatypes, such as query record sets, arrays, and structures, between ColdFusion
and Flash. Typically, these complex types had to be broken down into simpler name/value pairs
before they could be passed. ColdFusion MX and Flash Remoting change this paradigm completely.
Combined, these technologies allow you to pass various ColdFusion and Flash datatypes back and
forth between Flash and ColdFusion as if they were native datatypes.

If you refer back to the last section of code in Example 28-1, you'll see that we created a reference to
the Flash Remoting gateway by calling the createGatewayConnection() method of the
NetServices object:

// connect to the gateway
gateway_conn = NetServices.createGatewayConnection();

Once the connection is established, the next step is to get a reference to a service. In Flash MX-
speak, a service is the directory path that contains the ColdFusion page you want to connect to via
Flash Remoting. As in Java, the actual directory path is referred to using dot notation. Thus, if your
CFML pages reside in /webroot/my/service, you would use code like this:

// get a reference to a service
myService = gateway_conn.getService("my.service", this);

Once you have a connection to your service (directory) established, you can call individual CFML
pages stored in that directory by name as if they were methods. Each individual CFML file represents
a single method available to your ActionScript code. For example, if you had a CFML page called
getUsers.cfm, you would refer to it like this:

myService.getUsers();

Within your CFML file, a special scope known as the Flash scope is available. The Flash scope contains
three predefined variables:

flash.params

Structure containing all arguments passed to ColdFusion from Flash.
flash.pagesize

The number of records returned from ColdFusion to Flash at one time. This variable can be
used to return an entire record set to Flash, or it can be used to return a record set in
increments.

flash.result

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variable to return to Flash from ColdFusion. Table 28-1 shows the mapping between ColdFusion
datatypes and Flash datatypes.

Table 28-1. ColdFusion and Flash datatype mapping

ColdFusion datatype Flash datatype

String String

Numeric Number (primitive)

Date/Time Date object

Boolean Boolean (primitive)

Array Ordered array

Structure ActionScript object, Named array

Query RecordSet

XML Document Object XML object

To get a better idea of how this all fits together, let's create a simple CFML file that gets a list of users
from the EmployeeDirectory table of our ProgrammingCF data source and returns it to a Flash

movie that uses the data to populate a list box. Example 28-2 shows the code for the CFML file.

Example 28-2. Returning a record set from a ColdFusion page to a Flash
movie

<cfquery name="getEmployees" datasource="programmingcf">
 SELECT ID,Name
 FROM employeeDirectory
 ORDER BY Name
</cfquery>

<!--- Number of records going back to the flash movie. In this case,
 we return all of them at once. --->
<cfset flash.pageSize = getEmployees.recordCount>

<!--- Return result set to Flash movie --->
<cfset flash.result = getEmployees>

This example executes a simple cfquery to retrieve the ID and Name of every user in the
EmployeeDirectory table in our database. It then uses the flash.pageSize variable to specify the

number of records at a time to return back to the Flash movie. Here, we specify that all records
should be sent back at once. It is possible to send records back in increments, too. To do this,
though, you need to use the RecordSet object in your client-side ActionScript to continue to retrieve

additional records beyond the first chunk sent back to the Flash movie. The final line of code sends
the complete record set returned by the query back to the Flash movie. Once you have finished
entering the code, save the page as getEmployees.cfm in /webroot/programmingcf/ch28.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creating a Flash front end to call the CFML page in Example 28-2 is almost as easy. Let's walk
through the process. First, open Flash MX, select File New From Template, choose Web from the
Category box and Basic from the Category Items box, then click the Select button. This gives us a
fresh template with which we can build our movie.

Flash MX comes preinstalled with a set of UI components you can use in your movies. These UI
components make it very easy to build consistent user interfaces in your Flash movies. The UI
components that make up the Flash UI Components include a checkbox, list box, combo box, and
push button. Each UI component has several properties and methods you can use to control its
behavior. To see the components, you'll need to choose "Flash UI Components" from the dropdown
box in the Components panel. You should see an icon for each UI component type, as shown in
Figure 28-3.

Figure 28-3. Flash UI Components

To place a UI component in your movie, simply drag and drop it from the Components panel onto the
stage. When you do this with a ListBox component, your stage should look like that in Figure 28-4.

Figure 28-4. Placing a UI component on the stage

Now that we have our ListBox component on the stage, we need to give it a name so that we can tell
Flash MX what to bind the data we return from our CFML page to. We're going to name our ListBox
component "lb1." To name the ListBox component, enter lb1 in the text box under the Component

label in the Preferences panel shown in Figure 28-5. Note that the component must have focus on the
stage in order to do this.

Figure 28-5. Naming a UI component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All that's left to do now is write the ActionScript code that connects to the Flash Remoting gateway,
calls our CFML page, and binds the result set returned by it to our ListBox component. We're going to
modify the ActionScript that was automatically created when we chose to create a new file from a
template. To make things easy, let's erase all of the ActionScript that was automatically generated
and replace it with the code in Example 28-3.

Example 28-3. Using Flash Remoting to call a ColdFusion page

// include the flash remoting library
#include "NetServices.as"
// include AS library for binding data to UI components
#include "DataGlue.as"
// include AS library for debugging Flash Remoting
#include "NetDebug.as"

// --
// Application initialization
// --
if (inited == null) {
 // do this code only once
 var inited = true;
 // set the default gateway URL (this is used only in authoring)
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
 // connect to the gateway
 var gateway_conn = NetServices.createGatewayConnection();
 // get a reference to a service
 var myService = gateway_conn.getService("programmingcf.ch28", this);
}

// call the getEmployees() "method"
myService.getEmployees();

// --
// Handlers for data coming in from server
// --
// Bind the results to the lb1 list box using data glue
function getEmployees_Result(result) {
 DataGlue.bindFormatStrings(lb1, result, "#Name#", "#ID#");
}
stop();

The organization and content of this code is a little different than what you've seen so far. This makes
it easier to explain in a top-down fashion.

The first thing you should notice is that we've used two additional includes at the top of the file. You
already learned that NetServices.as is the ActionScript library containing the functions necessary for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connecting to the Flash Remoting Gateway. The DataGlue.as file is an additional ActionScript library
that installs with the Flash Remoting Components. It contains objects and methods for binding record
set data to UI components. It's far easier to use DataGlue to accomplish this than to manually loop
through all the records in the returned record set, adding them one at a time to the UI control. If you
want to see all the objects and properties in the DataGlue library, simply click on Remoting
DataGlue in the tree under the Actions panel.

The NetDebug.as library contains objects and methods you can use to debug your Flash Remoting
operations. Like the DataGlue library, you can see the objects and properties available by clicking on
Remoting NetDebug in the tree under the Actions panel. Including the NetDebug.as library is also
necessary to use the NetConnection Debugger. This handy tool allows you to watch what is
happening with your Flash Remoting application as it happens. To launch the NetConnection
Debugger, choose Window NetConnection Debugger from the toolbar in Flash MX. You'll see how
this works when we test our Flash movie.

The next section of code initializes the connection to the Flash Remoting Gateway and creates a
reference to the service (in this case, /webroot/programmingcf/ch28). With the reference to the
service established, the getEmployees() method (getEmployees.cfm) is called. On the ColdFusion
end, the EmployeeDirectory table is queried, and a record set containing all of the employee names

and ids is returned back to the flash movie.

The getEmployees_Result() function handles the result set returned by the getEmployees()
method. It uses the bindFormatStrings() method of the DataGlue object to bind the result set to
our ListBox Component (named lb1).

To test the movie, choose Control Test Movie from the toolbar. If you've entered everything
correctly, you should see a ListBox UI Component populated with the names of the employees from
the EmployeeDirectory table. The results are shown in Figure 28-6.

Figure 28-6. Populating a UI control via Flash Remoting

If you close the movie test (click the "x" in the upper right-hand corner of the screen), you can retest
it with the NetConnection Debugger turned on so that you can see exactly what is taking place as the
movie plays. The NetConnection Debugger displays tons of useful information that can help you
troubleshoot your way out of most connectivity-related issues.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

28.3 Interacting with ColdFusion Components

While it's fairly easy to use ColdFusion pages and the Flash variable scope to interact with a Flash
movie, it can be a bit awkward at times. In some cases, you may not want to deal with a different
CFML file for each method that makes up your service. Also, while the Flash scope isn't hard to use,
wouldn't it be much nicer if you could just pass various datatypes, such as record sets, arrays, and
structures, back and forth between Flash MX and ColdFusion without having to assign them to a
special scope or manipulate them in other ways?

This is where CFCs come in. CFCs provide the most natural and integrated way to pass data between
Flash MX and ColdFusion MX. Components are nice because you can wrap multiple functions
(methods) inside a single file. With pages, each CFML file corresponds to a single function. Also, unlike
with ColdFusion pages, you do not need to use the Flash scope when referencing arguments passed
to the CFC or return values to be sent back to the Flash MX movie. When a Flash MX movie calls a
method of a CFC, any arguments it passes to the CFC are automatically available as named
arguments in the CFC's arguments scope. Likewise, to return data from the CFC method to the Flash
movie, all you need to do is use the cfreturn tag. The Flash Remoting gateway handles everything

else for you automatically.

CFCs offer additional advantages over the page approach. Whereas CFML pages tend to be specific to
Flash applications (because of the Flash scope), an equivalent CFC can be written once and used to
return data to a Flash movie and/or to a ColdFusion program (or other client via web services). Also,
components offer built-in roles-based security.

Let's create an example that demonstrates just how simple, elegant, and powerful the combination of
Flash MX, Flash Remoting, and ColdFusion MX is. We'll create a Flash movie that contains two related
combo (select) boxes. Related combo boxes are a desirable element in many ColdFusion applications.
They work by displaying two combo boxes that are linked. When an item in the first combo box is
selected, the available choices in the second combo box change, based on the selected value from the
first box. In our example, we'll build a set of related combo boxes that display a list of departments
(pulled from a query via Flash Remoting) in the first combo box. When a department is selected, we'll
run a second query over Flash Remoting to obtain a list of employees belonging to the selected
department. Just to show off Flash Remoting's capabilities, we'll use the selection from the second
combo box to retrieve the selected employee's contact information from the database and display it
elsewhere in the Flash movie.

Example 28-4 shows the code for a CFC called employee (employee.cfc). The employee CFC contains
three methods: getDepartments() , getEmployees() , and getEmployee() . The
getDepartments() method returns a list of unique department names from the EmployeeDirectory
table of the ProgrammingCF data source. getEmployees() accepts a department name as an

argument and uses it to look up all employees belonging to that department. The final method,
getEmployee() , takes an employee's ID as an argument and uses it to look up the specified

employee's name, title, department, email address, and phone extension. Save the example as
/webroot/programmingcf/ch28/employee.cfc .

Example 28-4. employee.cfc used for populating related combo boxes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfcomponent>
 <cffunction name="getDepartments" access="remote" returntype="query"
 output="no"
 hint="I retrieve a list of distinct department names"
 description="I retrieve a list of distinct department names">
 <cfquery name="getDepartments" datasource="programmingcf">
 select distinct(department)
 from employeeDirectory
 order by department
 </cfquery>

 <cfreturn getDepartments>
 </cffunction>

 <cffunction name="getEmployees" access="remote" returntype="query"
 output="no"
 hint="I retrieve a list of all employees in a given department"
 description="I retrieve a list of all employees in a given department">
 <cfargument name="department" type="string" required="yes">

 <cfquery name="getEmployees" datasource="programmingcf">
 SELECT ID, Name
 FROM employeeDirectory
 WHERE department = '#arguments.department#'
 ORDER BY Name
 </cfquery>

 <cfreturn getEmployees>
 </cffunction>

 <cffunction name="getEmployee" access="remote" returntype="query"
 output="no"
 hint="I retrieve an employee record provided their ID"
 description="I retrieve an employee record provided their ID">
 <cfargument name="id" type="numeric" required="yes">

 <cfquery name="getEmployee" datasource="programmingcf">
 SELECT Name, Title, Department, Email, PhoneExt
 FROM employeeDirectory
 WHERE ID = #arguments.id#
 </cfquery>

 <cfreturn getEmployee>
 </cffunction>
</cfcomponent>

To make a method of a CFC available to Flash Remoting, just set the access attribute of the
cffunction tag to remote .[3] As you can see, no references to the Flash scope are used within any

of the CFC's methods. This is because arguments passed from Flash MX to the CFC via Flash
Remoting are automatically available in the CFC's arguments scope. Likewise, to return data from a
CFC method back to a Flash movie, you need only use the cfreturn tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[3] It's also possible to call web services (including ColdFusion-based ones) using Flash Remoting. This allows
Flash movies hosted on one server to access CFCs stored on a different server. For more information on invoking
web services using Flash Remoting, see the Macromedia whitepaper "Using Flash Remoting MX with ColdFusion
MX," available in PDF format from
http://download.macromedia.com/pub/coldfusion/documentation/using_frmx_with_cfmx.pdf Additionally, as of
Updater 3, calling ColdFusion web services from Flash Remoting is disabled by default. For information on this,
see Macromedia TechNote 18608 at
http://www.macromedia.com/support/coldfusion/ts/documents/enable_flash_webservices.htm .

Now that we've created the CFC, it's time to create the Flash movie and associated ActionScript to tie
everything together. Create a new Flash movie from a web template as we've done in our previous
examples. Drag two ComboBox Flash UI Components from the Components panel and drop them
onto the stage (Figure 28-7). In the Properties panel, name them "cb1" and "cb2," respectively.

Figure 28-7. Laying out two related combo boxes in Flash MX

Next, grab a PushButton Flash UI Component from the Components panel and drop it on the stage
next to the ComboBox components so that it looks similar to Figure 28-8 .

Figure 28-8. Adding a PushButton component to the Flash movie

In the Properties panel, shown in Figure 28-9 , name the component "pb_submit." Change the Label
property to "Submit". The Label property determines what text to display on top of the PushButton.
Next, set the ClickHandler property to "employeeHandler." This tells the Flash movie to call an
ActionScript event handler called employeeHandler (we'll code this in a minute) when the PushButton

is clicked.

Figure 28-9. Changing the properties of the PushButton component

The final layout step is to create the areas where the employee detail information will display after an
employee is selected in the second ComboBox and the PushButton is clicked. This is done using
dynamic text areas. To do this, choose the text tool from the Tools panel and create five text boxes
on the stage below the ComboBox components (Figure 28-10).

http://download.macromedia.com/pub/coldfusion/documentation/using_frmx_with_cfmx.pdf
http://www.macromedia.com/support/coldfusion/ts/documents/enable_flash_webservices.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 28-10. Adding dynamic text areas to the Flash movie

In the Properties panel for each text area, choose DynamicText from the combo box. This tells Flash
MX that the text to appear in the box will be generated dynamically as opposed to hardcoded. Below
the combo box is a text box you can use to specify a name for the dynamic text area. Name the text
areas "dName," "dTitle," "dDepartment," "dEmail," and "dPhoneExt," respectively. When you have
finished editing all of the text areas, your stage should look similar to the one in Figure 28-10 .

Add the ActionScript in Example 28-5 to the Actions layer of your Flash MX movie (you can overwrite
any existing ActionScript generated by the template).

Example 28-5. ActionScript for relating two combo boxes via Flash
Remoting

#include "NetServices.as"
#include "DataGlue.as"
#include "NetDebug.as"

// --
// Application initialization
// --
if (inited == null) {
 // do this code only once
 var inited = true;

 // set the default gateway URL (this is used only in authoring)
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

 // connect to the gateway
 var gateway_conn = NetServices.createGatewayConnection();

 // get a reference to a service
 var myService = gateway_conn.getService("programmingcf.ch28.employee", this);
}

// --
// cb1 combo box
// --

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//call the getDepartments() method
myService.getDepartments();

//Bind the results to the cb1 combo box using data glue
function getDepartments_Result (result) {
 DataGlue.bindFormatStrings(cb1, result, "#Department#", "#Department#");
}

// --
// cb2 combo box
// --
// When a selection in the first combo box is made, call showEmployees()
cb1.setChangeHandler("showEmployees");

function showEmployees(component){
 cb2.removeAll();
 myService.getEmployees(cb1.getSelectedItem().data);
 cb2.addItem("loading...","");
}

function getEmployees_Result(result) {
 cb2.removeAll();
 for (var i = 0;i < result.items.length;i++) {
 cb2.addItem(result.items[i].Name,result.items[i].ID);
 }
}

// --
// Button handler and full record get/display
// --
// Retrieve the full employee record based on the employee selected
function employeeHandler(){
 myService.getEmployee(cb2.getSelectedItem().data);
}

// Display the full employee record
function getEmployee_Result(result) {
 dName.text = result.items[0].Name;
 dTitle.text = result.items[0].Title;
 dDepartment.text = result.items[0].Department;
 dEmail.text = result.items[0].Email;
 dPhoneExt.text = result.items[0].phoneExt;
}
stop();

This code is fairly straightforward. First, the NetServices, DataGlue, and NetDebug ActionScript
libraries are included, and a connection to the Flash Remoting Gateway is established. Notice that the
name of the CFC file is included as part of the service (path) when a reference to the service is made:

// get a reference to a service
 var myService = gateway_conn.getService("programmingcf.ch28.employee", this);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This differs from calling a CFML page, where no filename is required. When connecting a Flash movie
to a CFC, you must include the CFC's filename as part of the service name.

The next section of code calls the getDepartments() method in the employee CFC and binds the
results to the cb1 ComboBox component using DataGlue. When a selection in the first combo box is

made (which happens as soon as the box is loaded with data or a different department is selected),
the showEmployees() ActionScript function is called. This function clears the contents of the second
ComboBox component (cb2) and calls the getEmployees() method in the employee CFC, passing it
the department name selected in cb1 as an argument. While it is waiting for data to be returned from

ColdFusion, a "loading..." message is displayed in the second ComboBox component. Once the data
arrives from the CFC, a loop is used to iterate over the returned result set, populating cb2 with the
employee names for the selected department. Note that a loop and the addItem() method of the
cb2 object are used in lieu of DataGlue in order to demonstrate yet another way to bind data to a UI

control.

The final section of code contains the ActionScript used to retrieve and display the full employee
record when an employee is chosen from the second combo box and the submit button is clicked. The
employeeHandler() function gets called when the submit button is pushed. It passes the value
selected in cb2 to the getEmployee() method of the employee CFC. The CFC then returns the

name, title, department, email address, and phone extension for the selected employee as a record
set. The results are individually bound to the dynamic text fields we created.

To test all this, choose Control Test Movie from the Flash MX toolbar. You may want to enable the
NetConnection Debugger first to watch each step of the interaction in case there are any problems
getting the movie to run. Testing the movie should give you results similar to those shown in Figure
28-11 .

Figure 28-11. Relating two combo boxes using Flash Remoting

28.3.1 Introspecting CFCs in Flash MX

In Chapter 22 , we said the cffunction and cfargument tags differ from most other ColdFusion tags

in that you can pass arbitrary attributes to them as user-defined attributes. Although these attributes
don't cause the tags to do anything, they are available as metadata when the method is introspected.

Flash MX has a tool called the Service Browser that you can use within the Flash MX authoring
environment to introspect component methods and arguments that include an arbitrary argument
called description . If you take a second look at the employee CFC we created in Example 28-4 ,

you'll notice that we included description attributes for all three component methods.

To use the Service Browser, open Flash MX and follow these steps:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choose Window Service Browser (Figure 28-12).1.

If you don't see your Flash Remoting gateway, which you probably won't, you'll need to add it.
Do this by clicking on the blue box with the right-facing arrow and choosing Add Gateway. Enter
the URL to your Flash Remoting gateway (e.g., http://localhost/flashservices/gateway). Note
you may need to append the port to the service if you are using a port other than 80. When you
have finished, click Add Gateway.

2.

The next step is to add to the gateway any services you want to browse. To add the employee
service (employee.cfc) to the gateway, highlight the gateway you created and click the blue box
with the right-facing triangle again. This time, choose Add Service.

3.

Enter the new service address (using dot notation) in the text area and click the Add Service
button. To add the employee CFC, enter programmingcf.ch28.employee .

4.

When the service browser refreshes, you should see all three methods of the employee CFC in

the service browser window. Clicking on the folder of any of the component methods displays a
description of the method (if provided) along with any of the arguments the method accepts.

5.

Figure 28-12. The Flash MX Service Browser

28.3.2 Securing Flash Remoting Applications

You can control Flash Remoting access to your CFCs using ColdFusion MX's built-in security
framework. This works for Flash Remoting the same way it does for CFCs and web services. You can
control access based on assigned roles at the invocation level. To add access control to the
employe.cfc component we created in Example 28-4 , we'll need to add the following attribute to each
cffunction tag in the component:

Roles="administrator"

Once you do this, each method in the CFC can be invoked only by clients with a role of
"Administrator."

http://localhost/flashservices/gateway
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The framework for authenticating a Flash Remoting client is the same as we discussed in Chapter 8
and Chapter 24 . Using an Application.cfm file, we can leverage ColdFusion MX's security framework
and ActionScript's setCredentials() function to provide a means to authenticate clients before

allowing them to access Flash Remoting. Example 28-6 shows one way to do this.

Example 28-6. Authenticating a client

<cfapplication name="myFlashRemotingSecurity">

<cflogin idletimeout="600">
 <cfif not isdefined("cflogin")>
 <!--- Send something back to Flash letting it know login failed. --->
 <cfabort>
 <cfelse>
 <cfquery name="validateUser" datasource="programmingcf">
 SELECT Roles, Salt, Password
 FROM Users
 WHERE Username = <cfqueryparam value="#cflogin.name#"
 cfsqltype="CF_SQL_VARCHAR"
 maxlength="255">
 </cfquery>

 <cfif (validateUser.recordCount eq 1) and
 (validateUser.password is hash(validateUser.salt &
 cflogin.password))>
 <cfset userRoles = valueList(validateUser.roles)>
 <cfloginuser name="#cflogin.name#" password="#cflogin.Password#"
 roles="#userRoles#">
 <cfelse>
 <!--- Send something back to Flash letting it know login failed. --->
 <cfabort>
 </cfif>
 </cfif>
</cflogin>

When a Flash MX movie calls a CFC (or web service), a check is made to see whether there is an
Application.cfm file that should be run first, just as there is when a CFML file is called from the
browser. This lets you use the same mechanisms you are already familiar with to build a security
framework for your Flash Remoting applications. When our Application.cfm file is called, a number of
things happen.

First, a check is made to see whether the cflogin structure exists. If not, a message could be written
back to the Flash movie letting it know the login failed. If the cflogin structure does exist, we know

that the call to the CFC also included an authorization header containing (hopefully) a username and
password. Those values are automatically available inside the cflogin structure as cflogin.name
and cflogin.password . A query is made to see if the username exists in the Users table of our
example database. If so, the salt value associated with the cflogin.name (from the database query)
is concatenated with the password provided by cflogin.password . The resulting string is hashed

and then compared to the hashed value stored in the database. If a record was found for the
username, and the salted, hashed password matches the value stored in the database, we consider
this a valid login. The cflogin tag is then used to log the user in and assign her roles from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

database. In this example, when we lookup the username "pmoney", we find she is assigned the roles
"Administrator, User".

To pass the username and password from the Flash movie to the Application.cfm file, you'll need to
add a line of ActionScript that calls the setCredentials() function. You can call the function when

you initialize your connection to the Flash Remoting Gateway. You'll need to modify the application
initialization section of code from Example 28-5 in order to add in the call to the setCredentials()

function:[4]

[4] For demonstration purposes, we've hardcoded the username and password in the getcredentials()
function call. In a real application, you would be passing these values to the function dynamically, such as from a
login prompt. Because it's very easy to decompile .swf files, you should never hardcode sensitive information
such as passwords inside your Flash movies.

// --
// Application initialization
// --

if (inited == null)
{
 // do this code only once
 var inited = true;

 // set the default gateway URL (this is used only in authoring)
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

 // connect to the gateway
 var gateway_conn = NetServices.createGatewayConnection();

 // pass username/password to Application.cfm on CF Server-Side
 gateway_conn.setCredentials("pmoney","cat");

 // get a reference to a service
 var myService = gateway_conn.getService("programmingcf.ch28.employee", this);
}

If you test the movie using the new code, you should see the two related combo boxes populated with
data. If you wait 30 minutes (the time specified in the idletimeout attribute of the cflogin tag) and

change the username or password to a different value, then retest the movie, both combo boxes
should be blank as you will no longer be authorized to call the CFC methods necessary to populate
them with data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

28.4 Interacting with Server-Side ActionScript

Every ColdFusion MX server comes with native support for server-side ActionScript. Server-side
ActionScript adds the basic functionality of ColdFusion's cfquery and cfhttp tags to ActionScript. As

a ColdFusion developer, you may not have much use for server-side ActionScript; you'll most likely
find yourself developing CFCs as the back end for Flash Remoting applications. However, like
everything else, it's worth understanding how server-side ActionScript works, as you may find
yourself in a situation where it's desirable to have a Flash developer write the server-side code for a
Flash Remoting application as well. Having server-side ActionScript as an option makes it easier for
Flash developers to leverage the power of cfquery and cfhttp without having to learn ColdFusion.

Server-side ActionScript files are written just like any other text-based file, and they can be stored
anywhere on your ColdFusion MX server under the web server's root directory. Server-side
ActionScript files have a file extension of .asr. In your client-side ActionScript, a server-side
ActionScript file is instantiated by referring to the file in the gatewayConnection.getService()

function call. Dot notation is used to point to the server-side ActionScript file's location. For example,
to instantiate a server-side ActionScript file called test.asr located in webroot/programmingcf/ch28,
your client-side ActionScript would look like this:

var myService = gatewayConnection.getService("programmingcf.ch28.test", this);

// Call the getEmployees funciton
myService.getEmployess();

// Call the getPage function
myService.getPage();

The calls to the CF.query() and CF.http() functions available in server-side ActionScript files are

written just like calls to any other native ActionScript functions:

function getEmployees(){
 var employees = CF.query({datasource:"programmingcf",
 sql:"select ID, Name as fullName from employeeDirectory"});
 return employees;
}

function getPage(){
 var thePage = CF.http({method:"get",
 url:"http://www.example.com"});
 return thePage.get("Filecontent");
}

There isn't enough room here to thoroughly cover the CF.query() and CF.http() ActionScript

functions-besides, we're ColdFusion developers. If you want a detailed description of the ins and
outs of server-side ActionScript, the ColdFusion MX documentation does a more than adequate job.
That said, let's take a cursory look at what we have here.

Arguments available to the CF.query() function are datasource, sql, username, password,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

maxrows, and timeout. With the exception of sql, each of these arguments is identical to the
cfquery attribute of the same name. The sql argument is used to pass the entire SQL statement for

the query.

When the CF.query() function is called, it returns a RecordSet object. This ActionScript class is

used by the client-side ActionScript code in your Flash movie to manipulate the record set data
returned by the server-side ActionScript file. There are several methods you can call to interact with
the RecordSet object. These methods are explained in detail in both the ColdFusion MX

documentation and the Flash MX documentation.

Arguments available to the CF.http() function are a subset of the attributes available to the
cfhttp tag and include method, url, username, password, resolveurl, path, file, and params.
Since CF.http() is a function and not a tag, the param argument performs the same duty the
cfhttpparam tag would. It allows you to pass HTTP parameters as an array of objects to the

function.

When the CF.http() function is called, it returns an object containing a set of properties that can

be referenced to provide access to information like the HTTP header, file content, MIME type,
character set, etc. These properties are fully detailed in the ColdFusion MX documentation on server-
side ActionScript.

For more information on server-side ActionScript, see the Using Server-Side ActionScript in
ColdFusion MX book on the Macromedia LiveDocs site, available at
http://livedocs.macromedia.com/cfmxdocs/Using_Server-
Side_ActionScript_in_ColdFusion_MX/contents.htm.

[Team LiB]

http://livedocs.macromedia.com/cfmxdocs/Using_Server-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

28.5 Flash Remoting with Java Objects Hosted on the
ColdFusion MX Server

In Chapter 27, we talked about ColdFusion MX and Java interaction. We covered several ways in
which you can leverage Java in your ColdFusion MX applications, including using the ColdFusion MX
server to host Java objects. One of the additional benefits of Flash Remoting's integration with
ColdFusion MX is the ability to have Flash MX communicate directly with these Java objects. To take
advantage of this feature, you first need to make sure that the directory where your Java object(s)
are stored is registered in the Class Path field under the Java and JVM section of the ColdFusion
Administrator. After registering, you'll need to restart the ColdFusion server for the changes to take
effect.

Once the class path is set, any public methods in the Java object are available as methods to your
Flash MX movie.[5] If you have a Java object called employee.class in com/example/utils, you could
reference a public method called getEmployee() from within your Flash movie like this:

[5] Flash Remoting does not support calling alternate constructors in Java objects. If you invoke a Java object
within your Flash movie, you must use the default constructor.

#include "NetServices.as"

// Call the getEmployee() method on the service specified below
myService.getEmployee();

function getEmployee_Result(result) {
 // ActionScript for handling results returned by the Java object
}

if (inited = = null){
 // do this code only once
 var inited = true;

 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

 var gatewayConnection = NetServices.createGatewayConnection();

 // Note getService() includes the filename of the Java object as part of
 // the service name.
 var myService = gatewayConnection.getService("com.example.utils.employee",
 this);
}
stop();

A connection is made to the Java object by specifying the path to the class file as the service name in
the ActionScript code. A public method of the Java object called getEmployee() is referenced as if it

were a method of a native ActionScript object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix A. Tag Reference
ColdFusion tags are the core components of the CFML language. They take what would otherwise be
considered low-level programming tasks, such as making an ODBC/JDBC or SMTP connection, and
abstract them, providing a simple way to program complex functionality. ColdFusion contains over 90
tags that allow you to perform all sorts of tasks, from querying databases to sending and receiving
email. This appendix contains reference material on all ColdFusion tags through ColdFusion MX.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.1 Tags by Type

The following sections group the CFML tags by their functionality.

A.1.1 Custom Tag Tags

cfassociate cfexit cfimport

cfmodule

A.1.2 Database Tags

cfinsert cfprocparam cfprocresult

cfquery cfqueryparam cfstoredproc

cftransaction cfupdate

A.1.3 Error, Exception-Handling, and Debugging Tags

cfabort cfcatch cfdump

cferror cflog cfthrow

cftrace cftry cfrethrow

A.1.4 Extensibility Tags

cfchart cfchartdata cfchartseries

cfgraph cfgraphdata cfimport

cfinclude cfinvoke cfinvokeargument

cfmodule cfobject cfservlet

cfservletparam cfwddx cfxml

A.1.5 Filesystem Tags

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfdirectory cffile

A.1.6 Flow Control Tags

cfabort cfbreak cfcase

cfdefaultcase cfelse cfelseif

cfexit cfif cfimport

cfinclude cfinvoke cfinvokeargument

cflocation cfloop cfmodule

cfswitch

A.1.7 Form Tags

cfapplet cfform cfgrid

cfgridcolumn cfgridrow cfgridupdate

cfinput cfselect cfslider

cftextinput cftree cftreeitem

A.1.8 Miscellaneous Tags

cfapplication cfcache cflock

cfschedule cfscript

A.1.9 Output Tags

cfcol cfcontent cfdump

cfflush cfheader cfhtmlhead

cfoutput cfprocessingdirective cfreport

cfsavecontent cfsetting cfsilent

cftable cftrace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1.10 Protocol Tags

cfftp cfhttp cfhttpparam

cfldap cfmail cfmailparam

cfpop cfmailpart

A.1.11 Security Tags

cfadminsecurity cfauthenticate cfimpersonate

cflogin cfloginuser cflogout

cfnewinternaladminse curity

A.1.12 System Tags

cfexecute cfnewinternalregistry cfregistry

A.1.13 UDFs/CFCs/Web Services Tags

cfargument cfcomponent cffunction

cfimport cfinvoke cfinvokeargument

cfobject cfproperty cfreturn

A.1.14 Variable Manipulation Tags

cfcookie cflock cfparam cfset

A.1.15 Verity Search Engine Tags

cfcollection cfindex cfsearch

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.2 Alphabetical List of Tags

This section lists all the CFML tags alphabetically, with detailed descriptions of their attributes and
proper syntax. Version information is included for many tags; if no version information is listed, the
tag is available in ColdFusion 4.5 and later.

cfabort

<cfabort>

Halts processing of the CFML template at the tag position.

Attributes

showerror=" text_message"

A message to display when the cfabort tag is executed. Optional. If this attribute is used in
conjunction with a cferror tag, ColdFusion passes the error message to the template specified
in the cferror tag. Otherwise, it is output directly to the browser.

cfadminsecurity

Enhanced in ColdFusion 5.0; no longer
supported in ColdFusion MX

<cfadminsecurity>
<cfnewinternaladminsecurity>

This undocumented tag handles administrative tasks related to ColdFusion's Advanced Security
services. Because of the complexity of this tag and the fact that no documentation exists on its
usage, the following information provided may be incomplete.

Attributes

action=" action"

Specifies the action the tag should perform. Possible actions include the following: AddHost,
AddPolicy, AddRule, AddRuleToPolicy, AddSecurityContext, AddSecurityRealm,
AddUserDirectory, AddUserDirectoryToContext, AddUserToPolicy,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateODBCQueryScheme, DeleteHost, DeleteODBCQueryScheme, DeletePolicy, DeleteRule,
DeleteSecurityContext, DeleteSecurityRealm, DeleteUserDirectory, FlushCache,
GenerateRule, GetHost, GetODBCQueryScheme, GetPolicy, GetResourceInfo, GetRule,
GetRuleForPolicy, GetSecurityContext, GetSecurityRealm, GetUserDirectory,
GetUserDirectoryForContext, GetUserPolicy, GetUserForUserDirectory,
RemoveRuleFromPolicy, RemoveUserDirectoryFromContext, and RemoveUserFromPolicy.

authtype="Basic|X509"

The authentication protocol to use. The default value is Basic. This attribute is optional and
used only when action is set to AddSecurityRealm.

cachetype="Basic|X509"

The type of security cache to flush. Required when action is FlushCache. New as of

ColdFusion 5.0.
description=" text"

A description for the object being referenced.
directory=" directory_name"

The name of the security context being referenced.
IP=" IP_address"

The IP address of the ColdFusion Application Server. Used when action is AddHost. Currently,

this attribute must be set to 127.0.0.1.
name=" name"

The name of the object being referenced.
output=" variable_name"

The name of a ColdFusion variable that holds the results when action is GenerateRule or
GetResourceInfo. The data is returned as a ColdFusion structure.

policy=" policy_name"

The name of the security policy being referenced.
protectall="Yes|No"

Whether or not to protect all resources for a given security context. This attribute is optional
and used only when action is set to AddSecurityRealm. The default is No.

query=" query_name"

The name to use for the query object returned when action is set to GetODBCQueryScheme,
GetHost, GetPolicy, GetRule, GetRuleForPolicy, GetSecurityContext, GetSecurityRealm,
GetUserDirectory, GetUserDirectoryForContext, GetUserPolicy, or
GetUserForUserDirectory. Required for the aforementioned action values.

resource=" resource_name"

The name of the resource when adding or generating a rule.
resourceaction=" resource_action"

The action to associate with a resource when action is set to AddRule or GenerateRule.
response=""

Optional; is available only when action is set to AddRuleToPolicy. response should be set to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"".

results=" integer"

The maximum number of results to return when searching an LDAP directory. Optional; used
only when action is set to AddUserDirectory.

root=" search_root"

The search root for the LDAP server when adding a user directory. Usually, the search root is
set to "organization" (o) or "organizational unit" (ou). Optional; used only when action is set
to AddUserDirectory.

scope=" search_scope"

The scope for the LDAP search. Possible entries are One Level or Subtree. Optional; used only
when action is set to AddUserDirectory.

searchend=" search_end"

The value to use when constructing the uid (uid=) part of the dn string for an LDAP query.
Optional; used only when action is set to AddUserDirectory.

searchstart=" search_start"

The value to use when constructing the rest of the dn string (after the UID) for an LDAP query.
Optional; used only when action is set to AddUserDirectory.

secret=" string"

A string to be used in generating the encryption key used by advanced security services. Used
only when action is set to AddHost.

server="CFSM"

The name of the ColdFusion security server. The default server used by ColdFusion is CFSM.
You shouldn't use a value other than CFSM unless you manually modify the Site Minder security
database. Used only when action is set to AddSecurityRealm or AddUserDirectory.

sqlauthuser=" SQL_statement"

Specifies the SQL statement to use for the Authenticate User field when using an ODBC data
source to store security profile tables. Required when action is CreateODBCQueryScheme. New

as of ColdFusion 5.0.
sqlenum=" SQL_statement"

Specifies the SQL statement to use for the Enumerate field when using an ODBC data source to
store security profile tables. Required when action is CreateODBCQueryScheme. New as of

ColdFusion 5.0.
sqlgetgroupprop=" SQL_statement"

Specifies the SQL statement to use for the Get Group Property field when using an ODBC
data source to store security profile tables. Required when action is CreateODBCQueryScheme.

New as of ColdFusion 5.0.
sqlgetgroupprops=" SQL_statement"

Specifies the SQL statement to use for the Get Group Properties field when using an ODBC
data source to store security profile tables. Required when action is CreateODBCQueryScheme.

New as of ColdFusion 5.0.
sqlgetgroups=" SQL_statement"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the SQL statement to use for the Get Groups field when using an ODBC data source
to store security profile tables. Required when action is CreateODBCQueryScheme. New as of

ColdFusion 5.0.
sqlgetobjinfo=" SQL_statement"

Specifies the SQL statement to use for the Get User/Group Info field when using an ODBC
data source to store security profile tables. Required when action is CreateODBCQueryScheme.

New as of ColdFusion 5.0.
sqlgetuserprop=" SQL_statement"

Specifies the SQL statement to use for the Get User Property field when using an ODBC data
source to store security profile tables. Required when action is CreateODBCQueryScheme. New

as of ColdFusion 5.0.
sqlgetuserprops=" SQL_statement"

Specifies the SQL statement to use for the Get User Properties field when using an ODBC
data source to store security profile tables. Required when action is CreateODBCQueryScheme.

New as of ColdFusion 5.0.
sqlinituser=" SQL_statement"

Specifies the SQL statement to use for the Init User field when using an ODBC data source to
store security profile tables. Required when action is CreateODBCQueryScheme. New as of

ColdFusion 5.0.
sqlisgroupmember=" SQL_statement"

Specifies the SQL statement to use for the Is Group Member field when using an ODBC data
source to store security profile tables. Required when action is CreateODBCQueryScheme. New

as of ColdFusion 5.0.
sqllookup=" SQL_statement"

Specifies the SQL statement to use for the Lookup field when using an ODBC data source to
store security profile tables. Required when action is CreateODBCQueryScheme. New as of

ColdFusion 5.0.
sqllookupgroup=" SQL_statement"

Specifies the SQL statement to use for the Lookup Groups field when using an ODBC data
source to store security profile tables. Required when action is CreateODBCQueryScheme. New

as of ColdFusion 5.0.
sqllookupuser=" SQL_statement"

Specifies the SQL statement to use for the Lookup Users field when using an ODBC data
source to store security profile tables. Required when action is CreateODBCQueryScheme. New

as of ColdFusion 5.0.
sqlsetgroupprop=" SQL_statement"

Specifies the SQL statement to use for the Set Group Property field when using an ODBC data
source to store security profile tables. Required when action is CreateODBCQueryScheme. New

as of ColdFusion 5.0.
sqlsetuserprop=" SQL_statement"

Specifies the SQL statement to use for the Set Group Properties field when using an ODBC
data source to store security profile tables. Required when action is CreateODBCQueryScheme.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New as of ColdFusion 5.0.
timeout=" seconds"

The time in seconds that ColdFusion should wait before timing out an LDAP directory search.
Optional; used only when action is set to AddUserDirectory.

type=" object_type_or_namespace"

The object type to be protected within a given security context when action is Addrule,
DeleteRule, or GenerateRule. Possible entries are Application, CFML, Collection,
Component, Custom Tag, Data Source, File, Function, UserObject, and User. When action
is set to AddSecurityContext, the type attribute specifies the namespace for the user
directory, either Windows NT, LDAP, or ODBC.

update="Yes|No"

Whether or not the data being written to the security database should be added (No) or
updated (Yes). Optional. The default value is No.

user=" user"

The name of a user within a valid user directory. Used only when action is set to
AddUserToPolicy, GetUserPolicy, and RemoveUserFromPolicy.

usercredentials="Yes|No"

Whether or not to pass login credentials to the LDAP server. Should be set to Yes only when
used in conjunction with a username. Used only when action is set to AddUserDirectory.

username=" username"

A username to use if required by the domain, LDAP directory, or database. You can leave this
attribute blank if ColdFusion is running as Administrator. Used only when action is set to
AddUserDirectory.

userpwd=" password"

A password to use if required by the domain, LDAP directory, or database. You can leave this
attribute blank if ColdFusion is running as Administrator. Used only when action is set to
AddUserDirectory.

usersecureconnect=Yes|No"

Whether or not to encrypt authentication information during transmission between the
ColdFusion server and an LDAP server. This attribute must be enabled when connecting to an
LDAP server using SSL. Optional; used only when action is set to AddUserDirectory. The
default is No.

cfapplet

Enhanced in ColdFusion MX
<cfapplet>

References a custom Java applet that has been registered with the ColdFusion Administrator. Applet
registration is handled via the ColdFusion Administrator. As of ColdFusion MX, you no longer need to
use the cfapplet tag within a cfform tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

appletsource=" registered_applet_name"

The actual name of the Java applet. Required.
name=" form_field_name"

What to call the Java applet within the context of cfform. Required.

align=" alignment"

Alignment of the applet. Optional. Valid entries are Left, Right, Top, TextTop, Bottom,
AbsBottom, Middle, AbsMiddle, and Baseline.

height=" height_in_pixels"

Height of the applet in pixels. Optional.
hspace=" horizontal_spacing_in_pixels"

Horizontal space in pixels along each side of the applet. Optional.
param n=" parameter_value"

Additional user-defined parameters to pass to the applet. Optional.
notsupported=" text_messsage"

Text to appear if Java isn't supported by the user's browser. Optional.
vspace=" vertical_spacing_in_pixels"

Vertical space in pixels along the top and bottom of the applet. Optional.
width=" width_in_pixels"

Width of the applet in pixels. Optional.

cfapplication

Enhanced in ColdFusion MX 6.1
<cfapplication>

Names a ColdFusion application and controls various application settings, such as the availability of
client, session, and application variables, and length of various timeouts.

Attributes

name=" application_name"

The name of the ColdFusion application. May contain up to 64 characters. Required if enabling
session or application variables.

applicationtimeout="#CreateTimeSpan(days, hours, minutes, seconds)#"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The timeout value for application variables. Specified as an interval using the CreateTimeSpan(
) function. Optional. The default value is specified in the Memory Variables section of the

ColdFusion Administrator.
clientmanagement="Yes|No"

Enables client management for the application. Optional. Default is No.

clientstorage=" Datasource|Registry|Cookie"

The client storage type for the application. Valid entries are Datasource (enter the data source
name), Registry, and Cookie. Optional. Default is Registry.

loginstorage="cookie|session"

Specifies whether login information associated with the cflogin scope should be stored in a
cookie or session variable. If set to session, a login is tied directly to a user's ColdFusion

session and the login remains active for as long as the session exists. Optional. The default is
cookie. This attribute is new in ColdFusion MX 6.1.

sessionmanagement="Yes|No"

Enables session management for the application. Optional. Default is No.

sessiontimeout="#CreateTimeSpan(days, hours, minutes, seconds)#"

The timeout value for session variables in the application. Specified as an interval using the
CreateTimeSpan() function. Optional. The default value is specified in the Memory Variables

section of the ColdFusion Administrator.
setclientcookies="Yes|No"

Enables client cookies. If cookies are disabled, the values for CFID and CFToken must be
passed manually from template to template in the URL. Optional. The default is Yes.

setdomaincookies="Yes|No"

Indicates whether or not to set client cookies at the domain level, which is useful when you
need to share client variables in a clustered environment. If set to Yes, ColdFusion creates a
new variable at the domain level called CFMagic. CFMagic tells ColdFusion that cookies have
been set at the domain level and contains the values of the CFID and CFToken cookies. Existing
host-level cookies are compared automatically to the values stored in CFMagic and migrated to
domain-level cookies if the values don't match. Optional. The default is No.

cfargument

New in ColdFusion MX
<cffunction>
 [<cfargument>]
 ...
</cffunction>

Defines one or more arguments for a user-defined function (UDF). Acts as a subtag of cffunction. If
used within the context of a ColdFusion Component (CFC), cfargument defines an argument for the
method defined in the cffunction tag. cfargument tags must be placed immediately after the
cffunction tag, before any other CFML tags are used. Arguments passed into a function/method can

be referenced using the argument's name (#ArgumentName#), the argument's scoped name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(#arguments.ArgumentName#), or by the argument's index within the arguments array

(#arguments[i]#).

Besides the named attributes listed below, you can pass any additional desired attributes to the
cfargument tag as user-defined attributes. Although these attributes don't do anything, they are
available as metadata when the component containing the method with the cfargument tag is
introspected using the GetMetaData() function. You may use any attribute names you wish with the
exception of those reserved by cfargument: name, displayname, hint, type, required, and
default.

Attributes

name=" ArgumentName"

Name of the argument. Required.
default=" Value"

Value to assign the argument if required="No" or if required is not specified and no

argument is passed to the function when it is called.
displayname=" display_name"

Used to display a descriptive name for the argument in ColdFusion MX's Component Browser.
Optional.

hint=" text"

Used to display a hint describing what the argument is for in ColdFusion MX's Component
Browser. Optional.

required="Yes|No"

Indicates whether the argument must be supplied in the function call for the request to be
processed. Default is No.

type=" ArgumentType"

Type of argument. Valid options are Any, Array, Binary, Boolean, Date, GUID, Numeric,

Query, String, Struct, UUID, VariableName, and ComponentName. Optional. The default is
Any. For information on how GUID differs from UUID, see the CreateUUID() function in

Appendix B.

cfassociate

<cfassociate>

Associate a subtag with a base tag (child tag with a parent tag) by saving all the subtag's attributes
to a special structure that is available to the base tag. This tag is for use only within custom tags.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

basetag=" tag_name"

The name of the base tag. Required.
datacollection=" collection_name"

The name of the structure that contains subtag data. Optional. By default, ColdFusion saves all
subtag attributes in a structure called AssocAttribs.

cfauthenticate

No longer supported in ColdFusion MX; see
cflogin for more information.

<cfauthenticate>

Authenticates a user within a given security context.

Attributes

securitycontext=" security_context"

The name of the security context to authenticate the user within. Required. Security contexts
are defined in the ColdFusion Administrator.

username=" username"

The name of the user being authenticated. Required.
password=" password"

The password of the user being authenticated. Required.
authtype="Basic|x509"

The authentication type to use. Basic specifies a username/password while x509 specifies an
x509 client certificate passed via SSL. Optional. The default is Basic.

setcookie="Yes|No"

If set to Yes, ColdFusion sets an encrypted cookie on the user's browser that contains the

username, security context, browser's remote address, and HTTP user agent. Optional. The
default is Yes.

throwonfailure="Yes|No"

Determines if ColdFusion should throw an exception if authentication fails. Optional. The default
is Yes.

cfbreak

<cfbreak>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Breaks out of a cfloop. The cfbreak tag has no additional attributes.

Example

<cfloop index="i" from="10" to="100" step="10">
 <cfif i eq 50>
 <cfbreak>
 </cfif>
</cfloop>

cfcache

Updated in ColdFusion MX
<cfcache>

Caches a ColdFusion page for faster access by writing a temporary static HTML version of the page to
disk (either server-side or in the client's browser cache, or both). To cache a ColdFusion template,
just add the cfcache tag to the top of the page.

When the cfcache tag caches a page, two files are actually written to the server. First, a temporary

file (with a .tmp extension) is created that contains the HTML necessary to generate the static
version of the page. A mapping file contains the mapping to the temp file, as well as a timestamp
that determines when to expire the cached file. The name for the mapping file is determined by
appending the hash of the current URL (see Hash() in Appendix B) to cfcache_. This results in
filenames like this: cfcache_D6BF3A60769FD03FE598BB2E8490CB11.tmp. When using the cfcache

tag, there are a few additional points that should be considered:

Templates that generate errors don't get cached.

Pages generating personalized content should be cached on the client only
(action="ClientCache") to avoid serving the cached content to people who are not intended

to see it.

By default, the cfcache tag suppresses all debugging information for a ColdFusion template. To

use debugging within a cached page, you must explicitly turn it on for the template using the
cfsetting tag.

Simultaneous Requests in the ColdFusion Administrator must be set to a minimum of 2 for the
cfcache tag to work.

In ColdFusion MX, it's now possible to cache pages that maintain state. Additionally, pages
secured using the new cflogin security framework can also be cached.

Attributes

action="Cache|ClientCache|ServerCache|Flush|Optimal"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The action to be performed by the cfcache tag. Cache is used to cache the page on both the
client and the server. This is new in ColdFusion MX. In previous versions, Cache only cached
the file on the server. ClientCache caches the page in the client's browser, ServerCache
caches the page on the server only (Macromedia recommends against this option), Flush
refreshes the cached page, and Optimal caches the page using both server-side and browser
caching (this is the recommended action in most cases). Optional. The default is Cache (note
that Cache and Optimal are interchangeable in ColdFusion MX).

cachedirectory=" directory_name"

Obsolete in ColdFusion MX. The full path of a directory where the page should be cached. By
default, pages are cached in the directory of the currently executing template. Optional.

directory=" directory_name"

The full path of the directory containing the .tmp file used by the cfcache tag. Optional. The

default cache directory is /cfroot/cache.

expireurl=" wildcarded_URL"

A wildcarded URL reference used by ColdFusion to match mappings in the cache directory when
action="Flush"; ignored otherwise. Optional. The default flushes all mappings.

password=" password"

A password to use if required by the page being cached. Optional.
port=" port_number"

Port number on the web server where the file being cached resides. Optional. The default is the
port of the current page.

protocol=" protocol_name"

The protocol to use when creating the pages from the cache. Options are HTTP:// and
HTTPS://. Optional. The default is the protocol of the current page.

timeout=" timeout"

Obsolete in ColdFusion MX. A date/time value that specifies the oldest acceptable page to pull
from the cache. If the cached page is older than the timeout value, ColdFusion refreshes the
cached page. Optional.

timespan=" decimal_num_of_days|#CreateTimeSpan(days, hours, minutes, seconds)#"

Amount of time ColdFusion should use the cached version of the template before flushing the
cache and fetching a fresh copy. The amount of time can be specified as a decimal number
representing the number of days (1.5 is a day and a half). If you prefer, a time span can be
provided instead by using the CreateTimeSpan() function. Optional. The default is not to
flush the page until the cfcache tag is called with action="Flush".

username=" username"

A username to use if required by the page being cached. Optional.

cfcase

See cfswitch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfcatch

See cftry.

cfchart

New in ColdFusion MX; enhanced in
ColdFusion MX 6.1; replaces the cfgraph tag

from ColdFusion 5.0.

<cfchart>
 <cfchartseries>
 [<cfchartdata>]
 ...
 </cfchartseries>
 ...
</cfchart>

Container tag for rendering graphs and charts in ColdFusion MX. cfchart is used in conjunction with
cfchartseries and, optionally, cfchartdata to draw several chart types including Area, Bar
(vertical and horizontal), Cone, Curve, Cylinder, Line, Pie, Pyramid, Scatter, and Step. Both 2D

and 3D versions of most types can be rendered.

Attributes

backgroundcolor=" Hex| Web_Color_Name"

Color for the background area behind the chart. Colors are specified using the same rules as
the foregroundcolor attribute. Optional. The default is White.

chartheight=" Height_in_Pixels"

Height in pixels for the chart. Optional. The default is 240.
chartwidth=" Height_in_Pixels"

Width in pixels for the chart. Optional. The default is 320.
databackgroundcolor=" Hex| Web_Color_Name"

Background color for the chart's data area. Colors are specified using the same rules as the
foregroundcolor attribute. Optional. The default is White.

foregroundcolor=" Hex| Web_Color_Name"

Color for text, gridlines, and labels. Colors may be specified by using one of the 16 available
web color names: Aqua (##00FFFF), Black (##000000), Blue (##0000FF), Fuchsia

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(##FF00FF), Gray (##808080), Green (##008000), Lime (##00FF00), Maroon (##800000),
Navy (##000080), Olive (##808000), Purple (##800080), Red (##FF0000), Silver
(##C0C0C0), Teal (##008080), White (##FFFFFF), Yellow (##FFFF00); or hex code in the
form ##FFFFCC. The double pound signs are necessary to keep ColdFusion from throwing an
error. Optional. The default is Black.

font="Arial|Courier|Times|arialunicodeMS"

Font name to use for displayed text on the chart. Optional. Default is Arial. You must use
arialcodeMS if you are trying to display double-byte characters on a Unix or Linux server, or if

you are trying to display double-byte characters on a Windows server in Flash format.
fontbold="Yes|No"

Indicates whether to make all display text boldface. Optional. Default is No.
fontitalic="Yes|No"

Indicates whether to italicize all display text. Optional. Default is No.

fontsize=" Integer"

Font size in pixels for displayed text. Optional. The default is 11.
format="Flash|JPG|PNG"

The file type to use when displaying the graph. Options are Flash (.swf), JPG (.jpg), and PNG
(.png). Optional. The default is Flash.

gridlines=" Integer"

Number of grid lines, including the axis, to display on the axis containing the charted values
when the appropriate attribute (showxgridlines or showygridlines) is set to Yes. Setting
gridlines="0" should suppress grid line display but does not in the current release of
ColdFusion MX due to a bug. To suppress grid line display, set showxgridlines and/or
showygridlines to No. Optional.

labelformat="Number|Currency|Percent|Date"

Specifies a format type for y-axis labels. Optional. Default is Number.

labelmask=" mask"

This attribute is currently undocumented in the ColdFusion MX documentation and appears to
be disabled. It's supposed to allow you to apply a mask to the values shown in the y-axis label.
Optional.

markersize=" Integer"

Marker size in pixels if showmarkers="Yes". Optional. The default size is automatically

determined.
name=" Var_Name"

Specifies a variable name to hold ISO-8859-1 encoded binary data representing the chart. No
chart is displayed in the browser. This attribute is generally used to make charts created with
cfchart available to Flash Remoting users. Optional.

pieslicestyle="Solid|Sliced"

Specifies how to display pie slices if a cfchartseries tag is used with type="Pie". Solid
displays a solid pie chart; Sliced draws each slice segmented. Optional. The default is Sliced.

rotated="Yes|No"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifying Yes rotates the chart 90 degrees clockwise. This attribute is generally used to create
a horizontal bar chart. Optional. The default is No.

scalefrom=" Integer"

The minimum value to place on the y-axis of the chart. Optional. The default is dependent on
(but not necessarily equal to) the minimum value in the set of data points.

scaleto=" Integer"

The maximum value to place on the y-axis of the chart. Optional. The default is the maximum
value in the set of data points.

showborder="Yes|No"

Indicates whether to display a border around the chart. Optional. The default is No.
showxgridlines="Yes|No"

Indicates whether to display gridlines along the x-axis. Optional. The default is No.
showygridlines="Yes|No"

Indicates whether to display gridlines along the y-axis. Optional. The default is Yes.
seriesplacement="Default, Cluster, Stacked, Percent"

Specifies the relative positioning of one data series to another for charts of the same type with
more than one data series. Options are Default (ColdFusion determines the best placement
based on the chart type), Cluster, Stacked, and Percent. Optional. The default is Default.

show3D="Yes|No"

Whether to display a 3D version of the chart. Optional. The default is No.
showlegend="Yes|No"

Yes displays a legend if more than one data series is charted. Optional. Default is Yes.
showmarkers="Yes|No"

Specifying Yes displays markers for data points when the type attribute in any cfchartseries
tags is Curve, Line, or Scatter, and the chart is rendered in 2D. Optional. The default is Yes.

sortxaxis="Yes|No"

Indicates whether to sort column labels alphabetically along the x-axis. Ignored if
xaxistype="scale". Optional. The default is No.

tipbgcolor=" Hex| Web_Color_Name"

Specifies a background color for tip popup windows when format="Flash". Colors are specified
using the same rules as the foregroundcolor attribute. Optional. The default is White.

tipstyle="MouseDown|MouseOver|None"

Specifies how the tip popup window that displays information about graph elements is called.
MouseDown displays the popup when the mouse pointer is placed over a chart element and the
mouse button is pressed and held (when format="Flash" only). MouseOver displays the popup
when the mouse pointer moves over a chart element. None disables tip popup windows and
works for all format types. Optional. The default is MouseOver.

URL=" Url| JavaScript"

A URL to link to or a JavaScript function to call when a data point on the chart is clicked.
Additionally, the following variables are available and can be used anywhere in the URL:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$value$ (value of the data point selected), $itemlabel$ (item label associated with the
selected data point), and $serieslabel$ (series label associated with the selected data point).

Optional. Here's an example showing both a standard URL with additional parameters and a
call to a JavaScript function:

URL="MyDrillDown.cfm?val=$value$&item=$item$&series=$series$"
URL="javascript:MyFunct('$value$','$itemlabel$','$serieslabel$');"

xaxistitle=" Title_Text"

Title for x-axis. Optional.
xaxistype="category|scale"

Treatment of x-axis values. category specifies that the x-axis values should be displayed in
the order in which they are coded, while scale tells the charting engine to display the values
according to their numeric order. If scale is used, all x-axis values must be numeric, otherwise
ColdFusion throws an error. Optional. The default is category. This attribute is new in

ColdFusion MX 6.1.
xoffset=" -1_to_1"

Number between -1 and 1 specifying the number of units the graph should be rotated on the
horizontal axis when show3D="Yes". -1 is 90 degrees left, 0 is no rotation, and 1 is 90 degrees
right. Optional. The default is .1.

yaxistitle=" Title_Text"

Title for y-axis. Optional.
yaxistype="category|scale"

Treatment of y-axis values. This attribute is currently ignored as all y-axis values must be
numeric. Optional. The default is scale. This attribute is new in ColdFusion MX 6.1.

yoffset=" -1_to_1"

Number between -1 and 1 specifying the number of units the graph should be rotated on the
vertical axis when show3D="Yes". -1 is 90 degrees left, 0 is no rotation, and 1 is 90 degrees
right. Optional. The default is .1.

cfchartdata

New in ColdFusion MX
<cfchart>
 <cfchartseries>
 [<cfchartdata>]
 ...
 </cfchartseries>
 ...
</cfchart>

Specifies individual data points for use in a cfchartseries. May be used alone or in conjunction with

a chart generated with query data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

item=" text"

Label for the data point to be graphed. Optional. If no label is specified, the value is displayed

in its place.
value=" value"

The data point value to be graphed. Required.

cfchartseries

New in ColdFusion MX
<cfchart>
 <cfchartseries>
 [<cfchartdata>]
 ...
 </cfchartseries>
 ...
</cfchart>

Used as a child tag of cfchart to specify the type of chart to draw and to define a series of data
points to graph. Multiple cfchartdata tags may be used within a cfchart container to chart multiple

series of data and/or to overlay multiple chart types.

Attributes

type=" chart_type"

Type of chart to render. Options are Area, Bar, Cone, Curve, Cylinder, Line, Pie, Pyramid,
Step, and Scatter. Required.

colorlist=" color"

A comma-delimited list of colors to use for the data points in Pie charts. Color names follow
the same rules as those for the seriescolor attribute. If there are more data points than
colors specified in colorlist, the list is simply reused once all the options have been
exhausted. Optional. If no colorlist is specified, ColdFusion uses a default list of colors.

itemcolumn=" query_column"

Name of the query column containing the label text for individual data points in the chart.
Required if a value is provided for query.

markerstyle=" style"

Style for data point markers in 2D charts. Options are Circle, Diamond, Letterx, Mcross,
Rcross, Rectangle, Snow, and Triangle. Optional. The default is Rectangle.

paintstyle="plain|raise|shade|light"

Paint style to use for the series. Options are Plain (solid color fill), Raise (beveled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

appearance), Shade (gradient filling darker toward the edges), and Light (gradient filled
lighter shade of color). Optional. The default is Plain.

query=" query_name"

Name of the query object containing data you want to chart. Optional.
seriescolor=" Hex| Web_Color_Name"

Color for the chart elements or the first pie slice in a pie chart. Colors may be specified by
using one of the 16 available web color names: Aqua (##00FFFF), Black (##000000), Blue
(##0000FF), Fuchsia (##FF00FF), Gray (##808080), Green (##008000), Lime (##00FF00),
Maroon (##800000), Navy (##000080), Olive (##808000), Purple (##800080), Red
(##FF0000), Silver (##C0C0C0), Teal (##008080), White (##FFFFFF), Yellow
(##FFFF00); or hex code in the form ##FFFFCC. The double pound signs are necessary to keep

ColdFusion from throwing an error. Optional.
serieslabel=" text"

Text for the series label. Optional.
valuecolumn=" query_column"

Name of the query column containing the values for individual data points in the chart.
Required if a value is provided for query.

cfcol

<cftable>
 [<cfcol>]
 [<cfcol>]
 ...
</cftable>

Used within a cftable block to define the column header, including alignment, width, and text.

Attributes

text=" text"

The text to display in the column. The text attribute can contain plain text, HTML, and CFML

variables. Required.
align="Left|Right|Center"

The alignment for the header text. Valid entries are Left, Right, and Center.

header=" header_text"

The text to use for the column's header. Required if the cftable colheaders attribute is used.

width=" width_in_characters"

The width in characters for the column; a longer heading is truncated. The default width is 20
characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfcollection

Updated in ColdFusion MX
<cfcollection>

Creates and manages Verity collections. The cfcollection tag provides a programmatic interface to

many of the administrative functions of the ColdFusion Administrator.

Attributes

action=" action"

The action to perform on the specified Verity collection. Valid entries are List (new in
ColdFusion MX), Create, Repair, Delete, Optimize, and Map. Map is no longer necessary in

ColdFusion MX as the server is now capable of automatically determining whether a collection is
internal or not. The Optimize action from previous versions of ColdFusion is no longer
supported in ColdFusion MX. If action="List", ColdFusion returns a query object (specified in
name) containing the names of all of the Verity collections (both VDK and K2 Server) registered

on the server. Required.
collection=" collection_name"

The name of the Verity collection to perform the specified action on. As of ColdFusion MX,

collection names may contain spaces. Required.
language=" language"

The language to be used when creating the collection. To specify a language other than U.S.
English (the default), you must download and install the appropriate Verity Language Pack for
ColdFusion MX, available at http://www.macromedia.com/go/verity/. Optional.

name=" query_name"

The name to assign the query object containing the collection information when action is
List. Required for this action; ignored otherwise.

path=" directory"

The path to a Verity collection. Required when action is Create or Map.

Returned Query Columns

The following values are returned when action is List:

queryname.Name

If the collection is a registered VDK collection, returns the name of the collection registered
with the ColdFusion Administrator. For K2 collections, returns the collection alias set in the
k2server.ini file.

queryname.Path

http://www.macromedia.com/go/verity/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The absolute path to the Verity collection. If the collection is mapped or is a registered K2
server collection, returns the absolute path, including the collection name.

queryname.Language

The locale setting used by the collection. This column is blank for K2 server collections.
queryname.External

Returns Yes if the collection is external, No if it is not, and Not Found if the collection is

registered but is not available at the specified path.
queryname.Mapped

Returns Yes if the collection is mapped, No if it is not. This column is blank for K2 server

collections.
queryname.Online

Returns Yes if the collection is online and available for searching, No if it is not or if

queryname.External returns Not Found.

queryname.Registered

Returns CF if the collection is registered with the ColdFusion Administrator or K2 if it is

registered with the K2 server.

cfcomponent

New in ColdFusion MX
<cfcomponent>

 CFML...
 [<cfproperty>]
 ...
 [<cffunction>
 ...
 </cffunction>]
 ...
</cfcomponent>

Acts as a container for a ColdFusion Component (CFC). Any CFML code outside a cfproperty or
cffunction container is considered a constructor and is automatically executed when the component

is instantiated. Any variables set are automatically available to all methods in the component.

Besides the named attributes listed below, you can pass any additional desired attributes to the
cfcomponent tag as user-defined attributes. Although these attributes don't do anything, they are
available as metadata when the component is introspected using the GetMetaData() function. You
may use any attribute names you wish with the exception of those reserved by cfcomponent: name,
displayname, hint, output, path, properties, and functions.

Attributes

displayname=" display_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Used to display a descriptive name for the component in ColdFusion MX's Component Browser.
Optional.

extends=" component_name"

Name of a parent component from which the component should inherit methods and
properties. Optional.

hint=" text"

Used to display a hint describing what the component does in ColdFusion MX's Component
Browser. Optional.

output="Yes|No"

Indicates whether the component allows output within the "constructor" area (the area outside
any cffunction tags). If Yes, expressions surrounded with pound signs are automatically
evaluated without the need for cfoutput tags, and output is permitted. If No, ColdFusion
suppresses any output within the constructor area of the component. Optional. If output is not

specified, ColdFusion allows output within the constructor area, but all expressions must be
within cfoutput tags.

cfcontent

Updated in ColdFusion MX
<cfcontent>

Sends content of the specified media type to the browser. Content may be dynamically generated by
ColdFusion or come from a file. The cfcontent tag is often used to send files stored above the web

root directory to the browser or to generate non-HTML content for other clients, such as wireless
devices (cell phones, PDAs, etc.).

Attributes

type=" MIME_type_and_or_charset"

The MIME type and/or character set for the content to be sent to the browser. charset lets

you specify a Java character set to use for the encoding. The most common character sets are
UTF-8 (the default), UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may use

any character set supported by your JRE. If you want to specify a MIME type and a character
set, delimit them with a space or a semicolon: type="text/html; charset=utf-8". Required
unless file or reset is specified.

deletefile="Yes|No"

Whether or not to delete the file after it has been sent to the browser. Valid only if a file was
specified in the file attribute. Optional. The default is No.

file=" filename"

The name of the file being sent to the browser. Required unless type or reset is specified.
reset="Yes|No"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Whether or not to suppress any output preceding the call to the cfcontent tag. The reset
attribute is ignored if a value is specified for file or type. The default is Yes.

cfcookie

Updated in ColdFusion MX 6.1
<cfcookie>

Writes a cookie to the user's browser. Due to the way ColdFusion assembles dynamic pages, you
shouldn't attempt to use the cflocation tag within a template after a cookie variable has been set.
In versions of ColdFusion prior to MX, setting a cookie variable and using cflocation afterward

resulted in the cookie not being set. This is no longer the case in ColdFusion MX.

