
 i

Pro Android 3

■ ■ ■

Satya Komatineni
Dave MacLean
Sayed Y. Hashimi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Pro Android 3

Copyright © 2011 by Satya Komatineni, Dave MacLean, and Sayed Y. Hashimi

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3222-3

ISBN-13 (electronic): 978-1-4302-3223-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark. NFC Forum and the NFC Forum logo are trademarks
of the Near Field Communication Forum.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Matthew Moodie
Technical Reviewer: Dylan Phillips
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editors: Heather Lang, Tracy Brown, Mary Behr
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To my brother Hari, to whom life yielded few favors.

—Satya Komatineni

To my wife, Rosie, and my son, Mike, for their support; I couldn't have done this without you. And

to Max, for spending so much time at my feet keeping me company.

—Dave MacLean

To my son, Sayed-Adieb.

—Sayed Y. Hashimi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

iv

Contents at a Glance

Contents ... vi
Foreword ... xviii
About the Authors ... xix
About the Technical Reviewer ... xx
Acknowledgments .. xxi
Preface ... xxii
■Chapter 1: Introducing the Android Computing Platform .. 1
■Chapter 2: Setting Up Your Development Environment ... 21
■Chapter 3: Understanding Android Resources ... 63
■Chapter 4: Understanding Content Providers .. 89
■Chapter 5: Understanding Intents .. 125
■Chapter 6: Building User Interfaces and Using Controls .. 145
■Chapter 7: Working with Menus .. 217
■Chapter 8: Working with Dialogs ... 243
■Chapter 9: Working with Preferences and Saving State .. 265
■Chapter 10: Exploring Security and Permissions .. 287
■Chapter 11: Building and Consuming Services .. 307
■Chapter 12: Exploring Packages .. 377
■Chapter 13: Exploring Handlers ... 399
■Chapter 14: Broadcast Receivers and Long-Running Services .. 425
■Chapter 15: Exploring the Alarm Manager .. 465
■Chapter 16: Exploring 2D Animation .. 491
■Chapter 17: Exploring Maps and Location-based Services ... 519
■Chapter 18: Using the Telephony APIs ... 559
■Chapter 19: Understanding the Media Frameworks .. 575
■Chapter 20: Programming 3D Graphics with OpenGL .. 623
■Chapter 21: Exploring Live Folders .. 693
■Chapter 22: Home Screen Widgets .. 711
■Chapter 23: Android Search ... 745
■Chapter 24: Exploring Text to Speech .. 825
■Chapter 25: Touch Screens .. 845
■Chapter 26: Using Sensors ... 891
■Chapter 27: Exploring the Contacts API ... 937
■Chapter 28: Deploying Your Application: Android Market and Beyond ... 993
■Chapter 29: Fragments for Tablets and More .. 1015
■Chapter 30: Exploring ActionBar ... 1069
■Chapter 31: Additional Topics in 3.0 .. 1097
Index ... 1141

http://lib.ommolketab.ir
http//lib.ommolketab.ir

v

Contents

Contents at a Glance .. iv
Foreword .. xviii
About the Authors ... xix
About the Technical Reviewer ... xx
Acknowledgments .. xxi
Preface .. xxii

■Chapter 1: Introducing the Android Computing Platform 1

A New Platform for a New Personal Computer ... 1
Early History of Android .. 3
Delving Into the Dalvik VM .. 6
Understanding the Android Software Stack .. 6
Developing an End-User Application with the Android SDK .. 8

Android Emulator ... 8
The Android UI ... 9
The Android Foundational Components ... 10
Advanced UI Concepts ... 11
Android Service Components ... 13
Android Media and Telephony Components .. 13
Android Java Packages .. 14

Taking Advantage of Android Source Code ... 18
The Sample Projects in this Book ... 19
Summary .. 20

■Chapter 2: Setting Up Your Development Environment 21
Setting Up Your Environment .. 22

Downloading JDK 6 .. 22
Downloading Eclipse 3.6 .. 23
Downloading the Android SDK ... 23
The Tools Window .. 26
Installing Android Development Tools (ADT) .. 26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

vi

Learning the Fundamental Components ... 29
View ... 29
Activity ... 29
Intent .. 29
Content Provider .. 30
Service ... 30
AndroidManifest.xml .. 30
Android Virtual Devices .. 30

Hello World! .. 31
Android Virtual Devices ... 37
Exploring the Structure of an Android Application .. 39
Analyzing the Notepad Application ... 42

Loading and Running the Notepad Application .. 42
Dissecting the Application ... 44

Examining the Application Lifecycle ... 51
Debugging Your App ... 54

Launching the Emulator ... 56
StrictMode ... 57
References ... 61

Summary .. 62

■Chapter 3: Understanding Android Resources .. 63
Understanding Resources ... 63

String Resources .. 64
Layout Resources .. 66
Resource Reference Syntax ... 67
Defining Your Own Resource IDs for Later Use .. 69
Compiled and Uncompiled Android Resources .. 70

Enumerating Key Android Resources .. 71
Working with Arbitrary XML Resource Files ... 80
Working with Raw Resources ... 82
Working with Assets ... 82
Reviewing the Resources Directory Structure .. 83
Resources and Configuration Changes ... 83
Reference URLs .. 87
Summary .. 88

■Chapter 4: Understanding Content Providers .. 89
Exploring Android’s Built-in Providers .. 90
Architecture of Content Providers ... 96
Implementing Content Providers .. 108
Exercising the Book Provider .. 120

Adding A Book .. 120
Removing a Book ... 120
Getting a Count of the Books ... 121
Displaying the List of Books ... 121

Resources ... 122
Summary .. 123

■Chapter 5: Understanding Intents .. 125
Basics of Android Intents .. 125
Available Intents in Android .. 127
Exploring Intent Composition .. 129

Intents and Data URIs .. 129

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

vii

Generic Actions .. 130
Using Extra Information ... 131
Using Components to Directly Invoke an Activity .. 133
Understanding Intent Categories ... 134
Rules for Resolving Intents to Their Components .. 137

Exercising the ACTION_PICK ... 139
Exercising the GET_CONTENT Action .. 141
Introducing Pending Intents .. 142
Resources ... 144
Summary .. 144

■Chapter 6: Building User Interfaces and Using Controls 145
UI Development in Android ... 145

Building a UI Completely in Code ... 147
Building a UI Completely in XML .. 149
Building a UI in XML With Code .. 150

Understanding Android’s Common Controls ... 152
Text Controls .. 152
Button Controls .. 157
The ImageView Control .. 165
Date and Time Controls ... 167
The MapView Control ... 169

Understanding Adapters ... 170
Getting to Know SimpleCursorAdapter .. 171
Getting to Know ArrayAdapter ... 172

Using Adapters With AdapterViews .. 174
The Basic List Control: ListView ... 175
The GridView Control ... 183
The Spinner Control ... 185
The Gallery Control ... 187
Creating Custom Adapters ... 188
Other Controls in Android ... 194

Styles and Themes .. 194
Using Styles ... 194
Using Themes .. 197

Understanding Layout Managers .. 198
The LinearLayout Layout Manager ... 199
The TableLayout Layout Manager .. 202
The RelativeLayout Layout Manager .. 206
The FrameLayout Layout Manager .. 208
Customizing Layout for Various Device Configurations ... 210

Debugging and Optimizing Layouts with the Hierarchy Viewer .. 213
References .. 216
Summary .. 216

■Chapter 7: Working with Menus .. 217
Understanding Android Menus ... 217

Creating a Menu ... 219
Working with Menu Groups ... 220

Responding to Menu Items ... 221
Creating a Test Harness for Testing Menus .. 222
Working with Other Menu Types ... 229

Expanded Menus ... 229
Working with Icon Menus .. 229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

viii

Working with Submenus .. 230
Provisioning for System Menus ... 231
Working with Context Menus ... 231
Working with Alternative Menus .. 234
Working with Menus in Response to Changing Data ... 238

Loading Menus Through XML Files ... 238
Structure of an XML Menu Resource File .. 239
Inflating XML Menu Resource Files ... 239
Responding to XML-Based Menu Items ... 240
A Brief Introduction to Additional XML Menu Tags .. 241

Resource ... 242
Summary .. 242

■Chapter 8: Working with Dialogs ... 243
Using Dialogs in Android ... 243

Designing an Alert Dialog .. 244
Designing a Prompt Dialog .. 246
Nature of Dialogs in Android .. 251
Rearchitecting the Prompt Dialog .. 252

Working with Managed Dialogs .. 253
Understanding the Managed-Dialog Protocol .. 253
Recasting the Nonmanaged Dialog as a Managed Dialog ... 253
Simplifying the Managed-Dialog Protocol ... 255

Working with Toast ... 263
Resources ... 264
Summary .. 264

■Chapter 9: Working with Preferences and Saving State 265
Exploring the Preferences Framework ... 265

Understanding ListPreference ... 266
Understanding CheckBoxPreference ... 275
Understanding EditTextPreference .. 277
Understanding RingtonePreference ... 278

Organizing Preferences .. 280
Manipulating Preferences Programmatically .. 283
Saving State with Preferences .. 284
Reference .. 285
Summary .. 286

■Chapter 10: Exploring Security and Permissions .. 287
Understanding the Android Security Model .. 287

Overview of Security Concepts .. 287
Signing Applications for Deployment ... 288

Performing Runtime Security Checks ... 295
Understanding Security at the Process Boundary ... 295
Declaring and Using Permissions .. 295
Understanding and Using Custom Permissions ... 297
Understanding and Using URI Permissions .. 303

References .. 305
Summary .. 305

■Chapter 11: Building and Consuming Services ... 307
Consuming HTTP Services .. 307

Using the HttpClient for HTTP GET Requests ... 308
Using the HttpClient for HTTP POST Requests (a Multipart Example) .. 310

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

ix

SOAP, JSON, and XML Parsers .. 312
Dealing with Exceptions ... 313
Addressing Multithreading Issues ... 315
Fun With Timeouts ... 318
Using the HttpURLConnection .. 319
Using the AndroidHttpClient ... 319
Using Background Threads (AsyncTask) .. 320
Handling Configuration Changes with AsyncTasks .. 327
Getting Files Using DownloadManager .. 331

Using Android Services ... 337
Understanding Services in Android .. 338
Understanding Local Services ... 339
Understanding AIDL Services ... 346
Defining a Service Interface in AIDL .. 347
Implementing an AIDL Interface .. 349
Calling the Service from a Client Application ... 351
Passing Complex Types to Services .. 355

Real-World Example Using Services ... 366
Google Translate API .. 366
Using the Google Translate API .. 367

References .. 375
Summary .. 376

■Chapter 12: Exploring Packages ... 377
Packages and Processes .. 377

Details of a Package Specification .. 377
Translating Package Name to a Process Name ... 378
Listing Installed Packages ... 378
Deleting a Package through the Package Browser .. 379

Revisiting the Package Signing Process ... 379
Understanding Digital Signatures: Scenario 1 ... 380
Understanding Digital Signatures: Scenario 2 ... 380
A Pattern for Understanding Digital Signatures ... 380
So How Do You Digitally Sign? ... 381
Implications of the Signing Process ... 381

Sharing Data Among Packages ... 382
The Nature of Shared User IDs ... 382
A Code Pattern for Sharing Data .. 383

Library Projects ... 384
What Is a Library Project? .. 384
Library Project Predicates .. 385
Creating a Library Project .. 387
Creating an Android Project That Uses a library .. 390

References .. 397
Summary .. 398

■Chapter 13: Exploring Handlers ... 399
Android Components and Threading ... 399

Activities Run on the Main Thread ... 400
Broadcast Receivers run on the Main Thread .. 401
Services Run on the Main Thread .. 401
Content Provider Runs on the Main Thread ... 401
Implications of a Singular Main Thread ... 401
Thread Pools, Content Providers, External Service Components ... 401

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

x

Thread Utilities: Discover Your Threads ... 401
Handlers .. 403

Implications of Holding the Main Thread ... 404
Using a Handler to Defer Work on the Main Thread ... 405
A Sample Handler Source Code That Defers Work .. 405
Constructing a Suitable Message Object ... 407
Sending Message Objects to the Queue .. 407
Responding to the handleMessage Callback ... 408

Using Worker Threads ... 408
Invoking a Worker Thread from a Menu .. 409
Communicating Between the Worker and the Main Threads .. 410
A Quick Overview of Thread Behavior .. 412

Handler Example Driver classes ... 413
Driver Activity File .. 414
Layout File ... 417
Menu File ... 417
Manifest File .. 417

Component and Process Lifetimes ... 418
Activity Life Cycle ... 418
Service Life Cycle .. 420
Receiver Life Cycle .. 420
Provider Life Cycle ... 421

Instructions for Compiling the Code .. 421
Creating the Project from the ZIP File .. 421
Creating the Project from the Listings ... 422

References .. 422
Summary .. 423

■Chapter 14: Broadcast Receivers and Long-Running Services 425
Broadcast Receivers ... 425

Sending a Broadcast .. 426
Coding a Simple Receiver: Sample Code ... 426
Registering a Receiver in the Manifest File ... 427
Sending a Test Broadcast .. 428
Accommodating Multiple Receivers .. 431
A Project for Out-of-Process Receivers ... 433

Using Notifications from a Receiver .. 434
Monitoring Notifications Through the Notification Manager .. 435
Sending a Notification .. 437

Long-Running Receivers and Services ... 440
Long-Running Broadcast Receiver Protocol .. 441
IntentService .. 442
IntentService Source Code ... 443

Extending IntentService for a Broadcast Receiver .. 445
Long-Running Broadcast Service Abstraction ... 445
A Long-Running Receiver .. 447
Abstracting a Wake Lock with LightedGreenRoom .. 449

Long-Running Service Implementation ... 455
Details of a Nonsticky Service ... 456
Details of a Sticky Service ... 457
A Variation of Nonsticky: Redeliver Intents .. 457
Specifying Service Flags in OnStartCommand .. 457
Picking Suitable Stickiness .. 457

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

xi

Controlling the Wake Lock from Two Places ... 458
Long-Running Service Implementation .. 458
Testing Long Running Services ... 460

Instructions for Compiling the Code .. 461
Creating the Projects from the ZIP File .. 461
Creating the Project from the Listings ... 461

References .. 464
Summary .. 464

■Chapter 15: Exploring the Alarm Manager .. 465
Alarm Manager Basics: Setting Up a Simple Alarm .. 465

Obtaining the Alarm Manager .. 466
Setting Up the Time for the Alarm ... 466
Setting Up a Receiver for the Alarm ... 467
Creating a PendingIntent Suitable for an Alarm ... 467
Setting the Alarm ... 468
Test Project .. 468

Exploring Alarm Manager Alternate Scenarios ... 476
Setting Off an Alarm Repeatedly .. 476
Cancelling an Alarm ... 479
Working with Multiple Alarms .. 480
Intent Primacy in Setting Off Alarms .. 484
Persistence of Alarms .. 487

Alarm Manager Predicates ... 487
References .. 488
Summary .. 489

■Chapter 16: Exploring 2D Animation ... 491
Frame-by-Frame Animation .. 492

Planning for Frame-by-Frame Animation .. 492
Creating the Activity ... 493
Adding Animation to the Activity .. 494

Layout Animation .. 498
Basic Tweening Animation Types .. 498
Planning the Layout Animation Test Harness .. 499
Creating the Activity and the ListView ... 500
Animating the ListView .. 502
Using Interpolators ... 506

View Animation ... 507
Understanding View Animation .. 507
Adding Animation ... 511
Using Camera to Provide Depth Perception in 2D .. 514
Exploring the AnimationListener Class .. 515
Some Notes on Transformation Matrices .. 516

Resources ... 517
Summary .. 517

■Chapter 17: Exploring Maps and Location-based Services 519
Understanding the Mapping Package ... 520

Obtaining a map-api Key from Google ... 520
Understanding MapView and MapActivity ... 522
Adding Markers Using Overlays ... 528

Understanding the Location Package ... 533
Geocoding with Android ... 534

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

xii

Geocoding with Background Threads .. 538
Understanding the LocationManager Service .. 541
Showing Your Location Using MyLocationOverlay ... 549
Using Proximity Alerts .. 554

References .. 558
Summary .. 558

■Chapter 18: Using the Telephony APIs .. 559
Working with SMS .. 559

Sending SMS Messages .. 559
Monitoring Incoming SMS Messages .. 563
Working with SMS Folders ... 565
Sending E-mail .. 567

Working with the Telephony Manager .. 568
Session Initiation Protocol (SIP) .. 571
References .. 574
Summary .. 574

■Chapter 19: Understanding the Media Frameworks 575
Using the Media APIs .. 575

Using SD Cards .. 576
Playing Media ... 581

Playing Audio Content .. 581
Playing Video Content .. 593

Recording Media ... 595
Exploring Audio Recording with MediaRecorder ... 596
Recording Audio with AudioRecord ... 600
Exploring Video Recording ... 605
Exploring the MediaStore Class ... 614
Recording Audio Using an Intent .. 615
Adding Media Content to the Media Store ... 618
Triggering MediaScanner for the Entire SD Card ... 621
References ... 621

Summary .. 621

■Chapter 20: Programming 3D Graphics with OpenGL 623
Understanding the History and Background of OpenGL .. 624

OpenGL ES ... 625
OpenGL ES and Java ME .. 626
M3G: Another Java ME 3D Graphics Standard ... 626

Fundamentals of OpenGL .. 627
Essential Drawing with OpenGL ES .. 628
Understanding OpenGL Camera and Coordinates .. 633

Interfacing OpenGL ES with Android ... 637
Using GLSurfaceView and Related Classes ... 638
Implementing the Renderer ... 638
Using GLSurfaceView from an Activity ... 641
Changing Camera Settings .. 647
Using Indices to Add Another Triangle ... 649
Animating the Simple OpenGL Triangle ... 651

Braving OpenGL: Shapes and Textures ... 653
Drawing a Rectangle .. 653
Working with Shapes ... 656
Working with Textures ... 668

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

xiii

Drawing Multiple Figures ... 674
OpenGL ES 2.0 .. 678

Java Bindings for OpenGL ES 2.0 ... 678
Rendering Steps .. 682
Understanding Shaders ... 682
Compiling Shaders into a Program .. 684
Getting Access to the Shader Program Variables .. 685
A Simple ES 2.0 Triangle .. 685
Further Reading on OpenGL ES 2.0 .. 689

Instructions for Compiling the Code .. 689
References ... 690

Summary .. 691

■Chapter 21: Exploring Live Folders .. 693
Exploring Live Folders ... 693

How a User Experiences Live Folders .. 694
Building a Live Folder .. 700

Instructions for Compiling the Code .. 709
References .. 710
Summary .. 710

■Chapter 22: Home Screen Widgets .. 711
Architecture of Home Screen Widgets .. 712

What Are Home Screen Widgets? .. 712
User Experience with Home Screen Widgets ... 713
Life Cycle of a Widget .. 716

A Sample Widget Application .. 722
Defining the Widget Provider ... 724
Defining Widget Size .. 725
Widget Layout-Related Files .. 726
Implementing a Widget Provider .. 728
Implementing Widget Models .. 730
Implementing Widget Configuration Activity .. 738

Widget Limitations and Extensions ... 742
Resources ... 742
Summary .. 743

■Chapter 23: Android Search .. 745
Android Search Experience ... 746

Exploring Android Global Search ... 746
Enabling Suggestion Providers for Global Search .. 753

Activities and Search Key Interaction ... 757
Behavior of Search Key on a Regular Activity .. 758
Behavior of an Activity that Disables Search ... 766
Explicitly Invoking Search Through a Menu ... 767
Understanding Local Search and Related Activities .. 771
Enabling Type-to-Search ... 777

Implementing a Simple Suggestion Provider .. 778
Planning the Simple Suggestions Provider .. 779
Simple Suggestions Provider Implementation Files .. 779
Implementing the SimpleSuggestionProvider class .. 780
Understanding Simple Suggestions Provider Search Activity .. 784
Search Invoker Activity .. 789
Simple Suggestion Provider User Experience .. 791

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

xiv

Implementing a Custom Suggestion Provider ... 796
Planning the Custom Suggestion Provider ... 796
SuggestURLProvider Project Implementation Files .. 796
Implementing the SuggestUrlProvider Class ... 797
Implementing a Search Activity for a Custom Suggestion Provider .. 807
Custom Suggestions Provider Manifest File .. 813
Custom Suggestion User Experience ... 814

Using Action Keys and Application-Specific Search Data ... 818
Using Action Keys in Android Search ... 818
Working with Application-Specific Search Context ... 821

Resources ... 822
Implications for Tablets .. 823
Summary .. 823

■Chapter 24: Exploring Text to Speech ... 825
The Basics of Text-to-Speech Capabilities in Android .. 825
Using Utterances to Keep Track of Our Speech .. 830
Using Audio Files for Your Voice ... 832
Advanced Features of the TTS Engine .. 838

Setting Audio Streams ... 839
Using Earcons .. 839
Playing Silence .. 840
Choosing a Different Text-to-Speech Engine ... 840
Using Language Methods .. 840

References .. 842
Summary .. 843

■Chapter 25: Touch Screens .. 845
Understanding MotionEvents .. 845

The MotionEvent Object ... 845
Recycling MotionEvents ... 857
Using VelocityTracker .. 857
Exploring Drag and Drop .. 859

Multitouch ... 862
Multitouch Before Android 2.2 ... 863
Multitouch Since Android 2.2 ... 871

Touches with Maps ... 871
Gestures .. 874

The Pinch Gesture .. 875
GestureDetector and OnGestureListeners .. 878
Custom Gestures .. 881
The Gestures Builder Application ... 882

References .. 889
Summary .. 889

■Chapter 26: Using Sensors .. 891
What Is a Sensor? ... 891

Detecting Sensors .. 892
What Can We Know About a Sensor? .. 892

Getting Sensor Events ... 895
Issues with Getting Sensor Data .. 898

Interpreting Sensor Data ... 905
Light Sensors ... 905
Proximity Sensors .. 906

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

xv

Temperature Sensors .. 907
Pressure Sensors ... 907
Gyroscope Sensors .. 907
Accelerometers .. 908
Magnetic Field Sensors ... 914
Using Accelerometers and Magnetic Field Sensors Together ... 915
Orientation Sensors ... 915
Magnetic Declination and GeomagneticField .. 922
Gravity Sensors .. 923
Linear Acceleration Sensors .. 923
Rotation Vector Sensors .. 923
Near Field Communication Sensors ... 923

References .. 934
Summary .. 935

■Chapter 27: Exploring the Contacts API .. 937
Understanding Accounts ... 938

A Quick Tour of Account Screens .. 938
Relevance of Accounts to Contacts ... 942
Enumerating Accounts ... 943

Understanding Contacts Application ... 944
Show Contacts ... 944
Show Contact Detail ... 945
Edit Contact Details .. 946
Setting a Contact’s Photo .. 948
Exporting Contacts ... 949
Various Contact Data Types ... 951

Understanding Contacts .. 952
Examining the Contents SQLite Database .. 952
Raw Contacts ... 953
Data Table .. 955
Aggregated Contacts ... 956
view_contacts .. 958
contact_entities_view ... 959

Working with the Contacts API ... 960
Exploring Accounts .. 960
Exploring Aggregated Contacts .. 968
Exploring Raw Contacts ... 977
Exploring Raw Contact Data .. 982
Adding a Contact and Its Details .. 985

Controlling Aggregation .. 988
Impacts of Syncing ... 989
References .. 990
Summary .. 991

■Chapter 28: Deploying Your Application: Android Market and Beyond 993
Becoming a Publisher ... 994

Following the Rules ... 994
Developer Console ... 997

Preparing Your Application for Sale .. 1001
Testing for Different Devices ... 1001
Supporting Different Screen Sizes ... 1001
Preparing AndroidManifest.xml for Uploading ... 1002
Localizing Your Application .. 1003

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

xvi

Preparing Your Application Icon ... 1004
Considerations for Making Money From Apps ... 1004
Directing Users Back to the Market ... 1005
The Android Licensing Service .. 1006
Preparing Your .apk File for Uploading .. 1007

Uploading Your Application ... 1007
User Experience on Android Market ... 1010
Beyond Android Market .. 1012
References .. 1013
Summary .. 1013

■Chapter 29: Fragments for Tablets and More .. 1015
What is a Fragment? ... 1015

When to Use Fragments ... 1016
The Structure of a Fragment .. 1017
A Fragment’s Lifecycle .. 1018
Sample Fragment App Showing the Lifecycle ... 1024

FragmentTransactions and the Fragment Back Stack .. 1032
Fragment Transaction Transitions and Animations ... 1034

The FragmentManager .. 1035
Caution When Referencing Fragments .. 1037
ListFragments and <fragment> .. 1037
Invoking a Separate Activity When Needed ... 1041
Persistence of Fragments .. 1044

Understanding Dialog Fragments ... 1044
DialogFragment Basics .. 1045
DialogFragment Sample Application .. 1050

More Communications with Fragments .. 1063
Using startActivity() and setTargetFragment() ... 1064

Custom Animations with ObjectAnimator ... 1064
References .. 1067
Summary .. 1068

■Chapter 30: Exploring ActionBar ... 1069
Anatomy of an ActionBar .. 1070
Tabbed Navigation Action Bar Activity .. 1071

Implementing Base Activity Classes .. 1073
Assigning Uniform Behavior for the ActionBar ... 1075
Implementing the Tabbed Listener .. 1077
Implementing the Tabbed Action Bar Activity .. 1078
Scrollable Debug Text View Layout .. 1080
Action Bar and Menu Interaction ... 1081
Android Manifest File ... 1083
Examining the Tabbed Action Bar Activity ... 1084

List Navigation Action Bar Activity .. 1084
Creating a SpinnerAdapter ... 1085
Creating a List Listener .. 1086
Setting Up a List Action Bar ... 1086
Making Changes to BaseActionBarActivity .. 1087
Making Changes to AndroidManifest.xml .. 1087
Examining the List Action Bar Activity ... 1088

Standard Navigation Action Bar Activity ... 1090
Standard Navigation Action Bar Activity .. 1090
Making Changes to BaseActionBarActivity .. 1091

http://lib.ommolketab.ir
http//lib.ommolketab.ir

■ CONTENTS

xvii

Making Changes to AndroidManifest.xml .. 1092
Examining the Standard Action Bar activity ... 1092

References .. 1093
Summary .. 1094

■Chapter 31: Additional Topics in 3.0 ... 1097
List-Based Home Screen Widgets .. 1097

New Remote Views in 3.0 .. 1098
Working with Lists in Remote Views .. 1099
Working Sample: Test Home Screen List Widget ... 1114
Testing the Test List Widget .. 1122

Drag and Drop ... 1124
Basics of Drag and Drop in 3.0 .. 1124
Drag and Drop Sample Application .. 1125
Testing the Sample Drag-and-Drop Application .. 1137

References .. 1138
Summary .. 1139

Index ... 1141

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xviii

Foreword

All this has happened before, and all this will happen again. Emergence Theory is the way
complex systems and patterns arise out of a set of environmental interactions.

And we have been here before.
When I started programming in 1985, there were a variety of personal computers available.

While I cut my teeth on an Apple II C, my friends either had Commodore 128s, Tandy CoCo 3s, or
Atari computers. Each of us grew within the constraints of our own environment, but we were
rarely able to share our work. When affordable IBM clones running Microsoft’s DOS began to
emerge, developers started to see value of the marketplace created, and rapid evolution began to
occur within the DOS ecosystem. Eventually Microsoft created the dominate position in the PC
market that it still enjoys today.

In 2003, when I started mobile programming, the ecosystem looked much the same as it did
back in 1985. You could implement your vision in everything from Microsoft .NET CF to Java
Micro Edition to BREW. But like the games I coded with my friends, our applications were
isolated within our chosen ecosystem.

As 2011 dawns, by spreading the Android OS across hardware vendors, Google looks to be
the Microsoft of the Mobile Space. That is likely why you have picked up this book and are
reading this foreword. Either you are a student of history or, like me, you were lucky enough to
live it.

Well, good news! We have worked very hard in this edition of the book to ensure you have
the tools to implement the ideas rattling around in your imagination. We take you from the
basics of setting up your environment through deploying to the marketplace. Of course this is a
vast journey, so we mainly take you down the road most travelled. But we will provide you plenty
of resources to explore on your own.

Good luck, and happy trails.
—Dylan Phillips

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xix

About the Authors

Satya Komatineni (www.satyakomatineni.com) has over 20 years of programming
experience working with small and large corporations. Satya has published over
30 articles on web development using Java, .NET, and database technologies. He
is a frequent speaker at industry conferences on innovative technologies and a
regular contributor to the weblogs on Java.net. He is the author of AspireWeb
(www.activeintellect.com/aspire), a simplified open source tool for Java web
development, and the creator of Aspire Knowledge Central
(www.knowledgefolders.com), an open source personal web operating system with
a focus on individual productivity and publishing. Satya is also a contributing

member to a number of Small Business Innovation Research Programs (SBIR). He received a
bachelor’s degree in electrical engineering from Andhra University, Visakhapatnam, and a master’s
degree in electrical engineering from the Indian Institute of Technology, New Delhi. You can
contact him at satya.komatineni@gmail.com.

Dave MacLean is a software engineer and architect currently living and
working in Jacksonville, Florida. Since 1980, he has programmed in many
languages, developing solutions ranging from robot automation systems to
data warehousing, from web self-service applications to EDI transaction
processors. Dave has worked for Sun Microsystems, IBM, Trimble Navigation,
General Motors, and several small companies. He graduated from the
University of Waterloo in Canada with a degree in systems design engineering.
Visit his blog at http://davemac327.blogspot.com or contact him at
davemac327@gmail.com.

Sayed Y. Hashimi was born in Afghanistan and now resides in Jacksonville,
Florida. His expertise spans the fields of health care, financials, logistics, and
service-oriented architecture. In his professional career, Sayed has developed
large-scale distributed applications with a variety of programming languages
and platforms, including C/C++, MFC, J2EE, and .NET. He has published
articles in major software journals and has written several other popular Apress
titles. Sayed holds a master’s degree in engineering from the University of
Florida. You can reach him by visiting www.sayedhashimi.com.

Please visit the authors at their web site: www.androidbook.com.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xx

About the Technical
Reviewer

Dylan Phillips is a software engineer and architect who has been working in
the mobile space for the last 10 years. With a broad range of experience
ranging from J2ME to .NET Compact Framework to Android, he is incredibly
excited about the opportunity presented by the broad consumer adoption of
an array of Android devices. He can be reached at mykoan@hotmail.com, @mykoan
on Twitter, or at lunch, in various Pho Houses around the country.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxi

Acknowledgments

Writing this book took effort not only on the part of the authors, but also from some of the very
talented staff at Apress, as well as the technical reviewer. Therefore, we would like to thank Steve
Anglin, Matthew Moodie, Corbin Collins, Heather Lang, Tracy Brown, Mary Behr, and Brigid
Duffy from Apress. We would also like to extend our appreciation to the technical reviewer, Dylan
Phillips, for the work he did on this book. His commentary and corrections were invaluable.
When searching for answers on the android developers forum, we were often helped by Dianne
Hackborn, Nick Pelly, Brad Fitzpatrick, and other members of the Android Team, at all hours of
the day and weekends, and to them we would like to say, “Thank you.” They truly are the hardest
working team in mobile. The Android community is very much alive and well and was also very
helpful in answering questions and offering advice. We hope this book in some way is able to give
back to the community. Finally, the authors are deeply grateful to their families for
accommodating prolonged irresponsibility.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxii

Preface

Have you ever wanted to be a Rodin? Sitting with a chisel and eroding away a block of rock to
mold it to your vision? Well, mainstream programmers have kept away from the severely
constrained mobile devices for fear of being unable to chisel out at a workable application. Those
times have passed.

Android OS places the incredible reach of a programmable device at your door step. In this
book we want to positively confirm your suspicion that Android is a great OS to program with. If
you are a Java programmer, you have a great opportunity to profit from this exciting, capable,
general-purpose computing platform. We are excited about Android because it is an advanced
platform that introduces a number of new paradigms in framework design (even with the
limitations of a mobile platform).

This is our third edition on the subject of Android, and it’s our best edition yet. Pro Android 3
is an extensive programming guide. In this edition we've refined, rewritten, and enhanced
everything from Pro Android 2 to create a thoroughly updated guide for both beginners and
professionals—the result of our three years of research. We cover over 100 topics in 31 chapters.
This edition covers versions 2.3 and 3.0 of Android, the optimized versions of Android for phones
and tablets, respectively.

In this edition we have beefed up Android internals by covering threads, processes, long
running services, broadcast receivers, and alarm managers. We cover many more UI controls in
this edition. We have over 150 pages of dedicated material on 3.0, covering fragments, fragment
dialogs, ActionBar, and drag and drop. We have significantly enhanced the services and sensor
chapters. OpenGL has been revised to include OpenGL ES 2.0.

Concepts, Code, and Tutorials are the essence of this book. Every chapter in the book reflects
this philosophy. The self-contained tutorials in each chapter are annotated with expert advice. All
projects in the book are available for download for easy importing into Eclipse. We have worked
hard so that the code can also be compiled right out of the book. The list of files that goes into
each project are explicitly catalogued and listed in each chapter for easy reference.

The areas we cover in the book include key concepts such as resources, intents, content
providers, processes, threads, UI controls, broadcast receivers, services, and long running
services. We have a lot of coverage on OpenGL ES 1.0 and 2.0 for OpenGL beginners. We have a
lot of coverage on text to speech, sensors, and multi-touch. We are also able to incorporate a lot
of coverage on 3.0 topics that include fragments, fragment dialogs, ActionBar, and drag and drop.

Finally, in this book we went beyond basics, asked tough questions on every topic, and
documented the results (see the table of contents for the extensive list of what we cover in the
book). We are also actively updating the supplemental website (www.androidbook.com) with
current and future research material on the Android SDK. As you walk through the book, if you
have any questions we are only an email away for a quick response.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1

1

 Chapter

Introducing the Android
Computing Platform
Computing continues to become more and more personalized and accessible. Handheld
devices have largely transformed into computing platforms. Mobile phones are no longer
just for talking—they have been capable of carrying data and video for some time. Be it
a phone or a tablet, the mobile device is now so capable of general-purpose computing
that it’s becoming more like a PC. A number of traditional PC manufacturers such as
ASUS, HP, and Dell are producing devices of various form factors based on the Android
OS. The battles between operating systems, computing platforms, programming
languages, and development frameworks are being shifted and reapplied to mobile
devices.

We are also seeing a surge in mobile programming as more and more IT applications
start to offer mobile counterparts. In this book, we’ll show you how to take advantage of
your Java skills to write programs for devices that run on Google’s Android platform
(http://developer.android.com/index.html), an open-source platform for mobile and
tablet development.

NOTE: We are excited about Android because it is an advanced platform that introduces a

number of new paradigms in framework design (even with the limitations of a mobile platform).

In this chapter, we’ll provide an overview of Android and its SDK, give a brief overview of
key packages, introduce what we are going to cover in each chapter briefly, show you
how to take advantage of Android source code, and highlight the benefits of
programming for the Android platform.

A New Platform for a New Personal Computer
The fact that dedicated devices such as mobile phones can now count themselves
among general-computing platforms is good news for programmers (see Figure 1–1).

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 2

Starting with Android 3.0, we can officially add tablets to this list. This trend makes
programming for mobile devices possible with general-purpose computing languages,
which increases the range and market share for mobile applications.

Figure 1–1. Handheld is the new PC.

The Android platform embraces this idea of general-purpose computing for handheld
devices. It is a comprehensive platform that features a Linux-based operating system
stack for managing devices, memory, and processes. Android’s Java libraries cover
telephony, video, speech, graphics, connectivity, UI programming, and a number of
other aspects of the device.

NOTE: Although built for mobile- and tablet-based devices, the Android platform exhibits the
characteristics of a full-featured desktop framework. Google makes this framework available to

Java programmers through a Software Development Kit (SDK) called the Android SDK. When you
are working with the Android SDK, you rarely feel that you are writing to a mobile device because
you have access to most of the class libraries that you use on a desktop or a server—including a

relational database.

The Android SDK supports most of the Java Platform, Standard Edition (Java SE),
except for the Abstract Window Toolkit (AWT) and Swing. In place of AWT and Swing,
Android SDK has its own extensive modern UI framework. Because you’re programming
your applications in Java, you could expect that you need a Java Virtual Machine (JVM)
that is responsible for interpreting the runtime Java byte code. A JVM typically provides
the necessary optimization to help Java reach performance levels comparable to
compiled languages such as C and C++. Android offers its own optimized JVM to run
the compiled Java class files in order to counter the handheld device limitations such as
memory, processor speed, and power. This virtual machine is called the Dalvik VM,
which we’ll explore in a later section “Delving into the Dalvik VM.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 3

NOTE: The familiarity and simplicity of the Java programming language, coupled with Android’s

extensive class library, makes Android a compelling platform to write programs for.

Figure 1–2 provides an overview of the Android software stack. (We’ll provide further
details in the section “Understanding the Android Software Stack.”)

Figure 1–2. High-level view of the Android software stack

Early History of Android
Mobile phones use a variety of operating systems, such as Symbian OS, Microsoft’s
Windows Mobile, Mobile Linux, iPhone OS (based on Mac OS X), Moblin (from Intel),
and many other proprietary OSes. So far, no single OS has become the de facto
standard. The available APIs and environments for developing mobile applications are
too restrictive and seem to fall behind when compared to desktop frameworks. In
contrast, the Android platform promised openness, affordability, open-source code,
and, more important, a high-end, all-in-one-place, consistent development framework.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 4

Google acquired the startup company Android Inc. in 2005 to start the development of
the Android platform (see Figure 1–3). The key players at Android Inc. included Andy
Rubin, Rich Miner, Nick Sears, and Chris White.

Figure 1–3. Android early timeline

In late 2007, a group of industry leaders came together around the Android platform to
form the Open Handset Alliance (www.openhandsetalliance.com). Some of the alliance’s
prominent members as of 2009 were as follows:

 Sprint Nextel

 T-Mobile

 Motorola

 Samsung

 Sony Ericsson

 Toshiba

 Vodafone

 Google

 Intel

 Texas Instruments

As of 2011, this list has grown by multifold (over 80 in number), as you can see at the
Open Handset Alliance web site.

According to the site, part of the alliance’s goal is to innovate rapidly and respond better
to consumer needs in the mobile space and its first key outcome was the Android
platform. Android was designed to serve the needs of mobile operators, handset
manufacturers, and application developers. The members have committed to release
significant intellectual property through the open source Apache License, Version 2.0.

The Android SDK was first issued as an “early look” release in November 2007. In
September 2008, T-Mobile announced the availability of T-Mobile G1, the first
smartphone based on the Android platform. A few days after that, Google announced

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 5

the availability of Android SDK Release Candidate 1.0. In October 2008, Google made
the source code of the Android platform available under Apache’s open source license.
In late 2010, Google released Android SDK 2.3 for smartphones, code named
Gingerbread, which was upgraded to 2.3.3 by March 2011. In early 2011 an optimized
version of Android for tablets, Android 3.0 code named Honeycomb, was released.
Motorola XOOM is one of the early tablets to carry this OS release.

When Android was released, one of its key architectural goals was to allow applications
to interact with one another and reuse components from one another. This reuse not
only applies to services, but also to data and the user interface (UI). As a result, the
Android platform has a number of architectural features that keep this openness a
reality.

Android has attracted an early following and sustained the developer momentum
because of its fully developed features to exploit the cloud-computing model offered by
Web resources and to enhance that experience with local data stores on the handset
itself. Android’s support for a relational database on the handset also played a part in
early adoption.

In releases 1.0 and 1.1 (2008) Android did not support soft keyboards, requiring the
devices to carry physical keys. Android fixed this issue by releasing the 1.5 SDK in April
2009, along with a number of other features, such as advanced media-recording
capabilities, widgets, and live folders.

In September 2009 came release 1.6 of the Android OS and, within a month, Android 2.0
followed, facilitating a flood of Android devices in time for the 2009 Christmas season.
This release introduced advanced search capabilities and text to speech.

With support for HTML 5, Android 2.0 introduces interesting possibilities for using
HTML. The contact API is significantly overhauled. Support for Flash is added. More and
more Android-based applications are introduced every day, as well as new types of
independent online application stores. Much anticipated tablet computers based on
Android can now be purchased.

In Android 2.3 the significant features include remote wiping of secure data by
administrators, the ability to use camera and video in low-light conditions, WiFi hotspot,
significant performance improvements, improved Bluetooth functionality, installation of
applications on the SD card optionally, OpenGL ES 2.0 support, improvements in
backup, improvements in search usability, Near Field Communications support for credit
card processing, much improved motion and sensor support (similar to Wii), video chat,
and improved Market.

The latest incarnation of Android, 3.0 is focused on tablet-based devices and much
more powerful dual core processors such as Nvidia Tegra2. The main features of this
release include support to use larger screen. A significantly new concept called
Fragments has been introduced. This permeates the 3.0 experience. More desktop-like
capabilities, such as ActionBar and Drag and Drop, have been introduced. Home screen
widgets have been significantly enhanced. More UI controls are now available. In the 3D
space, OpenGL has been enhanced with Renderscript to further supplement ES 2.0. It is
an exciting introduction for tablets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 6

Delving Into the Dalvik VM
As part of Android, Google has spent a lot of time thinking about optimizing designs for
low-powered handheld devices. Handheld devices lag behind their desktop
counterparts in memory and speed by eight to ten years. They also have limited power
for computation. The performance requirements on handsets are severe as a result,
requiring handset designers to optimize everything. If you look at the list of packages in
Android, you’ll see that they are fully featured and extensive.

These issues led Google to revisit the standard JVM implementation in many respects.
The key figure in Google’s implementation of this JVM is Dan Bornstein, who wrote the
Dalvik VM—Dalvik is the name of a town in Iceland. Dalvik VM takes the generated Java
class files and combines them into one or more Dalvik Executable (.dex) files. It reuses
duplicate information from multiple class files, effectively reducing the space
requirement (uncompressed) by half from a traditional .jar file

Google has also fine-tuned the garbage collection in the Dalvik VM, but it has chosen to
omit a just-in-time (JIT) compiler, in early releases. Android 2.3 has added JIT. The
reports are that this can give two to five times faster raw performance at places and 10
to 20% for general-purpose applications.

Dalvik VM uses a different kind of assembly-code generation, in which it uses registers
as the primary units of data storage instead of the stack. Google is hoping to
accomplish 30% fewer instructions as a result. We should point out that the final
executable code in Android, as a result of the Dalvik VM, is based not on Java byte code
but on .dex files instead. This means you cannot directly execute Java byte code; you
have to start with Java class files and then convert them to linkable .dex files.

This performance paranoia extends into the rest of the Android SDK. For example, the
Android SDK uses XML extensively to define UI layouts. However, all of this XML is
compiled to binary files before these binary files become resident on the devices.
Android provides special mechanisms to use this XML data.

Understanding the Android Software Stack
So far we’ve covered Android’s history and its optimization features including the Dalvik
VM, and we’ve hinted at the Java programming stack available. In this section, we will
cover the development aspect of Android. Figure 1–4 is a good place to start this
discussion.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 7

Figure 1–4. Detailed Android SDK software stack

At the core of the Android platform is a Linux kernel responsible for device drivers,
resource access, power management, and other OS duties. The supplied device drivers
include Display, Camera, Keypad, WiFi, Flash Memory, Audio, and IPC (inter-process
communication). Although the core is Linux, the majority—if not all—of the applications
on an Android device such as a Motorola Droid are developed in Java and run through
the Dalvik VM.

Sitting at the next level, on top of the kernel, are a number of C/C++ libraries such as
OpenGL, WebKit, FreeType, Secure Sockets Layer (SSL), the C runtime library (libc),
SQLite, and Media. The system C library based on Berkeley Software Distribution (BSD)
is tuned (to roughly half its original size) for embedded Linux-based devices. The media
libraries are based on PacketVideo’s (www.packetvideo.com/) OpenCORE. These
libraries are responsible for recording and playback of audio and video formats. A library
called Surface Manager controls access to the display system and supports 2D and 3D.
More of these native libraries are likely to be added with new releases.

The WebKit library is responsible for browser support; it is the same library that supports
Google Chrome and Apple’s Safari. The FreeType library is responsible for font support.
SQLite (www.sqlite.org/) is a relational database that is available on the device itself.
SQLite is also an independent open-source effort for relational databases and not
directly tied to Android. You can acquire and use tools meant for SQLite for Android
databases as well.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 8

Most of the application framework accesses these core libraries through the Dalvik VM,
the gateway to the Android platform. As we indicated in the previous sections, Dalvik is
optimized to run multiple instances of VMs. As Java applications access these core
libraries, each application gets its own VM instance.

The Android Java API’s main libraries include telephony, resources, locations, UI,
content providers (data), and package managers (installation, security, and so on).
Programmers develop end-user applications on top of this Java API. Some examples of
end-user applications on the device include Home, Contacts, Phone, Browser, and so
on.

Android also supports a custom Google 2D graphics library called Skia, which is written
in C and C++. Skia also forms the core of the Google Chrome browser. The 3D APIs in
Android, however, are based on an implementation of OpenGL ES from the Khronos
group (www.khronos.org). OpenGL ES contains subsets of OpenGL that are targeted
toward embedded systems.

From media perspective, the Android platform supports the most common formats for
audio, video, and images. From a wireless perspective, Android has APIs to support
Bluetooth, EDGE, 3G, WiFi, and Global System for Mobile Communication (GSM)
telephony, depending on the hardware.

Developing an End-User Application with the
Android SDK
In this section, we’ll introduce you to the high-level Android Java APIs that you’ll use to
develop end-user applications on Android. We will briefly talk about the Android
emulator, Android foundational components, UI programming, services, media,
telephony, animation, and OpenGL.

Android Emulator
Android SDK ships with an Eclipse plug-in called Android Development Tools (ADT). You
will use this Integrated Development Environment (IDE) tool for developing, debugging,
and testing your Java applications. (We’ll cover ADT in depth in Chapter 2.) You can also
use the Android SDK without using ADT; you’d use command-line tools instead. Both
approaches support an emulator that you can use to run, debug, and test your
applications. You will not even need the real device for 90% of your application
development. The full-featured Android emulator mimics most of the device features.
The emulator limitations include USB connections, camera and video capture,
headphones, battery simulation, Bluetooth, WiFi, NFC, and OpenGL ES 2.0.

The Android emulator accomplishes its work through an open source “processor
emulator” technology called QEMU developed by Fabrice Bellard
(http://bellard.org/qemu/). This is the same technology that allows emulation of one
operating system on top of another, irrespective of the processor. QEMU allows
emulation at the CPU level.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 9

With the Android emulator, the processor is based on Advanced RISC Machine (ARM).
ARM is a 32-bit microprocessor architecture based on Reduced Instruction Set
Computer (RISC), in which design simplicity and speed is achieved through a reduced
number of instructions in an instruction set. The emulator runs the Android version of
Linux on this simulated processor.

ARM is widely used in handhelds and other embedded electronics where lower power
consumption is important. Much of the mobile market uses processors based on this
architecture.

You can find more details about the emulator in the Android SDK documentation at
http://developer.android.com/guide/developing/tools/emulator.html.

The Android UI
Android uses a UI framework that resembles other desktop-based, full-featured UI
frameworks. In fact, it’s more modern and more asynchronous in nature. The Android UI
is essentially a fourth-generation UI framework, if you consider the traditional C-based
Microsoft Windows API the first generation and the C++-based MFC (Microsoft
Foundation Classes) the second generation. The Java-based Swing UI framework would
be the third generation, introducing design flexibility far beyond that offered by MFC.
The Android UI, JavaFX, Microsoft Silverlight, and Mozilla XML User Interface Language
(XUL) fall under this new type of fourth-generation UI framework, in which the UI is
declarative and independently themed.

NOTE: In Android, you program using a modern user interface paradigm, even though the device

you’re programming for happens to be a handheld.

Programming in the Android UI involves declaring the interface in XML files. You then
load these XML view definitions as windows in your UI application. Even menus in your
application are loaded from XML files. Screens or windows in Android are often referred
to as activities, which comprise multiple views that a user needs in order to accomplish
a logical unit of action. Views are Android’s basic UI building blocks, and you can further
combine them to form composite views called view groups. Views internally use the
familiar concepts of canvases, painting, and user interaction. An activity hosting these
composite views, which include views and view groups, is the logical replaceable UI
component in Android. Android 3.0 introduced another UI concept called fragments to
allow developers to chunk views and functionality for display on tablets. Tablets provide
enough screen space for multi-pane activities, and fragments provide the abstraction for
the panes.

One of the Android framework’s key concepts is the lifecycle management of activity
windows. Protocols are put in place so that Android can manage state as users hide,
restore, stop, and close activity windows. You will get a feel for these basic ideas in
Chapter 2, along with an introduction to setting up the Android development
environment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 10

The Android Foundational Components
The Android UI framework, along with other parts of Android, relies on a new concept
called an intent. An intent is an amalgamation of ideas such as windowing messages,
actions, publish-and-subscribe models, inter-process communications, and application
registries. Here is an example of using the Intent class to invoke or start a web browser:

public static void invokeWebBrowser(Activity activity)
{
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
}

In this example, through an intent, we are asking Android to start a suitable window to
display the content of a web site. Depending on the list of browsers that are installed on
the device, Android will choose a suitable one to display the site. You will learn more
about intents in Chapter 5.

Android has extensive support for resources, which include familiar elements and files
such as strings and bitmaps, as well as some not-so-familiar items such as XML-based
view definitions. The framework makes use of resources in a novel way to make their
usage easy, intuitive, and convenient. Here is an example where resource IDs are
automatically generated for resources defined in XML files:

public final class R {
 public static final class attr { }
 public static final class drawable {
 public static final int myanimation=0x7f020001;
 public static final int numbers19=0x7f02000e;
 }

 public static final class id {
 public static final int textViewId1=0x7f080003;
 }
 public static final class layout {
 public static final int frame_animations_layout=0x7f030001;
 public static final int main=0x7f030002;
 }
 public static final class string {
 public static final int hello=0x7f070000;
 }
}

Each auto-generated ID in this class corresponds to either an element in an XML file or a
whole file itself. Wherever you would like to use those XML definitions, you will use these
generated IDs instead. This indirection helps a great deal when it comes to localization.
(Chapter 3 covers the R.java file and resources in more detail.)

Another new concept in Android is the content provider. A content provider is an
abstraction on a data source that makes it look like an emitter and consumer of RESTful
services. The underlying SQLite database makes this facility of content providers a
powerful tool for application developers. We will cover content providers in Chapter 4. In

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 11

Chapters 3, 4 and 5, we’ll discuss how intents, resources, and content providers
promote openness in the Android Platform.

Advanced UI Concepts
We have already pointed out that XML plays a critical role in describing the Android
UI. Let’s look at an example of how XML does this for a simple layout containing a
text view:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android>
<TextView android:id="@+id/textViewId"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
</LinearLayout>

You will use an ID generated for this XML file to load this layout into an activity
window. (We’ll cover this process further in Chapter 6.) Android also provides
extensive support for menus (more on that in Chapter 7), from standard menus to
context menus. You’ll find it convenient to work with menus in Android, because they
are also loaded as XML files and because resource IDs for those menus are auto-
generated. Here’s how you would declare menus in an XML file:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_clear"
 android:orderInCategory="10"
 android:title="clear" />
 <item android:id="@+id/menu_show_browser"
 android:orderInCategory="5"
 android:title="show browser" />
 </group>
</menu>

Android supports dialogs, and all dialogs in Android are asynchronous. These
asynchronous dialogs present a special challenge to developers accustomed to the
synchronous modal dialogs in some windowing frameworks. We’ll address menus in
Chapter 7 and dialogs in Chapter 8, where we’ll also provide a number of mechanisms
to deal with asynchronous-dialog protocols.

Android also offers support for animation as part of its UI stack based on views and
drawable objects. Android supports two kinds of animation: tweening animation and
frame-by-frame animation. Tweening is a term in animation that refers to the drawings
that are in between the key drawings. You accomplish this with computers by changing
the intermediate values at regular intervals and redrawing the surface. Frame-by-frame
animation occurs when a series of frames is drawn one after the other at regular
intervals. Android enables both animation approaches through animation callbacks,
interpolators, and transformation matrices.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 12

Moreover, Android allows you to define these animations in an XML resource file. Check
out this example, in which a series of numbered images is played in frame-by-frame
animation:

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/numbers11" android:duration="50" />
 ……
 <item android:drawable="@drawable/numbers19" android:duration="50" />
 </animation-list>

The underlying graphics libraries support the standard transformation matrices, allowing
scaling, movement, and rotation. A Camera object in the graphics library provides
support for depth and projection, which allows 3D-like simulation on a 2D surface. (We’ll
explore animation further in Chapter 16.)

Android also supports 3D graphics through its implementation of the OpenGL ES 1.0
and 2.0 standards. OpenGL ES, like OpenGL, is a C-based flat API. The Android SDK,
because it’s a Java-based programming API, needs to use Java binding to access the
OpenGL ES. Java ME has already defined this binding through Java Specification
Request (JSR) 239 for OpenGL ES, and Android uses the same Java binding for
OpenGL ES in its implementation. If you are not familiar with OpenGL programming, the
learning curve is steep. But we’ve reviewed the basics here, so you’ll be ready to start
programming in OpenGL for Android when you complete Chapter 20. Starting in 3.0
Android has introduced a script based approach to OpenGL to supplement ES 2.0.

Android has a number of new concepts that revolve around information at your fingertips
using the homepage. The first of these is live folders. Using live folders, you can publish
a collection of items as a folder on the homepage. The contents of this collection
change as the underlying data changes. This changing data could be either on the
device or from the Internet. (We will cover live folders in Chapter 21.)

The second homepage-based idea is the home screen widget. Home screen widgets are
used to paint information on the homepage using a UI widget. This information can
change at regular intervals. An example could be the number of e-mail messages in your
e-mail store. We describe home screen widgets in Chapter 22. The home screen
widgets are enhanced in 3.0 to include list views that can get updated when their
underlying data changes. These enhancements are covered in Chapter 31.

Integrated Android Search is the third homepage-based idea. Using integrated search
you can search for content both on the device and also across the Internet. Android
search goes beyond search and allows you to fire off commands through the search
control. We cover Android search in Chapter 23.

Android also supports touchscreen and gestures based on finger movement on the
device. Android allows you to record any random motion on the screen as a named
gesture. This gesture can then be used by applications to indicate specific actions. We
cover touchscreens and gestures in Chapter 25.

Sensors are now becoming a significant part of mobile experience. We cover sensors in
Chapter 26.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 13

Another necessary innovation required for a mobile device is the dynamic nature of its
configurations. For instance it is very easy to change the viewing modes of a handheld
between portrait and landscape. Or you may dock your handheld to become a laptop.
Android 3.0 has introduced a concept called fragments to deal with these variations
effectively. Chapter 29 is dedicated to fragments.

We also cover the 3.0 feature of action bars in Chapter 30. Action bars bring Android up
to par with desktop menu bar paradigm. We cover drag and drop in Chapter 25 (the old
way) as well as in Chapter 31 (the Android 3.0 way).

Outside of the Android SDK, there are a number of independent innovations taking place
to make development exciting and easy. Some examples are XML/VM, PhoneGap, and
Titanium. Titanium allows you to use HTML technologies to program the WebKit-based
Android browser. We covered Titanium in the second edition of this book. However, due
to time and space limitations, we are not covering Titanium in this edition.

Android Service Components
Security is a fundamental part of the Android platform. In Android, security spans all
phases of the application lifecycle—from design-time policy considerations to runtime
boundary checks. We cover security and permissions in Chapter 10.

In Chapter 11, we’ll show you how to build and consume services in Android,
specifically HTTP services. This chapter will also cover inter-process communication
(communication between applications on the same device).

Location-based service is another of the more exciting components of the Android SDK.
This portion of the SDK provides application developers APIs to display and manipulate
maps, as well as obtain real-time device-location information. We’ll cover these ideas in
detail in Chapter 17.

Android Media and Telephony Components
Android has APIs that cover audio, video, and telephony components. Chapter 18 will
address the telephony API. We’ll cover the audio and video APIs extensively in Chapter
19. Starting with Android 2.0, Android includes the Pico Text To Speech engine. This is
covered in Chapter 24.

Last but not least, Android ties all these concepts into an application by creating a single
XML file that defines what an application package is. This file is called the application’s
manifest file (AndroidManifest.xml). Here is an example:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ai.android.HelloWorld"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".HelloWorld"
 android:label="@string/app_name">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 14

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The Android manifest file is where activities are defined, where services and content
providers are registered, and where permissions are declared. Details about the
manifest file will emerge throughout the book as we develop each idea.

Android Java Packages
One way to get a quick snapshot of the Android platform is to look at the structure of
Java packages. Because Android deviates from the standard JDK distribution, it is
important to know what is supported and what is not. Here’s a brief description of the
important packages that are included in the Android SDK:

 android.app: Implements the Application model for Android. Primary
classes include Application, representing the start and stop
semantics, as well as a number of activity-related classes, fragments,
controls, dialogs, alerts, and notifications.

 android.bluetooth: Provides a number of classes to work with
Bluetooth functionality. The main classes include BluetoothAdapter,
BluetoothDevice, BluetoothSocket, BluetoothServerSocket, and
BluetoothClass. You can use BluetoothAdapter to control the locally
installed Bluetooth adapter. For example, you can enable it, disable it,
and start the discovery process. The BluetoothDevice represents the
remote Bluetooth device that you are connecting with. The two
Bluetooth sockets are used to establish communication between the
devices. A Bluetooth class represents the type of Bluetooth device you
are connecting to.

 android.content: Implements the concepts of content providers.
Content providers abstract out data access from data stores. This
package also implements the central ideas around intents and Android
Uniform Resource Identifiers (URIs).

 android.content.pm: Implements Package Manager-related classes. A
package manager knows about permissions, installed packages,
installed providers, installed services, installed components such as
activities, and installed applications.

 android.content.res: Provides access to resource files both
structured and unstructured. The primary classes are AssetManager
(for unstructured resources) and Resources.

 android.database: Implements the idea of an abstract database. The
primary interface is the Cursor interface.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 15

 android.database.sqlite: Implements the concepts from the
android.database package using SQLite as the physical database.
Primary classes are SQLiteCursor, SQLiteDatabase, SQLiteQuery,
SQLiteQueryBuilder, and SQLiteStatement. However, most of your
interaction is going to be with classes from the abstract
android.database package.

 android.gesture: This package houses all the classes and interfaces
necessary to work with user-defined gestures. Primary classes are
Gesture, GestureLibrary, GestureOverlayView, GestureStore,
GestureStroke, GesturePoint. A Gesture is a collection of
GestureStrokes and GesturePoints. Gestures are collected in a
GestureLibrary. Gesture libraries are stored in a GestureStore.
Gestures are named so that they can be identified as actions.

 android.graphics: Contains the classes Bitmap, Canvas, Camera, Color,
Matrix, Movie, Paint, Path, Rasterizer, Shader, SweepGradient, and
TypeFace.

 android.graphics.drawable: Implements drawing protocols and
background images, and allows animation of drawable objects.

 android.graphics.drawable.shapes: Implements shapes including
ArcShape, OvalShape, PathShape, RectShape, and RoundRectShape.

 android.hardware: Implements the physical Camera-related classes.
The Camera represents the hardware camera, whereas
android.graphics.Camera represents a graphical concept that’s not
related to a physical camera at all.

 android.location: Contains the classes Address, GeoCoder, Location,
LocationManager, and LocationProvider. The Address class represents
the simplified XAL (Extensible Address Language). GeoCoder allows
you to get a latitude/longitude coordinate given an address, and vice
versa. Location represents the latitude/longitude.

 android.media: Contains the classes MediaPlayer, MediaRecorder,
Ringtone, AudioManager, and FaceDetector. MediaPlayer, which
supports streaming, is used to play audio and video. MediaRecorder is
used to record audio and video. The Ringtone class is used to play
short sound snippets that could serve as ringtones and notifications.
AudioManager is responsible for volume controls. You can use
FaceDetector to detect people’s faces in a bitmap.

 android.net: Implements the basic socket-level network APIs. Primary
classes include Uri, ConnectivityManager, LocalSocket, and
LocalServerSocket. It is also worth noting here that Android supports
HTTPS at the browser level and also at the network level. Android also
supports JavaScript in its browser.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 16

 android.net.wifi: Manages WiFi connectivity. Primary classes include
WifiManager and WifiConfiguration. WifiManager is responsible for
listing the configured networks and the currently active WiFi network.

 android.opengl: Contains utility classes surrounding OpenGL ES 1.0
and 2.0 operations. The primary classes of OpenGL ES are
implemented in a different set of packages borrowed from JSR 239.
These packages are javax.microedition.khronos.opengles,
javax.microedition.khronos.egl, and
javax.microedition.khronos.nio. These packages are thin wrappers
around the Khronos implementation of OpenGL ES in C and C++.

 android.os: Represents the OS services accessible through the Java
programming language. Some important classes include
BatteryManager, Binder, FileObserver, Handler, Looper, and
PowerManager. Binder is a class that allows interprocess
communication. FileObserver keeps tabs on changes to files. You use
Handler classes to run tasks on the message thread, and Looper to run
a message thread.

 android.preference: Allows applications the ability to have users
manage their preferences for that application in a uniform way. The
primary classes are PreferenceActivity, PreferenceScreen, and
various Preference-derived classes such as CheckBoxPreference and
SharedPreferences.

 android.provider: Comprises a set of prebuilt content providers
adhering to the android.content.ContentProvider interface. The
content providers include Contacts, MediaStore, Browser, and
Settings. This set of interfaces and classes stores the metadata for
the underlying data structures.

 android.sax: Contains an efficient set of Simple API for XML (SAX)
parsing utility classes. Primary classes include Element, RootElement,
and a number of ElementListener interfaces.

 android.speech: Contains constants for use with speech recognition.

 android.speech.tts: Provides support for converting text to speech.
The primary class is TextToSpeech. You will be able to take text and
ask an instance of this class to queue the text to be spoken. You have
access to a number of callbacks to monitor when the speech has
finished, for example. Android uses the Pico TTS (Text to Speech)
engine from SVOX.

 android.telephony: Contains the classes CellLocation,
PhoneNumberUtils, and TelephonyManager. A TelephonyManager lets
you determine cell location, phone number, network operator name,
network type, phone type, and Subscriber Identity Module (SIM) serial
number.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 17

 android.telephony.gsm: Allows you to gather cell location based on
cell towers and also hosts classes responsible for SMS messaging.
This package is called GSM because Global System for Mobile
Communication is the technology that originally defined the SMS data-
messaging standard.

 android.telephony.cdma: Provides support for CDMA telephony.

 android.text: Contains text-processing classes.

 android.text.method: Provides classes for entering text input for a
variety of controls.

 android.text.style: Provides a number of styling mechanisms for a
span of text.

 android.utils: Contains the classes Log, DebugUtils, TimeUtils, and
Xml.

 android.view: Contains the classes Menu, View, ViewGroup, and a
series of listeners and callbacks.

 android.view.animation: Provides support for tweening animation.
The main classes include Animation, a series of interpolators for
animation, and a set of specific animator classes that include
AlphaAnimation, ScaleAnimation, TranslationAnimation, and
RotationAnimation. Android 3.0 introduced the android.animation
package, which is similar, but more broad because it can work with
objects rather than just views.

 android.view.inputmethod: Implements the input-method framework
architecture.

 android.webkit: Contains classes representing the web browser. The
primary classes include WebView, CacheManager, and CookieManager.

 android.widget: Contains all of the UI controls usually derived from
the View class. Primary widgets include Button, Checkbox,
Chronometer, AnalogClock, DatePicker, DigitalClock, EditText,
ListView, FrameLayout, GridView, ImageButton, MediaController,
ProgressBar, RadioButton, RadioGroup, RatingButton, Scroller,
ScrollView, Spinner, TabWidget, TextView, TimePicker, VideoView, and
ZoomButton.

 com.google.android.maps: Contains the classes MapView,
MapController, and MapActivity, essentially classes required to work
with Google maps.

These are some of the critical Android-specific packages. From this list you can see the
depth of the Android core platform.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 18

NOTE: In all, the Android Java API contains more than 40 packages and more than 700 classes,

and keeps growing with each release.

In addition, Android provides a number of packages in the java.* namespace. These
include awt.font, io, lang, lang.annotation, lang.ref, lang.reflect, math, net, nio,
nio.channels, nio.channels.spi, nio.charset, security, security.acl, security.cert,
security.interfaces, security.spec, sql, text, util, util.concurrent,
util.concurrent.atomic, util.concurrent.locks, util.jar, util.logging, util.prefs,
util.regex, and util.zip. Android comes with these packages from the javax
namespace: crypto, crypto.spec, microedition.khronos.egl,
microedition.khronos.opengles, net, net.ssl, security.auth, security.auth.callback,
security.auth.login, security.auth.x500, security.cert, sql, xml, and xmlparsers. In
addition to these, it contains a lot of packages from org.apache.http.* as well as
org.json, org.w3c.dom, org.xml.sax, org.xml.sax.ext, org.xml.sax.helpers,
org.xmlpull.v1, and org.xmlpull.v1.sax2. Together, these numerous packages provide
a rich computing platform to write applications for handheld devices.

Taking Advantage of Android Source Code
In the early releases of Android, documentation was a bit wanting in places. Android
source code could be used to fill the gaps.

The details of the Android source distribution are published at
http://source.android.com. The code was made available as open source around
October 2008. One of the Open Handset Alliance’s goals was to make Android a free
and fully customizable mobile platform.

As indicated, Android is a platform and not just one project. You can see the scope and
the number of projects at http://android.git.kernel.org/.

The source code for Android and all its projects is managed by the Git source code
control system. Git (http://git.or.cz/) is an open-source source-control system
designed to handle large and small projects with speed and convenience. The Linux
kernel and Ruby on Rails projects also rely on Git for version control. The complete list
of Android projects in the Git repository appears at http://android.git.kernel.org/.

You can download any of these projects using the tools provided by Git and described
at the product’s web site. Some of the primary projects include Dalvik, frameworks/base
(the android.jar file), the Linux kernel, and a number of external libraries such as
Apache HTTP libraries (apache-http). The core Android applications are also hosted
here. Some of these core applications include: AlarmClock, Browser, Calculator,
Calendar, Camera, Contacts, Email, GoogleSearch, HTML Viewer, IM, Launcher, Mms,
Music, PackageInstaller, Phone, Settings, SoundRecorder, Stk, Sync, Updater, and
VoiceDialer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 19

The Android projects also include the Provider projects. Provider projects are like
databases in Android that wrap their data into RESTful services. These projects are
CalendarProvider, ContactsProvider, DownloadProvider, DrmProvider,
GoogleContactsProvider, GoogleSubscribedFeedsProvider, ImProvider, MediaProvider,
SettingsProvider, Subscribed FeedsProvider, and TelephonyProvider.

As a programmer, you will be most interested in the source code that makes up the
android.jar file. (If you’d rather download the entire platform and build it yourself, refer
to the documentation available at http://source.android.com/source/download.html.)
You can download the source for this .jar file by typing in the following URL:
http://git.source.android.com/?p=platform/frameworks/base.git;a=snapshot;h=HEAD
;sf=tgz.

This is a general-purpose URL you can use to download Git projects. On Windows, you
can unzip this file using pkzip. Although you can download and unzip the source, it
might be more convenient to just look at these files online, if you don’t need to debug
the source code through your IDE. Git also allows you to do this. For example, you can
browse through android.jar source files by visiting this URL:
http://android.git.kernel.org/?p=platform/frameworks/base.git;a=summary.

However, you have to do some work after you visit this page. Pick grep from the drop-
down list and enter some text in the search box. Click one of the resulting file names to
open that source file in your browser. This facility is convenient for a quick look-up of
source code.

At times, the file you are looking for might not be in the frameworks/base directory or
project. In that case, you need to find the list of projects and search each one step by
step. The URL for this list is here: http://android.git.kernel.org/.

You cannot grep across all projects, so you will need to know which project belongs to
which facility in Android. For example, the graphics-related libraries in the Skia project
are available here: http://android.git.kernel.org/?p=platform/external/skia.git;
a=summary.

The SkMatrix.cpp file contains the source code for a transformational matrix, which is
useful in animation: http://android.git.kernel.org/?p=platform/external/skia.git;
a=blob;f=src/core/SkMatrix.cpp.

The Sample Projects in this Book
In this book you will find many, many working sample projects. Chapters 2 through 28
were written with smartphones in mind, and as such, all projects in these chapters were
tested with versions of Android up to Android 2.3. After all, there are an awful lot of
Android smartphones out there.

Most if not all of the sample projects will run unchanged on Android 3.0 for tablets,
although they may not look exactly as you might like. Our main purpose in developing
the sample projects was to demonstrate the particular concepts and Android packages,
and in some cases to show how certain features work in the older releases of Android.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1: Introducing the Android Computing Platform 20

These concepts can easily be applied to Android 3.0 tablet applications, and our sample
applications would certainly integrate with other Android 3.0-specific features if required.
But including those additional features in all our sample projects would have distracted
us from focusing on the concepts we’re trying to explain.

Chapters 29 through 31 are specifically about Android 3.0, so those projects were
designed and tested for Android 3.0. If you have trouble with any of the sample projects,
please check our website (www.androidbook.com) for updates, and if you are still
searching for answers, please contact us by email.

Summary
In this chapter, we wanted to pique your curiosity about Android. If you are a Java
programmer, you have a great opportunity to profit from this exciting capable general
purpose computing platform. We welcome you to journey through the rest of the book
for an in-depth understanding of the Android SDK.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

21

21

 Chapter

Setting Up Your
Development Environment
The last chapter provided an overview of Android’s history and hinted at concepts that

will be covered in the rest of the book. At this point, you’re probably eager to get your

hands on some code. We’ll start by showing you what you need to begin building

applications with the Android software development kit (SDK) and help you set up your

development environment. Next, we’ll step you through a “Hello World!” application and

dissect a slightly larger application after that. Then we’ll explain the Android application

lifecycle and end with a discussion about debugging your applications with Android

Virtual Devices (AVDs).

To build applications for Android, you’ll need the Java SE Development Kit (JDK), the

Android SDK, and a development environment. Strictly speaking, you can develop your

applications using a primitive text editor, but for the purposes of this book, we’ll use the

commonly available Eclipse IDE. The Android SDK requires JDK 5 or higher (we used

JDK 6 for the examples) and Eclipse 3.4 or higher (we used Eclipse 3.5, also known as

Galileo, and 3.6, also known as Helios).

To make your life easier, you’ll want to use Android Development Tools (ADT). ADT is an

Eclipse plug-in that supports building Android applications with the Eclipse IDE. In fact,

we built all the examples in this book using the Eclipse IDE with the ADT tool.

The Android SDK is made up of two main parts: the tools and the packages. When you

first install the SDK, all you get are the base tools. These are executables and supporting

files to help you develop applications. The packages are the files specific to a particular

version of Android (called a platform) or a particular add-on to a platform. The platforms

include Android 1.5 through 3.0. The add-ons include the Google Maps API, the Market

License Validator, and even vendor-supplied ones such as Samsung's Galaxy Tab add-

on. After you install the SDK, you then use one of the tools to download and set up the

platforms and add-ons. Let's get started!

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 22

Setting Up Your Environment
To build Android applications, you need to establish a development environment. In this

section, we are going to walk you through downloading JDK 6, the Eclipse IDE, the

Android SDK (tools and packages), and Android Development Tools (ADT). We’ll also

help you configure Eclipse to build Android applications.

The Android SDK is compatible with Windows (Windows XP, Windows Vista, and

Windows 7), Mac OS X (Intel only), and Linux (Intel only). In this chapter, we’ll show you

how to set up your environment for all of these platforms (for Linux, we only cover the

Ubuntu variant). We will not specifically address any platform differences in other

chapters.

Downloading JDK 6
The first thing you’ll need is the Java SE Development Kit. The Android SDK requires

JDK 5 or higher; we developed the examples using JDK 6. For Windows, download JDK

6 from the Oracle web site (www.oracle.com/technetwork/java/javase/downloads/
index.html) and install it. You only need the JDK, not the bundles. For Mac OS X,

download the JDK from the Apple web site (http://developer.apple.com/
java/download/), select the appropriate file for your particular version of Mac OS, and

install it. You will need to register for free as an Apple developer to get the JDK, and

once at the Downloads page, you'll need to click on the Java link on the right-hand side

of the page. To install the JDK for Linux, open a Terminal window and try the following:

sudo apt-get install sun-java6-jdk

This should install the JDK plus any dependencies such as the Java Runtime

Environment (JRE). If it doesn't, it probably means you need to add a new Software

Source and then try that command again. The web page

https://help.ubuntu.com/community/Repositories/Ubuntu explains Software Sources

and how to add the connection to third party software. The process is different

depending on which version of Linux you have. Once that has been done, retry the

command.

With the introduction of Ubuntu 10.04 (Lucid Lynx), Ubuntu recommends using

OpenJDK instead of the Oracle/Sun JDK. To install OpenJDK, try the following:

sudo apt-get install openjdk-6-jdk

If this is not found, set up the third party software as outlined previously and run the

command again. All packages upon which the JDK depends will be automatically added

for you. It is possible to have both OpenJDK and the Oracle/Sun JDK installed at the

same time. To switch active Java between the installed versions of Java on Ubuntu, run

this command at a shell prompt

sudo update-alternatives --config java

then choose which Java you want as the default.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 23

Now that you have a Java JDK installed, it's time to set the JAVA_HOME environment

variable to point to the JDK install folder. On a Windows XP machine, you can do this by

going to Start My Computer, right-click to get Properties, choose the Advanced tab,

and click Environment Variables. Click New to add the variable, or Edit to modify it if it

already exists. The value of JAVA_HOME will be something like C:\Program
Files\Java\jdk1.6.0_23. For Windows Vista and Windows 7, the steps to get to the

Environment Variables screen are a little different. Go to Start Computer, right-click to

get Properties, click the link for Advanced system settings and click Environment

Variables. After that, follow the same instructions as for Windows XP to change the

JAVA_HOME environment variable. For Mac OS X, you set JAVA_HOME in your .profile in

your home directory. Edit or create your .profile file and add a line that looks like this

export JAVA_HOME=path_to_JDK_directory

where path_to_JDK_directory is probably /Library/Java/Home. For Linux, edit your

.profile file and add a line like the one for Mac OS X, except that your path to Java is

probably something like /usr/lib/jvm/java-6-sun or /usr/lib/jvm/java-6-openjdk.

Some people prefer to use .bashrc instead of .profile; either one should work.

Downloading Eclipse 3.6
Once the JDK is installed, you can download the Eclipse IDE for Java Developers. (You

don’t need the edition for Java EE; it works, but it’s much larger and includes things we

won’t need for this book.) The examples in this book use Eclipse 3.6 (on a Windows

environment). You can download all versions of Eclipse from

www.eclipse.org/downloads/. The Eclipse distribution is a .zip file that can be extracted

just about anywhere. The simplest place to extract to on Windows is C:\ which results in

a C:\eclipse folder where you’ll find eclipse.exe. For Mac OS X, you can extract to

Applications. For Linux, you can extract to your home directory or have your

administrator put Eclipse into a common place where you can get to it. The Eclipse

executable is in the eclipse folder for all platforms. You may also find and install Eclipse

using Linux's Software Center for adding new applications, although this may not

provide you with the latest version.

When you first start up Eclipse, it will ask you for a location for the workspace. To make

things easy, you can choose a simple location such as C:\android or a directory under

your home directory. If you share the computer with others, you should put your

workspace folder somewhere underneath your home directory.

Downloading the Android SDK
To build applications for Android, you need the Android SDK. As stated before, the SDK

comes with the base tools part, then you download the package parts that you need

and/or want to use. The tools part of the SDK includes an emulator so you don’t need a

mobile device with the Android OS to develop Android applications. It also has a setup

utility to allow you to install the packages that you want to download.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 24

You can download the Android SDK from http://developer.android.com/sdk. The

Android SDK ships as a .zip file, similar to the way Eclipse is distributed, so you need to

unzip it to an appropriate location. For Windows, unzip the file to a convenient location

(we used our C: drive), after which you should have a folder called something like

C:\android-sdk-windows that will contain the files as shown in Figure 2–1. For Mac OS X

and Linux, you can unzip the file to your home directory. You will notice that Mac OS X

and Linux do not have an SDK Manager executable. The equivalent of the SDK Manager

in Mac OS X and Linux is to run the tools/android program.

An alternate approach (for Windows only) is to download an installer EXE instead of the

zip file, then run the installer executable. This executable will check for the Java JDK,

unpack the embedded files for you, and run the SDK Manager program to help you set

up the rest of the downloads.

Figure 2–1. Base contents of the Android SDK

Whether through using the Windows installer or by executing the SDK Manager, you

should install some packages next. When you first install the Android SDK it does not

come with any platform versions (i.e., versions of Android). Installing platforms is pretty

easy. Once you've launched the SDK Manager, choose Available Packages, choose the

https://dl-ssl.google.com/android/repository/repository.xml source, then select

the platforms and add-ons that you want, such as Android 2.3 (see Figure 2–2). You

must add Android SDK platform-tools in order for your environment to work. Because

we'll use it very shortly, please add at least the Android 1.6 platform.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 25

Figure 2–2. Adding packages to the Android SDK

Click Install Selected. You will need to click Accept for each item that you’re installing,

then click Install Accepted. Android will then download your packages and platforms to

make them available to you. The Google APIs are add-ons for developing applications

using Google Maps. You can always see the installed platforms by clicking Installed

packages on the left side of this window. And you can always come back to add more

packages later.

Updating Your PATH Environment Variable
The Android SDK comes with a tools directory that you’ll want to have in your PATH.

You also need in your PATH the platform-tools directory that you just installed. Let’s add

them now or, if you’re upgrading, let’s make sure they're correct. While you’re there,

you'll also add your JDK bin directory, which will make life easier later. For Windows, get

back to the Environment Variables window. Edit the PATH variable and add a semi-

colon (;) on the end, followed by the path to the Android SDK tools folder, followed by

another semi-colon, followed by the path to the Android SDK platform-tools folder,

following by another semi-colon, and then %JAVA_HOME%\bin. Click OK when done. For

Mac OS X and Linux, edit your .profile file and add the Android SDK tools directory

path to your PATH variable, as well as the Android SDK platform-tools directory and the

$JAVA_HOME/bin directory. Something like the following would work for Linux:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 26

export PATH=$PATH:$HOME/android-sdk-linux_x86/tools:$HOME/android-sdk-
linux_x86/platform-tools:$JAVA_HOME/bin

Just make sure that the path component that's pointing to the Android SDK tools

directories is correct for your particular setup.

The Tools Window
Later in this book there will be times when you need to execute a command-line utility

program. These programs will be part of the JDK or will be part of the Android SDK. By

having these directories in your PATH, you won't need to specify the full pathnames in

order to execute them, but you will need to start up a “tools window” in order to run

them (we’ll refer to this tools window in later chapters). The easiest way to create a tools

window in Windows is to click Start Run, type in cmd, and click OK. For Mac OS X,

choose Terminal from your Applications folder in Finder or from the Dock if it’s there. For

Linux, choose Terminal from the Applications Accessories menu.

One last thing while we’re talking about the differences between platforms: you may

need to know the IP address of your workstation later on. To do this in Windows, launch

a tools window and enter the command ipconfig. The results will contain an entry for

IPv4 (or something like that) with your IP address listed next to it. An IP address looks

something like this: 192.168.1.25. For Mac OS X and Linux, launch a tools window and

use the command ifconfig. You’ll find your IP address next to a label called “inet addr”.

You might see a network connection called “localhost” or “lo”. The IP address for this

network connection is 127.0.0.1. This is a special network connection used by the

operating system and is not the same as your workstation’s IP address. Look for a

different number for your workstation’s IP address.

Installing Android Development Tools (ADT)
Now you need to install ADT, an Eclipse plug-in that helps you build Android

applications. Specifically, ADT integrates with Eclipse to provide facilities for you to

create, test, and debug Android applications. You’ll need to use the Install New

Software facility within Eclipse to perform the installation. (The instructions for upgrading

ADT appear later in this section.) To get started, launch the Eclipse IDE and follow these

steps:

1. Select the Help menu item and choose the Install New Software… option. (This

was called Software Updates in previous versions of Eclipse.)

2. Select the Work with field, type in

https://dl-ssl.google.com/android/eclipse/

and press Return. Eclipse will contact the site and populate the list as shown in

Figure 2–3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 27

3. You should see an entry named Developer Tools with three child nodes: Android

DDMS, Android Development Tools, and Android Hierarchy Viewer. Select the

parent node Developer Tools, make sure the child nodes are also selected, and

click the Next button. The versions that you see could be newer than these, and

that’s okay. There may be additional tools here also.

4. Eclipse will ask you to verify the tools to install. Click Next again. This applies also

to Android Traceview which was added in Android 3.0.

5. You will be asked to review the licenses for ADT as well as for the tools required to

install ADT. Review the licenses, click “I accept...”, and then click the Finish button.

Figure 2–3. Installing ADT using the Install New Software feature in Eclipse

Eclipse will then download the Developer Tools and install them. You’ll need to restart

Eclipse for the new plug-in to show up in the IDE.

If you already have an older version of ADT in Eclipse, go to the Eclipse Help menu and

choose Check for Updates. You should see the new version of ADT and be able to

follow the installation instructions, picking up at step 3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 28

NOTE Android Hierarchy Viewer was added to the Developer Tools as of Android 2.3. Therefore,
if you are doing a new install of ADT, you'll pick it up. But if you're doing an upgrade of ADT, you
may not see Hierarchy Viewer in the list of tools to be upgraded. If you don’t see it, once you've

upgraded the rest of the ADT, go to Install New Software... and select https://dl-
ssl.google.com/android/eclipse/ from the Works With menu. The middle window
should show you Android Hierarchy Viewer so you can install it separately from the rest of the

ADT.

The final step to get ADT functional inside of Eclipse is to point it to the Android SDK.

Within Eclipse, select the Window menu and choose Preferences. (On Mac OS X,

Preferences is under the Eclipse menu.) In the Preferences dialog box, select the Android

node and set the SDK Location field to the path of the Android SDK (see Figure 2–4), then

click the Apply button. Note that you might see a dialog box asking if you want to send

usage statistics to Google concerning the Android SDK. That decision is up to you. Click

OK to close the Preferences window.

Figure 2–4. Pointing ADT to the Android SDK

From Eclipse, you can launch the SDK Manager. Within Eclipse, go to Window

Android SDK and AVD Manager. You should see the same window show up as in Figure

2–2, although you may not see all of the options on the left side as you do when

launching SDK Manager yourself.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 29

You are almost ready for your first Android application—but first, we must briefly discuss

the fundamental concepts of Android applications.

Learning the Fundamental Components
Every application framework has some key components that developers need to

understand before they can begin to write applications based on the framework. For

example, you would need to understand JavaServer Pages (JSP) and servlets in order to

write Java 2 Platform, Enterprise Edition (J2EE) applications. Similarly, you need to

understand activities, views, intents, content providers, services, and the

AndroidManifest.xml file when you build applications for Android. We will briefly cover

these fundamental concepts here and we’ll discuss them in more detail throughout the

book.

View
Views are user interface (UI) elements that form the basic building blocks of a user

interface. A view could be a button, label, text field, or many other UI elements. If you’re

familiar with views in J2EE and Swing then you’ll understand views in Android. Views are

also used as containers for views, which means that there's usually a hierarchy of views

in the UI. In the end, everything you see is a view.

Activity
An activity is a user interface concept. An activity usually represents a single screen in

your application. It generally contains one or more views, but it doesn’t have to. An

activity is pretty much like it sounds—something that helps the user do one thing—and

that one thing could be viewing data, creating data, or editing data. Most Android

applications have several activities within them.

Intent
An intent generically defines an “intention” to do some work. Intents encapsulate several

concepts, so the best approach to understanding them is to see examples of their use.

You can use intents to perform the following tasks:

 Broadcast a message.

 Start a service.

 Launch an activity.

 Display a web page or a list of contacts.

 Dial a phone number or answer a phone call.

Intents are not always initiated by your application—they’re also used by the system to

notify your application of specific events (such as the arrival of a text message).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 30

Intents can be explicit or implicit. If you simply say that you want to display a URL, the

system will decide what component will fulfill the intention. You can also provide specific

information about what should handle the intention. Intents loosely couple the action

and action handler.

Content Provider
Data sharing among mobile applications on a device is common. Therefore, Android

defines a standard mechanism for applications to share data (such as a list of contacts)

without exposing the underlying storage, structure, and implementation. Through

content providers, you can expose your data and have your applications use data from

other applications.

Service
Services in Android resemble services you see in Windows or other platforms—they’re

background processes that can potentially run for a long time. Android defines two

types of services: local services and remote services. Local services are components

that are only accessible by the application that is hosting the service. Conversely,

remote services are services that are meant to be accessed remotely by other

applications running on the device.

An example of a service is a component that is used by an e-mail application to poll for

new messages. This kind of service might be a local service if the service is not used by

other applications running on the device. If several applications use the service, then it

would be implemented as a remote service. The difference, as you’ll see in Chapter 11,

is in startService() vs. bindService().

You can use existing services and also write your own services by extending the

Service class.

AndroidManifest.xml
AndroidManifest.xml, which is similar to the web.xml file in the J2EE world, defines the

contents and behavior of your application. For example, it lists your application’s activities

and services, along with the permissions and features the application needs to run.

Android Virtual Devices
An Android Virtual Device (AVD) allows developers to test their applications without

hooking up an actual Android device (typically a phone or a tablet). AVDs can be created

in various configurations to emulate different types of real devices.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 31

Hello World!
Now you’re ready to build your first Android application. You’ll start by building a simple

“Hello World!” program. Create the skeleton of the application by following these steps:

1. Launch Eclipse and select File New Project. In the New Project dialog box,

select Android and then click Next. You will see the New Android Project dialog

box, as shown in Figure 2–5. (Eclipse might have added Android Project to the

New menu, so you can use it if it’s there.) There’s also a New Android Project

button on the toolbar.

Figure 2–5. Using the New Project wizard to create an Android application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 32

2. As shown in Figure 2–5, enter HelloAndroid as the project name. You need to

distinguish this project from other projects you'll create in Eclipse, so choose a

name that will make sense to you when you are looking at all the projects within

your Eclipse environment. Also note that the default location for the project will be

derived from the Eclipse workspace location. The New Project wizard appends

the name of the new application to the workspace location. In this case, if your

Eclipse workspace is c:\android, your new project will be at

c:\android\HelloAndroid\.

3. Leave the Contents section alone for now, since you want to create a new project

in your workspace in the default location.

4. For the Build Target, check Android 1.6, as shown in Figure 2–5. This will be the

version of Android you'll use as your base for the application. You'll be able to run

your application on later versions of Android, such as 2.1 and 2.3, but Android 1.6

has all the functionality you need so you'll choose it as your target. In general, it's

best to choose the lowest version number that you can, since that will maximize

the number of devices that can run your application.

5. Type in Hello Android as the application name. This is the name that will appear

with your application icon, in your application's title bar, and in application lists. It

should be descriptive but not too long.

6. Use com.androidbook.hello as the package name. Your application must have a

base package name and this is it. This package name will be used as an identifier

for your application and must be unique across all applications. For this reason,

it's best to start the package name with a domain name that you own. If you don't

own one, just be creative to ensure that your package name won't likely be used

by anyone else. However, don't use a package name that starts with com.google,

com.android, android or com.example as these are restricted by Google and you

would not be able to upload your application to Android Market.

7. Type HelloActivity as the Create Activity name. You're telling Android that this

activity should be the one to launch when your application starts up. You could

have other activities in your application, but this is the first one the user should

see when the application is started.

8. Finally, the Min SDK Version value of 4 tells Android that your application requires

Android 1.6 or newer. Technically, you could specify a Min SDK Version that is

less than the Build Target value. If your application calls for functionality that is

not present in the older version of Android, you will need to handle that situation

gracefully, but this can be done. For most applications, the Min SDK Version

number will match the Build Target number.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 33

9. Click the Finish button, which tells ADT to generate the project skeleton for you.

For now, open the HelloActivity.java file under the src folder and modify the

onCreate() method as follows:

/** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /** create a TextView and write Hello World! */
 TextView tv = new TextView(this);
 tv.setText("Hello World!");
 /** set the content view to the TextView */
 setContentView(tv);
 }

You'll probably need to add an import android.widget.TextView; statement to the

code to get rid of the error reported by Eclipse. Save the HelloActivity.java file.

To run the application, you’ll need to create an Eclipse launch configuration, and you’ll

need a virtual device on which to run it. We’re going to quickly take you through these

steps and come back later to more details about Android Virtual Devices (AVDs). Create

the Eclipse launch configuration by following these steps:

1. Select the main Run menu, then choose the Run Configurations menu item.

2. In the Run Configurations dialog box, double-click Android Application in the left

pane. The wizard will insert a new configuration named New Configuration.

3. Rename the configuration RunHelloWorld.

4. Click the Browse button and select the HelloAndroid project.

5. Under Launch Action, select Launch: and select

com.androidbook.hello.HelloActivity from the drop-down list. The dialog should

appear as shown in Figure 2–6.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 34

Figure 2–6. Configuring an Eclipse launch configuration to run the “Hello World!” application

6. Click Apply and then Run. You’re almost there! Eclipse is ready to run your

application, but it needs a device on which to run it. As shown in Figure 2–7, you

will be warned that no compatible targets were found and asked if you’d like to

create one. Click Yes.

Figure 2–7. Error message warning about targets and asking for a new AVD

7. You’ll be presented with a window that shows the existing AVDs (see Figure 2–8).

Note that this is the same window you saw in Figure 2–2 when you installed

packages, but now you're looking at the virtual devices. You’ll need to add an

AVD suitable for your new application. Click the New button.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 35

Figure 2–8. The existing Android Virtual Devices

8. Fill in the Create AVD form as shown in Figure 2–9. Set Name to Gingerbread,

choose Android 2.3 - API Level 9 (or some other version) for the Target, set SD

Card Size to 10 (for 10MB), enable Snapshots, and choose HVGA for Skin. Click

Create AVD. The Manager may confirm the successful creation of your AVD.

Close the Android SDK and AVD Manager window by clicking X in the upper right

corner.

NOTE: You’re choosing a newer version of the SDK for your Android Virtual Device, but your
application could also run on an older one. This is okay because AVDs with newer SDKs can run
applications that require older SDKs. The opposite, of course, would not be true: an application

that requires features of a newer SDK won’t run on an AVD with an older SDK.

9. Finally, select your new AVD from the bottom list. Note that you may need to click

the Refresh button for any new AVDs to show up in the list. Click the OK button.

10. Eclipse will now launch the emulator with your very first Android app (see Figure

2–10)!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 36

Figure 2–9. Configuring an Android Virtual Device

NOTE: It might take the emulator a while to emulate the device bootup process. Once the bootup
process has completed, you will typically see a locked screen. Press the Menu button or drag on

the unlock image to unlock the AVD. After unlocking, you should see HelloAndroidApp running in
the emulator, as shown in Figure 2–10. Be aware that the emulator starts other applications in
the background during the startup process, so you might see a warning or error message from

time to time. If you see an error message, you can generally dismiss it to allow the emulator to
go to the next step in the startup process. For example, if you run the emulator and see a
message like “application abc is not responding,” you can either wait for the application to start

or simply ask the emulator to forcefully close the application. Generally, you should wait and let

the emulator start up cleanly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 37

Figure 2–10. HelloAndroidApp running in the emulator

Now you know how to create a new Android application and run it in the emulator. Next,

we’ll look more closely at Android Virtual Devices, followed by a deeper dive into an

Android application’s artifacts and structure.

Android Virtual Devices
An AVD represents a device configuration. For example, you could have an AVD

representing an older Android device running version 1.5 of the SDK with a 32MB SD

card. The idea is that you create AVDs you are going to support and then point the

emulator to one of those AVDs when developing and testing your application. Specifying

(and changing) which AVD to use is very easy and makes testing with various

configurations a snap. Earlier you saw how to create an AVD using Eclipse. You can

make more AVDs in Eclipse by going to Window Android SDK and AVD Manager and

clicking Virtual Devices on the left side. You can also create AVDs using the command

line. Here’s how.

To create an AVD, you’ll use a batch file named android under the tools directory

(c:\android-sdk-windows\tools\). android allows you to create a new AVD and manage

existing AVDs. For example, you can view existing AVDs, move AVDs, and so on. You

can see the options available for using android by running android –help. For now, let’s

just create an AVD.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 38

By default, AVDs are stored under your home directory (all platforms) in a folder called

.android\AVD. If you created an AVD for the “Hello World!” application you just created,

then you will find it here. If you want to store or manipulate AVDs somewhere else, you

can do that, too. For this example, let’s create a folder where the AVD image will be

stored, such as c:\avd\. The next step is to list your available Android targets using the

following command inside of a tools window:

android list target

The output of this command is a list of all installed Android versions, and each item in

the list has an ID. Now, run the android file to create the AVD. Using the tools window

again, type the following command (using an appropriate path to store the AVD files for

your workstation, and using an appropriate value for the -t ID argument based on what

SDK platform targets you installed):

android create avd -n CupcakeMaps -t 2 -c 16M -p c:\avd\CupcakeMaps\

The parameters passed to the batch file are listed in Table 2–1.

Table 2–1. Parameters Passed to the android.bat Tool

Argument/Command Description

create avd Tells the tool to create an AVD.

n The name of the AVD.

t The target runtime ID.

Use the android list target command to get the ID for each installed

target.

c Size of the SD card in bytes. Use K for kilobytes and M for megabytes.

p The path to the generated AVD. This is optional.

A Enables snapshots. This is optional. Snapshots will be explained later

in the “Launching the Emulator” section.

Executing the preceding command will generate an AVD; you should see output similar

to what’s shown in Figure 2–11. Note that when you run the create avd command, you

are asked if you want to create a custom hardware profile. Answer no to this question

for now, but know that answering yes will then prompt you to configure many options for

your AVD, such as screen size, presence of a camera, and so on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 39

Figure 2–11. Creating an AVD yields this android.bat output

Even though you specified an alternate location for CupcakeMaps using the android.bat

program, there is a CupcakeMaps.ini file under your home directory’s .android/AVD

folder. This is a good thing because if you go back into Eclipse, and select Window

Android SDK and AVD Manager, you will see all of your AVDs. You can access any of

them when running your Android applications within Eclipse.

Take another look at Figure 2–4. Each version of Android has an API level. Android 1.6

has an API level of 4 and Android 2.1 has an API level of 7. These API level numbers do

not correspond to the target IDs that the android create avd command uses for the -t

argument. You'll always have to use the android list target command to get the

appropriate target ID value for the android create avd command.

Also be aware that selecting a Google API from the SDK Target list will include mapping

functionality in your AVD, while selecting Android 1.5 or later will not. We'll get into much

more detail about maps in Chapter 17.

Exploring the Structure of an Android Application
Although the size and complexity of Android applications can vary greatly, their

structures will be similar. Figure 2–12 shows the structure of the “Hello World!” app you

just built.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 40

Figure 2–12. The structure of the “Hello World!” application

Android applications have some artifacts that are required and some that are optional.

Table 2–2 summarizes the elements of an Android application.

Table 2–2. The Artifacts of an Android Application

Artifact Description Required?

AndroidManifest.xmlThe Android application descriptor file. This file defines the

activities, content providers, services, and intent receivers of

the application. You can also use this file to declaratively

define permissions required by the application, as well as

grant specific permissions to other applications using the

services of the application. Moreover, the file can contain

instrumentation detail that you can use to test the application

or another application.

Yes

src A folder containing all of the source code of the application. Yes

assets An arbitrary collection of folders and files. No

res A folder containing the resources of the application. This is the

parent folder of drawable, anim, layout, menu, values, xml, and

raw.

Yes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 41

Artifact Description Required?

drawable A folder containing the images or image-descriptor files used

by the application.

No

anim A folder containing the XML-descriptor files that describe the

animations used by the application.

No

layout A folder containing views of the application. You should create

your application’s views by using XML descriptors rather than

coding them.

No

menu A folder containing XML-descriptor files for menus in the

application.

No

values A folder containing other resources used by the application.

Examples of resources found in this folder include strings,

arrays, styles, and colors.

No

xml A folder containing additional XML files used by the

application.

No

raw A folder containing additional data—possibly non-XML data—

that is required by the application.

No

As you can see from Table 2–2, an Android application is primarily made up of three

pieces: the application descriptor, a collection of various resources, and the application’s

source code. If you put aside the AndroidManifest.xml file for a moment, you can view an

Android app in this simple way: you have some business logic implemented in code, and

everything else is a resource. This basic structure resembles the basic structure of a J2EE

app, where the resources correlate to JSPs, the business logic correlates to servlets, and

the AndroidManifest.xml file correlates to the web.xml file.

You can also compare J2EE’s development model to Android’s development model. In

J2EE, the philosophy of building views is to build them using markup language. Android

has also adopted this approach, although the markup in Android is XML. You benefit

from this approach because you don’t have to hard-code your application’s views; you

can modify the look and feel of the application by editing the markup.

It is also worth noting a few constraints regarding resources. First, Android supports

only a linear list of files within the predefined folders under res. For example, it does not

support nested folders under the layout folder (or the other folders under res). Second,

there are some similarities between the assets folder and the raw folder under res. Both

folders can contain raw files, but the files within raw are considered resources and the

files within assets are not. So the files within raw will be localized, accessible through

resource IDs, and so on. But the contents of the assets folder are considered general-

purpose contents to be used without resource constraints and support. Note that

because the contents of the assets folder are not considered resources, you can put an

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 42

arbitrary hierarchy of folders and files within it. (We’ll talk a lot more about resources in

Chapter 3.)

NOTE: You might have noticed that XML is used quite heavily with Android. We all know that
XML is a bloated data format, so this begs the question, does it make sense to rely on XML when

you know your target is going to be a device with limited resources? It turns out that the XML you
create during development is actually compiled down to binary using the Android Asset
Packaging Tool (AAPT). Therefore, when your application is installed on a device, the files on the

device are stored as binary. When the file is needed at runtime, the file is read in its binary form
and is not transformed back into XML. This gives you the benefits of both worlds—you get to

work with XML and you don’t have to worry about taking up valuable resources on the device.

Analyzing the Notepad Application
Not only have you learned how to create a new Android application and run it in the

emulator, but you should also have a feel for the artifacts of an Android application.

Next, we are going to look at the Notepad application that ships with the Android SDK.

Notepad’s complexity falls between that of the “Hello World!” app and a full-blown

Android application, so analyzing its components will give you some realistic insight into

Android development. This is going to be a quick run-through of the Notepad

application. You may find some of these concepts difficult to grasp at this time, but

don't worry; this book will go into much greater detail on all these concepts in the

chapters that follow.

Loading and Running the Notepad Application
In this section, we’ll show you how to load the Notepad application into the Eclipse IDE

and run it in the emulator. Before we start, you should know that the Notepad

application implements several use cases. For example, the user can create a new note,

edit an existing note, delete a note, view the list of created notes, and so on. When the

user launches the application, there aren’t any saved notes yet, so the user sees an

empty note list. If the user presses the Menu key, the application presents him with a list

of actions, one of which allows him to add a new note. After he adds the note, he can

edit or delete the note by selecting the corresponding menu option.

Follow these steps to load the Notepad sample into the Eclipse IDE:

1. Start Eclipse.

2. Go to File New Project.

3. In the New Project dialog, select Android Android Project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 43

4. In the New Android Project dialog, type in NotesList for the Project name, select

“Create project from existing sample,” then select a Build Target of Android 1.6.

In the Samples menu, scroll down to the Notepad application. Note that the

Notepad application is located in the platforms\android-1.6\samples folder of

the Android SDK that you downloaded earlier. After you choose Notepad, the

dialog reads the AndroidManifest.xml file and prepopulates the remaining fields in

the New Android Project dialog box. (See Figure 2–13.)

5. Click the Finish button.

You should now see the NotesList application in your Eclipse IDE. If you see any

problems reported in Eclipse for this project, try using the Clean option from the Project

menu in Eclipse to clear them. To run the application, you can create a launch

configuration (as you did for the “Hello World!” application), or you can simply right-click

the project, choose Run As, and select Android Application. This will launch the

emulator and install the application on it. After the emulator has completed loading,

unlock the emulator screen so you can see your new NotesList application. Play around

with the application for a few minutes to become familiar with it.

Figure 2–13. Creating the Notepad application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 44

Dissecting the Application
Now let’s study the contents of the application (see Figure 2–14).

As you can see, the application contains several .java files, a few .png images, three

views (under the layout folder), and the AndroidManifest.xml file. If this were a

command-line application, you would start looking for the class with the Main method.

So what’s the equivalent of a Main method in Android?

Android defines an entry-point activity, also called the top-level activity. If you look in the

AndroidManifest.xml file, you’ll find one provider and three activities. The NotesList

activity defines an intent-filter for the action android.intent.action.MAIN and for the

category android.intent.category.LAUNCHER. When an Android application is asked to

run, the host loads the application and reads the AndroidManifest.xml file. It then looks

for, and starts, an activity or activities with an intent-filter that has the MAIN action with a

category of LAUNCHER, as shown here:

<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

Figure 2–14. Contents of the Notepad application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 45

After the host finds the activity it wants to run, it must resolve the defined activity to an

actual class. It does this by combining the root package name and the activity name,

which in this case becomes com.example.android.notepad.NotesList (see Listing 2–1).

Listing 2–1. The AndroidManfiest.xml File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.notepad"
>
 <application android:icon="@drawable/app_notes"
 android:label="@string/app_name"
 >
 <provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"
 />
 <activity android:name="NotesList" android:label="@string/title_notes_list">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />
 <action android:name="android.intent.action.PICK" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.GET_CONTENT" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />
 </intent-filter>
 </activity>
…
</manfiest>

The application’s root package name is defined as an attribute of the <manifest>

element in the AndroidManifest.xml file, and each activity has a name attribute.

Once the entry-point activity is determined, the host starts the activity and the

onCreate() method is called. Let’s have a look at NotesList.onCreate(), shown in

Listing 2–2.

Listing 2–2. The onCreate Method

public class NotesList extends ListActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setDefaultKeyMode(DEFAULT_KEYS_SHORTCUT);
 Intent intent = getIntent();
 if (intent.getData() == null) {
 intent.setData(Notes.CONTENT_URI);
 }

 getListView().setOnCreateContextMenuListener(this);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 46

 Cursor cursor = managedQuery(getIntent().getData(), PROJECTION, null, null,
 Notes.DEFAULT_SORT_ORDER);

 SimpleCursorAdapter adapter =
 new SimpleCursorAdapter(this, R.layout.noteslist_item,
 cursor, new String[] { Notes.TITLE }, new int[] { android.R.id.text1 });
 setListAdapter(adapter);
 }
}

Activities in Android are usually started with an intent, and one activity can start another

activity. The onCreate() method checks whether the current activity’s intent has data

(notes). If not, it sets the URI to retrieve the data on the intent. In Chapter 4, we’ll show

that Android accesses data through content providers that operate on URIs. In this case,

the URI provides enough information to retrieve data from a database. The constant

Notes.CONTENT_URI is defined as a static final in Notepad.java, like so:

public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/notes");

The Notes class is an inner class of the Notepad class. For now, know that the preceding

URI tells the content provider to get all of the notes. If the URI looked something like this

public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/notes/11");

then the consuming content provider would return the note with an ID equal to 11. We

will discuss content providers and URIs in depth in Chapter 4.

The NotesList class extends the ListActivity class, which knows how to display list-

oriented data. The items in the list are managed by an internal ListView (a UI

component), which displays the notes in the list. After setting the URI on the activity’s

intent, the activity registers to build the context menu for notes. If you’ve played with the

application, you probably noticed that context-sensitive menu items are displayed

depending on your selection. For example, if you select an existing note, the application

displays Edit note and Edit title. Similarly, if you don’t select a note, the application

shows you the Add note option.

Next, you see the activity execute a managed query and get a cursor for the result. A

managed query means that Android will manage the returned cursor. As part of

managing the cursor, if the application has to be unloaded or reloaded, neither the

application nor the activity has to worry about positioning the cursor, loading it, or

unloading it. The parameters to managedQuery(), shown in Table 2–3, are interesting.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 47

Table 2–3. Parameters to Activity.managedQuery

Parameter Data Type Description

URI Uri URI of the content provider

projection String[] The column to return (column names)

selection String Optional where clause

selectionArgs String[] The arguments to the selection, if the query contains ?s

sortOrder String Sort order to be used on the result set

We will discuss managedQuery() and its sibling query() later in this section and also in

Chapter 4. For now, realize that a query in Android returns tabular data. The projection

parameter allows you to define the columns you are interested in. You can also reduce

the overall result set and sort the result set using a SQL order-by clause (such as asc or

desc). Also note that an Android query must return a column named _ID to support

retrieving an individual record. Moreover, you must know the type of data returned by

the content provider—whether a column contains a string, int, binary, or the like.

After the query is executed, the returned cursor is passed to the constructor of

SimpleCursorAdapter, which adapts records in the dataset to items in the user interface

(ListView). Look closely at the parameters passed to the constructor of
SimpleCursorAdapter.

 SimpleCursorAdapter adapter =
 new SimpleCursorAdapter(this, R.layout.noteslist_item,
 cursor, new String[] { Notes.TITLE }, new int[] { android.R.id.text1 });

Specifically, look at the second parameter: an identifier to the view that represents the

items in the ListView. As you’ll see in Chapter 3, Android provides an auto-generated

utility class that provides references to the resources in your project. This utility class is

called the R class (which is short for resources). Its filename is R.java and you can see it

in Figure 2–14. When you compile your project, the AAPT generates the R class for you

from the resources defined within your res folder. For example, you could put all your

string resources into the values folder and the AAPT will generate a public static

identifier for each string. Android supports this generically for all of your resources. For

example, in the constructor of SimpleCursorAdapter, the NotesList activity passes in the

identifier of the view that displays an item from the notes list. The benefit of this utility

class is that you don’t have to hard-code your resources and you get compile-time

reference checking. In other words, if a resource is deleted, the R class will lose the

reference and any code referring to the resource will not compile.

Let’s look at another important concept in Android that we alluded to earlier: the

onListItemClick() method of NotesList (see Listing 2–3).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 48

Listing 2–3. The onListItemClick Method

 @Override
 protected void onListItemClick(ListView l, View v, int position, long id) {
 Uri uri = ContentUris.withAppendedId(getIntent().getData(), id);

 String action = getIntent().getAction();
 if (Intent.ACTION_PICK.equals(action) ||
Intent.ACTION_GET_CONTENT.equals(action)) {
 setResult(RESULT_OK, new Intent().setData(uri));
 } else {
 startActivity(new Intent(Intent.ACTION_EDIT, uri));
 }
 }

The onListItemClick() method is called when a user selects a note in the UI. There are

two use cases implemented by this method. In the first case, your notes list activity

could be invoked via an intent so the user could select a specific note that would be

returned to the calling activity. In the second case, you could be simply looking at the

list of notes; upon selecting a note, your current activity will invoke an edit activity on the

selected note. When a note is selected, the method creates a URI by taking the base

URI and appending the selected note’s ID to it. If your activity was called via an intent to

either pick a note or get the content of a note, you call setResult() to return the URI of

the selected note back to the caller. If you're the second use case, the URI is passed to

startActivity() with a new intent. startActivity() is one way to start an activity: it

starts an activity but doesn’t report on the results of the activity after it completes.

Another way to start an activity is to use startActivityForResult(). With this method,

you can start another activity and use a callback to be notified when the activity

completes so you can grab the results. For example, the activity that calls NotesList to

select a note would use startActivityForResult() so that they get notified with the

answer after your NotesList activity calls setResult().

At this point, you might be wondering about user interaction with respect to activities.

For example, if the running activity starts another activity, and that activity starts an

activity (and so on), then what activity can the user work with? Can she manipulate all

the activities simultaneously, or is she restricted to a single activity? Actually, activities

have a defined lifecycle. They’re maintained on an activity stack, with the running activity

at the top. If the running activity starts another activity, the first running activity moves

down the stack and the new activity is placed on the top. Activities lower in the stack

can be in a paused or stopped state. A paused activity is partially or fully visible to the

user; a stopped activity is not visible to the user. The system can kill paused or stopped

activities if it deems that resources are needed elsewhere.

Let’s move on to data persistence. The notes that a user creates are saved to an actual

database on the device. Specifically, the Notepad application’s backing store is a

SQLite database. The managedQuery() method discussed earlier eventually resolves to

data in a database via a content provider. Let’s examine how the URI passed to

managedQuery() results in the execution of a query against a SQLite database. Recall

that the URI passed to managedQuery() looks like this:

public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/notes");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 49

Content URIs always have this form: content://, followed by the authority, followed by

a general segment (context-specific). Because the URI doesn’t contain the actual data, it

somehow results in the execution of code that produces data. What is this connection?

How is the URI reference resolved to code that produces data? Is the URI an HTTP

service or a web service? Actually, the URI, or the authority portion of the URI, is

configured in the AndroidManifest.xml file as a content provider, like so:

<provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"/>

When Android sees a URI that needs to be resolved, it pulls out the authority portion of it

and looks up the ContentProvider class configured for the authority. In the Notepad

application, the AndroidManifest.xml file contains a class called NotePadProvider

configured for the com.google.provider.NotePad authority. Listing 2–4 shows a small

portion of the class.

Listing 2–4. The NotePadProvider Class

public class NotePadProvider extends ContentProvider
{

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs,String sortOrder) {}

 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {}

 @Override
 public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {}

 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {}

 @Override
 public String getType(Uri uri) {}

 @Override
 public boolean onCreate() {}

 private static class DatabaseHelper extends SQLiteOpenHelper {}

 @Override
 public void onCreate(SQLiteDatabase db) {}

 @Override
 public void onUpgrade(SQLiteDatabase db,
 int oldVersion, int newVersion) {
 //...
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 50

The NotePadProvider class extends the ContentProvider class. The ContentProvider
class defines six abstract methods, four of which are CRUD (Create, Read, Update,

Delete) operations. The other two abstract methods are onCreate() and getType(). Note

that onCreate() is called when the content provider is created for the first time;

getType() provides the MIME type for the result set (you’ll see how MIME types work

when you read Chapter 3).

The other interesting thing about the NotePadProvider class is the internal

DatabaseHelper class, which extends the SQLiteOpenHelper class. Together, the two

classes take care of initializing the Notepad database, opening and closing it, and

performing other database tasks. Interestingly, the DatabaseHelper class is just a few

lines of custom code (see Listing 2–5), while the Android implementation of

SQLiteOpenHelper does most of the heavy lifting.

Listing 2–5. The DatabaseHelper Class

 private static class DatabaseHelper extends SQLiteOpenHelper {

 DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + NOTES_TABLE_NAME + " ("
 + Notes._ID + " INTEGER PRIMARY KEY,"
 + Notes.TITLE + " TEXT,"
 + Notes.NOTE + " TEXT,"
 + Notes.CREATED_DATE + " INTEGER,"
 + Notes.MODIFIED_DATE + " INTEGER"
 + ");");
 }

 //…
}

As shown in Listing 2–5, the onCreate() method creates the Notepad table. Notice that

the class’s constructor calls the superclass’s constructor with the name of the table. The

superclass will call the onCreate() method only if the table does not exist in the

database. Also notice that one of the columns in the Notepad table is the _ID column we

discussed in the section “Dissecting the Application.”

Now let’s look at one of the CRUD operations: the insert() method shown in Listing 2–6.

Listing 2–6. The insert() Method

//…
SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 long rowId = db.insert(NOTES_TABLE_NAME, Notes.NOTE, values);
 if (rowId > 0) {
 Uri noteUri = ContentUris.withAppendedId(
 NotePad.Notes.CONTENT_URI, rowId);
 getContext().getContentResolver().notifyChange(noteUri, null);
 return noteUri;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 51

The insert() method uses its internal DatabaseHelper instance to access the database

and then inserts a notes record. The returned row ID is then appended to the URI and a

new URI is returned to the caller.

At this point, you should be familiar with how an Android application is laid out. You

should be able to navigate your way around Notepad and some of the other samples in

the Android SDK. You should be able to run the samples and play with them. Now let’s

look at the overall lifecycle of an Android application.

Examining the Application Lifecycle
The lifecycle of an Android application is strictly managed by the system, based on the

user’s needs, available resources, and so on. A user might want to launch a web

browser, for example, but the system ultimately decides whether to start the application.

Although the system is the ultimate manager, it adheres to some defined and logical

guidelines to determine whether an application can be loaded, paused, or stopped. If

the user is currently working with an activity, the system will give high priority to that

application. Conversely, if an activity is not visible and the system determines that an

application must be shut down to free up resources, it will shut down the lower-priority

application.

Contrast this with the lifecycle of web-based J2EE applications. J2EE apps are loosely

managed by the container they run in. For example, a J2EE container can remove an

application from memory if it sits idle for a predetermined time period. But the container

generally won’t move applications in and out of memory based on load and/or available

resources. A J2EE container will generally have sufficient resources to run lots of

applications at the same time. With Android, resources are more limited so Android

must have more control and power over applications.

NOTE: Android runs each application in a separate process, each of which hosts its own virtual
machine. This provides a protected-memory environment. By isolating applications to an
individual process, the system can control which application deserves higher priority. For
example, a background process that’s doing a CPU-intensive task can’t block an incoming phone

call.

The concept of application lifecycle is logical, but a fundamental aspect of Android

applications complicates matters. Specifically, the Android application architecture is

component- and integration-oriented. This allows a rich user experience, seamless

reuse, and easy application integration, but creates a complex task for the application-

lifecycle manager.

Let’s consider a typical scenario. A user is talking to someone on the phone and needs

to open an e-mail message to answer a question. She goes to the home screen, opens

the mail application, opens the e-mail message, clicks a link in the e-mail, and answers

her friend’s question by reading a stock quote from a web page. This scenario would

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 52

require four applications: the home application, a talk application, an e-mail application,

and a browser application. As the user navigates from one application to the next, her

experience is seamless. In the background, however, the system is saving and restoring

application state. For instance, when the user clicks the link in the e-mail message, the

system saves metadata on the running e-mail message activity before starting the

browser-application activity to launch a URL. In fact, the system saves metadata on any

activity before starting another so that it can come back to the activity (when the user

backtracks, for example). If memory becomes an issue, the system will have to shut

down a process running an activity and resume it as necessary.

Android is sensitive to the lifecycle of an application and its components. Therefore,

you’ll need to understand and handle lifecycle events in order to build a stable

application. The processes running your Android application and its components go

through various lifecycle events, and Android provides callbacks that you can implement

to handle state changes. For starters, you’ll want to become familiar with the various

lifecycle callbacks for an activity (see Listing 2–7).

Listing 2–7. Lifecycle Methods of an Activity

 protected void onCreate(Bundle savedInstanceState);
 protected void onStart();
 protected void onRestart();
 protected void onResume();
 protected void onPause();
 protected void onStop();
 protected void onDestroy();

Listing 2–7 shows the list of lifecycle methods that Android calls during the life of an

activity. It’s important to understand when each of the methods is called by the system

in order to ensure that you implement a stable application. Note that you do not need to

react to all of these methods. If you do, however, be sure to call the superclass versions

as well. Figure 2–15 shows the transitions between states.

Figure 2–15. State transitions of an activity

The system can start and stop your activities based on what else is happening. Android

calls the onCreate() method when the activity is freshly created. onCreate() is always

followed by a call to onStart(), but onStart() is not always preceded by a call to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 53

onCreate() because onStart() can be called if your application was stopped. When

onStart() is called, your activity is not visible to the user, but it’s about to be.

onResume() is called after onStart(), just when the activity is in the foreground and

accessible to the user. At this point, the user can interact with your activity.

When the user decides to move to another activity, the system will call your activity’s

onPause() method. From onPause(), you can expect either onResume() or onStop() to be

called. onResume() is called, for example, if the user brings your activity back to the

foreground. onStop() is called if your activity becomes invisible to the user. If your

activity is brought back to the foreground after a call to onStop(), then onRestart() will

be called. If your activity sits on the activity stack but is not visible to the user, and the

system decides to kill your activity, onDestroy() will be called.

The state model described for an activity appears complex, but you are not required to

deal with every possible scenario. In fact, you will mostly handle onCreate(),
onResume(), and onPause(). You will handle onCreate() to create the user interface for

your activity. In this method, you will bind data to your widgets and wire up any event

handlers for your UI components. In onPause(), you will want to persist critical data to

your application’s data store. It’s the last safe method that will get called before the

system kills your application. onStop() and onDestroy() are not guaranteed to be called,

so don’t rely on these methods for critical logic.

The takeaway from this discussion? The system manages your application, and it can

start, stop, or resume an application component at any time. Although the system

controls your components, they don’t run in complete isolation with respect to your

application. In other words, if the system starts an activity in your application, you can

count on an application context in your activity. For example, it's possible to have global

variables shared among the activities in your application. You can share a global variable

by writing an extension of the android.app.Application class and then initializing the

global variable in the onCreate() method (see Listing 2–8). Activities and other

components in your application can then access these references with confidence when

they are executing. We'll talk more about this concept in Chapter 11.

Listing 2–8. An Extension of the Application Class

public class MyApplication extends Application
{
 // global variable
 private static final String myGlobalVariable;

 @Override
 public void onCreate()
 {
 super.onCreate();
 //... initialize global variables here
 myGlobalVariable = loadCacheData();
 }

 public static String getMyGlobalVariable() {
 return myGlobalVariable;
 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 54

So far, we've covered the basics of creating a new Android app, running an Android app

in the emulator, the basic structure of an Android app, and several of the common

features you'll find in many Android apps. But we haven't shown you how to resolve

problems that will occur in Android apps. In the final section of this chapter, we will

discuss debugging.

Debugging Your App
After you write a few lines of code for your first application, you’ll start wondering if it’s

possible to have a debug session while you interact with your application. The answer is

yes. The Android SDK includes a host of tools that you can use for debugging purposes.

These tools are integrated with the Eclipse IDE (see Figure 2–16 for a small sample).

Figure 2–16. Debugging tools that you can use while building Android applications

One of the tools that you’ll use throughout your Android development is LogCat. This

tool displays the log messages that you emit using android.util.Log, exceptions,

System.out.println, and so on. While System.out.println works and the messages

show up in the LogCat window, to log messages from your application, you’ll want to

use the android.util.Log class. This class defines the familiar informational, warning,

and error methods that you can filter within the LogCat window to see just what you

want to see. A sample Log command is:

Log.v("string TAG", "This is my verbose message to write to the log");

What's particularly nice about LogCat is that you can view log messages when you're

running your application in the emulator, but you can also view log messages when

you've connected a real device to your workstation and it's in debug mode. In fact, log

messages are stored such that you can even retrieve the most recent messages from a

device that was disconnected when the log messages were recorded. When you

connect up a device to your workstation and you have the LogCat view open, you'll see

the last several hundred messages.

There are two things you need to know about debugging applications on a real device.

The first is that the application must be set to debuggable in the AndroidManifest.xml

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 55

file. This involves adding android:debuggable="true" to the <application> tag.

Fortunately, the ADT will set this for properly for you. When you're creating debug builds

for the emulator or deploying directly from Eclipse to a device, this attribute is set to true

by ADT. When you export your application to create a production version of your

application, ADT knows not to set debuggable to true. Note that if you set it yourself in

AndroidManifest.xml, it will stay set no matter what. The second thing to know is that

the device must be put into USB Debug mode. To find this setting, go to the device's

Settings screen, then choose Application, then Development. Make sure that Enable

USB Debugging is checked.

While LogCat is very useful for watching log messages, you'll definitely want to have

more control and more information about your application as it runs. There are two

Eclipse perspectives you'll want to become familiar with: DDMS and Debug. DDMS

stands for Dalvik Debug Monitor Server. This perspective gives you insight into the

applications that are running on the emulator or device, the threads within an

application, heap (or memory) within applications, plus a file explorer and an emulator

controller so you can simulate GPS events, incoming phone calls, or SMS messages.

The file explorer allows you to browse through the file system on the device, and even

push or pull files between the device (or emulator) and your workstation. You can also

force garbage collections, kill applications, and grab screen shots.

From within DDMS, you can select one of your running applications and connect to it for

debugging. This will take you to the Debug perspective. You can also start debugging

an application from the Java perspective by right-clicking on it and selecting Debug As

 Android Application; this will also take you to the Debug perspective. Either way,

Eclipse has facilities for tracking threads, setting and clearing breakpoints in your code,

inspecting variables, and stepping into or over statements. It's a powerful tool for

troubleshooting application problems.

You can view the tools by selecting the DDMS or Debug perspective in Eclipse. You can

also launch each tool by going to Window Show View Other Android. For

example, if you want LogCat or the File Explorer in the Java perspective, you could

simply do a Window Show View to add it.

You can also get detailed tracing information of your Android application by using the

android.os.Debug class, which provides a start-tracing method

(Debug.startMethodTracing(“basename”)) and a stop-tracing method

(Debug.stopMethodTracing()). Android will create a trace file on the device (or emulator)

on the SD card with a filename of "basename.trace". You can then copy the trace file to

your workstation and view the tracer output using the traceview tool included in the

Android SDK tools directory, with the trace filename as the only argument to traceview.

Chapter 19 has extensive coverage of the SD card and how to pull files from it.

There are several other debugging tools you can use from a command line (or tools

window). The Android Debug Bridge (adb) command allows you to install, update, and

remove applications. You can start a shell on the emulator or device and from there you

can run the subset of Linux commands that Android provides. For example, you can

browse the file system, list processes, read the Log, even connect to SQLite databases

and execute SQL commands.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 56

Another powerful technique is to run the Emulator Console, which obviously only works

with the emulator. To get started once the emulator is up and running, you'd type the

following in a tools window

telnet localhost port#

where port# is where the emulator is listening. The port# is typically displayed in the

emulator window title and is often a value such as 5554. Once the emulator console has

launched, you type in commands to simulate GPS events, SMS messages, even battery

and network status changes.

Launching the Emulator
Earlier we showed you how to launch the emulator from your project in Eclipse. In most

cases, you'll want to launch the emulator first, then deploy and test your applications in

a running emulator. To launch an emulator anytime, first go to the Android SDK and AVD

Manager by either running the android program from the tools directory of the Android

SDK or from the Window menu of Eclipse. Once in the Manager, click on Virtual devices

on the left side, choose the desired AVD from the list on the right, and click Start.

When you click on the Start button, you get a Launch Options dialog (see Figure 2–17).

This allows you to scale the size of the emulator's window and change the startup and

shutdown options. When working with AVDs of small to medium screen devices, you will

often just use the default screen size. But for large and extra-large screen sizes, such as

with tablets, the default screen size may not fit nicely on the screen of your workstation.

If that's the case, you can enable "Scale display to real size" and put in a value. This

label is somewhat misleading, as tablets may have a different screen density than your

workstation, and the emulator won't perfectly match the actual physical measurement of

the emulator window on your screen. For example, on my workstation screen, when

emulating a Honeycomb tablet with its 10 inch screen, a "real size" of 10 inches

corresponds to a scale of .64 and a screen that is a bit larger on my workstation screen

than 10 inches. Pick the value that works for you based on your screen size and screen

density,

Figure 2–17. The Launch Options dialog

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 57

The Launch Options dialog is also where you can work with snapshots. Saving to a

snapshot causes a somewhat longer delay when you exit the emulator. As the name

suggests, you are writing out the current state of the emulator to a snapshot image file,

which can then be used the next time you launch to avoid going through an entire

Android boot-up sequence. Launching will go much faster if a snapshot is present,

making the delay at save time well worth it—you basically pick up where you left off. If

you want to start completely fresh, you can choose Wipe user data. You can also

unselect Launch from snapshot to keep the user data and go through the boot-up

sequence. Or you can create a snapshot that you like and enable only the Launch from

snapshot option; this will reuse the snapshot over and over so your startup is fast and

the shutdown is fast too, since it won't create a new snapshot image file every time it

exits. The snapshot image file is stored in the same directory as the rest of the AVD

image files. To use snapshots with an AVD, you must have enabled snapshots when you

created the AVD.

StrictMode
Android 2.3 introduced a new debugging feature called StrictMode, and according to

Google, this feature was used to make hundreds of improvements to the Google

applications available for Android. So what does it do? It will report violations of policies

related to threads and related to the virtual machine. If a policy violation is detected, you

will get an alert, and that alert will include a stack trace to show you where your

application was when the violation occurred. You can force a crash with the alert, or you

can just log the alert and let your application carry on. The policy details can be difficult

to determine, and we expect that Google will be adding policies as Android matures.

There are two types of policies currently available with StrictMode. The first policy

relates to threads and is intended mostly to run against the main thread (also known as

the UI thread). It is not good practice to do disk reads and writes from the main thread,

nor is it good practice to perform network accesses from the main thread. Google has

added StrictMode hooks into the disk and network code; if you enable StrictMode for

one of your threads, and that thread performs disk or network access, you can be

alerted. You get to choose which aspects of the ThreadPolicy you want to alert on, and

you get to choose the alert method. Some of the violations you can look for include

custom slow calls, disk reads, disk writes, and network accesses. For alerts, you can

choose to write to LogCat, display a dialog, flash the screen, write to the DropBox log

file, or crash the application. The most common choices are to write to LogCat or to

crash the application. Listing 2–9 shows a sample of what it takes to set up StrictMode

for thread policies.

Listing 2–9. Setting StrictMode’s ThreadPolicy

 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectDiskReads()
 .detectDiskWrites()
 .detectNetwork()
 .penaltyLog()
 .build());

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 58

Note that the Builder class makes it really easy to set up StrictMode. The Builder

methods that define the policy all return a reference to the Builder object, so these

methods can be chained together as shown in Listing 2–9. The last method call,

build(), returns a ThreadPolicy object that is the argument expected by the

setThreadPolicy() method of StrictMode. Note that setThreadPolicy() is a static

method so you don’t need to actually instantiate a StrictMode object. Internally,

setThreadPolicy() uses the current thread for the policy, so subsequent thread actions

will be evaluated against the ThreadPolicy and alerted as necessary. In this sample

code, the policy is defined to alert on disk reads, disk writes, and network accesses with

messages to LogCat. Instead of the specific detect methods, you could use the

detectAll() method instead. You can also use different or additional penalty methods,

too. For instance, you could use penaltyDeath() to cause the application to crash once

it has written StrictMode alert messages to LogCat (as a result of the penaltyLog()

method call).

Because you enable StrictMode on a thread, once you’ve enabled it, you don’t need to

keep enabling it. Therefore, you could enable StrictMode at the beginning of your main

activity’s onCreate() method, which runs on the main thread, and it would then be

enabled for everything that happens on that main thread. Depending on what sorts of

violations you want to look for, the first activity may be soon enough to enable

StrictMode. You could also enable it in your application by extending the Application

class and adding StrictMode setup to the application’s onCreate() method. Anything

that runs on a thread could conceivably set up StrictMode, but you certainly don’t need

to call the setup code from everywhere; once is enough.

Similar to ThreadPolicy, StrictMode has a VmPolicy. VmPolicy can check for memory

leaks if a SQLite object is finalized before it has been closed, or if any Closeable object

is finalized before it has been closed. A VmPolicy is created via a similar Builder class,

as shown in Listing 2–10. One difference between a VmPolicy and a ThreadPolicy is that

a VmPolicy can't alert via a dialog.

Listing 2–10. Setting StrictMode’s VmPolicy

 StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()
 .detectLeakedSqlLiteObjects()
 .penaltyLog()
 .penaltyDeath()
 .build());

Because the setup happens on a thread, StrictMode will find violations even as control

flows from object to object to object. When a violation occurs, you may be surprised to

realize that the code is running on the main thread, but the stack trace is there to help

you follow along to uncover how it happened. You can then take steps to resolve the

issue to move that code to its own background thread. Or you could decide that it’s

okay to leave things the way they are. It’s up to you. Of course, you will probably want to

turn off StrictMode when your application goes to production; you don’t want it crashing

on your users because of an alert.

There are a couple of ways to go about turning off StrictMode for a production

application. The most straightforward way is to remove the calls, but that makes it more

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 59

difficult to continue to do development on it. You could always define an application-

level boolean and test it before calling the StrictMode code. Setting the value of the

boolean to false just before you release your application to the world would effectively

disable StrictMode. A more elegant method is to take advantage of the debug mode of

the application, as defined in AndroidManifest.xml. One of the attributes for the

<application> tag in this file is android:debuggable. This value can be set to true when

you want to debug an application, and it results in the ApplicationInfo object getting a

flag set, which you can then read in code. Listing 2–11 shows how you might use this to

your advantage, so that when the application is in debug mode, StrictMode is active

(and when not it's not in debug mode, StrictMode is not active).

Listing 2–11. Setting StrictMode Only for Debug

 // Return if this application is not in debug mode
 ApplicationInfo appInfo = context.getApplicationInfo();
 int appFlags = appInfo.flags;
 if ((appFlags & ApplicationInfo.FLAG_DEBUGGABLE) != 0) {
 // Do StrictMode setup here
 }

When developing with Eclipse, ADT sets the debuggable attribute automatically for you,

which makes it even easier to manage. When you’re deploying from Eclipse to the

emulator or directly to a device, Eclipse will set this attribute to true, which would

therefore enable StrictMode in the previous code. When you’re exporting your

application to create a production version, ADT will set it to false. Be aware that if you

set this attribute yourself, ADT won't change it.

All of this is well and good, but it doesn’t work on Android prior to version 2.3. To use

StrictMode explicitly, you have to deploy to an environment running Android 2.3 or later.

If you deploy to anything older than 2.3, you’re going to get verify errors because this

class just doesn’t exist prior to Android 2.3.

To use StrictMode with older versions of Android (i.e., prior to 2.3), you can utilize

reflection techniques so you can indirectly invoke StrictMode methods if they are

available and fail gracefully if they are not. The simplest thing you can do is shown in

Listing 2–12; you invoke a special method created just for dealing with older versions of

Android.

Listing 2–12. Using StrictMode with Reflection

 try {
 Class sMode = Class.forName("android.os.StrictMode");
 Method enableDefaults = sMode.getMethod("enableDefaults");
 enableDefaults.invoke(null);
 }
 catch(Exception e) {
 // StrictMode not supported on this device, punt
 Log.v("StrictMode", "... not supported. Skipping...");
 }

This determines if the StrictMode class exists, and if it does, invokes the

enableDefaults() method on it. If StrictMode is not found, your catch block is invoked

with a ClassNotFoundException. You shouldn’t get any exceptions if StrictMode does

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 60

exist, since enableDefaults() is one of its methods. The enableDefaults() method sets

up StrictMode to detect everything and to write any violations to LogCat. Because this

StrictMode method you're calling is a static method, you specify null as the first

argument when you invoke it.

There may be times when you don’t want all violations to be reported. It’s perfectly fine

to set up StrictMode on threads other than the main thread, and that’s when you might

choose to alert on less than everything. For example, you may be fine with doing disk

reads on the thread you’re monitoring. If this is the case, you can either not call

detectDiskReads() on the Builder, or you could call detectAll(), then

permitDiskReads() on the Builder. There are similar permit methods for the other policy

options. But if you want to do this on Android versions prior to 2.3, is there a way? Of

course there is!

If StrictMode is not available for your application, a VerifyError will be thrown if you try

to access it. If you wrap StrictMode in a class and then catch the error, you can ignore

when StrictMode is not available, and get it when it is. Listing 2–13 shows a sample

StrictModeWrapper class that you can add to your application, and Listing 2–14 shows

what the code inside your application would look like to set up StrictMode.

Listing 2–13. Using StrictMode on pre-2.3 Android

import android.content.Context;
import android.content.pm.ApplicationInfo;
import android.os.StrictMode;

public class StrictModeWrapper {
 public static void init(Context context) {
 // check if android:debuggable is set to true
 int appFlags = context.getApplicationInfo().flags;
 if ((appFlags & ApplicationInfo.FLAG_DEBUGGABLE) != 0) {
 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectDiskReads()
 .detectDiskWrites()
 .detectNetwork()
 .penaltyLog()
 .build());
 StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()
 .detectLeakedSqlLiteObjects()
 .penaltyLog()
 .penaltyDeath()
 .build());
 }
 }
}

You can see how this is just like your code from before, except that you're combining

everything you've learned so far. And finally, in order to setup StrictMode from your

application, you only need to add the code shown in Listing 2–14.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 61

Listing 2–14. Invoking StrictMode with pre-2.3 Android

try {
 StrictModeWrapper.init(this);
}
catch(Throwable throwable) {
 Log.v("StrictMode", "... is not available. Punting...");
}

Note that this is the local context of whatever object you're in, such as from within the

onCreate() method of your main activity. The code of Listing 2–14 will work on any

release of Android.

As a reader exercise, go into Eclipse and make a copy of the Notepad example from

earlier in this chapter. Then add a new class under the src folder using the code in

Listing 2–13. Within the onCreate() method of NotesList.java, add code like in

Listing 2–14, then run the program on a pre-2.3 version of Android in the emulator, then

on Android 2.3 or later in the emulator. When StrictMode is not available, you should see

LogCat messages that indicate StrictMode is not present, but the application should

continue to run well. When StrictMode is available, you should see the occasional

violation messages in LogCat as you use the Notepad application.

References
Here are some helpful references to topics you may wish to explore further.

 http://developer.motorola.com/docstools/ is the Motorola site

where you can find device add-ons as well as other tools for

developing Android for Motorola handsets, including the MOTODEV

Studio, an alternative to Eclipse.

 http://developer.htc.com/ is the HTC site for Android developers.

 http://innovator.samsungmobile.com/galaxyTab.do is the Samsung

page for Android developers and includes the Android SDK add-on for

the Samsung Galaxy Tab tablet device.

 http://developer.android.com/guide/developing/tools/index.html

features developer documentation for the Android debugging tools

described previously.

 http://appinventor.googlelabs.com/about/index.html is the site for

App Inventor, another alternative IDE for creating Android applications.

This one is from Google Labs and it's geared for non-programmers.

Applications are laid out graphically, and so is the business logic

behind the UI.

 http://code.google.com/p/android-ui-utils/ contains links to useful

tools such as Android Asset Studio, which provides an online tool for

creating different types of Android icons. Note that you need to use

the Chrome browser to run Android Asset Studio.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2: Setting Up Your Development Environment 62

 http://www.droiddraw.org/ is a UI designer for Android applications

that uses drag-and-drop to build layouts.

Summary
In this chapter, we showed you how to set up your development environment for

building Android applications. We discussed some of the basic building blocks of the

Android APIs and introduced views, activities, intents, content providers, and services.

We then analyzed the Notepad application in terms of the aforementioned building

blocks and application components. Next, we talked about the importance of the

Android application lifecycle. Finally, we introduced you to some of the Android SDK’s

debugging tools that integrate with the Eclipse IDE.

And so begins the foundation of your Android development. The next chapter will

discuss resources in great detail.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

63

63

 Chapter

Understanding Android
Resources
In Chapter 2, we gave you an overview of an Android application and a quick look at

some of its underlying concepts. You also learned about the Android SDK, the Eclipse

Android Development Tool (ADT) and how to run your applications on emulators

identified by Android virtual devices (AVDs).

In this and the next few chapters, we’ll follow that introduction with an in-depth look at

Android SDK fundamentals and cover resources, content providers, and intents. These

three concepts are fundamental to understanding Android programming and should

place you on a solid foundation for the material in subsequent chapters.

Android depends on resources for defining UI components in a declarative manner. This

declarative approach is not that dissimilar to the way HTML uses declarative tags to

define its UI. In this sense, Android is quite forward thinking in its approach to UI

development. Android further allows these resources to be localized. In this chapter, we

will cover the variety of resources that are available in Android and how to use them.

Understanding Resources
Resources play a key role in Android architecture. A resource in Android is a file (like a

music file) or a value (like the title of a dialog box) that is bound to an executable

application. These files and values are bound to the executable in such a way that you

can change them without recompiling the application.

Familiar examples of resources include strings, colors, and bitmaps. Instead of hard-

coding strings in an application, for example, you can use their IDs instead. This

indirection lets you change the text of the string resource without changing the

source code.

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 64

There are many, many resource types in Android. We will cover a number of these

resources in this chapter. Let’s start this discussion of resources with a very common

resource: a string.

String Resources
Android allows you to define strings in one or more XML resource files. These XML files

containing string-resource definitions reside in the /res/values subdirectory. The names

of the XML files are arbitrary, although you will commonly see the file name as

strings.xml. Listing 3–1 shows an example of a string-resource file.

Listing 3–1. Example strings.xml File

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">hello</string>
 <string name="app_name">hello appname</string>
</resources>

NOTE: Please note that in some releases of Eclipse the <resources> node needs to be
qualified with an “xmlns” specification. It doesn’t seem to matter what the xmlns is pointing to
as long as it is there. The following two variations of it seem to work

<resources xmlns="http://schemas.android.com/apk/res/android" >

or

<resources xmlns="default namespace" >

When this file is created or updated, the Eclipse ADT plug-in will automatically create or

update a Java class in your application’s root package called R.java with unique IDs for

the two string resources specified.