Attributes

name=" cookie_name"

Name of the cookie to write. Cookie names can consist of any printable ASCII characters with
the exception of commas, semicolons, and whitespace characters. Required.

value=" value_of_cookie"

The value to assign the cookie. Required.
domain=" domains"

The domain for which the cookie can be read and written. Entries must always start with a dot.
For example, domain=".oreilly.com" is a valid entry. Multiple entries may be separated by

semicolons. Optional.
expires=" time_period"

The cookie's expiration date. May be specified as a date, number of days, Now, or Never.
Optional. If no value is provided for expires, the cookie is set as an in-memory-session-only

cookie. This means that the cookie is never written to the user's hard drive and automatically
expires when the browser is closed.

path=" URLs"

The URLs in domain that the cookie applies to. Multiple entries can be separated by semicolons.

Optional.
secure="Yes|No"

Whether the cookie must be transmitted securely via SSL. Optional. The default is No.

cfdefaultcase

See cfswitch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfdirectory

Updated in ColdFusion MX

<cfdirectory>

The cfdirectory tag lists directory contents, as well as creates, renames, and deletes directories on

the ColdFusion application server.

Attributes

action=" action"

The action to perform on the specified directory. Valid options are Create, Delete, List, and
Rename. Required. The default value is List.

directory=" directory_name"

The name of the directory to perform the action on. Required.

filter=" file_extension"

A file extension to filter the results returned when action is List. Optional for this action;
ignored otherwise. Only one file extension can be used with the filter attribute.

mode=" permissions"

Allows you to set permissions the way you would with the Unix chmod command. For example,
setting mode="777" assigns read, write, and execute permissions to the directory for everyone.
Optional when action is Create; ignored otherwise.

name=" query_name"

The name to assign the query object containing the directory listing when action is List.

Required for this action; ignored otherwise.
newdirectory=" new_directory_name"

The name of the new directory to be created when action is Rename. Required when action is
Rename; ignored otherwise.

sort=" sort_criteria"

How to sort each query column returned when action is List. Optional for this action; ignored
otherwise. The sort attribute can take a single query column or a comma-separated list. The
actual direction for the sort is specified as Asc for ascending and Desc for descending.

Returned Query Columns

The following values are returned when action is List:

queryname.Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The attributes, if any, for the given object.
queryname.DateLastModified

The time/date stamp that the object was last modified.
queryname.Mode

This column applies only to the Unix versions of ColdFusion and specifies the permissions set
for the file or directory. The Mode is the same as the permissions set by the Unix chmod

command.
queryname.Name

The name of the directory or file.
queryname.RecordCount

The total number of files and/or directories. In ColdFusion MX, cfdirectory no longer returns
the current directory and parent directory, (.) and (..) respectively. These two directories
were always present in any listing returned by the cfdirectory tag. Because of this,

queryname.RecordCount would return 2 for an empty directory.

queryname.Size

The size in bytes of the directory or file.
queryname.Type

Dir if the object is a directory or File if it is a file.

cfdump

New as of ColdFusion 5.0; updated in
ColdFusion MX and MX 6.1

<cfdump>

Displays the value of a variable in a color-coded DHTML-formatted table. cfdump is useful in

debugging situations where you need to display a variable's contents, especially for arrays and
structures. The cfdump tag can output the contents of most datatypes.

Attributes

var="# variable_name#"

The name of the variable you want to display the value(s) for. cfdump is capable of recognizing

simple datatypes as well as arrays, binary data, CFCs, COM objects (new in ColdFusion MX
6.1), Java objects, query objects, structures, UDFs, WDDX, and XML document objects. Note
that it is necessary to surround the variable name with pound signs.

expand="Yes|No"

Indicates whether to expand DHTML table views (works in most modern browsers). Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Default is Yes.

label=" Label_Text"

Specifies a header for the table created by the dump. Optional.

cfelse

See cfif.

cfelseif

See cfif.

cferror

Updated in ColdFusion MX
<cferror>

Displays a custom error page when an error occurs in a ColdFusion application. The cferror tag is

most often included within an application's Application.cfm template.

Attributes

type="Request|Exception|Validation"

Specifies the error type to watch for. Required. The default is Request, which handles all errors
that occur during a page request. Exception handles exceptions, and Validation handles

form validation errors that occur when a form is submitted (useful only in an Application.cfm
template). In previous versions of ColdFusion, cferror supported another type, Monitor,

which could be used to set up an exception monitor.
template=" path"

The relative path to the custom error template. Required.

When type is Exception, any ColdFusion tags can be used in the exception-handling template.

Exception handling templates may also be invoked by specifying a Site-wide Error Handler
within the Server Settings section of the ColdFusion Administrator.

When type is Request, a number of variables are available in the error-handling template

(listed in "Return Variables"), but no other CFML tags can be used. These variables are also
available when type is Exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When type is Validation, a number of variables are available to the validation error-handling

template (listed next in "Return Variables"), but no other CFML tags may be used in the
template.

exception=" exception_type"

The type of exception to watch for. Required when type is Exception. Possible values are Any

(the default), Application, CustomType, Database, Expression, Lock, MissingInclude,
Object, SearchEngine, Security, and Template. For more details on these types, see cftry.

ColdFusion also supports a number of additional structured exception types, as listed under
cftry.

mailto=" email_address"

The email address of the person who should be notified if an error occurs. Optional.

Returned Variables

When type is Exception or Request, the following variables are made available to the template
specified in the template attribute and can be referenced within a cfoutput block:[A]

[A] You can use the cferror prefix instead of the error prefix if you have type set to Exception, as in

cferror.Browser or cferror.Template. The cferror prefix is preferred as it matches the cferror
tag name and makes identifying variable names and scopes easier. Just like error, cferror can also be

referenced as a structure.

error.Browser

The browser in use when the error occurred
error.DateTime

The date and time when the error occurred
error.Diagnostics

A detailed error message provided by the ColdFusion server
Error.GeneratedContent

The content generated by the template up to the point of the error
error.HTTPReferer

The page containing the link to the template where the error occurred
error.MailTo

The email address specified in the mailto attribute of the cferror tag
error.RemoteAddress

Specifies the IP address of the remote client
error.QueryString

The URL query string, if any, from the client's request
error.Template

The page that was in the process of executing when the error occurred

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If type is set to Exception, you can use the following additional variables:

error.Message

Abbreviated error message thrown by the ColdFusion server. The detailed message is available
in error.Diagnostics.

error.RootCause

Returns a Java object containing the Java servlet exception generated by the JVM as the
exception's root cause. This variable is new in ColdFusion MX.

error.TagContext

The name and position of each tag in the tag stack as well as the full pathnames of the files
containing the tags as an array of structures. Each structure in the TagContext array contains

the following elements:

type

Type of page generating the exception. type always returns "CFML". This key is new in

ColdFusion MX.
ID

The name of the tag within the stack where the exception occurred. If the exception
occurs within cfscript tags, ID returns "??".

template

The full path to the template containing the tag.
line

The line number within the template where the tag was found.
column

No longer supported in ColdFusion MX. This key is still available for backward
compatibility with previous versions of ColdFusion, but it always returns 0. In previous
versions of ColdFusion, column returned the column number within the template where

the tag was found.
raw_trace

The raw Java stack trace for the exception. This key is new in ColdFusion MX. In versions
of ColdFusion prior to MX, CFML Stack Trace must be enabled in the Debugging section of
the ColdFusion Administrator in order to populate this variable. If this option isn't
enabled, ColdFusion returns a zero-length array for error.TagContext.

error.Type

The exception type thrown by the server

Additionally, you can use any cfcatch return variables available to the exception specified in the
exception attribute of the cferror tag. These can be referenced within the error.RootCause
object. For example, if a Database exception is trapped, you can reference the data source name
(cfcatch.Datasource) as error.RootCause.Datasource. The cfcatch variables are listed under
cftry.

When type is Validation, the following variables are available:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

error.ValidationHeader

Header text for the validation error page
error.InvalidFields

An HTML unordered () list of validation errors
error.ValidationFooter

Footer text for the validation error page
error.MailTo

In versions of ColdFusion prior to MX, the email address specified in the mailto attribute of the
cferror tag

cfexecute

Updated in ColdFusion MX 6.1
<cfexecute> ... </cfexecute>

Executes a command-line program on the server. No HTML or CFML should appear between the start
and end of the cfexecute tags, and cfexecute tags can't be nested. If for some reason an exception
is thrown while attempting to execute the cfexecute tag, the following rules apply:

If the application specified in the name attribute can't be found, an "Application File Not Found"
exception is thrown.

If the ColdFusion user executing the application doesn't have permission to do so, a security
exception is thrown.

If a value is specified for outputfile, and the file can't be opened, an "Output File Cannot Be

Opened" exception is thrown.

Attributes

name=" command"

The full path to the program you want to execute. Required.
arguments=" argument_string"

Arguments to pass to the external program being called. Optional. Arguments can be either
strings or arrays. On Windows platforms, a string is passed to the Windows process control
subsystem for processing. On Unix and Linux systems, a string is tokenized into an array of
strings, delimited by spaces. If spaces occur in the array elements, they are escaped by double
quotes. On Windows platforms, the elements of an array are concatenated into a space-
delimited string of tokens, which is then passed to the Windows process control subsystem for
processing. On Unix and Linux systems, the elements of an array are copied into an array of
exec() arguments.

outputfile=" output_file"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The path to an output file where any text output by the external program is written. Relative
path names are relative to the ColdFusion temp directory. If outputfile is specified, you may
not use the variable attribute. If both outputfile and variable are omitted, the output is

returned to the browser. Optional.
timeout=" seconds"

The time in seconds that ColdFusion should wait before timing out the call to the external
program. Setting the timeout attribute to 0 equates to a nonblocking execution mode. This

causes ColdFusion to spawn a thread for the process and immediately return without waiting
for the process to end. By contrast, setting the timeout attribute to an arbitrarily high value
equates to a blocking execution mode. Optional. The default timeout is 0.

variable=" variable_name"

Variable name used to store any output generated by the executed program. If variable is
used, you may not use the outputfile attribute. If neither variable nor outputfile are

specified, any output is written directly to the browser. Optional. This attribute is new in
ColdFusion MX 6.1.

cfexit

<cfexit>

Aborts processing of a custom tag and returns control to the calling template or parent custom tag
(in the case of nested tags). The cfexit tag is similar in functionality to the cfabort tag, except it is
intended for use within custom tags. If the cfexit tag is used outside of a custom tag, it acts exactly
like the cfabort tag.

Attribute

method=" method"

The method used to exit the custom tag. Each method produces different results, depending on
the location of cfexit within the custom tag.

The default method is ExitTag, which simply halts processing of the custom tag and returns
control to the calling template. If placed within a block of code where ThisTag.ExecutionMode
is Start or End, processing continues after the end tag.

ExitTemplate halts processing and returns control to the calling template. If placed within a
block of code where ThisTag.ExecutionMode is Start, processing continues from the first
child tag of the calling tag. If ThisTag.ExecutionMode is End, processing continues after the

end tag.

Loop reexecutes a block of code in the currently executing custom tag (emulating a cfloop).
This method can be used only when ThisTag.ExecutionMode is End. Using it in any other

location results in an error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cffile

Updated in ColdFusion MX and MX 6.1
<cffile>

Operates on files on the ColdFusion server. The action taken depends on the action attribute.
Append appends additional text to the end of a file. Copy copies a file from one location to another.
Delete deletes a file from the server. Move moves a file from one location to another. Read reads a
text file and stores the contents in a variable. ReadBinary reads a binary file and stores the data as a
byte-array, allowing both string and array functions to be used to manipulate the data. Rename
renames a file on the server. Upload uploads a file from a form submission. Write writes a text or

binary file to the server.

Attributes

action=" action"

The action to be performed by the cffile tag. Required. Possible actions are Append, Copy,
Delete, Move, Read, ReadBinary, Rename, Upload, and Write.

accept=" MIME_types"

A comma-separated list of MIME types that the ColdFusion server should be allowed to accept
for upload. Optional for Upload; ignored otherwise. The default is to accept all MIME types.

addnewline="Yes|No"

If set to Yes, a newline character is added to the end of the file. Optional for Append and
Write; ignored otherwise. The default is Yes.

attributes=" attributes"

Single attribute for Windows, or comma-delimited list of attributes for other operating systems,
to be applied to the file. In ColdFusion MX, valid choices are Hidden, Normal, and ReadOnly.
Previous versions supported the additional attributes Archive, System, and Temporary.
Optional. If no value is specified, the file's original attributes are maintained. If ReadOnly is

specified along with other attributes, they are ignored.
charset=" charset"

New in ColdFusion MX. charset lets you specify a character set for the contents of the file and
can be used when the action attribute is set to Move, Read, Write or Append. The most
common character sets are UTF-8 (the default), UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and
ISO-8859-1. You may use any character set supported by your JRE. When a text file is read
using cffile, a check is performed to determine whether the first character is a byte order

marker (BOM). If so, ColdFusion uses this to automatically determine the character encoding
for the file. If the file contains a BOM, and a value is also specified for the charset attribute,

ColdFusion throws an error.
destination=" filename"

The full path to the new location of the file. If a relative path is used, the location is relative to
the ColdFusion temp directory. Required for Copy, Move, Rename, and Upload. On Windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

servers, use the backslash (\) to denote directories. On Unix servers, use the forward slash
(/).

file=" filename"

The full path to the file to be operated on. If a relative path is used, the location is relative to
the ColdFusion temp directory. Required for Append, Delete, Read, ReadBinary, and Write.

filefield=" form_field"

The name of the submitted form field (without pound signs) that contains the selected file.
Required for Upload.

mode=" mode"

Allows you to set permissions the way you would with the Unix chmod command. For example,
setting mode="777" assigns read, write, and execute permissions to the directory for everyone.
Optional for Upload and Write; ignored otherwise.

nameconflict="error|makeunique|overwrite"

How ColdFusion should behave if the file being uploaded has the same name as a file already
existing in the destination directory. Optional for Upload; ignored otherwise. The default is
Error, which means that the file isn't saved to the server, and ColdFusion halts processing with
an error. MakeUnique assigns the file a unique name and saves it to the server, Overwrite
overwrites the existing file, and Skip aborts uploading of the file and returns control to the

ColdFusion application without throwing an error.
output=" content"

The text to be appended to the file for Append or the content to store in the file for Write.

Required for these two actions.
source=" filename"

The full path to the current location of the file. If a relative path is used, the location is relative
to the ColdFusion temp directory. Required for Copy, Move, and Rename.

variable=" variable_name"

Variable where the file contents is stored. Required for Read and ReadBinary.

Returned Values

With an Upload action, once the cffile tag has executed, a number of ColdFusion variables are

created to hold information about the transaction. These variables are read-only and can be
referenced using the file scope, as in cffile.VariableName. [B] The following list describes all the

variables available within the file scope:

[B] In versions prior to MX, ColdFusion supported the file prefix instead of cffile. file was deprecated in

ColdFusion 5 and is no longer supported in ColdFusion MX. The cffile prefix should be used instead.

cffile.AttemptedServerFile

The filename that ColdFusion first attempted to save the uploaded file as.
cffile.ClientDirectory

The directory location on the client's machine where the uploaded file came from.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cffile.ClientFile

The name of the file uploaded from the client's machine.
cffile.ClientFileExt

The file extension of the file uploaded from the client's machine (without an initial period).
cffile.ClientFileName

The filename without the extension of the file uploaded from the client's machine.
cffile.ContentSubType

The media subtype of the uploaded file.
cffile.ContentType

The media type of the uploaded file.
cffile.DateLastAccessed

The time and date that the uploaded file was last accessed.
cffile.FileExisted

Yes or No depending upon whether the uploaded file already existed.
cffile.FileSize

The file size of the uploaded file.
cffile.FileWasAppended

Yes or No depending upon whether the uploaded file was appended to a file already existing on

the server.
cffile.FileWasOverwritten

Yes or No depending upon whether a file already on the server was overwritten by the

uploaded file.
cffile.FileWasRenamed

Yes or No depending upon whether the uploaded file was renamed to resolve a name conflict.
cffile.FileWasSaved

Yes or No depending upon whether the uploaded file was saved to the server.
cffile.OldFileSize

If a file on the server was overwritten, the file size of the file that was overwritten.
cffile.ServerDirectory

The directory on the server that contains the newly saved file.
cffile.ServerFile

The filename (filename and extension) of the file saved on the server.
cffile.ServerFileExt

The file extension (without the initial period) of the file saved on the server.
cffile.ServerFileName

The filename (without the extension) of the file saved on the server.
cffile.TimeCreated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The time the uploaded file was created.
cffile.TimeLastModified

The time and date the uploaded file was last modified.

cfflush

New as of ColdFusion 5.0
<cfflush>

Flushes all currently available content to the client. cfflush is typically used within loops or output
queries to send results back to the client in incremental chunks. The first time a cfflush tag is

encountered on a page, it sends all the HTTP headers for the request along with any generated
content up to the position in the template where the tag is encountered. Successive cfflush tags
return any content generated since the previous flush. Once a cfflush tag has been used in a

template, you can't use any other CFML tags that write to the HTTP header; doing so causes
ColdFusion to throw an error because the header has already been sent to the browser. These tags
include cfcontent, cfcookie, cfform, cfheader, cfhtmlhead, and cflocation. In addition,
attempting to set a variable in the cookie scope with the cfset tag results in an error because

cookies are passed from the server to the browser in the HTTP header.

Attribute

interval=" integer"

The minimum number of bytes that should be returned by the server before the output buffer
is flushed. Optional.

cfform

Enhanced in ColdFusion 5.0 and ColdFusion
MX

<cfform> ... </cfform>

Creates a form capable of using controls, including HTML input types such as input boxes, drop-down
boxes, and radio buttons, as well as a number of specialized Java applets, such as tree, grid, and
slider controls.

New in ColdFusion MX, the preservedata attribute now works with radio button and checkbox types

provided the value of the control matches the value of the posted data.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

action=" form_action"

Location (page) where the form should be submitted upon completion. Optional.
archive=" URL"

Specifies the URL to a downloadable Java archive file containing Java-based cfform controls.

Optional. The default URL is /CFIDE/classes/cfapplets.jar.
class=" style_name"

Name of a CSS (Cascading Style Sheet) style to apply to the HTML form tag generated by
cfform. Optional.

codebase=" URL"

Specifies the URL to a downloadable JRE plugin for MS Internet Explorer. Optional. The default
URL is /CFIDE/classes/cf-j2re-win.cab.

enablecab="Yes|No"

No longer supported in ColdFusion MX or ColdFusion 5. Whether or not Java controls associated
with other cfform elements should be made available to Microsoft Internet Explorer users as

Microsoft cabinet files. Optional.
enablejar="Yes|No"

Not currently supported (in the initial MX release). Optional.
enctype=" MIME_type"

The MIME type for data being submitted via the Post method. Optional. The default is
application/x-www-form-urlencoded. If, however, you plan to allow file uploads via your
form, you must specify multipart/form-data.

ID=" name"

Specifies a unique identifier for the form. Corresponds to the attribute of the same name in the
generated HTML form tag. Optional.

method="Post"

Specifies the method for sending information submitted by the form. Corresponds to the
attribute of the same name in the generated HTML form tag. Optional. The default (and only
value currently allowed) is Post.

name=" name"

A name for the form. You should specify a value for name if you plan to reference the form later
in your application. Optional. The default is cfform_1.

onload="Yes|No"

Not currently supported (in the initial MX release). Optional. The default is No.

onreset=" javascript_function"

JavaScript function to execute if a reset button is present and clicked by the user. Corresponds
to the attribute of the same name in the generated HTML form tag. Optional.

onsubmit=" javascript_function"

A JavaScript function that should be executed after validation occurs but before the form is
submitted. Optional.

passthrough=" HTML_attributes"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Any additional HTML attributes you want to specify that aren't directly supported by the cfform

tag. Optional.
preservedata="Yes|No"

Whether or not to retain and display data submitted from a cfinput, cftextinput, cfslider,
or cftree control when a form is submitted to itself or to another page with like-named cfform
controls. This allows you to display the data entered by the user for cfinput and cftextinput
controls without any additional coding. For cfslider controls, the slider is set automatically to
the position from the previous form post. For cftree controls, the tree expands automatically
to the previously selected item. For preservedata to work with a tree control, the
completepath attribute of the cftree tag must be set to Yes. Optional. The default is No.

target=" window_name"

The name of a frame or window where the target template specified in the action attribute

should be opened. Optional.
scriptsrc=" path"

New in ColdFusion MX. The path to the JavaScript source file used by cfform if you store it in a

location other than /wwwroot/cfide/scripts/cfform.js. Optional.
style=" style_code"

Inline CSS markup to apply to the HTML form tag generated by cfform. Corresponds to the
attribute of the same name in the generated HTML form tag. Optional.

cfftp

Updated in ColdFusion MX and MX 6.1
<cfftp>

Allows a ColdFusion program to communicate with an FTP server. The action taken depends on the
action attribute. Open opens an FTP connection between the ColdFusion server and a remote FTP
server, while Close closes a connection to an FTP server. The rest of the actions perform various file

and directory operations. Note that file and directory names are case sensitive.

Attributes

action=" action"

The action to be performed by the cfftp tag. Required. Possible actions are Close, ChangeDir,
CreateDir, Exists, ExistsDir, ExistsFile, GetCurrentDir, GetCurrentURL, GetFile,
ListDir, Open, PutFile, Remove, RemoveDir, and Rename.

agentname=" agent_name"

A name for the application or entity making the FTP connection. Optional. This attribute is no
longer supported in ColdFusion MX.

asciitextextensionlist=" extensions"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A semicolon-delimited list of file extensions that force the transfer mode to ASCII when the
transfermode attribute is set to Auto. Optional. The default extension list is
txt;htm;html;cfm;cfml;shtm;shtml;css;asp;asa.

attributes=" file_attributes"

A comma-delimited list of attributes to be applied to the file being downloaded when action is
set to GetFile. Valid choices are Archive, Compressed, Directory, Hidden, Normal,
ReadOnly, System, and Temporary. Optional. The default value is Normal. File attributes vary

depending on the operating systems involved in the file transfer. This attribute is no longer
supported in ColdFusion MX.

connection=" connection_name"

For Open, the name to assign a cached FTP connection so that batch operations can be

performed without having to reestablish a new connection for each task. For file and directory
operations, can be used to refer to an existing cached FTP session. For Close, the name of the

FTP connection to close. If session variables are used to cache the connection, it is important to
make sure that you lock access to the session variables during read/write via the cflock tag.

Optional.
directory=" directory_name"

The directory on which to perform an FTP operation. Required when action is ChangeDir,
CreateDir, ExistsDir, ListDir, or RemoveDir.

existing=" file_or_directory_name"

The current name of the file or directory being renamed on the FTP server. Required when
action is Rename.

failifexists="Yes|No"

Whether or not a GetFile action fails if a local file with the same name as the downloaded file
already exists. Optional. The default is Yes.

item=" file_or_directory_name"

The file, directory, or object to act on when action is Exists or Remove. Required for these

actions.
localfile=" filename"

The name of the file on the local system. Required when action is GetFile or PutFile.

name=" query_name"

The name of a query to hold the directory listing when action is ListDir. Required for this

action.
new=" file_or_directory_name"

The new name for the file or directory being renamed on the FTP server. Required when
action is Rename.

passive="Yes|No"

Whether or not to use passive transfer mode. Optional. The default is No.

password=" password"

Password to send to the FTP server in conjunction with username. If none is required,

convention dictates that you pass the email address of the user as the password. Required for
Open. Also required for all file and directory operations unless using a cached connection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

port=" port_number"

Port on the FTP server that listens for incoming FTP requests. Optional. The default FTP port is
21.

proxybypass=" proxy_bypass"

A list of IP addresses or hostnames that don't need to be routed through the proxy server.
Optional.

proxyserver=" proxy_server"

The IP address or hostname of a proxy server or servers if required. If this attribute is omitted,
ColdFusion attempts to obtain proxy server information from the JVM startup arguments
(configurable from the ColdFusion Administrator). In versions prior to MX, the registry was
used in place of JVM startup arguments.

remotefile=" filename"

The name of the file on the remote FTP server. Required when action is ExistsFile,
GetFile, or PutFile.

retrycount=" number"

The number of times the FTP operation should be attempted before an error is reported.
Optional. The default number of retries is 1.

server=" FTP_server"

Hostname or IP address of the FTP server you want to connect to. Required for Open. Also

required for all file and directory operations unless using a cached connection.
stoponerror="Yes|No"

If set to Yes, ColdFusion throws an exception and halts processing if an error occurs. Optional.
The default is No, which allows ColdFusion to continue processing the page after an error has

occurred.
timeout=" seconds"

The length in seconds that an operation has to execute before the request is timed out.
Optional. The default is 30.

transfermode="ASCII|Binary|Auto"

The FTP transfer mode to use when uploading and downloading files. Possible options are
ASCII, Binary, and Auto. Optional. The default value is Auto.

username=" username"

The username to send to the FTP server. If none is required, convention dictates that you pass
"anonymous" as the username. Required for Open. Also required for all file and directory

operations unless using a cached connection.

Returned Variables

When stoponerror is set to No, the cfftp tag returns three variables that contain information

related to the error:

cfftp.Succeeded

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Yes if the FTP connection was closed successfully and No if it was not.
cfftp.ErrorCode

An error number corresponding to a value in cfftp.ErrorText. If no error occurred, returns 0.
cfftp.ErrorText

A text message describing the error.

Several of the file and directory operations performed by the cfftp tag also return a variable called
cfftp.ReturnValue. The following table lists the actions that return this variable as well as a

description of the returned value:

Action value Returned value

GetCurrentDir Current directory

GetCurrentURL Current URL

Exists Yes or No

ExistsDir Yes or No

ExistsFile Yes or No

Returned Query Columns

Query objects created by the cfftp tag when action is ListDir contain the following query

columns:

queryname.Attributes

The attributes, if any, for the given object. As of ColdFusion MX, operating system-specific
attributes such as ReadOnly are no longer returned. Instead, queryname.Attributes returns
Directory or Normal.

queryname.IsDirectory

true if the object is a directory, false if it isn't.

queryname.LastModified

The date that the file or directory was last modified.
queryname.Length

The length in bytes of the file or directory.
queryname.Mode

This column applies only to the Unix and Linux versions of ColdFusion and specifies the
permissions set for the file or directory. The Mode is the same as the permissions set by the

Unix chmod command.
queryname.Name

The name of the file or directory.
queryname.Path

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The path without drive letter designation to the file or directory.
queryname.URL

The URL for the file or directory.

cffunction

New in ColdFusion MX
[<cfcomponent>]
 <cffunction>
 [<cfargument>]
 ...
 ...
 </cffunction>
 ...
[<cfcomponent>]

Creates a tag-based user-defined function (UDF) or a component method for a ColdFusion
Component (CFC). The terms "function" and "method" are used interchangeably.

Besides the named attributes listed in the "Attributes" section, you can pass any additional desired
attributes to the cffunction tag as user-defined attributes. Although these attributes don't do

anything, they are available as metadata when the component containing the method is introspected
using the GetMetaData() function. You may use any attribute names you wish with the exception of
those reserved by cffunction: name, displayname, hint, returntype, roles, access, output, and
arguments.

Attributes

name=" Name"

Name for the function. Function names follow the same naming rules as ColdFusion variables.
They must begin with a letter, underscore, or Unicode currency symbol ($) and can contain

only letters, numbers, underscores, and Unicode currency symbols. Compound variable names
such as My.Function are not allowed. Function names also may not begin with cf, cf_,
coldfusion, or coldfusion_. Additionally, you may not give a function the same name as a

built-in ColdFusion function. Required.
access="Private|Package|Public|Remote"

Used only when function is used as a component method. Specifies the context within which
the component method can be accessed. Options are:

Private

Method only available to the component that declares it.
Package

Method available to the component that declares it as well as any other component in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

same package.
Public

Method available to a locally executing page or other component on the server.
Remote

Method available to locally executing pages, to other components on the server, via URL
invocation, via form post invocation, via Flash Remoting, or as a web service. This
access type is required in order to publish the method as a web service. Optional.The
default is Public.

displayname=" display_name"

Used to display a descriptive name for the method in ColdFusion MX's Component Browser.
Optional.

hint=" text"

Used to display a hint describing what the method is for in ColdFusion MX's Component
Browser. Optional.

output="Yes|No"

If Yes, contents of the method body are processed as if surrounded by cfoutput tags. If No,
method body is processed as if surrounded by cfsilent tags. Optional. If output is omitted,

contents of the method body are processed as regular CFML. This attribute is generally used
only when the function is called as a component method.

returntype=" Return_Type"

The datatype for the data returned by the function/method. Options are Any, Array, Binary,
Boolean, Date, GUID, Numeric, Query, String, Struct, UUID, VariableName, Void (doesn't

return a value), and ComponentName (for a custom return type). Required when component

method is callable as a web service; optional otherwise.
roles=" Roles"

Used only when function is used as a component method. Comma-delimited list of roles defined
in the ColdFusion security framework that is authorized to invoke the component method.
Optional. If roles is not specified, the method is accessible by anyone.

cfgraph

New as of ColdFusion 5.0; deprecated in
ColdFusion MX; see cfchart

<cfgraph>
 [<cfgraphdata>]
 ...
</cfgraph>

Draws a bar, horizontal bar, line, or pie chart from query and/or static data. The cfgraph tag uses

Macromedia Generator and JRun, both installed when you install ColdFusion, to handle the graphing.
Because the cfgraph tag can graph only numeric data, you must convert any date, time, and
formatted numeric data to integers or real numbers. The cfgraph tag can render graphs in Flash,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PNG, and JPEG formats. Although you can adjust the size of the graph, the cfgraph tag currently

maintains a height/width aspect ratio of 3: 4. Changing one aspect without changing the other
accordingly can result in an excess border around your graph. It should be noted that the cfgraph

tag isn't supported when running ColdFusion on Windows 95/98. This tag has been replaced by
cfchart, cfchartseries, and cfchartdata in ColdFusion MX. It is still functional for backward

compatibility; however, it may not function exactly as it did in ColdFusion 5. It is recommended you
port your cfgraph/cfgraphdata code to cfchart.

Attributes

type="Bar|HorizontalBar|Line|Pie"

The type of graph to create. Required.
backgroundcolor=" color"

Background color for the graph. Colors may be specified by name or hex code in the form
bgcolor="##FFFFCC". The double pound signs are necessary to keep ColdFusion from throwing
an error. Optional. The default is White.

barspacing=" spacing_in_pixels"

Spacing in pixels between bars in a Bar or HorizontalBar chart. Optional. The default is 0 (no

spacing).
bordercolor=" color"

Color for the border if a border is present. Colors are specified using the same rules as the
backgroundcolor attribute. Optional. The default color is Black.

borderwidth=" width_in_pixels"

Thickness of the border in pixels. To specify no border, use 0; the default is 1. Optional.

colorlist=" color"

A comma-delimited list of colors to use for the data points in Bar, HorizontalBar, and Pie
charts. Color names follow the same rules as in the backgroundcolor attribute. If there are
more data points than colors specified in colorlist, the list is simply reused once all the
options have been exhausted. Optional. If no colorlist is specified, ColdFusion uses a default

list of colors.
depth=" depth_in_pixels"

Depth of the graph in pixels. Specifying a depth gives the graph a three-dimensional look.
Optional. The default is 0 (i.e., not three-dimensional).

fileformat="Flash|PNG|JPG"

The file type to use when displaying the graph. Optional. The default is Flash.
fill="Yes|No"

Whether or not to fill the area below the line in a Line graph with the same color used for the
line, effectively creating an area graph. Optional. The default is No.

graphheight=" height_in_pixels"

Height in pixels for the graph. Optional. The default is 240.

graphwidth=" width_in_pixels"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Width in pixels for the graph. Optional. The default is 320.

gridlines=" integer"

Number of grid lines to display between the top and bottom lines on a Bar, HorizontalBar, or
Line chart. When grid lines are displayed, a corresponding value is displayed alongside the line.
Optional. The default is 0.

itemcolumn=" query_column"

The name of a query column containing item labels that correspond to the data points from the
query column specified in valuecolumn. For Bar and Line charts, item labels are displayed on
the horizontal axis. For HorizontalBar charts, the labels appear on the vertical axis. Pie

charts display item labels in an optional legend. Optional.
itemlabelfont="Arial|Courier|Times"

The font to use for the item labels on Bar, HorizontalBar, and Line charts. Optional. The
default is Arial.

itemlabelorientation="Horizontal|Vertical"

Whether item labels should be displayed horizontally or vertically. Valid only if item labels are
displayed. Optional. For Bar and Line charts, the default is Vertical. For HorizontalBar
charts, the default is Horizontal.

itemlabelsize=" integer"

The font size to use for the item labels for Bar, HorizontalBar, and Pie charts. Optional. The
default is 12.

legendfont="Arial|Courier|Times"

The font to use for items displayed in the legend. Optional. The default is Arial.

linecolor=" color"

Color used to draw the line in a Line graph. Colors are specified using the same rules as the
backgroundcolor attribute. Optional. The default color is Blue.

linewidth=" width_in_pixels"

The width in pixels of the line in a Line graph. Optional. The default is 1.

query=" query_name"

The name of an available query containing the data you want to graph. Required if no
cfgraphdata tags are specified.

scalefrom=" integer"

The minimum value to place on the value axis of the graph (vertical axis for Bar and Line
charts, horizontal axis for HorizontalBar charts). Optional. The default is 0.

scaleto=" integer"

The maximum value to place on the value axis of the graph (vertical axis for Bar and Line
charts, horizontal axis for HorizontalBar charts). Optional. The default is the maximum value

in the set of data points.
showitemlabel="Yes|No"

Whether or not to display item labels on Bar, HorizontalBar, and Line charts. For Line and
Bar charts, the item labels are displayed along the horizontal axis. For HorizontalBar charts,
they are displayed along the vertical axis. Optional. The default is Yes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

showlegend="Above|Below|Left|Right|None"

The position of the legend associated with a Pie chart. Choices are Above (horizontal layout
centered above the chart), Below (horizontal layout centered below the chart), Left (vertical
layout to the left of the chart), Right (vertical layout to the right of the chart), and None.
Optional. The default is Left.

showvaluelabel="Yes|No|Rollover"

Whether or not to display the value associated with each data point for Bar, HorizontalBar,
and Pie charts. Rollover works only when fileformat is Flash and indicates that the value
be displayed when the user moves her mouse over the data point. Optional. The default it No.

title=" text"

The title to display for the graph. The title is displayed centered above the graph unless a
legend is present above the graph, in which case the title is displayed centered and below the
graph. Optional.

titlefont="Arial|Courier|Times"

The font to use for the graph title. Optional. The default is Arial.

URL=" URL"

A URL to link to when a data point on the chart is clicked. URL is valid only for Bar,
HorizonatalBar, and Pie charts, and only when fileformat is Flash. URL is typically used in
conjunction with the urlcolumn attribute, to pass a value associated with a data point to
another page for processing. For example, a typical value for URL might look like one of the

following:
URL="MyPage.cfm?MyVar="
URL="http://www.example.com/graph.cfm?MyVar="

The actual value assigned to the URL variable you create is populated by the urlcolumn attribute.

Optional.

urlcolumn=" query_column"

Query column containing a value to append to the URL specified in URL. The urlcolumn

attribute lets you build dynamic drill-down capabilities into your graphs by providing a way to
pass a value associated with a particular data point as a URL parameter to another template
for processing. Query columns whose values contain spaces and other special characters are
automatically URL-encoded before being appended to the URL string. urlcolumn is valid only
when fileformat is set to Flash. Optional.

valuecolumn=" query_column"

The name of the query column containing the data you want to graph. cfgraph can be used
only to graph numeric data. Required if no cfgraphdata tags are specified.

valuelabelfont="Arial|Courier|Times"

The font to use for the value labels for Bar, HorizontalBar, and Pie charts. Optional. The
default is Arial.

valuelabelsize=" integer"

The font size to use for the value labels for Bar, HorizontalBar, and Pie charts. Optional. The
default is 12.

valuelocation="OnBar|OverBar|Inside|Outside"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Indicates where values should be placed on a Bar, HorizontalBar, and Pie chart. For a Bar or
HorizontalBar chart, options are OnBar (the default), indicating that values should be
displayed on the bar itself, or OverBar, indicating that values should be displayed over the bar.
For Pie charts, options are Inside (the default), indicating that values display inside each
segment of the pie chart, or Outside, indicating that they display outside the slice of the pie.

Optional.

cfgraphdata

New as of ColdFusion 5.0; deprecated in
ColdFusion MX; see cfchart, cfchartseries,

and cfchartdata
<cfgraph>
 [<cfgraphdata>]
 ...
</cfgraph>

Used as a child tag of cfgraph to define a single data point to graph. cfgraphdata tags may be used
alone within a cfgraph tag block or in combination with data from a query. This tag has been
replaced by cfchart, cfchartseries, and cfchartdata in ColdFusion MX. It is still functional for

backward compatibility; however, it may not function exactly as it did in ColdFusion 5. It is
recommended you port your cfgraph/cfgraphdata code to cfchart.

Attributes

value=" data_point_value"

The data point value to be graphed. Required.
color=" color"

Color associated with the data point. Colors may be specified by name or hex code in the form
color="##FFFFCC". The double pound signs keep ColdFusion from throwing an error. Optional.
By default, the cfgraphdata tag takes the color for the data point from the colorlist
attribute specified in the cfgraph tag. If no colorlist is present, cfgraphdata uses a color

from ColdFusion's default list of colors.
item=" data_point_label"

Label for the data point to be graphed. Optional.
URL=" URL"

A URL (including any relevant URL parameters) to link to when a data point on the chart is
clicked. URL is valid only for Bar, HorizonatalBar, and Pie charts, and only when the
fileformat attribute of the cfgraph tag is Flash. Optional.

cfgrid

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Updated in ColdFusion MX
<cfform>
 <cfgrid>
 [<cfgridcolumn>]
 [<cfgridrow>]
 ...
 </cfgrid>
 ...
</cfform>

Provides a Java-based grid control for displaying and editing tabular data. Used within a cfform

block.

Attributes

name=" name"

The form-field name for the grid control. Required.
align=" alignment"

Alignment for the grid control. Valid entries are Left, Right, Top, TextTop, Bottom,
AbsBottom, Baseline, Middle, and AbsMiddle. Optional.

appendkey="Yes|No"

Whether or not to pass the cfgridkey variable along with the value of the selected grid item in
the URL to the template specified in the cfform tag. Optional. The default is Yes.

autowidth="Yes|No"

Whether or not the grid should adjust the width of each column automatically so that all
columns appear within the grid without having to scroll horizontally. Optional. The default is No.

New as of ColdFusion 5.0.
bgcolor=" color"

Background color for the grid control. For color choices, see the textcolor attribute. Optional.
The default is White.

bold="Yes|No"

If Yes, displays all grid data in bold. Optional. The default is No.
colheaders="Yes|No"

Whether or not to display column headers on the grid. Optional. The default is Yes.

colheaderalign=" alignment"

Alignment for the column headers. Valid entries are Left, Right, and Center. Optional. The
default is Left.

colheaderbold="Yes|No"

Whether or not to display the column header text in bold. Optional. The default is No.

colheaderfont=" font_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The font to use for the column headers. Optional.
colheaderfontsize=" integer"

The font size to use for the column headers. Optional.
colheaderitalic="Yes|No"

Whether or not to display the column header text in italic. Optional. The default is No.

colheadertextcolor=" color"

The text color for column headers in the grid. For color choices, see the textcolor attribute.
Optional. The default is Black. New as of ColdFusion 5.0.

colheaderwidth=" width_in_pixels"

The width in pixels of the column header. Optional.
delete="Yes|No"

Whether or not to allow users to delete data from the grid. Optional. The default is No.

deletebutton=" text"

The text to use on the delete button. Optional. The default is Delete.

font=" font_name"

The font name used for all data in the grid. Optional.
fontsize=" integer"

The font size for all data in the grid. Optional.
griddataalign=" alignment"

Alignment for the grid data. Valid entries are Left, Right, and Center. Optional. The default is
Left.

gridlines="Yes|No"

Whether or not to add row and column lines to the grid. Optional. The default is Yes.

height=" height_in_pixels"

Height in pixels for the grid's display area. Optional.
highlighthref="Yes|No"

Whether or not to highlight links associated with the grid control and defined within the href
attribute. Optional. The default is Yes.

href=" URL"

A URL to associate with the grid item or the name of a query column containing href values.

The URL may be relative or absolute. Optional.
hrefkey=" column_name"

The name of a query column to use as the Key when a query is used to populate the grid.

Optional.
hspace=" horizontal_spacing_in_pixels"

Width in pixels for the padding to the left and right of the grid. Optional.
insert="Yes|No"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Whether or not to allow users to insert new data into the grid. Optional. The default is No.

insertbutton=" text"

The text to use on the insert button. Optional. The default is Insert.
italic="Yes|No"

If Yes, displays all grid data in italic. Optional. The default is No.

onerror=" function_name"

The name of a JavaScript function that should be executed if validation fails for any reason.
Optional.

onvalidate=" javascript_function"

A JavaScript validation function that should be executed before the form is submitted. Optional.
maxrows=" integer"

Maximum number of rows to display in the grid. Optional.
notsupported=" text_message"

A text message to display if the user's browser doesn't support Java or Java is disabled.
Optional. If no message is specified, ColdFusion displays a default message.

picturebar="Yes|No"

Yes displays images for the Insert, Delete, and Sort buttons, while No displays text buttons.
Optional. The default is No.

query=" query_name"

The name of a query to associate with the grid control. Optional.
rowheaderbold="Yes|No"

Whether or not to display the row header text in bold. Optional. The default is No.

rowheaderalign=" alignment"

Alignment for the row headers. Valid entries are Left, Right, and Center. Optional. The
default is Left.

rowheaderfont=" font_name"

The font to use for the row headers. Optional.
rowheaderfontsize=" integer"

The font size to use for the row headers. Optional.
rowheaderitalic="Yes|No"

Whether or not to display the row header text in italic. Optional. The default is No.

rowheadertextcolor=" color"

The text color for row headers in the grid. For color choices, see the textcolor attribute.
Optional. The default is Black. New as of ColdFusion Version 5.0.

rowheaders="Yes|No"

Whether or not to display row headers on the grid. Optional. The default is Yes.

rowheaderwidth=" width_in_pixels"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The width in pixels of the row header. Optional. This attribute is ignored in ColdFusion MX.
rowheight=" height_in_pixels"

The number of pixels for the minimum row height of the grid control. Optional.
selectcolor=" color"

The background color for an item that has been selected. For color choices, see the bgcolor

attribute. Optional.
selectmode=" mode"

The selection mode to use for items in the grid. Optional. The default value is Browse, which
allows browsing of data only. Edit allows editing of data, Single confines selections to a single
cell, Column causes a selection to automatically include the entire column, and Row causes a

selection to automatically include the entire row.
sort="Yes|No"

Whether or not to allow users to sort data in the grid using a simple text sort. Optional. The
default is No.

sortascendingbutton=" text"

The text to use on the ascending sort button. Optional. The default is "A Z".
sortdescendingbutton=" text"

The text to use on the descending sort button. Optional. The default is "Z A".
target=" URL_target"

The name of a frame or window that the template specified in the href attribute should be

opened in. Optional.
textcolor="color|expression"

The text color for all data in the grid. Colors may be specified by name (Black, Blue, Cyan,
Darkgray, Gray, Lightgray, Magenta, Orange, Pink, Red, White, Yellow) or hex code in the
form textcolor="##FFFFCC". The double pound signs are necessary to keep ColdFusion from

throwing a syntax error, or you may omit the pound signs altogether. By using the appropriate
hex code, you may specify colors that can't be specified by name. Optional. The default is
Black. New as of ColdFusion 5.0.

vspace=" vertical_spacing_in_pixels"

Height in pixels for the padding above and below the grid control. Optional.
width=" width_in_pixels"

Width in pixels for the grid's display area. Optional.

Returned Variables

Depending on the value of selectmode, the cfgrid tag returns several variables on submission. For
Browse, no variables are returned. When selectmode is Edit, three one-dimensional arrays are

returned containing information about the changes to the data:

form. gridname. columnname[RowIndex]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The new value of an edited grid cell
form. gridname. original. columnname[RowIndex]

The original value of the edited grid cell
form. gridname. RowStatus. Action[RowIndex]

The type of edit made to the grid cell: I for insert, U for update, and D for delete

When selectmode is Single, there is one variable:

form. gridname. selectedname

The value of the selected cell from the grid

When selectmode is Column, grid data is returned as a comma-delimited list of values for the

selected column.

When selectmode is Row, there is one variable:

form. gridname. columnname

The column data for the selected row

cfgridcolumn

Updated in ColdFusion MX
<cfgrid>
 [<cfgridcolumn>]
 [<cfgridrow>]
 ...
</cfgrid>

Specifies individual column data and formatting information within a cfgrid. Values specified for a
cfgridcolumn override any attributes set in the cfgrid tag.

Attributes

name=" column_name"

A name for the grid column. If the grid column is populated by a query, name must be the

name of an available query column. Required.
bgcolor=" color| expression"

A background color for all the cells in the column or an expression that returns a color based on
its evaluation. For color choices, see the textcolor attribute. bgcolor also supports the
expression syntax listed for textcolor. Optional. The default is White. New as of ColdFusion

5.0.
bold="Yes|No"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Whether or not to display the column data in bold. Optional. The default is No.

dataalign=" alignment"

Alignment for the column data. Valid entries are Left, Right, and Center. Optional. The
default is Left.

display="Yes|No"

Whether or not to display the column in the grid. Optional. The default is Yes.

font=" font_name"

The font name for the data in the column. Optional.
fontsize=" integer"

The font size for the data in the column. Optional.
header=" header"

The text to use for the column's header. Optional. If no value for header is specified,
ColdFusion uses the same value as name.

headeralign=" alignment"

Alignment for the column headers. Valid entries are Left, Right, and Center. Optional. The
default is Left.

headerbold="Yes|No"

Whether or not to display the column header text in bold. Optional. The default is No.

headerfont=" font_name"

The font to use for the column headers. Optional.
headerfontsize=" integer"

The font size to use for the column headers. Optional.
headeritalic="Yes|No"

Whether or not to display the column header text in italic. Optional. The default is No.
headertextcolor="color"

Specifies the text color for the column header. For color choices, see the textcolor attribute.
The default is Black.

href=" URL"

A URL to associate with the grid item. The URL may be relative or absolute. Optional.
hrefkey=" column_name"

The name of a query column to use as the Key when a query is used to populate the grid.

Optional.
italic="Yes|No"

Whether or not to display the column data in italic. Optional. The default is No.

numberformat=" format"

A mask to use for formatting numeric column data. For valid options, see the NumberFormat(
) function in the Appendix B. Optional.

select="Yes|No"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Whether or not to allow users to select column data to be edited. select is ignored when the
selectmode attribute of the cfgrid tag is set to Row or Browse. Optional. The default is Yes.
New in ColdFusion MX, if select is No, the cell cannot be edited, regardless of the value
specified for cfgrid selectmode.

target=" URL_target"

The name of a frame or window that the template specified in the href attribute should be

opened in. Optional.
textcolor=" color| expression"

The text color for all data in the grid. Colors may be specified by name (Black, Blue, Cyan,
Darkgray, Gray, Lightgray, Magenta, Orange, Pink, Red, White, Yellow) or hex code in the
form textcolor="##FFFFCC". The double pound signs are necessary to keep ColdFusion from

throwing a syntax error, or you may omit the pound signs altogether. By using the appropriate
hex code, you may specify colors that can't be specified by name. Optional. The default is
Black. New as of ColdFusion 5.0.

You can dynamically specify the text color for a cell based on its value or that of another
column in the same row using a special expression as the value of textcolor. The expression

uses the following format:
(CX|Cn gt|lt|eq string ? color_true : color_false)

CX represents the current column, while Cn specifies a specific column where n is the index position of
the column (only displayed columns are available). The operator can be gt, lt, or eq for both string
and numeric comparisons. The ? separates the expression from the values you wish to return.

color_true is the color to return in the event the expression evaluates true, while color_false is
the color to return if the expression evaluates false. Colors are specified using a color name or hex

code (without the pound signs). The two return values are separated with a colon. Note that
whitespace is ignored within the expression except for within string.

For example, to specify that text in a certain column of data be blue if the value of the data is greater
than 21 and black if it isn't, you can use the following code:

textcolor="(CX gt 21 ? blue : black)"

Likewise, if the first column of data in your grid contains department names, and you want to
highlight the names of employees (in gray) in another column who are part of the marketing
department, you can code it like this:

textcolor="(C1 eq Marketing ? C0C0C0 : 000000)"

type=" type"

The type of column data to display. Valid entries are Image, Numeric, String_ NoCase, and
Boolean. Optional.

Image

Specifies an image corresponding to the column value to display. You may specify a path to
your own image or use one of the images supplied with ColdFusion by referencing the image
name. Valid options are CD, Computer, Document, Element, Folder, Floppy, Fixed, and
Remote. If the image is larger than the cell it is being displayed in, the image is automatically

cropped to fit within the cell.
Numeric

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Allows data in the grid to be sorted by the user as numeric data rather than as text.
String_NoCase

Allows data in the grid to be sorted by the user as case-insensitive text rather than the case-
sensitive default.

Boolean

Places a checkbox in the grid column. Useful in situations where you want to represent Boolean
data in a grid column. If the grid column containing the checkbox is editable, the checkbox may
be checked and unchecked; otherwise it is read-only. New as of ColdFusion 5.0.

values=" list| range|Off"

Creates a drop-down box of values for each cell in the grid column. You may specify a delimited
list of values, a range of numeric values, or Off. For a delimited list of values, the default

delimiter is the comma. To specify a range of numeric values, use the format n-m where n is

the minimum value in the range, and m is the maximum value. Optional. The default is Off.

New as of ColdFusion 5.0.
valuesdelimiter=" delimiter"

An optional delimiter that separates items in the values and valuesdisplay attributes.
Optional. The default is the comma (,). New as of ColdFusion 5.0.

valuesdisplay=" list| range|Off"

Used in conjunction with the values attribute. valuesdisplay allows you to provide a
delimited list or range of values to display in lieu of the values in the values attribute. This
works like the HTML select control in that it allows you to display one set of values in the

drop-down box while associating them with different values behind the scenes. Optional. The
default is Off. New as of ColdFusion 5.0.

width=" width_in_pixels"

The width of the column in pixels. Optional. The default column width is determined by the
longest column value.

cfgridrow

<cfgrid>
 [<cfgridcolumn>]
 [<cfgridrow>]
 ...
</cfgrid>

Populates a cfgrid row with data when a query is not used to populate the grid.

Attribute

data=" col1, col2, ... coln"

A comma-delimited list of column values. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfgridupdate

Updated in ColdFusion MX
<cfgridupdate>

Updates records in a database using values passed from a cfgrid control.

Attributes

grid=" grid_name"

Name of the grid control containing the data to be updated. Required.
datasource=" data_source_name"

The name of the data source to connect to when performing the update. Required.
connectstring=" connection_string"

Passes additional connection information to an ODBC data source that can't be passed via the
ColdFusion Administrator. connectstring can also override connection information set for a

data source already registered in the ColdFusion Administrator. When making a dynamic data
source connection (when dbtype is Dynamic), connectstring specifies all the information

required to connect to the data source. For specific connection-string options, you should
consult the documentation for your particular database. New as of ColdFusion 5.0. This
attribute is no longer supported in ColdFusion MX.

dbname=" database_name"

The database name. For the Sybase System 11 native driver and SQLOLEDB provider only.
Optional. Overrides any value set for datasource. This attribute is no longer supported in

ColdFusion MX.
dbserver=" database_server"

The name of the database server to connect to when using native drivers. Specifying a
dbserver overrides any value set for datasource. Optional. This attribute is no longer

supported in ColdFusion MX.
dbtype=" database_type"

The type of database driver to use. Optional. This attribute is no longer supported in ColdFusion
MX. Possible choices are:

ODBC (the default)

Connect to the data source using an ODBC driver.
OLEDB

Make the connection using an OLEDB driver.
Oracle73

Connect using the Oracle 7.3 native driver. This requires the 7.3.4.0.0 or later client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

libraries be installed on the ColdFusion server.
Oracle80

Connect using the Oracle 8 native driver. This requires the 8.0 or later client libraries be
installed on the ColdFusion server.

Sybase11

Connect using the Sybase 11 native driver. This requires the 11.1.1 or later client
libraries be installed on the ColdFusion server.

DB2

Connect using the DB2 5.2 native driver.
Informix73

Connect using the Informix 7.3 native driver. This requires the Informix SDK 2.5 or later
or Informix-Connect 2.5 (or later) for Windows.

Dynamic

Allows ColdFusion to make an ODBC connection to a data source without having to have
the data source registered in the ColdFusion Administrator. When making a dynamic
connection, all information normally provided in the ColdFusion Administrator for the
connection must be specified in the connectstring attribute. New as of ColdFusion 5.0.

keyonly=Yes|No"

If Yes, the WHERE clause of the SQL update contains only the key values. If No, the WHERE

clause contains the original values of any changed grid cells as well as the key values. Optional.
The default is Yes.

password=" password"

Password associated with username. Optional. If a password is specified, it overrides the value

set in the ColdFusion Administrator.
provider=" COM_provider"

COM provider for OLE DB connections. Optional. This attribute is no longer supported in
ColdFusion MX.

providerdsn=" data_source"

COM provider's data-source name for OLE DB. Optional. This attribute is no longer supported in
ColdFusion MX.

tablename=" table_name"

The name of the table to insert the data into. Required. Note that Oracle database drivers
require the table name to be in all uppercase. In addition, Sybase database drivers use a case-
sensitive table name.

tableowner=" table_owner"

The name of the table owner for databases that support this feature (e.g., Oracle, SQL Server,
and SQL Anywhere). Optional.

tablequalifier=" qualifier"

The table qualifier for databases that support the feature (e.g., Oracle and SQL Server).
Optional.

username=" username"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Username to pass to the data source if one is required. Optional. If a username is specified, it
overrides the value set in the ColdFusion Administrator.

cfheader

Updated in ColdFusion MX 6.1
<cfheader>

Generates a custom HTTP header that contains either a custom name/value pair or an HTTP status
code and optional text message. Only one name/value pair or status code can be specified per
cfheader tag. Name/value attributes can't be mixed with status code attributes within the same
cfheader tag. Multiple cfheader tags can be used to set multiple header values as long as they are
declared separately. Note that cfheader can't be used on the same page as the cfflush tag.

Attributes

name=" header_name"

The name of the header element. Required when using the cfheader tag to pass a name/value
pair. If name="Content-Disposition", the header's value is encoded using the default file

encoding. This allows the name of the file to contain characters encoded using the same
character encoding as the file.

statuscode=" status_code"

The HTTP status code to pass in the HTTP header. Required when using the cfheader tag to

pass status code information.
statustext=" status_text"

A text message to accompany an HTTP status code. The statustext attribute can be used only
in conjunction with the statuscode attribute. Optional.

value=" header_value"

The value of the header element. Required when using the cfheader tag to pass a name/value

pair.

cfhtmlhead

<cfhtmlhead>

Writes output within the head section of a dynamically generated HTML page. cfhtmlhead is useful
for dynamically including JavaScript and other code within the head tags at runtime.

Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text=" text"

The text to add inside of the HTML <head>...</head> tags. Required.

cfhttp

Updated in ColdFusion MX and MX 6.1
<cfhttp>
 [<cfhttpparam>]
 ...
</cfhttp>

Makes an HTTP or HTTPS request and manages any resulting server response.

Attributes

method=" http_method"

Specifies the method for the HTTP operation. Required. The default is Get. Options are:

Delete

Requests that the target server delete the resource specified in the URL attribute. This

option is new in ColdFusion MX 6.1.
Get

Retrieves the information from the target server specified in the URL attribute.

Head

Head is identical to Get except that no message body is sent in the response from the

server. This method is often used to test the validity of hyperlinks. This option is new in
ColdFusion MX 6.1.

Options

Sends a request for information about the communication options available to the server
specified in URL without requiring additional action from the server. This option is new in

ColdFusion MX 6.1.
Post

Sends information to the target server identified in the URL attribute. Information to be
sent is set using one or more cfhttpparam tags.

Put

Sends information to the target server identified in the URL attribute for storage. The Put
method is most often used to send files to the server. Put differs from Post in that put
specifies a location where data should be stored whereas Post specifies a resource that

should handle posted data. This option is new in ColdFusion MX 6.1.
Trace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Useful for testing HTTP operations, Trace instructs the server specified in the URL

attribute to loop-back (echo) the original request header back to the server that made
the request. Trace requests may not contain a message body. This option is new in

ColdFusion MX 6.1.
URL=" URL"

The full URL of the remote web page to Get or Post to. If you are trying to resolve a URL that
doesn't end in a filename (such as http://www.myserver.com), and you set the resolveurl
attribute to Yes, you need to supply a trailing forward slash (http://www.myserver.com/) for

this attribute in order for certain URLs (such as those in IMG tags) to resolve properly.
Additionally, a port number may be appended to the URL. (http://www.myserver.com:8080/).
If a port number is appended to the URL, it overrides any value set with the port attribute.

Required.
charset=" character_set"

A Java character set for the file or URL the cfhttp tag is getting or posting. The most common
character sets are UTF-8 , UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may
use any character set supported by your JRE. Optional. The default is UTF-8. This attribute is

new in ColdFusion MX.
columns=" query_columns"

A comma-delimited list of column names if they are different from the column names listed in
the first row of data from the retrieved file.

delimiter=" delimiter"

The delimiter to use when using cfhttp to create a query. Valid entries are a comma (,) or a

tab. Required if creating a query. The default delimiter is a comma.
file=" filename"

The filename to use when saving the retrieved file. Required when method="Post" if path is
specified. Defaults to the filename in the URL when method="Get".

firstrowasheaders="Yes|No"

Specifies how ColdFusion should treat the first row of data when method is set to Get and
cfhttp is used to retrieve a text file containing delimited data. If set to Yes, and columns is
not specified, the first row of data is treated as column headers. If set to Yes, and columns is
specified, this attribute is ignored. If No, and columns is not specified, the first row of the text

file is treated as data, and column names are automatically generated using the convention
column_1, column_2, ..., column_n.[C] If No, and columns is specified, ColdFusion uses the
values specified in columns as the column headers and treats the first row in the text file as
data. Optional. The default is Yes.

[C] Due to a bug in the initial release of ColdFusion MX, specifying firstrowasheaders="No" and

omitting the columns attribute causes ColdFusion to treat the first row of data in the text file as column

headers (just as if the attribute was set to Yes). This issue has been fixed in ColdFusion MX 6.1.

getasbinary="Yes|No|Auto"

Indicates whether to convert the response body returned by a cfhttp operation to the
ColdFusion binary data type. If Yes, ColdFusion converts the response body to the binary data
type. If No, a response body not recognized by ColdFusion as text is automatically converted to
a ColdFusion object. If Auto, a response body not recognized as text is automatically converted

to the binary data type. ColdFusion recognizes any response body as text that meets one or

http://www.myserver.com
http://www.myserver.com/
http://www.myserver.com:8080/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

more of the following criteria: the header doesn't specify a content type, the content type
starts with "text" or "message", or the content type is set as "application/octet-stream".
Optional. The default is No.

multipart="Yes|No"

If Yes, ColdFusion sends all form field data (set using the cfhttpparam tag) as non-URL-
encoded multipart form data (Content-Type=multipart/form-data). Additionally, the

request's charset is sent along in each Content-Type description, and each form field must be
encoded using the same charset. If No, form field data is sent as Content-
Type=application/x-www-form-urlencoded unless file type data is also included, in which
case all parts are sent using Content-Type=multipart/form-data. Optional. The default is No.

name=" query_name"

Name of the query to be returned if one is created from a retrieved file. Optional.
password=" password"

A password when one is required by the remote server. Optional.
path=" path"

The path to a directory where the retrieved file should be saved. Optional.
port=" port_number"

Port number on the remote server where the file being retrieved resides. If used in conjunction
with the resolveurl attribute, the port number is automatically appended to all resolved URLs.
The port attribute is ignored if a port is specified in the URL attribute. Optional. The default is
80.

proxypassword=" password"

A password, if any, required by the proxy server. Optional. This attribute is new in ColdFusion
MX 6.1.

proxyport=" port_number"

A port number on the proxy server. Optional. The default is 80.
proxyserver="proxy_server"

The hostname or IP address of a proxy server that cfhttp must pass through. Optional.

proxyuser=" username"

A username, if any, required by the proxy server. Optional. This attribute is new in ColdFusion
MX 6.1.

redirect="Yes|No"

Whether or not to allow a cfhttp request to be automatically redirected. If set to No, the
cfhttp request fails upon encountering a redirect. If the throwonerror attribute is set to Yes,
an error code and message are written to the cfhttp.Status_Code return variable. You can
see where a request would have been redirected by referencing the location key in the
cfhttp.ResponseHeader structure. The cfhttp tag can follow up to four (five in versions of

ColdFusion prior to MX) redirections per request. If the limit is exceeded, ColdFusion treats the
next redirect as if the redirect attribute is set to No. Optional. The default is Yes.

resolveurl="Yes|No"

Yes causes any partial or relative URLs embedded in the retrieved document to be fully
resolved, so that all links in the document remain valid. Optional. The default is No.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

textqualifier=" character"

The character used to mark the beginning and end of a column. Optional. The default is the
double quotation mark (escaped equivalent is textqualifier="""").

throwonerror="Yes|No"

Whether or not to throw an exception that can be caught using a cftry/cfcatch block if an
error occurs. Optional. The default is No.

timeout=" seconds"

A timeout in seconds for the cfhttp operation. If a timeout parameter is set using the
cfsetting tag in conjunction with the template employing the cfhttp tag, and the timeout
attribute of the cfhttp tag is used, ColdFusion uses the lesser of the two values. If, however,
no cfsetting timeout value is used, the timeout attribute isn't used, and no default timeout
value is set in the ColdFusion Administrator, ColdFusion will wait indefinitely for the cfhttp tag
to process. This can have serious performance consequences, as each instance of the cfhttp

tag being processed requires a thread of its own. Depending on your server and ColdFusion
configuration, the potential to hang the server exists if the cfhttp tag utilizes all available
threads on the system. Optional. In ColdFusion MX, the timeout attribute is not functional with

versions of the SUN JDK prior to version 1.4.0.
useragent=" user_agent"

The user agent to pass in the HTTP request header when cfhttp makes a request to a remote

web server. The default user agent is determined by the underlying JRE. For example, the Sun
JDK 1.3.1_03, reports "Java1.3.1_03" as the user agent. In versions of ColdFusion prior to MX,
the default user agent is "ColdFusion." Optional.

username=" username"

A username when one is required by the remote server. Optional.

Returned Variables

All cfhttp operations return a structure called cfhttp that contains information returned by the
target server. Depending on the HTTP operation performed (as defined by the method attribute) as
well as the response returned by the target server, the cfhttp structure may or may not contain

values for the following keys:

cfhttp.charset

Character encoding specified by the response Content-Type header.
cfhttp.errorDetail

In the event of a connection failure, contains details related to the failure. If no failure occurs,
this key contains an empty string.

cfhttp.FileContent

Contains the response body resulting from an HTTP operation. If the response is saved as a
file, cfhttp.fileContent is blank.

cfhttp.header

A string that contains the complete HTTP header in raw form. Contains the same information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as cfhttp.responseHeader.

cfhttp.mimeType

MIME type of the response as specified by the Content-Type header.
cfhttp.responseHeader

A ColdFusion structure that contains the names and values from the HTTP response header. If
a particular key appears only once in the header, it is stored as a simple value within the
structure. If a key appears more than once, it is stored as an array within the structure. In
ColdFusion MX 6.0, keys that appeared more than once in the response header were stored as
a structure within the cfhttp.responseHeader structure. This is important to note for

backward compatibility.
cfhttp.statusCode

Returns the HTTP status code and associated message relating to the status of the HTTP
operation.

cfhttp.text

Boolean indicating whether the response body Content-Type is text. For a list of the rules used
to determine whether the response body is text, see the getasbinary attribute.

If the throwonerror attribute is set to Yes, ColdFusion returns a variable that contains status
information about the cfhttp operation:

cfhttp.Status_Code

Returns the HTTP status code and associated message relating to the status of the cfhttp

operation.

cfhttpparam

Updated in ColdFusion MX and MX 6.1
<cfhttp>
 [<cfhttpparam>]
 ...
</cfhttp>

Used as a child tag of the cfhttp tag to send data with an HTTP request. Multiple cfhttpparam tags
may be used to send multiple values in most cases. At least one cfhttpparam tag is required when
method is Post. The cfhttpparam tag is optional for all other HTTP operations.

Attributes

name=" name"

The name of the parameter to pass. Required when type is CGI, Cookie, Formfield, Header,
and URL. Ignored when type is Body or XML. When type is File, name specifies the filename to

be sent in the request.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type=" type"

The parameter type to pass. Options are:

Body

Body of an HTTP request. Only one cfhttpparam tag with type="Body" can be used per
cfhttp request. Additionally, no other cfhttpparam tags with a type of File,
Formfield, or XML may be used in the same request when type="Body". Body cannot be
used when the method attribute of cfhttp is set to Trace. This option is new in

ColdFusion MX 6.1.
CGI

Sends a variable as a URL encoded HTTP header.
Cookie

Cookie data to send as an HTTP header. The value is automatically URL encoded.
File

Sends the contents of the specified file without URL encoding. File may only be used
when the cfhttp method attribute is set to Post or Put.