Notice the placement of this R.java file in the following example. We have given a high-

level directory structure for a project like, say, MyProject.

\MyProject
 \src
 \com\mycompany\android\my-root-package
 \com\mycompany\android\my-root-package\another-package
 \gen
 \com\mycompany\android\my-root-package\R.java
 \assets
 \res
 \AndroidManifest.xml
…..etc

NOTE: Regardless of the number of resource files, there is only one R.java file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 65

For the string-resource file in Listing 3–1, the updated R.java file would have the entries

in Listing 3–2.

Listing 3–2. Example of R.java

package com.mycompany.android.my-root-package;
public final class R {
 ...other entries depending on your project and application

 public static final class string
 {
 ...other entries depending on your project and application

 public static final int hello=0x7f040000;
 public static final int app_name=0x7f040001;

 ...other entries depending on your project and application
 }
 ...other entries depending on your project and application
}

Notice, first, how R.java defines a top-level class in the root package: public static
final class R. Within that outer class of R, Android defines an inner class, namely,

static final class string. R.java creates this inner static class as a namespace to

hold string resource IDs.

The two static final ints defined with variable names hello and app_name are the

resource IDs that represent the corresponding string resources. You could use these

resource IDs anywhere in the source code through the following code structure:

R.string.hello

Note that these generated IDs point to ints rather than strings. Most methods that take

strings also take these resource identifiers as inputs. Android will resolve those ints to

strings where necessary.

It is merely a convention that most sample applications define all strings in one

strings.xml file. Android takes any number of arbitrary files as long as the structure of

the XML file looks like Listing 3–1 and the files reside in the /res/values subdirectory.

The structure of this file is easy to follow. You have the root node of <resources>

followed by one or more of its child elements of <string>. Each <string> element or

node has a property called name that will end up as the id attribute in R.java.

To see that multiple string resource files are allowed in this subdirectory, you can place

another file with the following content in the same subdirectory and call it strings1.xml

(see Listing 3–3).

Listing 3–3. Example of an Additional strings.xml File

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello1">hello 1</string>
 <string name="app_name1">hello appname 1</string>
</resources>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 66

The Eclipse ADT plug-in will validate the uniqueness of these IDs at compile time and

place them in R.java as two additional constants: R.string.hello1 and

R.string.app_name1.

Layout Resources
In Android, the view for a screen is often loaded from an XML file as a resource. These

XML files are called layout resources. A layout resource is a key resource used in

Android UI programming. Consider the code segment in Listing 3–4 for a sample

Android activity.

Listing 3–4. Using a Layout File

public class HelloWorldActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 TextView tv = (TextView)this.findViewById(R.id.text1);
 tv.setText("Try this text instead");
 }
 …
}

The line setContentView(R.layout.main) points out that there is a static class called

R.layout, and within that class, there is a constant called main (an integer) pointing to a

View defined by an XML layout resource file. The name of the XML file is main.xml, which

needs to be placed in the resources’ layout subdirectory. In other words, this statement

expects the programmer to create the file /res/layout/main.xml and place the

necessary layout definition in that file. The contents of the main.xml layout file could look

like Listing 3–5.

Listing 3–5. Example main.xml Layout File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
 <Button android:id="@+id/b1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
</LinearLayout>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 67

The layout file in Listing 3–5 defines a root node called LinearLayout, which contains a

TextView followed by a Button. A LinearLayout lays out its children vertically or

horizontally—vertically, in this example.

You will need to define a separate layout file for each screen (or activity). More

accurately, each layout needs a dedicated file. If you are painting two screens, you will

likely need two layout files, such as /res/layout/screen1_layout.xml and

/res/layout/screen2_layout.xml.

NOTE: Each file in the /res/layout/ subdirectory generates a unique constant based on the
name of the file (extension excluded). With layouts, what matters is the number of files; with

string resources, what matters is the number of individual string resources inside the files.

For example, if you have two files under /res/layout/ called file1.xml and file2.xml,

you’ll have the following entries in R.java:

Listing 3–6. Multiple Constants for Multiple Layout Files

 public static final class layout {
 any other files
 public static final int file1=0x7f030000;
 public static final int file2=0x7f030001;
 }

The views defined in these layout files such as a TextView (see Listing 3–5) are

accessible in Java code through their resource IDs generated in R.java:

TextView tv = (TextView)this.findViewById(R.id.text1);
tv.setText("Try this text instead");

In this example, you locate the TextView by using the findViewById method of the

Activity class. The constant R.id.text1 corresponds to the ID defined for the TextView.

The id for the TextView in the layout file is as follows:

<TextView android:id="@+id/text1"
..
</TextView>

The attribute value for the id attribute indicates that a constant called text1 will be used

to uniquely identify this view among other views hosted by that activity. The plus sign (+)

in @+id/text1 means that the ID text1 will be created if it doesn’t exist already. There is

more to this resource ID syntax. We’ll talk about that next.

Resource Reference Syntax
Irrespective of the type of resource (string and layout are the two we have covered so

far), all Android resources are identified (or referenced) by their ids in Java source code.

The syntax you use to allocate an id to a resource in the XML file is called resource-
reference syntax. The id attribute syntax in the previous example @+id/text1 has the

following formal structure:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 68

@[package:]type/name

The type corresponds to one of the resource-type namespaces available in R.java,

some of which follow:

 R.drawable

 R.id

 R.layout

 R.string

 R.attr

 R.plural

 R.array

The corresponding types in XML resource-reference syntax are as follows:

 drawable

 id

 layout

 string

 attr

 plurals

 string-array

The name part in the resource reference @[package:]type/name is the name given to the

resource (for example, text1 in Listing 3–5); it also gets represented as an int constant

in R.java.

If you don’t specify any package in the syntax @[package:]type/name, the pair type/name

will be resolved based on local resources and the application’s local R.java package.

If you specify android:type/name, the reference ID will be resolved using the package

android and specifically through the android.R.java file. You can use any Java package

name in place of the package placeholder to locate the right R.java file to resolve the

reference. Based on this information, let’s analyze a examples. As you go through

Listing 3–7, note that the left-hand side of the ID android:id is not part of the syntax.

"android:id" is just how you allocate an ID to a control like TextView.

Listing 3–7. Exploring Resource Reference Syntax

<TextView android:id="text">
// Compile error, as id will not take raw text strings

<TextView android:id="@text">
// wrong syntax. @text is missing a type name
// it should have been @id/text or @+id/text or @string/string1
// you will get an error "No Resource type specified

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 69

<TextView android:id="@id/text">
//Error: No Resource found that matches id "text"
//Unless you have taken care to define "text" as an ID before

<TextView android:id="@android:id/text">
// Error: Resource is not public
// indicating that there is no such id in android.R.id
// Of course this would be valid if Android R.java were to define
// an id with this name

<TextView android:id="@+id/text">
//Success: Creates an id called "text" in the local package’s R.java

In the syntax "@+id/text", the + sign has a special meaning. It tells android that the ID

text may not already exist and, if that’s the case, to create a new one and name it as

text.

Defining Your Own Resource IDs for Later Use
The general pattern for allocating an id is either to create a new one or to use the one

created by the Android package. However, it is possible to create ids beforehand and

use them later in your own packages.

The line <TextView android:id="@+id/text"> in the preceding code segment indicates

that an id named text is going to be used if one already exists. If the id doesn’t exist, a

new one is going to be created. So when might an id such as text already exist in

R.java for it to be reused?

You might be inclined to put a constant like R.id.text in R.java, but R.java is not

editable. Even if it were, it gets regenerated every time something gets changed, added,

or deleted in the /res/* subdirectory.

The solution is to use a resource tag called item to define an id without attaching to any

particular resource. Listing 3–8 shows an example.

Listing 3–8. Predefining an ID

<resources>
<item type="id" name="text"/>
</resources>

The type refers to the type of resource—id in this case. Once this id is in place, the View

definition in Listing 3–9 would work.

Listing 3–9. Reusing a Predefined ID

<TextView android:id="@id/text">
..
</TextView>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 70

Compiled and Uncompiled Android Resources
Android supports resources primarily through two types of files: XML files and raw files

(examples of which include images, audio, and video). Even within XML files, you have

seen that in some cases the resources are defined as values inside an XML file (strings,

for example), and sometimes, an XML file as a whole is a resource (a layout resource file

to quote).

As a further distinction within the set of XML files, you’ll find two types: one gets compiled

into binary format, and the other gets copied as-is to the device. The examples you have

seen so far—the string resource XML files and the layout resource XML files—get

compiled into binary format before becoming part of the installable package. These XML

files have predefined formats where XML nodes are translated to IDs.

You can also choose some XML files to have their own free format structure; these will

not get interpreted and will have resource IDs generated. However, you do want them

compiled to binary formats and also have the comfort of localization. To do this, you can

place these XML files in the /res/xml/ subdirectory to have them compiled into binary

format. In this case, you would use Android-supplied XML readers to read the XML

nodes.

But if you place files, including XML files, in the /res/raw/ directory instead, they don’t

get compiled into binary format. You must use explicit stream-based APIs to read these

files. Audio and video files fall into this category.

NOTE: It is worth noting that, because the raw directory is part of the /res/* hierarchy, even

these raw audio and video files can take advantage of localization like all other resources.

As we mentioned in Table 2-1 in the previous chapter, resource files are housed in

various subdirectories based on their type. Here are some important subdirectories in

the /res folder and the types of resources they host:

 anim: Compiled animation files

 drawable: Bitmaps

 layout: UI and view definitions

 values: Arrays, colors, dimensions, strings, and styles

 xml: Compiled arbitrary XML files

 raw: Noncompiled raw files

The resource compiler in the Android Asset Packaging Tool (AAPT) compiles all the

resources except the raw resources and places them all into the final .apk file. This file,

which contains the Android application’s code and resources, correlates to Java’s .jar
file (“apk” stands for “Android package”). The .apk file is what gets installed onto the

device.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 71

NOTE: Although the XML resource parser allows resource names such as hello-string, you
will see a compile-time error in R.java. You can fix this by renaming your resource to

hello_string (replacing the dash with an underscore).

Enumerating Key Android Resources
Now that we’ve been through the basics of resources, we’ll enumerate some of the

other key resources that Android supports, their XML representations, and the way

they’re used in Java code. (You can use this section as a quick reference as you write

resource files for each resource.) To start with, take a quick glance at the types of

resources and what they are used for (see Table 3–1).

Table 3–1. Types of Resources

Resource Type Location Description

Colors /res/values/any-file Represents color identifiers pointing to color codes.

These resource IDs are exposed in R.java as

R.color.*. The XML node in the file is

/resources/color.

Strings /res/values/any-file Represents string resources. String resources allow

Java-formatted strings and raw HTML in addition to

simple strings. These resource IDs are exposed in

R.java as R.string.*. The XML node in the file is

/resources/string.

String arrays /res/values/any-file Represents a resource that is an array of strings.

These resource IDs are exposed in R.java as

R.array.*. The XML node in the file is

/resources/string-array.

Plurals /res/values/any-file Represents a suitable collection of strings based on

the value of a quantity. The quantity is a number. In

various languages, the way you write a sentence

depends on whether you refer to no objects, one

object, few objects, or many objects. The resource

IDs are exposed in R.java as R.plural.*. The XML

node in the value file is /resources/plurals.

Dimensions /res/values/any-file Represents dimensions or sizes of various elements

or views in Android. Supports pixels, inches,

millimeters, density independent pixels, and scale

independent pixels. These Resource ids are

exposed in R.java as R.dimen.* . The XML node in

the file is /resources/dimen.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 72

Resource Type Location Description

Images /res/drawable/multiple-
files

Represents image resources. Supported images

include .jpg, .gif, .png, etc. Each image is in a

separate file and gets its own ID based on the file

name. These resource ids are exposed in R.java as

R.drawable.*. The image support also includes an

image type called a stretchable image that allows

portions of an image to stretch while other portions

of that image stay static. The stretchable image is

also known as a 9-patch file (.9.png).

Color

drawables

/res/values/any-file
also
/res/drawable/multiple-
files

Represents rectangles of colors to be used as view

backgrounds or general drawables like bitmaps.

This can be used in lieu of specifying a single

colored bitmap as a background. In Java, this will

be equivalent to creating a colored rectangle and

setting it as a background for a view.

The <drawable> value tag in the values subdirectory

supports this. These resource IDs are exposed in

R.java as R.drawable.*. The XML node in the file is

/resources/drawable.

Android also supports rounded rectangles and

gradient rectangles through XML files placed in

/res/drawable with the root XML tag of <shape>.

These resource IDs are also exposed in R.java as

R.drawable.*. Each file name in this case translates

to a unique drawable ID.

Arbitrary XML

files

/res/xml/*.xml Android allows arbitrary XML files as resources.

These files will be compiled by the AAPT compiler.

These resource IDs are exposed in R.java as

R.xml.*.

Arbitrary raw

resources

/res/raw/*.* Android allows arbitrary noncompiled binary or text

files under this directory. Each file gets a unique

resource ID. These resource IDs are exposed in

R.java as R.raw.* .

Arbitrary raw

assets

/assets/*.*/*.* Android allows arbitrary files in arbitrary

subdirectories starting at /assets subdirectory.

These are not really resources, just raw files. This

directory, unlike the /res resources subdirectory,

allows an arbitrary depth of subdirectories. These

files do not generate any resource IDs. You have to

use relative pathname starting at and excluding

/assets.

Each of the resources specified in this table is further elaborated in the following

sections with XML and java code snippets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 73

NOTE: Looking at the nature of ID generation, it appears—although we haven’t seen it officially
stated anywhere—that there are IDs generated based on file names if those XML files are
anywhere but in the /res/values subdirectory. If they are in the values subdirectory, only the

contents of the files are looked at to generate the IDs.

String Arrays
You can specify an array of strings as a resource in any file under the /res/values

subdirectory. You will use an XML node called string-array. This node is a child node

of resources just like the string resource node. Listing 3–10 is an example of specifying

an array in a resource file.

Listing 3–10. Specifying String Arrays

<resources ….>
……Other resources
<string-array name="test_array">
 <item>one</item>
 <item>two</item>
 <item>three</item>
</string-array>
……Other resources
</resources>

Once you have this string array resource definition, you can retrieve this array in the

Java code as shown in Listing 3–11.

Listing 3–11. Specifying String Arrays

//Get access to Resources object from an Activity
Resources res = your-activity.getResources();
String strings[] = res.getStringArray(R.array.test_array);

//Print strings
for (String s: strings)
{
 Log.d("example", s);
}

Plurals
The resource plurals is a set of strings. These strings are various ways of saying a

numerical quantity, for example, how many eggs there are in a nest. Consider an

example:

There is 1 egg.
There are 2 eggs.
There are 0 eggs.
There are 100 eggs.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 74

Notice how the sentences are identical for numbers 2, 0, and 100. However, the

sentence for 1 egg is different. Android allows you to represent this variation as a

plurals resource. Listing 3–12 shows how you would represent these two variations

based on quantity in a resource file.

Listing 3–12. Specifying String Arrays

<resources…>
<plurals name="eggs_in_a_nest_text">
 <item quantity="one">There is 1 egg</item>
 <item quantity="other">There are %d eggs</item>
</plurals>
</resources>

Notice how the two variations are represented as two different strings under one plural.

Now, you can use Java code, as shown in Listing 3–13, to use this plural to print a string

given a quantity. The first parameter to getQuantityString() method is the plurals

resource id. The second parameter selects the string to be used. When the value of the

quantity is 1, we just use the string as-is. When the value is not 1, we must supply a

third parameter whose value is to be placed where %d is. You must always have at least

3 parameters if you use a formatting string in your plurals resource.

Listing 3–13. Specifying String Arrays

Resources res = your-activity.getResources();
String s1 = res.getQuantityString(R.plurals.eggs_in_a_nest_text, 0,0);
String s2 = res.getQuantityString(R.plurals.eggs_in_a_nest_text, 1,1);
String s3 = res.getQuantityString(R.plurals.eggs_in_a_nest_text, 2,2);
String s4 = res.getQuantityString(R.plurals.eggs_in_a_nest_text, 10,10);

Given this code, each quantity will result in an appropriate string that is suitable for its

plurality.

However, what other possibilities exist for the quantity attribute of the preceding item

node? We strongly recommend you read the source code of Resources.java and

PluralRules.java in the Android source code distribution to truly understand this. Our

research link on resources at the end of this chapter has extracts from these source files.

The bottom line is that, for the en (English) locale, the only two possible values are "one"

and "other". This is further true for all other languages as well except for cs (Czech), in

which case the values are "one" (for 1), "few" (for 2 to 4), and "other" for the rest.

More on String Resources
We covered string resources briefly in earlier sections. Let’s revisit them to provide additional

nuances, including HTML strings and how to substitute variables in string resources.

NOTE: Most UI frameworks allow string resources. However, unlike other UI frameworks,
Android offers the ability to quickly associate IDs with string resources through R.java, so using

strings as resources is that much easier in Android.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 75

We'll start by showing how you can define normal strings, quoted strings, HTML strings,

and substitutable strings in an XML resource file (see Listing 3–14).

Listing 3–14. XML Syntax for Defining String Resources

<resources>
 <string name="simple_string">simple string</string>
 <string name="quoted_string">"quoted 'xyz’ string"</string>
 <string name="double_quoted_string">\"double quotes\"</string>
 <string name="java_format_string">
 hello %2$s Java format string. %1$s again
 </string>
 <string name="tagged_string">
 Hello <i>Slanted Android</i>, You are bold.
 </string>
</resources>

This XML string resource file needs to be in the /res/values subdirectory. The name of

the file is arbitrary.

Notice that quoted strings need to be either escaped or placed in alternate quotes. The

string definitions also allow standard Java string-formatting sequences.

Android also allows child XML elements such as , <i>, and other simple text-

formatting HTML within the <string> node. You can use this compound HTML string to

style the text before painting in a text view.

The Java examples in Listing 3–15 illustrate each usage.

Listing 3–15. Using String Resources in Java Code

//Read a simple string and set it in a text view
String simpleString = activity.getString(R.string.simple_string);
textView.setText(simpleString);

//Read a quoted string and set it in a text view
String quotedString = activity.getString(R.string.quoted_string);
textView.setText(quotedString);

//Read a double quoted string and set it in a text view
String doubleQuotedString = activity.getString(R.string.double_quoted_string);
textView.setText(doubleQuotedString);

//Read a Java format string
String javaFormatString = activity.getString(R.string.java_format_string);
//Convert the formatted string by passing in arguments
String substitutedString = String.format(javaFormatString, "Hello" , "Android");
//set the output in a text view
textView.setText(substitutedString);

//Read an html string from the resource and set it in a text view
String htmlTaggedString = activity.getString(R.string.tagged_string);
//Convert it to a text span so that it can be set in a text view
//android.text.Html class allows painting of "html" strings
//This is strictly an Android class and does not support all html tags
Spanned textSpan = android.text.Html.fromHtml(htmlTaggedString);
//Set it in a text view
textView.setText(textSpan);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 76

Once you’ve defined the strings as resources, you can set them directly on a view such

as TextView in the XML layout definition for that TextView. Listing 3–16 shows an

example where an HTML string is set as the text content of a TextView.

Listing 3–16. Using String Resources in XML

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:text="@string/tagged_string"/>

TextView automatically realizes that this string is an HTML string and honors its

formatting accordingly, which is nice because you can quickly set attractive text in your

views as part of the layout.

Color Resources
As you can with string resources, you can use reference identifiers to indirectly reference

colors as well. Doing this enables Android to localize colors and apply themes. Once

you’ve defined and identified colors in resource files, you can access them in Java code

through their IDs. Whereas string-resource IDs are available under the <your-
package>.R.string namespace, the color IDs are available under the <your-
package>.R.color namespace.

Android also defines a base set of colors in its own resource files. These IDs, by

extension, are accessible through the Android android.R.color namespace. Check out

this URL to learn the color constants available in the android.R.color namespace:

http://code.google.com/android/reference/android/R.color.html

See Listing 3–17 for some examples of specifying color in an XML resource file.

Listing 3–17. XML Syntax for Defining Color Resources

<resources>
 <color name="red">#f00</color>
 <color name="blue">#0000ff</color>
 <color name="green">#f0f0</color>
 <color name="main_back_ground_color">#ffffff00</color>
</resources>

The entries in Listing 3–17 need to be in a file residing in the /res/values subdirectory.

The name of the file is arbitrary, meaning the file name can be anything you choose.

Android will read all the files and then process them and look for individual nodes such

as resources and color to figure out individual IDs.

Listing 3–18 shows an example of using a color resource in Java code.

Listing 3–18. Color Resources in Java code

int mainBackGroundColor
 = activity.getResources.getColor(R.color.main_back_ground_color);

Listing 3–19 shows how you would use a color resource in a view definition.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 77

Listing 3–19. Using Colors in View Definitions

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textColor="@color/red"
 android:text="Sample Text to Show Red Color"/>

Dimension Resources
Pixels, inches, and points are all examples of dimensions that can play a part in XML

layouts or Java code. You can use these dimension resources to style and localize

Android UIs without changing the source code.

Listing 3–20 shows how you can use dimension resources in XML.

Listing 3–20. XML Syntax for Defining Dimension Resources

<resources>
 <dimen name="mysize_in_pixels">1px</dimen>
 <dimen name="mysize_in_dp">5dp</dimen>
 <dimen name="medium_size">100sp</dimen>
</resources>

You can specify the dimensions in any of the following units:

 px: Pixels

 in: Inches

 mm: Millimeters

 pt: Points

 dp: Density-independent pixels based on a 160-dpi (pixel density per

inch) screen (dimensions adjust to screen density)

 sp: Scale-independent pixels (dimensions that allow for user sizing;

helpful for use in fonts)

In Java, you need to access your Resources object instance to retrieve a dimension. You

can do this by calling getResources on an activity object (see Listing 3–21). Once you

have the Resources object, you can ask it to locate the dimension using the dimension

ID (again, see Listing 3–21).

Listing 3–21. Using Dimension Resources in Java Code

float dimen = activity.getResources().getDimension(R.dimen.mysize_in_pixels);

NOTE: The Java method call uses Dimension (full word) whereas the R.java namespace uses

the shortened version dimen to represent “dimension.”

As in Java, the resource reference for a dimension in XML uses dimen as opposed to the

full word “dimension” (see Listing 3–22).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 78

Listing 3–22. Using Dimension Resources in XML

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textSize="@dimen/medium_size"/>

Image Resources
Android generates resource IDs for image files placed in the /res/drawable

subdirectory. The supported image types include .gif, .jpg, and .png. Each image file

in this directory generates a unique ID from its base file name. If the image file name is

sample_image.jpg, for example, then the resource ID generated will be

R.drawable.sample_image.

CAUTION: You’ll get an error if you have two file names with the same base file name. Also,
subdirectories underneath /res/drawable will be ignored. Any files placed under those

subdirectories will not be read.

You can reference these images available in /res/drawable in other XML layout

definitions, as shown in Listing 3–23.

Listing 3–23. Using Image Resources in XML

<Button
 android:id="@+id/button1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Dial"
 android:background="@drawable/sample_image"
/>

You can also retrieve the image programmatically using Java and set it yourself against

a UI object like a button (see Listing 3–24).

Listing 3–24. Using Image Resources in Java

//Call getDrawable to get the image
BitmapDrawable d = activity.getResources().getDrawable(R.drawable.sample_image);

//You can use the drawable then to set the background
button.setBackgroundDrawable(d);

//or you can set the background directly from the Resource Id
button.setBackgroundResource(R.drawable.sample_image);

NOTE: These background methods go all the way back to the View class. As a result, most of

the UI controls have this background support.

Android also supports a special type of image called a stretchable image. This is a kind

of .png where parts of the image can be specified as static and stretchable. Android

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 79

provides a tool called the Draw 9-patch tool to specify these regions (you can read more

about it at http://developer.android.com/guide/developing/tools/draw9patch.html).

Once the .png image is made available, you can use it as any other image. It comes in

handy when used as a background for buttons where the button has to stretch itself to

accommodate the text.

Color-Drawable Resources
In Android, an image is one type of a drawable resource. Android supports another

drawable resource called a color-drawable resource; it’s essentially a colored rectangle.

CAUTION: The Android documentation seems to suggest that rounded corners are possible, but
we were not successful in creating those. We have presented an alternate approach to do that

instead. The documentation also suggests that the instantiated Java class is PaintDrawable,

but the code returns a ColorDrawable.

To define one of these color rectangles, you define an XML element by the node name

of drawable in any XML file in the /res/values subdirectory. Listing 3–25 shows a couple

of color-drawable resource examples.

Listing 3–25. XML Syntax for Defining Color-Drawable Resources

<resources>
 <drawable name="red_rectangle">#f00</drawable>
 <drawable name="blue_rectangle">#0000ff</drawable>
 <drawable name="green_rectangle">#f0f0</drawable>
</resources>

Listings 3–26 and 3–27 show how you can use a color-drawable resource in Java and

XML, respectively.

Listing 3–26. Using Color-Drawable Resources in Java Code

// Get a drawable
ColorDrawable redDrawable = (ColorDrawable)
 activity.getResources().getDrawable(R.drawable.red_rectangle);

//Set it as a background to a text view
textView.setBackgroundDrawable(redDrawable);

Listing 3–27. Using Color-Drawable Resources in XML Code

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAlign="center"
 android:background="@drawable/red_rectangle"/>

To achieve the rounded corners in your Drawable, you can use the currently

undocumented <shape> tag. However, this tag needs to reside in a file by itself in the

/res/drawable directory. Listing 3–28 shows how you can use the <shape> tag to define

a rounded rectangle in a file called /res/drawable/my_rounded_rectangle.xml.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 80

Listing 3–28. Defining a Rounded Rectangle

<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <solid android:color="#f0600000"/>
 <stroke android:width="3dp" color="#ffff8080"/>
 <corners android:radius="13dp" />
 <padding android:left="10dp" android:top="10dp"
 android:right="10dp" android:bottom="10dp" />
</shape>

You can then use this drawable resource as a background of the previous text view

example, as shown in Listing 3–29.

Listing 3–29. Using a Drawable from Java Code

// Get a drawable
GradientDrawable roundedRectangle =
(GradientDrawable)
activity.getResources().getDrawable(R.drawable.my_rounded_rectangle);

//Set it as a background to a text view
textView.setBackgroundDrawable(roundedRectangle);

NOTE: It is not necessary to cast the returned base Drawable to a GradientDrawable, but it
was done to show you that this <shape> tag becomes a GradientDrawable. This information
is important because you can look up the Java API documentation for this class to know the XML
tags it defines.

In the end, a bitmap image in the drawable subdirectory will resolve to a BitmapDrawable
class. A “drawable” resource value, such as one of the rectangles in Listing 3–29, resolves to a

ColorDrawable. An XML file with a shape tag in it resolves to a GradientDrawable.

Working with Arbitrary XML Resource Files
In addition to the structured resources described so far, Android allows arbitrary XML

files as resources. This approach extends the advantages of using resources to arbitrary

XML files. This approach provides a quick way to reference these files based on their

generated resource IDs. Second, the approach allows you to localize these resource

XML files. Third, you can compile and store these XML files on the device efficiently.

XML files that need to be read in this fashion are stored under the /res/xml
subdirectory. Listing 3–30 is an example XML file called /res/xml/test.xml.

Listing 3–30. Example XML File

<rootelem1>
 <subelem1>
 Hello World from an xml sub element
 </subelem1>
</rootelem1>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 81

As it does with other Android XML resource files, the AAPT will compile this XML file

before placing it in the application package. You will need to use an instance of

XmlPullParser if you want to parse these files. You can get an instance of the

XmlPullParser implementation using this code from any context (including activity):

Listing 3–31. Reading an XML File

Resources res = activity.getResources();
XmlResourceParser xpp = res.getXml(R.xml.test);

The returned XmlResourceParser is an instance of XmlPullParser, and it also implements

java.util.AttributeSet. Listing 3–32 shows a more complete code snippet that reads

the test.xml file.

Listing 3–32. Using XmlPullParser

private String getEventsFromAnXMLFile(Activity activity)
throws XmlPullParserException, IOException
{
 StringBuffer sb = new StringBuffer();
 Resources res = activity.getResources();
 XmlResourceParser xpp = res.getXml(R.xml.test);

 xpp.next();
 int eventType = xpp.getEventType();
 while (eventType != XmlPullParser.END_DOCUMENT)
 {
 if(eventType == XmlPullParser.START_DOCUMENT)
 {
 sb.append("******Start document");
 }
 else if(eventType == XmlPullParser.START_TAG)
 {
 sb.append("\nStart tag "+xpp.getName());
 }
 else if(eventType == XmlPullParser.END_TAG)
 {
 sb.append("\nEnd tag "+xpp.getName());
 }
 else if(eventType == XmlPullParser.TEXT)
 {
 sb.append("\nText "+xpp.getText());
 }
 eventType = xpp.next();
 }//eof-while
 sb.append("\n******End document");
 return sb.toString();
}//eof-function

In Listing 3–32, you can see how to get XmlPullParser, how to use XmlPullParser to

navigate the XML elements in the XML document, and how to use additional methods of

XmlPullParser to access the details of the XML elements. If you want to run this code,

you must create an XML file as shown earlier and call the getEventsFromAnXMLFile

function from any menu item or button click. It will return a string, which you can print

out to the log stream using the Log.d debug method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 82

Working with Raw Resources
Android also allows raw files in addition to arbitrary XML files. These raw resources,

placed in /res/raw, are raw file resources such as audio, video, or text files that require

localization or references through resource IDs. Unlike the XML files placed in /res/xml,

these files are not compiled but moved to the application package as they are. However,

each file will have an identifier generated in R.java. If you were to place a text file at

/res/raw/test.txt, you would be able to read that file using the code in Listing 3–33.

Listing 3–33. Reading a Raw Resource

String getStringFromRawFile(Activity activity)
 throws IOException
 {
 Resources r = activity.getResources();
 InputStream is = r.openRawResource(R.raw.test);
 String myText = convertStreamToString(is);
 is.close();
 return myText;
 }

 String convertStreamToString(InputStream is)
 throws IOException
 {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 int i = is.read();
 while (i != -1)
 {
 baos.write(i);
 i = is.read();
 }
 return baos.toString();
 }

CAUTION: File names with duplicate base names generate a build error in the Eclipse ADT plug-

in. This is the case for all resource IDs generated for resources that are based on files.

Working with Assets
Android offers one more directory where you can keep files to be included in the

package: /assets. It’s at the same level as /res, meaning it’s not part of the /res

subdirectories. The files in /assets do not generate IDs in R.java; you must specify the

file path to read them. The file path is a relative path starting at /assets. You will use the

AssetManager class to access these files, as shown in Listing 3–34.

Listing 3–34. Reading an Asset

//Note: Exceptions are not shown in the code
String getStringFromAssetFile(Activity activity)
{
 AssetManager am = activity.getAssets();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 83

 InputStream is = am.open("test.txt");
 String s = convertStreamToString(is);
 is.close();
 return s;
}

Reviewing the Resources Directory Structure
In summary, Listing 3–35 offers a quick look at the overall resources directory structure.

Listing 3–35. Resource Directories

/res/values/strings.xml
 /colors.xml
 /dimens.xml
 /attrs.xml
 /styles.xml
 /drawable/*.png
 /*.jpg
 /*.gif
 /*.9.png
 /anim/*.xml
 /layout/*.xml
 /raw/*.*
 /xml/*.xml
/assets/*.*/*.*

NOTE: Because it’s not under the /res directory, only the /assets directory can contain an
arbitrary list of subdirectories. Every other directory can only have files at the level of that

directory and no deeper. This is how R.java generates identifiers for those files.

Resources and Configuration Changes
Resources help with localization. For example, you can have a string value that changes

based on the language locale of the user. Android resources generalize this idea to any

configuration of the device of which language is just one configuration choice. Another

example of a configuration change is when a device is turned from a vertical position to

a horizontal position. The vertical mode is called the portrait mode and the horizontal

mode the landscape mode.

Android allows you to pick different sets of layouts based on this layout mode for the

same resource ID. Android does this by using different directories for each

configuration. An example is shown in Listing 3–36.

Listing 3–36. Alternate Resource Directories

\res\layout\main_layout.xml
\res\layout-port\main_layout.xml
\res\layout-land\main_layout.xml

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 84

Even though there are three separate layout files here, they all generate only one layout

ID in R.java. This ID will look as follows:

R.layout.main_layout

However, when you retrieve the layout corresponding to this layout ID, you will get the

appropriate layout suitable for that device layout.

In this example the directory extensions -port and -land are called configuration
qualifiers. These qualifiers are case insensitive and separated from the resource

directory name with a hyphen (-). Resources that you specify in these configuration

qualifier directories are called alternate resources. The resources in resource directories

with out the configuration qualifiers are called default resources.

The available configuration qualifiers are listed in Listing 3–37.

Listing 3–37. Additional Alternate Resource Directories

 mccAAA: AAA is the mobile country code

 mncAAA: AAA is the carrier/network code

 en-rUS: Language and region

 small, normal, large, xlarge: Screen size

 long, notlong: Screen type

 port, land: Portrait or landscape

 car, desk: Type of docking

 night, notnight: Night or day

 ldpi, mdpi, hdpi, xhdpi, nodpi: Screen density

 notouch, stylus, finger: What kind of screen

 keysexposed, keyssoft, keyshidden: What kind of keyboard

 nokeys, qwerty, 12key: How many keys

 navexposed, navhidden: Navigation keys hidden or exposed

 nonav, dpad, trackball, wheel: The type of navigation device

 v3, v4, v7: API level

With these qualifiers you can have resource directories such as those shown in Listing

3–38.

Listing 3–38. Additional Alternate Resource Directories

\res\layout-mcc312-mnc222-en-rUS
\res\layout-ldpi
\res\layout-hdpi
\res\layout-car

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 85

You can discover your current locale by navigating to the Custom Locale application

available on the device. The navigation path for this application is Home List of

Applications Custom Locale.

Given a resource ID, Android uses an algorithm to pick up the right resource. You can

refer to the URLs included in the “Reference URLs” section to understand more about

these rules, but we will point out a few rules of thumb.

The primary rule is that these qualifiers listed in Listing 3–38 are in the order of their

precedence. Consider the directories in Listing 3–39.

Listing 3–39. Layout File Variations

\res\layout\main_layout.xml
\res\layout-port\main_layout.xml
\res\layout-en\main_layout.xml

In Listing 3–39, the layout file main_layout.xml is available in two additional variations.

There is one variation for the language and one variation for the layout mode. Now, let’s

examine what layout file will be picked up if you are viewing the device portrait mode.

Even though you are in portrait mode, Android will pick the layout from the layout-en

directory, because the language variation comes before the orientation variation in the

list of configuration qualifiers. The SDK links, mentioned in the “Reference URLs”

section of this chapter, clearly list all the configuration qualifiers and their precedence

order.

Let’s look at the precedence rules further by experimenting with a few string resources.

Please note that string resources are based on individual ids, whereas layout resources

are file-based. To test the configuration qualifier precedence with string resources, let’s

come up with five resource IDs that can participate in the following variations: default,

en, en_us, port, and en_port. The five resource IDs follow:

 teststring_all: This ID will be in all variations of the values directory

including the default.

 testport_port: This ID will be in the default and in only the -port

variation.

 t1_enport: This ID will be in the default and in the -en and -port

variations.

 t1_1_en_port: This will be in the default and only in the -en-port

variation.

 t2: This will be only in the default.

Listing 3–40 shows all the variations of the values directory.

Listing 3–40. String Variations Based on Configuration

// values/strings.xml
<resources xmlns="http://schemas.android.com/apk/res/android">
 <string name="teststring_all">teststring in root</string>
 <string name="testport_port">testport-port</string>
 <string name="t1_enport">t1 in root</string>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 86

 <string name="t1_1_en_port">t1_1 in root</string>
 <string name="t2">t2 in root</string>
</resources>

// values-en/strings_en.xml
<resources xmlns="http://schemas.android.com/apk/res/android">
 <string name="teststring_all">teststring-en</string>
 <string name="t1_enport">t1_en</string>
 <string name="t1_1_en_port">t1_1_en</string>
</resources>

// values-en-rUS/strings_en_us.xml
<resources xmlns="http://schemas.android.com/apk/res/android">
 <string name="teststring_all">test-en-us</string>
</resources>

// values-port/strings_port.xml
<resources xmlns="http://schemas.android.com/apk/res/android">
 <string name="teststring_all">test-en-us-port</string>
 <string name="testport_port">testport-port</string>
 <string name="t1_enport">t1_port</string>
 <string name="t1_1_en_port">t1_1_port</string>
</resources>

// values-en-port/strings_en_port.xml
<resources xmlns="http://schemas.android.com/apk/res/android">
 <string name="teststring_all">test-en-port</string>
 <string name="t1_1_en_port">t1_1_en_port</string>
</resources>

Listing 3–41 shows the R.java file for these.

Listing 3–41. R.java to Support String Variations

public static final class string {
 public static final int teststring_all=0x7f050000;
 public static final int testport_port=0x7f050004;
 public static final int t1_enport=0x7f050001;
 public static final int t1_1_en_port=0x7f050002;
 public static final int t2=0x7f050003;
}

Right off the bat, you can see that, even though we have a ton of strings defined, only

five string resource IDs are generated. Now, if you retrieve these string values the

behavior of each string retrieval is documented below: (the configuration we tested with

is en_US and portrait mode):

 teststring_all: This ID is in all five variations of the values directory.

Because it is there in all variations, the variation from the values-en-
rUS directory will be picked up. Based on precedence rules, the

specific language trumps the default, en, port, and en-port variations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 87

 testport_port: This ID is in the default and in only the -port variation.

Because it is not in any value directory starting with -en, the -port will

take precedence over the default, and the value from the -port

variation will be picked up. If this had been in one of the –en variations,

the value would have been picked up from there.

 t1_enport: This ID is in three variations: default, -en, and -port.

Because this is in -en and -port at the same time, the value from -en

will be picked up.

 t1_1_en_port: This is in four variations: default, -port, -en, and -en-
port Because this is available in -en-port it will be picked up from -
en-port ignoring default, -en, and -port

 t2: This is only in the default, so the value will be picked up from

default.

Android SDK has a more detailed algorithm that you can read up on. However, the

example in this section gave you the essence of it. The key is to realize the precedence

of one variation over the other. We have provided a URL in the reference section for this

SDK link.

Reference URLs
As you learn about Android resources, you may want to keep the following reference

URLs handy. We have listed these URLs and also what you will gain from each URL.…

 http://developer.android.com/guide/topics/resources/index.html:

This URL is a roadmap to the documentation on resources.

 http://developer.android.com/guide/topics/resources/available-
resources.html: Android documents various types of resources at this

URL.

 http://developer.android.com/reference/android/content/res/Reso
urces.html: You will find here the various methods available to read

resources.

 http://developer.android.com/reference/android/R.html: You can

see the resources as defined to the core Android platform.

 http://www.androidbook.com/item/3542: You will find our research on

plurals, string arrays, and alternate resources, as well as links to other

references.

 http://www.androidbook.com/projects: You can use this URL to

download the Eclipse project that demonstrates many concepts in this

chapter. The name of the file is ProAndroid3_Ch03_TestResources.zip.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3: Understanding Android Resources 88

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about

resources so far. You know the types of resources supported in Android and you know

how to create these resources in XML files. You know how resource IDs are generated

and how to use them in Java code. You also learned that resource ID generation is a

convenient scheme that simplifies resource usage in Android. Finally, you learned how

to work with raw resources and assets. We have also briefly touched upon alternate

resources, plurals, and string arrays.

With that, we will turn our attention to content providers in the next chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

89

89

 Chapter

Understanding Content
Providers
Android uses a concept called content providers for abstracting data into services. This

idea of content providers makes data sources look like REST-enabled data providers,

such as web sites. In that sense, a content provider is a wrapper around data. A SQLite

database on an Android device is an example of a data source that you can encapsulate

into a content provider.

NOTE: REST stands for REpresentational State Transfer. It is a confounding name for a simple
concept which, as web users, everyone is quite familiar with. When you type a URL in a web

browser and the web server responds with HTML, you have essentially performed a REST-based
“query” operation on the web server. Similarly, when you update some content using a web
form, you have done a REST-based “update” on the web server (or site) and changed the state of

the web server. REST is also usually contrasted with (SOAP—Simple Object Access Protocol)
Web Services. You can read more about REST at the following Wikipedia entry:

http://en.wikipedia.org/wiki/Representational_State_Transfer.

To retrieve data from a content provider or save data into a content provider, you will

need to use a set of REST-like URIs. For example, if you were to retrieve a set of books

from a content provider that is an encapsulation of a book database, you would need to

use a URI like this:

content://com.android.book.BookProvider/books

To retrieve a specific book from the book database (book 23), you would need to use a

URI like this:

content://com.android.book.BookProvider/books/23

You will see in this chapter how these URIs translate to underlying database-access

mechanisms. Any application on the device can make use of these URIs to access and

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 90

manipulate data. As a consequence, content providers play a significant role in sharing

data between applications.

Strictly speaking, though, the content providers’ responsibilities comprise more of an

encapsulation mechanism than a data-access mechanism. You’ll need an actual data-

access mechanism such as SQLite or network access to get to the underlying data

sources. So, content-provider abstraction is required only if you want to share data

externally or between applications. For internal data access, an application can use any

data storage/access mechanism that it deems suitable, such as the following:

Preferences: A set of key/value pairs that you can persist to store

application preferences

Files: Files internal to applications, which you can store on a

removable storage medium

SQLite: SQLite databases, each of which is private to the package that

creates that database

Network: A mechanism that lets you retrieve or store data externally

through the Internet

NOTE: Despite the number of data-access mechanisms allowed in Android, this chapter focuses
on SQLite and the content-provider abstraction because content providers form the basis of data

sharing, which is much more common in the Android framework compared to other UI
frameworks. We’ll cover the network approach in Chapter 11 and the preferences mechanism in

Chapter 9.

Exploring Android’s Built-in Providers
Android comes with a number of built-in content providers, which are documented in

the SDK’s android.provider Java package. You can view the list of these providers

here:

http://developer.android.com/reference/android/provider/package-summary.html

Here are a few of the providers listed on that documentation page:

Browser
CallLog
Contacts
 People
 Phones
 Photos
 Groups
MediaStore
 Audio
 Albums
 Artists
 Genres

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 91

 Playlists
 Images
 Thumbnails
 Video
Settings

NOTE: The list of providers may vary slightly, depending on the release of Android you are
working with. The purpose of this list is to give you an idea of what is available, and not to serve

as a definitive reference.

The top-level items are databases and the lower-level items are tables. So Browser,

CallLog, Contacts, MediaStore, and Settings are individual SQLite databases

encapsulated as providers. These SQLite databases typically have an extension of .db

and are accessible only from the implementation package. Any access outside that

package must go through the content-provider interface.

Exploring Databases on the Emulator and Available Devices
Because many content providers in Android use SQLite databases

(http://www.sqlite.org/), you can use tools provided both by Android and by SQLite to

examine the databases. Many of these tools reside in the \android-sdk-install-
directory\tools subdirectory, others are in \android-sdk-install-directory\platform-
tools.

NOTE: Refer to Chapter 2 for information on locating the tools directories and invoking a
command window for different operating systems. This chapter, like most of the remaining
chapters, gives examples primarily on Windows platforms. As you go through this section, in

which we use a number of command-line tools, you can focus on the name of the executable or
the batch file and not pay as much attention to the directory the tool is in. We covered how to set

the path for the tools directories on various platforms in Chapter 2.

Android uses a command-line tool called Android Debug Bridge (adb), which is found

here:

platform-tools\adb.exe

adb is a special tool in the Android toolkit that most other tools go through to get to the

device. However, you must have an emulator running or an Android device connected

for adb to work. You can find out whether you have running devices or emulators by

typing this at the command line:

adb devices

If the emulator is not running, you can start the emulator by typing this at the command

line:

emulator.exe @avdname

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 92

The argument @avdname is the name of an Android Virtual Device (AVD). (We covered the

need for android virtual devices and how to create them in Chapter 2.) To find out what

virtual devices you already have you can run the following command:

android list avd

This command will list the available AVDs. If you have developed and run any Android

applications through Eclipse ADT, then you will have configured at least one virtual

device. The preceding command will list at least that one virtual device.

Here is an example output of that list command. (Depending on where your tools

directory is and also depending on the Android release, the following printout may vary

as to the path or release numbers, such as i:\android.)

I:\android\tools>android list avd
Available Android Virtual Devices:
 Name: avd
 Path: I:\android\tools\..\avds\avd3
 Target: Google APIs (Google Inc.)
 Based on Android 1.5 (API level 3)
 Skin: HVGA
 Sdcard: 32M

 Name: titanium
 Path: C:\Documents and Settings\Satya\.android\avd\titanium.avd
 Target: Android 1.5 (API level 3)
 Skin: HVGA

As indicated, AVDs are covered in detail in Chapter 2.

You can also start the emulator through the Eclipse ADT plug-in. This automatically

happens when you choose a program to run or debug in the emulator. Once the

emulator is up and running, you can test again for a list of running devices by typing this:

adb devices

Now you should see a printout that looks like this:

List of devices attached
emulator-5554 device

You can see the many options and commands that you can run with adb by typing this

at the command line:

adb help

You can also visit the following URL for many of the runtime options for adb:

http://developer.android.com/guide/developing/tools/adb.html.

You can use adb to open a shell on the connected device by typing this:

adb shell

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 93

NOTE: This shell is a Unix ash, albeit with a limited command set. You can do ls, for example,

but find, grep, and awk are not available in the shell.

You can see the available command set in the shell by typing this at the shell prompt:

#ls /system/bin

The # sign is the prompt for the shell. For brevity, we will omit this prompt in the

following examples. The preceding line brings up the commands listed in Table 4–1.

(Please note that we have shown these commands only as a demonstration and not for

completeness. This list may be somewhat different depending on the release of Android

SDK you are running.)

Table 4–1. Available Shell Command Set

dumpcrash

am

dumpstate

input

itr

monkey

pm

svc

ssltest

debuggerd

dhcpcd

hostapd_cli

fillup

linker

logwrapper

telnetd

iftop

mkdosfs

mount

mv

notify

netstat

printenv

reboot

ps

renice

rm

rmdir

rmmod

sendevent

schedtop

ping

sh

hciattach

sdptool

logcat

servicemanager

dbus-daemon

debug_tool

flash_image

installd

dvz

hostapd

htclogkernel

mountd

qemud

radiooptions

toolbox

hcid

route

setprop

sleep

setconsole

smd

stop

top

start

umount

vmstat

wipe

watchprops

sync

netcfg

chmod

date

dd

cmp

cat

dmesg

df

getevent

getprop

hd

id

ifconfig

insmod

ioctl

kill

ln

log

lsmod

ls

mkdir

dumpsys

service

playmp3

sdutil

rild

dalvikvm

dexopt

surfaceflinger

app_process

mediaserver

system_server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 94

To see a list of root-level directories and files, you can type the following in the shell:

ls -l

You’ll need to access this directory to see the list of databases:

ls /data/data

This directory contains the list of installed packages on the device. Let’s look at an

example by exploring the com.android.providers.contacts package:

ls /data/data/com.android.providers.contacts/databases

This will list a database file called contacts.db, which is a SQLite database. (This file

and path are still device and release dependent.)

NOTE: We also should tell you that, in Android, databases may be created when they are
accessed the first time. This means you may not see this file if you have never accessed the

“contacts” application.

If there were a find command in the included ash, you could look at all the *.db files.

But there is no good way to do this with ls alone. The nearest thing you can do is this:

ls -R /data/data/*/databases

With this command, you will notice that the Android distribution has the following

databases (again, a bit of caution; depending on your release, this list may vary):

alarms.db
contacts.db
downloads.db
internal.db
settings.db
mmssms.db
telephony.db

You can invoke sqlite3 on one of these databases inside the adb shell by typing this:

sqlite3 /data/data/com.android.providers.contacts/databases/contacts.db

You can exit sqlite3 by typing this:

sqlite>.exit

Notice that the prompt for adb is # and the prompt for sqlite3 is sqlite>. You can read

about the various sqlite3 commands by visiting http://www.sqlite.org/sqlite.html.

However, we will list a few important commands here so that you don’t have to make a

trip to the web. You can see a list of tables by typing

sqlite> .tables

This command is a shortcut for

SELECT name FROM sqlite_master
WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%'
UNION ALL
SELECT name FROM sqlite_temp_master

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 95

WHERE type IN ('table','view')
ORDER BY 1

As you probably guessed, the table sqlite_master is a master table that keeps track of

tables and views in the database. The following command line prints out a create

statement for a table called people in contacts.db:

.schema people

This is one way to get at the column names of a table in SQLite. This will also print out

the column data types. While working with content providers, you should note these

column types because access methods depend on them.

However, it is pretty tedious to manually parse through this long create statement just to

learn the column names and their types. There is a workaround: you can pull

contacts.db down to your local box and then examine the database using any number

of GUI tools for SQLite version 3. You can issue the following command from your OS

command prompt to pull down the contacts.db file:

adb pull /data/data/com.android.providers.contacts/databases/contacts.db
c:/somelocaldir/contacts.db

We used a free download of Sqliteman (http://sqliteman.com/), a GUI tool for SQLite

databases, which seemed to work fine. We experienced a few crashes, but otherwise

found the tool completely usable for exploring Android SQLite databases.

Quick SQLite Primer
The following sample SQL statements could help you navigate through the SQLite

databases quickly:

//Set the column headers to show in the tool
sqlite>.headers on

//select all rows from a table
select * from table1;

//count the number of rows in a table
select count(*) from table1;

//select a specific set of columns
select col1, col2 from table1;

//Select distinct values in a column
select distinct col1 from table1;

//counting the distinct values
select count(col1) from (select distinct col1 from table1);

//group by
select count(*), col1 from table1 group by col1;

//regular inner join
select * from table1 t1, table2 t2
where t1.col1 = t2.col1;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 96

//left outer join
//Give me everything in t1 even though there are no rows in t2
select * from table t1 left outer join table2 t2
on t1.col1 = t2.col1
where

Architecture of Content Providers
You now know how to explore existing content providers through Android and SQLite

tools. Next, we’ll examine some of the architectural elements of content providers and

how these content providers relate to other data-access abstractions in the industry.

Overall, the content-provider approach has parallels to the following industry

abstractions:

 Web sites

 REST

 Web services

 Stored procedures

Each content provider on a device registers itself like a web site with a string (akin to a

domain name, but called an authority). This uniquely identifiable string forms the basis of

a set of URIs that this content provider can offer. This is not unlike how a web site with a

domain offers a number of URLs to expose its documents or content in general.

This authority registration occurs in the AndroidManifest.xml file. Here are two examples

of how you may register providers in AndroidManifest.xml:

<provider android:name="SomeProvider"
 android:authorities="com.your-company.SomeProvider" />

<provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"
/>

An authority is like a domain name for that content provider. Given the preceding

authority registration, these providers will honor URLs starting with that authority prefix:

content://com.your-company.SomeProvider/
content://com.google.provider.NotePad/

You see that “content providers,” like a web site, has a base domain name that acts as a

starting URL.

NOTE: It must be noted that the providers offered by Android may not carry a fully qualified
authority name. It is recommended at the moment only for third-party content providers. This is

why you sometimes see that content providers are referenced with a simple word such as

“contacts” as opposed to “com.google.android.contacts” (in the case of a third-party provider).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 97

Content providers also provide REST-like URLs to retrieve or manipulate data. For the

preceding registration, the URI to identify a directory or a collection of notes in the

NotePadProvider database is

content://com.google.provider.NotePad/Notes

The URI to identify a specific note is

content://com.google.provider.NotePad/Notes/#

where # is the id of a particular note. Here are some additional examples of URIs that

some data providers accept:

content://media/internal/images
content://media/external/images
content://contacts/people/
content://contacts/people/23

Notice here how these providers’ “media” (content://media) and “contacts”

(content://contacts) don’t have a fully qualified structure. This is because these are not

third-party providers and are controlled by Android.

Content providers exhibit characteristics of web services as well. A content provider,

through its URIs, exposes internal data as a service. However, the output from the URL

of a content provider is not typed data, as is the case for a SOAP–based web-service

call. This output is more like a result set coming from a JDBC statement. Even there the

similarities to JDBC are conceptual. We don’t want to give the impression that this is the

same as a JDBC ResultSet.

The caller is expected to know the structure of the rows and columns that are returned.

Also, as you will see in this chapter’s “Structure of Android MIME Types” section, a

content provider has a built-in mechanism that allows you to determine the Multipurpose

Internet Mail Extensions (MIME) type of the data represented by this URI.

In addition to resembling web sites, REST, and web services, a content provider’s URIs

also resemble the names of stored procedures in a database. Stored procedures

present service-based access to the underlying relational data. URIs are similar to

stored procedures, because URI calls against a content provider return a cursor.

However, content providers differ from stored procedures in that the input to a service

call in a content provider is typically embedded in the URI itself.

We’ve provided these comparisons to give you an idea of the broader scope of content

providers.

Structure of Android Content URIs
We compared a content provider to a web site because it responds to incoming URIs.

So, to retrieve data from a content provider, all you have to do is invoke a URI. The

retrieved data in the case of a content provider, however, is in the form of a set of rows

and columns represented by an Android cursor object. In this context, we’ll examine the

structure of the URIs that you could use to retrieve data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 98

Content URIs in Android look similar to HTTP URIs, except that they start with content

and have this general form:

content://*/*/*

or

content://authority-name/path-segment1/path-segment2/etc…

Here’s an example URI that identifies a note numbered 23 in a database of notes:

content://com.google.provider.NotePad/notes/23

After content:, the URI contains a unique identifier for the authority, which is used to

locate the provider in the provider registry. In the preceding example,

com.google.provider.NotePad is the authority portion of the URI.

/notes/23 is the path section of the URI that is specific to each provider. The notes and

23 portions of the path section are called path segments. It is the responsibility of the

provider to document and interpret the path section and path segments of the URIs.

The developer of the content provider usually does this by declaring constants in a Java

class or a Java interface in that provider’s implementation Java package. Furthermore,

the first portion of the path might point to a collection of objects. For example, /notes

indicates a collection or a directory of notes, whereas /23 points to a specific note item.

Given this URI, a provider is expected to retrieve rows that the URI identifies. The

provider is also expected to alter content at this URI using any of the state-change

methods: insert, update, or delete.

Structure of Android MIME Types
Just as a web site returns a MIME type for a given URL (this allows browsers to invoke

the right program to view the content), a content provider has an added responsibility to

return the MIME type for a given URI. This allows flexibility of viewing data. Knowing

what kind of data it is, you may have more than one program that knows how to handle

that data. For example, if you have a text file on your hard drive, there are many editors

that can display that text file. Depending on the OS, it may even give you an option of

which editor to pick.

MIME types work in Android similar to how they work in HTTP. You ask a provider for

the MIME type of a given URI that it supports, and the provider returns a two-part string

identifying its MIME type according to the standard web MIME conventions. You can

find the MIME-type standard here:

http://tools.ietf.org/html/rfc2046

According to the MIME-type specification, a MIME type has two parts: a type and a

subtype. Here are some examples of well-known MIME-type pairs:

text/html
text/css
text/xml
text/vnd.curl

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 99

application/pdf
application/rtf
application/vnd.ms-excel

You can see a complete list of registered types and subtypes at the Internet Assigned

Numbers Authority (IANA) web site:

http://www.iana.org/assignments/media-types/

The primary registered content types are

application
audio
example
image
message
model
multipart
text
video

Each of these primary types has subtypes. But if a vendor has proprietary data formats,

the subtype name begins with vnd. For example, Microsoft Excel spreadsheets are

identified by the subtype vnd.ms-excel, whereas pdf is considered a nonvendor

standard and is represented as such without any vendor-specific prefix.

Some subtypes start with x-; these are nonstandard subtypes that don’t have to be

registered. They’re considered private values that are bilaterally defined between two

collaborating agents. Here are a few examples:

application/x-tar
audio/x-aiff
video/x-msvideo

Android follows a similar convention to define MIME types. The vnd in Android MIME

types indicates that these types and subtypes are nonstandard, vendor-specific forms.

To provide uniqueness, Android further demarcates the types and subtypes with

multiple parts similar to a domain specification. Furthermore, the Android MIME type for

each content type has two forms: one for a specific record and one for multiple records.

For a single record, the MIME type looks like this:

vnd.android.cursor.item/vnd.yourcompanyname.contenttype

For a collection of records or rows, the MIME type looks like this:

vnd.android.cursor.dir/vnd.yourcompanyname.contenttype

Here are a couple of examples:

//One single note
vnd.android.cursor.item/vnd.google.note

//A collection or a directory of notes
vnd.android.cursor.dir/vnd.google.note

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 100

NOTE: The implication here is that Android natively recognizes a “directory” of items and a
“single” item. As a programmer, your flexibility is limited to the subtype. For example, things like

list controls rely on what is returned from a cursor as one of these MIME “main” types.

MIME types are extensively used in Android, especially in intents, where the system

figures out what activity to invoke based on the MIME type of data. MIME types are

invariably derived from their URIs through content providers. You need to keep three

things in mind when you work with MIME types:

The type and subtype need to be unique for what they represent. The

type is pretty much decided for you, as pointed out. It is primarily a

directory of items or a single item. In the context of Android, these

may not be as open as you might think.

Type and subtype need to be preceded with vnd if they are not

standard (which is usually the case when you talk about specific

records).

They are typically name-spaced for your specific need.

To reiterate this point, the primary MIME type for a collection of items returned through an

Android cursor should always be vnd.android.cursor.dir, and the primary MIME type of

a single item retrieved through an Android cursor should be vnd.android.cursor.item.

You have more wiggle room when it comes to the subtype, as in vnd.google.note; after

the vnd. part, you are free to subtype it with anything you’d like.

Reading Data Using URIs
Now you know that to retrieve data from a content provider you need to use URIs

supplied by that content provider. Because the URIs defined by a content provider are

unique to that provider, it is important that these URIs are documented and available to

programmers to see and then call. The providers that come with Android do this by

defining constants representing these URI strings.

Consider these three URIs defined by helper classes in the Android SDK:

MediaStore.Images.Media.INTERNAL_CONTENT_URI
MediaStore.Images.Media.EXTERNAL_CONTENT_URI
Contacts.People.CONTENT_URI

The equivalent textual URI strings would be as follows:

content://media/internal/images
content://media/external/images
content://contacts/people/

The MediaStore provider defines two URIs and the Contacts provider defines one URI. If

you notice, these constants are defined using a hierarchical scheme. For example, the

content URI example for the contacts is pointed out as Contacts.People.CONTENT_URI.

This is because the databases of contacts may have a lot of tables to represent the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 101

entities of a Contact. People is one of the tables or a collection. Each primary entity of a

database may carry its own content URI, however, all rooted at the base authority name

(such as contacts://contacts in the case of contacts provider).

NOTE: In the reference Contacts.People.CONTENT_URI, Contacts is a java package and
People is a class within that package. Also note that Contacts and Contacts.People were

deprecated in Android 2.0 and the new equivalent URIs are discussed in Chapter 27. However

these URIs still work, especially to explain the concepts.

Given these URIs, the code to retrieve a single row of people from the contacts provider

looks like this:

Uri peopleBaseUri = Contacts.People.CONTENT_URI;
Uri myPersonUri = Uri.withAppendedPath(Contacts.People.CONTENT_URI, "23");

//Query for this record.
//managedQuery is a method on Activity class
Cursor cur = managedQuery(myPersonUri, null, null, null);

Notice how the Contacts.People.CONTENT_URI is predefined as a constant in the People

class. In this example, the code takes the root URI, adds a specific person ID to it, and

makes a call to the managedQuery method.

As part of the query against this URI, it is possible to specify a sort order, the columns to

select, and a where clause. These additional parameters are set to null in this example.

NOTE: A content provider should list which columns it supports by implementing a set of interfaces or
by listing the column names as constants. However, the class or interface that defines constants for

columns should also make the column types clear through a column naming convention, or comments

or documentation, as there is no formal way to indicate the type of a column through constants.

Listing 4–1 shows how to retrieve a cursor with a specific list of columns from the People

table of the contacts content provider, based on the previous example.

Listing 4–1. Retrieving a Cursor from a Content Provider

// An array specifying which columns to return.
string[] projection = new string[] {
 People._ID,
 People.NAME,
 People.NUMBER,
};

// Get the base URI for People table in Contacts Content Provider.
// ie. content://contacts/people/
Uri mContactsUri = Contacts.People.CONTENT_URI;

// Best way to retrieve a query; returns a managed query.
Cursor managedCursor = managedQuery(mContactsUri,
 projection, //Which columns to return.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 102

 null, // WHERE clause
 Contacts.People.NAME + " ASC"); // Order-by clause.

Notice how a projection is merely an array of strings representing column names. So

unless you know what these columns are, you’ll find it difficult to create a projection.

You should look for these column names in the same class that provides the URI, in this

case the People class. Let’s look at the other column names defined in this class:

CUSTOM_RINGTONE
DISPLAY_NAME
LAST_TIME_CONTACTED
NAME
NOTES
PHOTO_VERSION
SEND_TO_VOICE_MAIL
STARRED
TIMES_CONTACTED

You can discover more about each of these columns by looking at the SDK documentation

for the android.provider.Contacts.PeopleColumns class, available at this URL:

http://developer.android.com/reference/android/provider/Contacts.PeopleColumns.html

As alluded to earlier, a database like contacts contains several tables, each of which is

represented by a class or an interface to describe its columns and their types. Let’s take

a look at the package android.providers.Contacts, documented at the following URL:

http://developer.android.com/reference/android/provider/Contacts.html

You will see that this package has the following nested classes or interfaces:

ContactMethods
Extensions
Groups
Organizations
People
Phones
Photos
Settings

Each of these classes represents a table name in the contacts.db database, and each

table is responsible for describing its own URI structure. Plus, a corresponding Columns

interface is defined for each class to identify the column names, such as PeopleColumns.

Let’s revisit the cursor that is returned: it contains zero or more records. Column names,

order, and type are provider specific. However, every row returned has a default column

called _id representing a unique ID for that row.

Using the Android Cursor
Here are a few facts about an Android cursor:

 A cursor is a collection of rows.

 You need to use moveToFirst() before reading any data because the

cursor starts off positioned before the first row.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 103

 You need to know the column names.

 You need to know the column types.

 All field-access methods are based on column number, so you must

convert the column name to a column number first.

 The cursor is a random cursor (you can move forward and backward,

and you can jump).

 Because the cursor is a random cursor, you can ask it for a row count.

An Android cursor has a number of methods that allow you to navigate through it.

Listing 4–2 shows you how to check if a cursor is empty and how to walk through the

cursor row by row when it is not empty.

Listing 4–2. Navigating Through a Cursor Using a while Loop

if (cur.moveToFirst() == false)
{
 //no rows empty cursor
 return;
}

//The cursor is already pointing to the first row
//let's access a few columns
int nameColumnIndex = cur.getColumnIndex(People.NAME);
String name = cur.getString(nameColumnIndex);

//let's now see how we can loop through a cursor

while(cur.moveToNext())
{
 //cursor moved successfully
 //access fields
}

The assumption at the beginning of Listing 4–2 is that the cursor has been positioned

before the first row. To position the cursor on the first row, we use the moveToFirst()

method on the cursor object. This method returns false if the cursor is empty. We then

use the moveToNext() method repetitively to walk through the cursor.

To help you learn where the cursor is, Android provides the following methods:

isBeforeFirst()
isAfterLast()
isClosed()

Using these methods, you can also use a for loop as in Listing 4–3 to navigate through

the cursor instead of the while loop used in Listing 4–2.

Listing 4–3. Navigating Through a Cursor Using a for Loop

//Get your indexes first outside the for loop
int nameColumn = cur.getColumnIndex(People.NAME);
int phoneColumn = cur.getColumnIndex(People.NUMBER);

//Walk the cursor now based on column indexes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 104

for(cur.moveToFirst();!cur.isAfterLast();cur.moveToNext())
{
 String name = cur.getString(nameColumn);
 String phoneNumber = cur.getString(phoneColumn);
}

The index order of columns seems to be a bit arbitrary. As a result, we advise you to

explicitly get the indexes first from the cursor to avoid surprises. To find the number of

rows in a cursor, Android provides a method on the cursor object called getCount().

Working with the where Clause
Content providers offer two ways of passing a where clause:

 Through the URI

 Through the combination of a string clause and a set of replaceable

string-array arguments

We will cover both of these approaches through some sample code.

Passing a where Clause Through a URI
Imagine you want to retrieve a note whose ID is 23 from the Google notes database.

You’d use the code in Listing 4–4 to retrieve a cursor containing one row corresponding

to row 23 in the notes table.

Listing 4–4. Passing SQL where Clauses Through the URI

Activity someActivity;
//..initialize someActivity
String noteUri = "content://com.google.provider.NotePad/notes/23";
Cursor managedCursor = someActivity.managedQuery(noteUri,
 projection, //Which columns to return.
 null, // WHERE clause
 null); // Order-by clause.

We left the where clause argument of the managedQuery method null because, in this

case, we assumed that the note provider is smart enough to figure out the id of the

book we wanted. This id is embedded in the URI itself. We used the URI as a vehicle to

pass the where clause. This becomes apparent when you notice how the notes provider

implements the corresponding query method. Here is a code snippet from that query

method:

//Retrieve a note id from the incoming uri that looks like
//content://.../notes/23
int noteId = uri.getPathSegments().get(1);

//ask a query builder to build a query
//specify a table name
queryBuilder.setTables(NOTES_TABLE_NAME);

//use the noteid to put a where clause
queryBuilder.appendWhere(Notes._ID + "=" + noteId);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 105

Notice how the id of a note is extracted from the URI. The Uri class representing the

incoming argument uri has a method to extract the portions of a URI after the root

content://com.google.provider.NotePad. These portions are called path segments;

they’re strings between / separators such as /seg1/seg3/seg4/, and they’re indexed by

their positions. For the URI here, the first path segment would be 23. We then used this

ID of 23 to append to the where clause specified to the QueryBuilder class. In the end,

the equivalent select statement would be

select * from notes where _id = 23

NOTE: The classes Uri and UriMatcher are used to identify URIs and extract parameters from
them. (We’ll cover UriMatcher further in the section “Using UriMatcher to Figure Out the
URIs.”) SQLiteQueryBuilder is a helper class in android.database.sqlite that allows
you to construct SQL queries to be executed by SQLiteDatabase on a SQLite database

instance.

Using Explicit where Clauses
Now that you have seen how to use a URI to send in a where clause, consider the other

method by which Android lets us send a list of explicit columns and their corresponding

values as a where clause. To explore this, let’s take another look at the managedQuery

method of the Activity class that we used in Listing 4–4. Here’s its signature:

public final Cursor managedQuery(Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sortOrder)

Notice the argument named selection, which is of type String. This selection string

represents a filter (a where clause, essentially) declaring which rows to return, formatted

as a SQL where clause (excluding the WHERE itself). Passing null will return all rows for

the given URI. In the selection string you can include ?s, which will be replaced by the

values from selectionArgs in the order that they appear in the selection. The values will

be bound as Strings.

Because you have two ways of specifying a where clause, you might find it difficult to

determine how a provider has used these where clauses and which where clause takes

precedence if both where clauses are utilized.

For example, you can query for a note whose ID is 23 using either of these two methods:

//URI method
managedQuery("content://com.google.provider.NotePad/notes/23"
,null
,null
,null
,null);

or

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 106

//explicit where clause
managedQuery("content://com.google.provider.NotePad/notes"
,null
,"_id=?"
,new String[] {23}
,null);

The convention is to use where clauses through URIs where applicable and use the

explicit option as a special case.

Inserting Records
So far, we have talked about how to retrieve data from content providers using URIs.

Now, let us turn our attention to inserts, updates, and deletes.

Note: In explaining content providers so far, we have generously used examples from the
Notepad application that Google provided as the prototypical application as part of their tutorials.
However, it is not necessary to be completely familiar with that application. Even if you haven't

seen the application you should be able to follow through the examples. We will, however, give

you complete code for a sample provider later in this chapter.

Android uses a class called android.content.ContentValues to hold the values for a

single record, which is to be inserted. ContentValues is a dictionary of key/value pairs,

much like column names and their values. You insert records by first populating a record

into ContentValues and then asking android.content.ContentResolver to insert that

record using a URI.

NOTE: You need to locate ContentResolver, because at this level of abstraction, you are not
asking a database to insert a record; instead, you are asking to insert a record into a provider
identified by a URI. ContentResolver is responsible for resolving the URI reference to the right

provider and then passing on the ContentValues object to that specific provider.

Here is an example of populating a single row of notes in ContentValues in preparation

for an insert:

ContentValues values = new ContentValues();
values.put("title", "New note");
values.put("note","This is a new note");

//values object is now ready to be inserted

You can get a reference to ContentResolver by asking the Activity class:

ContentResolver contentResolver = activity.getContentResolver();

Now, all you need is a URI to tell ContentResolver to insert the row. These URIs are

defined in a class corresponding to the Notes table. In the Notepad example, this URI is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 107

Notepad.Notes.CONTENT_URI

We can take this URI and the ContentValues we have and make a call to insert the row:

Uri uri = contentResolver.insert(Notepad.Notes.CONTENT_URI, values);

This call returns a URI pointing to the newly inserted record. This returned URI would

match the following structure:

Notepad.Notes.CONTENT_URI/new_id

Adding a File to a Content Provider
Occasionally, you might need to store a file in a database. The usual approach is to save

the file to disk and then update the record in the database that points to the

corresponding file name.

Android takes this protocol and automates it by defining a specific procedure for saving

and retrieving these files. Android uses a convention where a reference to the file name

is saved in a record with a reserved column name of _data.

When a record is inserted into that table, Android returns the URI to the caller. Once you

save the record using this mechanism, you also need to follow it up by saving the file in

that location. To do this, Android allows ContentResolver to take the Uri of the database

record and return a writable output stream. Behind the scenes, Android allocates an

internal file and stores the reference to that file name in the _data field.

If you were to extend the Notepad example to store an image for a given note, you could

create an additional column called _data and run an insert first to get a URI back. The

following code demonstrates this part of the protocol:

ContentValues values = new ContentValues();
values.put("title", "New note");
values.put("note","This is a new note");

//Use a content resolver to insert the record
ContentResolver contentResolver = activity.getContentResolver();
Uri newUri = contentResolver.insert(Notepad.Notes.CONTENT_URI, values);

Once you have the URI of the record, the following code asks the ContentResolver to

get a reference to the file output stream:

….
//Use the content resolver to get an output stream directly
//ContentResolver hides the access to the _data field where
//it stores the real file reference.
OutputStream outStream = activity.getContentResolver().openOutputStream(newUri);
someSourceBitmap.compress(Bitmap.CompressFormat.JPEG, 50, outStream);
outStream.close();

The code then uses that output stream to write to.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 108

Updates and Deletes
So far, we have talked about queries and inserts; updates and deletes are fairly

straightforward. Performing an update is similar to performing an insert, in which

changed column values are passed through a ContentValues object. Here is the

signature of an update method on the ContentResolver object:

int numberOfRowsUpdated =
activity.getContentResolver().update(
 Uri uri,
 ContentValues values,
 String whereClause,
 String[] selectionArgs)

The whereClause argument will constrain the update to the pertinent rows. Similarly, the

signature for the delete method is

int numberOfRowsDeleted =
activity.getContentResolver().delete(
 Uri uri,
 String whereClause,
 String[] selectionArgs)

Clearly a delete method will not require the ContentValues argument because you will

not need to specify the columns you want when you are deleting a record.

Almost all the calls from managedQuery and ContentResolver are directed eventually to

the provider class. Knowing how a provider implements each of these methods gives us

enough clues as to how those methods are used by a client. In the next section, we’ll

cover the implementation from scratch of an example content provider called

BookProvider.

Implementing Content Providers
We’ve discussed how to interact with a content provider for data needs but haven’t yet

discussed how to write a content provider. To write a content provider, you have to

extend android.content.ContentProvider and implement the following key methods:

query
insert
update
delete
getType

You’ll also need to set up a number of things before implementing them. We will

illustrate all the details of a content-provider implementation by describing the steps

you’ll need to take:

1. Plan your database, URIs, column names, and so on, and create a metadata class

that defines constants for all of these metadata elements.

2. Extend the abstract class ContentProvider.

3. Implement these methods: query, insert, update, delete, and getType.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 109

4. Register the provider in the manifest file.

Planning a Database
To explore this topic, we’ll create a database that contains a collection of books. The

book database contains only one table called books, and its columns are name, isbn, and

author. These column names fall under metadata. You’ll define this sort of relevant

metadata in a Java class. This metadata-bearing Java class BookProviderMetaData is

shown in Listing 4–5. Some key elements of this metadata class are highlighted.

Listing 4–5. Defining Metadata for Your Database: The BookProviderMetaData Class

public class BookProviderMetaData
{
 public static final String AUTHORITY = "com.androidbook.provider.BookProvider";

 public static final String DATABASE_NAME = "book.db";
 public static final int DATABASE_VERSION = 1;
 public static final String BOOKS_TABLE_NAME = "books";

 private BookProviderMetaData() {}

 //inner class describing BookTable
 public static final class BookTableMetaData implements BaseColumns
 {
 private BookTableMetaData() {}
 public static final String TABLE_NAME = "books";

 //uri and MIME type definitions
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/books");

 public static final String CONTENT_TYPE =
 "vnd.android.cursor.dir/vnd.androidbook.book";

 public static final String CONTENT_ITEM_TYPE =
 "vnd.android.cursor.item/vnd.androidbook.book";

 public static final String DEFAULT_SORT_ORDER = "modified DESC";

 //Additional Columns start here.
 //string type
 public static final String BOOK_NAME = "name";

 //string type
 public static final String BOOK_ISBN = "isbn";

 //string type
 public static final String BOOK_AUTHOR = "author";

 //Integer from System.currentTimeMillis()
 public static final String CREATED_DATE = "created";

 //Integer from System.currentTimeMillis()
 public static final String MODIFIED_DATE = "modified";
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 110

This BookProviderMetaData class starts by defining its authority to be

com.androidbook.provider.BookProvider. We are going to use this string to register the

provider in the Android manifest file. This string forms the front part of the URIs intended

for this provider.

This class then proceeds to define its one table (books) as an inner BookTableMetaData
class. The BookTableMetaData class then defines a URI for identifying a collection of

books. Given the authority in the previous paragraph, the URI for a collection of books

will look like this:

content://com.androidbook.provider.BookProvider/books

This URI is indicated by the constant

BookProviderMetaData.BookTableMetaData.CONTENT_URI

The BookTableMetaData class then proceeds to define the MIME types for a collection of

books and a single book. The provider implementation will use these constants to return

the MIME types for the incoming URIs.

BookTableMetaData then defines the set of columns: name, isbn, author, created
(creation date), and modified (last-updated date).

NOTE: You should point out your columns’ data types through comments in the code.

The metadata class BookTableMetaData also inherits from the BaseColumns class that

provides the standard _id field, which represents the row ID. With these metadata

definitions in hand, we’re ready to tackle the provider implementation.

Extending ContentProvider
Implementing our BookProvider sample content provider involves extending the

ContentProvider class and overriding onCreate() to create the database and then

implement the query, insert, update, delete, and getType methods. This section covers

the setup and creation of the database, while the following sections deal with each of

the individual methods: query, insert, update, delete, and getType. Listing 4–6 provides

the complete source code for this class. Important subsections of this class are high

lighted.

A query method requires the set of columns it needs to return. This is similar to a select
clause that requires column names along with their as counterparts (sometimes called

synonyms). Android uses a map object that it calls a projection map to represent these

column names and their synonyms. We will need to set up this map so we can use it

later in the query-method implementation. In the code for the provider implementation

(see Listing 4–6), you will see this done up front as part of Project map setup.

Most of the methods we’ll be implementing take a URI as an input. Although all the URIs

that this content provider is able to respond to start with the same pattern, the tail ends

of the URIs will be different—just like a web site. Each URI, although it starts the same,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 111

must be different to identify different data or documents. Let us illustrate this with an

example:

Uri1: content://com.androidbook.provider.BookProvider/books
Uri2: content://com.androidbook.provider.BookProvider/books/12

See how the book provider needs to distinguish each of these URIs. This is a simple

case. If our book provider had been housing more objects rather than just books, then

there would be more URIs to identify those objects.

The provider implementation needs a mechanism to distinguish one URI from the other;

Android uses a class called UriMatcher for this work. So we need to set up this object

with all our URI variations. You will see this code in Listing 4–6 after the segment that

creates a projection map. We’ll further explain the UriMatcher class in the section “Using

UriMatcher to Figure Out the URIs”.

The code in Listing 4–6 then overrides the onCreate() method to facilitate the database

creation. The source code then implements each of the insert(), query(), update(),

getType(), and delete() methods. The code for all of this is presented in one listing

(Listing 4–6), but we will explain each aspect in a separate sub section referring to this

listing.

Listing 4–6. Implementing the BookProvider Content Provider

public class BookProvider extends ContentProvider
{
 //Logging helper tag. No significance to providers.
 private static final String TAG = "BookProvider";

 //Setup projection Map
 //Projection maps are similar to "as" (column alias) construct
 //in an sql statement where by you can rename the
 //columns.
 private static HashMap<String, String> sBooksProjectionMap;
 static
 {
 sBooksProjectionMap = new HashMap<String, String>();
 sBooksProjectionMap.put(BookTableMetaData._ID,
 BookTableMetaData._ID);

 //name, isbn, author
 sBooksProjectionMap.put(BookTableMetaData.BOOK_NAME,
 BookTableMetaData.BOOK_NAME);
 sBooksProjectionMap.put(BookTableMetaData.BOOK_ISBN,
 BookTableMetaData.BOOK_ISBN);
 sBooksProjectionMap.put(BookTableMetaData.BOOK_AUTHOR,
 BookTableMetaData.BOOK_AUTHOR);

 //created date, modified date
 sBooksProjectionMap.put(BookTableMetaData.CREATED_DATE,
 BookTableMetaData.CREATED_DATE);
 sBooksProjectionMap.put(BookTableMetaData.MODIFIED_DATE,
 BookTableMetaData.MODIFIED_DATE);
 }

 //Setup URIs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 112

 //Provide a mechanism to identify
 //all the incoming uri patterns.
 private static final UriMatcher sUriMatcher;
 private static final int INCOMING_BOOK_COLLECTION_URI_INDICATOR = 1;
 private static final int INCOMING_SINGLE_BOOK_URI_INDICATOR = 2;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY, "books",
 INCOMING_BOOK_COLLECTION_URI_INDICATOR);
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY, "books/#",
 INCOMING_SINGLE_BOOK_URI_INDICATOR);

 }

 /**
 * Setup/Create Database
 * This class helps open, create, and upgrade the database file.
 */
 private static class DatabaseHelper extends SQLiteOpenHelper {

 DatabaseHelper(Context context) {
 super(context,
 BookProviderMetaData.DATABASE_NAME,
 null,
 BookProviderMetaData.DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db)
 {
 Log.d(TAG,"inner oncreate called");
 db.execSQL("CREATE TABLE " + BookTableMetaData.TABLE_NAME + " ("
 + BookTableMetaData._ID + " INTEGER PRIMARY KEY,"
 + BookTableMetaData.BOOK_NAME + " TEXT,"
 + BookTableMetaData.BOOK_ISBN + " TEXT,"
 + BookTableMetaData.BOOK_AUTHOR + " TEXT,"
 + BookTableMetaData.CREATED_DATE + " INTEGER,"
 + BookTableMetaData.MODIFIED_DATE + " INTEGER"
 + ");");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)
 {
 Log.d(TAG,"inner onupgrade called");
 Log.w(TAG, "Upgrading database from version "
 + oldVersion + " to "
 + newVersion + ", which will destroy all old data");
 db.execSQL("DROP TABLE IF EXISTS " +
 BookTableMetaData.TABLE_NAME);
 onCreate(db);
 }
 }

 private DatabaseHelper mOpenHelper;

 //Component creation callback

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 113

 @Override
 public boolean onCreate()
 {
 Log.d(TAG,"main onCreate called");
 mOpenHelper = new DatabaseHelper(getContext());
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder)
 {
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 qb.setTables(BookTableMetaData.TABLE_NAME);
 qb.setProjectionMap(sBooksProjectionMap);
 break;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 qb.setTables(BookTableMetaData.TABLE_NAME);
 qb.setProjectionMap(sBooksProjectionMap);
 qb.appendWhere(BookTableMetaData._ID + "="
 + uri.getPathSegments().get(1));
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 // If no sort order is specified use the default
 String orderBy;
 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = BookTableMetaData.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }

 // Get the database and run the query
 SQLiteDatabase db = mOpenHelper.getReadableDatabase();
 Cursor c = qb.query(db, projection, selection,
 selectionArgs, null, null, orderBy);

 //example of getting a count
 int i = c.getCount();

 // Tell the cursor what uri to watch,
 // so it knows when its source data changes
 c.setNotificationUri(getContext().getContentResolver(), uri);
 return c;
 }

 @Override
 public String getType(Uri uri)
 {
 switch (sUriMatcher.match(uri)) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 114

 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 return BookTableMetaData.CONTENT_TYPE;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 return BookTableMetaData.CONTENT_ITEM_TYPE;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues initialValues)
 {
 // Validate the requested uri
 if (sUriMatcher.match(uri)
 != INCOMING_BOOK_COLLECTION_URI_INDICATOR)
 {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 ContentValues values;
 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }

 Long now = Long.valueOf(System.currentTimeMillis());

 // Make sure that the fields are all set
 if (values.containsKey(BookTableMetaData.CREATED_DATE) == false)
 {
 values.put(BookTableMetaData.CREATED_DATE, now);
 }

 if (values.containsKey(BookTableMetaData.MODIFIED_DATE) == false)
 {
 values.put(BookTableMetaData.MODIFIED_DATE, now);
 }

 if (values.containsKey(BookTableMetaData.BOOK_NAME) == false)
 {
 throw new SQLException(
 "Failed to insert row because Book Name is needed " + uri);
 }

 if (values.containsKey(BookTableMetaData.BOOK_ISBN) == false) {
 values.put(BookTableMetaData.BOOK_ISBN, "Unknown ISBN");
 }
 if (values.containsKey(BookTableMetaData.BOOK_AUTHOR) == false) {
 values.put(BookTableMetaData.BOOK_ISBN, "Unknown Author");
 }

 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 long rowId = db.insert(BookTableMetaData.TABLE_NAME,
 BookTableMetaData.BOOK_NAME, values);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 115

 if (rowId > 0) {
 Uri insertedBookUri =
 ContentUris.withAppendedId(
 BookTableMetaData.CONTENT_URI, rowId);
 getContext()
 .getContentResolver()
 .notifyChange(insertedBookUri, null);

 return insertedBookUri;
 }

 throw new SQLException("Failed to insert row into " + uri);
 }

 @Override
 public int delete(Uri uri, String where, String[] whereArgs)
 {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 count = db.delete(BookTableMetaData.TABLE_NAME,
 where, whereArgs);
 break;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 String rowId = uri.getPathSegments().get(1);
 count = db.delete(BookTableMetaData.TABLE_NAME,
 BookTableMetaData._ID + "=" + rowId
 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""),
 whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }

 @Override
 public int update(Uri uri, ContentValues values,
 String where, String[] whereArgs)
 {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 count = db.update(BookTableMetaData.TABLE_NAME,
 values, where, whereArgs);
 break;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 String rowId = uri.getPathSegments().get(1);
 count = db.update(BookTableMetaData.TABLE_NAME,
 values, BookTableMetaData._ID + "=" + rowId

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 116

 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""),
 whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
}

Fulfilling MIME-Type Contracts
The BookProvider content provider must also implement the getType() method to return

a MIME type for a given URI. This method, like many other methods of a content

provider, is overloaded with respect to the incoming URI. As a result, the first

responsibility of the getType() method is to distinguish the type of the URI. Is it a

collection of books or a single book?

As we pointed out in the previous section, we will use the UriMatcher to decipher this

URI type. Depending on this URI, the BookTableMetaData class has defined the MIME-

type constants to return for each URI. You can see the implementation for this method

in Listing 4–6.

Implementing the Query Method
The query method in a content provider is responsible for returning a collection of rows

depending on an incoming URI and a where clause.

Like the other methods, the query method uses UriMatcher to identify the URI type. If

the URI type is a single-item type, the method retrieves the book ID from the incoming

URI like this:

1. It extracts the path segments using getPathSegments().

2. It indexes into the URI to get the first path segment, which happens to be the

book ID.

The query method then uses the projections that we created up front in Listing 4–6 to

identify the return columns. In the end, query returns the cursor to the caller. Throughout

this process, the query method uses the SQLiteQueryBuilder object to formulate and

execute the query (see Listing 4–6).

Implementing an Insert Method
The insert method in a content provider is responsible for inserting a record into the

underlying database and then returning a URI that points to the newly created record.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 117

Like the other methods, insert uses UriMatcher to identify the URI type. The code first

checks whether the URI indicates the proper collection-type URI. If not, the code throws

an exception (see Listing 4–6).

 The code then validates the optional and mandatory column parameters. The code can

substitute default values for some columns if they are missing.

Next, the code uses a SQLiteDatabase object to insert the new record and returns the

newly inserted ID. In the end, the code constructs the new URI using the returned ID

from the database.

Implementing an Update Method
The update method in a content provider is responsible for updating a record (or

records) based on the column values passed in, as well as the where clause that is

passed in. The update method then returns the number of rows updated in the process.

Like the other methods, update uses UriMatcher to identify the URI type. If the URI type

is a collection, the where clause is passed through so it can affect as many records as

possible. If the URI type is a single-record type, then the book ID is extracted from the

URI and specified as an additional where clause. In the end, the code returns the number

of records updated (see Listing 4–6). Chapter 21 fully explains the implications of this

notifyChange method. Also notice how this notifyChange method enables you to

announce to the world that the data at that URI has changed. Potentially, you can do the

same in the insert method by saying that “…/books” has changed when a record is

inserted.

Implementing a Delete Method
The delete method in a content provider is responsible for deleting a record (or records)

based on the where clause that is passed in. The delete method then returns the

number of rows deleted in the process.

Like the other methods, delete uses UriMatcher to identify the URI type. If the URI type

is a collection type, the where clause is passed through so you can delete as many

records as possible. If the where clause is null, all records will be deleted. If the URI

type is a single-record type, the book ID is extracted from the URI and specified as an

additional where clause. In the end, the code returns the number of records deleted (see

Listing 4–6).

Using UriMatcher to Figure Out the URIs
We’ve mentioned the UriMatcher class several times now; let’s look into it. Almost all

methods in a content provider are overloaded with respect to the URI. For example, the

same query() method is called whether you want to retrieve a single book or a list of

multiple books. It is up to the method to know which type of URI is being requested.

Android’s UriMatcher utility class helps you identify the URI types.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 118

Here’s how it works: You tell an instance of UriMatcher what kind of URI patterns to

expect. You will also associate a unique number with each pattern. Once these patterns

are registered, you can then ask UriMatcher if the incoming URI matches a certain

pattern.

As we’ve mentioned, our BookProvider content provider has two URI patterns: one for a

collection of books and one for a single book. The code in Listing 4–7 registers both

these patterns using UriMatcher. It allocates 1 for a collection of books and a 2 for a

single book (the URI patterns themselves are defined in the metadata for the books

table).

Listing 4–7. Registering URI Patterns with UriMatcher

 private static final UriMatcher sUriMatcher;
 //define ids for each uri type
 private static final int INCOMING_BOOK_COLLECTION_URI_INDICATOR = 1;
 private static final int INCOMING_SINGLE_BOOK_URI_INDICATOR = 2;

 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 //Register pattern for the books
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books"
 , INCOMING_BOOK_COLLECTION_URI_INDICATOR);
 //Register pattern for a single book
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books/#",
 INCOMING_SINGLE_BOOK_URI_INDICATOR);

 }

Now that this registration is in place, you can see how UriMatcher plays a part in the

query-method implementation:

switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 ……
 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 ……
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
}

Notice how the match method returns the same number that was registered earlier. The

constructor of UriMatcher takes an integer to use for the root URI. UriMatcher returns

this number if there are neither path segments nor authorities on the URL. UriMatcher

also returns NO_MATCH when the patterns don’t match. You can construct a UriMatcher

with no root-matching code; in that case, Android initializes UriMatcher to NO_MATCH

internally. So you could have written the code in Listing 4–7 as follows instead:

 static {
 sUriMatcher = new UriMatcher();
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books"
 , INCOMING_BOOK_COLLECTION_URI_INDICATOR);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 119

 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books/#",
 INCOMING_SINGLE_BOOK_URI_INDICATOR);
}

Using Projection Maps
A content provider acts like an intermediary between an abstract set of columns and a

real set of columns in a database, yet these column sets might differ. While constructing

queries, you must map between the where clause columns that a client specifies and the

real database columns. You set up this projection map with the help of the

SQLiteQueryBuilder class.

Here is what the Android SDK documentation says about the mapping method public
void setProjectionMap(Map columnMap) available on the QueryBuilder class:

Sets the projection map for the query. The projection map maps from
column names that the caller passes into query to database column
names. This is useful for renaming columns as well as disambiguating
column names when doing joins. For example you could map “name” to
“people.name”. If a projection map is set it must contain all column
names the user may request, even if the key and value are the same.

Here is how our BookProvider content provider sets up the projection map:

sBooksProjectionMap = new HashMap<String, String>();
sBooksProjectionMap.put(BookTableMetaData._ID, BookTableMetaData._ID);

//name, isbn, author
sBooksProjectionMap.put(BookTableMetaData.BOOK_NAME
 , BookTableMetaData.BOOK_NAME);
sBooksProjectionMap.put(BookTableMetaData.BOOK_ISBN
 , BookTableMetaData.BOOK_ISBN);
sBooksProjectionMap.put(BookTableMetaData.BOOK_AUTHOR
 , BookTableMetaData.BOOK_AUTHOR);

//created date, modified date
sBooksProjectionMap.put(BookTableMetaData.CREATED_DATE
 , BookTableMetaData.CREATED_DATE);
sBooksProjectionMap.put(BookTableMetaData.MODIFIED_DATE
 , BookTableMetaData.MODIFIED_DATE);

And then the query builder uses the variable sBooksProjectionMap like this:

queryBuilder.setTables(BookTableMetaData.TABLE_NAME);
queryBuilder.setProjectionMap(sBooksProjectionMap);

Registering the Provider
Finally, you must register the content provider in the Android.Manifest.xml file using the

tag structure in Listing 4–8.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 120

Listing 4–8. Registering A Provider

<provider android:name=".BookProvider"
 android:authorities="com.androidbook.provider.BookProvider"/>

Exercising the Book Provider
Now that we have a book provider, we are going to show you sample code to exercise

that provider. The sample code includes adding a book, removing a book, getting a

count of the books, and finally displaying all the books.

Keep in mind that these are code extracts from the sample project and will not compile,

as they require additional dependency files. However, we feel this sample code is

valuable in demonstrating the concepts we have explored.

At the end of this chapter, we have included a link to the downloadable sample project,

which you can use in your eclipse environment to compile and test.

Adding A Book
The code in Listing 4–9 inserts a new book into the book database.

Listing 4–9. Exercising a Provider Insert

public void addBook(Context context)
{
 String tag = "Exercise BookProvider";
 Log.d(tag,"Adding a book");
 ContentValues cv = new ContentValues();
 cv.put(BookProviderMetaData.BookTableMetaData.BOOK_NAME, "book1");
 cv.put(BookProviderMetaData.BookTableMetaData.BOOK_ISBN, "isbn-1");
 cv.put(BookProviderMetaData.BookTableMetaData.BOOK_AUTHOR, "author-1");

 ContentResolver cr = context.getContentResolver();
 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;
 Log.d(tag,"book insert uri:" + uri);
 Uri insertedUri = cr.insert(uri, cv);
 Log.d(tag,"inserted uri:" + insertedUri);
}

Removing a Book
The code in Listing 4–10 deletes the last record from the book database. See Listing 4–

11 for an example of how the getCount() method in Listing 4–10 works.

Listing 4–10. Exercising a Provider delete

public void removeBook(Context context)
{
 String tag = "Exercise BookProvider";
 int i = getCount(context); //See the getCount function in Listing 4–11
 ContentResolver cr = context.getContentResolver();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 121

 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;
 Uri delUri = Uri.withAppendedPath(uri, Integer.toString(i));
 Log.d(tag, "Del Uri:" + delUri);
 cr.delete(delUri, null, null);
 Log.d(tag, "New count:" + getCount(context));
}

Please note that this is a quick example to show how delete works with a URI. The

algorithm to get the last URI may not be valid in all cases. However it should work if you

were to add 5 records and proceed to delete them one by one from the end. In a real

case you would want to display the records in a list and ask the user to pick one to

delete in which case you will know the exact URI of the record.

Getting a Count of the Books
The code in Listing 4–11 gets the database cursor and counts the number of records in

the cursor.

Listing 4–11. Counting the Records in a Table

private int getCount(Context context)
{
 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;
 Activity a = (Activity)context;
 Cursor c = a.managedQuery(uri,
 null, //projection
 null, //selection string
 null, //selection args array of strings
 null); //sort order
 int numberOfRecords = c.getCount();
 c.close();
 return numberOfRecords;
}

Displaying the List of Books
The code in Listing 4–12 retrieves all the records in the book database.

Listing 4–12. Displaying a List of Books

public void showBooks(Context context)
{
 String tag = "Exercise BookProvider";
 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;
 Activity a = (Activity)context;
 Cursor c = a.managedQuery(uri,
 null, //projection
 null, //selection string
 null, //selection args array of strings
 null); //sort order

 int iname = c.getColumnIndex(
 BookProviderMetaData.BookTableMetaData.BOOK_NAME);

 int iisbn = c.getColumnIndex(

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 122

 BookProviderMetaData.BookTableMetaData.BOOK_ISBN);
 int iauthor = c.getColumnIndex(
 BookProviderMetaData.BookTableMetaData.BOOK_AUTHOR);

 //Report your indexes
 Log.d(tag,"name,isbn,author:" + iname + iisbn + iauthor);

 //walk through the rows based on indexes
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext())
 {
 //Gather values
 String id = c.getString(1);
 String name = c.getString(iname);
 String isbn = c.getString(iisbn);
 String author = c.getString(iauthor);

 //Report or log the row
 StringBuffer cbuf = new StringBuffer(id);
 cbuf.append(",").append(name);
 cbuf.append(",").append(isbn);
 cbuf.append(",").append(author);
 Log.d(tag, cbuf.toString());
 }

 //Report how many rows have been read
 int numberOfRecords = c.getCount(context);
 Log.d(tag,"Num of Records:" + numberOfRecords);

 //Close the cursor
 //ideally this should be done in
 //a finally block.
 c.close();
}

Resources
Here are some additional Android resources that can help you with the topics covered in

this chapter:

 http://developer.android.com/guide/topics/providers/content-
providers.html: You can read about Android documentation on

Content Providers here.

 http://developer.android.com/reference/android/content/ContentP
rovider.html: Here is the API description for a ContentProvider,

where you can learn about ContentProvider contracts.

 http://developer.android.com/reference/android/content/UriMatch
er.html: This URL points to information that is useful for

understanding UriMatcher.

 http://developer.android.com/reference/android/database/Cursor.
html: This URL will help you to read data from a content provider or a

database directly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 123

 http://www.sqlite.org/sqlite.html: Here is the home page of

SQLite, where you can learn more about SQLite and download tools

that you can use to work with SQLite databases.

 http://www.androidbook.com/projects: You can use this URL to

download the test project dedicated for this chapter. The name of the

zip file is ProAndroid3_ch04_TestProviders.zip.

Summary
In this chapter, you learned the nature of content URIs, MIME types, and content

providers. You have learned how to use SQLite to construct providers that respond to

URIs. Once your underlying data is exposed in this manner, any application on the

Android platform can take advantage of it.

This ability to access and update data using URIs, irrespective of the process

boundaries, falls right in step with the service-centric, cloud-computing landscape that

we described in Chapter 1.

In the next chapter, we will cover intents, which get tied to content providers (among

other Android components) through data URIs and URI MIME types. What you have

learned in this chapter will be helpful in understanding intents, in which data URIs play a

key role.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4: Understanding Content Providers 124

http://lib.ommolketab.ir
http//lib.ommolketab.ir

125

125

 Chapter

Understanding Intents
Android introduced a concept called intents to invoke components. The list of

components in Android include activities (UI components), services (background code),

broadcast receivers (code that responds to broadcast messages), and content providers

(code that abstracts data).

Basics of Android Intents
Although an intent is easily understood as a mechanism to invoke components, Android

folds multiple ideas into the concept of an intent. You can use intents to invoke external

applications from your application. You can use intents to invoke internal or external

components from your application. You can use intents to raise events so that others

can respond in a manner similar to a publish-and-subscribe model. You can use intents

to raise alarms.

NOTE: What is an intent? The short answer may be that an intent is an action with its associated

data payload.

At the simplest level, an intent is an action that you can tell Android to perform (or

invoke). The action Android invokes depends on what is registered for that action.

Imagine you’ve written the following activity:

public class BasicViewActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.some_view);
 }
}//eof-class

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 126

The layout some_view needs to point to a valid layout file in the /res/layout directory.

Android then allows you to register this activity in its manifest file, making it available for

other applications to invoke. The registration looks like this:

 <activity android:name=".BasicViewActivity"
 android:label="Basic View Tests">
 <intent-filter>
 <action android:name="com.androidbook.intent.action.ShowBasicView"/>
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

The registration here not only involves an activity but also an action that you can use to

invoke that activity. The activity designer usually chooses a name for the action and

specifies that action as part of an intent filter for this activity. As we go through the rest

of the chapter, you will have a chance to learn more about these intent filters.

Now that you have specified the activity and its registration against an action, you can

use an intent to invoke this BasicViewActivity:

public static void invokeMyApplication(Activity parentActivity)
{
 String actionName= "com.androidbook.intent.action.ShowBasicView";
 Intent intent = new Intent(actionName);
 parentActivity.startActivity(intent);
}

NOTE: The general convention for an action name is <your-package-

name>.intent.action.YOUR_ACTION_NAME.

Once the BasicViewActivity is invoked it has the ability to discover the intent that

invoked it. Here is the BasicViewActivity code rewritten to retrieve the intent that

invoked it:

public class BasicViewActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.some_view);
 Intent intent = this.getIntent();
 if (intent == null)
 {
 Log.d("test tag", "This activity is invoked without an intent");
 }
 }
}//eof-class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 127

Available Intents in Android
You can give intents a test run by invoking some of the applications that come with

Android. The page at http://developer.android.com/guide/appendix/g-app-
intents.html documents some of the available Google applications and the intents that

invoke them.

NOTE: Please note, however, that this list may change depending on the Android release.

The set of available applications could include the following:

 A browser application to open a browser window

 An application to call a telephone number

 An application to present a phone dialer so the user can enter the

numbers and make a call through the UI

 A mapping application to show the map of the world at a given latitude

and longitude coordinate

 A detailed mapping application that can show Google street views

Listing 5–1 has the code to invoke these applications through their published intents.

Listing 5–1. Exercising Android’s Prefabricated Applications

public class IntentsUtils
{
 public static void invokeWebBrowser(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }
 public static void invokeWebSearch(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_WEB_SEARCH);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }
 public static void dial(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_DIAL);
 activity.startActivity(intent);
 }

 public static void call(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_CALL);
 intent.setData(Uri.parse("tel:555-555-5555"));
 activity.startActivity(intent);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 128

 public static void showMapAtLatLong(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 //geo:lat,long?z=zoomlevel&q=question-string
 intent.setData(Uri.parse("geo:0,0?z=4&q=business+near+city"));
 activity.startActivity(intent);
 }

 public static void tryOneOfThese(Activity activity)
 {
 IntentsUtils.invokeWebBrowser(activity);
 }
}

You will be able to exercise this code as long you have a simple activity with a menu item

to invoke tryOneOfThese(activity). Creating a simple menu is easy (see Listing 5–2).

Listing 5–2. A Test Harness to Create a Simple Menu

public class MainActivity extends Activity
{
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 TextView tv = new TextView(this);
 tv.setText("Hello, Android. Say hello");
 setContentView(tv);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST; // value is 1
 MenuItem item1 = menu.add(base,base,base,"Test");
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == 1) {
 IntentUtils.tryOneOfThese(this);
 }
 else {
 return super.onOptionsItemSelected(item);
 }
 return true;
 }
}

NOTE: See Chapter 2 for instructions on how to make an Android project out of these files, as
well as how to compile and run it. You can also read the early parts of Chapter 7 (“Menus”) to
see more sample code relating to menus. Or you can download the sample Eclipse project
dedicated for this chapter using the URL supplied at the end of this chapter. However, when you

download the sample code, this basic activity may be slightly different, but the concept remains

the same. In the download sample, we also load the menus from an XML file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 129

Exploring Intent Composition
Another sure way to nail down an intent is to see what an intent object contains. An

intent has an action, data (represented by a data URI), a key/value map of extra data

elements, and an explicit class name (called a component name). We will explore each

of these parts in turn.

NOTE: When an intent carries a component name with it, it is called an explicit intent. When an
intent doesn’t carry a component name but relies on other parts such as action and data, it is

called an implicit intent. As we go through the rest of the chapter, you will see that there are

subtle differences between the two.

Intents and Data URIs
So far, we’ve covered the simplest of the intents, where all we need is the name of an

action. The ACTION_DIAL activity in Listing 5–1 is one of these; to invoke the dialer, all we

needed in that listing is the dialer’s action and nothing else:

 public static void dial(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_DIAL);
 activity.startActivity(intent);
 }

Unlike ACTION_DIAL, the intent ACTION_CALL (again referring to Listing 5–1) that is used to

make a call to a given phone number takes an additional parameter called Data. This

parameter points to a URI, which, in turn, points to the phone number:

 public static void call(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_CALL);
 intent.setData(Uri.parse("tel:555-555-5555"));
 activity.startActivity(intent);
 }

The action portion of an intent is a string or a string constant, usually prefixed by the

Java package name.

The “data” portion of an intent is not really data but a pointer to the data. This data

portion is a string representing a URI. An intent’s URI can contain arguments that can be

inferred as data, just like a web site’s URL.

The format of this URI could be specific to each activity that is invoked by that action. In

this case, the CALL action decides what kind of data URI it would expect. From the URI,

it extracts the telephone number.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 130

NOTE: The invoked activity can also use the URI as a pointer to a data source, extract the data
from the data source, and use that data instead. This would be the case for media such as audio,

video, and images.

Generic Actions
The actions Intent.ACTION_CALL and Intent.ACTION_DIAL could easily lead us to the

wrong assumption that there is a one-to-one relationship between an action and what it

invokes. To disprove this, let us consider a counterexample from the IntentUtils code

in Listing 5–1:

 public static void invokeWebBrowser(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }

Note that the action is simply stated as ACTION_VIEW. How does Android know which

activity to invoke in response to such a generic action name? In these cases, Android

relies not only on the generic action name but also on the nature of the URI. Android

looks at the scheme of the URI, which happens to be http, and questions all the

registered activities to see which ones understand this scheme. Out of these, it inquires

which ones can handle the VIEW and then invokes that activity. For this to work, the

browser activity should have registered a VIEW intent against the data scheme of http.

That intent declaration might look like this in the manifest file:

<activity…...>
<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="http"/>
 <data android:scheme="https"/>
</intent-filter>
</activity>

You can learn more about the data options by looking at the XML definition for the data
element of the intent filter at http://developer.android.com/guide/topics/
manifest/data-element.html. The child elements or attributes of data XML subnode of

intent filter node include these:

host
mimeType
path
pathPattern
pathPrefix
port
scheme

mimeType is one attribute you’ll see used often. For example, the following intent filter for

the activity that displays a list of notes indicates the MIME type as a directory of notes:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 131

<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />
</intent-filter>

This intent filter declaration can be read as “Invoke this activity to view a collection of

notes.”

The screen that displays a single note, on the other hand, declares its intent filter using a

MIME type indicating a single note item:

<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />
</intent-filter>

This intent filter declaration can be read as “Invoke this activity to view a single of note.”

Using Extra Information
In addition to its primary attributes of action and data, an intent can include an additional

attribute called extras. An extra can provide more information to the component that

receives the intent. The extra data is in the form of key/value pairs: the key name

typically starts with the package name, and the value can be any fundamental data type

or arbitrary object as long as it implements the android.os.Parcelable interface. This

extra information is represented by an Android class called android.os.Bundle.

The following two methods on an Intent class provide access to the extra Bundle:

 //Get the Bundle from an Intent
 Bundle extraBundle = intent.getExtras();

 // Place a bundle in an intent
 Bundle anotherBundle = new Bundle();

 //populate the bundle with key/value pairs
 ...
 //set the bundle on the Intent
 intent.putExtras(anotherBundle);

getExtras is straightforward: it returns the Bundle that the intent has. putExtras checks

whether the intent currently has a bundle. If the intent already has a bundle, putExtras

transfers the additional keys and values from the new bundle to the existing bundle. If

the bundle doesn’t exist, putExtras will create one and copy the key/value pairs from

the new bundle to the created bundle.

NOTE: putExtras replicates the incoming bundle rather than referencing it. So if you were to

later change the incoming bundle, you wouldn’t be changing the bundle inside the intent.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 132

You can use a number of methods to add fundamental types to the bundle. Here are

some of the methods that add simple data types to the extra data:

putExtra(String name, boolean value);
putExtra(String name, int value);
putExtra(String name, double value);
putExtra(String name, String value);

And here are some not-so-simple extras:

//simple array support
putExtra(String name, int[] values);
putExtra(String name, float[] values);

//Serializable objects
putExtra(String name, Serializable value);

//Parcelable support
putExtra(String name, Parcelable value);

//Add another bundle at a given key
//Bundles in bundles
putExtra(String name, Bundle value);

//Add bundles from another intent
//copy of bundles
putExtra(String name, Intent anotherIntent);

//Explicit Array List support
putIntegerArrayListExtra(String name, ArrayList arrayList);
putParcelableArrayListExtra(String name, ArrayList arrayList);
putStringArrayListExtra(String name, ArrayList arrayList);

On the receiving side, equivalent methods starting with get retrieve information from the

extra bundle based on key names.

The Intent class defines extra key strings that go with certain actions. You can discover

a number of these extra-information key constants at
http://developer.android.com/reference/android/content/Intent.html#EXTRA_ALARM_
COUNT.

Let’s consider a couple of example extras listed at this URL that involve sending e-mails:

 EXTRA_EMAIL: You will use this string key to hold a set of e-mail

addresses. The value of the key is android.intent.extra.EMAIL. It

should point to a string array of textual e-mail addresses.

 EXTRA_SUBJECT: You will use this key to hold the subject of an e-mail

message. The value of the key is android.intent.extra.SUBJECT. The

key should point to a string of subject.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 133

Using Components to Directly Invoke an Activity
You’ve seen a couple of ways to start an activity using intents. You saw an explicit

action start an activity, and you saw a generic action start an activity with the help of a

data URI. Android also provides a more direct way to start an activity: you can specify

the activity’s ComponentName, which is an abstraction around an object’s package name

and class name. There are a number of methods available on the Intent class to specify

a component:

setComponent(ComponentName name);
setClassName(String packageName, String classNameInThatPackage);
setClassName(Context context, String classNameInThatContext);
setClass(Context context, Class classObjectInThatContext);

Ultimately, they are all shortcuts for calling one method:

setComponent(ComponentName name);

ComponentName wraps a package name and a class name together. For example, the

following code invokes the contacts activity that ships with the emulator:

Intent intent = new Intent();
intent.setComponent(new ComponentName(
 "com.android.contacts"
 ,"com.android.contacts.DialContactsEntryActivity");
startActivity(intent);

Notice that the package name and the class name are fully qualified and are used in turn

to construct the ComponentName before passing to the Intent class.

You can also use the class name directly without constructing a ComponentName.

Consider the BasicViewActivity code snippet again:

public class BasicViewActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.some_view);
 }
}//eof-class

Given this, you can use the following code to start this activity:

Intent directIntent = new Intent(activity, BasicViewActivity.class);
activity.start(directIntent);

If you want any type of intent to start an activity, however, you should register the

activity in the Android.Manifest.xml file like this:

 <activity android:name=".BasicViewActivity"
 android:label="Test Activity">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 134

No intent filters are necessary for invoking an activity directly through its class name or

name. As explained earlier, this type of intent is called an explicit intent. Because an

explicit intent specifies a fully qualified Android component to invoke, the additional

parts of that intent are ignored while invoking that component.

Understanding Intent Categories
You can classify activities into categories so you can search for them based on a

category name. For example, during startup Android looks for activities whose category

is marked as CATEGORY_LAUNCHER. It then picks up these activity names and icons and

places them on the home screen to launch.

Here’s another example: Android looks for an activity tagged as CATEGORY_HOME to show

the home screen during startup. Similarly, CATEGORY_GADGET marks an activity as suitable

for embedding or reuse inside another activity.

The format of the string for a category like CATEGORY_LAUNCHER follows the category

definition convention:

android.intent.category.LAUNCHER

You will need to know these text strings for category definitions because activities

register their categories in the AndroidManifest.xml file as part of their activity filter

definitions. Here is an example:

 <activity android:name=".HelloWorldActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

NOTE: Activities might have certain capabilities that restrict them or enable them, such as
whether you can embed them in a parent activity. These types of activity characteristics are

declared through categories.

Let’s take a quick look at some predefined Android categories and how to use them (see

Table 5–1).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 135

Table 5–1. Activity Categories and Their Descriptions

Category Name Description

CATEGORY_DEFAULT An activity can declare itself as a DEFAULT activity if it wants to be

invoked by implicit intents. If you don’t define this category for

your activity, that activity will need to be invoked explicitly every

time through its class name. This is why you see activities that get

invoked through generic actions or other action names use

default category specification.

CATEGORY_BROWSABLE An activity can declare itself as BROWSABLE by promising the

browser that it will not violate browser security considerations

when started.

CATEGORY_TAB An activity of this type is embeddable in a tabbed parent activity.

CATEGORY_ALTERNATIVE An activity can declare itself as an ALTERNATIVE activity for a

certain type of data that you are viewing. These items normally

show up as part of the options menu when you are looking at that

document. For example, print view is considered an alternative to

regular view.

CATEGORY_SELECTED_ALTERNATIVE An activity can declare itself as an ALTERNATIVE activity for a

certain type of data. This is similar to listing a series of possible

editors for a text document or an HTML document.

CATEGORY_LAUNCHER Assigning this category to an activity will allow it to be listed on

the launcher screen.

CATEGORY_HOME An activity of this type will be the home screen. Typically, there

should be only one activity of this type. If there are more, the

system will provide a prompt to pick one.

CATEGORY_PREFERENCE This activity identifies an activity as a preference activity, so it will

be shown as part of the preferences screen.

CATEGORY_GADGET An activity of this type is embeddable in a parent activity.

CATEGORY_TEST This is a test activity.

CATEGORY_EMBED This category has been superseded by the GADGET category, but

it’s been kept for backward compatibility.

You can read the details of these activity categories at the following Android SDK URL

for the Intent class:
http://developer.android.com/android/reference/android/content/Intent.html#CATE
GORY_ALTERNATIVE.

When you use an intent to start an activity, you can specify the kind of activity to choose

by specifying a category. Or you can search for activities that match a certain category.

Here is an example to retrieve a set of main activities that match the category of

CATEGORY_LAUNCHER:

Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
mainIntent.addCategory(Intent.CATEGORY_LAUNCHER);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 136

PackageManager pm = getPackageManager();
List<ResolveInfo> list = pm.queryIntentActivities(mainIntent, 0);

PackageManager is a key class that allows you to discover activities that match certain

intents without invoking them. You can cycle through the received activities and invoke

them as you see fit, based on the ResolveInfo API. Here is an extension to the

preceding code that walks through the list of activities and invokes one of the activities if

it matches a name. In the code, we have a used an arbitrary name to test it.

for(ResolveInfo ri: list)
{
 //ri.activityInfo.
 Log.d("test",ri.toString());
 String packagename = ri.activityInfo.packageName;
 String classname = ri.activityInfo.name;
 Log.d("test", packagename + ":" + classname);
 if (classname.equals("com.ai.androidbook.resources.TestActivity"))
 {
 Intent ni = new Intent();
 ni.setClassName(packagename,classname);
 activity.startActivity(ni);
 }
}

You can also start an activity based purely on an intent category such as

CATEGORY_LAUNCHER:

 public static void invokeAMainApp(Activity activity)
 {
 Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
 mainIntent.addCategory(Intent.CATEGORY_LAUNCHER);
 activity.startActivity(mainIntent);
 }

More than one activity will match the intent, so which activity will Android pick? To

resolve this, Android presents a “Complete action using” dialog that lists all the possible

activities so you can choose one to run.

Here is another example of using an intent to go to a home page:

//Go to home screen
Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
mainIntent.addCategory(Intent.CATEGORY_HOME);
startActivity(mainIntent);

If you don’t want to use Android’s default home page, you can write your own and

declare that activity to be of category HOME. In that case, the preceding code will give

you an option to open your home activity because more than one home activity is

registered now:

//Replace the home screen with yours
<intent-filter>
 <action android:value="android.intent.action.MAIN" />
 <category android:value="android.intent.category.HOME"/>
 <category android:value="android.intent.category.DEFAULT" />
</intent-filter>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 137

Rules for Resolving Intents to Their Components
So far, we have discussed a number of aspects about intents. To recap, we talked about

actions, data URIs, extra data, and finally, categories. Given these aspects, Android

uses multiple strategies to match intents to their target activities based on intent filters.

At the top of the hierarchy is the component name attached to an intent. If this is set, the

intent is known as an explicit intent. For an explicit intent, only the component name

matters; every other aspect or attribute of the intent is ignored. When a component

name is not present on an intent the intent is said to be an implicit intent. The rules for

resolving targets for implicit intents are numerous.

The basic rule is that an incoming intent’s action, category, and data characteristics

must match (or present) those specified in the intent filter. An intent filter, unlike an

intent, can specify multiple actions, categories, and data attributes. This means the

same intent filter can satisfy multiple intents, which is to say that an activity can respond

to many intents. However, the meaning of “match” differs among actions, data

attributes, and categories. Let’s look the matching criteria for each of the parts of an

implicit intent.

Action
If an intent has an action on it, the intent filter must have that action as part of its action

list or not have any actions at all. So if an intent filter doesn’t define an action, that intent

filter is a match for any incoming intent action.

If one or more actions are specified in the intent filter, at least one of the actions must

match the incoming intents action.

Data
If no data characteristics are specified in an intent filter, it does not match an incoming

intent that carries any data or data attribute. This means it will only look for intents that

have no data specified at all.

Lack of data and lack of action (in the filter) works the opposite. If there is no action in

the filter, every thing is a match. If there is no datain the filter, every bit of data in the

intent is a mismatch.

Data Type
For a data type to match, the incoming intent’s data type must be one of the data types that

is specified in the intent filter. The data type in the intentmust be present in the intent filter.

The incoming intents data type is determined in one of two ways. First, if the data URI is

a content or file URI, the content provider or android will figure out the type. The second

way is to look at the explicit data type of the intent. For this to work, the incoming intent

should not have a data URI set, because this is automatically taken care of when

setType is called on the intent.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 138

Android also allows as part of its mime type specification to have an asterisk (*) as its

subtype to cover all possible subtypes.

Also, the data type is case sensitive.

Data Scheme
For a data scheme to match, the incoming intent data scheme must be one of those

specified in the intent filter. In other words, the incoming data scheme must be present

in the intent filter.

The incoming intents scheme is the first part of the data URI. On an intent, there is no

method to set the scheme. It is purely derived from the intent data URI that looks like

http://www.somesite.com/somepath.

If the data scheme of the incoming intent URI is content: or file:, it is considered a

match irrespective of the intent filter scheme, domain, and path. According to the SDK,

this is so because every component is expected to know how to read data from content

or file URLs, which are essentially local. In other words, all components are expected to

support these two types of URLs.

The scheme is also case sensitive.

Data Authority
If there are no authorities in the filter, you have a match for any incoming data URI

authority (or domain name). If an authority is specified in the filter, for example,

www.somesite.com, then one scheme and one authority should match the incoming

intents data URI.

For example, if we specify www.somesite.com as the authority in the intent filter and the

scheme as https, the intent will fail to match http://www.somesite.com/somepath as

http is not indicated as the supporting scheme.

The authority is case sensitive as well.

Data Path
No data paths in the intent filter means a match for any incoming data URI’s path. If a

path is specified in the filter, for example, somepath, one scheme, one authority, and one

data path should match the incoming intent’s data URI.

In other words scheme, authority, and path work together to validate an incoming intent

URI such as http://www.somesite.com/somepath. So path, authority, and scheme work

not in isolation but together.

The path, too, is case sensitive.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 139

Intent Categories
Every category in the incoming intent must be present in the filter category list. Having

more categories in the filter is OK. If a filter doesn’t have any categories, it will match

only with an intent that doesn’t have any categories mentioned.

However, there is a caveat. Android treats all implicit intents passed to startActivity()

as if they contained at least one category: android.intent.category.DEFAULT. The code

in startActivity() will search only for those activities that have DEFAULT category

defined if the incoming intent is an implicit intent. So every activity that wants to be

invoked through an implicit intent must include the default category in its filters.

Even if an activity doesn’t have the default category in its intent filter, if you know its

explicit component names, you will be able to start it like the launcher does. If you

explicitly search for matching intents yourself without having a default category as a

search criteria, you will be able to start those activities that way.

In that sense this DEFAULT category is an artifact of the startActivity implementation

and not an inherent behavior of filters.

There is an additional wrinkle because Android states that the default category is

unnecessary if the activity is intended to be invoked only from launcher screens. So

these activities tend to have only MAIN and LAUNCHER categories as part of their filters.

However, the DEFAULT category can be optionally specified for these activities as well.

Exercising the ACTION_PICK
So far, we have exercised intents or actions that mainly invoke another activity without

expecting a result back. Let’s look at an action that is a bit more involved, where it

returns a value after being invoked. ACTION_PICK is one such generic action.

The idea of ACTION_PICK is to start an activity that displays a list of items. The activity

then should allow a user to pick one item from that list. Once the user picks the item, the

activity should return the URI of the picked item to the caller. This allows reuse of the

UI’s functionality to select items of a certain type.

You should indicate the collection of items to choose from using a MIME type that

points to an Android content cursor. The MIME type of this URI should look similar to

the following:

vnd.android.cursor.dir/vnd.google.note

It is the responsibility of the activity to retrieve the data from the content provider based

on the URI. This is also the reason that data should be encapsulated into content

providers where possible.

For actions that return data like this, we cannot use startActivity(), because

startActivity() does not return a result. startActivity() cannot return a result,

because it opens the new activity as a modal dialog in a separate thread and leaves the

main thread for attending events. In other words, startActivity() is an asynchronous

call with no callbacks to indicate what happened in the invoked activity. If you want to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 140

return data, you can use a variation of startActivity() called

startActivityForResult(), which comes with a callback.

Let’s look at the signature of the startActivityForResult() method from the

Activity class:

public void startActivityForResult(Intent intent, int requestCode)

This method launches an activity from which you would like a result. When this activity

exits, the source activity’s onActivityResult() method will be called with the given

requestCode. The signature of this callback method is

protected void onActivityResult(int requestCode, int resultCode, Intent data)

requestCode is what you passed in to the startActivityForResult() method. The

resultCode can be RESULT_OK, RESULT_CANCELED, or a custom code. The custom codes

should start at RESULT_FIRST_USER. The Intent parameter contains any additional data

that the invoked activity wants to return. In the case of ACTION_PICK, the returned data in

the intent points to the data URI of a single item.

Listing 5–3 demonstrates invoking an activity that sends a result back.

NOTE: The code in Listing 5–3 assumes that you have installed the NotePad sample project
from the Android SDK distribution. We have included a link at the end of this chapter that gives

you directions on how to download the NotePad sample if you don’t have it in the SDK already.

Listing 5–3. Returning Data After Invoking an Action

public class SomeActivity extends Activity
{
.....
.....
public static void invokePick(Activity activity)
{
 Intent pickIntent = new Intent(Intent.ACTION_PICK);
 int requestCode = 1;
 pickIntent.setData(Uri.parse(
 "content://com.google.provider.NotePad/notes"));
 activity.startActivityForResult(pickIntent, requestCode);

}

protected void onActivityResult(int requestCode
 ,int resultCode
 ,Intent outputIntent)

{
 //This is to inform the parent class (Activity)
 //that the called activity has finished and the baseclass
 //can do the necessary clean up
 super.onActivityResult(requestCode, resultCode, outputIntent);
 parseResult(this, requestCode, resultCode, outputIntent);
}
public static void parseResult(Activity activity
 , int requestCode
 , int resultCode

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 141

 , Intent outputIntent)
{
 if (requestCode != 1)
 {
 Log.d("Test", "Some one else called this. not us");
 return;
 }
 if (resultCode != Activity.RESULT_OK)
 {
 Log.d(Test, "Result code is not ok:" + resultCode);
 return;
 }
 Log.d("Test", "Result code is ok:" + resultCode);
 Uri selectedUri = outputIntent.getData();
 Log.d("Test", "The output uri:" + selectedUri.toString());

 //Proceed to display the note
 outputIntent.setAction(Intent.ACTION_VIEW);
 startActivity(outputIntent);
}

The constants RESULT_OK, RESULT_CANCELED, and RESULT_FIRST_USER are all defined in the

Activity class. The numerical values of these constants are

RESULT_OK = -1;
RESULT_CANCELED = 0;
RESULT_FIRST_USER = 1;

To make the PICK functionality work, the implementer that is responding should have

code that explicitly addresses the needs of a PICK. Let’s look at how this is done in the

Google sample NotePad application. When the item is selected in the list of items, the

intent that invoked the activity is checked to see whether it’s a PICK intent. If it is, the

data URI is set in a new intent and returned through setResult():

@Override
protected void onListItemClick(ListView l, View v, int position, long id) {
 Uri uri = ContentUris.withAppendedId(getIntent().getData(), id);

 String action = getIntent().getAction();
 if (Intent.ACTION_PICK.equals(action) ||
 Intent.ACTION_GET_CONTENT.equals(action))
 {
 // The caller is waiting for us to return a note selected by
 // the user. They have clicked on one, so return it now.
 setResult(RESULT_OK, new Intent().setData(uri));
 } else {
 // Launch activity to view/edit the currently selected item
 startActivity(new Intent(Intent.ACTION_EDIT, uri));
 }
}

Exercising the GET_CONTENT Action
ACTION_GET_CONTENT is similar to ACTION_PICK. In the case of ACTION_PICK, you are

specifying a URI that points to a collection of items, such as a collection of notes. You

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 142

will expect the action to pick one of the notes and return it to the caller. In the case of

ACTION_GET_CONTENT, you indicate to Android that you need an item of a particular MIME

type. Android searches for either activities that can create one of those items or

activities that can choose from an existing set of items that satisfy that MIME type.

Using ACTION_GET_CONTENT, you can pick a note from a collection of notes supported by

the NotePad application using the following code:

public static void invokeGetContent(Activity activity)
{
 Intent pickIntent = new Intent(Intent.ACTION_GET_CONTENT);
 int requestCode = 2;
 pickIntent.setType("vnd.android.cursor.item/vnd.google.note");
 activity.startActivityForResult(pickIntent, requestCode);
}

Notice how the intent type is set to the MIME type of a single note. Contrast this with the

ACTION_PICK code in the following snippet, where the input is a data URI:

public static void invokePick(Activity activity)
{
 Intent pickIntent = new Intent(Intent.ACTION_PICK);
 int requestCode = 1;
 pickIntent.setData(Uri.parse(
 "content://com.google.provider.NotePad/notes"));
 activity.startActivityForResult(pickIntent, requestCode);
}

For an activity to respond to ACTION_GET_CONTENT, the activity has to register an intent

filter indicating that the activity can provide an item of that MIME type. Here is how the

SDK’s NotePad application accomplishes this:

<activity android:name="NotesList" android:label="@string/title_notes_list">
……
<intent-filter>
 <action android:name="android.intent.action.GET_CONTENT" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />
 </intent-filter>
…..
</activity>

The rest of the code for responding to onActivityResult() is identical to the previous

ACTION_PICK example. If there are multiple activities that can return the same MIME type,

Android will show you the chooser dialog to let you pick an activity.

Introducing Pending Intents
Android has a variation on an intent called a pending intent. In this variation, Android

allows a component to store an intent for future use in a location from which it can be

invoked again. For example, in an alarm manager, you want to start a service when the

alarm goes off. Android does this by creating a wrapper pending intent around an intent

and storing it away so that even if the calling process dies off, the intent can be

dispatched to its target. At the time of the pending intent creation, Android stores

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 143

enough information about the originating process so that security credentials can be

checked at the time of dispatch or invocation.

Let’s see how we can go about creating a pending intent.

Intent regularIntent;
PendingIntent pi = PendingIntent.getActivity(context, 0, regularIntent,...);

NOTE: The second argument to the PendingIntent.getActivity() method is called

requestCode and in this example we are setting it to zero. This argument is used to distinguish
two pending intents when their underlying intents are the same. This aspect is talked in much
more detail in Chapter 15 where we talk about pending intents in the context of alarm managers.

There are a couple of odd things here when it comes to the naming of the method

PendingActivity.getActivity().What is the role of an activity here? Second, why don’t

we call create for creating a pending intent but instead use get?

To understand the first point, we have to dig a bit into the usage of a regular intent. A regular

intent can be used to start an activity or a service or invoke a broadcast receiver. (You will

learn about services and broadcast receivers later in this book). The nature of using an intent

to call these different sorts of components is different. To accommodate this, an Android

context (a superclass of Activity) provides three distinct methods. These are

startActivty(intent)
startService(intent)
sendBroadcast(intent)

Given these variations, if we were to store an intent to be reused later, how would

Android know whether to start an activity, start a service, or start a broadcast reciever

due to a broadcast? This is why we have to explicitly specify the purpose for which we

are creating the pending intent when it’s created, and it explains the following three

separate methods:

PendingIntent.getActivity(context, 0, intent, ...)
PendingIntent.getService(context, 0, intent, ...)
PendingIntent.getBroadcast(context, 0, intent, ...)

Now to explain the “get” part. Android stores away intents and reuses them. If you ask

for a pending intent using the same intent object twice, you get the same pending intent.

This becomes a bit clear if you see the full signature of the

PendingIntent.getActivity() method. Here it is:

PendingIntent.getActivity(Context context, //originating context
 int requestCode, //1,2, 3, etc
 Intent intent, //original intent
 int flags) //flags

If your goal is to get a different copy of the pending intent, you have to supply a different

requestCode. This need is explained in much greater detail when we cover alarm

managers in Chapter 15. Two “intents” are considered identical if their internal parts

match except for the extra bundle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5: Understanding Intents 144

The flags indicate what to do if there is an existing pending intent—whether to return a

null, overwrite extras, and so on. See the following URL to see more detail about the

possible flags:

http://developer.android.com/reference/android/app/PendingIntent.html

Usually, you can pass a zero for requestCode and flags to get the default behavior.

Resources
Here are some useful links to further strengthen your understanding of this chapter:

 http://developer.android.com/reference/android/content/Intent.html: You

will find the overview of intents at this URL. You will discover here well-known

actions, extras, and so on.

 http://developer.android.com/guide/appendix/g-app-intents.html: This URL

lists the intents for a set of Google applications. Here, you will see here how to

invoke Browser, Map, Dialer, and Google Street View.

 http://developer.android.com/reference/android/content/IntentFilter.html:
This URL talks about intent filters and is useful when you are registering intent filters.

 http://developer.android.com/guide/topics/intents/intents-filters.html:

This URL goes into the resolution rules of intent filters.

 http://developer.android.com/resources/samples/get.html: You can use this

URL to download the sample code for NotePad application. You will need this

sample project loaded to test some of the intents.

 http://developer.android.com/resources/samples/NotePad/index.html: You

can use this URL to browse the source code online for the NotePad application.

 http://www.openintents.org/: This URL points to a web effort to collect open

intents from various vendors.

 http://www.androidbook.com/projects: You can use this URL to download the

test project dedicated for this chapter. The name of the ZIP file is

ProAndroid3_ch05_TestIntents.zip.

Summary
In this chapter, we have identified important elements about an Android intent. We have

explored various scenarios in which intents can be used, and we showed you the

relationship between intents and content URIs. We explained how you can use intents to

invoke activities that return results as well. We also introduced pending intents, which

we will explore further when we use them in Chapters 15 and 22.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

145

145

 Chapter

Building User Interfaces
and Using Controls
Thus far, we have covered the fundamentals of Android but have not touched the user

interface (UI). In this chapter, we are going to discuss user interfaces and controls. We

will begin by discussing the general philosophy of UI development in Android, then we’ll

describe the common UI controls that ship with the Android SDK. We will also discuss

layout managers and view adapters. We will conclude by discussing the Hierarchy

Viewer tool—a tool used to debug and optimize Android UIs.

UI Development in Android
UI development in Android is fun. It’s fun because it's relatively easy. With Android, we

have a simple-to-understand framework with a limited set of out-of-the-box controls.

The available screen area is generally limited. Android also takes care of a lot of the

heavy lifting normally associated to designing and building quality UIs. This, combined

with the fact that the user usually wants to do one specific action, allows us to easily

build a good user interface to deliver a good user experience.

The Android SDK ships with a host of controls that you can use to build user interfaces

for your application. Similar to other SDKs, the Android SDK provides text fields,

buttons, lists, grids, and so on. In addition, Android provides a collection of controls that

are appropriate for mobile devices.

At the heart of the common controls are two classes: android.view.View and

android.view.ViewGroup. As the name of the first class suggests, the View class

represents a general-purpose View object. The common controls in Android ultimately

extend the View class. ViewGroup is also a view, but contains other views too. ViewGroup

is the base class for a list of layout classes. Android, like Swing, uses the concept of

layouts to manage how controls are laid out within a container view. Using layouts, as

we’ll see, makes it easy for us to control the position and orientation of the controls in

our user interfaces.

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 146

You can choose from several approaches to build user interfaces in Android. You can

construct user interfaces entirely in code. You can also define user interfaces in XML.

You can even combine the two—define the user interface in XML and then refer to it,

and modify it, in code. To demonstrate this, we are going to build a simple user interface

using each of these three approaches.

Before we get started, let’s define some nomenclature. In this book and other Android

literature, you will find the terms view, control, widget, container, and layout in

discussions regarding UI development. If you are new to Android programming or UI

development in general, you might not be familiar with these terms. We’ll briefly describe

them before we get started (see Table 6–1).

Table 6–1. UI Nomenclature

Term Description

View, Widget, Control Each of these represents a user interface element. Examples include a

button, a grid, a list, a window, a dialog box, and so on. The terms “view,”

“widget,” and “control” are used interchangeably in this chapter.

Container This is a view used to contain other views. For example, a grid can be

considered a container because it contains cells, each of which is a view.

Layout This is a visual arrangement of containers and views and can include other

layouts.

Figure 6–1 shows a screenshot of the application that we are going to build. Next to the

screenshot is the layout hierarchy of the controls and containers in the application.

Figure 6–1. The user interface and layout of an activity

We will refer to this layout hierarchy as we discuss the sample programs. For now, know

that the application has one activity. The user interface for the activity is composed of

three containers: a container that contains a person’s name, a container that contains

the address, and an outer parent container for the child containers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 147

Building a UI Completely in Code
The first example, Listing 6–1, demonstrates how to build the user interface entirely in

code. To try this out, create a new Android project with an activity named MainActivity

and then copy the code from Listing 6–1 into your MainActivity class.

NOTE: We will give you a URL at the end of the chapter which you can use to download projects

from this chapter. This will allow you to import these projects into your Eclipse directly, instead of

copying and pasting code.

Listing 6–1. Creating a Simple User Interface Entirely in Code

package com.androidbook.controls;
import android.app.Activity;
import android.os.Bundle;
import android.view.ViewGroup.LayoutParams;
import android.widget.LinearLayout;
import android.widget.TextView;
public class MainActivity extends Activity
{
 private LinearLayout nameContainer;

 private LinearLayout addressContainer;

 private LinearLayout parentContainer;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 createNameContainer();

 createAddressContainer();

 createParentContainer();

 setContentView(parentContainer);
 }

 private void createNameContainer()
 {
 nameContainer = new LinearLayout(this);

 nameContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));
 nameContainer.setOrientation(LinearLayout.HORIZONTAL);

 TextView nameLbl = new TextView(this);
 nameLbl.setText("Name: ");

 TextView nameValue = new TextView(this);
 nameValue.setText("John Doe");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 148

 nameContainer.addView(nameLbl);
 nameContainer.addView(nameValue);
 }

 private void createAddressContainer()
 {
 addressContainer = new LinearLayout(this);

 addressContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));
 addressContainer.setOrientation(LinearLayout.VERTICAL);

 TextView addrLbl = new TextView(this);
 addrLbl.setText("Address:");

 TextView addrValue = new TextView(this);
 addrValue.setText("911 Hollywood Blvd");

 addressContainer.addView(addrLbl);
 addressContainer.addView(addrValue);
 }

 private void createParentContainer()
 {
 parentContainer = new LinearLayout(this);

 parentContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));
 parentContainer.setOrientation(LinearLayout.VERTICAL);

 parentContainer.addView(nameContainer);
 parentContainer.addView(addressContainer);
 }
}

As shown in Listing 6–1, the activity contains three LinearLayout objects. As we

mentioned earlier, layout objects contain logic to position objects within a portion of the

screen. A LinearLayout, for example, knows how to lay out controls either vertically or

horizontally. Layout objects can contain any type of view—even other layouts.

The nameContainer object contains two TextView controls: one for the label Name: and

the other to hold the actual name (i.e., John Doe). The addressContainer also contains

two TextView controls. The difference between the two containers is that the

nameContainer is laid out horizontally and the addressContainer is laid out vertically.

Both of these containers live within the parentContainer, which is the root view of the

activity. After the containers have been built, the activity sets the content of the view to

the root view by calling setContentView(parentContainer). When it comes time to

render the user interface of the activity, the root view is called to render itself. The root

view then calls its children to render themselves, and the child controls call their

children, and so on, until the entire user interface is rendered.

As shown in Listing 6–1, we have several LinearLayout controls. Two of them are laid

out vertically and one is laid out horizontally. The nameContainer is laid out horizontally.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 149

This means the two TextView controls appear side by side horizontally. The

addressContainer is laid out vertically, which means that the two TextView controls are

stacked one on top of the other. The parentContainer is also laid out vertically, which is

why the nameContainer appears above the addressContainer. Note a subtle difference

between the two vertically laid-out containers, addressContainer and parentContainer:

parentContainer is set to take up the entire width and height of the screen.

 parentContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));

And addressContainer wraps its content vertically:

 addressContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));

Said another way, WRAP_CONTENT means that the view should take just the space it needs

in that dimension and no more, up to what the containing view will allow. For the

addressContainer, this means the container will take two lines vertically, because that's

all it needs.

Building a UI Completely in XML
Now let’s build the same user interface in XML (see Listing 6–2). Recall from Chapter 3

that XML layout files are stored under the resources (/res/) directory within a folder

called layout. To try out this example, create a new Android project in Eclipse. By

default, you will get an XML layout file named main.xml, located under the res/layout

folder. Double-click main.xml to see the contents. Eclipse will display a visual editor for

your layout file. You probably have a string at the top of the view that says “Hello World,

MainActivity!” or something like that. Click the main.xml tab at the bottom of the view to

see the XML of the main.xml file. This reveals a LinearLayout and a TextView control.

Using either the Layout or main.xml tab, or both, re-create Listing 6–2 in the main.xml

file. Save it.

Listing 6–2. Creating a User Interface Entirely in XML

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <!-- NAME CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Name:" />

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="John Doe" />

 </LinearLayout>

 <!-- ADDRESS CONTAINER -->

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 150

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Address:" />

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="911 Hollywood Blvd." />
 </LinearLayout>

</LinearLayout>

Under your new project’s src directory, there is a default .java file containing an

Activity class definition. Double-click that file to see its contents. Notice the statement

setContentView(R.layout.main). The XML snippet shown in Listing 6–2, combined with

a call to setContentView(R.layout.main), will render the same user interface as before

when we generated it completely in code. The XML file is self-explanatory, but note that

we have three container views defined. The first LinearLayout is the equivalent of our

parent container. This container sets its orientation to vertical by setting the

corresponding property like this: android:orientation="vertical". The parent container

contains two LinearLayout containers, which represent the nameContainer and

addressContainer.

Running this application will produce the same UI as our previous example application.

The labels and values will be displayed as shown in Figure 6–1.