Formfield

Form field to send. By default, ColdFusion URL encodes the form field value. Formfield
is only used when the method attribute of cfhttp is set to Get or Post.

Header

Sends a non-URL-encoded HTTP header. This option is new in ColdFusion MX 6.1.
URL

Appends a URL parameter to the query string on the URL specified in the URL attribute of
the cfhttp tag. The query string is URL encoded.

XML

Sets a Content-Type header of "text/xml" for the request. Automatically sets the body of
the request to the XML specified in the value attribute. The XML data is not URL
encoded. Only one cfhttpparam tag with type="XML" can be used per cfhttp request.
Additionally, no other cfhttpparam tags with a type of Body, File, or Formfield may
be used in the same request when type="XML". XML cannot be used when the method
attribute of cfhttp is set to Trace. This option is new in ColdFusion MX.

file=" filename"

The name (including path) of the file to post. Required when type is File.

value=" value"

The value being sent. Required for all value of type except File. Passed values must be strings
or convertible to strings by ColdFusion for all types except Body. Body type data may be either

string or binary data.
encoded="Yes|No"

Indicates whether to URL encode form field and/or header data. Optional when
type="Formfield" or type="File", ignored otherwise. The default is Yes.

mimetype=" MIME_type[and_charset]"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies only when type="File". The MIME type, and optionally, character set for the file.
charset lets you specify a character set to use for the encoding. The most common character
sets are UTF-8, UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may use any

character set supported by your JRE. If you want to specify a MIME type and a character set,
delimit them with a space or a semicolon: (e.g., type="text/html; charset=utf-8").
Optional when type="File", ignored otherwise.

cfif

<cfif expression>

 HTML and CFML

[<cfelseif expression>]

 HTML and CFML
[<cfelse>]

 HTML and CFML
</cfif>

Performs if-then-else processing of expressions. cfif/cfelseif/cfelse statements can be nested,
and multiple cfelseif statements may be used within a single cfif block. cfif statements can

contain more than one expression to evaluate, as in:

<cfif IsDefined('MyVar') and MyVar is "a">

Compound cfif statements that contain multiple expressions separated by operators, such as and
and or, are processed using short-circuit Boolean evaluation. This means that ColdFusion stops
processing the cfif statement once an expression evaluates to true. Consider using cfswitch when
you have many cases, as it is generally faster than cfif.

cfimpersonate

No longer supported in ColdFusion MX

<cfimpersonate> ... </cfimpersonate>

Allows you to impersonate a user within a security context previously set up within the ColdFusion
Administrator.

Attributes

securitycontext=" security_context"

The name of the security context to authenticate the user within. Required. Security contexts
are defined in the ColdFusion Administrator.

username=" username"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the user you want to impersonate for authentication. Required.
password=" password"

The password of the user you want to impersonate. Required.
type="CF|OS"

The type of impersonation to use. CF specifies impersonation at the application level; OS

specifies impersonation at the operating system, where the user specified is a valid user on the
system. OS is available only with the Windows NT version of ColdFusion. The operating system
user being impersonated must be assigned the user right to "Logon as a Batch Job". While OS
impersonation processes faster than CF impersonation, it is limited in the types of resources

the operating system can grant or deny access to. Required.

cfimport

New in ColdFusion MX
<cfimport>

Imports custom tags, adaptive custom tags, and JSP tag libraries for use in a template.

Attributes

taglib=" taglib_location"

For JSP tag libraries, the URL to the JAR file containing the tags or to the tag library descriptor
file (.tld) if it is not already included in the JAR file. For custom and adaptive custom tags, the
path to the directory containing the tags. Required.

prefix=" namespace"

Prefix to use for referring to imported tags. You refer to an imported tag using the syntax
<prefix:tagname>. If a blank prefix ("") is specified or the prefix attribute is omitted

altogether, the tag is referred to using only its name <tagname>. This allows you to perform

server-side preprocessing, creating what are known as adaptive tags that replace existing
HTML tags with custom functionality. Optional.

cfinclude

<cfinclude>

Embeds a reference to another template within the current ColdFusion template.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

template=" template_name"

Path to the template to be included. The path must be relative to the current directory or
mapped in the ColdFusion Administrator. Required.

cfindex

Updated in ColdFusion MX
<cfindex>

Creates an index to use with ColdFusion's embedded Verity search engine.

Attributes

action=" action"

Specifies the action for the cfindex tag to take. Optional. The default value is Update, which
updates the index of the specified collection and adds the key if it doesn't already exist. Delete

deletes the key from the specified collection, Purge purges the specified collection of data and
leaves it ready to be repopulated with new data, and Refresh clears the specified collection of
all data and then repopulates it with new data. Optimize optimizes the specified collection.
Optimize is no longer supported by cfindex in ColdFusion MX. Use the cfcollection tag

instead to optimize a collection.
body=" body"

The actual text to index or a comma-delimited list of query column names containing text to
index. Required when type is Custom; Ignored otherwise.

collection=" collection_name"

The name of the Verity collection to perform the action on. If the collection being indexed is
external, you must specify the full path to the collection. In ColdFusion MX, collection names
can now contain spaces. Required.

custom1=" custom_value"

Custom field that can store additional data for the collection. Optional.
custom2=" custom_value"

Custom field that can store additional data for the collection. Optional.
extensions=" file_extensions"

A comma-delimited list of file extensions to use when type is set to Path. The default is "HTM,
HTML, CFM, CFML, DBM, DBML". An asterisk (*) may be used as a wildcard such that
extensions="*." returns all files with no extensions. Optional.

external="Yes|No"

Whether or not the Verity collection specified in collection was created with a version of
Verity other than the one bundled with ColdFusion. Optional. The default is No. This option is no

longer used in ColdFusion MX as ColdFusion is now capable of automatically detecting whether

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a collection is internal or external.
key=" ID"

A unique identifier for each record in the index. Optional. An entry for key should specify one of
the following: the document filename when type is File, the full path when type is Path, or a
unique identifier such as the table's primary key column when type is Custom.

language=" language"

The language to be used when indexing the collection. To specify a language other than U.S.
English (the default), you must download and install the appropriate Verity Language Pack for
ColdFusion MX, available at http://www.macromedia.com/go/verity/. Optional.

query=" query_name"

The name of the query object containing the data being indexed. Optional.
recurse="Yes|No"

Whether or not the directories below the path specified in key should be included in the
indexing process. Optional when type is Path; ignored otherwise.

title=" title"

The column name containing the title for each individual record being indexed. Required when
type is Custom.

type=" type"

The type of index to create. Optional. Custom indexes the contents of a ColdFusion query, File
indexes a specific file, and Path indexes all files in the specified path with extensions specified
in extensions.

urlpath=" URL"

The base URL path to be used when type is File or Directory. The value specified in urlpath
is automatically prepended to the URL variable returned by a cfsearch operation. Optional.

cfinput

Enhanced in ColdFusion 5.0; updated in
ColdFusion MX and MX 6.1

<cfform>
 <cfinput>
 ...
</cfform>

Creates text and password input controls, as well as checkboxes and radio buttons, within a cfform.

New in ColdFusion MX, if the preservedata attribute of the cfform tag is set to Yes, radio button

and checkbox types are checked provided the value of the control matches the value of the posted
data.

Attributes

http://www.macromedia.com/go/verity/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

name=" name"

The form-field name for the input control. Required.
checked="Yes|No"

Whether or not a checkbox or radio button input control should be checked. Optional. The
default is No.

maxlength=" integer"

The maximum number of characters to accept for a Password or Text input control. Optional.

message=" validation_message"

Text to appear if validation fails. Optional.
onerror=" function_name"

The name of a JavaScript function that should be executed if validation fails for any reason.
Optional.

onvalidate=" javascript_function"

A JavaScript validation function that should be executed before the form is submitted.
Specifying a value for onvalidate overrides any values set in the validate attribute. Optional.

passthrough=" HTML_attribute"

Any additional HTML attributes you need to pass that aren't directly supported by the cfinput

tag. Optional.
pattern=" javascript_regular_expression"

JavaScript regular expression that matches form input when validate is
Regular_Expression. pattern may contain ColdFusion variables and expressions as they are

evaluated prior to the execution of the regular expression. Optional. New as of ColdFusion 5.0.
range=" min_value, max_value"

A range of acceptable numeric values for the form-field. Optional.
required="Yes|No"

Whether or not the input control requires a value before being submitted. Optional. The default
is No.

size=" integer"

The size of the input control. Optional. Ignored when type is Checkbox or Radio.

type=" type"

Type of input control to create. Valid entries are Checkbox, Password, Radio, and Text.
Optional. The default value is Text.

validate=" data_type"

Validates the contents of the form-field before it is submitted, using one of the following
criteria:

CreditCard

Validates the form-field data using the mod10 algorithm. A credit-card number can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

entered as a single value or with dashes or spaces and must be between 12 and 16 digits
in length. ColdFusion automatically strips dashes and spaces before validating.

Date

Requires the form-field value to be in the U.S. date format, mm/dd/yyyy.
EuroDate

Requires the form-field value to be in the European date format, dd/mm/yyyy.
Float

Requires the form-field value to be a floating-point number.
Integer

Requires the form-field value to be an integer.
Social_Security_Number

Requires the form-field value to be a U.S. social-security number in the format xxx-xx-

xxxx or xxx xx xxxx.
Telephone

Requires the form-field value to be a U.S. telephone number formatted either xxx-xxx-

xxxx or xxx xxx xxxx. The area code and exchange are required to begin with a number

in the range 1-9.
Time

Requires that the form-field value be entered as a valid time using the format hh:mm:ss.
ZipCode

Requires that the form-field value be entered as either a five- or nine-digit U.S. ZIP code
number using the format xxxxx, xxxxx-xxxx, or xxxxx xxxx.

Regular_Expression

Validates the form-field data against a JavaScript regular expression specified in the
pattern attribute.

value=" initial_value"

The initial value for the input control. Optional.

cfinsert

Updated in ColdFusion MX
<cfinsert>

Inserts new records into a data source. The cfinsert tag provides a way to insert data into a data
source without having to wrap the SQL in a cfquery.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

datasource=" datasource_name"

The name of the data source to connect to when performing the insert. Required.
connectstring=" connection_string"

Passes additional connection information to an ODBC data source that can't be passed via the
ColdFusion Administrator. connectstring can also be used to override connection information

set for a data source already registered in the ColdFusion Administrator. When making a
dynamic data source connection (when dbtype is Dynamic), connectstring specifies all the

information required to connect to the data source. For specific connection string options, you
should consult the documentation for your particular database. New as of ColdFusion 5.0. This
attribute is no longer supported in ColdFusion MX.

dbname=" database_name"

The database name. For the Sybase System 11 native driver and SQLOLEDB provider only.
Optional. Overrides any value set for datasource. This attribute is no longer supported in

ColdFusion MX.
dbserver=" database_server"

The name of the database server to connect to when using native drivers. Specifying a
dbserver overrides any value set for datasource. Optional. This attribute is no longer

supported in ColdFusion MX.
dbtype=" database_type"

The type of database driver to use. Optional. This attribute is no longer supported in ColdFusion
MX. Possible choices are:

ODBC (the default)

Connect to the data source using an ODBC driver.
OLEDB

Connect using an OLEDB driver.
Oracle73

Connect using the Oracle 7.3 native driver. This requires the 7.3.4.0.0 or later client
libraries be installed on the ColdFusion server.

Oracle80

Connect using the Oracle 8 native driver. This requires the 8.0 or later client libraries be
installed on the ColdFusion server.

Sybase11

Connect using the Sybase 11 native driver. This requires the 11.1.1 or later client
libraries be installed on the ColdFusion server.

DB2

Connect using the DB2 5.2 native driver.
Informix73

Connect using the Informix 7.3 native driver. This requires the Informix SDK 2.5 or later
or Informix-Connect 2.5 (or later) for Windows.

Dynamic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Allows ColdFusion to make an ODBC connection to a data source without having to have
the data source registered in the ColdFusion Administrator. When making a dynamic
connection, all information normally provided in the ColdFusion Administrator for the
connection must be specified in the connectstring attribute. New as of ColdFusion 5.0.

formfields=" formfield1, formfield2, ..."

A comma-delimited list of form fields to insert. Optional. If no form fields are supplied,
ColdFusion uses all the form fields passed from the form.

password=" password"

Password associated with username. Optional. If a password is specified, it overrides the value

set in the ColdFusion Administrator.
provider=" COM_provider"

COM provider for OLE DB connections. Optional. This attribute is no longer supported in
ColdFusion MX.

providerdsn=" provider_datasource"

COM provider's data source name for OLE DB. Optional. This attribute is no longer supported in
ColdFusion MX.

tablename=" table_name"

The name of the table to insert the data into. Required. Note that Oracle database drivers
require the table name to be in all uppercase. In addition, Sybase database drivers use a case-
sensitive table name.

tableowner=" table_owner"

The name of the table owner for databases that support this feature (e.g., Oracle, SQL Server,
and SQL Anywhere). Optional.

tablequalifier=" table_qualifier"

The table qualifier for databases that support the feature (e.g., Oracle and SQL Server).
Optional.

username=" username"

Username to pass to the data source if one is required. Optional. If a username is specified, it
overrides the value set in the ColdFusion Administrator.

cfinternaldebug

No longer supported as of ColdFusion MX
<cfinternaldebug>

This undocumented tag is used by the product development group at Macromedia for internal
debugging purposes. The tag can also compile ColdFusion templates without executing them. The
CFML Syntax Checker that comes with ColdFusion 4.x uses this tag.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

action=" action"

Specifies the action for the tag to take. Optional. The default action is Break, which forces a
break-point exception in the execution of a template. Leak causes the ColdFusion server to leak
memory. The amount of memory to be leaked is specified in the leaksize attribute. These two

actions are used by the Macromedia product development group for internal debugging. PCode
compiles the ColdFusion template specified in templatepath into p-code without executing it.

leaksize=" integer"

The amount of memory to leak. Must be a value greater than 1. Required when action is
Leak.

outvar=" variable"

The name of the variable that holds any error messages generated when compiling a template.
If no errors are generated, an empty string is saved to the variable. Required when action is
PCode.

templatepath=" path"

Full path including filename of the ColdFusion template you want to compile. Required when
action is PCode.

cfinvoke

New in ColdFusion MX; updated in ColdFusion
MX 6.1

<cfinvoke>
 [<cfinvokeargument>]
 ...
</cfinvoke>

Instantiates a ColdFusion Component (CFC) or SOAP-based web service, and/or invokes a method on
an instantiated CFC or web service. Arguments can be passed to a component or web service's
invoked method via the attributecollection attribute, cfinvokeargument tag, or as an attribute
of the cfinvoke tag. If more than one passed argument has the same name, ColdFusion uses the

aforementioned order of precedence.

Attributes

component=" component_name"

Name of the component (CFC) to instantiate or invoke a component method on. Required when
invoking a component method on a CFC.

webservice=" url_to_wsdl| registered_name"

Absolute URL to the web services WSDL file or the name of the web service as registered in the
ColdFusion Administrator. Required when invoking a method on a web service.

method=" method_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name of the method in the CFC or web service you want to invoke. Required.
argumentcollection=" structure"

The name of a ColdFusion structure containing argument names as keys and their associated
values. Optional. If an argument is passed to the cfinvoke tag using more than one technique,
the order of precedence is cfinvokeargument, cfinvoke (inline), and finally
argumentcollection.

password=" password"

Password for accessing the web service specified in the webservice attribute. Overrides the

value (if any) set in the ColdFusion Administrator under the web services section. Optional.
proxypassword=" password"

A password, if any, required by the proxy server. Optional. This attribute is new in ColdFusion
MX 6.1.

proxyport=" port"

A port number on the proxy server specified in the proxyserver attribute. Optional. This

attribute is new in ColdFusion MX 6.1.
proxyserver=" proxy_server"

The IP address or hostname of a proxy server or servers if required for connecting to a web
service. If this attribute is omitted, ColdFusion attempts to obtain proxy server information
from the JVM startup arguments (configurable from the ColdFusion Administrator). This
attribute is new in ColdFusion MX 6.1.

proxyuser=" username"

A username, if any, required by the proxy server. Optional. This attribute is new in ColdFusion
MX 6.1.

returnvariable=" var_name"

Variable name to hold the results of the method call to the CFC or web service invocation.
Optional.

timeout=" seconds"

Amount of time in seconds ColdFusion should wait for a web service request to complete.
Optional. This attribute is new in ColdFusion MX 6.1.

username=" username"

Username for accessing the web service specified in the webservice attribute. Overrides the

value (if any) set in the ColdFusion Administrator under the web services section. Optional.

cfinvokeargument

New in ColdFusion MX
<cfinvoke>
 [<cfinvokeargument>]
 ...
</cfinvoke>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Passes a name/value pair as an argument to a ColdFusion Component (CFC) method or web service.
Used as a child tag of cfinvoke.

Attributes

name=" argument_name"

Name of the argument to pass. Required.
value=" argument_value"

Value of the argument. Required.

cfldap

Updated in ColdFusion MX
<cfldap>

Provides ColdFusion with an interface to Lightweight Directory Access Protocol (LDAP) servers.

Attributes

server=" ldap_server"

The server name or IP address of the LDAP server you want to connect to. Required.
action=" action"

Specifies the LDAP action to perform. Optional. The default value is Query, which returns entry
information from the LDAP server and requires the attributes, name, and start attributes.
Add adds entries to the LDAP server and requires the attributes attribute. Delete deletes
entries from the LDAP server and requires the dn attribute. Modify modifies entries on the
LDAP server except for the distinguished name and requires the attributes and dn attributes.
ModifyDN modifies distinguished name entries on the LDAP server and requires the
attributes and dn attributes.

attributes=" attribute1, attribute2, ..."

When action is Query, specifies a comma-delimited list of attributes to be returned by the
query. Specifying a wildcard (*) returns all attributes associated with a query. When action is
Add, specifies the list of update columns to be used when adding an entry. When action is
Modify, specifies the list of update columns to be used when modifying an entry. When action
is ModifyDN, specifies a comma-delimited list of attributes to be passed to the LDAP server

without any syntax checking. In all cases, multiple attributes should be separated with a
semicolon (;). Required for all these actions.

delimiter=" delimiter"

The delimiter to use when separating more than one name/value attribute pair when multiple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attributes are specified in attributes. delimiter can be used when the action attribute is
set to Query, Add, or Modify. Optional. The default is the semicolon (;).

dn=" distinguished_name"

The distinguished name to use for updates to the LDAP server. Required when action is Add,
Delete, Modify, or ModifyDN.

filter=" filter"

The search criteria to use when action is set to Query. filter entries are referenced as

(attribute operator value) as in (c=US). Optional. The default is (objectclass=*).
ColdFusion supports the following operators within the filter attribute: =, ~= (approximately
equals), <=, >=, * (wildcard), & (and), | (or), and ! (NOT).

filterfile=" filename, stanza"

The name of a valid LDAP filter file and the stanza tag within that filter file that contains an
LDAP filter string. The filterfile attribute accepts either the full path to the filter file or

simply the filename provided it resides in the default ColdFusion LDAP directory
(c:\cfusion\ldap). No longer supported in ColdFusion MX.

maxrows=" integer"

The maximum number of results to be returned for an LDAP query. Optional.
modifytype="Add|Replace|Delete"

Whether to add, replace, or delete an attribute or set of attributes within a multivalue list of
attributes. Optional. The default is Replace.

name=" query_name"

The name to assign to the LDAP query. Required when action is Query. ColdFusion MX

validates the name provided for the query.
password=" password"

Password to accompany username. Optional.

port=" port_number"

The port that the LDAP server listens for requests on. Optional. The default LDAP port is 389.
rebind="Yes|No"

Whether or not to attempt to rebind the referral callback and reissue the query using the
original credentials. If No, referrals bindings are anonymous. Optional. The default is No.

referral=" number"

The maximum number of hops allowed in a referral. Any positive integer may be used. If
referral is set to 0, no data is returned for entries that are referrals. Optional.

scope="scope"

The scope of the search in relation to the value specified in start. Optional when action is
Query. The default value is OneLevel, which searches one level below the entry specified in the
start attribute. Base searches just the entry specified in start, and Subtree searches the
entry specified in start and all the entries below it.

secure=" cf_security_type_ID[, additional_fields]"

The type of security to use when authenticating with the LDAP server. Possible options are
cfssl_basic and cfssl_client_auth. Both options require additional parameters as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfssl_basic

Uses V2 SSL to provide encryption and server authentication. The username and
password attributes are required when using cfssl_basic security. Setting this attribute

tells ColdFusion to make a secure LDAP connection via SSL v2 using JSSE (Java Secure
Socket Extension). In versions of ColdFusion prior to MX, a second attribute called
certificate_database was used to pass the full path, including the filename of the

certificate database file to use. For more information on configuring your server to take
advantage of this feature, see the ColdFusion documentation that came with your server.

cfssl_client_auth

Uses V3 SSL to provide encryption, server authentication, and certificate-based client
authentication. No username and password attributes are required as authentication is
handled via client certificates. The correct syntax for using cfssl_client_auth is:

secure="cfssl_client_auth, certificate_database, certificate_ name, key_

database, key_password"

certificate_database is the full path, including the filename of the certificate database file to

use. certificate_name specifies the name of the client certificate to use. key_database

specifies the keyword database file that holds the public/private key pair. key_password is the

password used by the keyword database.
separator=" separator"

The delimiter to use when separating attribute values in multivalue attributes. The separator
is used when the action attribute is set to Query, Add, or Modify, as well as for outputting
multivalue attributes. Optional. The default is the comma (,).

sort=" attributes"

The attribute or comma-delimited list of attributes to use when sorting query results. Optional.
sortcontrol="Nocase|asc|desc"

Specifies how results should be sorted. If you wish to perform a case-insensitive sort,
sortcontrol should be set to Nocase. Additionally, sort order may be specified as Asc
(ascending, the default) or Desc (descending). Case sensitivity and sort order may be
combined as in sortcontrol="Nocase, Asc". Optional. Sorting is case-sensitive by default.

start=" distinguished_name"

The distinguished name to use as the start of a search. Required when action is Query.

startrow=" row_number"

The row to begin outputting LDAP entries from. Optional.
timeout=" seconds"

The maximum amount of time in seconds ColdFusion should wait when processing an LDAP
action. Optional. The default is 60.

username=" username"

Username required for the LDAP connection. Optional. If no username is specified, the LDAP
connection is anonymous.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returned Variables

If the action attribute is set to Query, the cfldap tag returns the following variables:

queryname.ColumnList

Comma-delimited list of the query column names from the database
queryname.CurrentRow

The current row of the query that is being processed by cfoutput

queryname.RecordCount

The total number of records returned by the query

cflocation

<cflocation>

Redirects the user's browser to a new location. Due to the way ColdFusion assembles dynamic pages,
you shouldn't attempt to use the cflocation tag within a template after a cookie variable has been
set. Setting a cookie variable and using cflocation afterward results in the cookie not being set. If
you need to redirect to a different template after setting a cookie, consider using the cfheader tag

instead, as in:

<cfcookie name="MyCookie" value="Hey, look at me!">
<cfheader name="Refresh" value="0; URL=http://www.example.com/mytemplate.cfm">

Or:

<cfheader name="Location" value="mytemplate.cfm">
<cfheader statuscode="302" statustext="Document Moved">

Attributes

URL=" URL"

The URL to redirect the user's browser to. Required.
addtoken="Yes|No"

Whether or not to append client variable information to the end of the URL specified in the URL
attribute. In order to use the addtoken attribute, clientmanagement must be turned on in the
Application.cfm file. Optional. The default is Yes.

cflock

Updated in ColdFusion MX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cflock>

CFML and HTML to be locked
</cflock>

Provides single-threaded access to code within the <cflock>...</cflock> tags. cflock should be

used when reading and writing persistent variables (application, session, and server variables) within
your ColdFusion applications, to eliminate the potential for unintentionally overwriting or sharing
data. cflock can also lock access to non thread-safe CFX tags and to file-manipulation operations

that can result in multiple threads attempting to access an already open file.

In ColdFusion 5.0, additional locking options are available via the ColdFusion Administrator under the
Server section. They are, however, no longer available in ColdFusion MX. These options allow you to
determine how ColdFusion treats locking for all applications across the server. Performance can be
significantly affected depending on the options you choose. The following choices are available:

Single-Threaded Sessions (Session Scope)

ColdFusion single-threads access to each session by session ID for the duration of a request.
While this eliminates all potential variable corruption and conflict within a session, it can have a
dramatic effect on performance.

No Automatic Checking or Locking (Session, Application, and Server Scope)

ColdFusion performs no automatic checking or locking of persistent variables. All variables
must be locked explicitly using the cflock tag. No exceptions are thrown when nonlocked

variables are encountered. This method is how ColdFusion handled locking prior to Version 4.5.
This option offers the best overall performance.

Full Checking (Session, Application, and Server Scope)

ColdFusion checks to make sure locks are placed around all reads/writes of the variable type
specified. If an unlocked variable is encountered, an exception is thrown. This option is useful in
debug mode for locating unlocked persistent variables and should be used with care as it can
have a negative impact on performance.

Automatic Read Checking (Session, Application, and Server Scope)

If this option is checked, ColdFusion automatically locks reading of the variable scope specified.
All writes to the variable scope must be explicitly locked using cflock. If a write occurs to an

unlocked variable, an exception is thrown. This option should also be used with careful planning
as it can have a negative impact on performance.

Attributes

name=" lock_name"

The name to associate with a particular instance of cflock. If no name is specified, ColdFusion

assigns a random name to the lock. In order to ensure synchronization across sessions and
applications using locks, session.SessionID and application.ApplicationName should be
used for the name attribute when locking access to session and application variables,
respectively. If a value is supplied for the scope attribute, name can't be used. Optional.

scope="Application|Server|Session"

The scope of the variable you are attempting to lock access to. If a value is supplied for the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name attribute, scope can't be used. Optional.
throwontimeout="Yes|No"

How ColdFusion should behave in the event that a cflock request times out. If set to Yes, and
a timeout occurs, ColdFusion throws an error that can be caught with cftry/CATCH. If No, the
template continues execution after skipping the code within the cflock tag. Optional. The
default is Yes.

timeout="seconds"

The time in seconds that ColdFusion should wait when attempting to obtain an exclusive lock
before timing out. Required.

type="ReadOnly|Exclusive"

The type of lock to employ. Optional. The default value is Exclusive, which allows only one
request at a time to access the block of code within the cflock tag. This option should be used
when writing data to persistent variables. ReadOnly allows more than one request at a time to
access the block of code within the cflock tag. This option should be used when reading

persistent variables. This is the faster of the two options.

cflog

New as of ColdFusion 5.0; updated in
ColdFusion MX

<cflog>

Logs messages to the Application.log file, the Scheduler.log file, or to a custom log file. The log files
generated by cflog follow a standard format. The first line of each log file contains a comma-

delimited list of column headers qualified with double quotes that looks like this:

"Severity","ThreadID","Date","Time","Application","Message"

When an entry is made to the log file, the values that are written to each column are also qualified
with double quotes and delimited with commas.

Attributes

text=" message"

Text you want to appear in the log entry. Required.
application="Yes|No"

Whether or not to include the application name if one is specified in a cfapplication tag for
the application. Optional. The default is Yes.

date="Yes|No"

Whether or not to include the system date in the log entry. Optional. The default is Yes. This

attribute is deprecated in ColdFusion MX. The system date is now included in all log entries.
file=" filename"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the log file to write the log entry to. You must specify the name of a file with a
.log extension. When specifying the filename, leave off the extension. If the file doesn't exist,
ColdFusion automatically creates it in the default log file directory specified in the ColdFusion
Administrator. Optional. If you specify a value for file, you must omit the log attribute.

log=" log_type"

The standard ColdFusion log file to write the entry to. Valid options are:

Application

The entry is written to the Application.log file. This file is automatically created by
ColdFusion and logs application-specific messages.

Scheduler

The entry is written to the Scheduler.log file. This file is used by ColdFusion to log
execution information concerning scheduled tasks.

If you wish to write to a custom log file, omit the log attribute and use file instead.

Optional.
thread="Yes|No"

Whether or not to include the ID of the service thread responsible for logging the message in
the log entry. Service threads typically handle a particular page request from request through
completion before moving to the next queued request. Logging thread IDs can be useful
(especially to Macromedia technical support) for identifying server activity patterns. Optional.
The default is Yes. This attribute is deprecated in ColdFusion MX. The thread ID is now included

in all log entries.
time="Yes|No"

Whether or not to include the system time in the log entry. Optional. The default is Yes. This

attribute is deprecated in ColdFusion MX. The system time is now included in all log entries.
type=" severity"

The severity you wish to assign to the log entry. Possible entries are Information (the
default), Warning, Error, and Fatal.

cflogin

New in ColdFusion MX; updated in ColdFusion
MX 6.1

<cflogin>
...
 [<cfloginuser>]
...
</cflogin>

Acts as a container for ColdFusion MX's built-in security framework. The cflogin tag provides a

facility for authenticating users against a database, LDAP directory, or other authentication store. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

body of the tag gets executed only if the user is not logged in. Code to authenticate the user, such as
a database or cfldap query, is executed within the cflogin tags. A cfloginuser tag is used to
establish the user's identity and any roles she might have. The cflogin tag is usually used within an

Application.cfm page.

Attributes

applicationtoken=" unique_application_identifier"

Specifies a unique identifier for the application to which the security framework should apply.
Optional. The default is the application name as specified in the name attribute of the
cfapplication tag. In practice, there is rarely an instance where you would use this attribute.

cookiedomain=" domain"

The domain for which the security framework cookie can be read and written. Entries must
always start with a dot. For example, cookiedomain=".oreilly.com" is a valid entry. Multiple

entries may be separated by semicolons. Optional. The default is no domain restrictions.
idletimeout=" seconds"

Number of seconds of idle time (no page interactivity) ColdFusion should wait before logging
the user off. Optional. The default is 1800 (30 minutes). When the cflogin tag is used in
conjunction with the cfloginuser tag, and the loginstorage attribute of the cfapplication
tag is set to cookie, an in-memory cookie identifying the security session is set. When the user

closes his browser, this cookie is automatically destroyed, effectively logging the user out
within the context of the ColdFusion MX security framework. If loginstorage is set to
session, the lesser of the idletimeout value set in cfloginuser or the session timeout
period set in the cfapplication tag (or ColdFusion Administrator) is used to determine the

timeout value for the session. This behavior is new in ColdFusion MX 6.1; in ColdFusion MX 6.0,
the cflogin scope could only be tied to a cookie and not to the session scope.

Returned Variables

If HTTP Basic Authentication, HTTP Digest, or NTLM Authentication is used, or if form or URL variables
named j_username and j_password are used to pass a username and password, respectively, to the
cflogin tag, a special scope structure named cflogin is available that contains the following

key/value pairs:

cflogin.Username

The username passed via HTTP Basic, HTTP Digest, or NTLM Authentication or a j_username

form or URL variable.
cflogin.Password

The password passed via HTTP Basic Authentication or a j_password form or URL variable.

Both HTTP Digest and NTLM Authentication do not usually supply the password. If you use
either of these methods, cflogin.Password usually contains an empty string.

In order to take advantage of the cflogin scope, you must either use HTTP Basic, HTTP Digest, or
NTLM authentication or name the username and password fields in your login form j_username and
j_password.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfloginuser

New in ColdFusion MX
<cflogin>
 <cfloginuser>
</cflogin>

Identifies a user to the ColdFusion MX security framework and assigns access roles. The cfloginuser
tag is generally used within a cflogin tag block.

Attributes

name=" username"

The username of the user. Required.
password=" password"

The user's password. Required.
roles=" roles"

Comma-delimited list of roles for the user. Required. Be sure that there are no spaces between
commas and list elements; otherwise, ColdFusion processes them as part of the list element.

cflogout

New in ColdFusion MX
<cflogin>
 <cfloginuser>
</cflogin>

<cflogout>

Logs a user out when used with ColdFusion MX's security framework. If a cflogout tag is not used, a
user is automatically logged out when their session ends as defined by the idletimeout attribute in
the cflogin tag. The cflogout tag can only be used after a user has been logged in with the
cflogin tag. This tag has no attributes.

cfloop

[<cfloop index="index_name" from="integer" to="integer" [step="integer"]>]
[<cfloop condition="expression">]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[<cfloop index="index_name" list="list" [delimiters="delimiters"]>
[<cfloop query="query_name" [startrow="integer"] [endrow="integer"]>]
[<cfloop collection="COM_Object|Structure" item="collection|key">]

 HTML and CFML
</cfloop>

A looping construct that can implement different kinds of looping, depending on the attributes
specified. ColdFusion has five basic loop types: index, conditional, list, query, and collection.

Attributes

collection=" COM_Object| Structure"

The collection attribute loops over a COM collection object or a ColdFusion structure.
Requires the item attribute and can't be used with any other attributes.

condition=" expression"

Using the condition attribute creates a while loop that repeats while a specified expression is
true. In order to work, the expression being tested must change with each iteration until the
condition evaluates to false. Can't be used with any other attributes.

delimiters=" delimiters"

The characters used to separate items in the list. Optional. The default delimiter is a comma.
endrow=" integer"

Row to stop looping. Optional. By default, ColdFusion continues the loop until it reaches the end
of the record set.

from=" integer"

Number specifying the beginning value for the loop. Required when index is used to loop

through a range of values.
index=" index_name"

Using the index attribute creates a for loop. This loop either repeats a specified number of
times, when used with the from, to, and step attributes, or it loops through a list with the
list and delimiters attributes. index specifies a variable that can access the current value of
the index loop. When used with the from, to, and step attributes, the index value is set to the
from value (required) and incremented by the step value (optional) for each iteration of the
loop until the TO value (required) is reached. When used with the list (required) and
delimiters (optional) attributes, index is a placeholder for the current list item. Can't be used

with any other attributes.
item=" collection| key"

The variable name for the collection (COM object) or key (structure) referenced in a
collection loop. Required with collection.

list=" list"

Delimited list of items or variable containing a delimited list of items. Required when index is

used to loop through a list.
query=" query_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the query attribute creates a loop over the contents of a query object. query specifies
the name of the query to loop over. Can be used with the startrow and endrow attributes, but

no others.
startrow=" integer"

Row number to begin looping from. Optional. By default, ColdFusion begins the loop with the
first row of the query.

step=" integer"

The value by which the index loop is incremented or decremented after each iteration. To
decrement values, specify a negative vale for step. Optional. The default is 1.

to=" integer"

Number specifying the ending value for the loop. Required when index is used to loop through

a range of values.

cfmail

Updated in ColdFusion MX and MX 6.1
<cfmail>
 [<cfmailparam>]

 [<cfmailpart>

 message body
 </cfmailpart>]
 ...
</cfmail>

Generates an email message and sends it through a designated SMTP server. New in ColdFusion MX,
email addresses that contain spaces cause the cfmail tag to throw an exception. In prior versions,

ColdFusion would still generate the mail spool file, even though it contained an invalid email address.
Email address may be specified using any of the following formats:

pmoney@example.com
<pmoney@example.com>
pmoney@example.com (Pere Money)
"Pere Money" <pmoney@example.com>
Pere Money <pmoney@example.com>

Attributes

from=" sender"

The sender of the message. May be an email address or other arbitrary string. Required.
to=" recipient"

Recipient's email address. Separate multiple recipients with commas. Required.
subject=" subject"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The subject of the email. Required.
bcc=" blind_copy_to"

A list of recipients to send blind copies of the email. bcc recipients aren't shown in the email

header. Separate multiple recipients with commas. Optional.
charset=" charset"

Specifies the character set to use in encoding the message. The most common character sets
are UTF-8, UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may use any

character set supported by your JRE. Optional. The default is the character encoding specified
in the Mail section of the Server Settings area in the ColdFusion Administrator. By default, this
is set to UTF-8. This attribute is new in ColdFusion MX 6.1.

cc=" copy_to"

A list of recipients to send copies of the email. Separate multiple recipients with commas.
Optional.

failto=" address"

Specifies an email address where mail servers should send delivery failure messages. Optional.
This attribute is new in ColdFusion MX 6.1.

group=" query_column"

The query column that should be used to group data. Grouping data results in the elimination
of duplicate output. Grouping is case-sensitive unless the groupcasesensitive attribute is set
to No. Optional.

groupcasesensitive="Yes|No"

Whether grouping should be case-insensitive or case-insensitive. Optional. The default is Yes.
This attribute works only if the record set has already been grouped appropriately. cfmail

can't reorder or resort the record set on its own.
mailerid=" header_ID"

A mailer ID to pass along in the X-Mailer SMTP header. The X-Mailer header identifies the
program generating the SMTP message. Optional. The default is "ColdFusion MX Application
Server".

maxrows=" integer"

The maximum number of emails to send from a query-based mailing. Optional.
mimeattach=" attachment_path"

The full path to a file to be MIME-encoded and attached to the email message. mimeattach
performs the same function as the cfmailparam tag but allows only a single file to be attached
to the mail message. Using the cfmailparam tag is the preferred method for attaching files to

your email messages. Optional.
password=" password"

Password required by an SMTP server for authentication. If specified, a username must also be

provided. Optional. This attribute is new in ColdFusion MX 6.1.
port=" port_number"

The port used by the mail server to listen for SMTP requests. The default SMTP port is 25.

Specifying a value here overrides any values set in the ColdFusion Administrator. Optional.
query=" query_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of a query to use for pulling data to populate messages or to send messages to
multiple recipients. Optional.

replyto=" address"

Specifies an email address or comma delimited list of email addresses where mail clients should
send replies to the message. Optional. This attribute is new in ColdFusion MX 6.1.

server="address_or_list_of_addresses"

Server address or comma-delimited list of server addresses (ColdFusion MX 6.1 Enterprise
only) ColdFusion should use to send SMTP mail. If more than one address is specified,
ColdFusion attempts to connect to the first mail server in the list. If that fails, it attempts to
connect to the second server, etc. ColdFusion will not attempt to connect to a mail server if it
was previously unavailable within the previous 60 seconds. This behavior is new in the
Enterprise version of ColdFusion MX 6.1. If you specify multiple server addresses in ColdFusion
MX 6.1 Standard, only the first server address is tried. Specifying a value for server overrides
any values set in the ColdFusion Administrator. Additionally, you may prepend a username and
password and/or append a port number to the server address
(username:password@servername:port) if desired. If you specify a port number in this way, it
overrides any value set in the ColdFusion Administrator. You must set a server value either in
the ColdFusion Administrator or the cfmail tag; otherwise, ColdFusion throws an error.

Optional.
spoolenable="Yes|No"

Yes tells ColdFusion to save a copy of the message to disk until it can be sent. No causes the

messages to queue in memory until they can be sent. Although queuing in memory may be
faster than writing the messages to disk, it is not fault-tolerant, meaning, if the ColdFusion
server goes down before the messages can be sent, they are lost. Optional. The default is Yes.

startrow=" row_number"

The query row to begin emailing from. Optional. The default is 1.
timeout=" seconds"

The number of seconds the ColdFusion server should wait before timing out the connection to
the SMTP server. A value set here overrides a timeout value set in the ColdFusion
Administrator. Optional.

type="text|plain|html|mime_type"

MIME type of the message. You can specify text (text/plain), plain (text/plain), html

(text/html), or any valid MIME type you wish. Optional. The default is text/plain.
username=" username"

Username required by an SMTP server for authentication. If specified, a password must also be

provided. Optional. This attribute is new in ColdFusion MX 6.1.
wraptext=" number_of_characters"

Specifies the maximum number of characters to allow per line in the message. If a line is
longer than the specified number of characters, an attempt is made to break the line by
inserting a line break at the nearest whitespace character (space, tab, etc.) before the
character limit. If the line contains no whitespace characters before the maximum number of
characters per line, a line break is inserted at the maximum line length. Optional. The default is
no text wrapping. This attribute is new in ColdFusion MX 6.1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfmailparam

Updated in ColdFusion MX 6.1
<cfmail>
 [<cfmailparam>]
 ...

message body
</cfmail>

Used within a cfmail block to send file attachments and custom header information. Multiple
cfmailparam tags may be nested within a cfmail block. Only one file attachment or custom header
can be specified per cfmailparam tag.

Attributes

file=" filename"

The full path to the file you wish to attach to your email message. Multiple cfmailparam tags

may be used to attach more than one file. Files are MIME encoded before they are sent. Cannot
be used with any other attribute besides type. You should note that ColdFusion does not make

a copy of any file attachments before sending. If you attach a file to a mail message, you must
wait until after the message is sent before deleting the file. If ColdFusion tries to send a
message with an attachment and it cannot find the attachment, an exception is raised, and the
message is not sent. Required when attaching a file.

type="text|plain|html| mime_type"

MIME type of the file attachment. You can specify text (text/plain), plain (text/plain), html

(text/html), or any valid MIME type you wish. Optional. The default is text/plain. This attribute
is new in ColdFusion MX 6.1.

name=" name"

The name of the header entry to write. Multiple header entries may be written using a
cfmailparam tag for each entry. Can be used only with the value attribute. Required when

including custom header information.
value=" value"

The value to be written for the header entry. Can be used only with the name attribute.

Required when including custom header information.

cfmailpart

New as of ColdFusion MX 6.1
<cfmail>
 [<cfmailparam>]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [<cfmailpart>

 message body
 </cfmailpart>]
 ...
</cfmail>

Used within a cfmail block to specify a part of a multi-part message. Multi-part messages are

typically used to send multiple versions of the same message. For example, it may be desirable to
send both a plain text and an HTML version of a message. To specify multiple parts, use one
cfmailpart tag pair for each part. If you send a multi-part message using cfmailpart, all message
contents must appear within cfmailpart tags. Any content outside the tag body is ignored.

Attributes

charset=" charset"

Specifies the character set to use in encoding the message part. The most common character
sets are UTF-8, UTF-16, UTF-16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may use any

character set supported by your JRE. Optional. The default is the character encoding specified
in the cfmail tag.

type="text|plain|html|mime_type"

MIME type of the message part. You can specify text (text/plain), plain (text/plain), html

(text/html), or any valid MIME type you wish. Optional.
wraptext="number_of_characters"

Specifies the maximum number of characters to allow per line of the message part. If a line is
longer than the specified number of characters, an attempt is made to break the line by
inserting a line break at the nearest whitespace character (space, tab, etc) before the
character limit. If the line contains no whitespace characters before the maximum number of
characters per line, a line break is inserted at the maximum line length. Optional. The default is
no text wrapping.

cfmodule

<cfmodule>
 [<cfmodule />]
 ...
[</cfmodule>]

Provides an alternative method for calling CFML custom tags. Multiple cfmodule tags may be nested,
provided each nested tag is closed using the syntax <cfmodule />.

Attributes

attributecollection=" attribute_structure"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of a ColdFusion structure containing attribute names and their associated values.
Optional. If an attribute contained in the structure passed by attributecollection has the

same name as an attribute passed in to the tag as a parameter, the one passed via
attributecollection is used.

attribute n=" value"

Additional attributes and their associated values as required by the custom tag. Optional.
name=" name"

The name of the custom tag you want to use. The default location for custom-tag storage is
\cfroot\customtags. Custom tags residing in this location may be referenced with dotted
notation. For example, a custom tag called MyCustomTag (MyCustomTag.cfm) residing in the
default custom tags directory is referenced as MyCustomTag. The same tag residing under a

subdirectory of the \customtags directory called \SpecialTags is referenced as
SpecialTags.MyCustomTag. This dotted notation can reference custom tags residing in or any

number of levels below the default customtags directory. Optional. If a value is specified for
name, the template attribute isn't used.

template=" template_path"

The path to the ColdFusion template to use as a custom tag. Relative paths are automatically
expanded from the current page, while absolute paths are expanded using the mappings
defined in the ColdFusion Administrator. Optional. If a value is specified for template, the name

attribute isn't used.

cfnewinternaladminsecurity

This tag is the same as the cfadminsecurity tag, except it functions even if the cfadminsecurity

tag is disabled in the Basic Security area of the ColdFusion Administrator. For syntax and attributes,
see cfadminsecurity.

cfnewinternalregistry

This tag is the same as the cfregistry tag, except it functions even if the cfregistry tag is

disabled in the Basic Security area of the ColdFusion Administrator. For syntax and attributes, see
cfregistry. This tag is deprecated and nonfunctional as of ColdFusion 4.5.

cfobject

Updated in ColdFusion MX
<cfobject>

Allows ColdFusion to connect to various objects, including COM objects, CORBA objects, Java objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and EJBs, ColdFusion Components (CFCs), and SOAP-based web services. COM objects aren't
currently supported for Unix versions of ColdFusion. The cfobject tag can be disabled in the Security

Sandbox section of the ColdFusion Administrator (ColdFusion Enterprise and ColdFusion for J2EE
only).

Using the cfobject tag to call a Java object loads the class but doesn't create an instance of the
object. Constructors can be explicitly called using the init() method:

<cfset MyVar=MyObject.init(argument1, argument2)>

Calling a public method within an object without first calling the init() method results in an implicit

call to the default constructor. Arguments and return values may be of any valid Java datatype.
ColdFusion handles the conversion of strings automatically when they are passed as arguments or as
return values. In addition, methods may be overloaded as long as the number of arguments used
differs. The JavaCast() function may be used to cast a ColdFusion variable before it is passed to an

overloaded method.

When the cfobject tag is used to call a web service, it instantiates a proxy object for the service.

Attributes

type="COM|CORBA|Java"

The type of object to create. Required when connecting to a COM, CORBA, or Java object.
name=" name"

A name for the object to be used by your application when referencing the object's attributes
and methods. Required.

class=" object_class"

For a COM object, the component program ID for the object to be invoked. For a CORBA
object, if context is IOR, class specifies the name of a file that contains the stringified version
of the IOR. If context is NameService, class specifies a forward slash-delimited naming

context for the naming service. Note that previous versions of ColdFusion used a period-
delimited naming context For a Java object, the Java class. Required.

action="Create|Connect"

With a COM object, Create instantiates the object (usually a .dll), while Connect connects to a
COM object (usually an .exe) that is already running on the server. With a Java object, Create

is the only valid action. Required for these objects; ignored otherwise.
component=" component_name"

Name of the component (CFC) to instantiate. Required when instantiating a CFC.
context=" context"

For a COM object, valid entries are InProc, Local, or Remote, and the attribute is optional.
InProc specifies an in-process server object (usually a .dll) running in the same process space
as the ColdFusion server. Local specifies an out-of-process server object (usually a .exe)
that's running on the same server as ColdFusion, but not in the same process space. Remote

specifies an out-of-process server object (usually an .exe) that's running on another machine.
If Remote is specified, the server attribute is required. When no value is specified, ColdFusion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

uses the registry setting for the object.

For a CORBA object, valid entries are IOR, which causes ColdFusion to use the Interoperable
Object Reference to access the object, and NameService, which causes ColdFusion to use the

naming service to access the object. Required for CORBA objects.

Not used with Java objects, CFCs, or web services.
locale="- type_value_pair1, - type_value_pair2, ..."

For CORBA objects, type/value pairs of arguments to pass to init_orb(). This feature is

specific to VisiBroker orbs and has been tested to work with the 3.2 C++ version only. Note
that all type/value pairs must begin with a minus sign (-).

server=" server_name"

With COM objects, a valid server name using Universal Naming Convention (UNC) or Domain
Name Server (DNS) conventions. Required when context is Remote; ignored otherwise.

webservice=" url_to_wsdl|registered_name"

Absolute URL to the web services WSDL file or the name of the web service as registered in the
ColdFusion Administrator. Required when instantiating a web service.

cfobjectcache

New as of ColdFusion 5.0
<cfobjectcache>

Clears the ColdFusion query cache. This tag was previously an undocumented ColdFusion tag.

Attribute

action="Clear"

Specifies the action to be taken by the cfobjectcache tag. The only action currently
supported is Clear. Required.

cfoutput

<cfoutput>

HTML and CFML
</cfoutput>

Displays the results of a query or other ColdFusion operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

group=" parameter"

The column name that should be used to group data. Grouping data results in the elimination
of duplicate output. Optional.

groupcasesensitive="Yes|No"

Whether grouping should be case-sensitive. Optional. The default is Yes. This attribute works
only if the record set has already been grouped appropriately. cfoutput can't reorder or resort

the record set on its own.
maxrows=" integer"

The maximum number of rows to output. Optional.
query=" query_name"

The name of the query from which to pull the data to be output. Optional.
startrow=" row_number"

The query row to begin outputting from. Optional.

cfparam

Updated in ColdFusion MX
<cfparam>

Defines a parameter and sets a default value. Can also be used to test for the existence of a
parameter and its datatype.

Attributes

name=" parameter_name"

Name of the parameter to create. Required.
default=" value"

Default value to assign to the variable if it doesn't exist or has no value already assigned.
type=" data_type"

The required parameter type. Valid entries are Any, Array, Binary (new in ColdFusion MX),
Boolean, Date, GUID (new in ColdFusion MX), Numeric, Query, String, Struct, UUID, and
VariableName (checks to make sure the variable you are checking contains a value that is a
valid variable name). Optional. The default is Any. For more information on the difference
between a GUID and a UUID, see the entry for CreateUUID() in Appendix B.

cfpop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Updated in ColdFusion MX 6.1
<cfpop>

Retrieves email, including multi-part mail messages containing HTML and text as well as file
attachments, from a POP server.

Attributes

server=" POP_server"

Hostname or IP address of the POP server you want to retrieve mail from. Required.
action=" action"

Specifies the action for the cfpop tag to take. Optional. The default value is GetHeaderOnly,
which returns the message header only. GetAll returns the message header and message
body, plus file attachments if a value is specified for attachmentpath. Delete deletes

messages from the server.
attachmentpath=" path"

The full path to use to store file attachments when action is GetAll. Optional.
generateuniquefilenames="Yes|No"

Whether or not to automatically generate unique filenames for file attachments so that name
conflicts can be avoided. Generated names are guaranteed to be unique within the specified
directory. Optional. The default is No.

maxrows=" integer"

The maximum number of messages to be retrieved for the query. Optional. This attribute is
ignored if a value is given for messagenumber.

messagelabel=" message_number"

The message number or comma-delimited list of message numbers to perform the specified
action on. Optional.

name=" query_name"

The name to assign the query object created when action is Get or GetAll. Optional.

password=" password"

A password to use in order to log into the POP server. Optional.
port=" port_number"

Port on the POP server to use. Optional. The default is 110.
startrow=" row_number"

The starting row for the message query. Optional. The default is 1. This attribute is ignored if a
value is given for messagenumber.

timeout=" seconds"

The maximum amount of time in seconds that ColdFusion should wait while performing a mail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

operation before timing out. Optional. The default is 60.

username=" username"

A username to use when logging into the POP server. Optional. If no username is specified, the
tag defaults to anonymous access.

UID=" UID"

The unique identifier (UID) assigned to a mail message or comma-delimited list of UIDs, to
perform the specified action on. UID may be used in place of the messagenumber attribute in

cases where the specified POP server doesn't support message numbers (as in the case of the
Mercury POP server). Optional.

Returned Variables

The cfpop tag returns several variables depending on the value of the action attribute. When
action is GetHeaderOnly or GetAll, cfpop returns the following variables:

queryname.ColumnList

A comma-delimited list of the query column names.
queryname.CurrentRow

The current row of the query being processed.
queryname.RecordCount

The total number of messages returned by the query.
queryname.Date

Date and time the message was sent. POP dates can be converted to GMT (Greenwich Mean
Time) using the ParseDateTime() function.

queryname.MessageNumber

The message number of the current message.
queryname.UID

The UID of the current message.
queryname.From

The email address of the sender of the message.
queryname.To

The email address or comma-delimited email addresses of the message recipient(s).
queryname.CC

Email address or comma-delimited list of email addresses that received copies of the message.
queryname.BCC

Email address or comma-delimited list of email addresses that received blind copies of the
message.

queryname.ReplyTo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Email address specified as the reply-to address.
queryname.Subject

The subject of the message.
queryname.Header

Returns the complete SMTP message header.

When action is GetAll, there is an additional variable:

queryname.Body

The content of the message body.

If action is set to GetAll and the attachmentpath attribute is set, ColdFusion returns two additional

variables containing information about any file attachments included with the message:

queryname.Attachments

A tab-delimited list of the original filenames of all attached files.
queryname.AttachmentFiles

A tab-delimited list of the names of the attachment files as they were written to the directory
specified in attachmentpath.

cfprocessingdirective

Updated in ColdFusion MX
<cfprocessingdirective>

CFML
[</cfprocessingdirective>]

Specifies a compiler processing option to suppress all whitespace produced by ColdFusion within the
cfprocessingdirective tag pairs. In ColdFusion MX, a new attribute called pageencoding was

added, allowing you to specify a character encoding to use to read the page.
cfprocessingdirective tags must occur in matched pairs (i.e., have an end tag) when used to

suppress whitespace (this is not necessary if you are only setting the page encoding) and may also
be nested. cfprocessingdirective settings don't apply to templates called via cfimport,
cfobject, cfinvoke, cfinclude, or cfmodule or as custom tags. Macromedia recommends using
either the suppresswhitespace attribute or the pageencoding attribute within a single
cfprocessingdirective tag, but not both at the same time.

Attribute

pageencoding=" character_set"

New in ColdFusion MX. Specifies a Java character set for ColdFusion to use when reading the
contents of the page. The most common character sets are UTF-8 (the default), UTF-16, UTF-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16BE, UTF-16LE, US-ASCII, and ISO-8859-1. You may use any character set supported by
your JRE. Optional. If the pageencoding attribute is used, the following guidelines apply:

The cfprocessingdirective tag can not be used within a conditional statement (cfif or
cfcase) because it's evaluated when ColdFusion compiles the page, not at runtime.

If there are multiple cfprocessingdirective tags within a page that use the
pageencoding attribute, they must all have the same value; otherwise ColdFusion throws

an exception.

When pageencoding is used, the cfprocessingdirective tag must appear within the

first 4096 bytes on the page.
suppresswhitespace="Yes|No"

Whether ColdFusion should suppress all whitespace between cfprocessingdirective tag

pairs. Optional.

cfprocparam

Updated in ColdFusion MX
<cfstoredproc>
 [<cfprocparam>]
 [<cfprocresult>]
 ...
</cfstoredproc>

Specifies parameter information to send to a stored procedure. cfprocparam tags are nested within a
cfstoredproc tag.

Attributes

cfsqltype=" parameter_data_type"

The SQL type of the parameter being passed to the stored procedure. Required. The default is
cf_sql_char. Possible values are cf_sql_bigint, cf_sql_bit, cf_sql_blob, cf_sql_char,
cf_sql_clob, cf_sql_date, cf_sql_decimal, cf_sql_double, cf_sql_float,
cf_sql_idstamp, cf_sql_integer, cf_sql_longvarchar, cf_sql_money, cf_sql_money4,
cf_sql_numeric, cf_sql_real, cf_sql_refcursor (Oracle only), cf_sql_smallint,
cf_sql_time, cf_sql_timestamp, cf_sql_tinyint, and cf_sql_varchar.

dbvarname=" database_variable_name"

The name of the parameter within the stored procedure. Required if named notation is used.
Named notation is not supported in ColdFusion MX (and has never worked correctly in previous
versions). This attribute is deprecated and ignored by MX if used.

maxlength=" length"

The maximum length of the parameter. Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

null="Yes|No"

Whether or not to pass the parameter as NULL. If Yes, ColdFusion ignores the value attribute
and passes NULL. Optional. The default it No.

scale=" decimal_places"

The number of decimal places for the parameter. Optional.
type="In|Out|InOut"

Whether the variable being passed is an input, output, or input/output variable. Optional.
Default is In.

value=" parameter_value"

The value to pass to the stored procedure. Required when type is In or InOut.

variable=" variable_name"

The name of the ColdFusion variable that references the value returned by the output
parameter after the stored procedure is called. Required when type is Out or InOut.

cfprocresult

<cfstoredproc>
 [<cfprocparam>]
 ...
 [<cfprocresult>]
 ...
</cfstoredproc>

Specifies the name for a result set returned by the cfstoredproc tag. This allows other ColdFusion
tags to reference the result set. One or more cfprocresult tags may be nested within the
cfstoredproc tag.

Attributes

name=" query_name"

A name for the query result set returned by the stored procedure. Required.
maxrows=" row_number"

The maximum number of rows to return with the result set. Optional. By default, maxrows is
set to -1, resulting in all rows returned.

resultset=" integer"

The result set to use if the stored procedure returns more than one result set. You must have
one cfprocresult tag for each result set returned by the stored procedure. Optional. The
default value is 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfproperty

New in ColdFusion MX
<cfcomponent>
 <cfproperty>
 ...
</cfcomponent>

Defines a component as a complex datatype for use in publishing web services. Multiple cfproperty
tags can be used within a single cfcomponent tag to define the complex datatype. The complex

datatype can then be called from a CFC published as a web service by using the name of the
component containing the complex datatype definition in the type attribute of the CFC's cfargument
tag. cfproperty tags must be positioned as the first code in a cfcomponent container. If they are

not, ColdFusion throws an exception

Although cfproperty is designed for use with web-services authoring, it can also be used to expose

additional metadata about a CFC. Besides the named attributes listed in the "Attributes" section, you
can pass any additional desired attributes to the cfproperty tag as user-defined attributes. Although

these attributes don't do anything, they are available as metadata when the component is
introspected using the GetMetaData() function. You may use any attribute names you wish with the
exception of those reserved by cfproperty: name, displayname, hint, and type.

Attributes

name=" property_name"

The name of the property. name must be a static value. Required.

displayname=" display_name"

Used to display a descriptive name for the property in ColdFusion MX's Component Browser.
Optional.

hint=" text"

Used to display a hint describing what the property is for in ColdFusion MX's Component
Browser. Optional.

type=" data_type"

Type of property. Valid options are Any, Array, Binary, Boolean, Date, GUID, Numeric, Query,

String, Struct, UUID, VariableName, ComponentName. Optional. The default is Any. For
information on how GUID differs from UUID, see the CreateUUID() function in Appendix B.

cfquery

Updated in ColdFusion MX
<cfquery>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [<cfqueryparam>]

SQL statements
</cfquery>

Performs SQL operations against a data source or existing query object. In ColdFusion MX, SQL
reserved words can no longer be used as column or query names. When building dynamic queries
from form or URL parameters, Macromedia recommends always binding the parameters with
cfqueryparam tags.

Attributes

name=" query_name"

Name to assign to the query. Valid query names must begin with a letter, underscore, or
Unicode currency symbol ($) and can contain only letters, numbers, underscores, and Unicode
currency symbols. Required when passing an SQL select statement; optional for all other SQL
operations. Although the name attribute is required only for SQL select statements, you may

wish to use it in all your queries. It makes debugging easier, especially for templates that
contain multiple queries, because it allows you to identify each query by name in the debugging
output.

datasource=" datasource_name"

The name of the data source to connect to when executing the query. Required except when
dbtype is Query or Dynamic.

blockfactor=" block_size"

The maximum number of rows to retrieve from the server at a time. Optional. The range is
from 1 to 100; 1 is the default. Note that some drivers may reduce the block factor

automatically.
cachedafter=" date"

A date for using cached query data. Cached query data is used only if the date of the original
query is after the date specified in CACHEDAFTER. To use cached query data, this feature must

be enabled in the ColdFusion Administrator. Optional.
cachedwithin=" time_span"

A time span (created using the CreateTimeSpan() function) for using cached query data. To

use cached query data, this feature must be enabled in the ColdFusion Administrator. Optional.
connectstring=" connection_string"

Passes additional connection information to an ODBC data source that can't be passed via the
ColdFusion Administrator. connectstring can also override connection information set for a

data source already registered in the ColdFusion Administrator. When making a dynamic data-
source connection (when dbtype is Dynamic), connectstring specifies all the information

required to connect to the data source. For specific connection string options, you should
consult the documentation for your particular database. New as of ColdFusion 5.0. This
attribute is no longer supported in ColdFusion MX.

dbname=" database_name"

Specifies the database name. For the Sybase System 11 native driver and SQLOLEDB provider
only. Optional. Overrides any value set for datasource.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dbserver=" database_server"

The name of the database server to connect to when using native drivers. Specifying a
dbserver overrides any value set for datasource. Optional.

dbtype=" database_type"

The type of database driver to use. Optional. This attribute no longer supports options other
than Query in ColdFusion MX. Possible choices are:

ODBC (the default)

Connect to the data source using an ODBC driver. No longer supported in ColdFusion MX.
OLEDB

Connect using an OLEDB driver. No longer supported in ColdFusion MX.
Oracle73

Connect using the Oracle 7.3 native driver. This requires the 7.3.4.0.0 or later client
libraries be installed on the ColdFusion server. No longer supported in ColdFusion MX.

Oracle80

Connect using the Oracle 8 native driver. This requires the 8.0 or later client libraries be
installed on the ColdFusion server. No longer supported in ColdFusion MX.

Sybase11

Connect using the Sybase 11 native driver. This requires the 11.1.1 or later client
libraries be installed on the ColdFusion server. No longer supported in ColdFusion MX.

DB2

Connect using the DB2 5.2 native driver. No longer supported in ColdFusion MX.
Informix73

Connect using the Informix 7.3 native driver. This requires the Informix SDK 2.5 or later
or Informix-Connect 2.5 (or later) for Windows. No longer supported in ColdFusion MX.

Query

Specifies that the query should use an already existing query as the data source. If this
option is used, you don't need to specify a value for datasource. New as of ColdFusion

5.0.
Dynamic

Allows ColdFusion to make an ODBC connection to a data source without having to have
the data source registered in the ColdFusion Administrator. When making a dynamic
connection, all information normally provided in the ColdFusion Administrator for the
connection must be specified in the connectstring attribute. New as of ColdFusion 5.0.

No longer supported in ColdFusion MX.
debug[="Yes|No"]

Specifying debug results in the output of debugging information, which includes the actual SQL

passed to the data source as well as the number of records returned by the query. Optional.
maxrows=" row_number"

Maximum number of rows to return in a record set. Optional. The default is -1 (all rows).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

password=" password"

Password associated with username. Optional. If a password is specified, it overrides the value

set in the ColdFusion Administrator.
provider=" COM_provider"

COM provider for OLE DB connections. Optional. This attribute is no longer supported in
ColdFusion MX.

providerdsn=" datasource"

COM provider's data-source name for OLE DB. Optional. This attribute is no longer supported in
ColdFusion MX.

username=" username"

Username to pass to the data source if one is required. Optional. If a username is specified, it
overrides the value set in the ColdFusion Administrator.

timeout=" seconds"

Number of seconds to allow each action of the query to execute before timing out. Note that
the total time to execute a query may exceed the timeout value. Support for this attribute

varies by driver. Optional.

Returned Variables

When the cfquery tag selects records from a data source, four variables are returned:

cfquery.ExecutionTime

The amount of time in milliseconds it took the query to execute; note the cfquery prefix

queryname.ColumnList

A comma-delimited list of the query column names from the database
queryname.CurrentRow

The current row of the query being processed
queryname.RecordCount

The total number of records returned by the query

cfqueryparam

<cfquery>

SQL statements
 [<cfqueryparam>]
</cfquery>

Checks the datatype and optionally validates a query parameter within the SQL statement of a
cfquery tag. Multiple cfqueryparam tags may be used with a single cfquery tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SQL that is generated by the cfqueryparam tag is dependent on the database used. If the

database being used doesn't support bind parameters, validation is still performed with the validated
parameter being written back to the string. If for any reason validation fails, ColdFusion throws an
exception. The following rules determine the validation performed:

cf_sql_smallint, cf_sql_integer, cf_sql_real, cf_sql_float, cf_sql_double,
cf_sql_tinyint, cf_sql_money, cf_sql_money4, cf_sql_decimal, cf_sql_numeric, and
cf_sql_bigint can be converted to numbers.

cf_sql_date, cf_sql_time and cf_sql_timestamp can be converted to a valid date format.

In versions of ColdFusion prior to MX, Sybase 11 native drivers don't support the binding of SQL
parameters. This is not an issue in MX as native drivers are no longer supported.

If the maxlength attribute is used, the length of the value for the specified parameter can't exceed

the specified length; otherwise an error is thrown.

Attributes

value=" parameter_value"

The value that ColdFusion should pass to the right of the comparison operator in the WHERE

clause. Required.
cfsqltype=" parameter_data_type"

The SQL type that the parameter is bound to. Required. The default is cf_sql_char. Possible
values are cf_sql_bigint, cf_sql_bit, cf_sql_blob, cf_sql_char, cf_sql_clob,
cf_sql_date, cf_sql_decimal, cf_sql_double, cf_sql_float, cf_sql_idstamp,
cf_sql_integer, cf_sql_longvarchar, cf_sql_money, cf_sql_money4, cf_sql_numeric,
cf_sql_refcursor (Oracle only), cf_sql_real, cf_sql_smallint, cf_sql_time,
cf_sql_timestamp, cf_sql_tinyint, and cf_sql_varchar.

list="Yes|No"

Whether or not the value attribute of the cfqueryparam tag should be treated as a list of
values separated by the character specified in the separator attribute. If set to Yes, an SQL

parameter is generated for each value in the list. Each list item is validated separately. If a
value is specified for the maxlength attribute, the maxlength applies to each item in the list as
opposed to the list as a whole. If the value passed is NULL, it is treated as a single NULL value.
Optional. The default is No.

maxlength=" length"

The maximum length of the parameter. Optional.
null="Yes|No"

Whether or not to pass a NULL for the value. If Yes, ColdFusion ignores the value attribute.
Optional. The default it No.

separator=" separator_character"

The character that delimits the list of values when list attribute is Yes. Optional. The default
is the comma (,).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

scale=" decimal_places"

The number of decimal places of the parameter. Optional.

cfregistry

Updated in ColdFusion MX; no longer
supported in Unix versions of ColdFusion

<cfregistry>

Performs an operation on the Windows registry, based on the value of the action attribute. In

ColdFusion MX, configuration information is stored in XML configuration files, not the system registry.