Building a UI in XML With Code
Listing 6–2 is a contrived example. It doesn’t make any sense to hard-code the values of

the TextView controls in the XML layout. Ideally, we should design our user interfaces in

XML and then reference the controls from code. This approach enables us to bind

dynamic data to the controls defined at design time. In fact, this is the recommended

approach. It is fairly easy to build layouts in XML and then use code to populate the

dynamic data.

Listing 6–3 shows the same user interface with slightly different XML. This XML assigns

IDs to the TextView controls so that we can refer to them in code.

Listing 6–3. Creating a User Interface in XML with IDs

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <!-- NAME CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="@string/name_text" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 151

 <TextView android:id="@+id/nameValue"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 </LinearLayout>

 <!-- ADDRESS CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="@string/addr_text" />

 <TextView android:id="@+id/addrValue"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />
 </LinearLayout>

</LinearLayout>

In addition to adding the IDs to the TextView controls that we want to populate from

code, we also have label TextView controls that we’re populating with text from our

strings resource file. These are the TextViews without IDs that have an android:text

attribute. As you may recall from Chapter 3, the actual strings for these TextViews will

come from our strings.xml file in the /res/values folder. Listing 6–4 shows what our

strings.xml file might look like.

Listing 6–4. Our strings.xml File for Listing 6–3

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Common Controls</string>
 <string name="name_text">Name:</string>
 <string name="addr_text">Address:</string>
</resources>;

The code in Listing 6–5 demonstrates how you can obtain references to the controls

defined in the XML to set their properties. You might put this into your onCreate()

method for your Activity.

Listing 6–5. Referring to Controls in Resources at Runtime

setContentView(R.layout.main);

TextView nameValue = (TextView)findViewById(R.id.nameValue);
nameValue.setText("John Doe");
TextView addrValue = (TextView)findViewById(R.id.addrValue);
addrValue.setText("911 Hollywood Blvd.");

The code in Listing 6–5 is straightforward, but note that we load the resource, by calling

setContentView(R.layout.main), before calling findViewById()—we cannot get

references to views if they have not been loaded yet.

The developers of Android have done a nice job of making just about every aspect of a

control settable via XML or code. It's usually a good idea to set the control's attributes in

the XML layout file rather than using code. However, there will be lots of times when you

need to use code, such as setting a value to be displayed to the user.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 152

FILL_PARENT vs. MATCH_PARENT
The constant FILL_PARENT was deprecated in Android 2.2 and replaced with

MATCH_PARENT. This was strictly a name change though. The value of this constant is still

–1. Similarly for XML layouts, "fill_parent" was replaced with "match_parent". So what

value do you use? Instead of FILL_PARENT or MATCH_PARENT, you could simply use the

value –1, and you'd be fine. However, this isn't very easy to read, and you don't have an

equivalent unnamed value to use with your XML layouts. There's a better way.

Depending on which Android APIs you need to use in your application, you can either

build your application against a version of Android before 2.2 and rely on forward

compatibility or build your application against version 2.2 or later of Android and set the

minSdkVersion to the lowest version of Android your application will run on. For

example, if you only need APIs that existed in Android 1.6, build against Android 1.6,

and use FILL_PARENT and "fill_parent". Your application should run with no problems

in all later versions of Android including 2.2 and beyond. If you need APIs from Android

2.2 or later, go ahead and build against that version of Android, use MATCH_PARENT

"match_parent" and set minSdkVersion to the something older, for example "4" (for

Android 1.6). You can still deploy an Android application built in Android 2.2 to an older

version of Android, but you'll have to take care of the classes and/or methods that aren't

in the earlier releases of the Android SDK. There are ways around this, such as using

reflection or creating wrapper classes to handle differences in Android versions. We

won't cover that here though.

Understanding Android’s Common Controls
We will now start our discussion of the common controls in the Android SDK. We’ll start

with text controls and then discuss buttons, check boxes, radio buttons, lists, grids,

date and time controls, and a map-view control. We will also talk about layout controls.

Text Controls
Text controls are likely to be the first type of control that you’ll work with in Android.

Android has a complete, but not overwhelming, set of text controls. In this section, we

are going to discuss the TextView, EditText, AutoCompleteTextView, and

MultiCompleteTextView controls. Figure 6–2 shows the controls in action.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 153

Figure 6–2. Text controls in Android

TextView
You've already seen a simple XML specification for a TextView control, in Listing 6–3,

and how to handle TextViews in code in Listing 6–4. Notice how we specified the ID,

width, height and value of the text in XML and how we set the value using the setText()

method. The TextView control knows how to display text but does not allow editing. This

might lead you to conclude that the control is essentially a dummy label. Not true. The

TextView control has a few interesting properties that make it very handy. If you know

that the content of the TextView is going to contain a web URL or an e-mail address, for

example, you can set the autoLink property to "email|web",” and the control will find

and highlight any email addresses and URLs. Moreover, when the user clicks on one of

these highlighted items, the system will take care of launching the email application with

the email address, or a browser with the URL. In XML, this attribute would be inside the

TextView tag and would look something like this:

<TextView ... android:autoLink="email|web" ... />

where you specify a pipe-delimited set of values including "web", "email", "phone" or

"map", or use "none" (the default) or "all". If you want to set autoLink behavior in code

instead of using XML, the corresponding method call is setAutoLinkMask(). You would

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 154

pass it an int representing the combination of values sort of like before, such as

Linkify.EMAIL_ADDRESSES|Linkify.WEB_ADDRESSES. To achieve this functionality,

TextView is utilizing the android.text.util.Linkify class. Listing 6–6 shows an

example of auto-linking with code.

Listing 6–6. Using Linkify on Text in a TextView

TextView tv =(TextView)this.findViewById(R.id.tv);
tv.setAutoLinkMask(Linkify.ALL);
tv.setText("Please visit my website, http://www.androidbook.com
or email me at davemac327@gmail.com.");

Notice that we set the auto-link options on our TextView before we set the text. This is

important because setting the auto-link options after setting the text won’t affect the

existing text. Because we’re using code to add hyperlinks to our text, our XML for the

TextView in Listing 6–6 does not require any special attributes and can look as simple as

this:

<TextView android:id="@+id/tv" android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

If you want to, you can invoke the static addLinks() method of the Linkify class to find

and add links to the content of any TextView or any Spannable on demand. Instead of

using setAutoLinkMask(), we could have done the following after setting the text:

Linkify.addLinks(tv, Linkify.ALL);

Clicking a link will cause the default intent to be called for that action. For example,

clicking a web URL will launch the browser with the URL. Clicking a phone number will

launch the phone dialer, and so on. The Linkify class can perform this work right out of

the box.

Linkify can also detect custom patterns you want to look for, decide if they are a match

for something you decide needs to be clickable, and set up how to fire an intent to make

a click turn into some sort of action. We won’t go into those details here, but know that

these things can be done.

There are many more features of TextView to explore, from font attributes to minLines

and maxLines and many more. These are fairly self-explanatory, and you are encouraged

to experiment to see how you might be able to use them. Although you should keep in

mind that some functionality in the TextView class is not applicable to a read-only field,

the functionality is there for the subclasses of TextView, one of which we will cover next.

EditText
The EditText control is a subclass of TextView. As suggested by the name, the EditText

control allows for text editing. EditText is not as powerful as the text-editing controls

that you find on the Internet, but users of Android-based devices probably won’t type

documents—they’ll type a couple paragraphs at most. Therefore, the class has limited

but appropriate functionality and may even surprise you. For example, one of the most

significant properties of an EditText is the inputType. You can set the inputType

property to textAutoCorrect have the control correct common misspellings. You can set

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 155

it to textCapWords to have the control capitalize words. There are other options to

expect only phone numbers or passwords.

There are older, now deprecated, ways of specifying capitalization, multiline text and

other features. If these are specified without an inputType property, they can be read,

but if inputType is specified at all, these older properties are ignored.

The old default behavior of the EditText control is to display text on one line and

expand as needed. In other words, if the user types past the first line, another line will

appear, and so on. You could, however, force the user to a single line by setting the

singleLine property to true. In this case, the user will have to continue typing on the

same line. With inputType, if you don't specify textMultiLine, the EditText will default

to single line only. So if you want the old default behavior of multiline typing, you need to

specify inputType with textMultiLine.

One of the nice features of EditText is that you can specify hint text. This text will be

displayed slightly faded and disappears as soon as the user starts to type text. The

purpose of the hint is to let the user know what is expected in this field, without the user

having to select and erase default text. In XML, this attribute is android:hint="your
hint text here" or android:hint="@string/your_hint_name", where your_hint_name is

a resource name of a string to be found in /res/values/strings.xml. In code, you would

call the setHint() method with either a CharSequence or a resource Id.

AutoCompleteTextView
The AutoCompleteTextView control is a TextView with auto-complete functionality. In

other words, as the user types in the TextView, the control can display suggestions for

selection. Listing 6–7 demonstrates the AutoCompleteTextView control with XML and

with the corresponding code.

Listing 6–7. Using an AutoCompleteTextView Control

<AutoCompleteTextView android:id="@+id/actv"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

AutoCompleteTextView actv = (AutoCompleteTextView) this.findViewById(R.id.actv);

ArrayAdapter<String> aa = new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 new String[] {"English", "Hebrew", "Hindi", "Spanish", "German", "Greek"
});

actv.setAdapter(aa);

The AutoCompleteTextView control shown in Listing 6–7 suggests a language to the user.

For example, if the user types en, the control suggests English. If the user types gr, the

control recommends Greek, and so on.

If you have used a suggestion control or a similar auto-complete control, you know that

controls like this have two parts: a text-view control and a control that displays the

suggestion(s). That’s the general concept. To use a control like this, you have to create

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 156

the control, create the list of suggestions, tell the control the list of suggestions, and

possibly tell the control how to display the suggestions. Alternatively, you could create a

second control for the suggestions and then associate the two controls.

Android has made this simple, as is evident from Listing 6–7. To use an

AutoCompleteTextView, you can define the control in your layout file and reference it in

your activity. You then create an adapter class that holds the suggestions and define the

ID of the control that will show the suggestion (in this case, a simple list item). In Listing

6–7, the second parameter to the ArrayAdapter tells the adapter to use a simple list item

to show the suggestion. The final step is to associate the adapter with the

AutoCompleteTextView, which you do using the setAdapter() method. Don’t worry about

the adapter for the moment; we’ll cover those later in this chapter.

MultiAutoCompleteTextView
If you have played with the AutoCompleteTextView control, you know that the control

offers suggestions only for the entire text in the text view. In other words, if you type a

sentence, you don’t get suggestions for each word. That’s where

MultiAutoCompleteTextView comes in. You can use the MultiAutoCompleteTextView to

provide suggestions as the user types. For example, Figure 6–2 shows that the user

typed the word English followed by a comma, and then Ge, at which point the control

suggested German. If the user were to continue, the control would offer additional

suggestions.

Using the MultiAutoCompleteTextView is like using the AutoCompleteTextView. The

difference is that you have to tell the control where to start suggesting again. For

example, in Figure 6–2, you can see that the control can offer suggestions at the

beginning of the sentence and after it sees a comma. The MultiAutoCompleteTextView

control requires that you give it a tokenizer that can parse the sentence and tell it

whether to start suggesting again. Listing 6–8 demonstrates using the

MultiAutoCompleteTextView control with the XML and then the Java code.

Listing 6–8. Using the MultiAutoCompleteTextView Control

<MultiAutoCompleteTextView android:id="@+id/mactv"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

MultiAutoCompleteTextView mactv = (MultiAutoCompleteTextView) this
 .findViewById(R.id.mactv);
ArrayAdapter<String> aa2 = new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
new String[] {"English", "Hebrew", "Hindi", "Spanish", "German", "Greek" });

mactv.setAdapter(aa2);

mactv.setTokenizer(new MultiAutoCompleteTextView.CommaTokenizer());

The only significant differences between Listings 6–7 and 6–8 are the use of

MultiAutoCompleteTextView and the call to the setTokenizer() method. Because of the

CommaTokenizer in this case, after a comma is typed into the EditText field, the field will

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 157

again make suggestions using the array of strings. Any other characters typed in will not

trigger the field to make suggestions. So even if you were to type French Spani the

partial word “Spani” would not trigger the suggestion because it did not follow a

comma. Android provides another tokenizer for e-mail addresses called

Rfc822Tokenizer. You can always create your own tokenizer if you want to.

Button Controls
Buttons are common in any widget toolkit, and Android is no exception. Android offers

the typical set of buttons as well as a few extras. In this section, we will discuss three

types of button controls: the basic button, the image button, and the toggle button.

Figure 6–3 shows a UI with these controls. The button at the top is the basic button, the

middle button is an image button, and the last one is a toggle button.

Figure 6–3. Android button controls

Let’s get started with the basic button.

The Button Control
The basic button class in Android is android.widget.Button. There’s not much to this

type of button, beyond how you use it to handle click events. Listing 6–9 shows a

fragment of an XML layout for the Button control, plus some Java that we might set up

in the onCreate() method of our activity. Our basic button would look like the top button

in Figure 6–3.

Listing 6–9. Handling Click Events on a Button

<Button android:id="@+id/ccbtn1"
 android:text="@string/basicBtnLabel"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 158

Button btn = (Button)this.findViewById(R.id.ccbtn1);
btn.setOnClickListener(new OnClickListener()
{
 public void onClick(View v)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse(“http://www.androidbook.com”));
 startActivity(intent);
 }
});

Listing 6–9 shows how to register for a button-click event. You register for the on-click event

by calling the setOnClickListener() method with an OnClickListener. In Listing 6–9, an

anonymous listener is created on the fly to handle click events for btn. When the button

is clicked, the onClick() method of the listener is called and, in this case, launches the

browser to our web site.

Since Android SDK 1.6, there is an easier way to set up a click handler for your button or

buttons. Listing 6–10 shows the XML for a Button where you specify an attribute for the

handler, plus the Java code that is the click handler.

Listing 6–10. Setting Up a Click Handler for a Button

<Button ... android:onClick="myClickHandler" ... />

 public void myClickHandler(View target) {
 switch(target.getId()) {
 case R.id.ccbtn1:
 …

The handler method will be called with target set to the View object representing the

button that was pressed. Notice how the switch statement in the click handler method

uses the resource IDs of the buttons to select the logic to run. Using this method means

you won’t have to explicitly create each Button object in your code, and you can reuse

the same method across multiple buttons. This makes things easier to understand and

maintain. This works with the other button types as well. But it won't work in Android 1.5

or below. You won’t get an error message; you just won’t get any action from clicking

your buttons.

The ImageButton Control
Android provides an image button via android.widget.ImageButton. Using an image

button is similar to using the basic button (see Listing 6–11). Our image button would

look like the middle button in Figure 6–3.

Listing 6–11. Using an ImageButton

<ImageButton android:id="@+id/imageBtn"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:onClick=”myClickHandler”
 android:src=”@drawable/icon” />

ImageButton btn = (ImageButton)this.findViewById(R.id.imageBtn);
btn.setImageResource(R.drawable.icon);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 159

Here we’ve created the image button in XML and set the button’s image from a

drawable resource. The image file for the button must exist under /res/drawable. In our

case, we’re simply reusing the Android icon for the button. We also show in Listing 6–11

how you can set the button’s image dynamically by calling setImageResource() method

on the button and passing it a resource ID. Note that you only need to do one or the

other. You don't need to specify the button image in both the XML file and in code.

One of the nice features of an image button is that you can specify a transparent

background for the button. The result will be a clickable image that acts like a button but

can look like whatever you want it to look like.

Because your image may be something very different than a standard button, you can

customize how the button looks in the two other states it can be in when used in your

UI. Besides appearing as normal, buttons can have focus, and they can be pressed.

Having focus simply means that the button is currently where events will go. You can

direct focus to a button using the arrow keys on the keypad or D-pad for example.

Pressed means that the button’s appearance changes when it has been pressed but

before the user has let go. To tell Android what the three images are for our button, and

which one is which, we set up a selector. This is a simple XML file that resides in the

/res/drawable folder of our project. This is somewhat counterintuitive, since this is an

XML file and not an image file, yet that is where the selector file must go. The content of

a selector file will look like Listing 6–12.

Listing 6–12. Using a Selector with an ImageButton

<?xml version="1.0" encoding="utf-8"?>
 <selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true"
 android:drawable="@drawable/button_pressed" /> <!-- pressed -->
 <item android:state_focused="true"
 android:drawable="@drawable/button_focused" /> <!-- focused -->
 <item android:drawable="@drawable/icon" /> <!-- default -->
 </selector>

There are several things to note about the selector file. First, you do not specify a

<resources> tag like in values XML files. Second, the order of the button images is

important. Android will test each item in the selector to see if it matches, and you want

the normal image to be used only if the button is not pressed and if the button does not

have focus. If the normal image was listed first, it would always match and be selected

even if the button is pressed or has focus. Of course, the drawables you refer to must

exist in the /res/drawables folder. Last, in the definition of your button in the layout XML

file, you want to set the android:src property to the selector XML file as if it were a

regular drawable, like so:

<Button ... android:src="@drawable/imagebuttonselector" ... />

The ToggleButton Control
The ToggleButton control, like a check box or a radio button, is a two-state button. This

button can be in either the On or Off state. As shown in Figure 6–3, the ToggleButton’s

default behavior is to show a green bar when in the On state and a grayed-out bar when

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 160

in the Off state. Moreover, the default behavior also sets the button’s text to On when

it’s in the On state and Off when it’s in the Off state. You can modify the text for the

ToggleButton if On/Off is not appropriate for your application. For example, if you have a

background process that you want to start and stop via a ToggleButton, you could set

the button’s text to Stop and Run by using android:textOn and android:textOff
properties.

Listing 6–13 shows an example. Our toggle button is the bottom button in Figure 6–3,

and it is in the On position, so the label on the button says “Stop”.

Listing 6–13. The Android ToggleButton

<ToggleButton android:id="@+id/cctglBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Toggle Button"
 android:textOn=”Stop”
 android:textOff=”Run”/>

Because ToggleButtons have on and off text as separate attributes, the android:text
attribute of a ToggleButton is not really used. It’s available because it has been inherited

(from TextView, actually), but in this case, you don’t need to use it.

The CheckBox Control
The CheckBox control is another two-state button that allows the user to toggle its state.

The difference is that, for many situations, the users don’t view it as a button that

invokes immediate action. From Android’s point of view however, it is a button. and you

can do anything with a check box that you can do with a button.

In Android, you can create a check box by creating an instance of

android.widget.CheckBox. See Listing 6–14 and Figure 6–4.

Listing 6–14. Creating Check Boxes

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<CheckBox android:id=“@+id/chickenCB” android:text=“Chicken” android:checked=“true”
 android:layout_width=“wrap_content” android:layout_height="wrap_content" />

<CheckBox android:id=“@+id/fishCB” android:text="Fish"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

<CheckBox android:id=“@+id/steakCB” android:text="Steak" android:checked=“true”
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

</LinearLayout>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 161

Figure 6–4. Using the CheckBox control

You manage the state of a check box by calling setChecked() or toggle(). You can

obtain the state by calling isChecked().

If you need to implement specific logic when a check box is checked or unchecked, you

can register for the on-checked event by calling setOnCheckedChangeListener() with an

implementation of the OnCheckedChangeListener interface. You’ll then have to implement

the onCheckedChanged() method, which will be called when the check box is checked or

unchecked. Listing 6–15 show some code that deals with a CheckBox.

Listing 6–15. Using CheckBoxes in Code

public class CheckBoxActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.checkbox);

 CheckBox fishCB = (CheckBox)findViewById(R.id.fishCB);

 if(fishCB.isChecked())
 fishCB.toggle(); // flips the checkbox to unchecked if it was
checked

 fishCB.setOnCheckedChangeListener(
 new CompoundButton.OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(CompoundButton arg0, boolean isChecked) {
 Log.v("CheckBoxActivity", "The fish checkbox is now "
 + (isChecked?"checked":"not checked"));
 }});
 }
}

The nice part of setting up the OnCheckedChangeListener is that you are passed the new

state of the CheckBox button. You could instead use the OnClickListener technique like

we used with basic buttons. When the onClick() method is called, you would need to

determine yourself the new state of the button by casting it appropriately and then

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 162

calling isChecked() on it. Similarly, Listing 6–16 shows what this code might look like if

we added android:onClick="myClickHandler" to the XML definition of our CheckBox

buttons (remember, this is only supported in Android 1.6 and later).

Listing 6–16. Using CheckBoxes in Code with android:onClick

 public void myClickHandler(View view) {
 switch(view.getId()) {
 case R.id.steakCB:
 Log.v("CheckBoxActivity", "The steak checkbox is now " +
 (((CheckBox)view).isChecked()?"checked":"not checked"));
 }
 }

The RadioButton Control
RadioButton controls are an integral part of any UI toolkit. A radio button gives the users

several choices and forces them to select a single item. To enforce this single-selection

model, radio buttons generally belong to a group, and each group is forced to have only

one item selected at a time.

To create a group of radio buttons in Android, first create a RadioGroup, and then

populate the group with radio buttons. Listing 6–17 and Figure 6–5 show an example.

Listing 6–17. Using Android RadioButton Widgets

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<RadioGroup android:id="@+id/rBtnGrp" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:orientation="vertical" >

 <RadioButton android:id=”@+id/chRBtn” android:text="Chicken"
 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

 <RadioButton android:id=”@+id/fishRBtn” android:text="Fish" android:checked="true"
 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

 <RadioButton android:id=”@+id/stkRBtn” android:text="Steak"
 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

</RadioGroup>

</LinearLayout>

In Android, you implement a radio group using android.widget.RadioGroup and a radio

button using android.widget.RadioButton.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 163

Figure 6–5. Using radio buttons

Note that the radio buttons within the radio group are, by default, unchecked to begin

with, although you can set one to checked in the XML definition, as we did with Fish

above. To set one of the radio buttons to the checked state programmatically, you can

obtain a reference to the radio button and call setChecked():

RadioButton rbtn = (RadioButton)this.findViewById(R.id.stkRBtn);
rbtn.setChecked(true);

You can also use the toggle() method to toggle the state of the radio button. As with

the CheckBox control, you will be notified of on-checked or on-unchecked events if you call

the setOnCheckedChangeListener() with an implementation of the

OnCheckedChangeListener interface. There is a slight difference here though. This is

actually a different class than before. This time, it’s technically the

RadioGroup.OnCheckedChangeListener class, whereas before it was the

CompoundButton.OnCheckedChangeListener class.

The RadioGroup can also contain views other than the radio button. For example, Listing

6–18 adds a TextView after the last radio button. Also note that a radio button lies

outside the radio group.

Listing 6–18. A RadioGroup with More Than Just RadioButtons

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<RadioButton android:id="@+id/anotherRadBtn" android:text="Outside"
 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

<RadioGroup android:id="@+id/radGrp"
 android:layout_width="wrap_content" android:layout_height="wrap_content">

 <RadioButton android:id="@+id/chRBtn" android:text="Chicken"
 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

 <RadioButton android:id="@+id/fishRBtn" android:text="Fish"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 164

 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

 <RadioButton android:id="@+id/stkRBtn" android:text="Steak"
 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

 <TextView android:text="My Favorite"
 android:layout_width="wrap_content" android:layout_height="wrap_content"/>

</RadioGroup>
</LinearLayout>

Listing 6–18 shows that you can have non-RadioButton controls inside a radio group.

You should also know that the radio group can only enforce single-selection on the radio

buttons within its own container. That is, the radio button with ID anotherRadBtn will not

be affected by the radio group shown in Listing 6–18 because it is not one of the group’s

children.

You can manipulate the RadioGroup programmatically. For example, you can obtain a

reference to a radio group and add a radio button (or other type of control). Listing 16–

19 demonstrates this concept.

Listing 6–19. Adding a RadioButton to a RadioGroup in Code

RadioGroup radGrp = (RadioGroup)findViewById(R.id.radGrp);
RadioButton newRadioBtn = new RadioButton(this);
newRadioBtn.setText("Pork");
radGrp.addView(newRadioBtn);

Once a user has checked a radio button within a radio group, the user cannot uncheck it

by clicking it again. The only way to clear all radio buttons within a radio group is to call

the clearCheck() method on the RadioGroup programmatically.

Of course, you want to do something interesting with the RadioGroup. You probably

don’t want to poll each RadioButton to determine if it’s checked or not. Fortunately, the

RadioGroup has several methods to help you out. We demonstrate those with Listing 16–

20. The XML for this code is in Listing 6–18.

Listing 6–20. Using a RadioGroup Programmatically

public class RadioGroupActivity extends Activity {
 protected static final String TAG = "RadioGroupActivity";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.radiogroup);

 RadioGroup radGrp = (RadioGroup)findViewById(R.id.radGrp);

 int checkedRadioButtonId = radGrp.getCheckedRadioButtonId();

 radGrp.setOnCheckedChangeListener(new RadioGroup.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(RadioGroup arg0, int id) {
 switch(id) {
 case -1:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 165

 Log.v(TAG, "Choices cleared!");
 break;
 case R.id.chRBtn:
 Log.v(TAG, "Chose Chicken");
 break;
 case R.id.fishRBtn:
 Log.v(TAG, "Chose Fish");
 break;
 case R.id.stkRBtn:
 Log.v(TAG, "Chose Steak");
 break;
 default:
 Log.v(TAG, "Huh?");
 break;
 }
 }});
 }
}

We can always get the currently checked RadioButton using

getCheckedRadioButtonId(), which returns the resource Id of the checked item, or –1 if

nothing is checked (possible if there’s no default and the user hasn’t chosen one yet).

We showed this in our onCreate() method previously, but in reality, you’d want to use it

at the appropriate time to read the user’s current choice. We can also set up a listener to

be notified immediately when the user chooses one of the RadioButtons. Notice that the

onCheckedChanged() method takes a RadioGroup parameter, allowing you to use the

same OnCheckedChangeListener for multiple RadioGroups. You may have noticed the

switch option of –1. This will occur if the RadioGroup is cleared through code.

The ImageView Control
One of the basic controls we haven’t covered yet is the ImageView control. This is used

to display an image, where the image can come from a file, content provider or a

resource such as a drawable. You can even specify just a color, and the ImageView will

display that color. Listing 6–21 shows some XML examples of ImageViews, followed by

some code that shows how to create an ImageView.

Listing 6–21. ImageViews in XML and in Code

 <ImageView android:id="@+id/image1"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:src="@drawable/icon" />

 <ImageView android:id="@+id/image2"
 android:layout_width="125dip" android:layout_height="25dip"
 android:src="#555555" />

 <ImageView android:id="@+id/image3"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <ImageView android:id="@+id/image4"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:src="@drawable/manatee02"
 android:scaleType="centerInside"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 166

 android:maxWidth="35dip" android:maxHeight="50dip"
 />

 ImageView imgView = (ImageView)findViewById(R.id.image3);

 imgView.setImageResource(R.drawable.icon);

 imgView.setImageBitmap(BitmapFactory.decodeResource(
 this.getResources(), R.drawable.manatee14));

 imgView.setImageDrawable(
 Drawable.createFromPath("/mnt/sdcard/dave2.jpg"));

 imgView.setImageURI(Uri.parse("file://mnt/sdcard/dave2.jpg"));

In this example, we have four images defined in XML. The first is simply the icon for our

application. The second is a gray bar that is wider than it is tall. The third definition does

not specify an image source in the XML, but we have an ID associated to this one

(image3) that we can use from our code to set the image. The fourth image is another of

our drawable image files where we not only specify the source of the image file but also

set the maximum dimensions of the image on the screen and define what to do if the

image is larger than our maximum size. In this case, we tell the ImageView to center and

scale the image so it fits inside the size we specified.

In the Java code of Listing 6–21 we show several ways to set the image of image3. We

first of course must get a reference to the ImageView by finding it using its resource ID.

The first setter method, setImageResource(), simply uses the image’s resource ID to

locate the image file to supply the image for our ImageView. The second setter uses the

BitmapFactory to read in an image resource into a Bitmap object and then sets the

ImageView to that Bitmap. Note that we could have done some modifications to the

Bitmap before applying it to our ImageView, but in our case, we used it as is. In addition,

the BitmapFactory has several methods of creating a Bitmap, including from a byte array

and an InputStream. You could use the InputStream method to read an image from a

web server, create the Bitmap image, and then set the ImageView from there.

The third setting uses a Drawable for our image source. In this case, we’re showing the

source of the image coming from the SD card. You’ll need to put some sort of image file

out on the SD card with the proper name for this to work for you. Similar to

BitmapFactory, the Drawable class has a few different ways to construct Drawables,

including from an XML stream.

The final setter method takes the URI of an image file and uses that as the image

source. For this last call, please don’t think that you can use any image URI as the

source. This method is really only intended to be used for local images on the device,

not for images that you might find through HTTP. To use Internet-based images as the

source for your ImageView, you’d most likely use BitmapFactory and an InputStream.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 167

Date and Time Controls
Date and time controls are quite common in many widget toolkits. Android offers several

date- and time-based controls, some of which we’ll discuss in this section. Specifically,

we are going to introduce the DatePicker, the TimePicker, the DigitalClock, and the

AnalogClock controls.

The DatePicker and TimePicker Controls
As the names suggest, you use the DatePicker control to select a date and the

TimePicker control to pick a time. Listing 6–22 and Figure 6–6 show examples of these

controls.

Listing 6–22. The DatePicker and TimePicker Controls in XML

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TextView android:id="@+id/dateDefault"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

 <DatePicker android:id="@+id/datePicker"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <TextView android:id="@+id/timeDefault"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

 <TimePicker android:id="@+id/timePicker"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

</LinearLayout>

Figure 6–6. The DatePicker and TimePicker UIs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 168

If you look at the XML layout, you can see that defining these controls is quite easy. As

with any other control in the Android toolkit, you can access the controls

programmatically to initialize them or to retrieve data from them. For example, you can

initialize these controls as shown in Listing 6–23.

Listing 6–23. Initializing the DatePicker and TimePicker with Date and Time, Respectively

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.datetimepicker);

 TextView dateDefault = (TextView)findViewById(R.id.dateDefault);
 TextView timeDefault = (TextView)findViewById(R.id.timeDefault);

 DatePicker dp = (DatePicker)this.findViewById(R.id.datePicker);
 // The month, and just the month, is zero-based. Add 1 for display.
 dateDefault.setText("Date defaulted to " + (dp.getMonth() + 1) + "/" +
 dp.getDayOfMonth() + "/" + dp.getYear());
 // And here, subtract 1 from December (12) to set it to December
 dp.init(2008, 11, 10, null);

 TimePicker tp = (TimePicker)this.findViewById(R.id.timePicker);

 java.util.Formatter timeF = new java.util.Formatter();
 timeF.format("Time defaulted to %d:%02d", tp.getCurrentHour(),
 tp.getCurrentMinute());
 timeDefault.setText(timeF.toString());

 tp.setIs24HourView(true);
 tp.setCurrentHour(new Integer(10));
 tp.setCurrentMinute(new Integer(10));
 }
}

Listing 6–23 sets the date on the DatePicker to December 10, 2008. Note that for the

month, the internal value is zero-based, which means that January is 0, and December

is 11. For the TimePicker, the number of hours and minutes is set to 10. Note also that

this control supports 24–hour view. If you do not set values for these controls, the

default values will be the current date and time as known to the device.

Finally, note that Android offers versions of these controls as modal windows, such as

DatePickerDialog and TimePickerDialog. These controls are useful if you want to

display the control to the user and force the user to make a selection. We’ll cover

dialogs in more detail in Chapter 8.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 169

The DigitalClock and AnalogClock Controls
Android also offers DigitalClock and AnalogClock controls (see Figure 6–7).

Figure 6–7. Using the AnalogClock and DigitalClock

As shown, the digital clock supports seconds in addition to hours and minutes. The

analog clock in Android is a two-handed clock, with one hand for the hour indicator and

the other hand for the minute indicator. To add these to your layout, use the XML as

shown in Listing 6–24.

Listing 6–24. Adding a DigitalClock or an AnalogClock in XML

 <DigitalClock
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <AnalogClock
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

These two controls are really just for displaying the current time, as they don’t let you

modify the date or time. In other words, they are controls whose only capability is to

display the current time. Thus, if you want to change the date or time, you’ll need to

stick to the DatePicker/TimePicker or DatePickerDialog/TimePickerDialog. The nice

part about these two clocks, though, is that they will update themselves without you

having to do anything. That is, the seconds tick away in the DigitalClock, and the

hands move on the AnalogClock without anything extra from us.

The MapView Control
The com.google.android.maps.MapView control can display a map. You can instantiate

this control either via XML layout or code, but the activity that uses it must extend

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 170

MapActivity. MapActivity takes care of multithreading requests to load a map, perform

caching, and so on.

Listing 6–25 shows an example instantiation of a MapView.

Listing 6–25. Creating a MapView Control via XML Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <com.google.android.maps.MapView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey="myAPIKey"
 />

</LinearLayout>

We’ll discuss the MapView control in detail in Chapter 17, when we discuss location-

based services. This is also where you’ll learn how to obtain your own mapping API key.

Understanding Adapters
Before we get into the details of list controls of Android, we need to talk about adapters.

List controls are used to display collections of data. But instead of using a single type of

control to manage both the display and the data, Android separates these two

responsibilities into list controls and adapters. List controls are classes that extend

android.widget.AdapterView and include ListView, GridView, Spinner, and Gallery (see

Figure 6–8).

Figure 6–8. AdapterView class hierarchy

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 171

AdapterView itself actually extends android.widget.ViewGroup, which means that

ListView, GridView, and so on are container controls. In other words, list controls

contain collections of child views. The purpose of an adapter is to manage the data for

an AdapterView, and to provide the child views for it. Let’s see how this works by

examining the SimpleCursorAdapter.

Getting to Know SimpleCursorAdapter
The SimpleCursorAdapter is depicted in Figure 6–9.

Figure 6–9. The SimpleCursorAdapter

This is a very important picture to understand. On the left-hand side is the AdapterView;

in this example, it is a ListView made up of TextView children. On the right-hand side is

the data; in this example, it’s represented as a result set of data rows that came from a

query against a content provider.

To map the data rows to the ListView, the SimpleCursorAdapter needs to have a child

layout resource ID. The child layout must describe the layout for each of the data

elements from the right-hand side that should be displayed on the left-hand side. A

layout in this case is just like the layouts we’ve been working with for our activities, but it

only needs to specify the layout of a single row of our ListView. For example, if you

have a result set of information from the Contacts content provider, and you only want

to display each contact name in your ListView, you would need to provide a layout to

describe what the name field should look like. If you wanted to display the name and an

image from the result set in each row of the ListView, your layout must say how to

display the name and the image.

This does not mean you must provide a layout specification for every field in your result

set, nor does it mean you must have a piece of data in your result set for everything you

want to include in each row of the ListView. For example, we’ll show you in a bit how

you can have check boxes in your ListView for selecting rows, and those check boxes

don’t need to be set from data in a result set. We’ll also show you how to get to data in

the result set that is not part of the ListView. And while we’ve just talked about

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 172

ListViews, TextViews, cursors, and result sets, please keep in mind that the adapter

concept is more general than this. The left-hand side can be a gallery, and the right-

hand side can be a simple array of images. But let’s keep things fairly simple for now

and look at SimpleCursorAdapter in more detail.

The constructor of SimpleCursorAdapter looks like this:

SimpleCursorAdapter(Context context, int childLayout, Cursor c, String[] from, int[] to)

This adapter converts a row from the cursor to a child view for the container control. The

definition of the child view is defined in an XML resource (childLayout parameter). Note

that because a row in the cursor might have many columns, you tell the

SimpleCursorAdapter which columns you want to select from the row by specifying an

array of column names (using the from parameter).

Similarly, because each column you select must be mapped to a View in the layout, you

must specify the IDs in the to parameter. There’s a one-to-one mapping between the

column that you select and a View that displays the data in the column, so the from and

to parameter arrays must have the same number of elements. As we mentioned before,

the child view could contain other types of views; they don't have to be TextViews. You

could use an ImageView for example.

There is a careful collaboration going on between the ListView and our adapter. When

the ListView wants to display a row of data, it calls the getView() method of the

adapter, passing in the position to specify the row of data to be displayed. The adapter

responds by building the appropriate child view using the layout that was set in the

adapter’s constructor and by pulling the data from the appropriate record in the result

set. The ListView, therefore, doesn’t have to deal with how the data exists on the

adapter side; it only needs to call for child views as needed. This is a critical point, as it

means our ListView doesn’t necessarily need to create every child view for every data

row. It really only needs to have as many child views as are necessary for what’s visible

in the display window. If only ten rows are being displayed, technically the ListView only

needs to have ten child layouts instantiated, even if there are hundreds of records in our

result set. In reality, more than ten child layouts get instantiated, as Android usually

keeps extras on hand to make it faster to bring a new row to visibility. The conclusion

you should reach is that the child views managed by the ListView can be recycled. We'll

talk more about that a little later.

Figure 6–9 reveals some flexibility in using adapters. Because the list control uses an

adapter, you can substitute various types of adapters based on your data and child

view. For example, if you are not going to populate an AdapterView from a content

provider or database, you don’t have to use the SimpleCursorAdapter. You can opt for

an even “simpler” adapter—the ArrayAdapter.

Getting to Know ArrayAdapter
The ArrayAdapter is the simplest of the adapters in Android. It specifically targets list

controls and assumes that TextView controls represent the list items (i.e., the child

views). Creating a new ArrayAdapter can look as simple as this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 173

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new string[]{"Dave","Satya",”Dylan”});

We still pass the context (i.e., this), and a childLayout resource ID. But instead of

passing a from array of data field specifications, we pass in an array of strings as the

actual data. We don’t pass a cursor or a to array of View resource IDs. The assumption

here is that our child layout consists of a single TextView, and that's what the

ArrayAdapter will use as the destination for the strings that are in our data array.

Now we’re going to introduce a nice shortcut for the childLayout resource ID. Instead of

creating our own layout file for the list items, we can take advantage of predefined

layouts in Android. Notice that the prefix on the resource for the child layout resource ID

is android.. Instead of looking in our local /res directory, Android looks in its own. You

can browse to this folder by navigating to the Android SDK folder and looking under

platforms/<android-version>/data/res/layout. There you’ll find

simple_list_item_1.xml and can see inside that it defines a simple TextView. That

TextView is what our ArrayAdapter will use to create a view (in its getView() method) to

give to the ListView. Feel free to browse through these folders to find predefined layouts

for all sorts of uses. We’ll be using more of these later.

ArrayAdapter has other constructors. If the childLayout is not just a simple TextView,

you can pass in the row layout resource ID, plus the resource ID of the TextView to

receive the data. When you don’t have a ready-made array of strings to pass in, you can

use the createFromResource() method. Listing 6–26 shows an example in which we

create an ArrayAdapter for a spinner.

Listing 6–26. Creating an ArrayAdapter from a String-Resource File

<Spinner android:id="@+id/spinner"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

Spinner spinner = (Spinner) findViewById(R.id.spinner);

ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,
 R.array.planets, android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinner.setAdapter(adapter);

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/planets.xml -->
<resources>
 <string-array name="planets">
 <item>Mercury</item>
 <item>Venus</item>
 <item>Earth</item>
 <item>Mars</item>
 <item>Jupiter</item>
 <item>Saturn</item>
 <item>Uranus</item>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 174

 <item>Neptune</item>
 </string-array>
</resources>

Listing 6–26 has three parts to it. The first part is the XML layout for a spinner. The

second Java part shows how you can create an ArrayAdapter whose data source is

defined in a string resource file. Using this method allows you to not only externalize the

contents of the list to an XML file but also use localized versions. We’ll talk about

spinners a little later, but for now, know that a spinner has a view to show the currently

selected value, plus a list view to show the values that can be selected from. It’s

basically a drop-down menu. The third part of Listing 6–26 is the XML resource file

called /res/values/planets.xml, which is read in to initialize the ArrayAdapter.

Worth mentioning is that the ArrayAdapter allows for dynamic modifications to the

underlying data. For example, the add() method will append a new value on the end of

the array. The insert() method will add a new value at a specified position within the

array. And remove() takes an object out of the array. You can also call sort() to reorder

the array. Of course, once you’ve done this, the data array is out of sync with the

ListView, so that’s when you call the notifyDataSetChanged() method of the adapter.

This method will resync the ListView with the adapter.

The following list summarizes the adapters that Android provides:

 ArrayAdapter<T>: This is an adapter on top of a generic array of

arbitrary objects. It’s meant to be used with a ListView.

 CursorAdapter: This adapter, also meant to be used in a ListView,

provides data to the list via a cursor.

 SimpleAdapter: As the name suggests, this adapter is a simple

adapter. It is generally used to populate a list with static data (possibly

from resources).

 ResourceCursorAdapter: This adapter extends CursorAdapter and

knows how to create views from resources.

 SimpleCursorAdapter: This adapter extends ResourceCursorAdapter

and creates TextView/ImageView views from the columns in the cursor.

The views are defined in resources.

We’ve covered enough of adapters to start showing you some real examples of working

with adapters and with list controls (also known as AdapterViews). Let’s get to it.

Using Adapters With AdapterViews
Now that you’ve been introduced to adapters, it is time to put them to work for us,

providing data for list controls. In this section, we’re going to first cover the basic list

control, the ListView. Then, we’ll describe how to create your own custom adapter, and

finally, we’ll describe the other types of list controls: GridViews, spinners, and the

gallery.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 175

The Basic List Control: ListView
The ListView control displays a list of items vertically. That is, if we’ve got a list of items

to view and the number of items extends beyond what we can currently see in the

display, we can scroll to see the rest of the items. You generally use a ListView by

writing a new activity that extends android.app.ListActivity. ListActivity contains a

ListView, and you set the data for the ListView by calling the setListAdapter()

method. As we described previously, adapters link list controls to the data and help

prepare the child views for the list control. Items in a ListView can be clicked to take

immediate action or selected to act on the set of selected items later. We’re going to

start really simple and then add functionality as we go.

Displaying Values in a ListView
Figure 6–10 shows a ListView control in its simplest form.

Figure 6–10. Using the ListView control

For this exercise, we will fill the entire screen with the ListView, so we don’t even need

to specify a ListView in our main layout XML file. Listing 6–27 shows the Java code for

our ListActivity.

Listing 6–27. Adding Items to a ListView

public class ListViewActivity extends ListActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 Cursor c = managedQuery(People.CONTENT_URI,
 null, null, null, People.NAME);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 176

 String[] cols = new String[] {People.NAME};
 int[] views = new int[] {android.R.id.text1};

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 c, cols, views);
 this.setListAdapter(adapter);
 }
}

Listing 6–27 creates a ListView control populated with the list of contacts on the device.

In our example, we query the device for the list of contacts. For demonstration

purposes, we’re selecting all fields from Contacts (i.e., using the first null parameter in

the managedQuery() method), and we’re sorting on the People.NAME field (using the final

parameter in the managedQuery() method). We then create a projection (cols) to select

only the names of the contacts for our ListView—a projection defines the columns that

we are interested in. Next, we provide the corresponding resource ID array (views) to

map the name column (People.NAME) to a TextView control (android.R.id.text1). After

that, we create a cursor adapter and set the list’s adapter. The adapter class has the

smarts to take the rows in the data source and pull out the name of each contact to

populate the user interface.

There’s one more thing we need to do to make this work. Because this demonstration is

accessing the phone’s contacts database, we need to ask permission to do so. This

security topic will be covered in more detail in Chapter 10, so for now, we’ll just walk

you through getting our ListView to show up. Double-click the AndroidManifest.xml file

for this project, and click the Permissions tab. Click the Add button, choose Uses

Permission, and click OK. Scroll down the Name list until you get to

android.permission.READ_CONTACTS. Your Eclipse window should look like the one

shown in Figure 6–11. Then, save the AndroidManifest.xml file. Now, you can run this

application in the emulator. You might need to add some contacts using the Contacts

application before any names will show up in this example application.

You’ll notice that the onCreate() method does not set the content view of the activity.

Instead, because the base class ListActivity contains a ListView already, it just needs

to provide the data for the ListView. We’ve used a couple of shortcuts in this example,

the first being that we’ve taken advantage of our ListActivity supplying the main

layout. We’re also using an Android-provided layout for our child view (resource ID

android.R.layout.simple_list_item_1), which contains an Android-provided TextView

(resource ID android.R.id.text1). All in all, pretty simple to set up.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 177

Figure 6–11. Modifying AndroidManifest.xml so our application will run

Clickable Items in a ListView
Of course, once you run this example, you’ll see that you’re able to scroll up and down

the list to see all your contact names, but that’s about it. What if we want to do

something a little more interesting with this example, like launch the Contact application

when a user clicks one of the items in our ListView? Listing 6–28 shows a modification

to our example to accept user input.

Listing 6–28. Accepting User Input on a ListView

public class ListViewActivity2 extends ListActivity implements OnItemClickListener
{
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 ListView lv = getListView();

 Cursor c = managedQuery(People.CONTENT_URI,
 null, null, null, People.NAME);

 String[] cols = new String[]{People.NAME};
 int[] views = new int[] {android.R.id.text1};

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 178

 android.R.layout.simple_list_item_1,
 c, cols, views);
 this.setListAdapter(adapter);
 lv.setOnItemClickListener(this);
 }

 @Override
 public void onItemClick(AdapterView<?> adView, View target, int position, long id) {
 Log.v("ListViewActivity", "in onItemClick with " + ((TextView) target).getText()
+
 ". Position = " + position + ". Id = " + id);
 Uri selectedPerson = ContentUris.withAppendedId(
 People.CONTENT_URI, id);
 Intent intent = new Intent(Intent.ACTION_VIEW, selectedPerson);
 startActivity(intent);
 }
}

Our activity is now implementing the OnItemClickListener interface, which means we'll

receive a callback when the user clicks on something in our ListView. As you can see by

our onItemClick() method, we get a lot of information about what was clicked, including

the view receiving the click, the position of the clicked item in the ListView, and the ID

of the item according to our adapter. Because we know that our ListView is made up of

TextViews, we assume that we received a TextView and cast accordingly before calling

the getText() method to retrieve the contact’s name. The position value represents

where this item is in relation to the overall list of items in the ListView, and it’s zero-

based. Therefore, the first item in the list is at position 0.

The ID value depends entirely on the adapter and the source of the data. In our example,

we happen to be querying the Contacts content provider, so the ID according to this

adapter is the _ID of the record from the content provider. But your data source in other

situations may not be from a content provider, so you should not think that you can

always create a URI as we’ve done in this example. If we were using an ArrayAdapter

that had read its values from a resource XML file, the ID given to us is very likely the

position of the value in the data array and could, in fact, be exactly the same as the

position value.

When we discussed ArrayAdapters before, we mentioned the notifyDataSetChanged()

method to have the adapter update the ListView if the data has changed. Try this little

experiment with our current example. Click one of your contacts, which should launch

the Contacts application. Now, edit the contact by changing the name of the contact;

click Done, and click the Back button so you’re back to our example application. You

should see that the name of that contact in your ListView has automatically been

updated. How cool is that? Through the SimpleCursorAdapter and the Contacts content

provider, our ListView has been updated for us. With ArrayAdapters, however, you will

need to invoke the notifyDataSetChanged() method yourself.

That was pretty easy to do. We generated our own ListView of contact names, and by

clicking a name, we launched the Contacts application for the selected person. But what

if we want to select a bunch of names first and then do something with the subset of

people? For the next example application, we’re going to modify the layout of a list item

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 179

to include a check box, and we’re going to add a button to the user interface to then act

on the subset of selected items.

Adding Other Controls With a ListView
If you want additional controls in your main layout, you can provide your own layout XML

file, put in a ListView, and add other desired controls. For example, you could add a

button below the ListView in the UI to submit an action on the selected items, as shown

in Figure 6–12.

Figure 6–12. An additional button that lets the user submit the selected item(s)

The main layout for this example is in Listing 6–29, and it contains the user interface

definition of the activity—the ListView and the Button.

Listing 6–29. Overriding the ListView Referenced by ListActivity

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is at /res/layout/list.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent">

 <ListView android:id="@android:id/list"
 android:layout_width="fill_parent" android:layout_height="0dip"
 android:layout_weight=”1” />

 <Button android:id=”@+id/btn” android:onClick=”doClick”
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Submit Selection" />

</LinearLayout>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 180

Notice the specification of the ID for the ListView. We’ve had to use

"@android:id/list", because the ListActivity expects to find a ListView in our layout

with this name. If we had relied on the default ListView that ListActivity would have

created for us, it would have this ID.

The other thing to note is the way we have to specify the height of the ListView in

LinearLayout. We want our button to appear on the screen at all times no matter how

many items are in our ListView, and we don’t want to be scrolling all the way to the

bottom of the page just to find the button. To accomplish this, we set the layout_height
to 0 and then use layout_weight to say that this control should take up all available

room from the parent container. This trick allows room for the button and retains our

ability to scroll the ListView. We’ll talk more about layouts and weights later in this

chapter.

The activity implementation would then look like Listing 6–30.

Listing 6–30. Reading User Input from the ListActivity

public class ListViewActivity3 extends ListActivity
{
 private static final String TAG = "ListViewActivity3";
 private ListView lv = null;
 private Cursor cursor = null;
 private int idCol = -1;
 private int nameCol = -1;
 private int notesCol = -1;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list);

 lv = getListView();

 cursor = managedQuery(People.CONTENT_URI,
 null, null, null, People.NAME);

 String[] cols = new String[]{People.NAME};
 idCol = cursor.getColumnIndex(People._ID);
 nameCol = cursor.getColumnIndex(People.NAME);
 notesCol = cursor.getColumnIndex(People.NOTES);

 int[] views = new int[]{android.R.id.text1};

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_multiple_choice,
 cursor, cols, views);

 this.setListAdapter(adapter);

 lv.setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);
 }

 public void doClick(View view) {
 int count=lv.getCount();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 181

 SparseBooleanArray viewItems = lv.getCheckedItemPositions();
 for(int i=0; i<count; i++) {
 if(viewItems.get(i)) {
 cursor.moveToPosition(i);
 long id = cursor.getLong(idCol);
 String name = cursor.getString(nameCol);
 String notes = cursor.getString(notesCol);
 Log.v(TAG, name + " is checked. Notes: " + notes +
 ". Position = " + i + ". Id = " + id);
 }
 }
 }
}

Now, we’re back to calling setContentView() to set the user interface for the activity.

And within the setup of the adapter, we’re passing another of the Android-provided

views for a ListView line item (android.R.layout.simple_list_item_multiple_choice),

which results in each row having a TextView and a CheckBox. If you look inside this

layout file, you will see another subclass of TextView, this one called CheckedTextView.

This special type of TextView is intended for use with ListViews. See, we told you there

were some interesting things in that Android layout folder! You will see that the ID of the

CheckedTextView is text1, which is what we needed to pass in our views array to the

constructor of the SimpleCursorAdapter.

Because we want the user to be able to select our rows, we set the choice mode to

CHOICE_MODE_MULTIPLE. By default, the choice mode is CHOICE_MODE_NONE. The other

possible value is CHOICE_MODE_SINGLE. If you wanted to use that choice mode for this

example, you would want to use a different layout, most likely

android.R.layout.simple_list_item_single_choice.

In this example, we’ve implemented a basic button that calls the doClick() method of

our activity. To keep things simple, we just want to write out to LogCat the names of the

items that were checked by the user. The good news is that the solution is pretty easy;

the bad news is that Android has evolved so the best solution depends on which version

of Android you’re targeting. The ListView solution we’ve shown here has worked since

Android 1 (although we took the Android 1.6 shortcut on the button callback). That is,

the getCheckedItemPositions() method is old, yet still works. The return value is an

array that can tell you if an item has been checked or not. So we iterate through the

array. viewItems.get(i) will return true if the corresponding row in our ListView has

been checked. Our data is accessible through the cursor. So instead of looking up data

in the ListView, we look up data in the cursor. The ListView will tell us is where in the

adapter to look.

When we get a position number from the ListView that has been checked, we can use

the cursor’s moveToPosition() method to prepare to read the data. There’s another

method that does nearly the same thing, the getItemAtPosition() method of the

ListView. In our case, the object returned from getItemAtPosition() would turn out to

be a CursorWrapper object. As we said before, in other situations, we might get some

other type of object. It’s only because we’re working with a content provider that we

would get a CursorWrapper here. You have to understand your data source and your

adapter to know what to expect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 182

We can then use our Cursor (or CursorWrapper if we went with that) to retrieve the data

that is connected to our ListView row. Notice how, in our example, we can retrieve not

only the name of the contact but notes as well, even though we never mapped notes to

the ListView. When we set up the cursor for our adapter, we selected all available fields.

In practice, you won’t need all fields, so you should restrict your query to just the fields

you’re going to use. But this is a case where we query for more fields than we need for

display in the ListView, so we can get easy access to the other fields in our button

callback.

Another Way to Read Selections From a ListView
Android 1.6 introduced another method for retrieving a list of the checked rows from a

ListView: getCheckItemIds(). Then in Android 2.2, this method was deprecated and

replaced with getCheckedItemIds(). It was a subtle name change, but the way you use

the method is basically the same. Also, the way you deal with contacts changed in

Android 2.2. For our next example, we’ll use Android 2.2 features to show how our

example might look. Listing 6–31 shows the Java code. For the XML layout of list.xml,

we can continue to use the same file as found in Listing 6–29.

Listing 6–31. Another Way of Reading User Input From the ListActivity

public class ListViewActivity4 extends ListActivity
{
 private static final String TAG = "ListViewActivity4";
 private static final Uri CONTACTS_URI = ContactsContract.Contacts.CONTENT_URI;
 private SimpleCursorAdapter adapter = null;
 private ListView lv = null;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list);

 lv = getListView();

 String[] projection = new String[] {ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME};
 Cursor c = managedQuery(CONTACTS_URI,
 projection, null, null, ContactsContract.Contacts.DISPLAY_NAME);

 String[] cols = new String[] {ContactsContract.Contacts.DISPLAY_NAME};
 int[] views = new int[] {android.R.id.text1};

 adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_multiple_choice,
 c, cols, views);

 this.setListAdapter(adapter);

 lv.setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 183

 public void doClick(View view) {
 if(!adapter.hasStableIds()) {
 Log.v(TAG, "Data is not stable");
 return;
 }
 long[] viewItems = lv.getCheckedItemIds();
 for(int i=0; i<viewItems.length; i++) {
 Uri selectedPerson = ContentUris.withAppendedId(
 CONTACTS_URI, viewItems[i]);

 Log.v(TAG, selectedPerson.toString() + " is checked.");
 }
 }
}

In this example application, when we click the button, our callback calls the method

getCheckedItemIds(). Whereas in our last example, we got an array of positions of the

checked items in the ListView, this time we get an array of IDs of the records from the

adapter that have been checked in the ListView. We can bypass the ListView and the

cursor now, because the IDs can be used with the content provider to take whatever

action we desire. In our example, we simply construct a URI that represents the specific

record from the Contacts content provider, and we write that URI to LogCat. We could

have operated on the data using the content provider directly. This technique works

equally well using the older Contacts content provider and the Android 1.6

getCheckItemIds() method.

Something else we’ve done differently in this example is to only select a couple of

columns when we created our Cursor. This is the normal practice since you do not want

to read more data than is necessary. The last thing to point out from this example is that

the method getCheckedItemIds() requires that the underlying data in the adapter is

stable. Therefore, it is highly recommended that you call hasStableIds() on the adapter

before calling getCheckedItemIds() on the ListView. In our example, we took a shortcut

and simply logged the fact and returned. In reality, you’d want to do something more

intelligent, like maybe initiate a background thread to do retries and throw up a dialog

indicating that you’re doing processing.

We’ve shown you how to work with ListViews from a variety of scenarios. We’ve shown

that adapters do a lot of the work to support a ListView. Next, we’ll cover the other

types of list controls, starting with the GridView.

The GridView Control
Most widget toolkits offer one or more grid-based controls. Android has a GridView

control that can display data in the form of a grid. Note that although we use the term

“data” here, the contents of the grid can be text, images, and so on.

The GridView control displays information in a grid. The usage pattern for the GridView is

to define the grid in the XML layout (see Listing 6–32) and then bind the data to the grid

using an android.widget.ListAdapter. Don’t forget to add the uses-permission tag to

the AndroidManifest.xml file to make this example work.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 184

Listing 6–32. Definition of a GridView in an XML Layout and Associated Java Code

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is at /res/layout/gridview.xml -->
<GridView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/dataGrid"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10px"
 android:verticalSpacing="10px"
 android:horizontalSpacing="10px"
 android:numColumns="auto_fit"
 android:columnWidth="100px"
 android:stretchMode="columnWidth"
 android:gravity="center"
 />

public class GridViewActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.gridview);

 GridView gv = (GridView)findViewById(R.id.gridview);

 Cursor c = managedQuery(People.CONTENT_URI,
 null, null, null, People.NAME);

 String[] cols = new String[] {People.NAME};
 int[] views = new int[] {android.R.id.text1};

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 c, cols, views);

 gv.setAdapter(adapter);
 }
}

Listing 6–32 defines a simple GridView in an XML layout. The grid is then loaded into the

activity’s content view. The generated UI is shown in Figure 6–13.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 185

Figure 6–13. A GridView populated with contact information

The grid shown in Figure 6–13 displays the names of the contacts on the device. We

have decided to show a TextView with the contact names, but you could easily generate

a grid filled with images or other controls. We’ve again taken advantage of predefined

layouts in Android. In fact, this example looks very much like Listing 6–27 except for a

few important differences. First, our GridViewActivity extends Activity, not

ListActivity. Second, we must call setContentView() to set the layout for our

GridView; there are no default views to fall back on. And finally, to set the adapter we

call setAdapter() on the GridView object instead of calling setListAdapter() on

Activity.

You’ve no doubt noticed that the adapter used by the grid is a ListAdapter. Lists are

generally one-dimensional, whereas grids are two-dimensional. We can conclude, then,

that the grid actually displays list-oriented data. And it turns out that the list is displayed

by rows. That is, the list goes across the first row, then across the second row, and so

on.

As before, we have a list control that works with an adapter to handle the data

management, and the generation of the child views. The same techniques we used

before should work just fine with GridViews. One exception is in terms of making

selections. There is no way to specify multiple choices in a GridView, like we did in

Listing 6–30.

The Spinner Control
The Spinner control is like a drop-down menu. It is typically used to select from a

relatively short list of choices. If the choice list is too long for the display, a scrollbar is

automatically added for you. You can instantiate a Spinner via XML layout as simply as

this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 186

<Spinner
 android:id="@+id/spinner" android:prompt=”@string/spinnerprompt”
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

While a spinner is technically a list control, it will appear to you more like a simple

TextView control. In other words, only one value will be displayed when the spinner is at

rest. The purpose of the spinner is to allow the user to choose from a set of

predetermined values: when the user clicks the small arrow, a list is displayed, and the

user is expected to pick a new value. Populating this list is done in the same way as the

other list controls, that is, with an adapter. Because a spinner is often used like a drop-

down menu, it is common to see the adapter get the list choices from a resource file. An

example that sets up a spinner using a resource file is shown in Listing 6–33. Notice the

new attribute called android:prompt for setting a prompt at the top of the list to choose

from. The actual text for our spinner prompt is in our /res/values/strings.xml file. As

you should expect, the Spinner class has a method for setting the prompt in code as

well.

Listing 6–33. Code to Create a Spinner From a Resource File

public class SpinnerActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.spinner);

 Spinner spinner = (Spinner)findViewById(R.id.spinner);

 ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,
 R.array.planets, android.R.layout.simple_spinner_item);

 adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

 spinner.setAdapter(adapter);
 }
}

You may recall seeing the planets.xml file in Listing 6–26. We show in this example how

a Spinner control is created; the adapter is set up and then associated to the spinner.

See Figure 6–14 for what this looks like in action.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 187

Figure 6–14. A spinner for choosing a planet

One of the differences from our earlier list controls is that we've got an extra layout to

contend with when working with a spinner. The left-hand side of Figure 6–14 shows the

normal mode of a spinner, where the current selection is shown. In this case, the current

selection is Saturn. Next to the word is a downward-pointing arrow indicating that this

control is a spinner and can be used to pop up a list to select a different value. The first

layout, supplied as a parameter to the ArrayAdapter.createFromResource() method,

defines how the spinner looks in normal mode. On the right-hand side of Figure 6–14,

we show the spinner in the pop-up list mode, waiting for the user to choose a new value.

The layout for this list is set using the setDropDownViewResource() method. Again in this

example, we’re using Android-provided layouts for these two needs, so if you want to

inspect the definition of either of these layouts, you can visit the Android res/layout

folder. And of course, you can specify your own layout definition for either of these to

get the effect you want.

The Gallery Control
The Gallery control is a horizontally scrollable list control that always focuses at the

center of the list. This control generally functions as a photo gallery in touch mode. You

can instantiate a Gallery either via XML layout or code:

<Gallery
 android:id="@+id/gallery"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
/>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 188

The Gallery control is typically used to display images, so your adapter is likely going to

be specialized for images. We'll show you a custom image adapter in next section on

custom adapters. Visually, a Gallery looks like Figure 6–15.

Figure 6–15. A gallery with images of manatees

Creating Custom Adapters
Standard adapters in Android are easy to use, but they have some limitations. To

address this, Android provides an abstract class called BaseAdapter that you can extend

if you need a custom adapter. You would use a custom adapter if you had special data-

management needs or if you wanted more control over how to display child views. You

might also use a custom adapter to improve performance by using caching techniques.

We’re going to show you how to build a custom adapter next.

Listing 6–34 shows what the XML layout and the Java code could look like for a custom

Adapter. For this next example, our adapter is going to deal with images of manatees,

so we’ll call it ManateeAdapter. We're going to create it inside of an activity as well.

Listing 6–34. Our Custom Adapter: ManateeAdapter

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is at /res/layout/gridviewcustom.xml -->
<GridView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/gridview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 189

 android:padding="10dip"
 android:verticalSpacing="10dip"
 android:horizontalSpacing="10dip"
 android:numColumns="auto_fit"
 android:gravity="center"
 />

public class GridViewCustomAdapter extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.gridviewcustom);

 GridView gv = (GridView)findViewById(R.id.gridview);

 ManateeAdapter adapter = new ManateeAdapter(this);

 gv.setAdapter(adapter);
 }

 public static class ManateeAdapter extends BaseAdapter {
 private static final String TAG = "ManateeAdapter";
 private static int convertViewCounter = 0;
 private Context mContext;
 private LayoutInflater mInflater;

 static class ViewHolder {
 ImageView image;
 }

 private int[] manatees = {
 R.drawable.manatee00, R.drawable.manatee01, R.drawable.manatee02,
 R.drawable.manatee03, R.drawable.manatee04, R.drawable.manatee05,
 R.drawable.manatee06, R.drawable.manatee07, R.drawable.manatee08,
 R.drawable.manatee09, R.drawable.manatee10, R.drawable.manatee11,
 R.drawable.manatee12, R.drawable.manatee13, R.drawable.manatee14,
 R.drawable.manatee15, R.drawable.manatee16, R.drawable.manatee17,
 R.drawable.manatee18, R.drawable.manatee19, R.drawable.manatee20,
 R.drawable.manatee21, R.drawable.manatee22, R.drawable.manatee23,
 R.drawable.manatee24, R.drawable.manatee25, R.drawable.manatee26,
 R.drawable.manatee27, R.drawable.manatee28, R.drawable.manatee29,
 R.drawable.manatee30, R.drawable.manatee31, R.drawable.manatee32,
 R.drawable.manatee33 };

 private Bitmap[] manateeImages = new Bitmap[manatees.length];
 private Bitmap[] manateeThumbs = new Bitmap[manatees.length];

 public ManateeAdapter(Context context) {
 Log.v(TAG, "Constructing ManateeAdapter");
 this.mContext = context;
 mInflater = LayoutInflater.from(context);

 for(int i=0; i<manatees.length; i++) {
 manateeImages[i] = BitmapFactory.decodeResource(

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 190

 context.getResources(), manatees[i]);
 manateeThumbs[i] = Bitmap.createScaledBitmap(manateeImages[i],
 100, 100, false);
 }
 }

 @Override
 public int getCount() {
 Log.v(TAG, "in getCount()");
 return manatees.length;
 }

 public int getViewTypeCount() {
 Log.v(TAG, "in getViewTypeCount()");
 return 1;
 }

 public int getItemViewType(int position) {
 Log.v(TAG, "in getItemViewType() for position " + position);
 return 0;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 ViewHolder holder;

 Log.v(TAG, "in getView for position " + position +
 ", convertView is " +
 ((convertView == null)?"null":"being recycled"));

 if (convertView == null) {
 convertView = mInflater.inflate(R.layout.gridimage, null);
 convertViewCounter++;
 Log.v(TAG, convertViewCounter + " convertViews have been created");

 holder = new ViewHolder();
 holder.image = (ImageView) convertView.findViewById(R.id.gridImageView);

 convertView.setTag(holder);
 } else {
 holder = (ViewHolder) convertView.getTag();
 }

 holder.image.setImageBitmap(manateeThumbs[position]);

 return convertView;
 }

 @Override
 public Object getItem(int position) {
 Log.v(TAG, "in getItem() for position " + position);
 return manateeImages[position];
 }

 @Override
 public long getItemId(int position) {
 Log.v(TAG, "in getItemId() for position " + position);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 191

 return position;
 }
 }
}

When you run this application, you should see a display that looks like Figure 6–16.

Figure 6–16. A gridview with images of manatees

There is a lot to explain in this example, even though it looks relatively simple. We’ll start

with our Activity class, which looks a lot like the ones we've been working with

throughout this section of the chapter. There's a main layout from gridviewcustom.xml,

which contains just a GridView definition. We need to get a reference to the GridView

from inside the layout, so we define and set gv. We instantiate our ManateeAdapter,

passing it our context, and we set the adapter on our GridView. This is pretty standard

stuff so far, although you’ve no doubt noticed that our custom adapter doesn’t use

nearly as many parameters as pre-defined adapters when being created. This is mainly

because we’re in complete control over this particular adapter, and we’re using it with

only this application. If we were making this adapter more general, we would most likely

be setting more parameters. But let’s keep going.

Our job inside an adapter is to manage the passing of data into Android View objects.

The View objects will be used by the list control (a GridView in this case). The data

comes from some data source. In the earlier examples, the data came via a cursor

object that was passed into the adapter. In our custom case here, our adapter knows all

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 192

about the data and where it comes from. The list control will ask for things so it knows

how to build the user interface. It is also kind enough to pass in views for recycling when

it has a view it no longer needs. It may seem a bit strange to think that our adapter must

know how to construct views, but in the end, it all makes sense.

When we instantiate our custom adapter ManateeAdapter, it is customary to pass in the

context and for the adapter to hold onto it. It is often very useful to have it available

when needed. The second thing we want to do in our adapter is to hang onto the

inflater. This will help performance when we need to create a new view to return to the

list control. The third thing that is typical in an adapter is to create a ViewHolder object,

to contain the View objects for the data we are managing. For this example, we are

simply storing an ImageView, but if we had additional fields to deal with, we would add

them into the definition of ViewHolder. For example, if we had a ListView where each

row contained an ImageView and two TextViews, our ViewHolder would have an

ImageView and two TextViews.

Because we’re dealing with images of manatees in this adapter, we set up an array of

their resource IDs to be used during construction to create bitmaps. We also define an

array of bitmaps to use as our data list.

As you can see from our ManateeAdapter constructor, we save the context, create and

hang onto an inflater, and then, we iterate through the image resource IDs and build an

array of bitmaps. This bitmap array will be our data.

As you learned previously, setting the adapter will cause our GridView to call methods

on the adapter to set itself up with data to display. For example, gv will call the adapter’s

getCount() method to determine how many objects there are for displaying. It will also

call the getViewTypeCount() method to determine how many different types of views

could be displayed within the GridView. For our purposes in this example, we set this to

1. However, if we had a ListView and wanted to put separators in between regular rows

of data, we would have two types of views and would need to return 2 from

getViewTypeCount(). You could have as many different view types as you like, as long

as you appropriately return the correct count from this method. Related to this method

is getItemViewType(). We just said that we could have more than one type of view to

return from the adapter. But to keep things simpler, getItemViewType() needs to return

only an integer value to indicate which of our view types is at a particular position in the

data. Therefore, if we had two types of views to return, getItemViewType() would need

to return either 0 or 1 to indicate which type. If we have three types of views, this

method needs to return 0, 1, or 2.

If our adapter is dealing with separators in a ListView, it must treat the separators as

data. That means there is a position in the data that is taken up by a separator. When

getView() is called by a list control to retrieve the appropriate view for that position,

getView() will need to return a separator as a view instead of regular data as a view.

And when asked in getItemViewType() for the view type for that position, we need to

return the appropriate integer value that we’ve decided matches that view type. The

other thing you should do if using separators is to implement the isEnabled() method.

This should return true for list items and false for separators because separators should

not be selectable or clickable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 193

The most interesting method in ManateeAdapter is the getView() method call. Once gv

has determined how many items are available, it starts to ask for the data. Now, we can

talk about recycling of views. A list control can only show as many child views on the

display as will fit. That means there’s no point in calling getView() for every piece of

data in the adapter; it only makes sense to call getView() for as many items as can be

displayed. As gv gets child views back from the adapter, it is determining how many will

fit on the display. Once the display is full of child views, gv can stop calling getView().

If you look at LogCat after starting up this example application, you will see the various

calls, but you will also see that getView() stops getting called before all images have

been requested. If you start scrolling up and down the GridView, you will see more calls

to getView() in LogCat, and you will notice that, once we’ve created a certain number of

child views, getView() is being called with convertView set to something, not null. This

means we’re now recycling child views—and that’s very good for performance.

If we get a nonnull convertView value from gv in getView(), it means gv is recycling that

view. By reusing the view passed in, we avoid having to inflate an XML layout, and we

avoid having to find the ImageView. By linking a ViewHolder object to the View that we

return, we can be much faster at recycling the view next time it comes back to us. All we

have to do in getView() is reacquire the ViewHolder, and assign the right data into the

view.

For this example, we wanted to show that the data placed into the view is not

necessarily exactly what exists in the data. The createScaledBitmap() method is

creating a smaller version of the data for display purposes. The point is that our list

control does not call the getItem() method. This method would be called by our other

code that wants to do something with the data if the user acts on the list control. Once

again, for any adapter, it is very important that you understand what it is doing. You

don’t necessarily want to rely on data in the view from the list control, as created by

getView() in the adapter. Sometimes, you will need to call the adapter’s getItem()

method to get the actual data to be operated on. And sometimes, as we did in the

earlier ListView examples, you’ll want to go to a cursor for the data. It all depends on

the adapter and where the data is ultimately coming from. Although we used the

createScaledBitmap() method in our example, Android 2.2 introduced another class

that might have been helpful here: ThumbnailUtils. This class has some static methods

for generating thumbnail images from bitmaps and videos.

The last thing to point out from this example is the getItemId() method call. In our

earlier examples with ListViews and contacts, the item ID was the _ID value from the

content provider. For this example, we don’t really need to use anything other than

position for the item ID. The whole point of item IDs is to provide a mechanism to refer

to the data separately from its position. This is especially true when the data has a life

away from this adapter, as existed with our contacts. When we have this kind of direct

control over the data, as we do with our images of manatees, and we understand how to

get to the actual data in our application, it is a common shortcut to simply use position

as the item ID. This is particularly true in our case, since we don’t even allow adding or

removal of data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 194

Other Controls in Android
There are many, many controls in Android that you can use. We’ve covered quite a few

so far, and more will be covered in later chapters (such as MapView in Chapter 17,

VideoView and MediaController in Chapter 19, and GLSurfaceView in Chapter 20). You

will find that the other controls, because they’re all descended from View, have a lot in

common what the ones we've covered here. For now, we’ll just mention a few of the

controls you might want to explore further on your own.

ScrollView is a control for setting up a View container with a vertical scrollbar. This is

really useful when you just have too much to fit onto a single screen. See this chapter’s

“References” section for a link to a blog post from Romain Guy on how to use this.

The ProgressBar and RatingBar controls are like sliders, the first to show the progress of

some operation visually (perhaps a file download or music playing) and the second to

show a rating scale of stars.

The Chronometer control is a timer that counts up. There’s a CountDownTimer class if you

want something to help you display a countdown timer, but it’s not a View class.

WebView is a very special View for displaying HTML. It can do a lot more than that,

including handling cookies and JavaScript and linking to Java code in your application.

But before you go implementing a web browser inside your application, you should

carefully consider simply invoking the on-device web browser to let it do all that heavy

lifting.

That completes our introduction of controls in this chapter. We’ll now move on to styles

and themes for modifying the look and feel of our controls and then to layouts for

arranging our controls on screens.

Styles and Themes
Android provides several ways to alter the style of views in your application. We'll first

cover using markup tags in strings, then how to use spannables to change specific

visual attributes of text. But what if you want to control how things look using a common

specification for several views or across an entire activity or application? We’ll discuss

Android styles and themes to show you how.

Using Styles
Sometimes, you want to highlight or style a portion of the View’s content. You can do

this statically or dynamically. Statically, you can apply markup directly to the strings in

your string resources, for example:

<string name="styledText"><i>Static</i> style in a TextView.</string>

You can then reference it in your XML or from code. Note that you can use the following

HTML tags with string resources: <i>, , and <u> for italics, bold and underlined

respectively as well as <sup> (superscript), <sub> (subscript), <strike> (strike-through),

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 195

<big>, <small>, and <monospace>. You can even nest these to get, for example, small

superscripts. This works not just in TextViews but also in other views, like buttons.

Figure 6–17 shows what styled and themed text looks like, using many of the examples

in this section.

Figure 6–17. Examples of styles and themes

Styling a TextView control’s content programmatically requires a little additional work

but allows for much more flexibility (see Listing 6–35), because you can style it at

runtime. This flexibility can only be applied to a spannable though, which is how

EditText normally manages the internal text, whereas TextView does not normally use

Spannable. Spannable is basically a String that you can apply styles to. To get a

TextView to store text as a spannable, you can call setText() this way:

tv.setText("This text is stored in a Spannable", TextView.BufferType.SPANNABLE);

Then, when you call tv.getText(), you’ll get a spannable.

As shown in Listing 6–35, you can get the content of the EditText (as a Spannable

object) and then set styles to portions of the text. The code in the listing sets the text

styling to bold and italics and sets the background to red. You can use all of the styling

options as we have with the HTML tags as described previously, and then some.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 196

Listing 6–35. Applying Styles to the Content of an EditText Dynamically

 EditText et =(EditText)this.findViewById(R.id.et);
 et.setText("Styling the content of an EditText dynamically");
 Spannable spn = (Spannable) et.getText();
 spn.setSpan(new BackgroundColorSpan(Color.RED), 0, 7,
 Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);
 spn.setSpan(new StyleSpan(android.graphics.Typeface.BOLD_ITALIC),
 0, 7, Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);

These two techniques for styling only work on the one view they’re applied to. Android

provides a style mechanism to define a common style to be reused across views, as well

as a theme mechanism, which basically applies a style to an entire activity or the entire

application. To begin with, we need to talk about styles.

A style is a collection of View attributes that is given a name so you can refer to that

collection by its name and assign that style by name to views. For example, Listing 6–36

shows a resource XML file, saved in /res/values, that we could use for all error

messages.

Listing 6–36. Defining a Style to Be Used Across Many Views

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="ErrorText">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#FF0000</item>
 <item name="android:typeface">monospace</item>
 </style>
</resources>

The size of the view is defined as well as the font color (i.e., red) and typeface. Notice

how the name attribute of the item tag is the XML attribute name we used in our layout

XML files, and the value of the item tag no longer requires double quotes. We can now

use this style for an error TextView as shown in Listing 6–37.

Listing 6–37. Using a Style in a View

<TextView android:id="@+id/errorText
 style="@style/ErrorText"
 android:text="No errors at this time"
 />

It is important to note that the attribute name for style in this View definition does not

start with android:. Watch out for this, as everything else seems to use android: except

for the style. When you’ve got many views in your application that share a style,

changing that style in one place is much simpler; you only need to modify the style’s

attributes in the one resource file. You can, of course, create many different styles for

various controls. Buttons could share a common style, for example, that’s different from

the common style for text in menus.

One really nice aspect of styles is that you can set up a hierarchy of them. We could

define a new style for really bad error messages and base it on the style of ErrorText.

Listing 6–38 shows how this might look.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 197

Listing 6–38. Defining a Style From a Parent Style

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="ErrorText.Danger" >
 <item name="android:textStyle">bold</item>
 </style>
</resources>

This example shows that we can simply name our child style using the parent style as a

prefix to the new style name. Therefore, ErrorText.Danger is a child of ErrorText and

inherits the style attributes of the parent. It then adds a new attribute for textStyle. This

can be continued again and again to create a whole tree of styles.

As was the case for adapter layouts, Android provides a large set of styles that we can

use. To specify an Android-provided style, use syntax like this:

style="@android:style/TextAppearance"

This style sets the default style for text in Android. To locate the master Android

styles.xml file, visit the Android SDK/platforms/<android-version>/data/res/values/

folder. Inside this file, you will find quite a few styles that are ready made for you to use

or extend. Here’s a word of caution about extending the Android-provided styles: the

previous method of using a prefix won’t work with Android-provided styles. Instead, you

must use the parent attribute of the style tag, like this:

<style name="CustomTextAppearance" parent="@android:style/TextAppearance">
 <item ... your extensions go here ... />
</style>

You don’t always have to pull in an entire style on your view. You could choose to

borrow just a part of the style instead. For example, if you want to set the color of the

text in your TextView to a system style color, you could do the following:

<EditText id="@+id/et2"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:textColor="?android:textColorSecondary"
 android:text="@string/hello_world" />

Notice that in this example, the name of the textColor attribute value starts with the ?

character instead of the @ character. The ? character is used so Android knows to look

for a style value in the current theme. Because we see ?android, we look in the Android

system theme for this style value.

Using Themes
One problem with styles is that you need to add an attribute specification of

style="@style/..." to every view definition that you want it to apply to. If you have

some style elements you want applied across an entire activity, or across the whole

application, you should use a theme instead. A theme is really just a style applied

broadly, but in terms of defining a theme, it's exactly like a style. In fact, themes and

styles are fairly interchangeable, as you can extend a theme into a style or refer to a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 198

style as a theme. Typically, only the names give a hint as to whether a style is intended

to be used as a style or a theme.

To specify a theme for an activity or an application, you would add an attribute to the

<activity> or <application> tag in the AndroidManifest.xml file for your project. The

code might look like one of these:

<activity android:theme="@style/MyActivityTheme">
<application android:theme="@style/MyApplicationTheme">
<application android:theme=”@android:style/Theme.NoTitleBar”>

You can find the Android-provided themes in the same folder as the Android-provided

styles, with the themes in a file called themes.xml. When you look inside the themes file,

you will see a large set of styles defined, with names that start with "Theme". You will

also notice that within the Android-provided themes and styles, there is a lot of

extending going on, which is why you end up with styles called

"Theme.Dialog.AppError" for example.

This concludes our discussion of the Android control set. As we mentioned in the

beginning of the chapter, building user interfaces in Android requires you to master two

things: the control set and the layout managers. In the next section, we are going to

discuss the Android layout managers.

Understanding Layout Managers
Android offers a collection of view classes that act as containers for views. These

container classes are called layouts (or layout managers), and each implements a

specific strategy to manage the size and position of its children. For example, the

LinearLayout class lays out its children either horizontally or vertically, one after the

other. All layout managers derive from the View class, therefore you can nest layout

managers inside of one another.

The layout managers that ship with the Android SDK are defined in Table 6–2.

Table 6–2. Android Layout Managers

Layout Manager Description

LinearLayout Organizes its children either horizontally or vertically

TableLayout Organizes its children in tabular form

RelativeLayout Organizes its children relative to one another or to the parent

FrameLayout Allows you to dynamically change the control(s) in the layout

We will discuss these layout managers in the sections that follow. The layout manager

called AbsoluteLayout has been deprecated and will not be covered in this book.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 199

The LinearLayout Layout Manager
The LinearLayout layout manager is the most basic. This layout manager organizes its

children either horizontally or vertically based on the value of the orientation property.

We've used LinearLayout in several of our examples so far. Listing 6–39 shows

LinearLayout with a horizontal configuration.

Listing 6–39. LinearLayout with a Horizontal Configuration

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent" android:layout_height="wrap_content">

 <!-- add children here-->

</LinearLayout>

You can create a vertically oriented LinearLayout by setting the value of orientation to

vertical. Because layout managers can be nested, you could, for example, construct a

vertical layout manager that contained horizontal layout managers to create a fill-in form,

where each row had a label next to an EditText control. Each row would be its own

horizontal layout, but the rows as a collection would be organized vertically.

Understanding Weight and Gravity
The orientation attribute is the first important attribute recognized by the LinearLayout

layout manager. Other important properties that can affect size and position of child

controls are weight and gravity. You use weight to assign size importance to a control

relative to the other controls in the container. Suppose a container has three controls:

one has a weight of 1, while the others have a weight of 0. In this case, the control

whose weight equals 1 will consume the empty space in the container. Gravity is

essentially alignment. For example, if you want to align a label’s text to the right, you

would set its gravity to right. There are quite a few possible values for gravity,

including left, center, right, top, bottom, center_vertical, clip_horizontal, and still

others. See the web pages in the “References” section for details on these and the other

values of gravity.

NOTE: Layout managers extend android.widget.ViewGroup, as do many control-based
container classes such as ListView. Although the layout managers and control-based

containers extend the same class, the layout manager classes strictly deal with the sizing and
position of controls and not user interaction with child controls. For example, compare the
LinearLayout to the ListView control. On the screen, they look similar in that both can

organize children vertically. But the ListView control provides APIs for the user to make
selections, while the LinearLayout does not. In other words, the control-based container
(ListView) supports user interaction with the items in the container, whereas the layout

manager (LinearLayout) addresses sizing and positioning only.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 200

Now let’s look at an example involving the weight and gravity properties (see Figure 6–18).

Figure 6–18. Using the LinearLayout layout manager

Figure 6–18 shows three user interfaces that utilize LinearLayout, with different weight

and gravity settings. The UI on the left uses the default settings for weight and gravity.

The XML layout for this first user interface is shown in Listing 6–40.

Listing 6–40. Three Text Fields Arranged Vertically in a LinearLayout, Using Default Values for Weight and Gravity

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="one"/>
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="two"/>
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="three"/>
</LinearLayout>

The user interface in the center of Figure 6–18 uses the default value for weight but sets

android:gravity for the controls in the container to left, center, and right,

respectively. The last example sets the android:layout_weight attribute of the center

component to 1.0 and leaves the others to the default value of 0.0 (see Listing 6–41). By

setting the weight attribute to 1.0 for the middle component and leaving the weight

attributes for the other two components at 0.0, we are specifying that the center

component should take up all the remaining white space in the container and that the

other two components should remain at their ideal size.

Similarly, if you want two of the three controls in the container to share the remaining

white space among them, you would set the weight to 1.0 for those two and leave the

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 201

third one at 0.0. Finally, if you want the three components to share the space equally,

you’d set all of their weight values to 1.0. Doing this would expand each text field

equally.

Listing 6–41. LinearLayout with Weight Configurations

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="fill_parent" android:layout_weight="0.0"
 android:layout_height="wrap_content" android:text="one"
 android:gravity="left"/>

 <EditText android:layout_width="fill_parent" android:layout_weight="1.0"
 android:layout_height="wrap_content" android:text="two"
 android:gravity="center"/>

 <EditText android:layout_width="fill_parent" android:layout_weight="0.0"
 android:layout_height="wrap_content" android:text="three"
 android:gravity="right"
 />
</LinearLayout>

android:gravity vs. android:layout_gravity
Note that Android defines two similar gravity attributes: android:gravity and

android:layout_gravity. Here’s the difference: android:gravity is a setting used by the

view, whereas android:layout_gravity is used by the container

(android.view.ViewGroup). For example, you can set android:gravity to center to have

the text in the EditText centered within the control. Similarly, you can align an EditText

to the far right of a LinearLayout (the container) by setting

android:layout_gravity="right". See Figure 6–19 and Listing 6–42.

Figure 6–19. Applying gravity settings

Listing 6–42. Understanding the Difference Between android:gravity and android:layout_gravity

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="wrap_content" android:gravity="center"
 android:layout_height="wrap_content" android:text="one"
 android:layout_gravity="right"/>
</LinearLayout>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 202

As shown in Figure 6–19, the text is centered within the EditText, which is aligned to the

right of the LinearLayout.

The TableLayout Layout Manager
The TableLayout layout manager is an extension of LinearLayout. This layout manager

structures its child controls into rows and columns. Listing 6–43 shows an example.

Listing 6–43. A Simple TableLayout

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent">

 <TableRow>
 <TextView android:text="First Name:"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <EditText android:text="Edgar"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />
 </TableRow>

 <TableRow>
 <TextView android:text="Last Name:"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <EditText android:text="Poe"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />
 </TableRow>

</TableLayout>

To use this layout manager, you create an instance of TableLayout and place TableRow

elements within it. These TableRow elements contain the controls of the table. The user

interface for Listing 6–43 is shown in Figure 6–20.

Figure 6–20. The TableLayout layout manager

Because the contents of a TableLayout are defined by rows as opposed to columns,

Android determines the number of columns in the table by finding the row with the most

cells. For example, Listing 6–44 creates a table with two rows where one row has two

cells and the other has three cells (see Figure 6–21). In this case, Android creates a table

with two rows and three columns. The last column of the first row is an empty cell.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 203

Listing 6–44. An Irregular Table Definition

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent">

 <TableRow>
 <TextView android:text="First Name:"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <EditText android:text="Edgar"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />
 </TableRow>

 <TableRow>
 <TextView android:text="Last Name:"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <EditText android:text="Allen"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <EditText android:text="Poe"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />
 </TableRow>

</TableLayout>

Figure 6–21. An irregular TableLayout

In Listings 6–43 and 6–44, we populated the TableLayout with TableRow elements.

Although this is the usual pattern, you can place any android.widget.View as a child of

the table. For example, Listing 6–45 creates a table where the first row is an EditText

(see Figure 6–22).

Listing 6–45. Using an EditText Instead of a TableRow

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:stretchColumns="0,1,2" >

 <EditText android:text="Fullname:"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <TableRow>
 <TextView android:text="Edgar"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 204

 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <TextView android:text="Allen"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <TextView android:text="Poe"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />
 </TableRow>

</TableLayout>

Figure 6–22. EditText as a child of a TableLayout

The user interface for Listing 6–45 is shown in Figure 6–22. Notice that the EditText

takes up the entire width of the screen, even though we have not specified this in the

XML layout. That’s because children of TableLayout always span the entire row. In other

words, children of TableLayout can specify android:layout_width="wrap_content" (as

we did with EditText), but it won’t affect actual layout—they are forced to accept

fill_parent. They can, however, set android:layout_height.

Because the content of a table is not always known at design time, TableLayout offers

several attributes that can help you control the layout of a table. For example, Listing 6–

45 sets the android:stretchColumns property on the TableLayout to "0,1,2". This gives

a hint to the TableLayout that columns 0, 1, and 2 can be stretched if required, based on

the contents of the table. If we had not used stretchColumns in Listing 6–45, we would

have seen "EdgarAllenPoe" all squished together. Technically, the second row takes up

the entire width, but the three TextViews do not spread across.

Similarly, you can set android:shrinkColumns to wrap the content of a column or

columns if other columns require more space. You can also set

android:collapseColumns to make columns invisible. Note that columns are identified

with a zero-based indexing scheme.

TableLayout also offers android:layout_span. You can use this property to have a cell

span multiple columns. This field is similar to the HTML colspan property.

At times, you might also need to provide spacing within the contents of a cell or a

control. The Android SDK supports this via android:padding and its siblings.

android:padding lets you control the space between a view’s outer boundary and its

content (see Listing 6–46).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 205

Listing 6–46. Using android:padding

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:text="one"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:padding="40px" />
</LinearLayout>

Listing 6–46 sets the padding to 40px. This creates 40 pixels of white space between the

EditText control’s outer boundary and the text displayed within it. Figure 6–23 shows

the same EditText with two different padding values. The UI on the left does not set any

padding, while the one on the right sets android:padding="40px".

Figure 6–23. Utilizing padding

android:padding sets the padding for all sides: left, right, top, and bottom. You can

control the padding for each side by using android:leftPadding, android:rightPadding,

android:topPadding, and android:bottomPadding.

Android also defines android:layout_margin, which is similar to android:padding. In

fact, android:padding/android:layout_margin is analogous to

android:gravity/android:layout_gravity, but one is for a view, and the other is for a

container.

Finally, the padding value is always set as a dimension type. Android supports the

following dimension types:

 Pixels: Abbreviated as px. This dimension represents physical pixels

on the screen.

 Inches: Abbreviated as in. This dimension represents real inches on

the screen.

 Millimeters: Abbreviated as mm. This dimension represents real

millimeters on the screen.

 Points: Abbreviated as pt. A point is equal to 1/72 of an inch.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 206

 Density-independent pixels: Abbreviated as dip or dp, this dimension

type uses a 160-dp screen as a frame of reference and then maps that

to the actual screen. For example, a screen with a 160-pixel width

would map 1 dip to 1 pixel.

 Scale-independent pixels: Abbreviated as sp, this dimension type is

generally used with font types. It will take the user’s preferences and

font size into account to determine actual size.

Note that the preceding dimension types are not specific to padding—any Android field

that accepts a dimension value (such as android:layout_width or

android:layout_height) can accept these types.

The RelativeLayout Layout Manager
Another interesting layout manager is the RelativeLayout. As the name suggests, this

layout manager implements a policy where the controls in the container are laid out

relative to either the container or another control in the container. Listing 6–47 and

Figure 6–24 show an example.

Listing 6–47. Using a RelativeLayout Layout Manager

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

<TextView android:id="@+id/userNameLbl"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:text="Username: "
 android:layout_alignParentTop="true" />

<EditText android:id="@+id/userNameText"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_below="@id/userNameLbl" />

<TextView android:id="@+id/pwdLbl"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_below="@id/userNameText"
 android:text="Password: " />

<EditText android:id="@+id/pwdText"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_below="@id/pwdLbl" />

<TextView android:id="@+id/pwdCriteria"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_below="@id/pwdText"
 android:text="Password Criteria... " />

<TextView android:id="@+id/disclaimerLbl"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Use at your own risk... " />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 207

</RelativeLayout>

Figure 6–24. A UI laid out using the RelativeLayout layout manager

As shown, the user interface looks like a simple login form. The username label is pinned

to the top of the container, because we set android:layout_alignParentTop to true.

Similarly, the Username input field is positioned below the Username label because we

set android:layout_below. The Password label appears below the Username label, and

the Password input field appears below the Password label. The disclaimer label is

pinned to the bottom of the container because we set

android:layout_alignParentBottom to true.

Besides these three layout attributes, you can also specify layout_above,

layout_toRightOf, layout_toLeftOf, layout_centerInParent, and several more.

Working with RelativeLayout is fun due to its simplicity. In fact, once you start using it,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 208

it’ll become your favorite layout manager—you’ll find yourself going back to it over and

over again.

The FrameLayout Layout Manager
The layout managers that we’ve discussed so far implement various layout strategies. In

other words, each one has a specific way that it positions and orients its children on the

screen. With these layout managers, you can have many controls on the screen at one

time, each taking up a portion of the screen. Android also offers a layout manager that is

mainly used to display a single item—the FrameLayout layout manager. You mainly use

this utility layout class to dynamically display a single view, but you can populate it with

many items, setting one to visible while the others are invisible. Listing 6–48

demonstrates using a FrameLayout.

Listing 6–48. Populating FrameLayout

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/frmLayout"
 android:layout_width="fill_parent" android:layout_height="fill_parent">

 <ImageView
 android:id="@+id/oneImgView" android:src="@drawable/one"
 android:scaleType="fitCenter"
 android:layout_width="fill_parent" android:layout_height="fill_parent"/>
 <ImageView
 android:id="@+id/twoImgView" android:src="@drawable/two"
 android:scaleType="fitCenter"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:visibility="gone" />

</FrameLayout>

public class FrameLayoutActivity extends Activity{
 private ImageView one = null;
 private ImageView two = null;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.listing6_48);

 one = (ImageView)findViewById(R.id.oneImgView);
 two = (ImageView)findViewById(R.id.twoImgView);

 one.setOnClickListener(new OnClickListener(){

 public void onClick(View view) {
 two.setVisibility(View.VISIBLE);

 view.setVisibility(View.GONE);
 }});

 two.setOnClickListener(new OnClickListener(){

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 209

 public void onClick(View view) {
 one.setVisibility(View.VISIBLE);

 view.setVisibility(View.GONE);
 }});
 }
}

Listing 6–48 shows the layout file as well as the onCreate() method of the activity. The

idea of the demonstration is to load two ImageView objects in the FrameLayout, with only

one of the ImageView objects visible at a time. In the UI, when the user clicks the visible

image, we hide one image and show the other one.

Look at Listing 6–48 more closely now, starting with the layout. You can see that we

define a FrameLayout with two ImageView objects (an ImageView is a control that knows

how to display images). Notice that the second ImageView’s visibility is set to gone,

making the control invisible. Now, look at the onCreate() method. In the onCreate()

method, we register listeners to click events on the ImageView objects. In the click

handler, we hide one ImageView and show the other one.

As we said earlier, you generally use FrameLayout when you need to dynamically set the

content of a view to a single control. Although this is the general practice, the control will

accept many children, as we demonstrated. Listing 6–48 adds two controls to the layout

but has one of the controls visible at a time. FrameLayout, however, does not force you

to have only one control visible at a time. If you add many controls to the layout,

FrameLayout will simply stack the controls, one on top of the other, with the last one on

top. This can create an interesting UI. For example, Figure 6–25 shows a FrameLayout

control with two ImageView objects that are visible. You can see that the controls are

stacked, and that the top one is partially covering the image behind it.

Another interesting aspect of the FrameLayout is that if you add more than one control to

the layout, the size of the layout is computed as the size of the largest item in the

container. In Figure 6–25, the top image is actually much smaller than the image behind

it, but because the size of the layout is computed based on the largest control, the

image on top is stretched.

Also note that if you put many controls inside a FrameLayout with one or more of them

invisible to start, you might want to consider using setMeasureAllChildren(true) on

your FrameLayout. Because the largest child dictates the layout size, you’ll have a

problem if the largest child is invisible to begin with. That is, when it becomes visible, it

will be only partially visible. To ensure that all items get rendered properly, call

setMeasureAllChildren() and pass it a value of true. The equivalent XML attribute for

FrameLayout is android:measureAllChildren="true".

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 210

Figure 6–25. FrameLayout with two ImageView objects

Customizing Layout for Various Device Configurations
By now, you know very well that Android offers a host of layout managers that help you

build user interfaces. If you’ve played around with the layout managers we’ve discussed,

you know that you can combine the layout managers in various ways to obtain the look

and feel you want. Even with all the layout managers, building UIs—and getting them

right—can be a challenge. This is especially true for mobile devices. Users and

manufacturers of mobile devices are getting more and more sophisticated, and that

makes the developer’s job even more challenging.

One of the challenges is building a UI for an application that displays in various screen

configurations. For example, what would your UI look like if your application were

displayed in portrait versus landscape mode? If you haven’t run into this yet, your mind

is probably racing right now, wondering how to deal with this common scenario.

Interestingly, and thankfully, Android provides some support for this use case.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 211

Here’s how it works: when building a layout, Android will find and load layouts from

specific folders based on the configuration of the device. A device can be in one of three

configurations: portrait, landscape, or square (square is rare). To provide different

layouts for the various configurations, you have to create specific folders for each

configuration from which Android will load the appropriate layout. As you know, the

default layout folder is located at res/layout. To support the portrait display, create a

folder called res/layout-port. For landscape, create a folder called res/layout-land.

And for a square, create one called res/layout-square.

A good question at this point is, “With these three folders, do I need the default layout

folder (res/layout)?” Generally, yes. Realize that Android’s resource-resolution logic

looks in the configuration-specific directory first. If Android doesn’t find a resource there,

it goes to the default layout directory. Therefore, you should place default layout

definitions in res/layout and the customized versions in the configuration-specific

folders.

Note that the Android SDK does not offer any APIs for you to programmatically specify

which configuration to load—the system simply selects the folder based on the

configuration of the device. You can, however, set the orientation of the device in code,

for example, using the following:

import android.content.pm.ActivityInfo;
…
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

This forces your application to appear on the device in landscape mode. Go ahead and

try it out in one of your earlier projects. Add the code to your onCreate() method of an

Activity, run it in the emulator, and see your application sideways.

The layout is not the only resource that is configuration driven, and other qualifiers of

the device configuration are taken into account when finding the resource to use. The

entire contents of the res folder can have variations for each configuration. For

example, to have different drawables loaded for each configuration, create folders for

drawable-port, drawable-land, and drawable-square. But Android gets even more

powerful than that. The complete list of qualifiers that can be used when finding

resources is shown in Table 6–3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 212

Table 6–3. Qualifiers for Resources

Qualifier Description

MCC and MNC Mobile country code and mobile network code

Language and region The two-letter language code in lowercase; could also add -r and an

uppercase two-letter region code

Screen dimensions Gives rough idea of screen size; values: small, normal, large and

xlarge

Wider/taller screens Related to aspect ratio; values: long and notlong

Screen orientation Values: land, port, and square

Screen pixel density Approximate densities; values: ldpi (near 120), mdpi (near 160), hdpi

(near 240) and xhdpi (near 320). Android may scale to fit resources

found in these, unless the resource is under nodpi.

Touch screen type Values: finger, notouch, and stylus

Keyboard State of the keyboard; values: keysexposed, keyshidden, and
keyssoft

Text input Values: nokeys, qwerty, and 12key (numeric)

Non-touch-screen navigation Values: dpad, nonav, trackball, and wheel

SDK version Values: v4 (SDK 1.6), v7 (SDK 2.1), etc.

For more details on these qualifiers, please see the following Android web page:

http://developer.android.com/guide/topics/resources/providing-resources.html#table2

These qualifiers can be used in many combinations to get whatever behavior you desire.

A resource directory name would use zero or one of each of these qualifier values,

separated by dashes, in order. For example, this is technically a valid drawable resource

directory name (although not recommended):

drawable-mcc310-en-rUS-large-long-port-mdpi-stylus-keyssoft-qwerty-dpad-v3

but so are these:

drawable-en-rUS-land (images for English in US in landscape mode)
values-fr (strings in French)

Regardless of how many qualifiers you’re using for resources in your application,

remember that in your code, you still only refer to the resource as R.resource_type.name

without any qualifiers. For example, if you have lots of different variations of your layout

file main.xml in several different qualified resource directories, your code will still refer to

R.layout.main. Android takes care of finding the appropriate main.xml for you.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 213

This concludes our discussion about building UIs. In the next section, we are going to

introduce you to the Hierarchy Viewer tool. This tool will help you debug and optimize

your user interfaces.

Debugging and Optimizing Layouts with the
Hierarchy Viewer
The Android SDK ships with a host of tools that you can use to make your development

life a lot easier. Because we are on the topic of user interface development, it makes

sense for us to discuss the Hierarchy Viewer tool. This tool, shown in Figure 6–26, allows

you to debug your user interfaces from a layout perspective.

Figure 6–26. The layout view of the Hierarchy Viewer tool

As shown in Figure 6–26, the Hierarchy Viewer shows the hierarchy of views in the form

of a tree. The idea is this: you load a layout into the tool and then inspect the layout to

determine possible layout problems and/or try to optimize the layout so that you

minimize the number of views (for performance reasons).

To debug your UIs, run your application in the emulator, and browse to the UI that you

want to debug. Then, go to the Android SDK /tools directory to start the Hierarchy

Viewer tool. On a Windows installation, you’ll see a batch file called

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 214

hierarchyviewer.bat in the /tools directory. When you run the batch file, you’ll see the

Hierarchy Viewer’s Devices screen (see Figure 6–27).

Figure 6–27. The Hierarchy Viewer’s Devices screen

The Devices screen displays the set of devices (emulators, in this case) running on the

machine. When you expand a device, the list of windows in the selected device appears

below. To view the hierarchy of views for a particular window, select that window

(typically the fully qualified name of your activity prefixed with the application’s package

name), and click the Load View Hierarchy button.

In the View Hierarchy screen, you’ll see that window’s hierarchy of views in the left pane

(see Figure 6–26). When you select a view element in the left pane, you can see the

properties of that element in the properties view to the right, and you can see the

location of the view, relative to the other views, in the wire frame pane to the right. The

selected view will be highlighted with a red border. By seeing all of the views in use, you

can hopefully find ways to reduce the number of views and thereby make the application

perform faster.

Figure 6–27 shows three buttons in the lower left corner of the Hierarchy Viewer tool.

The left button displays the tree view that we explained earlier. The middle button is the

View Hierarchy screen. The right button displays the current layout in pixel perfect view,

but only after you’ve initialized the pixel perfect view using the Inspect Screenshot

button at the top of this tool. This view is interesting in that you get a pixel-by-pixel

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 215

representation of your layouts (see Figure 6–28). There are several items of interest on

this screen. On the left-hand side is a navigator view of all of the window’s components.

If you click one of the components, it will be highlighted with a red border in the middle

view. The crosshairs in the right-hand view allow you to direct what shows up in the

view in the middle in the loupe (a loupe is a small magnifier used by jewelers and

watchmakers). The zoom control allows you to zoom in even closer in the loupe. The

loupe also shows the exact location of the selected pixel in (x, y) coordinates as well as

the color value of that pixel.

Figure 6–28. Pixel Perfect mode of the Hierarchy Viewer

The last very interesting features of this screen are the Load Overlay button and the

Overlay slider. You can load an image file (perhaps a new mockup of the screen you’re

developing) behind the displayed screen to compare that image file to your current one

and use the Overlay slider to make it more or less visible. The image comes in anchored

to the lower-left corner. By default, the image is not shown in the loupe, but selecting

the check box will make it show up there.

When Android 2.3 was released, the Hierarchy Viewer also became available for use

within Eclipse. There are new perspectives called Hierarchy View and Pixel Perfect, each

with a set of views for their various features. These function pretty much like the

executable that we covered earlier. Chapter 2 covered installing the Hierarchy Viewer

into Eclipse if you need help finding it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6: Building User Interfaces and Using Controls 216

With tools like these, you have a vast amount of control over the look and feel of your

application.

References
Here are some helpful references to topics you may wish to explore further.

 http://www.androidbook.com/projects. Look here for a list of

downloadable projects related to this book. For this chapter look for a

ZIP file called ProAndroid3_Ch06_Controls.zip. This ZIP file contains

all projects from this chapter, listed in separate root directories. There

is also a README.TXT file that describes exactly how to import

projects into Eclipse from one of these ZIP files.

 http://developer.android.com/reference/android/widget/LinearLay
out.html#attr_android:gravity: This is the reference page describing

different values for gravity when used with a LinearLayout.

 www.curious-creature.org/2010/08/15/scrollviews-handy-trick:

This blog post from Romain Guy (of the Android team) explains how to

use the ScrollView properly.

 http://developer.android.com/resources/articles/index.html: This

page contains several technical articles called “Layout Tricks,” and

these are well worth reading. They get into performance aspects of

designing and building user interfaces in Android. Look for other

articles in this list related to building user interfaces.

Summary
At this point, you should have a good overview of the controls that are available in the

Android SDK. You should also be familiar with Android’s adapters, as well as its layout

managers. Given a potential screen requirement, you should be able to quickly identify

the controls and layout managers that you’ll use to build the screen.

In the next chapter, we’ll take user interface development further—we are going to

discuss menus.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

217

217

 Chapter

Working with Menus
The Android SDK offers extensive support for menus. In this chapter, you’ll learn to work
with several of the menu types that Android supports: regular menus, submenus,
context menus, icon menus, secondary menus, and alternative menus. Android 3.0
introduced something called an action bar that integrates well with menu items. This
action bar and menu interaction is covered in chapter 30.

In Android, menus, in addition to being Java objects, are also represented as resources.
Because they are resources, the Android SDK allows you to load menus from XML files,
like other resources. Android generates resource IDs for each of the loaded menu items.
We will cover these XML menu resources in detail in this chapter. We will also show you
how to take advantage of auto-generated resource IDs for all types of menu items.

Understanding Android Menus
Whether you’ve worked with Swing in Java, with Windows Presentation Foundation
(WPF) in Windows, or with any other UI framework, you’ve no doubt worked with menus.

The key class in Android menu support is android.view.Menu. Every activity in Android is
associated with one menu object of this type, which can contain a number of menu
items and submenus.

Menu items are represented by android.view.MenuItem. Submenus are represented by
android.view.SubMenu. These relationships are graphically represented in Figure 7–1.
Strictly speaking, this is not a class diagram but a structural diagram designed to help
you visualize the relationships between various menu-related classes and functions.

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 218

Figure 7–1. Structure of Android menu related classes

Figure 7–1 illustrates that a Menu object contains a set of menu items.

A menu item carries a name (title), a menu item ID, and a sort order (referred to as just
“order” in the SDK), and an ID (or number). You use these order IDs to specify the order
of menu items within a menu. For example, if one menu item carries an order number of
4 and another menu item carries a order number of 6, the first menu item will appear
above the second menu item in the menu.

Some of these menu order number ranges are reserved for certain kinds of menus.
Secondary menu items, which are considered less important than others, start at
0x30000 and are defined by the constant Menu.CATEGORY_SECONDARY. Other types of
menu categories—such as system menus, alternative menus, and container menus—
have different order-number ranges.

System menu items start at 0x20000 and are defined by the constant
Menu.CATEGORY_SYSTEM. Alternative menu items start at 0x40000 and are defined by the
constant Menu.CATEGORY_ALTERNATIVE. Container menu items start at 0x10000 and are
defined by the constant Menu.CATEGORY_CONTAINER. By looking at the values for these
constants, you can see the order in which they’ll appear in the menu. (We’ll discuss
these various types of menu items in the “Working with Other Menu Types” section.)

You can group menu items together by assigning each one a group ID, which is an
attribute of the menu item object. Multiple menu items that carry the same group ID are
considered part of the same group.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 219

Figure 7–1 also shows two callback methods that you can use to create and respond to
menu items: onCreateOptionsMenu and onOptionsItemSelected. We will cover these
next.

Creating a Menu
In the Android SDK, you don’t need to create a menu object from scratch. Because an
activity is associated with a single menu, Android creates this single menu for that
activity and passes it to the onCreateOptionsMenu callback method of the activity class.
(As the name of the method indicates, menus in Android are also known as options
menus.) This method allows you to populate the single passed-in menu with a set of
menu items (see Listing 7–1).

Listing 7–1. Signature for the onCreateOptionsMenu Method

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 // populate menu items
 …..
 ...return true;
}

Once the menu items are populated, the code should return true to make the menu
visible. If this method returns false, the menu is invisible. The code in Listing 7–2 shows
how to add three menu items using a single group ID along with incremental menu item
IDs and order IDs.

Listing 7–2. Adding Menu Items

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 //call the base class to include system menus
 super.onCreateOptionsMenu(menu);

 menu.add(0 // Group
 ,1 // item id
 ,0 //order
 ,"append"); // title

 menu.add(0,2,1,"item2");
 menu.add(0,3,2,"clear");

 //It is important to return true to see the menu
 return true;
}

You should also call the base class implementation of this method to give the system an
opportunity to populate the menu with system menu items. To keep these system menu
items separate from other kinds of menu items, Android adds the system menu items
starting at 0x20000. (As we mentioned before, the constant Menu.CATEGORY_SYSTEM
defines the starting ID for these system menu items. In all releases so far, Android has
not added any system menus.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 220

The first parameter required for adding a menu item is the group ID (an integer). The
second parameter is the menu item ID, which is sent back to the callback function when
that menu item is chosen. The third argument represents the order ID.

The last argument is the name or title of the menu item. Instead of free text, you can use
a string resource through the R.java constants file. The group, menu item, and order IDs
are all optional; you can use Menu.NONE if you don’t want to specify any of those.

Working with Menu Groups
Now, let us show you how to work with menu groups. Listing 7–3 shows how you would
add two groups of menus: Group 1 and Group 2.

Listing 7–3. Using Group IDs to Create Menu Groups

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 //Group 1
 int group1 = 1;
 menu.add(group1,1,1,"g1.item1");
 menu.add(group1,2,2,"g1.item2");

 //Group 2
 int group2 = 2;
 menu.add(group2,3,3,"g2.item1");
 menu.add(group2,4,4,"g2.item2");

 return true; // it is important to return true
}

Notice how the menu item IDs and the order IDs are independent of the groups. So what
good is a group, then? Well, Android provides a set of methods on the
android.view.Menu class that are based on group IDs. You can manipulate a group’s
menu items using these methods:

removeGroup(id)
setGroupCheckable(id, checkable, exclusive)
setGroupEnabled(id,boolean enabled)
setGroupVisible(id,visible)

removeGroup removes all menu items from that group, given the group ID. You can
enable or disable menu items in a given group using the setGroupEnabled method.
Similarly, you can control the visibility of a group of menu items using setGroupVisible.

setGroupCheckable is a bit interesting. You can use this method to show a check mark
on a menu item when that menu item is selected. When applied to a group, it will enable
this functionality for all menu items within that group. If this method’s exclusive flag is
set, only one menu item within that group is allowed to go into a checked state. The
other menu items will remain unchecked.

You now know how to populate an activity’s main menu with a set of menu items and
group them according to their nature. Next, we will show you how to respond to these
menu items.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 221

Responding to Menu Items
There are multiple ways of responding to menu item clicks in Android. You can use the
onOptionsItemSelected method of the activity class; you can use stand-alone listeners,
or you can use intents. We will cover each of these techniques in this section.

Responding to Menu Items through onOptionsItemSelected
When a menu item is clicked, Android calls the onOptionsItemSelected callback method
on the Activity class (see Listing 7–4).

Listing 7–4. Signature and Body of the onOptionsItemSelected Method

@Override
public boolean onOptionsItemSelected(MenuItem item)
{
 switch(item.getItemId()) {

 }
 //for items handled
 return true;

 //for the rest
 ...return super.onOptionsItemSelected(item);
}

The key pattern here is to examine the menu item ID through the getItemId() method of
the MenuItem class and do what’s necessary. If onOptionsItemSelected() handles a
menu item, it returns true. The menu event will not be further propagated. For the menu
item callbacks that onOptionsItemSelected() doesn’t deal with,
onOptionsItemSelected() should call the parent method through
super.onOptionsItemSelected. The default implementation of the
onOptionsItemSelected() method returns false so that the normal processing can take
place. Normal processing includes alternative means of invoking responses for a menu
click.

Responding to Menu Items through Listeners
You usually respond to menus by overriding onOptionsItemSelected; this is the
recommended technique for better performance. However, a menu item allows you to
register a listener that could be used as a callback.

This approach is a two-step process. In the first step, you implement the
OnMenuClickListener interface. Then, you take an instance of this implementation and
pass it to the menu item. When the menu item is clicked, the menu item will call the
onMenuItemClick() method of the OnMenuClickListener interface (see Listing 7–5).

Listing 7–5. Using a Listener as a Callback for a Menu Item Click

//Step 1
public class MyResponse implements OnMenuClickListener
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 222

 //some local variable to work on
 //...
 //Some constructors
 @override
 boolean onMenuItemClick(MenuItem item)
 {
 //do your thing
 return true;
 }
}

//Step 2
MyResponse myResponse = new MyResponse(...);
menuItem.setOnMenuItemClickListener(myResponse);
...

The onMenuItemClick method is called when the menu item has been invoked. This code
executes as soon as the menu item is clicked, even before the onOptionsItemSelected
method is called. If onMenuItemClick returns true, no other callbacks will be executed—
including the onOptionsItemSelected callback method. This means that the listener code
takes precedence over the onOptionsItemSelected method.

Using an Intent to Respond to Menu Items
You can also associate a menu item with an intent by using the MenuItem’s method
setIntent(intent). By default, a menu item has no intent associated with it. But when
an intent is associated with a menu item, and nothing else handles the menu item, then
the default behavior is to invoke the intent using startActivity(intent). For this to
work, all the handlers—especially the onOptionsItemSelected method—should call the
parent class’s onOptionsItemSelected() method for those items that are not handled. Or
you could look at it this way: the system gives onOptionsItemSelected an opportunity to
handle menu items first (followed by the listener, of course). This is assuming there is no
listener directly associated with that menu item, if it is, then the listener will override the
rest.

If you don’t override the onOptionsItemSelected method, the base class in the Android
framework will do what’s necessary to invoke the intent on the menu item. But if you do
override this method and you’re not interested in this menu item, you must call the
parent method, which, in turn, facilitates the intent invocation. So here’s the bottom line:
either don’t override the onOptionsItemSelected method, or override it and invoke the
parent for the menu items that you are not handling.

Creating a Test Harness for Testing Menus
That’s pretty straightforward so far. You have learned how to create menus and how to
respond to them through various callbacks. Now, we’ll show you a sample activity to
exercise these menu APIs that you have already learned.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 223

NOTE: We have included a URL at the end of this chapter to download this project so that you

can set it up in Eclipse development environment.

The goal of this exercise is to create a simple activity with a text view in it. The text view
will act like a debugger. As we invoke menus, we will write out the invoked menu item
name and ID to this text view. The finished Menus application will look like the one
shown in Figure 5–2.

Figure 7–2. Sample Menus application

Figure 7–2 shows two things of interest: the menu and the text view. The menu appears
at the bottom. You will not see it, though, when you start the application; you must click
the Menu button on the emulator or the device in order to see the menu. The second
point of interest is the text view that lists the debug messages near the top of the
screen. As you click through the available menu items, the test harness logs the menu
item names in the text view. If you click the “clear” menu item, the program clears the
text view.

NOTE: Figure 7–2 does not necessarily represent the beginning state of the sample application.

We have presented it here to illustrate the menu types that we’ll cover in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 224

Follow these steps to implement the test harness:

1. Create an XML layout file that contains the text view.

2. Create an Activity class that hosts the layout defined in step 1.

3. Set up the menu.

4. Add some regular menu items to the menu.

5. Add some secondary menu items to the menu.

6. Respond to the menu items.

7. Modify the AndroidManifest.xml file to show the application’s proper title.

We will cover each of these steps in the following sections and provide the necessary
source code to assemble the test harness.

Creating an XML Layout
Step 1 involves creating a simple XML layout file with a text view in it (see Listing 7–6).
You could load this file into an activity during its startup.

Listing 7–6. XML Layout File for the Test Harness

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:id="@+id/textViewId"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Debugging Scratch Pad"
 />
</LinearLayout>

Creating an Activity
Step 2 dictates that you create an activity, which is also quite a simple. Assuming that
the layout file in step 1 is available at \res\layout\main.xml, you can use that file
through its resource ID to populate the activity’s view (see Listing 7–7).

Listing 7–7. Menu Test Harness Activity Class

public class SampleMenusActivity extends Activity {

 //Initialize this in onCreateOptions
 Menu myMenu = null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 225

 setContentView(R.layout.main);
 }

For brevity, we have not included the import statements. In Eclipse, you can
automatically populate the import statements by pulling up the context menu in the
editor and selecting Source Organize Imports. You can also use the short cut Ctrl +
Shift + O.

Setting Up the Menu
Now that you have a view and an activity, you can move on to step 3: overriding the
onCreateOptionsMenu and setting up the menu programmatically (see Listing 7–8).

Listing 7–8. Setting Up the Menu Programmatically

 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 //call the parent to attach any system level menus
 super.onCreateOptionsMenu(menu);

 this.myMenu = menu;

 //add a few normal menus
 addRegularMenuItems(menu);

 //add a few secondary menus
 add5SecondaryMenuItems(menu);

 //it must return true to show the menu
 //if it is false menu won't show
 return true;
 }

The code in Listing 7–8 first calls the parent onCreateOptionsMenu to give the parent an
opportunity to add any system-level menus.

NOTE: In all releases of the Android SDK so far, the onCreateOptionsMenu method does not

add new menu items. However, a future release might, so it is a good practice to call the parent.

The code then remembers the Menu object in order to manipulate it later for
demonstration purposes. After that, the code proceeds to add a few regular menu items
and a few secondary menu items.

Adding Regular Menu Items
Now comes step 4, adding a few regular menu items to the menu. The code for
addRegularMenuItems appears in Listing 7–9.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 226

Listing 7–9. The addRegularMenuItems Function

 private void addRegularMenuItems(Menu menu)
 {
 int base=Menu.FIRST; // value is 1

 menu.add(base,base,base,"append");
 menu.add(base,base+1,base+1,"item 2");
 menu.add(base,base+2,base+2,"clear");

 menu.add(base,base+3,base+3,"hide secondary");
 menu.add(base,base+4,base+4,"show secondary");

 menu.add(base,base+5,base+5,"enable secondary");
 menu.add(base,base+6,base+6,"disable secondary");

 menu.add(base,base+7,base+7,"check secondary");
 menu.add(base,base+8,base+8,"uncheck secondary");
 }

The Menu class defines a few convenience constants, one of which is Menu.FIRST. You
can use this as a baseline number for menu IDs and other menu-related sequential
numbers. Notice how you can peg the group ID at base and increment only the sort
order and menu item IDs. In addition, the code adds a few specific menu items, such as
"hide secondary" and "enable secondary", to demonstrate some of the menu
concepts.

Adding Secondary Menu Items
Let’s now add a few secondary menu items to perform step 5 (see Listing 7–10).
Secondary menu items, as mentioned earlier, start at 0x30000 and are defined by the
constant Menu.CATEGORY_SECONDARY. Their sort order IDs are higher than regular menu
items, so they appear after the regular menu items in a menu. Note that the sort order is
the only thing that distinguishes a secondary menu item from a regular menu item. In all
other aspects, a secondary menu item works and behaves like any other menu item.

Listing 7–10. Adding Secondary Menu Items

 private void add5SecondaryMenuItems(Menu menu)
 {
 //Secondary items are shown just like everything else
 int base=Menu.CATEGORY_SECONDARY;

 menu.add(base,base+1,base+1,"sec. item 1");
 menu.add(base,base+2,base+2,"sec. item 2");
 menu.add(base,base+3,base+3,"sec. item 3");
 menu.add(base,base+3,base+3,"sec. item 4");
 menu.add(base,base+4,base+4,"sec. item 5");
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 227

Responding to Menu Item Clicks
Now that the menus are set up, we move on to step 6, responding to them. When a
menu item is clicked, Android calls the onOptionsItemSelected callback method of the
Activity class by passing a reference to the clicked menu item. You then use the
getItemId() method on the MenuItem to see which item it is.

It is not uncommon to see either a switch statement or a series of if and else
statements calling various functions in response to menu items. Listing 7–11 shows this
standard pattern of responding to menu items in the onOptionsItemSelected callback
method. (You will learn a slightly better way of doing the same thing in the “Loading
Menus Through XML Files” section, where you will have symbolic names for these menu
item IDs.)

Listing 7–11. Responding to Menu Item Clicks

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == 1) {
 appendText("\nhello");
 }
 else if (item.getItemId() == 2) {
 appendText("\nitem2");
 }
 else if (item.getItemId() == 3) {
 emptyText();
 }
 else if (item.getItemId() == 4) {
 //hide secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupVisible(Menu.CATEGORY_SECONDARY,false);
 }
 else if (item.getItemId() == 5) {
 //show secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupVisible(Menu.CATEGORY_SECONDARY,true);
 }
 else if (item.getItemId() == 6) {
 //enable secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupEnabled(Menu.CATEGORY_SECONDARY,true);
 }
 else if (item.getItemId() == 7) {
 //disable secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupEnabled(Menu.CATEGORY_SECONDARY,false);
 }
 else if (item.getItemId() == 8) {
 //check secondary
 this.appendMenuItemText(item);
 myMenu.setGroupCheckable(Menu.CATEGORY_SECONDARY,true,false);
 }
 else if (item.getItemId() == 9) {
 //uncheck secondary
 this.appendMenuItemText(item);
 myMenu.setGroupCheckable(Menu.CATEGORY_SECONDARY,false,false);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 228

 }
 else {
 this.appendMenuItemText(item);
 }
 //should return true if the menu item
 //is handled
 return true;
 }

Listing 7–11 also exercises operations on menus at the group level; calls to these
methods are highlighted in bold. The code also logs the details about the clicked menu
item to the TextView. Listing 7–12 shows some utility functions to write to the TextView.
Notice an additional method on a MenuItem to get its title.

Listing 7–12. Utility Functions to Write to the Debug TextView

//Given a string of text append it to the TextView
 private void appendText(String text) {
 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 tv.setText(tv.getText() + text);
 }

//Given a menu item append its title to the TextView
 private void appendMenuItemText(MenuItem menuItem) {
 String title = menuItem.getTitle().toString();
 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 tv.setText(tv.getText() + "\n" + title);
 }
//Empty the TextView of its contents
 private void emptyText() {
 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 tv.setText("");
 }

Tweaking the AndroidManifest.xml File
Your final step in the process of creating the test harness is to update the application’s
AndroidManifest.xml file. This file, which is automatically created for you when you
create a new project, is available in your project’s root directory.

This is the place where you register the Activity class (such as SampleMenusActivity)
and where you specify a title for the activity. We called this activity Sample Menus
Application, as shown in Figure 7–2. See this entry highlighted in Listing 7–13.

Listing 7–13. The AndroidManifest.xml File for the Test Harness

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="your-package-name-goes-here "
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="Sample Menus">
 <activity android:name=".SampleMenusActivity"
 android:label="Sample Menus Application">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 229

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Using the code we’ve provided, you should be able to quickly construct this test
harness for experimenting with menus. We showed you how to create a simple activity
initialized with a text view and then how to populate and respond to menus. Most menus
follow this basic yet functional pattern. You can use Figure 7–2 as a guide for what kind
of UI to expect when you are finished with the exercise, but as we pointed out, what you
see might not exactly (but mostly will) match the figure because we haven’t yet shown
you how to add the icon menus. Your UI might differ slightly even after you add the icon
menus, because your images might differ from the images we used.

Working with Other Menu Types
So far we’ve covered some of the simpler, although quite functional, menu types. As you
walk through the SDK, you will see that Android also supports icon menus, submenus,
context menus, and alternative menus. Out of these, alternative menus are unique to
Android. We will cover all of these menu types in this section.

Expanded Menus
Recall from Figure 7–2 that the sample application displays a menu item called “More”
at the bottom-right corner of the menu. We didn’t show you how to add this menu item
in any of the sample code, so where does it come from?

If an application has more menu items than it can display on the main screen, Android
shows the More menu item to allow the user to see the rest. This menu, called an
expanded menu, shows up automatically when there are too many menu items to display
in the limited amount of space. But the expanded menu has a limitation: it cannot
accommodate icons. Users who click More will see a resultant menu that omits icons.

Working with Icon Menus
Now that we’ve hinted at icon menus, let’s talk about them in more detail. Android
supports not only text, but also images or icons as part of its menu repertoire. You can
use icons to represent your menu items instead of and in addition to text. But note a few
limitations when it comes to using icon menus. First, as you saw in the previous
paragraph, you can’t use icon menus for expanded menus. Second, icon menu items do
not support menu item check marks. Third, if the text in an icon menu item is too long, it
will be truncated after a certain number of characters, depending on the size of the
display. (This last limitation applies to text-based menu items also.)

Creating an icon menu item is straightforward. You create a regular text-based menu
item as before, then you use the setIcon method on the MenuItem class to set the image.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 230

You’ll need to use the image’s resource ID, so you must generate it first by placing the
image or icon in the /res/drawable directory. For example, if the icon’s file name is
balloons, then the resource ID will be R.drawable.balloons.

Here is some sample code that demonstrates this:

//add a menu item and remember it so that you can use it
//subsequently to set the icon on it.
MenuItem item8 = menu.add(base,base+8,base+8,"uncheck secondary");
item8.setIcon(R.drawable.balloons);

As you add menu items to the menu, you rarely need to keep a local variable returned by
the menu.add method. But in this case, you need to remember the returned object so you
can add the icon to the menu item. The code in this example also demonstrates that the
type returned by the menu.add method is MenuItem.

The icon will show as long as the menu item is displayed on the main application screen.
If it’s displayed as part of the expanded menu, the icon will not show, just the text.
The menu item displaying an image of balloons in Figure 7–2 is an example of an icon
menu item.

Working with Submenus
Let’s take a look at Android’s submenus now. Figure 7–1 points out the structural
relationship of a SubMenu to a Menu and a MenuItem. A Menu object can have multiple
SubMenu objects. Each SubMenu object is added to the Menu object through a call to the
Menu.addSubMenu method (see Listing 7–14). You add menu items to a submenu the
same way that you add menu items to a menu. This is because SubMenu is also derived
from a Menu object. However, you cannot add additional submenus to a submenu.

Listing 7–14. Adding Submenus

private void addSubMenu(Menu menu)
{
 //Secondary items are shown just like everything else
 int base=Menu.FIRST + 100;
 SubMenu sm = menu.addSubMenu(base,base+1,Menu.NONE,"submenu");
 sm.add(base,base+2,base+2,"sub item1");
 sm.add(base,base+3,base+3, "sub item2");
 sm.add(base,base+4,base+4, "sub item3");

 //submenu item icons are not supported
 item1.setIcon(R.drawable.icon48x48_2);

 //the following is ok however
 sm.setIcon(R.drawable.icon48x48_1);

 //This will result in runtime exception
 //sm.addSubMenu("try this");
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 231

NOTE: SubMenu, as a subclass of the Menu object, continues to carry the addSubMenu method.
The compiler won’t complain if you add a submenu to another submenu, but you’ll get a runtime

exception if you try to do it.

The Android SDK documentation also suggests that submenus do not support icon
menu items. When you add an icon to a menu item and then add that menu item to a
submenu, the menu item will ignore that icon, even if you don’t see a compile-time or
runtime error. However, the submenu itself can have an icon.

Provisioning for System Menus
Most Windows applications come with menus such as File, Edit, View, Open, Close, and
Exit. These menus are called system menus. The Android SDK suggests that the system
could insert a similar set of menus when an options menu is created. However, current
releases of the Android SDK do not populate any of these menus as part of the menu-
creation process. It is conceivable that these system menus might be implemented in a
subsequent release. The documentation suggests that programmers make provisions in
their code so that they can accommodate these system menus when they become
available. You do this by calling the onCreateOptionsMenu method of the parent, which
allows the system to add system menus to a group identified by the constant
CATEGORY_SYSTEM.

Working with Context Menus
Users of desktop programs are no doubt familiar with context menus. In Windows
applications, for example, you can access a context menu by right-clicking a UI element.
Android supports the same idea of context menus through an action called a long click.
A long click is a mouse click held down slightly longer than usual on any Android view.

On handheld devices such as cell phones, mouse clicks are implemented in a number of
ways, depending on the navigation mechanism. If your phone has a wheel to move the
cursor, a press of the wheel would serve as the mouse click. Or if the device has a touch
pad, a tap or a press would be equivalent to a mouse click. Or you might have a set of
arrow buttons for movement and a selection button in the middle; clicking that button
would be equivalent to clicking the mouse. Regardless of how a mouse click is
implemented on your device, if you hold the mouse click a bit longer you will realize the
long click.

A context menu differs structurally from the standard options menu that we’ve been
discussing (see Figure 7–3). Context menus have some nuances that options menus
don’t have.

Figure 7–3 shows that a context menu is represented as a ContextMenu class in the
Android menu architecture. Just like a Menu, a ContextMenu can contain a number of
menu items. You will use the same set of Menu methods to add menu items to the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 232

context menu. The biggest difference between a Menu and a ContextMenu boils down to
the ownership of the menu in question. An activity owns a regular options menu,
whereas a view owns a context menu. This is to be expected, because the long clicks
that activate context menus apply to the view being clicked. So an activity can have only
one options menu but many context menus. Because an activity can contain multiple
views, and each view can have its own context menu, an activity can have as many
context menus as there are views.

Figure 7–3. Activities, views, and context menus

Although a context menu is owned by a view, the method to populate context menus
resides in the Activity class. This method is called activity.onCreateContextMenu(),
and its role resembles that of the activity.onCreateOptionsMenu() method. This
callback method also carries with it the view for which the context menu items are to be
populated.

There is one more notable wrinkle to the context menu. Whereas the
onCreateOptionsMenu() method is automatically called for every activity, this is not the
case with onCreateContextMenu(). A view in an activity does not have to own a context
menu. You can have three views in your activity, for example, but perhaps you want to
enable context menus for only one view and not the others. If you want a particular view
to own a context menu, you must register that view with its activity specifically for the
purpose of owning a context menu. You do this through the
activity.registerForContextMenu(view) method, which we’ll discuss in the section
“Registering a View for a Context Menu.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 233

Now note the ContextMenuInfo class shown in Figure 7–3. An object of this type is
passed to the onCreateContextMenu method. This is one way for the view to pass
additional information to this method. For a view to do this, it needs to override the
getContextViewInfo() method and return a derived class of ContextMenuInfo with
additional methods to represent the additional information. You might want to look at
the source code for android.view.View to fully understand this interaction.

NOTE: Per the Android SDK documentation, context menus do not support shortcuts, icons, or

submenus.

Now that you know the general structure of the context menus, let’s look at some
sample code that demonstrates each of the steps to implement a context menu:

1. Register a view for a context menu in an activity’s onCreate() method.

2. Populate the context menu using onCreateContextMenu(). You must complete

step 1 before this callback method is invoked by Android.

3. Respond to context menu clicks.

Registering a View for a Context Menu
The first step in implementing a context menu is to register a view for the context menu
in an activity’s onCreate() method. If you were to use the menu test harness introduced
in this chapter, you could register the TextView for a context menu in that test harness
by using the code in Listing 7–15. You would first find the TextView and then call
registerForContextMenu on the activity using the TextView as an argument. This will set
up the TextView for context menus.

Listing 7–15. Registering a TextView for a Context Menu

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 registerForContextMenu(tv);
 }

Populating a Context Menu
Once a view like the TextView in this example is registered for context menus, Android
will call the onCreateContextMenu() method with this view as the argument. This is
where you can populate the context menu items for that context menu. The
onCreateContextMenu() callback method provides three arguments to work with.

The first argument is a preconstructed ContextMenu object, the second is the view (such
as the TextView) that generated the callback, and the third is the ContextMenuInfo class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 234

that we covered briefly while discussing Figure 7–3. For a lot of simple cases, you can
just ignore the ContextMenuInfo object. However, some views might pass extra
information through this object. In those cases, you will need to cast the
ContextMenuInfo class to a subclass and then use the additional methods to retrieve the
additional information.

Some examples of classes derived from ContextMenuInfo include
AdapterContextMenuInfo and ExpandableContextMenuInfo. Views that are tied to
database cursors in Android use the AdapterContextMenuInfo class to pass the row ID
within that view for which the context menu is being displayed. In a sense, you can use
this class to further clarify the object underneath the mouse click, even within a given
view.

Listing 7–16 demonstrates the onCreateContextMenu() method.

Listing 7–16. The onCreateContextMenu() Method

@Override
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo)
{
 menu.setHeaderTitle("Sample Context Menu");
 menu.add(200, 200, 200, "item1");
}

Responding to Context Menu Items
The third step in our implementation of a context menu is responding to context menu
clicks. The mechanism of responding to context menus is similar to the mechanism of
responding to options menus. Android provides a callback method similar to
onOptionsItemSelected() called onContextItemSelected(). This method, like its
counterpart, is also available on the Activity class. Listing 7–17 demonstrates
onContextItemSelected().

Listing 7–17. Responding to Context Menus

@Override
 public boolean onContextItemSelected(MenuItem item)
{
 if (item.getitemId() = some-menu-item-id)
 {
 //handle this menu item
 return true;
 }
… other exception processing
}

Working with Alternative Menus
So far, you have learned to create and work with menus, submenus, and context menus.
Android introduces a new concept called alternative menus, which allow alternative
menu items to be part of menus, submenus, and context menus. Alternative menus

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 235

allow multiple applications on Android to use one another. These alternative menus are
part of the Android interapplication communication or usage framework.

Specifically, alternative menus allow one application to include menus from another
application. When the alternative menus are chosen, the target application or activity will
be launched with a URL to the data needed by that activity. The invoked activity will then
use the data URL from the intent that is passed. To understand alternative menus well,
you must first understand content providers, content URIs, content MIME types, and
intents (see Chapters 4 and 5).

The general idea here is this: imagine you are writing a screen to display some data.
Most likely, this screen will be an activity. On this activity, you will have an options menu
that allows you to manipulate or work with the data in a number of ways. Also assume
for a moment that you are working with a document or a note that is identified by a URI
and a corresponding MIME type. What you want to do as a programmer is anticipate
that the device will eventually contain more programs that will know how to work with
this data or display this data. You want to give this new set of programs an opportunity
to display their menu items as part of the menu that you are constructing for this activity.

To attach alternative menu items to a menu, follow these steps while setting up the
menu in the onCreateOptionsMenu method:

1. Create an intent whose data URI is set to the data URI that you are showing at the

moment.

2. Set the category of the intent as CATEGORY_ALTERNATIVE.

3. Search for activities that allow operations on data supported by this type of URI.

4. Add intents that can invoke those activities as menu items to the menu.

These steps tell us a lot about the nature of Android applications, so we’ll examine each
one. As we know now, attaching the alternative menu items to the menu happens in the
onCreateOptionsMenu method:

@Override public boolean onCreateOptionsMenu(Menu menu)
{
}

Let’s now figure out what code makes up this function. We first need to know the URI
for the data we might be working on in this activity. You can get the URI like this:

this.getIntent().getData()

This works because the Activity class has a method called getIntent() that returns
the data URI for which this activity is invoked. This invoked activity might be the main
activity invoked by the main menu; in that case, it might not have an intent and the
getIntent()method will return null. In your code, you will have to guard against this
situation.

Our goal now is to find out the other programs that know how to work with this kind of
data. We do this search using an intent as an argument. Here’s the code to construct
that intent:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 236

 Intent criteriaIntent = new Intent(null, getIntent().getData());
 intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Once we construct the intent, we will also add a category of actions that we are
interested in. Specifically, we are interested only in activities that can be invoked as part
of an alternative menu. We are ready now to tell the Menu object to search for matching
activities and add them as menu options (see Listing 7–18).

Listing 7–18. Populating a Menu with Alternative Menu Items

 // Search for, and populate the menu with matching Activities.
 menu.addIntentOptions(
 Menu.CATEGORY_ALTERNATIVE, // Group
 Menu.CATEGORY_ALTERNATIVE, // Any unique IDs we might care to add.
 Menu.CATEGORY_ALTERNATIVE, // order
 this.getComponentName(), // Name of the activity class displaying
 // the menu--here, it's this class.
 //variable “this” points to activity
 null, // No specifics.
 criteriaIntent, // Previously created intent that
 // describes our requirements.
 0, // No flags.
 null); // returned menu items

Before going through this code line by line, we’ll explain what we mean by the term
“matching activities.” A matching activity is an activity that’s capable of handling a URI
that it has been given. Activities typically register this information in their manifest files
using URIs, actions, and categories. Android provides a mechanism that lets you use an
Intent object to look for the matching activities given these attributes.

Now, let’s look closely at Listing 7–18. The method addIntentOptions on the Menu class
is responsible for looking up the activities that match an intent’s URI and category
attributes. Then, the method adds these activities to the menu under the right group with
the appropriate menu item and sort order IDs. The first three arguments deal with this
aspect of the method’s responsibility. In Listing 7–18, we start off with the
Menu.CATEGORY_ALTERNATIVE as the group under which the new menu items will be
added. We also use this same constant as the starting point for the menu item and order
IDs.

The next argument points to the fully qualified component name of the activity that this
menu is part of. The code uses a method from the Activity class called
getComponentName(). A component name is simply the name of the package and the
name of the class, and this component name is needed because when a new menu item
is added, that menu item will need to invoke the target activity. To do that, the system
needs the source activity that started the target activity. The next argument is an array of
intents that you should use as a filter on the returned intents. We have used "null" in
the example.

The next argument points to criteriaIntent, which we just constructed. This is the
search criteria we want to use. The argument after that is a flag such as
Menu.FLAG_APPEND_TO_GROUP to indicate whether to append to the set of existing menu
items in this group or replace them. The default value is 0, which indicates that the menu
items in the menu group should be replaced.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 237

The last argument in Listing 7–18 is an array of menu items that are added. You could
use these added menu item references if you want to manipulate them in some manner
after adding them.

All of this is well and good. But a few questions remain unanswered. For example, what
will be the names of the added menu items? The Android documentation is silent about
this, so we snooped around the source code to see what this function is actually doing
behind the scenes (refer to Chapter 1 to see how to get to Android’s source code).

As it turns out, the Menu class is only an interface, so we can’t see any implementation
source code for it. The class that implements the Menu interface is called MenuBuilder.
Listing 7–19 shows the source code of a relevant method, addIntentOptions, from the
MenuBuilder class (we’re providing the code for your reference; we won’t explain it line
by line).

Listing 7–19. MenuBuilder.addIntentOptions Method

 public int addIntentOptions(int group, int id, int categoryOrder,
 ComponentName caller,
 Intent[] specifics,
 Intent intent, int flags,
 MenuItem[] outSpecificItems)
 {
 PackageManager pm = mContext.getPackageManager();
 final List<ResolveInfo> lri =
 pm.queryIntentActivityOptions(caller, specifics, intent, 0);
 final int N = lri != null ? lri.size() : 0;

 if ((flags & FLAG_APPEND_TO_GROUP) == 0) {
 removeGroup(group);
 }

 for (int i=0; i<N; i++) {
 final ResolveInfo ri = lri.get(i);
 Intent rintent = new Intent(
 ri.specificIndex < 0 ? intent : specifics[ri.specificIndex]);
 rintent.setComponent(new ComponentName(
 ri.activityInfo.applicationInfo.packageName,
 ri.activityInfo.name));
 final MenuItem item = add(group, id, categoryOrder,
 ri.loadLabel(pm));
 item.setIntent(rintent);
 if (outSpecificItems != null && ri.specificIndex >= 0) {
 outSpecificItems[ri.specificIndex] = item;
 }
 }
 return N;
 }

Note the line in Listing 7–19 highlighted in bold; this portion of the code constructs a
menu item. The code delegates the work of figuring out a menu title to the ResolveInfo
class. The source code of the ResolveInfo class shows us that the intent filter that
declared this intent should have a title associated with it. Here is an example:

<intent-filter android:label="Menu Title ">
 …….

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 238

 <category android:name="android.intent.category.ALTERNATE" />
 <data android:mimeType="some type data" />
</intent-filter>

The label value of the intent filter ends up serving as the menu name. You can look at
the Android NotePad example to see this behavior.

Working with Menus in Response to Changing Data
So far, we’ve talked about static menus—you set them up once, and they don’t change
dynamically according to what’s onscreen. If you want to create dynamic menus, use
the onPrepareOptionsMenu method that Android provides. This method resembles
onCreateOptionsMenu except that it gets called every time a menu is invoked. You
should use onPrepareOptionsMenu, for example, if you want to disable some menus or
menu groups based on the data you are displaying. You might want to keep this in mind
as you design your menu functionality.

We need to cover one more important aspect of menus before moving on to dialogs.
Android supports the creation of menus using XML files. The next high-level topic is
dedicated to exploring this XML menu support in Android.

Loading Menus Through XML Files
Up until this point, we’ve created all our menus programmatically. This is not the most
convenient way to create menus, because for every menu, you have to provide several
IDs and define constants for each of those IDs. You’ll no doubt find this tedious.

Instead, you can define menus through XML files, which is possible in Android because
menus are also resources. The XML approach to menu creation offers several
advantages, such as the ability to name menus, order them automatically, and give them
IDs. You can also get localization support for the menu text.

Follow these steps to work with XML-based menus:

1. Define an XML file with menu tags.

2. Place the file in the /res/menu subdirectory. The name of the file is arbitrary, and

you can have as many files as you want. Android automatically generates a

resource ID for this menu file.

3. Use the resource ID for the menu file to load the XML file into the menu.

4. Respond to the menu items using the resource IDs generated for each menu item.

We will talk about each of these steps and provide corresponding code snippets in the
following sections.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 239

Structure of an XML Menu Resource File
First, we’ll look at an XML file with menu definitions (see Listing 7–20). All menu files
start with the same high-level menu tag followed by a series of group tags. Each of these
group tags corresponds to the menu item group we talked about at the beginning of the
chapter. You can specify an ID for the group using the @+id approach. Each menu group
will have a series of menu items with their menu item IDs tied to symbolic names. You
can refer to the Android SDK documentation for all the possible arguments for these
XML tags.

Listing 7–20. An XML File with Menu Definitions

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">

 <item android:id="@+id/menu_testPick"
 android:orderInCategory="5"
 android:title="Test Pick" />
 <item android:id="@+id/menu_testGetContent"
 android:orderInCategory="5"
 android:title="Test Get Content" />
 <item android:id="@+id/menu_clear"
 android:orderInCategory="10"
 android:title="clear" />
 <item android:id="@+id/menu_dial"
 android:orderInCategory="7"
 android:title="dial" />
 <item android:id="@+id/menu_test"
 android:orderInCategory="4"
 android:title="@+string/test" />
 <item android:id="@+id/menu_show_browser"
 android:orderInCategory="5"
 android:title="show browser" />
 </group>
</menu>

The menu XML file in Listing 7–20 has one group. Based on the resource ID definition
@+id/menuGroup_main, this group will be automatically assigned a resource ID called
menuGroup_main in the R.java resource ID file. Similarly, all the child menu items are
allocated menu item IDs based on their symbolic resource ID definitions in this XML file.

Inflating XML Menu Resource Files
Let’s assume that the name of this XML file is my_menu.xml. You will need to place this
file in the /res/menu subdirectory. Placing the file in /res/menu automatically generates a
resource ID called R.menu.my_menu.

Now, let’s look at how you can use this menu resource ID to populate the options menu.
Android provides a class called android.view.MenuInflater to populate Menu objects
from XML files. We will use an instance of this MenuInflater to make use of the
R.menu.my_menu resource ID to populate a menu object:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 240

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.my_menu, menu);

 //It is important to return true to see the menu
 return true;

}

In this code, we first get the MenuInflater from the Activity class and then tell it to
inflate the menu XML file into the menu directly.

Responding to XML-Based Menu Items
You haven’t yet seen the specific advantage of this approach—it becomes apparent
when you start responding to the menu items. You respond to XML menu items the way
you respond to menus created programmatically, but with a small difference. As before,
you handle the menu items in the onOptionsItemSelected callback method. This time,
you will have some help from Android’s resources (see Chapter 3 for details on
resources). As we mentioned in the section “Structure of an XML Menu Resource File,”
Android not only generates a resource ID for the XML file but also generates the
necessary menu item IDs to help you distinguish between the menu items. This is an
advantage in terms of responding to the menu items because you don’t have to
explicitly create and manage their menu item IDs.

To further elaborate on this, in the case of XML menus, you don’t have to define
constants for these IDs and you don’t have to worry about their uniqueness because
resource ID generation takes care of that. The following code illustrates this:

private void onOptionsItemSelected (MenuItem item)
{
 this.appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear)
 {
 this.emptyText();
 }
 else if (item.getItemId() == R.id.menu_dial)
 {
 //do something
 }
 else if (item.getItemId() == R.id.menu_testPick)
 {
 //do something
 }
 else if (item.getItemId() == R.id.menu_testGetContent)
 {
 //do something
 }
 else if (item.getItemId() == R.id.menu_show_browser)
 {
 //do something
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 241

 ……etc
 }

Notice how the menu item names from the XML menu resource file have automatically
generated menu item IDs in the R.id space.

A Brief Introduction to Additional XML Menu Tags
As you construct your XML files, you will need to know the various XML tags that are
possible. You can quickly get this information by examining the API demonstrations that
come with the Android SDK. These Android API demonstrations include a series of
menus that help you explore all aspects of Android programming. If you look at the
/res/menu subdirectory, you will find a number of XML menu samples. We’ll briefly cover
some key tags here.

Group Category Tag
In an XML file, you can specify the category of a group by using the menuCategory tag:

<group android:id="@+id/some_group_id "
 android:menuCategory="secondary">

Checkable Behavior Tags
You can use the checkableBehavior tag to control checkable behavior at a group level:

<group android:id="@+id/noncheckable_group"
 android:checkableBehavior="none">

You can use the checked tag to control checkable behavior at an item level:

<item android:id=".."
 android:title="…"
 android:checked="true" />

Tags to Simulate a Submenu
A submenu is represented as a menu element under a menu item:

 <item android:title="All without group">
 <menu>
 <item…>
 </menu>
 </item>

Menu Icon Tag
You can use the icon tag to associate an image with a menu item:

 <item android:id=".. "
 android:icon="@drawable/some-file" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7: Working with Menus 242

Menu Enabling/Disabling Tag
You can enable and disable a menu item using the enabled tag:

<item android:id=".. "
 android:enabled="true"
 android:icon="@drawable/some-file" />

Menu Item Shortcuts
You can set a shortcut for a menu item using the alphabeticShortcut tag:

 <item android:id="… "
 android:alphabeticShortcut="a"
 …
 </item>

Menu Visibility
You can control a menu item’s visibility using the visible flag:

<item android:id="… "
 android:visible="true"
 …
</item>

Resource
As you learn and work with Android Menus, you may want to keep the following URL
handy. This URL points to the downloadable project for this chapter.

 http://www.androidbook.com/projects: You can use this URL to
download the test project dedicated for this chapter. The name of the ZIP
file is ProAndroid3_ch07_TestMenus.zip.

Summary
This chapter has explained how to work with various types of Android menus: regular
menus, context menus, alternative menus, and XML-based menus. A number of
subsequent chapters such as 8 (Dialogs), 16 (2D Animation), and 20 (OpenGL) use XML
menus to test the functionality presented in those chapters. Finally the 3.0 specific
action bar and menu interaction is covered in Chapter 30.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

243

243

 Chapter

Working with Dialogs
Android SDK offers extensive support for dialogs. Dialogs that are explicitly supported in
Android include the alert, pick list, single choice, multiple choice, progress, time picker,
and date picker dialogs. (This list could vary depending on the Android release.) Android
also supports custom dialogs for other needs. The primary focus of this chapter is not to
cover each of these dialogs but to cover the underlying architecture of Android dialogs.
Android 3.0 has added dialogs based on fragments. This aspect of dialogs is covered in
the fragments Chapter 29. Fragment based dialogs are expected to gradually replace
the traditional dialogs that are covered here. However these dialogs are not yet
deprecated and still the norm on phones.

Dialogs in Android are asynchronous, which provides flexibility. However, if you are
accustomed to a programming framework where dialogs are primarily synchronous
(such as Microsoft Windows, or JavaScript dialogs in web pages), you might find
asynchronous dialogs a bit unintuitive.

After giving you the basics of creating and using Android dialogs, we will provide an
intuitive abstraction that will make working with asynchronous dialogs easier. We will
then use this abstraction to implement a few sample dialogs. We also provide a link to a
downloadable project at the end of this chapter in the References section. You can use
this download to experiment with the code and the concepts presented in this chapter.

Using Dialogs in Android
If you are coming from an environment where dialogs are synchronous (especially modal
dialogs), you need to think differently with Android dialogs. Dialogs in Android are
asynchronous. Not only that but they are also managed; that is, they are reused
between multiple invocations, perhaps to help improve performance.

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 244

Designing an Alert Dialog
We will begin the discussion with alert dialogs. Alert dialogs commonly contain simple
messages about validating forms or sometimes (rightly or wrongly) for debugging.
Consider the following debug example that you often find in HTML pages:

if (validate(field1) == false)
{
 //indicate that formatting is not valid through an alert dialog
 showAlert("What you have entered in field1 doesn't match required format");
 //set focus to the field
 //..and continue
}

You would likely program this dialog in JavaScript through the alert JavaScript
function, which displays a simple synchronous dialog box containing a message and an
OK button. After the user clicks the OK button, the flow of the program continues. This
dialog is considered modal as well as synchronous because the next line of code will not
be executed until the alert function returns.

This type of alert dialog proves useful for debugging. But Android offers no such direct
function or dialog. Instead, it supports an alert-dialog builder, a general-purpose facility
for constructing and working with alert dialogs. So you can build an alert dialog yourself
using the android.app.AlertDialog.Builder class. You can use this builder class to
construct dialogs that allow users to perform the following tasks:

 Read a message and respond with Yes or No.

 Pick an item from a list.

 Pick multiple items from a list.

 View the progress of an application.

 Choose an option from a set of options.

 Respond to a prompt before continuing the program.

We will show you how to build one of these dialogs and invoke that dialog from a menu
item. This approach, which applies to any of these dialogs, consists of these steps:

1. Construct a Builder object.

2. Set parameters for the display such as the number of buttons, the list of items,

and so on.

3. Set the callback methods for the buttons.

4. Tell the Builder to build the dialog. The type of dialog that’s built depends on

what you’ve set on the Builder object.

5. Use dialog.show() to show the dialog.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 245

Listing 8–1 shows the code that implements these steps.

Listing 8–1. Building and Displaying an Alert Dialog

public class Alerts
{
 public static void showAlert(String message, Context ctx)
 {
 //Create a builder
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("Alert Window");

 //add buttons and listener
 EmptyOnClickListener el = new EmptyOnClickListener();
 builder.setPositiveButton("Ok", el);

 //Create the dialog
 AlertDialog ad = builder.create();

 //show
 ad.show();
 }
}

public class EmptyOnClickListener
implements android.content.DialogInterface.OnClickListener {
 public void onClick(DialogInterface v, int buttonId)
 {
 }
}

You can invoke the code in Listing 8–1 by creating a menu item in a suitable test activity
(such as the downloadable sample project) and responding to it using this code:

if (item.getItemId() == R.id.menu_simple_alert)
{
 Alerts.showAlert("Simple Sample Alert", this);
}

The result could (depending on your test activity) look like the screen shown in Figure 8–1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 246

Figure 8–1. A simple alert dialog

The code for this simple alert dialog is straightforward (as shown in Listing 8–1 and the
code snippet that appears after it). Even the listener part is easy to understand.
Essentially, we do nothing when the button is clicked.

It is worth noting, however, that the listener is passed a reference to a DialogInterface.
This reference points to the actual dialog on which this callback is invoked. This
interface supports a number of constants used by the dialog classes, a number of
callback interfaces and also two key methods. These methods are

cancel()
dismiss()

Usually, you don't need to call these methods as the button clicks automatically invoke
them as necessary. If you want to react to these method calls, you can register their
corresponding callbacks. Refer to the SDK documentation on DialogInterface for a
complete list of callback methods available.

In Listing 8–1, we just created an empty listener to register against the OK button. The
only odd part is that you don’t use a new to create the dialog; instead, you set
parameters and ask the alert-dialog builder to create it.

Designing a Prompt Dialog
Now that you’ve successfully created a simple alert dialog, let’s tackle an alert dialog
that’s more: the prompt dialog. Another JavaScript staple, the prompt dialog shows the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 247

user a hint or question and asks for input via an edit box. The prompt dialog returns that
string to the program so it can continue. This will be a good example to study because it
features a number of facilities provided by the Builder class and allows us to examine
the synchronous, asynchronous, modal, and nonmodal nature of Android dialogs.

Here are the steps you need to take in order to create a prompt dialog:

1. Come up with a layout view for your prompt dialog.

2. Load the layout into a View class.

3. Construct a Builder object.

4. Set the view in the Builder object.

5. Set the buttons along with their callbacks to capture the entered text.

6. Create the dialog using the alert-dialog builder.

7. Show the dialog

Now, we’ll show you the code for each step.

XML Layout File for the Prompt Dialog
When we show the prompt dialog, we need to show a prompt TextView followed by an
edit box where a user can type a reply. Listing 8–2 contains the XML layout file for the
prompt dialog. If you call this file prompt_layout.xml, you need to place it in the
/res/layout subdirectory to produce a resource ID called R.layout.prompt_layout.

Listing 8–2. The prompt_layout.xml File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/promptmessage"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_marginLeft="20dip"
 android:layout_marginRight="20dip"
 android:text="Your text goes here"
 android:gravity="left"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText
 android:id="@+id/editText_prompt"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:layout_marginLeft="20dip"
 android:layout_marginRight="20dip"
 android:scrollHorizontally="true"
 android:autoText="false"
 android:capitalize="none"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 248

 android:gravity="fill_horizontal"
 android:textAppearance="?android:attr/textAppearanceMedium" />

</LinearLayout>

Setting Up an Alert-Dialog Builder with a User View
Let’s combine steps 2 through 4 from our instructions to create a prompt dialog: loading
the XML view and setting it up in the alert-dialog builder. Android provides a class called
android.view.LayoutInflater to create a View object from an XML layout definition file.
We will use an instance of the LayoutInflater to populate the view for our dialog based
on the XML layout file (see Listing 8–3).

Listing 8–3. Inflating a Layout into a Dialog

LayoutInflater li = LayoutInflater.from(activity);
//the ‘activity’ variable is a reference to your activity or context
View view = li.inflate(R.layout.prompt_layout, null);

//get a builder and set the view
AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
builder.setTitle("Prompt");
builder.setView(view);

In Listing 8–3, we get the LayoutInflater using the static method
LayoutInflater.from(ctx) and then use the LayoutInflater object to inflate the XML to
create a View object. We then configure an alert-dialog builder with a title and the view
that we just created.

Setting Up Buttons and Listeners
We now move on to step 5, setting up buttons. You need to provide OK and Cancel
buttons, so the user can respond to the prompt. If the user clicks Cancel, the program
doesn’t need to read any text for the prompt. If the user clicks OK, the program gets the
value from the text and passes it back to the activity.

To set up these buttons, you need a listener to respond to these callbacks. We will give
you the code for the listener in the “Prompt Dialog Listener” section, but first examine
the button setup in Listing 8–4, which continues on from Listing 8–3.

Listing 8–4. Setting Up OK and Cancel Buttons

 //add buttons and listener
 PromptListener pl = new PromptListener(view);
 builder.setPositiveButton("OK", pl);
 builder.setNegativeButton("Cancel", pl);

The code in Listing 8–4 assumes that the name of the listener class is PromptListener.
We have registered this listener against each button. The PromptListener class takes the
layout view we constructed in Listing 8–3. When you examine the class in a little while,
you will notice that the view variable is used to identify the text controls and retrieve
what the user has entered.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 249

Creating and Showing the Prompt Dialog
Finally, we finish up with steps 6 and 7, creating and showing the prompt dialog. That’s
easy to do once you have the alert-dialog builder (see Listing 8–5).

Listing 8–5. Telling the Alert-Dialog Builder to Create the Dialog

 //get the dialog
 AlertDialog ad = builder.create();
 ad.show();

 //return the prompt
 return pl.getPromptReply();

The last line uses the listener to return the reply for the prompt. Now, as promised, we’ll
show you the code for the PromptListener class.

Prompt Dialog Listener
The prompt dialog interacts with an activity through a listener callback class called
PromptListener. The class has one callback method called onClick, and the button ID
that is passed to onClick identifies what type of button is clicked. The rest of the code is
easy to follow (see Listing 8–6). When the user enters text and clicks the OK button, the
value of the text is transferred to the promptReply field. Otherwise, the value stays null.
Notice how we have used the edit text control ID (editText_prompt) from the prompt
dialog layout identified in Listing 8–2

Listing 8–6. PromptListener, the Listener Callback Class

public class PromptListener
implements android.content.DialogInterface.OnClickListener
{
 // local variable to return the prompt reply value
 private String promptReply = null;

 //Keep a variable for the view to retrieve the prompt value
 View promptDialogView = null;

 //Take in the view in the constructor
 public PromptListener(View inDialogView) {
 promptDialogView = inDialogView;
 }

 //Call back method from dialogs
 public void onClick(DialogInterface v, int buttonId) {
 if (buttonId == DialogInterface.BUTTON_POSITIVE) {
 //ok button
 promptReply = getPromptText();
 }
 else {
 //cancel button
 promptReply = null;
 }
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 250

 //Just an access method for what is in the edit box
 private String getPromptText() {
 EditText et = (EditText)
 promptDialogView.findViewById(R.id.editText_prompt);
 return et.getText().toString();
 }
 public String getPromptReply() { return promptReply; }
}

Putting It All Together
Now that we have explained each piece of code that goes into a prompt dialog, we’ll
present it in one place so you can use it to test the dialog (see Listing 8–7). We have
excluded the PromptListener class, because it appears separately in Listing 8–6.

Listing 8–7. Code to Test the Prompt Dialog

public class Alerts
{
 public static String prompt(String message, Context ctx)
 {
 //load some kind of a view
 LayoutInflater li = LayoutInflater.from(ctx);
 View view = li.inflate(R.layout.prompt_layout, null);

 //get a builder and set the view
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("Prompt");
 builder.setView(view);

 //add buttons and listener
 PromptListener pl = new PromptListener(view);
 builder.setPositiveButton("OK", pl);
 builder.setNegativeButton("Cancel", pl);

 //get the dialog
 AlertDialog ad = builder.create();

 //show
 ad.show();

 return pl.getPromptReply();
 }
}

You can invoke the code in Listing 8–7 by creating a menu item in a suitable test
harness and responding to that menu item using this code:

if (item.getItemId() == R.id.your_menu_item_id)
{
 String reply = Alerts.showPrompt("Your text goes here", this);
}

The result would look like the screen shown in Figure 8–2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 251

Figure 8–2. A simple prompt dialog

After writing all this code, however, you will notice that the prompt dialog always returns
null even if the user enters text into it. As it turns out, in the following code the show()
method will invoke the dialog asynchronously:

ad.show() //dialog.show
return pl.getPromptReply(); // listener.getpromptReply()

This means the getPromptReply() method (see Listing 8–6) gets called for the prompt
value before the user has time to enter text, and click the OK button. This fallacy in our
code takes us to the heart of the nature of Android dialogs.

Nature of Dialogs in Android
As we’ve mentioned, displaying dialogs in Android is an asynchronous process. Once a
dialog is shown, the main thread that invoked the dialog returns and continues to
process the rest of the code. This doesn’t mean that the dialog isn’t modal. The dialog is
still modal. The mouse clicks apply only to the dialog, while the parent activity goes
back to its message loop.

On some windowing systems, modal dialogs behave a bit differently. The caller is
blocked until the user provides a response through the dialog. (This block can be a
virtual block instead of a real block.) On the Windows operating system, the message-
dispatching thread starts dispatching to the dialog and suspends dispatching to the
parent window. When the dialog closes, the thread returns to the parent window. This
makes the call synchronous.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 252

Such an approach might not work for a handheld device, where unexpected events on
the device are more frequent, and the main thread needs to respond to those events. To
accomplish this level of responsiveness, Android returns the main thread to its message
loop right away.

The implication of this model is that you cannot have a simple dialog where you ask for a
response and wait for it before moving on. In fact, your programming model for dialogs
must differ and incorporate callbacks.

Rearchitecting the Prompt Dialog
Let’s revisit the problematic code in the previous prompt dialog implementation:

if (item.getItemId() == R.id.your_menu_id)
{
 String reply = Alerts.showPrompt("Your text goes here", this);
}

As we have proven, the value of the string variable reply will be null, because the
prompt dialog initiated by Alerts.showPrompt() is incapable of returning a value on the
same thread. The only way you can accomplish this is to have the activity implement the
callback method directly and not rely on the PromptListener class. You do this in the
Activity class by implementing the OnClickListener:

public class SampleActivity extends Activity
implements android.content.DialogInterface.OnClickListener
{
…… other code

if (item.getItemId() == R.id.your_menu_id)
{
 Alerts.showPrompt("Your text goes here", this);
}
…..
public void onClick(DialogInterface v, int buttonId)
{
 //figure out a way here to read the reply string from the dialog
}

As you can see from this onClick callback method, you can correctly read the variables
from the instantiated dialog because the user will have closed the dialog by the time this
method is called.

It is perfectly legitimate to use dialogs this way. However, Android provides a
supplemental mechanism to optimize performance by introducing managed dialogs—
dialogs that are reused between multiple invocations. You’ll still need to use callbacks
when you work with managed dialogs, though. In fact, everything you’ve learned in
implementing the prompt dialog will help you work with managed dialogs and
understand the motivation behind them. These managed dialogs also allow Android to
manage the state of a dialog between multiple invocations as long as the activity's view
state is intact.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 253

Working with Managed Dialogs
Android follows a managed-dialog protocol to promote the reuse of previously created
dialog instances rather than creating new dialogs in response to actions. In this section,
we will talk about the details of the managed-dialog protocol and show you how to
implement the alert dialog as a managed dialog. However, in our view, the managed-
dialog protocol makes using dialogs tedious. We will subsequently develop a small
framework to abstract out most of this protocol to make it easier to work with managed
dialogs.

Understanding the Managed-Dialog Protocol
The primary goal of the managed-dialog protocol is to reuse a dialog if it’s invoked a
second time, or subsequently. It is similar to using object pools in Java. The managed-
dialog protocol consists of these steps:

1. Assign a unique ID to each dialog you want to create and use. Suppose one of

the dialogs is tagged as 1.

2. Tell Android to show a dialog called 1.

3. Android checks whether the current activity already has a dialog tagged as 1. If

the dialog exists, Android shows it without re-creating it. Android calls the

onPrepareDialog() function before showing the dialog for cleanup purposes.

4. If the dialog doesn’t exist, Android calls the onCreateDialog() method by passing

the dialog ID (1, in this case).

5. You, as the programmer, need to override the onCreateDialog() method. You

must create the dialog using the alert-dialog builder and return it. But before

creating the dialog, your code needs to determine which dialog ID needs to be

created. You’ll need a switch statement to figure this out.

6. Android shows the dialog.

7. The dialog invokes callbacks dialog buttons are clicked.

Let’s use this protocol to re-implement our non-managed alert dialog as a managed
alert dialog.

Recasting the Nonmanaged Dialog as a Managed Dialog
We will follow each of the steps laid out to reimplement the alert dialog. Let’s start by
defining a unique ID for this dialog in the context of a given activity:

//unique dialog id
private static final int DIALOG_ALERT_ID = 1;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 254

That is simple enough. We have just created an ID to represent a dialog to orchestrate
the callbacks. This ID will allow us to do the following in response to a menu item:

 someactivity.showDialog(this.DIALOG_ALERT_ID);

The Android SDK method showDialog triggers a call to the onCreateDialog() method of
the activity class. Android is smart enough not to call onCreateDialog() multiple times.
When this method is called, we need to create the dialog and return it to Android.
Android then keeps the created dialog internally for reuse purposes. Here is the sample
code to create the dialog based on a unique ID:

public class SomeActivity extends Activity {
...
 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case DIALOG_ALERT_ID:
 return createAlertDialog();
 }
 return null;
 }

 private Dialog createAlertDialog()
 {
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Alert");
 builder.setMessage("some message");
 EmptyOnClickListener emptyListener = new EmptyOnClickListener();
 builder.setPositiveButton("Ok", emptyListener);
 AlertDialog ad = builder.create();
 return ad;
 }

Notice how onCreateDialog() has to figure out the incoming ID to identify a matching
dialog. createAlertDialog() itself is kept in a separate function and parallels the alert-
dialog creation described in the previous sections. This code also uses the same
EmptyOnClickListener that was used when we worked with the alert dialog.

Because the dialog is created only once, you need a mechanism if you want to change
something in the dialog every time you show it. You do this through the
onPrepareDialog() callback method:

 @Override
 protected void onPrepareDialog(int id, Dialog dialog) {
 switch (id) {
 case DIALOG_ALERT_ID:
 prepareAlertDialog(dialog);
 }
 }

 private void prepareAlertDialog(Dialog d) {
 AlertDialog ad = (AlertDialog)d;
 //change something about this dialog
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 255

With this code in place, showDialog(1) will work. Even if you were to invoke this method
multiple times, your onCreateMethod method would get called only once. You can follow
the same protocol to redo the prompt dialog.

Responding to dialog callbacks is work, but the managed-dialog protocol adds even
more work. After looking at the managed-dialog protocol, we got the idea to abstract
out the protocol and rearrange it in such a way that it accomplishes two goals:

 Moving the dialog identification and creation out of the activity class

 Concentrating the dialog creation and response in a dedicated dialog class

In the next subsection, we will go through the design of this framework and then use it
to re-create both the alert and prompt dialogs.

Simplifying the Managed-Dialog Protocol
As you’ve probably noticed, working with managed alert dialogs can become messy and
can pollute the mainline code. If we abstract out this protocol into a simpler protocol, the
new protocol could look like this:

1. Create an instance of a dialog you want by using new and keeping it as a local
variable. Call this dialog1.

2. Show the dialog using dialog1.show().

3. Implement one method in the activity called dialogFinished().

4. In the dialogFinished() method, read attributes from dialog1 such as
dialog1.getValue1().

Under this scheme, showing a managed alert dialog will look like this:

….class MyActivity ….
{
 //new dialog
 ManagedAlertDialog mad = new ManagedAlertDialog("message", …, ..);

 ….some menu method
 if (item.getItemId() == R.id.your_menu_id)
 {
 //show dialog
 mad.show();
 }
 …..
 //access the mad dialog for internals if you want
 dialogFinsihed()
 {
 ….
 //use values from dialog
 mad.getA();
 mad.getB();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 256

We think this is a far simpler model to work with dialogs. The clear advantages of this
approach are as follows:

 You don’t have to assign or remember arbitrary dialog IDs.

 You don’t have to pollute the mainline activity code with dialog
creation.

 You can use derived dialog objects directly to access values.

How does the principle of this abstraction work? As a first step, we abstract out the
creation of a dialog and the preparation of that dialog into a class that identifies a base
dialog. We call this interface IDialogProtocol. This dialog interface also has a show()
method on it directly. These dialogs are collected and kept in a registry in the base class
for an activity, and they use their IDs as keys. The base activity will demultiplex the
onCreate, onPrepare, and onClick calls based on their IDs and reroute them to the
dialog class. This architecture is illustrated in Figure 8–3.

Figure 8–3. A simple managed-dialog framework

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 257

Listing 8–8 illustrates the utility of this framework. Source code for the key classes
(including GenericPromptDialog and GenericManagedAlertDialog) are presented
subsequently in this chapter. However, we haven’t included driver class in full, just the
highlights in Listing 8–8. You can use the download URL in this chapter’s “References”
section to see this class driving the various dialogs mentioned in this chapter.

Listing 8–8. The Abstraction of the Managed-Dialog Protocol

public class MainActivity extends ManagedDialogsActivity
{
 //dialog 1
 private GenericManagedAlertDialog gmad =
 new GenericManagedAlertDialog(this,1,"InitialValue");

 //dialog 2
 private GenericPromptDialog gmpd =
 new GenericPromptDialog(this,2,"InitialValue");

 //menu items to start the dialogs
 if (item.getItemId() == R.id.your_menu_id1)
 {
 gmad.show();
 }
 else if (item.getItemId() == R.id.your_menu_id2)
 {
 gmpd.show();
 }

 //dealing with call backs
 public void dialogFinished(ManagedActivityDialog dialog, int buttonId)
 {
 if (dialog.getDialogId() == gmpd.getDialogId())
 {
 //Assuming “gmpd” has an access method for the reply string
 String replyString = gmpd.getReplyString();
 }
 }
}

To make use of this framework, you start by extending ManagedDialogsActivity. Then,
you instantiate the dialogs you need, each of which derives from
ManagedActivityDialog. In a menu-item response, you can simply run the show()
method on these dialogs. The dialogs themselves take the necessary parameters up
front in order to be created and shown. Although we are passing a dialog ID, we don’t
need to remember those IDs anymore. You could even abstract out these IDs
completely if you’d like.

Now, we’ll explore each of the classes shown in Figure 8–3. You can also see these
listings in the download for this chapter. If you are meaning to compile this code, we
strongly recommend downloading that project. If you choose not to, the majority of the
code to reconstruct a project is all here; you may have to fill in the gaps.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 258

IDialogProtocol
The IDialogProtocol interface defines what it means to be a managed dialog.
Responsibilities of a managed dialog include creating the dialog and preparing it every
time it is shown. It also makes sense to delegate the show functionality to the dialog
itself. A dialog also must recognize button clicks and call the respective parent of the
dialog closure. The following interface code represents these ideas as a set of functions:

public interface IDialogProtocol
{
 public Dialog create();
 public void prepare(Dialog dialog);
 public int getDialogId();
 public void show();
 public void onClickHook(int buttonId);
}

ManagedActivityDialog
The abstract class ManagedActivityDialog provides the common implementation for all
the dialog classes wanting to implement the IDialogProtocol interface. It leaves the
create and prepare functions to be overridden by the base classes but provides
implementations for the rest of the IDialogProtocol methods. ManagedActivityDialog
also informs the parent activity that the dialog has finished after responding to a button-
click event. It uses the template-hook pattern and allows the derived classes to
specialize the hook method onClickHook. This class is also responsible for redirecting
the show() method to the parent activity, thereby providing a more natural
implementation for show(). You can use the ManagedActivityDialog class as the base
class for all your new dialogs (see Listing 8–9).

Listing 8–9. The ManagedActivityDialog Class

public abstract class ManagedActivityDialog implements IDialogProtocol
 ,android.content.DialogInterface.OnClickListener

{
 private ManagedDialogsActivity mActivity;
 private int mDialogId;
 public ManagedActivityDialog(ManagedDialogsActivity a, int dialogId)
 {
 mActivity = a;
 mDialogId = dialogId;
 }
 public int getDialogId()
 {
 return mDialogId;
 }
 public void show()
 {
 mActivity.showDialog(mDialogId);
 }
 public void onClick(DialogInterface v, int buttonId)
 {
 onClickHook(buttonId);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 259

 this.mActivity.dialogFinished(this, buttonId);
 }
}

DialogRegistry
The DialogRegistry class is responsible for two things. It keeps a mapping between the
dialog IDs and the actual dialog (factory) instances. It also translates the generic
onCreate and onPrepare calls to the specific dialogs using the ID-to-object mapping. The
ManagedDialogsActivity uses the DialogRegistry class as a repository to register new
dialogs (see Listing 8–10).

Listing 8–10. The DialogRegistry Class

public class DialogRegistry
{
 SparseArray<IDialogProtocol> idsToDialogs
 = new SparseArray();

 public void registerDialog(IDialogProtocol dialog)
 {
 idsToDialogs.put(dialog.getDialogId(),dialog);
 }

 public Dialog create(int id)
 {
 IDialogProtocol dp = idsToDialogs.get(id);
 if (dp == null) return null;

 return dp.create();
 }
 public void prepare(Dialog dialog, int id)
 {
 IDialogProtocol dp = idsToDialogs.get(id);
 if (dp == null)
 {
 throw new RuntimeException("Dialog id is not registered:" + id);
 }
 dp.prepare(dialog);
 }
}

ManagedDialogsActivity
The ManagedDialogsActivity class acts as a base class for your activities that support
managed dialogs. It keeps a single instance of DialogRegistry to keep track of the
managed dialogs identified by the IDialogProtocol interface. It allows the derived
activities to register their dialogs through the registerDialogs() function. As shown in
Figure 8–3, it is also responsible for transferring the create and prepare semantics to the
respective dialog instance by locating that dialog instance in the dialog registry. Finally,
it provides the callback method dialogFinished for each dialog in the dialog registry
(see Listing 8–11).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 260

Listing 8–11. The ManagedDialogsActivity Class

public class ManagedDialogsActivity extends Activity
 implements IDialogFinishedCallBack
{
 //A registry for managed dialogs
 private DialogRegistry dr = new DialogRegistry();

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.registerDialogs();
 }

 protected void registerDialogs()
 {
 // does nothing
 // have the derived classes override this method
 // to register their dialogs
 // example:
 // registerDialog(this.DIALOG_ALERT_ID_3, gmad);

 }
 public void registerDialog(IDialogProtocol dialog)
 {
 this.dr.registerDialog(dialog);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 return this.dr.create(id);
 }
 @Override
 protected void onPrepareDialog(int id, Dialog dialog) {
 this.dr.prepare(dialog, id);
 }

 public void dialogFinished(ManagedActivityDialog dialog, int buttonId)
 {
 //nothing to do
 //have derived classes override this
 }
}

IDialogFinishedCallBack
The IDialogFinishedCallBack interface allows the ManagedActivityDialog class to tell
the parent activity that the dialog has finished and that the parent activity can call
methods on the dialog to retrieve parameters. Usually, a ManagedDialogsActivity
implements this interface and acts as a parent activity to the ManagedActivityDialog
(see Listing 8–12).

Listing 8–12. The IDialogFinishedCallBack Interface

public interface IDialogFinishedCallBack
{
 public static int OK_BUTTON = -1;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 261

 public static int CANCEL_BUTTON = -2;
 public void dialogFinished(ManagedActivityDialog dialog, int buttonId);
}

GenericManagedAlertDialog
GenericManagedAlertDialog is the alert-dialog implementation; it extends
ManagedActivityDialog. This class is responsible for creating the actual alert dialog
using the alert-dialog builder. It also carries all the information it needs as local variables.
Because GenericManagedAlertDialog implements a simple alert dialog, it does nothing
in the onClickHook method. The key thing to note is that when you use this approach,
GenericManagedAlertDialog encapsulates all pertinent information in one place (see
Listing 8–13). That keeps the mainline code in the activity squeaky clean.

Listing 8–13. The GenericManagedAlertDialog Class

public class GenericManagedAlertDialog extends ManagedActivityDialog
{
 private String alertMessage = null;
 private Context ctx = null;
 public GenericManagedAlertDialog(ManagedDialogsActivity inActivity,
 int dialogId,
 String initialMessage)
 {
 super(inActivity,dialogId);
 alertMessage = initialMessage;
 ctx = inActivity;
 }
 public Dialog create()
 {
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("Alert");
 builder.setMessage(alertMessage);
 builder.setPositiveButton("Ok", this);
 AlertDialog ad = builder.create();
 return ad;
 }

 public void prepare(Dialog dialog)
 {
 AlertDialog ad = (AlertDialog)dialog;
 ad.setMessage(alertMessage);
 }
 public void setAlertMessage(String inAlertMessage)
 {
 alertMessage = inAlertMessage;
 }
 public void onClickHook(int buttonId)
 {
 //nothing to do
 //no local variables to set
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 262

GenericPromptDialog
The GenericPromptDialog class encapsulates all the needs of a prompt dialog by
extending the ManagedActivityDialog class and providing the necessary create and
prepare methods (see Listing 8–14). You can also see that it saves the reply text in a
local variable so that the parent activity can get to it in the dialogFinished callback
method.

Listing 8–14. The GenericPromptDialog Class

public class GenericPromptDialog extends ManagedActivityDialog
{
 private String mPromptMessage = null;
 private View promptView = null;
 String promptValue = null;

 private Context ctx = null;
 public GenericPromptDialog(ManagedDialogsActivity inActivity,
 int dialogId,
 String promptMessage)
 {
 super(inActivity,dialogId);
 mPromptMessage = promptMessage;
 ctx = inActivity;
 }
 public Dialog create()
 {
 LayoutInflater li = LayoutInflater.from(ctx);
 promptView = li.inflate(R.layout.promptdialog, null);
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("prompt");
 builder.setView(promptView);
 builder.setPositiveButton("OK", this);
 builder.setNegativeButton("Cancel", this);
 AlertDialog ad = builder.create();
 return ad;
 }

 public void prepare(Dialog dialog)
 {
 //nothing for now
 }
 public void onClickHook(int buttonId)
 {
 if (buttonId == DialogInterface.BUTTON1)
 {
 //ok button
 String promptValue = getEnteredText();
 }
 }
 private String getEnteredText()
 {
 EditText et =
 (EditText)
 promptView.findViewById(R.id.editText_prompt);
 String enteredText = et.getText().toString();
 Log.d("xx",enteredText);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 263

 return enteredText;
 }
}

The framework presented here needs to be adjusted somewhat when activities are
recreated when the device configuration changes. The primary change involves
recreating dialog objects using the save instance and restore instance methods. As
these dialogs are going to be superceded by fragment based dialogs (covered in
chapter 29) we haven't provided the necessary changes to persist these dialogs across
device configuration changes.

Working with Toast
We have started off the chapter indicating how “alert” messages are used commonly for
debugging JavaScript on error pages. If you are pressed to use a similar approach for
infrequent debug messages you can use the Toast object in Android.

A Toast is like an alert dialog that has a message and displays for a certain amount of
time and goes away. So it can be said that it is a transient alert message.

Listing 8–15 shows an example of how you can show a message using Toast.

Listing 8–15. Using Toast for Debugging

//Create a function to wrap a message as a toast
//show the toast
public void reportToast(String message)
{
 String s = tag + ":" + message;
 Toast mToast = Toast.makeText(activity, s, Toast.LENGTH_SHORT);
 mToast.show();
 Log.d(tag,message);
}

//You can invoke the function above
//multiple times if needed as below
private void testToast()
{
 reportToast("Message1");
 reportToast("Message2");
 reportToast("Message3");
}

The makeText() method in Listing 8–14 can take not only an activity but any context
object, such as the one passed to a broadcast receiver or a service for example. This
extends the use of Toast to outside of activities.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8: Working with Dialogs 264

Resources
 http://developer.android.com/guide/topics/ui/dialogs.html: This Android

SDK document is an excellent introduction to working with Android dialogs. You
will find here an explanation of how to use managed dialogs and various examples
of available dialogs.

 http://developer.android.com/reference/android/content/DialogInterface.
html: At this URL, you will see the many constants defined for dialogs.

 http://developer.android.com/reference/android/app/Dialog.html: You can
discover a number of methods available on a Dialog object at this URL.

 http://developer.android.com/reference/android/app/AlertDialog.Builder.
html: This URL is the API documentation URL for the AlertDialog builder class.

 http://developer.android.com/reference/android/app/ProgressDialog.html:
This is API documentation URL for ProgressDialog.

 http://developer.android.com/reference/android/app/DatePickerDialog.html:
This is API documentation URL for DatePickerDialog.

 http://developer.android.com/reference/android/app/TimePickerDialog.html:
This is API documentation URL for TimePickerDialog.

 http://developer.android.com/resources/tutorials/views/hello-
datepicker.html: This is an Android tutorial for using the date picker dialog.

 http://developer.android.com/resources/tutorials/views/hello-
timepicker.html: This is an Android tutorial for using the time picker dialog.

 http://www.androidbook.com/item/3540: You can use this URL to download the
test project dedicated for this chapter. The name of the ZIP file is
ProAndroid3_ch08_SampleDialogs.zip. We also have examples of the date and
time picker dialog in the download.

Summary
In this chapter, you saw that dialogs present a special challenge in Android. We showed
you the implications of asynchronous dialogs and presented an abstraction to simplify
the managed dialogs. Please refer to chapter 29 to see how dialogs work with the
introduction of fragments in 3.0. As the fragments API is being made available for
previous releases of Android you may want to use the fragment dialogs as your
preferred dialog implementation approach.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

265

265

 Chapter

Working with Preferences
and Saving State
Like many other SDKs, Android supports preferences. It tracks preferences for users of

an application as well as the application itself. For example, a user of Microsoft Outlook

might set a preference to view e-mail messages a certain way, and Microsoft Outlook

itself has some default preferences that are configurable by users. But even though

Android theoretically tracks preferences for both users and the application, it does not

differentiate between the two. The reason for this is that Android applications run on a

device that is generally not shared among several users; people don’t often share cell

phones. So Android refers to preferences with the term application preferences, which

encompasses both the user’s preferences and the application’s default preferences.

When you see Android’s preferences support for the first time, you’ll likely be impressed.

Android offers a robust and flexible framework for dealing with preferences. It provides

simple APIs that hide the reading and persisting of preferences, as well as prebuilt user

interfaces that you can use to let the user make preference selections. Because of the

power built in to the Android preferences framework, we can also use preferences for

more general-purpose storing of application state, to allow our application to pick up

where it left off for example, should our application go away and come back later. We

will explore all of these features in the sections that follow.

Exploring the Preferences Framework
Before we dig into Android’s preferences framework, let’s establish a scenario that

would require the use of preferences and then explore how we would go about

addressing it. Suppose you are writing an application that provides a facility to search

for airline flights. Moreover, suppose that the application’s default setting is to display

flights based on the lowest cost, but the user can set a preference to always sort flights

by the least number of stops or by a specific airline. How would you go about doing

that?

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 266

Understanding ListPreference
Obviously, you would have to provide a UI for the user to view the list of sort options.

The list would contain radio buttons for each option, and the default (or current)

selection would be preselected. To solve this problem with the Android preferences

framework requires very little work. First, you would create a preferences XML file to

describe the preference and then use a prebuilt activity class that knows how to show

and persist preferences. Listing 9–1 shows the details.

NOTE: We will give you a URL at the end of the chapter which you can use to download projects

of this chapter. This will allow you to import these projects into your Eclipse directly.

Listing 9–1. The Flight-Options Preferences XML File and Associated Activity Class

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/xml/flightoptions.xml -->
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="flight_option_preference"
 android:title="@string/prefTitle"
 android:summary="@string/prefSummary">

 <ListPreference
 android:key="@string/selected_flight_sort_option"
 android:title="@string/listTitle"
 android:summary="@string/listSummary"
 android:entries="@array/flight_sort_options"
 android:entryValues="@array/flight_sort_options_values"
 android:dialogTitle="@string/dialogTitle"
 android:defaultValue="@string/flight_sort_option_default_value" />

</PreferenceScreen>

package com.androidbook.preferences.sample;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class FlightPreferenceActivity extends PreferenceActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.flightoptions);
 }
}

Listing 9–1 contains an XML fragment that represents the flight-option preference

setting. The listing also contains an activity class that loads the preferences XML file.

Let’s start with the XML. Android provides an end-to-end preferences framework. This

means that the framework lets you define your preferences, display the setting(s) to the

user, and persist the user’s selection to the data store. You define your preferences in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 267

XML under /res/xml/. To show preferences to the user, you write an activity class that

extends a predefined Android class called android.preference.PreferenceActivity and

use the addPreferencesFromResource() method to add the resource to the activity’s

resource collection. The framework takes care of the rest (displaying and persisting).

In this flight scenario, you create a file called flightoptions.xml at /res/xml/
flightoptions.xml. You then create an activity class called FlightPreferenceActivity

that extends the android.preference.PreferenceActivity class. Next, you call

addPreferencesFromResource(), passing in R.xml.flightoptions. Note that the preference

resource XML points to several string resources. To ensure compilation, you need to add

several string resources to your project. We will show you how to do that shortly. For now,

have a look at the UI generated by Listing 9–1 (see Figure 9–1).

Figure 9–1. The flight-options preference UI

Figure 9–1 contains two views. The view on the left is called a preference screen and the

UI on the right is a list preference. When the user selects Flight Options, the Choose

Flight Options view appears as a modal dialog with radio buttons for each option. The

user selects an option, which immediately saves that option and closes the view. When

the user returns to the options screen, the view reflects the saved selection from before.

The XML code in Listing 9–1 defines PreferenceScreen and then creates ListPreference
as a child. For PreferenceScreen, you set three properties: key, title, and summary. key

is a string you can use to refer to the item programmatically (similar to how you use

android:id); title is the screen’s title (Flight Options); and summary is a description of

the screen’s purpose, shown below the title in a smaller font (Set Search Options, in this

case). For the list preference, you set the key, title, and summary, as well as attributes

for entries, entryValues, dialogTitle, and defaultValue. Table 9–1 summarizes these

attributes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 268

Table 9–1. A Few Attributes of android.preference.ListPreference

Attribute Description

android:key A name or key for the option (such as selected_flight_sort_option).

android:title The title of the option.

android:summary A short summary of the option.

android:entries The text of the items in the list that the option can be set to.

android:entryValues Defines the key, or value, for each item. Note that each item has some text

and a value. The text is defined by entries and the values are defined by

entryValues.

android:dialogTitle The title of the dialog—used if the view is shown as a modal dialog.

android:defaultValue The default value of the option from the list of items.

To finish getting our example to work, add or modify the files as indicated in

Listing 9–2.

Listing 9–2. Setting Up the Rest of the Project for Our Example

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/arrays.xml -->
<resources>
<string-array name="flight_sort_options">
 <item>Total Cost</item>
 <item># of Stops</item>
 <item>Airline</item>
</string-array>
<string-array name="flight_sort_options_values">
 <item>0</item>
 <item>1</item>
 <item>2</item>
</string-array>
</resources>

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/strings.xml -->
<resources>
 <string name="app_name">Preferences Demo</string>
 <string name="prefTitle">My Preferences</string>
 <string name="prefSummary">Set Flight Option Preferences</string>
 <string name="flight_sort_option_default_value">1</string>
 <string name="dialogTitle">Choose Flight Options</string>
 <string name="listSummary">Set Search Options</string>
 <string name="listTitle">Flight Options</string>
 <string name="selected_flight_sort_option">
 selected_flight_sort_option</string>
 <string name="menu_prefs_title">Settings</string>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 269

</resources>

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/menu/mainmenu.xml -->
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/menu_prefs"
 android:title="@string/menu_prefs_title"
 />
</menu>

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

<TextView android:text="" android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />

</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.content.Intent;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.TextView;

public class MainActivity extends Activity {
 private TextView tv = null;
 private Resources resources;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 resources = this.getResources();

 tv = (TextView)findViewById(R.id.text1);

 setOptionText();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 270

 {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.mainmenu, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected (MenuItem item)
 {
 if (item.getItemId() == R.id.menu_prefs)
 {
 // Launch to our preferences screen.
 Intent intent = new Intent()
 .setClass(this,
 com.androidbook.preferences.sample.FlightPreferenceActivity.class);
 this.startActivityForResult(intent, 0);
 }
 return true;
 }

 @Override
 public void onActivityResult(int reqCode, int resCode, Intent data)
 {
 super.onActivityResult(reqCode, resCode, data);
 setOptionText();
 }

 private void setOptionText()
 {
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
// This is the other way to get to the shared preferences:
// SharedPreferences prefs = getSharedPreferences(
// "com.androidbook.preferences.sample_preferences", 0);
 String option = prefs.getString(
 resources.getString(R.string.selected_flight_sort_option),
 resources.getString(R.string.flight_sort_option_default_value));
 String[] optionText = resources.getStringArray(R.array.flight_sort_options);

 tv.setText("option value is " + option + " (" +
 optionText[Integer.parseInt(option)] + ")");
 }
}

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is AndroidManifest.xml -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.preferences.sample"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 271

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <activity android:name=".FlightPreferenceActivity"
 android:label="@string/prefTitle">
 <intent-filter>
 <action android:name=
 "com.androidbook.preferences.sample.intent.action.FlightPreferences" />
 <category
 android:name="android.intent.category.PREFERENCE" />
 </intent-filter>
 </activity>

 </application>
 <uses-sdk android:minSdkVersion="4" />

</manifest>

After making these changes and running this application, you will first see a simple text

message that says “option value is 1 (# of Stops)”. Click the Menu button and then

Settings to get to the PreferenceActivity. Click the back arrow when you’re finished,

and you will see any changes to the option text immediately.

The first file we added was /res/values/arrays.xml. This file contains the two string

arrays that we need to implement the option choices. The first array holds the text to be

displayed, and the second holds the values that we’ll get back in our method calls, plus

the value that gets stored in the preferences XML file. For our purposes, we chose to

use array index values 0, 1, and 2 for flight_sort_options_values. We could use any

value that helps us run the application. If our option was numeric in nature (for example

a countdown timer starting value), then we could have used values such as 60, 120,

300, and so on. The values don’t need to be numeric at all as long as they make sense

to the developer; the user doesn’t see these values unless you choose to expose them.

The user only sees the text from the first string array flight_sort_options.

As we said earlier, the Android framework also takes care of persisting preferences. For

example, when the user selects a sort option, Android stores the selection in an XML file

within the application’s /data directory (see Figure 9–2).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 272

Figure 9–2. Path to an application’s saved preferences

The actual file path is /data/data/[PACKAGE_NAME]/shared_prefs/[PACKAGE_NAME]_
preferences.xml. Listing 9–3 shows the

com.androidbook.preferences.sample_preferences.xml file for our example.

Listing 9–3. Saved Preferences for Our Example

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <string name="selected_flight_sort_option">1</string>
</map>

You can see that for a list preference, the preferences framework persists the selected

item’s value using the list’s key attribute. Note also that the selected item’s value is

stored—not the text. A word of caution here: because the preferences XML file is only

storing the value and not the text, should you ever upgrade your application and change

the text of the options or add items to the string arrays, any value stored in the

preferences XML file should still line up with the appropriate text after the upgrade. The

preferences XML file is kept during the application upgrade. If the preferences XML file

had a “1” in it, and that meant “# of Stops” before the upgrade, it should still mean “# of

Stops” after the upgrade.

The next file we touched was /res/values/strings.xml. We added several strings for

our titles, summaries, and menu items. There are two strings to pay particular attention

to. The first is flight_sort_option_default_value. We set the default value to 1 to

represent “# of Stops” in our example. It is usually a good idea to choose a default value

for each option. If you don’t choose a default value and no value has yet been chosen,

the methods that return the value of the option will return null. Your code would have to

deal with null values in this case. The other interesting string is

selected_flight_sort_option. Strictly speaking, the user is not going to see this string,

so we don’t need to put it inside of strings.xml to provide alternate text for other

languages. However, because this string value is a key used in the method call to

retrieve the value, by creating an ID out of it, we can ensure at compile time that we

didn’t make a typographical error on the key’s name.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 273

The third file we added was /res/menu/mainmenu.xml. We’re assuming that you’d like to

access the preferences view through a menu and not through a button. This file

represents our application’s menu.

The fourth file we touched was /res/layout/main.xml. This is our main UI for this

application. So far, we’ve covered how to maintain the preferences, through the use of a

special activity class PreferenceActivity. But you want to use preferences in your main

activity, not a PreferenceActivity. Therefore, we need a way to get to the preferences

from another activity. For this example, the layout is a simple TextView to display the

current value of our flight preferences option.

Next up is the source code for our MainActivity. This is a basic activity that gets a

reference to the preferences and a handle to the TextView and then calls a method to

read the current value of our option to set it into the TextView. We set up our menu and

the menu callback. Within the menu callback, we launch an Intent for the

FlightPreferenceActivity. Launching an intent for our preferences is the best way to

get to the preferences screen. You could use a menu or use a button to fire the intent.

We’ll not repeat this code for later examples, but you would do the same thing with

them, except that you’d use the appropriate activity class name. When the preferences

Intent returns to us, we call the setOptionText() method to update our TextView.

There are two ways to get a handle to the preferences:

 The easiest is what we show in the example, that is, to call

PreferenceManager.getDefaultSharedPreferences(this). The this

argument is the context for finding the default shared preferences, and

the method will use the package name of this to determine the file

name and location of the preferences file, which happens to be the

one created by our PreferenceActivity, since they share the same

package name.

 The other way to get a handle to a preferences file is to use the

getSharedPreferences() method call, passing in a file name argument

as well as a mode argument. In Listing 9–2, we show this way, but it’s

been commented out. Notice that you only specify the base part of the

file name, not the path and not the file name extension. The mode

argument controls permissions to our XML preferences file. In our

preceding example, the mode argument wouldn’t affect anything

because the file is only created within the PreferenceActivity, which

sets the default permissions of MODE_PRIVATE (i.e., zero). We'll discuss

the mode argument later in the sections on saving state.

Inside of setOptionText(), with a reference to the preferences, you call the appropriate

methods to retrieve the preference values. In our example, we call getString(), because

we know we’re retrieving a string value from the preferences. The first argument is the

string value of the option key. We noted before that using an ID ensures that we haven’t

made any typographical errors while building our application. We could also have simply

used the string "selected_flight_sort_option" for the first argument, which you might

want to do because you want to keep applications as small and fast as possible. For the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 274

second argument, you specify a default value in case the value can’t be found in the

preferences XML file. When your application runs for the very first time, you don’t have a

preferences XML file, so without specifying a value for the second argument, you’ll

always get null the first time. This is true even though you’ve specified a default value

for the option in the ListPreference specification in flightoptions.xml. In our example,

we set a default value in XML, and we used a resource ID to do it, so the code in

setOptionText() can be used to read the value of the resource ID for the default value.

Note that if we had not used an ID for the default value, it would be a lot tougher to read

it directly from the ListPreference. By sharing a resource ID between the XML and our

code, we have only one place in which to change the default value (that is, in

strings.xml).

In addition to displaying the value of the preference, we also display the text of the

preference. We’re taking a shortcut in our example, because we used array indices for

the values in flight_sort_options_values. By simply converting the value to an int, we

know which string to read from flight_sort_options. Had we used some other set of

values for flight_sort_options_values, we would need to determine the index of the

element that is our preference and then turn around and use that index to grab the text

of our preference from flight_sort_options.

The final file to be touched for our example is AndroidManifest.xml. Because we now

have two activities in our application, we need two activity tags. The first one is a

standard activity of category LAUNCHER. The second one is for a PreferenceActivity, so

we set the action name according to convention for intents, and we set the category to

PREFERENCE. We probably don’t want the PreferenceActivity showing up on the Android

page with all our other applications, which is why we chose not to use LAUNCHER for it.

You would need to make similar changes to AndroidManifest.xml if you were to add

other preferences screens.

We showed one way to read a default value for a preference in code. Android provides

another way that is a bit more elegant. In onCreate(), we could have done the following

instead:

 PreferenceManager.setDefaultValues(this, R.xml.flightoptions, false);

Then in setOptionText(), we could have done this to read the option value:

 String option = prefs.getString(
 resources.getString(R.string.selected_flight_sort_option), null);

The first call will use flightoptions.xml to find the default values and generate the

preferences XML file for us using the default values. If we already have an instance of

the SharedPreferences object in memory, it will update that too. The second call will

then find a value for selected_flight_sort_option, because we took care of loading

defaults first.

After running this code the first time, if you look in the shared_prefs folder, you will see

the preferences XML file even if the preferences screen has not yet been invoked. You

will also see another file called _has_set_default_values.xml. This tells your application

that the preferences XML file has already been created with the default values. The third

argument to setDefaultValues(), that is, false, indicates that you only want the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 275

defaults set in the preferences XML file if it hasn’t been done before. If you choose true

instead, you’ll always reset the preferences XML file with default values. Android

remembers this information through the existence of this new XML file. If the user has

selected new preference values, and you choose false for the third argument, the user

preferences won’t be overwritten the next time this code runs. Notice that now we don’t

need to provide a default value in the getString() method call, since we should always

get a value from the preferences XML file.

If you need a reference to the preferences from inside of an activity that extends

PreferenceActivity, you could do it this way:

SharedPreferences prefs = getPreferenceManager().getDefaultSharedPreferences(this);

We showed you how to use the ListPreference view; now, let’s examine the other UI

elements within the Android preferences framework. Namely, let’s talk about the

CheckBoxPreference view, the EditTextPreference view, and the RingtonePreference

view.

Understanding CheckBoxPreference
You saw that the ListPreference preference displays a list as its UI element. Similarly,

the CheckBoxPreference preference displays a check box widget as its UI element.

To extend the flight search example application, suppose you want to let the user set

the list of columns to see in the result set. This preference displays the available

columns and allows the user to choose the desired columns by marking the

corresponding check boxes. The user interface for this example is shown in Figure 9–3,

and the preferences XML file is shown in Listing 9–4.

Figure 9–3. The user interface for the check box preference

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 276

Listing 9–4. Using CheckBoxPreference

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/xml/chkbox.xml -->
 <PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="flight_columns_pref"
 android:title="Flight Search Preferences"
 android:summary="Set Columns for Search Results">
 <CheckBoxPreference
 android:key="show_airline_column_pref"
 android:title="Airline"
 android:summary="Show Airline column" />
 <CheckBoxPreference
 android:key="show_departure_column_pref"
 android:title="Departure"
 android:summary="Show Departure column" />
 <CheckBoxPreference
 android:key="show_arrival_column_pref"
 android:title="Arrival"
 android:summary="Show Arrival column" />
 <CheckBoxPreference
 android:key="show_total_travel_time_column_pref"
 android:title="Total Travel Time"
 android:summary="Show Total Travel Time column" />
 <CheckBoxPreference
 android:key="show_price_column_pref"
 android:title="Price"
 android:summary="Show Price column" />

</PreferenceScreen>

// CheckBoxPreferenceActivity.java

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class CheckBoxPreferenceActivity extends PreferenceActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.chkbox);
 }
}

Listing 9–4 shows the preferences XML file, chkbox.xml, and a simple activity class that

loads it using addPreferencesFromResource(). As you can see, the UI has five check

boxes, each of which is represented by a CheckBoxPreference node in the preferences

XML file. Each of the check boxes also has a key, which—as you would expect—is

ultimately used to persist the state of the UI element when it comes time to save the

selected preference. With CheckBoxPreference, the state of the preference is saved

when the user sets the state. In other words, when the user checks or unchecks the

preference control, its state is saved. Listing 9–5 shows the preference data store for

this example.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 277

Listing 9–5. The Preferences Data Store for the Check Box Preference

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <boolean name="show_total_travel_time_column_pref" value="false" />
 <boolean name="show_price_column_pref" value="true" />
 <boolean name="show_arrival_column_pref" value="false" />
 <boolean name="show_airline_column_pref" value="true" />
 <boolean name="show_departure_column_pref" value="false" />
</map>

Again, you can see that each preference is saved through its key attribute. The data type

of the CheckBoxPreference is a boolean, which contains a value of either true or false:

true to indicate the preference is selected, and false to indicate otherwise. To read the

value of one of the check box preferences, you would get access to the shared

preferences and call the getBoolean() method, passing the key of the preference:

boolean option = prefs.getBoolean("show_price_column_pref", false);

One other useful feature of CheckBoxPreference is that you can set different summary

text depending on whether or not it’s checked. The XML attributes are summaryOn and

summaryOff. Now, let’s have a look at the EditTextPreference.

Understanding EditTextPreference
The preferences framework also provides a free-form text preference called

EditTextPreference. This preference allows you to capture raw text rather than ask the

user to make a selection. To demonstrate this, let’s assume you have an application that

generates Java code for the user. One of the preference settings of this application

might be the default package name to use for the generated classes. Here, you want to

display a text field to the user for setting the package name for the generated classes.

Figure 9–4 shows the UI, and Listing 9–6 shows the XML.

Figure 9–4. Using the EditTextPreference

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 278

Listing 9–6. An Example of an EditTextPreference

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/xml/packagepref.xml -->
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="package_name_screen"
 android:title="Package Name"
 android:summary="Set package name">

 <EditTextPreference
 android:key="package_name_preference"
 android:title="Set Package Name"
 android:summary="Set the package name for generated code"
 android:dialogTitle="Package Name" />

</PreferenceScreen>

// EditTextPreferenceActivity.java

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditTextPreferenceActivity extends PreferenceActivity{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.packagepref);
 }
}

You can see that Listing 9–6 defines PreferenceScreen with a single EditTextPreference

instance as a child. The generated UI for the listing features the PreferenceScreen on the

left and the EditTextPreference on the right (see Figure 9–4). When Set Package Name

is selected, the user is presented with a dialog to input the package name. When the OK

button is clicked, the preference is saved to the preference store.

As with the other preferences, you can obtain the EditTextPreference from your activity

class by using the preference’s key. Once you have the EditTextPreference, you can

manipulate the actual EditText by calling getEditText()—if, for example, you want to

apply validation, preprocessing, or postprocessing on the value that the user types in

the text field. To get the text of the EditTextPreference, just use the getText() method.

Now, let’s look at the preferences framework’s RingtonePreference.

Understanding RingtonePreference
RingtonePreference deals specifically with ringtones. You’d use it in an application that

gives the user an option to select a ringtone as a preference. Figure 9–5 shows the UI of

the RingtonePreference example, and Listing 9–7 shows the XML.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 279

Figure 9–5. The RingtonePreference example UI

Listing 9–7. Defining a RingtonePreference Preference

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/xml/ringtone.xml -->
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="ringtone_option_preference"
 android:title="My Preferences"
 android:summary="Set Ring Tone Preferences">
 <RingtonePreference
 android:key="ring_tone_pref"
 android:title="Set Ringtone Preference"
 android:showSilent="true"
 android:ringtoneType="alarm"
 android:summary="Set Ringtone" />
</PreferenceScreen>

// RingtonePreferenceActivity.java

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class RingtonePreferenceActivity extends PreferenceActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.ringtone);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 280

When the user selects Set Ringtone Preference, the preferences framework displays a

ListPreference containing the ringtones on the device (see Figure 9–5). The user can

select a ringtone and then choose OK or Cancel. If OK is clicked, the selection is

persisted to the preference store. Note that, with the ringtones, the value stored in the

preference store is the URI of the selected ringtone—unless a user selects Silent, in

which case the stored value is an empty string. An example URI looks like this:

<string name="ring_tone_pref">content://media/internal/audio/media/26</string>

NOTE: If the emulator is short on ringtones, you can add some yourself. Copy music files to your

SD card. Then, go to the Android Music Player application and choose a music file. Click the
Menu button, and click “Use as ringtone”. We’ll be teaching you how to copy files to the SD card

in Chapter 19.

Finally, the RingtonePreference shown in Listing 9–7 follows the same pattern as the

other preferences you’ve defined thus far. The difference here is that you set a few

different attributes, including showSilent and ringtoneType. You can use showSilent to

include the silent ringtone in the ringtone list and ringtoneType to restrict the types of

ringtones displayed in the list. Possible values for this property include ringtone,

notification, alarm, and all.

Organizing Preferences
The preferences framework provides some support for you to organize your preferences

into categories. If you have a lot of preferences, for example, you can build a view that

shows high-level categories of preferences. Users could then drill down into each

category to view and manage preferences specific to that group.

You can implement something like this in one of two ways. You can introduce nested

PreferenceScreen elements within the root PreferenceScreen, or you can use

PreferenceCategory elements to get a similar result. Figure 9–6 and Listing 9–8 show

how to implement the first technique, grouping preferences by using nested

PreferenceScreen elements.

The view on the left of Figure 9–6 displays two preference screens, one with the title

Meats and the other with the title Vegetables. Clicking a group takes you to the

preferences within that group. Listing 9–8 shows how to create nested screens.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 281

Figure 9–6. Creating groups of preferences by nesting PreferenceScreen elements

Listing 9–8. Nesting PreferenceScreen Elements to Organize Preferences

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="using_categories_in_root_screen"
 android:title="Categories"
 android:summary="Using Preference Categories">

 <PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="meats_screen"
 android:title="Meats"
 android:summary="Preferences related to Meats">

 <CheckBoxPreference
 android:key="fish_selection_pref"
 android:title="Fish"
 android:summary="Fish is great for the healthy" />
 <CheckBoxPreference
 android:key="chicken_selection_pref"
 android:title="Chicken"
 android:summary="A common type of poultry" />
 <CheckBoxPreference
 android:key="lamb_selection_pref"
 android:title="Lamb"
 android:summary="Lamb is a young sheep" />

 </PreferenceScreen>
 <PreferenceScreen

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 282

 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="vegi_screen"
 android:title="Vegetables"
 android:summary="Preferences related to vegetable">
 <CheckBoxPreference
 android:key="tomato_selection_pref"
 android:title="Tomato "
 android:summary="It's actually a fruit" />
 <CheckBoxPreference
 android:key="potato_selection_pref"
 android:title="Potato"
 android:summary="My favorite vegetable" />

 </PreferenceScreen>

</PreferenceScreen>

You create the groups in Figure 9–6 by nesting PreferenceScreen elements within the

root PreferenceScreen. Organizing preferences this way is useful if you have a lot of

preferences and you’re concerned about having the users scroll to find the preference

they are looking for. If you don’t have a lot of preferences but still want to provide high-

level categories for your preferences, you can use PreferenceCategory, which is the

second technique we mentioned. Figure 9–7 and Listing 9–9 show the details.

Figure 9–7. Using PreferenceCategory to organize preferences

Figure 9–7 shows the same groups we used in our previous example, but now organized

with preference categories. The only difference between the XML in Listing 9–9 and the

XML in Listing 9–8 is that you create a PreferenceCategory for the nested screens rather

than nest PreferenceScreen elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 283

Listing 9–9. Creating Categories of Preferences

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="using_categories_in_root_screen"
 android:title="Categories"
 android:summary="Using Preference Categories">

 <PreferenceCategory
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="meats_category"
 android:title="Meats"
 android:summary="Preferences related to Meats">

 <CheckBoxPreference
 android:key="fish_selection_pref"
 android:title="Fish"
 android:summary="Fish is great for the healthy" />
 <CheckBoxPreference
 android:key="chicken_selection_pref"
 android:title="Chicken"
 android:summary="A common type of poultry" />
 <CheckBoxPreference
 android:key="lamb_selection_pref"
 android:title="Lamb"
 android:summary="Lamb is a young sheep" />

 </PreferenceCategory>
 <PreferenceCategory
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="vegi_category"
 android:title="Vegetables"
 android:summary="Preferences related to vegetable">
 <CheckBoxPreference
 android:key="tomato_selection_pref"
 android:title="Tomato "
 android:summary="It's actually a fruit" />
 <CheckBoxPreference
 android:key="potato_selection_pref"
 android:title="Potato"
 android:summary="My favorite vegetable" />

 </PreferenceCategory>

</PreferenceScreen>

Manipulating Preferences Programmatically
It goes without saying that you might need to access the actual preference controls

programmatically. For example, what if you need to provide the entries and

entryValues for the ListPreference at runtime? You can define and access preference

controls similarly to the way you define and access controls in layout files and activities.

For example, to access the list preference defined in Listing 9–1, you would call the

findPreference() method of PreferenceActivity, passing the preference’s key (note

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 284

the similarity to findViewById()). You would next cast the control to ListPreference and

then go about manipulating the control. For example, if you want to set the entries of the

ListPreference view, call the setEntries() method, and so on. Listing 9–10 shows what

this might look like with a simple example of using code to setup the preference.

Listing 9–10. Setting ListPreference Values Programmatically

public class FlightPreferenceActivity extends PreferenceActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.flightoptions);

 ListPreference listpref = (ListPreference) findPreference(
 "selected_flight_sort_option");

 listpref.setEntryValues(new String[] {"0","1","2"});
 listpref.setEntries(new String[] {"Food", "Lounge", "Frequent Flier Program"});
 }
}

Saving State with Preferences
Preferences are great for allowing users to customize applications to their liking, but we

can use the Android preference framework for more than that. When your application

needs to keep track of some data between invocations of the application, preferences

are one way to accomplish the task. We’ve already talked about content providers for

maintaining data. We could use custom files on the SD card. We can also use

preference files and code.

The Activity class has a getPreferences(int mode) method. This, in reality, simply

calls getSharedPreferences() with the class name of the activity as the tag plus the

mode as passed in. The result is an activity-specific preferences file that you can use to

store data about this activity across invocations. A simple example of how you could

use this is in Listing 9–11.

Listing 9–11. Using Preferences to Save State for an Activity

 final String INITIALIZED = "initialized";
 SharedPreferences myPrefs = getPreferences(MODE_PRIVATE);

 boolean hasPreferences = myPrefs.getBoolean(INITIALIZED, false);
 if(hasPreferences) {
 Log.v("Preferences", "We've been called before");
 // Read other values as desired from preferences file…
 someString = myPrefs.getString("someString", "");
 }
 else {
 Log.v("Preferences", "First time ever being called");
 // Set up initial values for what will end up
 // in the preferences file
 someString = "some default value";
 }

u

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 285

 // Later when ready to write out values
 Editor editor = myPrefs.edit();
 editor.putBoolean(INITIALIZED, true);
 editor.putString(“someString”, someString);
 // Write other values as desired
 editor.commit();

What this code does is acquire a reference to preferences for our activity class and

check for the existence of a boolean “preference” called initialized. We write

“preference” in double quotation marks because this value is not something the user is

going to see or set; it’s merely a value that we want to store in a preferences file for use

next time. If we get a value, the preferences file exists, so our application must have

been called before. We could then read other values out of the preferences file.

To write values to the preferences file, we must first get a preferences Editor. We can

then put values into preferences and commit those changes when we’re finished. Note

that, behind the scenes, Android is managing a SharedPreferences object that is truly

shared. Ideally, there is never more than one Editor active at a time. But it is very

important to call the commit() method so that the SharedPreferences object and the

preferences XML file get updated.

You can access, write, and commit values anytime to your preferences file. Possible

uses for this include writing out high scores for a game or recording when the

application was last run. You can also use the getSharedPreferences() call with

different names to manage separate sets of preferences, all within the same application

or even the same activity.

We’ve used MODE_PRIVATE for mode in our examples thus far. The other possible values

of mode are MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE. These modes are used

when creating the preferences XML file to set the file permissions accordingly. Because

the preferences files are stored within your application's data directory, and therefore

not accessible to other applications, you only need to use MODE_PRIVATE.

Reference
Here is a helpful reference to a topic you may wish to explore further.

 http://www.androidbook.com/projects. Look here for a list of

downloadable projects related to this book. For this chapter look for a

ZIP file called ProAndroid3_Ch09_Preferences.zip. This ZIP file

contains all projects from this chapter, listed in separate root

directories. There is also a README.TXT file that describes exactly

how to import projects into Eclipse from one of these ZIP files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9: Working with Preferences and Saving State 286

Summary
In this chapter, we talked about managing preferences in Android. We showed you how

to use ListPreference, CheckBoxPreference, EditTextPreference, and

RingtonePreference. We also talked about how to organize preferences into groups and

programmatically manipulate preferences. Last, we showed you how to use the

preferences framework to save and restore information from an activity across

invocations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

287

287

 Chapter

Exploring Security and
Permissions
In this chapter, we are going to talk about Android’s application-security model, which is

a fundamental part of the Android platform. In Android, security spans all phases of the

application life cycle—from design-time policy considerations to runtime boundary

checks. You’ll learn Android’s security architecture and understand how to design

secure applications.

Let’s get started with the Android security model.

Understanding the Android Security Model
In this first section, we’re going to cover security during the deployment and execution

of the application. With respect to deployment, Android applications have to be signed

with a digital certificate in order for you to install them onto a device. With respect to

execution, Android runs each application within a separate process, each of which has a

unique and permanent user ID (assigned at install time). This places a boundary around

the process and prevents one application from having direct access to another’s data.

Moreover, Android defines a declarative permission model that protects sensitive

features (such as the contact list).

In the next several sections, we are going to discuss these topics. But before we get

started, let’s provide an overview of some of the security concepts that we’ll refer to

later.

Overview of Security Concepts
Android requires that applications be signed with a digital certificate. One of the benefits

of this requirement is that an application cannot be updated with a version that was not

published by the original author. If we publish an application, for example, then you

cannot update our application with your version (unless, of course, you somehow obtain

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 288

our certificate). That said, what does it mean for an application to be signed? And what

is the process of signing an application?

You sign an application with a digital certificate. A digital certificate is an artifact that

contains information about you, such as your company name, address, and so on. A few

important attributes of a digital certificate include its signature and public/private key. A

public/private key is also called a key pair. Note that although you use digital certificates

here to sign .apk files, you can also use them for other purposes (such as encrypted

communication). You can obtain a digital certificate from a trusted certificate authority

(CA) and you can also generate one yourself using tools such as the keytool, which we’ll

discuss shortly. Digital certificates are stored in keystores. A keystore contains a list of

digital certificates, each of which has an alias that you can use to refer to it in the

keystore.

Signing an Android application requires three things: a digital certificate, an .apk file, and

a utility that knows how to apply a digital signature to the .apk file. As you’ll see, we use

a free utility that is part of the Java Development Kit (JDK) distribution called the

jarsigner. This utility is a command-line tool that knows how to sign a .jar file using a

digital certificate.

Now, let’s move on and talk about how you can sign an .apk file with a digital certificate.

Signing Applications for Deployment
To install an Android application onto a device, you first need to sign the Android

package (.apk file) using a digital certificate. The certificate, however, can be self-

signed—you do not need to purchase a certificate from a certificate authority such as

VeriSign.

Signing your application for deployment involves three steps. The first step is to

generate a certificate using keytool (or a similar tool). The second step involves using

the jarsigner tool to sign the .apk file with the generated certificate. The third step

aligns portions of your application on memory boundaries for more efficient memory

usage when running on a device. Note that during development, the ADT plug-in for

Eclipse takes care of everything for you: signing your .apk file and doing the memory

alignment, before deploying onto the emulator or a device.

Generating a Self-Signed Certificate Using the Keytool
The keytool utility manages a database of private keys and their corresponding X.509

certificates (a standard for digital certificates). This utility ships with the JDK and resides

under the JDK bin directory. If you followed the instructions in Chapter 2 regarding

changing your PATH, the JDK bin directory should already be in your PATH.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 289

In this section, we’ll show you how to generate a keystore with a single entry, which

you’ll later use to sign an Android .apk file. To generate a keystore entry, do the

following:

1. Create a folder to hold the keystore, for example c:\android\release\.

2. Open a tools window, and execute the keytool utility with the

parameters shown in Listing 10–1 (see Chapter 2 for details of what we

mean by a “tools window”).

Listing 10–1. Generating a Keystore Entry Using the keytool Utility

keytool -genkey -v -keystore "c:\android\release\release.keystore"
-alias androidbook -storepass paxxword -keypass paxxword -keyalg RSA
-validity 14000

All of the arguments passed to the keytool are summarized in Table 10–1.

Table 10–1. Arguments Passed to the keytool Utility

Argument Description

genkey Tells keytool to generate a public/private key pair.

v Tells keytool to emit verbose output during key generation.

keystore Path to the keystore database (in this case, a file). The file will be created if

necessary.

alias A unique name for the keystore entry. This alias is used later to refer to the keystore

entry.

storepass The password for the keystore.

keypass The password used to access the private key.

keyalg The algorithm.

validity The validity period.

keytool will prompt you for the passwords listed in Table 10–1 if you do not provide

them on the command line. If you are not the sole user of your computer, it would be

safer to not specify –storepass and –keypass on the command line, but rather type

them in when prompted by keytool. The command in Listing 10–1 will generate a

keystore database file in your keystore folder. The database will be a file named

release.keystore. The validity of the entry will be 14,000 days (or approximately 38

years)—which is a long time from now. You should understand the reason for this. The

Android documentation recommends that you specify a validity period long enough to

surpass the entire lifespan of the application, which will include many updates to the

application. It recommends that the validity be at least 25 years. Moreover, if you plan to

publish the application on Android Market (http://www.android.com/market/), your

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 290

certificate will need to be valid through at least October 22, 2033. Android Market

checks each application when uploaded to make sure it will be valid at least until then.

Because your updates must match what you used in the beginning, make sure you

safeguard your keystore file! If you lose it and you can’t re-create it, you won’t be able to

update your application, and you’ll have to issue a whole new application instead.

Going back to the keytool, the argument alias is a unique name given to the entry in

the keystore database; you will use this name later to refer to the entry. When you run

the keytool command in Listing 10–1, keytool will ask you a few questions (see Figure

10–1) and then generate the keystore database and entry.

Figure 10–1. Additional questions asked by keytool

Once you have a keystore file for your production certificates, you can reuse this file to

add more certificates. Just use keytool again and specify your existing keystore file.

The Debug Keystore and the Development Certificate
We mentioned that the ADT plug-in for Eclipse takes care of setting up a development

keystore for you. However, the default certificate used for signing during development

cannot be used for production deployment onto a real device. This is partly because the

ADT–generated development certificate is only valid for 365 days, which clearly does not

get you past October 22, 2033. So what happens on the three hundred sixty-sixth day of

development? You'll get a build error. Your existing applications should still run, but to

build a new version of an application, you need to generate a new certificate. The

easiest way to do this is to delete the existing debug.keystore file, and as soon as it is

needed again, the ADT will generate a new file and certificate valid for another 365 days.

To find your debug.keystore file, open the Preferences screen of Eclipse and go to

Android Build. The debug certificate’s location will be displayed in the “Default debug

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 291

keystore” field, as shown in Figure 10–2 (see Chapter 2 if you have trouble finding the

Preferences menu).

Figure 10–2. The debug certificate’s location

Of course, now that you've got a new development certificate, you cannot update your

existing applications in AVDs or on devices using a new development certificate. Eclipse

will provide messages in the Console telling you to uninstall the existing application first

using adb, which you can certainly do. If you have a lot of your applications installed

onto an AVD, you may feel it is easier to simply re-create the AVD, so it does not contain

any of your applications and you can start fresh. To avoid this problem a year from now,

you could generate your own debug.keystore file with whatever validity period you

desire. Obviously, it needs to have the same file name and be in the same directory as

the file that ADT would create. The certificate alias is androiddebugkey and the

storepass and keypass are both "android". ADT sets the first and last name on the

certificate as "Android Debug", the organizational unit as "Android" and the two-letter

country code as "US". You can leave the organization, city, and state values as

"Unknown".

If you acquired a map-api key from Google using the old debug certificate, you will need

to get a new map-api key to match the new debug certificate. We’ll cover map-api keys

in Chapter 17.

Now that you have a digital certificate that you can use to sign your production .apk file,

you need to use the jarsigner tool to do the signing. Here’s how to do that.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 292

Using the Jarsigner Tool to Sign the .apk File
The keytool utility described in the previous section created a digital certificate, which is

one of the parameters for the jarsigner tool. The other parameter for jarsigner is the

actual Android package to be signed. To generate an Android package, you need to use

the Export Unsigned Application Package utility in the ADT plug-in for Eclipse. You

access the utility by right-clicking an Android project in Eclipse, selecting Android Tools,

and selecting Export Unsigned Application Package. Running the Export Unsigned

Application Package utility will generate an .apk file that will not be signed with the

debug certificate. To see how this works, run the Export Unsigned Application Package

utility on one of your Android projects and store the generated .apk file somewhere. For

this example, we’ll use the keystore folder we created earlier, and generate an .apk file

called c:\android\release\myappraw.apk.

With the .apk file and the keystore entry, run the jarsigner tool to sign the .apk file (see

Listing 10–2). Use the full path names to your keystore file and .apk file as appropriate

when you run this.

Listing 10–2. Using jarsigner to Sign the .apk File

jarsigner -keystore "PATH TO YOUR release.keystore FILE" -storepass paxxword
-keypass paxxword "PATH TO YOUR RAW APK FILE" androidbook

To sign the .apk file, you pass the location of the keystore, the keystore password, the

private-key password, the path to the .apk file, and the alias for the keystore entry. The

jarsigner will then sign the .apk file with the digital certificate from the keystore entry.

To run the jarsigner tool, you will need to either open a tools window (as explained in

Chapter 2) or open a command or Terminal window and either navigate to the JDK bin

directory or ensure that your JDK bin directory is on the system path. For security

reasons, it is safer to leave off the password arguments to the command, and simply let

jarsigner prompt you as necessary for passwords. Figure 10–3 shows what the

jarsigner tool invocation looks like.

As we pointed out earlier, Android requires that an application be signed with a digital

signature to prevent a malicious programmer from updating your application with his

version. For this to work, Android requires that updates to an application be signed with

the same signature as the original. If you sign the application with a different signature,

Android treats them as two different applications. So we remind you again, be careful

with your keystore file so it’s available to you later when you need to provide an update

to your application.

Figure 10–3. Using jarsigner

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 293

Aligning Your Application with zipalign
You want your application to be as memory efficient as possible when running on a

device. If your application contains uncompressed data (perhaps certain image types or

data files) at runtime, Android can map this data straight into memory using the mmap()

call. For this to work, though, the data must be aligned on a 4-byte memory boundary.

The CPUs in Android devices are 32-bit processors, and 32 bits equals 4 bytes. The

mmap() call makes the data in your .apk file look like memory, but if the data is not

aligned on a 4-byte boundary, it can’t do that and extra copying of data must occur at

runtime. The zipalign tool, found in the Android SDK tools directory, looks through your

application and moves slightly any uncompressed data not already on a 4-byte memory

boundary to a 4-byte memory boundary. You may see the file size of your application

increase slightly but not significantly. To perform an alignment on your .apk file, use this

command in a tools window (see also Figure 10–4):

zipalign –v 4 infile.apk outfile.apk

Figure 10–4. Using zipalign

Note that zipalign does not modify the input file, so this is why we chose to use “raw”

as part of our file name when exporting from Eclipse. Now, our output file has an

appropriate name for deployment. If you need to overwrite an existing outfile.apk file

you can use the –f option. Also note that zipalign performs a verification of the

alignment when you create your aligned file. To verify that an existing file is properly

aligned, use zipalign in the following way:

zipalign –c –v 4 filename.apk

It is very important that you align after signing; otherwise, signing could cause things to

go back out of alignment. This does not mean your application would crash, but it could

use more memory than it needs to.

In Eclipse, you may have noticed a menu choice under Android Tools called Export

Signed Application Package. This launches what is called the export wizard, and it does

all of the previous steps for you, prompting only for the path to your keystore file, key

alias, the passwords and the name of your output .apk file. It will even create a new

keystore or new key if you need one. You may find it easier to use the wizard, or you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 294

may prefer to script the steps yourself to operate on an exported unsigned application

package. Now that you know how each works, you can decide which is better for you.

Once you have signed and aligned an .apk file, you can install it onto the emulator

manually using the adb tool. As an exercise, start the emulator. One way to do this,

which we haven’t discussed yet, is to go to the Window menu of Eclipse and select

Android SDK and AVD Manager. A window will be displayed showing your available

AVDs. Select the one you want to use for your emulator and click on the Start button.

The emulator will start without copying over any of your development projects from

Eclipse. Now, open a tools window, and run the adb tool with the install command:

adb install "PATH TO APK FILE GOES HERE"

This may fail for a couple of reasons, but the most likely are that the debug version of

your application was already installed on the emulator, giving you a certificate error, or

the release version of your application was already installed on the emulator, giving you

an already exists error. In the first case, you can uninstall the debug application with this

command:

adb uninstall packagename

Note that the argument to uninstall is the application’s package name and not the .apk

file name. The package name is defined in the AndroidManifest.xml file of the installed

application.

For the second case, you can use this command, where –r says to reinstall the

application while keeping its data on the device (or emulator):

adb install –r "PATH TO APK FILE GOES HERE"

Now, let’s see how signing affects the process of updating an application.

Installing Updates to an Application and Signing
Earlier, we mentioned that a certificate has an expiration date and that Google

recommends you set expiration dates far into the future, to account for a lot of

application updates. That said, what happens if the certificate does expire? Would

Android still run the application? Fortunately, yes—Android tests the certificate’s

expiration only at install time. Once your application is installed, it will continue to run

even if the certificate expires.

But what about updates? Unfortunately, you will not be able to update the application

once the certificate expires. In other words, as Google suggests, you need to make sure

the life of the certificate is long enough to support the entire life of the application. If a

certificate does expire, Android will not install an update to the application. The only

choice left will be for you to create another application—an application with a different

package name—and sign it with a new certificate. So as you can see, it is critical for you

to consider the expiration date of the certificate when you generate it.

Now that you understand security with respect to deployment and installation, let’s

move on to runtime security in Android.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 295

Performing Runtime Security Checks
Runtime security in Android happens at the process and operation levels. At the process

level, Android prevents one application from directly accessing another application’s

data. It does this by running each application within a different process and under a

unique and permanent user ID. At the operational level, Android defines a list of

protected features and resources. For your application to access this information, you

have to add one or more permission requests to your AndroidManifest.xml file. You can

also define custom permissions with your application.

In the sections that follow, we will talk about process-boundary security and how to

declare and use predefined permissions. We will also discuss creating custom

permissions and enforcing them within your application. Let’s start by dissecting

Android security at the process boundary.

Understanding Security at the Process Boundary
Unlike your desktop environment, where most of the applications run under the same

user ID, each Android application generally runs under its own unique ID. By running

each application under a different ID, Android creates an isolation boundary around

each process. This prevents one application from directly accessing another

application’s data.

Although each process has a boundary around it, data sharing between applications is

obviously possible but has to be explicit. In other words, to get data from another

application, you have to go through the components of that application. For example,

you can query a content provider of another application, you can invoke an activity in

another application, or—as you’ll see in Chapter 11—you can communicate with a

service of another application. All of these facilities provide methods for you to share

information between applications, but they do so in an explicit manner because you

don’t directly access the underlying database, files, and so on.

Android’s security at the process boundary is clear and simple. Things get interesting

when we start talking about protecting resources (such as contact data), features (such

as the device’s camera), and our own components. To provide this protection, Android

defines a permission scheme. Let’s dissect that now.

Declaring and Using Permissions
Android defines a permission scheme meant to protect resources and features on the

device. For example, applications, by default, cannot access the contacts list, make

phone calls, and so on. To protect the user from malicious applications, Android

requires applications to request permissions if they need to use a protected feature or

resource. As you’ll see shortly, permission requests go in the manifest file. At install

time, the APK installer either grants or denies the requested permissions based on the

signature of the .apk file and/or feedback from the user. If permission is not granted, any

attempt to execute or access the associated feature will result in a permission failure.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 296

Table 10–2 shows some commonly used features and the permissions they require.

Although you are not yet familiar with all the features listed, you will learn about them

later (either in this chapter or in subsequent chapters).

Table 10–2. Features and Resources and the Permissions They Require

Feature/Resource Required Permission Description

Camera android.permission.CAMERA Enables you to access the

device’s camera.

Internet android.permission.INTERNET Enables you to make a network

connection.

User’s contact data android.permission.READ_CONTACTS

android.permission.WRITE_CONTACTS

Enables you to read from or

write to the user’s contact data.

User’s calendar data android.permission.READ_CALENDAR

android.permission.WRITE_CALENDAR

Enables you to read from or

write to the user’s calendar

data.

Record audio android.permission.RECORD_AUDIO Enables you to record audio.

Wi-Fi location

information

android.permission.

 ACCESS_COARSE_LOCATION

Enables you to access coarse-

grained location information

from Wi-Fi and cell towers.

GPS location

information

android.permission.

 ACCESS_FINE_LOCATION

Enables you to access fine-

grained location information.

This includes GPS location

information. It is also sufficient

for Wi-Fi and cell towers.

Battery information android.permission.BATTERY_STATS Enables you to obtain battery-

state information.

Bluetooth android.permission.BLUETOOTH Enables you to connect to

paired Bluetooth devices.

For a complete list of permissions, see the following URL:

http://developer.android.com/reference/android/Manifest.permission.html

Application developers can request permissions by adding entries to the

AndroidManifest.xml file. For example, Listing 10–3 asks to access the camera on the

device, to read the list of contacts, and to read the calendar.

Listing 10–3. Permissions in AndroidManifest.xml

<manifest … >
 <application>
 …
 </application>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 297

 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.READ_CALENDAR" />
</manifest>

Note that you can either hard-code permissions in the AndroidManifest.xml file or use

the manifest editor. The manifest editor is wired up to launch when you open (double-

click) the manifest file. The manifest editor contains a drop-down list that has all of the

permissions preloaded to prevent you from making a mistake. As shown in Figure 10–5,

you can access the permissions list by selecting the Permissions tab in the manifest

editor.

Figure 10–5. The Android manifest editor tool in Eclipse

You now know that Android defines a set of permissions that protects a set of features

and resources. Similarly, you can define, and enforce, custom permissions with your

application. Let’s see how that works.

Understanding and Using Custom Permissions
Android allows you to define custom permissions with your application. For example, if

you wanted to prevent certain users from starting one of the activities in your

application, you could do that by defining a custom permission. To use custom

permissions, you first declare them in your AndroidManifest.xml file. Once you’ve

defined a permission, you can then refer to it as part of your component definition. We’ll

show you how this works.

Let’s create an application containing an activity that not everyone is allowed to start.

Instead, to start the activity, a user must have a specific permission. Once you have

the application with a privileged activity, you can write a client that knows how to call

the activity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 298

NOTE: We will give you a URL at the end of the chapter which you can use to download projects

of this chapter. This will allow you to import these projects into your Eclipse directly.

First, create the project with the custom permission and activity. Open the Eclipse IDE,

and select New New Project Android Project. This will open the New Android

Project dialog box. Enter CustomPermission as the project name, select the “Create

new project in workspace” radio button, and mark the “Use default location” check box.

Enter Custom Permission as the application name, com.cust.perm as the package

name, CustPermMainActivity as the activity name, and select a Build Target. Click the

Finish button to create the project. The generated project will have the activity you just

created, which will serve as the default (main) activity. Let’s also create a privileged
activity—an activity that requires a special permission. In the Eclipse IDE, go to the

com.cust.perm package, create a class named PrivActivity whose superclass is

android.app.Activity, and copy the code shown in Listing 10–4.

Listing 10–4. The PrivActivity Class

package com.cust.perm;

import android.app.Activity;
import android.os.Bundle;
import android.view.ViewGroup.LayoutParams;
import android.widget.LinearLayout;
import android.widget.TextView;

public class PrivActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 LinearLayout view = new LinearLayout(this);

 view.setLayoutParams(new LayoutParams(
 LayoutParams.FILL_PARENT, LayoutParams.WRAP_CONTENT));
 view.setOrientation(LinearLayout.HORIZONTAL);

 TextView nameLbl = new TextView(this);

 nameLbl.setText("Hello from PrivActivity");
 view.addView(nameLbl);

 setContentView(view);
 }
}

As you can see, PrivActivity does not do anything miraculous. We just want to show

you how to protect this activity with a permission and then call it from a client. If the

client succeeds, you’ll see the text “Hello from PrivActivity” on the screen. Now that you

have an activity you want to protect, you can create the permission for it.

To create a custom permission, you have to define it in the AndroidManifest.xml file.

The easiest way to do this is to use the manifest editor. Double-click the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 299

AndroidManifest.xml file, and select the Permissions tab. In the Permissions window,

click the Add button, choose Permission, and click the OK button. The manifest editor

will create an empty new permission for you. Populate the new permission by setting its

attributes as shown in Figure 10–6. Fill in the fields on the right-hand side, and if the

label on the left-hand side still says just Permission, click it and it should update with the

name from the right-hand side.

Figure 10–6. Declaring a custom permission using the manifest editor

As shown in Figure 10–6, each permission has a name, a label, an icon, a permission

group, a description, and a protection level. Table 10–3 defines these properties.

Now, you have a custom permission. Next, you want to tell the system that the

PrivActivity activity should be launched only by applications that have the

syh.permission.STARTMYACTIVITY permission. You can set a required permission on an

activity by adding the android:permission attribute to the activity definition in the

AndroidManifest.xml file. For you to be able to launch the activity, you’ll also need to

add an intent-filter to the activity. Update your AndroidManifest.xml file with the content

from Listing 10–5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 300

Table 10–3. Attributes of a Permission

Attribute Required? Description

android:name Yes Name of the permission. You should generally follow the

Android naming scheme (*.permission.*).

android:protectionLevel Yes Defines the potential for risk associated with the permission.

Must be one of the following values:

normal
dangerous
signature
signatureOrSystem

Depending on the protection level, the system might take

different action when determining whether to grant the

permission or not. normal signals that the permission is low risk

and will not harm the system, the user, or other applications.

dangerous signals that the permission is high risk, and that the

system will likely require input from the user before granting this

permission. signature tells Android that the permission should

be granted only to applications that have been signed with the

same digital signature as the application that declared the

permission. signatureOrSystem tells Android to grant the

permission to applications with the same signature or to the

Android package classes. This protection level is for very

special cases involving multiple vendors needing to share

features through the system image.

android:permissionGroupNo You can place permissions into a group, but for custom

permissions, you should avoid setting this property. If you

really want to set this property, use this instead:

android.permission-group.SYSTEM_TOOLS

android:label No Although it’s not required, use this property to provide a

short description of the permission.

android:description No Although it’s not required, you should use this property to

provide a more useful description of what the permission is

for and what it protects.

android:icon No Permissions can be associated with an icon out of your

resources (such as @drawable/myicon).

Listing 10–5. The AndroidManifest.xml File for the Custom-Permission Project

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.cust.perm"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".CustPermMainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 301

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="PrivActivity"
android:permission="syh.permission.STARTMYACTIVITY">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 </intent-filter>
 </activity>
</application>

<permission
android:protectionLevel="normal"
android:label="Start My Activity"
android:description="@string/startMyActivityDesc"
android:name="syh.permission.STARTMYACTIVITY"></permission>

 <uses-sdk android:minSdkVersion="4" />
</manifest>

Listing 10–5 requires that you add a string constant named startMyActivityDesc to your

string resources. To ensure compilation of Listing 10–5, add the following string

resource to the res/values/strings.xml file:

<string name="startMyActivityDesc">Allows starting my activity</string>

Now, run the project in the emulator. Although the main activity does not do anything,

you want the application installed on the emulator before you write a client for the

privileged activity.

Let’s write a client for the privileged activity. In the Eclipse IDE, click New Project

Android Project. Enter ClientOfCustomPermission as the project name, select the

“Create new project in workspace” radio button, and mark the “Use default location”

check box. Set the application name to Client Of Custom Permission, the package

name to com.client.cust.perm, the activity name to ClientCustPermMainActivity, and

select a Build Target. Click the Finish button to create the project.

Next, you want to write an activity that displays a button you can click to call the

privileged activity. Copy the layout shown in Listing 10–6 to the main.xml file in the

project you just created.

Listing 10–6. Main.xml File for the Client Project

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent" >

 <Button android:id="@+id/btn" android:text="Launch PrivActivity"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:onClick=”doClick” />
</LinearLayout>

As you can see, the XML layout file defines a single button whose text reads “Launch

PrivActivity.” Now, let’s write an activity that will handle the button-click event and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 302

launch the privileged activity. Copy the code from Listing 10–7 to your

ClientCustPermMainActivity class.

Listing 10–7. The Modified ClientCustPermMainActivity Activity

package com.client.cust.perm;
// This file is ClientCustPermMainActivity.java

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class ClientCustPermMainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void doClick(View view) {
 Intent intent = new Intent();
 intent.setClassName("com.cust.perm","com.cust.perm.PrivActivity");
 startActivity(intent);
 }
}

As shown in Listing 10–7, when the button is invoked, you create a new intent, and then

set the class name of the activity you want to launch. In this case, you want to launch

com.cust.perm.PrivActivity in the com.cust.perm package.

The only thing missing at this point is a uses-permission entry, which you add into the

manifest file to tell the Android runtime that you need the

syh.permission.STARTMYACTIVITY to run. Replace your client project’s manifest file with

that shown in Listing 10–8.

Listing 10–8. The Client Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.client.cust.perm"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".ClientCustPermMainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

 <uses-permission android:name="syh.permission.STARTMYACTIVITY" />
 <uses-sdk android:minSdkVersion="4" />
</manifest>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 303

As shown in Listing 10–8, we added a uses-permission entry to request the custom

permission required to start the PrivActivity we implemented in the custom-permission

project.

With that, you should be able to deploy the client project to the emulator and then select

the Launch PrivActivity button. When the button is invoked, you should see the text

“Hello from PrivActivity.”

After you successfully call the privileged activity, remove the uses-permission entry from

your client project’s manifest file and redeploy the project to the emulator. Once it’s

deployed, confirm that you get an error when you invoke the button to launch the

privileged activity. Note that LogCat will display a permission-denial exception.

Now you know how custom permissions work in Android. Obviously, custom

permissions are not limited to activities. In fact, you can apply both predefined and

custom permissions to Android’s other types of components as well. We’ll explore an

important one next: URI permissions.

Understanding and Using URI Permissions
Content providers (discussed in Chapter 3) often need to control access at a finer level

than all or nothing. Fortunately, Android provides a mechanism for this. Think about e-

mail attachments. The attachment may need to be read by another activity to display it.

But the other activity should not get access to all of the e-mail data and does not need

access even to all attachments. This is where URI permissions come in.

Passing URI Permissions in Intents
When invoking another activity and passing a URI, your application can specify that it is

granting permissions to the URI being passed. But before your application can do this, it

needs permission itself to the URI, and the URI content provider must cooperate and

allow the granting of permissions to another activity. The code to invoke an activity with

granting of permissions looks like Listing 10–9, which is actually from the Android Email

program where it is launching an activity to view an email attachment.

Listing 10–9. Code to Launch an Activity with Granting of Permission

try {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(contentUri);
 intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
 startActivity(intent);
} catch (ActivityNotFoundException e) {
 mHandler.attachmentViewError();
 // TODO: Add a proper warning message (and lots of upstream cleanup to prevent
 // it from happening) in the next release.
}

The attachment is specified by contentUri. Notice how the intent is created with the

action Intent.ACTION_VIEW, and the data is set using setData(). The flag is set to grant

read permission of the attachment to whatever activity will match on the intent. This is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 304

where the content provider comes into play. Just because an activity has read

permission to content doesn't mean it can pass along that permission to some other

activity that does not have the permission already. The content provider must allow it as

well. As Android finds a matching intent filter on an activity, it consults with the content

provider to make sure that permissions can be granted. In essence, the content provider

is being asked to allow access to this new activity to the content specified by the URI. If

the content provider refuses then a SecurityException is thrown, and the operation fails.

In Listing 10–9, this particular application is not checking for a SecurityException,

because the developer is not expecting any refusals to grant permission. That’s because

the attachment content provider is part of the Email application! There is a possibility

though that no activity can be found to handle the attachment, so that is the only

Exception being watched for. In the case where the activity being called to process the

URI already has permission to access that URI, the content provider does not get to

deny access. That is, the calling activity can grant permission, and if the activity on the

receiving end of the intent already has the necessary permissions for contentURI, the

called activity will be allowed to proceed with no problems.

In addition to Intent.FLAG_GRANT_READ_URI_PERMISSION, there is a flag for write

permissions: Intent.FLAG_GRANT_WRITE_URI_PERMISSION. It is possible to specify both in

an Intent. Also, these flags can apply to Services and BroadcastReceivers as well as

Activities since they can receive intents too.

Specifying URI Permissions in Content Providers
So how does a content provider specify URI permissions? It does so in the

AndroidManifest.xml file in one of two ways.

 First, in the <provider> tag, the android:grantUriPermissions

attribute can be set to either true or false. If true, any content from

this content provider can be granted. If false, the second way of

specifying URI permissions can happen, or the content provider can

decide not to let anyone else grant permissions at all.

 The second way to allow granting of permissions is to specify it with

child tags of <provider>. The child tag is <grant-uri-permission>, and

you can have more than one within <provider>. <grant-uri-
permission> has three possible attributes:

 Using the android:path attribute, you can specify a complete

path which will then have permissions that are grantable.

 Similarly, android:pathPrefix specifies the beginning of a URI

path

 android:pathPattern allows wildcards (i.e., the asterisk, *,

character) to specify a path.

As we stated before, the granting entity must also have appropriate permissions to the

content before being allowed to grant them to some other entity. Content providers have

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 305

additional ways of controlling access to their content, through the

android:readPermission attribute of the <provider> tag, the android:writePermission

attribute and the android:permission attribute (a convenient way to specify both read

and write permissions with one permission String value). The value for any of these

three attributes is a String that represents the permission a caller must have in order to

read or write with this content provider. Before an activity could grant read permission to

a content URI, that activity must have read permission first, as specified by either the

android:readPermission attribute or the android:permission attribute. The entity

wanting these permissions would declare them in their manifest file with the <uses-
permissions> tag.

References
Here are some helpful references to topics you may wish to explore further:

 http://www.androidbook.com/projects. Look here for a list of

downloadable projects related to this book. For this chapter look for a

zip file called ProAndroid3_Ch10_Security.zip. This zip file contains all

projects from this chapter, listed in separate root directories. There is

also a README.TXT file that describes exactly how to import projects

into Eclipse from one of these zip files.

 http://developer.android.com/guide/topics/security/security.htm
l: This URL is a reference to the Android Developer’s Guide section

on Security and Permissions. It provides an overview with links to lots

of references pages.

 http://developer.android.com/guide/publishing/app-signing.html:

This URL is a reference to the Android Developer’s Guide section on

Signing Your Applications.

 http://android.git.kernel.org/?p=platform/packages/apps/Email.g
it;a=blob_plain;f=src/com/android/email/activity/MessageView.ja
va: This URL is the source code from the stock Android Email

application, where a FLAG_GRANT_READ_URI_PERMISSION is used. You

can see how the Android team implements URI permissions by

browsing in the source code for this application.

Summary
In this chapter, you learned that Android requires all applications to be signed with a

digital certificate. We discussed ensuring build-time security with the emulator and

Eclipse, as well as signing an Android package for release. We also talked about runtime

security; you learned that the Android installer requests the permissions your application

needs at install time. We also showed you how to define the permissions required by

your application and how to create your own custom permissions. Finally, we covered

how content providers can control access to their content and how they allow entities to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10: Exploring Security and Permissions 306

grant permissions to other entities that could be called on to perform operations on

content from the content provider, without giving that helper entity permissions to all
content from the content provider.

In the next chapter, we’ll talk about building and consuming services in Android.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

307

307

 Chapter

Building and Consuming
Services
The Android Platform provides a complete software stack. This means you get an

operating system and middleware, as well as working applications (such as a phone

dialer). Alongside all of this, you have an SDK that you can use to write applications for

the platform. Thus far, we’ve seen that we can build applications that directly interact

with the user through a user interface. We have not, however, discussed background

services or the possibilities of building components that run in the background.

In this chapter, we are going to focus on building and consuming services in Android.

First we’ll discuss consuming HTTP services, and then we'll cover a nice way to do

simple background tasks, and finally we’ll discuss interprocess communication—that is,

communication between applications on the same device. Then we'll go one step further

and build a working example application that integrates with Google's Translate API.

Consuming HTTP Services
Android applications and mobile applications in general are small apps with a lot of

functionality. One of the ways that mobile apps deliver such rich functionality on such a

small device is that they pull information from various sources. For example, most

Android smartphones come with the Maps application, which provides sophisticated

mapping functionality. We, however, know that the application is integrated with the

Google Maps API and other services, which provide most of the sophistication.

That said, it is likely that the applications you write will also leverage information from

other applications and APIs. A common integration strategy is to use HTTP. For

example, you might have a Java servlet available on the Internet that provides services

you want to leverage from one of your Android applications. How do you do that with

Android? Interestingly, the Android SDK ships with a variation of Apache’s HttpClient

(http://hc.apache.org/httpclient-3.x/), which is universally used within the J2EE

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 308

space. The Android version has been modified for Android, but the APIs are very similar

to the APIs in the J2EE version.

The Apache HttpClient is a comprehensive HTTP client. Although it offers full support

for the HTTP protocol, you will likely utilize only HTTP GET and POST. In this section, we

will discuss using the HttpClient to make HTTP GET and HTTP POST calls.

Using the HttpClient for HTTP GET Requests
Here’s one of the general patterns for using the HttpClient:

1. Create an HttpClient (or get an existing reference).

2. Instantiate a new HTTP method, such as PostMethod or GetMethod.

3. Set HTTP parameter names/values.

4. Execute the HTTP call using the HttpClient.

5. Process the HTTP response.

Listing 11–1 shows how to execute an HTTP GET using the HttpClient.

NOTE: We give you a URL at the end of the chapter which you can use to download projects from
this chapter. This will allow you to import these projects into your Eclipse directly. Also, because

the code attempts to use the Internet, you will need to add android.permission.INTERNET

to your manifest file when making HTTP calls using the HttpClient.

Listing 11–1. Using HttpClient and HttpGet: HttpGetDemo.java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import android.app.Activity;
import android.os.Bundle;

public class HttpGetDemo extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 BufferedReader in = null;
 try {

 HttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet("http://code.google.com/android/");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 309

 HttpResponse response = client.execute(request);

 in = new BufferedReader(
 new InputStreamReader(
 response.getEntity().getContent()));

 StringBuffer sb = new StringBuffer("");
 String line = "";
 String NL = System.getProperty("line.separator");
 while ((line = in.readLine()) != null) {
 sb.append(line + NL);
 }
 in.close();

 String page = sb.toString();
 System.out.println(page);
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

The HttpClient provides abstractions for the various HTTP request types, such as

HttpGet, HttpPost, and so on. Listing 11–1 uses the HttpClient to get the contents of

the http://code.google.com/android/ URL. The actual HTTP request is executed with

the call to client.execute(). After executing the request, the code reads the entire

response into a string object. Note that the BufferedReader is closed in the finally

block, which also closes the underlying HTTP connection.

For our example we embedded the HTTP logic inside of an activity, but we don’t need to

be within the context of an activity to use HttpClient. You can use it from within the

context of any Android component or use it as part of a standalone class. In fact, you

really shouldn't use HttpClient directly within an activity, since a web call could take a

while to complete and cause the activity to be force closed. We'll cover that topic later in

this chapter. For now we're going to cheat a little so we can focus on how to make

HttpClient calls.

The code in Listing 11–1 executes an HTTP request without passing any HTTP

parameters to the server. You can pass name/value parameters as part of the request

by appending name/value pairs to the URL, as shown in Listing 11–2.

Listing 11–2. Adding Parameters to an HTTP GET Request

HttpGet request = new HttpGet("http://somehost/WS2/Upload.aspx?one=valueGoesHere");
client.execute(request);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 310

When you execute an HTTP GET, the parameters (names and values) of the request are

passed as part of the URL. Passing parameters this way has some limitations. Namely,

the length of a URL should be kept below 2,048 characters. If you have more than this

amount of data to submit, you should use HTTP POST instead. The POST method is

more flexible and passes parameters as part of the request body.

Using the HttpClient for HTTP POST Requests (a Multipart
Example)
Making an HTTP POST call is very similar to making an HTTP GET call (see Listing 11–3).

Listing 11–3. Making an HTTP POST Request with the HttpClient

 HttpClient client = new DefaultHttpClient();
 HttpPost request = new HttpPost(
 "http://192.165.13.37/services/doSomething.do");
 List<NameValuePair> postParameters = new ArrayList<NameValuePair>();
 postParameters.add(new BasicNameValuePair("first",
 "param value one"));
 postParameters.add(new BasicNameValuePair("issuenum", "10317"));
 postParameters.add(new BasicNameValuePair("username", "dave"));
 UrlEncodedFormEntity formEntity = new UrlEncodedFormEntity(
 postParameters);
 request.setEntity(formEntity);
 HttpResponse response = client.execute(request);

The code in Listing 11–3 would replace the 3 lines in Listing 11–1 where the HttpGet is

used. Everything else could stay the same. To make an HTTP POST call with the

HttpClient, you have to call the execute() method of the HttpClient with an instance of

HttpPost. When making HTTP POST calls, you generally pass URL-encoded name/value

form parameters as part of the HTTP request. To do this with the HttpClient, you have

to create a list that contains instances of NameValuePair objects and then wrap that list

with a UrlEncodedFormEntity object. The NameValuePair wraps a name/value

combination and the UrlEncodedFormEntity class knows how to encode a list of

NameValuePair objects suitable for HTTP calls (generally POST calls). After you create a

UrlEncodedFormEntity, you can set the entity type of the HttpPost to the

UrlEncodedFormEntity and then execute the request.

In Listing 11–3, we created an HttpClient and then instantiated the HttpPost with the

URL of the HTTP endpoint. Next, we created a list of NameValuePair objects and

populated it with several name/value parameters. We then created a

UrlEncodedFormEntity instance, passing the list of NameValuePairobjects to its

constructor. Finally, we called the setEntity() method of the POST request and then

executed the request using the HttpClient instance.

HTTP POST is actually much more powerful than this. With an HTTP POST, we can pass

simple name/value parameters, as shown in Listing 11–3, as well as complex

parameters such as files. HTTP POST supports another request-body format known as

a multipart POST. With this type of POST, you can send name/value parameters as

before, along with arbitrary files. Unfortunately, the version of HttpClient shipped with

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 311

Android does not directly support multipart POST. To do multipart POST calls, you need

to get three additional Apache open source projects: Apache Commons IO, Mime4j, and

HttpMime. You can download these projects from the following web sites:

 Commons IO: http://commons.apache.org/io/

 Mime4j: http://james.apache.org/mime4j/

 HttpMime: http://hc.apache.org/downloads.cgi (inside of HttpClient)

Alternatively, you can visit this site to download all of the required .jar files to do

multipart POST with Android:

http://www.apress.com/book/view/1430226595

Listing 11–4 demonstrates a multipart POST using Android.

Listing 11–4. Making a Multipart POST Call

import java.io.ByteArrayInputStream;
import java.io.InputStream;
import org.apache.commons.io.IOUtils;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.mime.MultipartEntity;
import org.apache.http.entity.mime.content.InputStreamBody;
import org.apache.http.entity.mime.content.StringBody;
import org.apache.http.impl.client.DefaultHttpClient;

import android.app.Activity;

public class TestMultipartPost extends Activity
{
 public void executeMultipartPost() throws Exception
 {
 try {
 InputStream is = this.getAssets().open("data.xml");
 HttpClient httpClient = new DefaultHttpClient();
 HttpPost postRequest =
 new HttpPost("http://mysomewebserver.com/services/doSomething.do");

 byte[] data = IOUtils.toByteArray(is);

 InputStreamBody isb = new InputStreamBody(new
 ByteArrayInputStream(data), "uploadedFile");
 StringBody sb1 = new StringBody("some text goes here");
 StringBody sb2 = new StringBody("some text goes here too");

 MultipartEntity multipartContent = new MultipartEntity();
 multipartContent.addPart("uploadedFile", isb);
 multipartContent.addPart("one", sb1);
 multipartContent.addPart("two", sb2);

 postRequest.setEntity(multipartContent);
 HttpResponse response =httpClient.execute(postRequest);
 response.getEntity().getContent().close();
 } catch (Throwable e)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 312

 // handle exception here
 }
 }
}

NOTE: The multipart example uses several .jar files that are not included as part of the Android
runtime. To ensure that the .jar files will be packaged as part of your .apk file, you need to add
them as external .jar files in Eclipse. To do this, right-click your project in Eclipse, select
Properties, choose Java Build Path, select the Libraries tab, and then select Add External JARs.

Following these steps will make the .jar files available during compile time as well as runtime.

To execute a multipart POST, you need to create an HttpPost and call its setEntity()

method with a MultipartEntity instance (rather than the UrlEncodedFormEntity we

created for the name/value parameter form post). MultipartEntity represents the body

of a multipart POST request. As shown, you create an instance of a MultipartEntity

and then call the addPart() method with each part. Listing 11–4 adds three parts to the

request: two string parts and an XML file.

Finally, if you are building an application that requires you to pass a multipart POST to a

web resource, you’ll likely have to debug the solution using a dummy implementation of

the service on your local workstation. When you’re running applications on your local

workstation, normally you can access the local machine by using localhost or IP address

127.0.0.1. With Android applications, however, you will not be able to use localhost (or

127.0.0.1) because the emulator will be its own localhost. You don't want to point this

client to a service on the Android device, you want to point to your workstation. To refer to

your development workstation from the application running in the emulator, you’ll have to

use your workstation’s IP address. (Refer back to Chapter 2 if you need help figuring out

what your workstation’s IP address is.) You will need to modify Listing 11–4 by

substituting the IP address with the IP address of your workstation.

SOAP, JSON, and XML Parsers
What about SOAP? There are lots of SOAP-based web services on the Internet, but to

date, Google has not provided direct support in Android for calling SOAP web services.

Google instead prefers REST-like web services, seemingly to reduce the amount of

computing required on the client device. However, the tradeoff is that the developer

must do more work to send data and to parse the returned data. Ideally, you will have

some options for how you can interact with your web services. Some developers have

used the kSOAP2 developer kit to build SOAP clients for Android. We won’t be covering

that approach, but it’s out there if you’re interested.

NOTE: The original kSOAP2 source is located here: http://ksoap2.sourceforge.net/. The
open source community has (thankfully!) contributed a version of kSOAP2 for Android, and you

can find out more about it here: http://code.google.com/p/ksoap2-android/.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 313

One approach that's been used successfully is to implement your own services on the

Internet, which can talk SOAP (or whatever) to the destination service. Then your

Android application only needs to talk to your services, and you now have complete

control. If the destination services change, you might be able to handle that without

having to update and release a new version of your application. You'd only have to

update the services on your server. A side benefit of this approach is that you could

more easily implement a paid subscription model for your application. If a user lets their

subscription lapse, you can turn them off at your server.

Android does have support for JavaScript Object Notation (JSON). This is a fairly

common method of packaging data between a web server and a client. The JSON

parsing classes make it very easy to unpack data from a response so your application

can act on it. We'll show you some JSON code later in this chapter when we learn about

the Google Translate API.

Android also has a couple of XML parsers which you can use to interpret the responses

from the HTTP calls. The main one (XMLPullParser) was covered in chapter 3.

Dealing with Exceptions
Dealing with exceptions is part of any program, but software that makes use of external

services (such as HTTP services) must pay additional attention to exceptions because

the potential for errors is magnified. There are several types of exceptions that you can

expect while making use of HTTP services. These are transport exceptions, protocol

exceptions, and timeouts. You should understand when these exceptions could occur.

Transport exceptions can occur due to a number of reasons, but the most likely

scenario with a mobile device is poor network connectivity. Protocol exceptions are

exceptions at the HTTP protocol layer. These include authentication errors, invalid

cookies, and so on. You can expect to see protocol exceptions if, for example, you have

to supply login credentials as part of your HTTP request but fail to do so. Timeouts, with

respect to HTTP calls, come in two flavors: connection timeouts and socket timeouts. A

connection timeout can occur if the HttpClient is not able to connect to the HTTP

server—if, for example, the server is not available. A socket timeout can occur if the

HttpClient fails to receive a response within a defined time period. In other words, the

HttpClient was able to connect to the server, but the server failed to return a response

within the allocated time limit.

Now that you understand the types of exceptions that might occur, how do you deal

with them? Fortunately, the HttpClient is a robust framework that takes most of the

burden off your shoulders. In fact, the only exception types that you’ll have to worry

about are the ones that you’ll be able to manage easily. The HttpClient takes care of

transport exceptions by detecting transport issues and retrying requests (which works

very well with this type of exception). Protocol exceptions are exceptions that can

generally be flushed out during development. Timeouts are the most likely exceptions

that you’ll have to deal with. A simple and effective approach to dealing with both types

of timeouts—connection timeouts and socket timeouts—is to wrap the execute()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 314

method of your HTTP request with a try/catch and then retry if a failure occurs. This is

demonstrated in Listing 11–5.

Listing 11–5. Implementing a Simple Retry Technique to Deal with Timeouts

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

public class TestHttpGet {

 public String executeHttpGetWithRetry() throws Exception {
 int retry = 3;

 int count = 0;
 while (count < retry) {
 count += 1;
 try {
 String response = executeHttpGet();
 /**
 * if we get here, that means we were successful and we
 * can stop.
 */
 return response;
 } catch (Exception e) {
 /**
 * if we have exhausted our retry limit
 */
 if (count < retry) {
 /**
 * we have retries remaining, so log the message
 * and go again.
 */
 System.out.println(e.getMessage());
 } else {
 System.out.println("all retries failed");
 throw e;
 }
 }
 }
 return null;
 }

 public String executeHttpGet() throws Exception {
 BufferedReader in = null;
 try {
 HttpClient client = new DefaultHttpClient();
 HttpGet request = new
 HttpGet("http://code.google.com/android/");
 HttpResponse response = client.execute(request);
 in = new BufferedReader(
 new InputStreamReader(

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 315

 response.getEntity().getContent()));

 StringBuffer sb = new StringBuffer("");
 String line = "";
 String NL = System.getProperty("line.separator");
 while ((line = in.readLine()) != null) {
 sb.append(line + NL);
 }
 in.close();

 String result = sb.toString();
 return result;
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

The code in Listing 11–5 shows how you can implement a simple retry technique to

recover from timeouts when making HTTP calls. The listing shows two methods: one that

executes an HTTP GET (executeHttpGet()), and another that wraps this method with the

retry logic (executeHttpGetWithRetry()). The logic is very simple. We set the number of

retries we want to attempt to 3, and then we enter a while loop. Within the loop, we

execute the request. Note that the request is wrapped with a try/catch block, and in the

catch block we check whether we have exhausted the number of retry attempts.

When using the HttpClient as part of a real-world application, you need to pay some

attention to multithreading issues that might come up. Let’s delve into these now.

Addressing Multithreading Issues
The examples we’ve shown so far created a new HttpClient for each request. In

practice, however, you should probably create one HttpClient for the entire application

and use that for all of your HTTP communication. With one HttpClient servicing all of

your HTTP requests, you should also pay attention to multithreading issues that could

surface if you make simultaneous requests through the same HttpClient. Fortunately,

the HttpClient provides facilities that make this easy—all you have to do is create the

DefaultHttpClient using a ThreadSafeClientConnManager, as shown in Listing 11–6.

Listing 11–6. Creating an HttpClient for Multithreading: CustomHttpClient.java

import org.apache.http.HttpVersion;
import org.apache.http.client.HttpClient;
import org.apache.http.conn.ClientConnectionManager;
import org.apache.http.conn.params.ConnManagerParams;
import org.apache.http.conn.scheme.PlainSocketFactory;
import org.apache.http.conn.scheme.Scheme;
import org.apache.http.conn.scheme.SchemeRegistry;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 316

import org.apache.http.conn.ssl.SSLSocketFactory;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;
import org.apache.http.params.BasicHttpParams;
import org.apache.http.params.HttpConnectionParams;
import org.apache.http.params.HttpParams;
import org.apache.http.params.HttpProtocolParams;
import org.apache.http.protocol.HTTP;

public class CustomHttpClient {
 private static HttpClient customHttpClient;

 /** A private Constructor prevents instantiation */
 private CustomHttpClient() {
 }

 public static synchronized HttpClient getHttpClient() {
 if (customHttpClient == null) {
 HttpParams params = new BasicHttpParams();
 HttpProtocolParams.setVersion(params, HttpVersion.HTTP_1_1);
 HttpProtocolParams.setContentCharset(params,
 HTTP.DEFAULT_CONTENT_CHARSET);
 HttpProtocolParams.setUseExpectContinue(params, true);
 HttpProtocolParams.setUserAgent(params,
"Mozilla/5.0 (Linux; U; Android 2.2.1; en-us; Nexus One Build/FRG83) AppleWebKit/533.1
(KHTML, like Gecko) Version/4.0 Mobile Safari/533.1"
);

 ConnManagerParams.setTimeout(params, 1000);

 HttpConnectionParams.setConnectionTimeout(params, 5000);
 HttpConnectionParams.setSoTimeout(params, 10000);

 SchemeRegistry schReg = new SchemeRegistry();
 schReg.register(new Scheme("http",
 PlainSocketFactory.getSocketFactory(), 80));
 schReg.register(new Scheme("https",
 SSLSocketFactory.getSocketFactory(), 443));
 ClientConnectionManager conMgr = new
 ThreadSafeClientConnManager(params,schReg);

 customHttpClient = new DefaultHttpClient(conMgr, params);
 }
 return customHttpClient;
 }

 public Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
 }
}

If your application needs to make more than a few HTTP calls, you should create an

HttpClient that services all your HTTP requests. The simplest way to do this is to create

a singleton class that can be accessed from anywhere in the application, as we’ve

shown here. This is a fairly standard Java pattern in which we synchronize access to a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 317

getter method, and that getter method returns the one and only HttpClient object for

the singleton, creating it the first time as necessary.

Now, take a look at the getHttpClient() method of CustomHttpClient. This method is

responsible for creating our singleton HttpClient. We set some basic parameters, some

timeout values, and the schemes that our HttpClient will support (i.e., HTTP and

HTTPS). Notice that when we instantiate the DefaultHttpClient(), we pass in a

ClientConnectionManager. The ClientConnectionManager is responsible for managing

HTTP connections for the HttpClient. Because we want to use a single HttpClient for

all the HTTP requests (requests which could overlap if we're using threads), we create a

ThreadSafeClientConnManager.

We also show you a simpler way of collecting the response from the HTTP request,

using a BasicResponseHandler. The code for our activity that uses our CustomHttpClient

is in Listing 11–7.

Listing 11–7. Using Our CustomHttpClient: HttpActivity.java

import java.io.IOException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.params.HttpConnectionParams;
import org.apache.http.params.HttpParams;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class HttpActivity extends Activity
{
 private HttpClient httpClient;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 httpClient = CustomHttpClient.getHttpClient();
 getHttpContent();
 }

 public void getHttpContent()
 {
 try {
 HttpGet request = new HttpGet("http://www.google.com/");
 String page = httpClient.execute(request,
 new BasicResponseHandler());
 System.out.println(page);
 } catch (IOException e) {
 // covers:
 // ClientProtocolException
 // ConnectTimeoutException
 // ConnectionPoolTimeoutException
 // SocketTimeoutException
 e.printStackTrace();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 318

 }
}

For this sample application, we do a simple HTTP get of the Google home page. We

also use a BasicResponseHandler object to take care of rendering the page as a big

String, which we then write out to LogCat. As you can see, adding a

BasicResponseHandler to the execute() method is very easy to do.

You may be tempted to take advantage of the fact that each Android application has an

associated Application object. By default, if you don’t define a custom application

object, Android uses android.app.Application. Here’s the interesting thing about the

application object: there will always be exactly one application object for your

application, and all of your components can access it (using the global context object). It

is possible to extend the Application class and add functionality such as our

CustomHttpClient. However, in our case there is really no reason to do this within the

Application class itself, and you will be much better off not messing with the

Application class when you can simply create a separate singleton class to handle this

type of need.

Fun With Timeouts
There are other terrific advantages to setting up a single HttpClient for our application

to use. We can modify the properties of it in one place, and everyone can take

advantage of it. For example, if we want to setup common timeout values for our HTTP

calls, we can do that when creating our HttpClient by calling the appropriate setter

functions against our HttpParams object. Please refer to Listing 11–6 and the

getHttpClient() method. Notice that there are three timeouts we can play with. The first

is a timeout for the connection manager, and it defines how long we should wait to get a

connection out of the connection pool managed by the connection manager. In our

example, we set this to 1 second. About the only time we might ever have to wait is if all

connections from the pool are in use. The second timeout value defines how long we

should wait to make a connection over the network to the server on the other end. Here,

we used a value of 2 seconds. And lastly, we set a socket timeout value to 4 seconds to

define how long we should wait to get data back for our request.

Corresponding to the three timeouts described previously, we could get these three

exceptions: ConnectionPoolTimeoutException, ConnectTimeoutException or

SocketTimeoutException. All three of these exceptions are subclasses of IOException,

which we've used in our HttpActivity instead of catching each subclass exception

separately.

If you investigate each of the parameter-setting classes that we used in

getHttpClient(), you might discover even more parameters that you would find useful.

We've described for you how to set up a common pool of HTTP connections for use

across your application. And the implication is that every time you need to use a

connection, the various settings will apply to your particular needs. But what if you want

different settings for a particular message? Thankfully, there’s an easy way to do that as

well. We showed you how to use an HttpGet or an HttpPost object to describe the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 319

request to be made across the network. In a similar way to how we set HttpParams on

our HttpClient, you can set HttpParams on both HttpGet and HttpPost objects. The

settings you apply at the message level will override the settings at the HttpClient level

without changing the HttpClient settings. Listing 11–8 shows what this might look like if

we wanted to have a socket timeout of 1 minute instead of 4 seconds for one particular

request. You would use these lines in place of the lines in the try block of

getHttpContent() in Listing 11–7.

Listing 11–8. Overriding the Socket Timeout at the Request Level

 HttpGet request = new HttpGet("http://www.google.com/");
 HttpParams params = request.getParams();
 HttpConnectionParams.setSoTimeout(params, 60000); // 1 minute
 request.setParams(params);
 String page = httpClient.execute(request,
 new BasicResponseHandler());
 System.out.println(page);

Using the HttpURLConnection
Android provides another way to deal with HTTP services, and that is using the

java.net.HttpURLConnection class. This is not unlike the HttpClient classes we’ve just

covered, but HttpURLConnection tends to require more statements to get things done.

Your choice of which to use depends on what you are comfortable with.

Using the AndroidHttpClient
Android 2.2 introduced a new subclass of HttpClient called AndroidHttpClient. The

idea behind this class is to make things easier for the developer of Android apps by

providing default values and logic appropriate for Android apps. For example, the

timeout values for the connection and the socket (i.e., operation) default to 20 seconds

each. The connection manager defaults to the ThreadSafeClientConnManager. For the

most part, it is interchangeable with the HttpClient we used in the previous examples.

There are a few differences though that you should be aware of.

 To create an AndroidHttpClient, you invoke the static newInstance()

method of the AndroidHttpClient class, like this:

AndroidHttpClient httpClient = AndroidHttpClient.newInstance("my-http-agent-string");

 Notice that the parameter to the newInstance() method is an HTTP

agent string. In Android's default browser, you might see a string such

as the following but you can use whatever you want:

Mozilla/5.0 (Linux; U; Android 2.1; en-us; ADR6200 Build/ERD79) AppleWebKit/530.17
(KHTML, like Gecko) Version/ 4.0 Mobile Safari/530.17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 320

When execute() is called on this client, you must be in a thread

separate from the main UI thread. This means that you'll get an

exception if you simply attempt to replace our previous HttpClient
with an AndroidHttpClient. It is bad practice to make HTTP calls from

the main UI thread, so AndroidHttpClient won't let you. We'll be

covering threading issues in the next section.

You must call close() on the AndroidHttpClient instance when you

are done with it. This is so memory can be freed up properly.

There are some handy static methods for dealing with compressed

responses from a server, including

modifyRequestToAcceptGzipResponse(HttpRequest request)

getCompressedEntity(byte[] data, ContentResolver resolver)

getUngzippedContent(HttpEntity entity)

Once you've acquired an instance of the AndroidHttpClient, you cannot modify any

parameter settings in it, nor can you add any parameter settings to it (such as the HTTP

protocol version for example). Your options are to override settings within the HttpGet
object as shown previously or to not use the AndroidHttpClient.

This concludes our discussion of using HTTP services with the HttpClient. In the

sections that follow, we will turn our focus to another interesting part of the Android

Platform: writing background/long-running services. Although not immediately obvious,

the processes of making HTTP calls and writing Android services are linked in that you

will do a lot of integration from within Android services. Take, for example, a simple mail-

client application. On an Android device, this type of application will likely be composed

of two pieces: one that will provide the UI to the user, and another to poll for mail

messages. The polling will likely have to be done within a background service. The

component that polls for new messages will be an Android service, which will in turn use

the HttpClient to perform the work.

NOTE: For a great tutorial on using HttpClient and these other concepts, please check out the

Apache site at http://hc.apache.org/httpcomponents-client-ga/tutorial/html/.

Using Background Threads (AsyncTask)
So far in our examples, we've been using the main thread of the activity to do our HTTP

calls. While we may get lucky and get fast response times to every call, our network

connection and the Internet are not always so speedy. Since the main thread of an

activity is used mainly to process events from the user (button clicks and so on) and

perform updates to the user interface, we should use a background thread to do work

that could take a while. Android forces us into this position because if the main thread

does not handle something within 5 seconds, an Application Not Responding (ANR)

condition will be triggered, which ruins the user's experience by displaying a nasty

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 321

dialog box asking the user to confirm that the current application should be terminated

(also known as a force close). We’ll get into the details of the main thread and the 5

second time limit in Chapter 13, but for now, just know that we can’t tie up the main

thread for long.

If all you want to do is some computing, with no updates required to the user interface,

you could use a simple Thread object to offload some processing from the main thread.

This technique won't work, however, if you need to do updates to the user interface.

And that's because the Android user interface toolkit is not thread safe, so it should

always be updated only from the main thread.

If you intend to update the user interface in any way as a result of your background

thread, you should seriously consider using an AsyncTask. The AsyncTask provides a

convenient way of backgrounding some processing that wishes to update the user

interface. The AsyncTask takes care of creating a background thread for us where the

work will get done, as well as providing callbacks that will run on the main thread to

allow easy access to the user interface element (i.e., views). The callbacks can fire

before, during, and after our background thread has run.

For example, consider the problem of grabbing an image from a network server to

display in our application. Perhaps the image needs to be created on the fly. We cannot

guarantee how long it will take the image to be returned to us, so we really need to use a

background thread for the job.

Listing 11–9 shows a simple implementation of an AsyncTask that will do the job for us.

We'll talk about that and then show you the layout file and the Java code for an activity

that can call this AsyncTask.

Listing 11–9. AsyncTask for Downloading an Image: DownloadImageTask.java

import java.io.IOException;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.params.BasicHttpParams;
import org.apache.http.params.HttpConnectionParams;
import org.apache.http.params.HttpParams;
import org.apache.http.util.EntityUtils;
import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.util.Log;
import android.widget.ImageView;
import android.widget.TextView;

public class DownloadImageTask extends AsyncTask<String, Integer, Bitmap> {
 private Context mContext;

 DownloadImageTask(Context context) {
 mContext = context;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 322

 protected void onPreExecute() {
 // We could do some setup work here before doInBackground() runs
 }

 protected Bitmap doInBackground(String... urls) {
 Log.v("doInBackground", "doing download of image");
 return downloadImage(urls);
 }

 protected void onProgressUpdate(Integer... progress) {
 TextView mText = (TextView)
 ((Activity) mContext).findViewById(R.id.text);
 mText.setText("Progress so far: " + progress[0]);
 }

 protected void onPostExecute(Bitmap result) {
 if(result != null) {
 ImageView mImage = (ImageView)
 ((Activity) mContext).findViewById(R.id.image);
 mImage.setImageBitmap(result);
 }
 else {
 TextView errorMsg = (TextView)
 ((Activity) mContext).findViewById(R.id.errorMsg);
 errorMsg.setText("Problem downloading image. Please try again later.");
 }
 }

 private Bitmap downloadImage(String... urls)
 {
 HttpClient httpClient = CustomHttpClient.getHttpClient();
 try {
 HttpGet request = new HttpGet(urls[0]);
 HttpParams params = new BasicHttpParams();
 HttpConnectionParams.setSoTimeout(params, 60000); // 1 minute
 request.setParams(params);

 publishProgress(25);

 HttpResponse response = httpClient.execute(request);

 publishProgress(50);

 byte[] image = EntityUtils.toByteArray(response.getEntity());

 publishProgress(75);

 Bitmap mBitmap = BitmapFactory.decodeByteArray(
 image, 0, image.length);

 publishProgress(100);

 return mBitmap;
 } catch (IOException e) {
 // covers:
 // ClientProtocolException
 // ConnectTimeoutException

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 323

 // ConnectionPoolTimeoutException
 // SocketTimeoutException
 e.printStackTrace();
 }
 return null;
 }
}

Because AsyncTask is abstract, you need to customize it by extending it, which we do

with the class DownloadImageTask. We're going to use a constructor that takes a

reference to the calling context, which, in our case, will be the calling activity. We'll use

that context to get to the activity's views. We’ll also reuse the CustomHttpClient class

from before.

There are four steps to an AsyncTask:

1. Do any setup work in the onPreExecute() method. This method executes on the

main thread.

2. Run a background thread with doInBackground(). Thread creation is all handled

for us behind the scenes. This code runs in a separate background thread.

3. Update progress using publishProgress() and onProgressUpdate().

publishProgress() gets called from within the code of doInBackground(), while

onProgressUpdate() is executed in the main thread as a result of the call to

publishProgress(). With these two methods, the backgrounded thread is able to

communicate with the main thread while it is executing, so status updates can be

made in the user interface before the backgrounded thread has completed its

work.

4. Update the user interface in onPostExecute() with the results. This method

executes in the main thread.

Steps 1 and 3 are optional. In our example, we chose not to do any initialization in

onPreExecute(), but we did utilize the progress updating as in step 3. The main work of

the background thread is done in the downloadImage() method called from

doInBackground(). The downloadImage() method takes a URL and uses our HttpClient

to execute an HttpGet request and response. Notice that we're now able to set a

timeout of 60 seconds without worrying about getting any ANRs. You can see in the

code where the progress is updated during the steps of setting up the HttpClient

connection, executing the HTTP request, converting the image response to a byte array

and then building a Bitmap object from it. When downloadImage() returns back to

doInBackground() and doInBackground() returns, Android takes care of taking our return

value and passing it to onPostExecute(). Once the Bitmap has been passed to

onPostExecute(), it is safe to update our ImageView with it, since onPostExecute() runs

on the main thread of our activity. But what if we got some sort of exception while doing

the download? If we do not get an image back from our HTTP call but get an exception

instead, our Bitmap will be null. We can detect that fact in onPostExecute() and display

an error message instead of attempting to set the ImageView to a Bitmap. Of course, we

could take other action if we know that our download failed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 324

Please keep in mind that the only code that does not run on the main thread is the code

from doInBackground(). So be careful not to work with the UI within the

doInBackground() method, since that is where you could get into trouble. Do not, for

instance, call methods from doInBackground() that modify the UI elements. Only touch

UI elements in onPreExecute(), onProgressUpdate(), and onPostExecute().

Let's fill out our latest example with the layout XML file and the Java code for our activity

in Listings 11–10 and 11–11 respectively.

Listing 11–10. Layout for Calling our AsyncTask: /res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
 >
<LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 >
 <Button android:id="@+id/button" android:text="Get Image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doClick"
 />
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
</LinearLayout>
<TextView android:id="@+id/errorMsg" android:textColor="#ff0000"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
<ImageView android:id="@+id/image"
 android:layout_width="fill_parent" android:layout_height="0dip"
 android:layout_weight="1" />
</LinearLayout>

Listing 11–11. Activity for Calling our AsyncTask: HttpActivity.java

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class HttpActivity extends Activity {
 private DownloadImageTask diTask;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 325

 public void doClick(View view) {
 if(diTask != null) {
 AsyncTask.Status diStatus = diTask.getStatus();
 Log.v("doClick", "diTask status is " + diStatus);
 if(diStatus != AsyncTask.Status.FINISHED) {
 Log.v("doClick", "... no need to start a new task");
 return;
 }
 // Since diStatus must be FINISHED, we can try again.
 }
 diTask = new DownloadImageTask(this);

diTask.execute("http://chart.apis.google.com/chart?&cht=p&chs=460x250&chd=t:15.3,20.3,0.
2,59.7,4.5&chl=Android%201.5%7CAndroid%201.6%7COther*%7CAndroid%202.1%7CAndroid%202.2&ch
co=c4df9b,6fad0c");
 }
}

When you run this sample and click the button, you should see a display like Figure 11–1.

Figure 11–1. Using AsyncTask to download an image (the Android device chart as of August 2, 2010)

The layout is pretty straightforward. We have a button with a text message next to it.