Attributes

action=" action"

The action for the cfregistry tag to take. Required. Get retrieves a value from the registry
and stores it in a variable. GetAll retrieves all the registry keys and values for a specified
registry branch and stores them in a query object. Delete deletes a key or value from the
registry. Set adds or updates a registry key or value.

branch=" branch"

For Get, GetAll, and Set, the name of the registry branch containing the value to be accessed
or set. For Delete, specifies either the name of the registry key to be deleted (don't specify an
entry) or the name of the registry branch that contains the value to be deleted (specify a
value for entry). Required.

entry=" key_or_value"

The value in the registry to be operated on. Required for all actions except GetAll and certain
Delete operations.

maxrows=" integer"

The maximum number of rows to retrieve when action is GetAll and type is Key. Optional.

The default is to retrieve all remaining rows. This attribute is new in ColdFusion MX.
name=" query_name"

The name of a query object to hold the keys and values returned by cfregistry. Required for
GetAll; ignored otherwise.

sort=" sort_criteria"

The sort order for the result set obtained by the cfregistry action. Results may be ordered by
Entry, Type, and Value. Multiple sort criteria can be entered as a comma-delimited list. In
addition, the sort type may be specified after each column name as either Asc (ascending) or
Desc (descending). Optional for GetAll; ignored otherwise.

startrow=" row_number"

The query row to begin retrieving from when action is GetAll and type is Key. Optional. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

default is 1 (the first row). This attribute is new in ColdFusion MX.

type=" type"

The type of registry data to be operated on. Valid entries are Key, DWord, and String (the

default). Optional.
value=" string_or_value"

The value you want to set. Optional for Set; ignored otherwise. If no value is specified,
ColdFusion automatically sets a default value based on type. If type is DWord, value is set to
zero. If type is String, value is set to an empty string ("").

variable=" variable"

The name of a ColdFusion variable to hold the data returned by cfregistry. Required for Get;

ignored otherwise.

Returned Variables

The following query columns are returned when action is GetAll. The name of the query object is
set in the name attribute:

queryname.Entry

The name of the registry entry
queryname.Type

The type of registry entry returned
queryname.Value

The value of the registry entry if type is set to String or DWord

cfreport

Updated in ColdFusion MX
<cfreport> ... </cfreport>

Executes a predefined Crystal Reports report and populates it with data from a ColdFusion template.
This feature is only available on the Windows version of ColdFusion. In order to use this tag, you
must have Crystal Reports installed on your ColdFusion server. In ColdFusion MX, ColdFusion no
longer handles data source connectivity for the Crystal Report.

Attributes

report=" report_path"

The full path to the Crystal Report file to be executed. Required.
datasource=" datasource_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the ODBC data source to obtain data for the report from. If no datasource is
provided, the data source specified when the report was created is used. datasource is a
previously undocumented attribute of the cfreport tag. Optional.

formula=" formula"

One or more named formulas within the report. Separate formula parameters with semicolons.
If the formula contains a semicolon, it should be escaped by doubling it up. Optional.

orderby=" result_order"

Orders results according to your specifications. Optional.
password=" password"

Password associated with username. Optional. If a password is specified, it overrides the value

set in the ColdFusion Administrator.
timeout=" seconds"

Time in seconds ColdFusion should wait before timing out a connection to the Crystal Reports
engine. Optional.

type=" report_type"

The type of HTML that should be used to generate the report. Options are Standard,
Netscape, and Microsoft; they refer to the web browser the report is destined for. This

attribute can be dynamically set by first determining the browser in use with the CGI variable
CGI.http_user_agent. When using the cfreport tag in versions of ColdFusion prior to 5.0 to
generate a report in Crystal Reports 8.x, you must set the type attribute to Netscape or
Microsoft. Optional. The default value is Standard (don't use the default if using Crystal

Reports 8.x). This issue has been fixed in ColdFusion 5.0. As of ColdFusion 5.0, you no longer
need to use the type attribute to avoid an error.

username=" username"

A username for the database providing data for the report. Optional. If a username is specified,
it overrides the value set in the ColdFusion Administrator.

cfrethrow

<cftry>

 CFML

<cfcatch type="exception_type">

 HTML and CFML
 <cftry>

 CFML

 <cfcatch type="exception_type">

 HTML and CFML
 <cfrethrow>
 </cfcatch>
</cfcatch>
<cfcatch type="Any">

HTML and CFML
</cfcatch>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cftry>

Used within a cfcatch block to rethrow the active exception while preserving the cfcatch.Type and
cfcatch.TagContext return variables. This tag takes no additional attributes.

cfreturn

New in ColdFusion MX
[<cfcomponent>]
 <cffunction>
 ...
 <cfreturn>
 </cffunction>
[<cfcomponent>]

Returns an evaluated expression or variable from a tag-based user-defined function or ColdFusion
Component (CFC) method. This tag provides the same functionality as the Return statement in
CFScript-based UDFs. Only one cfreturn tag may be used per function.

Attribute

expression

Expression to evaluate and return. Any valid ColdFusion expression may be used (evaluated
expression, variable name, string or numeric literal, etc.). Required.

cfsavecontent

New as of ColdFusion 5.0
<cfsavecontent>

HTML and CFML
</cfsavecontent>

Saves all generated content between tag pairs in a variable. cfsavecontent is useful in situations

where you want to reuse the content generated by a specific block of code.

Attribute

variable=" variable_name"

A variable name for storing the content generated by code between the cfsavecontent tag

pairs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfschedule

<cfschedule>

Creates, updates, deletes, and kicks off the execution of a URL on a scheduled basis. Depending on
your underlying JRE, you may or may not be able to use cfschedule to call an https (SSL-enabled)

URL.

Attributes

action=" action"

Action you want the scheduler to perform. Valid entries are Delete, Run, and Update.

Required.
task=" task_name"

The name of the task to delete, run, or update. Required.
enddate=" date"

End date for the scheduled task. Optional.
endtime=" time"

End time for the scheduled task. Optional.
file=" filename"

Filename to use for the static file being published. Required when publish is Yes.

interval=" seconds"

The interval the scheduler should use when scheduling tasks for execution. Intervals can be set
in seconds or as Once, Daily, Weekly, or Monthly. Required when action is Update. The

default interval is one hour. The minimum interval allowed is 60 seconds.
operation=" HTTPRequest"

The operation the scheduler should perform. Required when action is Update. The only
OPERATION currently supported is HTTPRequest.

password=" password"

Specifies the password to use for protected URLs. Optional.
path=" path"

The path to the location where the static file should be written. Required when publish is Yes.

port=" port_number"

Port number on the server where the template being executed resides. Optional. The default is
80.

proxyport=" port_number"

Specifies a port number on the proxy server where the template is being executed. Used in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

conjunction with the resolveurl attribute, proxyport allows you to preserve links within a
template that resolve to a port other than 80. Optional. The default is 80.

proxyserver=" proxy_server"

Hostname or IP address of your proxy server. Optional.
publish="Yes|No"

Whether or not the output of the scheduled task should be saved as a static file. Optional. The
default is No.

requesttimeout=" seconds"

Extends the time allowed for execution beyond the default set in the ColdFusion Administrator.
Optional.

resolveurl="Yes|No"

Whether or not to resolve relative links in the retrieved template to absolute URLs. Optional.
The default is No.

startdate=" date"

Start date for the scheduled task. Required when action is Update.

starttime=" time"

Start time for the scheduled task. Required when action is Update.

URL=" URL"

Absolute URL to the template to be executed when the scheduled task runs. Required when
action is Update.

username=" username"

Specifies the username to use for protected URLs. Optional.

cfscript

Updated in ColdFusion MX
<cfscript>

script code
</cfscript>

Tells ColdFusion to process the content between <cfscript></cfscript> as CFScript code. CFScript

can also be used to create user-defined functions (UDFs).

cfsearch

Updated in ColdFusion MX
<cfsearch>

Performs search operations on data contained in Verity collections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

name=" search_name"

Name for the query containing the search results. Required.
collection=" collection_name| collection_path"

The name of the collection you wish to search, or in the case of externally generated
collections, the full path to the collection directory. Multiple collections may be searched
provided the collection names or paths are separated by commas. When specifying multiple
collections, you can't mix internal and external collections, nor can you have VDK and K2
collections in the same search operation. New in ColdFusion MX, collection names can now
contain spaces. Required.

criteria="search_criteria"

The criteria for the search. All-uppercase or all-lowercase text is treated as case insensitive.
Mixed case text is treated as case-sensitive. Optional.

external="Yes|No"

Whether or not the Verity collection being searched was created with a version of Verity other
than the one bundled with ColdFusion. Optional. The default is No. This option is no longer used

in ColdFusion MX as ColdFusion is now capable of automatically detecting whether a collection
is internal or external.

language=" language"

The language to be used when searching the collection. To specify a language other than U.S.
English (the default), you must download and install the appropriate Verity Language Pack for
ColdFusion MX, available at http://www.macromedia.com/go/verity/. Optional.

maxrows=" integer"

Maximum number of records to return for a given search. Optional. The default is all rows.
startrow=" row_number"

The first record number in the query results from which to retrieve data. Optional. The default
is 1.

type="Simple|Explicit"

Type of search to be performed. Optional. The default is Simple, which allows you to use single
words, comma-delimited lists of words, and phrases as the criteria for a search. Simple
searches treat the comma as a Boolean or. Phrases can also be used as the criteria by
surrounding them in quotation marks. By default, Simple searches employ the stem operator
and the many modifier. Explicit searches treat each search term as a literal, so operators

must be used explicitly.

Returned Variables

queryname.ColumnList

Comma-delimited list of the query column names from the search result set.

http://www.macromedia.com/go/verity/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

queryname.CurrentRow

The current row of the query that is being processed by cfoutput.

queryname.Custom1 and queryname.Custom2

Whatever values were placed in the custom fields during the cfindex process.

queryname.Key

The value placed in the key attribute during the cfindex operation.

queryname.RecordCount

The number of records in the Verity collection that match the search criteria provided.
queryname.RecordsSearched

Returns the total number of records from the collection searched by Verity.
queryname.Score

A measure of how relevant a particular record in the Verity collection is in relation to the search
criteria provided.

queryname.Summary

The contents of the summary that the Verity engine automatically creates for each record in
the collection. The summary is made up of the top three sentences from each record and has a
500-character limit.

queryname.Title

The value placed in the title attribute during the cfindex operation. For collections
containing HTML files, the value inside the <title> </title> tags is returned. For PDF and

Microsoft Office documents, the title assigned by the application is returned.
queryname.URL

The value specified in the urlpath during the cfindex operation. This variable is always empty
when the type attribute is set to Custom during the cfindex operation.

cfselect

<cfform>
 <cfselect>
 ...
</cfform>

Creates a Java select box control to use in a cfform block.

Attributes

name=" name"

The form-field name for the select box control. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

display=" text"

An alternate field from the query (other than value) to display in the select box. Optional. The
default is value.

message=" text"

Text to appear if validation fails. Optional.
multiple="Yes|No"

Whether or not multiple item selections should be allowed. Optional. The default is No.

onerror=" function_name"

The name of a JavaScript function that should be executed if validation fails for any reason.
Optional.

passthrough=" HTML_attributes"

Any additional HTML attributes you want to pass that aren't directly supported by the cfselect

tag. Optional.
query=" query_name"

A query to use for populating the drop-down box. Optional.
required="Yes|No"

Whether or not the select box control requires a value before being submitted. Optional. The
default is No.

selected=" column_value"

A value that matches at least one value that is automatically selected when the template is

called. Optional.
size=" integer"

The size of the drop-down box in terms of number of entries. Optional.
value=" text"

The field from query to use to fill in the option values of the select box. Optional.

cfservlet

Deprecated in ColdFusion MX; use the
GetPageContext() function instead

<cfservlet>
 [<cfservletparam>]
 ...
</cfservlet>

Invokes a Java servlet from a ColdFusion template. The cfservlet tag requires Macromedia's JRun

software in order to work. Attributes and parameters may be passed to the Java servlet by nesting
cfservletparam tags within the cfservlet tag. This tag has been deprecated in ColdFusion MX.
Servlets and JSP pages can now be called using the GetPageContext().include() and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetPageContext().forward() functions. Additionally, servlets can be hosted by J2EE servers

other than JRun. See Chapter 23 and Appendix B for more information.

Attributes

code=" servlet_name"

The name of the Java servlet that you want to execute. Required.
debug="Yes|No"

Whether or not to write additional information about the JRun connection status and other
activity to the JRun error log file. For JRun 2.3.3, the error log is located in jrunhomedir/jsm-

default/logs/stderr.log. For JRun 3.0, the error log is found in jrunhomedir/

logs/jrunservername_event.log. Note that jrunservername can be specified as default,
admin, or the name of another JRun server that you are running.

jrunproxy=" server:port"

The hostname or IP address and the port where the JRun engine is located. Required when
connecting to a JRun 3.x server. Optional when connecting to a JRun 2.3.3 server, as the JRun
engine is assumed to be on the same machine as the ColdFusion application server and
listening on port 8081.

timeout=" seconds"

The number of seconds ColdFusion waits while processing a cfservlet request before timing
out the operation. Optional. The default is 60.

writeoutput="Yes|No"

Whether to write output from the servlet as inline text or to store in a variable. If Yes,
ColdFusion outputs the text to the screen. If No, ColdFusion writes the text to the variable
cfservlet.output. Optional. The default is Yes.

Returned Variables

The cfservlet tag can return two output variables depending on how the tag is called:

cfservlet.Output

Returns the text output by the cfservlet tag. This variable is returned only if the
WRITEOUTPUT attribute is set to No.

cfservlet.ServletResponseHeader

If any response headers are returned by the servlet, they are available in a special structure
called cfservlet. Each response header is accessed by specifying its name as a key in the
cfservlet structure.

cfservletparam

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deprecated in ColdFusion MX
<cfservlet>
 [<cfservletparam>]
 ...
</cfservlet>

Used as a child tag of the cfservlet tag to pass parameters and attributes to a Java servlet. Multiple
cfservletparam tags may pass multiple parameters/attributes. Both simple and complex datatypes
such as arrays, queries, and structures can be passed to servlets via cfservletparam tags.

Data can be passed to a servlet in two ways: by value and by reference. To pass data by value (as a
parameter), use the name and value attributes. Data passed by value is modified only within the
servlet. To pass data by reference (as an attribute), use the name, variable, and optionally the type

attribute. If the servlet modifies data passed by reference, the data in the corresponding ColdFusion
variable is also changed.

This tag has been deprecated in ColdFusion MX. See cfservlet for more information.

Attributes

name=" parameter_name"

The name of the parameter to pass to the cfservlet tag when value is also specified. If
variable is used in lieu of value, specifies the name of the Java attribute to associate with the
ColdFusion variable specified in variable. Required.

type="Bool|Date|Int|Real|String"

The datatype of the ColdFusion variable being passed to the servlet. Options are Bool, Date,
Int, Real, and String. Optional. The default is String. To see how various ColdFusion

datatypes map to Java equivalents, see Table A-1.

Table A-1. ColdFusion datatypes and Java equivalents

ColdFusion datatype type attribute Java equivalent

Boolean Bool java.lang.Bool

Date Date java.util.Date

Numeric (integer) Int java.lang.Integer

Numeric (real) Real java.lang.Double

String String java.lang.String

Array N/A, omit type java.util.Vector

Structure N/A, omit type java.util.Hashtable

value=" parameter_value"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion datatype type attribute Java equivalent

Query N/A, omit type com.allaire.util.RecordSet

value=" parameter_value"

The value of the parameter to pass to the cfservlet tag. Required when name is a parameter.

variable=" CF_variable_name"

The name (not the value) of the ColdFusion variable to pass to the cfservlet tag. Required
when name is an attribute. Using the variable attribute allows you to pass complex ColdFusion

datatypes, such as arrays, queries, and structures to Java servlets. To see how various
ColdFusion datatypes map to Java datatypes, see Table A-1.

cfset

Updated in ColdFusion MX

<cfset scope.varname=expression>
<cffunction>

 [<cfset Var scope.varname=expression>]
 ...
</cffunction>

Sets the value of a ColdFusion variable. As of ColdFusion MX, the cfset tag can be used within a
cffunction container to create variables local to the function.

cfsetting

Updated in ColdFusion MX and MX 6.1
<cfsetting enablecfoutputonly="Yes|No"
 showdebugoutput="Yes|No">
 catchexceptionsbypattern="Yes|No"
 requesttimeout="seconds">

CFML
[<cfsetting enablecfoutputonly="Yes|No"
 showdebugoutput="Yes|No">
 catchexceptionsbypattern="Yes|No">]

Controls whitespace, debugging output, exception handling, and request timeout parameters within
ColdFusion templates.

When the enablecfoutputonly attribute is used, cfsetting tags must occur in matched pairs
where both a <cfsetting enablecfoutputonly="Yes"> and a <cfsetting
enablecfoutputonly="No"> are present. cfsetting tags may be nested any number of levels as
long as there are always matching tag pairs. You don't need to use paired cfsetting tags with the
showdebugoutput, catchexceptionsbypattern, or requesttimeout attribute unless it is used in

Query N/A, omit type com.allaire.util.RecordSet

value=" parameter_value"

The value of the parameter to pass to the cfservlet tag. Required when name is a parameter.

variable=" CF_variable_name"

The name (not the value) of the ColdFusion variable to pass to the cfservlet tag. Required
when name is an attribute. Using the variable attribute allows you to pass complex ColdFusion

datatypes, such as arrays, queries, and structures to Java servlets. To see how various
ColdFusion datatypes map to Java datatypes, see Table A-1.

cfset

Updated in ColdFusion MX

<cfset scope.varname=expression>
<cffunction>

 [<cfset Var scope.varname=expression>]
 ...
</cffunction>

Sets the value of a ColdFusion variable. As of ColdFusion MX, the cfset tag can be used within a
cffunction container to create variables local to the function.

cfsetting

Updated in ColdFusion MX and MX 6.1
<cfsetting enablecfoutputonly="Yes|No"
 showdebugoutput="Yes|No">
 catchexceptionsbypattern="Yes|No"
 requesttimeout="seconds">

CFML
[<cfsetting enablecfoutputonly="Yes|No"
 showdebugoutput="Yes|No">
 catchexceptionsbypattern="Yes|No">]

Controls whitespace, debugging output, exception handling, and request timeout parameters within
ColdFusion templates.

When the enablecfoutputonly attribute is used, cfsetting tags must occur in matched pairs
where both a <cfsetting enablecfoutputonly="Yes"> and a <cfsetting
enablecfoutputonly="No"> are present. cfsetting tags may be nested any number of levels as
long as there are always matching tag pairs. You don't need to use paired cfsetting tags with the
showdebugoutput, catchexceptionsbypattern, or requesttimeout attribute unless it is used in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

combination with an enablecfoutputonly attribute. Note that if you provide an end tag
(</cfsetting>) for cfsetting, ColdFusion essentially ignores it as it neither functions nor throws an

error.

Attributes

catchexceptionsbypattern="Yes|No"

Whether or not to override structured exception handling. Optional. The default is No. This

attribute is no longer available in ColdFusion MX.
enablecfoutputonly="Yes|No"

Specifying Yes results in the suppression of all HTML output (including whitespace) between
cfsetting tags. Optional. The default is No.

requesttimeout="seconds"

New in ColdFusion MX. Specifies the number of seconds ColdFusion should wait for the page to
process before marking the thread as unresponsive and timing out the request. This attribute is
designed to replace the method in previous versions of ColdFusion whereby RequestTimeout=x

was passed as part of the query string to a ColdFusion template in order to specify how long
the page should run before timing out. If the requesttimeout attribute is used, it overrides

the value set in the ColdFusion Administrator. If you have older code that uses the URL
parameter RequestTimeOut, you can avoid having to recode all of your templates by placing

the following code at the beginning of your Application.cfm template:
 <cfif IsDefined('URL.RequestTimeOut')>
 <cfsetting requesttimeout = "#URL.RequestTimeout#">
</cfif>

This code checks to see if a URL.RequestTimeOut exists, and if it does, its value is assigned to the
requesttimeout attribute of the cfsetting tag.

showdebugoutput="Yes|No"

Whether or not to suppress debugging information normally output to ColdFusion templates
when debugging is turned on in the ColdFusion Administrator. Optional. The default is Yes.

cfsilent

<cfsilent> ... </cfsilent>

Suppresses all output produced between the cfsilent tags. cfsilent partially supersedes the
cfsetting tag by using a more structured format. cfsilent can suppress generated whitespace in

instances where your template does a lot of looping but doesn't produce any output.

cfslider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enhanced in ColdFusion 5.0; updated in
ColdFusion MX

<cfform>
 <cfslider>
 ...
</cfform>

Creates a Java slider control for use within a cfform block.

Attributes

name=" name"

The form-field name for the slider control. Required.
align=" alignment"

Alignment for the slider control. Valid entries are Left, Right, Top, TextTop, Bottom,
AbsBottom, Baseline, Middle, and AbsMiddle. Optional.

bgcolor=" color"

Background color for the slider control. Follows the same rules as GROOVECOLOR. Optional.
bold="Yes|No"

Whether or not to display the label text in bold. Optional. The default is No.

font=" font_name"

A font name for the label text. Optional.

fontsize=" integer"

A font size for the label text. Optional.

groovecolor=" color"

The text color for all data in the grid. Colors may be specified by name (Black, Blue, Cyan,
Darkgray, Gray, Lightgray, Magenta, Orange, Pink, Red, White, Yellow) or hex code in the
form textcolor="##FFFFCC". The double pound signs are necessary to keep ColdFusion from

throwing a syntax error, or you may omit the pound signs altogether. By using the appropriate
hex code, you can specify colors that can't be specified by name. Optional. The default is
White. This attribute is deprecated and no longer functional as of ColdFusion 5.0.

height=" height_in_pixels"

Height in pixels for the slider. Optional. The default is 40.

hspace=" horizonal_spacing_in_pixels"

Width in pixels for the padding to the left and right of the slider control. Optional.
img=" filename"

The filename of an image to appear in the slider groove. Optional. This attribute is deprecated
and no longer functional as of ColdFusion MX.

imgstyle="style"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The style to use for the image provided in img. Valid entries are Centered, Tiled, and Scaled.
Optional. The default is Scaled. This attribute is deprecated and no longer functional as of

ColdFusion 5.0.
italic="Yes|No"

Whether or not to display the label text in italic. Optional. The default is No.

label=" text"

Text to appear with the slider control. Additionally, %value% may be used within the label text
to insert the current slider value. If %value% is omitted, the current slider value is output to the

right of the label text. Optional.
lookandfeel="Windows|Motif|Metal"

Specifies a theme governing the look and feel of the slider control. Options are Windows,
Motif, and Metal. If no value is specified, ColdFusion first tries Windows, then uses the

platform default. New as of ColdFusion 5.0.
message=" text"

Text to appear if validation fails. Optional.
notsupported=" text"

A text message to display if the user's browser doesn't support Java or Java is disabled
Optional. If no message is specified, ColdFusion displays a default message.

onerror=" function_name"

The name of a JavaScript function that should be executed if validation fails for any reason.
Optional.

onvalidate=" javascript_function"

A JavaScript validation function that should be executed before the form is submitted. Optional.
range=" min_value, max_value"

The beginning and ending values (numeric only) for the slider control. Optional. The default is
0,100.

refreshlabel="Yes|No"

Whether or not the label should be refreshed when the slider moves. Default is Yes.

scale=" integer"

The incremental value to use between the values provided by range. Optional. The default is 1.

textcolor=" color"

Color to use for the label text. Follows the same rules as groovecolor. Optional.

tickmarkimages=" URL"

A URL or comma-delimited list of URLs (relative or absolute) to images you wish to use as tick
marks for the slider control. The default is no images. New as of ColdFusion 5.0.

tickmarklabels="Yes|No| String"

Whether or not to display labels next to each major tick mark. If Yes, the numeric value

corresponding to the tick mark is displayed. Instead of numeric values, you may choose to
display string values instead, by specifying a string or comma-delimited list of string values,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

one for each major tick mark between the minimum value and the maximum value for the
slider. If you don't provide enough tick mark strings, the cfslider control repeats the last
value until enough have been displayed. Optional. The default is No. New as of ColdFusion 5.0.

tickmarkmajor="Yes|No"

Whether or not to display tick marks at every increment value along the axis of the slider
control. For example, if the range for the slider is between 0 and 100 with an increment of 10,
a major tick mark is displayed every 10 values, at 0, 10, 20, etc. The default is No. New as of

ColdFusion 5.0.
tickmarkminor="Yes|No"

Whether or not to display tick marks between every increment value along the axis of the
slider control. For example, if the range for the slider is between 0 and 100 with an increment
of 10, a minor tick mark is displayed every 10 values, between the major tick marks, at 5, 15,
25, etc. The default is No. New as of ColdFusion 5.0.

value=" integer"

The default slider value. Optional. The default is the bottom number in range.
vertical="Yes|No"

Indicates whether the slider control should be vertical, with the slider moving up and down. The
default is No. New as of ColdFusion 5.0.

vspace=" vertical_spacing_in_pixels"

Height in pixels for the padding above and below the slider control. Optional.
width=" width_in_pixels"

Width in pixels for the slider. Optional.

cfstoredproc

<cfstoredproc>
 [<cfprocparam>]
 [<cfprocresult>]
 ...
</cfstoredproc>

Executes a stored procedure on a data source.

Attributes

procedure=" procedure_name"

The name of the stored procedure on the database server that you want to call. Required.
datasource=" datasource_name"

The data source that contains the stored procedure. Required.
blockfactor=" block_size"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The maximum number of rows to retrieve from the server at a time. Optional. The range is
from 1 to 100. 1 is the default. Note that some drivers may reduce the block factor

automatically.
connectstring=" connection_string"

Passes additional connection information to an ODBC data source that can't be passed via the
ColdFusion Administrator. connectstring can also override connection information set for a

data source already registered in the ColdFusion Administrator. When making a dynamic data-
source connection (when dbtype is Dynamic), connectstring specifies all the information

required to connect to the data source. For specific connection-string options, you should
consult the documentation for your particular database. New as of ColdFusion 5.0. This
attribute is no longer supported in ColdFusion MX.

dbname=" database_name"

Specifies the database name. For the Sybase System 11 native driver and SQLOLEDB provider
only. Optional. Overrides any value set for datasource. This attribute is no longer supported in

ColdFusion MX.
dbtype=" database_type"

The type of database driver to use. Optional. This attribute is no longer supported in ColdFusion
MX. Possible choices are:

ODBC (the default)

Connect to the data source using an ODBC driver.
OLEDB

Connect using an OLEDB driver.
Oracle73

Connect using the Oracle 7.3 native driver. This requires the 7.3.4.0.0 or later client
libraries be installed on the ColdFusion server.

Oracle80

Connect using the Oracle 8 native driver. This requires the 8.0 or later client libraries be
installed on the ColdFusion server.

Sybase11

Connect using the Sybase 11 native driver. This requires the 11.1.1 or later client
libraries be installed on the ColdFusion server.

DB2

Connect using the DB2 5.2 native driver.
Informix73

Connect using the Informix 7.3 native driver. This requires the Informix SDK 2.5 or later
or Informix-Connect 2.5 (or later) for Windows.

Dynamic

Allows ColdFusion to make an ODBC connection to a data source without having to have
the data source registered in the ColdFusion Administrator. When making a dynamic
connection, all information normally provided in the ColdFusion Administrator for the
connection must be specified in the connectstring attribute. New as of ColdFusion 5.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dbserver=" database_server"

The name of the database server to connect to when using native drivers. Specifying a
dbserver overrides any value set for datasource. Optional. This attribute is no longer

supported in ColdFusion MX.
debug="Yes|No"

Whether or not debugging information is to be output. Optional. The default is No.

password=" password"

Password associated with username. Optional. If a password is specified, it overrides the value

set in the ColdFusion Administrator.
provider=" COM_provider"

COM provider for OLE DB connections. Optional. This attribute is no longer supported in
ColdFusion MX.

providerdsn=" datasource"

COM provider's data-source name for OLE DB. Optional. This attribute is no longer supported in
ColdFusion MX.

returncode="Yes|No"

If set to Yes, populates cfstoredproc.StatusCode with the status code returned by the
stored procedure. Optional. The default is No.

username=" username"

Username to pass to the data source if one is required. Optional. If a username is specified, it
overrides the value set in the ColdFusion Administrator.

Returned Variables

cfstoredproc.StatusCode

Returned when returncode is set to Yes. Contains the status code returned by the stored

procedure.
cfstoredproc.ExecutionTime

The number of milliseconds it takes the stored procedure to execute.

cfswitch

Updated in ColdFusion MX

<cfswitch expression="expression">

 <cfcase value="value" delimiters="delimiter">

 HTML and CFML
 </cfcase>

 <cfcase value="value" delimiters="delimiter">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HTML and CFML
 </cfcase>
 ...
 [<cfdefaultcase>

 HTML and CFML
 </cfdefaultcase>]
</cfswitch>

Evaluates an expression against multiple values until a match is made. Once a match has been made,
cfswitch passes control to the appropriate cfcase tag where additional action can take place. If no
value matches expression, the code between the cfdefaultcase tags is executed. As of ColdFusion
MX, the cfdefaultcase tag no longer has to be coded as the last statement in a cfswitch block,

although it is considered good style to do so.

cfswitch/cfcase/cfdefaultcase is similar in function to cfif/cfelseif/cfelse.
cfswitch/cfcase/cfdefaultcase is usually faster than using multiple cfif statements and is

generally easier to read.

Attributes

expression=" expression"

Any ColdFusion expression that evaluates to a simple value (string, number, Boolean,
date/time). Required.

value=" value"

A value or delimited list of values cfswitch uses to perform a case-insensitive comparison
against the specified expression. If a value listed in value matches expression, the code
between the cfcase tags is executed. Required.

delimiters=" delimiter"

Specifies the character that separates multiple entries in the value attribute. Optional. The

default is a comma.

cftable

Builds an HTML table from a query result set.

<cftable>
 [<cfcol>]
 [<cfcol>]
 ...
</cftable>

Attributes

query=" query_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the query from which to pull the data used to populate the table. Required.
border

Used in conjunction with the htmltable attribute. Adds a border to the table. Optional.

colheaders=" integer"

Displays the header for each column as specified in the header attribute of the cfcol tag.

Optional.
colspacing=" integer"

The number of spaces to insert between columns in the table. Optional. The default is 2.

headerlines=" integer"

Displays headers for each column as specified in the cfcol tag. Optional.
htmltable

Creates the table as an HTML 3.0 table. Optional.
maxrows=" integer"

The maximum number of rows to output. Optional.
startrow=" row_number"

The query row to begin outputting from. Optional.

cftextinput

Updated in ColdFusion MX 6.1
<cfform>
 <cftextinput>
 ...
</cfform>

Creates a Java-based text input control for use within a cfform. Provides data validation as well as

customizable display characteristics.

Attributes

name=" name"

The form-field name for the text input control. Required.
align=" alignment"

Alignment of the text input control. Optional. Valid entries are Left, Right, Top, TextTop,
Bottom, AbsBottom, Middle, AbsMiddle, and Baseline.

bgcolor=" color"

Background color for the text input control. Colors may be specified by name (Black, Blue,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cyan, Darkgray, Gray, LightGray, Magenta, Orange, Pink, Red, White, Yellow) or hex code in
the form bgcolor="##FFFFCC". The double pound signs are necessary to keep ColdFusion from

throwing a syntax error, or you may omit the pound signs altogether. Optional.
bold="Yes|No"

If Yes, displays text in bold. Optional. The default is No.

font=" font_name"

The font face to use for text displayed in the text input control.
fontsize=" integer"

The font size for text displayed in the text input control.
height=" height_in_pixels"

Height of the text input control in pixels. Optional.
hspace=" horizontal_spacing_in_pixels"

Width in pixels for the padding to the left and right of the text input control. Optional.
italic="Yes|No"

If Yes, displays text in italic. Optional. The default is No.

message=" text"

Text to appear if validation fails. Optional.
maxlength=" integer"

The maximum number of characters to accept in the text input control. Optional.
notsupported=" text"

A text message to display if the user's browser doesn't support Java or Java is disabled
Optional. If no message is specified, ColdFusion displays a default message.

onerror=" function_name"

The name of a JavaScript function that should be executed if validation fails for any reason.
Optional.

onvalidate=" javascript_function"

A JavaScript validation function that should be executed before the form is submitted.
Specifying a value for onvalidate overrides any values set in the validate attribute. Optional.

pattern=" javascript_regular_expression"

JavaScript regular expression used to match form input when validate is
Regular_Expression. pattern may contain ColdFusion variables and expressions as they are

evaluated prior to the execution of the regular expression. Optional. New as of ColdFusion 5.0.
range=" min_value, max_value"

A range of acceptable numeric values for the form-field. Optional.
required="Yes|No"

Whether or not the text input control requires a value before being submitted. Optional. The
default is No.

size=" integer"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The number of characters to display before a horizontal scroll bar appears. Optional.
textcolor=" color"

Color to use for text entered in the text input control. Follows the same rules as bgcolor.

Optional.
validate=" validation_type"

Validates the contents of the form-field before they are submitted using one of the following
criteria; optional:

CreditCard

Validates the form-field data using the mod10 algorithm. A credit-card number can be
entered as a single value or with dashes or spaces and must be between 12 and 16 digits
in length. ColdFusion automatically strips dashes and spaces before validating.

Date

Requires the form-field value to be in the U.S. date format, mm/dd/yyyy.
EuroDate

Requires the form-field value to be in the European date format, dd/mm/yyyy.
Float

Requires the form-field value to be a floating-point number.
Integer

Requires the form-field value to be an integer.
Social_Security_Number

Requires the form-field value to be a U.S. Social Security number in the format xxx-xx-

xxxx or xxx xx xxxx.
Telephone

Requires the form-field value to be a U.S. telephone number formatted either xxx-xxx-

xxxx or xxx xxx xxxx. The area code and exchange are required to begin with a number

in the range of 1-9.
Time

Requires that the form-field value be entered as a valid time using the format hh:mm:ss.
ZipCode

Requires that the form-field value be entered as either a five- or nine-digit U.S. ZIP code
number using the format xxxxx, xxxxx-xxxx, or xxxxx xxxx.

Regular_Expression

Validates the form-field data against a JavaScript regular expression specified in the
pattern attribute.

value=" text"

The initial value for the text input control. Optional.
vspace=" vertical_spacing_in_pixels"

Height in pixels for the padding above and below the text input control. Optional.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

width=" width_in_pixels"

Width of the text input control in pixels. Optional.

cfthrow

Updated in ColdFusion MX
<cfthrow>

Creates a custom exception type that can be caught by the cftry/cfcatch tags when the type
attribute of the cfcatch tag is set to Application, Any, or the custom type you specify in the
cfthrow tag.

You can name custom exception types in a hierarchical manner so that you can reference groups of
custom exception types with a single cfcatch tag. Consider the following cfthrow tag:

<cfthrow type="MyApp.RequiredParameters.MyVar">

Any of the three following cfcatch tags can be used to catch the exception:

<cfcatch type="MyApp.RequiredParameters.MyVar ">
<cfcatch type="MyApp.RequiredParameters">
<cfcatch type="MyApp">

Attributes

detail=" event_description"

Additional information to append to the detailed error information supplied by ColdFusion.
Optional.

errorcode=" error_code"

A custom error code you want to make available. Optional.
extendedinfo=" extended_information"

Additional information regarding the error that you want to make available. Optional.
message=" error_message"

Message describing the event that triggered the exception. Optional.
object=" name"

Used to throw a Java exception from a CFML page. Name specifies the name of the object
throwing the exception. This must be the same as the name attribute of the cfobject tag.
Optional. If the OBJECT attribute is used, all other attributes are ignored.

type=" exception_type"

A name for the exception type. You may give the exception type a custom name or use the
predefined types Application or Any. Optional. The default is Application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returned Variables

When cfthrow is used in conjunction with the cftry and cfcatch tags, the following variables are

available when an exception is thrown:

cfcatch.Type

The exception type specified in the type attribute of the cfcatch tag.
cfcatch.Message

The error message generated by the exception, if any.
cfcatch.Detail

A detailed error message generated by the CFML interpreter.
cfcatch.TagContext

The name and position of each tag in the tag stack as well as the full pathnames of the files
containing the tags. In versions of ColdFusion prior to MX, CFML Stack Trace had to be enabled
in the Debugging section of the ColdFusion Administrator in order to populate this variable. This
is no longer true in ColdFusion MX.

cfcatch.ErrorCode

The contents of the ErrorCode attribute, if any, from the cfthrow tag.
cfcatch.ExtendedInfo

The contents of the ExtendedInfo attribute, if any, from the cfthrow tag.

cftrace

New in ColdFusion MX
<cftrace>

Traces execution of a ColdFusion page. Logs and optionally displays customizable debugging
information about the trace. Trace information is automatically written to a log file named cftrace.log,
stored in \cfmxroot\logs. The log entry is made using the cflog tag behind the scenes. Debugging
must be enabled in the ColdFusion Administrator in order to use cftrace.

The log file generated by cftrace follows a standard format. The first line of each log file contains a

comma-delimited list of column headers, qualified with double quotes, that looks like this:

"Severity","ThreadID","Date","Time","Application","Message"

When an entry is made to the log file, the values that are written to each column are also qualified
with double quotes and delimited with commas. The values written to the log file are:

Severity

The severity of the trace point as defined by the type attribute of the cftrace tag.
ThreadID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ID of the thread that serviced the page request.
Date

Date the trace took place.
Time

Time the trace took place.
Application

Name of the application as defined in the application's cfapplication tag. If no
cfapplication tag exists for the page being traced, a blank entry is made in the log file.

Message

Contains information about the trace point, including execution time up until the trace point
occurred, the full path to the template containing the trace, the line number where the trace
occurred, user-defined category for the trace, the name of the variable (if any) specified in the
var attribute of the cftrace tag and its value if it contains a simple value, and any user-
defined message text specified in the text attribute of the cftrace tag. The log entry for the
Message field follows this format:

"[execution_time] [template_path @ line_num] - [category] [variable] message text"

In addition to the log file, trace information can also be displayed in the browser by setting the
inline attribute to Yes. If debugging is turned on and Tracing Information is checked in the

Debugging section of the CF Administrator, tracing summary information is also displayed in the
debug output section generated with the page request.

Attributes

abort="Yes|No"

If Yes, automatically calls the cfabort tag after the cftrace tag has executed. Optional. The
default is No.

category=" category_name"

Specifies a user-defined category name for grouping trace data. The category is displayed to
the browser if inline is Yes, and it is always written to the cftrace.log file. Optional.

inline ="Yes|No"

If Yes, displays trace code in the browser. Optional. The default is No.

text=" text"

Text to write to the cftrace.log file, and optionally to output to the browser if inline is Yes.
Corresponds to the cflog tag's text attribute. You may include variables (enclosed in pound

signs) containing simple datatypes in this attribute; they will be evaluated at runtime. Optional.
type=" severity"

The severity you wish to assign to the trace. If the trace output is inline (to the browser), a
graphic icon representing the severity is displayed. Possible entries are Information, Warning,
Error, and Fatal. These values correspond to the types available in the cflog tag's type
attribute. Optional. The default is Information.

var=" variable_name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name of a variable you want display in the browser. The variable can be simple (such as a
string) or complex (such as an array). If inline is Yes, this attribute causes the cftrace tag
to output the value of the variable in a nicely formatted table, just like the cfdump tag. In fact,
cftrace uses cfdump behind the scenes to generate the output. Unlike cfdump, the value you
specify for var need only be the variable name and should not be surrounded by pound signs.

Optional.

cftransaction

<cftransaction>

CFML code
</cftransaction>

Treats all query operations between <cftransaction>...</cftransaction> tags as a single

transaction. Changes to the database aren't committed until all queries in the transaction have
executed successfully. In the event that a query within the transaction fails, all previous queries are
automatically rolled back.

cftransaction tags may be nested to allow portions of the transaction to be committed or rolled
back within the main cftransaction block. More than one database may be written to within a
single cftransaction block if each transaction is committed or rolled back prior to writing a query to
the next database. Exception handling using cftry/cfcatch gives you full control over how queries
are committed and rolled back within cftransaction blocks.

Attributes

action="begin|commit|rollback"

The action to take. Optional. The default value is Begin, which specifies the beginning of a
block of code to execute as a transaction. Commit commits a pending transaction, and
Rollback rolls back a pending transaction.

isolation=" ODBC_lock_type"

The ODBC lock type to use for the transaction. The following ODBC lock types are supported:
Read_Uncommitted, Read_Committed, Repeatable_Read, and Serializable.

cftree

Enhanced in ColdFusion 5.0
<cfform>
 <cftree>
 [<cftreeitem>]
 ...
 </cftree>
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfform>

Creates a Java tree control within a cfform block.

Attributes

name=" name"

The form-field name for the tree control. Required.
align=" alignment"

Alignment for the tree control. Valid entries are Left, Right, Top, TextTop, Bottom,
AbsBottom, Baseline, Middle, and AbsMiddle. Optional.

appendkey="Yes|No"

Whether or not to append the cftreeitemkey variable to the end of the value of a selected
cftreeitem. Optional. The default is Yes.

bold="Yes|No"

If Yes, displays text in bold. Optional. The default is No.
border="Yes|No"

Whether or not to add a border around the tree control. Optional. The default is No.
completepath="Yes|No"

Whether or not to pass the root level of the Path form variable (form.TreeName.Path) when
the cfform containing the cftree is submitted. If No, the root level of the form isn't passed.
Optional. The default is No.

delimiter=" delimiter"

The delimiter to use to separate the segments of returned in the Path form variable

(form.TreeName.Path). Optional. The default is the backslash (\).

font=" font_name"

Font face to use for text appearing in the tree control. Optional.
fontsize=" integer"

Font size to use for text appearing in the tree control. Optional.
height=" height_in_pixels"

Height in pixels for the tree control's display area. Optional.
highlighthref="Yes|No"

Whether or not to highlight links specified in the href attribute of associated cftreeitem tags.
Optional. The default is Yes.

hscroll="Yes|No"

Whether or not to allow horizontal scrolling. Optional. The default is Yes.

hspace=" horizontal_spacing_in_pixels"

Width in pixels for the padding to the left and right of the tree control. Optional.
italic="Yes|No"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Yes, displays text in italic. Optional. The default is No.
lookandfeel="Windows|Motif|Metal"

Specifies a theme governing the look and feel of the tree control. Optional. If no value is
specified, ColdFusion first tries Windows, then uses the platform default. New as of ColdFusion

5.0.
message=" text"

Text to appear if validation fails. Optional.
notsupported=" text"

A text message to display if the user's browser doesn't support Java or Java is disabled
Optional. If no message is specified, ColdFusion displays a default message.

onerror=" function_name"

The name of a JavaScript function that should be executed if validation fails for any reason.
Optional.

onvalidate=" javascript_function"

A JavaScript validation function that should be executed before the form is submitted. Optional.
required="Yes|No"

Whether or not the tree control requires a value before being submitted. Optional. The default
is No.

vscroll="Yes|No"

Whether or not to allow vertical scrolling. Optional. The default is Yes.

vspace=" vertical_spacing_in_pixels"

Height in pixels for the padding above and below the tree control. Optional.
width=" width_in_pixels"

Width in pixels for the tree control's display area. Optional.

Returned Variables

When you submit a cfform containing a cftree control, two form variables are made available to the

template being posted to:

form. TreeName.Node

The node selected by the user from the tree.
form. TreeName.Path

If the completepath attribute is set to Yes, form.TreeName.Path returns the user's selection

specified as root\node1\noden\value. Otherwise, form.TreeName.Path returns the path from
the first node. The delimiter can be changed by specifying a value for the delimiter attribute.

cftreeitem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cftree>
 [<cftreeitem>]
 ...
</cftree>

Used in conjunction with cftree to populate a Java tree control.

Attributes

value=" text"

The value to pass when submitting the cfform. If populating the tree from a query, multiple

column names should be specified in a comma-delimited list. Required.
display=" text"

The label to use for the tree item. Label names are specified in a comma-delimited list when
populating a tree from a query. Optional. The default is value.

expand="Yes|No"

Whether or not a given branch should be expanded to show its children branches by default.
Optional. The default is Yes. Although undocumented, the expand attribute can accept a
comma-delimited list of Yes|No values indicating whether or not to expand additional sublevels

in the tree.
href=" URL"

A URL to associate with the tree item or the name of a query column (from a query used to
populate the tree) containing href values. If the tree is being populated from a query, href

URLs can be specified in a comma-delimited list. The URLs may be relative or absolute.
Optional.

img=" filename"

The image to use with the tree item. You may specify a path to your own image or use one of
the images supplied with ColdFusion by referencing the image name. Multiple images may be
assigned to recursive levels of the tree by entering them in a comma- separated list. Valid
options for img are CD, Computer, Document, Element, Folder, Floppy, Fixed, and Remote.
Optional. The default image is Folder. If you choose to use your own image, you should try to

limit the size to 20 pixels by 20 pixels.
imgopen=" filename"

Image to display when a tree branch is opened. You may use the same images as the IMG tag

or supply your own. Optional.
parent=" parent_name"

The value of the tree item's parent. Optional.

query=" query_name"

Name of the query that generates data for the tree control. Optional.
queryasroot="Yes|No| string"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Defines the specified query as the root level of the tree control. This prevents having to code
an additional parent cftreeitem for the root level. Optional. The default is No. Besides Yes|No,
queryasroot also allows you to specify an arbitrary string to use as the query root.

target=" URL_target"

The name of a frame or window that the template specified in the href attribute should be

opened in. Optional.

cftry

Updated in ColdFusion MX
<cftry>

CFML

<cfcatch type="exception_type">

HTML and CFML
</cfcatch>

<cfcatch type="exception_type">

HTML and CFML
</cfcatch>
...
</cftry>

Traps and processes predefined and developer-specified exceptions within ColdFusion templates. The
cftry/cfcatch tags allow you to handle exceptions in your templates gracefully, without having to
abort processing. Exceptions occurring within cfcatch blocks can't be handled by the same cftry
block governing the cfcatch block. At least one cfcatch block must be nested within a cftry block.
cfcatch tags are processed in the order in which they are coded within a template.

Attributes

type=" exception_type"

Specifies the type of exception to trap. Valid entries are:

Application

Catches application-level exceptions defined using the Application type in the cfthrow

tag.
Any (default)

Catches unexpected exceptions. In versions of ColdFusion prior to MX, it was
recommended that this exception type be coded as the last cfcatch within a cftry

block. This is no longer the case in ColdFusion MX.
CustomType

Catches developer-specified exceptions as defined with the cfthrow tag.
Database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Catches exceptions raised when interacting with data sources.
Expression

Catches exceptions that occur when an expression's evaluation results in an error.
Lock

Catches exceptions associated with the cflock tag, such as timeouts, etc.
MissingInclude

Catches exceptions that occur when an included template isn't found. This exception type
covers exceptions thrown by the cfinclude, cfmodule, and cferror tags.

Object

Catches exceptions associated with external objects such as COM/DCOM, CORBA, and
Java.

SearchEngine

Catches exceptions associated with the cfcollection, cfindex, and cfsearch tags.

New in ColdFusion MX.
Security

Catches exceptions that result when authentication fails within the ColdFusion security
framework.

Template

Catches general application errors associated with ColdFusion templates.

Besides the values already listed for the type attribute, ColdFusion also supports a number of

additional structured exception types. These exception types are generated by very specific
conditions such as request timeouts or by exceptions encountered as the result of a call to various
ColdFusion tags. These exception types are as follows:

COM.Allaire.ColdFusion.HTTPConnectionTimeout
COM.Allaire.ColdFusion.HTTPFailure
COM.Allaire.ColdFusion.HTTPAuthFailure
COM.Allaire.ColdFusion.HTTPFileNotFound
COM.Allaire.ColdFusion.HTTPFileNotPassed
COM.Allaire.ColdFusion.HTTPUrlValueNotPassed
COM.Allaire.ColdFusion.HTTPCGIValueNotPassed
COM.Allaire.ColdFusion.HTTPCookieValueNotPassed
COM.Allaire.ColdFusion.HTTPFileNotRenderable
COM.Allaire.ColdFusion.HTTPFileInvalidPath
COM.Allaire.ColdFusion.HTTPContinue
COM.Allaire.ColdFusion.HTTPSwitchingProtocols
COM.Allaire.ColdFusion.HTTPCreated
COM.Allaire.ColdFusion.HTTPAccepted
COM.Allaire.ColdFusion.HTTPNonAuthoritativeInfo
COM.Allaire.ColdFusion.HTTPNoContent
COM.Allaire.ColdFusion.HTTPResetContent
COM.Allaire.ColdFusion.HTTPPartialContent
COM.Allaire.ColdFusion.HTTPMultipleChoices
COM.Allaire.ColdFusion.HTTPMovedPermanently

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COM.Allaire.ColdFusion.HTTPMovedTemporarily
COM.Allaire.ColdFusion.HTTPSeeOther
COM.Allaire.ColdFusion.HTTPNotModified
COM.Allaire.ColdFusion.HTTPUseProxy
COM.Allaire.ColdFusion.HTTPBadRequest
COM.Allaire.ColdFusion.HTTPPaymentRequired
COM.Allaire.ColdFusion.HTTPForbidden
COM.Allaire.ColdFusion.HTTPNotFound
COM.Allaire.ColdFusion.HTTPMethodNotAllowed
COM.Allaire.ColdFusion.HTTPNotAcceptable
COM.Allaire.ColdFusion.HTTPProxyAuthenticationRequired
COM.Allaire.ColdFusion.HTTPConflict
COM.Allaire.ColdFusion.HTTPGone
COM.Allaire.ColdFusion.HTTPContentLengthRequired
COM.Allaire.ColdFusion.HTTPPreconditionFailed
COM.Allaire.ColdFusion.HTTPCFHTTPRequestEntityTooLarge
COM.Allaire.ColdFusion.HTTPRequestURLTooLarge
COM.Allaire.ColdFusion.HTTPUnsupportedMediaType
COM.Allaire.ColdFusion.HTTPServerError
COM.Allaire.ColdFusion.HTTPNotImplemented
COM.Allaire.ColdFusion.HTTPBadGateway
COM.Allaire.ColdFusion.HTTPServiceUnavailable
COM.Allaire.ColdFusion.HTTPGatewayTimeout
COM.Allaire.ColdFusion.HTTPVersionNotSupported
COM.Allaire.ColdFusion.POPConnectionFailure
COM.Allaire.ColdFusion.POPAuthFailure
COM.Allaire.ColdFusion.POPDeleteError
COM.Allaire.ColdFusion.SERVLETJRunError
COM.Allaire.ColdFusion.Request.Timeout
COM.Allaire.ColdFusion.cfexecute.Timeout
COM.Allaire.ColdFusion.cfexecute.OutputError
COM.Allaire.ColdFusion.FileException

Additionally, as of ColdFusion MX, you can now specify Java exception classes in the type attribute.

This gives you even more granular control over error handling as every exception thrown by
ColdFusion belongs to one of these classes. An exception's class can be viewed by turning debugging
on in the ColdFusion Administrator and looking at the first line in the stack trace of the error output.
Another benefit of this type of exception handling is you can use it to handle exceptions thrown by
non CFML Java objects.

Returned Variables

The following variables are available regardless of the exception type raised. Note that cfcatch
variables without values do not appear in the output generated by the cfdump tag:

cfcatch.Type

The exception type specified in the type attribute of the cfcatch tag.
cfcatch.Message

The error message generated by the exception, if any.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfcatch.Detail

A detailed error message generated by the CFML interpreter.
cfcatch.RootCause

Returns a Java object containing the Java servlet exception generated by the JVM as the
exception's root cause. This variable is new in ColdFusion MX.

cfcatch.TagContext

The name and position of each tag in the tag stack as well as the full pathnames of the files
containing the tags as an array of structures. Each structure in the TagContext array contains

the following elements:

type

Type of page generating the exception. type always returns "CFML". This key is new in

ColdFusion MX.
ID

The name of the tag within the stack where the exception occurred. If the exception
occurs within cfscript tags, ID returns "??".

template

The full path to the template containing the tag.
line

The line number within the template where the tag was found.
column

No longer supported in ColdFusion MX. This key is still available for backward compatibility with
previous versions of ColdFusion, but it always returns 0. In previous versions of ColdFusion,
column returned the column number within the template where the tag was found.

raw_trace

The raw Java stack trace for the exception. This key is new in ColdFusion MX. In versions of
ColdFusion prior to MX, CFML Stack Trace must be enabled in the Debugging section of the
ColdFusion Administrator in order to populate this variable. If this option isn't enabled,
ColdFusion returns a zero-length array for cfcatch.TagContext.

cfcatch.ErrorCode

The contents of the ErrorCode attribute, if any, as passed from the cfthrow tag when type is
Application or Custom. Returns the same value as SQLState when type is Database. Returns
an empty string for all other type values.

The remaining variables are all specific to the exception type specified in the type attribute of the
cfcatch tag:

cfcatch.DataSource (type is Database)

The name of the data source where the exception occurred. This variable is new in ColdFusion
MX.

cfcatch.NativeErrorCode (type is Database)

The native error code supplied by the database driver for the particular exception. If no error

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code is provided, ColdFusion returns a value of -1. If the database driver used for the data
source is a type 1 JDBC driver, the value returned is the same as would be returned in
ColdFusion 5. Type 4 drivers may return different values.

cfcatch.SQLState (type is Database)

The SQLState supplied by the database driver for the particular exception. If no SQLState is

returned, ColdFusion returns a value of -1.
cfcatch.Where (type is Database)

Only available if a cfqueryparam tag was used with the query throwing the error. Returns
name/value pairs representing the attributes of the cfqueryparam tag and their associated

values. This variable is new in ColdFusion MX.
cfcatch.QueryError

Error message returned by the database driver.
cfcatch.SQL

SQL contained in the query that generated the exception. This variable is new in ColdFusion
MX.

cfcatch.ErrNumber (type is Expression)

An internal error number associated with the expression.
cfcatch.LockName (type is Lock)

The name of the lock affected by the exception. If the lock is unnamed, returns anonymous.
cfcatch.LockOperation (type is Lock)

The operation that caused the exception. Valid return values are Timeout, MuteEx, and
Unknown.

cfcatch.MissingFileName (type is MissingInclude)

The name of the missing include file.
cfcatch.ExtendedInfo (type is Application or Custom)

The contents of the ExtendedInfo attribute, if any, from the cfthrow tag.

cfupdate

Updated in ColdFusion MX
<cfupdate>

Updates records in a database. The cfupdate tag provides a way to update database records without
having to wrap the SQL in a cfquery.

Attributes

datasource=" datasource_name"

The name of the data source to connect to when performing the update. Required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connectstring=" connection_string"

Passes additional connection information to an ODBC data source that can't be passed via the
ColdFusion Administrator. connectstring can also override connection information set for a

data source already registered in the ColdFusion Administrator. When making a dynamic data
source connection (when dbtype is Dynamic), connectstring specifies all the information

required to connect to the data source. For specific connection-string options, you should
consult the documentation for your particular database. New as of ColdFusion 5.0. This
attribute is no longer supported in ColdFusion MX.

dbname=" database_name"

The database name. For the Sybase System 11 native driver and SQLOLEDB provider only.
Optional. Overrides any value set for datasource. This attribute is no longer supported in

ColdFusion MX.
dbtype=" database_type"

The type of database driver to use. Optional. This attribute is no longer supported in ColdFusion
MX. Possible choices are:

ODBC (the default)

Connect to the data source using an ODBC driver.
OLEDB

Connect using an OLEDB driver.
Oracle73

Connect using the Oracle 7.3 native driver. This requires the 7.3.4.0.0 or later client
libraries be installed on the ColdFusion server.

Oracle80

Connect using the Oracle 8 native driver. This requires the 8.0 or later client libraries be
installed on the ColdFusion server.

Sybase11

Connect using the Sybase 11 native driver. This requires the 11.1.1 or later client
libraries be installed on the ColdFusion server.

DB2

Connect using the DB2 5.2 native driver.
Informix73

Connect using the Informix 7.3 native driver. This requires the Informix SDK 2.5 or later
or Informix-Connect 2.5 (or later) for Windows.

Dynamic

Allows ColdFusion to make an ODBC connection to a data source without having to have
the data source registered in the ColdFusion Administrator. When making a dynamic
connection, all information normally provided in the ColdFusion Administrator for the
connection must be specified in the connectstring attribute. New as of ColdFusion 5.0.

dbserver=" database_server"

The name of the database server to connect to when using native drivers. Specifying a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dbserver overrides any value set for datasource. Optional. This attribute is no longer

supported in ColdFusion MX.
formfields=" field_names"

A comma-delimited list of form fields to update. Optional. If no form fields are supplied,
ColdFusion attempts to update the database using all the form fields passed from the form.

password=" password"

Password associated with username. Optional. If a password is specified, it overrides the value

set in the ColdFusion Administrator.
provider=" COM_provider"

COM provider for OLE DB connections. Optional. This attribute is no longer supported in
ColdFusion MX.

providerdsn=" datasource"

COM provider's data-source name for OLE DB. Optional. This attribute is no longer supported in
ColdFusion MX.

tablename=" table_name"

The name of the table to perform the update on. Required. Note that Oracle database drivers
require the table name to be in all uppercase. In addition, Sybase database drivers use a case-
sensitive table name.

tableowner=" table_owner"

The name of the table owner for databases that support this feature (e.g., Oracle, SQL Server,
and SQL Anywhere). Optional.

tablequalifier=" qualifier"

The table qualifier for databases that support the feature (e.g., Oracle and SQL Server).
Optional.

username=" username"

Username to pass to the data source if one is required. Optional. If a username is specified, it
overrides the value set in the ColdFusion Administrator.

cfwddx

<cfwddx>

Serializes and deserializes data according to the WDDX XML DTD. The cfwddx tag can also create
JavaScript statements that instantiate equivalent JavaScript objects. The cfwddx tag can

serialize/deserialize binary data. Binary data is automatically base64-encoded before being serialized.
This capability allows you to send binary files in WDDX packets. More information on WDDX can be
found athttp://www.openwddx.org.

Attributes

http://www.openwddx.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

action=" action"

The action to be performed by the cfwddx tag. Required. Possible actions are CFML2WDDX,
which serializes CFML to WDDX; WDDX2CFML, which deserializes WDDX to CFML; CFML2JS,
which serializes CFML to JavaScript; and WDDX2JS, which deserializes WDDX to JavaScript.

input=" data"

The data to be serialized/deserialized. Required.
output=" variable_name"

A variable to hold the data after it has been serialized/deserialized. Required when action is
WDDX2CFML. For all other actions, if no value is specified for output, the processing results are

outputted in the HTML stream.
toplevelvariable=" variable_name"

The name of the top-level JavaScript object created when deserialization occurs. Required
when action is set to CFML2JS or WDDX2JS.

usetimezoneinfo="Yes|No"

Whether or not to use time-zone information when serializing CFML to WDDX. If this attribute
is set to Yes, ColdFusion calculates the hour/minute offset for all date/time objects in the
WDDX packet. If set to No, local time is used for all date/time objects. Optional. The default is
Yes.

validate="Yes|No"

Whether or not to use a validating XML parser with the WDDX DTD to determine whether the
value specified in input is a well-formed WDDX packet when action is WDDX2CFML or
WDDDX2JS. If the value is a well-formed WDDX packet, deserialization takes place. If the value
isn't well-formed WDDX, an exception is thrown. The validate parameter performs the same
job as the IsWDDX() function.

cfxml

New in ColdFusion MX
<cfxml>

 XML and CFML
</cfxml>

Creates a ColdFusion XML document object from the XML and CFML code between <cfxml></cfxml>

tags. CFML code is executed and the results assigned to appropriate elements in the XML document
object.

Attributes

variable=" variable_name"

Variable name for holding the resulting XML document object. Required.
casesensitive="Yes|No"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Yes, ColdFusion maintains the case of XML document elements and attributes. Optional. The
default is No.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix B. Function Reference
ColdFusion functions are an integral part of the CFML coding environment. ColdFusion contains over
265 functions that allow you to manipulate data and format it to suit your specific requirements.
Functions can be used for everything from performing mathematical calculations to formatting time
and date values. This appendix contains reference material on all the ColdFusion functions through
ColdFusion MX, along with proper syntax, a detailed description, and a working example where
possible.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.1 Functions by Category

The following sections group ColdFusion's built-in functions according to functionality.

B.1.1 Array Functions

ArrayAppend ArrayAvg()

ArrayClear() ArrayDeleteAt()

ArrayInsertAt() ArrayIsEmpty()

ArrayLen() ArrayMax()

ArrayMin() ArrayNew()

ArrayPrepend() ArrayResize()

ArraySet() ArraySort()

ArraySum() ArraySwap()

ArrayToList() Duplicate()

IsArray() ListToArray()

B.1.2 Date/Time Functions

CreateDate() CreateDateTime()

CreateODBCDate() CreateODBCDateTime()

CreateODBCTime() CreateTime()

CreateTimeSpan() DateAdd()

DateCompare() DateConvert()

DateDiff() DateFormat()

DatePart() Day()

DayOfWeek() DayOfWeekAsString()

DayOfYear() DaysInMonth()

DaysInYear() FirstDayOfMonth()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetHTTPTimeString() GetNumericDate()

GetTickCount() GetTimeZoneInfo()

Hour() IsDate()

IsLeapYear() IsNumericDate()

LSDateFormat() LSParseDateTime()

Minute() Month()

MonthAsString() Now()

ParseDateTime() Quarter()

Second() TimeFormat()

Week() Year()

B.1.3 Decision/Evaluation Functions

CF_IsColdFusionDataSource() DE()

DirectoryExists() Evaluate()

FileExists() IIf()

IsArray() IsAthenticated()

IsAuthorized() IsBinary()

IsBoolean() IsCustomFunction()

IsDate() IsDebugMode()

IsDefined() IsK2ServerABroker()

IsK2ServerDocCountExceeded() IsK2ServerOnline()

IsLeapYear() IsNotMap()

IsNumeric() IsNumericDate()

IsObject() IsProtected()

IsQuery() IsSimpleValue()

IsStruct() IsUserInRole()

IsWDDX() IsXmlDoc()

IsXmlElem() IsXmlRoot()

LSIsCurrency() LSIsDate()

LSIsNumeric() SetVariable()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1.4 Encoding/Encryption Functions

CFusion_Decrypt() CFusion_Encrypt()

Decrypt() Encrypt()

Hash() SetEncoding()

ToBase64() ToBinary()

ToString() URLDecode()

URLEncodedFormat()

B.1.5 File/Directory Functions

DirectoryExists() ExpandPath()

FileExists() GetBaseTemplatePath()

GetCurrentTemplatePath() GetDirectoryFromPath()

GetFileFromPath() GetTempDirectory()

GetTempFile()

B.1.6 Formatting Functions

DateFormat() DecimalFormat()

DollarFormat() FormatBaseN()

HTMLCodeFormat() HTMLEditFormat()

JSStringFormat() Lcase()

LSCurrencyFormat() LSDateFormat()

LSEuroCurrencyFormat() LSNumberFormat()

LSTimeFormat() NumberFormat()

ParagraphFormat() TimeFormat()

Ucase() Wrap()

XMLFormat() YesNoFormat()

B.1.7 Internationalization/Localization Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetLocale() LSCurrencyFormat()

LSDateFormat() LSEuroCurrencyFormat()

LSIsCurrency() LSIsDate()

LSIsNumeric() LSNumberFormat()

LSParseCurrency() LSParseDateTime()

LSParseEuroCurrency() LSParseNumber()

LSTimeFormat() SetEncoding()

SetLocale()

B.1.8 List Functions

ArrayToList() ListAppend()

ListChangeDelims() ListContains()

ListContainsNoCase() ListDeleteAt()

ListFind() ListFindNoCase()

ListFirst() ListGetAt()

ListInsertAt() ListLast()

ListLen() ListPrepend()

ListQualify() ListRest()

ListSetAt() ListSort()

ListToArray() ListValueCount()

ListValueCountNoCase() QuotedValueList()

ReplaceList() ValueList()

B.1.9 Mathematical Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Abs() ACos()

ASin() ATan()

BitAnd() BitMaskClear()

BitMaskRead() BitMaskSet()

BitNot() BitOr()

BitSHLN() BitSHRN()

BitXor() Ceiling()

Cos() DecrementValue()

Exp() Fix()

IncrementValue() InputBaseN()

Int() Log()

Log10() Max()

Min() Pi()

Rand() Randomize()

RandRange() Round()

Sgn() Sin()

Sqr() Tan()

B.1.10 Miscellaneous Functions

CreateObject() CreateUUID()

DeleteClientVariable() GetBaseTagData()

GetBaseTagList() GetClientVariablesList()

GetException() GetFunctionList()

GetHTTPRequestData() GetMetaData()

GetMetricData() GetPageContext()

GetProfileSections() GetProfileString()

JavaCast() ReleaseCOMObject()

SetProfileString() WriteOutput()

B.1.11 Query Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Duplicate() IsQuery()

PreserveSingleQuotes() QueryAddColumn()

QueryAddRow() QueryNew()

QuerySetCell() QuotedValueList()

ValueList()

B.1.12 Security Functions

AuthenticatedContext() AuthenticatedUser()

IsAuthenticated() IsAuthorized()

IsProtected()

B.1.13 String Functions

Asc() Chr()

CJustify() Compare()

CompareNoCase() Find()

FindNoCase() FindOneOf()

FormatBaseN() GetToken()

Insert() Lcase()

Left() Len()

LJustify() LTrim()

Mid() REFind()

REFindNoCase() RemoveChars()

RepeatString() Replace()

ReplaceList() ReplaceNoCase()

REReplace() REReplaceNoCase()

Reverse() Right()

RJustify() RTrim()

SpanExcluding() SpanIncluding()

StripCR() ToBase64()

Trim() Ucase()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Val()

B.1.14 Structure Functions

Duplicate()
IsStruct()

StructAppend() StructClear()

StructCopy() StructCount()

StructDelete() StructFind()

StructFindKey() StructFindValue()

StructGet() StructInsert()

StructIsEmpty() StructKeyArray()

StructKeyExists() StructKeyList()

StructNew() StructSort()

StructUpdate()

B.1.15 Undocumented Functions

CF_GetDataSourceUserName() CF_IsColdFusionDataSource()

CF_SetDataSourcePassword() CF_SetDataSourceUserName()

CFusion_DBConnections_Flush() CFusion_Decrypt()

CFusion_Disable_DBConnections() CFusion_Encrypt()

CFusion_GetODBCDSN() CFusion_GetODBCINI()

CFusion_SetODBCINI() CFusion_Settings_Refresh()

CFusion_VerifyMail() IsNotMap()

B.1.16 Verity Functions

GetK2ServerCollections() GetK2ServerDocCount()

GetK2ServerDocCountLimit() IsK2ServerABroker()

IsK2ServerDocCountExceeded() IsK2ServerOnline()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1.17 XML Functions

IsXmlDoc() IsXmlElem()

IsXmlRoot() XmlChildPos()

XmlElemNew() XmlFormat()

XmlNew() XmlParse()

XmlSearch() XmlTransform()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

B.2 Alphabetical List of Functions

This section lists all the ColdFusion functions alphabetically, with proper syntax, a detailed description,
and a working example where possible. Version information is included for many of the functions; if no
version information is listed, the function is available in ColdFusion 4.5 and later.

Abs

Abs(number)

Returns the absolute value of a number. Example:

The absolute value of -33 is <cfoutput>#Abs(-33)#</cfoutput>

ACos

ACos(number)

Returns the arccosine of a number expressed in radians. The value of number must be between -1 and

1. Example:

The arccosine of -1 is <cfoutput>#ACos(-1)#</cfoutput>

ArrayAppend

ArrayAppend(array, value)

Appends an element to the end of an array. Upon successful completion, ArrayAppend() returns a
value of true . Here's an example of appending a new element to a one-dimensional array:

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

Original Array:

<cfdump var="#Grades#">

<p>Append the value 66 to the array:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset ArrayAppend(Grades, "66")>

<p>New Array:

<cfdump var="#Grades#">

ArrayAvg

ArrayAvg(array)

Returns the average (mean) of the values in the array. The following example returns the average of
the values contained in the one-dimensional array Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<cfdump var="#Grades#">

<p><cfoutput>The average grade is #ArrayAvg(Grades)#%</cfoutput>

ArrayClear

ArrayClear(array)

Removes all data from the specified array. Upon successful completion, ArrayClear() returns a value
of true . Here's an example of clearing all the data from the array Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<cfif ArrayIsEmpty(Grades)>
 The array Grades is empty.
<cfelse>
 The array Grades contains data.
</cfif>

<p>Clearing the array...
<cfset ArrayClear(Grades)>

<p><cfif ArrayIsEmpty(Grades)>
 The array Grades is empty.
<cfelse>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 The array Grades contains data.
</cfif>

ArrayDeleteAt

ArrayDeleteAt(array, position)

Deletes data from the designated array at the specified position. Returns a value of true upon

successful completion. The following example deletes the third element from the one-dimensional array
Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>
Original Array:

<cfdump var="#Grades#">

<p>Delete Element 4:
<cfset ArrayDeleteAt(Grades, 4)>

<p>New Array

<cfdump var="#Grades#">

ArrayInsertAt

ArrayInsertAt(array, value, position)

Inserts value into the designated array at the specified position . Values having an index position
greater than the inserted data are shifted right by one. Using ArrayInsertAt() increases the size of
the array by 1 and returns a value of true upon successful completion. Here's an example of inserting
an element into the third position of a one-dimensional array called Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

Original Array:

<cfdump var="#Grades#">

<p>Insert 65 into Element 3:
<cfset ArrayInsertAt(Grades, 3, 65)>

<p>New Array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfdump var="#Grades#">

ArrayIsEmpty

ArrayIsEmpty(array)

Returns true if the specified array contains no data or false if it does contain data. Example:

<cfif ArrayIsEmpty(Scores)>
 There are no scores available for this game!
<cfelse>
 There are scores available for this game!
</cfif>

ArrayLen

ArrayLen(array)

Determines the length of the specified array. The following example returns the number of elements in
the one-dimensional array Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<cfoutput>The array Grades contains #ArrayLen(Grades)# elements.</cfoutput>

ArrayMax

ArrayMax(array)

Returns the largest numeric value contained in the array. Useful only for arrays containing numeric
values. Here's an example that returns the highest grade in the array Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<cfoutput>The highest grade is #ArrayMax(Grades)#%.</cfoutput>

ArrayMin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ArrayMin(array)

Returns the smallest numeric value contained in the array. Useful only for arrays containing numeric
values. Here's an example that returns the lowest grade in the array Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<cfoutput>The lowest grade is #ArrayMin(Grades)#%.</cfoutput>

ArrayNew

ArrayNew(dimension)

Creates an array of between 1 and 3 dimensions where the value of dimension is an integer between

1 and 3. Examples:

<cfset PartNumbers = ArrayNew(1)>
<cfset Samples = ArrayNew(2)>
<cfset Colors = ArrayNew(3)>

ArrayPrepend

ArrayPrepend(array, value)

Adds a value to the beginning of an array. A value of true is returned upon successful completion. The

following example adds an element to the beginning of an array:

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

Original Array:

<cfdump var="#Grades#">

<p>Prepend the value 80 to the array:

<cfset ArrayPrepend(Grades, "80")>

<p>New Array:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfdump var="#Grades#">

ArrayResize

ArrayResize(array, size)

Resizes the designated array to a size as specified by the size parameter. For performance gains, this
function is usually used immediately after creating an array with the ArrayNew() function to resize
the array to its estimated size. Upon successful completion, ArrayResize() returns a value of true .
Here's an example that creates an array called Grades and then resizes it to 50 elements:

<cfset Grades = ArrayNew(1)>

<cfoutput>Grades contains #ArrayLen(Grades)# elements.</cfoutput>
<p>Resize the array...

<cfset ArrayResize(Grades, 50)>

<p><cfoutput>Grades now contains #ArrayLen(Grades)# elements.</cfoutput>

ArraySet

ArraySet(array, start, end, value)

Initializes one or more elements in a one-dimensional array, where start is the starting position, end

is the ending position, and value is the value to use. The following example creates a one-dimensional

array and populates the first five elements with the string "Place holder":

<cfset MyArray = ArrayNew(1)>
<cfset ArraySet(MyArray, 1, 5, "Place holder")>

<cfdump var="#MyArray#">

ArraySort

ArraySort(array, type [, order])

Sorts an array based on the sort type (numeric , text , or textnocase) and optionally, the sort

order (asc , the default, or desc). Here's an example that sorts the values in an array called Grades

from highest grade to lowest grade in descending order:

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = "95">
<cfset Grades[2] = "93">
<cfset Grades[3] = "87">
<cfset Grades[4] = "100">
<cfset Grades[5] = "74">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Original Array:

<cfdump var="#Grades#">

<p>Sort Array...
<cfset ArraySort(Grades, "Numeric", "desc")>

<p>Sorted Array:

<cfdump var="#Grades#">

ArraySum

ArraySum(array)

Calculates the sum of the values in the specified array. The following example calculates the sum of all
the values contained in an array called Grades :

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = "95">
<cfset Grades[2] = "93">
<cfset Grades[3] = "87">
<cfset Grades[4] = "100">
<cfset Grades[5] = "74">

Original Array

<cfdump var="#Grades#">

<p><cfoutput>The sum of all of the grades is #ArraySum(Grades)#.</cfoutput>

ArraySwap

ArraySwap(array, position1, position2)

Swaps the values stored in the positions specified in position1 and position2 . Here's an example

that takes an array and swaps the values contained in elements 5 and 2:

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

Original Array

<cfdump var="#Grades#">

<p>Swap 5th and 2nd array elements...
<cfset ArraySwap(Grades, 5, 2)>

<p>Array after ArraySwap

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfdump var="#Grades#">

ArrayToList

ArrayToList(array [, delimiter])

Converts the specified one-dimensional array to a ColdFusion list. An optional delimiter may be

specified (a comma is the default delimiter). The following example converts an array to a comma-
delimited list:

<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

Original Array

<cfdump var="#Grades#">

<p>Convert Array to List...
<cfset GradeList = ArrayToList(Grades)>

<p>New List

<cfoutput>GradeList = #GradeList#</cfoutput>

Asc

Asc(character)

Returns the ASCII character code (number) for a given character. Here's an example that generates a
chart of the printable ASCII character codes:

<table border="1">
 <tr><th>Character</th><th>ASCII Code</th></tr>

<cfloop index="Character" from="33" to="255">
 <cfoutput>
 <tr><td>#Chr(Character)#</td><td>#Asc(Chr(Character))#</td></tr>
 </cfoutput>
</cfloop>
</table>

Asin

ASin(number)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the arcsine of a number expressed in radians. The value of number must be between -1 and 1.

Example:

The arcsine of -1 is <cfoutput>#ASin(-1)#</cfoutput>

Atn

Atn(number)

Returns the arctangent of a number expressed in radians. Example:

The arctangent of 1 is <cfoutput>#Atn(1)#</cfoutput>

AuthenticatedContext

Not supported in ColdFusion MX
AuthenticatedContext()

Returns the name of the security context for a given application when used with ColdFusion's Advanced
Security. Example:

The current security context is <cfoutput>#AuthenticatedContext()#</cfoutput>.

AuthenticatedUser

Not supported in ColdFusion MX
AuthenticatedUser()

Returns the name of the authenticated user within an application when used with ColdFusion's
Advanced Security. Example:

The authenticated user is <cfoutput>#AuthenticatedUser()#</cfoutput>.

BitAnd

BitAnd(number1, number2)

Returns the bitwise AND of two 32-bit integers. Examples:

<cfoutput>
BitAnd(1,1): #BitAnd(1,1)#

BitAnd(2,10): #BitAnd(2,10)#

BitAnd(3,45): #BitAnd(3,45)#

BitAnd(128,256): #BitAnd(128,256)#

BitAnd(1024,32): #BitAnd(1024,32)#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>

BitMaskClear

BitMaskClear(number, startbit, length)

Returns number bitwise cleared with length bits beginning at the bit specified by startbit . Both

startbit and length must be integers between 0 and 31. Examples:

<cfoutput>
BitMaskClear(127,0,1): #BitMaskClear(127,0,1)#

BitMaskClear(255,3,3): #BitMaskClear(255,3,3)#

BitMaskClear(511,2,4): #BitMaskClear(511,2,4)#

BitMaskClear(1023,4,25): #BitMaskClear(1023,4,25)#

BitMaskClear(2047,7,4): #BitMaskClear(2047,7,4)#
</cfoutput>

BitMaskRead

BitMaskRead(number, startbit, length)

Returns the integer from length bits of number beginning from the bit specified by startbit .

Examples:

<cfoutput>
BitMaskRead(127,0,1): #BitMaskRead(127,0,1)#

BitMaskRead(255,3,3): #BitMaskRead(255,3,3)#

BitMaskRead(511,2,4): #BitMaskRead(511,2,4)#

BitMaskRead(1023,4,25): #BitMaskRead(1023,4,25)#

BitMaskRead(2047,7,4): #BitMaskRead(2047,7,4)#
</cfoutput>

BitMaskSet

BitMaskSet(number, mask, startbit, length)

Returns number bitwise masked with length bits of mask beginning at the bit specified by startbit .

Examples:

<cfoutput>
BitMaskSet(127,12,0,1): #BitMaskSet(127,12,0,1)#

BitMaskSet(255,3,3,3): #BitMaskSet(255,3,3,3)#

BitMaskSet(511,4,2,4): #BitMaskSet(511,4,2,4)#

BitMaskSet(1023,0,4,25): #BitMaskSet(1023,0,4,25)#

BitMaskSet(2047,247,7,4): #BitMaskSet(2047,247,7,4)#
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BitNot

BitNot(number)

Returns the bitwise NOT of a 32-bit integer. Examples:

<cfoutput>
BitNot(0): #BitNot(0)#

BitNot(1): #BitNot(1)#

BitNot(10): #BitNot(10)#

BitNot(128): #BitNot(128)#

BitNot(1024): #BitNot(1024)#
</cfoutput>

BitOr

BitOr(number1, number2)

Returns the bitwise OR of two 32-bit integers. Examples:

<cfoutput>
BitOr(1,1): #BitOr(1,1)#

BitOr(2,10): #BitOr(2,10)#

BitOr(3,45): #BitOr(3,45)#

BitOr(128,256): #BitOr(128,256)#

BitOr(1024,32): #BitOr(1024,32)#
</cfoutput>

BitSHLN

BitSHLN(number, count)

Bitwise shifts number to the left (without rotation) count bits where count is an integer between 0

and 31. Examples:

<cfoutput>
BitSHLN(0,1): #BitSHLN(0,1)#

BitSHLN(1,5): #BitSHLN(1,5)#

BitSHLN(10,9): #BitSHLN(10,9)#

BitSHLN(128,23): #BitSHLN(128,23)#

BitSHLN(1024, 31): #BitSHLN(1024,31)#
</cfoutput>

BitSHRN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BitSHRN(number, count)

Bitwise shifts number to the right (without rotation) count bits where count is an integer between 0

and 31. Examples:

<cfoutput>
BitSHRN(0,1): #BitSHRN(0,1)#

BitSHRN(90000,5): #BitSHRN(90000,5)#

BitSHRN(256,3): #BitSHRN(256,3)#

BitSHRN(128,1): #BitSHRN(128,1)#

BitSHRN(1024, 2): #BitSHRN(1024,2)#
</cfoutput>

BitXor

BitXor(number1, number2)

Returns the bitwise XOR of two 32-bit integers. Examples:

<cfoutput>
BitXor(1,1): #BitXor(1,1)#

BitXor(2,10): #BitXor(2,10)#

BitXor(3,45): #BitXor(3,45)#

BitXor(128,256): #BitXor(128,256)#

BitXor(1024,32): #BitXor(1024,32)#
</cfoutput>

Ceiling

Ceiling(number)

Returns the closest integer greater than the number specified. Examples:

<cfoutput>
-2.5: #Ceiling(-2.5)#

-1: #Ceiling(-1)#

-1.123: #Ceiling(-1.123)#

-0.123: #Ceiling(-0.123)#

0: #Ceiling(0)#

0.123: #Ceiling(0.123)#

1: #Ceiling(1)#

1.123: #Ceiling(1.123)#

2.5: #Ceiling(2.5)#
</cfoutput>

CFusion_DBConnections_Flush

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Not supported in ColdFusion MX
CFusion_DBConnections_Flush()

Drops any existing connections (including database locks) with ColdFusion data sources. This is an
undocumented function used by the ColdFusion Administrator. Example:

<cfset CFusion_DBConnections_Flush()>
All ColdFusion database connections have been dropped...

CFusion_Decrypt

CFusion_Decrypt(encryptedstring, key)

Decrypts encryptedstring using key . This is an undocumented function used by the ColdFusion
Administrator; it was introduce in the 3.x version of ColdFusion. CFusion_Decrypt() is similar to the
Decrypt() function except it works only with strings encrypted using the CFusion_Encrypt()

function. Example:

<cfset x=CFusion_Encrypt("this is a message", 12345)>
<cfset ux=CFusion_Decrypt(x, 12345)>

<cfoutput>
Original String: this is a message

Encrypted: #x#

Decrypted: #ux#
</cfoutput>

CFusion_Disable_DBConnections

Not supported in ColdFusion MX

CFusion_Disable_DBConnections(datasource, Yes|No)

If set to Yes , datasource is disabled as a ColdFusion data source. Specifying No enables a previously

disabled data source. This is an undocumented function used by the ColdFusion Administrator.
Example:

<cfset CFusion_Disable_DBConnections('CFExamples', 'Yes')>
The ColdFusion examples database has been disabled...

CFusion_Encrypt

CFusion_Encrypt(string, key)

Encrypts string using key . This is an undocumented function used by the ColdFusion Administrator;
it was introduced in the 3.x version of ColdFusion. Cfusion_Encrypt() is similar to the Encrypt()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function but results in a 32-character hexadecimal string, making it more useful than the CFEncrypt(
) function. Example:

<cfset x=CFusion_Encrypt("this is a message", 12345)>
<cfset ux=CFusion_Decrypt(x, 12345)>

<cfoutput>
Original String: this is a message

Encrypted: #x#

Decrypted: #ux#
</cfoutput>

CFusion_GetODBCDSN

Not supported in ColdFusion MX
CFusion_GetODBCDSN()

Used in place of the cfregistry tag on Unix-based ColdFusion servers to return the names of ODBC

data sources stored in the "registry." This is an undocumented function used by the ColdFusion
Administrator. Example:

<cfset TheDataSourceNames = CFusion_GetODBCDSN()>

<table>
 <tr><th>Name</th><th>Description</th><tr>
 <cfoutput query="TheDataSourceNames">
 <tr><td>#Name#</td><td>#Description#</td></tr>
 </cfoutput>
</table>

CFusion_GetODBCINI

Not supported in ColdFusion MX

CFusion_GetODBCINI("ODBC Data Sources"|datasource_name, entry, value)

Used in place of the cfregistry tag on Unix-based ColdFusion servers to return ODBC data-source

information stored in odbc.ini . This is an undocumented function used by the ColdFusion
Administrator. Example:

<cfset WorkstationID = CFusion_GetODBCIni("ProgrammingCF", "WorkstationID", "")>

<cfoutput>Output: #WorkstationID#</cfoutput>

CFusion_SetODBCINI

Not supported in ColdFusion MX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CFusion_SetODBCINI("ODBC Data Sources"_or_datasource_name, entry, value)

Used in place of the cfregistry tag on Unix-based ColdFusion servers to write ODBC data-source

information to odbc.ini . This is an undocumented function used by the ColdFusion Administrator.
Example:

<cfset CFusion_SetODBCINI("Employees", "Description",
 "This is the employee master database")>

CFusion_Settings_Refresh

Not supported in ColdFusion MX
CFusion_Settings_Refresh()

Refreshes ColdFusion server settings that don't require a server restart in order to take effect. This is
an undocumented function used by the ColdFusion Administrator. Example:

<cfset CFusion_Settings_Refresh()>
ColdFusion Administrator settings not requiring a server restart have been
refreshed...

CFusion_VerifyMail

Not supported in ColdFusion MX

CFusion_VerifyMail(server, port, timeout)

Verifies that a connection can be made to the SMTP mail server specified in server . port specifies

the port that the SMTP server is using. The default SMTP port is 25. timeout specifies an amount of

time in seconds ColdFusion should wait before timing out the verification attempt. If a connection can't
be made, a diagnostic error message is returned. This is an undocumented function used by the
ColdFusion Administrator. Example:

<cfset Verify = Cfusion_VerifyMail('127.0.0.1',25,60)>

<cfif Verify is not "">
 <cfoutput>#Verify#</cfoutput>
<cfelse>
 Connection verified!
</cfif>

CF_GetDataSourceUserName

Not supported in ColdFusion MX

CF_GetDataSourceUserName(datasource)

Returns the username registered under datasource within the ColdFusion Administrator. This is an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

undocumented function used by the ColdFusion Administrator. Example:

<cfoutput>
The username regstered with the CFExamples datasource is:
#CF_GetDataSourceUserName('cfexamples')#
</cfoutput>

CF_IsColdFusionDataSource

Not supported in ColdFusion MX

CF_IsColdFusionDataSource(datasource)

Returns true if datasource is a valid ColdFusion data source or false if it isn't. This is an

undocumented function used by the ColdFusion Administrator. Example:

<cfoutput>
CFExamples: #CF_IsColdFusionDataSource('cfexamples')#

CFSnippets: #CF_IsColdFusionDataSource('cfsnippets')#

Cheese: #CF_IsColdFusionDataSource('cheese')#

</cfoutput>

CF_SetDataSourcePassword

Not supported in ColdFusion MX

CF_SetDataSourcePassword(datasource, password)

Sets the ColdFusion login password for the data source specified in datasource . This is an

undocumented function used by the ColdFusion Administrator. Example:

<cfset CF_SetDataSourcePassword('CFExamples', 'admin')>
The CFExamples data source password has been changed...

CF_SetDataSourceUserName

Not supported in ColdFusion MX

CF_SetDataSourceUserName(datasource, username)

Sets the ColdFusion login username for the data source specified in datasource . This is an

undocumented function used by the ColdFusion Administrator. Example:

<cfset CF_SetDataSourceUserName('CFExamples', 'admin')>
The CFExamples data source username has been changed...

Chr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chr(number)

Returns the character equivalent of the ASCII character code. The following example generates a chart
of all the printable ASCII characters:

<table border="1">
 <tr><th>Character</th><th>ASCII Code</th>/tr>
<cfloop index="Character" from="33" to="255">
 <cfoutput>
 <tr><td>#Chr(Character)#</td><td>#Asc(Chr(Character))#</td></tr>
 </cfoutput>
</cfloop>
</table>

CJustify

CJustify(string, length)

Center-justifies string within a field of length characters. Example:

<cfset OriginalString = "ColdFusion">

<cfoutput>
Original String (quoted): "#OriginalString#"

Center-justified String (quoted): "#CJustify("ColdFusion", 20)#"
</cfoutput>

Compare

Compare(string1, string2)

Performs a case-sensitive comparison of two strings based on their ASCII values. If string1 is less

than string2 , returns -1. If string1 and string2 are equal, returns 0. If string1 is greater than

string2 , returns 1. Examples:

<cfoutput>
Compare('Apples', 'apples'): #Compare('Apples', 'apples')#

Compare('oranges', 'oranges'): #Compare('oranges', 'oranges')#

Compare('apples', 'Oranges'): #Compare('apples', 'Oranges')#

Compare('oranges', 'Apples'): #Compare('oranges', 'Apples')#

</cfoutput>

CompareNoCase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CompareNoCase(string1, string2)

Performs a case-insensitive comparison of two strings based on their ASCII values. If string1 is less

than string2 , returns -1. If string1 and string2 are equal, returns 0. If string1 is greater than

string2 , returns 1. Examples:

<cfoutput>
CompareNoCase('Apples', 'apples'): #CompareNoCase('Apples', 'apples')#

CompareNoCase('oranges', 'oranges'): #CompareNoCase('oranges', 'oranges')#

CompareNoCase('apples', 'Oranges'): #CompareNoCase('apples', 'Oranges')#

CompareNoCase('oranges', 'Apples'): #CompareNoCase('oranges', 'Apples')#

</cfoutput>

Cos

Cos(number)

Returns the cosine of an angle expressed in radians. Example:

The cosine of 45 is <cfoutput>#Cos(45)#</cfoutput>

CreateDate

CreateDate(year, month, day)

Returns a date/time object for the given date. The time value is set to 00:00:00 . For the year

parameter of the function, ColdFusion MX accepts years in the range AD 100-9999. ColdFusion MX uses
the underlying JRE as well as the current locale to determine how to process two-digit years. For most
locales, two-digit years are processed relative to the current century. Based on this, two-digit years are
interpreted to within 80 years before the current date and 20 years after. There are a few exceptions
to this. The following locales interpret two-digit years to within 72 years before the current date and 28
years after: English (Australian), English (New Zealand), German (Austrian), German (Standard),
German (Swiss), Portuguese (Brazilian), Portuguese (Standard), Swedish. Example:

April 15, 2003 looks like:
<cfoutput>
Four digit year: #CreateDate(2003, 04, 15)#

Two digit year#CreateDate(03, 04, 15)#
</cfoutput>

CreateDateTime

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateDateTime(year, month, day, hour, minute, second)

Returns a date/time object for the given date and time. For the year parameter of the function,

ColdFusion MX accepts years in the range AD 100-9999. For information on how ColdFusion MX
handles two-digit years, see CreateDate() . Example:

7 p.m. on April 15, 2003 looks like
<cfoutput>#CreateDateTime(2003, 04, 15, 19, 0, 0)#</cfoutput>
as a date/time object.

CreateObject

Updated in ColdFusion MX

CreateObject("COM", class, context, server)

CreateObject("CORBA", class, context, [locale])

CreateObject("Java", class)

CreateObject("Component", component_name)

CreateObject("Webservice", wsdl_url)

Allows ColdFusion to call different kinds of objects from within cfscript blocks. This function has the
same functionality as the cfobject tag.

When the first argument is "COM" , the function supports instantiating and using COM objects on local

and remote machines. COM objects aren't currently supported for Unix versions of ColdFusion. In this
case, class specifies the program ID for the object, and context specifies the context the object is

running in (InProc , Local , or Remote). server is required when context is Remote ; it specifies a

valid server name using Universal Naming Convention (UNC) or Domain Name Server (DNS)
conventions. Example:

<cfscript>
 MyWord = CreateObject("COM","Word.Application","Local");
</cfscript>

When the first argument is "CORBA" , the function supports calling methods in CORBA objects from

within cfscript blocks. In this case, context specifies the context for accessing the CORBA object

(IOR or NameService). If context is IOR , class specifies the name of a file that contains the

stringified version of the Interoperable Object Reference (IOR). If context is NameService , class

specifies a period-delimited naming context for the naming service. locale specifies type/value pairs
of arguments (which must begin with a minus sign) to pass to init_orb() (which is specific to

VisiBroker orbs and has been tested to work with the 3.2 C++ version only). Example:

<cfscript>
 MyCORBAObject = CreateObject("CORBA","C:\myobject.ior","IOR");
</cfscript>

When the first argument is "Java" , the function supports calling Java objects and Enterprise

JavaBeans (EJBs) from within a cfscript block. In this case, class refers to the Java class to call.

Any Java class listed in the class path area of the Java section within the ColdFusion Administrator may

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be specified. Example:

<cfscript>
 MyObject = CreateObject("Java","HelloWorld");
</cfscript>

When the first argument is "Component" , the function supports instantiating a ColdFusion Component
(CFC) from within cfscript . Here, all you need to specify, in addition to "Component" as the type, is

the name of the CFC you want to invoke. Methods within the component are called by treating the
method as if it were a normal function. Example:

<cfscript>
 stats=CreateObject("component" "components.stats");
 totalPackages= stats.qryTotalPackages();
 totalCFCs=stats.qryTotalCFCs();
</cfscript>

When the first argument is "WebService" , the function can invoke a SOAP-based web service by

passing the URL to the web service's WSDL file in the wsdl_url parameter of the function. Additional

arguments are passed to the web service by calling the desired method using dot notation. For
example, if you want to pass parameters to a method called SetEmployee , in a web service named
Employee , and have any results written to a variable called ReturnVar , you would code something

like this:

<cfscript>
 Employee=CreateObject("WebService", "http://www.example.com/employee.cfc?wsdl");
 ReturnVar=Employee.SetEmployee(Name="Pere Money", Title="President");
</cfscript>

CreateODBCDate

CreateODBCDate(date)

Returns the date in ODBC date format. For information on how ColdFusion MX handles two-digit years,
see CreateDate() . Example:

04/15/2003 looks like
<cfoutput>#CreateODBCDate('04/15/2003')#</cfoutput>
in ODBC date format.

CreateODBCDateTime

CreateODBCDateTime(date)

Returns the date and time in ODBC format. For information on how ColdFusion MX handles two-digit
years, see CreateDate() . Example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7pm on 04/15/2003 looks like
<cfoutput>#CreateODBCDateTime('04/15/2003 19:00:00')#</cfoutput>
in ODBC timestamp format.

CreateODBCTime

CreateODBCTime(date)

Returns the time in ODBC time format. Example:

7:00pm looks like
<cfoutput>#CreateODBCTime('19:00:00')#</cfoutput>
in ODBC time format.

CreateTime

CreateTime(hour, minute, second)

Returns a date/time object for the given time. The date value is set to December 30, 1899. Example:

7:00pm looks like
<cfoutput>#CreateTime(19,00,00)#</cfoutput>
as a date/time object.

CreateTimeSpan

CreateTimeSpan(days, hours, minutes, seconds)

Creates a date/time object for adding to and subtracting from other date/time objects. The days

parameter accepts an integer number of days in the range 0-32768. Here's an example that creates a
date/time object for one hour and thirty minutes and adds it to the current time:

<cfset CurrentTime = Now()>
<cfset TimeToAdd = CreateTimeSpan(0,1,30,0)>
<cfset NewTime = CurrentTime + TimeToAdd>

<cfoutput>
Current Time: #TimeFormat(CurrentTime, 'hh:mm tt')#

Time Span: #TimeFormat(TimeToAdd, 'hh:mm')#

Current Time + Time Span: #TimeFormat(NewTime, 'hh:mm tt')#
</cfoutput>

CreateUUID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateUUID()

Creates a universally unique identifier (UUID). UUIDs are 35-character representations of 128-bit
strings, where each character is a hexadecimal value in the range 0-9 and A-F. UUIDs are used when
you need to create a unique identifier (such as a user ID or primary key value). UUIDs are guaranteed
to be unique and are assigned randomly on most operating systems. Note that the format that
ColdFusion uses for UUIDs is not the same format used by Microsoft and DCE. ColdFusion UUIDs follow
the format xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxxxxxx whereas Microsoft/DCE UUIDs are formatted as
xxxxxxxx-xxxx-xxxx-xxxxxx-xxxxxxxxxx . If you need a UUID that follows the Microsoft/DCE format,
see the CreateGUID() UDF available at http://www.cflib.org . Example:

Here is your UUID: <cfoutput>#CreateUUID()#</cfoutput>.

DateAdd

Updated in ColdFusion MX 6.1

DateAdd(datepart, number, date)

Adds number to the datepart of the specified date . Dates must be in the range AD 100-9999. To

subtract, make number negative. Valid entries for datepart are l (millisecond), s (second), n
(minute), h (hour), ww (week), w (weekday), d (day), y (day of year), m (month), q (quarter), and
yyyy (year). For information on how ColdFusion MX handles two-digit years, see CreateDate() .

Examples:

<cfset MyDateTime = Now()>

<cfoutput>The original time and date is
#TimeFormat(MyDateTime,'hh:mm:ss tt')#, #DateFormat(MyDateTime,'mmmm dd, yyyy')#

<p>Add 30 Seconds:
#TimeFormat(DateAdd('s', 30, MyDateTime),'hh:mm:ss tt')#

Subtract 10 minutes:
#TimeFormat(DateAdd('n', -10, MyDateTime),'hh:mm:ss tt')#

Add 2 hours:
#TimeFormat(DateAdd('h', 2, MyDateTime),'hh:mm:ss tt')#

Add 9 weeks:
#DateFormat(DateAdd('ww', 9, MyDateTime),'mmmm dd, yyyy')#

Add 3 weekdays:
#DateFormat(DateAdd('w', 3, MyDateTime),'mmmm dd, yyyy')#

Subtract 67 days:
#DateFormat(DateAdd('d', -67, MyDateTime),'mmmm dd, yyyy')#

Add 45 days of the year:
#DateFormat(DateAdd('y', 45, MyDateTime),'mmmm dd, yyyy')#

Add 7 months:
#DateFormat(DateAdd('m', 7, MyDateTime),'mmmm dd, yyyy')#

Add 2 quarters:
#DateFormat(DateAdd('q', 2, MyDateTime),'mmmm dd, yyyy')#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Add 5 years:
#DateFormat(DateAdd('yyyy', 5, MyDateTime),'mmmm dd, yyyy')#
</cfoutput>

DateCompare

DateCompare(date1, date2 [, datepart])

Compares two date/time objects. Returns -1 if date1 is less than date2 , 0 if both date/time objects

are equal, or 1 if date1 is greater than date2 . Dates must be in the range AD 100-9999. The

precision of the comparison may be limited to a specific part of the date/time object by specifying a
value for the optional datepart parameter. Valid attributes for datepart are s (second), n (minute),
h (hour), d (day), m (month), and yyyy (year). For information on how ColdFusion MX handles two-
digit years, see CreateDate() . Examples:

<cfoutput>
Compare 04/15/03 and 04/15/03: #DateCompare('04/15/03', '04/15/03')#

Compare 04/15/03 and 04/15/2003: #DateCompare('04/15/03', '04/15/2003')#

Compare 15 Apr 2003 and 4/15/03: #DateCompare('15 Apr 2003', '4/15/03')#

Compare August 15, 2003 and July 4, 2002:
#DateCompare('August 15, 2003', 'July 4, 2002')#

Compare 19:00:00 and 7pm: #DateCompare('19:00:00', '7pm')#

Compare 6:00 and 7:00: #DateCompare('6:00', '7:00')#

Compare 4/15/2003 and Jan 3, 2003 by year:
#DateCompare('4/15/2003', 'Jan 3, 2003', 'yyyy')#

Compare 6:59 and 7:38 by minute: #DateCompare('6:59', '7:38', 'n')#
</cfoutput>

DateConvert

DateConvert(type, date)

Converts date to Universal Coordinated Time (UTC) or UTC to local time based on type (local2UTC
or UTC2Local). Conversions for daylight savings time are automatically applied if enabled on the

server running ColdFusion. For information on how ColdFusion MX handles two-digit years, see
CreateDate() . The following example converts local time to UTC time:

<cfset TheTimeDate = Now()>
<cfset UCT = DateConvert('local2UTC', TheTimeDate)>

<cfoutput>
Current time/date: #TimeFormat(TheTimeDate,'hh:mm:ss tt')#,
#DateFormat(TheTimeDate,'mmmm dd, yyyy')#
<p>UCT: #UCT#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>

DateDiff

DateDiff(datepart, date1, date2)

Returns the interval in datepart units by which date2 is greater than date1 . Dates must be in the

range AD 100-9999. Valid entries for datepart are s (second), n (minute), h (hour), ww (week), w

(weekday), d (day), y (day of year), m (month), q (quarter), and yyyy (year). If date1 is greater than

date2 , a negative number is returned. For information on how ColdFusion MX handles two-digit years,
see CreateDate() . Examples:

<cfset FirstDate = DateFormat(Now(),'mm/dd/yyyy')>
<cfset SecondDate = "01/01/2000">

<cfoutput>
FirstDate: #FirstDate#

SecondDate: #SecondDate#
<p>
There are #DateDiff("s", FirstDate, SecondDate)# seconds between
#FirstDate# and #SecondDate#.

There are #DateDiff("n", FirstDate, SecondDate)# minutes between
#FirstDate# and #SecondDate#.

There are #DateDiff("h", FirstDate, SecondDate)# hours between
#FirstDate# and #SecondDate#.

There are #DateDiff("d", FirstDate, SecondDate)# days between
#FirstDate# and #SecondDate#.

There are #DateDiff("ww", FirstDate, SecondDate)# weeks between
#FirstDate# and #SecondDate#.

There are #DateDiff("m", FirstDate, SecondDate)# months between
#FirstDate# and #SecondDate#.

There are #DateDiff("yyyy", FirstDate, SecondDate)# years between
#FirstDate# and #SecondDate#.

</cfoutput>

DateFormat

Updated in ColdFusion MX

DateFormat(date [, mask])

Returns date formatted according to mask . Dates must be in the range AD 100-9999. If no value is

specified for mask , DateFormat() uses the default dd-mmm-yy . Valid entries for mask are:

Mask Description

d Day of the month as a number with no leading zero for single-digit days

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mask Description

dd Day of the month as a number with a leading zero for single-digit days

ddd Three-letter abbreviation for day of the week

dddd Full name of the day of the week

m Month as a number with no leading zero for single-digit months

mm Month as a number with a leading zero for single-digit months

mmm Three-letter abbreviation for the month

mmmm Full name of the month

y Last two digits of year with no leading zero for years less than 10

yy Last two digits of year with a leading zero for years less than 10

yyyy Four-digit year

gg Period/era

short Java short date format

medium Java medium date format

long Java long date format

full Java full date format

Dates passed as literals must be enclosed in quotes. Otherwise, ColdFusion interprets the date as a
numeric date. If an invalid mask is passed to the function, ColdFusion outputs the invalid characters.
Note that DateFormat() supports U.S. date formats only. To use locale-specific date formats, see the
LSDateFormat() function. For information on how ColdFusion MX handles two-digit years, see
CreateDate() . Examples:

<cfset TheDate = Now()>

<cfoutput>
TheDate = #DateFormat(TheDate, 'mm/dd/yyyy')#
<p>
m/d/yy: #DateFormat(TheDate, 'm/d/yy')#

mm/dd/yy: #DateFormat(TheDate, 'mm/dd/yy')#

mm/dd/yyyy: #DateFormat(TheDate, 'mm/dd/yyyy')#

dd/mm/yyyy gg: #DateFormat(TheDate, 'dd/mm/yyyy gg')#

dd mmm yy: #DateFormat(TheDate, 'dd mmm yy')#

dddd mmmm dd, yyyy: #DateFormat(TheDate, 'dddd mmmm dd, yyyy')#

<p>
And these formats are new in ColdFusion MX:

short: #DateFormat(TheDate, 'short')#

medium: #DateFormat(TheDate, 'medium')#

long: #DateFormat(TheDate, 'long')#

full: #DateFormat(TheDate, 'full')#

time mask included: #DateFormat(TheDate, 'mm/dd/yyyy hh:mm:ss')#

</cfoutput>

dd Day of the month as a number with a leading zero for single-digit days

ddd Three-letter abbreviation for day of the week

dddd Full name of the day of the week

m Month as a number with no leading zero for single-digit months

mm Month as a number with a leading zero for single-digit months

mmm Three-letter abbreviation for the month

mmmm Full name of the month

y Last two digits of year with no leading zero for years less than 10

yy Last two digits of year with a leading zero for years less than 10

yyyy Four-digit year

gg Period/era

short Java short date format

medium Java medium date format

long Java long date format

full Java full date format

Dates passed as literals must be enclosed in quotes. Otherwise, ColdFusion interprets the date as a
numeric date. If an invalid mask is passed to the function, ColdFusion outputs the invalid characters.
Note that DateFormat() supports U.S. date formats only. To use locale-specific date formats, see the
LSDateFormat() function. For information on how ColdFusion MX handles two-digit years, see
CreateDate() . Examples:

<cfset TheDate = Now()>

<cfoutput>
TheDate = #DateFormat(TheDate, 'mm/dd/yyyy')#
<p>
m/d/yy: #DateFormat(TheDate, 'm/d/yy')#

mm/dd/yy: #DateFormat(TheDate, 'mm/dd/yy')#

mm/dd/yyyy: #DateFormat(TheDate, 'mm/dd/yyyy')#

dd/mm/yyyy gg: #DateFormat(TheDate, 'dd/mm/yyyy gg')#

dd mmm yy: #DateFormat(TheDate, 'dd mmm yy')#

dddd mmmm dd, yyyy: #DateFormat(TheDate, 'dddd mmmm dd, yyyy')#

<p>
And these formats are new in ColdFusion MX:

short: #DateFormat(TheDate, 'short')#

medium: #DateFormat(TheDate, 'medium')#

long: #DateFormat(TheDate, 'long')#

full: #DateFormat(TheDate, 'full')#

time mask included: #DateFormat(TheDate, 'mm/dd/yyyy hh:mm:ss')#

</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatePart

Updated in ColdFusion MX 6.1

DatePart(datepart, date)

Returns the specified part of a valid date/time object. The value supplied for date must be in the

range AD 100-9999. Valid values for the datepart parameter are l (millisecond), s (second), n
(minute), h (hour), ww (week), w (weekday), d (day), y (day of year), m (month), q (quarter), and
yyyy (year). For information on how ColdFusion MX handles two-digit years, see CreateDate() .

Examples:

<cfoutput>
The current time and date is
#TimeFormat(Now(),'hh:mm:ss tt')#, #DateFormat(Now(),'mmmm dd, yyyy')#
<p>

Second: #DatePart('s', Now())#

Minute: #DatePart('n', Now())#

Hour: #DatePart('h', Now())#

Week: #DatePart('ww', Now())#

Weekday: #DatePart('w', Now())#

Day: #DatePart('d', Now())#

Day of year: #DatePart('y', Now())#

Month: #DatePart('m', Now())#

Quarter: #DatePart('q', Now())#

Year: #DatePart('yyyy', Now())#
</cfoutput>

Day

Day(date)

Returns the day of the month for a given date as a number between 1 and 31. The value supplied for

date must be in the range AD 100-9999. For information on how ColdFusion MX handles two-digit
years, see CreateDate() . Example:

<cfoutput>#Day(Now())#</cfoutput>

DayOfWeek

DayOfWeek(date)

Returns the day of the week for a given date as a number between 1 (Sunday) and 7 (Saturday).

Note that ColdFusion uses Sunday as the first day of the week while ISO uses Monday. The value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

supplied for date must be in the range AD 100-9999. For information on how ColdFusion MX handles
two-digit years, see CreateDate() . Example:

<cfoutput>#DayOfWeek(Now())#</cfoutput>

DayOfWeekAsString

DayOfWeekAsString(number)

Returns the name of the day of the week for a given day's number between 1 (Sunday) and 7

(Saturday). Note that ColdFusion uses Sunday as the first day of the week while ISO uses Monday.
Example:

Today is <cfoutput>#DayOfWeekAsString(DayOfWeek(Now()))#</cfoutput>.

DayOfYear

DayOfYear(date)

Returns the day of the year as a number between 1 and 365 (366 for leap years). The value supplied
for date must be in the range AD 100-9999. For information on how ColdFusion MX handles two-digit
years, see CreateDate() . Example:

<cfoutput>#DayOfYear(Now())#</cfoutput>

DaysInMonth

DaysInMonth(date)

Returns the number of days in the given month. The value supplied for date must be in the range AD

100-9999. Example:

There are <cfoutput>#DaysInMonth(Now())#</cfoutput> days in the current month.

DaysInYear

DaysInYear(date)

Returns the number of days in the specified year. The value supplied for date must be in the range AD
100-9999. For information on how ColdFusion MX handles two-digit years, see CreateDate() .

Example:

There are <cfoutput>#DaysInYear(Now())#</cfoutput> days this year.

DE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DE(string)

DE() (for delay evaluation) is used with the Evaluate() and IIF() functions to allow you to pass a

string without having it evaluated. DE() returns string enclosed within double quotation marks. The
following example shows the DE() function used in conjunction with the Evaluate() function:

<cfset MyVar = "3 * 3">

<cfoutput>
MyVar = #MyVar#
<p>
DE(MyVar): #DE(MyVar)#

Evaluate(MyVar): #Evaluate(MyVar)#

Evaluate(DE(MyVar)): #Evaluate(DE(MyVar))#
<p>
All together:

#Evaluate(DE(MyVar))# is #Evaluate(MyVar)#
</cfoutput>

DecimalFormat

DecimalFormat(number)

Returns number as a string formatted to two decimal places with thousands separators. Examples:

<cfoutput>
1: #DecimalFormat(1)#

10: #DecimalFormat(10)#

100: #DecimalFormat(100)#

1000: #DecimalFormat(1000)#

10000: #DecimalFormat(10000)#

100000: #DecimalFormat(100000)#

1000000: #DecimalFormat(1000000)#

</cfoutput>

DecrementValue

DecrementValue(number)

Decrements the integer part of a given number by 1. Examples:

<cfoutput>
-1: #DecrementValue(-1)#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-1.123: #DecrementValue(-1.123)#

-0.123: #DecrementValue(-0.123)#

0: #DecrementValue(0)#

0.123: #DecrementValue(0.123)#

1: #DecrementValue(1)#

1.123: #DecrementValue(1.123)#
</cfoutput>

Decrypt

Decrypt(encryptedstring, key)

Decrypts encryptedstring using key . This function is designed to decrypt strings encrypted with the
Encrypt() function. The following example takes an encrypted string and decrypts it:

<cfset MyString = "This is the secret message.">
<cfset MyKey = "1a2">
<cfset EncryptedString = Encrypt(MyString, MyKey)>
<cfset DecryptedString = Decrypt(EncryptedString, MyKey)>

<cfoutput>
Original String: #MyString#

Key: #MyKey#
<p>Encrypted String: #EncryptedString#

Decrypted String: #DecryptedString#
</cfoutput>

DeleteClientVariable

DeleteClientVariable("variable")

Deletes the specified client variable (where the variable name is in double quotes). Returns true if

successful. The following example creates a client variable, attempts to delete it, and reports whether it
was successful (the example assumes you have client variables turned on in the ColdFusion
Administrator and that a valid Application.cfm file exists in the directory containing the example):

<cfset Client.MyVar="This is a client variable">

<cfoutput>#Client.MyVar#</cfoutput><p>

<cfset DeleteClientVariable("MyVar")>

<cfif IsDefined('Client.MyVar')>
Couldn't delete the client variable.
<cfelse>
Client variable deleted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfif>

DirectoryExists

DirectoryExists(path)

Returns Yes if the specified directory exists or No if it doesn't. The absolute path to the directory being

evaluated must be provided. Example:

<cfif DirectoryExists('c:\CfusionMX')>
 Directory exists!
<cfelse>
 Directory doesn't exist!
</cfif>

DollarFormat

DollarFormat(number)

Returns number as a string formatted to two decimal places with a dollar sign and thousands

separators. If number is negative, it is returned in parentheses. Examples:

<cfoutput>
-1000: #DollarFormat(-1000)#

-100: #DollarFormat(-100)#

-10: #DollarFormat(-10)#

-1: #DollarFormat(-1)#

1: #DollarFormat(1)#

10: #DollarFormat(10)#

100: #DollarFormat(100)#

1000: #DollarFormat(1000)#

10000: #DollarFormat(10000)#

100000: #DollarFormat(100000)#

1000000: #DollarFormat(1000000)#

</cfoutput>

Duplicate

Duplicate(variable)

Creates a duplicate copy of variable without any references to the original. variable can be any
ColdFusion datatype with the exception of component objects (COM, CORBA, and Java). Duplicate()

overcomes problems associated with copying structures and queries. Generally, when copying a
structure or query, any future change to the original object results in a change to the copy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Duplicate() eliminates this by making an independent copy of the original object. The duplicate copy
isn't affected by changes to the original. The Duplicate() function is especially useful for copying
nested structures and XML objects, and should be used in place of the StructCopy() function. The

following example illustrates the difference between copying and duplicating query objects:

<!--- create a query object --->
<cfset Products = QueryNew("ProductName, Color")>
<cfset NewRows = QueryAddRow(Products, 1)>
<cfset QuerySetCell(Products, "ProductName", "Widget", 1)>
<cfset QuerySetCell(Products, "Color", "Silver", 1)>

<!--- create a copy and a duplicate of the query --->
<cfset CopyProducts = Products>
<cfset DuplicateProducts = Duplicate(Products)>

<cfoutput>
Original: You selected a #Products.Color# #Products.ProductName#.

<cfset QuerySetCell(Products, "Color", "Black", 1)>
Copy: You selected a #CopyProducts.Color# #CopyProducts.ProductName#.

Duplicate: You selected a #DuplicateProducts.Color#
#DuplicateProducts.ProductName#.
</cfoutput>

And here's an example with nested structures:

<!--- Create a nested structure --->
<cfset Company=StructNew()>
<cfset Company.Employee=StructNew()>
<cfset Company.Employee.Name="Pere Money">
<cfset Company.Employee.Title="President">
<cfset Company.Employee.Department="Executive Management">
<cfset Company.Employee.Email="pmoney@example.com">
<cfset Company.Employee.PhoneExt="1234">

<!--- Create a copy and a duplicate of the structure --->
<cfset CompanyCopy = StructCopy(Company)>
<cfset CompanyDuplicate = Duplicate(Company)>

<cfoutput>
Name: #Company.Employee.Name#

Original Title: #Company.Employee.Title#

<cfset Company.Employee.Title = "CEO">
Copied Title: #CompanyCopy.Employee.Title#

Duplicate Title: #CompanyDuplicate.Employee.Title#
</cfoutput>

Encrypt

Encrypt(string, key)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Encrypts string using the specified key . Encrypt() uses the value of key as a seed to generate a

random 32-bit key for use in an XOR-based encryption algorithm. The resulting string is then
uuencoded and may be as much as three times the size of the original string. The following example
takes a string and encrypts it:

<cfset MyString = "This is the secret message.">
<cfset MyKey = "1a2">
<cfset EncryptedString = Encrypt(MyString, MyKey)>
<cfset DecryptedString = Decrypt(EncryptedString, MyKey)>

<cfoutput>
Original String: #MyString#

Key: #MyKey#
<p>Encrypted String: #EncryptedString#

Decrypted String: #DecryptedString#
</cfoutput>

Evaluate

Evaluate(string1 [,string2] [,stringN])

Evaluates string expressions from left to right and returns the result from the rightmost expression.
Evaluate() is useful when you need to evaluate multiple expressions at one time. Examples:

<cfset x=1>
<cfset y=2>
<cfset z=3>
<cfset Form.Name="Jim">
x=1

y=2

z=3

Form.Name=Jim
<p><cfoutput>
Evaluate(1+1): #Evaluate(1+1)#

Evaluate(3 MOD 2): #Evaluate(3 MOD 2)#

Evaluate(x*y*z): #Evaluate(x*y*z)#

Evaluate(sin(1)): #Evaluate(sin(1))#

Evaluate((x+y+z)/3): #Evaluate((x+y+z)/3)#

Evaluate('Form.Name'): #Evaluate('Form.Name')#

Evaluate(7+2, 3+5): #Evaluate(7+2, 3+5)#

Evaluate(7+2, 3+5, 1/4): #Evaluate(7+2, 3+5, 1/4)#

</cfoutput>

Exp

Exp(number)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns e to the power of number . The constant e is the base of the natural logarithm and is equal to

2.71828182845904. Example:

<cfoutput>10 to the E power is #Exp(10)#.</cfoutput>

ExpandPath

ExpandPath(relativepath)

Returns the platform-appropriate absolute path for the specified relativepath . Example:

<cfoutput>#ExpandPath('*.*')#</cfoutput>

FileExists

FileExists(path)

Returns Yes if the specified file exists or No if it doesn't. The absolute path to the file being evaluated

must be provided. Example:

<cfif FileExists('c:\boot.ini')>
 File exists!
<cfelse>
 File doesn't exist!
</cfif>

Find

Find(substring, string [, startpos])

Returns the position of the first occurrence of substring in string . If substring isn't found, Find(

) returns 0. An optional starting position for the search can be specified by the startpos parameter.
Find() performs a case-sensitive search. Example:

<cfset MyString="This is a case-sensitive example of using the Find function to
find a substring within a string.">
<cfset MySubString="find">

<cfoutput>
String: #MyString#

Substring: #MySubstring#
<p>The first occurrence of #MySubstring# is at position
#Find(MySubstring, MyString)#.
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FindNoCase

FindNoCase(substring, string [, startpos])

Returns the position of the first occurrence of substring in string . If substring isn't found,

FindNoCase() returns 0. An optional starting position for the search can be specifies by the startpos
parameter. FindNoCase() performs a case-insensitive search. Example:

<cfset MyString="This is a case-insensitive example of using the FindNoCase
function to find a substring within a string.">
<cfset MySubString="find">

<cfoutput>
String: #MyString#

Substring: #MySubstring#
<p>The first occurrence of #MySubstring# is at position
#FindNoCase(MySubstring, MyString)#.
</cfoutput>

FindOneOf

FindOneOf(set, string [, startpos])

Returns the position of the first occurrence of any character from set in string . If no characters

from set are found, FindOneOf() returns 0. An optional starting position for the search can be

specified by the startpos parameter. FindOneOf() performs a case-sensitive search. Example:

<cfset MyString="This is a case-sensitive example of using the FindOneOf function
to find a character from a set of charcters within a string.">
<cfset MySet="zFx">

<cfoutput>
String: #MyString#

Set: #MySet#
<p>The first occurrence of any character from the set #MySet#
is at position #FindOneOf(MySet, MyString)#.
</cfoutput>

FirstDayOfMonth

FirstDayOfMonth(date)

Returns the day of the year for the first day in the specified month. Example:

<cfoutput>
The first day of this month is day #FirstDayOfMonth(Now())# of this year.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</cfoutput>

Fix

Fix(number)

Returns the closest integer less than the specified number if the number is greater than 0. If the
specified number is less than 0, the closest integer greater than the number is returned. Examples:

<cfoutput>
-2.5: #Fix(-2.5)#

-1: #Fix(-1)#

-1.123: #Fix(-1.123)#

-0.123: #Fix(-0.123)#

0: #Fix(0)#

0.123: #Fix(0.123)#

#Fix(1)#

1.123: #Fix(1.123)#

2.5: #Fix(2.5)#
</cfoutput>

FormatBaseN

FormatBaseN(number, radix)

Converts number to a string in the base specified by radix . Valid values for radix are integers in the

range of 2 to 36. Examples:

<cfoutput>
FormatBaseN(1,2): #FormatBaseN(1,2)#

FormatBaseN(10,2): #FormatBaseN(10,2)#

FormatBaseN(100,2): #FormatBaseN(100,2)#

FormatBaseN(1,6): #FormatBaseN(1,6)#

FormatBaseN(10,6): #FormatBaseN(10,6)#

FormatBaseN(100,6): #FormatBaseN(100,6)#

</cfoutput>

GetAuthUser

New in ColdFusion MX

GetAuthUser()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the name of an authenticated user when used in conjunction with ColdFusion MX's built-in
security. Example:

<cflogin>
 <cfquery name="AuthenticateUser" datasource="ProgrammingCF">
 SELECT *
 FROM Users
 WHERE Username='pmoney'
 AND Password='#Hash("cat")#'
 </cfquery>

 <cfloginuser
 name="pmoney"
 password="#Hash("CAT")#"
 roles="editor,user">
</cflogin>

<cfoutput>
Who is the current authenticated user? #GetAuthUser()#
</cfoutput>

GetBaseTagData

GetBaseTagData(tag [, instance])

Returns an object containing data from the specified ancestor tag . An optional instance number

may be set to specify the number of ancestor tag levels to skip through before returning data. The
default value for instance is 1. Example:

<cfset BaseTagData = GetBaseTagData("CF_MyCustomTag")>

GetBaseTagList

GetBaseTagList()

Returns a comma-delimited list (in uppercase) of ancestor tag names. GetBaseTagList() is meant

for use in custom CFML tags for intertag data exchange. The first element in the returned list of
ancestor tags is always the parent tag. Example:

<cfoutput>
The parent tag is: #ListFirst(GetBaseTagList())#
<p>The entire list of ancestor tas: #GetBaseTagList()#
</cfoutput>

GetBaseTemplatePath

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetBaseTemplatePath()

Returns the full path to the top-level ColdFusion template calling the function. Example:

<cfoutput>The base template path is: #GetBaseTemplatePath()#</cfoutput>

GetClientVariablesList

GetClientVariablesList()

Returns a list of nonread-only client variables available to the ColdFusion application. In order to use
this function, client variables must be turned on in the application's Application.cfm file. The following
example returns the list of client variables available to the application (it assumes an Application.cfm
file exists in the application's root directory and that client variables are enabled):

<cfset Client.Name="Jen">
<cfset Client.ID=123456>

<cfoutput>
Client Variables available to this application: #GetClientVariablesList()#
</cfoutput>

GetCurrentTemplatePath

GetCurrentTemplatePath(path)

Returns the full path to the ColdFusion template that calls the function. This function differs from
GetBaseTemplatePath() in that it returns the path to an included template if called from a directory

other than the parent template. Example:

<cfoutput>The full path to the template is: #GetCurrentTemplatePath()#</cfoutput>

GetDirectoryFromPath

GetDirectoryFromPath(path)

Returns the directory from a full path. The following example returns the directory in which the current
template resides:

<cfoutput>This directory is: #GetDirectoryFromPath(GetBaseTemplatePath())#</cfoutput>

GetException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New as of ColdFusion 5.0

GetException(object_name)

Used in conjunction with try/catch code, GetException() returns a Java exception object thrown by
the specified object. The following example shows how to use GetException() with an imaginary
Java object called MyObject :

<cfobject type="Java" action="Create" class="MyClass" name="MyObject">

<cfset Test = MyObject.init()>
<cftry>
<cfset Test = MyObject.CauseError()>

<cfcatch type="Any">
 <cfset MyException = GetException(MyObject)>
 <!--- call the GetErrCode and GerErrMsg methods within the exception
 object --->
 <cfset ErrorCode = MyException.GetErrCode()
 <cfset ErrorMessage = MyException.GetErrMsg()>

 <cfoutput>
 Error Code: #ErrorCode#

 Error Message: #ErrorMessage#
 </cfoutput>
</cfcatch>
</cftry>

GetFileFromPath

GetFileFromPath(path)

Returns the filename from a full path. The following example returns the filename of the current
ColdFusion template:

<cfoutput>This file is: #GetFileFromPath(GetBaseTemplatePath())#</cfoutput>

GetFunctionList

GetFunctionList()

Returns a ColdFusion structure containing the names of the functions available to ColdFusion. Example:

<cfoutput>
There are #StructCount(GetFunctionList())# functions available in this version of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion for #Server.OS.Name#.
</cfoutput>
<cfdump var="#GetFunctionList()#">

GetHTTPRequestData

New as of ColdFusion 5.0

GetHTTPRequestData()

Returns a structure containing the HTTP request headers and body available to the current page. This
function is especially useful for parsing Simple Object Access Protocol (SOAP) requests, which are often
passed in the HTTP header. The structure returned by GetHTTPRequestData() contains the following

keys:

Headers

Structure containing all the HTTP request headers as key/value pairs.
Content

If the current page is accessed via a form post, Content contains the raw content (string or

binary) of the form post; otherwise it is blank. In order to be considered string content, the value
of the content_type request header must be "application/x-www-form-urlencoded" or must

begin with "text/". All other content types are automatically stored as binary objects. Because of
this, you should first use the IsBinary() function when evaluating Content . You may also
consider using the ToString() function to convert binary data stored in Content to a string

value that can then be displayed.
Method

The value contained in the Request_Method CGI variable.
Protocol

The value contained in the Server_Protocol CGI variable.

The following example demonstrates the use of the GetHTTPRequestData() function (try calling the
template directly and via a form post to see how the Content key is populated differently):

<cfset RequestHeader = GetHttpRequestData()>
<cfdump var = "#RequestHeader#">

GetHTTPTimeString

GetHTTPTimeString([date_time_object])

Returns date_time_object formatted according to the HTTP protocol put forth in RFC1123. If no
parameter is specified, GetHTTPTimeString() returns the current date/time (on the ColdFusion

server). Times are output as GMT time. Example:

<cfset x = GetHTTPTimeString()>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
The current date/time (formatted according to RFC 1123) is: #x#
</cfoutput>

GetK2ServerCollections

New as of ColdFusion 5.0; not supported in
ColdFusion MX

GetK2ServerCollections()

Returns a comma-delimited list of collection aliases for collections used by the K2 server. The K2 server
engine must be started in order for this function to return any results. The following example loops
through the list of available K2 server collections, displaying the collection aliases:

<h3>K2 server collections:</h3>
<cfloop list="#GetK2ServerCollections()#" index="CollectionName">
 <cfoutput>#CollectionName#</cfoutput>

</cfloop>

GetK2ServerDocCount

New as of ColdFusion 5.0
GetK2ServerDocCount()

Returns the total number of documents in all collections accessible by the Verity K2 engine. The
following example displays the total number of documents in all collections available to the K2 server:

<cfoutput>
There are currently #GetK2ServerDocCount()# documents available for
searching by the K2 server.
</cfoutput>

GetK2ServerDocCountLimit

New as of ColdFusion 5.0

GetK2ServerDocCountLimit()

Returns the maximum number of documents searchable by the Verity K2 server. For ColdFusion
Professional, the document limit is 125,000. ColdFusion Enterprise has a 250,000-document limit. Sites
running Macromedia Spectra have a limit of 750,000 documents. The following example outputs the K2
server document limit for your ColdFusion server:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
The K2 server can search a maximum of #GetK2ServerDocCountLimit()#
documents on
this ColdFusion server.
</cfoutput>

GetLocale

GetLocale()

Returns the current locale for your server. The server's locale determines display and formatting
options for currency, date, number, and time values and is determined by the server's operating
system. At startup, ColdFusion sets a variable, Server.ColdFusion.SupportedLocales , that contains

a comma-separated list containing all supported locales for your ColdFusion server. The following
example lists all supported locales for your server, with the current locale in bold:

Supported Locales with Current Locale in Bold:
<p><cfloop index="Locale" list="#Server.ColdFusion.SupportedLocales#">
 <cfoutput>
 <cfif Locale is GetLocale()>
 #Locale#

 <cfelse>
 #Locale#

 </cfif>
 </cfoutput>
</cfloop>

GetMetaData

New in ColdFusion MX

GetMetaData(object)
GetMetaData(THIS)

Returns metadata such as properties, methods, and parameters for the specified ColdFusion
Component (CFC) when used within a CFML page. When used within a CFC, pass GetMetaData() the
THIS scope, and it will return all of the metadata for the component. Metadata is returned as a

structure containing various key/value pairs depending on the contents of the CFC. Values in the
metadata structure may contain additional nested structure. The following outlines the minimum keys
available for the various pieces of a CFC:

Component metadata
Name

The name of the component
Path

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Absolute path to the component
Extends

Structure containing ancestor component metadata
Functions

Array of structures containing metadata about each function (method) in the component
Function (method) metadata
Name

Name of the function
Parameters

Array of structures containing metadata about each argument
Argument metadata
Name

Name of the argument
Property metadata
Name

Name of the property

Additional keys may be available depending on how the CFC is coded. For example, Function metadata
may also contain keys for Hint , ReturnType , Output , and Access . The best way to understand

what metadata is available for a particular object is to retrieve the metadata for it and output the
results to your browser with cfdump. Here's an example that does just that for the CFC Explorer
component that ships with ColdFusion MX:

<cfscript>
 myObj = createObject("component", "cfide.componentutils.cfcexplorer");
 Metadata = GetMetaData(myObj);
</cfscript>

<h2>Metadata for the CFC Explorer</h2>
<cfdump var="#Metadata#">

GetMetricData

GetMetricData(mode)

Depending on mode , returns data representing information about the performance of the ColdFusion
server. The following modes may be used by GetMetricData() :

Perf_Monitor

Returns a ColdFusion structure containing Performance Monitor data (Windows NT) or CFSTAT
data (on Unix/Linux). For this mode to work on Windows NT systems, the Enable Performance
Monitoring option must be checked in the Debugging section of the ColdFusion Administrator.

Simple_Load

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns a number representing the load on the server. This number is produced by an internal
algorithm based on ColdFusion queue depths.

Prev_Req_Time

Returns a number representing the previous request time in milliseconds. This metric can
calculate server load using the formula:

Load (as a percentage) = Prev_Req_Time / Max_Allowable_Response_Time_In_Milliseconds
* 100

Avg_Req_Time

Returns a number representing the average request time in milliseconds. This metric can
calculate load using the formula:

Load (as a percentage) = Avg_Req_Time / Max_Allowable_Response_Time_In_Milliseconds
* 100

If mode is set to Perf_Monitor , GetMetricData() returns a structure containing the following

key/value pairs:

AvgDBTime

Length of time in milliseconds averaged over the current and previous request that ColdFusion
took to process queries.

AvgQueueTime

Length of time in milliseconds (averaged over the current and previous request), that the
request spent in the staging queue.

AvgReqTime

Length of time in milliseconds averaged over the current and previous request that it took
ColdFusion to process the request.

BytesIn

Total number of bytes in HTTP requests to the ColdFusion server since last restart.
BytesOut

Total number of bytes in HTTP requests served by the ColdFusion server since last restart.
CachePops

Deprecated in ColdFusion MX. Always returns -1.
DBHits

Total number of database requests from the ColdFusion server since last restart.
InstanceName

Name of the ColdFusion server. By default, this is cfserver .
PageHits

Total number of page requests received by the ColdFusion server since last restart.
ReqQueued

Current number of HTTP requests sitting in the staging queue waiting to be processed.
ReqRunning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Current number of HTTP requests being processed by the ColdFusion server.
ReqTimedOut

Total number of HTTP requests that timed out while in the staging queue or being executed by
the ColdFusion server.

The following example demonstrates the four modes available to the GetMetricData() function:

<cfset PerformanceMonitoring = GetMetricData("Perf_monitor")>
<cfset Load = GetMetricData("Simple_Load")>
<cfset PreviousRequestTime = GetMetricData("Prev_Req_Time")>
<cfset AverageRequestTime = GetMetricData("Avg_Req_Time")>

<cfoutput>
Load: #Load#

Previous Request Time: #PreviousRequestTime#

Average Request Time: #AverageRequestTime#

</cfoutput>

<h2>Performance Monitoring</h2>
<cfdump var="#PerformanceMonitoring#">

GetNumericDate

New in ColdFusion MX

GetNumericDate(date)

Returns the specified date/time as a real number. Storing dates in this manner allows ColdFusion to
quickly and efficiently store and manipulate dates and times. The date is stored as the integer part of
the number, and the time is stored as the fractional part. 0 represents 12:00 AM on 12/30/1899. The
following example returns the numeric date representing 12/31/2002 at 7:00 PM:

<cfoutput>#GetNumericDate('12/31/2002 19:00:00')#</cfoutput>

7:00 PM on 12/31/2002 would be 37621.7916667. The whole part of the number represents 37621
days since 12/30/1899; 0.7916667, or 7:00 PM is obtained by dividing the hour (19) by the total
number of hours in a day (24).