This text will be our progress message. Underneath that, we have room for an error

message, whose text will be colored red. And finally, we have a place for our image.

Within our button callback method doClick(), we need to instantiate a new instance of

our customized AsyncTask class and call the execute() method. This is the pattern you

would use also. Instantiate an extension of AsyncTask, and call the execute() method.

For our example, we're calling a Google charts service that takes data values and label

names and creates a chart image for us, returning it as a PNG image. But before we

launch our task, we really should check to see if a task is already running. If the user

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 326

double-clicks the button, we could end up with two backgrounded tasks. Fortunately,

the AsyncTask class allows us to check its status. If doTask is not null, there's a

possibility that we have a running task. So we check the status of our AsyncTask. If it's

anything but FINISHED, the task is either RUNNING or PENDING and about to run. Therefore,

we only want to drop through and create a new AsyncTask if we have a task and it is

already FINISHED. Of course, if the previous AsyncTask was able to successfully

download the image, we might not want to download it again. But for our example, we'll

go ahead and get it again.

While our sample application runs, you should notice the progress message updating

after pressing the button and then the image appears. The button goes from a pressed

state back to the normal state before the progress message starts to change. This is an

important observation, since it means our main thread has returned to managing the

user interface while our download is underway.

Just for fun, go into the URL string for the Google charts call, and make a change that

will cause an error situation. Now, run the application again. You should see a result

similar to Figure 11–2.

Figure 11–2. Communicating exceptions back to the user interface with AsyncTask

Here are a few more things to know about AsyncTasks. Once we've instantiated our

extension of AsyncTask and launched the execute() method, our main thread goes

back to executing. But we still have a reference to the task and can operate on it from

the main thread. For example, we could call cancel() to kill it. We could call

isCancelled() to see if it's been cancelled. We might want to modify our logic in

onPostExecute() to deal with those cancellations. And AsyncTask has two forms of

get() where we could get the result from doInBackground() instead of letting

onPostExecute() do our work. One form of get() blocks, while the other uses a timeout

value to prevent the calling thread from waiting too long.

An AsyncTask can only be run once. Therefore, if you do keep a reference to an

AsyncTask, do not call execute() more than once on it. You will get an exception if you

do. You are free to create new instances of your AsyncTask, but each of those instances

can only be executed once. That's why we create a new DownloadImageTask every time

we need one.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 327

Handling Configuration Changes with AsyncTasks
But there's one more big thing to realize about AsyncTasks. In our example previously,

our AsyncTask won't work if the activity that launched it gets destroyed and re-created.

This is a really big thing. Obviously, if our onPostExecute() callback executes against the

original activity, but that activity has been replaced in our application with a new one,

our AsyncTask will be updating views that are no longer visible to the user. How is it

possible that an activity will be destroyed and re-created? Actually, it happens all the

time. Any time the configuration of the device is changed, for example, when the device

is rotated from portrait to landscape mode, our activity will be destroyed and re-created.

Remember that when Android is creating the user interface, it uses the configuration of

the device to figure out which layouts and resources to use. This is rather complicated,

so the easiest and quickest thing for Android to do is to destroy the current activity and

re-create it with the new configuration. Fortunately, all is not lost, especially our

AsyncTask. Because our AsyncTask is running in a separate thread within our

application, it is still there when our new activity comes into being. What we need to do

is reconnect the two, so our AsyncTask can find the views on the new activity. There is a

callback and a method on an activity to make this work for us, and they are

onRetainNonConfigurationInstance() and getLastNonConfigurationInstance()

respectively. Basically, what these two do is pass an object from our old activity to our

new one.

Listing 11–12. Our New HttpActivity.java That Handles Reconfiguration

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class HttpActivity extends Activity {
 private DownloadImageTask diTask;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // The following checks to see if we're restarting with a
 // backgrounded AsyncTask. If so, re-establish the connection.
 // Also, since the image did not get saved across the
 // destroy/create cycle, if the AsyncTask has finished,
 // grab the downloaded image again from the AsyncTask.
 if((diTask =
 (DownloadImageTask)getLastNonConfigurationInstance())
 != null)
 {
 diTask.setContext(this); // Give my AsyncTask the new
 // Activity reference
 if(diTask.getStatus() == AsyncTask.Status.FINISHED)
 diTask.setImageInView();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 328

 }

 public void doClick(View view) {
 if(diTask != null) {
 AsyncTask.Status diStatus = diTask.getStatus();
 Log.v("doClick", "diTask status is " + diStatus);
 if(diStatus != AsyncTask.Status.FINISHED) {
 Log.v("doClick", "... no need to start a new task");
 return;
 }
 // Since diStatus must be FINISHED, we can try again.
 }
 diTask = new DownloadImageTask(this);

diTask.execute("http://chart.apis.google.com/chart?&cht=p&chs=460x250&chd=t:15.3,20.3,0.
2,59.7,4.5&chl=Android%201.5%7CAndroid%201.6%7COther*%7CAndroid%202.1%7CAndroid%202.2&ch
co=c4df9b,6fad0c");
 }

 // This gets called before onDestroy(). We want to pass forward
 // a reference to our AsyncTask.
 @Override
 public Object onRetainNonConfigurationInstance() {
 return diTask;
 }
}

This looks a lot like our HttpActivity from Listing 11–11, except that this time we call

getLastNonConfigurationInstance() to see if we have a DownloadImageTask object

waiting for us from an old instance of HttpActivity. If we do find one, we need to give it

a new reference to the activity, so it can find the new views. See Listing 11–13 for the

code of our new DownloadImageTask. Once we've set the new context in our

DownloadImageTask, we check to see if the task has finished, as it might have done while

HttpActivity was being re-created. If so, we use the setImageInView() method to

update our image—more on this a bit later.

You should notice that our button handler, doClick(), is exactly the same as before. But

now, we have an implementation of the onRetainNonConfigurationInstance() callback,

which only needs to return an object to be passed forward. In our case, we only care

about our DownloadImageTask so that's all we need to pass. If we needed to pass more

stuff forward, we would need to construct an object to hold it all and then pass that.

These are basic Java objects, so we don't need to worry about serialization or parcels

(more on parcels later in this chapter). We're merely passing our AsyncTask into the

future so we can reconnect with it then.

Listing 11–13. Our New DownloadImageTask.java That Handles Reconfiguration

import java.io.IOException;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.params.BasicHttpParams;
import org.apache.http.params.HttpConnectionParams;
import org.apache.http.params.HttpParams;
import org.apache.http.util.EntityUtils;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 329

import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.util.Log;
import android.widget.ImageView;
import android.widget.TextView;

public class DownloadImageTask extends AsyncTask<String, Integer, Bitmap> {
 private Context mContext; // reference to the calling Activity
 int progress = -1;
 Bitmap downloadedImage = null;

 DownloadImageTask(Context context) {
 mContext = context;
 }

 // Called from main thread to re-connect
 protected void setContext(Context context) {
 mContext = context;
 if(progress >= 0) {
 publishProgress(this.progress);
 }
 }

 protected void onPreExecute() {
 progress = 0;
 // We could do some other setup work
 // here before doInBackground() runs
 }

 protected Bitmap doInBackground(String... urls) {
 Log.v("doInBackground", "doing download of image...");
 return downloadImage(urls);
 }

 protected void onProgressUpdate(Integer... progress) {
 TextView mText = (TextView)
 ((Activity) mContext).findViewById(R.id.text);
 mText.setText("Progress so far: " + progress[0]);
 }

 protected void onPostExecute(Bitmap result) {
 if(result != null) {
 downloadedImage = result;
 setImageInView();
 }
 else {
 TextView errorMsg = (TextView)
 ((Activity) mContext).findViewById(R.id.errorMsg);
 errorMsg.setText("Problem downloading image. Please try later.");
 }
 }

 public Bitmap downloadImage(String... urls)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 330

 HttpClient httpClient = CustomHttpClient.getHttpClient();
 try {
 HttpGet request = new HttpGet(urls[0]);
 HttpParams params = new BasicHttpParams();
 HttpConnectionParams.setSoTimeout(params, 60000); // 1 minute
 request.setParams(params);

 setProgress(25);

 HttpResponse response = httpClient.execute(request);

 setProgress(50);

 sleepFor(5000); // five second sleep

 byte[] image = EntityUtils.toByteArray(response.getEntity());

 setProgress(75);

 Bitmap mBitmap = BitmapFactory.decodeByteArray(image, 0,
 image.length);

 setProgress(100);

 return mBitmap;
 } catch (IOException e) {
 // covers:
 // ClientProtocolException
 // ConnectTimeoutException
 // ConnectionPoolTimeoutException
 // SocketTimeoutException
 e.printStackTrace();
 }
 return null;
 }

 private void setProgress(int progress) {
 this.progress = progress;
 publishProgress(this.progress);
 }

 protected void setImageInView() {
 if(downloadedImage != null) {
 ImageView mImage = (ImageView)
 ((Activity) mContext).findViewById(R.id.image);
 mImage.setImageBitmap(downloadedImage);
 }
 }

 private void sleepFor(long msecs) {
 try {
 Thread.sleep(msecs);
 } catch (InterruptedException e) {
 Log.v("sleep", "interrupted");
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 331

Go ahead and run this example. We've added a delay of 5 seconds to our AsyncTask to

allow you time to rotate the screen while the background task is running. To rotate the

emulator, press Ctrl+F11 on your workstation's keyboard. You should see our UI rotate

and then correct itself. Each time it rotates, the image disappears (if it was visible) and

reappears as our code runs. Feel free to rotate at different times of operation to see the

effects. You might even want to go back to the earlier AsyncTask example, add a delay

step, and experiment with rotation to see that it does not behave as a user would want.

Now, let's dig into the new code to see how it works.

This time our AsyncTask extension class is a little bit different.

There are a couple of things that happen in a configuration change that we have to

handle. First of all, you need to know that our AsyncTask needs to be given a new

reference to the activity so it will be able to update the appropriate views, both in

onProgressUpdate() and in onPostExecute(). When our old activity got destroyed, our

old reference to it became useless. We need a new reference. We would need a

reference to the new activity in onPreExecute() also if we did something in there with the

user interface. We now have a method called setContext() to let the activity update its

context with us, so we'll be able to find the views when we need them.

Second, we're handling the progress updates a little differently. We hang onto a

progress member that we can refer to in our setContext() method as well as in our

setProgress() method. We now call setProgress() at the appropriate places of our

downloadImage() method. When we reconnect from the new activity, we want to

immediately display the current progress, so we do a publishProgress() call in

setContext().

Third, images are not maintained across the destroy/create cycle. If our activity is re-

created before our AsyncTask finishes, we'll be fine, since onPostExecute() will set our

new bitmap. But, if our AsyncTask finished long ago, and then we rotate the device, our

activity will be re-created, but our image will not get set. We could again download the

image from the server, but in our example, we chose to hang onto the bitmap using a

new member called downloadedImage and provide a new protected method called

setImageInView() to reattach the bitmap to the ImageView. As was said before, you do

not want to hang onto a user interface element such as a View inside of the AsyncTask.

That is why we keep the bitmap and not the ImageView. We do not want to leak memory

through references to views on the old activity.

Getting Files Using DownloadManager
Under certain circumstances, your application may need to download a large file to the

device. Because this can take awhile, and because the procedure can be standardized,

Android 2.3 introduced a special class just to manage this type of operation:

DownloadManager. The purpose of the DownloadManager is to satisfy a

DownloadManager Request by using a background thread to download a large file to a

local location on the device. It is possible to configure the DownloadManager to provide

a notification of the download to the user.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 332

In our next sample application, we use the DownloadManager to pull down one of the

Android SDK ZIP files. This sample project will have the following files

 res/layout/main.xml (Listing 11–14)

 MainActivity.java (Listing 11–15)

 AndroidManifest.xml (Listing 11–16)

Listing 11–14. Using DownloadManager: /res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <Button android:onClick="doClick" android:text="Start"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <TextView android:id="@+id/tv"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Our layout is a simple one with a button and a text view. The button will cause the download

to start, and we’ll display some messages in the text view to indicate the beginning and end

of the download. The user interface looks like Figure 11–3.

Figure 11–3. User Interface of our DownloadManagerDemo Sample Application

Our next listing has the Java code for this application.

Listing 11–15. Using DownloadManager: MainActivity.java

import android.app.Activity;
import android.app.DownloadManager;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;

public class MainActivity extends Activity {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 333

 protected static final String TAG = "DownloadMgr";
 private DownloadManager dMgr;
 private TextView tv;
 private long downloadId;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 tv = (TextView)findViewById(R.id.tv);
 }

 @Override
 protected void onResume() {
 super.onResume();
 dMgr = (DownloadManager) getSystemService(DOWNLOAD_SERVICE);
 }

 public void doClick(View view) {
 DownloadManager.Request dmReq = new DownloadManager.Request(
 Uri.parse(
 "http://dl-ssl.google.com/android/repository/" +
 "platform-tools_r01-linux.zip"));
 dmReq.setTitle("Platform Tools");
 dmReq.setDescription("Download for Linux");
 dmReq.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_MOBILE);

 IntentFilter filter = new
IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE);
 registerReceiver(mReceiver, filter);

 downloadId = dMgr.enqueue(dmReq);

 tv.setText("Download started... (" + downloadId + ")");
 }

 public BroadcastReceiver mReceiver = new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 Bundle extras = intent.getExtras();
 long doneDownloadId =
 extras.getLong(DownloadManager.EXTRA_DOWNLOAD_ID);
 tv.setText(tv.getText() + "\nDownload finished (" +
 doneDownloadId + ")");
 if(downloadId == doneDownloadId)
 Log.v(TAG, "Our download has completed.");
 }
 };

 @Override
 protected void onPause() {
 super.onPause();
 unregisterReceiver(mReceiver);
 dMgr = null;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 334

The code for this application is very straightforward. First we initialize our main view, and

then we get a reference to the text view. Within our onResume() method, we get a

reference to the DOWNLOAD_SERVICE service. Note that we de-reference this service in

onPause(). Our button click method doClick() creates a new DownloadManager.Request

object using the path to the ZIP file we want to download. We also set the title,

description, and allowed network type for the download. There are a few more options

to choose from; see the documentation for details.

Simply for demonstration purposes, we chose to use the mobile network for

downloading, but you can also choose just WiFi (using NETWORK_WIFI instead of

NETWORK_MOBILE) or you can OR the two values together to allow either. By default both

networks are allowed for download, which means for our sample application we only

want to use the mobile network for downloading, even if WiFi is available.

Once we’ve set up our request object, we create a filter for a broadcast receiver and we

register it. We’ll get to our broadcast receiver code shortly. By registering the receiver,

we’ll be notified when any download has completed. This means we need to keep track

of the ID of our request, which is returned when we call enqueue() on our

DownloadManager. Finally, we update the status message in our UI to indicate that a

download has started.

For this application to work, we need to specify a couple of permissions, as shown in

our AndroidManifest.xml file in Listing 11–16, to allow our application to access the

Internet and to be able to write the file to the SD card. What’s strange about Android 2.3

is that if you don’t specify the permissions as indicated in Listing 11–16, you’ll get an

error message that complains about not having the ACCESS_ALL_DOWNLOADS permission,

which you don’t even need for this example.

Listing 11–16. Using DownloadManager: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.services.download"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
 <uses-sdk android:minSdkVersion="9" />

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
</manifest>

When you run this application, it should show the button. Clicking the button will initiate

the download operation and show the message as in Figure 11–3. Notice that there’s a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 335

download icon in the notification bar in the upper left corner of the screen. If you were to

drag down on the download icon, you would see a notification window that looks like

Figure 11–4.

Figure 11–4. Downloads in the Notification List

The notification is the download occurring in the background. Once the download has

completed, this notification item will be cleared, and we’ll see an additional message in

our application, as shown in Figure 11–5.

Figure 11–5. Application shows download is complete

In our broadcast receiver, we interrogate the intent to find out if the download that

completed was ours or not. If it is, we update our status message in the UI, and that’s all

we’re doing. Remember that we cannot do much processing in our broadcast receiver

because we must return from onReceive() quickly. For example, we could instead

invoke a service to process the file that was downloaded. Within that service, we could

call something like Listing 11–17 to get to the file contents.

Listing 11–17. Reading a Downloaded File

 try {
 ParcelFileDescriptor pfd = dMgr.openDownloadedFile(doneDownloadId);
 // Now we have a read-only handle to the downloaded file
 // Proceed to read the file...
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 336

One way to locate the downloaded file is to use the DownloadManager service, and we

need to specify the download ID to get the appropriate file. This was shown in Listing

11–17. The DownloadManager class takes care of resolving the download ID to the actual

file. While our example downloads a file to the public area on the SD card, you can in

fact download a file to the application’s private data area on the SD card, using one of

the setDestination*() methods of DownloadManager.Request.

DownloadManager has its own application that you can also access to see downloaded

files. From the application menu on the Android device or emulator, look for the icon as

shown in Figure 11–6.

Figure 11–6. The Downloads application icon

You can use the Downloads application to also get to downloaded files. Go ahead and

try it now. When you launch the Downloads application, you’ll see a screen that looks

like Figure 11–7. Actually, it won’t have the menu along the bottom until you click in a

checkbox to select a specific download, as we did before taking the screen shot.

Figure 11–7. The Downloads application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 337

The DownloadManager contains a content provider for the download file information. The

Downloads application is simply accessing this content provider to show the list of

available downloads to the user. This means you can also interrogate the content

provider within your application to get information about downloads. To do that, you

would use a DownloadManager.Query object, and DownloadManager’s query() method.

There aren’t very many options for searching however. You can search by download ID

(one or more), or you can search by download status. The result from the query()

method is a Cursor object which can be used to interrogate rows from the

DownloadManager content provider. The columns available are listed in the

documentation for DownloadManager, and include things like the local Uri of the

downloaded file, the number of bytes, the media type of the file, the download status,

and several others. When you access the content provider in this way, you need to add

the ACCESS_ALL_DOWNLOADS permission to your AndroidManifest.xml file.

Finally, you can use DownloadManager’s remove() method to cancel a download,

although this does not remove the file if it has been downloaded.

We've shown you how to operate with HTTP-based services, and we showed you how

to manage the interface to those services using a special class called AsyncTask. The

typical use case of an AsyncTask is some operation that will last for a time, but not for a

long time, and where the conclusion of that operation should directly affect the user

interface in some way. But what if we wanted to run some background processing that

lasted longer than a short while, or what if we wanted to invoke some non-UI

functionality that exists in another application? For these needs, Android provides

services. We will discuss them next.

Using Android Services
Android supports the concept of services. Services are components that run in the

background, without a user interface. You can think of these components as similar to

Windows services or Unix daemons. Similar to these types of services, Android services

can be always available but don’t have to be actively doing something. More

importantly, Android services can have life cycles separate from activities. When an

activity pauses, stops, or gets destroyed, there may be some processing that you want

to continue. Services are good for that too.

Android supports two types of services: local services and remote services. A local
service is a service that is only accessible to the application that is hosting it, and it is

not accessible from other applications running on the device. Generally, these types of

services simply support the application that is hosting the service. A remote service is

accessible from other applications on the device in addition to the application hosting

the service. Remote services define themselves to clients using Android Interface

Definition Language (AIDL). We're going to talk about both of these types of services,

although in the next few chapters, we're going deep into local services. Therefore, we

will introduce them here but not spend that much time on them. We'll cover remote

services in more detail in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 338

Understanding Services in Android
The Android Service class is a wrapper of sorts for code that has service-like behavior.

Unlike the AsyncTask we covered earlier, a Service object does not create its own

threads automatically. For a Service object to use threads, the developer must make it

happen. This means that without adding threading to a service, the code of the service

will run on the main thread. If our service is performing operations that will complete

quickly, this won't be a problem. If our service might run for a while, we definitely want

to involve threading. Keep in mind there is nothing wrong with using AsyncTasks to do

threading within services.

Android supports the concept of a service for two reasons.

 First, to allow you to implement background tasks easily

 Second, to allow you to do interprocess communication between

applications running on the same device

These two reasons correspond to the two types of services that Android supports: local

services and remote services. An example of the first case might be a local service

implemented as part of an e-mail application. The service could handle the sending of a

new e-mail to the e-mail server, complete with attachments and retries. As this could

take a while to complete, a service is a nice way of wrapping up that functionality so the

main thread can kick it off and get back to the user. Plus, if the e-mail activity goes

away, you still want the sent e-mails to be delivered. An example of the second case, as

we'll see later, is a language translation application. Suppose you have several

applications running on a device, and you need a service to accept text that needs to be

translated from one language to another. Rather than repeat the logic in every

application, you could write a remote translation service and have the applications talk

to the service.

There are some important differences between local services and remote services.

Specifically, if a service is strictly used by the components in the same process, the

clients must start the service by calling Context.startService(). This type of service is

a local service, because its purpose is, generally, to run background tasks for the

application that is hosting the service. If the service supports the onBind() method, it’s a

remote service that can be called via interprocess communication

(Context.bindService()). We also call remote services AIDL-supporting services

because clients communicate with the service using AIDL.

Although the interface of android.app.Service supports both local and remote services,

it’s not a good idea to provide one implementation of a service to support both types.

The reason for this is that each type of service has a predefined life cycle; mixing the

two, although allowed, can cause errors.

Now, we can begin a detailed examination of the two types of services. We will start by

talking about local services and then discuss remote services (AIDL-supporting

services). As mentioned before, local services are services that are called only by the

application that hosts them. Remote services are services that support a remote

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 339

procedure call (RPC) mechanism. These services allow external clients, on the same

device, to connect to the service and use its facilities.

NOTE: The second type of service in Android is known by several names: remote service, AIDL-
supporting service, AIDL service, external service, and RPC service. These terms all refer to the

same type of service—one that’s meant to be accessed remotely by other applications running

on the device.

Understanding Local Services
Local services are services that are started via Context.startService(). Once started,

these types of services will continue to run until a client calls Context.stopService() on

the service or the service itself calls stopSelf(). Note that when

Context.startService() is called and the service has not already been created, the

system will instantiate the service and call the service’s onStartCommand() method. Keep

in mind that calling Context.startService() after the service has been started (that is,

while it exists) will not result in another instance of the service, but will reinvoke the

running service’s onStartCommand() method. Here are a couple of examples of local

services:

 A service to monitor sensor data from the device and do analysis,

issuing alerts if a certain condition is realized. This service might run

constantly.

 A task-executor service that lets your application’s activities submit

jobs and queue them for processing. This service might only run for

the duration of the operation to submit the job.

Listing 11–18 demonstrates a local service by implementing a service that executes

background tasks. We'll end up with four artifacts required to create and consume the

service: BackgroundService.java (the service itself), main.xml (a layout file for the

activity), MainActivity.java (an activity class to call the service), and

AndroidManifest.xml. Listing 11–18 only contains BackgroundService.java. We'll

dissect this code first and then move on to the other three. This implementation requires

Android 2.0 or later.

Listing 11–18. Implementing a Local Service: BackgroundService.java

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;

public class BackgroundService extends Service
{
 private static final String TAG = "BackgroundService";

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 340

 private NotificationManager notificationMgr;
 private ThreadGroup myThreads = new ThreadGroup("ServiceWorker");

 @Override
 public void onCreate() {
 super.onCreate();

 Log.v(TAG, "in onCreate()");
 notificationMgr =(NotificationManager)getSystemService(
 NOTIFICATION_SERVICE);
 displayNotificationMessage("Background Service is running");
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 super.onStartCommand(intent, flags, startId);

 int counter = intent.getExtras().getInt("counter");
 Log.v(TAG, "in onStartCommand(), counter = " + counter +
 ", startId = " + startId);

 new Thread(myThreads, new ServiceWorker(counter),
 "BackgroundService")
 .start();

 return START_STICKY;
 }

 class ServiceWorker implements Runnable
 {
 private int counter = -1;
 public ServiceWorker(int counter) {
 this.counter = counter;
 }

 public void run() {
 final String TAG2 = "ServiceWorker:" +
 Thread.currentThread().getId();
 // do background processing here... we’ll just sleep...
 try {
 Log.v(TAG2, "sleeping for 10 seconds. counter = " +
 counter);
 Thread.sleep(10000);
 Log.v(TAG2, "... waking up");
 } catch (InterruptedException e) {
 Log.v(TAG2, "... sleep interrupted");
 }
 }
 }

 @Override
 public void onDestroy()
 {
 Log.v(TAG, "in onDestroy(). Interrupting threads and cancelling notifications");
 myThreads.interrupt();
 notificationMgr.cancelAll();
 super.onDestroy();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 341

 }

 @Override
 public IBinder onBind(Intent intent) {
 Log.v(TAG, "in onBind()");
 return null;
 }

 private void displayNotificationMessage(String message)
 {
 Notification notification =
 new Notification(R.drawable.emo_im_winking,
 message, System.currentTimeMillis());

 notification.flags = Notification.FLAG_NO_CLEAR;

 PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0,
 new Intent(this, MainActivity.class), 0);

 notification.setLatestEventInfo(this, TAG, message,
 contentIntent);

 notificationMgr.notify(0, notification);
 }
}

The structure of a Service object is somewhat similar to an activity. There is an

onCreate() method where you can do initialization, and an onDestroy() where you do

cleanup. Prior to Android 2.0, a service had an onStart() method, and since 2.0 it's

called onStartCommand(). The difference between the two is the addition of a flags

parameter, which is used to specify to the service that an intent is being redelivered or

that the service should restart. We're using the onStartCommand() version for our

example. Services don't pause or resume the way activities do so we don't see

onPause() or onResume() methods. Because this is a local service, we won't be binding

to it, but since Service requires an implementation of the onBind() method, we provide

one that simply returns null.

Going back to our onCreate() method, we don't need to do much except to notify the

user that this service has been created. We do this using the NotificationManager.

You've probably noticed the notification bar at the top left of an Android screen. By

pulling down on this, the user can view messages of importance, and by clicking on

notifications can act on the notifications, which usually means returning to some activity

related to the notification. With services, since they can be running, or at least existing,

in the background without a visible activity, there has to be some way for the user to get

back in touch with the service, perhaps to turn it off. Therefore, we create a Notification

object, populate it with a PendingIntent, which will get us back to our control activity,

and we post it. This all happens in the displayNotificationMessage() method. One

more thing we really need to do is set a flag on our Notification object so the user can't

clear it from the list. We really need that Notification to exist as long as our service exists

so we set Notification.FLAG_NO_CLEAR to keep it in the Notifications list until we clear it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 342

ourselves from our service's onDestroy() method. The method we used in onDestroy()

to clear our notification is cancelAll() on the NotificationManager.

There's another thing you need to have for this example to work. You’ll need to create a

drawable named emo_im_winking and place it within your project’s drawable folder. A

good source of drawables for this demonstration purpose is to look under the Android

platform folder at Android SDK/platforms/<version>/data/res/drawable where

<version> is the version you're interested in. Unfortunately, you can't refer to Android

system drawables from your code the way you can with layouts, so you'll need to copy

what you want over to your project's drawables folder. If you choose a different

drawable file for your example, just go ahead and rename the resource Id in the

constructor for the Notification.

When an intent is sent into our service using startService(), onCreate() is called if

necessary, and our onStartCommand() method is called to receive the caller's intent. In

our case, we're not going to do anything special with it, except to unpack the counter

and use it to start a background thread. In a real-world service, we would expect any

data to be passed to us via the intent, and this could include Uris for example. Notice

the use of a ThreadGroup when creating the Thread. This will prove to be useful later

when we want to get rid of our background threads. Also notice the startId parameter.

This is set for us by Android, and is a unique identifier of the service calls since this

service was started.

Our ServiceWorker class is a typical runnable and is where the work happens for our

service. In our particular case, we're simply logging some messages and sleeping. We're

also catching any interruptions and logging them. One thing we're not doing is

manipulating the user interface. We're not updating any views for example. Since we're

not on the main thread anymore, we cannot touch the UI directly. There are ways for our

ServiceWorker to effect changes in the user interface, and we'll get into those details in

the next few chapters.

The last item to pay attention to in our BackgroundService is the onDestroy() method.

This is where we perform the cleanup. For our example, we want to get rid of the

threads we created earlier, if any are still around. If we don't do this, they could simply

hang around and take up memory. Second, we want to get rid of our notification

message. Since our service is going away, there's no longer any need for the user to get

to the activity to get rid of it. In a real-world application, however, we might want to keep

our workers working. If our service is sending e-mails, we certainly don't want to simply

kill off the threads. Our example is overly simple, since we imply through the use of the

interrupt() method that you can easily kill off background threads. In reality, however,

the most you can do is interrupt. This won't necessarily kill off a thread though. There

are deprecated methods for killing threads, but you should not use these. They can

cause memory and stability problems for you and your users. Interrupting works in our

example, because we're doing sleeps, which can be interrupted.

It's worthwhile taking a look at the ThreadGroup class since it provides ways for you to

get access to your threads. We created a single ThreadGroup object within our service

and then used that when creating our individual threads. Within our onDestroy() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 343

of the service, we simply interrupt() on the ThreadGroup and it issues an interrupt to

each thread in the ThreadGroup.

So there you have the makings of a simple local service. Before we show you the code

for our activity, Listing 11–19 shows the XML layout file for our user interface.

Listing 11–19. Implementing a Local Service: main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button android:id="@+id/startBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Start Service" android:onClick="doClick" />
<Button android:id="@+id/stopBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Stop Service" android:onClick="doClick" />

</LinearLayout>

We're going to show two buttons on the user interface, one to do startService() and

the other to do stopService(). We could have chosen to use a ToggleButton, but then

you would not be able to call startService() multiple times in a row. This is an

important point. There is not a one-to-one relationship between startService() and

stopService(). When stopService() is called, the service object will be destroyed, and

all threads created from all startServices() should also go away. For our example, we

require a minSdkVersion of 5 since we're using the newer onStartCommand() instead of

the older onStart(). Therefore, we can also take advantage of the android:onClick

attribute of the Button tag in our layout XML file. Now, let's look at the code for our

activity in Listing 11–20.

Listing 11–20. Implementing a Local Service: MainActivity.java

// MainActivity.java
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class MainActivity extends Activity
{
 private static final String TAG = "MainActivity";
 private int counter = 1;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 344

 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.startBtn:
 Log.v(TAG, "Starting service... counter = " + counter);
 Intent intent = new Intent(MainActivity.this,
 BackgroundService.class);
 intent.putExtra("counter", counter++);
 startService(intent);
 break;
 case R.id.stopBtn:
 stopService();
 }
 }

 private void stopService() {
 Log.v(TAG, "Stopping service...");
 if(stopService(new Intent(MainActivity.this,
 BackgroundService.class)))
 Log.v(TAG, "stopService was successful");
 else
 Log.v(TAG, "stopService was unsuccessful");
 }

 @Override
 public void onDestroy()
 {
 stopService();
 super.onDestroy();
 }
}

Our MainActivity looks a lot like other activities you've seen. There's a simple

onCreate() to set up our user interface from the main.xml layout file. There's a

doClick() method to handle the button callbacks. In our example, we're calling

startService() when the Start Service button is pressed, and we're calling

stopService() when the Stop Service button is pressed. When we start the service, we

want to pass in some data, which we do via the intent. We chose to pass the data in the

Extras bundle, but we could have added it using setData() if we had a URI. When we

stop the service, we check to see the return result. It should normally be true, but if the

service was not running, we could get a return of false. Lastly, when our activity dies, we

want to stop the service so we also stop the service in our onDestroy() method. There's

one more item to discuss, and that's the AndroidManifest.xml file, which we show in

Listing 11–21.

Listing 11–21. Implementing a Local Service: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.services.simplelocal"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 345

 android:label="@string/app_name"
 android:launchMode="singleTop" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name="BackgroundService"/>
 </application>
 <uses-sdk android:minSdkVersion="5" />

</manifest>

In addition to our regular <activity> tags in the manifest file, we now have a <service>

tag. Because this is a local service that we're calling explicitly using the class name, we

don't need to put much into the <service> tag. All that is required is the name of our

service. But there is one other thing to point out about this manifest file. Our service

creates a notification so that the user can get back to our MainActivity if, for example,

the user pressed the Home key on MainActivity without stopping the service.

The MainActivity is still there; it's just not visible. One way to get back to the

MainActivity is to click the notification that our service created. What we don't want to

have happen is for a new MainActivity to be created in addition to our existing, invisible

MainActivity. To prevent this from happening, we set an attribute in our manifest file for

MainActivity called android:launchMode, and we set it to singleTop. This will help

ensure that the existing invisible MainActivity will be brought forward and displayed,

rather than creating another MainActivity.

When you run this application, you will see our two buttons. By clicking the Start Service

button, you will be instantiating the service and calling onStartCommand(). Our code logs

several messages to LogCat, so you can follow along. Go ahead and click Start Service

several times in a row, even quickly. You will see threads created to handle each

request. You'll also notice that the value of counter is passed along through to each

ServiceWorker thread. When you press the Stop Service button, our service will go

away, and you'll see the log messages from our MainActivity's stopService() method,

from our BackgroundService's onDestroy() method, and possibly from ServiceWorker

threads if they got interrupted.

You should also notice the notification message when the service has been started. With

the service running, go ahead and press the Back button from our MainActivity and

notice that the notification message disappears. This means our service has gone away

also. To restart our MainActivity, click Start Service to get the service going again.

Now, press the Home button. Our MainActivity disappears from view, but the

notification remains, meaning our service is still in existence. Go ahead and click the

notification, and you'll again see our MainActivity.

Note that our example uses an activity to interface with the service, but any component

in your application can use the service. This includes other services, activities, generic

classes, and so on. Also note that our service does not stop itself; it relies on the activity

to do that for it. There are some methods available to a service to allow the service to

stop itself, namely stopSelf() and stopSelfResult().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 346

Our BackgroundService is a typical example of a service that is used by the components

of the application that is hosting the service. In other words, the application that is

running the service is also the only consumer. Because the service does not support

clients from outside its process, the service is a local service. And because it’s a local

service, as opposed to a remote service, it returns null in the bind() method. Therefore,

the only way to bind to this service is to call Context.startService(). The critical

methods of a local service are onCreate(), onStartCommand(), stop*(), and onDestroy().

There's another option with a local service, and that is for the case where you'll only

have one instance of the service with one background thread. In this case, in the

onCreate() method of the BackgroundService, we could create a thread that does the

service’s heavy lifting. We could create and start the thread in onCreate() rather than

onStartCommand(). We could do this because onCreate() is called only once, and we

want the thread to be created only once during the life of the service. One thing we

wouldn't have in onCreate(), though, is the content of the intent passed by

startService(). If we need that, we might as well use the pattern as described

previously, and we'd just know that onStartCommand() should only be called once.

This concludes our introduction to local services. Remember that we'll get into more

details of local services in subsequent chapters. Let’s move on to AIDL services—the

more complicated type of service.

Understanding AIDL Services
In the previous section, we showed you how to write an Android service that is

consumed by the application that hosts the service. Now, we are going to show you

how to build a service that can be consumed by other processes via remote procedure

call (RPC). As with many other RPC-based solutions, in Android you need an interface

definition language (IDL) to define the interface that will be exposed to clients. In the

Android world, this IDL is called Android Interface Definition Language (AIDL). To build a

remote service, you do the following:

1. Write an AIDL file that defines your interface to clients. The AIDL file uses Java

syntax and has an .aidl extension. Use the same package name inside your AIDL

file as the package for your Android Project.

2. Add the AIDL file to your Eclipse project under the src directory. The Android

Eclipse plug-in will call the AIDL compiler to generate a Java interface from the

AIDL file (the AIDL compiler is called as part of the build process).

3. Implement a service and return the interface from the onBind() method.

4. Add the service configuration to your AndroidManifest.xml file. The sections that

follow show you how to execute each step.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 347

Defining a Service Interface in AIDL
To demonstrate an example of a remote service, we are going to write a stock-quoter

service. This service will provide a method that takes a ticker symbol and returns the

stock value. To write a remote service in Android, the first step is to define the service

interface definition in an AIDL file. Listing 11–22 shows the AIDL definition of

IStockQuoteService. This file goes into the same place as a regular Java file would for

your StockQuoteService project.

Listing 11–22. The AIDL Definition of the Stock-Quoter Service

// This file is IStockQuoteService.aidl
package com.androidbook.services.stockquoteservice;
interface IStockQuoteService
{
 double getQuote(String ticker);
}

The IStockQuoteService accepts the stock-ticker symbol as a string and returns the

current stock value as a double. When you create the AIDL file, the Android Eclipse

plug-in runs the AIDL compiler to process your AIDL file (as part of the build process). If

your AIDL file compiles successfully, the compiler generates a Java interface suitable for

RPC communication. Note that the generated file will be in the package named in your

AIDL file—com.androidbook.services.stockquoteservice, in this case.

Listing 11–23 shows the generated Java file for our IStockQuoteService interface. The

generated file will be put into the gen folder of our Eclipse project.

Listing 11–23. The Compiler-Generated Java File

 /*
 * This file is auto-generated. DO NOT MODIFY.
 * Original file: C:\\android\\StockQuoteService\\src\\com\\androidbook\\
services\\stockquoteservice\\IStockQuoteService.aidl
 */
package com.androidbook.services.stockquoteservice;
import java.lang.String;
import android.os.RemoteException;
import android.os.IBinder;
import android.os.IInterface;
import android.os.Binder;
import android.os.Parcel;
public interface IStockQuoteService extends android.os.IInterface
{
/** Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder implements
com.androidbook.services.stockquoteservice.IStockQuoteService
{
private static final java.lang.String DESCRIPTOR =
"com.androidbook.services.stockquoteservice.IStockQuoteService";
/** Construct the stub at attach it to the interface. */
public Stub()
{
this.attachInterface(this, DESCRIPTOR);
}
/**

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 348

 * Cast an IBinder object into an IStockQuoteService interface,
 * generating a proxy if needed.
 */
public static com.androidbook.services.stockquoteservice.IStockQuoteService
asInterface(android.os.IBinder obj)
{
if ((obj==null)) {
return null;
}
android.os.IInterface iin = (android.os.IInterface)obj.queryLocalInterface(DESCRIPTOR);
if (((iin!=null)&&(iin instanceof
com.androidbook.services.stockquoteservice.IStockQuoteService))) {
return ((com.androidbook.services.stockquoteservice.IStockQuoteService)iin);
}
return ((com.androidbook.services.stockquoteservice.IStockQuoteService)iin);
}
return new
com.androidbook.services.stockquoteservice.IStockQuoteService.Stub.Proxy(obj);
}
public android.os.IBinder asBinder()
{
return this;
}
@Override public boolean onTransact(int code, android.os.Parcel data,
 android.os.Parcel reply, int flags) throws android.os.RemoteException
{
switch (code)
{
case INTERFACE_TRANSACTION:
{
reply.writeString(DESCRIPTOR);
return true;
}
case TRANSACTION_getQuote:
{
data.enforceInterface(DESCRIPTOR);
java.lang.String _arg0;
_arg0 = data.readString();
double _result = this.getQuote(_arg0);
reply.writeNoException();
reply.writeDouble(_result);
return true;
}
}
return super.onTransact(code, data, reply, flags);
}
private static class Proxy implements
 com.androidbook.services.stockquoteservice.IStockQuoteService
{
private android.os.IBinder mRemote;
Proxy(android.os.IBinder remote)
{
mRemote = remote;
}
public android.os.IBinder asBinder()
{
return mRemote;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 349

}
public java.lang.String getInterfaceDescriptor()
{
return DESCRIPTOR;
}
public double getQuote(java.lang.String ticker) throws android.os.RemoteException
{
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
double _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
_data.writeString(ticker);
mRemote.transact(Stub.TRANSACTION_getQuote, _data, _reply, 0);
_reply.readException();
_result = _reply.readDouble();
}
finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
}
static final int TRANSACTION_getQuote = (IBinder.FIRST_CALL_TRANSACTION + 0);
}
public double getQuote(java.lang.String ticker) throws android.os.RemoteException;
}

Note the following important points regarding the generated classes:

 The interface we defined in the AIDL file is implemented as an interface

in the generated code (that is, there is an interface named

IStockQuoteService).

 A static final abstract class named Stub extends

android.os.Binder and implements IStockQuoteService. Note that the

class is an abstract class.

 An inner class named Proxy implements the IStockQuoteService that

proxies the Stub class.

 The AIDL file must reside in the package where the generated files are

supposed to be (as specified in the AIDL file’s package declaration).

Now, let’s move on and implement the AIDL interface in a service class.

Implementing an AIDL Interface
In the previous section, we defined an AIDL file for a stock-quoter service and generated

the binding file. Now, we are going to provide an implementation of that service. To

implement the service’s interface, we need to write a class that extends

android.app.Service and implements the IStockQuoteService interface. The class we

are going to write will call StockQuoteService. To expose the service to clients, our

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 350

StockQuoteService will need to provide an implementation of the onBind() method, and

we’ll need to add some configuration information to the AndroidManifest.xml file. Listing

11–24 shows an implementation of the IStockQuoteService interface. This file also goes

into the src folder of the StockQuoteService project.

Listing 11–24. The IStockQuoteService Service Implementation

// StockQuoteService.java
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.RemoteException;
import android.util.Log;

public class StockQuoteService extends Service
{
 private static final String TAG = "StockQuoteService";
 public class StockQuoteServiceImpl extends IStockQuoteService.Stub
 {
 @Override
 public double getQuote(String ticker) throws RemoteException
 {
 Log.v(TAG, "getQuote() called for " + ticker);
 return 20.0;
 }
 }

 @Override
 public void onCreate() {
 super.onCreate();
 Log.v(TAG, "onCreate() called");
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy();
 Log.v(TAG, "onDestroy() called");
 }

 @Override
 public IBinder onBind(Intent intent)
 {
 Log.v(TAG, "onBind() called");
 return new StockQuoteServiceImpl();
 }
}

The StockQuoteService.java class in Listing 11–24 resembles the local

BackgroundService we created earlier, but without the NotificationManager. The

important difference is that we now implement the onBind() method. Recall that the

Stub class generated from the AIDL file was an abstract class and that it implemented

the IStockQuoteService interface. In our implementation of the service, we have an inner

class that extends the Stub class called StockQuoteServiceImpl. This class serves as the

remote-service implementation, and an instance of this class is returned from the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 351

onBind() method. With that, we have a functional AIDL service, although external clients

cannot connect to it yet.

To expose the service to clients, we need to add a service declaration in the

AndroidManifest.xml file, and this time, we need an intent filter to expose the service.

Listing 11–25 shows the service declaration for the StockQuoteService. The <service>

tag is a child of the <application> tag.

Listing 11–25. Manifest Declaration for the IStockQuoteService

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.services.stockquoteservice"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <service android:name="StockQuoteService">
 <intent-filter>
 <action
android:name="com.androidbook.services.stockquoteservice.IStockQuoteService" />
 </intent-filter>
 </service>
 </application>
 <uses-sdk android:minSdkVersion="4" />
</manifest>

As with all services, we define the service we want to expose with a <service> tag. For

an AIDL service, we also need to add an <intent-filter> with an <action> entry for the

service interface we want to expose.

With this in place, we have everything we need to deploy the service. When you are

ready to deploy the service application from Eclipse, just go ahead and choose Run As

the way you would for any other application. Eclipse will comment in the Console that

this application has no Launcher, but it will deploy the app anyway, which is what we

want. Let’s now look at how we would call the service from another application (on the

same device, of course).

Calling the Service from a Client Application
When a client talks to a service, there must be a protocol or contract between the two.

With Android, the contract is in our AIDL file. So the first step in consuming a service is

to take the service’s AIDL file and copy it to your client project. When you copy the AIDL

file to the client project, the AIDL compiler creates the same interface-definition file that

was created when the service was implemented (in the service-implementation project).

This exposes to the client all of the methods, parameters, and return types on the

service. Let’s create a new project and copy the AIDL file.

1. Create a new Android project named StockQuoteClient. Use a different package

name, such as com.androidbook.stockquoteclient. Use MainActivity for the

Create Activity field.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 352

2. Create a new Java package in this project named

com.androidbook.services.stockquoteservice in the src directory.

3. Copy the IStockQuoteService.aidl file from the StockQuoteService project to this

new package. Note that after you copy the file to the project, the AIDL compiler

will generate the associated Java file.

The service interface that you regenerate serves as the contract between the client and

the service. The next step is to get a reference to the service so we can call the

getQuote() method. With remote services, we have to call the bindService() method

rather than the startService() method. Listing 11–26 shows an activity class that acts

as a client of the IStockQuoteService service. Listing 11–27 contains the layout file for

the activity.

Listing 11–26 shows our MainActivity.java file. Realize that the package name of the

client activity is not that important—you can put the activity in any package you’d like.

However, the AIDL artifacts that you create are package-sensitive because the AIDL

compiler generates code from the contents of the AIDL file.

Listing 11–26. A Client of the IStockQuoteService Service

// This file is MainActivity.java
import com.androidbook.services.stockquoteservice.IStockQuoteService;
import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.RemoteException;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;
import android.widget.ToggleButton;

public class MainActivity extends Activity {
 private static final String TAG = "StockQuoteClient";
 private IStockQuoteService stockService = null;
 private ToggleButton bindBtn;
 private Button callBtn;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bindBtn = (ToggleButton)findViewById(R.id.bindBtn);
 callBtn = (Button)findViewById(R.id.callBtn);
 }

 public void doClick(View view) {
 switch(view.getId()) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 353

 case R.id.bindBtn:
 if(((ToggleButton) view).isChecked()) {
 bindService(new Intent(
 IStockQuoteService.class.getName()),
 serConn, Context.BIND_AUTO_CREATE);
 }
 else {
 unbindService(serConn);
 callBtn.setEnabled(false);
 }
 break;
 case R.id.callBtn:
 callService();
 break;
 }
 }

 private void callService() {
 try {
 double val = stockService.getQuote("ANDROID");
 Toast.makeText(MainActivity.this,
 "Value from service is " + val,
 Toast.LENGTH_SHORT).show();
 } catch (RemoteException ee) {
 Log.e("MainActivity", ee.getMessage(), ee);
 }
 }

 private ServiceConnection serConn = new ServiceConnection() {

 @Override
 public void onServiceConnected(ComponentName name,
 IBinder service)
 {
 Log.v(TAG, "onServiceConnected() called");
 stockService = IStockQuoteService.Stub.asInterface(service);
 bindBtn.setChecked(true);
 callBtn.setEnabled(true);
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 Log.v(TAG, "onServiceDisconnected() called");
 bindBtn.setChecked(false);
 callBtn.setEnabled(false);
 stockService = null;
 }
 };

 protected void onDestroy() {
 Log.v(TAG, "onDestroy() called");
 if(callBtn.isEnabled())
 unbindService(serConn);
 super.onDestroy();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 354

The activity displays our layout, and grabs a reference to the Call Service button so we

can properly enable it when the service is running, and disable it when the service is

stopped. When the user clicks the Bind button, the activity calls the bindService()

method. Similarly, when the user clicks UnBind, the activity calls the unbindService()

method. Notice that three parameters are passed to the bindService() method: the

name of the AIDL service, a ServiceConnection instance, and a flag to autocreate the

service.

Listing 11–27. The IStockQuoteService Service Client Layout

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

<ToggleButton android:id="@+id/bindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOff="Bind" android:textOn="Unbind"
 android:onClick="doClick" />

<Button android:id="@+id/callBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Call Service" android:enabled=”false”
 android:onClick="doClick" />
</LinearLayout>

With an AIDL service, you need to provide an implementation of the ServiceConnection

interface. This interface defines two methods: one called by the system when a

connection to the service has been established and one called when the connection to

the service has been destroyed. In our activity implementation, we define a private

anonymous member that implements the ServiceConnection for the

IStockQuoteService. When we call the bindService() method, we pass in the reference

to this member. When the connection to the service is established, the

onServiceConnected() callback is invoked, and we then obtain a reference to the

IStockQuoteService using the Stub and we enable the Call Service button.

Note that the bindService() call is an asynchronous call. It is asynchronous because the

process or service might not be running and thus might have to be created or started.

And we cannot wait on the main thread for the service to start. Because bindService()

is asynchronous, the platform provides the ServiceConnection callback, so we know

when the service has been started and when the service is no longer available.

Please notice the onServiceDisconnected() callback. This does not get invoked when

we unbind from the service. It is only invoked if the service crashes. If it does, we should

not think that we're still connected, and we might need to reinvoke the bindService()

call. That is why we change the status of our buttons in the UI when this callback is

invoked. But notice we said "we might need to reinvoke the bindService() call.”

Android could restart our service for us and invoke our onServiceConnected() callback.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 355

You can try this yourself by running the client, binding to the service, and using DDMS

to do a Stop on the Stock Quote Service application.

When you run this example, watch the log messages in LogCat to get a feel for what is

going on behind the scenes.

Now you know how to create and consume an AIDL interface. Before we move on and

complicate matters further, let’s review what it takes to build a simple local service

versus an AIDL service. A local service is a service that does not support onBind()—it

returns null from onBind(). This type of service is accessible only to the components of

the application that is hosting the service. You call local services by calling

startService().

On the other hand, an AIDL service is a service that can be consumed both by

components within the same process and by those that exist in other applications. This

type of service defines a contract between itself and its clients in an AIDL file. The

service implements the AIDL contract, and clients bind to the AIDL definition. The

service implements the contract by returning an implementation of the AIDL interface

from the onBind() method. Clients bind to an AIDL service by calling bindService(), and

they disconnect from the service by calling unbindService().

In our service examples thus far, we have strictly dealt with passing simple Java

primitive types. Android services actually support passing complex types, too. This is

very useful, especially for AIDL services, because you might have an open-ended

number of parameters that you want to pass to a service, and it’s unreasonable to pass

them all as simple primitives. It makes more sense to package them as complex types

and then pass them to the service.

Let’s see how we can pass complex types to services.

Passing Complex Types to Services
Passing complex types to and from services requires more work than passing Java

primitive types. Before embarking on this work, you should get an idea of AIDL’s support

for nonprimitive types:

 AIDL supports String and CharSequence.

 AIDL allows you to pass other AIDL interfaces, but you need to have

an import statement for each AIDL interface you reference (even if the

referenced AIDL interface is in the same package).

 AIDL allows you to pass complex types that implement the

android.os.Parcelable interface. You need to have an import

statement in your AIDL file for these types.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 356

 AIDL supports java.util.List and java.util.Map, with a few

restrictions. The allowable data types for the items in the collection

include Java primitive, String, CharSequence, or

android.os.Parcelable. You do not need import statements for List

or Map, but you do need them for the Parcelables.

 Nonprimitive types, other than String, require a directional indicator.

Directional indicators include in, out, and inout. in means the value is

set by the client; out means the value is set by the service; and inout

means both the client and service set the value.

The Parcelable interface tells the Android runtime how to serialize and deserialize

objects during the marshalling and unmarshalling process. Listing 11–28 shows a Person

class that implements the Parcelable interface.

Listing 11–28. Implementing the Parcelable Interface

// This file is Person.java
package com.androidbook.services.stock2;
import android.os.Parcel;
import android.os.Parcelable;

public class Person implements Parcelable {
 private int age;
 private String name;
 public static final Parcelable.Creator<Person> CREATOR =
 new Parcelable.Creator<Person>()
 {
 public Person createFromParcel(Parcel in) {
 return new Person(in);
 }

 public Person[] newArray(int size) {
 return new Person[size];
 }
 };

 public Person() {
 }

 private Person(Parcel in) {
 readFromParcel(in);
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel out, int flags) {
 out.writeInt(age);
 out.writeString(name);
 }

 public void readFromParcel(Parcel in) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 357

 age = in.readInt();
 name = in.readString();
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

To get started on implementing this, create a new Android Project in Eclipse called

StockQuoteService2. For Create Activity use a name of MainActivity, and use a

package of com.androidbook.services.stock2. Then add the Person.java file above to

the com.androidbook.services.stock2 package of our new project.

The Parcelable interface defines the contract for hydration and dehydration of objects

during the marshalling/unmarshalling process. Underlying the Parcelable interface is the

Parcel container object. The Parcel class is a fast serialization/deserialization

mechanism specially designed for interprocess communication within Android. The

class provides methods that you use to flatten your members to the container and to

expand the members back from the container. To properly implement an object for

interprocess communication, we have to do the following:

1. Implement the Parcelable interface. This means that you implement

writeToParcel() and readFromParcel(). The write method will write the object to

the parcel and the read method will read the object from the parcel. Note that the

order in which you write properties must be the same as the order in which you

read them.

2. Add a static final property to the class with the name CREATOR. The property

needs to implement the android.os.Parcelable.Creator<T> interface.

3. Provide a constructor for the Parcelable that knows how to create the object

from the Parcel.

4. Define a Parcelable class in an .aidl file that matches the .java file containing

the complex type. The AIDL compiler will look for this file when compiling your

AIDL files. An example of a Person.aidl file is shown in Listing 11–29. This file

should be in the same place as Person.java.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 358

NOTE: Seeing Parcelable might have triggered the question, why is Android not using the
built-in Java serialization mechanism? It turns out that the Android team came to the conclusion
that the serialization in Java is far too slow to satisfy Android’s interprocess-communication

requirements. So the team built the Parcelable solution. The Parcelable approach requires
that you explicitly serialize the members of your class, but in the end, you get a much faster
serialization of your objects.

Also realize that Android provides two mechanisms that allow you to pass data to another
process. The first is to pass a bundle to an activity using an intent, and the second is to pass a
Parcelable to a service. These two mechanisms are not interchangeable and should not be

confused. That is, the Parcelable is not meant to be passed to an activity. If you want to start
an activity and pass it some data, use a Bundle. Parcelable is meant to be used only as part of

an AIDL definition.

Listing 11–29. An Example of Person.aidl File

// This file is Person.aidl
package com.androidbook.services.stock2;
parcelable Person;

You will need an .aidl file for each Parcelable in your project. In this case, we have just

one Parcelable, which is Person. You may notice that you don’t get a Person.java file

created in the gen folder. This is to be expected. We already have this file from when we

created it previously.

Now, let’s use the Person class in a remote service. To keep things simple, we will

modify our IStockQuoteService to take an input parameter of type Person. The idea is

that clients will pass a Person to the service to tell the service who is requesting the

quote. The new IStockQuoteService.aidl looks like Listing 11–30.

Listing 11–30. Passing Parcelables to Services

// This file is IStockQuoteService.aidl
package com.androidbook.services.stock2;
import com.androidbook.services.stock2.Person;

interface IStockQuoteService
{
 String getQuote(in String ticker,in Person requester);
}

The getQuote() method now accepts two parameters: the stock’s ticker symbol and a

Person object to specify who is making the request. Note that we have directional

indicators on the parameters because the parameters include nonprimitive types and

that we have an import statement for the Person class. The Person class is also in the

same package as the service definition (com.androidbook.services.stock2).

The service implementation now looks like Listing 11–31, with the layout in Listing 11–

32.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 359

Listing 11–31. The StockQuoteService2 Implementation

package com.androidbook.services.stock2;
// This file is StockQuoteService2.java

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.RemoteException;

public class StockQuoteService2 extends Service
{
 private NotificationManager notificationMgr;

 public class StockQuoteServiceImpl extends IStockQuoteService.Stub
 {
 public String getQuote(String ticker, Person requester)
 throws RemoteException {
 return "Hello " + requester.getName() +
 "! Quote for " + ticker + " is 20.0";
 }
 }

 @Override
 public void onCreate() {
 super.onCreate();

 notificationMgr =
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 displayNotificationMessage(
 "onCreate() called in StockQuoteService2");
 }

 @Override
 public void onDestroy()
 {
 displayNotificationMessage(
 "onDestroy() called in StockQuoteService2");
 // Clear all notifications from this service
 notificationMgr.cancelAll();
 super.onDestroy();
 }

 @Override
 public IBinder onBind(Intent intent)
 {
 displayNotificationMessage(
 "onBind() called in StockQuoteService2");
 return new StockQuoteServiceImpl();
 }

 private void displayNotificationMessage(String message)
 {
 Notification notification =

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 360

 new Notification(R.drawable.emo_im_happy,
 message, System.currentTimeMillis());

 PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0,
 new Intent(this, MainActivity.class), 0);

 notification.setLatestEventInfo(this,
 "StockQuoteService2", message,
 contentIntent);

 notification.flags = Notification.FLAG_NO_CLEAR;

 notificationMgr.notify(R.id.app_notification_id, notification);
 }
}

Listing 11–32. The StockQuoteService2 Layout

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is where the service could ask for help." />
</LinearLayout>

The differences between this implementation and the previous one are that we brought

back the notifications, and we now return the stock value as a string and not a double.

The string returned to the user contains the name of the requester from the Person
object, which demonstrates that we read the value sent from the client and that the

Person object was passed correctly to the service.

There are a few other things that need to be done to make this work:

1. Find the emo_im_happy.png image file from under Android

SDK/platforms/android-2.1/data/res/drawable-mdpi, and copy it to the

/res/drawable directory of our project. Or change the name of the resource in the

code, and put whatever image you want in the drawables folder.

2. Add a new <item type="id" name="app_notification_id"/> tag to the

/res/values/strings.xml file

3. We need to modify the application in the AndroidManifest.xml file as shown in

Listing 11–33.

Listing 11–33. Modified <application> in AndroidManifest.xml File for StockQuoteService2

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.services.stock2"
 android:versionCode="1"
 android:versionName="1.0">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 361

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name"
 android:launchMode=”singleTop” >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 </intent-filter>
 </activity>
 <service android:name="StockQuoteService2">
 <intent-filter>
 <action android:name="com.androidbook.services.stock2.IStockQuoteService" />
 </intent-filter>
 </service>
 </application>
 <uses-sdk android:minSdkVersion="7" />
</manifest>

While it is OK to use the dot notation for our android:name=".MainActivity" attribute, it

is not OK to use dot notation inside of our <action> tag inside the service's <intent-
filter> tag. We need to spell it out; otherwise, our client will not find the service

specification.

Last, we’ll use the default MainActivity.java file that simply displays a basic layout with

a simple message. We showed you earlier how to launch to the activity from a

notification. This activity would serve that purpose also in real life, but for this example,

we'll keep that part simple. Now that we have our service implementation, let’s create a

new Android project called StockQuoteClient2. Use com.dave for the package and

MainActivity for the activity name. To implement a client that passes the Person object

to the service, we need to copy everything that the client needs from the service project

to the client project. In our previous example, all we needed was the

IStockQuoteService.aidl file. Now, we also need to copy the Person.java and

Person.aidl files, because the Person object is now part of the interface. After you copy

these three files to the client project, modify main.xml according to Listing 11–34, and

modify MainActivity.java according to Listing 11–35. Or simply import this project from

the source code on our website.

Listing 11–34. Updated main.xml for StockQuoteClient2

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

<ToggleButton android:id="@+id/bindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOff="Bind" android:textOn="Unbind"
 android:onClick="doClick" />

<Button android:id="@+id/callBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 362

 android:text="Call Service" android:enabled="false"
 android:onClick="doClick" />
</LinearLayout>>

Listing 11–35. Calling the Service with a Parcelable

package com.dave;
// This file is MainActivity.java
import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.RemoteException;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;
import android.widget.ToggleButton;

import com.androidbook.services.stock2.IStockQuoteService;
import com.androidbook.services.stock2.Person;

public class MainActivity extends Activity {

 protected static final String TAG = "StockQuoteClient2";
 private IStockQuoteService stockService = null;
 private ToggleButton bindBtn;
 private Button callBtn;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bindBtn = (ToggleButton)findViewById(R.id.bindBtn);
 callBtn = (Button)findViewById(R.id.callBtn);
 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.bindBtn:
 if(((ToggleButton) view).isChecked()) {
 bindService(new Intent(
 IStockQuoteService.class.getName()),
 serConn, Context.BIND_AUTO_CREATE);
 }
 else {
 unbindService(serConn);
 callBtn.setEnabled(false);
 }
 break;
 case R.id.callBtn:
 callService();
 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 363

 }
 }

 private void callService() {
 try {
 Person person = new Person();
 person.setAge(47);
 person.setName("Dave");
 String response = stockService.getQuote("ANDROID", person);
 Toast.makeText(MainActivity.this,
 "Value from service is "+response,
 Toast.LENGTH_SHORT).show();
 } catch (RemoteException ee) {
 Log.e("MainActivity", ee.getMessage(), ee);
 }
 }

 private ServiceConnection serConn = new ServiceConnection() {

 @Override
 public void onServiceConnected(ComponentName name,
 IBinder service)
 {
 Log.v(TAG, "onServiceConnected() called");
 stockService = IStockQuoteService.Stub.asInterface(service);
 bindBtn.setChecked(true);
 callBtn.setEnabled(true);
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 Log.v(TAG, "onServiceDisconnected() called");
 bindBtn.setChecked(false);
 callBtn.setEnabled(false);
 stockService = null;
 }
 };

 protected void onDestroy() {
 if(callBtn.isEnabled())
 unbindService(serConn);
 super.onDestroy();
 }
}

This is now ready to run. Remember to send over the service to the emulator before you

send over the client to run. The user interface should look like Figure 11–8.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 364

Figure 11–8. User Interface of StockQuoteClient2

Let’s take a look at what we’ve got. As before, we bind to our service, then we can

invoke a service method. The onServiceConnected() method is where we get told that

our service is running, so we can then enable the Call Service button so the button can

invoke the callService() method. As shown, we create a new Person object and set its

Age and Name properties. We then execute the service and display the result from the

service call. The result looks like Figure 11–9.

Figure 11–9. Result from calling the service with a Parcelable

Notice that when the service is called you get a notification in the status bar. This is

coming from the service itself. We briefly touched on Notifications earlier as a way for a

service to communicate to the user. Normally, services are in the background and do

not display any sort of UI. But what if a service needs to interact with the user? While

tempting to think that a service can invoke an activity, a service should never invoke an

activity directly. A service should instead create a notification, and the notification

should be how the user gets to the desired activity. This was shown in our last exercise.

We defined a simple layout and activity implementation for our service. When we

created the notification within the service, we set the activity in the notification. The user

can click the notification, and it will take the user to our activity that is part of this

service. This will allow the user to interact with the service.

Notifications are saved so that you can get to them by pulling up the Menu on the

Android Home page and clicking Notifications. A user can also drag down from the

notification icon in the status bar to see them. Note the use of the setLatestEventInfo()

method call and the fact that we reuse the same ID for every message. This combination

means that we are updating the one and only notification every time, rather than creating

new notification entries. Therefore, if you go to the Notifications screen in Android after

clicking on Bind, Call Again, and Unbind a few times, you will only see one message in

Notifications, and it will be the last one sent by the BackgroundService. If we used

different IDs, we could have multiple notification messages, and we could update each

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 365

one separately. Notifications can also be set with additional user “prompts” such as

sound, lights, and/or vibration.

It is also useful to see the artifacts of the service project and the client that calls it (see

Figure 11–10).

Figure 11–10. The artifacts of the service and the client

Figure 11–10 shows the Eclipse project artifacts for the service (left) and the client (right).

Note that the contract between the client and the service consists of the AIDL artifacts

and the Parcelable objects exchanged between the two parties. This is the reason that

we see Person.java, IStockQuoteService.aidl, and Person.aidl on both sides.

Because the AIDL complier generates the Java interface, stub, proxy, and so on from

the AIDL artifacts, the build process creates the IStockQuoteService.java file on the

client side when we copy the contract artifacts to the client project.

Now, you know how to exchange complex types between services and clients. Let’s

briefly touch on another important aspect of calling services: synchronous versus

asynchronous service invocation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 366

All of the calls that you make on services are synchronous. This brings up the obvious

question, do you need to implement all of your service calls in a worker thread? Not

necessarily. On most other platforms, it’s common for a client to use a service that is a

complete black box, so the client would have to take appropriate precautions when

making service calls. With Android, you will likely know what is in the service (generally

because you wrote the service yourself), so you can make an informed decision. If you

know that the method you are calling is doing a lot of heavy lifting, you should consider

using a secondary thread to make the call. If you are sure that the method does not

have any bottlenecks, you can safely make the call on the UI thread. If you conclude that

it’s best to make the service call within a worker thread, you can create the thread and

then call the service. You can then communicate the result to the UI thread.

Real-World Example Using Services
So far in this chapter, we’ve showed you various ways to call HTTP services and to

implement Android services. In this section, we will show you how to translate text from

one language to another using Android services and the Google Translate API, which is

an HTTP-based service over the Internet—but first, some background on the Google

Translate API.

Google Translate API
Translating from one language to another is not something that will fit very well on a

mobile device. The number of words in English alone is hundreds of thousands, even

possibly more than a million (depending on how you define “English”). Loading

languages and rules onto a mobile device to allow translation between arbitrary pairs of

languages is just not feasible, yet.

Google has supplied an API on the Internet that does translations. It takes a string of

text and a pair of language specifications, one for the source and one for the

destination, and it converts the text from the source language to the destination

language. There is a catch though. The original intent of this service was to be called

from web sites, not mobile devices. The Terms of Use for the Google AJAX Language

API (as it is formally known) does not have a version for Android devices, like the Google

Maps API Terms of Use does. To read the Terms of Use for the AJAX Language API, go

here:

http://code.google.com/apis/ajaxlanguage/terms.html

While it is not entirely clear that Google intends for Android developers to use this API, in

fact, a demonstration of this API was given at Google I/O in May 2009 using an Android

application! Perhaps by the time you read this Google will have a separate Terms of Use

for Android for the AJAX Language API, or perhaps the existing terms will have been

updated to make it clearer how Google intends for it to be used with Android. There's

also a version 2 of this Translate API in Google Labs, so watch that for developments. In

the meantime, you have a couple of options. One, you could go ahead and use the

AJAX Language API directly from your Android application, as we will show you next.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 367

Two, you could access the AJAX Language API using a web server that you control, like

a proxy to the AJAX Language API. Your application would interface with your web

server, and your web server would make the calls to the AJAX Language API. With your

own web server in the middle, it becomes much easier to disable the access to the

AJAX Language API from your application, since you control a chokepoint between

them. Of course, there may not be much you can do to allow your application to

continue to work if you can’t use the Google service anymore. At a minimum, you could

build in some sort of response to your application that indicates that the service is no

longer available from Google, in order to provide a suitable message to the user. In the

former case, if Google asks that you stop using the AJAX Language API, you really won’t

be able to do much about it; your application has been distributed to devices, and

unless you’ve built in some way to make them stop using the API, they will continue to

try to do so.

Google has the right to disable your access, but this could be somewhat difficult for it to

do. Google did not state in the Terms of Use that you need to use an API key to use the

AJAX Language API, although the Developer Documentation

(http://code.google.com/apis/ajaxlanguage/documentation/) states that you must use

a REFERER and you should use an API key. Without these, your requests will appear

anonymously from the users’ devices, and Google would have no way of contacting you

if there is some problem with your use of the API. We’ve chosen to set the REFERER

header value in our example (see the Translator.java code), but we skipped the API

key part. If you want to send an API key value to the AJAX Language API, you will first

need to acquire one from Google. Note that you should not reuse your Maps API key for

the AJAX APIs. To register for an AJAX API key, you only need submit the URL of your

web site (the exact same one you used as your REFERER) and agree to the Terms of Use.

With the new API key in hand, you would add it to the AJAX API URL with the following

snippet:

&key=Your_API_key_goes_here_with_no_quotation_marks

If you decide to pass an API key to an AJAX API, the REFERER must be set to the same

URL that you used to create the API key, or some sub-page of that URL. Otherwise, you

will not get results back.

Using the Google Translate API
For the rest of this section, we will help you build an application that calls the Google

AJAX Language API directly. Up to this point in the book, we’ve shown you all the

individual components you need to get translations into your application. Now, we’ll

bring them all together. For this example, we’re going to create an application with an

EditText for the input, that uses spinners to select the languages to translate to and

from, has a read-only EditText for the translated output, invokes a service over the

Internet, and uses a service to isolate the UI from logic that might take a while to

succeed. One of the extras we need to include in this application is the Jakarta

Commons Lang project, specifically to unescape XML entity codes into Unicodes for

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 368

display. We’ll cover how to do that too after the code listings. Refer to Figure 11–11 to

see what it looks like.

Figure 11–11. The Translate Demo UI

For the code, we have the following files:

 /res/layout/main.xml (Listing 11–36)

 /res/values/strings.xml (Listing 11–37)

 /res/values/arrays.xml (Listing 11–38)

 ITranslate.aidl under /src (Listing 11–39)

 MainActivity.java (Listing 11–40)

 TranslateService.java (Listing 11–41) handles service semantics

 Translator.java (Listing 11–42) where the actual Google service is

called

 AndroidManifest.xml (Listing 11–43)

For this sample application, we chose to use the HttpURLConnection class instead of

the HttpClient as before, so you could see how this other class is used in a real

application.

Listing 11–36. XML and Java to Implement a Translation Demonstration

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent">

 <EditText android:id="@+id/input" android:hint="@string/input"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 369

 <Spinner android:id="@+id/from"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/input"
 android:prompt="@string/prompt" />

 <Button android:id="@+id/translateBtn"
 android:text="@string/translateBtn"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/input"
 android:layout_toRightOf="@id/from"
 android:enabled="false" />

 <Spinner android:id="@+id/to"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/input"
 android:layout_toRightOf="@id/translateBtn"
 android:prompt="@string/prompt" />

 <EditText android:id="@+id/translation"
 android:hint="@string/translation"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:editable="false"
 android:layout_below="@id/from" />

 <TextView android:id="@+id/poweredBy"
 android:text="powered by Google"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true" />

</RelativeLayout>

Listing 11–37. String Resources for our Translation Application

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/strings.xml -->
<resources>
 <string name="translateBtn">> Translate ></string>
 <string name="input">Enter the text to translate</string>
 <string name="translation">The translation will appear here</string>
 <string name="prompt">Choose a language</string>
</resources>

Listing 11–38. Array Resources for our Translation Application

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/arrays.xml -->
<resources>
<string-array name="languages">
 <item>Chinese</item>
 <item>English</item>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 370

 <item>French</item>
 <item>German</item>
 <item>Japanese</item>
 <item>Spanish</item>
</string-array>
<string-array name="language_values">
 <item>zh</item>
 <item>en</item>
 <item>fr</item>
 <item>de</item>
 <item>ja</item>
 <item>es</item>
</string-array>
</resources>

Listing 11–39. Translation Service AIDL file

// This file is ITranslate.aidl under /src
interface ITranslate {
 String translate(in String text, in String from, in String to);
}

Listing 11–40. Main Translation Application: MainActivity.java

// This file is MainActivity.java
import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.Handler;
import android.os.IBinder;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;

public class MainActivity extends Activity implements OnClickListener {
 static final String TAG = "Translator";
 private EditText inputText = null;
 private TextView outputText = null;
 private Spinner fromLang = null;
 private Spinner toLang = null;
 private Button translateBtn = null;
 private String[] langShortNames = null;
 private Handler mHandler = new Handler();

 private ITranslate mTranslateService;

 private ServiceConnection mTranslateConn = new ServiceConnection() {
 public void onServiceConnected(ComponentName name,
 IBinder service) {
 mTranslateService = ITranslate.Stub.asInterface(service);
 if (mTranslateService != null) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 371

 translateBtn.setEnabled(true);
 } else {
 translateBtn.setEnabled(false);
 Log.e(TAG, "Unable to acquire TranslateService");
 }
 }

 public void onServiceDisconnected(ComponentName name) {
 translateBtn.setEnabled(false);
 mTranslateService = null;
 }
 };

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);
 inputText = (EditText) findViewById(R.id.input);
 outputText = (EditText) findViewById(R.id.translation);
 fromLang = (Spinner) findViewById(R.id.from);
 toLang = (Spinner) findViewById(R.id.to);

 langShortNames = getResources()
 .getStringArray(R.array.language_values);

 translateBtn = (Button) findViewById(R.id.translateBtn);
 translateBtn.setOnClickListener(this);

 ArrayAdapter<?> fromAdapter =
 ArrayAdapter.createFromResource(this,
 R.array.languages, android.R.layout.simple_spinner_item);
 fromAdapter.setDropDownViewResource(
 android.R.layout.simple_dropdown_item_1line);
 fromLang.setAdapter(fromAdapter);
 fromLang.setSelection(1); // English

 ArrayAdapter<?> toAdapter =
 ArrayAdapter.createFromResource(this,
 R.array.languages,android.R.layout.simple_spinner_item);
 toAdapter.setDropDownViewResource(
 android.R.layout.simple_dropdown_item_1line);
 toLang.setAdapter(toAdapter);
 toLang.setSelection(3); // German

 inputText.selectAll();

 Intent intent = new Intent(Intent.ACTION_VIEW);
 bindService(intent, mTranslateConn, Context.BIND_AUTO_CREATE);
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 unbindService(mTranslateConn);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 372

 public void onClick(View v) {
 if (inputText.getText().length() > 0) {
 doTranslate();
 }
 }

 private void doTranslate() {
 mHandler.post(new Runnable() {
 public void run() {
 String result = "";
 try {
 int fromPosition =
 fromLang.getSelectedItemPosition();
 int toPosition = toLang.getSelectedItemPosition();
 String input = inputText.getText().toString();
 if(input.length() > 5000)
 input = input.substring(0,5000);
 Log.v(TAG,"Translating from " +
 langShortNames[fromPosition] + " to " +
 langShortNames[toPosition]);
 result = mTranslateService.translate(input,
 langShortNames[fromPosition],
 langShortNames[toPosition]);
 if (result == null) {
 throw new Exception("Failed to get a translation");
 }
 outputText.setText(result);
 inputText.selectAll();
 } catch (Exception e) {
 Log.e(TAG, "Error: " + e.getMessage());
 }
 }
 });
 }
}

Listing 11–41. Translation Service Java file: TranslateService.java

// This file is TranslateService.java
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;

public class TranslateService extends Service {
 public static final String TAG = "TranslateService";

 private final ITranslate.Stub mBinder = new ITranslate.Stub() {
 public String translate(String text, String from, String to) {
 try {
 return Translator.translate(text, from, to);
 } catch (Exception e) {
 Log.e(TAG, "Failed to translate: " + e.getMessage());
 return null;
 }
 }
 };

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 373

 @Override
 public IBinder onBind(Intent intent) {
 return mBinder;
 }
}

Listing 11–42. Translation Function Java file

// This file is Translator.java
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.net.URLEncoder;

import org.apache.commons.lang.StringEscapeUtils;
import org.json.JSONObject;
import android.util.Log;

public class Translator {
 private static final String ENCODING = "UTF-8";
 private static final String URL_BASE =
"http://ajax.googleapis.com/ajax/services/language/translate?v=1.0&langpair=";
 private static final String INPUT_TEXT = "&q=";
 private static final String MY_SITE = “http://my.website.com”;
 private static final String TAG = "Translator";

 public static String translate(String text, String from, String to) throws Exception
{
 try {
 StringBuilder url = new StringBuilder();
 url.append(URL_BASE).append(from).append("%7C").append(to);
 url.append(INPUT_TEXT).append(
 URLEncoder.encode(text, ENCODING));

 HttpURLConnection conn = (HttpURLConnection)
 new URL(url.toString()).openConnection();
 conn.setRequestProperty("REFERER", MY_SITE);
 conn.setDoInput(true);
 conn.setDoOutput(true);
 try {
 InputStream is= conn.getInputStream();
 String rawResult = makeResult(is);

 JSONObject json = new JSONObject(rawResult);
 String result =
 ((JSONObject)json.get("responseData"))
 .getString("translatedText");
 return (StringEscapeUtils.unescapeXml(result));
 } finally {
 conn.getInputStream().close();
 if(conn.getErrorStream() != null)
 conn.getErrorStream().close();
 }
 } catch (Exception ex) {
 throw ex;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 374

 }

 private static String makeResult(InputStream inputStream) throws Exception {
 StringBuilder outputString = new StringBuilder();
 try {
 String string;
 if (inputStream != null) {
 BufferedReader reader =
 new BufferedReader(
 new InputStreamReader(inputStream, ENCODING));
 while (null != (string = reader.readLine())) {
 outputString.append(string).append('\n');
 }
 }
 } catch (Exception ex) {
 Log.e(TAG, "Error reading translation stream.", ex);
 }
 return outputString.toString();
 }
}

Listing 11–43. Translation Application AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is AndroidManifest.xml -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.translation"
 android:versionName="1.0"
 android:versionCode="1" >

 <application android:label="Translate"
 android:icon="@drawable/icon">

 <activity android:name="MainActivity" android:label="Translate">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name="TranslateService" android:label="Translate">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </service>
 </application>
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

Before this example will build properly, we need to provide a helper class. The Jakarta

Commons Lang project has a class called StringEscapeUtils that we would like to use

to convert the result string from the AJAX Language API into something human-

readable. The AJAX Language API can give us back XML entities representing certain

special characters. For example, an apostrophe would come back as '. We want to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 375

display those special characters properly to the user. That’s where the Commons Lang

project comes in. The location of Jakarta Commons Lang is here:

http://commons.apache.org/lang/

Go to the Jakarta Commons Lang web site, and find and download the commons-lang

ZIP (or TAR) file that contains the JAR file. Unpack it so you can get to the JAR file for

the next step. Within Eclipse, you’re going to select the project, right-click and choose

Build Path > Configure Build Path. Click the Libraries tab and then Add External JARs.

Navigate to the commons-lang JAR file, and add it. Now, click OK to finish adding the

JAR file to the project. Your application should build to completion. Go ahead and try it

out. If the application doesn’t fit too well in portrait mode, try using the Ctrl+F11 trick to

switch the emulator to landscape mode. If you doubt any of the results that you get

back, go to this site to compare your results with Google’s:

http://www.google.com/uds/samples/language/translate.html

There are several items we’d like to draw your attention to. Due to the Terms of Use, this

example includes a “powered by Google” string on the UI. Also due to the Terms of Use,

the strings you pass must not exceed 5,000 characters, so we cut them off if that

happens. You’d likely want to do something a little different there, such as breaking the

text into manageable chunks of text to pass to the API so you don’t lose anything.

We’ve intentionally kept the list of languages short just to make this application

manageable, but feel free to add additional languages to the string arrays to do more

translations. However, be aware that the Droid fonts may not have every character for

every language that the translator can translate. If you see strangeness in the results,

you might suspect that you’ve got a font problem. It is possible to acquire additional

fonts to alleviate this, but we won’t be covering fonts in this chapter. The response from

the API is structured using JSON. Therefore, we use JSON to parse the response into

our result string. Note that JSON is provided as part of Android, so we didn’t need to

grab it from the Internet to include it as an external jar file.

One of the features of the AJAX Language API is that you don’t have to tell it what the

input language is. The API will make an attempt at guessing the input language. If you

want to take this approach, you can choose to leave off the input language in the URL

that you pass, and instead immediately follow the langpair= with %7C. This would be

handy when you’re not sure what language will be provided to you, however, without a

sufficient amount of text passed to it, the API may not guess correctly.

References
Here are some helpful references to topics you may wish to explore further.

 http://www.androidbook.com/projects. Look here for a list of

downloadable projects related to this book. For this chapter look for a

ZIP file called ProAndroid3_Ch11_Services.zip. This ZIP file contains

all projects from this chapter, listed in separate root directories. There

is also a README.TXT file that describes exactly how to import

projects into Eclipse from one of these ZIP files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 11: Building and Consuming Services 376

 http://hc.apache.org/httpcomponents-client-ga/tutorial/html/.

This site has great tutorials on using the HttpClient classes, including

authentication and the use of cookies.

Summary
This chapter was all about services. We talked about consuming external HTTP services

using the Apache HttpClient and about writing background services. With regard to

using the HttpClient, we showed you how to do HTTP GET calls and HTTP POST calls.

We also showed you how to do multipart POSTs.

The second part of this chapter dealt with writing services in Android. Specifically, we

talked about writing local services and remote services. We said that local services are

services that are consumed by the components (such as activities) in the same process

as the service. Remote services are services whose clients are outside the process

hosting the services.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

377

377

 Chapter

Exploring Packages
In Chapters 1 through 11, we covered the basics of the Android platform. However,

these chapters detailed the happy path through Android. In the next few chapters,

starting with this one (Chapters 12, 13, 14, and 15), we will cover the next grain of detail

around the core of Android.

We will start that exploration by looking under the hood of Android packages, the

Android package signing process, sharing data between packages, and Android library

projects. You will understand the Linux process context in which an .apk file runs. You

will see how multiple .apk files can share data and resources given that context.

Although you were introduced to signing Android package files in Chapter 10, in this

chapter, you will learn the meaning, implication, and use of signed JAR files. In the

context of data sharing, we will also look at Android library projects to see how they

work and if they could be used for resource and code sharing.

Let’s start this discussion by going back to the basics of an .apk file, as it forms the

basis for an Android process.

Packages and Processes
As you have witnessed in previous chapters when you develop an application in

Android, you end up with an .apk file. You then sign this .apk file and deploy it to the

device. Let’s learn a little bit more about Android packages.

Details of a Package Specification
Each .apk file is uniquely identified by its root package name which is specified in its

manifest file. Here is an example of a package definition that we will be using for this

chapter (the package name is highlighted):

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.library.testlibraryapp"
 ...>
 ...rest of the xml nodes
</manifest>

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 378

If you were the developer of this package and signed it and installed on the device, no

one else other than you can update this package. The package name is tied to the

signature with which it is signed. Subsequently, a developer with a different signature

cannot sign and install a package with the same fully qualified Java package name.

Translating Package Name to a Process Name
Android uses the package name as the name of the process under which to run the

components of this package. Android also allocates a unique user ID for this package

process to run under. This allocated user ID is essentially an ID for the underlying Linux

OS. You can discover this information by looking at the details of the installed package.

Listing Installed Packages
On the emulator you can see a list of installed packages by navigating to the package

browser using the path Home ➤ Dev Tools ➤ Package Browser. (Note that you may or

may not find a similar package browser on a real device. This could also change based

on the Android release.)

Once you see the list of packages, you can highlight a package for a particular

application such as, say, a browser and click it. This will bring up a package detail

screen that looks like Figure 12–1.

Figure 12–1. Android package details

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 379

Figure 12–1 shows the name of the process as indicated by the Java package name in

the manifest file and the unique user ID allocated to this package. In the case of the

browser, the manifest file would have indicated its package name as

com.android.browser (reflected by the attribute process in Figure 12–1).

Any resources created by this process or package will be secured under that Linux user

ID. This screen also lists the components inside this package. Examples of components

are activities, services, and broadcast receivers.

Deleting a Package through the Package Browser
While we are on the subject of the package browser, we’d like to point out that you can

also delete the package from the emulator using the following steps in the package

browser mentioned in the previous section:

1. Highlight the package.

2. Click Menu.

3. Click “delete package” to delete a package.

Because a process is tied to a package name, and a package name is tied to its

signature, signatures play a role in securing the data belonging to a package. To fully

understand the implications of this, let’s investigate the nature of the package signing

process.

Revisiting the Package Signing Process
In Chapter 10, we introduced the mechanics of signing an application prior to installing

on the device. However, we haven't explored the need and implications of the package

signing process.

For example, when we download an application and install it on Windows or other

operating systems, we doesn't need to sign it. How come signing is mandated on an

Android device? What does the signing process really mean? What does it ensure? Are

there any real-world parallels to the signing process that we can quickly relate to? We

will explore these questions in this section.

As packages are installed on to a device, it is necessary that each installed package has

a unique or distinct Java package name. If you try to install a new package with an

existing name, the device will disallow the installation until the previous package is

removed. To allow this type of package upgrading, you must ensure that the same

application publisher is associated with that package. This is done with digital

signatures. After going through the following sections of this chapter, you will see that

the signing process ensures that, as a developer, you reserve that package name for

you through your digital signature.

Let’s walk through a couple of scenarios so you can fully understand and internalize

digital signatures.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 380

Understanding Digital Signatures: Scenario 1
Imagine you are a wine collector located in a very un-wine-like place, like the Sahara.

Furthermore, say wine makers around the world are sending you wine casks to archive

or sell.

As a wine collector, you notice that each cask and the wine inside it has a specific hue

and color that is distinct from others. On further investigation, you find out that if two

casks or the wine inside them have the same hue, it always comes from the same wine

maker. On digging further, you find out that each vintner has a secret hue recipe that is

kept locked up in a cellar and never revealed. This explained why each wine is different

and why two wines with the same hue must come from the same wine maker. Of

course, this identification by no means reveals the identity of the wine maker—just that

the vintner is distinct and unique.

The hue becomes a signature of the wine maker, like a family stamp, and the wine

maker hides the signature from everyone else.

An important distinction in this example is that there is no way for you, as a collector, to

know which wine maker sent a particular shipment of wine—there is no name or address

associated with that signature. Even if there were, it is quite possible that a wine maker

could send wine that appeared to come from another’s address. In that case, you can

therefore assume that the two wine caskets, which have the same address but different

hues, are from two different wine makers resident at the same address.

Understanding Digital Signatures: Scenario 2
Let’s consider another scenario for naturally occurring signatures. When you visit a

foreign land, you turn on the radio and hear many songs. You can tell there are different

singers, and you can identify each separately but not know who they are or know their

names. This is self-signing (in this case with their vocal chords). When a friend of yours

tells you of a singer and associates that singer with a voice you have heard, it is

analogous to third-party signing.

One singer can imitate another’s voice to confuse or trick the listener. However, it is far,

far harder to emulate a digital signature because of the mathematical algorithms that are

used to encode signatures.

A Pattern for Understanding Digital Signatures
When we talk about someone signing a JAR file, that JAR file is uniquely “colored” and

can be distinguished from other set of JAR files. However, there is no way to identify the

source developer or company with authenticity. Such JAR files are called self-signed

JAR files.

To know the source, you need a third-party company that the wine collector trusts tell us

that the color red comes from Company1. Now, every time we see ”color-red”, we know

that the wine is from Company1. These are called third-party-signed JAR files. These are

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 381

useful in your browsers to tell you that you are downloading a file from Company 1 or

installing an application manufactured by Company 1 (authoritatively).

So How Do You Digitally Sign?
Digital signatures, which follow similar semantics explained in the scenarios above, are

technically implemented through what is called a public/private key encryption.

Mathematics can be applied to generate two numbers whereby if you encode with the

first number (the private key), only the second number (the public key) can decrypt it.

These keys are asymmetric. Even if everyone knows the public key there is no way they

can encrypt a message that the public key can decrypt. Only its matching private key

can do that.

Let consider the idea of public and private keys in the context of the wine example.

A wine maker who wants to distinguish wine through digital signatures, as opposed to

hues, creates a code (hue) for her casket using the private key. Because the private key

is used to generate the code (hue), only a corresponding public key can decrypt the

code.

The wine maker then boldly writes down the public key name and the encrypted code

on top of the cask, or transfers the public key once through a courier.

When you, the wine collector, take that public key and successfully unravel the

encrypted code, you know that the public key is correct and the message is only

encrypted by the wine maker who wrote the public key. In this scenario, even if another

imposter wine maker copies the public key of the real wine maker and writes it on a

casket, the imposter will not possess the ability to write a secret message that the public

key will decrypt.

In essence the public key becomes the signature of the wine maker. Even if someone

else were to claim the public key, that person wouldn’t be able to produce a message

that could be decrypted with the public key.

With this comparison of digital signatures with real signatures, we have established a

parallel to help you grasp and internalize digital signatures. We already covered, in

Chapter 10, the mechanics of using the JDK-based keytool and jarsigner commands

to accomplish the signing process.

Implications of the Signing Process
We now can see that we cannot have two distinct signatures for the same package

name. Signatures are sometimes referred to as public key infrastructure (PKI)

certificates. More accurately stated, you would use a PKI certificate to sign a bundle, a

JAR file, or a DLL or an application.

The PKI certificate is tied to the package name to ensure that two developers cannot

install a package that carries the same package name. However, the same certificate

can be used to sign any number of packages. In other words one PKI certificate

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 382

supports many packages. This relationship is one-to-many. However one package has

one, and only one, signature through its PKI certificate. A developer then protects the

private key of a certificate with a password.

These facts are important not only for new releases of the same package but also to

share data between packages when the packages are signed with the same signature.

Sharing Data Among Packages
In previous chapters, we established that each package runs in its own process. All

assets that are installed or created through this package belong to the user whose ID is

assigned to the package. You also know that Android allocates a unique Linux-based

user ID to run that package. In Figure 12–1, you can see what this user ID look like.

According to the Android SDK documentation

"This user ID is assigned when the application is installed on the device,
and remains constant for the duration of its life on that device. Any data
stored by an application will be assigned that application's user ID, and
not normally accessible to other packages. When creating a new file
with getSharedPreferences(String, int), openFileOutput(String,
int), or openOrCreateDatabase(String, int, SQLiteDatabase.Cursor
Factory), you can use the MODE_WORLD_READABLE and/or MODE_WORLD_
WRITEABLE flags to allow any other package to read/write the file. When
setting these flags, the file is still owned by your application, but it’s
global read and/or write permissions have been set appropriately so any
other application can see it."

If your intention is to allow a set of cooperating applications that depend on a common

set of data you have an option to explicitly specify a user ID that is unique to you and

common for your needs. This shared user ID is also defined in the manifest file, similar to

the definition of a package name. Listing 12–1 shows an example.

Listing 12–1. Shared User ID Declaration

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.somepackage"
 sharedUserId="com.androidbook.mysharedusrid"
 ...
>
...the rest of the xml nodes
</manifest>

The Nature of Shared User IDs
Multiple applications can specify the same shared user id if they share the same

signature (Signed with the same PKI certificate). Having a shared user ID allows multiple

applications to share data and even run in the same process. To avoid the duplication of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 383

a shared user ID, use a convention similar to naming a Java class. Here are some

examples of shared user IDs found in the Android system

"android.uid.system"
"android.uid.phone"

NOTE: There have been some reports in Android-related news groups that a shared ID must be

specified as a raw string and not a string resource.

As a note of caution, if you are planning on using shared user IDs, the recommendation

is to use them from the start. Otherwise, they don’t work well when you upgrade your

application from a nonshared user ID to one with a shared ID. One of the cited reasons

is that Android will not run chown on the old resources because of the user ID change.

Therefore, we strongly advised that you

 Use a shared user ID from the start if needed.

 Don’t change a user ID once it’s in use.

A Code Pattern for Sharing Data
This section explores the opportunities we have when two applications want to share

resources and data. As you know, the resources and data of each package are owned

and protected by that package’s context during run time. It is no surprise then that you

need access to the context of the package that you want to share the resources or data

from.

Android provides an API called createPackageContext() to help with this. You can use

the createPackageContext() API on any existing context object (such as your activity) to

get a reference to the target context that you want to interact with. Listing 12–1 provides

an example (this is an example only to show you the usage and not intended to be

compiled).

Listing 12–2. Using the createPackageContext() API

//Identify package you want to use
String targetPackageName="com.androidbook.samplepackage1";

//Decide on an appropriate context flag
int flag=Context.CONTEXT_RESTRICTED;

//Get the target context through one of your activities
Activity myContext = ……;
Context targetContext =
 myContext.createPackageContext(targetPackageName, flag);

//Use context to resolve file paths
Resources res = targetContext.getResources();
File path = targetContext.getFilesDir();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 384

Notice how we are able to get a reference to the context of a given package name such

as com.androidbook.samplepackage1. This targetContext in Listing 12–2 is identical to

the context that is passed to the target application when that application is launched. As

the name of the method indicates (in its “create” prefix), each call returns a new context

object. However, the documentation assures us that this returned context object is

designed to be lightweight.

This API is applicable irrespective of whether or not you have a shared user ID. If you

share the user ID, it is well and good. If you don’t share a user ID, the target application

would need to declare its resources accessible to the outside users.

createPackageContext() uses one of three flags:

 If the flag is CONTEXT_INCLUDE_CODE, Android allows you to load the

target application code into the current process. That code will then

run as yours. This will succeed only if both packages have the same

signature and a shared user ID. If the shared user IDs don’t match,

using this flag will result in a security exception.

 If the flag is CONTEXT_RESTRICTED, we still should be able to access the

resource paths without going to the extreme case of requesting a code

load.

 If the flag is CONTEXT_IGNORE_SECURITY, the certificates are ignored and

the code is loaded but however it will run under your user ID. The

documentation as a consequence suggests severe caution if you were

to use this flag.

Now, we know how packages, signatures, and shared user IDs can be used in concert

in controlling access to what applications own and create.

Library Projects
As we talk through sharing code and resources one question worth asking is, will the

idea of a “library” project help? To investigate this, we first understand what library

projects are, how to create them, and how these projects are used.

What Is a Library Project?
Starting with the ADT 0.9.7 Eclipse plug-in, Android supports the idea of library projects.

A library project is a collection of Java code and resources that look like a regular

project but never ends up in an .apk file by itself. Instead the code and resources of a

library project become part of another project and get compiled into that main project’s

.apk file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 385

Library Project Predicates
Here are some facts about these library projects:

 A library project can have its own package name

 A library project will not be compiled into its own .apk file and instead

gets absorbed into an .apk file of the project that uses this as a

dependency.

 A library project can use other JAR files.

 A library project cannot be made into a JAR file by itself.

 Eclipse ADT will merge a library project into the main referenced

project and compiles them together as part of the main project

compilation.

 Both the library project and the main project can access the resources

from the library project through their respective R.java files.

 You can have duplicate resource IDs between main project and a

library project. Resource IDs from the main project will take

precedence over those in the library project.

 If you would like to distinguish resource ids between the two projects,

you can use different resource prefixes, such as lib_ for the library

project resources.

 A main project can reference any number of library projects.

 You can set precedence for the library projects to see whose

resources are more important.

 Components, such as an activity, of a library need to be defined in the

target main project manifest file. When done so, the component name

from the library package must be fully qualified with the library

package name.

 It is not necessary to define the components in a library manifest file

although it may be a good practice to know quickly what components

it supports.

 Creating a library project starts with creating a regular Android project

and then choosing the Is Library flag in its properties window.

 You can set the dependent library projects for a main project through

project properties screen as well.

 Clearly being a library project, many main projects can include that

library project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 386

 Library feature is available in ADT 0.9.7, SDK tools version r6 or higher,

Android 2.1 or up.

 One library project cannot reference another library project as of this

release although there seem to be a desire to do so in future releases

 Library project cannot support AIDL files.

 A library project does not support sharable assets directory.

Let’s explore library projects by creating a library project and a main project. The goal

of this sample project is to do the following:

1. Create a simple activity in a library project.

2. Create a menu for the activity in step 1 by defining some menu resources.

3. Create a main project activity that uses the library project as a dependency.

4. Create an activity in the main project from step 3.

5. Create a menu for the main activity in step 4.

6. Have a menu item from the main activity invoke the activity from the library

project.

Once these projects created here is the activity from the main project (the activity from

step 4, Figure 12–2).

Figure 12–2. A sample activity with menus in a main project

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 387

When you click on the invoke lib menu item from the main project activity, you will see the

activity shown in Figure 12–3 served from the library project.

Figure 12–3. A sample activity from the Library project

The menus in this library activity come from resources of the library project. Clicking

these menus simply logs a message on the screen that a particular menu item is clicked.

Let’s start the exercise by creating a library project first.

Creating a Library Project
This sample library project will have the following files:

 TestLibActivity.java (Listing 12–3)

 layout/lib_main.xml (Listing 12–4)

 menu/lib_main_menu.xml (Listing 12–5)

 AndroidManifest.xml (Listing 12–6)

These files should be sufficient to create your own Android library project and are shown

in the following listings.

NOTE: We will give you a URL at the end of the chapter that you can use to download projects of

this chapter. This will allow you to import these projects into your Eclipse directly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 388

Listing 12–3. Sample Library Project Activity: TestLibActivity.java

package com.androidbook.library.testlibrary;

//...basic imports here
//use CTRL-SHIFT-O to have eclipse generate
//necessary imports

public class TestLibActivity extends Activity
{
 public static final String tag="TestLibActivity";
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.lib_main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.lib_main_menu, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear){
 this.emptyText();
 return true;
 }
 return true;
 }
 private TextView getTextView(){
 return (TextView)this.findViewById(R.id.text1);
 }
 public void appendText(String abc){
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + abc);
 }
 private void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 private void emptyText(){
 TextView tv = getTextView();
 tv.setText("");
 }
}

Listing 12–4 shows the supporting layout file for this activity: just a single text view that

is used to write out the name of the menu item clicked.

Listing 12–4. Sample Library Project Layout File: layout/lib_main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 389

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Your debug will appear here "
 />
</LinearLayout>

Listing 12–5 provides the menu file to support the menus shown in the library activity of

Figure 12–3.

Listing 12–5. Library Project Menu File: Menu/lib_main_menu.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_clear"
 android:title="clear" />
 <item android:id="@+id/menu_testlib_1"
 android:title="Lib Test Menu1" />
 <item android:id="@+id/menu_testlib_2"
 android:title="Lib Test Menu2" />
 </group>
</menu>

And the manifest file for the library project is contained in Listing 12–6.

Listing 12–6. Library Project Manifest File: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.library.testlibrary"
 android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk android:minSdkVersion="3" />
 <application android:icon="@drawable/icon"
 android:label="Test Library Project">
 <activity android:name=".TestLibActivity"
 android:label="Test Library Activity">
 </activity>
 </application>
</manifest>

As pointed out in the library project predicates section, the activity definition in the

library project manifest file is merely for documentation and executionally optional.

Once these files are assembled you start by creating a regular Android project. Once the

project is set up, right-click the project name, and click the properties context menu to

show the properties dialog for the library project. This dialog is shown in Figure 12–4.

(The available build targets in this figure may vary with your version of the Android SDK.)

Simply select Is Library from this dialog to set up this project as a library project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 390

Figure 12–4. Designating a project as a library project

With that, we have completed creating a library project. Let’s see now how to create an

application project that can use this library project.

Creating an Android Project That Uses a library
We will use a similar set of files to create an application project and then go on to use

the library project from above as a dependency. Here is the list of files we will be using

to create the main project:

TestAppActivity.java (Listing 12–7)

layout/main.xml (Listing 12–8)

menu/main_menu.xml (Listing 12–9)

AndroidManifest.xml (Listing 12–10)

Listing 12–7 shows TestAppActivity.java.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 391

Listing 12–7. Main Project Activity Code: TestAppActivity.java

package com.androidbook.library.testlibraryapp;
import com.androidbook.library.testlibrary.*;
//...other imports

public class TestAppActivity extends Activity
{
 public static final String tag="TestAppActivity";
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear)
 {
 this.emptyText();
 return true;
 }
 if (item.getItemId() == R.id.menu_library_activity){
 this.invokeLibActivity(item.getItemId());
 return true;
 }
 return true;
 }
 private void invokeLibActivity(int mid)
 {
 Intent intent = new Intent(this,TestLibActivity.class);
 intent.putExtra("com.ai.menuid", mid);
 startActivity(intent);
 }
 private TextView getTextView(){
 return (TextView)this.findViewById(R.id.text1);
 }
 public void appendText(String abc){
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + abc);
 }
 private void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 private void emptyText(){
 TextView tv = getTextView();
 tv.setText("");
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 392

Please note that, after creating this file, you may get a compile error on the reference to

the activity class that is in the library project. This will not go away until your read a bit

further and discover how to specify the previous library project as a dependency of the

application project.

The corresponding layout file to support the activity is in Listing 12–8.

Listing 12–8. Main Project layout file: layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Debug Text Will Appear here"
 />
</LinearLayout>

The Java code in the main project activity (Listing 12–7) is using a menu item called

R.id.menu_library_activity to invoke the TestLibActivity. Here is the code extracted

from the Java file (Listing 12–7):

private void invokeLibActivity(int mid)
{
 Intent intent = new Intent(this,TestLibActivity.class);
 //Pass the menu id as an intent extra
 //incase if the lib activity wants it.
 intent.putExtra("com.androidbook.library.menuid", mid);
 startActivity(intent);
}

Notice how we have used TestLibActivity.class as if it is a local class, except that we

have imported the Java classes from the library package:

import com.androidbook.library.testlibrary.*;

And the menu file is in Listing 12–9.

Listing 12–9. Main Project Menu File: menu/main_menu.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_clear"
 android:title="clear" />
 <item android:id="@+id/menu_library_activity"
 android:title="invoke lib" />
 </group>
</menu>

The manifest file to complete the project creation is shown in Listing 12–10.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 393

Listing 12–10. Main Project Manifest File: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.library.testlibraryapp"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="Test Library App">
 <activity android:name=".TestAppActivity"
 android:label="Test Library App">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=
"com.androidbook.library.testlibrary.TestLibActivity"
 android:label="Test Library Activity"/>
 </application>
 <uses-sdk android:minSdkVersion="3" />
</manifest>

In this main application manifest file, notice how we have defined the activity

TestLibActivity from the library project. We have also used the fully qualified package

name for the activity definition. Also notice that the package names for the library project

could be different from the main application project.

Once you have set up an Android project with these files, you can use the following

project properties dialogue (see Figure 12–5) to indicate that this main project depends

on the library project that was created earlier.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 394

Figure 12–5. Declaring a library project dependency

Notice the Add button in the dialogue. You can use this to add the library in Figure 12–5

as a reference. You don't need to do anything else.

Once this step is done, the library project usually shows up as an additional node (in

addition to being a library project by itself) under the main application project. Figure 12–6

illustrates this.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 395

Figure 12–6. Absorbed library project in the main project view

Notice the node that said [Android Library] and the replicated/referenced Java source

files. Notice the structure of this node. It is named by concatenating the name of the

library project, an underscore, and the name of the corresponding source directory

under the library project. This scheme allows for any number of arbitrary source

directories under the library project. This is the primary difference between ADT 0.9.8

and the more recent ADT releases.

If you were to change the source files belonging to the library project under the

application project, you are actually changing them in the library project as well.

Sometimes, you don't see this subnode. You may want to restart Eclipse in such a case.

In any case, if it works, you should see this extra node.

Android does another interesting thing with R.java files. Consider Figure 12–7.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 396

Figure 12–7. Replicated resources in R.java

First Android generates one R.java file in the library project for the resources belonging

to the library project. Android also generates another R.java file for the resources in the

main Java project. This is to be expected—two projects, two R.java files.

However, the interesting thing is that Android creates the resource IDs for the library

resources in the R.java file of the main application as well. This means the programmer

can use the R.id. syntax for IDs of the R.java file belonging to the main application

(please note that R.java is automatically generated, so the numbers such as 0x7f02000

in Listing 12–11 may be different in your project).

Listing 12–11. Redefined Shared Resource IDs in the Main Project R.java File

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 public static final int robot=0x7f020001;
 }
 public static final class id {
 public static final int menuGroup_Main=0x7f060001;
 public static final int menu_clear=0x7f060002;
 public static final int menu_library_activity=0x7f060005;
 public static final int menu_testlib_1=0x7f060003;
 public static final int menu_testlib_2=0x7f060004;
 public static final int text1=0x7f060000;
 }
 public static final class layout {
 public static final int lib_main=0x7f030000;
 public static final int main=0x7f030001;
 }
 public static final class menu {
 public static final int lib_main_menu=0x7f050000;
 public static final int main_menu=0x7f050001;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 397

 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

Notice that the resources identified with lib_ are now available in the main application’s

R.java as well. This means the library project will have one resource constant for lib_,

and the main project will have another resource constant for the same lib_ resource.

Both projects in their Java code can refer to this resource by using the R.some-id. The

value of the constant may be the same, but you will have that resource ID available in

both Java namespaces: the library package namespace and the main project package

namespace.

Also, pay attention to the menu names: lib_main_menu and main_menu. We would be in a

real pickle if we names these two menu resource files the same but had different menu

items inside them. The bottom line is that the resources are aggregated and available in

one place for the main application. Pay special attention to the resources that are at the

file level, such as menus and layouts, and the IDs that are generated for internal items of

those resource files.

Now that you understand library projects, are we any closer to answering the shared

data questions posed before considering them?

As you can see, library projects are compile-time constructs. Clearly, any resources that

belong to the library get absorbed and merged into the main project. There is not a

question of sharing at run time, as there is just one package file with the name of the

main package. One suggestion often mentioned is that you can potentially develop free

versions and paid versions of an application by both versions sharing a library.

References
Here are some useful links to further strengthen your understanding of this chapter:

 http://developer.android.com/guide/publishing/app-signing.html:

This reference is really a good read for information about signing .apk

files.

 http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html:

This site offers excellent documentation on keytool, jarsigner, and

the signing process itself.

 http://www.androidbook.com/item/3493: Author’s notes, including a

conceptual model, on understanding what it means to sign a JAR file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 12: Exploring Packages 398

 http://www.androidbook.com/item/3279: This site compiles our

research on understanding Android packages. You will see how to

sign .apk files, further links to how to share data between packages,

more on shared user ID, and instructions to install and uninstall

packages.

 http://developer.android.com/guide/developing/eclipse-
adt.html#libraryProject: Read this article to understand library

projects.

 http://www.androidbook.com/projects: Look here for a list of

downloadable projects related to this book. For this chapter, look for a

file called ProAndroid3_Ch12_TestAndroidLibraries.zip. This ZIP file

contains both projects in this chapter in separate root directories, so

you can import them into Eclipse ADT.

Summary
In this chapter, we covered working with packages and processes, sharing code and

data among packages, and creating Android library projects. You learned that

signatures play an important security role in assigning ownership to packages.

This chapter lays the foundation for the next chapter, where we talk about components

that are housed in a package process and (primarily) run on its main thread. We will talk

about how to optimally co-opt the main thread via handlers and subthreads so that an

Android application can run smoothly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

399

399

 Chapter

Exploring Handlers
We showed in Chapter 12 that each package runs in its own process. In this chapter, we

will explain the organization of threads within this process. This will lead us to why we

need handlers.

Most code in an Android application runs in the context of a component such as an

Activity or a Service. We will show how these components of an application interact with

threads. Most of the time there is only one thread running in an Android process called

the main thread. We will talk about the implications of sharing this main thread among

various components. Primarily, this can lead to Application Not Responding (ANR)

messages (the “A” stands for “application” and not “Annoying”) . We will show you how

you can use handlers, messages, and threads to break the dependency on the main

thread when long running operations are needed.

We will start this chapter by looking at the components of an Android application and

the thread context they run under.

Android Components and Threading
As you have gathered by now from many of the previous chapters, an Android process

has four primary components. These are

 Activity

 Service

 ContentProvider (often referred as just a provider)

 BroadcastReceiver (often referred as just a receiver)

Most code you write in an Android application is part of one of these components or

called by one of these components. Each of these components gets its own XML node

under an application node specification in the Android project manifest file. To repaint,

here are these nodes

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 400

<application>
 <activity/>
 <service/>
 <receiver/>
 <provider/>
</application>

With some exceptions Android uses the same thread to process (or run through) code in

these components. This thread is called the main thread of the application. When these

components are called, the call can be either a synchronous call, such as when you call

a content provider for data, or a deferred one through a message queue, such as when

you invoke functionality by calling a start service.

Figure 13–1 describes the relationship between threads and these four components. The

goal of this diagram is to show how threads weave through the Android framework and

its components. We explore aspects of this diagram in the next few subsections.

Figure 13–1. Android Components and Threading Framework

Activities Run on the Main Thread
As indicated in Figure 13–1 the main thread does the heavy lifting. It runs through all the

components. Moreover, it does this through a message queue. For example, as you

select menus or buttons on the device screen, the device will translate these actions as

messages and drop them on to the main queue of the process that is in focus. The main

thread sits in a loop and processes each message. If any message takes more than 5

seconds or so, Android throws an ANR message.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 401

Broadcast Receivers run on the Main Thread
Similarly, in response to a menu item, if you were to invoke a broadcast message,

Android again drops a message on the main queue of the package process in which the

registered receiver is to be invoked from. The main thread will come around to that

message at a later time to invoke the receiver. The main thread does the work for a

broadcast receiver as well. If the main thread is busy responding to a menu action, the

broadcast receiver will have to wait until the main thread gets freed up.

Services Run on the Main Thread
The same is true with a service. When you start a local service with startService from a

menu item, a message is dropped on to the main queue, and the main thread will come

around to process it via the service code.

Content Provider Runs on the Main Thread
Calls to a local content provider are slightly different. A content provider still runs on the

main thread, but a call to it is synchronous and does not use message queues.

Implications of a Singular Main Thread
You may ask, “why is it important whether most code in an Android application runs on

the main thread or otherwise?” Because the main thread has the responsibility to get

back to its queue so that UI events are responded to. As a consequence, one should not

hold up the main thread. If there is something that is going to take longer than 5

seconds you should get that done in a separate thread or defer it by asking the main

thread to come back to it when it is freed up from other processing. As it turns out doing

work in a separate thread is not as simple as it initially appears. We will return to that

again later in this chapter and also next chapter, but let’s talk about the thread pool that

is identified in Figure 13–1.

Thread Pools, Content Providers, External Service
Components
When external clients or components outside of the process makes a call to the content

provider for data, then that call is allocated a thread from a thread pool. The same is true

with external clients connecting to services.

Thread Utilities: Discover Your Threads
After much talk on main threads and worker threads, it is quite instructive to use the

following utility class in Listing 13–1 to figure out which thread is running your part of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 402

code. You can then verify what we have covered so far by monitoring the logcat and

see which thread ID is being printed.

Listing 13–1. Thread Utilities

//utils.java
public class Utils
{
 public static long getThreadId() {
 Thread t = Thread.currentThread();
 return t.getId();
 }

 public static String getThreadSignature(){
 Thread t = Thread.currentThread();
 long l = t.getId();
 String name = t.getName();
 long p = t.getPriority();
 String gname = t.getThreadGroup().getName();
 return (name
 + ":(id)" + l
 + ":(priority)" + p
 + ":(group)" + gname);
 }

 public static void logThreadSignature(){
 Log.d("ThreadUtils", getThreadSignature());
 }

 public static void sleepForInSecs(int secs){
 try{
 Thread.sleep(secs * 1000);
 } catch(InterruptedException x){
 throw new RuntimeException("interrupted",x);
 }
 }
 //The following two methods are used by worker threads
 //that we will introduce later.
 public static Bundle getStringAsABundle(String message){
 Bundle b = new Bundle();
 b.putString("message", message);
 return b;
 }
 public static String getStringFromABundle(Bundle b){
 return b.getString("message");
 }
}

If you use the logThreadSignature(), you can see which thread is executing the code.

You can also use the sleep() method to see what happens if you pause the main thread

and thereby disallow it to process the message queue.

We have briefly referred to the idea of deferring work on a main thread if needed. This is

done through handlers. Handlers are extensively used throughout Android so that the

main UI thread is not held up. They also play a role in communicating with the main

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 403

thread from other spawned worker threads. Let’s look at what handlers are and how

they function in the next section.

Handlers
A handler is a mechanism to drop a message on the main queue (more precisely, the

queue attached to the thread on which the handler is instantiated) so that the message

can be processed at a later point in time by the main thread. The message that is

dropped has an internal reference pointing to the handler that dropped it.

When the main thread gets around to processing that message, it invokes the handler

that dropped the message through a callback method on the handler object. This

callback method is called handleMesage. Figure 13–2 presents this relationship between

handlers, messages, and the main thread.

Figure 13–2. Handler, Message, Message Queue Relationship

Figure 13–2 illustrates the key players that work together when we talk about handlers.

These key players are

 Main thread

 Main thread queue

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 404

 Handler

 Message

Out of these four, we are not exposed to the main thread or the queue directly. We

primarily deal with the Handler object and the Message object. Even between these two,

the Handler object coordinates most of the work.

Despite the importance of a Handler in this interaction, you should also note that,

although a handler allows us to drop a message on to the queue, it is the message that

actually holds a reference back to the handler. The Message object also holds a data

structure that can be passed back to the handler. In Figure 13–2, the Message object is

depicting this relationship by showing reference to a Data object.

Because of this seemingly inverted relationship between a handler and a message, and

also the fact that the main thread and its queue are hidden from the programmer, a

handler is best understood by an example.

For the example, we will have a menu item that invokes a function, and that function, in

turn, performs an action five times at one-second intervals and reports back to the

invoking activity each time.

Implications of Holding the Main Thread
If we don't mind holding up the main thread, we could have coded the preceding

scenario like the pseudo code in Listing 13–2

Listing 13–2. Holding Up the Main Thread with a Sleep Method

public class SomeActivity
{
 other methods

 void respondToMenuItem()
 {
 //Prove that we are on the main thread
 Utils.logThreadSignature();

 for (int i=0;i<5;i++)
 {
 sleepFor(1000);// put main thread to sleep for 1 sec
 dosomething();
 SomeTextView.setText("did something");
 }
 }
}

This will satisfy the requirement of the use case. However, if we do this, we are holding

up the main thread, and we are guaranteed to have an ANR.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 405

Using a Handler to Defer Work on the Main Thread
We can use a handler to avoid the ANR in the previous example. Pseudo code to do this

via a handler will look like Listing 13–3.

Listing 13–3. Instantiating a Handler From Main Thread

void respondToMenuItem()
{
 SomeHandlerDerivedFromHandler myHandler =
 new SomeHandlerDerivedFromHandler();
 myHandler.doDeferredWork(); //invoke a function in 1 sec intervals
}

Now, the call respondToMenuItem() will allow the main thread to go back to its loop. The

instantiated handler knows that it is invoked on the main thread and hooks itself up to

the queue. The method doDeferredWork() will schedule work so that the main thread

can get back to this work once it is free. So how does it do that? Here are the steps for

implementing this function:

1. Construct a message object so that it can be dropped off on the queue.

2. Send the message object to the queue so that it can invoke a callback in 1

second.

3. Respond to the handleMessage() callback from the main thread.

To investigate this protocol, let’s see the actual source code for a proper handler. The

code in Listing 13–4 demonstrates this handler, which is called DeferWorkHandler.

In the pseudo code in Listing 13–3, the indicated handler

SomeHandlerDerivedFromHandler is equivalent to DeferWorkHandler. Similarly, the

indicated method doDeferredWork() is implemented on the DeferWorkHandler in Listing

13–4.

A Sample Handler Source Code That Defers Work
Before we explain each of the steps in the previous section, the code for

DeferWorkHandler is presented in Listing 13–4. Keep in mind that the source code for

the main driver activity that invokes this handler is given later in this chapter.

This parent driver activity is indicated as the variable parentActivity in Listing 13–4.

This variable is not critical for understanding this code, and it is primarily used to report

the status of the work that is occurring in the handler.

Listing 13–4. DeferWorkHandler Source Code

public class DeferWorkHandler extends Handler
{
 public static final String tag = "DeferWorkHandler";

 //Keep track of how many times we sent the message
 private int count = 0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 406

 //A parent driver activity we can use
 //to inform of status.
 private TestHandlersDriverActivity parentActivity = null;

 //During construction we take in the parent
 //driver activity.
 public DeferWorkHandler(TestHandlersDriverActivity inParentActivity){
 parentActivity = inParentActivity;
 }
 @Override
 public void handleMessage(Message msg)
 {
 String pm = new String(
 "message called:" + count + ":" +
 msg.getData().getString("message"));

 Log.d(tag,pm);
 this.printMessage(pm);

 if (count > 5)
 {
 return;
 }
 count++;
 sendTestMessage(1);
 }
 public void sendTestMessage(long interval)
 {
 Message m = this.obtainMessage();
 prepareMessage(m);
 this.sendMessageDelayed(m, interval * 1000);
 }
 public void doDeferredWork()
 {
 count = 0;
 sendTestMessage(1);
 }
 public void prepareMessage(Message m)
 {
 Bundle b = new Bundle();
 b.putString("message", "Hello World");
 m.setData(b);
 return ;
 }
 //This method just prints a message
 //in a text box in the parent activity.
 //You can see this method in Listing 13–9
 private void printMessage(String xyz)
 {
 parentActivity.appendText(xyz);
 }
}

Let’s look at the primary aspects of this source code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 407

Constructing a Suitable Message Object
As we have indicated before, when the DeferWorkHandler is constructed, it already

knows how to hook itself up to the main queue, because it inherited that property from

the base Handler class. The base handler offers a series of methods to send messages

to the queue to be responded later.

sendMessage() and sendMessageDelayed() are two examples of these send methods.

sendMessageDelayed(), which we used in the example, allows us to drop a message on

the main queue with a given amount of time delay.

When you call sendMessage() or sendMessageDelayed(), you will need an instance of the

Message object. It is best that you ask the handler to give it to you, because when the

handler returns the Message object, it hides itself in the belly of the Message. That way,

when the main thread comes along, it knows which handler to call based solely on the

message.

In Listing 13–4, the message is obtained using the following code:

Message m = this.obtainMessage();

The variable this refers to the handler object instance. As the name indicates, the

method does not create a new message but instead gets one from a global message

pool. At a later point, once this message is processed, it will be recycled. The method

obtainMessage() has the variations listed in Listing 13–5

Listing 13–5. Constructing a Message Through a Handler

obtainMessage();
obtainMessage(int what);
obtainMessage(int what, Object object);
obtainMessage(int what, int arg1, int arg2)
obtainMessage(int what, int arg1, int arg2, Object obj);

Each method variation sets the corresponding fields on the message object. There are

some restrictions on the Object object argument when the message crosses process

boundaries. In such cases, it needs to be parcellable. It is much safer and compatible

in such cases to use the setData() method explicitly on the message object, which

takes a bundle. In Listing 13–4, we have used setData(). You are encouraged to use the

arg1 or arg2 instead if what you are intending to pass are simple indicators that can be

accommodated with integer values.

The argument what allows you to dequeue message or enquire if there are messages of

this type in the queue. See the operations on the Handler class for more details. This

chapter’s “References” section has a URL for the API documentation of the Handler

class.

Sending Message Objects to the Queue
Once we obtain a message from the handler, we can optionally modify the data contents

of that message. In our example, we have used the setData() function by passing it a

bundle object. Once we have categorized or identified the data of the message, we can

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 408

send the message to the queue through sendMessage() or sendMessageDelayed(). Once

these methods are called, the main thread will return to attending the queue.

Responding to the handleMessage Callback
The class DeferWorkHandler is derived from Handler. Once the messages are delivered

to the queue, the handler sits and waits (figuratively speaking) until the main thread

retrieves those messages and calls the handler’s handleMessage().

If you want to see this handler and main thread interaction more clearly, you can write a

logcat message when you are sending the message and in the handleMessage()

callback. You will notice the time stamps differ as the main thread would have taken a

few more milliseconds to come back to the handleMessage() method.

This is also a good way to know that both the sendMessage() and the handleMessage()

run on the main thread. You can use the Utils.logThreadSignature() method (see

Listing 13–1) to illustrate this.

In our example, each handleMessage(), after processing one message, sends another

message to the queue so that it can be called again. It does this five times, and when

the counter reaches five, it quits sending messages to the queue.

In our example of a handler, DeferWorkHandler (as indicated earlier) also takes the

parent activity as an input so that it can report back any information using the methods

provided by that activity.

Using Worker Threads
When we use a handler like the one in the previous section, the code is still executed on

the main thread. Each call to handleMessage() still should return within the time

stipulations of the main thread (in other words, each message invocation should

complete in less than five seconds to avoid Android Not Responding). If your goal is to

extend that time of execution further, you will need to start a separate thread, keep the

thread running until it finishes the work, and allow for that subthread to report back to

the main activity, which is running on the main thread. This type of a subthread is often

called a worker thread.

It is a no-brainer to start a separate thread while responding to a menu item. However,

the clever trick is to allow the worker thread to post a message to the queue of the main

thread that something is happening and that the main thread should look at it when it

gets to that message.

A reasonable solution that involves a worker thread is as follows:

1. Create a handler in the main thread while responding to the menu item. Keep it

aside. Unlike in the earlier section, we will not use this handler to send messages

to defer work.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 409

2. Create a separate thread (a worker thread) that does the actual work. Pass the

handler from step 1 to the worker thread.

3. The worker thread code can now do the actual work for longer than 5 seconds

and, while doing it, can call the handler to send status messages to communicate

with the main thread

4. These status messages now get processed by the main thread, because the

handler belonged to the main thread. The main thread can process these

messages while the worker thread is doing its work.

Let’s show you some sample code for a menu item that starts the process for a worker

thread

Invoking a Worker Thread from a Menu
The code in Listing 13–6 illustrates a function called testThread() that can be invoked

in response to a menu item on the main thread.

Listing 13–6. Instantiating a Sub Thread from a Main Thread

//Keep a couple of local variables
//so that they are not recreated with every menu click
//in your activity

//Holds a pointer to the handler
Handler statusBackHandler = null;

//An instance of the thread
Thread workerThread = null;

//this method will be invoked by a menu
private void testThread()
{
 if (statusBackHandler == null)
 {
 //Menu item was never clicked before
 //The classes refered here are listed later in the chapter
 statusBackHandler = new ReportStatusHandler(this);
 workerThread = new Thread(new WorkerThreadRunnable(statusBackHandler));
 workerThrread.start();
 return;
 }

 //Thread is already there
 if (workerThread.getState() != Thread.State.TERMINATED)
 {
 Log.d(tag, "thread is new or alive, but not terminated");
 }
 else
 {
 Log.d(tag, "thread is likely dead. starting now");
 //you have to create a new thread.
 //no way to resurrect a dead thread.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 410

 workerThread = new Thread(new WorkerThreadRunnable(statusBackHandler));
 workerThread.start();
 }
}

The code looks a bit roundabout, but the crux of the code is

 statusBackHandler = new ReportStatusHandler(this);
 workerThread = new Thread(new WorkerThreadRunnable(statusBackHandler));
 workerThread.start();

Basically, we have created a handler (one that is responsible for reporting the status),

passed it to the worker thread, and started the worker thread. The extra code in Listing

13–6 is there so that, if we were to press the menu item twice or thrice while the thread

is doing its work and not terminated, we won’t create another thread and handler.

Communicating Between the Worker and the Main Threads
We will now cover the classes ResportStatusHandler and WorkerThreadRunnable. We

didn’t present them earlier because we wanted to drive the understanding using top-

down approach, where we plan and tell you what is required a high level and then go

into the details of how each concept is executed.

WorkerThreadRunnable Implementation
Let’s see now what the worker thread is doing through the WorkerThreadRunnable class.

The source code for the WorkerThreadRunnable class is in Listing 13–7. Take a quick

look at this listing, especially the comments in the code, to get a feel for what it might be

doing. Following the listing we will explain the key concepts.

Listing 13–7. Worker Thread Implementation

//Primary Responsibilities
//1. Do the work
//2. Inform the parent activty
public class WorkerThreadRunnable implements Runnable
{
 //the handler to communicate with the main thread
 //Set this in the constructor
 Handler statusBackMainThreadHandler = null;

 public WorkerThreadRunnable(Handler h)
 {
 statusBackMainThreadHandler = h;
 }

 //usual debug tag
 public static String tag = "WorkerThreadRunnable";
 public void run()
 {
 Log.d(tag,"start execution");
 //see which thread is running this code
 //The following method is from Listing 13–1
 //It prints out the thread id and name

n

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 411

 Utils.logThreadSignature();

 //Tell parent that the worker thread has
 //started working
 informStart();
 for(int i=1;i <= 5;i++)
 {
 //In the real world instead of sleeping
 //work will be done here.
 Utils.sleepForInSecs(1);
 //Report back the work is progressing

 informMiddle(i);
 }
 informFinish();
 }

 public void informMiddle(int count)
 {
 Message m = this.statusBackMainThreadHandler.obtainMessage();
 m.setData(Utils.getStringAsABundle("done:" + count));
 this.statusBackMainThreadHandler.sendMessage(m);
 }

 public void informStart()
 {
 Message m = this.statusBackMainThreadHandler.obtainMessage();
 m.setData(Utils.getStringAsABundle("starting run"));
 this.mainThreadHandler.sendMessage(m);
 }
 public void informFinish()
 {
 Message m = this.statusBackMainThreadHandler.obtainMessage();
 m.setData(Utils.getStringAsABundle("Finishing run"));
 this.statusBackMainThreadHandler.sendMessage(m);
 }
}

There are two important things in Listing 13–7. In the run() method, we put the thread to

sleep for 1 second and call the inform methods to tell the main thread whether the

worker thread is at the beginning, middle, or end of the processing.

We have also included a call to the Utils.logThreadSignature() to identify the thread.

However, in the real world, instead of the sleep() method, this code will be calling a

useful function for as longs as necessary. You can think of sleep() as simulating a work

item that takes that many seconds.

ReportStatusHandler Implementation
All of the inform methods in Listing 13–7 create an appropriate string message and send

it to the main thread through the ReportStatusHandler, which is shown in Listing 13–8.

Listing 13–8. Sending Status to the Main Thread

public class ReportStatusHandler extends Handler
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 412

 public static final String tag = "ReportStatusHandler";

 //Remember the parent activity so that
 //so that we can incorm it of the progress
 private TestHandlersDriverActivity
 parentTestHandlersDriverActivity = null;

 public ReportStatusHandler(
 TestHandlersDriverActivity inParentActivity){
 parentTestHandlersDriverActivity = inParentActivity;
 }

 @Override
 public void handleMessage(Message msg)
 {
 //Get string data from the message
 String pm = Utils.getStringFromABundle(msg.getData());
 Log.d(tag,pm);
 //Tell the parent activity that something happened
 this.printMessage(pm);
 //Assert that this runs on the main thread
 Utils.logThreadSignature();
 }

 private void printMessage(String xyz){
 parentTestHandlersDriverActivity.appendText(xyz);
 }
}

The code in this class is straightforward. When this handler receives the

handleMessage(), it tells the parent driver activity that the worker thread has sent a

status string through the appendText() method. The parent activity can choose whatever

is necessary for that message. In our case, we just log it to the activity screen.

So far, we have demonstrated the following with handler examples:

Through DeferWorkHandlerhandler examples:

 Through DeferWorkHandler, we have showed how the main thread can

schedule a message (or messages) to be processed at a later time (or

deferred). This technique can also be used to do repetitive processing

without using a timer or alarm manager.

 Through ReportStatusHandler and a WorkerThread, we have showed

how you can start a separate worker thread and have that worker

thread communicate back to the main UI through a handler.

A Quick Overview of Thread Behavior
As we started a thread in response to a menu item, it is natural to worry if we need to

stop it as well. A thread automatically stops when it finishes the run() method. In fact,

we are advised not to stop a running thread externally, as it might kill the work in the

middle. The recommendation is to set a flag so that the thread will recognize that flag

and gracefully exit the run() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 413

It is also worth noting the various states of a thread to understand thread behavior. A

thread has the following states:

 New thread: Someone has created it (alive=false).

 Runnable: Someone called a start on it (alive=true).

 Not runnable: Sleeping, suspending, waiting, called, or blocking on I/O

(alive=true).

 Dead: When stop() is called or run() exits (alive=false).

The isAlive() method on a thread tells us that the thread has been started but not

stopped. This means that the thread is in either runnable or not-runnable state. If it

returns false, the thread could be a new thread or a dead thread.

As you work with threads, you may want to be mindful of the thread states.

Handler Example Driver classes
So far, we have presented the source code for the following classes:

 DeferWorkHandler.java: This has the ability to defer functionality (see

Listing 13–4).

 ReportStatusHandler.java: This is a communication vehicle for a

worker thread (see Listing 13–8).

 WorkerThreadRunnable.java: This is a worker thread implementation

(see Listing 13–7).

 Utils.java: This contains a few thread utilities (see Listing 13–1).

It is time we present you with the full source code of the driver activity class that

responds to menu items and invokes the functionality we have discussed. We will also

give you the source code for the menu resource and manifest files so that you have all

the classes necessary to create a project and play with the concepts.

As you try to compile these files, note that the listings do not include the package name

or import statements. It is easy to re-create the import statements using Eclipse. While

you have the source file open in Eclipse, press Ctrl+Shift+O, and Eclipse will fill in the

necessary imports.

As far as the package name goes, you can view the manifest file to see what package

name is used for this application. You will need to put that package name at the top of

the Java source files. As all these files are designed to be in the same package, you can

even change the package name to suit your needs and use that package name in the

manifest file subsequently.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 414

Note You can also download the prebuilt project ZIP file using a link in this chapter’s
“References” section. The name of the ZIP file will be ProAndroid3_Ch13_TestHandlers.zip.

To create a project, unzip this file, and import the project into your eclipse ADT environment.

Again, the list of additional files you need to compile is as follows:

 TestHandlersDriverActivity.java: Main driver activity (see Listing

13–9)

 layout/main.xml: Layout file for TestHandlersDriverActivity (see

Listing 13–10)

 res/menu/main_menu.xml: Menu to invoke handlers (see Listing 13–11)

 AndroidManifest.xml: The usual manifest file (see Listing 13–12)

The following sections explain these files one by one.

Driver Activity File
Here is the first of these files, TestHandlersDriverActivity.java. This class is a simple

activity with a text view in it. The text view will list the menu items that are clicked. There

is one menu item to test the deferred handler and one menu item to test the worker

thread. The messages from the worker thread are also logged to this text view.

This class also includes a list of the activity life cycle methods toward the end. This is

because we will be examining the behavior of the main thread and its queue with

respect to an activity’s life cycle. The code is in Listing 13–9.

Listing 13–9. Test Activity to Test Handlers and Worker Threads

public class TestHandlersDriverActivity extends Activity
{
 public static final String tag="TestHandlersDriverActivity";
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 415

 {
 this.emptyText();
 return true;
 }
 if (item.getItemId() == R.id.menu_test_thread)
 {
 this.testThread();
 return true;
 }
 if (item.getItemId() == R.id.menu_test_defered_handler)
 {
 this.testDeferedHandler();
 return true;
 }
 return true;
 }

 private TextView getTextView(){
 return (TextView)this.findViewById(R.id.text1);
 }
 public void appendText(String abc){
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + abc);
 }
 private void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 private void emptyText(){
 TextView tv = getTextView();
 tv.setText("");
 }

 private DeferWorkHandler th = null;
 private void testDeferedHandler()
 {
 if (th == null)
 {
 th = new DeferWorkHandler(this);
 this.appendText("Creating a new handler");
 }
 this.appendText(
 "Starting to do deferred work by sending messages");
 th.doDeferredWork();
 }

 Handler statusBackHandler = null;
 Thread workerThread = null;
 private void testThread()
 {
 if (statusBackHandler == null)
 {
 statusBackHandler = new ReportStatusHandler(this);
 workerThread =
 new Thread(
 new WorkerThreadRunnable(statusBackHandler));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 416

 }
 if (workerThread.getState() != Thread.State.TERMINATED)
 {
 Log.d(tag, "thread is new or alive, but not terminated");
 }
 else
 {
 Log.d(tag, "thread is likely dead. starting now");
 //you have to create a new thread.
 //no way to resurrect a dead thread.
 workerThread =
 new Thread(
 new WorkerThreadRunnable(statusBackHandler));
 workerThread.start();
 }
 }

//The following lifecycle methods are included to see the behavior
//deferred messages and the nature of the worker thread as the activity
//goes through various life stages

 @Override
 protected void onPause() {
 Log.d(tag,"onpause. I may be partially or fully invisible");
 this.appendText("onpause");
 super.onPause();
 }
 @Override
 protected void onStop() {
 Log.d(tag,"onstop. I am fully invisible");
 this.appendText("onstop");
 super.onStop();
 }
 @Override
 protected void onDestroy() {
 Log.d(tag,"ondestroy. about to be removed.");
 super.onDestroy();
 }
 @Override
 protected void onRestart() {
 Log.d(tag,"onRestart. UI controls are there.");
 super.onRestart();
 }
 @Override
 protected void onStart() {
 Log.d(tag,"onStart. UI may be partially visible.");
 super.onStart();
 }
 @Override
 protected void onResume() {
 Log.d(tag,"onResume. UI fully visible.");
 super.onResume();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 417

Layout File
Listing 13–10 shows the layout file (layout/main.xml). This is a simple layout file to

support the activity in Listing 13–9. As stated before that listing, it contains a single text

view with an instruction to click the menu to start things off.

Listing 13–10. Layout File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click Menu to see available options"
 />
</LinearLayout>

Menu File
The supporting menu file, menu/main_menu.xml, is shown in Listing 13–11. This is the

menu file to support the activity in Listing 13–9. As stated in that activity, this menu file

declares three menu items. One clears the text view as you work with menu items. We

then have two primary menu items: menu_test_defered_handler invokes

DeferWorkHandler, and menu_test_thread spawns the worker thread and works through

ReportStatusHandler.

Listing 13–11. Menu Items to Invoke Handler and Subthread Code

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_clear"
 android:title="clear" />

 <item android:id="@+id/menu_test_thread"
 android:title="Test Worker Thread" />

 <item android:id="@+id/menu_test_defered_handler"
 android:title="Defered Handler" />
 </group>
</menu>

Manifest File
Listing 13–12 contains the manifest file to complete the list of source files

(manifest.xml). This manifest file is simple as well, pointing to the single activity of

Listing 13–9 (the main driver activity).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 418

Listing 13–12. AndroidManifest File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.handlers"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="Test Handlers">
 <activity android:name=".TestHandlersDriverActivity"
 android:label="Test Handlers">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
</application>
 <uses-sdk android:minSdkVersion="3" />
</manifest>

The manifest file includes a reference to the Android application icon. You can use the

project ZIP file that is referenced at the end of this chapter to get this file, or you can use

any icon file you may have from other projects.

Component and Process Lifetimes
If you have looked carefully the TestHandlersDriverActivity test activity (see Listing

13–9), you have seen that we included the activity life cycle methods. We did so to show

you what will happen as the activity gets hidden and shown. What would happen to the

messages that are pending in the main queue? What would happen to the worker thread

that is executing?

We will explain what happens by considering the life cycle of each of the Android

components.

Although we discuss the component life cycles here, please note that this is not a full

discussion of those life cycles. The activity life cycle is already described with the help of

a diagram in Chapter 2. Similarly, the service life cycle is elaborated on in Chapter 11.

The discussion here is limited to addressing only those aspects that affect message

processing and worker threads.

Activity Life Cycle
We will start with the Activity component. Figure 13–3 shows the activity life cycle with

respect to its visibility and lifetime (the state transitions of an activity between its life

cycle methods are described in Chapter 2).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 419

Figure 13–3. Activity Life Cycle

Once an activity comes to life (due to a start), it is fully visible, partially visible, or

completely hidden. You can detect each boundary through callback methods.

An activity calls onPause when it is moving into partially visible state. It then may call the

onStop method when it goes into the completely hidden state. Finally, when the process

is taken out, its onDestory method is called. When the onDestory method is called, the

view state is destroyed right after the call. Prior to that, the view state is still intact.

When an activity is moving into full visibility state its onResume is called. When it is

moving out of the invisible state, it first calls onStart and then onResume (or it may call

onStop if the activity gets hidden again). Between onResume and onPause the activity is in

fully visible state.

Although an application may be partially or fully invisible, the message queue will still be

active and so will your worker thread. You can see this by monitoring the activity life

cycle methods shown in Listing 13–9. You can see that messages from the worker

thread and the handler are still active when OnPause and OnStop are called.

You can test this hypothesis by clicking the home button when you are on this activity.

Doing so will send this activity to the background and invokes OnPause , OnStop, and

maybe even OnDestroy . You will see the messages all the way until OnDestroy is called

(assuming you have sent that many messages).

If the process is not active when an activity is requested, it will be started and brought to

life. Under low-memory conditions or when the application is completely hidden and

nothing else is going on in that process, Android will remove the process.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 420

Note The key thing to know is that if an activity is stopped for any of these needs, it will not
automatically be brought back to life. A user has to explicitly invoke the activity either by clicking
it or through other indirect means, such as starting another activity that results in invoking this

activity. The only time an activity is stopped and started automatically is when the device
configuration changes (such as going from portrait to landscape). As you can imagine, this can

happen quite often as a phone is moved from vertical to horizontal and back.

Service Life Cycle
A service component acts differently from an activity in one primary respect—a service

component is fundamentally sticky. Android makes every effort to keep a service

running. Even if the service process is reclaimed due to memory conditions, it will be

restarted if there are pending messages. We will go into lot more detail of this interaction

in the next chapter when we discuss broadcast receivers and long-running services.

However, a common thing to a service component and an activity component is that

they both can be taken down under low-memory conditions. Android will try its best to

keep a service running, but even still, there are no guarantees it will run to completion.

Note Services and activities should be coded such that they can be gracefully stopped through

onDestroy when they have worker threads running and doing work for them.

Receiver Life Cycle
Broadcast receivers use a call-and-be-gone model. The process hosting the broadcast

receiver will be around only for the lifetime of the receiver and no longer. Also, the

broadcast receiver runs on the main thread, and it has a hard 10-second timeframe to

finish its work. You have to follow a pretty roundabout protocol to accomplish more

complicated and time-consuming work in a broadcast receiver. This, indeed, is the topic

of next chapter. But briefly, if you have a broadcast receiver that takes longer than 10

seconds, you will need to follow a protocol such as the following:

1. Get hold of a wakelock in the receiver code (no later) so that the device is at least

partially awake.

2. Issue a startService() call so that the process is tagged as sticky and

restartable, if needed, and hangs around.

3. Note that you cannot do the work in the service directly, because it would take

more than 10 seconds and that would hold up the main thread. This is because

the service also runs on the main thread.

4. Start a worker thread from the service

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 421

5. Have the worker thread post a message through a handler to the service or issue

a stopService() call on the service.