GetPageContext

New in ColdFusion MX

Acts as a wrapper for the Java PageContext object. This function returns an object containing the

attributes, methods, and other configuration information available to the current page. Using this
object, it is possible to look up various information concerning the current page, such as scope and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable values. This function can also be useful for integrating ColdFusion with J2EE applications as it
provides access to request and response objects. Additionally, include and forward methods are
exposed, making it possible to communicate with JSP pages using the equivalent of jsp:forward and
jsp:include . To see the contents of the object for the current page, simply dump it using the cfdump

tag:

<cfdump var="#GetPageContext()#">

Method objects can be viewed by dumping them as well:

<cfdump var="#GetPageContext().getRequest()">

This retrieves the server name from the getRequest method:

<cfdump var="#GetPageContext().getRequest().getServerName()#">

The following example includes a JSP page named hello.jsp in your ColdFusion page while passing it a
URL parameter:

<cfoutput>
#GetPageContext().include("hello.jsp?name=Joe")#

</cfoutput>

GetProfileSections

New in ColdFusion MX

GetProfileSections(path_to_iniFile)

Returns a structure containing all the sections from the specified .ini file. Initialization files are used to
set operating system and application-specific variables during system boot or application launch.
Initialization files can be identified by their .ini file extension. Each section name of the .ini file is
returned as a structure key. The entries for each section are returned as a value for the associated
key. The following example gets the sections from an .ini file named odbc.ini , located in c:\winnt on
Windows machines, and dumps the contents using the cfdump tag:

<cfset MyIni = GetProfileSections('c:\winnt\odbc.ini')>

<cfdump var="#MyIni#">

GetProfileString

GetProfileString(inipath, section, entry)

Returns entry from section of the initialization file specified in inipath . Initialization files are used

to set operating system and application-specific variables during system boot or application launch.
Initialization files can be identified by their .ini file extension. Here's an example that returns a profile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string from one of ColdFusion's initialization files:

<cfset MyPath = "c:\winnt\odbc.ini">
<cfset MySection = "cfsnippets">
<cfset MyEntry = "driver32">

<cfoutput>
Path: #MyPath#

Section: #MySection#

Entry: #MyEntry#

<p>Profile String: #GetProfileString(MyPath, MySection, MyEntry)#
</cfoutput>

GetTempDirectory

GetTempDirectory()

Returns the absolute path, including trailing backslash, of the temporary directory used by ColdFusion.
Example:

<cfoutput>
The temporary directory being used by ColdFusion is: #GetTempDirectory()#
</cfoutput>

GetTempFile

GetTempFile(directory, filenameprefix)

Returns the full path to a uniquely named temporary file that ColdFusion creates and saves in
directory . The filename is assigned by taking up to the first three characters of filenameprefix ,

appending a unique string to them, and tacking on a .tmp extension. The following example creates a
temporary file that begins with "tmp_" and saves it to the current directory:

<cfset MyTempFile = GetTempFile(GetDirectoryFromPath(GetBaseTemplatePath()), "tmp_")>

<cfoutput>
Temporary file: #GetFileFromPath(MyTempFile)#

Path: #GetDirectoryFromPath(MyTempFile)#
</cfoutput>

GetTickCount

Updated in ColdFusion MX 6.1

GetTickCount()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns a counter representing the elapsed time in milliseconds from the Unix epoch (January 1, 1970,
00:00 GMT). GetTickCount() is useful for reporting the amount of time it takes to process specific

parts of CFML code. The following example counts the time (in milliseconds) it takes to process a loop
with 10,000 iterations:

<cfset Start = GetTickCount()>

<cfoutput>Start TickCount: #Start#</cfoutput>

<p>Looping from 1 to 10000

<cfset Timer="0">
<cfloop index="counter" from="1" to="10000">
 <cfset Timer=Timer+1>
</cfloop>
<cfset End = GetTickCount()>

<p>
<cfoutput>End TickCount: #End#</cfoutput>

<cfset TotalTime = (Evaluate(End - Start))>
<p>
<cfoutput>Total processing time: #TotalTime# milliseconds</cfoutput>

GetTimeZoneInfo

GetTimeZoneInfo()

Returns a structure containing time-zone information for the host server calling the function. The
following structure keys are returned by calling GetTimeZoneInfo() :

UTCTotalOffset

Returns the local offset time in minutes from Universal Coordinated Time (UTC). UTC is
coordinated on the prime meridian (running through Greenwich, U.K.). Positive offset values
represent time zones west of the prime meridian, while negative offsets represent time zones
east of the prime meridian.

UTCHourOffset

Returns the local offset time from UTC in hours.
UTCMinuteOffset

Returns the local offset time in minutes after UTCHourOffset is applied. The value for
UTCHourOffset can range from 0 to 60 depending on where a particular time zone falls in
relation to the nearest hour offset. All North American time zones return 0 for UTCMinuteOffset

.
IsDSTOn

Returns true if daylight savings time (DST) is turned on for the host machine and false if it

isn't.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example:

<cfset MyTimeZoneInfo = GetTimeZoneInfo()>

<cfoutput>
Local time is offset #MyTimeZoneInfo.utcTotalOffset# minutes from UTC.

Local time is offset #MyTimeZoneInfo.utcHourOffset# hours and
#MyTimeZoneInfo.utcMinuteOffset# minutes from UTC.

Daylight Saving Time is <cfif #MyTimeZoneInfo.isDSTOn#>on
<cfelse>off</cfif> for the host.
</cfoutput>

GetToken

GetToken(string, index [, delimiters])

Returns the token from string occupying the specified index position. An optional set of delimiters

may be specified. If no delimiters are specified, ColdFusion uses the default of spaces, tabs, and

newline characters. If index is greater than the total number of tokens in string , GetToken()
returns an empty string. GetToken() is similar in function to the ListGetAt() function but is more

versatile because it uses multiple sets of delimiters . Note that the GetToken() function currently

treats successive instances of the same delimiter as a single delimiter. Here's an example of this
function:

<cfset MyString="999-99-9999">

<cfoutput>
String: #MyString#
<p>GetToken(MyString, 3, "-"): #GetToken(MyString, 3, "-")#
</cfoutput>

Hash

Hash(string)

One-way encrypts string using the MD5 hash algorithm. The resulting string is a 32-character

hexadecimal representation of the original string. Because the MD5 algorithm is a one-way hash, there
is no way to decrypt the encrypted string. The Hash() function is often used to hash passwords

before storing them in a database. This allows you to store passwords in a database without being able
to see the actual password. When building an application that uses hashed passwords for
authentication, the password entered by the user should be hashed, then compared to the hashed
value stored in the database. If they match, you know the user entered a valid password. Here's an
example using the Hash() function:

<cfoutput># Hash('This is a test')#</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hour

Hour(date)

Returns the hour portion of a time/date object as a number between 0 and 23. Example:

The current hour is<cfoutput>#Hour(Now())#</cfoutput>.

HTMLCodeFormat

HTMLCodeFormat(string [, htmlversion])

Returns string enclosed in <pre> and </pre> tags with all carriage returns removed and special
characters (< , > , " , and &) escaped. The HTML version to use for character-escape sequences can

be specified using the optional htmlversion parameter. Valid entries are -1 (current HTML version),
2.0 (HTML 2.0, default), and 3.2 (HTML 3.0). Example:

<cfset MyString="<h3>This is an example of the HTMLCodeFormat function.</h3>
View the source of this document to see the escaping of the HTML characters.">

<cfoutput>#HTMLCodeFormat(MyString)#</cfoutput>

HTMLEditFormat

HTMLEditFormat(string [, htmlversion])

Returns string with all carriage returns removed and special characters (< , > , " , and &) escaped.

The HTML version to use for character-escape sequences can be specified using the optional
htmlversion parameter. Valid entries are: -1 (current HTML version), 2.0 (HTML 2.0, default), and
3.2 (HTML 3.0). Example:

<cfset MyString="<h3>This is an example of the HTMLEditFormat function.</h3>
View the source of this document to see the escaping of the HTML characters.">

<cfoutput>#HTMLEditFormat(MyString)#</cfoutput>

IIf

IIf(condition, expression1, expression2)

Evaluates condition as Boolean. If condition is true , IIf() then evaluates expression1 . If

condition is false , IIf() evaluates expression2 . Examples:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
IIF(1+2 is 3, DE("Yes"), DE("No")):

#IIF(1+2 is 3, DE("Yes"), DE("No"))#
<p>IIF(DayOfWeek(Now()) is 4, DE("Today is Wednesday!"),
DE("Today is #DayOfWeekAsString(DayOfWeek(Now()))#")):

#IIF(DayOfWeek(Now()) is 4, DE("Today is Wednesday!"),
DE("Today is #DayOfWeekAsString(DayOfWeek(Now()))#"))#
</cfoutput>

IncrementValue

IncrementValue(number)

Increments the integer part of a given number by 1. Examples:

<cfoutput>
-1: #IncrementValue(-1)#

-1.123: #IncrementValue(-1.123)#

-0.123: #IncrementValue(-0.123)#

0: #IncrementValue(0)#

0.123: #IncrementValue(0.123)#

1: #IncrementValue(1)#

1.123: #IncrementValue(1.123)#
</cfoutput>

InputBaseN

InputBaseN(string, radix)

Converts string to the base specified by radix . radix must be an integer between 2 and 36.

Example:

<cfloop index="Radix" from="2" to="36">
 <cfoutput>InputBaseN(10, #Radix#): #InputBaseN(10, Radix)#
</cfoutput>
</cfloop>

Insert

Insert(substring, string, position)

Inserts substring into string after position . Example:

<cfset MyString="This is how the cookie crumbles.">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>#Insert("chocolate chip ", MyString, 16)#</cfoutput>

Int

Int(number)

Returns the closest integer smaller than the given number. Examples:

<cfoutput>
-1: #Int(-1)#

-1.123: #Int(-1.123)#

-0.123: #Int(-0.123)#

0: #Int(0)#

0.123: #Int(0.123)#

1: #Int(1)#

1.123: #Int(1.123)#
</cfoutput>

IsArray

IsArray(value [, dimension])

Returns true if the value specified is an array. In addition, IsArray() can check to see if the array

is a specified dimension (1, 2, or 3). Examples:

<cfset Form.MyFormVar = "This is a form variable">
<cfset URL.MyURLVar = "This is a URL variable">
<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

<cfif IsArray(Form.MyFormVar)>
 Form.MyFormVar is an array!
<cfelseif IsArray(URL.MyURLVar)>
 URL.MyURLVar is an array!
<cfelseif IsArray(Grades)>
 Grades is an array!
<cfelse>
 No variables are arrays!
</cfif>

IsAuthenticated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No longer supported in ColdFusion MX

IsAuthenticated([securitycontext])

Returns true if the user has been authenticated for the given securitycontext using
cfauthenticate . ColdFusion returns true if the user has been authenticated or false if they haven't.

If no securitycontext is given, ColdFusion returns true if the user has been authenticated for any
security context. The IsAuthenticated() function is commonly used within an Application.cfm file. In
order to use the IsAuthenticated() function, Advanced Security needs to be enabled within the

ColdFusion Administrator, and a valid security context must already be defined. The following example
uses IsAuthenticated() to determine if a user is authenticated for a security context called
Administrator :

<cfif not IsAuthenticated("Administrator")>
 <cfauthenticate securitycontext="Administrator"
 username="#Form.username#" password="#Form.password#">
</cfif>

IsAuthorized

No longer supported in ColdFusion MX

IsAuthorized(resourcetype, resourcename [, action])

Returns true if the user is authorized to perform the action specified against a particular ColdFusion

resource. The parameter resourcetype specifies the type of resource to check, while resourcename
specifies the actual name of the resource. Possible resource types include Application , CFML ,
Collection , Component , CustomTag , Datasource , File , Function , User , and UserObject .

action is required for all resource types except Component , CustomTag , Function , and User and

specifies the action to check authorization for. The following table lists each resource type with possible
values for action :

Resource type Possible values for action

Application All , UseClientVariables

CFML Any valid action of the CFML tag specified in resourcetype

Collection Delete , Optimize , Purge , Search , Update

Component N/A

CustomTag N/A

Datasource All , Connect , Delete , Insert , Select , SP (stored procedure), Update

File Read , Write

Function N/A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resource type Possible values for action

User N/A

UserObject action as specified in the ColdFusion Administrator

To use the IsAuthorized() function, Advanced Security needs to be enabled within the ColdFusion

Administrator, and a valid security context must already be defined. The following example uses the
IsAuthorized() function to determine if a user is authorized to use the cffile tag to perform a file

upload:

<cfif IsAuthorized('CFML', 'cffile', 'Upload')>
 perform file upload...
<cfelse>
 You are not authorized to upload files!
</cfif>

IsBinary

New as of ColdFusion 4.5

IsBinary(value)

Returns true if the specified value is binary or false if it isn't. Examples:

<cfset GifImage=ToBinary("R0lGODlhAQABAPcAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAACwAAAAAAQABAAAIBAABBAQAOw= =")>

<cfoutput>
12: #IsBinary(12)#

abc: #IsBinary("abc")#

GifImage: #IsBinary(GifImage)#

</cfoutput>

IsBoolean

User N/A

UserObject action as specified in the ColdFusion Administrator

To use the IsAuthorized() function, Advanced Security needs to be enabled within the ColdFusion

Administrator, and a valid security context must already be defined. The following example uses the
IsAuthorized() function to determine if a user is authorized to use the cffile tag to perform a file

upload:

<cfif IsAuthorized('CFML', 'cffile', 'Upload')>
 perform file upload...
<cfelse>
 You are not authorized to upload files!
</cfif>

IsBinary

New as of ColdFusion 4.5

IsBinary(value)

Returns true if the specified value is binary or false if it isn't. Examples:

<cfset GifImage=ToBinary("R0lGODlhAQABAPcAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAACwAAAAAAQABAAAIBAABBAQAOw= =")>

<cfoutput>
12: #IsBinary(12)#

abc: #IsBinary("abc")#

GifImage: #IsBinary(GifImage)#

</cfoutput>

IsBoolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsBoolean(value)

Returns true if the specified value can be converted to a Boolean or false if it can't. Examples:

<cfoutput>
-1: #IsBoolean(-1)#

0: #IsBoolean(0)#

1234: #IsBoolean(1234)#

abcdef: #IsBoolean('abcdef')#

true: #IsBoolean(true)#

false: #IsBoolean(false)#

yes: #IsBoolean('yes')#

no: #IsBoolean('no')#

as45sd-1: #IsBoolean('as45sd')#

!@$%^: #IsBoolean('!@$%^')#
</cfoutput>

IsCustomFunction

New as of ColdFusion 5.0

IsCustomFunction()

Returns true if the specified Name is that of a user-defined function.

The following example uses IsCustomFunction() to determine whether Mean is a user-defined
function. The IsDefined() function makes sure the name exists before testing it with
IsCustomFunction() . If you attempt to evaluate a name that doesn't exist with IsCustomFunction(
) , ColdFusion throws an error.

<cfscript>
if(IsDefined('Mean') and IsCustomFunction(Mean)){
 WriteOutput("Mean is a custom function!");
 }
else{
 WriteOutput("Mean is not a custom function!");
 }
</cfscript>

IsDate

IsDate(string)

Returns true if the specified string can be converted to a valid date/time object or false if it can't.

Valid dates must be in the range AD 100-9999. For information on how ColdFusion MX handles two-
digit years, see CreateDate() . Examples:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
Now(): #IsDate(Now())#

04/15/2003: #IsDate('04/15/2003')#

15/04/2003: #IsDate('15/04/2003')#

13/13/2003: #IsDate('13/13/2003')#

August 15, 2003: #IsDate('August 15, 2003')#

15 Apr 2003: #IsDate('15 Apr 2003')#

August fifteenth, nineteen hundred ninety eight : #IsDate('August fifteenth,
nineteen hundred ninety eight')#

7 p.m.: #IsDate('7 p.m.')#

7pm: #IsDate('7pm')#

19:00: #IsDate('19:00')#

six thirty: #IsDate('six thirty')#
</cfoutput>

IsDebugMode

IsDebugMode()

Returns true if debugging mode is turned on in the ColdFusion Administrator or false if it is turned

off. Example:

Debugging is currently <cfif IsDebugMode()>on<cfelse>off</cfif>
for your ColdFusion server.

IsDefined

IsDefined('variable_name')

Determines if the specified variable exists. Returns true if the specified variable exists or false if it
doesn't. Note that IsDefined() replaces the deprecated ParameterExists() function. Examples:

<cfset MyVar="Variable">
<cfset Form.MyFormVar="Form Variable">

<cfoutput>
<cfif IsDefined('MyVar')>
 Variable MyVar exists:
 MyVar = #MyVar#
<cfelse>
 No variable called MyVar exists.
</cfif>
<p><cfif IsDefined('MyFormVar')>
 Variable MyFormVar exists:
 MyFormVar = #MyFormVar#
<cfelse>
 No variable called MyFormVar exists.
</cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p><cfif IsDefined('Queryname.field')>
 Variable Queryname.Field exists:
 QueryName.Field = #Queryname.Field#
<cfelse>
 No variable called Queryname.Field exists.
</cfif>
</cfoutput>

IsK2ServerABroker

New in ColdFusion MX

IsK2ServerABroker()

Returns true if the Verity K2 server installation is running as a broker. For this feature to be enabled,

you must license the full version of the K2 Server from Verity. Example:

<cfoutput>
Is the local version of the K2 server a broker? #IsK2ServerABroker()#
</cfoutput>

IsK2ServerDocCountExceeded

New as of ColdFusion 5.0
IsK2ServerDocCountExceeded()

Returns true if the number of documents contained in collections accessible by the K2 server exceeds
the document limit for the server or false if it doesn't. For more information on the document limit,
see the GetK2ServerDocCountLimit() function. The following example determines whether the K2

server document limit is exceeded:

Is the K2 server document limit exceeded?
<cfoutput>#IsK2ServerDocCountExceeded()#</cfoutput>

IsK2ServerOnline

New in ColdFusion MX
IsK2ServerOnline()

Returns true if the K2 server is configured and available for use. ColdFusion MX is bundled with an

OEM version of the Verity K2 Server release K2.2.0. Example:

Is the K2 server online? <cfoutput>#IsK2ServerOnline#</cfoutput>

IsLeapYear

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsLeapYear(year)

Returns true if the specified year is a leap year or false if it isn't. It is important to note that
IsLeapYear() expects a year (e.g., 2000) as opposed to a date. Example:

<cfoutput>
#Year(Now())# <cfif IsLeapYear(Year(Now()))>is<cfelse>isn't</cfif>
a leap year.
</cfoutput>

IsNotMap

New in ColdFusion MX

IsNotMap(variable_name)

Returns true if the specified variable does not map to an object of type Structure, Query, XML

Document Object, COM, CORBA, Java, ColdFusion Component, or web service. This is an
undocumented function in ColdFusion MX. Here's an example that attempts to evaluate both a simple
value and an object:

<cfset x=1>
<cfobject type="Java" action="Create" name="FileReader" class="java.io.FileReader">

<cfoutput>
Does x not map to an object? #IsNotMap(x)#

Does FileReader not map to an object? #IsNotMap(FileReader)#
</cfoutput>

IsNumeric

IsNumeric(string)

Returns true if the specified string can be converted to a number or false if it can't. Examples:

<cfoutput>
-1: #IsNumeric(-1)#

0: #IsNumeric(0)#

1234: #IsNumeric(1234)#

1,234,567,890: #IsNumeric('1,234,567,890')#

$1234.99: #IsNumeric('$1234.99')#

04/15/2003: #IsNumeric('04/15/2003')#

7pm: #IsNumeric('7pm')#

abcdef: #IsNumeric('abcdef')#

true: #IsNumeric(true)#

false: #IsNumeric(false)#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

yes: #IsNumeric('yes')#

no: #IsNumeric('no')#

as45sd-1: #IsNumeric('as45sd')#

!@$%^: #IsNumeric('!@$%^')#

1234abcd: #IsNumeric('1234abcd')#
</cfoutput>

IsNumericDate

IsNumericDate(realnumber)

Returns Yes if realnumber can be converted to a numeric date and No if it can't. Examples:

<cfoutput>
IsNumericDate(Now()): #IsNumericDate(Now())#

IsNumericDate('2003-04-15 19:00:00'): #IsNumericDate('2003-04-15 19:00:00')#

</cfoutput>

IsObject

New in ColdFusion MX

IsObject(value)

Returns true if value is an object of type COM, CORBA, Java, ColdFusion Component, or web service.

Example:

<cfset x=1>
<cfobject type="Java" action="Create" name="FileReader" class="java.io.FileReader">

<cfoutput>
Is x an object? #IsObject(x)#

Is FileReader an object? #IsObject(FileReader)#
</cfoutput>

IsProtected

No longer supported in ColdFusion MX

IsProtected(resourcetype, resourcename [, action])

Returns true if the specified resource is protected by a rule within the security context of the currently

authenticated user. The parameter resourcetype specifies the type of resource to check while

resourcename specifies the actual name of the resource. Possible resource types include Application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

, CFML , Collection , Component , CustomTag , Datasource , File , Function , User , and

UserObject . action is required for all resource types except Component , CustomTag , Function ,
and User and specifies the action of the resource to check. The following table lists each resource type

along with possible values for action :

Resource type Possible values for action

Application All , UseClientVariables

CFML Any valid action of the CFML tag specified in resourcetype

Collection Delete , Optimize , Purge , Search , Update

Component N/A

CustomTag N/A

Datasource All , Connect , Delete , Insert , Select , SP (stored procedure), Update

File Read , Write

Function N/A

User N/A

UserObject action as specified in the ColdFusion Administrator

In order to use the IsProtected() function, Advanced Security needs to be enabled within the

ColdFusion Administrator, and a valid security context must already be defined. The following example
uses the IsProtected() function to determine if file uploading via cffile is a protected resource:

<cfif IsProtected('CFML', 'cffile', 'Upload')>
 File uploading using cffile is a protected resource!
<cfelse>
 File uploading using cffile isn't a protected resource!
</cfif>

IsQuery

IsQuery(value)

Returns true if the specified value is a valid ColdFusion query or false if it isn't. Examples:

<cfset Form.MyFormVar = "This is a form variable">
<cfset URL.MyURLVar = "This is a URL variable">
<cfset Grades = ArrayNew(1)>
<cfset Grades[1] = 95>
<cfset Grades[2] = 93>
<cfset Grades[3] = 87>
<cfset Grades[4] = 100>
<cfset Grades[5] = 74>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfif IsQuery(Form.MyFormVar)>
 Form.MyFormVar is a query!
<cfelseif IsQuery(URL.MyURLVar)>
 URL.MyURLVar is a query!
<cfelseif IsQuery(Grades)>
 Grades is a query!
<cfelse>
 No variables are queries!
</cfif>

IsSimpleValue

IsSimpleValue(value)

Returns true if the specified value is a number, string, Boolean, or date/time object or false if it isn't.

Examples:

<cfset MyArray = ArrayNew(1)>
<cfset MyArray[1]="George">
<cfset MyArray[2]="Jeff">

<cfoutput>
IsSimpleValue(123): #IsSimpleValue(123)#

IsSimpleValue('abc'): #IsSimpleValue('abc')#

IsSimpleValue('123,abc,456,def'): #IsSimpleValue('123,abc,456,def')#

IsSimpleValue(MyArray): #IsSimpleValue(MyArray)#

IsSimpleValue(true): #IsSimpleValue(true)#

IsSimpleValue(11/11/02): #IsSimpleValue(11/11/02)#

</cfoutput>

IsStruct

IsStruct(variable)

Returns true if the specified variable is a ColdFusion structure or false if it isn't. Examples:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

Is Employee a structure? <cfoutput>#IsStruct(Employee)#</cfoutput>

IsUserInRole

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New in ColdFusion MX

IsUserInRole("role")

Returns true if the current authenticated user belongs in the specified role . IsUserInRole() is

used in conjunction with ColdFusion MX's built-in security. Example:

<cflogin>
 <cfquery name="AuthenticateUser" datasource="ProgrammingCF">
 SELECT *
 FROM Users
 WHERE Username='pmoney'
 AND Password='#Hash("cat")#'
 </cfquery>

 <cfloginuser
 name="pmoney"
 password="#Hash("cat")#"
 roles="editor,user">
</cflogin>

<cfoutput>
Is #GetAuthUser()# an editor? #IsUserInRole("editor")#
</cfoutput>

IsWDDX

IsWDDX(value)

Uses a validating XML parser with the WDDX DTD to determine whether a specified value is a well-
formed WDDX packet. Returns true if the specified value is a well-formed WDDX packet or false if it
isn't. The following example shows how to use the IsWDDX() function to detect if a value is a well-

formed WDDX packet:

<!--- Serialize a string into a WDDX packet --->
<cfwddx action="CFML2WDDX" input="I am a string!" output="MyWDDXPacket1">

<cfset MyWDDXPacket2 = "I am a string too!">

<cfoutput>#HTMLEditFormat(MyWDDXPacket1)#
</cfoutput><p>

<!--- Check if MyWDDXPacket1 contains a well-formed WDDX packet --->
<cfif IsWDDX(MyWDDXPacket1)>
 Is a well-formed WDDX packet!
<cfelse>
 Is not a well-formed WDDX packet!
</cfif>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>#HTMLEditFormat(MyWDDXPacket2)#
</cfoutput><p>

<!--- Check if MyWDDXPacket2 contains a well-formed WDDX packet --->
<cfif IsWDDX(MyWDDXPacket2)>
 Is a well-formed WDDX packet!
<cfelse>
 Is not a well-formed WDDX packet!
</cfif>

IsXmlDoc

New in ColdFusion MX

IsXmlDoc(value)

Returns true if value is a ColdFusion XML document object. XML document objects are created using
the XmlParse() function or the cfxml tag. The following example grabs an XML news feed from
macromedia.com , uses XmlParse() , then reports whether the result is an XML document object:

<cfhttp URL="http://www.macromedia.com/devnet/resources/macromedia_resources.xml"
 method="Get">

<cfset DesDev = XmlParse(cfhttp.FileContent)>

Is the feed from Macromedia.com an XML document object?
<cfoutput>#IsXMLDoc(DesDev)#</cfoutput>

To see the structure of the XML document object, use the cfdump tag.

IsXmlElem

New in ColdFusion MX

IsXmlElem(value)

Returns true if value is an element of a ColdFusion XML document object. Example:

<cfhttp URL="http://www.macromedia.com/devnet/resources/macromedia_resources.xml"
 method="Get">

<cfset DesDev = XmlParse(cfhttp.FileContent)>

<cfoutput>
Is DesDev.macromedia_resources.resource.title an XML Element?
#IsXmlElem(DesDev.macromedia_resources.resource.title)#
</cfoutput>

To see the structure of the XML document object, use the cfdump tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsXmlRoot

New in ColdFusion MX

IsXmlRoot(value)

Returns true if value is the root element of an XML document object. Example:

<cfhttp URL="http://www.macromedia.com/devnet/resources/macromedia_resources.xml"
 method="Get">

<cfset DesDev = XmlParse(cfhttp.FileContent)>

<cfoutput>
Is DesDev.macromedia_resources.resource.title the XML root?
#IsXmlRoot(DesDev.macromedia_resources.resource.title)#
</cfoutput>

To see the structure of the XML document object, use the cfdump tag.

JavaCast

JavaCast(type, variable)

Casts a ColdFusion variable before being passed to an overloaded Java method. Possible entries for
type include boolean , int , long , double , or string . The JavaCast() function can't cast

complex objects, such as query objects, arrays, and structures, nor can it cast to a super-class. The
following example demonstrates how to explicitly cast a ColdFusion variable before passing it to an
overloaded method within a Java object:

<cfobject type="Java" action="Create" class="MyClass" name="MyObject">

<cfset x=10>

<!--- Cast x to a string --->
<cfset MyString = JavaCast("string",x)>
<cfset void = MyMethod(MyString)>

<!--- Cast x to an integer --->
<cfset MyInteger = JavaCast("int",x)>
<cfset void = MyMethod(MyInteger)>

JSStringFormat

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JSStringFormat(string)

Returns string with special characters escaped so that it is safe to use in JavaScript statements.

Example:

<cfset MyString="""Escape double quotes"". Escape the \ character. 'Escape
single quotes'">

<cfset SafeString=JSStringFormat(MyString)>

<cfoutput>
Original String: #MyString#

JavaScript Safe String: #SafeString#
</cfoutput>

Lcase

Lcase(string)

Converts string to lowercase. Example:

<cfset MyString="I WANT THIS STRING TO APPEAR IN ALL LOWERCASE.">

<cfoutput>#Lcase(MyString)#</cfoutput>

Left

Left(string, count)

Returns the number of characters specified by count , beginning at the leftmost position of string .

The following example returns the 13 leftmost characters of a string:

<cfset MyString="(555)555-5555 x5555">
<cfset BasePhoneNumber = Left(MyString, 13)>

<cfoutput>
String: #MyString#

Base Phone Number: #BasePhoneNumber#
</cfoutput>

Len

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Len(string)

Returns the length of a string as a number. If string is binary, Len() returns the length of the

binary buffer. Example:

<cfset MyString="This is my string.">

<cfoutput>
String: #MyString#

MyString is #Len(MyString)# characters long.
</cfoutput>

ListAppend

ListAppend(list, element [, delimiters])

Appends element to the end of list . An optional delimiter can be specified if the list is delimited with

a character other than the comma (the default). Here's an example that appends an element to the
end of a list:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday">
<cfset MyAppendedList = ListAppend(MyList, 'Sunday')>

<cfoutput>
List: #MyList#

Appended List: #MyAppendedList#
</cfoutput>

ListChangeDelims

ListChangeDelims(list, new_delimiter [, delimiters])

Changes the delimiters used in the list to the specified new delimiters. The following example changes
the delimiters in the list from commas to pipes (|):

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset NewList = ListChangeDelims(MyList, '|', ',')>

<cfoutput>
Old Delimiters: #MyList#

New Delimiters: #NewList#
</cfoutput>

ListContains

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ListContains(list, substring [, delimiters])

Returns the index of the first element in the list that contains the specified substring as part of the
element. If the substring isn't found, 0 is returned. The search is case-sensitive. An optional delimiter
can be specified if the list is delimited with a character other than the comma (the default). Here's an
example that returns the index of the first element in a list that contains wed :

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset TheSubstring = "wed">
<cfset TheIndex = ListContains(MyList, TheSubstring)>

<cfoutput>
List: #MyList#
<p><cfif TheIndex is 0>
 The substring (#TheSubstring#) could not be found in the list!
<cfelse>
 The substring (#TheSubstring#) was found in element
 #TheIndex# (#ListGetAt(MyList, TheIndex)#).
</cfif>
</cfoutput>

ListContainsNoCase

ListContainsNoCase(list, substring [, delimiters])

Returns the index of the first element in the list that contains the specified substring as part of the
element. If the substring isn't found, 0 is returned. The search is case-insensitive. An optional delimiter
can be specified if the list is delimited with a character other than the comma (the default). The
following example returns the index of the first element in a list that contains wed :

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset TheSubstring = "wed">
<cfset TheIndex = ListContainsNoCase(MyList, TheSubstring)>

<cfoutput>
List: #MyList#
<p><cfif TheIndex is 0>
 The substring (#TheSubstring#) could not be found in the list!
<cfelse>
 The substring (#TheSubstring#) was found in element #TheIndex#
 (#ListGetAt(MyList, TheIndex)#).
</cfif>
</cfoutput>

ListDeleteAt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ListDeleteAt(list, position [, delimiters])

Deletes an element from a list occupying the specified position . An optional delimiter can be

specified if the list is delimited with a character other than the comma (the default). Here's an example
that deletes the list element occupying the fifth position in the list:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset NewList = ListDeleteAt(MyList, 5)>

<cfoutput>
Original List: #MyList#

New List: #NewList#
</cfoutput>

ListFind

ListFind(list, value [, delimiters])

Returns the index of the first occurrence of value in the specified list. The search is case-sensitive. If no
matches are found, 0 is returned. An optional delimiter can be specified if the list is delimited with a
character other than the comma (the default). The following example returns the index of the first
element in a list that matches saturday :

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset TheValue = "saturday">
<cfset TheIndex = ListFind(MyList, TheValue)>

<cfoutput>
List: #MyList#
<p><cfif TheIndex is 0>
 The value (#TheValue#) could not be found in the list!
<cfelse>
 The Value (#TheValue#) was found in element #TheIndex#
 (#ListGetAt(MyList, TheIndex)#).
</cfif>
</cfoutput>

ListFindNoCase

ListFindNoCase(list, value [, delimiters])

Returns the index of the first occurrence of value in the specified list. The search is case-insensitive. If
no matches are found, 0 is returned. An optional delimiter can be specified if the list is delimited with a
character other than the comma (the default). Here's an example that returns the index of the first
element in a list that matches saturday :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset TheValue = "saturday">
<cfset TheIndex = ListFindNoCase(MyList, TheValue)>

<cfoutput>
List: #MyList#
<p><cfif TheIndex is 0>
 The value (#TheValue#) could not be found in the list!
<cfelse>
 The Value (#TheValue#) was found in element #TheIndex#
 (#ListGetAt(MyList, TheIndex)#).
</cfif>
</cfoutput>

ListFirst

ListFirst(list [, delimiters])

Returns the first element in the specified list. An optional delimiter can be specified if the list is
delimited with a character other than the comma (the default). Example:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">

<cfoutput>
List: #MyList#

First Element: #ListFirst(MyList)#
</cfoutput>

ListGetAt

ListGetAt(list, position [, delimiters])

Returns the list element specified by position . An optional delimiter can be specified if the list is
delimited with a character other than the comma (the default). Note that the ListGetAt() function

currently treats successive instances of the same delimiter as a single delimiter. Here's an example
that retrieves the third element of the list:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">

<cfoutput>
List: #MyList#

Third Element: #ListGetAt(MyList, 3)#
</cfoutput>

ListInsertAt

ListInsertAt(list, position, value [, delimiters])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inserts value into list at the specified position. An optional delimiter can be specified if the list is

delimited with a character other than the comma (the default). The following example inserts a value
into a list:

<cfset MyList = "Monday,Tuesday,Thursday,Friday,Saturday,Sunday">
<cfset MyNewList = ListInsertAt(MyList, 3, "Wednesday")>

<cfoutput>
Original List: #MyList#

New List: #MyNewList#
</cfoutput>

ListLast

ListLast(list [, delimiters])

Returns the last element in the specified list. An optional delimiter can be specified if the list is
delimited with a character other than the comma (the default). Example:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">

<cfoutput>
List: #MyList#

Last Element: #ListLast(MyList)#
</cfoutput>

ListLen

ListLen(list [, delimiters])

Returns the number of elements in the specified list. An optional delimiter can be specified if the list is
delimited with a character other than the comma (the default). Example:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">

<cfoutput>
List: #MyList#

Number of elements: #ListLen(MyList)#
</cfoutput>

ListPrepend

ListPrepend(list, element [, delimiters])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Prepends element to the beginning of list . An optional delimiter can be specified if the list is

delimited with a character other than the comma (the default). The following example appends an
element to the beginning of a list:

<cfset MyList = "Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset MyprependedList = ListPrepend(MyList, 'Monday')>

<cfoutput>
List: #MyList#

Prepended List: #MyPrependedList#
</cfoutput>

ListQualify

ListQualify(list, qualifier [, delimiters] [, elements])

Places qualifiers (such as single or double quotes) around elements of list . An optional delimiter can

be specified if the list is delimited with a character other than the comma (the default). Elements
accepts All or Char and specifies whether the function qualifies all elements in the list (the default) or

only list items made up of alphabetic characters. Examples:

<cfset MyAlphaList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset MyAlphaNumericList =
"1,Monday,2,Tuesday,3,Wednesday,4,Thursday,5,Friday,6,Saturday,7,Sunday">

<cfset MyQualifiedAlphaList = ListQualify(MyAlphaList, """")>
<cfset MyQualifiedAlphaNumericList =
 ListQualify(MyAlphaNumericList, """", ',', 'CHAR')>
<cfoutput>
Original Alpha List: #MyAlphaList#

Original AlphaNumeric List: #MyAlphaNumericList#

<p>Qualified Alpha List: #MyQualifiedAlphaList#

Qualified AlphaNumeric List: #MyQualifiedAlphaNumericList#

</cfoutput>

ListRest

ListRest(list [, delimiters])

Returns all the elements in the specified list excluding the first element. An optional delimiter can be
specified if the list is delimited with a character other than the comma (the default). The following
example returns all the elements in the list except for the first element:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">

<cfoutput>
List: #MyList#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All Elements Excluding First: #ListRest(MyList)#
</cfoutput>

ListSetAt

ListSetAt(list, position, value [, delimiters])

Sets value at specified position , overwriting the element already occupying that space. An optional

delimiter can be specified if the list is delimited with a character other than the comma (the default).
Here's an example that replaces the value in the third element of the list with a new value:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">
<cfset MyNewList = ListSetAt(MyList, 3, "Humpday")>

<cfoutput>
Original List: #MyList#

New List: #MyNewList#
</cfoutput>

ListSort

ListSort(list, sort_type [, order] [, delimiters])

Sorts a list based on the sort_type (numeric , text , or textnocase) and optionally, the sort order
(asc , the default, or desc). An optional delimiter can be specified if the list is delimited with a

character other than the comma (the default). The following example sorts a list by alphabetical order:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">

<cfoutput>
List: #MyList#

Sorted by Alphabetical Order: #ListSort(MyList, 'text')#
</cfoutput>

ListToArray

ListToArray(list [, delimiters])

Converts a ColdFusion list to a one-dimensional array. An optional delimiter can be specified if the list is
delimited with a character other than the comma (the default). Here's an example that converts a list
containing the days of the week to a one-dimensional array:

<cfset MyList = "Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset MyArray = ListToArray(MyList)>

<cfdump var="#MyArray#">

ListValueCount

ListValueCount(list, value [, delimiters])

Counts the number of times value appears in the specified list. The search performed is case-

sensitive. An optional delimiter can be specified if the list is delimited with a character other than the
comma (the default). The following example counts the number of times each unique value appears in
the list and outputs the results for each item:

<cfset MyList = "Apple,orange,apple,Orange,Peach,pear,apple,pear,peach,Pear,
Apple,Peach,orange,apple">
<cfset UniqueList = "">

<cfloop index="Element" list="#MyList#">
 <cfif ListFind(UniqueList, Element) is "No">
 <cfset UniqueList = ListAppend(UniqueList, Element)>
 </cfif>
</cfloop>

<cfoutput>Original List: #MyList#</cfoutput>
<p><cfloop index="Element" list="#UniqueList#">
 <cfoutput>
 #Element# appears: #ListValueCount(MyList, Element)# times.

 </cfoutput>
</cfloop>

ListValueCountNoCase

ListValueCountNoCase(list, value [, delimiters])

Counts the number of times value appears in the specified list. The search performed is case-

insensitive. An optional delimiter can be specified if the list is delimited with a character other than the
comma (the default). Here's an example that counts the number of times each unique value appears in
the list and outputs the results for each item:

<cfset MyList = "Apple,orange,apple,Orange,Peach,pear,apple,pear,peach,Pear,
Apple,Peach,orange,apple">
<cfset UniqueList = "">

<cfloop index="Element" list="#MyList#">
 <cfif ListFindNoCase(UniqueList, Element) is "No">
 <cfset UniqueList = ListAppend(UniqueList, Element)>
 </cfif>
</cfloop>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>Original List: #MyList#</cfoutput>
<p><cfloop index="Element" list="#UniqueList#">
 <cfoutput>
 #Element# appears: #ListValueCountNoCase(MyList, Element)# times
 regardless of case.

 </cfoutput>
</cfloop>

LJustify

LJustify(string, length)

Left-justifies string within a field of length characters. Example:

<cfset OriginalString = "ColdFusion">

<cfoutput>
Original String (quoted): "#OriginalString#"

Left-justified String (quoted): "#LJustify("ColdFusion", 20)#"
</cfoutput>

Log

Log(number)

Returns the natural logarithm of a number. number must be a positive number greater than zero.

Examples:

<cfoutput>
Log(0.01) = #Log(0.01)#

Log(1) = #Log(1)#

Log(10) = #Log(10)#

Log(100) = #Log(100)#

Log(1000) = #Log(1000)#

Log(1000.234) = #Log(1000.234)#
</cfoutput>

Log10

Log10(number)

Returns the base-10 logarithm of a number. Examples:

<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log10(0.01) = #Log10(0.01)#

Log10(1) = #Log10(1)#

Log10(10) = #Log10(10)#

Log10(100) = #Log10(100)#

Log10(1000) = #Log10(1000)#

Log10(1000.234) = #Log10(1000.234)#
</cfoutput>

LSCurrencyFormat

LSCurrencyFormat(number [, type])

Returns a JRE-dependent, locale-specific currency format where number is the currency amount, and

type is the locale-specific convention. Valid entries for type are None (the amount), Local (the
amount with locale-specific currency formatting; the default), and International (the amount with its

corresponding three-letter international currency prefix). Note that for JDK 1.3, Euro Zone countries
use the currency symbol of their locale. For JDK 1.4, Euro Zone countries use the euro. For this reason,
it is suggested you use the LSEuroCurrencyFormat() function if you need to deal with the euro. The

following example displays currency formats for each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 None: #LSCurrencyFormat(1000000.99, "None")#

 Local: #LSCurrencyFormat(1000000.99, "Local")#

 International: #LSCurrencyFormat(1000000.99, "International")#

 </cfoutput>
</cfloop>

LSDateFormat

LSDateFormat(date [, mask])

Returns a locale-specific date format according to mask . Dates must be in the range AD 100-9999. If

no value is specified for mask , LSDateFormat() uses the locale-specific default. For valid mask
entries, see the DateFormat() function. Dates passed as literals must be enclosed in quotes.

Otherwise, ColdFusion interprets the date as a numeric date. If an invalid mask is passed to the
function, ColdFusion outputs the invalid characters. For information on how ColdFusion MX handles
two-digit years, see the entry for CreateDate() . The following example applies the LSDateFormat(
) function to each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfoutput>
 <p>#locale#

 #LSDateFormat(Now())#

 #LSDateFormat(Now(), "d/m/yy")#

 #LSDateFormat(Now(), "d-mmm-yyyy")#

 #LSDateFormat(Now(), 'dd mmm yy')#

 #LSDateFormat(Now(), 'dddd, mmmm dd, yyyy')#

 #LSDateFormat(Now(), "mm/dd/yyyy")#

 #LSDateFormat(Now(), "mmmm d, yyyy")#

 #LSDateFormat(Now(), "mmm-dd-yyyy")#

 short: #LSDateFormat(Now(), 'short')#

 medium: #LSDateFormat(Now(), 'medium')#

 long: #LSDateFormat(Now(), 'long')#

 full: #LSDateFormat(Now(), 'full')#

 </cfoutput>
</cfloop>

LSEuroCurrencyFormat

LSEuroCurrencyFormat(amount [, type])

Returns a locale-specific currency format with the euro as the symbol where number is the currency

amount and type is the locale-specific convention. Valid entries for type are None (the amount),
Local (the amount with locale-specific currency formatting; the default), and International (the

amount with its corresponding three-letter international currency prefix). In ColdFusion MX, if the
current locale is not part of the Euro Zone, the currency format specific to the locale is used instead of
the euro. The following example displays euro currency formats for each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>
 #locale#

 None: #LSEuroCurrencyFormat(1000000.99, "None")#

 Local: #LSEuroCurrencyFormat(1000000.99, "Local")#

 International: #LSEuroCurrencyFormat(1000000.99, "International")#

 </cfoutput>
</cfloop>

LSIsCurrency

LSIsCurrency(string)

Returns true if string is a locale-specific currency string and false if it isn't. Here's an example that

determines whether the given strings are locale-specific currency values for each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfoutput>
 <p>#locale#

 99.99: #LSIsCurrency('99.99')#

 $1234: #LSIsCurrency('$1234')#

 $1,234,567,890: #LSIsCurrency('$1,234,567,890')#

 $1234.99: #LSIsCurrency('$1234.99')#

 </cfoutput>
</cfloop>

LSIsDate

LSIsDate(date)

Functions identically to the IsDate() function within the context of the current locale. Returns true if

date can be converted to a date/time object in the current locale or false if it can't. In ColdFusion

MX, the hyphen is only a valid date delimiter in the Dutch (Standard) and Portuguese (Standard)
locales. Additionally, if you have the Sun JRE 1.3.1 running in the English (UK) locale, the month and
day portion of a date string must have a leading zero for single-digit months/days. The following
example determines whether the supplied values are valid date/time objects for each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 04/15/2002: #LSIsDate('04/15/2002')#

 15-04-2002: #LSIsDate('15-04-2002')#

 15/04/2002: #LSIsDate('15/04/2002')#

 13/13/2002: #LSIsDate('13/13/2002')#

 August 15, 2002: #LSIsDate('August 15, 2002')#

 15 Apr 2002: #LSIsDate('15 Apr 2002')#

 7 p.m.: #LSIsDate('7 p.m.')#

 7pm: #LSIsDate('7pm')#

 19:00: #LSIsDate('19:00')#

 six thirty: #LSIsDate('six thirty')#
 </cfoutput>
</cfloop>

LSIsNumeric

LSIsNumeric(string)

Functions identically to the IsNumeric() function within the context of the current locale. Returns

true if string can be converted to a number in the current locale or false if it can't. Here's an

example that determines whether the supplied values are valid numbers for each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>#locale#

 -1: #LSIsNumeric(-1)#

 0: #LSIsNumeric(0)#

 1234: #LSIsNumeric(1234)#

 1,234,567,890: #LSIsNumeric('1,234,567,890')#

 $1234.99: #LSIsNumeric('$1234.99')#

 04/15/2003: #LSIsNumeric('04/15/2003')#

 7pm: #LSIsNumeric('7pm')#

 abcdef: #LSIsNumeric('abcdef')#

 true: #LSIsNumeric(true)#

 false: #LSIsNumeric(false)#

 yes: #LSIsNumeric('yes')#

 no: #LSIsNumeric('no')#

 </cfoutput>
</cfloop>

LSNumberFormat

LSNumberFormat(number [, mask])

Returns number formatted according to mask using the locale convention. If no value is specified for

mask , LSNumberFormat() returns number rounded to the nearest integer. Valid entries for mask are
the same as for NumberFormat() . The following example applies the function to various numbers for

each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 LSNumberFormat(1000.99): #LSNumberFormat(1000.99)#

 LSNumberFormat(1000.99, '____'): #LSNumberFormat(1000.99, '____')#

 LSNumberFormat(1000.99, '9999.99'): #LSNumberFormat(1000.99, '9999.99')#

 LSNumberFormat(1000.99, '09999.9900'):
 #LSNumberFormat(1000.99, '09999.9900')#

 LSNumberFormat(-1000.99, '(9999.99)'):
 #LSNumberFormat(-1000.99, '(9999.99)')#

 LSNumberFormat(1000.99, '+9999.99'):
 #LSNumberFormat(1000.99, '+9999.99')#

 LSNumberFormat(-1000.99, '+9999.99'):
 #LSNumberFormat(-1000.99, '+9999.99')#

 LSNumberFormat(1000.99, '-9999.99'):
 #LSNumberFormat(1000.99, '-9999.99')#

 LSNumberFormat(-1000.99, '-9999.99'):
 #LSNumberFormat(-1000.99, '-9999.99')#

 LSNumberFormat(1000.99, '$9,999.99'):
 #LSNumberFormat(1000.99, '$9,999.99')#

 LSNumberFormat(1000.99, 'L999,999.99'):
 #LSNumberFormat(1000.99, 'L999,999.99')#

 LSNumberFormat(1000.99, 'C999,999.99'):
 #LSNumberFormat(1000.99, 'C999,999.99')#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LSNumberFormat(1000.99, 'C_____(^___)'):
 #LSNumberFormat(1000.99, 'C_____(^___)')#

 </cfoutput>
</cfloop>

LSParseCurrency

LSParseCurrency(string)

Returns the numeric value of string where string is a locale-specific currency amount from a non-
Euro Zone locale. LSParseCurrency() can be converted from any of the locale-specific currency
formats (None , Local , International). For euro currency formats, see the LSParseEuroCurrency(
) function. The following example demonstrates for each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 Local: #LSCurrencyFormat(1000000.99, "local")#

 LSParseCurrency: #LSParseCurrency(LSCurrencyFormat(1000000.99, "local"))#

 </cfoutput>
</cfloop>

LSParseDateTime

LSParseDateTime(datestring)

Returns a locale-specific ColdFusion date/time object from datestring . LSParseDateTime() is
similar to the ParseDateTime() function except it doesn't handle POP dates. If the supplied

datestring contains a time zone, and it is different than the time zone of the ColdFusion server, the

datestring is converted to the time zone of the ColdFusion server. Example:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 #LSParseDateTime("#LSDateFormat(Now())# #LSTimeFormat(Now())#")#

 </cfoutput>
</cfloop>

LSParseEuroCurrency

LSParseEuroCurrency(string)

Returns the numeric value of string where string is a locale-specific currency amount that contains
the euro symbol. LSParseEuroCurrency() can be converted from any of the locale-specific euro
currency formats (None , Local , International). The following example demonstrates for each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 Local: #LSEuroCurrencyFormat(1000000.99, "local")#

 LSParseEuroCurrency: #LSParseEuroCurrency(LSEuroCurrencyFormat(1000000.99,
 "local"))#

 </cfoutput>
</cfloop>

LSParseNumber

LSParseNumber(string)

Converts string to a locale-specific numeric value. Here's an example that applies the function to

each locale:

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 Local: #LSNumberFormat(1000000.99)#

 LSParseNumber: #LSParseNumber(LSNumberFormat(1000000.99))#

 </cfoutput>
</cfloop>

LSTimeFormat

LSTimeFormat(time [, mask])

Returns locale-specific time formatted according to mask . If no value is specified for mask ,

LSTimeFormat() uses the default locale's format. Valid entries for mask are the same as for
TimeFormat() . If an invalid mask is passed to the function, ColdFusion outputs the invalid

characters. The following example demonstrates for each locale:

<cfset TheTime = Now()>

<cfloop index="locale" list="#Server.Coldfusion.SupportedLocales#">
 <cfset SetLocale(locale)>
 <cfoutput>
 <p>#locale#

 TheTime = #LSTimeFormat(TheTime)#

 LSTimeFormat(TheTime, 'h:m:s'): #LSTimeFormat(TheTime, 'h:m:s')#

 LSTimeFormat(TheTime, 'h:m:s t'): #LSTimeFormat(TheTime, 'h:m:s t')#

 LSTimeFormat(TheTime, 'hh:mm:ss'): #LSTimeFormat(TheTime, 'hh:mm:ss')#

 LSTimeFormat(TheTime, 'hh:mm:ss tt'):
 #LSTimeFormat(TheTime, 'hh:mm:ss tt')#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LSTimeFormat(TheTime, 'H:M:ss'): #LSTimeFormat(TheTime, 'H:M:s')#

 LSTimeFormat(TheTime, 'HH:MM:ss'): #LSTimeFormat(TheTime, 'HH:MM:ss')#

 <p>
 And these formats are new in ColdFusion MX:

 short: #LSTimeFormat(TheTime, 'short')#

 medium: #LSTimeFormat(TheTime, 'medium')#

 long: #LSTimeFormat(TheTime, 'long')#

 full: #LSTimeFormat(TheTime, 'full')#

 </cfoutput>
</cfloop>

LTrim

LTrim(string)

Removes leading spaces from the specified string. Example:

<cfset OriginalString = " ColdFusion">

<cfoutput>
Original String (quoted): "#OriginalString#"

Left-trimmed String (quoted): "#LTrim(OriginalString)#"
</cfoutput>

Max

Max(number1, number2)

Returns the greater value of two specified numbers. Example:

<cfset x=10>
<cfset y=20>

<cfoutput>#Max(x,y)# is a larger number than #Min(x,y)#.</cfoutput>

Mid

Mid(string, startpos, count)

Returns count number of characters from the string beginning at the position specified by startpos

. Example:

<cfset MyString="(555)555-5555 x5555">
<cfset AreaCode = Mid(MyString, 2, 3)>

<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String: #MyString#

Area Code: #AreaCode#
</cfoutput>

Min

Min(number1, number2)

Returns the lesser value of two specified numbers. Example:

<cfset x=10>
<cfset y=20>

<cfoutput>#Min(x,y)# is a smaller number than #Max(x,y)#.</cfoutput>

Minute

Minute(date)

Returns the minute for a valid date/time object as a number between 1 and 59. Example:

It is currently <cfoutput>#Minute(Now())#</cfoutput> minute(s) past the hour.

Month

Month(date)

Returns the month of the year for a given date as a number between 1 and 12. Example:

The current month is month <cfoutput>#Month(Now())#</cfoutput>.

MonthAsString

MonthAsString(number)

Returns the name of the month for a given month's number between 1 and 12. Example:

The current month is <cfoutput>#MonthAsString(Month(Now()))#</cfoutput>.

Now

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now()

Returns the current server time and date as a time/date object in the format {ts 'yyyy-mm-dd
HH:MM:SS'} . Example:

<cfoutput>
Today is #DateFormat(Now(),'dddd mmmm dd, yyyy')#.

It is currently #TimeFormat(Now(),'hh:mm tt')#.
</cfoutput>

NumberFormat

NumberFormat(number [, mask])

Returns number formatted according to mask . If no value is specified for mask , NumberFormat

returns number as an integer formatted with thousands separators. Valid entries for mask are:

Mask Description

_ Optional digit placeholder

9 Optional digit placeholder; same as _ but better for showing decimal places

. Decimal-point location

Forces padding with zeros

() Surrounds negative numbers in parentheses

+ Places a plus sign in front of positive numbers and a minus sign in front of negative numbers

- Places a space in front of positive numbers and a minus sign in front of negative numbers

, Separates thousands with commas

L Left-justifies the number within the width of the mask

C Centers the number within the width of the mask

$ Places a dollar sign in front of the number

^ Separates left from right formatting

Examples:

<cfset MyNumber = 1000.99>

<cfoutput>
MyNumber = #MyNumber#
<p>
NumberFormat(MyNumber, '____'): #NumberFormat(MyNumber, '____')#

NumberFormat(MyNumber, '9999.99'): #NumberFormat(MyNumber, '9999.99')#

NumberFormat(MyNumber, '09999.9900'): #NumberFormat(MyNumber, '09999.9900')#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NumberFormat(-MyNumber, '(9999.99)'): #NumberFormat(-MyNumber, '(9999.99)')#

NumberFormat(MyNumber, '+9999.99'): #NumberFormat(MyNumber, '+9999.99')#

NumberFormat(-MyNumber, '+9999.99'): #NumberFormat(-MyNumber, '+9999.99')#

NumberFormat(MyNumber, '-9999.99'): #NumberFormat(MyNumber, '-9999.99')#

NumberFormat(-MyNumber, '-9999.99'): #NumberFormat(-MyNumber, '-9999.99')#

NumberFormat(MyNumber, '$9,999.99'): #NumberFormat(MyNumber, '$9,999.99')#

NumberFormat(MyNumber, 'L999,999.99'): #NumberFormat(MyNumber, 'L999,999.99')#

NumberFormat(MyNumber, 'C999,999.99'): #NumberFormat(MyNumber, 'C999,999.99')#

NumberFormat(MyNumber, 'C_____(^___)'):
 #NumberFormat(MyNumber, 'C_____(^___)')#

</cfoutput>

ParagraphFormat

ParagraphFormat(string)

Returns string formatted so that single newline characters are replaced with a space character, and
double newline characters are replaced with HTML <p> tags. ParagraphFormat() is most often used
to format text that has been entered in a Textarea HTML form field. Example:

<cfset MyText="This is my block of text.
It has both single newline characters in it like this paragraph, and
double newline characters like in the next paragraph.

This is the paragraph with the double newline characters.">

<form action="" method="Post">
 <cfoutput>
 <textarea cols=50 rows=10 name="TheText"
 wrap="virtual">#ParagraphFormat(MyText)#</textarea>
 </cfoutput>
</form>

ParseDateTime

ParseDateTime(datestring [, conversiontype])

Returns a valid ColdFusion date/time object from an English (US) locale datestring . An optional

conversiontype may be specified. Valid entries for conversiontype are POP and Standard (the

default). If POP is specified, datestring is converted to GMT (Greenwich Mean Time) using the English
(US) locale. If Standard is specified, no conversion is performed. For conversion between different
time zones, see DateConvert() . For information on how ColdFusion MX handles two-digit years, see
CreateDate() . Examples:

<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ParseDateTime("4/15/2003 19:00:00"):
#ParseDateTime("4/15/2003 19:00:00")#

ParseDateTime("Tue, 15 Apr 2003 19:00:00 +0400 (EDT):
#ParseDateTime("Tue, 15 Apr 2003 19:00:00 +0400 (EDT)", "Standard")#

ParseDateTime("Tue, 15 Apr 2003 19:00:00 +0400", "POP"):
#ParseDateTime("Tue, 15 Apr 2003 19:00:00 +0400", "POP")#

ParseDateTime("Tue, 15 Apr 2003 19:00:00 +0400 (EDT)", "POP"):
#ParseDateTime("Tue, 15 Apr 2003 19:00:00 +0400 (EDT)", "POP")#

</cfoutput>

Pi

Pi()

Returns the value of Pi accurate to 15 decimal places (3.14159265358979). Note that without applying
a NumberFormat() mask, Pi() will only actually display 11 decimal places. The following example
uses Pi() to calculate the circumference of a circle with a radius of 12 inches:

<cfset r=12>
<cfset Circumference = 2*Pi()*r>

<cfoutput>
The circumference of a circle with a radius of 12 inches is
#Circumference# inches.
</cfoutput>

PreserveSingleQuotes

PreserveSingleQuotes(variable)

Returns variable without escaping single quotation marks. PreserveSingleQuotes() keeps

ColdFusion from automatically escaping single quotation marks within dynamically set variables. The
PreserveSingleQuotes() function is most often used with SQL statements when it is necessary to

pass dynamically generated values. Example:

<cfset Names = "'Pere Money','Mark Edward','Marcel Haney'">

<cfquery name="GetRecords" datasource="ProgrammingCF">
 SELECT * FROM EmployeeDirectory
 WHERE Name IN (#PreserveSingleQuotes(Names)#)
</cfquery>

<cfoutput>#GetRecords.RecordCount# record(s) found.</cfoutput>

Quarter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Quarter(date)

Returns the quarter as a number for the given date. Example:

<cfoutput>The current quarter is: #Quarter(Now())#</cfoutput>

QueryAddColumn

QueryAddColumn(query, columnname, arrayname)

Adds a new column called columnname to query and populates its rows with data from a one-

dimensional array specified by arrayname . If an invalid column name (one that violates variable

naming rules) is passed, ColdFusion throws an error. The following example adds a new column to a
query and populates it with data from an array:

<cfset Products = QueryNew("ProductName, Color, Price, Qty")>
<cfset NewRows = QueryAddRow(Products, 3)>

<cfset QuerySetCell(Products, "ProductName", "Widget", 1)>
<cfset QuerySetCell(Products, "Color", "Silver", 1)>
<cfset QuerySetCell(Products, "Price", "19.99", 1)>
<cfset QuerySetCell(Products, "Qty", "46", 1)>

<cfset QuerySetCell(Products, "ProductName", "Thingy", 2)>
<cfset QuerySetCell(Products, "Color", "Red", 2)>
<cfset QuerySetCell(Products, "Price", "34.99", 2)>
<cfset QuerySetCell(Products, "Qty", "12", 2)>

<cfset QuerySetCell(Products, "ProductName", "Sprocket", 3)>
<cfset QuerySetCell(Products, "Color", "Blue", 3)>
<cfset QuerySetCell(Products, "Price", "1.50", 3)>
<cfset QuerySetCell(Products, "Qty", "460", 3)>

<cfset ShippingArray = ArrayNew(1)>
<cfset ShippingArray[1] = "1.99">
<cfset ShippingArray[2] = "3.48">
<cfset ShippingArray[3] = "5.00">

<cfset MyNewColumn = QueryAddColumn(Products, "Shipping", ShippingArray)>

<cfdump var="#Products#">

QueryAddRow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QueryAddRow(query [, number])

Adds number empty rows to query . If number is omitted, a single blank row is added. Here's an

example that creates a blank query and adds three empty rows to it:

<cfset Products = QueryNew("ProductName, Color, Price, Qty")>
<cfset NewRows = QueryAddRow(Products, 3)>

<cfoutput>
There are now #NewRows# rows in the query named Products.
</cfoutput>

QueryNew

QueryNew(columnlist)

Creates an empty ColdFusion query object with column names as specified by columnlist .

columnlist can be a comma-delimited list of column names or a blank string ("") so you can use the
QueryAddColumn() function to populate the rows with the contents of a one-dimensional array. The
following example creates a query called Products with four column names:

<cfset Products = QueryNew("ProductName, Color, Price, Qty")>
<cfdump var="#Products#">

QuerySetCell

QuerySetCell(query, columnname, value [, row])

Sets the cell in columnname to value for the specified query . An optional row number may be set,

specifying the row for the cell to be set in. If no row number is specified, the cell in the last row of the
query is set. QuerySetCell() returns true upon successful completion. Here's an example that adds

data to an empty query:

<cfset Products = QueryNew("ProductName, Color, Price, Qty")>
<cfset NewRows = QueryAddRow(Products, 3)>

<cfset QuerySetCell(Products, "ProductName", "Widget", 1)>
<cfset QuerySetCell(Products, "Color", "Silver", 1)>
<cfset QuerySetCell(Products, "Price", "19.99", 1)>
<cfset QuerySetCell(Products, "Qty", "46", 1)>

<cfset QuerySetCell(Products, "ProductName", "Thingy", 2)>
<cfset QuerySetCell(Products, "Color", "Red", 2)>
<cfset QuerySetCell(Products, "Price", "34.99", 2)>
<cfset QuerySetCell(Products, "Qty", "12", 2)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset QuerySetCell(Products, "ProductName", "Sprocket", 3)>
<cfset QuerySetCell(Products, "Color", "Blue", 3)>
<cfset QuerySetCell(Products, "Price", "1.50", 3)>
<cfset QuerySetCell(Products, "Qty", "460", 3)>

<cfdump var="#Products#">

QuotedValueList

QuotedValueList(queryname.column [,delimiter])

Returns a comma-separated list of values for the previously executed query column specified in
queryname.column . Each element in the list is qualified with a single quote character. An optional

delimiter can be specified if the list is to be delimited with a character other than the comma (the
default). The following example creates a quoted value list from a ColdFusion query:

<cfquery name="MyQuery" datasource="ProgrammingCF">
 SELECT * FROM EmployeeDirectory
</cfquery>

<cfoutput>
The query column Name contains the following values:
#QuotedValueList(MyQuery.Name)#
</cfoutput>

Rand

Rand()

Returns a random number between 0 and 1. Here's an example that returns a random number
between 0 and 100:

<cfoutput>The random number is: #int(100*Rand())#</cfoutput>

Randomize

Randomize(number)

Seeds ColdFusion's random number generator with the integer part of number . This allows the Rand(
) function to generate numbers with a higher degree of randomness. Note that the number returned
by the Randomize() function isn't random. The following example uses the Randomize() function to
seed ColdFusion's random number generator before creating random numbers with the Rand()

function:

<cfset Randomize(GetTickCount())>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here are 10 random numbers:<p>
<cfloop index="counter" from="1" to="10">
 <cfoutput>#Rand()#
</cfoutput>
</cfloop>

RandRange

RandRange(number1, number2)

Generates a random integer in the range between two numbers, where number1 and number2 are

integers less that 100,000,000. Here's an example that generates a random integer between 1 and
100:

<cfoutput>
The following random number should be between 1 and 100: #RandRange(1,100)#
</cfoutput>

REFind

REFind(regex, string [, startpos] [, returnsubexpressions])

Performs a case-sensitive search. Returns the position of the first occurrence of regex in string .

regex can be any valid ColdFusion regular expression. An optional starting position for the search can

be specified by startpos . If returnsubexpressions is set to true (false is the default), REFind()
returns a CFML structure containing two arrays, pos and len that represents the position and length,

respectively, of the matched regular expression. If the regular expression contains parenthesized
subexpressions, the first index of the array returns the len and pos of the first occurrence of the

match for the entire regular expression. Each subsequent array index in the returned structure
contains the len and pos for the first occurrence of each parenthesized subexpression in the matched
regular expression. If REFind() is unable to find a match for the regular expression, 0 is returned.
REFind() performs a case-sensitive search. The following example demonstrates the use of the

REFind() function with the returnsubexpressions parameter set to true :

<cfset MyString="The ratio of good to bad apples is 4:1.">
<cfset matches= REFind("([0-9]+):([0-9]+)", MyString, 1, "true")>

<cfoutput>
String: #MyString#

Regex: REFind("([0-9]+):([0-9]+)", MyString, 1,
"true")

Position: #matches.pos[1]#

Length: #matches.len[1]#
</cfoutput>
<p>
Dump:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfdump var="#matches#">

REFindNoCase

REFindNoCase(regex, string [, startpos] [, returnsubexpressions])

Performs a case-insensitive search. Returns the position of the first occurrence of regex in string .

regex can be any valid ColdFusion regular expression. An optional starting position for the search can

be specified by startpos . If returnsubexpressions is set to true (false is the default),
REFindNoCase() returns a CFML structure containing two arrays, pos and len that represents the

position and length, respectively, of the matched regular expression. If the regular expression contains
parenthesized subexpressions, the first index of the array returns the len and pos of the first

occurrence of the match for the entire regular expression. Each subsequent array index in the returned
structure contains the len and pos for the first occurrence of each parenthesized subexpression in the
matched regular expression. If REFindNoCase() is unable to find a match for the regular expression,
0 is returned. Here's an example that demonstrates the use of the REFindNoCase() function with the

returnsubexpressions parameter set to true :

<cfset MyString="The name of the bank robber is Rob.">
<cfset Matches= ReFindNoCase("(Rob)", MyString, 1, "true")>

<cfoutput>
String: #MyString#

Regex: RefindNoCase("catRob", MyString, 1, "true")

Position: #Matches.pos[1]#

Length: #Matches.len[1]#
</cfoutput>

<cfdump var="#Matches#">

ReleaseCOMObject

New in ColdFusion MX 6.1

ReleaseCOMObject(object)

Terminates any connections to the specified COM object and returns any resources (such as RAM) to
the server. ReleaseComObject() should only be used once you have finished with the COM object.