As promised, we will go through this protocol in lot more detail in the next chapter. In

fact, the solution relies heavily on handlers. You will see lot of sample code as well to

make these ideas concrete.

Provider Life Cycle
Content providers are another story. Clients both internal and external interact with a

content provider synchronously. For external clients, content providers use a thread

pool to satisfy this requirement. Like broadcast receivers, content providers do not have

a particular life cycle. They get started when needed and stay around as long as the

process stays around. Even though they are synchronous for external clients, they will

run not on the main thread but on a thread pool of the process that they reside in, similar

to a web client and a web server. The client thread will wait until the call comes back.

When there are on clients around, the process gets reclaimed as per the reclamation

rules of a process, depending on what other components are defined and active in that

process.

Instructions for Compiling the Code
There are primarily eight files in the project for this chapter. We strongly suggest that

you download the ZIP file using the URL provided in the “References” section, though

you can compile it using the code listings in this chapter as well.

Creating the Project from the ZIP File
The steps to create this chapter’s project from the ZIP file follow:

1. Download the ZIP file.

2. Select the File ➤ Import menu option from Eclipse.

3. Then, choose General ➤ Existing Projects into Workspace.

4. Next, choose “Select root directory”.

5. Choose “Copy projects into work space”.

6. You may need to choose the right API level once the project is in place by

selecting Project properties ➤ Android and picking the right build target.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 422

Creating the Project from the Listings
Instead, if you want to build the project from the listings in this chapter, the steps are as

follows; the files are listed in the “Handler Example Driver Classes” section of this

chapter:

1. Create a new project by selecting File ➤ New project ➤ Android ➤ Android

Project.

2. Pick a name, and choose “Create new project in work space”.

3. Give the application the name Test Handlers.

4. Pick an API level.

5. Use a package name like com.androidbook.handlers.

6. Pick minsdk version : 3.

7. Choose TestHandlersDriverActivity as your activity, and click Finish.

8. Android will create a number of resource files and probably (depending on your

release) a single source file.

9. Create or update these files based on the code listings in this chapter.

10. For Java files, when you copy the listings, put the package name at the top of

each file before copying it. Then, press Ctrl+Shift+O to fill in the imports.

Please note that, in this process, you will need to make adjustments to the code to get it

compiled and provide any missing pieces. You can refer to the ZIP file to fill in the gaps.

References
As you learn about the topics in this chapter, you may want to keep the following

reference URLs handy; we have also indicated what you will gain from each URL:

 http://developer.android.com/reference/android/os/Handler.html:

This URL is a reference to the Handler API. You will see here method

signatures for how to construct a handler, obtain a message, override

handleMessage() and sendMessage(), and so on.

 http://developer.android.com/reference/android/os/Message.html:

This URL is a reference to the Message API. Although you use this API

less as equivalent functions are available on the handler API, it is good

to know the underpinnings of a message by looking at this API. We

recommend taking a look at this API reference.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 423

 http://developer.android.com/guide/topics/fundamentals.html#lcyc
les: You can read about component life cycles in more detail. This

primarily explains activity and service life cycles and a bit about

broadcast receivers. This resource is quite silent about content

providers.

 http://www.science.uva.nl/ict/ossdocs/java/tutorial/java/threads
/states.html: This is a very zippy, and necessary, introduction to

threads.

 http://www.netmite.com/android/mydroid/1.6/frameworks/base/core/
java/android/app/IntentService.java: This shows an excellent use of

handlers by core Android code in implementing the IntentService

class. This is a reference to the source code listing of

IntentService.java. With the background information provided in this

chapter, we strongly urge you to go over this source code of

IntentService as an exercise to solidify your understanding of threads

in Android.

 http://www.androidbook.com/item/3514: This is one of the author’s

research on long-running services.

 http://www.androidbook.com/projects: You can see a list of

downloadable projects from this book referenced here. For this

chapter, look for a ZIP file named ProAndroid3_Ch13_TestHandlers.zip.

Summary
In this chapter, we explored various components of an Android process and how the

main thread coordinates them. We showed how handlers and threads can be used to

extend the reach of a main thread, as well as how a main thread must return in 5

seconds to avoid ANR messages. This rule applies to broadcast receivers as well,

except that the limit for a broadcast receiver is 10 seconds.

We talked about component life cycles and how they impact both main threads and

subthreads. This knowledge is essential to understand the intricacies of these

components and what needs to be done for performing long-running operations.

The next chapter is dedicated to working with broadcast receivers and performing long-

running operations. What we have covered in this chapter will help you to understand

the next chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 13: Exploring Handlers 424

http://lib.ommolketab.ir
http//lib.ommolketab.ir

425

425

 Chapter

Broadcast Receivers and
Long-Running Services
Through previous chapters, you have been exposed to activities, content providers, and

services. We haven’t talked much about broadcast receivers, so we will do that in this

chapter.

We’ll show you first how to invoke a simple broadcast receiver and then extend the idea

to invoking multiple broadcast receivers. We will also explore how broadcast receivers

can reside in processes outside of the client processes. We will demonstrate how a

broadcast receiver can send notification messages via the notification manager.

We will talk about the 10-second limit on a broadcast receiver to respond before the

system throws “application not responding” (ANR) messages and suggest known

mechanisms to work around this. We will develop a framework where you can start

viewing a long-running service as a special abstraction of a broadcast intent, and finally,

we’ll talk about wake locks in the context of long running services.

Let’s start this extensive coverage on broadcast receivers by starting with coding a

simple broadcast receiver.

Broadcast Receivers
In Chapter 13, we talked about broadcast receiver being another component of an

Android process, along with activities, content providers, and services. As the name

indicates, a broadcast receiver is a component that can respond to a broadcast

message sent by a client. The message itself is an Android broadcast intent, and a

broadcast message can be received by more than one receiver.

A component such as an activity or a service (or anything that is eventually

implementing the Context class) wanting to broadcast an event (intent) uses the

sendBroadCast() method available on the Context class. The argument to this method is

an intent.

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 426

Receiving components of the broadcast intent will need to inherit from a Receiver class

available in the Android SDK. These receiving components (broadcast receivers) then

need to be registered in the manifest file as a receiver that is interested in the

broadcast intent.

NOTE: You can register receivers at run time as well without mentioning them in the manifest
file. Please note that we are not covering that aspect in this chapter, and we recommended that
you see the API documentation URL indicated in the “References” section of this chapter for

further information.

Sending a Broadcast
Listing 14–1 shows sample code, taken from an activity class, that sends a broadcast.

This code creates an intent with a unique, specific action, puts an extra message on it,

and calls the sendBroadcast() Method. Putting an extra message on the intent is optional;

many times, receiving an intent is sufficient for a receiver, and an extra is not needed.

Listing 14–1. Broadcasting an Intent

private void testSendBroadcast(Activity activty)
{
 //Create an intent with an action
 String uniqueActionString = "com.androidbook.intents.testbc";
 Intent broadcastIntent = new Intent(uniqueActionString);
 broadcastIntent.putExtra("message", "Hello world");
 activity.sendBroadcast(broadcastIntent);
}

In the code in Listing 14–1, the action is an arbitrary identifier that is suitable for your

needs. To make this action string unique, you may want to use a namespace similar to a

Java class. Now, let’s look at how we can respond to this broadcast intent.

Coding a Simple Receiver: Sample Code
Listing 14–2 shows how you can code a receiver to respond to the broadcasted intent in

Listing 14–1.

Listing 14–2. Sample Receiver Code

public class TestReceiver extends BroadcastReceiver
{
 private static final String tag = "TestReceiver";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Utils.logThreadSignature(tag);
 Log.d("TestReceiver", "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 427

Creating a broadcast receiver is quite simple. Just extend the BroadcastReceiver class

and override the onReceive() method. We are able to see the intent in the receiver and

extract the message from it. If the broadcast intent doesn’t have an extra that is called

“message,” it will return a null. In our example, because we know that we are setting that

extra, we haven’t checked for a null value. Once we retrieve the extra, we are just

logging the retrieved message.

We have included a utility method in our test receiver that allows you to log the signature

of the thread that is running the receiver code. As we use the Utils class often in this

chapter, we introduce the source code of Utils.java in Listing 14–3.

Listing 14–3. Utils Class Definition

public class Utils
{
 public static long getThreadId()
 {
 Thread t = Thread.currentThread();
 return t.getId();
 }
 public static String getThreadSignature()
 {
 Thread t = Thread.currentThread();
 long l = t.getId();
 String name = t.getName();
 long p = t.getPriority();
 String gname = t.getThreadGroup().getName();
 return (name + ":(id)" + l + ":(priority)" + p
 + ":(group)" + gname);
 }
 public static void logThreadSignature(String tag)
 {
 Log.d(tag, getThreadSignature());
 }
 public static void sleepForInSecs(int secs)
 {
 try
 {
 Thread.sleep(secs * 1000);
 }
 catch(InterruptedException x)
 {
 throw new RuntimeException("interrupted",x);
 }
 }
}

Once we have the receiver code available, from Listing 14–2, we need to register it in the

manifest file as a receiver.

Registering a Receiver in the Manifest File
Listing 14–4 shows how you can declare your receiver as the recipient of the intent

whose action is com.androidbook.intents.testbc.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 428

Listing 14–4. Receiver Definition in the Manifest File

<manifest>
<application>
...
<activity …..>
...
<receiver android:name=".TestReceiver">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
</receiver>
...
</application>
</manifest>

The receiver element is a child node of the application element like the other

component nodes. This is all you need to test your receiver. We’ll now the list of files

that you can use to make a project to test this.

Before you eagerly copy and paste (or worse, hand type) these source files, note that we

have included a URL in the “References” section at the end of this chapter where you

can download importable projects for this chapter.

Sending a Test Broadcast
The needed files and their corresponding listings are as follows:

 TestBCRActivity.java: A sample activity to kick off the broadcast

receiver (BCR) (Listing 14–5)

 layout/main.xml: A simple text layout for debug messages that is

used as the layout for the TestBCRActivity (Listing 14–6)

 menu/main_menu.xml: The menu to start the broadcast again used by

the TestBCRActivity (Listing 14–7)

 TestReceicer.java: A sample receiver (already presented in Listing

14–2)

 Utils.java: A few threading utilities (already presented in Listing 14–3)

 AndriudManifest.xml: The manifest file to with the project and the file

in which the receiver and the activity are defined (Listing 14–8)

We have already presented some of the files used for this project, so we will present

now the rest of the files. Listing 14–5 contains the activity file TestBCRActivity that

invokes the menu item that sends the broadcast. The menu call is highlighted.

Listing 14–5. Broadcasting Activity Client

public class TestBCRActivity extends Activity
{
 public static final String tag="TestBCRActivity";
 @Override
 public void onCreate(Bundle savedInstanceState) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 429

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item){
 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear){
 this.emptyText();
 return true;
 }
 if (item.getItemId() == R.id.menu_send_broadcast){
 this.testSendBroadcast();
 return true;
 }
 return true;
 }
 private TextView getTextView(){
 return (TextView)this.findViewById(R.id.text1);
 }
 private void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 private void emptyText(){
 TextView tv = getTextView();
 tv.setText("");
 }
 private void testSendBroadcast()
 {
 //Print out what your running thread id is
 Utils.logThreadSignature(tag);

 //Create an intent with an action
 Intent broadcastIntent = new Intent("com.androidbook.intents.testbc");
 //load up the intent with a message
 //you want to broadcast
 broadcastIntent.putExtra("message", "Hello world");

 //send out the broadcast
 //there may be multiple receivers receiving it
 this.sendBroadcast(broadcastIntent);

 //Log a message after sending the broadcast
 //This message should appear first in the log file
 //before the log messages from the broadcast
 //because they all run on the same thread
 Log.d(tag,"after send broadcast from main menu");
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 430

The layout file to support theTestBCRActivity is shown in Listing 14–6 and its

corresponding view in Figure 14–1.

Listing 14–6. Layout file

<!-- layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Your debug will appear here"
 />
</LinearLayout>

Here is the menu file.

Listing 14–7. Menu Resource File

<!-- menu/main_menu.xml -->
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_clear"
 android:title="clear" />
 <item android:id="@+id/menu_send_broadcast"
 android:title="broadcast" />
 </group>
</menu>

NOTE: You can find the full source code for TestReceiver.java in Listing 14–2 and for

Utils.java in Listing 14–3.

Listing 14–8 contains the manifest file source code.

Listing 14–8. AndroidManifest File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.bcr"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="Test Broadcast Receiver">
 <activity android:name=".TestBCRActivity"
 android:label="Test Broadcast Receiver">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".TestReceiver">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
 </receiver>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 431

</application>
 <uses-sdk android:minSdkVersion="3" />
</manifest>

Once you compile and run this project you will see an activity and a menu that look like

the following

Figure 14–1. A sample activity with a menu to test a broadcast

Once you click the broadcast menu item, you will see that TestReceiver in Listing 14–2

will be invoked, and logcat will show the helloworld message that was loaded into the

broadcast intent by the activity.

Accommodating Multiple Receivers
The idea of a broadcast is that there is a possibility for more than one receiver. So let’s

replicate TestReceiver (see Listing 14–2) as TestReceiver2 and see if both get invoked.

The code for TestReceiver2 is presented in Listing 14–9.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 432

Listing 14–9. Test Receiver 2

public class TestReceiver2 extends BroadcastReceiver
{
 private static final String tag = "TestReceiver2";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Utils.logThreadSignature(tag);
 Log.d(tag, "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

Once you have this code, you can add this receiver to the manifest file in Listing 14–8

using the definition below

Listing 14–10. TestReceiver2 Definition in the Manifest File

<receiver android:name=".TestReceiver2">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
</receiver>

Now, if you invoke the broadcast menu item again from Figure 14–1, you will see

helloworld message in logcat from both receivers.

You will also see that these receivers are called in the order defined in the manifest.

Another thing you can test is to see what thread these broadcast receivers run under.

The method call Utils.logThreadSignature(tag) will have printed the running thread

signature. You will realize that this indeed is the main thread.

Also, you will see that the log messages that were placed before and after the

sendBroadcast() in the testSendBroadcast() (see Listing 14–5) will both have been

printed before the receiver messages and with the same thread signature.

This proves that the main thread is going around and attending to the broadcast

receivers at a later time from the message queue. So the sendBroadcast() is clearly an

asynchronous message that lets the main thread get to back to its queue.

To see further proof, you can hold up the main thread a bit longer so that the time

stamps are clearly demarcated. Let’s write another receiver that delays the main thread

by sleeping a little while. The source code for such a time delay receiver is presented in

Listing 14–11.

Listing 14–11. A Receiver with a Time Delay

/*
 * This receiver is introduced to see
 * how the main thread schedules broad cast receivers
 *
 * it helps answer such questions as
 * 1. Do they get invoked in the order they are specificed?
 * 2. Do they get invoked one after the other? or do they get invoked parallel
 *

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 433

 * The time delay here shows that the main thread
 * gets halted for those many secs. You can see this
 * in the Log.d output
 */
public class TestTimeDelayReceiver extends BroadcastReceiver
{
 private static final String tag = "TestTimeDelayReceiver";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Utils.logThreadSignature(tag);
 Log.d(tag, "intent=" + intent);
 Log.d(tag, "going to sleep for 2 secs");
 Utils.sleepForInSecs(2);
 Log.d(tag, "wake up");
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

Now, if you insert this receiver as the second receiver in the manifest file, you can see

the traversal of the main thread through the main logic and the broadcast receiver’s

logic. In logcat, you will see that the first receiver is executed first. Then, the second

receiver is invoked, and the main thread waits there for 2 seconds and proceeds with

the third receiver. Moreover, you will see that all receivers get invoked only after the

sendbroadcast() call returns.

You can add the receiver definition file in Listing 14–12 to the manifest file in Listing 14–

8 to test the time delay receiver.

Listing 14–12. Time Delay Receiver definition in the manifest file

<receiver android:name=".TestTimeDelayReceiver">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
</receiver>

A Project for Out-of-Process Receivers
The intention of a broadcast is more likely that the process responding to it is an

unknown one and a separate one from the client process. Let’s proactive by creating

another .apk file and registering a receiver in that package against the same event

broadcast in Figure 14–1.

Here are the files needed to create this separate stand-alone project; again, you can

always use the project downloads URL a t the end of this chapter to download

importable projects:

 StandaloneReceiver.java: A simple receiver (Listing 14–11)

 AndroidManifest.xml: A manifest file (Listing 14–12)

 Utils.java: The same file as from the previous project (Listing 14–4)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 434

This is a headless project without any activity to speak of, and as a result, it is quite

clean and requires no activities or layout files. The sample receiver that belongs to this

stand-alone process is shown in Listing 14–13. We will call this appropriately

StandaloneReceiver.

Listing 14–13. A Receiver Example in its Own Process

public class StandaloneReceiver extends BroadcastReceiver
{
 private static final String tag = "Standalone Receiver";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Utils.logThreadSignature(tag);
 Log.d(tag, "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

Again, nothing’s special here—just a regular receiver. The manifest file that registers this

receiver is in Listing 14–14.

Listing 14–14. AndroidManifest File That Has Just the Receiver

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.salbcr"
 android:versionCode="1"
 android:versionName="1.0.0">

<application android:icon="@drawable/icon"
 android:label="Standalone Broadcast Receiver">

 <receiver android:name=".StandaloneReceiver">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
 </receiver>
</application>
<uses-sdk android:minSdkVersion="3" />
</manifest>

With just these two files and the Utils.java file borrowed from the previous project, you

can create the stand-alone project and deploy. Now, if you go to the screen shown in

Figure 14–1 from project 1 and invoke the broadcast menu item, you will see that the

standalone receiver will output to logcat like the other receivers from Project 1.

Using Notifications from a Receiver
Broadcast receivers often need to communicate to the user about something that

happened or a status, and this is done by alerting the user through a notification icon in

the systemwide notification bar. We will show you, in this section, how to create a

notification from a broadcast receiver, send it, and view it through the notification

manager.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 435

Monitoring Notifications Through the Notification Manager
Android shows icons of notifications as alerts in the notification area. The notification

area is located at the top of device in a strip that looks like Figure 14–2. The look and

placement of the notification area may change based on whether the device is a tablet

or a phone and may at times also change based on Android release.

Figure 14–2. Android notification icon status bar

When we deliver a notification, the notification will appear in this area shown Figure 14–2

as an icon. The notification icon is illustrated in Figure 14–3.

Figure 14–3. Status bar showing a notification icon

Figure 14–3 is illustrating both the notification area and an activity, in addition to the

notification icon. For an activity, we just happened to be sitting in an application that is

issuing the broadcast. It can be any activity or even the home page.

The notification icon is an indicator to the user that something needs to be observed. To

see the full notification, you have to hold a finger on the icon and drag the title strip

shown in Figure 14–2 down like a curtain. This will expand the notification area,

as shown in Figure 14–4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 436

Figure 14–4. Expanded notification view

In the expanded view of the notification in Figure 14–4 you get to see the details

supplied to the notification. You can also click a notification detail to fire off the intent to

bring up the full application of which the notification could be a part. In our upcoming

example, we have used an intent to kick off the browser.

As you can also see from Figure 14–4, you can use this view to clear notifications.

You can also reach the notification detail view shown in Figure 14–4 from the menu of

the home page. Figure 14–5 shows the available menu on the home page of the

emulator. Depending on the device and the Android release, this homepage menu may

differ.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 437

Figure 14–5. The Notifications menu item from home menu

Clicking the Notifications icon in Figure 14–5 will bring up the notification screen in

Figure 14–4.

Let’s see now how to generate a notification icon like the one illustrated in Figures 14–3

and 14–4.

Sending a Notification
Let’s get started. The process of sending a notification has the following three steps:

1. Create a suitable notification.

2. Get access to the notification manager.

3. Send the notification to the notification manager.

When you create a notification, you’ll need to ensure that it had the following basic

parts:

 An icon to display

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 438

 A ticker text like "hello world"

 The time when it is delivered

Once you have a notification object constructed with these details, you get the

notification manager by asking the context to give you a system service named

Context.NOTIFICATION_SERVICE. Once you have the notification manager call the notify

method on that object to send the notification.

Listing 14–15 presents the source code for a broadcast receiver that sends the

notification shown in Figures 14–3 and 14–4.

Listing 14–15. A Receiver That Sends a Notification

public class NotificationReceiver extends BroadcastReceiver
{
 private static final String tag = "Notification Receiver";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Utils.logThreadSignature(tag);
 Log.d(tag, "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 this.sendNotification(context, message);
 }
 private void sendNotification(Context ctx, String message)
 {
 //Get the notification manager
 String ns = Context.NOTIFICATION_SERVICE;
 NotificationManager nm =
 (NotificationManager)ctx.getSystemService(ns);

 //Create Notification Object
 int icon = R.drawable.robot;
 CharSequence tickerText = "Hello";
 long when = System.currentTimeMillis();

 Notification notification =
 new Notification(icon, tickerText, when);

 //Set ContentView using setLatestEvenInfo
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 PendingIntent pi = PendingIntent.getActivity(ctx, 0, intent, 0);
 notification.setLatestEventInfo(ctx, "title", "text", pi);

 //Send notification
 //The first argument is a unique id for this notification.
 //This id allows you to cancel the notification later
 nm.notify(1, notification);
 }
}

In the source code in Listing 14–13, we have referenced to an alert icon called

R.draawable.robot. You can create your own alert icon and drop it into the

res/drawable subdirectory and name it robot with a proper image extension. Or you can

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 439

refer to the downloadable ZIP file for this project (a URL is included in the “References”

section).

When you create a notification with the basic parameters (icon, text, time) and send it to

the notification manager, it looks like it is not sufficient (the first part of creating the

notification in Listing 14–13). You will also have to set up something called a content

view for that notification using the method

setLatestEventInfo(...)

The content view of a notification is displayed when the notification is expanded. This is

what you see in Figure 14–4. Typically, the content view needs to be a RemoteViews

object. However, we don’t pass a content view directly to the setLatestEventInfo

method. This setLatestEventInfo() method is a shortcut for setting the standard

predefined content view using a title and the text to display.

This method setLatestEventInfo() also takes a pending intent, called a content intent,

that gets fired when this expanded view is clicked. Look back at Listing 14–15 to see

what parameters we have used to pass to this method.

You also have an option to create a remote view yourself and set it as the content view,

without using setLatestEventInfo() .

The steps for using remote views for a content view of a notification follow:

1. Create a layout file.

2. Create a RemoteViews object using the package name and the layout file ID.

3. Call set methods on the RemoteViews to set text, icons, and so on.

4. Call setContentView() on the notification object before sending it to the

notification manager.

Keep in mind that only the following limited set of controls may participate in a remote

view as of Android release 2.2.:

 FrameLayout

 LinearLayout

 RelativeLayout

 AnalogClock

 Button

 Chronometer

 ImageButton

 ImageView

 ProgressBar

 TextView

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 440

Refer to Chapter 22 to learn more about constructing these remote views as widget

views on the homepage are essentially remote views. See chapter 31 to see an updated

list of possible RemoteViews in releases 2.3 and 3.0.

The code in Listing 14–15 creates a notification and uses the setLatestEventInfo() to

set the implicit content view (through title and text) and the intent to fire (in our case, this

intent is the browser intent).

Long-Running Receivers and Services
So far we have covered the happy path of broadcast receivers where the execution of a

broadcast receiver is unlikely to take more than 10 seconds. As it turns out, the problem

space becomes a bit complicated if we want to perform tasks that take longer than 10

seconds.

To understand why, let’s quickly review a few facts about broadcast receivers:

A broadcast receiver like other components of an Android process

runs on the main thread.

Holding up the code in a broadcast receiver will hold up the main

thread and will result in ANR.

The time limit on a broadcast receiver is 10 seconds compared to 5

seconds for an activity. It is a bit more lenient and a touch of a

reprieve, but the limit is still there.

The process hosting the broadcast receiver will start and terminate

along with the broadcast receiver execution. In other words, the

process will not stick around after the broadcast receiver’s

onReceive() method returns. Of course, this is assuming that the

process contains only the broadcast receiver. If the process contains

other components, such as activities or services, that are already

running, then the lifetime of the process takes these component life

cycles into account as well.

Unlike a service process, a broadcast receiver process will not get restarted.

If a broadcast receiver were to start a separate thread and return to

the main thread, Android will assume that the work is complete and

will shut down the process even if there are threads running bringing

those threads to abrupt stop.

Android acquires a partial wake lock when invoking a broadcast

service and releases it when it returns from the service in the main

thread. A wake lock is a mechanism and an API class available in the

SDK to keep the device from going to sleep or wake it up if it is

already asleep.

Given these predicates how can one execute longer running code in response to a

broadcast event?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 441

Long-Running Broadcast Receiver Protocol
The answer lies in resolving the following:

 We will clearly need a separate thread so that the main thread can get

back and avoid ANR messages.

 To stop Android from killing the process and hence the worker thread,

we need to tell Android that this process contains a component, such

as a service, with a life cycle. So we need to create or start that

service. The service itself cannot directly do the work for more than 5

seconds because that happens on the main thread, so the service

needs to start a worker thread and let the main thread go.

 For the duration of the worker thread’s execution, we need to hold on

to the partial wake lock so that the device won’t go to sleep. A partial

wake lock will allow the device to run code without turning on the

screen and so on, which allows for longer battery life.

 The partial wake lock must be obtained in the main line code of the

receiver; otherwise, it will be too late. For example, you cannot do this

in the service, because it may be too late between the startService()

being issued by the broadcast receiver and the onStartCommand() of a

service that begin execution.

 Because we are creating a service, the service itself can be brought

down and brought back up because low memory conditions. If this

happens, we need to acquire the wake lock again.

 When the worker thread started by onStartCommand() completes its

work, it needs to tell the service to stop so that it can be put to bed

and not brought back to life by Android.

 It is also possible that more than one broadcast event can occur.

Given that, we need to be cautious about how many worker threads

we need to spawn.

Given these facts, the recommended protocol for extending the life of a broadcast

receiver is as follows:

1. Get a (static) partial wake lock in the onReceive() method of the broadcast

receiver. The partial wake lock needs to be static to allow communication

between the broadcast receiver and the service. There is no other way of passing

a reference of the wake lock to the service, as the service is invoked through a

default constructor that takes no parameters.

2. Start a local service so that the process won't be killed.

3. In the service, start a worker thread to do the work. Do not do the work in the

onStart() method of the service. If you do, you are basically holding up the main

thread again.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 442

4. When the worker thread is done, tell the service to stop itself either directly or

through a handler.

5. Have the service turn of the static wake lock. To repeat, a static wake lock is the

only way to communicate between a service and its invoker, in this case the

broadcast service, because there is no way to pass wake lock reference to the

service

IntentService
Recognizing the need for a service to not hold up the main thread, Android has provided

a utility local service implementation called IntentService to offload work to a worker

thread so that the main thread can be released after scheduling the work to the

subthread. Under this scheme, when you do a startService() on an IntentService, the

IntentService will queue that request to a sub thread using a looper and a handler so

that a derived method of the IntentService is called to do the actual work.

Here is what the API documentation for an IntentService says:

IntentService is a base class for Services that handle asynchronous
requests (expressed as Intents) on demand. Clients send requests
through startService(Intent) calls; the service is started as needed,
handles each Intent in turn using a worker thread, and stops itself when
it runs out of work. This "work queue processor" pattern is commonly
used to offload tasks from an application's main thread. The
IntentService class exists to simplify this pattern and take care of the
mechanics. To use it, extend IntentService and implement
onHandleIntent(Intent). IntentService will receive the Intents, launch a
worker thread, and stop the service as appropriate. All requests are
handled on a single worker thread -- they may take as long as necessary
(and will not block the application's main loop), but only one request will
be processed at a time.

This idea of IntentService can be clearly demonstrated using a simple example, as in

Listing 14–16. You extend the IntentService and provide what you want to do in the

onHandleIntent() method.

Listing 14–16. Using IntentService

public class MyService extends IntentService
{
 protected abstract void onHandleIntent(Intent intent)
 {
 Utils.logThreadSignature("MyService");
 //do the work i n this sub thread
 //and return
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 443

Once you have a service like this, you can register this service in the manifest file and

use client code to invoke this service as context.startService(new
Intent(MyService.class)). This invocation will result in a call to the onHandleIntent() in

Listing 14–16.

You will notice that the logThreadSignature() method will print the ID of the worker

thread and not the main thread (remember that this is just pseudo code; we will present

the real code soon).

IntentService Source Code
In Chapter 13, we covered the main thread and the role of handlers. In that context, it is

very instructive to study the source code of the IntentService to see how handlers and

the main thread are used in conjunction with a long running service that utilizes a worker

thread. Let’s now consider the source code of IntentService (taken from the source

code distribution of Android) in Listing 14–17.

Listing 14–17. IntentService Souce Code

public abstract class IntentService extends Service {
 private volatile Looper mServiceLooper;
 private volatile ServiceHandler mServiceHandler;
 private String mName;

 private final class ServiceHandler extends Handler {
 public ServiceHandler(Looper looper) {
 super(looper);
 }
 @Override
 public void handleMessage(Message msg) {
 onHandleIntent((Intent)msg.obj);
 stopSelf(msg.arg1);
 }
 }

 public IntentService(String name) {
 super();
 mName = name;
 }
 @Override
 public void onCreate() {
 super.onCreate();
 HandlerThread thread =
 new HandlerThread("IntentService[" + mName + "]");
 thread.start();

 mServiceLooper = thread.getLooper();
 mServiceHandler = new ServiceHandler(mServiceLooper);
 }

 @Override
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);
 Message msg = mServiceHandler.obtainMessage();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 444

 msg.arg1 = startId;
 msg.obj = intent;
 mServiceHandler.sendMessage(msg);
 }
 @Override
 public void onDestroy() {
 mServiceLooper.quit();
 }
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
 protected abstract void onHandleIntent(Intent intent);
}

Let’s step through an explanation of this code:

1. Create a separate worker thread in the onCreate() method of the

service. Typically, you will have started worker threads in the

onStartCommand method of a service. However, that would have resulted

in multiple worker threads, one for each startService. IntentService

wants to do this by having a single worker thread that services all of the

startService invocations, so we set up the worker thread in the

onCreate method, which is invoked only once.

2. Set up a looper (and thereby a queue to receive and dispatch

messages) on that worker thread. This allows the same worker thread to

respond to many messages one by one instead of creating a new

worker thread for each request

3. Establish a handle on the worker thread so that the main thread of the

service can drop a message via the handler. We need this worker

thread, because every time a client uses a startService() that call goes

to the main thread of the IntentService, and we don’t want to hold up

the main thread of the IntentService. We need a mechanism to queue

this request so that the worker thread can process it when it becomes

available. This is feasible by having the main thread hold a handler for

the worker thread. Notice the onStart() method that runs on the main

thread. If you want to prove this, just override this method and call its

parent while you log the thread signature. You will see that the

onStart() runs on the main thread and the onHandleMessage() runs on

the secondary worker thread.

4. Finally, when the onHandleIntent() returns the handler will call

stopSelf() of the service. This stopSelf() will succeed in stopping the

service if there are no pending messages. The stopSelf() method is

reference counted. This means even if you call it multiple times, there

must be an equal number of startService invocations. This is why we

are able to call stopSelf() after handling every startService invocation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 445

Extending IntentService for a Broadcast Receiver
From the perspective of a broadcast receiver an IntentService is a wonderful thing. It lets

us execute long-running code with out blocking the main thread. So can we use the

IntentService for the needs of a long running operation? Yes and No.

Yes, because the IntentService does two things: First, it keeps the process running

because it is a service. And second, it lets the main thread go and avoids related ANR

messages.

To understand the “no” answer, you need to better understand the wake locks. When a

broadcast receiver is invoked, especially through an alarm manager, the device may not

be on. So the alarm manager partially turns on the device (just enough to run the code

without any UI) by making a call to the power manager and requesting a wake lock. And

this wake lock gets released as soon as the broadcast receiver returns.

This leaves the IntentService invocation with out a wake lock, so the device may go to

sleep before the actual code runs. However IntentService, being a general-purpose

extension to a service, it does not acquire a wake lock.

So we need further props on top of an IntentService. We need an abstraction.

Mark Murphy has created a variant of the IntentService called WakefulIntentService

that keeps the semantics of using an IntentService but also acquires the wake lock and

releases it properly under a variety of conditions. You can look at its implementation at

http://github.com/commonsguy/cwac-wakeful.

Long-Running Broadcast Service Abstraction
WakefulIntentService is a fine abstraction. However, we want to go a step further so

that our abstraction parallels the method of extending IntentService as in Listing 14–14

and does everything that an IntentService does but also provides the following

additional benefits:

1. Acquire and release wake locks (similar to WakefulIntentService).

2. Pass the original intent that was passed to the broadcast receiver to the

overridden method onHandleIntent. This allows us to largely hide the broadcast

receiver.

3. Deal with a service being restarted.

4. Allow a uniform way to deal with the wake lock for multiple receivers and multiple

services in the same process.

We will call this abstract class ALongRunningNonStickyBroadcastService. As the name

suggests, we want this service to allow for long-running work. It will also be specifically

built for a broadcast receiver. This service will also be nonsticky (we will explain this

concept later in the chapter, but briefly, this indicates that Android will not start the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 446

service if there are no messages in the queue). To allow for the behavior of an

IntentService, it will extend the IntentService and override the onHandleIntent

method.

Combining these ideas, the abstract ALongRunningNonStickyBroadcastService service

will have signature that looks like Listing 14–18.

Listing 14–18. Long-Running Service Abstract Idea

public abstract class ALongRunningNonStickyBroadcastService
extends IntentService
{
...other implementation detials
 protected abstract void
 handleBroadcastIntent(Intent broadcastIntent);
...other implementation details

}

The implementation details for this ALongRunningNonStickyBroadcastService are quite

involved, and we will cover them later, as soon as we explain why we are going after this

type of service. We want to demonstrate first the utility and simplicity of having it.

Once we have this abstract class, the MyService example in Listing 14–16 can be

rewritten as in Listing 14–19.

Listing 14–19. Long-Running Service Sample Usage

public class MyService extends ALongRunningNonStickyBroadcastService
{
 protected abstract void handleBroadcastIntent(Intent broadcastIntent)
 {
 Utils.logThreadSignature("MyService");
 //do the work here
 //and return
 }
}

As you can see, you can extend this new long running service class (just like

IntentService and WakefulIntentService) and override a single method and do very

little to nothing in the broadcast receiver. Your work will be done in a worker thread

(thanks to IntentService) without blocking the main thread.

Listing 14–19 is a simple example demonstrating the concept. Let’s now turn to a more

complete implementation that implements a long-running service that can run for 60

seconds in response to a broadcast event (proving that we can run for more than 10

seconds and avoid an ANR message). We will call this service appropriately

Test60SecBCRService (“BCR” stands for broadcast receiver), and its implementation is

shown in Listing 14–20.

Listing 14–20. Test60SecBCRService

public class Test60SecBCRService
extends ALongRunningNonStickyBroadcastService
{
 public static String tag = "Test60SecBCRService";
 //Required by IntentService to pass the classname

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 447

 public Test60SecBCRService(){
 super("com.androidbook.service.Test60SecBCRService");
 }

 /*
 * Perform long running operations in this method.
 * This is executed in a separate thread.
 */
 @Override
 protected void handleBroadcastIntent(Intent broadcastIntent)
 {
 Utils.logThreadSignature(tag);
 Log.d(tag,"Sleeping for 60 secs");
 Utils.sleepForInSecs(60);
 String message =
 broadcastIntent.getStringExtra("message");
 Log.d(tag,"Job completed");
 Log.d(tag,message);
 }
}

As you can see, this code successfully simulates doing work for 60 seconds and still

avoids the ANR message. You may be wondering at this point why you won’t be able to

compile this class, as we didn’t give you the implementation of the abstract long-running

service class. That is true. Just wait until you completely understand all the pieces of this

example, and in the course of the explanation, you will see the implementation code for

all the classes. We also have given specific instructions to compile this example later, in

addition to giving you a URL where you can download the project in the “References”

section.

A Long-Running Receiver
Once we have the long-running service in Listing 14–20, we need to be able to invoke

the service from a broadcast receiver.

The first goal of a long-running broadcast receiver is to delegate the work to a long-

running service. To do this, the long-running receiver will need the class name of the

long-running service to invoke it.

The second goal for this long-running receiver is to acquire a wake lock if we want to

ensure the code will continue to run when the receiver returns.

The third goal for the long-running receiver is to transfer the original intent that the

broadcast receiver is invoked on to the service. We will do this by sticking the original

intent as a parcellable in the intent extras. We will use original_intent as the name for

this extra. The long-running service then extracts original_intent and passes it to the

overridden method of the long-running service (you will see this later in the

implementation of the long-running service). This facility, thus, gives the impression that

the long-running service is indeed an extension of the broadcast receiver.

Although we could instruct every long-running receiver to do these two things every

time, it is better that we abstract out these and provide a base class. The long-running

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 448

receiver abstraction will then use the derived class to supply the name of the long-

running service (LRS) class through an abstract method called getLRSClass().

Before we let you go on to the implementation of this abstraction, we have to talk a little

bit about the direction we took on wake locks. Wake locks need to be coordinated

between the broadcast receiver and the corresponding service they invoke. Although the

idea is simple, in the implementation, we need to worry about many places and

conditions where this needs to happen. So we have conceptually abstracted the wake

lock out using a concept called LightedGreenRoom. We will present this class later, but

for now, treat this as just a wake lock that you turn on and off.

Putting these needs together, the source code for the implementation of the abstract

class ALongRunningReceiver is in Listing 14–21.

Listing 14–21. ALongRunningReceiver

public abstract class ALongRunningReceiver
extends BroadcastReceiver
{
 private static final String tag = "ALongRunningReceiver";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Log.d(tag,"Receiver started");
 //LightedGreenRoom abstracts the Android WakeLock
 //to keep the device partially on.
 //In short this is equivalent to turning on
 //or acquiring the wakelock.
 LightedGreenRoom.setup(context);
 startService(context,intent);
 Log.d(tag,"Receiver finished");
 }
 private void startService(Context context, Intent intent)
 {
 Intent serviceIntent = new Intent(context,getLRSClass());
 serviceIntent.putExtra("original_intent", intent);
 context.startService(serviceIntent);
 }
 /*
 * Override this methode to return the
 * "class" object belonging to the
 * nonsticky service class.
 */
 public abstract Class getLRSClass();
}

Once this abstraction is available, you’ll need a receiver that works hand in hand with

the 60-second long-running service in Listing 14–16. Such a receiver is provided in

Listing 14–22.

Listing 14–22. A Sample Long Running Broadcase Receiver, Test60SecBCR

public class Test60SecBCR
extends ALongRunningReceiver
{
 @Override

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 449

 public Class getLRSClass()
 {
 Utils.logThreadSignature("Test60SecBCR");
 return Test60SecBCRService.class;
 }
}

Just like the service abstraction in Listings 14–19 and 14–20, the code in Listing 14–22

uses an abstraction for the broadcast receiver. The receiver abstraction starts the

service indicated by the service class returned by the getLRSClass() method.

Thus far, we have demonstrated why we needed the two important abstractions to

implement long-running services invoked by broadcast receivers, namely:

 ALongRunningNonStickyBroadcastService

 ALongRunningReceiver

However, we have postponed showing the implementation for one of these classes due

to the level of detail involved. We also have not presented the implementation of a

common class, LightedGreenRoom, that both these abstractions use. We are now at a

point to explain and present the code for these two remaining classes. We will start first

with the common class LightedGreenRoom.

Abstracting a Wake Lock with LightedGreenRoom
As mentioned earlier the primary purpose of the LightedGreenRoom abstraction is to

simplify the interaction with the wake lock, and a wake lock is used to keep the device

from being turned off. Listing 14–23 shows how a wake lock is used typically as stated

in the SDK.

Listing 14–23. Wakelock API

//Get access to the power manager service
PowerManager pm =
 (PowerManager)inCtx.getSystemService(Context.POWER_SERVICE);

//Get hold of a wake lock
PowerManager.WakeLock wl =
 pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, tag);

//Acquire the wake lock
wl.acquire();

//do some work
//while this work is being done the device will be on partially

//release the wakelock
wl.release();

Given this interaction, the broadcast receiver is supposed acquire the lock, and when

the long-running service is finished, it needs to release the lock. However, there is no

good way to pass the wake lock variable to the service from the broadcast receiver. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 450

only way the service knows about this wake lock is to use a static or application-level

variable.

Another difficulty in acquiring and releasing a wake lock is the reference count. So as a

broadcast receiver is invoked multiple times, if the invocations overlap, there are going

to be multiple calls to acquire the wake lock. Similarly, there are going to be multiple

calls to release. If number of acquire and release calls don’t match, we will end up with a

wake lock that is at worst keep the device on for far longer than needed. Also, when the

service is no longer needed and the garbage collection runs, if the wake lock counts are

mismatched, there will be a run time exception in the LogCat.

These issues have prompted us to do our best to abstract the wake lock to ensure

proper usage.

NOTE: Now that you are aware of issues and the need for wake locks, you are encouraged to
tinker with LightedGreenRoom and replace it with another class if you find that to be simpler.
This disclaimer is to reassure you that there is no magic about LightedGreenRoom and that it

is quite simple at its heart.

We will now explain the conceptual thought that went into seeing the wake lock as

LightedGreenRoom.

A Lighted Green Room
Let’s start with a green room, which is a room that allows visitors. The room starts out

dark, and the first one to enter turns on the lights. Subsequent visitors have no effect if

the lights are already on. The last visitor to leave will turn off the lights. It is called a

“green room” because it uses energy efficiently. The enter and leave methods need to

be synchronized to keep their states, as they could happen between multiple threads.

So what, then, is a lighted green room? Unlike a green room that starts with lights off, a

lighted green room starts with lights on, even before the first visitor arrives. We can

assume that, with lights off, a visitor cannot find the way to the green room. This relates

to the fact that if a device is off no service even can run. Still, the last one to leave will

turn off the lights. This is useful for a broadcast receiver, because it needs to turn on the

lights first and then transfer to the service.

Starting a service is considered equivalent to a visitor coming in. Stopping a service

equates to a visitor leaving the room. Please note that you need to distinguish between

the creation of a service and starting a service. Creation and destruction happen only

once per service, whereas starting and stopping can happen many times.

There could be, and typically is, a time delay between setting up the wakelock (the

lighted green room) in the receiver and starting the service, essentially a call to

onStartCommand (having the first visitor enter the room).

Because a wakelock is reference counted, if a service is to be taken down because of

low-memory conditions, we would like to explicitly release the locks. If you were to use

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 451

the same lighted green room to serve multiple services, you may want to track the last

service to be destroyed and release the locks only once that service is finished.

To allow for this pattern, we will create a client. Each service will register with the lighted

green room as a client so that its destroy method will work.

On top of that, we need to keep track of "enter" and "leave" of each "startService".

Lighted Green Room Implementation
Combining all the concepts from the last section, the implementation of a lighted green

room looks like Listing 14–24. Please note that this seemed to work well with our limited

testing. Please tinker with it and adjust it to your needs, as it is quite difficult for us to

consider each possibility that might exist in your development environment. (In other

words, think of this example as experimental.)

Listing 14–24. Lighted Green Room Implementation

public class LightedGreenRoom
{
 //debug tag
 private static String tag="LightedGreenRoom";

 //Keep count of visitors to know the last visitor.
 //On destory set the count to zero to clear the room.
 private int count;

 //Needed to create the wake lock
 private Context ctx = null;

 //Our switch
 PowerManager.WakeLock wl = null;

 //Multi-client support
 private int clientCount = 0;

 /*
 * This is expected to be a singleton.
 * One could potentially make the constructor
 * private.
 */
 public LightedGreenRoom(Context inCtx)
 {
 ctx = inCtx;
 wl = this.createWakeLock(inCtx);
 }

 /*
 * Setting up the green room using a static method.
 * This has to be called before calling any other methods.
 * what it does:
 * 1. Instantiate the object
 * 2. acquire the lock to turn on lights
 * Assumption:
 * It is not required to be synchronized

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 452

 * because it will be called from the main thread.
 * (Could be wrong. need to validate this!!)
 */
 private static LightedGreenRoom s_self = null;

 public static void setup(Context inCtx)
 {
 if (s_self == null)
 {
 Log.d(LightedGreenRoom.tag,"Creating green room and lighting it");
 s_self = new LightedGreenRoom(inCtx);
 s_self.turnOnLights();
 }
 }
 public static boolean isSetup()
 {
 return (s_self != null) ? true: false;
 }

 /*
 * The methods "enter" and "leave" are
 * expected to be called in tandem.
 *
 * On "enter" increment the count.
 *
 * Do not turn the lights or off
 * as they are already turned on.
 *
 * Just increment the count to know
 * when the last visitor leaves.
 *
 * This is a synchronized method as
 * multiple threads will be entering and leaving.
 *
 */
 synchronized public int enter()
 {
 count++;
 Log.d(tag,"A new visitor: count:" + count);
 return count;
 }
 /*
 * The methods "enter" and "leave" are
 * expected to be called in tandem.
 *
 * On "leave" decrement the count.
 *
 * If the count reaches zero turn off the lights.
 *
 * This is a synchronized method as
 * multiple threads will be entering and leaving.
 *
 */
 synchronized public int leave()
 {
 Log.d(tag,"Leaving room:count at the call:" + count);
 //if the count is already zero

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 453

 //just leave.
 if (count == 0)
 {
 Log.w(tag,"Count is zero.");
 return count;
 }
 count--;
 if (count == 0)
 {
 //Last visitor
 //turn off lights
 turnOffLights();
 }
 return count;
 }
synchronized public int getCount()
 {
 return count;
 }

 /*
 * acquire the wake lock to turn the lights on
 * it is upto other synchronized methods to call
 * this at the appropriate time.
 */
 private void turnOnLights()
 {
 Log.d(tag, "Turning on lights. Count:" + count);
 this.wl.acquire();
 }

 /*
 * Release the wake lock to turn the lights off.
 * it is upto other synchronized methods to call
 * this at the appropriate time.
 */
 private void turnOffLights()
 {
 if (this.wl.isHeld())
 {
 Log.d(tag,"Releasing wake lock. No more visitors");
 this.wl.release();
 }
 }
 /*
 * Standard code to create a partial wake lock
 */
 private PowerManager.WakeLock createWakeLock(Context inCtx)
 {
 PowerManager pm =
 (PowerManager)inCtx.getSystemService(Context.POWER_SERVICE);

 PowerManager.WakeLock wl = pm.newWakeLock
 (PowerManager.PARTIAL_WAKE_LOCK, tag);
 return wl;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 454

 private int registerClient()
 {
 Utils.logThreadSignature(tag);
 this.clientCount++;
 Log.d(tag,"registering a new client:count:" + clientCount);
 return clientCount;
 }

 private int unRegisterClient()
 {
 Utils.logThreadSignature(tag);
 Log.d(tag,"un registering a new client:count:" + clientCount);
 if (clientCount == 0)
 {
 Log.w(tag,"There are no clients to unregister.");
 return 0;
 }
 //clientCount is not zero
 clientCount--;
 if (clientCount == 0)
 {
 emptyTheRoom();
 }
 return clientCount;
 }
 synchronized public void emptyTheRoom()
 {
 Log.d(tag, "Call to empty the room");
 count = 0;
 this.turnOffLights();
 }
 //***
 //* static members: Purely helper methods
 //* Delegates to the underlying singleton object
 //***
 public static int s_enter()
 {
 assertSetup();
 return s_self.enter();
 }
 public static int s_leave()
 {
 assertSetup();
 return s_self.leave();
 }
 //Dont directly call this method
 //probably will be deprecated.
 //Call register and unregister client methods instead
 public static void ds_emptyTheRoom()
 {
 assertSetup();
 s_self.emptyTheRoom();
 return;
 }
 public static void s_registerClient()
 {
 assertSetup();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 455

 s_self.registerClient();
 return;
 }
 public static void s_unRegisterClient()
 {
 assertSetup();
 s_self.unRegisterClient();
 return;
 }
 private static void assertSetup()
 {
 if (LightedGreenRoom.s_self == null)
 {
 Log.w(LightedGreenRoom.tag,"You need to call setup first");
 throw new RuntimeException("You need to setup GreenRoom first");
 }
 }
}

A reasonable approach for the broadcast receiver and the service to communicate with

each other is through a static variable. Instead of making the wakelock static, we have

made the entire LightedGreenRoom a static instance. However, every other variable inside

LightedGreenRoom stays local and nonstatic.

Every public method of LightedGreenRoom is also exposed as a static method for

convenience. You can choose, instead, to get rid of the static methods and directly call

the single object instance of LightedGreenRoom.

Long-Running Service Implementation
Now that the LightedGreenRoom implementation is finished, we are almost ready to

present the long-running service abstraction. However, we have to take one more detour

to explain the lifetime of a service and how it relates to the implementation of

onStartCommand. This is the method that is ultimately responsible for starting the worker

thread and the semantics of a service.

You know that the broadcast receiver invokes the service using a startService call and

that this call will result in calling the onStartCommand method of the service. The lifetime

of the service is controlled by what this method returns.

To understand what happens in this method, you need a detailed background on the

nature of local services. We have covered the basics of local services in Chapter 11, and

now we need to dig a bit deeper.

When a service is started, it gets created first and its onStartCommand method is called.

Android has enough provisions to keep this process in memory so that the service can

serve incoming client requests.

There is a difference between a service process being in memory and running. A service

runs only in response to startService, which calls its onStartCommand method. Just

because this method is not executing doesn’t mean the service process is not in

memory. Sometimes, people refer to this as service running even though it is just sitting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 456

there and claiming some resources but not actually executing anything. This is what

typically means when Android claims that it keeps the service running.

In fact, if a startService call, resulting in an onStartCommand, takes more than 5 to 10

seconds, this will result in ANR message and could kill the process hosting the service.

Without a worker thread, a service cannot run for longer than 10 seconds. So you should

distinguish between a service that’s available and one that’s running.

Android does its best to keep a service available in memory. However, under demanding

memory conditions, Android may choose to reclaim the process and call the

onDestory() method of the service. Android tries to do this when the service is not

executing its onCreate(), onStart(), or onDestroy() methods.

However, unlike an activity that is shut down, a service is scheduled to restart again

when resources are available if there are pending startService intents in the queue. The

service will be woken up and the next intent delivered to it via onStartCommand(). Of

course, onCreate() will be called when the service is brought back. Because services

are restarted all the time ,it is reasonable to think that, unlike activity and other

components, a service component is fundamentally a sticky component.

Details of a Nonsticky Service
What is a nonsticky service then?

Let’s talk about a situation when a service is not automatically restarted. After a client

calls startservice, the service is created and OnStartCommand is called to do its work.

This service will not be automatically restarted if a client explicitly calls stopservice.

This stopservice, depending on how many clients are still connected, can move the

service into a stopped state, at which time the service’s onDestroy method is called and

the service life cycle is complete. Once a service has been stopped like this by its last

client, the service will not be brought back.

This protocol works well when everything happens as per design, where start and stop

methods are called and executed in sequence and without a miss.

Prior to Android 2.0, devices have seen a lot of services hanging around and claiming

resources even though there was no work to be done, meaning Android brought the

services back into memory even though there were no messages in the queue. This

would have happened when stopService was not invoked either because of an

exception or because the process is taken out between onStartCommand and

stopService.

Android 2.0 introduced a solution so that we can indicate that, if there are no pending

intents, it shouldn’t bother restarting the service. This is ok because whoever started the

service to do the work will call it again such as the alarm manager. This is done by

returning the nonsticky flag (Service.START_NOT_STICKY) from onStartCommand .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 457

However, nonsticky is not really that nonsticky. Remember, even if we mark the service

as nonsticky, if there are pending intents, Android will bring the service back to life. This

setting applies only when there are no pending intents.

Details of a Sticky Service
What does it mean for a service to be really sticky then?

The sticky flag (Service.START_STICKY) means that Android should restart the service

even if there are no pending intents. When the service is restarted, call onCreate and

onStartCommand with a null intent. This will give the service an opportunity, if need be, to

call stopself if that is appropriate. The implication is that a service that is sticky needs

to deal with null intents on restarts.

A Variation of Nonsticky: Redeliver Intents
Local services in particular follow a pattern where onstart and stopself are called in

pairs. A client calls onstart. The service, when it finishes that work, calls stopself. You

can see this clearly in the implementation of IntentService utility class in Listing 14–15.

If a service takes, say, 30 minutes to complete a task, it will not call stopself for 30

minutes. Meanwhile, the service is reclaimed. If we use the nonsticky flag, the service

will not wake up, and we would never have called stopself.

Many times, this is OK. However, if you want to make sure if these two calls happen for

sure, you can tell Android to not to unque the start event until stopself is called. This

ensures that, when the service is reclaimed, there is always a pending event unless the

stopself is called. This is called redeliver mode, and it can be indicated in reply to the

onStartCommand method by returning the Service.START_REDELIVER flag.

Specifying Service Flags in OnStartCommand
Interestingly, stickiness is tied to onStartCommand, and not to onCreate, for a service.

This is a bit odd, because so far, we have been talking about a service being in sticky,

nonsticky, or redeliver mode as if these were service-level attributes. However, this

determination for the nature of a service is made based on the return value from

OnStartCommand. Wonder what the goal here is? We do too. Because, for the same

service instance OnStartCommand is called many times, once for each startservice.

What if the method returns different flags indicating different service behaviors? Perhaps

the best guess is that the last returned value is what determines.

Picking Suitable Stickiness
Given the combination of possible service behaviors, what type of service is suitable for

a long-running broadcast receiver? We believe a simple, nonsticky service, which just

assumes the service will stop if there are no pending messages in the queue, will do. We

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 458

are finding it hard to think that there is a use case for sticky long-running broadcast

receivers, especially if we want to use IntentService, which expects the service to stop

if there are no pending intents.

You will see this conclusion in the implementation of our long-running service

abstraction in the upcoming Listing 14–19, where we have returned the nonsticky flag.

Controlling the Wake Lock from Two Places
Before presenting the source code for the long-running service, let’s talk about the

responsibilities of the service regarding keeping the device on.

When the service code is running, we should have the partial wake lock in effect. To do

this, when the service is created, we need to turn on the wake lock by creating the

lighted green room. You might say that this is done by the broadcast receiver, which is

true. However, the service may be woken up by itself, in which case we would have

missed the setup of the lighted room. So we need to control the wake lock from both

places.

The long-running broadcast receiver code in Listing 14–18 initializes the wake lock using

LightedGreenRoom.setup(). We will do the same in the service creation callback.

In addition to setting up the lighted green room, our service needs to register itself as a

client to the lighted green room. This allows for clean up when the service component

gets destroyed through onDestroy().

Long-Running Service Implementation
Now that you have the background on IntentService, service start flags, and the lighted

green room, we’re ready to take a look at the long-running service in Listing 14–25.

Listing 14–25. A Long-Running Service

public abstract class ALongRunningNonStickyBroadcastService
extends IntentService
{
 public static String tag = "ALongRunningBroadcastService";
 protected abstract void
 handleBroadcastIntent(Intent broadcastIntent);

 public ALongRunningNonStickyBroadcastService(String name){
 super(name);
 }
 /*
 * This method can be invoked under two circumstances
 * 1. When a broadcast receiver issues a "startService"
 * 2. when android restarts it due to pending "startService" intents.
 *
 * In case 1, the broadcast receiver has already
 * setup the "lightedgreenroom".
 *

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 459

 * In case 2, we need to do the same.
 */
 @Override
 public void onCreate()
 {
 super.onCreate();

 //Set up the green room
 //The setup is capable of getting called multiple times.
 LightedGreenRoom.setup(this.getApplicationContext());

 //It is possible that there are more than one service
 //of this type is running.
 //Knowing the number will allow us to clean up
 //the locks in ondestroy.
 LightedGreenRoom.s_registerClient();
 }
 @Override
 public int onStartCommand(Intent intent, int flag, int startId)
 {
 //Call the IntetnService "onstart"
 super.onStart(intent, startId);

 //Tell the green room there is a visitor
 LightedGreenRoom.s_enter();

 //mark this as non sticky
 //Means: Don't restart the service if there are no
 //pending intents.
 return Service.START_NOT_STICKY;
 }
 /*
 * Note that this method call runs
 * in a secondary thread setup by the IntentService.
 *
 * Override this method from IntentService.
 * Retrieve the original broadcast intent.
 * Call the derived class to handle the broadcast intent.
 * finally tell the ligthed room that you are leaving.
 * if this is the last visitor then the lock
 * will be released.
 */
 @Override
 final protected void onHandleIntent(Intent intent)
 {
 try
 {
 Intent broadcastIntent
 = intent.getParcelableExtra("original_intent");
 handleBroadcastIntent(broadcastIntent);
 }
 finally
 {
 LightedGreenRoom.s_leave();
 }
 }
 /*

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 460

 * If Android reclaims this process,
 * this method will release the lock
 * irrespective of how many visitors there are.
 */
 @Override
 public void onDestroy() {
 super.onDestroy();
 LightedGreenRoom.s_unRegisterClient();
 }

}

Clearly, this class extends IntentService and gets all the benefits of a worker thread as

set up by IntentService. In addition, it specializes the IntentService further so that it is

set up as a non-sticky service. From a developer’s perspective, the primary method to

focus on is the abstract handleBroadcastIntent() method.

Testing Long Running Services
To test this code, you will need to add these additional files to your project:

LightedGreenRoom.java (Listing 14–24)

ALongRunningNonStickyBroadcastService (Listing 14–25)

ALongRunningReceiver.java (Listing 14–21)

Test60SecBCR.java (Listing 14–22)

Test60SecBCRService.java (Listing 14–20)

An updated manifest file with the 60–second receiver and the service

(Listing 14–14)

The Java source code files can be found previously in the chapter, let’s now look at the

additional entries you need in the manifest file shown in Listing 14–26.

Listing 14–26. The Long-Running Receiver and Service Definition

<manifest…>
……
<application….>
<receiver android:name=".Test60SecBCR">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
</receiver>
<service android:name=".Test60SecBCRService"/>
</application>
…..
<uses-permission android:name="android.permission.WAKE_LOCK"/>
</manifest>

Also notice that you will need the wake lock permission to run this long-running receiver

abstraction.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 461

Instructions for Compiling the Code
This chapter has two projects. One to test the broadcast receiver (Let’s call it TestBCR)

and one to test the stand-alone receivers, including the long-running receiver and

service (let’s call it StandaloneBCR). Both these project are zipped up and available in

the download file; the URL for this is listed in the “References” section. We strongly

suggest that you download the ZIP file and unzip it to see these projects individually.

Creating the Projects from the ZIP File
The steps to create the projects from the zip file follow:

1. Download the ZIP file.

2. Unzip the file to see two root directories, one for each project. For each

project, do the following:

a. From the File/Import menu in Eclipse, choose General/Existing

Projects into Workspace.

b. Choose “select root directory”.

c. Choose “copy projects into work space”.

d. You may need to choose the right API level once the project is in

place by selecting “project properties/android” and picking the

right build target

Once you build the projects, deploy both of them into the emulator. The stand-alone

project is a headless project with just receivers and services. The TestBCR project has a

simple activity that triggers the single broadcast intent which is responded by receivers

inside the TestBCR project and the receivers from the stand-alone BCR project.

Creating the Project from the Listings
Here are the list of files you need for each project and how to create those projects from

the listings in this chapter.

TestBCR Project files
These are the files you should need for TestBCR:

 TestBCRActivity.java (Listing 14–5)

 TestReceiver.java (Listing 14–2)

 TestReceiver2.java (Listing 14–9)

 TestTimeDelayReceiver.java (Listing 14–11)

 Utils.java (Listing 14–3)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 462

 /res/layout/main.xml (Listing 14–6)

 /res/menu/main_menu.xml (Listing 14–7)

 manifest.xml (Listing 14–8)

If you need any other files you may have to look at the project in the zip file or fill them

in yourself. These may be simple things like default icons or string values. Once you

have the receivers, you will also need to register them in the manifest file shown in

Listing 14–8.

You can build this project from the preceding list of files using the following approach:

1. Create a new project by choosing File ➤ new project ➤ Android ➤ Android

Project.

2. Pick a name, and choose “create new project in workspace”.

3. Supply an application name, such as TestBCR. The application name really

doesn’t matter, as it is the package name that counts.

4. Pick an API level.

5. Use the package name com.androidbook.bcr.

6. Pick any minsdk version, for example 3.

7. Choose your activity as TestBCRActivity, and click Finish

8. Android will create a number of resource files and probably (depending on your

release) a single source file.

9. Create, update, or delete these files based Listings 14–2 through 14–11.

10. For Java files, when you copy the listings from here, put the package name at the

top of the file first. Then use Ctrl+Shift+O for filling in the imports.

Please note that, in this process, you will need to make adjustments to the code to get it

compiled and to provide any missing pieces. You can refer to the ZIP file to fill in the

gaps.

Stand-Alone BCR Project Files
These are the stand-alone project files:

 ALongRunningNonStickyBroadcastService.java (Listing 14–25)

 ALongRunningReceiver.java (Listing 14–21)

 LightedGreenRoom.java (Listing 14–24)

 NotificationReceiver.java (Listing 14–15)

 StandaloneReceiver.java (Listing 14–13)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 463

 Test60SecBCR.java (Listing 14–22)

 Test60SecBCRService.java (Listing 14–20)

 Utils.java (Listing 14–3)

 manifest.xml (Listing 14–14, 14–26)

Because this project is a headless project, you will not need the layout files or the menu

resource files. You can build this project from this list of files using the following

approach:

1. Create a new project by selecting File ➤ New Project ➤ Android➤ Android

Project.

2. Pick a name, and choose “create new project in work space”.

3. Give the application a name, such as TestStandaloneBCR. An application name

really doesn’t matter; it is the package name that counts.

4. Pick an API level.

5. Use the package name com.androidbook.salbcr.

6. Pick any minsdk version, for example, 3.

7. Don’t choose any activity.

8. Android will create a number of resource files and probably (depending on your

Android release) no source files. But it will create a Java package.

9. Create, update, and delete these files based on the listings noted at the beginning

of this section.

10. For Java files, when you copy the listings, put the package name at the top of the

file first. Then use Ctrl+Shift+O to fill in the imports.

Please note that, in this process, you will need to make adjustments to the code to get it

compiled and provide any missing pieces. You can refer to the ZIP file to fill in the gaps.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 14: Broadcast Receivers and Long-Running Services 464

References
Here are some helpful references to topics you may wish to explore further:

 http://developer.android.com/reference/android/content/BroadcastReceive
r.html: This is a link for the BroadcastReceiver API. In this chapter, we have

covered the most basic version of a broadcast receiver. You will find at this link

more about ordered broadcasts and a little bit about its life cycle.

 http://developer.android.com/reference/android/app/Service.html: This is

a link for the Service API. This reference is especially good to have while

working with long-running services.

 http://developer.android.com/reference/android/app/NotificationManager.
html: This is a link for the Notification Manager API.

 http://developer.android.com/reference/android/app/Notification.html:

This is a link for the Notification API. You will see here the various options

available for working with a notification, such as content views and sound

effects.

 http://developer.android.com/reference/android/widget/RemoteViews.html:

This is a link for the RemoteViews API. RemoteViews are used to construct

custom detailed views of notifications.

 http://www.androidbook.com/item/3514: The authors’ research on long-

running services can be found here.

 http://www.androidbook.com/projects: Here, you can see a list of

downloadable projects from this book. For this chapter, look for a ZIP file

named ProAndroid3_Ch14_TestReceivers.zip.

Summary
We have covered important ground in this chapter: broadcast receivers, notifications,

wake locks, and long-running services. This chapter also has brought together the

essence of what you learned in Chapters 12 and 13.

We have shown the basics of broadcast receiver usage and lifetimes and how they work

in the same process as well as outside. We showed how you can co-opt services to

extend the lifetime of a broadcast receiver. Finally, we tinkered with the IntentService

to give you a pattern that you can further tailor for your own needs of long-running

services.

In Chapter 15, we will go over using alarm manager to invoke broadcast receivers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

465

465

 Chapter

Exploring the Alarm
Manager
In Android, you can use the alarm manager to trigger events. These events can be at a
specific time or at regular intervals. We will start the chapter with the basics of the alarm
manager where we set a simple alarm. We will then cover setting an alarm that repeats,
cancelling an alarm, the role of pending intents (specifically the role their uniqueness
plays), and setting multiple alarms. By the end of the chapter, you will have learned both
the basics and the practical nitty-gritty of the Android alarm manager.

Alarm Manager Basics: Setting Up a Simple Alarm
We will start the chapter setting an alarm at a particular time and have it call a broadcast
receiver. Once the broadcast receiver is invoked, we can use the information from
Chapter 14 to perform both simple and long running operations in that broadcast
receiver.

The steps we follow for this exercise are

1. Get access to the alarm manager.

2. Come up with a time to set the alarm.

3. Create a receiver to be invoked.

4. Create a pending intent that can be passed to the alarm manager to invoke the

receiver.

5. Use the time from step 2 and the pending intent from step 4 to set the alarm.

6. Watch the logcat for messages coming from the invoked receiver from step 3.

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 466

Obtaining the Alarm Manager
Getting access to the alarm manager is simple and is illustrated in Listing 15–1.

Listing 15–1. Getting an Alarm Manager

AlarmManager am =
 (AlarmManager)
 mContext.getSystemService(Context.ALARM_SERVICE);

In Listing 15–1, the variable mContext refers to a context object. For example, if you are
invoking this code from an activity menu, the context variable is the activity.

Setting Up the Time for the Alarm
To set the alarm for a particular date and time, you will need an instance in time
identified by a Java Calendar object. Listing 15–2 contains a Java file (one we will use
later to set up a project) that has some utilities to work with the Calendar object.

Listing 15–2. A Few Useful Calendar Utilities

public class Utils {
 public static Calendar getTimeAfterInSecs(int secs) {
 Calendar cal = Calendar.getInstance();
 cal.add(Calendar.SECOND,secs);
 return cal;
 }
 public static Calendar getCurrentTime(){
 Calendar cal = Calendar.getInstance();
 return cal;
 }
 public static Calendar getTodayAt(int hours){
 Calendar today = Calendar.getInstance();
 Calendar cal = Calendar.getInstance();
 cal.clear();

 int year = today.get(Calendar.YEAR);
 int month = today.get(Calendar.MONTH);
 //represents the day of the month
 int day = today.get(Calendar.DATE);
 cal.set(year,month,day,hours,0,0);
 return cal;
 }
 public static String getDateTimeString(Calendar cal){
 SimpleDateFormat df = new SimpleDateFormat("MM/dd/yyyy hh:mm:ss");
 df.setLenient(false);
 String s = df.format(cal.getTime());
 return s;
 }
}

From this list of utilities, we will use the function getTimeAfterInSecs(), as shown in
Listing 15–3 , to look for a time instance that is 30 seconds from now.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 467

Listing 15–3. Obtaining a Time Instance

 Calendar cal = Utils.getTimeAfterInSecs(30);

Setting Up a Receiver for the Alarm
Now, we need a receiver to set against the alarm. A simple receiver is shown in Listing
15–4.

Listing 15–4. TestReceiver to Test Alarm Broadcasts

public class TestReceiver extends BroadcastReceiver
{
 private static final String tag = "TestReceiver";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Log.d("TestReceiver", "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

You will need to register this receiver in the manifest file using the corresponding
<receiver> tag, as shown in Listing 15–5.

Listing 15–5. Registering a Broadcast Receiver

 <receiver android:name=".TestReceiver"/>

Creating a PendingIntent Suitable for an Alarm
Once we have a receiver, we can set up a PendingIntent, which is needed to set the
alarm. We start off by creating an intent to invoke the TestReceiver in Listing 15–4. This
intent creation is shown in Listing 15–6.

Listing 15–6. Creating an Intent Pointing to TestReceiver

Intent intent =
 new Intent(mContext, TestReceiver.class);
intent.putExtra("message", "Single Shot Alarm");

The variable mContext is the activity context from which you are going to be using to
invoke this functionality. We have used the TestReceiver class directly (instead of using
an intent filter against an intent action as we did in Chapter 14 for receivers). We also
have an opportunity to load the intent with extras while creating this intent.

Once we have this regular intent pointing to a receiver, we need to create a pending
intent that is necessary to pass to an alarm manager. Listing 15–7contains an example
of creating a PendingIntent from the intent in Listing 15–6.

Listing 15–7. Creating a Pending Intent

PendingIntent pi =
 PendingIntent.getBroadcast(
 mContext, //context

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 468

 1, //request id, used for disambiguating this intent
 intent, //intent to be delivered
 0); //pending intent flags

Notice that we have asked the PendingIntent class to construct a pending intent that is
suitable for a broadcast explicitly. The other variations of this follow:

PendingIntent.getActivity() //useful to start an activity
PendingIntent.getService() //useful to start a service

We will discuss the request id argument, which we set to 1, in greater detail later in this
chapter. Briefly, it is used to separate two intent objects that are similar.

The pending intent flags have little to no influence on the alarm manager. Our
recommendation is to use no flags at all and use 0 for their values. These flags are
typically useful in controlling the lifetime of the pending intent. However, in this case, the
lifetime is maintained by the alarm manager. For example to cancel a pending intent,
you ask the alarm manager to cancel it.

Setting the Alarm
Once we have the time instance in milliseconds as a Calendar object and the pending
intent pointing to the receiver, we can set up an alarm by calling the set() method of the
alarm manager, as illustrated in Listing 15–8.

Listing 15–8. Alarm Manager Set Method

alarmManager.set(AlarmManager.RTC_WAKEUP,
 calendarObject.getTimeInMillis(),
 pendintIntent);

If you use RTC_WAKEUP, the alarm will wake up the device. Or you can use RTC in its place
to deliver the intent when the device wakes up.

The time specified by the second argument is the instance in time specified by the
calendarObject that we have created earlier (see Listing 15–3). This time is in
milliseconds since 1970. This also coincides with the Java Calendar object default.

Once this method is called, the alarm manager will invoke the TestReceiver in Listing
15–4 in 30 seconds from now.

Test Project
Let’s create a test project to demonstrate the code introduced so far.

NOTE: We have given a URL at the end of the chapter that you can use to download projects of

this chapter and import them into Eclipse directly.

To create this project we will need the following files:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 469

 TestAlarmsDriverActivity.java: This is the activity to set alarms
(Listing 15–12).

 SendAlarmOnceTester.java: This is the main class for exercising the
functionality of sending an alarm once. There will be more similar
testers that test the new functionality that will be introduced (Listing
15–11).

 BaseTester.java: This base class allows testers such as
SendAlarmOnceTester to report back results through the interface
IReportBack (Listing 15–10).

 IReportBack.java: This small interface helper for BaseTester.java
takes debug messages and passes them to the driver activity (Listing
15–9).

 TestReceiver.java: This is the java class that gets invoked when the
alarm goes off. This class was presented in a previous listing (Listing
15–4).

 Utils.java: These date/time/calendar utilities were already presented
in a (Listing 15–2).

 /res/menu/main_menu.xml: This is the menu file for the driver activity
(Listing 15–13).

 /res/layout/main.xml: This is the layout file for the driver activity
(Listing 15–14).

 AndroidManifest.xml: This is the very familiar manifest file required by
every Android project. (Listing 15–15)

We will present each of the files in turn, starting with the base classes, which allow us to
coordinate between the driver activity and the various testers that test individual alarm
functionality. The first of these, IReportBack, is presented in Listing 15–9.

Listing 15–9. IReportBack.java

//IReportBack.java
package com.androidbook.alarms;

/*
 * An interface implemented typically by an activity
 * so that a worker class can report back
 * on what happened.
 */
public interface IReportBack
{
 public void reportBack(String tag, String message);
}

As indicated in the comments, this interface is used by a tester class to pass a message
to the driver activity. You will see this clearly when you notice the code in its inherited
subclasses, such as SendAlarmOnceTester.java (Listing 15–11).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 470

All testers like SendAlarmOnceTester inherit from BaseTester. The source code for
BaseTester.java is in Listing 15–10.

Listing 15–10. BaseTester.java

//BaseTester.java
package com.androidbook.alarms;
import android.content.Context;public class BaseTester
{
 protected IReportBack mReportTo;
 protected Context mContext;
 public BaseTester(Context ctx, IReportBack target)
 {
 mReportTo = target;
 mContext = ctx;
 }
}

This is a simple helper class that provides two things for the derived tester classes such
as SendAlarmOnceTester: a context to be used by its methods where necessary and an
activity that implements the IReportBack interface to log messages.

With IReportBack and BaseTester in place, we’re ready for the code for
SendAlarmOnceTester.java, the class that tests sending a single alarm event (see Listing
15–11).

Listing 15–11. A File to Test Sending an Alarm Once

// SendAlarmOnceTester.java
package com.androidbook.alarms;
import java.util.Calendar;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;

public class SendAlarmOnceTester extends BaseTester
{
 private static String tag = "SendAlarmOnceTester";
 SendAlarmOnceTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }

 /*
 * An alarm can invoke a broadcast request
 * at a specified time.
 * The name of the broadcast receiver is explicitly
 * specified in the intent.
 */
 public void sendAlarmOnce()
 {
 //Get the instance in time that is 30secs from now
 Calendar cal = Utils.getTimeAfterInSecs(30);

 //If you want to point to 11:00 hours today.
 //Calendar cal = Utils.getTodayAt(11);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 471

 //Print to the debug view that we are
 //scheduling at a specific time
 String s = Utils.getDateTimeString(cal);
 mReportTo.reportBack(tag, "Schdeduling alarm at: " + s);

 //Get an intent to invoke a receiver
 //TestReceiver class
 Intent intent =
 new Intent(mContext, TestReceiver.class);
 intent.putExtra("message", "Single Shot Alarm");

 PendingIntent pi =
 PendingIntent.getBroadcast(
 mContext, //context
 1, //request id, used for disambiguating this intent
 intent, //intent to be delivered
 PendingIntent.FLAG_ONE_SHOT); //pending intent flags

 // Schedule the alarm!
 AlarmManager am =
 (AlarmManager)
 mContext.getSystemService(Context.ALARM_SERVICE);

 am.set(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 pi);
 }
}

The intent of the class SendAlarmOnceTester is to send an alarm once so that it invokes a
broadcast receiver. You see this done in the method sendAlarmOnce() in Listing 15–11.
The TestReceiver that is used as the target for the alarm is in Listing 15–4, so every
aspect of sendAlarmOnce() is already discussed in the prior section. Listing 15–11 is
merely putting together the code that we have covered already.

Let’s now look at the driver activity responsible for invoking the sendAlarmOnce()
method. The source code for this activity is in Listing 15–12. This main activity of the
test project invokes the menus to test the various alarm scenarios we have discussed
and will discuss in this chapter. However to start, we have just enough code to invoke
the single menu item that we talked about. We will add code to respond to additional
menus as we go along.

The onCreate() method of TestAlarmsDriverActivity (Listing 15–12) instantiates a
SendAlarmOnceTester to transfer the menu actions to. Notice that the activity passes
itself as both the IReportBack variable and the Context variable to the
SendAlarmOnceTester constructor. This class also implements the IReportBack interface
and updates the debug view with the passed in text (notice the highlighted reportBack
method in Listing 15–12).

Listing 15–12. A Sample Activity to Test Setting Alarms

// TestAlarmsDriverActivity.java
package com.androidbook.alarms;
import android.app.Activity;
import android.os.Bundle;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 472

import android.util.Log;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.TextView;

public class TestAlarmsDriverActivity extends Activity
implements IReportBack
{
 public static final String tag="TestAlarmsDriverActivity";
 private SendAlarmOnceTester alarmTester = null;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 alarmTester = new SendAlarmOnceTester(this,this);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 //call the parent to attach any system level menus
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear)
 {
 this.emptyText();
 return true;
 }
 if (item.getItemId() == R.id.menu_alarm_once)
 {
 alarmTester.sendAlarmOnce();
 return true;
 }
 //You will add more menus later here
 return true;
 }
 //Inherited function from IReportBack
 public void reportBack(String tag, String message)
 {
 this.appendText(tag + ":" + message);
 Log.d(tag,message);
 }

 //Simple utility functions to work the debug view
 //of this activity
 private TextView getTextView() {
 return (TextView)this.findViewById(R.id.text1);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 473

 }
 private void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 private void emptyText(){
 TextView tv = getTextView();
 tv.setText("");
 }
 private void appendText(String s){
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + s);
 Log.d(tag,s);
 }
}

As you can see from the TestAlarmsDriverActivity activity, it responds to a couple of
menu items. The corresponding menu.xml file is in Listing 15–13. In this listing, we have
also included one time the additional test cases we will handle. As the presence of these
menu items will not stop you from compiling this first exercise, we have included them
here one time.

Listing 15–13. Menu Items to Test Various Alarm Manager Scenarios

<!-- /res/menu/main_menu.xml -->
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_alarm_once"
 android:title="Alarm Once" />
 <item android:id="@+id/menu_alarm_repeated"
 android:title="Alarm Repeat" />
 <item android:id="@+id/menu_alarm_cancel"
 android:title="Cancel Alarms" />
 <item android:id="@+id/menu_alarm_multiple"
 android:title="Multiple Alarms" />
 <item android:id="@+id/menu_alarm_distinct_intents"
 android:title="Distinct Intents" />
 <item android:id="@+id/menu_alarm_intent_primacy"
 android:title="Intent Primacy" />

 <item android:id="@+id/menu_clear"
 android:title="clear" />
 </group>
</menu>

Listing 15–14 contains the layout file to go with the driver activity
TestAlarmsDriverActivity (Listing 15–12).The location of this file is
/res/layout/main.xml.

Listing 15–14. Layout File for TestAlaramsDriverActivity

<?xml version="1.0" encoding="utf-8"?>
<!-- /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 474

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
</LinearLayout>

Listing 15–15 is the manifest file for this project.

Listing 15–15. Alarm Manager Test Program Manifest File

<?xml version="1.0" encoding="utf-8"?>
<!-- AndroidManifest.xml -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.alarms"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="Test Alarms">
 <activity android:name=".TestAlarmsDriverActivity"
 android:label="Test Alarms">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".TestReceiver">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
 </receiver>
</application>
 <uses-sdk android:minSdkVersion="3" />
</manifest>

To work with an alarm manager, there are no specific entries needed in the manifest file
other than the receiver. The receiver definition is highlighted in the manifest file listing
15–15. Once you build this project and fire it off, you will see an activity and menu
structure like the one shown in Figures 15–1 and 15–2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 475

Figure 15–1. A sample activity to test the alarm manager

A portion of the available menu items are shown in Figure 15–1. To see the other
menu items click the More icon to see the rest of the menus. This view is illustrated
in Figure 15–2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 476

Figure 15–2. Expanded menus for our sample activity

Now, if you select the Alarm Once menu item from Figure 15–1, you will execute the
code in sendAlarmOnce() of Listing 15–11. This will set the alarm to go off in 30 seconds
from now. TestReceiver will then log messages to LogCat.

Exploring Alarm Manager Alternate Scenarios
Now that we have explained the basics of setting an alarm, we will now cover a few
additional scenarios, such as setting off an alarm repeatedly and cancelling alarms. We
will also show you exception conditions that you may run into while using the alarm
manager.

Setting Off an Alarm Repeatedly
We have already covered how to set a simple one-time alarm, so let’s now consider how
we can set an alarm that goes of repeatedly. To understand this, see the code in Listing
15–16. This is another tester similar to the SendOnceAlarmTester() and implements a
method called sendRepeatingAlarm() to test sending an alarm repeatedly

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 477

Listing 15–16. Setting a Repeating Alarm

// SendRepeatingAlarmTester.java
package com.androidbook.alarms;
import java.util.Calendar;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;

public class SendRepeatingAlarmTester
extends SendAlarmOnceTester
{
 private static String tag = "SendRepeatingAlarmTester";
 SendRepeatingAlarmTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }

 /*
 * An alarm can invoke a broadcast request
 * starting at a specified time and at
 * regular intervals.
 *
 * Uses the same intent as above
 * but a distinct request id to avoid conflicts
 * with the single shot alarm above.
 *
 * Uses getDistinctPendingIntent() utility.
 */
 public void sendRepeatingAlarm()
 {
 Calendar cal = Utils.getTimeAfterInSecs(30);
 //Calendar testcal = Utils.getTodayAt(11);
 String s = Utils.getDateTimeString(cal);
 this.mReportTo.reportBack(tag,
 "Schdeduling Repeating alarm in 5 sec interval starting at: " + s);

 //Get an intent to invoke the receiver
 Intent intent =
 new Intent(this.mContext, TestReceiver.class);
 intent.putExtra("message", "Repeating Alarm");

 PendingIntent pi = this.getDistinctPendingIntent(intent, 2);
 // Schedule the alarm!
 AlarmManager am =
 (AlarmManager)
 this.mContext.getSystemService(Context.ALARM_SERVICE);

 am.setRepeating(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 5*1000, //5 secs
 pi);
 }

 protected PendingIntent getDistinctPendingIntent
 (Intent intent, int requestId)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 478

 {
 PendingIntent pi =
 PendingIntent.getBroadcast(
 mContext, //context
 requestId, //request id
 intent, //intent to be delivered
 0);
 return pi;
 }
}

Key elements of the code in Listing 15–16 are highlighted. The repeating alarm is set by
invoking the setRepeating() method on the alarm manager object. One of the inputs to
this method is a pending intent pointing to a receiver. We have used the same intent that
was used in the SendAlarmOnceTester pointing to the TestReceiver broadcast receiver.

However, when we made a pending intent out of it, we have used a unique request
code, such as 2. If we don't do this, we will see a bit of odd behavior. Say you click the
menu item for repeating alarm first. This would schedule the alarm to go off repeatedly
and call TestReceiver. Say this repeating alarm starts in 30 seconds. Now, you go
ahead and click the menu item Alarm Once. This will schedule the alarm to go off just
one time in 30 seconds and call the same TestReceiver.

If both these menu items worked, we would have seen both types of alarms go off.
However, you will notice that the alarm will go off only one time. To make this work right,
you have to use a different requestcode on the pending intent. We will go into the
reasoning for requestcode in the “Primacy of PendingIntent” section.

Compiling Code for This Example
To test this portion of the code, you will need to add/change a couple of files in the
project.

First, you will need to add the file listed in Listing 15–16 as a new source file called
SendRepeatingAlarmTester.java.

Then, you need to change the driver activity TestAlarmsDriverActivity in Listing 15–12
in a couple of places.

Replace the following lines

private SendAlarmOnceTester alarmTester = null;
…
alarmTester = new SendAlarmOnceTester(this,this);

with

private SendRepeatingAlarmTester alarmTester = null;
…
alarmTester = new SendRepeatingAlarmTester(this,this);

Add the following code to respond to the menu:

if (item.getItemId() == R.id.menu_alarm_repeated)
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 479

 alarmTester.sendRepeatingAlarm();
 return true;
}

With these changes in place, you can use Figure 15–1 to invoke the Alarm Repeat menu
item to test this exercise. You will see the results of this test in LogCat. Next, let’s look
at how to cancel a repeating alarm.

Cancelling an Alarm
To help you understand how to cancel an alarm, we’ll use another tester called
CancelRepeatingAlarmTester (see Listing 15–17).

Listing 15–17. Cancelling a Repeating Alarm

// CancelRepeatingAlarmTester.java
package com.androidbook.alarms;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;

public class CancelRepeatingAlarmTester
extends SendRepeatingAlarmTester
{
 private static String tag = "CancelRepeatingAlarmTester";
 CancelRepeatingAlarmTester(Context ctx, IReportBack target) {
 super(ctx, target);
 }
 /*
 * An alarm can be stopped by canceling the intent.
 * You will need to have a copy of the intent
 * to cancel it.
 *
 * The intent needs to have the same signature
 * and request id.
 */
 public void cancelRepeatingAlarm()
 {
 //Get an intent to invoke
 //TestReceiver class
 Intent intent =
 new Intent(this.mContext, TestReceiver.class);

 //To cancel, extra is not necessary to be filled in
 //intent.putExtra("message", "Repeating Alarm");

 PendingIntent pi = this.getDistinctPendingIntent(intent, 2);

 // Schedule the alarm!
 AlarmManager am =
 (AlarmManager)
 this.mContext.getSystemService(Context.ALARM_SERVICE);
 am.cancel(pi);
 this.mReportTo.reportBack(tag,"You shouldn't see alarms again");
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 480

To cancel an alarm, we have to construct a pending intent first and then pass it to the
alarm manager as an argument to the cancel() method.

However, you must pay attention to make sure that the pendingintent is constructed the
exact same way when setting the alarm, including the request code and targeted receiver.
Examine the source code for getDistinctPendingIntent() in Listing 15–16 to see how the
request code is used with PendingIntent.getBroadcast()—you can ignore the intent
extras in Listing 15–17 because intent extras don’t play a role in cancelling that intent.

Compiling code for this example
Before you can test this portion of the code, you will need to add/change a couple of
files in the project.

First, you will need to add the new file listed in Listing 15–17 as a new source file called
CancelRepeatingAlarmTester.java.

Then, you need to change the driver activity TestAlarmsDriverActivity in Listing 15–12
in a couple of places as outlined below.

Replace the following lines

private SendAlarmOnceTester alarmTester = null;
…
alarmTester = new SendAlarmOnceTester(this,this);

with

private CancelRepeatingAlarmTester alarmTester = null;
…
alarmTester = new CancelRpeatingAlarmTester(this,this);

Add the following code to respond to the menu:

if (item.getItemId() == R.id.menu_alarm_cancel)
{
 alarmTester.cancelRepeatingAlarm();
 return true;
}

You can test this functionality by first selecting the Alarm Repeat menu item (see Figure
15–1). This will start updating the logcat every 5 seconds. Now, if you click the Cancel
Alarms menu item, the messages will stop.

Working with Multiple Alarms
When it comes to setting multiple alarms pointing to the same receiver, in our opinion,
there is a bit of unintuitive behavior attached to alarm managers—if you invoke an alarm
pointing to a particular receiver multiple times, only the last invocation takes effect.

To explain this behavior, first examine the tester we have prepared in Listing 15–18.
There are two methods in this listing. The first one,
scheduleSameIntentMultipleTimes(), schedules the same Intent multiple times. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 481

second function, scheduleDistinctIntents(), does the same but distinguishes the intents
with the aid of the request ID.

Listing 15–18. Working with Multiple Alarms

//ScheduleIntentMultipleTimesTester.java
package com.androidbook.alarms;
import java.util.Calendar;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;

public class ScheduleIntentMultipleTimesTester
extends CancelRepeatingAlarmTester
{
 private static String tag = "ScheduleIntentMultipleTimesTester";
 ScheduleIntentMultipleTimesTester(Context ctx, IReportBack target){
 super(ctx, target);
 }
 /*
 * Same intent cannot be scheduled multiple times.
 * If you do, only the last one will take affect.
 *
 * Notice you are using the same request id.
 */
 public void scheduleSameIntentMultipleTimes()
 {
 //Get multiple time instances
 Calendar cal = Utils.getTimeAfterInSecs(30);
 Calendar cal2 = Utils.getTimeAfterInSecs(35);
 Calendar cal3 = Utils.getTimeAfterInSecs(40);
 Calendar cal4 = Utils.getTimeAfterInSecs(45);

 //Print to the debug view that we are
 //scheduling at a specific time
 String s = Utils.getDateTimeString(cal);
 mReportTo.reportBack(tag, "Schdeduling alarm at: " + s);

 //Get an intent to invoke a receiver
 Intent intent =
 new Intent(mContext, TestReceiver.class);
 intent.putExtra("message", "Same intent multiple times");

 PendingIntent pi = this.getDistinctPendingIntent(intent, 1);

 // Schedule this same intent multiple times
 AlarmManager am =
 (AlarmManager)
 mContext.getSystemService(Context.ALARM_SERVICE);

 am.set(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 pi);

 am.set(AlarmManager.RTC_WAKEUP,
 cal2.getTimeInMillis(),

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 482

 pi);
 am.set(AlarmManager.RTC_WAKEUP,
 cal3.getTimeInMillis(),
 pi);
 am.set(AlarmManager.RTC_WAKEUP,
 cal4.getTimeInMillis(),
 pi);
 }
 /*
 * Same intent can be scheduled multiple times
 * if you change the request id on the pending intent.
 * Request id identifies an intent as a unique intent.
 */
 public void scheduleDistinctIntents()
 {
 //Get the instance in time that is
 //30 secs from now.
 Calendar cal = Utils.getTimeAfterInSecs(30);
 Calendar cal2 = Utils.getTimeAfterInSecs(35);
 Calendar cal3 = Utils.getTimeAfterInSecs(40);
 Calendar cal4 = Utils.getTimeAfterInSecs(45);

 //If you want to point to 11:00 hours today.
 //Calendar cal = Utils.getTodayAt(11);

 //Print to the debug view that we are
 //scheduling at a specific time
 String s = Utils.getDateTimeString(cal);
 mReportTo.reportBack(tag, "Schdeduling alarm at: " + s);

 //Get an intent to invoke
 //TestReceiver class
 Intent intent =
 new Intent(mContext, TestReceiver.class);
 intent.putExtra("message", "Schedule distinct alarms");

 //Schedule the same intent but with different req ids.
 AlarmManager am =
 (AlarmManager)
 mContext.getSystemService(Context.ALARM_SERVICE);

 am.set(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 getDistinctPendingIntent(intent,1));

 am.set(AlarmManager.RTC_WAKEUP,
 cal2.getTimeInMillis(),
 getDistinctPendingIntent(intent,2));
 am.set(AlarmManager.RTC_WAKEUP,
 cal3.getTimeInMillis(),
 getDistinctPendingIntent(intent,3));
 am.set(AlarmManager.RTC_WAKEUP,
 cal4.getTimeInMillis(),
 getDistinctPendingIntent(intent,4));
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 483

In the code of method scheduleSameIntentMultipleTimes (), we have taken the same
intent and scheduled it four times. You will see that when you test this by selecting the
Multiple Alarms menu item: only the last alarm was fired, and none of the previous ones
were.

The recommended way to fix this is to change the code so that each pending intent has
a different request ID. This is why we have a function getDistinctPendingIntent (),
which quickly creates pending intents based on request ID. Listing 15–16 shows the
source code for this function.

You can fix the duplicate intent problem by looking at the scheduleDistinctIntents()
method of Listing 15–18. Here, we have varied the request ID, so the TestReceiver will
get called multiple times, and you will see the evidence of this in LogCat.

When you create a pending intent, the Android development team strongly recommends
that you keep the following in mind:

 Don't uniquely create pending intents randomly in multiplicity. Pay
attention if you are creating a lot of unique pending intents varying the
request ID or any other aspect of an intent.

 A pending intent is expected to be able to be quickly re-created by the
sender so that it can be cancelled.This implies there is a natural order
to creating a pending intent. Ideally, the parameters that are used to
create an intent should be unique. If they are not and if you need to
use request IDs to make the intent unique, remember the request IDs
you have used to create the pending intents. You will need them when
you intent to cancel the pending intents later.

 Without a request ID, two pending intents point to the same intent as
long as their key attributes are the same. Intent extras are not
considered for intent equivalence.

 The get methods for a pending intent usually locate an existing
pending intent rather than creating a new one.

 Pending intents typically should point to a specific class or
component.

Compiling Code for This Example
Before you can test this portion of the code, you will need to add/change a couple of
files in the project.

First, you will need to add the file listed in Listing 15–18 as a new source file called
CancelRepeatingAlarmTester.java.

Then, you need to change the driver activity TestAlarmsDriverActivity in Listing 15–12
in a couple of places.

Replace the following lines

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 484

private SendAlarmOnceTester alarmTester = null;
…
alarmTester = new SendAlarmOnceTester(this,this);

with

private ScheduleIntentMultipleTimesTester alarmTester = null;
…
alarmTester = new ScheduleIntentMultipleTimesTester (this,this);

Add the following code to respond to the two menu items in this example:

if (item.getItemId() == R.id.menu_alarm_multiple)
{
 alarmTester.scheduleSameIntentMultipleTimes();
 return true;
}
if (item.getItemId() == R.id.menu_alarm_distinct_intents)
{
 alarmTester.scheduleDistinctIntents();
 return true;
}

Once you can make these code changes and compile, you can test the functionality of
this exercise by using the two menu items Multiple Alarms and Distinct Intents. You will
see the result of these menu items in LogCat.

Intent Primacy in Setting Off Alarms
We have mentioned a number of times so far that if you set alarms on the same type of
intent, only the last alarm will take effect. Let’s explore the reason behind this.
Throughout the code examples, you might think that we are setting an alarm on the
alarm manager. At least, that is the impression the API is giving us by exposing the
following method:

alarmManager.set(time, intent);

However, assume we do the following:

alarmManager.set(time1, intent1);
alarmManager.setRepeated(time2, interval, intent1);

You might have expected that the intent1 object would just be a passive receiver and
get invoked by both the alarms. However, in practice only the last set method counts.
This is as if we are doing a set on the intent as in the following example:

intent1.set(...)
intent1.setRepeated(..)

In this case, it probably makes sense that you have just one intent object and one alarm
against it and that if you set it multiple times you are resetting the previous alarm, just
like an alarm clock on your desk.

This idea is tested using the tester listed in Listing 15–19. The method of interest in this
listing is alarmIntentPrimacy().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 485

Listing 15–19. Code to Test Intent Primacy

//AlarmIntentPrimacyTester.java
package com.androidbook.alarms;
import java.util.Calendar;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;

public class AlarmIntentPrimacyTester
extends ScheduleIntentMultipleTimesTester
{
 private static String tag = "AlarmIntentPrimacyTester";
 AlarmIntentPrimacyTester(Context ctx, IReportBack target){
 super(ctx, target);
 }
 /*
 * It is not the alarm that matters
 * but the pending intent.
 * Even with a repeating alarm for an intent,
 * if you schedule the same intent again
 * for one time, the later one takes affect.
 *
 * It is as if you are setting the
 * alarm on an existing intent multiple
 * times and not the other way around.
 */
 public void alarmIntentPrimacy()
 {
 Calendar cal = Utils.getTimeAfterInSecs(30);
 String s = Utils.getDateTimeString(cal);
 this.mReportTo.reportBack(tag,
 "Schdeduling Repeating alarm in 5 sec interval starting at: " + s);

 //Get an intent to invoke
 //TestReceiver class
 Intent intent =
 new Intent(this.mContext, TestReceiver.class);
 intent.putExtra("message", "Repeating Alarm");

 PendingIntent pi = getDistinctPendingIntent(intent,0);
 AlarmManager am =
 (AlarmManager)
 this.mContext.getSystemService(Context.ALARM_SERVICE);

 this.mReportTo.reportBack(tag,"Setting a repeat alarm 5 secs duration");
 am.setRepeating(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 5*1000, //5 secs
 pi);

 this.mReportTo.reportBack(tag,"Setting a onetime alarm on the same intent");
 am.set(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 pi);
 this.mReportTo.reportBack(tag,
 "The later alarm, one time one, takes precedence");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 486

 }
}

Compiling Code for This Example

Before you can test this portion of the code, you will need to add/change a couple of
files in the project.

First, you will need to add the file listed in Listing 15–19 as a new source file called
AlarmIntentPrimacyTester.java.

Then, you need to change the driver activity TestAlarmsDriverActivity in Listing 15–12
in a couple of places.

Replace the following lines

private SendAlarmOnceTester alarmTester = null;
…
alarmTester = new SendAlarmOnceTester(this,this);

with

private AlarmIntentPrimacyTester alarmTester = null;
…
alarmTester = new AlarmIntentPrimacyTester (this,this);

Add the following code to respond to the menu item:

if (item.getItemId() == R.id.menu_alarm_intent_primacy)
{
 alarmTester.alarmIntentPrimacy();
 return true;
}

Once you make these code changes and compile, you can test the functionality of this
exercise using the Intent Primacy menu item. You will see the result of these menu
items in LogCat where the later alarm overwrites the previous one.

Why does the later alarm replace the prior one if set on the same intent?

Many folks in the Android developer group pointed out that two intents are really the will
result in the same PendingIntent object if their attributes are the same. Setting those
intents as targets for multiple alarms is like setting multiple alarm times on the same intent.

However, what is really happening becomes obvious when we look at the source code
of the AlarmManagerService (this is an implementation of the IAlarmManager interface).
Listing 15–20 contains the code segment that is used to set an alarm (all sets ultimately
flow through this code).

Listing 15–20. AlarmManagerService implementation Extract from Android Source

 160 public void setRepeating(int type, long triggerAtTime, long interval,
 161 PendingIntent operation) {
 162 if (operation == null) {
 163 Slog.w(TAG, "set/setRepeating ignored because there is no intent");
 164 return;
 165 }
 166 synchronized (mLock) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 487

 167 Alarm alarm = new Alarm();
 168 alarm.type = type;
 169 alarm.when = triggerAtTime;
 170 alarm.repeatInterval = interval;
 171 alarm.operation = operation;
 172
 173 // Remove this alarm if already scheduled.
 174 removeLocked(operation);
 175
 176 if (localLOGV) Slog.v(TAG, "set: " + alarm);
 177
 178 int index = addAlarmLocked(alarm);
 179 if (index == 0) {
 180 setLocked(alarm);
 181 }
 182 }
 183 }

Notice that, in the middle of a set method, the code is calling removeLocked(operation),
where the operation argument is the PendingIntent. This essentially removes the
previous alarm. In fact, when we call cancel(pendingIntent), it ends up calling the same
removeLocked(pendingIntent).

In essence, the SDK chose to cancel the previous alarms and keep only the latest for
that particular pending intent. If you want to do otherwise, you will need to qualify the
pending intent with a request ID. This also becomes clear when we take a closer look at
the cancel() API, which just takes the PendingIntent object. If the relationship between
an alarm and a PendingIntent is not unique, what would be the meaning of cancelling
an alarm based on a PendingIntent and nothing else?

Of course, you can also use this feature to your advantage if your goal is to cancel any
previous alarms and set a new one for that particular receiver.

Persistence of Alarms
One final note on alarms is they are not persisted across device reboots. This means
you will need to persist the alarm settings and pending intents in a persistent store and
reregister them based on device reboot broadcast messages, and possibly time-change
messages (e.g., android.intent.action.BOOT_COMPLETED, ACTION_TIME_CHANGED,
ACTION_TIMEZONE_CHANGED).

Alarm Manager Predicates
Let’s conclude the chapter by providing a quick summary of the facts surrounding
alarms, pending intents, and the alarm manager:

 Pending intents are intents kept in a pool and reused. You cannot new
a pending intent. You really locate a pending intent with an option to
reuse, update, and so on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 488

 An intent is uniquely distinguished by its action, data URI, and
category. The details of this uniqueness is specified in the
filterEquals() API of the intent class.

 A pending intent is further qualified (in addition to the base intent it
depended on) by the request code.

 Alarms and pending intents (even intents for that matter) are not
independent. A given pending intent cannot be used for multiple
alarms. The last alarm will override the previous alarms

 Alarms are not persistent across boots. Whatever alarms you have set
through the alarm manager will be lost when the device reboots.

 You will need to persist alarm parameters yourself if you would like to
retain them beyond device reboots. You will need to listen to
broadcast boot event and time-change events to reset these alarms as
needed.

 The implication of the intent-based cancel API is that, when you use or
persist alarms, you will also need to persist intents so that those
alarms can be cancelled at a later time when needed.

References
The following references are useful to support material of this chapter. Especially note
the last reference URL of this section, which allows you to download projects developed
for this chapter.

 http://developer.android.com/reference/android/app/AlarmManager.html:
This is the alarm manager API. You will see here signatures for methods like set,
setrepeating, and cancel.

 http://developer.android.com/reference/android/app/PendingIntent.html:
This site explains how to construct a pending intent. Don’t pay too much
attention to the pending intent flags; they are not that critical to the alarm
manager.

 http://www.androidbook.com/item/1040. You will see quick examples and some
references to working with date and time classes here.

 http://download.oracle.com/docs/cd/E17476_01/javase/1.4.2/docs/api/java/
util/Calendar.html. You can use this resource to better understand how to
work with the Calendar object.

 http://www.androidbook.com/projects. You can see a list of downloadable
projects from this book referenced here. For this chapter, look for a ZIP file
named ProAndroid3_Ch15_TestAlarmManager.zip.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 489

Summary
In this chapter, we used the alarm manager to run code at a given time and at specific
intervals. This facility is important for updating home screen widgets and other time-
sensitive operations. We also pointed out the odd things about the alarm manager and
showed you how to work around those issues.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 15: Exploring the Alarm Manager 490

http://lib.ommolketab.ir
http//lib.ommolketab.ir

491

491

 Chapter

Exploring 2D Animation
Animation allows an object on a screen to change its color, position, size, or orientation
over time. Animation capabilities in Android are practical, fun, and simple, and they are
used frequently.

Android 2.3 and prior release support three types of animation: frame-by-frame
animation, which occurs when a series of frames is drawn one after the other at regular
intervals; layout animation, in which you animate views inside a container view such as
lists and tables; and view animation, in which you animate any general-purpose view.
The latter two types fall into the category of tweening animation, which involves the
drawings in between the key drawings.

NOTE: Android 3.0 enhanced animation by introducing the ability to animate the properties of UI
elements. Some of these features, especially as they apply to the new concept of fragments, are
covered in Chapter 29. As this chapter is completed prior to the release of 3.0, due to time
constraints we cover in this chapter only 2.3 features. Chapter 29 covers a few of the 3.0

animation features.

Another way of explaining tweening animation is to say that it is not frame-by-frame
animation. If you are able to accomplish animating a figure without repeating frames,
you are primarily doing tweening animation. For example, if a figure is at location A now
and will be at location B in 4 seconds, we can change the location every second and
redraw the same figure. This will make the figure look like it is moving from A to B.

The idea is that knowing the beginning and ending states of a drawing allows an artist to
vary certain aspect of the drawing in time. This varying aspect could be color, position,
size, or some other element. With computers, you accomplish this kind of animation by
changing the intermediate values at regular intervals and redrawing the surface.

In this chapter, we will cover frame-by-frame, layout, and view animation using working
examples and in-depth analysis.

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 492

NOTE: We have given a URL at the end of the chapter that you can use to download projects

from this chapter and import these projects into Eclipse directly.

Frame-by-Frame Animation
Frame-by-frame animation is the simple process of showing a series of images in
succession at quick intervals so that the final effect is that of an object moving or
changing. This is how movie projectors work. We’ll explore an example in which we’ll
design an image and save that image as a number of distinct images, where each one
differs slightly from the others. Then, we will take the collection of those images and run
them through the sample code to simulate animation.

Planning for Frame-by-Frame Animation
Before you start writing code, you first need to plan the animation sequence using a
series of drawings. As an example of this planning exercise, Figure 16–1 shows a set of
same-sized circles with a colored ball on each of the circles placed at a different
position. You can create a series of these pictures showing the circle at the same size
and position with the colored ball at different points along the circle’s border. Once you
save seven or eight of these frames, you can use animation to suggest that the colored
ball is moving around the circle.

Figure 16–1. Designing your animation before coding it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 493

Give the image a base name of colored-ball, and store eight of these images in the
/res/drawable subdirectory so that you can access them using their resource IDs. The
name of each image will have the pattern colored-ballN, where N is the digit
representing the image number. When you have finished with the animation, you want it
to look like Figure 16–2.

Figure 16–2. A frame-by-frame animation test harness

The primary area in this activity is used by the animation view. We have included a button
to start and stop the animation to observe its behavior. We have also included a debug
scratch pad at the top, so you can write any significant events to it as you experiment with
this program. Let’s see now how we could create the layout for such an activity.

Creating the Activity
Start by creating the basic XML layout file in the /res/layout subdirectory (see Listing
16–1).

Listing 16–1. XML Layout File for the Frame Animation Example

<?xml version="1.0" encoding="utf-8"?>
<!—filename: /res/layout/frame_animations_layout.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:id="@+id/textViewId1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Debug Scratch Pad"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 494

 />
<Button
 android:id="@+id/startFAButtonId"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Animation"
/>
<ImageView
 android:id="@+id/animationImage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

The first control is the debug-scratch text control, which is a simple TextView. You then
add a button to start and stop the animation. The last view is the ImageView, where you
will play the animation. Once you have the layout, create an activity to load this view
(see Listing 16–2).

Listing 16–2. Activity to Load the ImageView

public class FrameAnimationActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.frame_animations_layout);
 }
}

You will be able to run this activity from any menu item you might have in your current
application by executing the following code:

Intent intent = new Intent(inActivity,FrameAnimationActivity.class);
inActivity.startActivity(intent);

At this point, you will see an activity that looks like the one in Figure 16–3.

Adding Animation to the Activity
Now that you have the activity and layout in place, we’ll show you how to add animation
to this sample. In Android, you accomplish frame-by-frame animation through a class in
the graphics package called AnimationDrawable. You can tell from its name that it is like
any other drawable that can work as a background for any view (for example, the
background bitmaps are represented as Drawables). This class, AnimationDrawable, in
addition to being a Drawable, can take a list of other Drawable resources (like images)
and render them at specified intervals. This class is really a thin wrapper around the
animation support provided by the basic Drawable class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 495

Figure 16–3. Frame-by-frame animation activity

TIP: The Drawable class enables animation by asking its container or view to invoke a
Runnable class that essentially redraws the Drawable using a different set of parameters. Note

that you don’t need to know these internal implementation details to use the
AnimationDrawable class. But if your needs are more complex, you can look at the

AnimationDrawable source code for guidance in writing your own animation protocols.

To make use of the AnimationDrawable class, start with a set of Drawable resources (for
example, a set of images) placed in the /res/drawable subdirectory. In our case, these
will be the eight similar, but slightly different, images that we talked about in the
“Planning for Frame-by-Frame Animation” section. You will then construct an XML file
that defines the list of frames (see Listing 16–3). This XML file will need to be placed in
the /res/drawable subdirectory as well.

Listing 16–3. XML File Defining the List of Frames to Be Animated

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">
 <item android:drawable="@drawable/colored_ball1" android:duration="50" />
 <item android:drawable="@drawable/colored_ball2" android:duration="50" />
 <item android:drawable="@drawable/colored_ball3" android:duration="50" />
 <item android:drawable="@drawable/colored_ball4" android:duration="50" />
 <item android:drawable="@drawable/colored_ball5" android:duration="50" />
 <item android:drawable="@drawable/colored_ball6" android:duration="50" />
 <item android:drawable="@drawable/colored_ball7" android:duration="50" />
 <item android:drawable="@drawable/colored_ball8" android:duration="50" />
</animation-list>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 496

NOTE: As you prepare this list of images, we have to draw attention to some limitations of the
AnimationDrawable class. This class loads all images into memory before it starts animation.
When we tested this in the Android 2.3 emulator, a set of images greater than six exceeds the

memory limitations allocated for each application. Depending on your test bed, you may need to
restrict how many frames you have. To overcome this limitation, you will need to directly use the
animation capabilities of Drawable and roll your own solution. Unfortunately, we haven’t

covered the Drawable class in detail in this edition of this book. Please check

www.androidbook.com, as we intend to post an update soon.

Each frame points to one of the colored-ball images you have assembled through their
resource IDs. The animation-list tag essentially gets converted into an
AnimationDrawable object representing the collection of images. You then need to set
this Drawable as a background resource for our ImageView in the sample. Assuming that
the file name for this XML file is frame_animation.xml and that it resides in the
/res/drawable subdirectory, you can use the following code to set the
AnimationDrawable as the background of the ImageView:

view.setBackGroundResource(Resource.drawable.frame_animation);

With this code, Android realizes that the resource ID
Resource.drawable.frame_animation is an XML resource and accordingly constructs a
suitable AnimationDrawable Java object for it before setting it as the background. Once
this is set, you can access this AnimationDrawable object by doing a get on the view
object like this:

Object backgroundObject = view.getBackground();
AnimationDrawable ad = (AnimationDrawable)backgroundObject;

Once you have the AnimationDrawable object, you can use its start() and stop()
methods to start and stop the animation. Here are two other important methods on this
object:

setOneShot();
addFrame(drawable, duration);

The setOneShot() method runs the animation once and then stops. The addFrame()
method adds a new frame using a Drawable object and sets its display duration. The
functionality of the addFrame() method resembles that of the XML tag android:drawable.

Put this all together to get the complete code for our frame-by-frame animation test
harness (see Listing 16–4).

Listing 16–4. Complete Code for the Frame-by-Frame Animation Test Harness

public class FrameAnimationActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.frame_animations_layout);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 497

 this.setupButton();
 }

 private void setupButton()
 {
 Button b = (Button)this.findViewById(R.id.startFAButtonId);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v)
 {
 parentButtonClicked(v);
 }
 });
 }
 private void parentButtonClicked(View v)
 {
 animate();
 }
 private void animate()
 {
 ImageView imgView =
 (ImageView)findViewById(R.id.animationImage);
 imgView.setVisibility(ImageView.VISIBLE);
 imgView.setBackgroundResource(R.drawable.frame_animation);

 AnimationDrawable frameAnimation =
 (AnimationDrawable) imgView.getBackground();

 if (frameAnimation.isRunning())
 {
 frameAnimation.stop();
 }
 else
 {
 frameAnimation.stop();
 frameAnimation.start();
 }
 }
}//eof-class

The animate() method locates the ImageView in the current activity and sets its
background to the AnimationDrawable identified by the resource
R.drawable.frame_animation. The code then retrieves this object and performs the
animation. The Start/Stop button is set up such that if the animation is running,
clicking the button will stop it; if the animation is in a stopped state, clicking the button
will start it.

Note that, if you set the OneShot parameter of the animation list to true, the animation
will stop after executing once. However, there is no clear-cut way to know when that
happens. Although the animation ends when it plays the last picture, you have no
callback telling you when it finishes. Because of this, there isn’t a direct way to invoke
another action in response to the completed animation.

That drawback aside, you can bring great visual effects to bear by drawing a number of
images in succession through the simple process of frame-by-frame animation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 498

Layout Animation
Like frame-by-frame animation, layout animation is pretty simple. As the name suggests,
layout animation is dedicated to certain types of views laid out in a particular manner.
For instance, you’ll use layout animation with ListView and GridView, which are two
commonly used layout controls in Android. Specifically, you’ll use layout animation to
add visual effects to the way each item in a ListView or GridView is displayed. In fact,
you can use this type of animation on all controls derived from a ViewGroup.

Unlike frame-by-frame animation, layout animation is not achieved through repeating
frames. Instead, it is achieved by changing the various properties of a view over time.
Every view in Android has a transformation matrix that maps the view to the screen. By
changing this matrix in a number of ways, you can accomplish scaling, rotation, and
movement (translation) of the view. By changing the transparency of the view from 0 to 1,
for example, you can accomplish what is called an alpha animation.

Basic Tweening Animation Types
These are the basic tweening animation types in a bit more detail:

 Scale animation: You use this type of animation to make a view smaller
or larger either along the x axis or on the y axis. You can also specify
the pivot point around which you want the animation to take place.

 Rotate animation: You use this to rotate a view around a pivot point by
a certain number of degrees.

 Translate animation: You use this to move a view along the x axis or
the y axis.

 Alpha animation: You use this to change the transparency of a view.

You can define these animations as XML files in the /res/anim subdirectory. Listing 16–
5 shows a quick sample of how one of these animations can be declared in an XML file

Listing 16–5. A Scale Animation Defined in an XML File at /res/anim/scale.xml

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
 <scale
 android:fromXScale="1"
 android:toXScale="1"
 android:fromYScale="0.1"
 android:toYScale="1.0"
 android:duration="500"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="100" />
</set>

All of the parameter values associated with these animation XML definitions have a
“from” and a “to” flavor because you must specify the starting and ending values for the
animation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 499

Each animation also allows duration and a time interpolator as arguments. We’ll cover
interpolators at the end of the section on layout animation, but for now, know that
interpolators determine the rate of change of the animated argument during animation.

Once you have this declarative animation file, you can associate this animation with a
layout to animate the layout's constituent views.

NOTE: This is a good place to point out that each of these animations is represented as a Java
class in the android.view.animation package. The Java documentation for each of these
classes describes not only its Java methods but also the allowed XML arguments for each type of

animation.

Now that you have enough background on animation types and understand a little bit
about layout animation, let’s design an example.

Planning the Layout Animation Test Harness
You can test all the layout-animation concepts we’ve covered using a simple ListView
set in an activity. Once you have a ListView, you can attach an animation to it so that
each list item will go through that animation.

Assume you have a scale animation in mind that makes a view grow from zero to its
original size on the y axis. Visually this is equivalent to a line of text starting as a
horizontal line and become fatter to grow to its actual font size.

You can attach such an animation to a ListView. When this happens, the ListView will
animate each item in that list using this animation.

You can set some additional parameters that extend the basic animation, such as
animating the list items from top to bottom or from bottom to top. You specify these
parameters through an intermediate class that acts as a mediator between the individual
animation XML file and the list view.

You can define both the individual animation and the mediator in XML files in the
/res/anim subdirectory. Once you have the mediator XML file, you can use that file as
an input to the ListView in its XML layout definition. Once you have this basic setup
working, you can start altering the individual animations to see how they impact the
ListView display.

Before we embark on this exercise, let us show you what the ListView will look like after
the animation completes (see Figure 16–4).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 500

Figure 16–4. The ListView we will animate

Creating the Activity and the ListView
Start by creating an XML layout for the ListView in Figure 16–4 so you can load that
layout in a basic activity. Listing 16–6 contains a simple layout with a ListView in it. You
will need to place this file in the /res/layout subdirectory. Assuming the file name is
list_layout.xml, your complete file will reside in /res/layout/list_layout.xml.

Listing 16–6. XML Layout File Defining the ListView

<?xml version="1.0" encoding="utf-8"?>
<!-- filename: /res/layout/list_layout.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <ListView
 android:id="@+id/list_view_id"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Listing 16–6 shows a simple LinearLayout with a single ListView in it. However, we
should take this opportunity to mention one point about the ListView definition that is
somewhat tangentially related to this chapter. If you happen to work through the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 501

Notepad examples and other Android examples, you’ll see that the ID for a ListView is
usually specified as @android:id/list. As we discussed in Chapter 3, the resource
reference @android:id/list points to an ID that is predefined in the android
namespace. The question is, when do we use this android:id vs. our own ID such as
@+id/list_view_id?

You will need to use @android:id/list only if the activity is a ListActivity. A
ListActivity assumes that a ListView identified by this predetermined ID is available
for loading. In this case, you’re using a general-purpose activity rather than a
ListActivity, and you are going to explicitly populate the ListView yourself. As a result,
there are no restrictions on the kind of ID you can allocate to represent this ListView.
However, you do have the option of also using @android:id/list because it doesn’t
conflict with anything as there is no ListActivity in sight.

This surely is a digression, but it’s worth noting as you create your own ListViews
outside a ListActivity. Now that you have the layout needed for the activity, you can
write the code for the activity to load this layout file so you can generate your UI (see
Listing 16–7).

Listing 16–7. Code for the Layout-Animation Activity

public class LayoutAnimationActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 }
 private void setupListView()
 {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3",
 "Item 4", "Item 5", "Item 6",
 };

 ArrayAdapter listItemAdapter =
 new ArrayAdapter(this
 ,android.R.layout.simple_list_item_1
 ,listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }
}

Some of the code in Listing 16–7 is obvious, and some is not. The first part of the code
simply loads the view based on the generated layout ID R.layout.list_layout. Our goal
is to take the ListView from this layout and populate it with six text items. These text
items are loaded into an array. You’ll need to set a data adapter into a ListView so that
the ListView can show those items.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 502

To create the necessary adapter, you will need to specify how each item will be laid out
when the list is displayed. You specify the layout by using a predefined layout in the
base Android framework. In this example, this layout is specified as follows:

android.R.layout.simple_list_item_1

The other possible view layouts for these items include

simple_list_item_2
simple_list_item_checked
simple_list_item_multiple_choice
simple_list_item_single_choice

You can refer to the Android documentation to see how each of these layouts looks and
behaves. You can now invoke this activity from any menu item in your application using
the following code:

Intent intent = new Intent(inActivity,LayoutAnimationActivity.class);
inActivity.startActivity(intent);

However, as with any other activity invocation, you will need to register the
LayoutAnimationActivity in the AndroidManifest.xml file for the preceding intent
invocation to work. Here is the code for it:

<activity android:name=".LayoutAnimationActivity"
 android:label="View Animation Test Activity"/>

Animating the ListView
Now that you have the test harness ready (see Listings 16–6 and 16–7), you’ll learn how
to apply scale animation to this ListView. Take a look at how this scale animation is
defined in an XML file (see Listing 16–8).

Listing 16–8. Defining Scale Animation in an XML File

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
 <scale
 android:fromXScale="1"
 android:toXScale="1"
 android:fromYScale="0.1"
 android:toYScale="1.0"
 android:duration="500"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="100" />
</set>

As indicated earlier, these animation-definition files reside in the /res/anim subdirectory.

Let’s break down these XML attributes into plain English.

The from and to scales point to the starting and ending magnification factors. The
magnification starts at 1 and stays at 1 on the x axis. This means the list items will not
grow or shrink on the x axis.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 503

On the y axis, however, the magnification starts at 0.1 and grows to 1.0. In other words,
the object being animated starts at one-tenth of its normal size and then grows to reach
its normal size.

The scaling operation will take 500 milliseconds to complete.

The center of action is halfway (50%) in both x and y directions.

The startOffset value refers to the number of milliseconds to wait before starting the
animation.

The parent node of scale animation points to an animation set that could allow more
than one animation to be in effect. We will cover one of those examples as well, but for
now, there is only one animation in this set.

Name this file scale.xml, and place it in the /res/anim subdirectory. You are not yet
ready to set this animation XML as an argument to the ListView; the ListView first
requires another XML file that acts as a mediator between itself and the animation set.
The XML file that describes that mediation is shown in Listing 16–9.

Listing 16–9. Definition for a Layout-Controller XML File

<layoutAnimation xmlns:android="http://schemas.android.com/apk/res/android"
 android:delay="30%"
 android:animationOrder="reverse"
 android:animation="@anim/scale" />

You will also need to place this XML file in the /res/anim subdirectory. For our example,
assume that the file name is list_layout_controller. Once you look at this definition,
you can see why this intermediate file is necessary.

This XML file specifies that the animation in the list should proceed in reverse, and that
the animation for each item should start with a 30 percent delay with respect to the total
animation duration. This XML file also refers to the individual animation file, scale.xml.
Also notice that instead of the file name, the code uses the resource reference
@anim/scale.

Now that you have the necessary XML input files, we’ll show you how to update the
ListView XML definition to include this animation XML as an argument. First, review the
XML files you have so far:

// individual scale animation
/res/anim/scale.xml

// the animation mediator file
/res/anim/list_layout_controller.xml

// the activity view layout file
/res/layout/list_layout.xml

With these files in place, you need to modify the XML layout file list_layout.xml to
have the ListView point to the list_layout_controller.xml file (see Listing 16–10).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 504

Listing 16–10. The Updated Code for the list_layout.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ListView
 android:id="@+id/list_view_id"
 android:persistentDrawingCache="animation|scrolling"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layoutAnimation="@anim/list_layout_controller" />
 />
</LinearLayout>

The changed lines are highlighted in bold. android:layoutAnimation is the key tag,
which points to the mediating XML file that defines the layout controller using the XML
tag layoutAnimation (see Listing 16–9). The layoutAnimation tag, in turn, points to the
individual animation, which in this case is the scale animation defined in scale.xml.

Android also recommends setting the persistentDrawingCache tag to optimize for
animation and scrolling. Refer to the Android SDK documentation for more details on
this tag.

When you update the list_layout.xml file, as shown in Listing 16–10, Eclipse’s ADT
plug-in will automatically recompile the package taking this change into account. If you
were to run the application now, you would see the scale animation take effect on the
individual items. We have set the duration to 500 milliseconds so that you can observe
the scale change clearly as each item is drawn.

Now, you’re in a position to experiment with different animation types. You’ll try alpha
animation next. To do this, create a file called /res/anim/alpha.xml, and populate it with
the content from Listing 16–11.

Listing 16–11. The alpha.xml File to Test Alpha Animation

<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="1000" />

Alpha animation is responsible for controlling the fading of color. In this example, you
are asking the alpha animation to go from invisible to full color in 1,000 milliseconds, or
1 second. Make sure the duration is 1 second or longer; otherwise, the color change is
hard to notice.

Every time you want to change the animation of an individual item like this, you will need
to change the mediator XML file (see Listing 16–9) to point to this new animation file.
Here is how to change the animation from scale animation to alpha animation:

<layoutAnimation xmlns:android="http://schemas.android.com/apk/res/android"
 android:delay="30%"
 android:animationOrder="reverse"
 android:animation="@anim/alpha" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 505

The changed line in the layoutAnimation XML file is highlighted. Let’s now try an
animation that combines a change in position with a change in color gradient. Listing
16–12 shows the sample XML for this animation.

Listing 16–12. Combining Translate and Alpha Animations Through an Animation Set

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
 <translate android:fromYDelta="-100%" android:toYDelta="0"
android:duration="500" />
 <alpha android:fromAlpha="0.0" android:toAlpha="1.0"
android:duration="500" />
</set>

Notice how we have specified two animations in the animation set. The translate
animation will move the text from top to bottom in its currently allocated display space.
The alpha animation will change the color gradient from invisible to visible as the text
item descends into its slot. The duration setting of 500 will allow the user to perceive the
change in a comfortable fashion. Of course, you will have to change the
layoutAnimation mediator XML file again with a reference to this file name. Assuming
the file name for this combined animation is /res/anim/translate_alpha.xml, your
layoutAnimation XML file will look like this:

<layoutAnimation xmlns:android="http://schemas.android.com/apk/res/android"
 android:delay="30%"
 android:animationOrder="reverse"
 android:animation="@anim/translate_alpha" />

Let’s now look at how to use rotate animation (see Listing 16–13).

Listing 16–13. Rotate Animation XML File

<rotate xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromDegrees="0.0"
 android:toDegrees="360"
 android:pivotX="50%"
 android:pivotY="50%"
 android:duration="500" />

The code in Listing 16–13 will spin each text item in the list one full circle around the
midpoint of the text item. The duration of 500 milliseconds is a good amount of time for
the user to perceive the rotation. As before, to see this effect you must change the
layout controller XML file and the ListView XML layout file and then rerun the
application.

Now, we’ve covered the basic concepts in layout animation, where we start with a
simple animation file and associate it with a ListView through an intermediate
layoutAnimation XML file. That’s all you need to do to see the animated effects.
However, we need to talk about one more thing with regard to layout animation:
interpolators.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 506

Using Interpolators
Interpolators tell an animation how a certain property, such as a color gradient, changes
over time. Will it change in a linear or exponential fashion? Will it start quickly but slow
down toward the end? Consider the alpha animation that we introduced in Listing 16–11:

<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="1000" />

The animation identifies the interpolator it wants to use—accelerate_interpolator, in
this case. There is a corresponding Java object that defines this interpolator. Also, note
that we’ve specified this interpolator as a resource reference. This means there must be
a file corresponding to the anim/accelerate_interpolator that describes what this Java
object looks like and what additional parameters it might take. That indeed is the case.
Look at the XML file definition for @android:anim/accelerate_interpolator:

<accelerateInterpolator
 xmlns:android="http://schemas.android.com/apk/res/android"
 factor="1" />

You can see this XML file in the following subdirectory within the Android package:

/res/anim/accelerate_interpolator.xml

The accelerateInterpolator XML tag corresponds to a Java object with this name:

android.view.animation.AccelerateInterpolator

You can look up the Java documentation for this class to see what XML tags are
available. This interpolator’s goal is to provide a multiplication factor given a time interval
based on a hyperbolic curve. The source code for the interpolator illustrates this:

public float getInterpolation(float input)
{
 if (mFactor == 1.0f)
 {
 return (float)(input * input);
 }
 else
 {
 return (float)Math.pow(input, 2 * mFactor);
 }
}

Every interpolator implements this getInterpolation method differently. In this case, if
the interpolator is set up so that the factor is 1.0, it will return the square of the factor.
Otherwise, it will return a power of the input that is further scaled by the factor. So if the
factor is 1.5, you will see a cubic function instead of a square function.

The supported interpolators include

AccelerateDecelerateInterpolator
AccelerateInterpolator
CycleInterpolator
DecelerateInterpolator
LinearInterpolator

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 507

AnticipateInterpolator
AnticipateOvershootInterpolator
BounceInterpolator
OvershootInterpolator

To see how flexible these interpolators can be, take a quick look at the
BounceInterpolator which bounces the object (that is, moves it back and forth) toward
the end of the following animation:

public class BounceInterpolator implements Interpolator {
 private static float bounce(float t) {
 return t * t * 8.0f;
 }

 public float getInterpolation(float t) {
 t *= 1.1226f;
 if (t < 0.3535f) return bounce(t);
 else if (t < 0.7408f) return bounce(t - 0.54719f) + 0.7f;
 else if (t < 0.9644f) return bounce(t - 0.8526f) + 0.9f;
 else return bounce(t - 1.0435f) + 0.95f;
 }
 }

You can find the behavior of these interpolators described at the following URL:

http://developer.android.com/reference/android/view/animation/package-summary.html

The Java documentation for each of these classes also points out the XML tags
available to control them. However, the description of what each interpolator does is
hard to figure out from the documentation. The best approach is to try it out in an
example and see the effect produced. You can also use this URL to search the online
source code:

http://android.git.kernel.org/?p=platform%2Fframeworks%2Fbase.git&a=search&h=HEAD&st=gre
p&s=BounceInterpolator

This concludes our section on layout animation. We will now move to the third section
on view animation, in which we’ll discuss animating a view programmatically.

View Animation
Now that you’re familiar with frame-by-frame animation and layout animation, you’re
ready to tackle view animation—the most complex of the three animation types. View
animation allows you to animate any arbitrary view by manipulating the transformation
matrix that is in place for displaying the view.

Understanding View Animation
When a view is displayed on a presentation surface in Android, it goes through a
transformation matrix. In graphics applications, you use transformation matrices to
transform a view in some way. The process involves taking the input set of pixel
coordinates and color combinations and translating them into a new set of pixel

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 508

coordinates and color combinations. At the end of a transformation, you will see an
altered picture in terms of size, position, orientation, or color.

You can achieve all of these transformations mathematically by taking the input set of
coordinates and multiplying them in some manner using a transformation matrix to arrive
at a new set of coordinates. By changing the transformation matrix, you can impact how
a view will look.

A matrix that doesn’t change the view when you multiply with it is called an identity
matrix. You typically start with an identity matrix and apply a series of transformations
involving size, position, and orientation. You then take the final matrix and use that
matrix to draw the view.

Android exposes the transformation matrix for a view by allowing you to register an
animation object with that view. The animation object will have a callback that lets it
obtain the current matrix for a view and change it in some manner to arrive at a new
view. We will go through this process now.

Let’s start by planning an example for animating a view. You’ll begin with an activity
where you’ll place a ListView with a few items, similar to the way you began the
example in the “Layout Animation” section. You will then create a button at the top of
the screen to start the ListView animation when clicked (see Figure 16–5). Both the
button and the ListView appear, but nothing has been animated yet. You’ll use the
button to trigger the animation.

When you click the Start Animation button in this example, you want the view to start
small in the middle of the screen and gradually become bigger until it consumes all the
space that is allocated for it. We’ll show you how to write the code to make this happen.
Listing 16–14 shows the XML layout file that you can use for the activity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 509

Figure 16–5. The view-animation activity

Listing 16–14. XML Layout File for the View-Animation Activity

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is at /res/layout/list_layout.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/btn_animate"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Animation"
/>
<ListView
 android:id="@+id/list_view_id"
 android:persistentDrawingCache="animation|scrolling"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Notice that the file location and the file name are embedded at the top of the XML file for
your reference. This layout has two parts: the first is the button named btn_animate to
animate a view, and the second is the ListView, which is named list_view_id.

Now that you have the layout for the activity, you can create the activity to show the
view and set up the Start Animation button (see Listing 16–15).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 510

Listing 16–15. Code for the View-Animation Activity, Before Animation

public class ViewAnimationActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 this.setupButton();
 }
 private void setupListView()
 {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3",
 "Item 4", "Item 5", "Item 6",
 };

 ArrayAdapter listItemAdapter =
 new ArrayAdapter(this
 ,android.R.layout.simple_list_item_1
 ,listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }
 private void setupButton()
 {
 Button b = (Button)this.findViewById(R.id.btn_animate);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v)
 {
 //animateListView();
 }
 });
 }
}

The code for the view-animation activity in Listing 16–15 closely resembles the code for
the layout-animation activity in Listing 16–7. We have similarly loaded the view and set
up the ListView to contain six text items. We’ve set up the button in such a way that it
would call animateListView() when clicked. But for now, comment out that part until
you get this basic example running.

You can invoke this activity as soon as you register it in the AndroidManifest.xml file:

<activity android:name=".ViewAnimationActivity"
 android:label="View Animation Test Activity">

Once this registration is in place, you can invoke this view-animation activity from any
menu item in your application by executing the following code:

Intent intent = new Intent(this, ViewAnimationActivity.class);
startActivity(intent);

When you run this program, you will see the UI as laid out in Figure 16–5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 511

Adding Animation
Our aim in this example is to add animation to the ListView shown in Figure 16–5. To do
that, you need a class that derives from android.view.animation.Animation. You then
need to override the applyTransformation method to modify the transformation matrix.
Call this derived class ViewAnimation. Once you have the ViewAnimation class, you can
do something like this on the ListView class:

 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.startAnimation(new ViewAnimation());

Let us go ahead and show you the source code for ViewAnimation and discuss the kind
of animation we want to accomplish (see Listing 16–16).

Listing 16–16. Code for the ViewAnimation Class

public class ViewAnimation extends Animation
{
 @Override
 public void initialize(int width, int height,
 int parentWidth,
 int parentHeight)
 {
 super.initialize(width, height, parentWidth, parentHeight);
 setDuration(2500);
 setFillAfter(true);
 setInterpolator(new LinearInterpolator());
 }
 @Override
 protected void
 applyTransformation(float interpolatedTime, Transformation t)
 {
 final Matrix matrix = t.getMatrix();
 matrix.setScale(interpolatedTime, interpolatedTime);
 }
}

The initialize method is a callback method that tells us about the dimensions of the
view. This is also a place to initialize any animation parameters you might have. In this
example, we have set the duration to be 2,500 milliseconds (2.5 seconds). We have also
specified that we want the animation effect to remain intact after the animation
completes by setting FillAfter to true. Plus, we’ve indicated that the interpolator is a
linear interpolator, meaning that the animation changes in a gradual manner from start to
finish. All of these properties come from the base android.view.animation.Animation
class.

The main part of the animation occurs in the applyTransformation method. The Android
framework will call this method again and again to simulate animation. Every time
Android calls the method, interpolatedTime has a different value. This parameter
changes from 0 to 1 depending on where you are in the 2.5-second duration that you set
during initialization. When interpolatedTime is 1, you are at the end of the animation.

Our goal, then, is to change the transformation matrix that is available through the
transformation object called t in the applyTransformation method. You will first get the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 512

matrix and change something about it. When the view gets painted, the new matrix will
take effect. You can find the kinds of methods available on the Matrix object by looking
up the API documentation for android.graphics.Matrix:

http://developer.android.com/reference/android/graphics/Matrix.html

In Listing 16–16, here is the code that changes the matrix:

matrix.setScale(interpolatedTime, interpolatedTime);

The setScale method takes two parameters: the scaling factor in the x direction and the
scaling factor in the y direction. Because the interpolatedTime goes between 0 and 1,
you can use that value directly as the scaling factor.

So when you start the animation, the scaling factor is 0 in both x and y directions.
Halfway through the animation, this value will be 0.5 in both x and y directions. At the
end of the animation, the view will be at its full size because the scaling factor will be 1 in
both x and y directions. The end result of this animation is that the ListView starts out
tiny and grows into full size.

Listing 16–17 shows the complete source code for the ViewAnimationActivity that
includes the animation.

Listing 16–17. Code for the View-Animation Activity, Including Animation

public class ViewAnimationActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 this.setupButton();
 }
 private void setupListView()
 {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3",
 "Item 4", "Item 5", "Item 6",
 };

 ArrayAdapter listItemAdapter =
 new ArrayAdapter(this
 ,android.R.layout.simple_list_item_1
 ,listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }
 private void setupButton()
 {
 Button b = (Button)this.findViewById(R.id.btn_animate);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v)
 {
 animateListView();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 513

 }
 });
 }
 private void animateListView()
 {
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.startAnimation(new ViewAnimation());
 }
}

When you run the code in Listing 16–17, you will notice something odd. Instead of
uniformly growing larger from the middle of the screen, the ListView grows larger from
the top-left corner. The reason is that the origin for the matrix operations is at the top-
left corner. To get the desired effect, you first have to move the whole view so that the
view’s center matches the animation center (top-left). Then, you apply the matrix and
move the view back to the previous center.

The code rewriting Listing 16–16 for doing this, is shown in Listing 16–18 with key
elements highlighted.

Listing 16–18. View Animation using preTranslate and postTranslate

public class ViewAnimation extends Animation {
 float centerX, centerY;
 public ViewAnimation3(){}

 @Override
 public void initialize(int width, int height, int parentWidth, int parentHeight) {
 super.initialize(width, height, parentWidth, parentHeight);
 centerX = width/2.0f;
 centerY = height/2.0f;
 setDuration(2500);
 setFillAfter(true);
 setInterpolator(new LinearInterpolator());
 }
 @Override
 protected void applyTransformation(float interpolatedTime, Transformation t) {
 final Matrix matrix = t.getMatrix();
 matrix.setScale(interpolatedTime, interpolatedTime);
 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);
 }
}

The preTranslate and postTranslate methods set up a matrix before the scale
operation and after the scale operation. This is equivalent to making three matrix
transformations in tandem. The following code

 matrix.setScale(interpolatedTime, interpolatedTime);
 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);

is equivalent to

move to a different center
scale it
move to the original center

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 514

You will see this pattern of pre and post applied again and again. You can also
accomplish this result using other methods on the Matrix class, but this technique is the
most common—plus, it’s succinct. We will, however, cover these other methods toward
the end of this section.

More important, the Matrix class allows you not only to scale a view but also to move it
around through translate methods and change its orientation through rotate methods.
You can experiment with these methods and see what the resulting animation looks like.
In fact, the animations presented in the preceding “Layout Animation” section are all
implemented internally using the methods on this Matrix class.

Using Camera to Provide Depth Perception in 2D
The graphics package in Android provides another animation-related—or more
accurately, transformation-related—class called Camera. You can use this class to
provide depth perception by projecting a 2D image moving in 3D space onto a 2D
surface. For example, you can take our ListView and move it back from the screen by
10 pixels along the z axis and rotate it by 30 degrees around the y axis. Listing 16–19 is
an example of manipulating the matrix using Camera.

Listing 16–19. Using Camera

...
public class ViewAnimation extends Animation {
 float centerX, centerY;
 Camera camera = new Camera();
 public ViewAnimation1(float cx, float cy){
 centerX = cx;
 centerY = cy;
 }
 @Override
 public void initialize(int width, int height, int parentWidth, int parentHeight) {
 super.initialize(width, height, parentWidth, parentHeight);
 setDuration(2500);
 setFillAfter(true);
 setInterpolator(new LinearInterpolator());
 }
 @Override
 protected void applyTransformation(float interpolatedTime, Transformation t) {
 applyTransformationNew(interpolatedTime,t);
 }
 protected void applyTransformationNew(float interpolatedTime, Transformation t)
 {
 final Matrix matrix = t.getMatrix();
 camera.save();
 camera.translate(0.0f, 0.0f, (1300 - 1300.0f * interpolatedTime));
 camera.rotateY(360 * interpolatedTime);
 camera.getMatrix(matrix);

 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);
 camera.restore();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 515

This code animates the ListView by first placing the view 1,300 pixels back on the z axis
and then bringing it back to the plane where the z coordinate is 0. While doing this, the
code also rotates the view from 0 to 360 degrees around the y axis. Let’s see how the
code relates to this behavior by looking at the following method:

camera.translate(0.0f, 0.0f, (1300 - 1300.0f * interpolatedTime));

This method tells the camera object to translate the view such that when
interpolatedTime is 0 (at the beginning of the animation), the z value will be 1300. As the
animation progresses, the z value will get smaller and smaller until the end, when the
interpolatedTime becomes 1 and the z value becomes 0.

The method camera.rotateY(360 * interpolatedTime) takes advantage of 3D rotation
around an axis by the camera. At the beginning of the animation, this value will be 0. At
the end of the animation, it will be 360.

The method camera.getMatrix(matrix) takes the operations performed on the Camera so
far and imposes those operations on the matrix that is passed in. Once the code does
that, the matrix has the translations it needs to get the end effect of having a Camera.
Now the Camera is out of the picture (no pun intended) because the matrix has all the
operations embedded in it. Then, you do the pre and post on the matrix to shift the
center and bring it back. At the end, you set the Camera to its original state that was
saved earlier.

When you plug this code into our example, you will see the ListView arriving from the
center of the view in a spinning manner toward the front of the screen, as we intended
when we planned our animation.

As part of our discussion about view animation, we showed you how to animate any
view by extending an Animation class and then applying it to a view. In addition to
letting you manipulate matrices (both directly and through a Camera class), the Animation
class lets you detect various stages in an animation. We will cover this next.

Exploring the AnimationListener Class
Android uses a listener interface called AnimationListener to monitor animation events
(see Listing 16–20). You can listen to these animation events by implementing the
AnimationListener interface and setting that implementation against the Animation
class implementation.

Listing 16–20. An Implementation of the AnimationListener Interface

public class ViewAnimationListener
implements Animation.AnimationListener {

 public ViewAnimationListener(){}

 public void onAnimationStart(Animation animation)
 {
 Log.d("Animation Example", "onAnimationStart");
 }
 public void onAnimationEnd(Animation animation)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 516

 {
 Log.d("Animation Example", "onAnimationEnd");
 }
 public void onAnimationRepeat(Animation animation)
 {
 Log.d("Animation Example", "onAnimationRepeat");
 }
}

The ViewAnimationListener class just logs messages. You can update the
animateListView method in the view-animation example (see Listing 16–17) to take the
animation listener into account:

private void animateListView()
{
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 ViewAnimation animation = new ViewAnimation();
 animation.setAnimationListener(new ViewAnimationListener());
 lv.startAnimation(animation);
}

Some Notes on Transformation Matrices
As you have seen in this chapter, matrices are key to transforming views and
animations. We will now briefly explore some key methods of the Matrix class. These
are the primary operations on a matrix:

matrix.reset();
matrix.setScale();
matrix.setTranslate()
matrix.setRotate();
matrix.setSkew();

The first operation resets a matrix to an identity matrix, which causes no change to the
view when applied. setScale is responsible for changing size; setTranslate is
responsible for changing position to simulate movement, and setRotate is responsible
for changing orientation. setSkew is responsible for distorting a view.

You can concatenate matrices or multiply them together to compound the effect of
individual transformations. Consider the following example, where m1, m2, and m3 are
identity matrices:

m1.setScale();
m2.setTranlate()
m3.concat(m1,m2)

Transforming a view by m1 and then transforming the resulting view with m2 is equivalent
to transforming the same view by m3. Note that set methods replace the previous
transformations, and that m3.concat(m1,m2) is different from m3.concat(m2,m1).

You have already seen the pattern used by preTranslate and postTranslate methods to
affect matrix transformation. In fact, pre and post methods are not unique to translate,
and you have versions of pre and post for every one of the set transformation methods.
Ultimately, a preTranslate such as m1.preTranslate(m2) is equivalent to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 517

m1.concat(m2,m1)

In a similar manner, the method m1.postTranslate(m2) is equivalent to

m1.concat(m1,m2)

By extension, the following code

matrix.setScale(interpolatedTime, interpolatedTime);
matrix.preTranslate(-centerX, -centerY);
matrix.postTranslate(centerX, centerY);

is equivalent to

Matrix matrixPreTranslate = new Matrix();
matrixPreTranslate.setTranslate(-centerX, -centerY);

Matrix matrixPostTranslate = new Matrix();
matrixPostTranslate.setTranslate(cetnerX, centerY);

matrix.concat(matrixPreTranslate,matrix);
matrix.postTranslate(matrix,matrixpostTranslate);

Resources
Here are some useful links to further strengthen your understanding of this chapter:

 http://developer.android.com/reference/android/view/animation/package-
summary.html: You can discover various animation-related APIs here, including
interpolators.

 http://developer.android.com/guide/topics/resources/animation-
resource.html: You will find XML tags for various animation types here.

 http://www.androidbook.com/projects: You can use this URL to download test
projects dedicated for this chapter. The names of the zip files are
ProAndroid3_ch16_SampleFrameAnimation.zip,
ProAndroid3_ch16_SampleLayoutAnimation.zip, and
ProAndroid3_ch16_SampleViewAnimation.zip.

Summary
In this chapter, we showed you a fun way to enhance UI programs by extending them
with animation capabilities. We covered all major types of animation supported by
Android, including frame-by-frame animation, layout animation, and view animation. We
also covered supplemental animation concepts such as interpolators and transformation
matrices.

Now that you have this background, we encourage you to go through the API samples
that come with the Android SDK to examine the sample XML definitions for a variety of
animations. We will also return to animation briefly in Chapter 20, when you’ll see how to
draw and animate using OpenGL. See chapter 29 for a brief overview of property based
animation applied to fragments.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 16: Exploring 2D Animation 518

http://lib.ommolketab.ir
http//lib.ommolketab.ir

519

519

 Chapter

Exploring Maps and
Location-based Services
In this chapter, we are going to talk about maps and location-based services. Location-

based services comprise one of the more exciting pieces of the Android SDK. This

portion of the SDK provides APIs to let application developers display and manipulate

maps, obtain real-time device-location information, and take advantage of other exciting

features.

The location-based services facility in Android sits on two pillars: the mapping and

location-based APIs. Each of these APIs is isolated with respect to its own package. For

example, the mapping package is com.google.android.maps, and the location package

is android.location. The mapping APIs in Android provide facilities for you to display a

map and manipulate it. For example, you can zoom and pan; you can change the map

mode (from satellite view to street view, for example); you can add custom data to the

map, and so on. The other end of the spectrum is Global Positioning System (GPS) data

and real-time location data, both of which are handled by the location package.

These APIs often reach across the Internet to invoke services from Google servers.

Therefore, you will usually need to have Internet connectivity for these to work. In

addition, Google has Terms of Service that you must agree to before you can develop

applications with these Android Maps API services. Read the terms carefully; Google

places some restrictions on what you can do with the service data. For example, you

can use location information for users’ personal use, but certain commercial uses are

restricted, as are applications involving automated control of vehicles. The terms will be

presented to you when you sign up for a map-api key.

In this chapter, we’ll go through each of these packages. We’ll start with the mapping

APIs and show you how to use maps with your applications. As you’ll see, mapping in

Android boils down to using the MapView UI control and the MapActivity class in addition

to the mapping APIs, which integrate with Google Maps. We will also show you how to

place custom data onto the maps that you display and how to show the current location

of the device on a map. After talking about maps, we’ll delve into location-based

services, which extend the mapping concepts. We will show you how to use the Android

17

u

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 520

Geocoder class and the LocationManager service. We will also touch on threading issues

that surface when you use these APIs.

Understanding the Mapping Package
As we mentioned, the mapping APIs comprise one of the components of Android’s

location-based services. The mapping package contains everything you’ll need to

display a map on the screen, handle user interaction with the map (such as zooming),

display custom data on top of the map, and so on. The first step to working with this

package is to display a map. To do that, you’ll use the MapView view class. Using this

class, however, requires some preparation work. Specifically, before you can use the

MapView, you’ll need to get a map-api key from Google. The map-api key enables

Android to interact with Google Maps services to obtain map data. The next section

explains how to obtain a map-api key.

Obtaining a map-api Key from Google
The first thing to understand about the map-api key is that you’ll actually need two keys:

one for development with the emulator and another for production (on devices). The

reason for this is that the certificate used to obtain the map-api key will differ between

development and production (as we discussed in Chapter 10).

For example, during development, the ADT plug-in generates the .apk file and deploys it

to the emulator. Because the .apk file must be signed with a certificate, the ADT plug-in

uses the debug certificate during development. For production deployment, you’ll likely

use a self-signed certificate to sign your .apk file. The good news is that you can obtain

one map-api key for development and another for production, and it's then easy to

swap the keys before exporting the production build.

To obtain a map-api key, you need the certificate that you’ll use to sign your application

(in the case of the emulator, the debug certificate). You’ll get the MD5 fingerprint of your

certificate, and then you’ll enter it on Google’s web site to generate an associated map-

api key.

First, you must locate your debug certificate, which is generated and maintained by

Eclipse. You can find the exact location using the Eclipse IDE. From Eclipse’s

Preferences menu, go to Android Build. The debug certificate’s location will be

displayed in the “Default debug keystore” field, as shown in Figure 17–1. (See Chapter 2

if you have trouble finding the Preferences menu.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 521

Figure 17–1. The debug certificate’s location

To extract the MD5 fingerprint, you can run the keytool with the –list option, as shown

here:

keytool -list -alias androiddebugkey -keystore
"FULL PATH OF YOUR debug.keystore FILE" -storepass android -keypass android

Note that the alias of the debug store is androiddebugkey. Similarly, the keystore

password is android, and the private key password is also android. When you run this

command, the keytool provides the fingerprint (see Figure 17–2).

Figure 17–2. The keytool output for the list option (actual fingerprint smudged on purpose)

Now, paste your certificate’s MD5 fingerprint in the appropriate field on this Google site:

http://code.google.com/android/maps-api-signup.html

Read through the Terms of Service. If you agree to the terms, click the Generate API Key

button to get a corresponding map-api key from the Google Maps service. The map-api

key is active immediately, so you can start using it to obtain map data from Google.

Note that you will need a Google account to obtain a map-api key; when you try to

generate the map-api key, you will be prompted to log in to your Google account.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 522

Remember from Chapter 10 that when your debug certificate expires, so too will your

development map-api key. If you change your debug certificate, you'll need to repeat

these steps, with the new debug certificate, to get a new development map-api key.

This is good motivation for creating a debug certificate that lasts longer than the default

one year. See Chapter 10 for more details on creating a debug certificate that lasts a

long time.

Now, let’s start playing with maps.

Understanding MapView and MapActivity
A lot of the mapping technology in Android relies on the MapView UI control and an

extension of android.app.Activity called MapActivity. The MapView and MapActivity

classes take care of the heavy lifting when it comes to displaying and manipulating a

map in Android. One of the things that you’ll have to remember about these two classes

is that they have to work together. Specifically, to use a MapView, you need to instantiate

it within a MapActivity. In addition, when instantiating a MapView, you need to supply the

map-api key.

If you instantiate a MapView using an XML layout, you need to set the android:apiKey

property. If you create a MapView programmatically, you have to pass the map-api key to

the MapView constructor. Finally, because the underlying data for the map comes from

Google Maps, your application will need permission to access the Internet. This means

you need at least the following permission request in your AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET" />

Listing 17–1 shows in bold the entries required in AndroidManifest.xml to make a map

application work.

Listing 17–1. Tags Needed in AndroidManifest.xml for a Map Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".MapViewDemoActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-sdk android:minSdkVersion="4" />
</manifest>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 523

There’s another modification you need to make to the AndroidManifest.xml file. The

definition of your map application needs to reference a mapping library (this line was

also included in Listing 17–1). With the prerequisites out of the way, have a look at

Figure 17–3.

Figure 17–3. A MapView control in street-view mode

Figure 17–3 shows an application that displays a map in street-view mode. The

application also demonstrates how you can zoom in, zoom out, and change the map’s

view mode. The XML layout is shown in Listing 17–2.

NOTE: We will give you a URL at the end of the chapter which you can use to download projects

of this chapter. This will allow you to import these projects into your Eclipse directly.

Listing 17–2. XML Layout of the MapView Demonstration

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/mapview.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <Button android:id="@+id/zoomin"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="+"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 524

 android:onClick="myClickHandler" android:padding="12px" />

 <Button android:id="@+id/zoomout"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="-"
 android:onClick="myClickHandler" android:padding="12px" />

 <Button android:id="@+id/sat"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Satellite"
 android:onClick="myClickHandler" android:padding="8px" />

 <Button android:id="@+id/street"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Street"
 android:onClick="myClickHandler" android:padding="8px" />

 <Button android:id="@+id/traffic"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Traffic"
 android:onClick="myClickHandler" android:padding="8px" />

 <Button android:id="@+id/normal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Normal"
 android:onClick="myClickHandler" android:padding="8px" />

 </LinearLayout>

 <com.google.android.maps.MapView
 android:id="@+id/mapview" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:clickable="true"
 android:apiKey="YOUR MAP API KEY GOES HERE" />

</LinearLayout>

As shown in Listing 17–2, a parent LinearLayout contains a child LinearLayout and a

MapView. The child LinearLayout contains the buttons shown at the top of Figure 17–3.

Also note that you need to update the MapView control’s android:apiKey value with the

value of your own map-api key.

The code for our sample mapping application is shown in Listing 17–3.

Listing 17–3. The MapActivity Extension Class That Loads the XML Layout

// This file is MapViewDemoActivity.java
import android.os.Bundle;
import android.view.View;

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;

public class MapViewDemoActivity extends MapActivity
{
 private MapView mapView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 525

 super.onCreate(savedInstanceState);
 setContentView(R.layout.mapview);

 mapView = (MapView)findViewById(R.id.mapview);
 }

 public void myClickHandler(View target) {
 switch(target.getId()) {
 case R.id.zoomin:
 mapView.getController().zoomIn();
 break;
 case R.id.zoomout:
 mapView.getController().zoomOut();
 break;
 case R.id.sat:
 mapView.setSatellite(true);
 break;
 case R.id.street:
 mapView.setStreetView(true);
 break;
 case R.id.traffic:
 mapView.setTraffic(true);
 break;
 case R.id.normal:
 mapView.setSatellite(false);
 mapView.setStreetView(false);
 mapView.setTraffic(false);
 break;
 }
 // The following line should not be required but it is,
 // at least up until Froyo (Android 2.2)
 mapView.postInvalidateDelayed(2000);
 }

 @Override
 protected boolean isLocationDisplayed() {
 return false;
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

As shown in Listing 17–3, displaying the MapView using onCreate() is no different from

displaying any other control. That is, you set the content view of the UI to a layout file

that contains the MapView, and that takes care of it. Surprisingly, supporting zoom

features is also fairly easy. To zoom in or out, you use the MapController class of the

MapView. Do this by calling mapView.getController() and then calling the approproiate

zoomIn() or zoomOut() method. Zooming this way produces a one-level zoom; users

need to repeat the action to increase the amount of magnification or reduction.

You’ll also find it straightforward to offer the ability to change view modes. The MapView

supports several modes:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 526

 Map is the default mode.

 Street view mode places a layer on top of the map that puts blue

outlines on roads for which street-level images are available for

viewing. These images were taken from cameras mounted on vehicles

that drove around the streets. Note, however, that the MapView control

does not display street view images. To view those street-level

images, you will need a separate view control. This will be covered in

greater detail in Chapter 25.

 Satellite mode shows aerial photographs of the map, so you can see

the actual tops of buildings, trees, roads, and so on.

 Traffic mode shows traffic information on the map with colored lines to

represent traffic that is moving well as opposed to traffic that is

backed up. Note that traffic mode is supported on a limited number of

major highways and roads.

To change modes, you must call the appropriate setter method with true. In some

cases, setting one mode will turn off another. For example, you can’t have street view

mode on at the same time as traffic mode, so setting traffic mode on automatically turns

off street view mode. To turn off a mode, set that mode to false. We'll be talking about

Overlays in just a bit, but for now, know that the traffic mode and the street view mode

do not use Overlays.

NOTE: The statement mapView.postInvalidateDelayed(2000) is used to work around an
issue with street view and traffic modes of the map. The issue is with the way threads are used
internally to fetch the data for displaying the street view blue lines and traffic lines. See Android

Issue 10317 for more information at http://code.google.com/p/android/issues/detail?id=10317.

To make the map move sideways, set the attribute android:clickable="true" for the

MapView in XML; otherwise, users will only be able to zoom in and out, not laterally. You

can also set this in code using the setClickable(true) method call on your mapView.

The final things to mention from this example are the two methods

isLocationDisplayed() and isRouteDisplayed(). The documentation for these methods

says their use is required by the Google Terms of Service, although when requesting a

Maps API key, there is no mention of these methods in those Terms of Service. I'm no

lawyer, but I'd recommend implementing these methods. Your application is obligated

to respond with true or false to indicate to the map server whether or not the current

device location is being displayed or if any route information is being displayed, such as

driving directions.

You’ll probably agree that the amount of code required to display a map and to

implement zoom and mode changes is minimal with Android (see Listing 17–3).

However, there’s an even easier way to implement zoom controls. Take a look at the

XML layout and code shown in Listing 17–4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 527

Listing 17–4. Zooming Made Easier

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/mapview.xml -->
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <com.google.android.maps.MapView android:id="@+id/mapview"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:clickable=”true”
 android:apiKey="YOUR MAP API KEY GOES HERE"
 />
</RelativeLayout>

public class MapViewDemoActivity extends MapActivity
{
 private MapView mapView;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.mapview);
 mapView = (MapView)findViewById(R.id.mapview);

 mapView.setBuiltInZoomControls(true);
 }

 @Override
 protected boolean isLocationDisplayed() {
 return false;
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

The difference between Listing 17–4 and Listing 17–3 is that we changed the XML layout

for our view to use RelativeLayout. We removed all the zoom controls and view mode

controls. The magic in this example is in the code and not the layout. The MapView

already has controls that allow you to zoom in and out. All you have to do is turn them

on using the setBuiltInZoomControls() method. Figure 17–4 shows the MapView’s

default zoom controls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 528

Figure 17–4. The MapView’s built-in zoom controls

Now, let’s discuss how to add custom data to the map.

Adding Markers Using Overlays
Google Maps provides a facility that allows you to place custom data on top of the map.

You can see an example of this if you search for pizza restaurants in your area: Google

Maps places pushpins, or balloon markers, to indicate each location. Google Maps

provides this facility by allowing you to add a layer on top of the map. Android provides

several classes that help you to add layers to a map. The key class for this type of

functionality is Overlay, but you can use an extension of this class called

ItemizedOverlay. Listing 17–5 shows an example of the Java code. The layout XML file

from Listing 17–4 can be used for this project as well.

Listing 17–5. Marking Up a Map Using ItemizedOverlay

import java.util.ArrayList;
import java.util.List;

import android.graphics.Canvas;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.widget.LinearLayout;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
import com.google.android.maps.OverlayItem;

public class MappingOverlayActivity extends MapActivity {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 529

 private MapView mapView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.mapview);

 mapView = (MapView) findViewById(R.id.mapview);
 mapView.setBuiltInZoomControls(true);

 Drawable marker=getResources().getDrawable(R.drawable.mapmarker);
 marker.setBounds((int) (-marker.getIntrinsicWidth()/2),
 -marker.getIntrinsicHeight(),
 (int) (marker.getIntrinsicWidth()/2),
 0);

 InterestingLocations funPlaces =
 new InterestingLocations(marker);
 mapView.getOverlays().add(funPlaces);

 GeoPoint pt = funPlaces.getCenterPt();
 int latSpan = funPlaces.getLatSpanE6();
 int lonSpan = funPlaces.getLonSpanE6();
 Log.v("Overlays", "Lat span is " + latSpan);
 Log.v("Overlays", "Lon span is " + lonSpan);

 MapController mc = mapView.getController();
 mc.setCenter(pt);
 mc.zoomToSpan((int)(latSpan*1.5), (int)(lonSpan*1.5));
 }

 @Override
 protected boolean isLocationDisplayed() {
 return false;
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 class InterestingLocations extends ItemizedOverlay {
 private ArrayList<OverlayItem> locations =
 new ArrayList<OverlayItem>();
 private GeoPoint center = null;

 public InterestingLocations(Drawable marker)
 {
 super(marker);

 // create locations of interest
 GeoPoint disneyMagicKingdom =
 new GeoPoint((int)(28.418971*1000000),
 (int)(-81.581436*1000000));
 GeoPoint disneySevenLagoon =
 new GeoPoint((int)(28.410067*1000000),
 (int)(-81.583699*1000000));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 530

 locations.add(new OverlayItem(disneyMagicKingdom ,
 "Magic Kingdom", "Magic Kingdom"));
 locations.add(new OverlayItem(disneySevenLagoon ,
 "Seven Seas Lagoon", "Seven Seas Lagoon"));

 populate();
 }

 // We added this method to find the middle point of the cluster
 // Start each edge on its opposite side and move across with
 // each point. The top of the world is +90, the bottom -90,
 // the west edge is -180, the east +180
 public GeoPoint getCenterPt() {
 if(center == null) {
 int northEdge = -90000000; // i.e., -90E6 microdegrees
 int southEdge = 90000000;
 int eastEdge = -180000000;
 int westEdge = 180000000;
 Iterator<OverlayItem> iter = locations.iterator();
 while(iter.hasNext()) {
 GeoPoint pt = iter.next().getPoint();
 if(pt.getLatitudeE6() > northEdge)
 northEdge = pt.getLatitudeE6();
 if(pt.getLatitudeE6() < southEdge)
 southEdge = pt.getLatitudeE6();
 if(pt.getLongitudeE6() > eastEdge)
 eastEdge = pt.getLongitudeE6();
 if(pt.getLongitudeE6() < westEdge)
 westEdge = pt.getLongitudeE6();
 }
 center = new GeoPoint((int)((northEdge +southEdge)/2),
 (int)((westEdge + eastEdge)/2));
 }
 return center;
 }

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow)
 {
 // Hide the shadow by setting shadow to false
 super.draw(canvas, mapView, shadow);
 }

 @Override
 protected OverlayItem createItem(int i) {
 return locations.get(i);
 }

 @Override
 public int size() {
 return locations.size();
 }

 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 531

Listing 17–5 demonstrates how you can overlay markers onto a map. The example

places two markers: one at Disney’s Magic Kingdom and another at Disney’s Seven

Seas Lagoon, both near Orlando, Florida (see Figure 17–5).

NOTE: To run this demonstration, you’ll need to get a drawable to serve as your map marker.
This image file must be saved into your /res/drawable folder so that the resource ID reference

in the getDrawable() call matches the file name you choose for your image file. If possible,
make the area surrounding your marker transparent. Some sample markers are provided with

the source code for this chapter.

In order for you to add markers onto a map, you have to create and add an extension of

com.google.android.maps.Overlay to the map. The Overlay class itself cannot be

instantiated, so you’ll have to extend it or use one of the extensions. In our example, we

have implemented InterestingLocations, which extends ItemizedOverlay, which in turn

extends Overlay. The Overlay class defines the contract for an overlay, and

ItemizedOverlay is a handy implementation that makes it easy for you to create a list of

locations that can be marked on a map.

The general usage pattern is to extend the ItemizedOverlay class and add your items—

interesting locations—in the constructor. After you instantiate your points of interest, you

call the populate() method of ItemizedOverlay. The populate() method is a utility that

caches any OverlayItems. Internally, the class calls the size() method to determine the

number of overlay items and then enters a loop, calling createItem(i) for each item. In

the createItem method, you return the already-created item given the index in the array.

Figure 17–5. MapView with markers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 532

As Listing 17–5 shows, you simply create the points and call populate() to show

markers on a map. The Overlay contract manages the rest. To make it all work, the

onCreate() method of the activity creates the InterestingLocations instance, passing

in the Drawable that’s used as a default for the markers. Then, onCreate() adds the

InterestingLocations instance to the overlay collection (mapView.getOverlays().add()).

The Drawable you choose needs to be prepared for use with an ItemizedOverlay. The

Maps API needs to know where the (0, 0) point is on the Drawable. This point will be

used to mark the exact spot on the map that the marker is supposed to represent. You

can do this yourself using the setBounds() method of the Drawable class as shown in

our example. The arguments represent the left, top, right, and bottom coordinates and

we can use the getIntrinsicHeight() and getIntrinsicWidth() methods to figure out

how tall and wide our Drawable is.

In our example, the (0, 0) coordinate would be halfway across the bottom edge.

Remember that the coordinate system starts from the left and increases as you go right,

and from the top increasing as you go down. Therefore, our top coordinate must be less

than the 0 at the bottom, so is negative.

Android provides a couple of convenience methods in the ItemizedOverlay class to set

bounds on Drawables. They are boundCenterBottom() and boundCenter(). The first

method acts on our Drawable in the exact same way that we did, resulting in (0, 0) being

halfway across the bottom edge of the Drawable. The second method would put (0, 0) in

the very center of the Drawable. A common practice is to use one of these methods as

the first call in your constructor. We could have done the following instead of using

setBounds() earlier:

 public InterestingLocations(Drawable marker)
 {
 super(boundCenterBottom(marker));
 […]

You'll also notice that we can use any size or shape Drawable we want. One thing that

makes our markers look good is to use the transparent color around the shape we want.

The bubbles you're used to seeing on Google Maps are not square, and because they

use a transparent color around them, you can see the map where there is no marker.

This is also good because the Maps API will paint a shadow of your marker onto the

map, and you want your shadow to be your shape and not a rectangle (OK, really a

parallelogram).

But what if you don't want a shadow? No problem. Simply override the draw() method

of your ItemizedOverlay extension class and set shadow to false when calling the

parent's draw() method. Check out the draw() method in our example. We mentioned

that the Drawable used to create the ItemizedOverlay is the default marker. Each

OverlayItem can instead have a unique marker by using its setMarker() method with

some other Drawable. You could set the unique markers when instantiating the

OverlayItems, or you could set them later. We'll revisit markers in Chapter 25 when we

cover touch screens, and show you how to have even more fun with markers.

Now that the overlay is associated to our map, we still need to move into the right

position to actually see the markers in the display. To do this, we need to set the center

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 533

of the displayed map to a point. The getCenter() method of the ItemizedOverlay class

returns the first ranked point, not the center point, as you might expect. An

ItemizedOverlay will sort the points it contains, and it will choose one to be first.

Therefore, to find the center of the points, we implemented our own getCenterPt()

method to iterate through the points and find the center. The setCenter() method of the

mapview’s controller sets the center of what’s displayed, and we pass it our calculated

center point.

MapController's setZoom() method sets how high we are above the map. It takes a

value from 1 to 21, where 21 is zoomed in as close as we can go, and 1 is as far away

as we can go. But because we're not exactly sure what value to use here to see all our

points at once, we use the zoomToSpan() method of the MapController. We need to pass

in the height and width of the rectangle that contains all our points. Fortunately,

ItemizedOverlay has two methods to tell us the height and width of that rectangle, to

give us our latitude span, getLatSpanE6(), and our longitude span, getLonSpanE6(),

respectively; we can then use these values with zoomToSpan(). Notice that we chose to

expand our rectangle by a factor of 1.5, so our points are not right at the edges of the

map when displayed.

Another interesting aspect of Listing 17–5 is the creation of the OverlayItem(s). To create

an OverlayItem, you need an object of type GeoPoint. The GeoPoint class represents a

location by its latitude and longitude, in micro degrees. In our example, we obtained the

latitude and longitude of Magic Kingdom and Seven Seas Lagoon using geocoding sites

on the Web. (As you’ll see shortly, you can use geocoding to convert an address to a

latitude/longitude pair, for example.) We then converted the latitude and longitude to

micro degrees—because the APIs operate on micro degrees—by multiplying by

1,000,000 and performing a cast to an integer.

So far, we’ve shown you how to place markers on a map. But overlays are not restricted

to showing pushpins or balloons. They can be used to do other things. For example, we

could show animations of products moving across maps, or we could show symbols

such as weather fronts or thunderstorms.

All in all, you’ll agree that placing markers on a map couldn’t be easier. Or could it? We

don’t have a database of latitude/longitude pairs, but we’re guessing that we’ll need to

somehow create one or more GeoPoints using a real address. That’s when you can use

the Geocoder class, which is part of the location package that we’ll discuss next.

Understanding the Location Package
The android.location package provides facilities for location-based services. In this

section, we are going to discuss two important pieces of this package: the Geocoder

class and the LocationManager service. We’ll start with Geocoder.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 534

Geocoding with Android
If you are going to do anything practical with maps, you’ll likely have to convert an

address (or location) to a latitude/longitude pair. This concept is known as geocoding,

and the android.location.Geocoder class provides this facility. In fact, the Geocoder

class provides both forward and backward conversion—it can take an address and

return a latitude/longitude pair, and it can translate a latitude/longitude pair into a list of

addresses. The class provides the following methods:

 List<Address> getFromLocation(double latitude, double
longitude, int maxResults)

 List<Address> getFromLocationName(String locationName, int
maxResults, double lowerLeftLatitude, double
lowerLeftLongitude, double upperRightLatitude, double
upperRightLongitude)

 List<Address> getFromLocationName(String locationName, int
maxResults)

It turns out that computing an address is not an exact science because of the various

ways a location can be described. For example, the getFromLocationName() methods

can take the name of a place, the physical address, an airport code, or simply a well-

known name for the location. Thus, the methods return a list of addresses and not a

single address. Because the methods return a list, you are encouraged to limit the result

set by providing a value for maxResults that ranges between 1 and 5. Now, let’s consider

an example.

Listing 17–6 shows the XML layout and corresponding code for the user interface shown

in Figure 17–6. To run the example, you’ll need to update the listing with your own map-

api key.

Listing 17–6. Working with the Android Geocoder Class

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/geocode.xml -->
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout android:layout_width="fill_parent"
 android:layout_alignParentBottom="true"
 android:layout_height="wrap_content"
 android:orientation="vertical" >

 <EditText android:layout_width="fill_parent"
 android:id="@+id/location"
 android:layout_height="wrap_content"
 android:text="White House"/>

 <Button android:id="@+id/geocodeBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick=”doClick” android:text="Find Location"/>
 </LinearLayout>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 535

 <com.google.android.maps.MapView
 android:id="@+id/geoMap" android:clickable="true"
 android:layout_width="fill_parent"
 android:layout_height="320px"
 android:apiKey="YOUR MAP API KEY GOES HERE"
 />

</RelativeLayout>

package com.androidbook.maps.geocoding;

import java.io.IOException;
import java.util.List;

import android.location.Address;
import android.location.Geocoder;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;

public class GeocodingDemoActivity extends MapActivity
{
 Geocoder geocoder = null;
 MapView mapView = null;

 @Override
 protected boolean isLocationDisplayed() {
 return false;
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.geocode);
 mapView = (MapView)findViewById(R.id.geoMap);
 mapView.setBuiltInZoomControls(true);

 // lat/long of Jacksonville, FL
 int lat = (int)(30.334954*1000000);
 int lng = (int)(-81.5625*1000000);
 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(10);
 mapView.getController().setCenter(pt);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 536

 geocoder = new Geocoder(this);
 }

 public void doClick(View arg0) {
 try {
 EditText loc = (EditText)findViewById(R.id.location);
 String locationName = loc.getText().toString();

 List<Address> addressList =
 geocoder.getFromLocationName(locationName, 5);
 if(addressList!=null && addressList.size()>0)
 {
 int lat =
 (int)(addressList.get(0).getLatitude()*1000000);
 int lng =
 (int)(addressList.get(0).getLongitude()*1000000);

 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(15);
 mapView.getController().setCenter(pt);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Figure 17–6. Geocoding to a point given the location name

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 537

To demonstrate the uses of geocoding in Android, type the name or address of a

location in the EditText field, and then click the Find Location button. To find the

address of a location, we call the getFromLocationName() method of Geocoder. The

location can be an address or a well-known name such as “White House.” Geocoding

can be a timely operation, so we recommend that you limit the results to five, as the

Android documentation suggests.

The call to getFromLocationName() returns a list of addresses. The sample application

takes the list of addresses and processes the first one if any were found. Every address

has a latitude and longitude, which you use to create a GeoPoint. You then get the map

controller and navigate to the point. The zoom level can be set to an integer between 1

and 21, inclusive. As you move from 1 toward 21, the zoom level increases by a factor of

2. We could have presented a dialog to display multiple found locations if we wanted to,

but for now, we'll just display the first location returned to us.

In our example application, we only read the latitude and longitude of our returned

Address. In fact, there can be a ton of data about Addresses returned to us, including the

location's common name, street, city, state, postal/zip code, country, and even phone

number and web site URL.

NOTE: Location-based services do not use micro degrees like the Maps API does. Forgetting to
convert from one to the other is a common cause of errors. To pass a Location's latitude and

longitude to a Maps API method, you must multiply by 1,000,000 first.

You should understand a few points with respect to geocoding:

 First, a returned address is not always an exact address. Obviously,

because the returned list of addresses depends on the accuracy of the

input, you need to make every effort to provide an accurate location

name to the Geocoder.

 Second, whenever possible, set the maxResults parameter to a value

between 1 and 5.

 Finally, you should seriously consider doing the geocoding operation

in a different thread from the UI thread. There are two reasons for this.

The first is obvious: the operation is time-consuming, and you don’t

want the UI to hang while you do the geocoding causing Android to kill

your activity. The second reason is that, with a mobile device, you

always need to assume that the network connection can be lost and

that the connection is weak. Therefore, you need to handle

input/output (I/O) exceptions and timeouts appropriately. Once you

have computed the addresses, you can post the results to the UI

thread. Let’s investigate this a bit more.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 538

Geocoding with Background Threads
Using background threads to handle time-consuming operations is very common. The

general pattern is to handle a UI event (such as a button click) to initiate a timely

operation. From the event handler, you create a new thread to execute the work, and

then you start the new thread. The UI thread returns to the user interface to handle the

interaction with the user while the background thread works. After the background

thread completes, a part of the UI might have to be updated, or the user might have to

be notified. The background thread does not update the UI directly; instead, the

background thread notifies the UI thread to update itself. Listing 17–7 demonstrates this

idea using geocoding. We’ll use the same geocode.xml file as before. We can also use

the same AndroidManifest.xml file as before.

Listing 17–7. Geocoding in a Separate Thread

package com.androidbook.maps.geocodingthreads;

import java.io.IOException;
import java.util.List;

import android.app.AlertDialog;
import android.app.Dialog;
import android.app.ProgressDialog;
import android.location.Address;
import android.location.Geocoder;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.view.View;
import android.widget.EditText;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;

public class GeocodingDemoActivity extends MapActivity
{
 Geocoder geocoder = null;
 MapView mapView = null;
 ProgressDialog progDialog=null;
 List<Address> addressList=null;
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.geocode);
 mapView = (MapView)findViewById(R.id.geoMap);
 mapView.setBuiltInZoomControls(true);

 // lat/long of Jacksonville, FL
 int lat = (int)(30.334954*1000000);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 539

 int lng = (int)(-81.5625*1000000);
 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(10);
 mapView.getController().animateTo(pt);

 geocoder = new Geocoder(this);
 }

 public void doClick(View view) {
 EditText loc = (EditText)findViewById(R.id.location);
 String locationName = loc.getText().toString();

 progDialog = ProgressDialog.show(GeocodingDemoActivity.this,
 "Processing...", "Finding Location...", true, false);

 findLocation(locationName);
 }

 private void findLocation(final String locationName)
 {
 Thread thrd = new Thread()
 {
 public void run()
 {
 try {
 // do background work
 addressList =
 geocoder.getFromLocationName(locationName, 5);
 //send message to handler to process results
 uiCallback.sendEmptyMessage(0);

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 };
 thrd.start();
 }

 // ui thread callback handler
 private Handler uiCallback = new Handler()
 {
 @Override
 public void handleMessage(Message msg)
 {
 // tear down dialog
 progDialog.dismiss();

 if(addressList!=null && addressList.size()>0)
 {
 int lat =
 (int)(addressList.get(0).getLatitude()*1000000);
 int lng =
 (int)(addressList.get(0).getLongitude()*1000000);
 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(15);
 mapView.getController().animateTo(pt);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 540

 }
 else
 {
 Dialog foundNothingDlg = new
 AlertDialog.Builder(GeocodingDemoActivity.this)
 .setIcon(0)
 .setTitle("Failed to Find Location")
 .setPositiveButton("Ok", null)
 .setMessage("Location Not Found...")
 .create();
 foundNothingDlg.show();
 }
 }
 };
}

Listing 17–7 is a modified version of the example in Listing 17–6. The difference is that,

now, in the doClick() method, you display a progress dialog and call findLocation()
(see Figure 17–7). findLocation() then creates a new thread and calls the start()
method, which ultimately results in a call to the thread’s run() method. In the run()
method, you use the Geocoder class to search for the location. When the search is done,

you must post the message to something that knows how to interact with the UI thread,

because you need to update the map. Android provides the android.os.Handler class

for this purpose. From the background thread, call the uiCallback.sendEmptyMessage(0)
to have the UI thread process the results from the search. In our case, we don’t need to

actually send any content in the message, since the data is being shared through the

addressList. The code calls the handler’s callback, which dismisses the dialog, and

then looks at the addressList returned by the Geocoder. After that, the callback updates

the map with the result or displays an alert dialog to indicate that the search returned

nothing. The UI for this example is shown in Figure 17–7.

Figure 17–7. Showing a progress window during long operations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 541

Understanding the LocationManager Service
The LocationManager service is one of the key services offered by the android.location

package. This service provides two things: a mechanism for you to obtain the device’s

geographical location and a facility for you to be notified (via an intent) when the device

enters a specified geographical location.

In this section, you are going to learn how the LocationManager service works. To use

the service, you must first obtain a reference to it. Listing 17–8 shows a simple usage of

the LocationManager service.

Listing 17–8. Using the LocationManager Service

package com.androidbook.maps.locationmanager;

import java.util.List;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;

public class LocationManagerDemoActivity extends Activity
{

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 LocationManager locMgr = (LocationManager)
 this.getSystemService(Context.LOCATION_SERVICE);

 Location loc =
 locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);

 List<String> providerList = locMgr.getAllProviders();
 }
}

The LocationManager service is a system-level service. System-level services are

services that you obtain from the context using the service name; you don’t instantiate

them directly. The android.app.Activity class provides a utility method called

getSystemService() that you can use to obtain a system-level service. As shown in

Listing 17–8, you call getSystemService() and pass in the name of the service you want,

in this case, Context.LOCATION_SERVICE.

The LocationManager service provides geographical location details by using location

providers. Currently, there are three types of location providers:

 GPS providers use a Global Positioning System to obtain location

information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 542

 Network providers use cell-phone towers or Wi-Fi networks to obtain

location information.

 The passive provider is like a location update sniffer, and it passes to

your application location updates that are requested by other

applications, without your application having to specifically request

any location updates. Of course, if no one else is requesting location

updates, you won't get any either.

The LocationManager class can provide the device’s last known location via the

getLastKnownLocation() method. Location information is obtained from a provider, so

the method takes as a parameter the name of the provider you want to use. Valid values

for provider names are LocationManager.GPS_PROVIDER,

LocationManager.NETWORK_PROVIDER, and LocationManager.PASSIVE_PROVIDER. In order

for your application to successfully get location information, it must have the appropriate

permissions in the AndroidManifest.xml file. android.permission.ACCESS_FINE_LOCATION

is required for GPS and for passive providers, while

android.permission.ACCESS_COARSE_LOCATION or

android.permission.ACCESS_FINE_LOCATION can be used for network providers,

depending on what you need. For instance, assume your application will use GPS or

network data for location updates. Since you need ACCESS_FINE_LOCATION for GPS,

you've also satisfied permissions for network access, so you do not need to also specify

ACCESS_COARSE_LOCATION. If you're only going to use the network provider, you could get

by with only ACCESS_COARSE_LOCATION in the manifest file.

Calling getLastKnownLocation() returns an android.location.Location instance, or

null if no location is available. The Location class provides the location’s latitude and

longitude, the time the location was computed, and possibly the device’s altitude,

speed, and bearing. A Location object can also tell you which provider it came from

using getProvider(), which will be either GPS_PROVIDER or NETWORK_PROVIDER. If you're

getting location updates via the PASSIVE_PROVIDER, remember that you're only really

sniffing location updates, so all updates are ultimately from either GPS or the network.

Because the LocationManager operates on providers, the class provides APIs to obtain

providers. For example, you can get all of the known providers by calling

getAllProviders(). You can obtain a specific provider by calling getProvider(),

passing the name of the provider as an argument (such as

LocationManager.GPS_PROVIDER). One thing to watch out for is that getAllProviders()

will return providers that you may not have access to or that are currently disabled.

Fortunately, you are able to determine the status of providers using other methods, such

as isProviderEnabled(String providerName) or getProviders(boolean enabledOnly),

which you could call with a value of true to get only providers you are able to use

immediately.

There's another way to get a suitable provider, and that is to use the

getProviders(Criteria criteria, boolean enabledOnly) method of LocationManager.

By specifying criteria for location updates, and by setting enabledOnly to true so you get

providers that are enabled and ready to go, you can get a list of provider names

returned to you without having to know the specifics of which provider you got. This

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 543

could be more portable, since a device may have a custom LocationProvider that

meets your needs without you having to know about it in advance. The Criteria object

can be set with parameters that include accuracy level and the need for information

about speed, bearing, altitude, cost, and power requirements. If no providers meet your

criteria, a null list will be returned, allowing you to either bail out or relax the criteria and

try again.

How to Enable Location Providers
You might think there's a simple API to enable a location provider (such as GPS) if it's

not turned on when your application runs. Unfortunately this is not the case. To get a

location service turned on, the user must do that from within the Settings screens of

their device. Your application can make this a lot simpler for the user by launching that

particular Settings screen. The location settings source screen is really just an activity,

and this activity is set up to respond to an intent. So all your application needs to do is

request an activity using the correct intent. The code you might use looks like this:

startActivityForResult(new Intent(
 android.provider.Settings.ACTION_LOCATION_SOURCE_SETTINGS), 0);

Remember that to handle a response, you must implement the onActivityResult()

callback in your activity (covered in Chapter 5). And also keep in mind that while you

hope the user turns on a location provider such as GPS, they may not. You will need to

check again to see if the user has enabled a location provider, and take appropriate

action based on the result.

What Can You Do With a Location?
As mentioned before, Locations can tell you the latitude and longitude, when the

Location was computed, the provider that computed this Location, and optionally the

altitude, speed, bearing and accuracy level. Depending on the provider where the

Location came from, there could be extra information as well. For example, if the

Location came from a GPS provider, there is an extras Bundle that will tell you how

many satellites were used to compute the Location. The optional values may or may not

be present, depending on the provider. To know if a Location has one of these values,

the Location class provides a set of has. . .() methods that return a boolean value, for

example hasAccuracy(). Before relying on the return value of getAccuracy(), it would be

wise to call hasAccuracy() first.

The Location class has some other useful methods, including a static method

distanceBetween(), which will return the shortest distance between two Locations.

Another distance-related method is distanceTo(), which will return the shortest distance

between the current Location object and the Location object passed to the method.

Note that distances are in meters and that the distance calculations take into account

the curvature of the Earth. But also be aware that the distances are not provided in

terms of the distance you would have to go by car, for example.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 544

If you want to get driving directions, or driving distances, you will need to have your

beginning and ending Locations, but to do the calculations, you will likely need to use

the Google Maps JavaScript API services. For example, there is a Google Directions

API, similar to the Google Translate API covered in Chapter 11.The Directions API would

allow your application to show how to get from your beginning to your ending location.

Sending Location Updates to Your Application During Development
When doing development testing, LocationManager needs location information, and the

emulator doesn’t have access to GPS or cell towers. In order for you to test your

LocationManager service application in the emulator, you manually send location

updates from Eclipse. Listing 17–9 shows a simple example to illustrate how to do this.

Listing 17–9. Registering for Location Updates

package com.androidbook.location.update;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.Toast;

public class LocationUpdateDemoActivity extends Activity
{
 LocationManager locMgr = null;
 LocationListener locListener = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 locMgr = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 locListener = new LocationListener()
 {
 public void onLocationChanged(Location location)
 {
 if (location != null)
 {
 Toast.makeText(getBaseContext(),
 "New location latitude [" +
 location.getLatitude() +
 "] longitude [" +
 location.getLongitude()+"]",
 Toast.LENGTH_SHORT).show();
 }
 }

 public void onProviderDisabled(String provider)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 545

 }

 public void onProviderEnabled(String provider)
 {
 }

 public void onStatusChanged(String provider,
 int status, Bundle extras)
 {
 }
 };
 }

 @Override
 public void onResume() {
 super.onResume();

 locMgr.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0, // minTime in ms
 0, // minDistance in meters
 locListener);
 }

 @Override
 public void onPause() {
 super.onPause();
 locMgr.removeUpdates(locListener);
 }
}

We're not displaying a user interface for this example, so the standard initial layout

XML file will do. This is also why we don't need to extend a MapActivity for this

application, since we're not displaying any maps.

One of the primary uses of the LocationManager service is to receive notifications of

the device’s location. Listing 17–9 demonstrates how you can register a listener to

receive location-update events. To register a listener, you call the

requestLocationUpdates() method, passing the provider type as one of the

parameters. When the location changes, the LocationManager calls the

onLocationChanged() method of the listener with the new Location. It is very important

that you remove any registrations for location updates at the appropriate time. In our

example, we do registration in onResume(), and we remove that registration in

onPause(). If we aren't going to be around to do anything with location updates, we

should tell the provider not to send them. There's also the possibility that our activity

could be destroyed (for example, if the user rotates their device and our activity is

restarted), in which case our old activity could still exist, be receiving updates,

displaying them with Toast, and taking up memory.

In our example, we set the minTime and minDistance to zero. This tells the

LocationManager to send us updates as often as possible. These are not desired

settings in real life, but we use them here to make the demonstrations run better. (In

real life, you would not want the hardware trying to figure out our current position so

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 546

often, as this drains the battery.) Set these values appropriately for the situation, trying

to minimize how often you truly need to be notified of a change in position.

A new tool was introduced to you in Listing 17–9: the Toast widget. This is a handy

device that allows you to briefly display a small pop-up view to the user. It appears to

hover over the existing view and then goes away by itself. You can lengthen how long it

hovers by using LENGTH_LONG instead of LENGTH_SHORT.

To test this in the emulator, you can use the Dalvik Debug Monitor Service (DDMS)

perspective that ships with the ADT plug-in for Eclipse. The DDMS UI provides a screen

for you to send the emulator a new location (see Figure 17–8).

Figure 17–8. Using the DDMS UI in Eclipse to send location data to the emulator

To get to the DDMS in Eclipse, use Window Open Perspective DDMS. The

Emulator Control view should already be there for you, but if not, use Window Show

View Other Android Emulator Control to make it visible in this perspective. You

may need to scroll down in the emulator control to find the location controls. As shown

in Figure 17–8, the Manual tab in the DDMS user interface allows you to send a new

GPS location (latitude/longitude pair) to the emulator. Sending a new location will fire the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 547

onLocationChanged() method on the listener, which will result in a message to the user

conveying the new location.

You can send location data to the emulator using several other techniques, as shown in

the DDMS user interface (see Figure 17–8). For example, the DDMS interface allows you

to submit a GPS Exchange Format (GPX) file or a Keyhole Markup Language (KML) file.

You can obtain sample GPX files from these sites:

 http://www.topografix.com/gpx_resources.asp

 http://tramper.co.nz/?view=gpxFiles

 http://www.gpxchange.com/

Similarly, you can use the following KML resources to obtain or create KML files:

 http://bbs.keyhole.com/

 http://code.google.com/apis/kml/documentation/kml_tut.html

NOTE: Some sites provide KMZ files. These are zipped KML files, so simply unzip them to get to
the KML file. Some KML files need to have their XML namespace values altered in order to play
properly in DDMS. If you have trouble with a particular KML file, make sure it has this:

<kml xmlns="http://earth.google.com/kml/2.x">.

You can upload a GPX or KML file to the emulator and set the speed at which the

emulator will play back the file (see Figure 17–9). The emulator will then send location

updates to your application based on the configured speed. As Figure 17–9 shows, a

GPX file contains points, shown in the top part, and paths, shown in the bottom part.

You can’t play a point, but when you click a point, it will be sent to the emulator. You

click a path, and then the Play button will be enabled so you can play the points.

NOTE: There have been reports that not all GPX files are understandable by the emulator
control. If you attempt to load a GPX file and nothing happens, try a different file from a different

source.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 548

Figure 17–9. Uploading GPX and KML files to the emulator for playback

Listing 17–9 includes some additional methods for LocationListener we haven't

mentioned yet. They are the callbacks onProviderDisabled(), onProviderEnabled(), and

onStatusChanged(). For our sample, we did not do anything with these, but in your

application, you could be notified when a location provider, such as gps, is disabled or

enabled by the user, or when a status changes with one of the location providers.

Statuses include OUT_OF_SERVICE, TEMPORARILY_UNAVAILABLE, and AVAILABLE. Even if a

provider is enabled, it does not mean that it will be sending any location updates, and

you can tell that using statuses. Note that onProviderDisabled() will be invoked

immediately if a requestLocationUpdates() is called for a disabled provider.

Sending Location Updates From the Emulator Console
Eclipse has some easy to use tools for sending location updates to your application, but

there's another way to do it. Remember from Chapter 2 that to launch the emulator

console, you use the following command from a tools window:

telnet localhost emulator_port_number

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 549

where emulator_port_number is the number associated to the instance of the AVD that's

already running, displayed in the title bar of the emulator window. Once you're

connected, you can use the geo fix command to send in location updates. To send in

latitude/longitude coordinates with altitude (altitude is optional), use this form of the

command:

geo fix lon lat [altitude]

For example, the following command will send the location of Jacksonville, Florida to

your application with an altitude of 120 meters.

geo fix -81.5625 30.334954 120

Please pay careful attention to the order of the arguments to the geo fix command.

Longitude is the first argument, and latitude is the second.

Alternate Ways of Getting Location Updates
Earlier we showed you how to get location updates sent to your activity using the

requestLocationUpdates() method of the LocationManager. There are actually several

different signatures of this method, including ones that use a PendingIntent. This gives

you the ability to direct location updates to services or broadcast receivers. You can

also direct location updates to other Looper threads instead of the main thread, giving

you lots of flexibility for your application, although some of these methods are only

available since Android 2.3.

Showing Your Location Using MyLocationOverlay
A common use for GPS and maps is to show users where they are. Fortunately, Android

makes this easy to do by supplying a special overlay called MyLocationOverlay. By

adding this overlay to your MapView, you can quite easily add a blinking blue dot to your

map showing where the LocationManager service says the device is.

For this example, we’re going to combine a bunch of concepts together into one

application. Using Listing 17–10, we can modify our previous example by updating the

main.xml and MyLocationDemoActivity.java files. Or simply create a new project from

the existing source of Chapter 17. Don't forget to put your Map API key into your

manifest file.

Listing 17–10. Using MyLocationOverlay

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <com.google.android.maps.MapView
 android:id="@+id/geoMap" android:clickable="true"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 550

 android:apiKey="YOUR MAP API KEY GOES HERE"
 />

</RelativeLayout>

package com.androidbook.location.myoverlay;

import android.os.Bundle;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.MyLocationOverlay;

public class MyLocationDemoActivity extends MapActivity {

 MapView mapView = null;
 MapController mapController = null;
 MyLocationOverlay whereAmI = null;

 @Override
 protected boolean isLocationDisplayed() {
 return whereAmI.isMyLocationEnabled();
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mapView = (MapView)findViewById(R.id.geoMap);
 mapView.setBuiltInZoomControls(true);

 mapController = mapView.getController();
 mapController.setZoom(15);

 whereAmI = new MyLocationOverlay(this, mapView);
 mapView.getOverlays().add(whereAmI);
 mapView.postInvalidate();
 }

 @Override
 public void onResume()
 {
 super.onResume();
 whereAmI.enableMyLocation();
 whereAmI.runOnFirstFix(new Runnable() {
 public void run() {
 mapController.setCenter(whereAmI.getMyLocation());
 }
 });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 551

 }

 @Override
 public void onPause()
 {
 super.onPause();
 whereAmI.disableMyLocation();
 }
}

Notice that, in this example, isLocationDisplayed() will return true if we are now

showing the current location of the device on a map.

Once you launch this application in the emulator, you need to start sending it location

updates before it gets very interesting. To do this, go to the DDMS Emulator Control

view in Eclipse as described earlier in this section:

1. You need to find a sample GPX file from somewhere on the Internet. The

sites listed earlier for GPX files have lots of them. Just pick one, and

download it to your workstation.

2. Load this file into the emulator control using the Load GPX button on the

GPX tab under Location Controls.

3. Select a path from the bottom list, and click the play button (the green

arrow). Notice the Speed button also. This should start sending a stream

of location updates to the emulator, which will be picked up by your

application.

4. Click the Speed button to make the updates happen more often.

Figure 17–10 shows what your screen might look like.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 552

Figure 17–10. Displaying Our Current Location with MyLocationOverlay

The preceding code is very straightforward. After setting up the basics of a MapView,

turning on the zoom controls and zooming in close, we create the MyLocationOverlay

overlay. We add the new overlay to the MapView and call postInvalidate() on the

MapView, so the new overlay will appear on the screen. Without this last call, the overlay

will be created, but it will not show up.

Remember that our application will call onResume() even when it’s just starting up, as

well as after waking up. Therefore, we want to enable location tracking in onResume()

and disable it in onPause(). There’s no sense in draining the battery with location

requests if we’re not going to be around to consume them. In addition to enabling

location requests in onResume(), we also want to jump to where we’re at right now. The

MyLocationOverlay class has a helpful method for this: runOnFirstFix(). This method

allows us to set up code that will run as soon as we have a location at all. This could be

immediately, because we’ve got a last location, or it could be later when we get

something from GPS_PROVIDER, NETWORK_PROVIDER, or PASSIVE_PROVIDER. When we have

a fix, we center on it. After that, we don’t need to do anything ourselves, because the

MyLocationOverlay is getting location updates and putting the blinking blue dot in that

location. If the blue dot gets close to the edge of the map, the map will recenter itself so

the blue dot is back in the middle of the screen.

Customizing MyLocationOverlay
You might have noticed that you are able to zoom in and out while the location updates

are occurring, and you can even pan away from the current location. This could be a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 553

good thing or a bad thing depending on your point of view. If you pan away and don’t

remember where you are, it will be difficult to find yourself again unless you zoom way

out and look for the blue dot. The recentering trick only works if the blue dot gradually

approaches the edge of the map on its own. Once you've panned away so the blue dot

is no longer visible, it won't put itself back into view. This situation can also occur if the

blue dot jumps off the map without coming close to the edge first.

If you want the current location to always be displayed near the center of the screen, we

need to make sure we keep animating to the current location, and we can do that

relatively easily. For the next version of this exercise we’ll reuse everything in our

MyLocationDemo project except for a very small change to our Activity, and we're

going to add a new class to our package, an extension of MyLocationOverlay, so we can

tweak its behavior just a bit. The new extension of MyLocationOverlay is shown in Listing

17–11.

Listing 17–11. Extending MyLocationOverlay and Keeping Our Location in View

package com.androidbook.location.myoverlay;

import android.content.Context;
import android.location.Location;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.MyLocationOverlay;

public class MyCustomLocationOverlay extends MyLocationOverlay {
 MapView mMapView = null;

 public MyCustomLocationOverlay(Context ctx, MapView mapView) {
 super(ctx, mapView);
 mMapView = mapView;
 }

 public void onLocationChanged(Location loc) {
 super.onLocationChanged(loc);
 GeoPoint newPt = new GeoPoint((int) (loc.getLatitude()*1E6),
 (int) (loc.getLongitude()*1E6));
 mMapView.getController().animateTo(newPt);
 }
}

The only thing we need to change from Listing 17–10 is to use MyCustomLocationOverlay

instead of MyLocationOverlay in our activity's onCreate() method, like so:

 whereAmI = new MyCustomLocationOverlay(this, mapView);

Go ahead and run this in the emulator, and then send it new locations through the

emulator control. If you're sending in a stream of location updates using a GPX file,

you'll notice that the blue dot is always moved to the center of the map. Even if you pan

completely away from the blue dot, the map returns to show it in the center.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 554

Using Proximity Alerts
We mentioned earlier that the LocationManager can notify you when the device enters a

specified geographical location. The method to set this up is addProximityAlert() from

the LocationManager class. Basically, you tell the LocationManager that you want an

Intent to be fired when the location of the device goes into, or leaves, a circle of a

certain radius with a center at a latitude/longitude position. The Intent can trigger a

BroadcastReceiver or a Service to be called, or an Activity to be started. There is also

an optional time limit placed on the alert, so it could time out before the Intent fires.

Internally, the code for this method registers listeners for both the GPS and network

providers and sets up location updates for once per second and a minDistance of 1

meter. You don't have any way to override this behavior or set parameters. Therefore, if

you leave this running for a long time, you could end up draining the battery very

quickly. If the screen goes to sleep, proximity alerts will only be checked once every 4

minutes, but again, you have no control over the time duration here.

It could be much better to do your own thing to decide if the device is within a certain

distance of a latitude/longitude position using the techniques we've shown you in this

chapter. For example, if you maintain a list of locations that you want to check against,

you could measure the distance from the current location to each location in the list.

Depending on how far away you are, you could decide to wait quite a while before

checking the current location again. For example, if the nearest location is 100 miles

away and we want to know when we're within 300 meters, clearly, we don't need to

check in 1 second from now.

If you do wish to use this method though, we'll show you how. Listing 17–12 shows the

Java code for our main Activity, as well as the BroadcastReceiver that will receive the

broadcasts.

Listing 17–12. Setting up a Proximity Alert with a BroadcastReceiver

// This file is ProximityActivity.java
package com.androidbook.location.proximity;

import android.app.Activity;
import android.app.PendingIntent;
import android.content.Intent;
import android.content.IntentFilter;
import android.location.LocationManager;
import android.net.Uri;
import android.os.Bundle;

public class ProximityActivity extends Activity {
 private final String PROX_ALERT =
 "com.androidbook.intent.action.PROXIMITY_ALERT";
 private ProximityReceiver proxReceiver = null;
 private LocationManager locMgr = null;
 PendingIntent pIntent1 = null;
 PendingIntent pIntent2 = null;

 /** Called when the activity is first created. */
 @Override

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 555

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 locMgr = (LocationManager)
 this.getSystemService(LOCATION_SERVICE);

 double lat = 30.334954; // Coordinates for Jacksonville, FL
 double lon = -81.5625;
 float radius = 5.0f * 1609.0f; // 5 miles x 1609 meters per mile

 String geo = "geo:"+lat+","+lon;

 Intent intent = new Intent(PROX_ALERT, Uri.parse(geo));
 intent.putExtra("message", "Jacksonville, FL");

 pIntent1 = PendingIntent.getBroadcast(getApplicationContext(), 0,
 intent, PendingIntent.FLAG_CANCEL_CURRENT);

 locMgr.addProximityAlert(lat, lon, radius, -1L, pIntent1);

 lat = 28.54; // Coordinates for Orlando, FL
 lon = -81.38;
 geo = "geo:"+lat+","+lon;

 intent = new Intent(PROX_ALERT, Uri.parse(geo));
 intent.putExtra("message", "Orlando, FL");

 pIntent2 = PendingIntent.getBroadcast(getApplicationContext(), 0,
 intent, PendingIntent.FLAG_CANCEL_CURRENT);

 locMgr.addProximityAlert(lat, lon, radius, -1L, pIntent2);

 proxReceiver = new ProximityReceiver();

 IntentFilter iFilter = new IntentFilter(PROX_ALERT);
 iFilter.addDataScheme("geo");

 registerReceiver(proxReceiver, iFilter);
 }

 protected void onDestroy() {
 super.onDestroy();
 unregisterReceiver(proxReceiver);
 locMgr.removeProximityAlert(pIntent1);
 locMgr.removeProximityAlert(pIntent2);
 }
}

// This file is ProximityReceiver.java
package com.androidbook.location.proximity;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.location.LocationManager;
import android.os.Bundle;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 556

import android.util.Log;

public class ProximityReceiver extends BroadcastReceiver {

 private static final String TAG = "ProximityReceiver";

 @Override
 public void onReceive(Context arg0, Intent intent) {
 Log.v(TAG, "Got intent");
 if(intent.getData() != null)
 Log.v(TAG, intent.getData().toString());
 Bundle extras = intent.getExtras();
 if(extras != null) {
 Log.v(TAG, "Message: " + extras.getString("message"));
 Log.v(TAG, "Entering? " +
 extras.getBoolean(LocationManager.KEY_PROXIMITY_ENTERING));
 }
 }
}

Because we're not actually displaying any positions on a map, we do not need to use a

MapActivity, the Google Map APIs library, or a target. However, we do need to add a

permission to our manifest file for android.permission.ACCESS_FINE_LOCATION, because the

LocationManager will be attempting to use the GPS provider. It also attempts to use the

network provider, but since we already require ACCESS_FINE_LOCATION, we're covered

permissionwise. We register our BroadcastReceiver in code in the onCreate() method, so

we do not need to set up a receiver in the manifest file. If you put the receiver into a separate

application, then you would need to add an entry in that manifest file for the receiver. For our

sample in Listing 17–12, it could look like the manifest snippet in Listing 17–13.

Listing 17–13. AndroidManifest.xml snippet for a BroadcastReceiver for a Proximity Alert

<application … >

 <receiver android:name=".ProximityReceiver">
 <intent-filter>
 <action android:name="com.androidbook.android.intent.PROXIMITY_ALERT" />
 <data android:scheme=”geo” />
 </intent-filter>
 </receiver>
</application>

The proximity alert capability in Android works by receiving a PendingIntent object, the

coordinates of our latitude/longitude point of interest, the radius (in meters) around that

point that we want to check, and a time duration for how long to check. These

arguments are all passed in using the addProximityAlert() method of LocationManager.

The PendingIntent contains an Intent that will be the thing fired if the device either

enters, or leaves, the circle we've defined. For our sample, we've chosen to use a

broadcast intent, so we called the getBroadcast() method of the PendingIntent class,

passing in our application's context plus our Intent that contains the alert action and

the Uri of our Location point. If the device enters or leaves our circle of interest, our

Intent will be broadcast to any receivers registered to receive it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 557

We chose not to set a timeout for our alerts, using a value of -1L for the duration. If you

want to set a timeout, this value would be the number of milliseconds LocationManager

waits before giving up and deleting your PendingIntent. You will not be notified if

LocationManager deletes it before it fires.

For our sample, we get a reference to the LocationManager, create our first Intent and

PendingIntent, and then we call addProximityAlert() to set up our first alert. Later,

when our Intent fires, the only thing the LocationManager will add to it (in extras) is a

boolean that says whether we're entering or leaving the circle. It does not add the

current latitude/longitude position of the device, nor the latitude/longitude that we used

in the call to addProximityAlert(). Therefore, in order for us to know which Location

we're near in our BroadcastReceiver, we’ve added some data to our Intent, which is

the latitude/longitude of our Location of interest. For fun, we've also added a message,

in extras, with the description of this Location. We could have added doubles for the

latitude and longitude if it would help on the receiving end.

After adding our first alert, we set up a second alert in the same fashion as before. Finally,

we register a BroadcastReceiver to receive our Intents when they are broadcast by the

LocationManager. We use an IntentFilter with both the alert as the action, and geo as the

scheme. We need both things so we catch the broadcasts, because the broadcasts

contain data; we could catch broadcasts without specifying a scheme if the broadcasts

did not contain any data. The last thing we need to do is make sure we clean up after

ourselves in the onDestroy() method, by unregistering our receiver and removing our

proximity alerts from LocationManager using our saved PendingIntents. This is why we

keep references to our PendingIntents, so we can remove the alerts later.

Our ProximityReceiver class is very simple. Upon receiving a broadcast message, it

looks for information to print out in LogCat. Here is where you can see the extra data that

LocationManager inserts for us, to tell us if we're entering or leaving the circle.

When you start up this sample application in the emulator, you'll see a blank screen with

our application title. Now, you can send in location updates, using either the DDMS

Emulator Control screen, or the emulator console with the geo fix command. When you

send in locations such that you've transitioned across the edge of one of our circles (i.e.,

either the five-mile circle around Jacksonville or the five-mile circle around Orlando), you

should see messages in LogCat from our BroadcastReceiver. Figure 17–11 shows what

your LogCat window might look like once you've sent in some location updates that

trigger the broadcasts.

Figure 17–11. LogCat window with messages from our BroadcastReceiver

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 17: Exploring Maps and Location-based Services 558

Because these are broadcasts, we cannot rely on the order in which they are received.

For example, if we're inside the Orlando circle and we jump inside the Jacksonville

circle, we could receive the broadcast that says we're inside the Jacksonville circle

before we get the broadcast that says we left the Orlando circle.

Since we're dealing with Locations, we’re using the geo scheme for the URI, which is

one of the known schemes and quite perfect for passing latitude and longitude

information. You should note that the structure of the geo URI puts latitude before

longitude, but when we use the geo fix command in our emulator console, we put

longitude before latitude. This can trip you up if you're not paying attention, and you

could end up spending a lot of time trying to debug your application when the problem

is simply the order in which you're sending in location updates. You could always use a

GPX or KML file to send in locations and preselect locations for testing where your circle

will overlap with the path from that file.

Our sample application is very simple. In a real application, the BroadcastReceiver could

do notifications or start a service. Instead of a broadcast, PendingIntent could be for an

activity or a service, even in some other application. Our application could be a

mentioned service instead.

References
Here are some helpful references to topics you may wish to explore further.

 http://www.androidbook.com/projects. Look here for a list of

downloadable projects related to this book. For this chapter look for a

zip file called ProAndroid3_Ch17_Maps.zip. This zip file contains all

projects from this chapter, listed in separate root directories. There is

also a README.TXT file that describes exactly how to import projects

into Eclipse from one of these zip files.

Summary
In this chapter, we discussed maps and location-based services. We talked at length

about using the MapView control and the MapActivity class. We started with the basics

of the map and then showed you how to utilize overlays to place markers on maps. We

even showed you how to geocode and handle geocoding in background threads. We

talked about the LocationManager class, which provides detailed location information

through providers and allows us to display the current location of the device on a map.

Last, we showed you how to use proximity alerts.

In the next chapter, we’ll talk about the telephony services of Android.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

559

559

 Chapter

Using the Telephony APIs
Many Android devices are smartphones, but so far, we haven't talked about how to

program applications that use phone features. In this chapter, we will show you how to

send and receive Short Message Service (SMS) messages. We will also touch on several

other interesting aspects of the telephony APIs in Android, including the Session

Initiation Protocol (SIP) functionality. SIP is an IETF standard for implementing Voice

over Internet Protocol (VoIP) where the user can make telephone-like calls over the

Internet. SIP can also handle video.

Working with SMS
SMS stands for Short Message Service, but it’s commonly called text messaging. The

Android SDK supports sending and receiving text messages. We’ll start by discussing

various ways to send SMS messages with the SDK.

Sending SMS Messages
To send a text message from your application, you need to add the

android.permission.SEND_SMS permission to your manifest file and then use the

android.telephony.SmsManager class. See Listing 18-1 for the layout XML file and the

Java code for this example. If you need to see where the permission goes in the

manifest XML file, you can sneak ahead to Listing 18-2.

NOTE: We will give you a URL at the end of the chapter which you can use to download projects

of this chapter. This will allow you to import these projects into your Eclipse directly.

Listing 18-1. Sending SMS (Text) Messages

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 560

 android:layout_height="fill_parent">

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Destination Address:" />

 <EditText android:id="@+id/addrEditText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:phoneNumber="true"
 android:text="9045551212" />

 </LinearLayout>

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Text Message:" />

 <EditText android:id="@+id/msgEditText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="hello sms" />

 </LinearLayout>

 <Button android:id="@+id/sendSmsBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Send Text Message"
 android:onClick="doSend" />

</LinearLayout>

// This file is TelephonyDemo.java
import android.app.Activity;
import android.os.Bundle;
import android.telephony.SmsManager;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;

public class TelephonyDemo extends Activity
{
 @Override

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 561

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void doSend(View view) {
 EditText addrTxt =
 (EditText) findViewById(R.id.addrEditText);

 EditText msgTxt =
 (EditText) findViewById(R.id.msgEditText);

 try {
 sendSmsMessage(
 addrTxt.getText().toString(),
 msgTxt.getText().toString());
 Toast.makeText(this, "SMS Sent",
 Toast.LENGTH_LONG).show();
 } catch (Exception e) {
 Toast.makeText(this, "Failed to send SMS",
 Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 }

 private void sendSmsMessage(String address,String message)throws Exception
 {
 SmsManager smsMgr = SmsManager.getDefault();
 smsMgr.sendTextMessage(address, null, message, null, null);
 }
}

The example in Listing 18-1 demonstrates sending SMS text messages using the

Android SDK. Looking at the layout snippet first, you can see that the user interface has

two EditText fields: one to capture the SMS recipient’s destination address (the phone

number) and another to hold the text message. The user interface also has a button to

send the SMS message, as shown in Figure 18-1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 562

Figure 18-1. The UI for the SMS example

The interesting part of the sample is the sendSmsMessage() method. The method uses

the SmsManager class’s sendTextMessage() method to send the SMS message. Here’s

the signature of SmsManager.sendTextMessage():

sendTextMessage(String destinationAddress, String smscAddress,
 String textMsg, PendingIntent sentIntent,
 PendingIntent deliveryIntent);

In this example, you populate only the destination address and the text-message

parameters. You can, however, customize the method so it doesn’t use the default SMS

center (the address of the server on the cellular network that will dispatch the SMS

message). You can also implement a customization in which pending intents are

broadcast when the message is sent (or failed) and when a delivery notification has been

received.

There are two main steps to sending an SMS message, sending and delivering. As each

step is reached, if provided by your application, a pending intent is broadcast. You can

put whatever you want into the pending intent, such as the action, but the result code

passed to your BroadcastReceiver will be specific to SMS sending or delivery. Also, you

may get extra data related to radio errors or status reports depending on the

implementation of the SMS system.

Without pending intents your code can't tell if the text message was sent successfully or

not. While testing though you can. If you launch this sample application in an emulator

and launch another instance of an emulator (either from the command line or from the

Eclipse Window Android SDK and AVD Manager screen), you can use the port

number of the other emulator as the destination address. The port number is the number

that appears in the emulator window title bar; it’s usually something like 5554. After

clicking the Send Text Message button, you should see a notification appear in the other

emulator indicating that your text message has been received on the other side.

The SMSManager class provides two other ways to send SMS messages:

 sendDataMessage() takes an additional argument to specify a port

number and, instead of a String message, takes a byte array.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 563

 sendMultipartTextMessage() allows for sending text messages when

the whole message is larger than is allowed in the SMS specification.

sendMultipartTextMessage() method takes an array of Strings, but

note that it also then takes an optional array of pending intents for

both sending and delivery. The SMSManager class provides a

divideMessage() method to help split up big messages into multiple

parts.

All in all, sending an SMS message is about as simple as it gets with Android. Realize

that, with the emulator, your SMS messages are not actually sent to their destinations.

You can, however, assume success if the sendTextMessage() method returns without an

exception. As shown in Listing 18-1, you can use the Toast class to display a message

in the UI to indicate whether the SMS message was sent successfully.

Sending SMS messages is only half the story. Now, we’ll show you how to monitor

incoming SMS messages.

Monitoring Incoming SMS Messages
We’re going to use the same application that you just created to send SMS messages,

and we’re going to add a BroadcastReceiver to listen for the action

android.provider.Telephony.SMS_RECEIVED. This action is broadcast by Android when

an SMS message is received by the device. When we register our receiver, our

application will be notified whenever an SMS message is received. The first step in

monitoring incoming SMS messages is to request permission to receive them. To do

that, we must add the android.permission.RECEIVE_SMS permission to the manifest file.

To implement the receiver, we must write a class that extends

android.content.BroadcastReceiver and then register the receiver in the manifest file.

Listing 18-2 includes both the AndroidManifest.xml file and our receiver class. Notice

that both permissions are present in the manifest file because we still need the send

permission for the activity we created above.

Listing 18-2. Monitoring SMS Messages

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is AndroidManifest.xml -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.telephony" android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".TelephonyDemo"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name="MySMSMonitor">
 <intent-filter>
 <action

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 564

 android:name="android.provider.Telephony.SMS_RECEIVED"/>
 </intent-filter>
 </receiver>

 </application>
 <uses-sdk android:minSdkVersion="4" />

 <uses-permission android:name="android.permission.SEND_SMS"/>
 <uses-permission android:name="android.permission.RECEIVE_SMS"/>

</manifest>

// This file is MySMSMonitor.java
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.telephony.SmsMessage;
import android.util.Log;

public class MySMSMonitor extends BroadcastReceiver
{
 private static final String ACTION =
 "android.provider.Telephony.SMS_RECEIVED";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 if(intent!=null && intent.getAction()!=null &&
 ACTION.compareToIgnoreCase(intent.getAction())==0)
 {
 Object[] pduArray= (Object[]) intent.getExtras().get("pdus");
 SmsMessage[] messages = new SmsMessage[pduArray.length];
 for (int i = 0; i<pduArray.length; i++) {
 messages[i] = SmsMessage.createFromPdu(
 (byte[])pduArray [i]);
 Log.d("MySMSMonitor", "From: " +
 messages[i].getOriginatingAddress());
 Log.d("MySMSMonitor", "Msg: " +
 messages[i].getMessageBody());
 }
 Log.d("MySMSMonitor","SMS Message Received.");
 }
 }
}

The top portion of Listing 18-2 is the manifest definition for the BroadcastReceiver to

intercept SMS messages. The SMS monitor class is MySMSMonitor. The class

implements the abstract onReceive() method, which is called by the system when an

SMS message arrives. One way to test the application is to use the Emulator Control

view in Eclipse. Run the application in the emulator, and go to Window Show View

Other Android Emulator Control. The user interface allows you to send data to the

emulator to emulate receiving an SMS message or phone call. As shown in Figure 18-2,

you can send an SMS message to the emulator by populating the “Incoming number”

field and selecting the SMS radio button. Next, type some text in the Message field, and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 565

click the Send button. Doing this sends an SMS message to the emulator and invokes

your BroadcastReceiver’s onReceive() method.

Figure 18-2. Using the Emulator Control UI to send SMS messages to the emulator

The onReceive() method will have the broadcast intent, which will contain the

SmsMessage in the bundle property. You can extract the SmsMessage by calling

intent.getExtras().get("pdus"). This call returns an array of objects defined in

Protocol Description Unit (PDU) mode—an industry-standard way of representing an

SMS message. You can then convert the PDUs to Android SmsMessage objects, as

shown in Listing 18-2. As you can see, you get the PDUs as an object array from the

intent. You then construct an array of SmsMessage objects, equal to the size of the PDU

array. Finally, you iterate over the PDU array and create SmsMessage objects from the

PDUs by calling SmsMessage.createFromPdu(). What you do after reading the incoming

message must be quick. A broadcast receiver gets high priority in the system, but its

task must be finished quickly, and it does not get put into the foreground for the user to

see. Therefore, your options are limited. You should not do any direct UI work. Issuing a

notification is fine, as is starting a service to continue work there. Once the onReceive()

method completes, the hosting process of the onReceive() method could get killed at

any time. Starting a service is OK, but binding to one is not, since that would require

your process to exist for a while, which might not happen. For more information on

BroadcastReceivers, please see Chapter 14.

Now, let’s continue our discussion about SMS by looking at how you can work with

various SMS folders.

Working with SMS Folders
Accessing the SMS inbox is another common requirement. To get started, you need to

add read SMS permission (android.permission.READ_SMS) to the manifest file. Adding

this permission gives you the ability to read from the SMS inbox.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 566

To read SMS messages, you need to execute a query on the SMS inbox, as shown in

Listing 18-3.

Listing 18-3. Displaying the Messages from the SMS Inbox

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/sms_inbox.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

 <TextView android:id="@+id/row"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>

</LinearLayout>

// This file is SMSInboxDemo.java
import android.app.ListActivity;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.widget.ListAdapter;
import android.widget.SimpleCursorAdapter;

public class SMSInboxDemo extends ListActivity {

 private ListAdapter adapter;
 private static final Uri SMS_INBOX =
 Uri.parse("content://sms/inbox");

 @Override
 public void onCreate(Bundle bundle) {
 super.onCreate(bundle);
 Cursor c = getContentResolver()
 .query(SMS_INBOX, null, null, null, null);
 startManagingCursor(c);
 String[] columns = new String[] { "body" };
 int[] names = new int[] { R.id.row };
 adapter = new SimpleCursorAdapter(this, R.layout.sms_inbox,
 c, columns, names);

 setListAdapter(adapter);
 }
}

Listing 18-3 opens the SMS inbox and creates a list in which each item contains the

body portion of an SMS message. The layout portion of Listing 18-3 contains a simple

TextView that will hold the body of each message in a list item. To get the list of SMS

messages, you create a URI pointing to the SMS inbox (content://sms/inbox) and then

execute a simple query. You then filter on the body of the SMS message and set the list

adapter of the ListActivity. After executing the code from Listing 18-3, you’ll see a list

of SMS messages in the inbox. Make sure you generate a few SMS messages using the

Emulator Control before running the code on the emulator.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 567

Because you can access the SMS inbox, you would expect to be able to access other

SMS-related folders, such as the sent or draft folder. The only difference between

accessing the inbox and accessing the other folders is the URI you specify. For

example, you can access the sent folder by executing a query against

content://sms/sent. Following is the complete list of SMS folders and the URI for each

folder:

 All: content://sms/all

 Inbox: content://sms/inbox

 Sent: content://sms/sent

 Draft: content://sms/draft

 Outbox: content://sms/outbox

 Failed: content://sms/failed

 Queued: content://sms/queued

 Undelivered: content://sms/undelivered

 Conversations: content://sms/conversations

Android combines MMS and SMS and allows you to access content providers for both

at the same time, using an AUTHORITY of mms-sms. Therefore, you can access a URI

such as this:

content://mms-sms/conversations

Sending E-mail
Now that you’ve seen how to send SMS messages in Android, you might assume that

you can access similar APIs to send e-mail. Unfortunately, Android does not provide

APIs for you to send e-mail. The general consensus is that users don’t want an

application to start sending e-mail on their behalf without them knowing about it.

Instead, to send e-mail, you have to go through a registered e-mail application. For

example, you could use ACTION_SEND to launch the e-mail application, as shown in

Listing 18-4.

Listing 18-4. Launching the E-mail Application Via an Intent

Intent emailIntent=new Intent(Intent.ACTION_SEND);

String subject = "Hi!";
String body = "hello from android....";

String[] recipients = new String[]{"aaa@bbb.com"};
emailIntent.putExtra(Intent.EXTRA_EMAIL, recipients);

emailIntent.putExtra(Intent.EXTRA_SUBJECT, subject);
emailIntent.putExtra(Intent.EXTRA_TEXT, body);
emailIntent.setType("message/rfc822");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 568

startActivity(emailIntent);

This code launches the default e-mail application and allows the user to decide whether

to send the e-mail or not. Other “extras” that you can add to an email intent include

EXTRA_CC and EXTRA_BCC.

Let’s assume you want to send an e-mail attachment with your message. To do this, you

would use something like the following, where the Uri is a reference to the file you want

as the attachment:

emailIntent.putExtra(Intent.EXTRA_STREAM,
 Uri.fromFile(new File(myFileName)));

Next, we’ll talk about the telephony manager.

Working with the Telephony Manager
The telephony APIs also include the telephony manager

(android.telephony.TelephonyManager), which you can use to obtain information about

the telephony services on the device, get subscriber information, and register for

telephony state changes. A common telephony use case requires that an application

execute business logic on incoming phone calls. For example, a music player might

pause itself for an incoming call and resume when the call has been completed. The

easiest way to listen for phone state changes is to implement a broadcast receiver on

"android.intent.action.PHONE_STATE". You could do this in the same way we listened

for incoming SMS messages above. The other way is to use the TelephonyManager.In

this section, we are going to show you how to register for telephony state changes and

how to detect incoming phone calls. Listing 18-4 shows the details.

Listing 18-5. Using the Telephony Manager

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/callBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Place Call"
 android:onClick="doClick"
 />
<TextView
 android:id="@+id/textView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 569

// This file is PhoneCallActivity.java
package com.androidbook.phonecall.demo;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.telephony.PhoneStateListener;
import android.telephony.TelephonyManager;
import android.view.View;
import android.widget.TextView;

public class PhoneCallActivity extends Activity {
 private TelephonyManager teleMgr = null;
 private MyPhoneStateListener myListener = null;
 private String logText = "";
 private TextView tv;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 tv = (TextView)findViewById(R.id.textView);

 teleMgr =
 (TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);
 myListener = new MyPhoneStateListener();
 }

 protected void onResume() {
 super.onResume();
 teleMgr.listen(myListener, PhoneStateListener.LISTEN_CALL_STATE);
 }

 protected void onPause() {
 super.onPause();
 teleMgr.listen(myListener, PhoneStateListener.LISTEN_NONE);
 }

 public void doClick(View target) {
 Intent intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("tel:5551212"));
 startActivity(intent);
 }

 class MyPhoneStateListener extends PhoneStateListener
 {
 @Override
 public void onCallStateChanged(int state, String incomingNumber)
 {
 super.onCallStateChanged(state, incomingNumber);

 switch(state)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 570

 case TelephonyManager.CALL_STATE_IDLE:
 logText = "call state idle...incoming number is["+
 incomingNumber + "]\n" + logText;
 break;
 case TelephonyManager.CALL_STATE_RINGING:
 logText = "call state ringing...incoming number is["+
 incomingNumber + "]\n" + logText;
 break;
 case TelephonyManager.CALL_STATE_OFFHOOK:
 logText = "call state Offhook...incoming number is["+
 incomingNumber + "]\n" + logText;
 break;
 default:
 logText = "call state [" + state +
 "]incoming number is[" +
 incomingNumber + "]\n" + logText;
 break;
 }
 tv.setText(logText);
 }
 }
}

When working with the telephony manager, be sure to add the

android.permission.READ_PHONE_STATE permission to your manifest file, so you can

access phone state information. As shown in Listing 18-5, you get notified about phone

state changes by implementing a PhoneStateListener and calling the listen() method

of the TelephonyManager. When a phone call arrives, or the phone state changes, the

system will call your PhoneStateListener’s onCallStateChanged() method with the new

state. As you will see when you try this out, the incoming phone number is only available

when the state is CALL_STATE_RINGING. You write a message to the screen in this

example, but your application could implement custom business logic in its place, such

as pausing the playback of audio or video. To emulate incoming phone calls, you can

use Eclipse’s Emulator Control UI, the same one you used to send SMS messages (see

Figure 18-2) but choose Voice instead of SMS.

Notice that we tell the TelephonyManager to stop sending us updates in onPause(). It is

always important to turn off messages when our activity is being paused. Otherwise, the

TelephonyManager could keep a reference to our object and prevent it from being

cleaned up later.

This example deals with only one of the phone states that are available for listening.

Check out the documentation on PhoneStateListener for others, including for example

LISTEN_MESSAGE_WAITING_INDICATOR. When dealing with phone state changes, you might

also need to get the subscriber’s (user’s) phone number.

TelephonyManager.getLine1Number() will return that for you.

You may be wondering if it’s possible to answer a phone via code. Unfortunately, at this

time, the Android SDK does not provide a way to do this, even though the

documentation implies that you can fire off an intent with an action of ACTION_ANSWER. In

practice, this approach does not yet work, although you may want to check to see if this

has been fixed since the time of this writing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 571

Similarly, you may want to place an outbound phone call via code. Here, you will find

things easier. The simplest way to make an outbound call is to invoke the Dialer

application via an intent with code such as the following:

Intent intent = new Intent(Intent.ACTION_CALL, Uri.parse("tel:5551212"));
startActivity(intent);

Note that for this to actually dial, your application will need the

android.permission.CALL_PHONE permission. Otherwise, when your application attempts

to invoke the Dialer application, you will get a SecurityException. To do dialing without

this permission, change the action of the intent to Intent.ACTION_VIEW, which will cause

the Dialer application to appear with your desired number to dial, but the user will need

to press the Send button to initiate the call.

One other thing to keep in mind when dealing with phone features in your application is

that other applications could very well respond to incoming phone calls and cause your

activity to pause. In that case, you’ll stop receiving notifications, although you will get an

immediate notification when your onResume() method is called again and you reregister

with the TelephonyManager. Be prepared for that when deciding what to do in your

handler for phone state notifications.

Session Initiation Protocol (SIP)
Android 2.3 (Gingerbread) introduced new features to support SIP, in the

android.net.sip package. SIP is an Internet Engineering Task Force (IETF) standard for

orchestrating the sending of voice and video over a network connection to link people

together in calls. This technology is sometimes called Voice over IP (VoIP), but note that

there is more than one way to do VoIP. Skype for instance, uses a proprietary protocol

to do their VoIP, and is incompatible with SIP. SIP is also not the same as Google Voice.

Google Voice does not (as of this writing) support SIP directly, although there are ways

to integrate Google Voice with a SIP provider to tie things together. Google Voice sets

up a new telephone number for you, that you can then connect with other phones such

as your home, work or mobile phone. Some SIP providers will generate a telephone

number that can be used with Google Voice, but in this case Google Voice does not

really know that the number is for a SIP account. A search of the Internet will reveal quite

a few SIP providers, many with reasonable calling rates, and some that are free.

It is important to note that the SIP standard does not address passing audio and video

data over a network. SIP is only involved in setting up, and tearing down, the direct

connections between devices to allow audio and video data to flow. Client computer

programs use SIP, as well as audio and video codecs and other libraries, to setup the

calls between users. Other standards often involved with SIP calls include the Real-time

Transport Protocol (RTP), Real-time Streaming Protocol (RTSP) and Session Description

Protocol (SDP).

Users can make SIP calls from desktop computers without incurring long distance

charges. The computer program can just as easily be running on a mobile device such

as an Android smartphone or tablet. SIP computer programs are often called “soft

phones”. The real advantage of a soft phone on a mobile device occurs when the device

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 572

is connecting to the Internet using Wi-Fi, so that the user is not using any wireless

minutes but is still able to make or receive a call. On the receiving end, a soft phone

must have registered its location and capabilities with a SIP provider so the provider’s

SIP server can respond to invite requests to setup the direct connection. If the receiver’s

soft phone is not available, the SIP server can direct the inbound request to a voicemail

account for example.

Google provides a demonstration application for SIP, called SipDemo. We’d like to

explore that application with you now, and help you understand how it works. Certain

aspects are not obvious if you are new to SIP. If you’d like to experiment with SipDemo,

you’re probably going to need a physical Android device that supports SIP. This is

because the Android emulators, as of this writing, do not support SIP (or Wi-Fi for that

matter). There are some attempts on the Internet to make SIP work in the emulator, and

by the time you read this, some may be easy to implement and robust. To play with

SipDemo you will also need to get a SIP account from a SIP provider. You will need to

have your SIP ID, SIP domain name (or proxy), and your SIP password. These will be

plugged into the SipDemo application’s preferences screen to be used by the

application. Lastly, you will need a Wi-Fi connection from your device to the Internet. If

you don’t want to actually experiment with SipDemo on a device, you should still be able

to understand the rest of this section. The SipDemo looks like Figure 18-3.

Figure 18-3. The SipDemo application with the Menu showing

To load SipDemo as a new project into Eclipse, use the New Android Project wizard, but

click the “Create project from existing sample” option, choose Android 2.3 or higher in

the Build Target section, then use the drop down Samples menu to choose SipDemo.

Click Finish and Eclipse will create the new project for you. You can run this project with

no changes to it, but as mentioned before, it won’t do anything unless the device

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 573

supports SIP, Wi-Fi is enabled, you’ve got a SIP account somewhere, you’ve used the

Menu button to edit your SIP info, and you use the Menu button to initiate a call. You will

need some other SIP account to call to test out the application. Pressing the big

microphone image on the screen allows you to talk to the other side. This demo

application can also receive an incoming call. Now let’s talk about the inner workings of

the android.net.sip package.

The android.net.sip package has four basic classes: SipManager, SipProfile, SipSession

and SipAudioCall. SipManager is at the core of this package, and provides access to the

rest of the SIP functionality. You invoke the static newInstance() method of SipManager

to get a SipManager object. With a SipManager object, you can then get a SipSession

for most SIP activity, or you can get a SipAudioCall for an audio-only call. This means

Google has provided features in the android.net.sip package above what standard SIP

provides, namely the ability to setup an audio call.

SipProfile is used to define the SIP accounts that will be talking to each other. This does

not point directly to an end user’s device, but rather the SIP account at a SIP provider.

The servers will assist in the rest of the details to setup actual connections.

A SipSession is where the magic happens. Setting up a session includes your SipProfile

so your application can make itself known to your SIP provider’s server. You also pass a

SipSession.Listener instance which is going to be notified when things are happening.

Once you’ve setup a SipSession object, your application is ready to make calls to

another SipProfile, or to receive incoming calls. The listener has a bunch of callbacks so

your application can properly deal with the changing states of the session.

As of Honeycomb, the easiest thing to do is use SipAudioCall. The logic is all there to

hook up the microphone and the speaker to the data streams so that you can carry on a

conversation with the other side. There are lots of methods on SipAudioCall for

managing mute, hold, and so on. All of the audio pieces are also handled for you. For

anything more than that, you have work to do. The SipSession class has the makeCall()

method for placing an outbound call. The main parameter is the session description (as

a String). This is where things require more work. Building a session description requires

formatting according to the Session Description Protocol (SDP) mentioned earlier.

Understanding a received session description means parsing it according to SDP. The

standards documentation for SDP is here: http://tools.ietf.org/html/rfc4566, and

unfortunately, the Android SDK does not provide any support for SDP. Thanks to some

very kind people, there are a couple of free SIP applications for Android that have built

this capability. They are sipdroid (http://code.google.com/p/sipdroid/) and csipsimple

(http://code.google.com/p/csipsimple/).

We haven’t even started talking about the codecs for managing video streams between

SIP clients, although sipdroid has this capability. Other aspects of SIP that are very

appealing are the ability to setup conference calls among more than two people. These

topics are beyond the scope of this book, but we hope you can appreciate what SIP can

do for you.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 18: Using the Telephony APIs 574

Note that SIP applications will need at a minimum the android.permission.USE_SIP and

android.permission.INTERNET permissions in order to function properly. Additional

permissions will be needed if you use SipAudioCall. It is also a good idea to add the

following tag to your AndroidManifest.xml file, as a child of <manifest>, so that your

application will only be installable on devices that have hardware support for SIP:

<uses-feature android:name="android.hardware.sip.voip" />

References
Here are some helpful references to topics you may wish to explore further.

 http://www.androidbook.com/projects. Look here for a list of downloadable

projects related to this book. For this chapter look for a zip file called

ProAndroid3_Ch18_Telephony.zip. This zip file contains all projects from this

chapter, listed in separate root directories. There is also a README.TXT file

that describes exactly how to import projects into Eclipse from one of these

zip files.

 http://en.wikipedia.org/wiki/Session_Initiation_Protocol. The Wikipedia

page for SIP.

 http://tools.ietf.org/html/rfc3261. This is the official IETF standard for

Session Initiation Protocol (SIP).

 http://tools.ietf.org/html/rfc4566. This is the official IETF standard for

Session Description Protocol (SDP).

 http://code.google.com/p/sipdroid/,

http://code.google.com/p/csipsimple/. Two open source applications for

Android that implement SIP clients.

Summary
In this chapter, we talked about the Android telephony APIs. Specifically, we showed

you how to send text messages, how to monitor incoming text messages, and how to

access the various SMS folders on the device. We covered the TelephonyManager class.

And we concluded with an overview of the Session Initiation Protocol (SIP) feature set

introduced with Android 2.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

575

575

 Chapter

Understanding the Media
Frameworks
Now we are going to explore a very interesting part of the Android SDK: the media

frameworks. We will show you how to play and record audio and video, from a variety of

sources. We’ll also cover how to take photos with the camera. Any discussion of media

would be incomplete without explaining secure digital (SD) cards and how to work with

them, since you’ll use SD cards often to read and write media files.

Using the Media APIs
Android supports playing audio and video content under the android.media package. In

this chapter, we are going to explore the media APIs from this package.

At the heart of the android.media package is the android.media.MediaPlayer class. The

MediaPlayer class is responsible for playing both audio and video content. The content

for this class can come from the following sources:

 Web: You can play content from the Web via a URL.

 .apk file: You can play content that is packaged as part of your .apk

file. You can package the media content as a resource or as an asset

(within the assets folder).

 SD card: You can play content that resides on the device’s SD card.

The MediaPlayer is capable of decoding quite a few different content formats, including

3GPP (.3gp), MP3 (.mp3), MIDI (.mid and others), Ogg Vorbis (.ogg), PCM/WAVE (.wav),

and MPEG-4 (.mp4). As of Android 3.0, HTTP live streaming and M3U playlists are also

supported. For a complete list of supported media formats, go to
http://developer.android.com/guide/appendix/media-formats.html.

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 576

Using SD Cards
Before we get into creating and using our different types of media, let’s look at how to

work with SD cards. SD cards are used in Android phones for storing lots of user data,

usually media content such as pictures, audio, and video. They are basically pluggable

memory chips that keep their data even when they lose power. On a real phone, the SD

card plugs into a memory slot and is accessible to the device. Many devices have one

slot, and it's not expected that you will replace the SD card. On some devices, you can

have multiple cards, switching among them with your device, and you can use them

across different devices. Fortunately for us, the Android emulator can simulate SD

cards, using space on your workstation’s hard drive as if it were a plug-in SD card.

When you created your first Android Virtual Device (AVD) in Chapter 2, you specified a

size for an SD card, which made it available to your application when you ran it in the

emulator. If you look inside the AVD directory that was created, you will see a file called

sdcard.img with the file size you specified. We didn’t use the SD card then, but we’ll be

using it in this chapter.

As a developer, once you have an SD card, you can use the Android tools within Eclipse

to push media files (or any other files) to the SD card. You can also use the Android

Debug Bridge (adb) utility to push or pull files to and from an SD card. The adb utility is

located in the tools subdirectory of the Android SDK; it is easy to get to from a tools

window, as described in Chapter 2.

You already know how to get an SD card by creating an AVD. And, of course, you could

create lots of AVDs that are the same except for the size of the SD card. Here’s the

other way to go: the Android SDK tools bundle contains a utility called mksdcard that can

create an SD card image. Actually, the utility creates a formatted file that is used as an

SD card. To use this utility, first find or create a folder for the image file, at

c:\Android\sdcard\, for example. Then open a tools window and run a command like

the following, using an appropriate path to the SD card image file:

mksdcard 256M c:\Android\sdcard\sdcard.img

This example command creates an SD card image at c:\Android\sdcard\ with the file

name sdcard.img. The size of the SD card will be 256MB. To specify other sizes, you

can use K for kilobytes, but G doesn’t work yet for gigabytes, so you’ll need to specify

multiples of 1024M to get gigabyte sizes. You can also simply specify an integer value

representing the total number of bytes. Also note that the Android emulator won’t work

with SD card sizes below 8MB.

The Android Development Tools (ADT) in Eclipse offers a way to specify extra

command-line arguments when launching the emulator. To find the field for the emulator

options, go to the Preferences window of Eclipse, then choose Android Launch. In

theory, you could add -sdcard "PATH_TO_YOUR_SD_CARD_IMAGE_FILE" here and it would

override the SD card file path for your AVD. But this hasn’t worked for a few Android

releases now, and you always get the SD card image file that was created along with the

AVD. The most reliable way to use a separate SD card with your AVD is to launch the

emulator from the command line and specify the SD card image to use there. From

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 577

within a Tools window (to see how to get a Tools window, refer to Chapter 2) the

following command launches a named AVD but uses the specified SD card image file

instead of the SD card image file that was created with the AVD:

emulator -avd AVDName -sdcard "PATH_TO_YOUR_SD_CARD_IMAGE_FILE"

When your SD card is first created, there are no files on it. You can add files by using the

File Explorer tool in Eclipse. Start the emulator and wait until the emulator initializes.

Then go to either the Java, Debug, or DDMS perspectives in Eclipse and look for the File

Explorer tab, as shown in Figure 19–1.

Figure 19–1. The File Explorer view

If the File Explorer is not shown, you can bring it up by going to Window Show View

Other Android and selecting File Explorer. Or, you can show the Dalvik Debug Monitor

Service (DDMS) perspective by going to Window Open Perspective Other DDMS.

The File Explorer view is by default on the DDMS perspective. The list of available views

in Eclipse for Android is shown in Figure 19–2.

To push a file onto the SD card, select the sdcard folder in the File Explorer and choose

the button with the right-facing arrow (at the top right-hand corner) pointing into what

looks like a phone. This launches a dialog box that lets you select a file. Select the file

that you want to upload to the SD card. The button next to it looks like a left arrow

pointing into a floppy disk. Choose this button for pulling a file from the device onto your

workstation, after selecting the file you want to pull from within the File Explorer.

If the File Explorer displays an empty view, you either don’t have the emulator running,

Eclipse has disconnected from the emulator, or the AVD that you are running in the

emulator is not selected under the Devices tab shown in. To get a Devices tab, follow

the same procedure as above for the File Explorer. Devices should also be available by

default on the DDMS perspective.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 578

Figure 19–2. Enabling Android views

The other way to move files onto and off of the SD card is to use the adb utility. To try

this, open a tools window, then type a command such as

adb push c:\path_to_my_file\filename /mnt/sdcard/newfile

This will push a file from your workstation to the SD card. Note that the device always

uses forward slashes to separate directories. Use whatever directory separator

character is appropriate for your workstation for the file that’s being pushed, and use an

appropriate path for the file on your workstation. Conversely, the following command will

pull a file from the SD card to your workstation:

adb pull /mnt/sdcard/devicefile c:\path_to_where_its_going\filename

One of the nice features of this command is that it will create directories as needed, in

either direction (push or pull), to get the file to the desired destination. Unfortunately, you

cannot use adb to copy multiple files at the same time. You must do each file separately.

NOTE: Until Android 2.2, the SD card was most likely at /sdcard. Since Android 2.2, the SD card
is most likely at /mnt/sdcard, however, there is a symbolic link called /sdcard that points to

/mnt/sdcard for backward compatibility.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 579

You may have noticed a directory on the SD card called DCIM. This is the Digital Camera

Images directory. It is an industry standard to put a DCIM directory within the root

directory of an SD card that’s used for digital images. It’s also an industry standard to

put a directory underneath DCIM that represents a camera, in the format 123ABCDE—

three digits followed by five letters. The emulator creates a directory called 100ANDRO

under DCIM, but makers of digital cameras, and Android phone makers, can call this

directory whatever they want. The emulator—and some Android phones—has a

directory called Camera under the DCIM directory, but this isn’t compliant with the

standard. Nevertheless, you may find image files under Camera and you may find them

under 100ANDRO, or you may find some other directory under DCIM where image files are

stored.

Unfortunately, there is not a method call to tell you which directory might be used

underneath the DCIM directory for Camera pictures. There are a couple of methods

though to tell you where the top of the SD card is. The first is

Environment.getExternalStorageDirectory() and it returns a File object for the top-

level directory for the SD card. On pre-Android 2.2 devices, this was most likely /sdcard,

but not on all devices. With Android 2.2, most devices will have /mnt/sdcard. It is much

better to use this Environment method than to assume you know the name of the SD

card's root directory. The other method we will describe next.

Since Android 2.2 (a.k.a. Froyo), there are some new constants available in the

Environment class for locating directories, and there’s also a new method in this class

for locating directories. Previously, the SD card was a bit of a free-for-all, with no

standardized directory names other than DCIM. With Froyo, there are several

standardized directory names, as described in Table 19–1. The third column is the

directory name used in the emulator, where the top of the SD card will most likely be

/mnt/sdcard (may vary by device). The variance in directories is why you should always

use an Environment method to find the desired directory on the SD card.

Table 19–1. The Standardized Directories of the SD card

Directory Constant Description Directory in Emulator

from Top of SD Card

DIRECTORY_ALARMS When Android looks for audio files to

use for alarms, it looks in this

standard directory.

Alarms

DIRECTORY_DCIM Industry standard directory to look for

pictures and video taken using the

Camera.

DCIM

DIRECTORY_DOWNLOADS Standard directory to hold files the

user has downloaded.

Download (note: not

plural)

DIRECTORY_MOVIES When Android looks for movie files for

the user, it looks in this standard

directory.

Movies

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 580

Directory Constant Description Directory in Emulator

from Top of SD Card

DIRECTORY_MUSIC When Android looks for audio files to

use as regular music for the user to

listen to, it looks in this standard

directory.

Music

DIRECTORY_NOTIFICATIONS When Android looks for audio files to

use for notifications, it looks in this

standard directory.

Notifications

DIRECTORY_PICTURES When Android looks for image files

not taken by the Camera, it looks in

this standard directory.

Pictures

DIRECTORY_PODCASTS When Android looks for audio files to

use as podcasts, it looks in this

standard directory.

Podcasts

DIRECTORY_RINGTONES When Android looks for audio files to

use for ringtones, it looks in this

standard directory.

Ringtones

The new method for locating directories is

Environment.getExternalStoragePublicDirectory(String type), where the type

parameter is one of the constants from Table 19–1. This method returns a File object

representing the requested directory. This method doesn’t exist on older devices (older

than Froyo), and even on newer devices you may find you need to accommodate

differences. For example, Samsung has devices with two SD cards, so these methods

are not sufficient to figure out all external storage on those.

And finally, a word about security. With the introduction of Android SDK 1.6, you need to

add this permission to your manifest file in order for your application to be able to write

to the SD card:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

However, applications written for the older Android SDKs are not required to request

this permission. That means that if your application’s minSdkVersion is less than 4

(corresponding to Android SDK 1.6), you do not need to add this tag to your

AndroidManifest.xml file, even if you’re running on a device that supports a newer

Android SDK. Therefore, when you are creating an application, if you choose a Build

Target of Android 1.6 or later (minSdkVersion of 4 or higher) and you want to be able to

write to the SD card, make sure you add the previous tag to your manifest file. If your

Build Target is Android 1.5, you do not need this tag. Now that you know the basics of

SD cards, let’s get into audio.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 581

Playing Media
To get started, we’ll show you how to build a simple application that plays an MP3 file

located on the Web (see Figure 19–3). After that, we will talk about using the

setDataSource() method of the MediaPlayer class to play content from the .apk file or

the SD card. MediaPlayer isn't the only way to play audio though, so we'll also cover the

SoundPool class, as well as JetPlayer, AsyncPlayer, and for the lowest level of working

with audio, the AudioTrack class. Next, we will discuss some of the shortfalls of the

MediaPlayer class. Finally, we’ll see how to play video content.

Playing Audio Content
Figure 19–3 shows the user interface for our first example. This application will

demonstrate some of the fundamental uses of the MediaPlayer class, such as starting,

pausing, restarting, and stopping the media file. Look at the layout for the application’s

user interface.

Figure 19–3. The user interface for the media application

The user interface consists of a LinearLayout with four buttons: one to start the player,

one to pause the player, one to restart the player and one to stop the player. The code

and layout file for the application are shown in Listing 19–1. We’re going to assume

you’re building against Android 2.2 or later for this example, since we’re using the

getExternalStoragePublicDirectory() method of Environment. If you want to build this

against an older version of Android, simply use getExternalStorageDirectory() instead,

and adjust where you put the media files so your application will find them.

NOTE: See the “References” section at the end of this chapter for the URL from which you can

import these projects into your Eclipse directly, instead of copying and pasting code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 582

Listing 19–1. The layout and code for the media application

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <Button android:id="@+id/startPlayerBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Playing Audio" android:onClick="doClick" />

 <Button android:id="@+id/pausePlayerBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Pause Player" android:onClick="doClick" />

 <Button android:id="@+id/restartPlayerBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Restart Player" android:onClick="doClick" />

 <Button android:id="@+id/stopPlayerBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Stop Player" android:onClick="doClick" />
</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.content.res.AssetFileDescriptor;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.os.Environment;
import android.util.Log;
import android.view.View;

public class MainActivity extends Activity
{
 static final String AUDIO_PATH =
 "http://www.androidbook.com/akc/filestorage/android/documentfiles/3389/play.mp3";
// Environment.getExternalStoragePublicDirectory(
// Environment.DIRECTORY_MUSIC) +
// "/music_file.mp3";
// Environment.getExternalStoragePublicDirectory(
// Environment.DIRECTORY_MOVIES) +
// " /movie.mp4";

 private MediaPlayer mediaPlayer;
 private int playbackPosition=0;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 583

 setContentView(R.layout.main);
 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.startPlayerBtn:
 try {
 // Only have one of these play methods uncommented
 playAudio(AUDIO_PATH);
// playLocalAudio();
// playLocalAudio_UsingDescriptor();
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case R.id.pausePlayerBtn:
 if(mediaPlayer != null && mediaPlayer.isPlaying()) {
 playbackPosition = mediaPlayer.getCurrentPosition();
 mediaPlayer.pause();
 }
 break;
 case R.id.restartPlayerBtn:
 if(mediaPlayer != null && !mediaPlayer.isPlaying()) {
 mediaPlayer.seekTo(playbackPosition);
 mediaPlayer.start();
 }
 break;
 case R.id.stopPlayerBtn:
 if(mediaPlayer != null) {
 mediaPlayer.stop();
 playbackPosition = 0;
 }
 break;
 }
 }

 private void playAudio(String url) throws Exception
 {
 killMediaPlayer();

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(url);
 mediaPlayer.prepare();
 mediaPlayer.start();
 }

 private void playLocalAudio() throws Exception
 {
 mediaPlayer = MediaPlayer.create(this, R.raw.music_file);
 // calling prepare() is not required in this case
 mediaPlayer.start();
 }

 private void playLocalAudio_UsingDescriptor() throws Exception {

 AssetFileDescriptor fileDesc = getResources().openRawResourceFd(
 R.raw.music_file);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 584

 if (fileDesc != null) {

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(fileDesc.getFileDescriptor(),
 fileDesc.getStartOffset(), fileDesc.getLength());

 fileDesc.close();

 mediaPlayer.prepare();
 mediaPlayer.start();
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 killMediaPlayer();
 }

 private void killMediaPlayer() {
 if(mediaPlayer!=null) {
 try {
 mediaPlayer.release();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
 }
}

In this first scenario, you are playing an MP3 file from a web address. Therefore, you will

need to add android.permission.INTERNET to your manifest file. Listing 19–1 shows that

the MainActivity class contains three members: a final string that points to the URL of

the MP3 file, a MediaPlayer instance, and an integer member called playbackPosition.

Our onCreate() method just sets up the user interface from our layout XML file. In the

button-click handler, when the Start Playing Audio button is pressed, the playAudio()

method is called. In the playAudio() method, a new instance of the MediaPlayer is

created and the data source of the player is set to the URL of the MP3 file. The

prepare() method of the player is then called to prepare the media player for playback,

and then the start() method is called to start playback.

Now look at the code for the Pause Player and Restart Player buttons. You can see that

when the Pause Player button is selected, you get the current position of the player by

calling getCurrentPosition(). You then pause the player by calling pause(). When the

player has to be restarted, you call seekTo(), passing in the position obtained earlier

from getCurrentPosition(), and then call start().

The MediaPlayer class also contains a stop() method. Note that if you stop the player

by calling stop(), you need to call prepare() before calling start() again. Conversely, if

you call pause(), you can call start() again without having to prepare the player. Also,

be sure to call the release() method of the media player once you are done using it. In

this example, you do this as part of the killMediaPlayer() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 585

Listing 19–1 shows you how to play an audio file located on the Web. The MediaPlayer

class also supports playing media local to your .apk file. Listing 19–2 shows how to

reference and play back a file from the /res/raw folder of your .apk file. Go ahead and

add the raw folder under /res if it’s not already there in the Eclipse project. Then copy

the mp3 file of your choice into /res/raw with the file name music_file.mp3.

Listing 19–2. Using the MediaPlayer to play back a file local to your application

 private void playLocalAudio()throws Exception
 {
 mediaPlayer = MediaPlayer.create(this, R.raw.music_file);
 // calling prepare() is not required in this case
 mediaPlayer.start();
 }

If you need to include an audio or video file with your application, you should place the

file in the /res/raw folder. You can then get a MediaPlayer instance for the resource by

passing in the resource ID of the media file. You do this by calling the static create()

method, as shown in Listing 19–2. Note that the MediaPlayer class also provides static

create() methods that you can use to get a MediaPlayer rather than instantiating one

yourself. For example, in Listing 19–2 you call the create() method, but you could

instead call the constructor MediaPlayer(Context context,int resourceId). Using the

static create() methods is preferable, because they hide the creation of the

MediaPlayer, and this includes invoking the prepare() method for you. However, as you

will see shortly, at times you will not have a choice between these two options—you will

have to instantiate the default constructor if your media content cannot be located via a

resource ID or a URL.

Understanding the setDataSource Method
In Listing 19–2, we called the create() method to load the audio file from a raw

resource. With this approach, you don’t need to call setDataSource(). Alternatively, if

you instantiate the MediaPlayer yourself using the default constructor, or if your media

content is not accessible through a resource ID or a URL, you’ll need to call

setDataSource().

The setDataSource() method has overloaded versions that you can use to customize

the data source for your specific needs. For example, Listing 19–3 shows how you can

load an audio file from a raw resource using a FileDescriptor.

Listing 19–3. Setting the MediaPlayer’s data source using a FileDescriptor

private void playLocalAudio_UsingDescriptor() throws Exception {

 AssetFileDescriptor fileDesc = getResources().openRawResourceFd(
 R.raw.music_file);
 if (fileDesc != null) {

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(fileDesc.getFileDescriptor(), fileDesc
 .getStartOffset(), fileDesc.getLength());

 fileDesc.close();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 586

 mediaPlayer.prepare();
 mediaPlayer.start();
 }
}

Listing 19–3 assumes that it’s within the context of an activity. As shown, you call the

getResources() method to get the application’s resources and then use the

openRawResourceFd() method to get a file descriptor for an audio file within the /res/raw

folder. You then call the setDataSource() method using the AssetFileDescriptor, the

starting position to begin playback, and the ending position. You can also use this

version of setDataSource() if you want to play back a specific portion of an audio file. If

you always want to play the entire file, you can call the simpler version of

setDataSource(FileDescriptor desc), which does not require the initial offset and

length.

Using one of the setDataSource() methods with the FileDescriptor can also be handy

if you want to feed a media file located within your application’s /data directory. For

security reasons, the media player does not have access to an application’s /data

directory, but your application can open the file and then feed the (opened)

FileDescriptor to setDataSource(). Realize that the application’s /data directory

resides in the set of files and folders under /data/data/APP_PACKAGE_NAME/. You can get

access to this directory by calling the appropriate method from the Context class, rather

than hard-coding the path. For example, you can call getFilesDir() on Context to get

the current application’s files directory. Currently, this path looks like this:

/data/data/APP_PACKAGE_NAME/files. Similarly, you can call getCacheDir() to get the

application’s cache directory. Your application will have read and write permission on

the contents of these folders, so you can create files dynamically and feed them to the

player. Finally, if you use FileDescriptor, as shown in Listing 19–3, be sure to close the

handle after calling setDataSource().

Observe that an application’s /data directory differs greatly from its /res/raw folder. The

/res/raw folder is physically part of the .apk file, and it is static—that is, you cannot

modify the .apk file dynamically. The contents of the /data directory, on the other hand,

are dynamic.

We have one more source for audio content to talk about: the SD card. Earlier we

showed you how to put content onto the SD card. Using it with MediaPlayer is pretty

easy. In our example above, we used setDataSource() to access content on the Internet

by passing in a URL for an MP3 file. If you’ve got an audio file on your SD card, you can

use the same setDataSource() method but instead pass it the path to your audio file on

the SD card. For example, if you put an MP3 file in the standard Music directory and

called the file music_file.mp3, you could modify the AUDIO_PATH variable and it would

play, like so:

 static final String AUDIO_PATH =
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MUSIC) +
 "/music_file.mp3";

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 587

Use SoundPool for Simultaneous Track Playing
MediaPlayer is an essential tool in our media toolbox, but it only handles one audio or

video file at a time. What if we want to play more than one audio track simultaneously?

One way is to create multiple MediaPlayers and work with them at the same time. If you

only have a small amount of audio to play, and you want snappy performance, Android

has the SoundPool class to help you. Behind the scenes, SoundPool uses MediaPlayer

but we don't get access to the MediaPlayer API, just the SoundPool API.

One of the other differences between MediaPlayer and SoundPool is that SoundPool is

designed to work with local media files only. That is, you can load audio from resources

files, files elsewhere using file descriptors, or files using a pathname. There are several

other nice features that SoundPool provides, such as the ability to loop an audio track,

pause and resume individual audio tracks, or pause and resume all audio tracks.

There are some downsides to SoundPool though. There is an overall audio buffer size for

all of the tracks that a SoundPool will manage, and it's not very large. In fact, it's 1MB.

This might seem large when you look at mp3 files that are only a few KB in size. But

SoundPool expands the audio in memory to make the playback fast and easy. The size of

an audio file in memory depends on the bit rate, number of channels (stereo vs. mono),

sample rate, and length of the audio. If you have trouble getting your sounds loaded into

a SoundPool, you could try playing with these parameters of your source audio file to

make the audio smaller in memory.

We’re going to show you an example application that loads and plays animal sounds.

One of the sounds is of crickets and it plays constantly in the background. The other

sounds play at different intervals of time. Sometimes all you hear are crickets; other

times you will hear several animals all at the same time. We’ll also put a button in the

user interface to allow for pausing and resuming. Listing 19–4 shows our layout XML file

and the Java code of our Activity. Your best bet is to download this from our website, in

order to get the sound files as well as the code. See the “References” section at the end

of this chapter for information on how to locate the downloadable source code.

Listing 19–4. Playing Audio with a SoundPool

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 >
<ToggleButton android:id="@+id/button"
 android:textOn="Pause" android:textOff="Resume"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:onClick="doClick" android:checked="true" />
</LinearLayout>

// This file is MainActivity.java
import java.io.IOException;
import android.app.Activity;
import android.content.Context;
import android.content.res.AssetFileDescriptor;
import android.media.AudioManager;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 588

import android.media.SoundPool;
import android.os.Bundle;
import android.os.Handler;
import android.util.Log;
import android.view.View;
import android.widget.ToggleButton;

public class MainActivity extends Activity implements SoundPool.OnLoadCompleteListener {
 private static final int SRC_QUALITY = 0;
 private static final int PRIORITY = 1;
 private SoundPool soundPool = null;
 private AudioManager aMgr;

 private int sid_background;
 private int sid_roar;
 private int sid_bark;
 private int sid_chimp;
 private int sid_rooster;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 protected void onResume() {
 soundPool = new SoundPool(5, AudioManager.STREAM_MUSIC,
 SRC_QUALITY);
 soundPool.setOnLoadCompleteListener(this);

 aMgr =
 (AudioManager)this.getSystemService(Context.AUDIO_SERVICE);

 sid_background = soundPool.load(this, R.raw.crickets, PRIORITY);

 sid_chimp = soundPool.load(this, R.raw.chimp, PRIORITY);
 sid_rooster = soundPool.load(this, R.raw.rooster, PRIORITY);
 sid_roar = soundPool.load(this, R.raw.roar, PRIORITY);

 try {
 AssetFileDescriptor afd =
 this.getAssets().openFd("dogbark.mp3");
 sid_bark = soundPool.load(afd.getFileDescriptor(),
 0, afd.getLength(), PRIORITY);
 afd.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 //sid_bark = soundPool.load("/mnt/sdcard/dogbark.mp3", PRIORITY);

 super.onResume();
 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.button:
 if(((ToggleButton)view).isChecked()) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 589

 soundPool.autoResume();
 }
 else {
 soundPool.autoPause();
 }
 break;
 }
 }

 @Override
 protected void onPause() {
 soundPool.release();
 soundPool = null;
 super.onPause();
 }

 @Override
 public void onLoadComplete(SoundPool sPool, int sid, int status) {
 Log.v("soundPool", "sid " + sid + " loaded with status " +
 status);

 final float currentVolume =
 ((float)aMgr.getStreamVolume(AudioManager.STREAM_MUSIC)) /
 ((float)aMgr.getStreamMaxVolume(AudioManager.STREAM_MUSIC));

 if(status != 0)
 return;
 if(sid == sid_background) {
 if(sPool.play(sid, currentVolume, currentVolume,
 PRIORITY, -1, 1.0f) == 0)
 Log.v("soundPool", "Failed to start sound");
 } else if(sid == sid_chimp) {
 queueSound(sid, 5000, currentVolume);
 } else if(sid == sid_rooster) {
 queueSound(sid, 6000, currentVolume);
 } else if(sid == sid_roar) {
 queueSound(sid, 12000, currentVolume);
 } else if(sid == sid_bark) {
 queueSound(sid, 7000, currentVolume);
 }
 }

 private void queueSound(final int sid, final long delay,
 final float volume)
 {
 new Handler().postDelayed(new Runnable() {
 @Override
 public void run() {
 if(soundPool == null) return;
 if(soundPool.play(sid, volume, volume,
 PRIORITY, 0, 1.0f) == 0)
 Log.v("soundPool", "Failed to start sound (" + sid +
 ")");
 queueSound(sid, delay, volume);
 }}, delay);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 590

The structure of this example is fairly straightforward. We have a user interface with a

single ToggleButton on it. We’ll use this to pause and resume the active audio streams.

When our app starts, we create our SoundPool and load it up with audio samples. When

the samples are properly loaded, we start playing them. The crickets sound plays in a

never-ending loop while the other samples play after a delay, then set themselves up to

play again after the same delay. By choosing different delays we get a somewhat

random effect of sounds on top of sounds.

Creating a SoundPool requires three parameters

The first is the maximum number of samples that the SoundPool will

play simultaneously. This is not how many samples the SoundPool can

hold.

The second parameter is which audio stream the samples will play on.

The typical value is AudioManager.STREAM_MUSIC, but SoundPool can

be used for alarms or ringtones. See the AudioManager reference page

for the complete list of audio streams.

The SRC_QUALITY value should just be set to 0 when creating the

SoundPool.

The code demonstrates several different load() methods of SoundPool. The most basic

is to load an audio file from /res/raw as a resource. We use this method for the first four

audio files. Then we show how you could load an audio file from the /assets directory of

the application. This load() method also takes parameters that specify the offset and

the length of the audio to load. This would allow us to use a single file with multiple

audio samples in it, pulling out just what we want to use. Finally, we show in comments

how you might access an audio file from the SD card. Up through Android 3.0, the

PRIORITY parameter should just be 1.

For our example, we chose to use some of the features introduced in Android 2.2,

specifically the onLoadCompleteListener interface for our Activity, and the autoPause()
and autoResume() methods in our button callback.

When loading sound samples into a SoundPool, we must wait until they are properly

loaded before we can start playing them. Within our onLoadComplete() callback, we

check the status of the load, and, depending on which sound it is, we then set it up to

play. If the sound is the crickets, we play with looping turned on (a value of -1 for the

fifth parameter). For the others, we queue the sound up to play after a short period of

time. The time values are in milliseconds. Note the setting of the volume. Android

provides the AudioManager to let us know the current volume setting. We also get the

maximum volume setting from AudioManager so we can calculate a volume value for

play() that is between 0 and 1 (as a float). The play() method actually takes a separate

volume value for the left and right channels, but we just set both to the current volume.

Again, PRIORITY should just be set to 1. The last parameter on the play() method is for

setting the playback rate. This value should be between 0.5 and 2.0, with 1.0 being

normal.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 591

Our queueSound() method uses a Handler to basically set up an event into the future.

Our Runnable will run after the delay period has elapsed. We check to be sure we still

have a SoundPool to play from, then we play the sound once, and schedule the same

sound to play again after the same interval as before. Because we call queueSound()

with different sound Ids and different delays, the effect is a somewhat random playing of

animal sounds.

When you run this example, you’ll hear crickets, a chimp, a rooster, a dog and a roar (a

bear, we think). The crickets are constantly chirping while the other animals come and

go. One nice thing about SoundPool is that it lets us play multiple sounds at the same

time with no real work on our part. Also, we’re not taxing the device too badly, since the

sounds were decoded at load time, and we simply need to feed the sounds bits to the

hardware.

If you click the button, the crickets will stop, as will any other animal sound currently

being played. However, the autoPause() method does not prevent new sounds from

being played. You’ll hear the animal sounds again within seconds (except for the

crickets). Because we’ve been queuing up sounds into the future, we will still hear those

sounds. In fact, SoundPool does not have a way to stop all sounds now and in the future.

You’ll need to handle stopping on your own. The crickets will only come back if we click

the button again to resume the sounds. But even then, we might have lost the crickets

since SoundPool will throw out the oldest sound to make room for newer sounds if the

maximum number of simultaneously playing samples is reached.

Playing Sounds with JetPlayer
SoundPool is not too bad a player, but the memory limitations can make it difficult to get

the job done. An alternative when you need to play simultaneous sounds is JetPlayer.

Tailored for games, JetPlayer is a very flexible tool for playing lots of sounds, and for

coordinating those sounds with user actions. The sounds are defined using MIDI (short

for Musical Instrument Digital Interface).

JetPlayer sounds are created using a special JETCreator tool. This tool is provided

under the Android SDK tools directory, although you’ll also need to install Python in

order to use it. The resulting JET file can be read into your application, and the sounds

set up for playback. The whole process is somewhat involved, and beyond the scope of

this book, so we'll just point you to more information in the “References” section at the

end of this chapter.

Playing Background Sounds with AsyncPlayer
If all you want is some audio played, and you don’t want to tie up the current thread, the

AsyncPlayer may be what you’re looking for. The audio source is passed as a Uri to this

class, so the audio file could be local or remote over the network. This class

automatically creates a background thread to handle getting the audio and starting the

playback. Because it is asynchronous, you won’t know exactly when the audio will start.

Nor will you know when it ends, or even if it’s still playing. You can however call stop()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 592

to get the audio to stop playing. If you call play() again before the previous audio has

finished playing, the previous audio will immediately stop and the new audio will begin at

some time in the future when everything has been set up and fetched. This is a very

simple class that provides an automatic background thread. Listing 19–5 shows how

your code should look to implement this.

Listing 19–5. Playing audio with AsyncPlayer

 private static final String TAG = "AsyncPlayerDemo";
 private AsyncPlayer mAsync = null;

[...]

 mAsync = new AsyncPlayer(TAG);
 mAsync.play(this, Uri.parse("file://” + “/perry_ringtone.mp3"),
 false, AudioManager.STREAM_MUSIC);

[...]

 @Override
 protected void onPause() {
 mAsync.stop();
 super.onPause();
 }

Low-level Audio Playback Using AudioTrack
So far we’ve been dealing with audio from files, be they local files or remote files. If you

want to get down to a lower level, perhaps to play audio from a stream, you need to

investigate the AudioTrack class. Besides the usual methods like play() and pause(),

AudioTrack provides methods for writing bytes to the audio hardware. This class gives

you the most control over audio playback, but it is much more complicated than the

audio classes discussed so far in this chapter. We’ll be showing a sample application a

little later in this chapter that uses the AudioRecord class. The AudioRecord class is very

much like the AudioTrack class, so to get a better understanding of the AudioTrack

class, please refer to the AudioRecord sample later on.

Understanding the MediaPlayer Oddities
In general, the MediaPlayer is very systematic, so you need to call operations in a

specific order to initialize a media player properly and prepare it for playback. The

following list summarizes some of the oddities of using the media APIs:

 Once you set the data source of a MediaPlayer, you cannot easily

change it to another one—you’ll have to create a new MediaPlayer or

call the reset() method to reinitialize the state of the player.

 After you call prepare(), you can call getCurrentPosition(),

getDuration(), and isPlaying() to get the current state of the player.

You can also call the setLooping() and setVolume() methods after the

call to prepare().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 593

 After you call start(), you can call pause(), stop(), and seekTo().

 Every MediaPlayer creates a new thread, so be sure to call the

release() method when you are done with the media player. The

VideoView takes care of this in the case of video playback, but you’ll

have to do it manually if you decide to use MediaPlayer instead of

VideoView.

This concludes our discussion about playing audio content. Now we’ll turn our attention

to playing video. As you will see, referencing video content is similar to referencing audio

content.

Playing Video Content
In this section, we are going to discuss video playback using the Android SDK.

Specifically, we will discuss playing a video from a web server and playing one from an

SD card. As you can imagine, video playback is a bit more involved than audio

playback. Fortunately, the Android SDK provides some additional abstractions that do

most of the heavy lifting.

NOTE: Playing back video in the emulator is not very reliable. If it works, great. But if it doesn't,
try running on a device instead. Because the emulator must use only software to run video, it can

have a very hard time keeping up with video, and you could get unexpected results.

Playing video requires more effort than playing audio, because there’s a visual

component to take care of in addition to the audio. To take some of the pain away,

Android provides a specialized view control called android.widget.VideoView that

encapsulates creating and initializing the MediaPlayer. To play video, you create a

VideoView widget in your user interface. You then set the path or Uri of the video and fire

the start() method. Listing 19–6 demonstrates video playback in Android.

Listing 19–6. Playing video using the Media APIs

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <VideoView android:id="@+id/videoView"
 android:layout_width="200px" android:layout_height="200px" />

</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.net.Uri;
import android.os.Bundle;
import android.widget.MediaController;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 594

import android.widget.VideoView;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.main);

 VideoView videoView =
 (VideoView)this.findViewById(R.id.videoView);
 MediaController mc = new MediaController(this);
 videoView.setMediaController(mc);
 videoView.setVideoURI(Uri.parse(
 "http://www.androidbook.com/akc/filestorage/android/" +
 "documentfiles/3389/movie.mp4"));
 /* videoView.setVideoPath(
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MOVIES) +
 "/movie.mp4");
 */
 videoView.requestFocus();
 videoView.start();
 }
}

Listing 19–6 demonstrates video playback of a file located on the Web at

www.androidbook.com/akc/filestorage/android/documentfiles/3389/movie.mp4, which

means the application running the code will need to request the

android.permission.INTERNET permission. All of the playback functionality is hidden

behind the VideoView class. In fact, all you have to do is feed the video content to the

video player. The user interface of the application is shown in Figure 19–4.

Figure 19–4. The video playback UI with media controls enabled

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 595

When this application runs, you will see the button controls along the bottom of the

screen for about three seconds, and then they disappear. You get them back by clicking

anywhere within the video frame. When we were doing playback of audio content, we

only needed to display the button controls to start, pause, and restart the audio. We did

not need a view component for the audio itself. With video, of course, we need button

controls as well as something to view the video in. For this example, we’re using a

VideoView component to display the video content. But instead of creating our own

button controls (which we could still do if we chose to), we create a MediaController

that provides the buttons for us. As shown in Figure 19–4 and Listing 19–6, you set the

VideoView’s media controller by calling setMediaController() to enable the play, pause,

and seek-to controls. If you want to manipulate the video programmatically with your

own buttons, you can call the start(), pause(), stopPlayback(), and seekTo() methods.

Keep in mind that we’re still using a MediaPlayer in this example—we just don’t see it.

You can in fact “play” videos directly in MediaPlayer. If you go back to the example from

Listing 19–1, put a movie file on your SD card, and plug in the movie’s file path in

AUDIO_PATH, you will find that it plays the audio quite nicely even though you can’t see

the video.

While MediaPlayer has a setDataSource() method, VideoView does not. VideoView

instead uses the setVideoPath() or setVideoURI() methods. Assuming you put a movie

file onto your SD card, you change the code from Listing 19–6 to comment out the

setVideoURI() call and uncomment the setVideoPath() call, adjusting the path to the

movie file as necessary. When you run the application again, you will now hear and see

the video in the VideoView. Technically, we could have called setVideoURI() with the

following to get the same effect as setVideoPath():

videoView.setVideoURI(Uri.parse("file://" +
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MOVIES) + "/movie.mp4"));

You might have noticed that VideoView does not have a method to read data from a file

descriptor as MediaPlayer did. You may also have noticed that MediaPlayer has a

couple of methods for adding a SurfaceHolder to a MediaPlayer (a SurfaceHolder is like

a view port for images or video). If you need to display video from under your

application's private data folder (i.e., under /data/data/...), you will need to use

MediaPlayer and a SurfaceHolder rather than the VideoView class. One of the

MediaPlayer methods is create(Context context, Uri uri, SurfaceHolder holder)

and the other is setDisplay(SurfaceHolder holder).

Now let’s explore recording media.

Recording Media
As we’ve shown, there are many ways to play media from within Android. For recording,

there are fewer options. The main workhorse of recording is the MediaRecorder class,

which is used for both audio and video. In this section, we’ll show you how to use

MediaRecorder for both types of media. The other class for recording audio is

AudioRecord, and we’ll demonstrate this with another sample application. Sometimes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 596

you don’t want to write code to accomplish something when an existing application can

do it for you. So we’ll also show you how to fire off an intent to record audio, as well as

to capture still camera images using the Camera application.

Exploring Audio Recording with MediaRecorder
The Android media framework supports recording audio. One way you record audio is

through the android.media.MediaRecorder class. In this section, we’ll show you how to

build an application that records audio content and then plays the content back. The

user interface of the application is shown in Figure 19–5.

Figure 19–5. The user interface of the audio-recorder example

As shown in Figure 19–5, the application contains four buttons: two to control recording,

and two to start and stop playback of the recorded content. Listing 19–7 shows the

layout file and activity class for the UI.

Listing 19–7. Media recording and playback in Android

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/record.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Button android:id="@+id/beginBtn" android:text="Begin Recording"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:onClick="doClick" />

 <Button android:id="@+id/stopBtn" android:text="Stop Recording"
 android:layout_width="fill_parent"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 597

 android:layout_height="wrap_content"
 android:onClick="doClick" />

 <Button android:id="@+id/playRecordingBtn"
 android:text="Play Recording"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:onClick="doClick" />

 <Button android:id="@+id/stopPlayingRecordingBtn"
 android:text="Stop Playing Recording"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:onClick="doClick" />

</LinearLayout>

// RecorderActivity.java
import java.io.File;
import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaRecorder;
import android.os.Bundle;
import android.os.Environment;
import android.view.View;

public class RecorderActivity extends Activity {
 private MediaPlayer mediaPlayer;
 private MediaRecorder recorder;
 private String OUTPUT_FILE;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.record);

 OUTPUT_FILE = Environment.getExternalStorageDirectory() +
 "/recordaudio3.3gpp";
 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.beginBtn:
 try {
 beginRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case R.id.stopBtn:
 try {
 stopRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 598

 case R.id.playRecordingBtn:
 try {
 playRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case R.id.stopPlayingRecordingBtn:
 try {
 stopPlayingRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 }
 }

 private void beginRecording() throws Exception {
 killMediaRecorder();

 File outFile = new File(OUTPUT_FILE);

 if(outFile.exists()) {
 outFile.delete();
 }
 recorder = new MediaRecorder();
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.setOutputFile(OUTPUT_FILE);
 recorder.prepare();
 recorder.start();
 }

 private void stopRecording() throws Exception {
 if (recorder != null) {
 recorder.stop();
 }
 }

 private void killMediaRecorder() {
 if (recorder != null) {
 recorder.release();
 }
 }

 private void killMediaPlayer() {
 if (mediaPlayer != null) {
 try {
 mediaPlayer.release();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private void playRecording() throws Exception {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 599

 killMediaPlayer();

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(OUTPUT_FILE);

 mediaPlayer.prepare();
 mediaPlayer.start();
 }

 private void stopPlayingRecording() throws Exception {
 if(mediaPlayer != null) {
 mediaPlayer.stop();
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 killMediaRecorder();
 killMediaPlayer();
 }
}

Before we jump into Listing 19–7, you’ll need to add the following permission to your

manifest file in order to record audio:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

As discussed earlier in the section on SD cards, if your application’s minSdkVersion is 4

or later, you will also need to add a uses-permission tag for

"android.permission.WRITE_EXTERNAL_STORAGE". Finally, if you are going to try this out

with the emulator, you’ll need to provide a microphone input on your workstation.

If you look at the onCreate() method in Listing 19–7, you’ll see that the only thing we

need to do there is create the file pathname for our output audio file. Our doClick()

method uses the standard pattern of switching on which button was pressed, and we

invoke the appropriate function call to perform each desired action. The

beginRecording() method handles recording. To record audio, you must create an

instance of MediaRecorder and set the audio source, output format, audio encoder, and

output file.

Up until Android SDK 1.6, the only supported audio source was the microphone.

Android SDK 1.6 added three more audio sources available, all related to phone calls.

You can record the entire call (MediaRecorder.AudioSource.VOICE_CALL), the uplink side

only (MediaRecorder.AudioSource.VOICE_UPLINK), or the downlink side only

(MediaRecorder.AudioSource.VOICE_DOWNLINK). The uplink side of a call would be the

voice of the phone’s user. The downlink side of the call would be sounds coming from

the other end of the call.

With Android SDK 2.1, two more audio sources were added: CAMCORDER and

VOICE_RECOGNITION. The CAMCORDER audio source would be a camera-related

microphone, otherwise this option will use the default main microphone of the device.

The VOICE_RECOGNITION microphone is one tuned to doing voice recognition, otherwise

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 600

this option also will use the default main microphone of the device. The phrase “tuned to

doing voice recognition” means that the audio stream will be as raw as possible, with no

extra audio modifications in between the microphone and your application. For example,

some HTC devices have Auto Gain Control (AGC) on the microphone, so using that

audio source for voice recognition will be problematic. The VOICE_RECOGNITION audio

source bypasses this extra processing for better results doing voice recognition.

The most common output format for audio is 3rd Generation Partnership Project (3GPP).

Prior to Andorid 2.3.3 (Gingerbread) you must set the encoder to AMR_NB, which signifies

the Adaptive Multi-Rate (AMR) narrowband audio codec, as this is the only supported

audio encoder. As of Anddroid 2.3.3, you can also use AMR_WB (wideband) and AAC

(Advanced Audio Coding) as audio encoders. The recorded audio in our example is

written to the SD card as a file named recordoutput.3gpp. Note that Listing 19–7

assumes that you’ve created an SD card image and that you’ve pointed the emulator to

the SD card. If you have not done this, refer to the section “Using SD Cards” for details

on setting this up.

There are some additional methods to the MediaRecorder that you might find useful. In

order to limit the length and size of audio recordings, the methods setMaxDuration(int
length_in_ms) and setMaxFileSize(long length_in_bytes) can be used. You would set

the maximum length of the recording, in milliseconds, or the maximum length of the

recording file, in bytes, to stop recording when these limits are reached. These were

both introduced with Android 1.5 so they are available on pretty much any device you

can record audio with.

Recording Audio with AudioRecord
So far, you’ve seen how to record audio directly to a file. But what if you want to do

some processing on the audio data before it goes to a file? Or what if you don’t even

want to send the audio to a file? Android provides a class called AudioRecord for just

these purposes. When you set up an AudioRecord object, Android will ensure that audio

data is written to the internal buffer of the AudioRecord, and then your application can do

whatever it wants with the audio data. Listing 19–8 shows an Activity for reading and

processing audio using an AudioRecord. There is no user interface for this Activity, as

we’ll just be writing log messages to LogCat. The AndroidManifest.xml is not shown, but

you will need to add an Android permission for android.permission.RECORD_AUDIO for

this to work.

Listing 19–8. Recording raw audio with AudioRecord

import android.app.Activity;
import android.media.AudioFormat;
import android.media.AudioRecord;
import android.media.MediaRecorder;
import android.os.Bundle;
import android.util.Log;

public class MainActivity extends Activity {
 protected static final String TAG = "AudioRecord";
 private int mAudioBufferSize;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 601

 private int mAudioBufferSampleSize;
 private AudioRecord mAudioRecord;
 private boolean inRecordMode = false;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 initAudioRecord();
 }

 @Override
 public void onResume() {
 super.onResume();
 Log.v(TAG, "Resuming...");
 inRecordMode = true;
 Thread t = new Thread(new Runnable() {

 @Override
 public void run() {
 getSamples();
 }
 });
 t.start();
 }

 protected void onPause() {
 Log.v(TAG, "Pausing...");
 inRecordMode = false;
 super.onPause();
 }

 @Override
 protected void onDestroy() {
 Log.v(TAG, "Destroying...");
 if(mAudioRecord != null) {
 mAudioRecord.release();
 Log.v(TAG, "Released AudioRecord");
 }
 super.onDestroy();
 }

 private void initAudioRecord() {
 try {
 int sampleRate = 8000;
 int channelConfig = AudioFormat.CHANNEL_IN_MONO;
 int audioFormat = AudioFormat.ENCODING_PCM_16BIT;
 mAudioBufferSize =
 2 * AudioRecord.getMinBufferSize(sampleRate,
 channelConfig, audioFormat);
 mAudioBufferSampleSize = mAudioBufferSize / 2;
 mAudioRecord = new AudioRecord(
 MediaRecorder.AudioSource.MIC,
 sampleRate,
 channelConfig,
 audioFormat,
 mAudioBufferSize);
 Log.v(TAG, "Setup of AudioRecord okay. Buffer size = " +

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 602

 mAudioBufferSize);
 Log.v(TAG, " Sample buffer size = " +
 mAudioBufferSampleSize);
 } catch (IllegalArgumentException e) {
 e.printStackTrace();
 }

 int audioRecordState = mAudioRecord.getState();
 if(audioRecordState != AudioRecord.STATE_INITIALIZED) {
 Log.e(TAG, "AudioRecord is not properly initialized");
 finish();
 }
 else {
 Log.v(TAG, "AudioRecord is initialized");
 }
 }

 private void getSamples() {
 if(mAudioRecord == null) return;

 short[] audioBuffer = new short[mAudioBufferSampleSize];

 mAudioRecord.startRecording();

 int audioRecordingState = mAudioRecord.getRecordingState();
 if(audioRecordingState != AudioRecord.RECORDSTATE_RECORDING) {
 Log.e(TAG, "AudioRecord is not recording");
 finish();
 }
 else {
 Log.v(TAG, "AudioRecord has started recording...");
 }

 while(inRecordMode) {
 int samplesRead = mAudioRecord.read(
 audioBuffer, 0, mAudioBufferSampleSize);
 Log.v(TAG, "Got samples: " + samplesRead);
 Log.v(TAG, "First few sample values: " +
 audioBuffer[0] + ", " +
 audioBuffer[1] + ", " +
 audioBuffer[2] + ", " +
 audioBuffer[3] + ", " +
 audioBuffer[4] + ", " +
 audioBuffer[5] + ", " +
 audioBuffer[6] + ", " +
 audioBuffer[7] + ", " +
 audioBuffer[8] + ", " +
 audioBuffer[9] + ", "
);
 }

 mAudioRecord.stop();
 Log.v(TAG, "AudioRecord has stopped recording");
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 603

Our sample application is fairly straightforward. We start by initializing our AudioRecord.