Many COM objects have a method you can call to explicitly close the connection to the object, typically
close() or quit() . While this method explicitly tells ColdFusion to terminate the connection to the

COM object, it does not immediately release the resources it was consuming. It still has to wait for the
garbage collection to occur. ReleaseCOMObject() is designed to get around this. If you call the

function while the COM object is still in use, ColdFusion throws an exception. Example:

<cfset ReleaseComObject(myObject)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Or:

<cfscript>
ReleaseComObject(myObject);
</cfscript>

RemoveChars

RemoveChars(string, startpos, count)

Removes count characters from string beginning at the position specified by startpos . If no

characters are removed, is returned. Example:

<cfset MyString="cosdafol">

<cfoutput>
Original String: #MyString#

RemoveChars(MyString, 3, 4): #RemoveChars(MyString, 3, 4)#
</cfoutput>

RepeatString

RepeatString(string, count)

Returns a string consisting of string repeated count times. Example:

<cfset MyString="I love ColdFusion!
">

<cfoutput>#RepeatString(MyString, 10)#</cfoutput>

Replace

Replace(string, substring1, substring2 [, scope])

Returns string with substring1 replaced by substring2 according to scope . scope may be set as

either One or All , where One results in the replacement of the first occurrence of substring1 , and

All results in the replacement of all occurrences of substring1 . The default scope is One . Replace(
) performs a case-sensitive search. The following example demonstrates this function:

<cfset MyString="This is a case-sensitive example of using the Replace
function to replace a substring within a string.">
<cfset MySubstring1="Replace">
<cfset MySubstring2="Replace">

<cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String: #MyString#

Replace: #MySubstring1# with #MySubstring2#
<p>#Replace(MyString, MySubstring1, MySubstring2)#
</cfoutput>

ReplaceList

ReplaceList(string, list1, list2)

Returns string with all the elements from list1 replaced by the corresponding elements from list2
. ReplaceList() performs a case-sensitive search. Here's an example that shows how to use this

function:

<cfset MyString="This is my string.">
<cfset List1=" is,my,string">
<cfset List2=" function,is,cool">

<cfoutput>
Original String: #MyString#

List1: #List1#

List2: #List2#<p>
ReplaceList(MyString, List1, List2): #ReplaceList(MyString, List1, List2)#
</cfoutput>

ReplaceNoCase

ReplaceNoCase(string, substring1, substring2 [, scope])

Returns string with substring1 replaced by substring2 according to scope . scope may be set as

either One or All , where One results in the replacement of the first occurrence of substring1 , and

All results in the replacement of all occurrences of substring1 . The default scope is One .
ReplaceNoCase() performs a case-insensitive search. The following example demonstrates the use of

this function:

<cfset MyString="This is a case-insensitive example of using the ReplaceNoCase
function to replace a substring within a string.">
<cfset MySubstring1="Replace">
<cfset MySubstring2="Replace">

<cfoutput>
String: #MyString#

Replace: #MySubstring1# with #MySubstring2#
<p>#ReplaceNoCase(MyString, MySubstring1, MySubstring2, "All")#
</cfoutput>

REReplace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

REReplace(string, regex, substring [, scope])

Returns string with regex replaced by substring for the specified scope . regex can be any valid

ColdFusion regular expression. scope may be set as either One or All , where One results in the
replacement of the first occurrence of the regular expression, and All results in the replacement of all

occurrences of the regular expression. The default scope is One . REReplace() performs a case-

sensitive search. Here's an example that demonstrates the use of this function:

<cfset OriginalString="T8h3i53s 1i2s3 8a3 t3e2s9t.">
<cfset NewString = REReplace(OriginalString, "[[:digit:]]", "", "ALL")>

<cfoutput>
Original String: #OriginalString#

New String: #NewString#
</cfoutput>

REReplaceNoCase

REReplaceNoCase(string, regex, substring [, scope])

Returns string with regex replaced by substring for the specified scope . regex can be any valid

ColdFusion regular expression. scope may be set as either One or All , where One results in the
replacement of the first occurrence of the regular expression, and All results in the replacement of all

occurrences of the regular expression. The default scope is One . REReplaceNoCase() performs a
case-insensitive search. The following example uses the REReplaceNoCase() function to remove

doubled words from a string:

<cfset MyString = "I want to go to to the park.">
<cfset NewString = ReReplaceNoCase(MyString, "\b([A-Z]+)[]+\1", "\1", "All")>

<cfoutput>
Original String: #MyString#
<p>
New String: #NewString#
</cfoutput>

Reverse

Reverse(string)

Returns string with all the characters in reverse order. Example:

<cfset MyString="0123456789">

<cfoutput>
String: #MyString#

Reversed: #Reverse(MyString)#
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Right

Right(string, count)

Returns the number of characters specified by count , beginning at the rightmost position of string .

The following example returns the five rightmost characters of a string:

<cfset MyString="(555)555-5555 x5555">
<cfset Extension = Right(MyString, 5)>
<cfoutput>
String: #MyString#

Extension: #Extension#
</cfoutput>

RJustify

RJustify(string, length)

Right-justifies string within a field of length characters. Example:

<cfset OriginalString = "ColdFusion">

<cfoutput>
Original String (quoted): "#OriginalString#"

Right-justified String (quoted): "#RJustify("ColdFusion", 20)#"
</cfoutput>

Round

Round(number)

Rounds off a number to the nearest integer. Examples:

<cfoutput>
-2.5: #Round(-2.5)#

-1: #Round(-1)#

-1.123: #Round(-1.123)#

-0.123: #Round(-0.123)#

0: #Round(0)#

0.123: #Round(0.123)#

1: #Round(1)#

1.123: #Round(1.123)#

2.5: #Round(2.5)#
</cfoutput>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RTrim

RTrim(string)

Removes trailing spaces from the specified string. Example:

<cfset OriginalString = "ColdFusion ">

<cfoutput>
Original String (quoted): "#OriginalString#"

Right-trimmed String (quoted): "#RTrim(OriginalString)#"
</cfoutput>

Second

Second(date)

Returns the seconds for a valid date/time object as a number between and 59. Example:

<cfoutput>
It is currently #Minute(Now())# minute(s) and #Second(Now())# second(s) past the
hour.
</cfoutput>

SetEncoding

New in ColdFusion MX

SetEncoding("Form|Url", charset)

Sets the character encoding for form or URL variables to charset when the submitted form or URL

data is not in Latin-1 encoding. charset lets you specify a Java character set to use for the encoding.
The most common character sets are UTF-8 (the default), UTF-16 , UTF-16BE , UTF-16LE , US-ASCII ,
and ISO-8859-1 . You may use any character set supported by your JRE. The following example

assumes the page is receiving a form post with form field data that is not Latin-1 encoded. Is simply
sets the encoding to UTF-8 and dumps the form scope to the browser:

<cfset SetEncoding("form", "UTF-8")>

<cfdump var="#form#">

SetLocale

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Updated in ColdFusion MX

SetLocale(newlocale)

Changes the current locale used by ColdFusion to newlocale for the duration of the current page

request. The server's locale determines how ColdFusion treats and displays numeric, currency, date,
and time values. Returns the old locale so that it can be used again if necessary. Valid entries for
newlocale are determined by the underlying JRE and operating system of your ColdFusion server. For

a complete list of locales available on your server, output the variable
server.Coldfusion.SupportedLocales . In general, ColdFusion supports the following locales. They

may be referenced with their ColdFusion locale name, or their equivalent Java locale name where
appropriate.

ColdFusion Locale Java locale

Chinese (China) N/A

Chinese (Hong Kong) N/A

Chinese (Taiwan) N/A

Dutch (Belgian) nl_be

Dutch (Standard) nl_NL

English (Australian) en_AU

English (Canadian) en_CA

English (New Zealand) en_NZ

English (UK) en_GB

English (US) en_US

French (Belgian) fr_BE

French (Canadian) fr_CA

French (Standard) fr_FR

French (Swiss) fr_CH

German (Austrian) de_AT

German (Standard) de_DE

German (Swiss) de_CH

Italian (Standard) it_IT

Italian (Swiss) it_CH

Japanese ja_JP

Korean ko_KR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion Locale Java locale

Norwegian (Bokmal) no_NO

Norwegian (Nynorsk) no_NO_nynorsk

Portuguese (Brazilian) pt_br

Portuguese (Standard) pt_PT

Spanish (Modern) es_ES

Spanish (Standard) es_ES

Swedish sv_SE

In ColdFusion MX, the locale Spanish (Mexican) is no longer supported. It has been replaced by
Spanish (Modern). Additionally, Spanish (Modern) now maps to Spanish (Standard).

The following example changes the current locale to Swedish for the duration of the current page
request:

<cfoutput>
Default Locale: #GetLocale()#

<p>Changing locale to Swedish...
<cfset OldLocale = SetLocale("Swedish")>

<p>New Locale: #GetLocale()#

Old Locale: #OldLocale#
</cfoutput>

SetProfileString

SetProfileString(inipath, section, entry, value)

Sets the value of a profile string entry in section of the initialization file specified by inipath . If

section does not exist, ColdFusion creates it first. If the operation is successful, an empty string is

returned. If not, an exception is thrown. Here's an example that changes the number of threads used
by the Verity K2 server in the k2server.ini file:

<cfset MyPath = "c:\cfusionmx\lib\k2server.ini">
<cfset MySection = "Server">
<cfset MyEntry = "numThreads">
<cfset MyValue = "6">

<cfset MyProfileString = SetProfileString(MyPath, MySection, MyEntry, MyValue)>
<cfoutput>
Path: #MyPath#

Section: #MySection#

Norwegian (Bokmal) no_NO

Norwegian (Nynorsk) no_NO_nynorsk

Portuguese (Brazilian) pt_br

Portuguese (Standard) pt_PT

Spanish (Modern) es_ES

Spanish (Standard) es_ES

Swedish sv_SE

In ColdFusion MX, the locale Spanish (Mexican) is no longer supported. It has been replaced by
Spanish (Modern). Additionally, Spanish (Modern) now maps to Spanish (Standard).

The following example changes the current locale to Swedish for the duration of the current page
request:

<cfoutput>
Default Locale: #GetLocale()#

<p>Changing locale to Swedish...
<cfset OldLocale = SetLocale("Swedish")>

<p>New Locale: #GetLocale()#

Old Locale: #OldLocale#
</cfoutput>

SetProfileString

SetProfileString(inipath, section, entry, value)

Sets the value of a profile string entry in section of the initialization file specified by inipath . If

section does not exist, ColdFusion creates it first. If the operation is successful, an empty string is

returned. If not, an exception is thrown. Here's an example that changes the number of threads used
by the Verity K2 server in the k2server.ini file:

<cfset MyPath = "c:\cfusionmx\lib\k2server.ini">
<cfset MySection = "Server">
<cfset MyEntry = "numThreads">
<cfset MyValue = "6">

<cfset MyProfileString = SetProfileString(MyPath, MySection, MyEntry, MyValue)>
<cfoutput>
Path: #MyPath#

Section: #MySection#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Entry: #MyEntry#

<p>Profile String: #MyValue#
</cfoutput>

SetVariable

SetVariable(variablename, value)

Assigns value to variablename where value is any passed value. SetVariable() is useful when
you want to create dynamically named variables. The following example uses SetVariable() to

assign values to several dynamically created variables:

<cfloop index="index" from="1" to="10">
 <cfset ValueOfVariable = SetVariable("MyVar#index#", #Index#)>
</cfloop>

<cfloop index="pos" from="1" to="10">
 <cfoutput>MyVar#pos# = #Evaluate("MyVar"&"#pos#")#
</cfoutput>
</cfloop>

Sgn

Sgn(number)

Returns 1 if the specified number is positive, 0 if the specified number is 0, or -1 if the number is
negative. Examples:

<cfoutput>
-1: #Sgn(-1)#

-1.123: #Sgn(-1.123)#

-0.123: #Sgn(-0.123)#

0: #Sgn(0)#

0.123: #Sgn(0.123)#

1: #Sgn(1)#

1.123: #Sgn(1.123)#
</cfoutput>

Sin

Sin(number)

Returns the sine of an angle expressed in radians. Example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The sine of 45 is <cfoutput>#Sin(45)#</cfoutput>

SpanExcluding

SpanExcluding(string, set)

Returns all the characters contained in string until any character from set is encountered.
SpanExcluding() performs a case-sensitive search. Example:

<cfset MyString="I like ColdFusion alot">

<cfoutput>
Original String: #MyString#
<p>SpanExcluding(MyString, "ab"): #SpanExcluding(MyString, "ab")#
</cfoutput>

SpanIncluding

SpanIncluding(string, set)

Returns all the characters contained in string until any character not in set is encountered.
SpanIncluding() performs a case-sensitive search. Example:

<cfset MyString="I like ColdFusion alot">

<cfoutput>
Original String: #MyString#
<p>SpanIncluding(MyString, "I like"): #SpanIncluding(MyString, "I like")#
</cfoutput>

Sqr

Sqr(number)

Returns the positive square root of a number. Examples:

<cfoutput>
0: #Sqr(0)#

1: #Sqr(1)#

10: #Sqr(10)#

100: #Sqr(100)#
</cfoutput>

StripCR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StripCR(string)

Returns string with all carriage returns removed. Example:

<cfset MyString="This is a paragraph of text with carriage returns hardcoded.
#Chr(10)##Chr(13)#As you can see, this is a new line.
#Chr(10)##Chr(13)#This is a new line too.">

<cfoutput>
Original String with Carriage Returns:

<pre>
#MyString#
</pre>
<p>
String with Carriage Returns Removed:

<pre>
#StripCR(MyString)#
</pre>
</cfoutput>

StructAppend

StructAppend(structure1, structure2 [, overwrite])

Appends the contents of structure2 to structure1 . After completion, structure1 contains the

newly appended structure while structure2 remains unchanged. Setting the optional overwrite
parameter to Yes allows overwriting of existing keys/values within the appended structure. The default

value for overwrite is Yes . The following example demonstrates the StructAppend() function:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">

<cfset ContactInfo=StructNew()>
<cfset ContactInfo.Email="pmoney@example.com">
<cfset ContactInfo.PhoneExt="1234">

<h2>Employee Struct</h2>
<cfdump var="#Employee#">

<h2>ContactInfo Struct</h2>
<cfdump var="#ContactInfo#">

<cfset StructAppend(Employee, ContactInfo, "No")>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h2>Appended Employee Struct</h2>
<cfdump var="#Employee#">

StructClear

StructClear(structure)

Removes all data from the specified structure. Here's an example that removes all data from a
structure, then tests to see whether the structure is empty:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfset StructClear(Employee)>

<h2>Employee Struct</h2>
<cfdump var="#Employee#">

StructCopy

StructCopy(structure)

Makes an exact copy of the specified structure. This copy isn't by reference, meaning that any changes
made to the original structure aren't reflected in the copy. You should note that the StructCopy()

function shouldn't be used to copy deeply nested structures. If you need to copy nested structures, use
the Duplicate() function instead. The following example demonstrates the use of the StructCopy(
) function:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfset EmployeeCopy = StructCopy(Employee)>

<h2>EmployeeCopy Struct</h2>
<cfdump var="#EmployeeCopy#">

StructCount

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StructCount(structure)

Returns a count for the number of key/value pairs contained in the specified structure. Here's an
example that returns the number of name/value pairs contained in the structure Employee :

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfoutput>
There are #StructCount(Employee)# key/value pairs in the structure.
</cfoutput>

StructDelete

StructDelete(structure, key [, indicatenotexisting])

Deletes key (and its value) from structure . Returns true regardless of success or failure unless the

optional indicatenotexisting parameter is set to true . The following example deletes several keys
from a structure named Employee :

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfset StructDelete(Employee, "Email")>
<cfset StructDelete(Employee, "PhoneExt")>

<cfdump var="#Employee#">

StructFind

StructFind(structure, key)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Searches structure and returns the value for the specified key. Here's an example that searches the
structure Employee for various keys:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfoutput>
Find the value of the key Name: #StructFind(Employee, "Name")#

Find the value of the key Email: #StructFind(Employee, "Email")#

</cfoutput>

StructFindKey

StructFindKey(top, key [, scope])

Searches complex structures for keys matching the key parameter. top specifies the starting point to

begin the search. key specifies the key you want to perform the search for. scope is optional and may
be set as either One or All , specifying the number of matching keys that should be returned. The

default scope is One . StructFindKey() returns an array that contains one structure for each key

matched by the search. Each structure contains the following keys:

Value

The value held by the found key
Path

A string that can be used with other functions to reference the found key
Owner

The parent object containing the found key

The following example demonstrates the use of this function on a structure containing an array of
nested structures:

<!--- Create a structure of nested arrays containing nested structures. --->
<cfset Stock.Company = "Example.com">
<cfset Stock.Ticker = "EXAMP">

<cfset Temp = StructGet("Stock.TradeInfo[1]")>
<cfset Temp.Price = 60>
<cfset Temp.TradeDate = "6/11/02">
<cfset Temp.Volume = 750000>
<cfset Temp.Day.High = 62>
<cfset Temp.Day.Low = 59>

<cfset Temp = StructGet("Stock.TradeInfo[2]")>
<cfset Temp.Price = 63>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset Temp.TradeDate = "6/12/02">
<cfset Temp.Volume = 737000>
<cfset Temp.Day.High = 66>
<cfset Temp.Day.Low = 60>

<cfset Temp = StructGet("Stock.TradeInfo[3]")>
<cfset Temp.Price = 67>
<cfset Temp.TradeDate = "6/13/02">
<cfset Temp.Volume = 1220000>
<cfset Temp.Day.High = 67>
<cfset Temp.Day.Low = 66>

<!--- change the value of KeyToFind to see how different values work --->
<cfset KeyToFind = "Price">
<cfset FindTheKey = StructFindKey(Stock, KeyToFind, "All")>

<cfoutput>
There are #ArrayLen(FindTheKey)# keys (returned as structures) matching your
key search for "#KeyTofind#":<p>
<!--- Loop over the array of structures returned by the search --->
<cfloop index="i" from="1" to="#ArrayLen(FindTheKey)#">
 <cfset TheStructures = FindTheKey[#i#]>
 Structure #i# has the following key/value pairs:

 <!---- Display all of the key/value pairs from each structure in array --->
 <table border="1">
 <cfloop collection="#TheStructures#" item="key" >
 <cfset Value = StructFind(TheStructures, #key#)>
 <tr><td>#key#:</td>
 <cfif IsSimpleValue(Value)><td>#Value#</td>
 <cfelseif IsStruct(Value)><td>This key's owner is a structure</td>
 <cfelseif IsArray(Value)><td>This key's owner is an array</td>
 <cfelse><td>This key's owner is of an undetermined data type</td>

 </cfif>
 </tr>
 </cfloop>
 </table>
<p></cfloop>
</cfoutput>

Here's a dump of the struct:
<cfdump var="#Stock#">

StructFindValue

StructFindValue(top, value [, scope])

Searches complex structures for values matching the value parameter. top specifies the starting

point to begin the search. value specifies the actual value you want to search for. scope is optional
and may be set as either One or All , specifying the number of matches that should be returned. The

default scope is One . StructFindValue() returns an array containing one structure for each value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

matched by the search. Each structure contains the following keys:

Key

The key holding the found value
Path

A string that can be used with other functions to reference the found value
Owner

The parent object containing the found value

Here's an example that demonstrates this function:

<!--- Create a structure of nested arrays containing nested structures. --->
<cfset Stock.Company = "Example.com">
<cfset Stock.Ticker = "EXAMP">

<cfset Temp = StructGet("Stock.TradeInfo[1]")>
<cfset Temp.Price = 60>
<cfset Temp.TradeDate = "6/11/02">
<cfset Temp.Volume = 750000>
<cfset Temp.Day.High = 62>
<cfset Temp.Day.Low = 59>

<cfset Temp = StructGet("Stock.TradeInfo[2]")>
<cfset Temp.Price = 63>
<cfset Temp.TradeDate = "6/12/02">
<cfset Temp.Volume = 737000>
<cfset Temp.Day.High = 66>
<cfset Temp.Day.Low = 60>

<cfset Temp = StructGet("Stock.TradeInfo[3]")>
<cfset Temp.Price = 67>
<cfset Temp.TradeDate = "6/13/02">
<cfset Temp.Volume = 1220000>
<cfset Temp.Day.High = 67>
<cfset Temp.Day.Low = 66>

<!--- Change the value of ValueToFind to see how different values work --->
<cfset ValueToFind = 60>
<cfset FindTheValue = StructFindValue(Stock, ValueToFind, "All")>

<cfoutput>
There are #ArrayLen(FindTheValue)# keys (returned as structures) matching your
key search for "#ValueTofind#":
<p>
<!--- Loop over the array of structures returned by the search --->
<cfloop index="i" from="1" to="#ArrayLen(FindTheValue)#">
 <cfset TheStructures = FindTheValue[#i#]>
 Structure #i# has the following key/value pairs:

 <!---- Display all of the key/value pairs from each structures in array --->
 <table border="1">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <cfloop collection="#TheStructures#" item="key" >
 <cfset Value = StructFind(TheStructures, #key#)>
 <tr><td>#key#:</td>
 <cfif IsSimpleValue(Value)><td>#Value#</td>
 <cfelseif IsStruct(Value)><td>This key's owner is a structure</td>
 <cfelseif IsArray(Value)><td>This key's owner is an array</td>
 <cfelse><td>This key's owner is of an undetermined data type</td>

 </cfif>
 </tr>
 </cfloop>
 </table>
<p></cfloop>
</cfoutput>

StructGet

StructGet("path")

Returns a structure (flat or nested) from the specified path . Allows you to create nested structures

without the need for multiple StructNew() calls. StructGet() takes a single argument, path , that

specifies the path to the nested structure (including XML document objects) you want to return.
StructGet() returns a pointer to the substructure specified as the last element in path . The
StructGet() function automatically creates all the necessary structures and substructures specified

in path if they do not exist. The StructGet() function can also be used to create nested one-

dimensional arrays. The following example demonstrates the use of this function for creating a nested
structure:

<!--- Create the Grades.Mary structure --->
<cfset temp1 = StructGet("Grades.Mary")>
<cfset temp1.Test1 = 98>
<cfset temp1.Test2 = 92>
<cfset temp1.Test3 = 100>
<cfset temp1.Test4 = 90>

<!--- Create the Grades.Tom structure --->
<cfset temp2 = StructGet("Grades.Tom")>
<cfset temp2.Test1 = 96>
<cfset temp2.Test2 = 88>
<cfset temp2.Test3 = 94>
<cfset temp2.Test4 = 90>

<cfdump var="#Grades#">

You can also use StructGet() to return the structures from an XML document object as this example

demonstrates:

<cfset MyEmployees = QueryNew("Name,Title")>
<cfset QueryAddRow(MyEmployees, 3)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset QuerySetCell(MyEmployees, "Name", "Pere Money", 1)>
<cfset QuerySetCell(MyEmployees, "Title", "President", 1)>
<cfset QuerySetCell(MyEmployees, "Name", "Aaron Ridge", 2)>
<cfset QuerySetCell(MyEmployees, "Title", "Analyst", 2)>
<cfset QuerySetCell(MyEmployees, "Name", "Martin Grant", 3)>
<cfset QuerySetCell(MyEmployees, "Title", "Manager", 3)>

<cfset EmployeeXml = XMLNew('no')>
<cfset EmployeeXml.XmlRoot = XmlElemNew(EmployeeXml,"company")>

<cfloop index="i" from="1" to="#MyEmployees.RecordCount#">
 <cfset EmployeeXml.XmlRoot.XmlChildren[i] = XmlElemNew(EmployeeXml, "employee")>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Name = XmlElemNew(EmployeeXml, "name")>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Name.XmlText = MyEmployees.name[i]>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Title = XmlElemNew(EmployeeXml, "title")>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Title.XmlText = MyEmployees.title[i]>
</cfloop>

<cfset x=StructGet("EmployeeXml.XmlRoot.XmlChildren")>

<cfdump var="#x#">

StructInsert

StructInsert(structure, key, value [, allowoverwrite])

Inserts key and value into structure . Returns Yes if the operation is successful and No if it isn't.

Setting the optional allowoverwrite parameter to true allows overwriting of existing keys. The
default is false . Here's an example that inserts key/value pairs into a structure called Employee :

<cfset Employee=StructNew()>
<cfset StructInsert(Employee, "Name", "Pere Money")>
<cfset StructInsert(Employee, "Title", "President")>
<cfset StructInsert(Employee, "Department", "Executive Management")>
<cfset StructInsert(Employee, "Email", "pmoney@example.com")>
<cfset StructInsert(Employee, "PhoneExt", "1234")>

<cfdump var="#Employee#">

StructIsEmpty

StructIsEmpty(structure)

Returns true if the specified structure contains no data or false if it contains data. StructIsEmpty()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

throws an error if the specified structure does not exist, so it's generally a good idea to test for the
existence of the structure first using IsDefined() , before checking whether it is empty. The
following example checks to see if the structure Employee is empty:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfif IsDefined('Employee')>
 <cfif StructIsEmpty(Employee)>
 The structure Employee is empty!
 <cfelse>
 The structure Employee is not empty.
 </cfif>
</cfif>

StructKeyArray

StructKeyArray(structure)

Returns an array containing all the keys in structure . StructKeyArray() throws an error if the

specified structure does not exist, so it's generally a good idea to test for the existence of the structure
first using IsDefined() . Here's an example that lists all the keys contained in a structure called
Employee :

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfset MyKeyArray = StructKeyArray(Employee)>

<table>
 <tr><th>Key</th><th>Value</th></tr>
<cfloop index="i" from="1" to="#ArrayLen(MyKeyArray)#">
<cfoutput>
 <tr><td>#MyKeyArray[i]#</td>
 <td>#Employee[MyKeyArray[i]]#</td></tr>
</cfoutput>
</cfloop>
</table>

StructKeyExists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StructKeyExists(structure, key)

Checks for the existence of key in the specified structure . Returns true if the key exists or false if it
doesn't. StructKeyExists() throws an error if the specified structure does not exist, so it's generally
a good idea to test for the existence of the structure first using IsDefined() . The following example
checks for the existence of different keys in a structure called Employee :

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfif StructKeyExists(Employee, "Name")>
 The key Name exists in the Employee structure.
<cfelse>
 The key Name doesn't exist in the Employee structure.
</cfif>

StructKeyList

StructKeyList(structure)

Returns a comma-delimited list containing the names of all the keys contained in structure . The key
names are returned in all uppercase. StructKeyList() throws an error if the specified structure does
not exist, so it's generally a good idea to test for the existence of the structure first using IsDefined(
) . Here's an example that returns a list containing the names of the keys in a structure called
Employee :

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere Money">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

The following keys are in the Employee structure:
<cfoutput>#StructKeyList(Employee)#</cfoutput>

StructNew

StructNew()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creates a new structure. The following example creates a new structure called Employee :

<cfset Employee = StructNew()>

StructSort

StructSort(base [,sorttype, sortorder, pathtosubelement])

Returns an array of structures with the top-level key names sorted by the subelement specified by
pathtosubelement . base is a required parameter and specifies the name of the top-level structure

containing the element you want to sort. sorttype is an optional parameter and specifies the type of

sort to perform (numeric , text , or textnocase). sortorder is also optional and specifies the sort
order for the operation (asc , for ascending (the default), or desc , for descending).

pathtosubelement is optional and specifies the path (using dot notation) from the base to the

subelement you wish to sort on. Leaving pathtosubelement blank results in the sort being performed

on the top-level structure specified in base . Only substructures of structures may be specified in

pathtosubelement . Here's an example that demonstrates the use of this function:

<cfset Quotes = StructNew()>
<cfset Stocks = StructNew()>
<!--- Populate both structures --->
<cfloop index="i" from="1" to="5">
 <cfset Price = NumberFormat((rand()*100),'99.99')>
 <cfset Quotes["Stock#i#"] = Price>
 <cfset Stock = StructNew()>
 <cfset Stock.Price = Price>
 <cfset Stocks["Stock#i#"] = Stock>
</cfloop>

<cfoutput>
<h2>Quote Structure</h2>
Sort Stock Name by Price (No parameters): #ArrayToList(StructSort(Quotes))#

Sort Stock Name by Price (Text, desc):
 #ArrayToList(StructSort(Quotes, "Text", "desc"))#<p>
Sort Stock Name by Price(Numeric, asc):
 #ArrayToList(StructSort(Quotes, "Numeric", "asc"))#

<h2>Stocks Structure</h2>
Sort Stock Name by Price (numeric, desc, Price):
 #ArrayToList(StructSort(Stocks, "Numeric", "desc", "Price"))#

</cfoutput>

StructUpdate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StructUpdate(structure, key, value)

Updates the specified key in structure by overwriting the existing data with value . The following

example uses this function to update a key/value in a structure:

<cfset Employee=StructNew()>
<cfset Employee.Name="Pere">
<cfset Employee.Title="President">
<cfset Employee.Department="Executive Management">
<cfset Employee.Email="pmoney@example.com">
<cfset Employee.PhoneExt="1234">

<cfset StructUpdate(Employee, "Name", "Pere Money")>

<cfdump var="#Employee#">

Tan

Tan(number)

Returns the tangent of an angle expressed in radians. Example:

The tangent of 45 is <cfoutput>#Tan(45)#</cfoutput>

TimeFormat

Updated in ColdFusion MX 6.1

TimeFormat(time [, mask])

Returns time formatted according to mask . If no value is specified for mask , TimeFormat() uses

the default hh:mm tt . Valid entries for mask are:

Mask Description

h Hours based on a 12-hour clock with no leading zeros for single-digit hours

hh Hours based on a 12-hour clock with leading zeros for single-digit hours

H Hours based on a 24-hour clock with no leading zeros for single-digit hours

HH Hours based on a 24-hour clock with leading zeros for single-digit hours

m Minutes with no leading zero for single-digit minutes

mm Minutes with a leading zero for single-digit minutes

s Seconds with no leading zero for single-digit seconds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mask Description

ss Seconds with a leading zero for single-digit seconds

l Milliseconds with no leading zeros for single or double-digit milliseconds

t Single-character meridian, either A or p

tt Multicharacter meridian, either AM or PM

short Java short time format

medium Java medium time format

long Java long time format

full Java full date format:

If an invalid mask is passed to the function, ColdFusion outputs the invalid characters. Examples:

<cfset TheTime = Now()>

<cfoutput>
TheTime = #TimeFormat(TheTime,'hh:mm:ss tt')#<p>

TimeFormat(TheTime, 'h:m:s'): #TimeFormat(TheTime, 'h:m:s')#

TimeFormat(TheTime, 'h:m:s t'): #TimeFormat(TheTime, 'h:m:s t')#

TimeFormat(TheTime, 'hh:mm:ss'): #TimeFormat(TheTime, 'hh:mm:ss')#

TimeFormat(TheTime, 'hh:mm:ss tt'): #TimeFormat(TheTime, 'hh:mm:ss tt')#

TimeFormat(TheTime, 'H:M:ss'): #TimeFormat(TheTime, 'H:M:s')#

TimeFormat(TheTime, 'HH:MM:ss'): #TimeFormat(TheTime, 'HH:MM:ss')#

<p>
And these formats are new in ColdFusion MX:

short: #TimeFormat(TheTime, 'short')#

medium: #TimeFormat(TheTime, 'medium')#

long: #TimeFormat(TheTime, 'long')#

full: #TimeFormat(TheTime, 'full')#

</cfoutput>

ToBase64

ToBase64(value)

Base64 encodes a binary object or string. Base64 is an encoding scheme that uses printable characters
to represent binary data. Base64 is typically used to encode binary data before it is sent via email or
stored in a database. Here's an example that reads in a binary file using cffile and encodes it using
ToBase64() :

<cffile action="ReadBinary" FILE="D:/mydir/myfile.gif" VARIABLE="MyBinaryFile">

<cfset MyBase64 = ToBase64(MyBinaryFile)>

ss Seconds with a leading zero for single-digit seconds

l Milliseconds with no leading zeros for single or double-digit milliseconds

t Single-character meridian, either A or p

tt Multicharacter meridian, either AM or PM

short Java short time format

medium Java medium time format

long Java long time format

full Java full date format:

If an invalid mask is passed to the function, ColdFusion outputs the invalid characters. Examples:

<cfset TheTime = Now()>

<cfoutput>
TheTime = #TimeFormat(TheTime,'hh:mm:ss tt')#<p>

TimeFormat(TheTime, 'h:m:s'): #TimeFormat(TheTime, 'h:m:s')#

TimeFormat(TheTime, 'h:m:s t'): #TimeFormat(TheTime, 'h:m:s t')#

TimeFormat(TheTime, 'hh:mm:ss'): #TimeFormat(TheTime, 'hh:mm:ss')#

TimeFormat(TheTime, 'hh:mm:ss tt'): #TimeFormat(TheTime, 'hh:mm:ss tt')#

TimeFormat(TheTime, 'H:M:ss'): #TimeFormat(TheTime, 'H:M:s')#

TimeFormat(TheTime, 'HH:MM:ss'): #TimeFormat(TheTime, 'HH:MM:ss')#

<p>
And these formats are new in ColdFusion MX:

short: #TimeFormat(TheTime, 'short')#

medium: #TimeFormat(TheTime, 'medium')#

long: #TimeFormat(TheTime, 'long')#

full: #TimeFormat(TheTime, 'full')#

</cfoutput>

ToBase64

ToBase64(value)

Base64 encodes a binary object or string. Base64 is an encoding scheme that uses printable characters
to represent binary data. Base64 is typically used to encode binary data before it is sent via email or
stored in a database. Here's an example that reads in a binary file using cffile and encodes it using
ToBase64() :

<cffile action="ReadBinary" FILE="D:/mydir/myfile.gif" VARIABLE="MyBinaryFile">

<cfset MyBase64 = ToBase64(MyBinaryFile)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>Base64: #MyBase64#</cfoutput>

ToBinary

ToBinary(value)

Converts a base64-encoded string to its binary form. The following example take a base64-encoded
string (in this case a GIF image of the letter R), converts it to a binary object using ToBinary() ,
writes the object out to a file, and then displays it using cfcontent :

<cfset MyBase64="R0lGODlhGQAZAPcAAP////v7+/Pz8+7u7uLi4t3d3dnZ2dXV1cTExLe3t6qqqp6e
npGRkYmJiYiIiH9/f3t7e25ubmZmZllZWVZWVlFRUURERDw8PDQ0NC8vLyIiIhUVFREREQwMDAQEBAAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAACwAAAAAGQAZAEcIiwABCBxIsKDBgwQffPigAIHDBh4+YEBoUOGHAgMlLHRAsaPHjyApWlxI8sMEA
SFTqlwpkIGGlzAxUECQ0iLGgRc+cAhpE4CBDR86HKi58KbABQsrsFzKtKlTkCNLfvCQgGdRghUWWv0Q4c
EDCBYWRthaoQKHoFWJXhSYYGGGAFuNDgDagcDTu3gpBgQAOw= =">

<cfset MyBinary=ToBinary(MyBase64)>

<cffile action="write" file="c:\inetpub\wwwroot\mybinary.gif" output=#MyBinary#>

<cfcontent type="image/gif" file="c:\inetpub\wwwroot\mybinary.gif"
 deletefile="Yes">

ToString

ToString()

Converts any datatype, including binary, to a string. If value can't be converted, an exception is

thrown. Example:

<cfset MyString="Have a nice day!">
<cfset Base64String = ToBase64(MyString)>
<cfset BinaryString = ToBinary(Base64String)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset BackToString = ToString(BinaryString)>
<cfoutput>
MyString: #MyString#

Base64String: #Base64String#

BackToString: #BackToString#

</cfoutput>

Trim

Trim(string)

Removes all leading and trailing spaces from a string. Example:

<cfset OriginalString = " ColdFusion ">

<cfoutput>
Original String (quoted): "#OriginalString#"

Trimmed String (quoted): "#Trim(OriginalString)#"
</cfoutput>

Ucase

Ucase(string)

Converts a string to uppercase. Example:

<cfset MyString="i want this string to appear in all uppercase.">

<cfoutput>#Ucase(MyString)#</cfoutput>

URLDecode

Updated in ColdFusion MX 6.1

URLDecode(URLEncodedString [, CharacterSet])

Decodes a URL-encoded string. An optional Java character set for the encoded string may be specified.
Depending on your JRE, options typically include UTF-8 , UTF-16 , UTF-16BE , UTF-16LE , US-ASCII ,
and ISO-8859-1 . If no character set is specified, ColdFusion defaults to the character encoding of the

URL scope. URL-encoded strings have all nonalphanumeric characters replaced with their equivalent
hexadecimal escape sequences. Both %20 and the plus sign (+) are treated as spaces. Here's an

example that takes a URL-encoded string and decodes it:

<cfset MyString="Why is the sky blue?">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfset EncodedString=URLEncodedFormat(MyString)>
<cfset DecodedString=URLDecode(EncodedString)>

<cfoutput>
Original String: #MyString#

URL Encoded: #EncodedString#

Decoded: #DecodedString#
</cfoutput>

URLEncodedFormat

Updated in ColdFusion MX 6.1

URLEncodedFormat(string [, CharacterSet])

Encodes strings that otherwise cause errors when passed as URLs. Optionally, a Java character set for
the string to be encoded can be specified. Depending on the server's JRE, options typically include UTF-
8 , UTF-16 , UTF-16BE , UTF-16LE , US-ASCII , and ISO-8859-1 . If no character set is specified,
ColdFusion defaults to the response character encoding. URLEncodedFormat() replaces

nonalphanumeric characters with their equivalent hexadecimal escape sequences. ColdFusion
automatically decodes any URL-escaped strings it encounters. The following example creates a URL-
encoded hyperlink from a string containing spaces and nonalphanumeric characters:

<cfset TheDate = "04/15/2003">
<cfset ItemID = "123456">
<cfset Customer = "Caroline Smith">

Click on the link below to check-out:

<p><cfoutput>
<a href="http://www.myserver.com/index.cfm?TheDate=#UrlEncodedFormat(TheDate)#&
ItemID=#UrlEncodedFormat(ItemID)#&Customer=#UrlEncodedFormat(Customer)#">Check-out

</cfoutput>

URLSessionFormat

New in ColdFusion MX
URLSessionFormat(url)

If the client does not accept cookies, URLSessionFormat() appends appropriate client identification
parameters (CFID , CFToken , jsessionid) to the end of the specified URL. Otherwise, the URL is
returned as is. This function provides similar functionality to the addtoken attribute of the cflocation
tag. However, URLSessionFormat() is more powerful and versatile in that it only appends

identification information in the event a client does not support cookies. Additionally,
URLSessionFormat() can be used anywhere a URL is coded, whereas cflocation is only used to
redirect a user to another location. Here's an example that uses URLSessionFormat() to create a link

that passes identification parameters only if your browser doesn't support cookies:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfoutput>
Check Out
</cfoutput>

Val

Val(string)

Returns a number that the beginning of the specified string can be converted to. If conversion isn't
possible, returns 0. Examples:

<cfoutput>
Val(123): #Val(123)#

Val('abc'): #Val('abc')#

Val('1a2b3c'): #Val('1a2b3c')#

Val(true): #Val(true)#

Val(11/11/02): #Val(11/11/02)#

</cfoutput>

ValueList

ValueList(queryname.column [,delimiter])

Returns a comma-separated list of values for the previously executed query column specified in
queryname.column . An optional delimiter can be specified if the list is to be delimited with a character

other than the comma (the default). The following example creates a value list from a ColdFusion
query:

<cfquery name="MyQuery" datasource="ProgrammingCF">
 SELECT * FROM EmployeeDirectory
</cfquery>

<cfoutput>
The query column Name contains the following values:
#ValueList(MyQuery.Name)#
</cfoutput>

Week

Week(date)

Returns the week of the year for a given date as a number between 1 and 53. Example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The current week is week <cfoutput>#Week(Now())#</cfoutput>.

Wrap

New in ColdFusion MX 6.1

Wrap(string, limit [,strip])

Specifies the maximum number of characters to allow per line in string . If a line is longer than the

specified number of characters, an attempt is made to break the line by inserting a line break at the
nearest whitespace character (space, tab, etc) before the character limit. If string contains no

whitespace characters before the maximum number of characters per line, a line break is inserted at
the maximum line length. Wrap() uses operating system specific line breaks. On Windows, it's a

carriage return and newline character. On Unix/Linux, it's a newline. Optionally, you can specify a third
Boolean argument to indicate whether to remove all existing carriage line breaks before wrapping the
string. The default for this argument is false.

<cfset myString="This is a string that is so long, I probably would like to break
 it up. What do you think about that? Is it a good idea?">

<cfoutput>
<pre>#Wrap(myString, 80, False)#</pre>
</cfoutput>

WriteOutput

WriteOutput(string)

Writes text to the page output stream. WriteOutput() is meant to be used inside cfscript blocks
but can also be used inside cfoutput sections. Examples:

<cfscript>
WriteOutput('The WriteOutput function works best inside cfscript blocks
');
</cfscript>

<cfoutput>
#WriteOutput('Although you can use it in cfoutput spaces, why would you?')#
</cfoutput>

XmlChildPos

New in ColdFusion MX

XmlChildPos(element, childName, N)

Returns the index position of the N th occurrence of childName within an XmlChildren array in an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML document object. If no childName is found in the specified position, -1 is returned. The following

example parses an XML feed from macromedia.com into an XML document object, then returns the
index position of the fifth occurrence of the "resource" child:

<cfhttp URL="http://www.macromedia.com/devnet/resources/macromedia_resources.xml"
 method="Get">

<cfset DesDev = XmlParse(cfhttp.FileContent)>

<cfset x = XmlChildPos(DesDev.Macromedia_Resources, "resource", 5)>

<cfoutput>
#x#
</cfoutput>

XmlElemNew

New in ColdFusion MX

XmlElemNew(XmlDocObj, ChildName)

Creates an empty child element in the specified XML document object. The following example creates a
new element named Company in an XML document object called EmployeeXML . The XML document
object is then output to the browser using cfdump :

<cfset EmployeeXml = XMLNew('no')>
<cfset EmployeeXml.XmlRoot = XmlElemNew(EmployeeXml,"company")>

<cfdump var="#EmployeeXml#">

XmlFormat

New in ColdFusion 4.5

XMLFormat(string)

Returns string in a format that is safe to use with XML by escaping the following special characters:
ampersands (&), double quotes ("), greater-than signs (>), less-than signs (<), and single quotes ('

). Example:

<cfset MyString="Here is an example of the XMLFormat function: 5+5<20">

<cfoutput>#XMLFormat(MyString)#</cfoutput>

<p><I>View the page source to see the escaped text.</I>

XmlNew

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New in ColdFusion MX

XmlNew([case_sensitive])

Creates an empty XML document object. An optional Yes /No parameter lets you specify whether XML
document elements should maintain their case. The default is No . The following example creates an

XML document object and populates it with the contents of a query object:

<cfset MyEmployees = QueryNew("Name,Title")>
<cfset QueryAddRow(MyEmployees, 3)>
<cfset QuerySetCell(MyEmployees, "Name", "Pere Money", 1)>
<cfset QuerySetCell(MyEmployees, "Title", "President", 1)>
<cfset QuerySetCell(MyEmployees, "Name", "Aaron Ridge", 2)>
<cfset QuerySetCell(MyEmployees, "Title", "Analyst", 2)>
<cfset QuerySetCell(MyEmployees, "Name", "Martin Grant", 3)>
<cfset QuerySetCell(MyEmployees, "Title", "Manager", 3)>

<cfset EmployeeXml = XMLNew('no')>
<cfset EmployeeXml.XmlRoot = XmlElemNew(EmployeeXml,"company")>

<cfloop index="i" from="1" to="#MyEmployees.RecordCount#">
 <cfset EmployeeXml.XmlRoot.XmlChildren[i] = XmlElemNew(EmployeeXml, "employee")>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Name = XmlElemNew(EmployeeXml, "name")>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Name.XmlText = MyEmployees.name[i]>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Title = XmlElemNew(EmployeeXml, "title")>
 <cfset EmployeeXml.XmlRoot.XmlChildren[i].Title.XmlText = MyEmployees.title[i]>
</cfloop>

<cfdump var="#EmployeeXml#">

XmlParse

New in ColdFusion MX

XmlParse(XML_string [, case_sensitive])

Converts an XML string to a ColdFusion XML document object. Setting the optional case_sensitive
parameter to Yes causes ColdFusion to maintain the original case of the XML document elements and

attributes. The default value for case_sensitive is No . The following example retrieves an XML file

from the Macromedia web site and parses it into a ColdFusion XML document object:

<cfhttp URL="http://www.macromedia.com/devnet/resources/macromedia_resources.xml"
 method="Get">

<cfset DesDev = XmlParse(cfhttp.FileContent)>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<cfdump var="#devnet#">

Note that XML encoded in character sets other than ASCII or Latin-1 must have the character set
explicitly defined to ColdFusion. If you are using the cffile tag to read an XML file, the character set
can be defined using the charset parameter of the cffile tag. If the XML file is retrieved via another

method, it may be necessary to first change the encoding.

XmlSearch

New in ColdFusion MX

XmlSearch(XmlDocObj, XPath_exp)

Searches the specified ColdFusion XML document object using an XPath expression. If a successful
match is made, the function returns an array of XML document object nodes that match the search
criteria. The following example reads in an XML news feed from macromedia.com , parses it into an
XML document object, uses XPath to return only the XML nodes containing tutorials, and outputs the
results to the browser:

<cfhttp URL="http://www.macromedia.com/devnet/resources/macromedia_resources.xml"
 method="Get">

<cfset DesDev = XmlParse(cfhttp.FileContent)>
<cfset SearchResults = XmlSearch(DesDev, "/macromedia_resources/resource[attribute::
type='Tutorial']")>

<h2>Available Tutorials</h2>
<cfloop index="i" from="1" to="#ArrayLen(SearchResults)#">
 <cfoutput>
 #SearchResults[i].Title.XmlText#

 </cfoutput>
</cfloop>

For more information on XPath, see http://www.w3.org/TR/xpath or XML in a Nutshell , 2nd Ed. by
Elliotte Rusty Harold and W. Scott Means (O'Reilly).

XmlTransform

New in ColdFusion MX

XmlTransform(XmlString|XmlDocObj, XslString)

Performs an XSLT (eXtensible Stylesheet Language Transformation) on an XML string or document
object using an XSL (eXtensible Style Language) string. The results are returned as a string. The
following example reads in an XML document containing employee names and titles:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version='1.0' standalone='yes'?>
<company>
 <employee>
 <name>Pere Money</name>
 <title>President</title>
 </employee>
 <employee>
 <name>Aaron Ridge</name>
 <title>Analyst</title>
 </employee>
 <employee>
 <name>Martin Grant</name>
 <title>Manager</title>
 </employee>
</company>

The example then reads in a simple XSL file for formatting the XML as HTML:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:output method="html"/>

 <xsl:template match="/company">
 <html>
 <head>
 <title>Employees</title>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Name</th>
 <th>Title</th>
 </tr>
 <xsl:apply-templates select="employee"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="employee">
 <tr>
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="title"/></td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

Finally, the XML is transformed using XmlTransform() , and the resulting HTML table is output to the

browser:

<cffile action="read" file="d:\cfusionmx\wwwroot\programmingcf\b\employee.xml"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 variable="MyXml">

<cffile action="read" file="d:\cfusionmx\wwwroot\programmingcf\b\employee.xsl"
 variable="MyXsl">

<cfset Transformed = XmlTransform(MyXml, MyXsl)>

<cfoutput>
#Transformed#
</cfoutput>

For more information on XSLT and XSL, see http://www.w3.org/TR/xslt and
http://www.w3.org/TR/xsl/ respectively, or XSLT by Doug Tidwell (O'Reilly).

Year

Year(date)

Returns the year as a number for the given date. Example:

The current year is <cfoutput>#Year(Now())#</cfoutput>.

YesNoFormat

YesNoFormat(value)

Returns all nonzero values as Yes and zero values as No . Also returns a Boolean true as Yes and a
Boolean false as No .

<cfoutput>
-1: #YesNoFormat(-1)#

-1.123: #YesNoFormat(-1.123)#

-0.123: #YesNoFormat(-0.123)#

0: #YesNoFormat(0)#

0.123: #YesNoFormat(0.123)#

1: #YesNoFormat(1)#

1.123: #YesNoFormat(1.123)#

true: #YesNoFormat(true)#

false: #YesNoFormat(false)#
</cfoutput>

[Team LiB]

http://www.w3.org/TR/xsl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix C. Example Database Tables
The examples used throughout this book reference several database tables. The schemas and data
for these tables are listed in this appendix. Because of its low cost, wide availability, and ease of use,
all tables were designed using Microsoft Access. Because Access is a desktop database, I don't
recommend using it in production environments, especially where many concurrent users are
expected to use the database. Access isn't designed for heavy concurrent use and may experience
scalability and performance issues if placed under load. Additionally, there are limits on the amount of
data that can reliably be stored in an Access database.

For production applications, I recommend you use an enterprise-level database, such as Microsoft
SQL Server, Oracle, DB2, Informix, Sybase, MySQL, or PostgreSQL. These databases provide
advanced features and functionality, such as stored procedures and triggers, and are specially tuned
for handling multiple concurrent requests and massive amounts of data.

Table C-1 lists the schema for the EmployeeDirectory table that is used throughout the book, while

Table C-2 lists the actual data.

Table C-1. EmployeeDirectory table schema

Field name Field type Max length

ID (primary key) AutoNumber N/A

Name Text 255

Title Text 255

Department Memo N/A

Email Date/Time N/A

PhoneExt Number (long int) N/A

Salary Number (double, two decimal places) N/A

Picture Memo N/A

Table C-2. EmployeeDirectory table data

ID Name Title Department Email
Phone

Ext
Salary

1 Pere Money President Executive Mgmt pere@example.com 1234 400,000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ID Name Title Department Email
Phone

Ext
Salary

2
Greg
Corcoran

Director Marketing greg@example.com 1237 96,000

3 Mark Edward VP Sales mark@example.com 1208 155,000

4 Marcel Haney Engineer I
Product
Engineering

marcel@example.com 1296 86,000

5
Brian
Christopher

Junior
Accountant

Finance brian@example.com 1211 40,000

6 Nick Gosnell
Risk Mgmt
Analyst

Finance nick@example.com 1223 54,000

7 Hugo Keane
Sr. Account
Manager

Sales hugo@example.com 1214 100,000

8 Chaz Maxwell Engineer II
Product
Engineering

chaz@example.com 1287 78,000

9 Kris Moritz
Network
Manager

IT kris@example.com 1254 65,000

10 Aaron Ridge Analyst IT aaron@example.com 1233 68,000

11 Tareq Varga Sr. Analyst IT tareq@example.com 1278 76,000

12 Jeff Shields
Marcom
Manager

Marketing jeff@example.com 1282 63,000

13 Martin Grant Manager
Business
Develop

martin@example.com 1215 57,000

14 Curt Bond VP
Investor
Relations

curt@example.com 1256 125,000

15 Ray Roy Instructor Training ray@example.com 1276 42,000

16 Rob Tyler Manager Training rob@example.com 1290 70,000

17 Andie Moore Director HR andie@example.com 1241 84,000

18 Jen Newton
Benefits
Coordinator

HR jen@example.com 1283 41,000

19 David Holmes Market Analyst
Investor
Relations

david@example.com 1225 76,000

20
Christine
Booker

Account
Manager

Sales christine@example.com 1262 80,000

Table C-3 lists the schema for the IncentiveAwards table that is used in Chapter 11, while Table C-4

lists the actual data.

2
Greg
Corcoran

Director Marketing greg@example.com 1237 96,000

3 Mark Edward VP Sales mark@example.com 1208 155,000

4 Marcel Haney Engineer I
Product
Engineering

marcel@example.com 1296 86,000

5
Brian
Christopher

Junior
Accountant

Finance brian@example.com 1211 40,000

6 Nick Gosnell
Risk Mgmt
Analyst

Finance nick@example.com 1223 54,000

7 Hugo Keane
Sr. Account
Manager

Sales hugo@example.com 1214 100,000

8 Chaz Maxwell Engineer II
Product
Engineering

chaz@example.com 1287 78,000

9 Kris Moritz
Network
Manager

IT kris@example.com 1254 65,000

10 Aaron Ridge Analyst IT aaron@example.com 1233 68,000

11 Tareq Varga Sr. Analyst IT tareq@example.com 1278 76,000

12 Jeff Shields
Marcom
Manager

Marketing jeff@example.com 1282 63,000

13 Martin Grant Manager
Business
Develop

martin@example.com 1215 57,000

14 Curt Bond VP
Investor
Relations

curt@example.com 1256 125,000

15 Ray Roy Instructor Training ray@example.com 1276 42,000

16 Rob Tyler Manager Training rob@example.com 1290 70,000

17 Andie Moore Director HR andie@example.com 1241 84,000

18 Jen Newton
Benefits
Coordinator

HR jen@example.com 1283 41,000

19 David Holmes Market Analyst
Investor
Relations

david@example.com 1225 76,000

20
Christine
Booker

Account
Manager

Sales christine@example.com 1262 80,000

Table C-3 lists the schema for the IncentiveAwards table that is used in Chapter 11, while Table C-4

lists the actual data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table C-3. IncentiveAwards table schema

Field name Field type Maxlength

ID (foreign key) Number (long int) N/A

DateAwarded Date N/A

Category Text 255

Amount Number (double, two decimal places) N/A

Table C-4. IncentiveAwards table data

ID Date awarded Category Amount ($)

1 2/15/01 Referral 5000

2 7/12/01 Referral 5000

3 4/3/01 Sales goal 3000

3 7/12/01 Sales goal 3000

3 10/3/01 Sales goal 3000

4 6/23/01 Patent award 8000

4 2/4/02 Referral 5000

5 3/17/01 Referral 5000

5 1/10/02 Perfect attendance 500

6 9/14/01 Referral 5000

7 12/19/01 Account growth 4000

8 4/29/01 Leadership achievement 500

8 1/5/02 Patent award 8000

9 8/1/01 Employee contest 500

10 11/4/01 Anniversary 200

11 3/29/02 Referral 5000

12 5/7/03 Anniversary 200

13 2/4/03 Account growth 2000

14 7/8/02 Referral 5000

15 11/17/02 Leadership achievement 500

16 1/10/03 Perfect attendance 500

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ID Date awarded Category Amount ($)

24 2/15/03 Sales Goal 2000

24 5/1/03 Referral 5000

25 7/23/03 Anniversary 200

Table C-5 lists the schema for the Links table that is used in Chapter 10, while Table C-6 lists the

actual data.

Table C-5. Links table schema

Field name Field type Max length

ItemID (primary key) AutoNumber N/A

ParentItemID Numeric N/A

ItemName Text 255

LinkURL Text 255

Table C-6. Links table data

ItemID ParentItemID ItemName LinkURL

1 0 Financial

2 1 Brokers

3 2 E*Trade http://www.etrade.com

4 2 Ameritrade http://www.ameritrade.com

5 1 Banks

6 5 PNC Bank http://www.pncbank.com

7 5 Wilmington Trust Bank http://www.wilmingtontrust.com

8 0 Computers

9 8 Software

10 8 Hardware

11 9 Macromedia http://www.macromedia.com

12 9 Microsoft http://www.microsoft.com

13 9 IBM http://www.ibm.com

24 2/15/03 Sales Goal 2000

24 5/1/03 Referral 5000

25 7/23/03 Anniversary 200

Table C-5 lists the schema for the Links table that is used in Chapter 10, while Table C-6 lists the

actual data.

Table C-5. Links table schema

Field name Field type Max length

ItemID (primary key) AutoNumber N/A

ParentItemID Numeric N/A

ItemName Text 255

LinkURL Text 255

Table C-6. Links table data

ItemID ParentItemID ItemName LinkURL

1 0 Financial

2 1 Brokers

3 2 E*Trade http://www.etrade.com

4 2 Ameritrade http://www.ameritrade.com

5 1 Banks

6 5 PNC Bank http://www.pncbank.com

7 5 Wilmington Trust Bank http://www.wilmingtontrust.com

8 0 Computers

9 8 Software

10 8 Hardware

11 9 Macromedia http://www.macromedia.com

12 9 Microsoft http://www.microsoft.com

http://www.etrade.com
http://www.ameritrade.com
http://www.pncbank.com
http://www.wilmingtontrust.com
http://www.macromedia.com
http://www.microsoft.com
http://www.ibm.com
http://www.etrade.com
http://www.ameritrade.com
http://www.pncbank.com
http://www.wilmingtontrust.com
http://www.macromedia.com
http://www.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ItemID ParentItemID ItemName LinkURL

13 9 IBM http://www.ibm.com

14 9 Sun Microsystems http://www.sun.com

15 10 Cisco http://www.cisco.com

16 10 Intel http://www.intel.com

17 10 HP http://www.hp.com

[Team LiB]

13 9 IBM http://www.ibm.com

14 9 Sun Microsystems http://www.sun.com

15 10 Cisco http://www.cisco.com

16 10 Intel http://www.intel.com

17 10 HP http://www.hp.com

[Team LiB]

http://www.ibm.com
http://www.sun.com
http://www.cisco.com
http://www.intel.com
http://www.hp.com
http://www.ibm.com
http://www.sun.com
http://www.cisco.com
http://www.intel.com
http://www.hp.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix D. ColdFusion Resources
This appendix lists sources of additional information about ColdFusion. One of the great things about
ColdFusion is the wide variety of available information, from official Macromedia resources to
community-related material. The majority of resources listed in this appendix are available free of
charge and were created by developers for developers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.1 Official Macromedia Resources

The following table lists the ColdFusion web sites that are maintained by Macromedia. These sites should be
among your first stops when searching for information on ColdFusion.

Beta site http://mmbeta.macromedia.com

Certification
program

http://www.macromedia.com/support/training/certified_professional_program/

Macromedia
DevNet

http://www.macromedia.com/devnet/

Product
Updaters

http://www.macromedia.com/support/coldfusion/downloads_updates.html

Hot Fixes http://www.macromedia.com/support/coldfusion/ts/documents/tn17883.htm

ColdFusion MX
Documentation
Additions

http://www.macromedia.com/support/coldfusion/ts/documents/tn18228.htm

ColdFusion MX
Documentation
Updates

http://www.macromedia.com/support/coldfusion/ts/documents/tn18196.htm

ColdFusion MX
LiveDocs

http://livedocs.macromedia.com/cfmxdocs/

ColdFusion MX
Release Notes

http://www.macromedia.com/support/coldfusion/releasenotes/mx/releasenotes_mx.html

ColdFusion
Support Center

http://www.macromedia.com/support/coldfusion/

ColdFusion
Support
Forums

http://webforums.macromedia.com/coldfusion/

ColdFusion
Exchange

http://www.macromedia.com/cfusion/exchange/index.cfm?view=sn130

Events http://www.macromedia.com/v1/company/events/

FAQ http://www.macromedia.com/software/coldfusion/productinfo/faq/

Macromedia
Web Site

http://www.macromedia.com/

TechNote
Index

http://www.macromedia.com/support/coldfusion/technotes.html

http://mmbeta.macromedia.com
http://www.macromedia.com/support/training/certified_professional_program/
http://www.macromedia.com/devnet/
http://www.macromedia.com/support/coldfusion/downloads_updates.html
http://www.macromedia.com/support/coldfusion/ts/documents/tn17883.htm
http://www.macromedia.com/support/coldfusion/ts/documents/tn18228.htm
http://www.macromedia.com/support/coldfusion/ts/documents/tn18196.htm
http://livedocs.macromedia.com/cfmxdocs/
http://www.macromedia.com/support/coldfusion/releasenotes/mx/releasenotes_mx.html
http://www.macromedia.com/support/coldfusion/
http://webforums.macromedia.com/coldfusion/
http://www.macromedia.com/cfusion/exchange/index.cfm?view=sn130
http://www.macromedia.com/v1/company/events/
http://www.macromedia.com/software/coldfusion/productinfo/faq/
http://www.macromedia.com/
http://www.macromedia.com/support/coldfusion/technotes.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tutorial &
Article Index

http://www.macromedia.com/support/coldfusion/tutorial_index.html

[Team LiB]

http://www.macromedia.com/support/coldfusion/tutorial_index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.2 Magazines

Several quality magazines dedicated to ColdFusion, both online and print, have popped up over the
last few years. The following table lists the more popular.

CF Advisor http://www.cfadvisor.com/

ColdFusion Developer's Journal http://www.sys-con.com/coldfusion/

ColdFusion Monthly http://www.coldfusionmonthly.com/

Defusion http://www.defusion.com/

The Fusion Authority http://www.fusionauthority.com/

[Team LiB]

http://www.cfadvisor.com/
http://www.sys-con.com/coldfusion/
http://www.coldfusionmonthly.com/
http://www.defusion.com/
http://www.fusionauthority.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.3 Mailing Lists

Several popular email lists exist for the discussion of ColdFusion and related topics. By far the most
popular list is the House of Fusion's CF-Talk list. In fact, House of Fusion hosts over a dozen
ColdFusion related mailing lists. The following table lists several of the more popular mailing lists
along with links to subscription information. Many additional ColdFusion User Groups have mailing
lists which may not be mentioned here.

CF-Talk, CF-RegEx, CF-Community, CF-Jobs-Talk,
Spectra-Talk, Fusebox-Co-Op, CF-Partners, CF-
Server, CF-Linux, CF-Jobs, CF-XML, SQL, CF-
OpenSource, Fusebox, FB-Community, CF-Stock,
Studio, and more...

http://www.houseoffusion.com/cf_lists/

CFCDev http://www.cfczone.org/listserv.cfm

CFDJList http://www.sys-con.com/coldfusion/list.cfm

ColdFusion-HowTo
http://groups.yahoo.com/group/coldfusion-
howto/

AZCFUG http://www.azcfug.org/

BACFUG-L http://www.bacfug.org/

CFUGCNY http://www.cfugcny.org/news/?storyID=99

L-CFUG-SC http://www.cfug-sc.org/resources.cfm

PACFUG http://www.pacfug.org/listserv.cfm

RICFUG
http://www.ricfug.com/www/news2.cfm?
recid=19

NCFUG
http://www.ncfug.org/index.cfm?
method=mailinglist

[Team LiB]

http://www.houseoffusion.com/cf_lists/
http://www.cfczone.org/listserv.cfm
http://www.sys-con.com/coldfusion/list.cfm
http://groups.yahoo.com/group/coldfusion-
http://www.azcfug.org/
http://www.bacfug.org/
http://www.cfugcny.org/news/?storyID=99
http://www.cfug-sc.org/resources.cfm
http://www.pacfug.org/listserv.cfm
http://www.ricfug.com/www/news2.cfm?
http://www.ncfug.org/index.cfm?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.4 Blogs

As blogging continues to grow, a decent number of high quality ColdFusion related blogs are popping
up all over the place. Rather than list them individually here and risk leaving someone out, I suggest
checking out the two most popular ColdFusion related blog aggregators. For those of you unfamiliar
with blog aggregators, they are a place you can go that displays the contents of multiple blogs in a
single interface. The two most popular are Full As A Goog, run by Geoff Bowers and available at
http://www.fullasagoog.com, and MXNA, run by Macromedia and available at
http://www.markme.com/mxna/index.cfm.

[Team LiB]

http://www.fullasagoog.com
http://www.markme.com/mxna/index.cfm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.5 Community Resources

The sites listed in the following table contain a vast array of ColdFusion-related resources. Many sites
provide free code samples, custom tags, tips and tricks, and newsletters. Most resources are free and
supported by ColdFusion developers.

BlackBox http://www.black-box.org/

CF Comet http://www.cfcomet.com/

CFConf.org http://www.cfconf.org/

CFCZone.org http://www.cfczone.org/

CFDev.com http://www.cfdev.com/

CFDevX.com http://www.cfdevx.com/

CFFaq http://www.cffaq.com

CFHub.com http://www.coldfusionhub.com/

CFM!Central.com http://www.cfmcentral.com/

CFMentor (Italian) http://www.cfmentor.com/

CFnewbie?com http://www.cfnewbie.com/

CFXtras http://www.cfxtras.com/

CFM-Resources http://www.cfm-resources.com/

CFNewbie http://www.cfnewbie.com/

cfObjects http://www.cfobjects.com/

CFTipsPlus.com http://www.cftipsplus.com/

CFVault.com http://www.cfvault.com/

CFXchange http://www.cfxchange.com/

CodeBits http://www.codebits.com/

ColdCuts http://www.teratech.com/coldcuts/

ColdFusion FAQ http://www.thenetprofits.co.uk/coldfusion/faq/

ColdFusion Tips-N-Tricks http://209.236.1.64/CF_tipsNtricks/

CoolFusion http://www.coolfusion.com/

Common Function Library Project http://www.cflib.org/

http://www.black-box.org/
http://www.cfcomet.com/
http://www.cfconf.org/
http://www.cfczone.org/
http://www.cfdev.com/
http://www.cfdevx.com/
http://www.cffaq.com
http://www.coldfusionhub.com/
http://www.cfmcentral.com/
http://www.cfmentor.com/
http://www.cfnewbie.com/
http://www.cfxtras.com/
http://www.cfm-resources.com/
http://www.cfnewbie.com/
http://www.cfobjects.com/
http://www.cftipsplus.com/
http://www.cfvault.com/
http://www.cfxchange.com/
http://www.codebits.com/
http://www.teratech.com/coldcuts/
http://www.thenetprofits.co.uk/coldfusion/faq/
http://209.236.1.64/CF_tipsNtricks/
http://www.coolfusion.com/
http://www.cflib.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

FlashCFM.com http://www.flashcfm.com/

Forta.com http://www.forta.com/

Four-Runner.com http://www.four-runners.com/

Fusebox http://www.fusebox.org/

Fusion Directa (Spain) http://www.fusiondirecta.com.ar/

HalHelms.com http://www.halhelms.com/

House of Fusion http://www.houseoffusion.com/

Intrafoundation Software http://www.intrafoundation.com/freeware.html

MaxFusion http://www.maxfusion.co.uk/

OBJECT-fuse http://www.it-fuse.com

OpenWDDX.org http://www.openwddx.org/

OraFusion.com http://www.orafusion.com/

Situs Pengguna (Indonesia) http://www.coldfusion.web.id/

SysteManage http://www.systemanage.com/

WebTricks http://www.webtricks.com/

[Team LiB]

http://www.flashcfm.com/
http://www.forta.com/
http://www.four-runners.com/
http://www.fusebox.org/
http://www.fusiondirecta.com.ar/
http://www.halhelms.com/
http://www.houseoffusion.com/
http://www.intrafoundation.com/freeware.html
http://www.maxfusion.co.uk/
http://www.it-fuse.com
http://www.openwddx.org/
http://www.orafusion.com/
http://www.coldfusion.web.id/
http://www.systemanage.com/
http://www.webtricks.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.6 User Groups

ColdFusion user groups (CFUGs) and Macromedia user groups (MMUGs) are a great way to learn
more about ColdFusion and other Macromedia products and to share your experiences with other
developers. CFUGs and MMUGs are officially sanctioned by Macromedia and provide a forum for
learning about the latest ColdFusion and Macromedia-related technologies and techniques. New
CFUGs and MMUGs are forming all the time, and as of this writing, there are over 200 worldwide. For
the most up-to-date information on CFUGs and MMUGs, see Macromedia's web site at
http://www.macromedia.com/v1/usergroups/.

[Team LiB]

http://www.macromedia.com/v1/usergroups/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming ColdFusion MX, Second Edition is an Arctic tern. Arctic terns
(Sterna paradisaea) are small birds, about 12 to 15 inches long, that make the longest migration of
any avian on Earth. They breed in the Arctic tundra but fly to the edge of the Antarctic ice pack
during the winter. An Arctic tern flies over 21,750 miles each year; it spends most of its life, about 20
years, flying.

The Arctic tern has webbed feet. The tail is long and forked, the legs are short and red, and the head
is rounded and white with a black cap and a bright orange beak. Research has shown that Arctic
terns don't swim well and will do everything possible to stay out of the water. Even though their feet
are webbed, they are small, so the birds swoop down, catch a fish, and eat it while flying.

During breeding or courtship time, male terns fly a "fish flight." A male takes a small fish in its bill
and passes as low as it can over a female on the ground. If she notices, she'll join him in the fish
flight, and they soon mate.

In Arctic breeding grounds, females lay one or two cream-colored eggs with brown speckles (1.6
inches long). The eggs are laid in a grassy area for protection from their predators and because there
are no trees in the Arctic. Both parents care for the eggs and feed the hatchlings.

Local inhabitants watch to see where Arctic terns are feeding. By monitoring where the terns hunt,
they can find large schools of fish and increase their catch.

Darren Kelly was the production editor, and Leanne Soylemez was the copyeditor for Programming
ColdFusion MX, Second Edition. Mary Brady, Derek Di Matteo, and Claire Cloutier provided quality
control. Nancy Crumpton wrote the index. Jamie Peppard, Matt Hutchinson, and Reg Aubry provided
production assistance.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover
image is an original illustration created by Lorrie LeJeune. Emma Colby produced the cover layout
with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

" (double quote), in string arguments

(pound sign)

 cfoutput tag and

 escaping

 in ArrayNew()

 in expressions

 nested

 in strings

$ (dollar sign)

 in regular expressions

 in variable names

& (ampersand), in URL parameters

' (single quote)

 in string arguments

 in variables

() (parentheses)

 in field names

 in regular expressions

* (asterisk), in regular expressions

+ (plus sign), in regular expressions 2nd

, (comma)

 in arguments

 in lists

. (period)

 in compound variable names

 in regular expressions

/ (forward slash)

 in JavaScript regular expressions

 in tags

= (equal sign)

 in URL parameters

 in variable names

 in WHERE statement

? (question mark)

 in regular expressions

 in URL parameters

[] (square brackets)

 in field names

 in regular expressions

^ (caret), in regular expressions

_ (underscore), in variable names

` (back quote), escaping field names

{ } (curly braces)

 in CFScript

 in regular expressions

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

aborting

 CFML template processing

 custom tag processing 2nd

Abs()

abstraction, custom tags and

accept attribute, cffile tag

ACos()

action attribute

 cfcollection tag 2nd

 cfdirectory tag

 cffile tag 2nd 3rd

 cfform tag

 cfftp tag

 cfindex tag

 cfldap tag

 cfpop tag 2nd

 cfregistry tag

 cftransaction tag 2nd

 cfwddx tag

 templates, passing data between

ActionScript

 server-side, interacting with Flash Remoting

 writing for Flash Remoting

adaptive tags

ADD clause (SQL)

adding

 elements

 to arrays

 to lists

 items to beginning of lists

 LDAP entries

 rows

addnewline attribute, cffile tag

agentname attribute, cfftp tag

ampersand (&), in URL parameters

angles

 retrieving cosine of

 retrieving sine of

 retrieving tangent of

Apache Axis SOAP engine, message handling

append attribute, cffile tag

appending elements to arrays

appendkey attribute, cftree tag

applets

 registering

appletsource attribute

application scope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application variables 2nd

 creating

Application.cfm template

 client

 custom validation handler

 as foundation for security model

 HTTP authentication and

 in portal application example

 session

 sitewide

 specific exceptions

Application.log file

 exception logging

 logging messages to

applications

 exceptions

 multiplatform, server variables

 settings of

 using CFCs in

 cfinvoke tag

 cfobject tag/CreateOBJECT()

argumentcollection attribute

arguments attribute, cfexecute tag

arguments scope

arithmetic operations

ArrayAppend() 2nd

ArrayAvg()

ArrayClear()

ArrayDeleteAt()

ArrayInsertAt()

ArrayIsEmpty()

ArrayLen()

ArrayMax()

ArrayMin()

ArrayNew()

ArrayPrepend() 2nd

ArrayResize()

arrays 2nd

 adding data to

 adding values to

 appending elements to

 checking for

 converting lists to

 converting to lists

 creating

 creating dimensions of

 initializing

 elements in

 inserting values into

 manipulating

 of structures

 creating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 retrieving

 removing data from

 resizing

 retrieving

 keys in structure

 length of

 values of

 serializing/deserializing

 sorting

 values of, finding

ArraySet()

ArraySort() 2nd

ArraySum()

ArraySwap()

ArrayToList()

AS operator (SQL)

Asc()

ASCII character code

 retrieving

 character equivalent of

ASCII character code, retrieving

Asin()

asterisk (*), in regular expressions

Atn()

attachmentpath attribute

attribute scope

attributes

 custom tags and

 passing

 passing via structures

 expressions in, pound sign and

 extending usefulness of

 LDAP

 populating

 searching

 Verity summary

attributes attribute, cfldap tag

attributetypes attribute

AuthenticatedContext()

AuthenticatedUser()

authentication 2nd 3rd 4th 5th

 application-based

 Application.cfm template, portal application example

 cfhttp support

 ColdFusion MX security framework

 creating login/registration screens

 exceptions

 HTTP

 passwords

 required by proxy server

 required by SMTP server

 SMTP, username for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 specifying cookies or session variables for login information 2nd

 user roles

 username, retrieving

authorization

 ColdFusion MX security framework

 creating login/registration screens

Avg()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

back quote (`), escaping field names

backward compatibility

 cfhttp tag

 response header, keys appearing more than once in

base64 encoding

Basic authentication, cfhttp support

bcc attribute, cfmail tag

binary

 data, serializing/deserializing

 values

binary files

 reading

 writing

 zzz [See also files][See also files]

binding element, WSDL files

BitAnd()

BitMaskClear()

BitMaskRead()

BitMaskSet()

BitNot()

BitOr()

BitSHLN()

BitSHRN()

BitXor()

BOM (byte order marker)

Boolean

 datatype

 cfwddx conversion issues

 operations

 values

 formatting

border attribute, cftree tag

Browser variable

browsers

 displaying contents of WSDL files

 redirecting 2nd

browsing Next/Previous records 2nd

building

 regular expressions

 Verity search interface

 advanced

byte order marker (BOM)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

C++ CFX tags, registering

caching

 ColdFusion pages

 queries, clearing

caller scope

calling

 custom tags 2nd

 via cfmodule

 objects

caret (^), in regular expressions

case sensitivity

 grouping records

 in strings

 converting to lowercase

 converting to uppercase

 in variable names

 in role names

 searching 2nd

 in template filenames

 Verity search language

 XML document elements

casesensitive attribute, cfxml tag

catchexceptionsbypattern attribute, cfsetting tag 2nd

cc attribute, cfmail tag

Ceiling()

cells, populating

CF_GetDataSourceUserName()

CF_IsColdFusionDataSource()

CF_SetDataSourcePassword()

CF_SetDataSourceUserName()

cfabort tag

cfadminsecurity tag

cfapplet tag 2nd 3rd

cfapplication tag 2nd

 authentication

cfargument tag 2nd

 UDFs

cfassociate tag 2nd

cfauthenticate tag

cfbreak tag

CFC Explorer

.cfc files, saving components

cfcache tag

cfcase tag 2nd

cfcatch blocks, testing for custom exceptions

cfcatch structure

cfcatch tag 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 custom tags

 exception handling

 in CFScript code

 in UDFs

 return variables

 type attribute

 with cfrethrow tag

cfchart tag 2nd

 dates

 dynamic data

 multiple data point colors in a series

cfchartdata tag 2nd

cfchartDateFormat()

cfchartseries tag 2nd 3rd

cfcol tag

cfcollection tag

 creating

 deleting

 optimizing

cfcomponent tag

 creating CFCs

cfcontent tag

 cfflush tag and 2nd

 XML, generating

cfcookie tag 2nd

CFCs (ColdFusion Components) 2nd 3rd

 adding metadata to

 advanced topics

 arguments scope and

 assigning component instances to shared variable scopes

 basic concepts

 component methods

 calling via HTTP POST

 calling via URL

 component security

 creating components

 Flash Remoting

 inheritance

 global inheritance with component.cfc

 instantiating

 introspection

 in Flash MX

 saving components

 using components

 cfinvoke tag

 cfobject tag/createObject()

 variable scope in

 web services

 building

 converting to

cfdefaultcase tag 2nd

cfdirectory tag 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 creating

 deleting

 disabling

 renaming

 undeliverable mail, handling

CFDUMP tag

cfdump tag

CFDUMP tag

 XML document objects

cfdump tag

 XML, generating

cfelse tag 2nd

cfelseif tag 2nd

CFEncode utility

cferror tag 2nd 3rd

 request errors

 specific exceptions

cfexecute tag 2nd

 errors/exceptions

cfexit tag

 attributes, required

cffile tag 2nd

 files

 appending

 copying

 deleting

 moving

 reading

 renaming

 uploading

 writing

 XML

 returned values

 XML, generating

cfflush tag

cfform tag 2nd

cfftp tag 2nd

 deleting files

 downloading files

 parameters for remote files/directories

 remote servers, connecting to

 returned query columns

 returned variables

 zzz [See also FTP][See also FTP]

cffunction tag

 defining component methods

 UDFs

CFGLobals cookies

cfgraph tag

cfgraphdata tag

cfgrid tag 2nd 3rd

 returned variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cfgridcolumn tag 2nd

cfgridrow tag 2nd

cfgridupdate tag 2nd 3rd

cfheader tag 2nd

 HTTP authentication

cfhtmlhead tag

cfhttp tag 2nd

 CGI variables

 cookies

 files

 XML

 form-field data

 header/body content

 information, retrieving

 limitations in ColdFusion versions

 parsing data

 retrieving HTTP header information

 returned variables

 static web pages, generating

 URL variables

cfhttpparam tag 2nd

 XML

CFID values

 CFToken

 hidden form fields

 resetting to current values

 session variables

cfif tag 2nd 3rd

 checking parameters

 multiple selection lists and

cfimpersonate tag

cfimport tag

 custom tags

 mapping bug in

cfinclude tag 2nd

 Application.cfm template

cfindex tag

 custom attributes, populating

 files, indexing

 LDAP, indexing contents of

 POP mailbox, indexing contents of

 populating Verity collections

cfinput tag 2nd 3rd

cfinsert tag

 inserting records

cfinternaldebug tag

cfinvoke tag 2nd

 using components

 web services, calling

cfinvokeargument tag 2nd

cfldap tag

 adding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 deleting entries

 returned variables

cflocation tag

 browser redirection

cflock tag

 cfcollection tag and

 cfdirectory operation

 cffile operation

 cfftp operation

 cfindex tag and

 cfinsert tag and

 ColdFusion V4.5/5.0

 file-manipulation operations

 nonthread-safe objects

 persistent variables

 server

 session

cflog tag

 exception logging

cflogin tag

cfloginuser tag

cflogout tag

cfloop tag 2nd

 populating trees

 to attribute

.cfm files

cfmail tag

 customized mail to multiple recipients

 HTML form contents

 HTML mail

 query results

 whitespace and

cfmailparam tag 2nd

cfmailpart tag 2nd

CFML (ColdFusion Markup Language) 2nd 3rd 4th

 extensions

 generating code

 manually

 with Dreamweaver MX

 HTML and

 templates

CFML forms

 ColdFusion V5.0

 controls

 advanced grid controls

 combining HTML form controls

 custom

 customizing column data

 drop-down boxes

 grids

 grids, updateable

 input, preserving

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 row data, specifying

 selection controls

 sliders

 trees

 input

 data validation

 JavaScript regular expressions

 text input

CFML templates, saving

cfmodule tag 2nd

 calling custom tags

cfnewinternaladminsecurity tag

cfnewinternalregistry tag

cfobject tag 2nd

 CORBA objects

 Java objects

 using components

 web services, calling

cfobjectcache tag

cfoutput tag 2nd 3rd 4th

 form fields, populating

 nesting

 query output

 templates, passing data between

 variable values and

cfparam tag 2nd

 attributes, required

 default values, assigning 2nd

 server variables, creating

 structures, creating

cfpop tag 2nd 3rd

 returned variables

cfprocessingdirective tag 2nd

cfprocparam tag 2nd

cfprocresult tag 2nd

 result sets, specifying

cfproperty tag

 adding metadata to CFCs

cfquery tag 2nd 3rd

 aggregate functions and

 caching

 inserting records

 returned variables

 scalar functions

 SQL statements in

 stored procedures, calling

 using cfstoredproc

 updateable grids

 updating records

 Verity collection records, deleting

cfqueryparam tag 2nd

cfregistry tag 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 keys/values

 deleting

 retrieving

 setting

 returned variables

 undeliverable mail, handling

cfreport tag

cfrethrow tag

cfreturn tag 2nd 3rd

 UDFs

cfsavecontent tag

cfschedule tag 2nd

 adding tasks

 deleting tasks

 running tasks

 scheduling tasks

 updating tasks

CFScript language

 calling UDFs

 recursively

 commenting

 continue statement

 do/while loops

 flow control/looping

 for loops

 for/in loops

 if/else

 loops, using break within

 optional parameters, passing

 output, writing

 switch/case

 syntax

 variables

 web services, calling

 while loops

cfscript tag 2nd

cfsearch tag

 collections

 custom attributes, searching

 returned variables

cfselect tag 2nd 3rd

cfservlet tag

cfservletparam tag

cfset tag 2nd

 adding data to

 creating

 custom tags

 server variables, creating

cfsetting tag

 suppressing whitespace

cfsilent tag 2nd

cfslider tag 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CFSQL (ColdFusion SQL)

 cfstoredproc tag

 stored procedures

 using CFQUERY

 using cfstoredproc

 transaction processing

cfsqltype attribute, cfprocparam tag

cfsqltype tag

cfstoredproc tag 2nd

 returned variables

cfswitch tag 2nd 3rd

cftable tag

cftextinput tag 2nd 3rd

cfthrow tag 2nd

 custom exception handling

 custom tags

 returned variables

CFToken values

 hidden form fields

 resetting to current values

 session variables

cftrace tag

cftransaction tag 2nd

 cfinsert tag and

cftree tag 2nd 3rd

 returned variables

cftreeitem tag 2nd

cftry tag 2nd 3rd

 custom tags

 exception handling

 in CFScript code

 in UDFs

 returned variables

 with cfrethrow tag

CFUGs (ColdFusion User Groups) 2nd

cfupdate tag

 updating records

CFusion_DBConnections_Flush()

CFusion_Decrypt()

CFusion_Disable_DBConnections()

CFusion_Encrypt()

CFusion_GetODBCDSN() 2nd

CFusion_SetODBCINI()

CFusion_Settings_Refresh()

CFusion_VerifyMail()

cfwddx tag 2nd

 arrays

 binary data

 conversion issues

 record sets

 serializing/deserializing data

 complex datatypes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 simple values

 storing in client variables

 storing WDDX packets

 structures

 well-formed WDDX, testing for

CFX tags

 registering

 C++ CFX tags

 Java CFX tags

cfxml tag

CGI (Common Gateway Interface), variables

character sets 2nd 3rd

 for email messages 2nd

 for file contents

characters

 checking number of in form fields

 passing via URLs

charset attribute

 cffile tag

 cfhttp tag

 cfmail tag

 cfmailpart tag

charting

 cache, working with

 dynamic data

 multiple data series

 passing parameters to JavaScript

 saving charts to variables

checkboxes, dynamically populating

checked attribute, cfinput tag

child tags, extending custom tags

Chr()

CJustify()

classes

client scope

client variables

 creating

 noncookie

 overriding

 purging variables

 storage options

clientmanagement attribute

 browser redirection

 cfapplication tag

clientstorage attribute, cfapplication tag

 overriding storage option

clustering servers

 application variables and

 client variables and

 session variables and

code distribution

code reuse, custom tags and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColdFusion

 architecture

 backward compatibility, custom exception handling

 editions of

 file scope and

 Java and

 pages

 caching

 executing

 versions of 2nd [See also ColdFusion MX; ColdFusion MX 6.1]

 cfhttp tag limitations

 CFML forms in V5.0

 exception monitors in V5.0

 lack of support for MS Office documents through V4.5.1

 locking persistent variables in V4.5/5.0

 selectmode attribute in V5.0

ColdFusion Administrator

 adding tasks

 applets, registering

 authorization

 creating Verity collections

 custom tags

 data source

 files, indexing

 listing CGI variables and

 manually executing tasks

 optimizing

 performance upgrades

 registering web services with

 Sandbox Security

 Scheduler settings

 scheduling tasks

 security basics

 updating/deleting tasks

ColdFusion Application Server, request processing and

ColdFusion Components [See CFCs]

ColdFusion Markup Language [See CFML]

ColdFusion MX

 cfhttp tag, type attribute, XML value

 character sets

 for file contents, specifying

 specifying

 charts/graphs, rendering

 COM objects, connecting to

 creating UDFs

 zz [See also UDFs][See also UDFs]

 database connections

 Flash Remoting and

 JRE-related issues with cfhttp tag

 new features in

 security framework

 authenticating users

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 role-based permissions

 trapping errors in CFScript code with trycatch statements

 unsupported Perl regexp conventions

 var attribute

 VDK 2.6.1 engine and Verity K2 server

 web services

 consuming

 custom datatypes, creating

 datatype mapping

 producing

 securing access with built-in security framework

 zzz [See also web services][See also web services]

 XML and

 zzz [See also XML][See also XML]

ColdFusion MX 6.1

 Apache Axis 1.1, message handling

 authentication

 passing username/password to SMTP server

 passwords required by proxy server 2nd

 passwords required by SMTP server

 session timeout value

 specifying cookies or session variables for login information 2nd

 CFC inheritance

 super scope and

 with component.cfc

 cfchart tag, graphing multiple data series in single chart 2nd

 cfhttp tag

 bug fix in firstrowasheaders attribute

 header/body content, sending

 optional attributes

 Put method, sending files to servers

 type attribute, type option

 using proxy servers for Internet access

 COM objects, terminating connections to

 email, sending

 address for failure messages

 character set 2nd

 file attachments

 file attachments, MIME type of

 multipart messages 2nd

 replying to messages

 SMTP server addresses

 text wrapping in messages

 username for SMTP authentication

 formatting text strings, text wrapping 2nd

 idletimeout attribute, cflogin tag

 performance upgrades

 saving command-line program output to variables

 web services

 accessing from behind firewall

 timeout value for request completion

ColdFusion MX 6.1 Enterprise edition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 email, sending

 SMTP server addresses

ColdFusion MX Application Server

ColdFusion Scheduler

 adding tasks 2nd

 deleting tasks

 lack of redundancy

 manually executing tasks

 running tasks

 scheduling with cfschedule tag

 scheduling with ColdFusion Administrator

 updating/deleting tasks 2nd

ColdFusion SQL [See CFSQL]

ColdFusion User Groups (CFUGs) 2nd

collection attribute

 cfindex tag

 cfloop tag

 cfsearch tag

collection loops, structure contents

colorlist attribute

column aliases

ColumnList variable 2nd

columns

 creating

 customizing

columns attribute 2nd

COM (Component Object Model) objects

 connecting to in ColdFusion MX

 terminating connections to

comma (,)

 in arguments

 in lists

command-line programs, executing 2nd

comments

 in CFScript

Common Function Library Project

Common Gateway Interface (CGI), variables

Common Object Request Broker Architecture (CORBA) objects

Compare()

CompareNoCase()

comparison operations

completepath attribute, cftree tag 2nd

Component Object Model (COM) objects

component objects

component.cfc, global CFC inheritance

condition attribute

conditional loops

conditional processing

 if/elseif/else statement

 IIF()

connection attribute, cfftp tag

connections, dropping

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constructors

consuming web services

 ColdFusion MX

 complex datatypes

 as input parameters

 as return values

 generating CFML

 manually

 with Dreamweaver MX

 registering with ColdFusion Administrator

content

 flushing to client

continue statement, CFScript

converting

 arrays to lists

 CFCs to web services

 data to/from WDDX

 datatypes to strings

 dates

 lists to arrays

 numbers

 to strings

 strings 2nd 3rd 4th 5th

 base64-encoded to binary

 to uppercase

 XML to XML document objects

cookie scope 2nd

 zzz [See also cookie variables][See also cookie variables]

cookie variables 2nd

 deleting

 retrieving

 setting

cookies

 client variable storage option

 deleting

 names of 2nd

 persistent variables and

 sending

copy attribute, cffile tag

copying structures 2nd

 without creating pointers

CORBA (Common Object Request Broker Architecture) objects

Cos()

Count()

Create Client Database Tables checkbox (ColdFusion Administrator)

CREATE TABLE statement (SQL)

CreateDate()

CreateDateTime()

CreateObject() 2nd

 using components

 web services, calling

CreateODBCDate()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateODBCDateTime()

CreateODBCTime()

CreateTime()

CreateTimeSpan() 2nd

CreateUUID()

creating

 application variables

 arrays

 CFCs

 columns

 custom tags

 tag pairs

 directories

 graphs

 Java controls 2nd 3rd

 login/registration screens

 queries

 query objects

 from text files

 server variables

 session variables

 SQL tables

 structures

 tree controls

 via recursion

 UDFs 2nd

 var attribute

 UUIDs

 variables

 dynamically named

 Verity collections

 with cfcollection tag

 with ColdFusion Administrator

 Verity top ten lists

 XML document objects

criteria attribute, cfsearch tag 2nd

Crystal Reports

curly braces ({ })

 in CFScript

 in regular expressions

currency values, formatting

CurrentColumn variable

CurrentRow variable 2nd

custom tags

 aborting processing of 2nd

 attributes

 handling

 passing

 passing via structures

 calling 2nd

 from templates

 via cfmodule

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CFX

 registering

 creating

 data

 passing

 returning

 datatypes, validating

 encoding

 exception handling

 importing

 as tag library

 multiple values, retrieving

 nesting

 extending with child tags

 tag pairs, creating

 UDFs

 variables and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

data sources 2nd

 client variable storage option

 databases as, setting up

 in ColdFusion Administrator

 disabling

 dynamic charting

 exceptions

 multiple data series, charting

databases

 caching

 cascading deletes

 cfquery tag

 ColdFusion Administrator registration

 data source setup

 display techniques

 drilldown

 fields in, variable names and

 grouping output

 inserting records

 multicolumn output

 page output, flushing

 populating trees from

 query loops

 record sets, displaying

 referential integrity

 retrieving/displaying data

 row color, alternating

 SQL [See SQL]

 storing WDDX packets in

 tables, examples in book

 updating records

 for usernames/passwords

 whitespace, controlling

 optimizing output

 suppressing output

 suppressing whitespace

datacollection attribute

datasource attribute

 cfgridupdate tag

 cfinsert tag

datatypes 2nd 3rd

 Boolean

 complex

 consuming web services

 defining for use in publishing web services

 converting to strings

 creating tables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 custom, creating

 mapping

 in ColdFusion-produced web services

 WDSL to ColdFusion

 serializing/deserializing with WDDX

 complex values

 conversion issues

 simple values

 storing in client variables

 UDFs and

 validating, custom tags

_date suffix (form fields)

DateAdd()

DateCompare()

DateConvert()

DateDiff()

DateFormat() 2nd

DatePart()

dates 2nd

 adding numbers to

 cfchart tag

 cfwddx tag conversion issues

 comparing date/time objects

 converting

 formatting 2nd

 locale-specific 2nd

 quarter, retrieving

 retrieving 2nd

 date/time object

 in ODBC date format

 minute

 seconds

 week

 year

DateTime variable

Day()

DayOfWeek()

DayOfWeekAsString()

DayOfYear()

DaysInMonth()

DaysInYear()

dbtype attribute, cfquery tag

dbvarname attribute

DE() 2nd 3rd

deadlocks

debugging

 cfquery tag and

 tags for

DecimalFormat() 2nd

DecrementValue()

Decrypt()

definitions element, WSDL files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

delete attribute, cffile tag

DELETE clause (SQL)

DELETE statement (SQL)

DeleteClientVariable()

deleting

 client variables

 cookies

 directories

 elements in lists

 files

 key/value pairs in structures 2nd

 LDAP entries

 messages

 persistent variables

 records

 confirmation before

 multiple

 Verity collections

 registry keys/values

 SQL tables

 variables

 session

delimiter attribute, cftree tag

delimiters attribute, cfloop tag

delimiters in lists

Delphi CFX tags, registering

design patterns

Diagnostics variable

Digest authentication, cfhttp support for

directories 2nd

 creating

 deleting

 LDAP-enabled

 modifying entries

 querying

 listing contents

 via FTP

 listing contents of

 renaming

directory attribute, cfftp tag

directory operations, performing via FTP

directory paths 2nd

 non-CFML files, securing

 of ColdFusion temporary directory

 retrieving structures from

DirectoryExists()

Disable Global Client Variable Updates option (ColdFusion Administrator)

DisplayRows variable

DISTINCT (SQL)

distinguished name (DN), modifying

DN (distinguished name), modifying

do/while loops statement, CFScript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Document Object Model (DOM) 2nd

documentation element, WSDL files

dollar sign ($)

 in regular expressions

 in variable names

DollarFormat() 2nd

DOM (Document Object Model) 2nd

double quote ("), in string arguments

Dreamweaver MX, generating CFML to consume web services

drilling down

 graphs

 queries

DROP CONSTRAINT clause (SQL)

DROP TABLE statement

drop-down boxes

 dynamically populating

 updating records and

Duplicate() 2nd 3rd

 copying structures without creating pointers

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

elements in arrays 2nd 3rd

 numeric, finding

email

 attachments, sending 2nd

 MIME type of

 customized, to multiple recipients

 replying to messages

 sending 2nd

 multipart messages

 undeliverable, handling

 web-based client, building

enablecab attribute

enablecfoutputonly attribute 2nd

encoding custom tags

Encrypt()

encryption 2nd 3rd

enctype attribute

 cffile tag

 cfform tag

endrow attribute, cfloop tag

entry attribute, cfregistry tag

equal sign (=)

 in URL parameters

 in variable names

 in WHERE statement

error handling

 custom tags

 in Web Application Framework

 request errors

 security issues

 serverwide

 specific exceptions

 UDFs

error return variables

errors

 displaying custom error pages

 validation errors

_eurodate suffix (form fields)

Evaluate()

 cfoutput tag and

examples in book, database tables

exception handling 2nd 3rd

 backward compatibility

 custom

 custom tags

 in CFScript code

 logging exceptions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UDFs

exceptions 2nd

 rethrowing

exclusive locking

executing

 ColdFusion pages

 command-line programs

 stored procedures

ExecutionTime variable 2nd

EXISTS clause (SQL)

Exp()

expand attribute, cftree tag

ExpandPath()

expires attribute, cfcookie tag

expressions

 compound, cfoutput tag and

 evaluating

 exceptions

 in strings, pound sign and

 operators and

 regular

extends attribute, cfcomponent tag 2nd

Extensible Stylesheet Language (XSL)

Extensible Stylesheet Language Transformation (XSLT)

extensions

 ColdFusion MX web services

extensions attribute

external objects, calling

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

failto attribute, cfmail tag 2nd

fault element, WSDL files

file attribute

 cffile tag

 cfmailparam tag

file fields, passing data between templates

file operations, performing via FTP

file scope

FileExists()

filenames, retrieving from directory paths

files

 appending

 .cfm

 checking existence of

 copying

 creating query objects from

 deleting

 via FTP

 downloading via FTP

 embedding in templates

 footer/header, including in templates

 indexing

 initialization

 retrieving entries from

 setting profile string

 moving

 non-CFML, securing

 reading

 renaming

 saving information to

 sending

 storing WDDX packets in

 uploading 2nd

 via FTP

 writing

 WSDL

 displaying contents of

 elements of

 URLs of, using aliases for

Find()

FindNoCase()

FindOneOf()

firewalls, accessing web services from behind

FirstDayOfMonth()

Fix()

Flash 6 player

Flash movie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash MX

 editor, working with

 introspecting CFCs in

Flash Remoting 2nd

 ActionScript

 server-side

 writing

 CFCs

 introspecting in Flash MX

 ColdFusion pages, interacting with

 Flash MX editor, working with

 with Java objects on ColdFusion MX server

 security

 setting up

flash scope

_float suffix (form fields)

font attribute, cftextinput tag

for loops statement, CFScript

for/in loops statement, CFScript

form fields

 checkboxes

 checking number of characters in

 data from, sending

 dynamically populating

 checkboxes

 drop-down boxes

 radio buttons

 text areas

 errors

 hidden

 passing client variables via

 multiple selection lists

 populating

 required

 specific types of

 suffixes

 validating data

 automatically

 manually

form scope 2nd 3rd

form variables, retrieving list of

format attribute, cfchart tag

FormatBaseN()

formatting

 Boolean values

 currency values

 dates

 dollars

 HTML

 locale-specific currency values

 euro

 numbers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 decimal numbers

 plain-text strings

 time 2nd

 locale-specific

formfields attribute, cfinsert tag

forward slash (/)

 in JavaScript regular expressions

 in tags

from attribute, cfmail tag 2nd

FROM clause (SQL)

FTP (file transfer protocol)

 file and directory operations

FTP servers

 communicating with

 connecting to remote servers

 automatically

 closing connection

function scope

functions

 aggregate

 arguments accepted by

 arrays

 calculations performed by

 date/time

 decision/evaluation

 encoding/encryption

 file/directory

 formatting

 text strings

 internationalization/localization

 lists 2nd

 locale-specific currency/date/time numbers

 mathematical

 nesting

 queries 2nd

 scalar

 security

 strings

 structure references

 structures 2nd

 types of

 undocumented

 user-defined

 calling 2nd

 validating datatypes within custom tags

 Verity

 XML 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

generateuniquefilenames attribute

generating static web pages

getasbinary attribute, cfhttp tag

GetAuthUser() 2nd

GetBaseTagData()

GetBaseTagList()

GetBaseTemplatePath()

GetClientVariableList()

GetClientVariablesList() 2nd

GetCurrentTemplatePath()

GetDirectoryFromPath()

GetException()

GetFileFromPath()

GetFunctionList()

GetHTTPRequestData()

GetHTTPTimeString()

GetK2ServerCollections()

GetK2ServerDocCount()

GetK2ServerDocCountLimit()

GetLocale()

GetMetaData()

GetMetricData()

GetNumericDate()

GetPageContext() 2nd

GetProfileSections()

GetProfileString()

getRate()

GetTempDirectory()

GetTempFile()

GetTickCount()

GetTimeZoneInfo()

GetToken()

global variables

graphs

 creating

 drawing

 drilling down

grids

 columns, customizing

 specifying

 updateable

 cfgridupdate tag

 cfquery tag

groovecolor attribute, cfslider tag

group attribute, cfoutput tag 2nd

GROUP BY clause (SQL)

groupcasesensitive attribute, cfoutput tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

hardware requirements

Hash() 2nd

 authentication

HAVING clause (SQL) 2nd

header files

 including in templates

 message headers

 sending

height attribute, cftree tag

highlighthref attribute, cftree tag 2nd

Hour()

href attribute

 cfgridcolumn tag

 cftree tag

hscroll attribute, cftree tag

HTML (Hypertext Markup Language)

 CFML and

 comments

 documents, embedding in templates

 formatting

 forms [See HTML forms]

 mail, sending

 tables, building from result sets

HTML forms 2nd

 controls, combining CFML form controls

 emailing contents of

 files, uploading

 passing between templates

 updating records and

HTMLCodeFormat() 2nd

HTMLEditFormat() 2nd 3rd

HTTP (Hypertext Transport Protocol)

 authentication via

 GET/POST operations

 headers [See HTTP headers]

 interacting with web servers

HTTP Basic Authentication, securing access to web services

HTTP headers

 generating

 names/values

 retrieving

HTTP POST, calling CFC methods via

HTTPReferer variable

hyperlinks

 sending URL parameters to templates

 session variables, passing

Hypertext Transport Protocol [See HTTP]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IDE (Integrated Development Environment)

idletimeout attribute, cflogin tag

if/elseif/else statement 2nd

 CFScript

IIF() 2nd

IIf()

IIS (Internet Information Server)

img attribute, cftreeitem tag

implementing

 CFID/CFToken values

 non-CFML files, securing

 security from scratch

 Application.cfm template setup

 authentication of users

 creation of login/registration screens

 creation of tables in database

 non-CFML file security

importing custom tags

 as tag library

IncrementValue()

index attribute

index loops

index.cfm template

 GetAuthUser() security example

 HTTP authentication and

indexing

 files

 query results

inheritance

initialization files

 profile string, setting

 retrieving entries from

INNER JOIN (SQL)

input attribute, cfwddx tag

input element, WSDL files

input tag, selected attribute, radio buttons

InputBaseN()

INSERT statement (SQL)

Insert()

inserting

 elements

 items in lists

 key/value pairs in structures

 records 2nd

 cfinsert tag

 cfquery tag

 form-field data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 via forms

instances

Int()

_integer suffix (form fields)

integers 2nd

 32-bit

 decrementing

 random, generating

 retrieving 2nd

Integrated Development Environment (IDE)

internationalization, localization

 currency formatting

 date formatting 2nd

 locale-specific time formatting

 number formatting

 page request locales, setting

Internet Information Server (IIS)

interval attribute, cfflush tag

INTO clause (SQL) 2nd

introspection

InvalidFields variable

IP addresses, security issues

IsArray()

IsAuthenticated()

IsAuthorized()

IsBinary()

IsBoolean()

IsCustomFunction() 2nd

IsDate()

IsDebugMode()

IsDefined() 2nd

 custom tags 2nd

 parameters, checking

IsK2ServerABroker()

IsK2ServerDocCountExceeded()

IsK2ServerOnline()

IsLeapYear()

IsNotMap()

IsNumeric()

IsNumericDate()

IsObject()

isolation attribute, cftransaction tag

IsProtected()

IsQuery()

IsSimpleValue()

IsStruct()

IsUserInRole() 2nd

IsWDDX() 2nd

IsXmlDoc()

IsXmlElem()

IsXmlRoot()

item attribute, cfloop tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Java

 character sets 2nd 3rd

 ColdFusion and

 controls, creating 2nd 3rd

 objects

 communicating with servlets/JSP pages

 converting ColdFusion datatypes to Java datatypes

 Flash Remoting with

 handling exceptions

 Java API

 wrapper for

Java CFX tags, registering

Java Database Connectivity (JDBC)

JavaCast()

JavaScript

 functions

 formatting strings

 validation

 passing chart parameters to

 regular expressions, data validation CFML forms

 server-to-browser WDDX

 statements, strings for use in

JDBC (Java Database Connectivity)

JDBC drivers

JOIN clause (SQL)

JSP (JavaServer Pages), communicating with

JSStringFormat()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

K2 servers

 as broker

 collection aliases for

 maximum number documents searchable by, retrieving

key attribute, cfindex tag

key/value pairs

 in structures

 deleting

 inserting

 retrieving

 updating

keyonly attribute, cfgridupdate tag

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

language attribute, cfcollection tag

Lcase()

LDAP (Lightweight Directory Access Protocol)

 attributes

 directories

 modifying entries

 querying

 interfacing with

 queries

 indexing results

 servers [See LDAP servers]

LDAP servers

 public

 schema, obtaining

Left() 2nd

Len()

libraries

 of tags, importing custom tags

 of UDFs

Linux, ColdFusion versions and Adobe PDF documents

ListAppend() 2nd

ListChangeDelims()

ListContains()

ListContainsNoCase()

ListDeleteAt()

ListFind() 2nd

ListFindNoCase()

ListFirst() 2nd

ListGetAt() 2nd

ListInsertAt() 2nd

ListLast() 2nd

ListLen()

 delimiters, specifying

ListPrepend() 2nd

ListQualify()

ListRest()

lists 2nd

 client

 converting to arrays

 delimiters, changing

 of directory contents

 elements in

 adding

 appending

 deleting

 placing qualifiers around

 retrieving number of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 index to, retrieving

 inserting values into

 looping over

 manipulating

 multiple selection, passing data between templates

 null values vs. blank values

 sorting

 top ten, creating

ListSetAt()

ListSort()

ListToArray()

ListValueCount()

ListValueCountNoCase()

LJustify()

local scope

localfile attribute, cfftp tag

localization [See internationalization, localization]

locking

 exceptions

 exclusive locks

 maintaining state and

 nested locks

Log()

Log10()

logging

 exceptions

 messages to Application.log file

 scheduled tasks

logical operators

loginstorage attribute, cfapplication tag 2nd

lookandfeel attribute, cfslider tag

looping 2nd

 conditional loops

 over structure contents

 using break within

LSCurrencyFormat() 2nd

LSDateFormat() 2nd

LSEuroCurrencyFormat() 2nd

LSIsCurrency()

LSIsDate()

LSIsNumeric()

LSNumberFormat() 2nd

LSParseCurrency()

LSParseDateTime()

LSParseEuroCurrency()

LSParseNumber()

LSTimeFormat() 2nd

LTrim()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Macromedia

mailerid attribute, cfmail tag

mailto attribute, cferror tag

MailTo variable

maintaining Verity collections

Max() 2nd

maxlength attribute

 cfprocparam tag

 cfsqltype tag

 cftextinput tag

maxrows attribute, cfoutput tag

MD5 hash algorith

memory

 caching queries and

 requirements

message attribute

 cfinput tag

 cftree tag

message element, WSDL files

message headers

 retrieving

 specifying additional

Message variable

messages [See also email]

 attachments

 character sets 2nd

 deleting

 MIME type of

 multipart

 sending

 retrieving

 text wrapping in

metadata, retrieving

method attribute

 cfhttp tag

 cfinvoke tag

methods

 component methods

Mid()

Min() 2nd

Minute()

Missing Template Handler (ColdFusion Administrator)

mode attribute, cfdirectory tag

modifying LDAP entries

Month()

MonthAsString()

move attribute, cffile tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multipart attribute, cfhttp tag

multiple attribute, cfselect tag

multithreading

 file-manipulation operations

 nonthread-safe objects

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

name attribute

 cfapplet tag

 cfapplication tag 2nd

 cfargument tag

 cfcookie tag

 cfdirectory tag

 cfexecute tag

 cfform tag

 cffunction tag

 cfgrid tag

 cfhttp tag

 cfquery tag

 cfsearch tag

 cfslider tag

 cftree tag

 data validation suffixes

nameconflict attribute

naming user-defined functions

Netegrity SiteMinder

Netscape Directory Server 6.01

Next/Previous records browsing 2nd

notsupported attribute

 cfgrid tag

 cfslider tag

 cftree tag

Now()

NTLM authentication, cfhttp support for

null attribute

 cfprocparam tag

 cfsqltype tag

null tag

null values in lists

number datatypes, cfwddx conversion issues

NumberFormat() 2nd

numbers

 converting

 to strings

 determining whether positive/negative

 formatting 2nd

 locale-specific

 incrementing integer parts of

 logarithm of, retrieving

 retrieving

 lesser/greater value of two

 random

 square root of

 values of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rounding off

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

object datatypes

objectclasses attribute

objects 2nd

 calling 2nd

 connecting to

 determining type of

 exceptions associated with

 structure references

ODBC (Open Database Connectivity), configuring data sources and

OddColumns variable

OnRequestEnd.cfm template

onsubmit attribute, cfform tag

onvalidate attribute

 cfinput tag

 JavaScript validation function

Open Database Connectivity (ODBC), configuring data sources and

operation element, WSDL files

operators

 in regular expressions

 list of, by order of precedence

option tag, deleting records

ORDER BY clause (SQL)

output

 multicolumn, sorting

 suppressing

output attribute, cffunction tag

output element, WSDL files

outputfile attribute, cfexecute tag

outputting list items

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

p-code

packets, WDDX

ParagraphFormat() 2nd

parameters, defining

parent attribute, cftreeitem tag

parentheses ()

 in field names

 in regular expressions

ParseDateTime()

parsing data

part element, WSDL files

passing

 attributes to custom tags

 data, custom tags

passive attribute, cfftp tag

passthrough attribute

 cfform tag

 cfinput tag

password attribute

 cfinvoke tag

 cfldap tag

 cfmail tag 2nd

 cfpop tag

password field, passing data between templates

passwords

 input controls for

 passing between templates

 required by proxy server

pattern attribute, JavaScript regular expressions

performance

 cfswitch/cfcase tags

 client variable storage options

 duplicate records and

 retrieving information about

period (.)

 in compound variable names

 in regular expressions

permissions, role-based

persistent variables

 application

 cflocation tag and

 cookies

 deleting

 reading/writing

 server

 session

 storage options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pi()

picturebar attribute, cfgrid tag

plugins, Java web browser

POP3 (Post Office Protocol)

 mailbox, indexing contents of

 servers, retrieving mail from

port attribute, cfinvoke tag

port element, WSDL files

portability, Windows/Unix

Portable Operating System Interface (POSIX), character classes in regular expressions

portal example, maintaining state

porttype element, WSDL files

POSIX (Portable Operating System Interface), character classes in regular expressions

pound sign (#)

 cfoutput tag and

 escaping

 in ArrayNew()

 in expressions

 nested

 in strings

pre tag (HTML), formatting

prefix attribute, cfimport tag

preservedata attribute

PreserveSingleQuotes()

procedure attribute

procedures, stored, executing

processing requests

processing time, retrieving in milliseconds

producing web services in ColdFusion MX

 custom datatypes, creating

 datatype mapping

properties

proxy_server attribute, cfinvoke tag

proxypassword attribute

 cfhttp tag

 cfinvoke tag

proxyserver attribute, cfhttp tag

proxyuser attribute, cfhttp tag

purging Verity collections

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Quarter()

queries

 adding

 columns

 rows to

 to email

 charting dynamic data

 creating

 determining validity of

 displaying results of

 dynamic SQL

 functions

 grouping

 LDAP

 subqueries

query attribute

 cfgrid tag

 cfmail tag

 cfoutput tag

 cfselect tag

 cftreeitem tag

query loops

query objects 2nd 3rd

 creating

 from text files

 displaying records

 manipulating

 sorting

query of queries [See CFSQL]

query scope

query variables

QueryAddColumn() 2nd

QueryAddRow() 2nd

queryasroot attribute, cftree tag

QueryNew() 2nd

QuerySetCell() 2nd

QueryString variable

question mark (?)

 in regular expressions

 in URL parameters

QuotedValueList()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RAD (rapid application development)

radio buttons, dynamically populating

Rand()

Randomize()

RandRange()

_range suffix (form fields)

rapid application development (RAD)

read attribute, cffile tag

read-only locking

readbinary attribute, cffile tag

record sets 2nd 3rd 4th

 displaying

 merging

 serializing/deserializing

RecordCount variable 2nd 3rd

records

 choosing

 deleting

 confirmation before

 multiple records

 single records

 displaying

 grouping

 inserting 2nd

 cfinsert tag

 cfquery tag

 form-field data

 via forms

 retrieving

 update forms, dynamically populating

 updating 2nd

 cfquery tag

 cfupdate tag

recursion, creating trees via

redirect attribute, cfhttp tag

ReFind()

REFind() 2nd

REFindNoCase()

refreshlabel attribute

registering CFX tags

 C++ CFX tags

 Java CFX tags

registering web services with ColdFusion Administrator

registry

 client variable storage option

 operations

 retrieving keys/values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 setting keys/values

 unique CFToken values

regular expressions

 back references

 excluding subexpressions from

 building

 examples

 operators

 POSIX character classes

 syntax

Regular_Expression value (validate attribute)

ReleaseCOMObject()

RemoteAddress variable

remotefile attribute, cfftp tag

RemoveChars()

RepeatString()

Replace()

ReplaceList()

ReplaceNoCase()

replyto attribute, cfmail tag 2nd

request processing

request scope 2nd

RequestHandler.cfm template, request errors

required attribute

 cfinput tag

 cfselect tag 2nd

_required suffix (form fields)

REReplace() 2nd

 form fields, manual data validation

REReplaceNoCase() 2nd 3rd

resolveurl attribute, cfhttp tag

resources, ColdFusion 2nd

 Allaire web site

 blogs

 CFX tags

 data source setup

 magazines

 mailing lists

 user groups

 XMethods web site

result sets, specifying names for

resultset attribute

retrieving list items

retrycount attribute, cfftp tag

return values

return variables

returncode attribute

returnvariable attribute, cfinvoke tag

Reverse()

RIAs (Rich Internet Applications)

Rich Internet Application [See RIAs]

Right()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RJustify()

roles attribute, cfloginuser tag

RooteCause variable

rotated attribute, cfchart tag

Round()

rows

 adding

 alternating colors in

 specifying

RTrim()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Sandbox Security

scalefrom/scaleto attributes, cfchart tag

Scheduler.log, exception logging

scheduling tasks

 with cfschedule tag

 with ColdFusion Administrator

scientific notation

scope attribute, cflock tag

scripting

searching

 case-insensitive

 case-sensitive

 database and document simultaneously

 strings

 maximal vs. minimal matching

 structures

 XML document objects

Second()

Secure Sockets Layer (SSL)

security 2nd [See also ColdFusion MX, security features]

 Advanced Security 2nd

 basics

 component security

 custom tags and

 exceptions

 Flash Remoting applications

 functions 2nd

 implementing from scratch

 Application.cfm template setup

 authentication of users

 creation of login/registration screens

 creation of tables in database

 non-CFML file security

 IP addresses and

 role-based permissions

 Sandbox Security

 SSL

 web services

 via built-in security framework

 via HTTP Basic Authentication

select attribute, cfgridcolumn tag

SELECT INTO statement (SQL)

SELECT statement (SQL)

 cfquery tag and

 cfsql tag and

 column aliases

 inner joins

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SQL

selected attribute

 cfselect tag

 input tag, radio buttons

selectmode attribute

 cfgrid tag 2nd

 ColdFusion V5.0

sending

 CGI variables

 cookies

 email

 multipart messages

 file attachments

 files to web servers

 form-field data

 header/body content

 URL variables

 XML data in HTTP headers

seriesplacement attribute, cfchart tag

server attribute, cfmail tag

server scope 2nd

 zzz [See also server variables][See also server variables]

Server Side Includes (SSI)

server variables 2nd

servers

 clustering

 application variables and

 client variables and

 session variables and

 current locale for, retrieving

 error handling

 filesystem, accessing

 FTP [See FTP servers]

 K2 [See K2 servers]

 POP3, retrieving mail from

 public

 remote

 schema, obtaining

 server-to-browser/server communications

 time of, retrieving

 Verity K2 [See K2 servers]

 web, interacting with using HTTP

service element, WSDL files

servlets

 communicating with

 invoking from ColdFusion template

 passing parameters/attributes to

session scope

 zzz [See also session variables][See also session variables]

session variables 2nd

 creating

 deleting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 noncookie storage options

 passing, hyperlinks and

 set automatically

Session.CFID variable

Session.CFToken variable

Session.SessionID variable

Session.URLToken variable

sessionmanagement attribute, cfapplication tag

sessions

 hidden form fields and

 multiple, client scope and

sessiontimeout attribute

SET clause (SQL)

setclientcookies attribute, cfapplication tag

setdomaincookies attribute, cfapplication tag

SetEncoding()

SetLocale()

SetProfileString()

SetVariable()

Sgn()

shared scope variables

showborder attribute, cfchart tag

showerror attribute, cfabort tag

Simple Mail Transport Protocol [See SMTP]

Simple Object Access Protocol (SOAP)

Sin()

single quote (')

 in string arguments

 in variables

Site-wide Error Handler (ColdFusion Administrator)

SiteMinder

size attribute, cfselect tag

SMTP (Simple Mail Transport Protocol)

 X-Mailer SMTP header, mailerid attribute, cfmail tag

sort attribute

 cfdirectory tag

 cfldap tag

 cfregistry tag

sortascendingbutton attribute

sortcontrol attribute

sortdescendingbutton attribute

sorting

 multicolumn output

 records

source attribute, cffile tag

SpanExcluding()

SpanIncluding()

SQL (Structured Query Language) 2nd

 advanced techniques

 aggregate functions

 cfquery tag and

 column aliases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 data binding

 dynamic queries

 joins

 operators

 scalar functions

 statements

 subqueries

 tables [See SQL tables]

 unions

 unique values, retrieving

SQL tables

 creating

 modifying

 populating

Sqr()

square brackets ([])

 in field names

 in regular expressions

SSI (Server Side Includes)

SSL (Secure Sockets Layer)

start attribute, cfldap tag 2nd

StartNewRow variable

StartRow variable

state, maintaining

 locking and

 portal example

step attribute, index loops and

stored procedures, executing

storing WDDX packets

 in databases

 in text files

string operations

string tag

strings

 comparing

 converting 2nd 3rd 4th 5th

 base64-encoded to binary

 datatypes to

 numbers to

 to uppercase

 XML to XML document object

 encoding as URLs

 evaluating

 formatting 2nd

 changing case in

 making JavaScript-safe

 making XML-safe

 wrapping text 2nd

 in JavaScript statements

 inserting substrings into

 justifying

 center

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 left

 right

 passing without evaluating 2nd

 removing

 characters from

 leading spaces from

 leading/trailing spaces from 2nd

 replacing

 retrieving

 characters in

 length of

 position of

 tokens from

 with carriage returns removed

 XML-safe

 searching

 maximal vs. minimal matching

 URL-encoded, decoding

StripCR()

StructAppend()

StructClear() 2nd

 deleting session variables

StructCopy() 2nd

StructCount() 2nd

StructDelete() 2nd

StructFind() 2nd

StructFindKey()

StructFindValue()

StructGet()

StructInsert() 2nd

StructIsEmpty() 2nd 3rd

StructKeyArray() 2nd 3rd

StructKeyExists() 2nd

StructKeyList() 2nd

StructNew() 2nd

StructSort()

StructUpdate()

structures 2nd 3rd

 appending contents of structures to

 arrays of, creating

 checking for keys in

 containing names of functions available to ColdFusion, retrieving

 copying 2nd

 creating 2nd

 determining whether empty

 functions

 key/value pairs in

 deleting

 inserting

 retrieving

 updating

 manipulating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 populating with data

 referencing

 removing data from 2nd

 retrieving 2nd

 arrays of

 from directory paths

 searching

 serializing/deserializing

subject attribute, cfmail tag

Sum()

super scope

suppresswhitespace attribute, cfprocessingdirective tag

switch/case processing

 CFML

 CFScript

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

tablename attribute

 cfinsert tag

 Oracle and Sybase database drivers

tables

 building from result sets

 displaying/editing

 SQL, creating

 SQL, deleting

 SQL, modifying

TagContext variable

tags [See also custom tags]

 adaptive

 ancestor

 CFCs

 child, extending custom tags with

 communication among

 custom

 aborting processing 2nd

 attributes and 2nd

 calling 2nd 3rd

 calling via cfmodule

 CFX

 creating

 data, passing

 data, returning

 datatypes, validating

 encoding

 extending with child tags

 importing

 importing as tag library

 multiple values, retrieving

 nesting

 passing attributes via structures

 reasons for using

 tag pairs, creating

 UDFs and

 variables and

 database

 debugging

 error/exception-handling

 extensibility

 filesystem

 flow control

 form

 output

 paired

 protocol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 security

 syntax

 system

 types of

 UDFs

 variable manipulation

 Verity search engine

 web services

Tan()

target attribute

 cfform tag

 cfgridcolumn tag

template attribute, cferror tag

Template variable

templates 2nd

 application variables, setting

 authentication example

 calling custom tags from

 ExceptionHandler.cfm

 exceptions 2nd

 as foundation for security model

 invoking servlets from

 missing parameters

 passing data between

 via forms

 via URL parameters

 passwords/usernames

 references to, embedding 2nd

 RequestHandler.cfm

 retrieving directory path to

 security handling

 session variables, setting

text areas, populating dynamically

text files

 reading

 writing

 zzz [See also files][See also files]

text input fields, passing data between templates

text, wrapping

textboxes, query values, populating with

textcolor attribute, cfgridcolumn tag

textqualifier attribute

this scope 2nd

ThisTag scope

ThisTag structure

throwontimeout attribute, cflock tag

throwownerror attribute, cfhttp tag

tickmarkimages attribute, cfform tag

tickmarkmajor attribute, cfform tag

time

 comparing date/time objects

 formatting 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 locale-specific

 retrieving 2nd 3rd

 date/time object 2nd

 in ODBC format

 server time

 time-zone information

_time suffix (form fields)

TimeFormat() 2nd

timeout attribute

 cfexecute tag

 cfhttp tag

 cfinvoke tag

 cfldap tag

 cflogin tag

 cfmail tag 2nd

 cfpop tag

to attribute

 cfloop tag

 cfmail tag 2nd

ToBase64() 2nd

ToBinary()

toplevelvariable attribute, cfwddx tag

ToRow variable

ToString()

transaction processing, CFSQL and

transactions

tree controls

 creating via recursion

 populating

 static tree, creating

 with query data

 submitting selections

trees, creating

Trim()

trycatch statements, exception handling in CFScript code

type attribute

 cfcatch tag

 cfchartseries tag

 cferror tag

 cfhttpparam tag

 cfindex tag

 cflock tag

 cfmail tag

 cfmailparam tag

 cfmailpart tag 2nd

 cfparam tag

 cfprocparam tag

types element, WSDL files

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Ucase()

UDDI (Universal Description, Discovery, and Integration), web services directory service

UDFs (user-defined functions) 2nd

 arguments for

 arguments scope and

 calling

 recursively

 creating 2nd

 var attribute

 custom tags and

 datatypes and

 exception handling

 libraries

 local function variables

 function scope

 naming

 open-source repository of ColdFusion UDFs

 optional parameters, passing

 returning data from

 script-based

 tag-based

 creating

 function arguments in

 vs. script-based

 variable scopes, assigning to other

underscore (_), in variable names

Unicode currency symbol

UNION clause (SQL)

Universal Description, Discovery, and Integration (UDDI), web services directory service

universally unique identifiers [See UUIDs]

UPDATE statement (SQL)

updating

 records

 choosing record to update

 update forms, dynamically populating

 Verity collections

upload attribute, cffile tag

url attribute

 cfgraph tag

 cfhttp tag

 cflocation tag

URL parameters

 passing data between templates

 retrieving

 list of

 remote pages

 special characters in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 URL structure

URL scope

URL variables

 retrieving list of

URL-encoded strings, decoding

URLDecode() 2nd

URLEncodedFormat() 2nd

urlpath attribute, cfindex tag

URLs (Uniform Resource Locators)

 calling CFC methods via

 encoding strings as

 scheduling execution of

 updating records and

 using aliases for

URLSessionFormat()

user-defined functions [See UDFs]

useragent attribute, cfhttp tag

username attribute

 cfinvoke tag

 cfldap tag

 cfmail tag 2nd

 cfpop tag

users, impersonating

usetimezoneinfo attribute

UUIDs (universally unique identifiers)

 creating

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Val()

validate attribute

 cfwddx tag

 values for

validation errors

validation exception variables

ValidationFooter variable

ValidationHeader variable

value attribute

 cfprocparam tag

 cfqueryparam tag

 cftreeitem tag 2nd

 checkboxes/radio buttons and

 input tag

 option tag, records, deleting

 submit buttons and

ValueList()

values attribute

VALUES clause (SQL) 2nd

values, inserting into lists

var attribute

VAR keyword

variable attribute

 cfexecute tag

 cfregistry tag

 cfxml tag

variable scope

 accessing

 assigning component instances to shared

 assigning UDFs to other

 evaluation order

 in CFCs

variables 2nd [See also application variables; client variables; cookie variables; persistent variables; session variables]

 casting

 cfquery operation, providing information about

 CFScript language

 conflict handling

 creating

 dynamically named

 custom tags and

 deleting

 determining existence of

 duplicating

 local to UDFs

 locking and

 names of

 persistent, reading/writing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 referring to

 retrieving list of

 saving charts to

 saving content between tag pairs

 saving information to

 remote web pages, saving as variables

 setting character encoding for

 suffixes to avoid

 testing for

 URL, sending

 values

 assigning to

 displaying

 writing output

 substituting variable value within

VDK (Verity Developers Kit) 2nd

Verity

 case sensitivity

 collections

 adding records

 creating

 deleting

 deleting records

 maintaining

 optimizing

 populating

 purging

 repairing

 searching 2nd 3rd

 updating

 custom attributes

 explicit searches

 files, indexing

 K2 server [See K2 servers]

 query results, indexing

 search interface

 advanced, building

 building

 index for

 search language

 simple searches vs. explicit searches

 summary attribute, modifying

 top ten lists, creating

 XML filter, tweaking

Verity Developers Kit (VDK)

vertical attribute

vscroll attribute, cftree tag

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WDDX (Web Distributed Data Exchange)

 arrays

 binary data

 converting data to and from

 packets [See WDDX packets]

 record sets

 serializing/deserializing data

 complex datatypes

 conversion issues

 simple values

 server-to-browser via JavaScript

 structures

 well-formed, testing for

WDDX packets

 storing

 in databases

 in text files

 syntax of

WDDX XML DTD

wddxPacket tag

Web Application Framework

 Application.cfm template

 error handling in

 form validation errors

 OnRequestEnd.cfm template 2nd

 portal application example

 request errors

 setting up

 specific exceptions

web applications

Web Distributed Data Exchange [See WDDX]

web pages

 flushing

 remote, retrieving/saving as variable

web servers

 HTTP and

 sending files to

web services

 accessing behind firewall

 architecture, components of

 ColdFusion MX

 consuming

 complex datatypes

 generating CFML manually

 generating CFML with Dreamweaver MX

 timeout value

 converting CFCs to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 defining complex datatypes

 instantiating

 producing

 registering in ColdFusion Administrator

 security

 via built-in security framework

 via HTTP Basic Authentication

Web Services Description Language [See WSDL]

web sites, content syndication between

web-based email client, building

webservice attribute, cfinvoke tag

Week()

WHERE clause (SQL) 2nd 3rd

 outer joins

 subqueries and

while loops

while loops statement, CFScript

whitespace

 cfmail tag and

 controlling

 suppressing

width attribute, cftree tag

wildcards in SELECT statements (SQL)

Wrap()

wraptext attribute, cfmail tag 2nd

write attribute, cffile tag

WriteOutput() 2nd

WSDL (Web Services Description Language)

 displaying file contents in browsers

 file elements

 URLs of files, using aliases for

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

X-Mailer header

xaxistitle attribute, cfchart tag

XMethods directory service

XML (Extensible Markup Language)

 basics

 CDATA sections

 data, matching with XPath

 document objects [See XML document objects]

 DOM nodes

 generating

 parsing with structure and array functions

 sending XML data

 special characters

 transforming with XSLT

 Verity filter, tweaking

 web services foundation

XML document objects 2nd 3rd

 creating

 searching

 transforming

XML Path [See XPath]

XmlChildPos()

xmlElemNew()

XmlElemNew()

XMLFormat() 2nd

XmlNew() 2nd

XmlParse()

 converting XML documents to XML document objects

XmlSearch() 2nd

XmlTransform() 2nd

XPath (XML Path), matching XML data with

XSL (Extensible Stylesheet Language)

XSLT (Extensible Stylesheet Language Transformation)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

yaxistitle attribute, cfchart tag

Year()

YesNoFormat() 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Preface
	What's New in ColdFusion MX
	Readers of the First Edition
	Audience
	Organization
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Chapter 1. Introducing ColdFusion
	1.1 What Is ColdFusion?
	1.2 ColdFusion Architecture
	1.3 Getting Started with ColdFusion

	Chapter 2. ColdFusion Basics
	2.1 Getting Started
	2.2 Datatypes
	2.3 Variables
	2.4 Expressions
	2.5 Writing Output
	2.6 Conditional Processing
	2.7 Looping
	2.8 Including Other Templates

	Chapter 3. Passing Data Between Templates
	3.1 Passing Parameters Via URL
	3.2 Passing Data Using Forms
	3.3 Dealing with Nonexistent Parameters

	Chapter 4. Database Basics
	4.1 Configuring Data Sources
	4.2 Introducing cfquery
	4.3 A Quick SQL Primer
	4.4 Retrieving and Displaying Data
	4.5 Sorting Query Results
	4.6 Grouping Output
	4.7 Looping Over a Query Result Set
	4.8 Formatting Techniques

	Chapter 5. Maintaining Database Records
	5.1 Inserting Records
	5.2 Updating Existing Records
	5.3 Deleting Records

	Chapter 6. Complex Datatypes
	6.1 Lists
	6.2 Arrays
	6.3 Structures
	6.4 Query Objects

	Chapter 7. Maintaining State
	7.1 Setting Up the Web Application Framework
	7.2 Using Shared Scope Variables
	7.3 Browser Redirection
	7.4 Portal Example

	Chapter 8. Security
	8.1 Security Basics
	8.2 Implementing Security from Scratch
	8.3 Taking Advantage of ColdFusion MX's New Security Framework

	Chapter 9. Error and Exception Handling
	9.1 Basic Exception Handling
	9.2 Custom Exception Handling
	9.3 Rethrowing Exceptions
	9.4 Error Handling Within the Web-Application Framework
	9.5 Server-Wide Error Handling

	Chapter 10. Dynamic Form Controls
	10.1 Combining HTML and CFML Form Controls
	10.2 Basic Input Controls
	10.3 Textual Input
	10.4 A Selection Control
	10.5 Sliders
	10.6 Grids
	10.7 Trees
	10.8 Preserving Input
	10.9 Custom Controls

	Chapter 11. Advanced Database Techniques
	11.1 Display Techniques
	11.2 Drilldown Queries
	11.3 Query Caching
	11.4 Advanced SQL
	11.5 Query of Queries
	11.6 Calling Stored Procedures
	11.7 Transaction Processing

	Chapter 12. Manipulating Files and Directories
	12.1 Working with Directories
	12.2 Dealing with Files
	12.3 Performing FTP Operations
	12.4 Executing Command-Line Programs

	Chapter 13. Working with Email
	13.1 Sending Email
	13.2 Dealing with Undeliverable Email
	13.3 Retrieving Messages
	13.4 Building a Web-Based Email Client

	Chapter 14. Interacting with Other Web Servers Using HTTP
	14.1 Retrieving Information
	14.2 Parsing Data
	14.3 Generating Static HTML Pages
	14.4 Posting Information
	14.5 cfhttp Considerations

	Chapter 15. Interfacing with LDAP-Enabled Directories
	15.1 LDAP Basics
	15.2 Querying an LDAP Directory
	15.3 Modifying LDAP Entries
	15.4 Modifying the Distinguished Name

	Chapter 16. Working with the Verity Search Interface
	16.1 Creating Collections
	16.2 Populating Collections
	16.3 Searching Collections
	16.4 The Verity Search Language
	16.5 Updating Collections
	16.6 Maintaining Collections
	16.7 Advanced Techniques

	Chapter 17. Graphing and Charting
	17.1 Creating a Simple Graph
	17.2 Working with Dates
	17.3 Charting Dynamic Data
	17.4 Charting Multiple Data Series
	17.5 Drilling Down on Graph Data
	17.6 Saving Charts to a Variable
	17.7 Working with the Chart Cache

	Chapter 18. Regular Expressions in ColdFusion
	18.1 Regular-Expression Syntax
	18.2 Finding Strings
	18.3 Replacing Strings
	18.4 Backreferences
	18.5 Useful Regular Expressions
	18.6 Regular Expression Tester

	Chapter 19. Scripting
	19.1 Scripting Syntax
	19.2 Writing Output
	19.3 Flow Control and Looping
	19.4 Error and Exception Handling

	Chapter 20. User-Defined Functions
	20.1 UDF Basics
	20.2 Calling User-Defined Functions
	20.3 Advanced Topics
	20.4 Function Libraries
	20.5 Script-Based UDFs

	Chapter 21. Creating Custom Tags
	21.1 Getting Started
	21.2 Calling Custom Tags
	21.3 Passing Data
	21.4 Returning Data
	21.5 Attribute Validation and Error Handling
	21.6 Advanced Techniques
	21.7 Protecting Your Tags
	21.8 CFX Tags

	Chapter 22. ColdFusion Components
	22.1 Basic Concepts
	22.2 Creating Components
	22.3 Using Components
	22.4 Advanced CFC Topics

	Chapter 23. XML and WDDX
	23.1 Working with XML
	23.2 Using WDDX

	Chapter 24. Web Services
	24.1 Web Services Overview
	24.2 Consuming Web Services
	24.3 Producing Web Services
	24.4 Web Services Security

	Chapter 25. Working with the System Registry
	25.1 Getting Registry Keys and Values
	25.2 Setting Registry Keys and Values
	25.3 Deleting Registry Keys and Values

	Chapter 26. Using the ColdFusion Scheduler
	26.1 Scheduling Tasks with the ColdFusion Administrator
	26.2 Scheduling Tasks with cfschedule
	26.3 Additional Considerations

	Chapter 27. Interacting with COM, CORBA, and Java
	27.1 Working with COM
	27.2 Calling CORBA Objects
	27.3 Integrating ColdFusion and Java

	Chapter 28. Flash Remoting
	28.1 Getting Started with Flash Remoting for ColdFusion MX
	28.2 Interacting with ColdFusion Pages
	28.3 Interacting with ColdFusion Components
	28.4 Interacting with Server-Side ActionScript
	28.5 Flash Remoting with Java Objects Hosted on the ColdFusion MX Server

	Appendix A. Tag Reference
	A.1 Tags by Type
	A.2 Alphabetical List of Tags

	Appendix B. Function Reference
	B.1 Functions by Category
	B.2 Alphabetical List of Functions

	Appendix C. Example Database Tables
	Appendix D. ColdFusion Resources
	D.1 Official Macromedia Resources
	D.2 Magazines
	D.3 Mailing Lists
	D.4 Blogs
	D.5 Community Resources
	D.6 User Groups

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Y