This requires choosing the audio source, the frequency of sampling, the channel

configuration (mono, stereo, left, right, and the like), the audio encoding format, and the

internal buffer size. For the audio source, you’ll choose from the set of options as

defined in MediaRecorder.AudioSource. One word of caution here: not all devices have

implemented VOICE_CALL since that acts like two inputs instead of one. For the sample

frequency, you should choose one of the standard values, such as 8000, 16000, 44100,

22050, or 11025 Hz. The channel configuration should be chosen from the CHANNEL*

values described in AudioFormat. The encoding format will be either ENCODING_PCM_8BIT

or ENCODING_PCM_16BIT. Note that your choice here will affect the kind of values you’ll

get back as raw audio data. If you don’t need the precision of 16 bit, go with 8 bit—

you’ll use less memory and go faster. The documentation says that only the sample

frequency of 44100 is guaranteed to work on all devices, but ironically the emulator only

supports 8000 Hz, CHANNEL_IN_MONO and ENCODING_PCM_8BIT.

The AudioRecord class has a static helper method called getMinBufferSize(), which will

take your desired parameter settings and return to you the minimum-sized buffer that

you should specify to properly initialize your AudioRecord. This buffer is not directly

accessible to you, but AudioRecord needs to have enough room internally to store audio

data while you’re processing the audio data you've retrieved previously. You can

certainly go with the minimum size value, or you could bump it up a little. You definitely

should not attempt to set a buffer size less than what is recommended by this helper

method. In our sample, we chose a buffer size twice what the minimum is. You’ll get an

IllegalArgumentException if your parameters are not acceptable to the AudioRecord.

For example, if you try a sample frequency value that is not supported on this hardware,

you’ll get this exception. Unfortunately, there is no convenient method to get a list of

supported sample frequencies, so your only recourse is to try a desired sample

frequency, and if you get the exception, try another sample frequency until you find one

that works.

As a last check within our initialize method, we make sure that our AudioRecord is

properly initialized. Now we’re ready to read audio samples.

We’ve chosen to turn on our sampling in the onResume() method of our Activity, and turn

off sampling in onPause(). We do not want to tie up our main UI thread with sampling, so

we create a separate thread to do the audio sampling in. We also set a boolean

(inRecordMode) so we can tell our thread to stop sampling. Within the getSamples()

method, we create our own buffer for the audio data. As mentioned before, we cannot

directly access the internal audio data buffer of our AudioRecord, so we read into our

sample buffer. Note that the size of our buffer is audioBufferSampleSize, not

audioBufferSize. We’re only reading the sample size so that’s all we need in our buffer.

We tell the AudioRecord to start recording, we check that the state has changed to

RECORDING, and then we start looping on reads. These are blocking reads, but we’re in a

separate thread, so it’s okay. As the AudioRecord gets to our sample size of data, our

read returns so we can process that audio sample.

Meanwhile, the AudioRecord will be collecting additional audio data for us for the next

time we call read. We only have a certain amount of time to do our processing before

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 604

the AudioRecord's internal buffer fills up, so we definitely want to be careful not to do too

much. Depending on what you want to do with the data, you could simply stop

recording and start again later. In our sample, we simply report in LogCat that we got

samples, and we display the first 10 values. As you run this sample application, make

different sounds into the microphone to see the values change in LogCat.

Our looping continues until the boolean inRecordMode goes to false, which happens

when the application is being hidden or is being killed.

While perusing the documentation on AudioRecord, you may notice some callback

interfaces. These allow you to set up listeners on either reaching a marker within the

audio stream, or triggering a periodic callback every so often. We modified our sample

above by adding the statements in Listing 19–9. For the complete source code of this

project, please see our web site.

Listing 19–9. Recording Raw Audio with AudioRecord and Callbacks

 // This code goes inside of our Activity class
 public OnRecordPositionUpdateListener mListener = new
OnRecordPositionUpdateListener() {

 public void onPeriodicNotification(AudioRecord recorder) {
 Log.v(TAG, "in onPeriodicNotification");
 }

 public void onMarkerReached(AudioRecord recorder) {
 Log.v(TAG, "in onMarkerReached");
 inRecordMode = false;
 }
 };

 // These statements go inside of initAudioRecord() after the
 // creation of mAudioRecord and before the check of the state
 // of mAudioRecord.
 mAudioRecord.setNotificationMarkerPosition(10000);
 mAudioRecord.setPositionNotificationPeriod(1000);
 mAudioRecord.setRecordPositionUpdateListener(mListener);

Notice how the listener has two separate callback methods. The first one is called every

time we read 1,000 frames of audio, which we set up in our initialization method. This

frame count is independent of our sample size buffer. While we may be reading 1,600

frames at a time, the first callback is invoked every 1,000 frames. We could therefore see

our callback invoked twice within one read loop. The second callback is called when our

absolute frame count is reached. In our sample application we set this to 10,000 frames,

and when this count is reached, we turn off recording by setting the boolean to false. If

we had only logged a message and not turned off recording, we would not have seen

this callback invoked again no matter how many frames were read in the future. The

marker is relative to when startRecording() is called on the AudioRecord.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 605

Exploring Video Recording
Since the introduction of Android SDK 1.5, you can capture video using the media

framework. This works in a similar way to recording audio and, in fact, recorded video

usually includes an audio track. There is one big exception with video, however.

Beginning with Android SDK 1.6, recording video requires that you preview the camera

images onto a Surface object. In basic applications this is not much of an issue, since

the user probably wants to be viewing what the camera sees . For more sophisticated

applications, however, this could be a problem. If your application doesn’t need to show

the video feed to the user as it happens, you still need to provide a Surface object so the

camera can preview the video. We expect this requirement will be relaxed in future

versions of the Android SDK, so that applications could work directly with the video

buffers without having to copy to a UI component as well. For now, though, we’ll have to

work with a Surface and we’ll show you how to do this. This sample application is a bit

long, so we’ve broken it down into pieces so we can describe what the pieces do as we

go along. You’ll most likely want to import this project into Eclipse after downloading from

our web site. See the “References” section at the end of this chapter for instructions on

how to do that. We start with the layout for our application in Listing 19–10.

Listing 19–10. Record Video’s XML layout

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout-land/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:orientation="horizontal" >
 <LinearLayout
 android:orientation="vertical" android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <Button android:id="@+id/initBtn"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Initialize Recorder" android:onClick="doClick"
 android:enabled="false" />

 <Button android:id="@+id/beginBtn"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Begin Recording" android:onClick="doClick"
 android:enabled="false" />

 <Button android:id="@+id/stopBtn"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Stop Recording" android:onClick="doClick" />

 <Button android:id="@+id/playRecordingBtn"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Play Recording" android:onClick="doClick" />

 <Button android:id="@+id/stopPlayingRecordingBtn"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:text="Stop Playing" android:onClick="doClick" />
 </LinearLayout>
 <LinearLayout android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent" >

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 606

 <TextView android:id="@+id/recording" android:text=" "
 android:textColor="#FF0000"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <VideoView android:id="@+id/videoView"
 android:layout_width="250dip" android:layout_height="200dip" />
 </LinearLayout>
</LinearLayout>

The result of this layout will look like Figure 19–6. This image was snapped during a

recording of video on a real device, looking at Eclipse on the workstation.

Figure 19–6. The Record Video UI

The layout is composed of two LinearLayouts side-by-side in a containing LinearLayout.

On the left are five buttons that our application will enable and disable as the

demonstration progresses. On the right is the main VideoView, and above it is the

RECORDING message, which turns on when the application is actually recording video.

As you’ve probably figured out, we’ve forced this application to be in landscape mode

by setting the android:screenOrientation=”landscape” attribute in the <activity> tag

in AndroidManifest.xml. Let’s start exploring this application with the MainActivity, as

shown in Listing 19–11.

Listing 19–11. Record Video’s MainActivity

public class MainActivity extends Activity implements
 SurfaceHolder.Callback, OnInfoListener, OnErrorListener {

 private static final String TAG = "RecordVideo";
 private MediaRecorder mRecorder = null;
 private String mOutputFileName;
 private VideoView mVideoView = null;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 607

 private SurfaceHolder mHolder = null;
 private Button mInitBtn = null;
 private Button mStartBtn = null;
 private Button mStopBtn = null;
 private Button mPlayBtn = null;
 private Button mStopPlayBtn = null;
 private Camera mCamera = null;
 private TextView mRecordingMsg = null;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.v(TAG, "in onCreate");
 setContentView(R.layout.main);

 mInitBtn = (Button) findViewById(R.id.initBtn);
 mStartBtn = (Button) findViewById(R.id.beginBtn);
 mStopBtn = (Button) findViewById(R.id.stopBtn);
 mPlayBtn = (Button) findViewById(R.id.playRecordingBtn);
 mStopPlayBtn = (Button) findViewById(R.id.stopPlayingRecordingBtn);
 mRecordingMsg = (TextView) findViewById(R.id.recording);

 mVideoView = (VideoView)this.findViewById(R.id.videoView);
 }
 // The rest of this class is in the listings that will follow.
}

We’re using a standard activity for this application, but we’re also implementing three

interfaces. The first interface, SurfaceHolder.Callback, is used to receive an indication of

when the Surface is ready for displaying a video image. The Surface in our case comes

from the VideoView. We also want to be told if there are any messages coming from our

MediaRecorder, which is why we implement both OnInfoListener and OnErrorListener.

The methods of these interfaces will be coming up shortly.

There are several member fields for our activity that we’ll need later, and we initialize

several of them in the onCreate() method. For now we’re only showing a comment

where the rest of the MainActivity class goes. Those class methods will be covered in

the subsequent listings, starting with Listing 19–12 where we show our standard

onResume() and onPause() methods.

Listing 19–12. Record Video’s Resume and Pause code

 @Override
 protected void onResume() {
 Log.v(TAG, "in onResume");
 super.onResume();
 mInitBtn.setEnabled(false);
 mStartBtn.setEnabled(false);
 mStopBtn.setEnabled(false);
 mPlayBtn.setEnabled(false);
 mStopPlayBtn.setEnabled(false);
 if(!initCamera())
 finish();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 608

 @Override
 protected void onPause() {
 Log.v(TAG, "in onPause");
 super.onPause();
 releaseRecorder();
 releaseCamera();
 }

NOTE: Listing 19–12 contains methods of our MainActivity class; we’ve only separated them into
different listings to make it easier to follow along. The same is true of the rest of the listings for

the Record Video application.

These are pretty standard methods. In onResume() we simply set our buttons to their

initialized state, and then we initialize the camera (that method is coming up next). In

onPause() we need to release both our MediaRecorder and Camera. This way, anytime

our application goes out of view, recording will stop and the camera is released so

another application can use it. If the user comes back to our application, things will

restart and the user will be able to record video again. Next up, in Listing 19–13, is the

initialization code for the camera, the Surface.Callback callbacks, plus the release

methods for both Camera and the MediaRecorder.

Listing 19–13. Record Video’s initCamera() and release methods

 private boolean initCamera() {
 try {
 mCamera = Camera.open();
 Camera.Parameters camParams = mCamera.getParameters();
 mCamera.lock();
 //mCamera.setDisplayOrientation(90);
 // Could also set other parameters here and apply using:
 //mCamera.setParameters(camParams);

 mHolder = mVideoView.getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 }
 catch(RuntimeException re) {
 Log.v(TAG, "Could not initialize the Camera");
 re.printStackTrace();
 return false;
 }
 return true;
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 Log.v(TAG, "in surfaceCreated");

 try {
 mCamera.setPreviewDisplay(mHolder);
 mCamera.startPreview();
 } catch (IOException e) {
 Log.v(TAG, "Could not start the preview");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 609

 e.printStackTrace();
 }
 mInitBtn.setEnabled(true);
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 Log.v(TAG, "in surfaceDestroyed");
 }

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 Log.v(TAG, "surfaceChanged: Width x Height = " + width + "x" + height);
 }

 private void releaseRecorder() {
 if(mRecorder != null) {
 mRecorder.release();
 mRecorder = null;
 }
 }

 private void releaseCamera() {
 if(mCamera != null) {
 try {
 mCamera.reconnect();
 } catch (IOException e) {
 e.printStackTrace();
 }
 mCamera.release();
 mCamera = null;
 }
 }

The initCamera() method is called to set up our access to the device’s camera. It’s the

beginning of everything. For this sample application, we are using the default

parameters of the Camera, but we could easily get the current parameter values, update

them, and write them back. The commented code shows where you could change the

camera’s behavior and appearance. Once the camera is set, we grab the SurfaceHolder

where the video images will appear.

The surfaceCreated() callback is where we give the camera object a place to show the

current view, in other words, the camera preview. Once the preview has been started we

can enable the button to initialize the MediaRecorder. The camera preview is a very

useful feature that allows the user to see what the camera sees before it starts

recording. Whether you’re doing video recording or still photography, you would most

likely do a preview and it would be done this way for either case.

For completeness, we’ve shown the releaseRecorder() and releaseCamera() methods.

These get called in onPause() as was shown in Listing 19–12.

At this point in our application, we’ve set up the camera, initialized our buttons and are

showing a preview of what the camera sees. Now the user can start clicking on buttons,

although the only one that is enabled at the start is the Initialize Recorder button. When

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 610

a button is pressed, the code in Listing 19–14 executes. Each of the five actions

corresponding to each button is provided in this listing. As each action executes, the

buttons will enable and disable appropriately for the next action. For example, once the

recorder has been initialized, the Initialize Recorder button is disabled and the Begin

Recording button is enabled.

Listing 19–14. Record Video’s Button processing code

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.initBtn:
 initRecorder();
 break;
 case R.id.beginBtn:
 beginRecording();
 break;
 case R.id.stopBtn:
 stopRecording();
 break;
 case R.id.playRecordingBtn:
 playRecording();
 break;
 case R.id.stopPlayingRecordingBtn:
 stopPlayingRecording();
 break;
 }
 }

 private void initRecorder() {
 if(mRecorder != null) return;

 mOutputFileName = Environment.getExternalStorageDirectory() +
 "/videooutput.mp4";

 File outFile = new File(mOutputFileName);
 if(outFile.exists()) {
 outFile.delete();
 }

 try {
 mCamera.stopPreview();
 mCamera.unlock();
 mRecorder = new MediaRecorder();
 mRecorder.setCamera(mCamera);

 mRecorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);
 mRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
 mRecorder.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
 mRecorder.setVideoSize(176, 144);
 mRecorder.setVideoFrameRate(15);
 mRecorder.setVideoEncoder(MediaRecorder.VideoEncoder.MPEG_4_SP);
 mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 mRecorder.setMaxDuration(7000); // limit to 7 seconds
 mRecorder.setPreviewDisplay(mHolder.getSurface());
 mRecorder.setOutputFile(mOutputFileName);

 mRecorder.prepare();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 611

 Log.v(TAG, "MediaRecorder initialized");
 mInitBtn.setEnabled(false);
 mStartBtn.setEnabled(true);
 }
 catch(Exception e) {
 Log.v(TAG, "MediaRecorder failed to initialize");
 e.printStackTrace();
 }
 }

 private void beginRecording() {
 mRecorder.setOnInfoListener(this);
 mRecorder.setOnErrorListener(this);
 mRecorder.start();
 mRecordingMsg.setText("RECORDING");
 mStartBtn.setEnabled(false);
 mStopBtn.setEnabled(true);
 }

 private void stopRecording() {
 if (mRecorder != null) {
 mRecorder.setOnErrorListener(null);
 mRecorder.setOnInfoListener(null);
 try {
 mRecorder.stop();
 }
 catch(IllegalStateException e) {
 // This can happen if the recorder has already stopped.
 Log.e(TAG, "Got IllegalStateException in stopRecording");
 }
 releaseRecorder();
 mRecordingMsg.setText("");
 releaseCamera();
 mStartBtn.setEnabled(false);
 mStopBtn.setEnabled(false);
 mPlayBtn.setEnabled(true);
 }
 }

 private void playRecording() {
 MediaController mc = new MediaController(this);
 mVideoView.setMediaController(mc);
 mVideoView.setVideoPath(mOutputFileName);
 mVideoView.start();
 mStopPlayBtn.setEnabled(true);
 }

 private void stopPlayingRecording() {
 mVideoView.stopPlayback();
 }

The initRecorder() method is where a lot of our setup happens. The recorder needs to

know where to record to, so we provide a file path name. We delete the file if it already

exists. Notice how we then stop the preview of the camera, unlock it, then we turn

around and connect it to the MediaRecorder? The camera is somewhat sensitive to

locking and unlocking, and sometimes you need to lock the camera to prevent others

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 612

from getting to it, and other times you need to unlock it so you can do what you want to

with it. This is one of those times when you need to unlock it to connect it to the

MediaRecorder. Once the camera is connected, which we do first, we proceed to set the

rest of the MediaRecorder attributes, including audio source and video source. But wait,

didn’t we just connect the camera to the recorder? Well, yes we did. But we still need to

set the video source explicitly. By setting the camera in the recorder, we avoid having to

destroy the Camera object only to have the recorder object build a new one. We also set

the audio and video encoders and a path to the output file on the SD card before calling

the prepare() method. The prepare() method comes at the end and gets us ready to

actually record something. We end this method by enabling the Begin Recording button.

The beginRecording() method is fairly straightforward by comparison. It adds the

listeners, calls start(), then sets the recording message string and changes the

buttons. When this method reaches the end, our application should be recording video

and the red RECORDING message should be displayed, like it was in Figure 19–6.

The stopRecording() method is a little more complicated, in part because it could be

called from more than one place. We’ll get to the second place in a bit, but for now

assume that the Stop Recording button has triggered this method. If we still have a valid

recorder, we disable the callbacks then call stop(). Since it is possible that stop() could

be called on a recorder that is already stopped, we handle the exception that says we

tried to stop a recorder that was already stopped. Then we release the recorder and the

camera, and set the RECORDING message to blank. Finally, the buttons change to

switch from recording to playback.

The playRecording() method is also straightforward. We grab a MediaController for our

VideoView, point it to our new file, then call start(). Our stopPlayingRecording()

method is even simpler; we just stop the playback of the video. When we’re in playback

mode, it’s harmless to click the Play button when the video is already playing, or click

Stop when the video is stopped.

We mentioned before that the recording action can be stopped from more than one

place. One of the settings on the recorder was a maximum duration of seven seconds.

This means that recording will stop after seven seconds and our info callback will get

called. Let’s take a look at these now in Listing 19–15.

Listing 19–15. Record Video’s Info Callbacks

 @Override
 public void onInfo(MediaRecorder mr, int what, int extra) {
 Log.i(TAG, "got a recording event");
 if(what == MediaRecorder.MEDIA_RECORDER_INFO_MAX_DURATION_REACHED) {
 Log.i(TAG, "...max duration reached");
 stopRecording();
 Toast.makeText(this, "Recording limit has been reached. Stopping the
recording",
 Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onError(MediaRecorder mr, int what, int extra) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 613

 Log.e(TAG, "got a recording error");
 stopRecording();
 Toast.makeText(this, "Recording error has occurred. Stopping the recording",
 Toast.LENGTH_SHORT).show();
 }
}

These two callbacks are very similar. The only difference between them is the

circumstances under which they are called. In the onInfo() method, the messages are

not considered errors. onInfo() could be called because we reached the maximum

recording time, or the maximum file size, if we set either of these options on the

recorder. For onError(), the documentation doesn’t say specifically why this might be

called, but it could be because the recorder runs out of space where the video file is

being written. If onInfo() was called because we hit our time limit, or if we got some

sort of recording error, we will stop recording.

As before when recording audio, we need to set the same permissions for audio

(android.permission.RECORD_AUDIO) and the SD card

(android.permission.WRITE_EXTERNAL_STORAGE), and now we need to add permission to

access the camera (android.permission.CAMERA). For completeness, the

AndroidManifest.xml file is shown in Listing 19–16. You’ll notice that we force the

orientation of our application to be landscape which is why our layout file is in

/res/layout-land/main.xml.

Listing 19–16. Record Video’s AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.record.video"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name"
 android:screenOrientation="landscape">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.RECORD_AUDIO"/>
<uses-permission android:name="android.permission.CAMERA"/>
</manifest>

Camera and Camcorder Profiles
In Listing 19–14, you saw in the initRecorder() method a series of very specific settings

for the video recorder. The question is, how can you know what the capabilities of the

device are that your application is running on? Prior to Android 2.2 there really wasn’t a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 614

good answer to this question. The stock Camera application that comes with Android

uses an undocumented SystemProperties class. Therefore, prior to Android 2.2 you had

to choose values that would work on the devices you wanted to target. This was less

than satisfying, especially as better cameras became available on the newer devices. To

rectify this situation, Android 2.2 introduced a couple of new classes: CameraProfile and

CamcorderProfile. These classes are simply containers for the camera attributes that

you care about. While CameraProfile only has one value (JPEG Encoding Quality
Parameter), CamcorderProfile tells you about the frame rate, frame size (height and

width), and other video and audio parameters. Not only that, but the MediaRecorder

class can accept a CamcorderProfile to set the various video recording values that a

CamcorderProfile contains. You just have to be careful to call the setProfile() method

after setting the video and audio sources, and before setting the output file.

With the introduction of Android 2.3, methods that deal with cameras now may have an

alternate method that will accept a camera identifier. Before Android 2.3, most devices

only had one camera and it usually faced the back of the device. With the newer devices

with front-facing cameras in addition to back-facing cameras, code needs a way to

specify which camera it wants to be dealing with. For example, in the Camera class, the

open() method will return a Camera object for the back-facing camera, if one exists.

There is an open(int cameraid) method that returns a specific camera, allowing your

application to use the front-facing camera if one exists. To determine how many

cameras are available and which one is which, the Camera.getNumberOfCameras()

method will return the camera count, and Camera.getCameraInfo() will return information

about a specific camera including in which direction it faces.

Exploring the MediaStore Class
So far, we’ve dealt with media by directly instantiating classes to play and record media

within our own application. One of the great things about Android is that you can access

other applications to do work for you. The MediaStore class provides an interface to the

media that is stored on the device, both internally and externally.

MediaStore also provides APIs for you to act on the media. These include mechanisms

for you to search the device for specific types of media, intents for you to record audio

and video to the store, ways for you to establish playlists, and more. Note that this class

was part of the older SDKs, but it has been greatly improved since the 1.5 release.

Because the MediaStore class supports intents for you to record audio and video, and

the MediaRecorder class does recording also, an obvious question is: when do you use

MediaStore versus MediaRecorder? As you saw with the preceding video-capture

example and the audio-recording examples, MediaRecorder enables you to set various

options on the source of the recording. These options include the audio/video input

source, video frame rate, video frame size, output formats, and so on. MediaStore does

not provide this level of granularity, but if you don't need it, you may find it easier to go

through the MediaStore’s intents. More important, content created with the

MediaRecorder is not automatically available to other applications that are looking at the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 615

media store. If you use MediaRecorder, you might want to add the recording to the

media store using the MediaStore APIs, so it might be simpler just to use MediaStore in

the first place. Another significant difference is that calling MediaStore through an intent

does not require your application to request permissions to record audio, or access the

camera, or to write to the SD card. Your application is invoking a separate activity, and

that other activity must have permission to record audio, access the camera, and write

to the SD card. The MediaStore activities already have these permissions. Therefore,

your application doesn’t have to. So, let’s see how we can leverage the MediaStore

APIs.

Recording Audio Using an Intent
As we’ve seen, recording audio was easy, but its gets much easier if you use an intent

from the MediaStore. Listing 19–17 demonstrates how to use an intent to record audio.

Listing 19–17. Using an Intent to record audio

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <Button android:id="@+id/recordBtn"
 android:text="Record Audio"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</LinearLayout>

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class UsingMediaStoreActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Button btn = (Button)findViewById(R.id.recordBtn);
 btn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {

 startRecording();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 616

 }});
 }

 public void startRecording() {
 Intent intt =
 new Intent("android.provider.MediaStore.RECORD_SOUND");
 startActivityForResult(intt, 0);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 switch (requestCode) {
 case 0:
 if (resultCode == RESULT_OK) {
 Uri recordedAudioPath = data.getData();
 Log.v(“Demo”, “Uri is “ + recordedAudioPath.toString());
 }
 }
 }
}

Listing 19–17 creates an intent requesting the system to begin recording audio. The

code launches the intent against an activity by calling startActivityForResult(),

passing the intent and the requestCode. When the requested activity completes,

onActivityResult() is called with the requestCode. As shown in onActivityResult(),

we look for a requestCode that matches the code that was passed to

startActivityForResult() and then retrieve the Uri of the saved media by calling

data.getData(). You could then feed the Uri to an intent to listen to the recording if you

wanted to. The UI for Listing 19–17 is shown in Figure 19–7.

Figure 19–7. Built-in audio recorder before and after a recording

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 617

Figure 19–7 shows two screenshots. The image on the left displays the audio recorder

during recording, and the image on the right shows the activity UI after the recording has

been stopped.

Similar to the way it provides an intent for audio recording, the MediaStore also provides

an intent for you to take a picture. Listing 19–18 demonstrates this.

Listing 19–18. Launching an intent to take a picture

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <Button android:id="@+id/btn" android:text="Take Picture"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="captureImage" />

</LinearLayout>

import android.app.Activity;
import android.content.ContentValues;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore;
import android.provider.MediaStore.Images.Media;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MainActivity extends Activity {

 Uri myPicture = null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
 }

 public void captureImage(View view)
 {
 ContentValues values = new ContentValues();
 values.put(Media.TITLE, "My demo image");
 values.put(Media.DESCRIPTION, "Image Captured by Camera via an Intent");

 myPicture = getContentResolver().insert(Media.EXTERNAL_CONTENT_URI, values);

 Intent i = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 i.putExtra(MediaStore.EXTRA_OUTPUT, myPicture);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 618

 startActivityForResult(i, 0);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode==0 && resultCode==Activity.RESULT_OK)
 {
 // Now we know that our myPicture Uri
 // refers to the image just taken
 }
 }
}

The activity class shown in Listing 19–18 defines the captureImage() method. In this

method, an intent is created where the action name of the intent is set to

MediaStore.ACTION_IMAGE_CAPTURE. When this intent is launched, the camera application

is brought to the foreground and the user takes a picture. Because we created the Uri in

advance, we can add additional details about the picture before the camera takes it.

This is what the ContentValues class does for us. Additional attributes can be added to

values besides TITLE and DESCRIPTION. Look up MediaStore.Images.ImageColumns in the

Android reference for a complete list. After the picture is taken, our onActivityResult()

callback is called. In our example, we’ve used the media content provider to create a

new file. We could also have created a new Uri from a new file on the SD card, as shown

here:

myPicture = Uri.fromFile(new
File(Environment.getExternalStoragePublicDirectory(DIRECTORY_DCIM) +
"/100ANDRO/imageCaptureIntent.jpg"));

However, creating a Uri this way does not so easily allow us to set attributes about the

image, such as TITLE and DESCRIPTION. There is another way to invoke the camera

intent in order to take a picture. If we do not pass any Uri at all with the intent, we will

get a bitmap object returned to us in the intent argument for onActivityResult(). The

problem with this approach is that by default, the bitmap will be scaled down from the

original size, apparently because the Android team does not want you to receive a large

amount of data from the camera activity back to your activity. The bitmap will have a

size of 50k. To get the Bitmap object, you’d do something like this inside of

onActivityResult():

Bitmap myBitmap = (Bitmap) data.getExtras().get("data");

MediaStore also has a video-capture intent that behaves similarly. You can use

MediaStore.ACTION_VIDEO_CAPTURE to capture video.

Adding Media Content to the Media Store
One of the other features provided by Android’s media framework is the ability to add

information about content to the media store via the MediaScannerConnection class. In

other words, if the media store doesn’t know about some new content, we use a

MediaScannerConnection to tell the media store about the new content. Then that

content can be served up to others. Let’s see how this works (see Listing 19–19).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 619

Listing 19–19. Adding a File to the MediaStore

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <EditText android:id="@+id/fileName" android:hint="Enter new filename"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

 <Button android:id="@+id/scanBtn" android:text="Add file"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick=”startScan” />

</LinearLayout>

import java.io.File;
import android.app.Activity;
import android.content.Intent;
import android.media.MediaScannerConnection;
import android.media.MediaScannerConnection.MediaScannerConnectionClient;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;

public class MediaScannerActivity extends Activity implements
MediaScannerConnectionClient
{
 private EditText editText = null;
 private String filename = null;
 private MediaScannerConnection conn;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 editText = (EditText)findViewById(R.id.fileName);
 }

 public void startScan(View view)
 {
 if(conn!=null) {
 conn.disconnect();
 }

 filename = editText.getText().toString();

 File fileCheck = new File(filename);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 620

 if(fileCheck.isFile()) {
 conn = new MediaScannerConnection(this, this);
 conn.connect();
 }
 else {
 Toast.makeText(this,
 "That file does not exist",
 Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onMediaScannerConnected() {
 conn.scanFile(filename, null);
 }

 @Override
 public void onScanCompleted(String path, Uri uri) {
 try {
 if (uri != null) {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(uri);
 startActivity(intent);
 }
 else {
 Log.e("MediaScannerDemo", "That file is no good");
 }
 } finally {
 conn.disconnect();
 conn = null;
 }
 }
}

Listing 19–19 shows an activity class that adds a file to the MediaStore. If the add is

successful, the added file is displayed to the user via an intent. What happens behind

the scenes is that the file is inspected by the MediaScanner to determine what type of file

it is and other relevant details about it. We could have given the MediaScanner the MIME

type of our file as the second argument to scanFile(). If MediaScanner can’t determine

what the type of the file is by the extension, it won’t get added. If the file belongs in the

MediaStore, a database entry is made into the media provider database. The file itself

doesn’t move. But now the media provider knows about this file. If you added an image

file, you can now open the Gallery application and see it. If you added a music file, it will

now show up in the Music application.

If you want to see inside the media provider’s database, open a tools window, launch

adb shell, and then navigate on the device to

/data/data/com.android.providers.media/databases. There you will find databases,

one of which is internal.db. There could be external database files there also,

corresponding to one or more SD cards. Since you can use multiple SD cards with an

Android phone, there could also be multiple external database files there. You can use

the sqlite3 utility to inspect the tables in these databases. There are tables for audio,

images, and video. See Chapter 4 for more information on using sqlite3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 621

Triggering MediaScanner for the Entire SD Card
In the previous example, we used the MediaScanner to look at a single, specific file. This

is fine if you want to add a single file. But what if you want to rename a file, or delete a

file, and you want the MediaStore to be updated? Fortunately, there's a very simple way

to trigger this to happen. If you execute the following inside your application, it will be

picked up by the MediaScanner, which will rescan the entire SD card:

sendBroadcast(new Intent(Intent.ACTION_MEDIA_MOUNTED,
 Uri.parse("file://" +
 Environment.getExternalStorageDirectory())));

As an exercise, go ahead and create a simple application that just does this command in

the onCreate().

This concludes our discussion of the media APIs. We hope you’ll agree that playing

and recording media content is not too difficult with Android.

References
Here are some helpful references to topics you may wish to explore further.

 www.androidbook.com/projects. Look here for a list of downloadable

projects related to this book. For the projects in this chapter, look for a

zip file called ProAndroid3_Ch19_Media.zip. This zip file contains all

projects from this chapter, listed in separate root directories. There is

also a README.TXT file that describes exactly how to import projects

into Eclipse from one of these zip files.

 http://developer.android.com/guide/topics/media/jet/jetcreator_
manual.html. This is the user manual for the JETCreator tool. You

would use this to create a JET sound file to be played using the

JetPlayer. JETCreator is only available for Windows and Mac OS. To

see JetPlayer in action, load the JetBoy sample project from the

Android SDK into Eclipse, build it and run it. FYI: the Fire button is the

center DPAD key.

Summary
In this chapter, we talked about the Android media framework. We showed you how to

play audio and video. We also showed you how to record audio and video, both directly

and via intents.

In the next chapter, we are going to turn our attention to 3D graphics by discussing how

to use OpenGL with your Android applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 19: Understanding the Media Frameworks 622

http://lib.ommolketab.ir
http//lib.ommolketab.ir

623

623

 Chapter

Programming 3D Graphics
with OpenGL
In this chapter, we will talk extensively about working with the OpenGL ES graphics API
on the Android Platform. OpenGL ES is a version of OpenGL that is optimized for
embedded systems and other low-powered devices such as mobile phones.

The Android Platform supports OpenGL ES 1.0 and OpenGL ES 2.0. The OpenGL ES
2.0 is available only from API level 8 corresponding to Android SDK release 2.2. As of
this writing, there are some issues with using Java bindings to OpenGL ES 2.0. See the
notes and recommendations on OpenGL ES 2.0 in a separate section towards the end
of this chapter. The primary issue is the lack of support for OpenGL ES 2.0 in the
emulator. Android 3.0 has strengthened the opportunities for OpenGL by introducing
Renderscript. Renderscript is meant for better performance by allowing to run native
code programmed in a "c" like language. This code even may be executed on the GPU
(Graphical Processing Unit). Renderscript is also designed to allow for cross-platform
compatibility. When performance is not critical, programmers are still advised to use the
Java bindings for much of the OpenGL work. Due to time limitations we didn't cover the
Renderscript in this edition of the book. We have provided a reference URL to a
Renderscript (from Google) programming guide at the end of this chapter.

The Android SDK distribution comes with a number of OpenGL ES samples. However, the
documentation on how to get started with OpenGL ES is minimal to nonexistent in the SDK.
The underlying assumption is that OpenGL ES is an open standard that programmers can
learn from outside of Android. As a result, Android online OpenGL resources and the
Android OpenGL code samples assume you’re already familiar with OpenGL.

In this chapter, we will help you with these minor roadblocks. With few OpenGL
prerequisites, by the end of this chapter, you’ll be comfortable with programming in
OpenGL. We will do this by introducing almost no mathematics (unlike many OpenGL
books).

In the first section of the chapter, we’ll provide an overview of OpenGL, OpenGL ES, and
some competing standards.

20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 624

In the second section, we will explain the theory behind OpenGL. This is a critical
section to read if you are new to OpenGL. In this section, we will cover OpenGL
coordinates, its idea of a camera, and the essential OpenGL ES drawing APIs.

In the third section, we will explain how you interact with the OpenGL ES API on Android.
This section covers GLSurfaceView and the Renderer interface and how they work together
to draw using OpenGL. In one of our simple examples, we will draw a simple triangle to
show how drawing is impacted by changing the OpenGL scene setup APIs.

NOTE: The OpenGL camera concept is similar but distinct from the Camera class in Android’s
graphics package, which you learned about in Chapter 6. Whereas Android’s Camera object from
the graphics package simulates 3D-like viewing capabilities by projecting a 2D view moving in

3D space, the OpenGL camera is a paradigm that represents a virtual viewing point. In other
words, it models a real-world scene through the viewing perspective of an observer looking
through a camera. You’ll learn more in the subsection “Understanding the Camera and

Coordinates” under “Using OpenGL ES.” Both cameras are still separate from the handheld

device’s physical camera that you use to take pictures or shoot video.

In the fourth section, we will take you a bit deeper into OpenGL ES and introduce the
idea of shapes. We will also cover textures and show you how to draw multiple figures
during a single draw method. We will then cover the support for OpenGL ES 2.0 by
briefly introducing OpenGL shaders and a quick sample. Please note up front that
OpenGL ES 2.0 can only be tested on a real device.

We conclude the chapter with a list of resources we found as we researched material for
this chapter.

So, let's look into the history and background of OpenGL!

Understanding the History and Background of
OpenGL
OpenGL (originally called Open Graphics Library) is a 2D and 3D graphics API that was
developed by Silicon Graphics, Inc. (SGI) for its UNIX workstations. Although SGI’s
version of OpenGL has been around for a long time, the first standardized spec of
OpenGL emerged in 1992. Now widely adopted on all operating systems, the OpenGL
standard forms the basis of much of the gaming, computer-aided design (CAD), and
even virtual reality (VR) industries.

The OpenGL standard is currently being managed by an industry consortium called The
Khronos Group (www.khronos.org), founded in 2000 by companies such as NVIDIA, Sun
Microsystems, ATI Technologies, and SGI. You can learn more about the OpenGL spec
at the consortium’s web site at:

www.khronos.org/opengl/

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 625

The official documentation page for OpenGL is available here:

www.opengl.org/documentation/

As you can see from this documentation page, you have access to books and online
resources dedicated to OpenGL. Of these, the gold standard is OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.1, also known as the “red
book” of OpenGL. You can find an online version of this book here:

www.glprogramming.com/red/

This book is quite good and quite readable. We did have some difficulty, however,
unraveling the nature of units and coordinates that are used to draw. We’ll try to clarify
these important ideas regarding what you draw and what you see in OpenGL. These
ideas center on setting up the OpenGL camera and a viewing box, also known as a
viewing volume or frustum.

OpenGL ES
The Khronos Group is also responsible for two additional standards that are tied to
OpenGL: OpenGL ES, and the EGL Native Platform Graphics Interface (known simply as
EGL). As we mentioned, OpenGL ES is a smaller version of OpenGL intended for
embedded systems.

NOTE: Java Community Process is also developing an object-oriented abstraction for OpenGL
for mobile devices called Mobile 3D Graphics API (M3G). We will give you a brief introduction to

M3G in the subsection “M3G: Another Java ME 3D Graphics Standard.”

The EGL standard is essentially an enabling interface between the underlying operating
system (OS) and the rendering APIs offered by OpenGL ES. Because OpenGL and
OpenGL ES are general-purpose interfaces for drawing, each OS needs to provide a
standard hosting environment for OpenGL and OpenGL ES to interact with. Android
SDK, starting with the 1.5 release, hides these platform specifics quite well. You will
learn about this in the second section titled “Interfacing OpenGL ES with Android.”

The target devices for OpenGL ES include cell phones, appliances, and even vehicles.
Because OpenGL ES has to be much smaller than OpenGL, many convenient functions
have been removed. For example, drawing rectangles is not directly supported in
OpenGL ES; you have to draw two triangles to make a rectangle.

As you start exploring Android’s support for OpenGL, you’ll focus primarily on OpenGL
ES and its bindings to the Android OS through Java and EGL. You can find the
documentation for OpenGL ES here:

www.khronos.org/opengles/documentation/opengles1_0/html/index.html

We kept returning to this reference as we developed this chapter because it identifies
and explains each OpenGL ES API and describe the arguments for each. You’ll find
these APIs similar to Java APIs, and we’ll introduce you to the key ones in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 626

OpenGL ES and Java ME
OpenGL ES, like OpenGL, is a C-based, flat API. Because the Android SDK is a Java-
based programming API, you need a Java binding to OpenGL ES. Java ME has already
defined this binding through JSR 239: Java Binding for the OpenGL ES API. JSR 239
itself is based on JSR 231, which is a Java binding for OpenGL 1.5. JSR 239 could have
been strictly a subset of JSR 231, but it's not because it must accommodate some
extensions to OpenGL ES that are not in OpenGL 1.5.

You can find the documentation for JSR 239 here:

http://java.sun.com/javame/reference/apis/jsr239/

This reference will give you a sense of the APIs available in OpenGL ES. It also provides
valuable information about the following packages:

 javax.microedition.khronos.egl

 javax.microedition.khronos.opengles

 java.nio

The nio package is necessary because the OpenGL ES implementations take only
byte streams as inputs for efficiency reasons. This nio package defines many utilities
to prepare native buffers for use in OpenGL. You will see some of these APIs in action
in the “glVertexPointer and Specifying Drawing Vertices” subsection under “Using
OpenGL ES.”

You can find documentation (although quite minimal) of the Android SDK’s support for
OpenGL at the following URL:

http://developer.android.com/guide/topics/graphics/opengl.html

On this page, the documentation indicates that the Android implementation mostly
parallels JSR 239 but warns that it might diverge from it in a few places.

M3G: Another Java ME 3D Graphics Standard
JSR 239 is merely a Java binding on a native OpenGL ES standard. As mentioned briefly
in the “OpenGL ES” subsection, Java provides another API to work with 3D graphics on
mobile devices: M3G. This object-oriented standard is defined in JSR 184 and JSR 297,
the latter being more recent. As per JSR 184, M3G serves as a lightweight, object-
oriented, interactive 3D graphics API for mobile devices.

The object-oriented nature of M3G separates it from OpenGL ES. For details, visit the
home page for JSR 184 at the following URL:

www.jcp.org/en/jsr/detail?id=184

The APIs for M3G are available in the Java package named

javax.microedition.m3g.*;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 627

M3G is a higher-level API compared to OpenGL ES, so it should be easier to learn.
However, the jury is still out on how well it will perform on handhelds. As of now,
Android does not support M3G.

So far, we have laid out the options available in the OpenGL space for handheld
devices. We have talked about OpenGL ES and also briefly about the M3G standard.
We will now focus on understanding the fundamentals of OpenGL.

Fundamentals of OpenGL
This section will help you understand the concepts behind OpenGL and the OpenGL ES
API. We’ll explain all the key APIs. To supplement the information from this chapter, you
might want to refer to the “Resources” section towards the end of this chapter. The
resources there include the red book, JSR 239 documentation, and The Khronos Group
API reference.

NOTE: As you start using the OpenGL resources, you’ll notice that some of the APIs are not
available in OpenGL ES. This is where The Khronos Group’s OpenGL ES Reference Manual comes

in handy.

We will cover the following APIs in a fair amount of detail because they’re central to
understanding OpenGL and OpenGL ES:

 glVertexPointer

 glDrawElements

 glColor

 glClear

 gluLookAt

 glFrustum

 glViewport

As we cover these APIs, you’ll learn how to

 Use the essential OpenGL ES drawing APIs.

 Clear the palette.

 Specify colors.

 Understand the OpenGL camera and coordinates.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 628

Essential Drawing with OpenGL ES
In OpenGL, you draw in 3D space. You start out by specifying a series of points, also
called vertices. Each of these points will have three values: one for the x coordinate, one
for the y coordinate, and one for the z coordinate.

These points are then joined together to form a shape. You can join these points into a
variety of shapes called primitive shapes, which include points, lines, and triangles in
OpenGL ES. Note that in OpenGL, primitive shapes also include rectangles and
polygons. As you work with OpenGL and OpenGL ES, you will continue to see
differences whereby the latter has fewer features than the former. Here’s another
example: OpenGL allows you to specify each point separately, whereas OpenGL ES
allows you to specify them only as a series of points in one fell swoop. However, you
can often simulate OpenGL ES’s missing features through other, more primitive features.
For instance, you can draw a rectangle by combining two triangles.

OpenGL ES offers two primary methods to facilitate drawing:

 glVertexPointer

 glDrawElements

NOTE: We’ll use the terms “API” and “method” interchangeably when we talk about the OpenGL

ES APIs.

You use glVertexPointer to specify a series of points or vertices, and you use
glDrawElements to draw them using one of the primitive shapes mentioned earlier. We’ll
describe these methods in more detail, but first let’s go over some nomenclature around
the OpenGL API names.

The names of OpenGL APIs all begin with gl. Following gl is the method name. The
method name is followed by an optional number such as 3, which points to either the
number of dimensions—such as (x,y,z)—or the number of arguments. The method
name is then followed by a data type such as f for float. (You can refer to any of the
OpenGL online resources to learn the various data types and their corresponding
letters.)

There's one more convention. If a method takes an argument either as a byte (b) or a
float (f), then the method will have two names: one ending with b, and one ending with f.

Let’s now look at each of the two drawing-related methods, starting with
glVertexPointer.

glVertexPointer and Specifying Drawing Vertices
The glVertexPointer method is responsible for specifying an array of points to be
drawn. Each point is specified in three dimensions, so each point will have three values:
x, y, and z. Listing 20–1 shows how to specify three points in an array.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 629

Listing 20–1. Vertex Coordinates Example for an OpenGL Triangle

float[] coords = {
 -0.5f, -0.5f, 0, //p1: (x1,y1,z1)
 0.5f, -0.5f, 0, //p2: (x1,y1,z1)
 0.0f, 0.5f, 0 //p3: (x1,y1,z1)
};

The structure in Listing 20–1 is a contiguous set of floats kept in a Java-based float
array. Don’t worry about typing or compiling this code anywhere yet—our goal at this
point is just to give you an idea of how these OpenGL ES methods work. We will give
you the working examples and code when we develop a test harness later to draw
simple figures. We have also given you a link to a downloadable project in the reference
section at the end of this chapter.

In Listing 20–1, you might be wondering what units are used for the coordinates in
points p1, p2, and p3. The short answer is, as you model your 3D space, these
coordinate units can be anything you’d like. But subsequently you will need to specify
something called a bounding volume (or bounding box) that quantifies these
coordinates.

For example, you can specify the bounding box as a cube with 5-inch sides or a cube
with 2-inch sides. These coordinates are also known as world coordinates because you
are conceptualizing your world independent of the physical device’s limitations. We will
explain these coordinates more in the subsection “Understanding the Camera and
Coordinates.” For now, assume that you are using a cube that is 2 units across all its
sides and centered at (x=0,y=0,z=0). In other words, the center is at the center of the
cube and the sides of the cube are 1 unit apart from the center.

NOTE: The terms bounding volume, bounding box, viewing volume, viewing box, and frustum all
refer to the same concept: the pyramid-shaped 3D volume that determines what is visible
onscreen. You’ll learn more in the “glFrustum and the Viewing Volume” subsection under

“Understanding the Camera and Coordinates.”

You can also assume that the origin is at the center of the visual display. The z axis will
be negative going into the display (away from you) and positive coming out of the
display (toward you); x will go positive as you move right and negative as you move left.
However, these coordinates will also depend on the direction from which you are
viewing the scene.

To draw the points in Listing 20–1, you need to pass them to OpenGL ES through the
glVertexPointer method. For efficiency reasons, however, glVertexPointer takes a
native buffer that is language-agnostic rather than an array of Java floats. For this, you
need to convert the Java-based array of floats to an acceptable C-like native buffer.
You’ll need to use the java.nio classes to convert the float array into the native buffer.
Listing 20–2 shows an example of using nio buffers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 630

Listing 20–2. Creating NIO Float Buffers

jva.nio.ByteBuffer vbb = java.nio.ByteBuffer.allocateDirect(3 * 3 * 4);
vbb.order(ByteOrder.nativeOrder());
java.nio.FloatBuffer mFVertexBuffer = vbb.asFloatBuffer();

In Listing 20–2, the byte buffer is a buffer of memory ordered into bytes. Each point has
three floats because of the three axes, and each float is 4 bytes. So together you get 3 *
4 bytes for each point. Plus, a triangle has three points. So you need 3 * 3 * 4 bytes to
hold all three float points of a triangle.

Once you have the points gathered into a native buffer, you can call glVertexPointer, as
shown in Listing 20–3.

Listing 20–3. glVertexPointer API Definition

glVertexPointer(
 // Are we using (x,y) or (x,y,z) in each point
 3,
 // each value is a float value in the buffer
 GL10.GL_FLOAT,
 // Between two points there is no space
 0,
 // pointer to the start of the buffer
 mFVertexBuffer);

Let’s talk about the arguments of glVertexPointer method. The first argument tells
OpenGL ES how many dimensions there are in a point or a vertex. In this case, we
specified 3 for x, y, and z. You could also specify 2 for just x and y. In that case, z would
be zero. Note that this first argument is not the number of points in the buffer, but the
number of dimensions used. So if you pass 20 points to draw a number of triangles, you
will not pass 20 as the first argument; you would pass 2 or 3, depending on the number
of dimensions used.

The second argument indicates that the coordinates need to be interpreted as floats.
The third argument, called a stride, points to the number of bytes separating each
point. In this case, it is zero because one point immediately follows the other.
Sometimes you can add color attributes as part of the buffer after each point. If you
want to do so, you’d use a stride to skip those as part of the vertex specification. The
last argument is the pointer to the buffer containing the points.

Now that you know how to set up the array of points to be drawn, let’s see how to draw
this array of points using the glDrawElements method.

glDrawElements
Once you specify the series of points through glVertexPointer, you use the
glDrawElements method to draw those points with one of the primitive shapes that
OpenGL ES allows. Note that OpenGL is a state machine. It remembers the values set
by one method when it invokes the next method in a cumulative manner. So you don’t
need to explicitly pass the points set by glVertexPointer to glDrawElements.
glDrawElements will implicitly use those points. Listing 20–4 shows an example of this
method with possible arguments.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 631

Listing 20–4. Example of glDrawElements

glDrawElements(
 // type of shape
 GL10.GL_TRIANGLE_STRIP,
 // Number of indices
 3,
 // How big each index is
 GL10.GL_UNSIGNED_SHORT,
 // buffer containing the 3 indices
 mIndexBuffer);

The first argument indicates the type of geometrical shape to draw: GL_TRIANGLE_STRIP
signifies a triangle strip. Other possible options for this argument are points only
(GL_POINTS), line strips (GL_LINE_STRIP), lines only (GL_LINES), line loops (GL_LINE_LOOP),
triangles only (GL_TRIANGLES), and triangle fans (GL_TRIANGLE_FAN).

The concept of a STRIP in GL_LINE_STRIP and GL_TRIANGLE_STRIP is to add new points
while making use of the old ones. By doing so, you can avoid specifying all the points
for each new object. For example, if you specify four points in an array, you can use
strips to draw the first triangle out of (1,2,3) and the second one out of (2,3,4). Each new
point will add a new triangle. (Refer to the OpenGL red book for more details.) You can
also vary these parameters to see how the triangles are drawn as you add new points.

The idea of a FAN in GL_TRIANGLE_FAN applies to triangles where the first point is used as
a starting point for all subsequent triangles. So you’re essentially making a fan- or circle-
like object with the first vertex in the middle. Suppose you have six points in your array:
(1,2,3,4,5,6). With a FAN, the triangles will be drawn at (1,2,3), (1,3,4), (1,4,5), and (1,5,6).
Every new point adds an extra triangle, similar to the process of extending a fan or
unfolding a pack of cards.

The rest of the arguments of glDrawElements involve the method’s ability to let you reuse
point specification. For example, a square contains four points. Each square can be drawn
as a combination of two triangles. If you want to draw two triangles to make up the square,
do you have to specify six points? No. You can specify only four points and refer to them six
times to draw two triangles. This process is called indexing into the point buffer.

Here is an example:

Points: (p1, p2, p3, p4)
Draw indices (p1, p2, p3, p2,p3,p4)

Notice how the first triangle comprises p1, p2, p3 and the second one comprises p2,
p3, p4. With this knowledge, the second argument of glDrawElements identifies how
many indices there are in the index buffer.

The third argument to glDrawElements (see Listing 20–4) points to the type of values in
the index array, whether they are unsigned shorts (GL_UNSIGNED_SHORT) or unsigned
bytes (GL_UNSIGNED_BYTE).

The last argument of glDrawElements points to the index buffer. To fill up the index buffer,
you need to do something similar to what you did with the vertex buffer. Start with a Java
array and use the java.nio package to convert that array into a native buffer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 632

Listing 20–5 shows some sample code that converts a short array of {0,1,2} into a
native buffer suitable to be passed to glDrawElements.

Listing 20–5. Converting Java Array to NIO Buffers

//Figure out how you want to arrange your points
short[] myIndecesArray = {0,1,2};

//get a short buffer
java.nio.ShortBuffer mIndexBuffer;

//Allocate 2 bytes each for each index value
ByteBuffer ibb = ByteBuffer.allocateDirect(3 * 2);
ibb.order(ByteOrder.nativeOrder());
mIndexBuffer = ibb.asShortBuffer();

//stuff that into the buffer
for (int i=0;i<3;i++)
{
 mIndexBuffer.put(myIndecesArray[i]);
}

Now that you’ve seen mIndexBuffer at work in Listing 20–5, you can revisit Listing 20–4
and better understand how the index buffer is created and manipulated.

NOTE: Rather than create any new points, the index buffer merely indexes into the array of
points indicated through the glVertexPointer. This is possible because OpenGL remembers

the assets set by the previous calls in a stateful fashion.

Now we’ll look at two commonly used OpenGL ES methods: glClear and glColor.

glClear
You use the glClear method to erase the drawing surface. Using this method, you can
reset the color, depth, and the type of stencils used. You specify which element to reset
by the constant that you pass in: GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, or
GL_STENCIL_BUFFER_BIT.

The color buffer is responsible for the pixels that are visible, so clearing it is equivalent to
erasing the surface of any colors. The depth buffer is related to the pixels that are visible
in a 3D scene, with depth referring to how far or close the object is.

The stencil buffer is a bit advanced to cover here, except to say this: you use it to create
visual effects based on some dynamic criteria, and you use glClear to erase it.

NOTE: A stencil is a drawing template that you can use to replicate a drawing many times. For
example, if you are using Microsoft Office Visio, all the drawing templates that you save as

*.vss files are stencils. In the noncomputer drawing world, you create a stencil by cutting out a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 633

pattern in a sheet of paper or some other flat material. Then you can paint over that sheet and
remove it, creating the impression that results in a replication of that drawing. What you see

depends on what stencil or stencils are active. Clearing all of them will make everything drawn

visible.

For your purposes, you can use this code to clear the color buffer:

//Clear the surface of any color
gl.glClear(gl.GL_COLOR_BUFFER_BIT);

Now let’s talk about attaching a default color to what gets drawn.

glColor
You use glColor to set the default color for the subsequent drawing that takes place. In
the following code segment, the method glColor4f sets the color to red:

//Set the current color
glColor4f(1.0f, 0, 0, 0.5f);

Recall the discussion about method nomenclature: 4f refers to the four arguments that
the method takes, each of which is a float. The four arguments are components of red,
green, blue, and alpha (color gradient). The starting values for each are (1,1,1,1). In this
case, the color has been set to red with half a gradient (specified by the last alpha
argument).

Although we have covered the basic drawing APIs, we still need to address a few things
regarding the coordinates of the points that you specify in 3D space. The next
subsection explains how OpenGL models a real-world scene through the viewing
perspective of an observer looking through a camera.

Understanding OpenGL Camera and Coordinates
As you draw in 3D space, you ultimately must project the 3D view onto a 2D screen—
much like capturing a 3D scene using a camera in the real world. This symbolism is
formally recognized in OpenGL, so many concepts in OpenGL are explained in terms of
a camera.

As you will see in this section, the part of your drawing that becomes visible depends on
the location of the camera, the direction of the camera lens, the orientation of the
camera (such as upside down or tilted), the zoom level, and the size of the capturing
“film.”

These aspects of projecting a 3D picture onto a 2D screen are controlled by three
methods in OpenGL:

 gluLookAt controls the direction of the camera.

 glFrustum controls the viewing volume or zoom or the distance (from
and to) you care about.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 634

 glViewport controls the size of the screen or the size of the camera’s
film.

You won’t be able to program anything in OpenGL unless you understand the
implications of these three APIs. Let's elaborate on the camera symbolism further to
explain how these three APIs affect what you see on an OpenGL screen. We will start
with gluLookAt.

gluLookAt and the Camera Symbolism
Imagine you are taking photographs of a landscape involving flowers, trees, streams,
and mountains. You arrive at a meadow; the scene that lies before you is equivalent to
what you would like to draw in OpenGL. You can make these drawings big, like the
mountains, or small, like the flowers—as long as they are all proportional to one another.
The coordinates you’ll use for these drawings, as we hinted at earlier, are called world
coordinates. Under these coordinates, you can establish a line to be 4 units long on the
x axis by setting your points as (0,0,0) to (4,0,0).

As you prepare to take a photograph, you find a spot to place your tripod. Then you
hook up the camera to the tripod. The location of your camera—not the tripod, but the
camera itself—becomes the origin of your camera in the world. So you will need to take
a piece of paper and write down this location, which is called the eye point.

If you don’t specify an eye point, the camera is located at (0,0,0), which is the exact
center of your screen. Usually you want to step away from the origin so that you can see
the (x,y) plane that is sitting at the origin of z = 0. For argument’s sake, suppose you
position the camera at (0,0,5). This would move the camera off your screen toward you
by 5 units.

You can refer to Figure 20–1 to visualize how the camera is placed.

Figure 20–1. OpenGL viewing concepts using the camera analogy

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 635

Looking at Figure 20–1 you might wonder why the axes in the figure are y and z and not
x and y. This is because we use the convention that the OpenGL camera looks down on
the z axis if your normal plane of scene is the xy plane. This convention works fine
because we usually associate the z axis as the axis of depth.

Once you place the camera, you start looking ahead or forward to see which portion of
the scene you want to capture. You will position the camera in the direction you are
looking. This far-off point that you are looking at is called a view point or a look-at point.
This point specification is really a specification of the direction. If you specify your view
point as (0,0,0), then the camera is looking along the z axis toward the origin from a
distance of 5 units, assuming the camera is positioned at (0,0,5). You can see this in
Figure 20–1 where the camera is looking down the z axis.

Imagine further that there is a rectangular building at the origin. You want to look at it not
in a portrait fashion, but in a landscape fashion. What do you have to do? You obviously
can leave the camera in the same location and still point it toward the origin, but now
you need to turn the camera by 90 degrees (similar to tilting your head to see sideways).
This is the orientation of the camera, as the camera is fixed at a given eye point and
looking at a specific look-at point or direction. This orientation is called the up vector.

The up vector simply identifies the orientation of the camera (up, down, left, right, or at
an angle). This orientation of the camera is also specified using a point. Imagine a line
from the origin—not the camera origin, but the world-coordinate origin—to this point.
Whatever angle this line subtends in three dimensions at the origin is the orientation of
camera.

For example, an up vector for a camera might look like (0,1,0) or even (0,15,0), both of
which would have the same effect. The point (0,1,0) is a point away from the origin along
the y axis going up. This means you position the camera upright. If you use (0,-1,0), you
would position the camera upside down. In both cases, the camera is still at the same
point (0,0,5) and looking at the same origin (0,0,0). You can summarize these three
coordinates like this:

 (0,0,5): Eye point (location of the camera)

 (0,0,0): Look-at point (direction the camera is pointing)

 (0,1,0): Up vector (whether the camera is up, down, or slanted)

You will use the gluLookAt method to specify these three points—the eye point, the
look-at point, and the up vector, like so:

gluLookAt(gl, 0,0,5, 0,0,0, 0,1,0);

The arguments are as follows: the first set of coordinates belongs to the eye point, the
second set of coordinates belongs to the look-at point, and the third set of coordinates
belongs to the up vector with respect to the origin.

Let's now look at the viewing volume.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 636

glFrustum and the Viewing Volume
You might have noticed that none of the points describing the camera position using
gluLookAt deal with size. They deal only with positioning, direction, and orientation. How
can you tell the camera where to focus? How far away is the subject you are trying to
capture? How wide and how tall is the subject area? You use the OpenGL method
glFrustum to specify the area of the scene that you are interested in.

If you were to imagine yourself sitting at a play, then the stage is your viewing volume.
You really don’t need to know what happens outside of that stage. However, you do
care about the dimensions of this stage because you want to observe all that goes on
upon/inside that stage.

Think of the scene area as bounded by a box, also called the frustum or viewing volume
(this is the area marked by the bold border in the middle of Figure 20–1). Anything inside
the box is captured, and anything outside the box is clipped and ignored. So how do
you specify this viewing box? You first decide on the near point, or the distance
between the camera and the beginning of the box. Then you can choose a far point,
which is the distance between the camera and the end of the box. The distance
between the near and far points along the z axis is the depth of the box. If you specify a
near point of 50 and a far point of 200, then you will capture everything between those
points and your box depth will be 150. You will also need to specify the left side of the
box, the right side of the box, the top of the box, and the bottom of the box along the
imaginary ray that joins the camera to the look-at point.

In OpenGL, you can imagine this box in one of two ways. One is called a perspective
projection, which involves the frustum we’ve been talking about. This view, which
simulates a natural camera-like function, involves a pyramidal structure in which the far
plane serves as the base and the camera serves as the apex. The near plane cuts off the
top of the pyramid, forming the frustum between the near plane and the far plane.

The other way to imagine the box involves thinking of it as a cube. This second scenario
is called orthographic projection and is suited for geometrical drawings that need to
preserve sizes despite the distance from the camera.

Listing 20–6 shows how to specify the frustum for our example.

Listing 20–6. Specifying a Frustum through glFrustum

//calculate aspect ratio first
float ratio = (float) w / h;

//indicate that we want a perspective projection
glMatrixMode(GL10.GL_PROJECTION);

//Specify the frustum: the viewing volume
gl.glFrustumf(
 -ratio, // Left side of the viewing box
 ratio, // right side of the viewing box
 1, // top of the viewing box
 -1, // bottom of the viewing box
 3, // how far is the front of the box from the camera
 7); // how far is the back of the box from the camera

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 637

Because we set the top to 1 and bottom to -1 in the preceding code (Listing 20–6), we
have set the front height of the box to 2 units. We specify the sizes for the left and right
sides of the frustum by using proportional numbers, taking into account the window’s
aspect ratio. This is why this code uses the window height and width to figure out the
proportion. The code also assumes the area of action to be between 3 and 7 units along
the z axis. Anything drawn outside these coordinates, relative to the camera, won’t be
visible.

Because we set the camera at (0,0,5) and pointing toward (0,0,0), 3 units from the
camera toward the origin will be (0,0,2) and 7 units from the camera will be (0,0,-2). This
leaves the origin plane right in the middle of your 3D box.

So now we've identified the size of our viewing volume. There's one more important API
and it maps these sizes to the screen: glViewport.

glViewport and Screen Size
glViewport is responsible for specifying the rectangular area on the screen onto which
the viewing volume will be projected. This method takes four arguments to specify the
rectangular box: the x and y coordinates of the lower-left corner, followed by the width
and height. Listing 20–7 is an example of specifying a view as the target for this
projection.

Listing 20–7. Defining a ViewPort through glViewPort

glViewport(0, // lower left "x" of the rectangle on the screen
 0, // lower left "y" of the rectangle on the screen
 width, // width of the rectangle on the screen
 height); // height of the rectangle on the screen

If our window or view size is 100 pixels in height and the frustum height is 10 units, then
every logical unit of 1 in the world coordinates translates to 10 pixels in screen
coordinates.

So far we have covered some important introductory concepts in OpenGL.
Understanding these OpenGL fundamentals is useful for learning how to write Android
OpenGL code. With these prerequisites behind us, we’ll now discuss what is needed to
call the OpenGL ES APIs that we have learned in this section.

Interfacing OpenGL ES with Android
OpenGL ES, as indicated, is a standard that is supported by a number of platforms. At
the core, it's a C-like API that addresses all of the OpenGL drawing chores. However,
each platform and OS is different in the way it implements displays, screen buffers, and
the like. These OS-specific aspects are left to each operating system to figure out and
document. Android is no different.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 638

 Starting with its 1.5 SDK, Android simplified the interaction and
initialization process necessary to start drawing in OpenGL. This
support is provided in the package android.opengl. The primary class
that provides much of this functionality is GLSurfaceView, and it has
an internal interface called GLSurfaceView.Renderer. Knowing these
two entities is sufficient to make a substantial headway with OpenGL
on Android.

Using GLSurfaceView and Related Classes
Starting with 1.5 of the SDK, the common usage pattern for using OpenGL is quite
simplified. (Refer to the first edition of this book to see the Android 1.0–approach.) Here
are the typical steps to draw using these classes:

1. Implement the Renderer interface.

2. Provide the Camera settings needed for your drawing in the

implementation of the renderer.

3. Provide the drawing code in the onDrawFrame method of the

implementation.

4. Construct a GLSurfaceView.

5. Set the renderer implemented in steps 1 to 3 in the GLSurfaceView.

6. Indicate whether you want animation or not to the GLSurfaceView.

7. Set the GLSurfaceView in an Activity as the content view. You can also

use this view wherever you can use a regular view.

Let's start with how to implement the renderer interface.

Implementing the Renderer
The signature of the Renderer interface is shown in Listing 20–8.

Listing 20–8. The Renderer Interface

public static interface GLSurfaceView.Renderer
{
 void onDrawFrame(GL10 gl);
 void onSurfaceChanged(GL10 gl, int width, int height);
 void onSurfaceCreated(GL10 gl, EGLConfig config);
}

The main drawing happens in the onDrawFrame() method. Whenever a new surface is
created for this view, the onSurfaceCreated() method is called. We can call a number of
OpenGL APIs such as dithering, depth control, or any others that can be called outside
of the immediate onDrawFrame() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 639

Similarly, when a surface changes, such as the width and height of the window, the
onSurfaceChanged() method is called. We can set up our camera and viewing volume
here.

Even in the onDrawFrame() method there are lot of things that may be common for our
specific drawing context. We can take advantage of this commonality and abstract
these methods in another level of abstraction called an AbstractRenderer, which will
have only one method that is left unimplemented called draw().

Listing 20–9 shows the code for the AbstractRenderer.

Listing 20–9. The AbstractRenderer

//filename: AbstractRenderer.java
import android.opengl.*;
//…Use Eclipse to resolve other imports
public abstract class AbstractRenderer
implements android.opengl.GLSurfaceView.Renderer
{
 public void onSurfaceCreated(GL10 gl, EGLConfig eglConfig) {
 gl.glDisable(GL10.GL_DITHER);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);
 gl.glClearColor(.5f, .5f, .5f, 1);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 }

 public void onSurfaceChanged(GL10 gl, int w, int h) {
 gl.glViewport(0, 0, w, h);
 float ratio = (float) w / h;
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);
 }

 public void onDrawFrame(GL10 gl)
 {
 gl.glDisable(GL10.GL_DITHER);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 draw(gl);
 }
 protected abstract void draw(GL10 gl);
}

Having this abstract class is very useful, as it allows us to focus on just the drawing
methods. We’ll use this class to create a SimpleTriangleRenderer class; Listing 20–10
shows the source code.

Listing 20–10. SimpleTriangleRenderer

//filename: SimpleTriangleRenderer.java
public class SimpleTriangleRenderer extends AbstractRenderer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 640

{
 //Number of points or vertices we want to use
 private final static int VERTS = 3;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 public SimpleTriangleRenderer(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(VERTS * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

 float[] coords = {
 -0.5f, -0.5f, 0, // (x1,y1,z1)
 0.5f, -0.5f, 0,
 0.0f, 0.5f, 0
 };
 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }
 short[] myIndecesArray = {0,1,2};
 for (int i=0;i<3;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 //overriden method
 protected void draw(GL10 gl)
 {
 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, VERTS,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

Although there seems to be a lot of code here, most of it is used to define the vertices
and then translate them to NIO buffers from Java buffers. Otherwise, the draw method is
just three lines: set the color, set the vertices, and draw.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 641

NOTE: Although we are allocating memory for NIO buffers, we never release them in our code.
So who releases these buffers? How does this memory affect OpenGL?

According to our research, the java.nio package allocates memory space outside of the Java

heap that can be directly used by such systems as OpenGL, File I/O, etc. The nio buffers are
actually Java objects that eventually point to the native buffer. These nio objects are garbage
collected. When they are garbage collected, they go ahead and delete the native memory. Java

programs don’t have to do anything special to free the memory.

However, the gc won’t get fired unless memory is needed in the Java heap. This means you can
run out of native memory and gc may not realize it. The Internet offers many examples on this

subject where an out of memory exception will trigger a gc and then it’s possible to inquire if
memory is now available due to gc having been invoked.

Under ordinary circumstances—and this is important for OpenGL—you can allocate the native

buffers and not worry about releasing allocated memory explicitly because that is done by the gc.

Now that we have a sample renderer, let's see how we can supply this renderer to a
GLSurfaceView and have it show up in an Activity.

Using GLSurfaceView from an Activity
Listing 20–11 shows a typical activity that uses a GLSurfaceView along with a suitable
renderer.

Listing 20–11. A Simple OpenGLTestHarness Activity

public class OpenGLTestHarnessActivity extends Activity {
 private GLSurfaceView mTestHarness;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mTestHarness = new GLSurfaceView(this);
 mTestHarness.setEGLConfigChooser(false);
 mTestHarness.setRenderer(new SimpleTriangleRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 //mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY);
 setContentView(mTestHarness);
 }
 @Override
 protected void onResume() {
 super.onResume();
 mTestHarness.onResume();
 }
 @Override
 protected void onPause() {
 super.onPause();
 mTestHarness.onPause();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 642

Let's explain the key elements of this source code. Here is the code that instantiates the
GLSurfaceView:

 mTestHarness = new GLSurfaceView(this);

We then tell the view that we don't need a special EGL config chooser and the default
will work by doing the following:

 mTestHarness.setEGLConfigChooser(false);

Then we set our renderer as follows:

 mTestHarness.setRenderer(new SimpleTriangleRenderer(this));

Next, we use one of these two methods to allow for animation or not:

mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
//mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY);

If we choose the first line, the drawing is going to be called only once or, more
accurately, whenever it needs to be drawn. If we choose the second option, our drawing
code will be called repeatedly so that we can animate our drawings.

That's all there is to interfacing with OpenGL on Android.

Now we have all the pieces necessary to test this drawing. We have the activity in
Listing 20–11, we have the abstract renderer in Listing 20–9, and the
SimpleTriangleRenderer (Listing 20–10) itself. All we have to do is invoke the Activity
class through any of our menu items using the following:

private void invokeSimpleTriangle()
{
 Intent intent = new Intent(this,OpenGLTestHarnessActivity.class);
 startActivity(intent);
}

Of course, we will have to register the activity in the Android manifest file, like so:

 <activity android:name=".OpenGLTestHarnessActivity"
 android:label="OpenGL Test Harness"/>

Although it’s perfectly reasonable to design a standalone activity like the
OpenGLTestHarnessActivity in Listing 20–11, we would like to propose an alternative that
fits this chapter much better.

This need comes from the fact that we have a number of demos in this chapter. If we
were to design a separate activity for each demo, we would end up with lot of code that
looks very similar to what we have in Listing 20–11 and does not elucidate over and
above. In addition, each of those activities needs to be registered in the manifest file.

With this in mind, let's create a unified activity that allows us to test all OpenGL ES 1.0
demos. The code is in Listing 20–12. It may look extensive compared to the activity
listed in 20–11; however, if you look at the menu response for
R.id.mid_opengl_simpletriangle, you'll see that we are doing essentially the same
thing. As more menu options are implemented, we'll have more if statements, one each
for the type of demo.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 643

The other menu options will be explored as we go through the chapter. After Listing 20–12,
we'll present the menu .xml file followed by an explanation of this multipurpose activity
in a bit more detail.

Listing 20–12. MultiviewTestHarness Activity

//filename: MultiViewTestHarnessActivity.java
public class MultiViewTestHarnessActivity extends Activity {
 private GLSurfaceView mTestHarness;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mTestHarness = new GLSurfaceView(this);
 mTestHarness.setEGLConfigChooser(false);

 Intent intent = getIntent();
 int mid = intent.getIntExtra("com.ai.menuid", R.id.mid_OpenGL_Current);
 if (mid == R.id.mid_OpenGL_SimpleTriangle)
 {
 mTestHarness.setRenderer(new SimpleTriangleRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 return;
 }
 if (mid == R.id.mid_OpenGL_Current)
 {
 //Call someother OpenGL Renderer
 //and
 //return;
 }
 //otherwise do this
 mTestHarness.setRenderer(new SimpleTriangleRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY);
 setContentView(mTestHarness);
 return;
 }
 @Override
 protected void onResume() {
 super.onResume();
 mTestHarness.onResume();
 }
 @Override
 protected void onPause() {
 super.onPause();
 mTestHarness.onPause();
 }
}

The menu file in Listing 20–13 supports the code in Listing 20–12. This file is called
res/menu/main_menu.xml. We went ahead and created all the possible menu items for
all the demos of this chapter.

Listing 20–13. Main Menu File

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 644

 <item android:id="@+id/mid_OpenGL_SimpleTriangle"
 android:title="Simple Triangle" />

 <item android:id="@+id/mid_OpenGL_SimpleTriangle2"
 android:title="Two Triangles" />

 <item android:id="@+id/mid_OpenGL_AnimatedTriangle"
 android:title="Animated Triangle" />

 <item android:id="@+id/mid_rectangle"
 android:title="Rectangle" />

 <item android:id="@+id/mid_square_polygon"
 android:title="Square polygon" />

 <item android:id="@+id/mid_polygon"
 android:title="Polygon" />

 <item android:id="@+id/mid_textured_square"
 android:title="Textured Square" />

 <item android:id="@+id/mid_textured_polygon"
 android:title="Textured Polygon" />

 <item android:id="@+id/mid_multiple_figures"
 android:title="Multiple Figures" />

 <item android:id="@+id/mid_OpenGL_Current"
 android:title="Current" />

 <item android:id="@+id/mid_es20_triangle"
 android:title="ES20 Triangle" />
 </group>
</menu>

By looking at the menu .xml file, we can anticipate the type of OpenGL renderers that
will be demonstrated. If we return to the multiview activity in Listing 20–12, we'll notice
that the activity is switching the renderer based on the menu IDs defined in this menu
.xml file.

How does the multiview activity get the menu ID? This is done by the following code
snippet (taken from Listing 20–12):

Intent intent = getIntent();
int mid = intent.getIntExtra("com.ai.menuid",
 R.id.mid_OpenGL_Current);

This code snippet is asking the intent that is responsible for invoking this activity if there
is an extra called "com.ai.menuid." If it's not present, then the code should use a menu
id called "mid_opengl_current" as the default menu ID.

Who puts this extra in the intent? Where is the invoking driver activity? This invoking
driver activity is presented in Listing 20–14.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 645

Listing 20–14. TestOpenGLMainDriver Activity

public class TestOpenGLMainDriverActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 this.invokeMultiView(item.getItemId());
 return true;
 }
 private void invokeMultiView(int mid)
 {
 Intent intent =
 new Intent(this,MultiViewTestHarnessActivity.class);
 intent.putExtra("com.ai.menuid", mid);
 startActivity(intent);
 }
}

We need a layout file to complete and compile this activity. This layout file is in Listing
20–15.

Listing 20–15. TestOpenGLMainDriver Activity Layout File (layout/main.xml)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="A Simple Main Activity. Click Menu to Proceed"
 />
</LinearLayout>

Of course, nothing moves in Android without a manifest file. The manifest file is given in
Listing 20–16.

Listing 20–16. AndroidManifest File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.OpenGL"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 646

 android:label="OpenGL Test Harness"
 android:debuggable="true">
 <activity android:name=".TestOpenGLMainDriverActivity"
 android:label="OpenGL Test Harness">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name="MultiViewTestHarnessActivity"
 android:label="OpenGL MultiView Test Harness"/>
 </application>
 <uses-sdk android:minSdkVersion="3" />
</manifest>

To summarize, we need the following files to compile and run our program:

 TestOpenGLMainDriverActivity.java (Main driver activty; Listing 20–14)

 AbstractRenderer.java (Listing 20–9)

 SimpleTriangleRenderer.java (Listing 20–10)

 MultiViewTestHarnessActivity.java (Listing 20–12)

 res/menu/main_menu.xml (Menu file; Listing 20–13)

 layout/main.xml (Layout file; Listing 20–15)

Once we compile and run the program, we'll see the driver activity show up. We can
click on the menu to see the possible menus, as shown in Figure 20–2.

Figure 20–2. OpenGL test harness driver

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 647

Now if you click the "Simple Triangle" menu item, you will see the triangle like the one in
Figure 20–3.

Figure 20–3. A simple OpenGL triangle

Changing Camera Settings
To understand the OpenGL coordinates better, let's experiment with the camera-related
methods and see how they affect the triangle that we drew in Figure 20–3. Remember
that these are the points of our triangle: (-0.5,-0.5,0 0.5,-0.5,0 0,0.5,0). With
these points, the following three camera-related methods as used in AbstractRenderer
(Listing 20–9) yielded the triangle as it appears in Figure 20–3:

//Look at the screen (origin) from 5 units away from the front of the screen
GLU.gluLookAt(gl, 0,0,5, 0,0,0, 0,1,0);

//Set the height to 2 units and depth to 4 units
gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);

//normal window stuff
gl.glViewport(0, 0, w, h);

Now suppose you change the camera’s up vector toward the negative y direction, like
this:

GLU.gluLookAt(gl, 0,0,5, 0,0,0, 0,-1,0);

If you do this, you’ll see an upside-down triangle (Figure 20–4). If you want to make this
change, you can find the method to change in the AbstractRenderer.java file (Listing
20–9).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 648

Figure 20–4. A triangle with the camera upside down

Now let’s see what happens if we change the frustum, (also called the viewing volume or
box). The following code increases the viewing box’s height and width by a factor of 4
(see Figure 20–1 to understand these dimensions). If you recall, the first four arguments
of glFrustum points to the front rectangle of the viewing box. By multiplying each value
by 4, we have scaled the viewing box four times, like so:

gl.glFrustumf(-ratio * 4, ratio * 4, -1 * 4, 1 *4, 3, 7);

With this code, the triangle we see shrinks because the triangle stays at the same units
while our viewing box has grown (Figure 20–5). This method call appears in the
AbstractRenderer.java class (see Listing 20–9).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 649

Figure 20–5. A triangle with a viewing box that is four times bigger

Using Indices to Add Another Triangle
We’ll conclude these simple triangle examples by inheriting from the AbstractRenderer
class and creating another triangle simply by adding an additional point and using
indices. Conceptually, we’ll define the four points as (-1,-1, 1,-1, 0,1,
1,1). And we'll ask OpenGL to draw these as (0,1,2 0,2,3). Listing 20–17 shows
the code that does this (notice that we changed the dimensions of the triangle).

Listing 20–17. The SimpleTriangleRenderer2 Class

//filename: SimpleTriangleRenderer2.java
public class SimpleTriangleRenderer2 extends AbstractRenderer
{
 private final static int VERTS = 4;
 private FloatBuffer mFVertexBuffer;
 private ShortBuffer mIndexBuffer;

 public SimpleTriangleRenderer2(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(6 * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 650

 float[] coords = {
 -1.0f, -1.0f, 0, // (x1,y1,z1)
 1.0f, -1.0f, 0,
 0.0f, 1.0f, 0,
 1.0f, 1.0f, 0
 };
 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }
 short[] myIndecesArray = {0,1,2, 0,2,3};
 for (int i=0;i<6;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 protected void draw(GL10 gl)
 {
 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, 6, GL10.GL_UNSIGNED_SHORT,
 mIndexBuffer);
 }
}

Once this SimpleTriangleRenderer2 class is in place, we can add the if condition code
in Listing 20–18 to the MultiViewTestHarness in Listing 20–12.

Listing 20–18. Using SimpleTriangleRenderer2

 if (mid == R.id.mid_OpenGL_SimpleTriangle2)
 {
 mTestHarness.setRenderer(new SimpleTriangleRenderer2(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 return;
 }

After we add this code, we can run the program again and choose the menu option
"Two Triangles" to see the two triangles drawn out (see Figure 20–6). Notice how the
design of the MultiviewTestHarness saved us from creating a new activity and
registering that activity in the manifest file. We will continue this pattern of adding
additional if clauses for the subsequent renderers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 651

Figure 20–6. Two triangles with four points

Animating the Simple OpenGL Triangle
We can easily accommodate OpenGL animation by changing the rendering mode on the
GLSurfaceView object. Listing 20–19 shows the sample code.

Listing 20–19. Specifying Continuous-Rendering Mode

//get a GLSurfaceView
GLSurfaceView openGLView;

//Set the mode to continuous draw mode
openGLView.setRenderingMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY);

Note that we’re showing how to change the rendering mode here because we had
specified RENDERMODE_WHEN_DIRTY in the previous section (see Listing 20-18). As
mentioned, RENDERMODE_CONTINUOUSLY is the default setting, so animation is enabled by
default.

Once the rendering mode is continuous, it is up to the renderer’s onDraw method to do
what’s necessary to affect animation. To demonstrate this, let's use the triangle drawn in
the previous example (see Listing 20–10 and Figure 20–3) and rotate it in a circular
fashion.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 652

AnimatedSimpleTriangleRenderer
The AnimatedSimpleTriangleRenderer class is very similar to the
SimpleTriangleRenderer (see Listing 20–10), except for what happens in the onDraw
method. In this method, we set a new rotation angle every four seconds. As the image
gets drawn repeatedly, we'll see the triangle spinning slowly. Listing 20–20 contains the
complete implementation of the AnimatedSimpleTriangleRenderer class.

Listing 20–20. AnimatedSimpleTriangleRenderer Source Code

//filename: AnimatedSimpleTriangleRenderer.java
public class AnimatedSimpleTriangleRenderer extends AbstractRenderer
{
 private int scale = 1;
 //Number of points or vertices we want to use
 private final static int VERTS = 3;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 public AnimatedSimpleTriangleRenderer(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(VERTS * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

 float[] coords = {
 -0.5f, -0.5f, 0, // (x1,y1,z1)
 0.5f, -0.5f, 0,
 0.0f, 0.5f, 0
 };
 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }
 short[] myIndecesArray = {0,1,2};
 for (int i=0;i<3;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 //overridden method
 protected void draw(GL10 gl)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 653

 long time = SystemClock.uptimeMillis() % 4000L;
 float angle = 0.090f * ((int) time);

 gl.glRotatef(angle, 0, 0, 1.0f);

 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, VERTS,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

Once this AnimatedSimpleTriangleRenderer class is in place, we can add the if
condition code in Listing 20–21 to the MultiViewTestHarness in Listing 20–12.

Listing 20–21. Using AnimatedSimpleTriangleRenderer

if (mid == R.id.mid_OpenGL_AnimatedTriangle)
{
 mTestHarness.setRenderer(new AnimatedSimpleTriangleRenderer(this));
 setContentView(mTestHarness);
 return;
}

After we add this code, we can run the program again and choose the menu option
"Animated Triangle" to see the triangle in Figure 20–3 spinning.

Braving OpenGL: Shapes and Textures
In the examples shown thus far, we have specified the vertices of a triangle explicitly.
This approach becomes inconvenient as soon as we start drawing squares, pentagons,
hexagons, and the like. For these, we'll need higher-level object abstractions such as
shapes and even scene graphs, where the shapes decide what their coordinates are.
Using this approach, we will show you how to draw any polygon with any number of
sides anywhere in your geometry.

In this section, we will also cover OpenGL textures. Textures allow you to attach bitmaps
and other pictures to surfaces in your drawing. We will take the polygons that we know
how to draw now and attach some pictures to them. We will follow this up with another
critical need in OpenGL: drawing multiple figures or shapes using the OpenGL drawing
pipeline.

These fundamentals should take you a bit closer to starting to create workable 3D
figures and scenes.

Drawing a Rectangle
Before going on to the idea of shapes, let’s strengthen our understanding of drawing
with explicit vertices by drawing a rectangle using two triangles. This will also lay the
groundwork for extending a triangle to any polygon.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 654

We already have enough background to understand the basic triangle, so here's the
code for drawing a rectangle (Listing 20–22), followed by some brief commentary.

Listing 20–22. Simple Rectangle Renderer

public class SimpleRectangleRenderer extends AbstractRenderer
{
 //Number of points or vertices we want to use
 private final static int VERTS = 4;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 public SimpleRectangleRenderer(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(6 * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

 float[] coords = {
 -0.5f, -0.5f, 0, // (x1,y1,z1)
 0.5f, -0.5f, 0,
 0.5f, 0.5f, 0,
 -0.5f, 0.5f, 0,
 };

 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }
 short[] myIndecesArray = {0,1,2,0,2,3};
 for (int i=0;i<6;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 //overriden method
 protected void draw(GL10 gl)
 {
 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, 6,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 655

Notice that the approach for drawing a rectangle is quite similar to that for a triangle. We
have specified four vertices instead of three. Then we have used indices as here:

 short[] myIndecesArray = {0,1,2,0,2,3};

We have reused the numbered vertices (0 through 3) twice so that each three vertices
make up a triangle. So (0,1,2) makes up the first triangle and (0,2,3) makes up the
second triangle. Drawing these two triangles using the GL_TRIANGLES primitives will draw
the necessary rectangle.

Once this rectangle renderer class is in place, we can add the if condition code in
Listing 20–23 to the MultiViewTestHarness in Listing 20–12.

Listing 20–23. Using SimpleRectangleRenderer

if (mid == R.id.mid_rectangle)
{
 mTestHarness.setRenderer(new SimpleRectangleRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 return;
}

After we add this code, we can run the program again and choose the menu option
"Rectangle" to see the rectangle in Figure 20–7.

Figure 20–7. OpenGL rectangle drawn with two triangles

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 656

Working with Shapes
This method of explicitly specifying vertices to draw can be tedious. For example, if you
want to draw a polygon of 20 sides, then you need to specify 20 vertices, with each
vertex requiring up to three values. That's a total of 60 values. It's just not workable.

A Regular Polygon as a Shape
A better approach to draw figures like triangles or squares is to define an abstract
polygon by defining some aspects of it, such as the origin and radius, and then have
that polygon give us the vertex array and the index array (so that we can draw individual
triangles) in return. We named this class RegularPolygon. Once we have this kind of
object, we can use it as shown in Listing 20–24 to render various regular polygons.

Listing 20–24. Using a RegularPolygon Object

 //A polygon with 4 sides and a radious of 0.5
 //and located at (x,y,z) of (0,0,0)
 RegularPolygon square = new RegularPolygon(0,0,0,0.5f,4);

 //Let the polygon return the vertices
 mFVertexBuffer = square.getVertexBuffer();

 //Let the polygon return the triangles
 mIndexBuffer = square.getIndexBuffer();

 //you will need this for glDrawElements
 numOfIndices = square.getNumberOfIndices();

 //set the buffers to the start
 this.mFVertexBuffer.position(0);
 this.mIndexBuffer.position(0);

 //set the vertex pointer
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);

 //draw it with the given number of Indices
 gl.glDrawElements(GL10.GL_TRIANGLES, numOfIndices,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);

Notice how we have obtained the necessary vertices and indices from the shape square.
Although we haven't abstracted this idea of getting vertices and indices to a basic
shape, it is possible that RegularPolygon could be deriving from such a basic shape that
defines an interface for this basic contract. Listing 20–25 shows an example.

Listing 20–25. Shape Interface

public interface Shape
{
 FloatBuffer getVertexBuffer();
 ShortBuffer getIndexBuffer();
 int getNumberofIndices();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 657

We will leave this idea of defining a base interface for a shape as food for thought for
your own work. For now, we have built these methods out directly into the
RegularPolygon.

Implementing the RegularPolygon Shape
As indicated, this RegularPolygon has the responsibility of returning what is needed to
draw using OpenGL: vertices. First, we need a mechanism to define what this shape is
and where it is in the geometry.

For a regular polygon, there are a number of ways of doing this. In our approach, we
have defined the regular polygon using the number of sides and the distance from the
center of the regular polygon to one of its vertices. We called this distance the radius,
because the vertices of a regular polygon fall on the perimeter of a circle whose center is
also the center of the regular polygon. So the radius of such a circle and the number of
sides will tell us the polygon we want. By specifying the coordinates of the center, we
also know where to draw the polygon in our geometry.

The responsibility of this RegularPolygon class is to give us the coordinates of all the
vertices of the polygon, given its center and radius. Again, there may be a number of ways
of doing this. Whatever mathematical method you choose to employ (based on middle
school or high school math), as long as you return the vertices, you're good to go.

For our approach, we started with the assumption that the radius is 1 unit. We figured
out the angles for each line connecting the center to each vertex of the polygon. We
kept these angles in an array. For each angle, we calculated the x-axis projection and
called this the “x multiplier array.” (We used “multiplier array” because we started out
with a unit of radius.) When we know the real radius, we will multiply these values with
the real radius to get the real x coordinate. These real x coordinates are then stored in
an array called “x array.” We do the same for the y-axis projections.

Now that you have an idea of what needs to happen in the implementation of the
RegularPolygon, we’ll give you the source code that addresses these responsibilities.
Listing 20–26 shows all the code for the RegularPolygon in one place. (Please note that
the source code is several pages long.) To make the process of going through it less
cumbersome, we have highlighted the function names and provided inline comments at
the beginning of each function.

We define the key functions in a list that follows Listing 20–26. The important thing here
is to figure out the vertices and return. If this is too cryptic, it shouldn’t be hard to write
your own code to get the vertices. You'll also note that this code also has functions that
deal with texturing. We’ll explain these texture functions in the “Working with Textures”
section.

Listing 20–26. Implementing a RegularPolygon Shape

public class RegularPolygon
{
 //Space to hold (x,y,z) of the center: cx,cy,cz
 //and the radius "r"
 private float cx, cy, cz, r;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 658

 private int sides;

 //coordinate array: (x,y) vertex points
 private float[] xarray = null;
 private float[] yarray = null;

 //texture arrray: (x,y) also called (s,t) points
 //where the figure is going to be mapped to a texture bitmap
 private float[] sarray = null;
 private float[] tarray = null;

 //**
 // Constructor
 //**
 public RegularPolygon(float incx, float incy, float incz, // (x,y,z) center
 float inr, // radius
 int insides) // number of sides
 {
 cx = incx;
 cy = incy;
 cz = incz;
 r = inr;
 sides = insides;

 //allocate memory for the arrays
 xarray = new float[sides];
 yarray = new float[sides];

 //allocate memory for texture point arrays
 sarray = new float[sides];
 tarray = new float[sides];

 //calculate vertex points
 calcArrays();

 //calculate texture points
 calcTextureArrays();
 }

 //**
 //Get and convert the vertex coordinates
 //based on origin and radius.
 //Real logic of angles happen inside getMultiplierArray() functions
 //**
 private void calcArrays()
 {
 //Get the vertex points assuming a circle
 //with a radius of "1" and located at "origin" zero
 float[] xmarray = this.getXMultiplierArray();
 float[] ymarray = this.getYMultiplierArray();

 //calc xarray: get the vertex
 //by adding the "x" portion of the origin
 //multiply the coordinate with radius (scale)
 for(int i=0;i<sides;i++)
 {
 float curm = xmarray[i];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 659

 float xcoord = cx + r * curm;
 xarray[i] = xcoord;
 }
 this.printArray(xarray, "xarray");

 //calc yarray: do the same for y coordinates
 for(int i=0;i<sides;i++)
 {
 float curm = ymarray[i];
 float ycoord = cy + r * curm;
 yarray[i] = ycoord;
 }
 this.printArray(yarray, "yarray");

 }
 //**
 //Calculate texture arrays
 //See Texture subsection for more discussion on this
 //very similar approach.
 //Here the polygon has to map into a space
 //that is a square
 //**
 private void calcTextureArrays()
 {
 float[] xmarray = this.getXMultiplierArray();
 float[] ymarray = this.getYMultiplierArray();

 //calc xarray
 for(int i=0;i<sides;i++)
 {
 float curm = xmarray[i];
 float xcoord = 0.5f + 0.5f * curm;
 sarray[i] = xcoord;
 }
 this.printArray(sarray, "sarray");

 //calc yarray
 for(int i=0;i<sides;i++)
 {
 float curm = ymarray[i];
 float ycoord = 0.5f + 0.5f * curm;
 tarray[i] = ycoord;
 }
 this.printArray(tarray, "tarray");
 }

 //**
 //Convert the java array of vertices
 //into an nio float buffer
 //**
 public FloatBuffer getVertexBuffer()
 {
 int vertices = sides + 1;
 int coordinates = 3;
 int floatsize = 4;
 int spacePerVertex = coordinates * floatsize;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 660

 ByteBuffer vbb = ByteBuffer.allocateDirect(spacePerVertex * vertices);
 vbb.order(ByteOrder.nativeOrder());
 FloatBuffer mFVertexBuffer = vbb.asFloatBuffer();

 //Put the first coordinate (x,y,z:0,0,0)
 mFVertexBuffer.put(cx); //x
 mFVertexBuffer.put(cy); //y
 mFVertexBuffer.put(0.0f); //z

 int totalPuts = 3;
 for (int i=0;i<sides;i++)
 {
 mFVertexBuffer.put(xarray[i]); //x
 mFVertexBuffer.put(yarray[i]); //y
 mFVertexBuffer.put(0.0f); //z
 totalPuts += 3;
 }
 Log.d("total puts:",Integer.toString(totalPuts));
 return mFVertexBuffer;
 }

 //**
 //Convert texture buffer to an nio buffer
 //**
 public FloatBuffer getTextureBuffer()
 {
 int vertices = sides + 1;
 int coordinates = 2;
 int floatsize = 4;
 int spacePerVertex = coordinates * floatsize;

 ByteBuffer vbb = ByteBuffer.allocateDirect(spacePerVertex * vertices);
 vbb.order(ByteOrder.nativeOrder());
 FloatBuffer mFTextureBuffer = vbb.asFloatBuffer();

 //Put the first coordinate (x,y (s,t):0,0)
 mFTextureBuffer.put(0.5f); //x or s
 mFTextureBuffer.put(0.5f); //y or t

 int totalPuts = 2;
 for (int i=0;i<sides;i++)
 {
 mFTextureBuffer.put(sarray[i]); //x
 mFTextureBuffer.put(tarray[i]); //y
 totalPuts += 2;
 }
 Log.d("total texture puts:",Integer.toString(totalPuts));
 return mFTextureBuffer;
 }

 //**
 //Calculate indices forming multiple triangles.
 //Start with the center vertex which is at 0
 //Then count them in a clockwise direction such as
 //0,1,2, 0,2,3, 0,3,4 and so on.
 //**
 public ShortBuffer getIndexBuffer()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 661

 {
 short[] iarray = new short[sides * 3];
 ByteBuffer ibb = ByteBuffer.allocateDirect(sides * 3 * 2);
 ibb.order(ByteOrder.nativeOrder());
 ShortBuffer mIndexBuffer = ibb.asShortBuffer();
 for (int i=0;i<sides;i++)
 {
 short index1 = 0;
 short index2 = (short)(i+1);
 short index3 = (short)(i+2);
 if (index3 == sides+1)
 {
 index3 = 1;
 }
 mIndexBuffer.put(index1);
 mIndexBuffer.put(index2);
 mIndexBuffer.put(index3);

 iarray[i*3 + 0]=index1;
 iarray[i*3 + 1]=index2;
 iarray[i*3 + 2]=index3;
 }
 this.printShortArray(iarray, "index array");
 return mIndexBuffer;
 }
 //**
 //This is where you take the angle array
 //for each vertex and calculate their projection multiplier
 //on the x axis
 //**
 private float[] getXMultiplierArray()
 {
 float[] angleArray = getAngleArrays();
 float[] xmultiplierArray = new float[sides];
 for(int i=0;i<angleArray.length;i++)
 {
 float curAngle = angleArray[i];
 float sinvalue = (float)Math.cos(Math.toRadians(curAngle));
 float absSinValue = Math.abs(sinvalue);
 if (isXPositiveQuadrant(curAngle))
 {
 sinvalue = absSinValue;
 }
 else
 {
 sinvalue = -absSinValue;
 }
 xmultiplierArray[i] = this.getApproxValue(sinvalue);
 }
 this.printArray(xmultiplierArray, "xmultiplierArray");
 return xmultiplierArray;
 }

 //**
 //This is where you take the angle array
 //for each vertex and calculate their projection multiplier
 //on the y axis

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 662

 //**
 private float[] getYMultiplierArray() {
 float[] angleArray = getAngleArrays();
 float[] ymultiplierArray = new float[sides];
 for(int i=0;i<angleArray.length;i++) {
 float curAngle = angleArray[i];
 float sinvalue = (float)Math.sin(Math.toRadians(curAngle));
 float absSinValue = Math.abs(sinvalue);
 if (isYPositiveQuadrant(curAngle)) {
 sinvalue = absSinValue;
 }
 else {
 sinvalue = -absSinValue;
 }
 ymultiplierArray[i] = this.getApproxValue(sinvalue);
 }
 this.printArray(ymultiplierArray, "ymultiplierArray");
 return ymultiplierArray;
 }

 //**
 //This function may not be needed
 //Test it yourself and discard it if you dont need
 //**
 private boolean isXPositiveQuadrant(float angle) {
 if ((0 <= angle) && (angle <= 90)) { return true; }
 if ((angle < 0) && (angle >= -90)) { return true; }
 return false;
 }
 //**
 //This function may not be needed
 //Test it yourself and discard it if you dont need
 //**
 private boolean isYPositiveQuadrant(float angle) {
 if ((0 <= angle) && (angle <= 90)) { return true; }
 if ((angle < 180) && (angle >= 90)) {return true;}
 return false;
 }
 //**
 //This is where you calculate angles
 //for each line going from center to each vertex
 //**
 private float[] getAngleArrays() {
 float[] angleArray = new float[sides];
 float commonAngle = 360.0f/sides;
 float halfAngle = commonAngle/2.0f;
 float firstAngle = 360.0f - (90+halfAngle);
 angleArray[0] = firstAngle;

 float curAngle = firstAngle;
 for(int i=1;i<sides;i++)
 {
 float newAngle = curAngle - commonAngle;
 angleArray[i] = newAngle;
 curAngle = newAngle;
 }
 printArray(angleArray, "angleArray");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 663

 return angleArray;
 }

 //**
 //Some rounding if needed
 //**
 private float getApproxValue(float f) {
 return (Math.abs(f) < 0.001) ? 0 : f;
 }
 //**
 //Return how many Indices you will need
 //given the number of sides
 //This is the count of number of triangles needed
 //to make the polygon multiplied by 3
 //It just happens that the number of triangles is
 // same as the number of sides
 //**
 public int getNumberOfIndices() {
 return sides * 3;
 }
 public static void test() {
 RegularPolygon triangle = new RegularPolygon(0,0,0,1,3);
 }
 private void printArray(float array[], String tag) {
 StringBuilder sb = new StringBuilder(tag);
 for(int i=0;i<array.length;i++) {
 sb.append(";").append(array[i]);
 }
 Log.d("hh",sb.toString());
 }
 private void printShortArray(short array[], String tag) {
 StringBuilder sb = new StringBuilder(tag);
 for(int i=0;i<array.length;i++) {
 sb.append(";").append(array[i]);
 }
 Log.d(tag,sb.toString());
 }
}

Here are the key elements in the code:

 Constructor: The constructor of a RegularPolygon takes as input the
coordinates of the center, the radius, and the number of sides.

 getAngleArrays: This method is a key method that is responsible for
calculating the angles of each spine of the regular polygon with the
assumption that one of the sides of the polygon is parallel to the x-
axis.

 getXMultiplierArray and getYMultiplierArray: These methods take the
angles from getAngleArrays and project them to the x-axis and y-axis
to get the corresponding coordinates, assuming the spine is a unit in
length.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 664

 calcArrays: This method uses the getXMultiplierArray and the
getYMultiplierArray to take each vertex and scales them to match
the specified radius and specified origin. At the end of this method, the
RegularPolygon will have the right coordinates, albeit in Java float
arrays.

 getVertexBuffer: This method then takes the Java float coordinate
arrays and populates NIO-based buffers that are needed by the
OpenGL draw methods.

 getIndexBuffer: This method takes the vertices that are gathered and
orders them such that each triangle will contribute to the final polygon.

The other methods that deal with textures follow a very similar pattern and will make
more sense when we explain the textures in the next section. We have also included
some print functions to print the arrays for debugging purposes.

Rendering a Square Using RegularPolygon
Now that we have looked at the basic building blocks, let’s see how we could draw a
square using a RegularPolygon of four sides. Listing 20–27 shows the code for the
SquareRenderer.

Listing 20–27. SquareRenderer

public class SquareRenderer extends AbstractRenderer
{
 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 private int numOfIndices = 0;

 private int sides = 4;

 public SquareRenderer(Context context)
 {
 prepareBuffers(sides);
 }

 private void prepareBuffers(int sides)
 {
 RegularPolygon t = new RegularPolygon(0,0,0,0.5f,sides);
 //RegularPolygon t = new RegularPolygon(1,1,0,1,sides);
 this.mFVertexBuffer = t.getVertexBuffer();
 this.mIndexBuffer = t.getIndexBuffer();
 this.numOfIndices = t.getNumberOfIndices();
 this.mFVertexBuffer.position(0);
 this.mIndexBuffer.position(0);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 665

 //overriden method
 protected void draw(GL10 gl)
 {
 prepareBuffers(sides);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, this.numOfIndices,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

This code should be fairly obvious. We have derived it from the AbstractRenderer (see
Listing 20–9) and overrode the draw method and used the RegularPolygon to draw out a
square.

Once this square renderer class is in place, we can add the if condition code in Listing
20–28 to the MultiViewTestHarness in Listing 20–12.

Listing 20–28. Using SimpleRectangleRenderer

if (mid == R.id.mid_square_polygon)
{
 mTestHarness.setRenderer(new SquareRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 return;
}

After we add this code, we can run the program again and choose the menu option
"Square Polygon" to see the square in Figure 20–8.

Figure 20–8. A square drawn as a regular polygon

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 666

Animating RegularPolygons
Now that we have explored the basic idea of drawing a shape generically through
RegularPoygon, let’s get a bit sophisticated. Let's see if we can use an animation where
we start with a triangle and end up with a circle by using a polygon whose sides
increase every four seconds or so. The code for this is in Listing 20–29.

Listing 20–29. PolygonRenderer

public class PolygonRenderer extends AbstractRenderer
{
 //Number of points or vertices we want to use
 private final static int VERTS = 4;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 private int numOfIndices = 0;

 private long prevtime = SystemClock.uptimeMillis();

 private int sides = 3;

 public PolygonRenderer(Context context)
 {
prepareBuffers(sides);
 }

 private void prepareBuffers(int sides)
 {
 RegularPolygon t = new RegularPolygon(0,0,0,1,sides);
this.mFVertexBuffer = t.getVertexBuffer();
 this.mIndexBuffer = t.getIndexBuffer();
 this.numOfIndices = t.getNumberOfIndices();
 this.mFVertexBuffer.position(0);
 this.mIndexBuffer.position(0);
 }

 //overriden method
 protected void draw(GL10 gl)
 {
 long curtime = SystemClock.uptimeMillis();
 if ((curtime - prevtime) > 2000)
 {
 prevtime = curtime;
 sides += 1;
 if (sides > 20)
 {
 sides = 3;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 667

 this.prepareBuffers(sides);
 }
gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, this.numOfIndices,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

All we are doing in this code is changing the sides variable every four seconds. The
animation comes from the way the Renderer is registered with the surface view.

Once we have this renderer available, we will need to add the code in Listing 20–30 to
the MultiviewTestHarness code.

Listing 20–30. Menu Item for testing a polygon

if (mid == R.id.mid_polygon)
{
 mTestHarness.setRenderer(new PolygonRenderer(this));
 setContentView(mTestHarness);
 return;
}

If we run the program again and choose the menu item "Polygon," we'll see a set of
transforming polygons whose sides continue to increase. It is instructive to see the
progress of the polygons over time. Figure 20–9 shows a hexagon toward the beginning
of the cycle.

Figure 20–9. Hexagon at the beginning of the polygon drawing cycle

Figure 20–10 shows it towards the end of the cycle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 668

Figure 20–10. A circle drawn as a regular polygon

You can extend this idea of abstract shapes to more complex shapes and even to a
scene graph where it consists of a number of other objects that are defined through
some type of XML and then renders them in OpenGL using those instantiated objects.

Let's now move on to textures to see how we can integrate the idea of sticking
wallpapers to the surfaces we have drawn so far, such as squares and polygons.

Working with Textures
Textures are another core topic in OpenGL. OpenGL textures have a number of
nuances. We will cover only the fundamentals in this chapter so that you can get started
with OpenGL textures. Use the resources provided at the end of this chapter to dig
further into textures.

Understanding Textures
An OpenGL Texture is a bitmap that you paste on a surface in OpenGL. (In this chapter,
we will cover only surfaces.) For example, you can take the image of a postage stamp
and stick it on a square so that the square looks like a postage stamp. Or you can take
the bitmap of a brick and paste it on a rectangle and repeat the brick image so that the
rectangle looks like a wall of bricks.

The process of attaching a texture bitmap to an OpenGL surface is similar to the
process of pasting a piece of wallpaper (in the shape of a square) on the side of a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 669

regularly or irregularly shaped object. The shape of the surface doesn’t matter as long as
you choose a paper that is large enough to cover it.

However, to align the paper so that the image is correctly lined up, you have to take
each vertex of the shape and exactly mark it on the wallpaper so that the wallpaper and
the object’s shape are in lockstep. If the shape is odd and has a number of vertices,
each vertex needs to be marked on your paper as well.

Another way of looking at this is to envision that you lay the object on the ground face
up and put the wallpaper on top of it and rotate the paper until the image is aligned in
the right direction. Now poke holes in the paper at each vertex of the shape. Remove the
paper and see where the holes are and note their coordinates on the paper, assuming
the paper is calibrated. These coordinates are called texture coordinates.

Normalized Texture Coordinates
One unresolved or unstated detail is the size of the object and the paper. OpenGL uses

a normalized approach to resolve this. OpenGL assumes that the paper is always a 1 × 1
square with its origin at (0,0) and the top right corner is at (1,1). Then OpenGL wants you

to shrink your object surface so that it fits within these 1 × 1 boundaries. So the burden
is on the programmer to figure out the vertices of the object surface in a 1 × 1 square.

In the design of our RegularPolygon from Listing 20–26, we drew a polygon using a
similar approach where we assumed it was a circle of 1 unit radius. Then we figured out

where each vertex is. If we assume that that circle is inside a 1 × 1 square, then that
square could be our paper. So figuring out texture coordinates is very similar to figuring
out the polygon vertex coordinates. This is why Listing 20–26 has the following function
to calculate the texture coordinates:

calcTextureArray()
getTextureBuffer()

If you notice, every other function is common between calcTextureArrays and
calcArrays methods. This commonality between vertex coordinates and texture
coordinates is important to note when you are learning OpenGL.

Abstracting Common Texture Handling
Once you understand this mapping between texture coordinates and vertex coordinates
and can figure out the coordinates for the texture map, the rest is simple enough.
(Nothing in OpenGL can be boldly stated as "quite simple!") Subsequent work involves
loading the texture bitmap into memory and giving it a texture ID so that you can reuse
this texture again. Then, to allow for multiple textures loaded at the same time, you have
a mechanism to set the current texture by specifying an ID. During a drawing pipeline,
you will specify the texture coordinates along with the drawing coordinates. Then you
draw.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 670

Because the process of loading textures is fairly common, we have abstracted out this
process by inventing an abstract class called SingleAbstractTextureRenderer that
inherits from AbstractRenderer.

Listing 20–31 shows the source code that abstracts out all the set-up code for a single
texture.

Listing 20–31. Abstracting Single Texturing Support

public abstract class AbstractSingleTexturedRenderer
extends AbstractRenderer
{
 int mTextureID;
 int mImageResourceId;
 Context mContext;
 public AbstractSingleTexturedRenderer(Context ctx,
 int imageResourceId) {
 mImageResourceId = imageResourceId;
 mContext = ctx;
 }

 public void onSurfaceCreated(GL10 gl, EGLConfig eglConfig) {
 super.onSurfaceCreated(gl, eglConfig);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 prepareTexture(gl);
 }
 private void prepareTexture(GL10 gl)
 {
 int[] textures = new int[1];
 gl.glGenTextures(1, textures, 0);

 mTextureID = textures[0];
 gl.glBindTexture(GL10.GL_TEXTURE_2D, mTextureID);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
 GL10.GL_NEAREST);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MAG_FILTER,
 GL10.GL_LINEAR);

 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
 GL10.GL_CLAMP_TO_EDGE);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
 GL10.GL_CLAMP_TO_EDGE);

 gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE,
 GL10.GL_REPLACE);

 InputStream is = mContext.getResources()
 .openRawResource(this.mImageResourceId);
 Bitmap bitmap;
 try {
 bitmap = BitmapFactory.decodeStream(is);
 } finally {
 try {
 is.close();
 } catch(IOException e) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 671

 // Ignore.
 }
 }

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
 bitmap.recycle();
 }

 public void onDrawFrame(GL10 gl)
 {
 gl.glDisable(GL10.GL_DITHER);
 gl.glTexEnvx(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE,
 GL10.GL_MODULATE);

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 gl.glActiveTexture(GL10.GL_TEXTURE0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, mTextureID);
 gl.glTexParameterx(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
 GL10.GL_REPEAT);
 gl.glTexParameterx(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
 GL10.GL_REPEAT);

 draw(gl);
 }
}

In this code, the single texture (a bitmap) is loaded and prepared in the
onSurfaceCreated method. The code for onDrawFrame, just like the AbstractRenderer,
sets up the dimensions of our drawing space so that our coordinates make sense.
Depending on your situation, you may want to change this code to figure out your own
optimal viewing volume.

Note how the constructor takes a texture bitmap which it prepares for later use.
Depending on how many textures you have, you can craft your abstract classes
accordingly.

As shown in Listing 20–31, the following APIs that revolve around textures are required:

 glGenTextures: This OpenGL method is responsible for generating
unique IDs for textures so that those textures can be referenced later.
Once we load the texture bitmap through GLUtils.texImage2D, we
bind that texture to a specific ID. Until a texture is bound to an ID
generated by glGenTextures, the ID is just an ID. The OpenGL
literature refers to these integer IDs as texture names.

 glBindTexture: We use this OpenGL method to bind the currently
loaded texture to a texture ID obtained from glGenTextures.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 672

 glTexParameter: There are many optional parameters we can set when
we apply texture. This API allows us to define what these options are.
Some examples include GL_REPEAT, GL_CLAMP etc. For example,
GL_REPEAT allows us to repeat the bitmap many times if the size of the
object is larger. A complete list of these parameters can be found at
www.khronos.org/opengles/documentation/opengles1_0/html/glTexPa
rameter.html.

 glTexEnv: Some of the other texture-related options are specified
through the glTexEnv method. Some example values include GL_DECAL,
GL_MODULATE, GL_BLEND, GL_REPLACE, etc. For example, in the case of
GL_DECAL, texture covers the underlying object. GL_MODULATE, as the
name indicates, modulates the underlying colors instead of replacing
them. Refer to the following URL for a complete list of the options for
this API:
www.khronos.org/opengles/documentation/opengles1_0/html/glTexEn
v.html.

 GLUtils.texImage2D: This is an Android API that allows us to load the
bitmap for texturing purposes. Internally, this API calls the
glTexImage2D of the OpenGL.

 glActiveTexture: This sets a given texture ID as the active structure.

 glTexCoordpointer: This OpenGL method is used to specify the texture
coordinates. Each coordinate must match the coordinate specified in
the glVertexPointer.

You can read up on most of these APIs from the OpenGL ES reference available at

www.khronos.org/opengles/documentation/opengles1_0/html/index.html

Drawing Using Textures
Once the bitmap is loaded and set up as a texture, we should be able to utilize the
RegularPolygon and use the texture coordinates and vertex coordinates to draw a
regular polygon along with the texture. Listing 20–32 shows the actual drawing class
that draws a textured square.

Listing 20–32. TexturedSquareRenderer

public class TexturedSquareRenderer extends AbstractSingleTexturedRenderer
{
 //Number of points or vertices we want to use
 private final static int VERTS = 4;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFTextureBuffer;

 //A raw native buffer to hold indices

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 673

 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 private int numOfIndices = 0;

 private int sides = 4;

 public TexturedSquareRenderer(Context context)
 {
 super(context,com.androidbook.OpenGL.R.drawable.robot);
 prepareBuffers(sides);
 }

 private void prepareBuffers(int sides)
 {
 RegularPolygon t = new RegularPolygon(0,0,0,0.5f,sides);
 this.mFVertexBuffer = t.getVertexBuffer();
 this.mFTextureBuffer = t.getTextureBuffer();
 this.mIndexBuffer = t.getIndexBuffer();
 this.numOfIndices = t.getNumberOfIndices();
 this.mFVertexBuffer.position(0);
 this.mIndexBuffer.position(0);
 this.mFTextureBuffer.position(0);

 }

 //overriden method
 protected void draw(GL10 gl)
 {
 prepareBuffers(sides);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, mFTextureBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, this.numOfIndices,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

As you can see, most of the heavy lifting is carried out the by abstract textured renderer
class and the RegularPolygon calculated the texture mapping vertices (see Listing 20–
26).

Once we have this renderer available, we will need to add the code in Listing 20–33 to
MultiviewTestHarness in Listing 20–12 to test the textured square.

Listing 20–33. Responding to Textured Square Menu Item

if (mid == R.id.mid_textured_square)
{
 mTestHarness.setRenderer(new TexturedSquareRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 return;
}

Now if we run the program again and choose the menu item "Textured Square," we will
see the textured square drawn as shown In Figure 20–11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 674

Figure 20–11. A textured square

Drawing Multiple Figures
Every example in this chapter so far has involved drawing a simple figure following a
standard pattern. The pattern is: set up the vertices, load the texture, set up texture
coordinates, and draw a single figure. What happens if we want to draw two figures?
What if we want to draw a triangle using traditional means of specifying vertices and
then a polygon using shapes such as the RegularPolygon? How do we specify
combined vertices? Do we have to specify the vertices one time for both objects and
then call the draw method?

As it turns out, between two draw() calls of the Android OpenGL Renderer interface,
OpenGL allows us to issue multiple glDraw methods. Between these multiple glDraw
methods, we can set up fresh vertices and textures. All of these drawing methods will
then go to the screen once the draw() method completes.

There is another trick we can use to draw multiple figures with OpenGL. Consider the
polygons we have created so far. These polygons have the capability to render
themselves at any origin by taking the origin as an input. As it turns out, OpenGL can do
this natively where it allows us to specify a RegularPolygon always at (0,0,0) and have
the “translate” mechanism of OpenGL move it off of the origin to the desired position.
We can do the same again with another polygon and translate it to a different position,
thereby drawing two polygons at two different places on the screen.

Listing 20–34 demonstrates these ideas by drawing the textured polygon multiple times.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 675

Listing 20–34. Textured Polygon Renderer

public class TexturedPolygonRenderer extends AbstractSingleTexturedRenderer
{
 //Number of points or vertices we want to use
 private final static int VERTS = 4;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFTextureBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 private int numOfIndices = 0;

 private long prevtime = SystemClock.uptimeMillis();
 private int sides = 3;

 public TexturedPolygonRenderer(Context context)
 {
 super(context,com.androidbook.OpenGL.R.drawable.robot);
prepareBuffers(sides);
 }

 private void prepareBuffers(int sides)
 {
 RegularPolygon t = new RegularPolygon(0,0,0,0.5f,sides);
this.mFVertexBuffer = t.getVertexBuffer();
 this.mFTextureBuffer = t.getTextureBuffer();
 this.mIndexBuffer = t.getIndexBuffer();
 this.numOfIndices = t.getNumberOfIndices();
 this.mFVertexBuffer.position(0);
 this.mIndexBuffer.position(0);
 this.mFTextureBuffer.position(0);
 }

 //overriden method
 protected void draw(GL10 gl)
 {
 long curtime = SystemClock.uptimeMillis();
 if ((curtime - prevtime) > 2000)
 {
 prevtime = curtime;
 sides += 1;
 if (sides > 20)
 {
 sides = 3;
 }
 this.prepareBuffers(sides);
 }
 gl.glEnable(GL10.GL_TEXTURE_2D);

 //Draw once to the left
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 676

 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, mFTextureBuffer);

 gl.glPushMatrix();
 gl.glScalef(0.5f, 0.5f, 1.0f);
 gl.glTranslatef(0.5f,0, 0);
 gl.glDrawElements(GL10.GL_TRIANGLES, this.numOfIndices,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);

 //Draw again to the right
 gl.glPopMatrix();
 gl.glPushMatrix();
 gl.glScalef(0.5f, 0.5f, 1.0f);
 gl.glTranslatef(-0.5f,0, 0);
 gl.glDrawElements(GL10.GL_TRIANGLES, this.numOfIndices,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 gl.glPopMatrix();
 }
}

This example demonstrates the following concepts:

 Drawing using shapes.

 Drawing multiple shapes using transformation matrices.

 Providing textures.

 Providing animation.

The main code in Listing 20–34 responsible for drawing multiple times is in the method
draw(). We have highlighted corresponding lines in that method. Note that inside one
draw() invocation we have called glDrawElements twice. Each of these times we set up
the drawing primitives independent of the other time.

One more point to clarify is the use of transformation matrices. Every time
glDrawElements() is called, it uses a specific transformation matrix. If we were to
change this to alter the position of the figure (or any other aspect of the figure), we
would need to set it back to the original so that the next drawing could correctly draw.
This is accomplished through the push and pop operations provided on the OpenGL
matrices.

Once we have this renderer available, we will need to add the code in Listing 20–35 to
MultiviewTestHarness in Listing 20–12 to test the drawing of multiple figures.

Listing 20–35. Responding to Multiple Figures Menu Item

if (mid == R.id.mid_multiple_figures)
{
 mTestHarness.setRenderer(new TexturedPolygonRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY);
 setContentView(mTestHarness);
 return;
}

If we run the program again and choose the menu item "Multiple Figures," we will see
two sets of changing polygons drawn (as shown in Figure 20–12) at the beginning of the
animation. (Note that we have set the render mode to continuous.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 677

Figure 20–12. A pair of textured polygons

Figure 20–13 shows the same exercise in the middle of the animation.

Figure 20–13. A pair of textured circles

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 678

This concludes another important concept in OpenGL. This section showed how to
accumulate a number of different figures or scenes and draw them in tandem so that the
end result forms a fairly complex OpenGL scene.

Next, we'll talk about Android support for OpenGL ES 2.0.

OpenGL ES 2.0
The good news is that Android not only supports OpenGL ES 2.0 but also provides Java
bindings to the API starting with Android 2.2 (or API Level 8). However, keep the
following restrictions in mind:

 OpenGL ES 2.0 is not supported yet on the emulator.

 OpenGL ES 2.0 is significantly different for a beginner, and most
OpenGL books are coming out with new editions to cover this aspect
of OpenGL. The programmability demanded by OpenGL ES 2.0 on the
GPU (Graphics Processing Unit) puts a lot of complexity on the
emulator. As a result, it's not even clear when Android will support
OpenGL ES 2.0 on the emulator

 The only way to test/learn OpenGL ES 2.0 on Android SDK is to use a
real device. Most of the devices are in the process of getting upgraded
to Android 2.2. However, it's possible that there will be a number of
devices that won't support OpenGL ES 2.0

OpenGL ES 2.0 is a very different animal than OpenGL ES 1.x. It is not backward
compatible. For beginners, it is most different in its initialization and learning how to
draw the simplest of drawings.

It would take many pages to cover OpenGL ES 2.0 thoroughly. Instead, we will present
you the basic initialization needed to get started with ES 2.0. Once you have this basic
harness, you can consult the references at the end of this chapter to apply the OpenGL
ES 2.0 into this framework.

The power of OpenGL ES 2.0 comes from the ability to write programs for the GPU that
get compiled at run time and interpret how to draw vertices and fragments. These
programs are called shaders. Unfortunately these shaders are necessary even for the
simplest of OpenGL ES 2.0 programs. In that sense understanding shaders is
mandatory for OpenGL ES 2.0.

Learning the OpenGL Shader Language is necessary to learn OpenGL ES 2.0. We have
included a number of references at the end of this chapter to help you with this.

Java Bindings for OpenGL ES 2.0
The Java bindings for this API on Android are available in the package
android.opengl.GLES20. All the functions of this class are static and correspond to the
respective C APIs in the Khronos spec. (The URL can be found in the references section)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 679

The GLSurfaceView and the corresponding Renderer abstraction introduced in the book
for OpenGL ES 1.0 are also applicable to OpenGL ES 2.0. We will cover this soon. The
documentation for this aspect is in the API documentation for the function
GLSurfaceView.setEGLContextClientVersion.

First, let's see how to figure out if the device or the emulator supports this version of
OpenGL ES 2.0 by using the code in Listing 20–36.

Listing 20–36. Detecting OpenGL ES 2.0 Availability

 private boolean detectOpenGLES20() {
 ActivityManager am =
 (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);
 ConfigurationInfo info = am.getDeviceConfigurationInfo();
 return (info.reqGlEsVersion >= 0x20000);
}

Once you have this function (detectOpenGLES20), you can start using the GLSurfaceView,
as shown in Listing 20–37, in your activity.

Listing 20–37. Using GLSurfaceView for OpenGL ES 2.0

 if (detectOpenGLES20())
 {
 GLSurfaceView glview = new GLSurfaceView(this);
 // glview.setEGLConfigChooser(false);
 glview.setEGLContextClientVersion(2);

 glview.setRenderer(new YourGLES20Renderer(this));
 glview.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(glview);
 }

Notice how the GLSurfaceView is configured to use OpenGL ES 2.0 by setting the client
version to "2". Then the class YourGLESRenderer will be similar to the Renderer classes
introduced in this chapter. However, in the body of the renderer class, you will be using
the GLES20 APIs instead of the GL10 APIs.

In the example we are going to develop, this renderer class is called
ES20SimpleTriangleRenderer. We will introduce this class shortly. But let's first look at
the activity class in Listing 20–38 that combines code snippets from Listing 20–36 and
Listing 20–37.

Listing 20–38. OpenGL20MultiViewTestHarness Activity

public class OpenGL20MultiViewTestHarnessActivity extends Activity
{
 final String tag="es20";
 private GLSurfaceView mTestHarness;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (detectOpenGLES20())
 {
 mTestHarness = new GLSurfaceView(this);
 //DO NOT call the followign function

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 680

 //mTestHarness.setEGLConfigChooser(false);
 mTestHarness.setEGLContextClientVersion(2);
 }
 else
 {
 throw new RuntimeException("20 not supported");
 }

 Intent intent = getIntent();
 int mid = intent.getIntExtra("com.ai.menuid", R.id.MenuId_OpenGL15_Current);
 if (mid == R.id.mid_es20_triangle)
 {
 mTestHarness.setRenderer(new ES20SimpleTriangleRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 return;
 }
 return;
 }
 private boolean detectOpenGLES20() {
 ActivityManager am =
 (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);
 ConfigurationInfo info = am.getDeviceConfigurationInfo();
 return (info.reqGlEsVersion >= 0x20000);
 }
 @Override
 protected void onResume() {
 super.onResume();
 mTestHarness.onResume();
 }
 @Override
 protected void onPause() {
 super.onPause();
 mTestHarness.onPause();
 }
}

The ES 2.0 test harness activity in Listing 20–38 is very similar to the test harness we
presented for ES 1.x in Listing 20–12. You may be wondering why can't we just use that
one and create a different menu option. Two reasons have prompted us to go in this
direction.

The first one is we're not sure if we can reuse the SurfaceView between ES 1.x and ES 2.x
menu invocations. We just want to be safe.

The second reason is that the way we initialize is different, so we don't want to confuse
the code by combining both into one class. For example, for ES 2.0 initialization we
check the supported ES version, etc.; such code would have clouded the simpler ES 1.x
initialization in Listing 20–12.

Otherwise, the motivation for this ES 2.x test harness is identical to that of the ES1.x test
harness.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 681

To be able to use OpenGL ES 2.0 features in our activities such as the one in Listing 20–
38, we need to include the following <uses-feature> as a child of the application node
(see Listing 20–39).

Listing 20–39. Using OpenGL ES 2.0 Feature

<application…>
……other nodes
 <uses-feature android:glEsVersion="0x00020000" />
 </application>

As we will be able to test OpenGL ES 2.0 applications only on a real device, we need to
specify our application as debuggable using the debuggable attribute of the application
node, as shown in Listing 20–40.

Listing 20–40. Specifying a Debuggable Application

 <application android:icon="@drawable/icon"
 android:label="OpenGL Test Harness"
 android:debuggable="true">

To be able to invoke the ES 2.0 test harness activity, we will need to change the driver
activity in Listing 20–14 so that it looks like the code in Listing 20–41.

Listing 20–41. New Main Driver Activity

public class TestOpenGLMainDriverActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 if (item.getItemId() >= R.id.mid_es20_triangle)
 {
 this.invoke20MultiView(item.getItemId());
 return true;
 }
 this.invokeMultiView(item.getItemId());
 return true;
 }
 private void invokeMultiView(int mid)
 {
 Intent intent = new Intent(this,MultiViewTestHarnessActivity.class);
 intent.putExtra("com.ai.menuid", mid);
 startActivity(intent);
 }
 private void invoke20MultiView(int mid)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 682

 {
 Intent intent = new Intent(this,OpenGL20MultiViewTestHarnessActivity.class);
 intent.putExtra("com.ai.menuid", mid);
 startActivity(intent);
 }
}

We have inserted two code additions in Listing 20–41: an additional method to invoke
the OpenGL20MultiViewTestHarnessActivity that we invoke if the menu ID is above or
equal to the "mid_es20_triangle". The thought is that this menu item will start off the
demos for ES 2.0. However, we have only one demo of ES 2.0 at this time.

Rendering Steps
Rendering a figure in OpenGL ES 2.0 requires the following steps:

1. Write shader programs that run on the GPU to extract such things as drawing

coordinates and model/view/projection matrices from the client memory and draw

them. There is no counterpart to this in OpenGL ES 1.0. In a simplistic sense, this

is an additional level of indirection before the vertices are drawn and surfaces

painted.

2. Compile the source code of shaders from step 1on the GPU.

3. Link the compiled units in step 2 into a program object that can be used at

drawing time.

4. Retrieve address handlers from the program in step 3 so that data can be set into

those pointers.

5. Define your vertex buffers.

6. Define your model view matrices (this is done through such things as setting the

frustum, camera position, etc.; it's very similar to how it's done in OpenGL ES

1.1).

7. Pass the items from step 5 and 6 to the program through the handlers.

8. Finally, draw.

We will examine each of the steps through code snippets and then present a working
renderer paralleling the SimpleTriangleRenderer that was presented as part of the
OpenGL ES 1.0. Let's start with the key difference of OpenGL ES 2.0, namely shaders.

Understanding Shaders
Even the simplest of drawings in OpenGL ES 2.0 requires program segments called
shaders. These shaders form the core of OpenGL ES 2.0. We will explain the minimum
necessary to accomplish drawing of a simple triangle; we advise you to read the
resources listed in the reference section at the end of this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 683

Any drawing that involves vertices is carried out by vertex shaders. Any drawing that
involves a fragment, the space between vertices, is carried out by fragment shaders. So
a vertex shader is concerned with only vertex points. However, a fragment shader deals
with every pixel.

Listing 20–42 is an example of a vertex shader program segment.

Listing 20–42. A Simple Vertex Shader

uniform mat4 uMVPMatrix;
attribute vec4 aPosition;
void main() {
 gl_Position = uMVPMatrix * aPosition;
}

This program is written in the shading language. The first line indicates that the variable
uMVPMatrix is an input variable to the program and it is of type mat4 (a 4x4 matrix). It is
also qualified as a uniform variable because this matrix variable applies to all the
vertices and not to any specific vertex.

In contrast, the variable aPosition is a vertex attribute that deals with the position of the
vertex (coordinates). It is identified as an attribute of the vertex and is specific to a
vertex. The other attributes of a vertex include color, texture, etc. This aPosition
variable is a 4 point vector as well. Now the program itself, Listing 20–42, is taking the
coordinate position of the vertex and transforming it using a Model View Projection
(MVP) matrix (which will be set by the calling program) and multiplying the coordinate
position of the vertex to arrive at a final position identified by the reserved gl_Position
of the vertex shader.

This vertex shader program is responsible for drawing or positioning the vertices. The
calling program, for example, will set the buffer for the vertices of a triangle, for instance,
as follows in Listing 20–43.

Listing 20–43. Setting Data for the Vertices

GLES20.glVertexAttribPointer(positionHandle, 3, GLES20.GL_FLOAT, false,
 TRIANGLE_VERTICES_DATA_STRIDE_BYTES, mFVertexBuffer);

The vertex buffer is the last argument of this GLES 20 method. This looks very much like
the glVertexPointer in OpenGL 1.0 except for the first argument, which is identified as
positionHandle. This argument points to the aPostion input attribute variable from the
vertex shader program in Listing 20–42. You get this handle using code similar to the
following:

 positionHandle = GLES20.glGetAttribLocation(shaderProgram, "aPosition");

Essentially, you are asking the shader program to give a handle to an input variable and
go from there. The shaderProgram itself needs to be constructed by passing the shader
code segments to the GPU and compiling them and linking them. To make a program
where you can start to draw, you also need a fragment shader. Listing 20–44 is an
example of a fragment shader.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 684

Listing 20–44. Example of a Fragment Shader

void main() {
 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

Again, we take the reserved variable gl_FragColor and hardcode it to the color red.
Instead of hardcoding it to red as in Listing 20–44, we can pass these color values all the
way from the user program through the vertex shader to the fragment shader. This is a
bit out of scope for this chapter but is clearly demonstrated in many of the indicated
reference materials on OpenGL ES 2.0

These shader programs are mandatory to start drawing.

Compiling Shaders into a Program
Once we have the shader program segments as seen in Listing 20–42 and 20–44, we
can use the code in Listing 20–45 to compile and load a shader program.

Listing 20–45. Compiling and Loading a Shader Program

private int loadShader(int shaderType, String source) {
 int shader = GLES20.glCreateShader(shaderType);
 if (shader != 0) {
 GLES20.glShaderSource(shader, source);
 GLES20.glCompileShader(shader);
 int[] compiled = new int[1];
 GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS, compiled, 0);
 if (compiled[0] == 0) {
 Log.e(TAG, "Could not compile shader " + shaderType + ":");
 Log.e(TAG, GLES20.glGetShaderInfoLog(shader));
 GLES20.glDeleteShader(shader);
 shader = 0;
 }
 }
 return shader;
}

In this code segment, the shadertype is one of GLES20.GL_VERTEX_SHADER or
GLES20.GL_FRAGMENT_SHADER. The variable source will need to point to a string containing
the source, such as those shown in Listing 20–42 and 20–44.

Listing 20–46 shows how the function loadShader (from Listing 20–45) is utilized in
constructing the program object.

Listing 20–46. Creating a Program and Getting Variable Handles

private int createProgram(String vertexSource, String fragmentSource) {
 int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexSource);
 if (vertexShader == 0) {
 return 0;
 }
 Log.d(TAG,"vertex shader created");
 int pixelShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentSource);
 if (pixelShader == 0) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 685

 return 0;
 }
 Log.d(TAG,"fragment shader created");
 int program = GLES20.glCreateProgram();
 if (program != 0) {
 Log.d(TAG,"program created");
 GLES20.glAttachShader(program, vertexShader);
 checkGlError("glAttachShader");
 GLES20.glAttachShader(program, pixelShader);
 checkGlError("glAttachShader");
 GLES20.glLinkProgram(program);
 int[] linkStatus = new int[1];
 GLES20.glGetProgramiv(program, GLES20.GL_LINK_STATUS, linkStatus, 0);
 if (linkStatus[0] != GLES20.GL_TRUE) {
 Log.e(TAG, "Could not link program: ");
 Log.e(TAG, GLES20.glGetProgramInfoLog(program));
 GLES20.glDeleteProgram(program);
 program = 0;
 }
 }
 return program;
}

Getting Access to the Shader Program Variables
Once the program is set up, the program's handle can be used to get handles for the
input variables required by the shaders. Listing 20–47 shows how.

Listing 20–47. Getting Vertex and Uniform Handles

int maPositionHandle =
 GLES20.glGetAttribLocation(mProgram, "aPosition");
int muMVPMatrixHandle =
 GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");

A Simple ES 2.0 Triangle
We now have covered all the basics necessary to put together a framework similar to
the one we created for OpenGL 1.0. We will now put together an abstract renderer
which will encapsulate all the initialization work (such as creating shaders, programs,
etc.). Listing 20–48 shows the code.

Listing 20–48. ES20AbstractRenderer

public abstract class ES20AbstractRenderer
implements android.opengl.GLSurfaceView.Renderer
{
 public static String TAG = "ES20AbstractRenderer";

 private float[] mMMatrix = new float[16];
 private float[] mProjMatrix = new float[16];
 private float[] mVMatrix = new float[16];
 private float[] mMVPMatrix = new float[16];

 private int mProgram;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 686

 private int muMVPMatrixHandle;
 private int maPositionHandle;

 public void onSurfaceCreated(GL10 gl, EGLConfig eglConfig)
 {
 prepareSurface(gl,eglConfig);
 }
 public void prepareSurface(GL10 gl, EGLConfig eglConfig)
 {
 Log.d(TAG,"preparing surface");
 mProgram = createProgram(mVertexShader, mFragmentShader);
 if (mProgram == 0) {
 return;
 }
 Log.d(TAG,"Getting position handle:aPosition");
 maPositionHandle = GLES20.glGetAttribLocation(mProgram, "aPosition");
 checkGlError("glGetAttribLocation aPosition");
 if (maPositionHandle == -1) {
 throw new RuntimeException("Could not get attrib location for aPosition");
 }
 Log.d(TAG,"Getting matrix handle:uMVPMatrix");
 muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
 checkGlError("glGetUniformLocation uMVPMatrix");
 if (muMVPMatrixHandle == -1) {
 throw new RuntimeException("Could not get attrib location for uMVPMatrix");
 }
 }
 public void onSurfaceChanged(GL10 gl, int w, int h)
 {
 Log.d(TAG,"surface changed. Setting matrix frustum: projection matrix");
 GLES20.glViewport(0, 0, w, h);
 float ratio = (float) w / h;
 Matrix.frustumM(mProjMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
 }
 public void onDrawFrame(GL10 gl)
 {
 Log.d(TAG,"set look at matrix: view matrix");
 Matrix.setLookAtM(mVMatrix, 0, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

 Log.d(TAG,"base drawframe");
 GLES20.glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 GLES20.glClear(GLES20.GL_DEPTH_BUFFER_BIT | GLES20.GL_COLOR_BUFFER_BIT);

 GLES20.glUseProgram(mProgram);
 checkGlError("glUseProgram");

 draw(gl,this.maPositionHandle);
 }
 private int createProgram(String vertexSource, String fragmentSource) {
 int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexSource);
 if (vertexShader == 0) {
 return 0;
 }
 Log.d(TAG,"vertex shader created");
 int pixelShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentSource);
 if (pixelShader == 0) {
 return 0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 687

 }
 Log.d(TAG,"fragment shader created");
 int program = GLES20.glCreateProgram();
 if (program != 0) {
 Log.d(TAG,"program created");
 GLES20.glAttachShader(program, vertexShader);
 checkGlError("glAttachShader");
 GLES20.glAttachShader(program, pixelShader);
 checkGlError("glAttachShader");
 GLES20.glLinkProgram(program);
 int[] linkStatus = new int[1];
 GLES20.glGetProgramiv(program, GLES20.GL_LINK_STATUS, linkStatus, 0);
 if (linkStatus[0] != GLES20.GL_TRUE) {
 Log.e(TAG, "Could not link program: ");
 Log.e(TAG, GLES20.glGetProgramInfoLog(program));
 GLES20.glDeleteProgram(program);
 program = 0;
 }
 }
 return program;
 }
 private int loadShader(int shaderType, String source) {
 int shader = GLES20.glCreateShader(shaderType);
 if (shader != 0) {
 GLES20.glShaderSource(shader, source);
 GLES20.glCompileShader(shader);
 int[] compiled = new int[1];
 GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS, compiled, 0);
 if (compiled[0] == 0) {
 Log.e(TAG, "Could not compile shader " + shaderType + ":");
 Log.e(TAG, GLES20.glGetShaderInfoLog(shader));
 GLES20.glDeleteShader(shader);
 shader = 0;
 }
 }
 return shader;
 }
 private final String mVertexShader =
 "uniform mat4 uMVPMatrix;\n" +
 "attribute vec4 aPosition;\n" +
 "void main() {\n" +
 " gl_Position = uMVPMatrix * aPosition;\n" +
 "}\n";

 private final String mFragmentShader =
 "void main() {\n" +
 " gl_FragColor = vec4(0.5, 0.25, 0.5, 1.0);\n" +
 "}\n";

 protected void checkGlError(String op) {
 int error;
 while ((error = GLES20.glGetError()) != GLES20.GL_NO_ERROR) {
 Log.e(TAG, op + ": glError " + error);
 throw new RuntimeException(op + ": glError " + error);
 }
 }
 protected void setupMatrices()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 688

 {
 Matrix.setIdentityM(mMMatrix, 0);
 Matrix.multiplyMM(mMVPMatrix, 0, mVMatrix, 0, mMMatrix, 0);
 Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mMVPMatrix, 0);
 GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
 }
 protected abstract void draw(GL10 gl, int positionHandle);
}

Much of this code is an aggregation of the ideas introduced previously, except for one
detail. The function setupMatrices demonstrates how the Matrix class is used to combine
multiple matrices into a single matrix called mMVPMatrix by multiplying other matrices,
starting with an Identity matrix.

So the variable mMMatrix is an Identity matrix. The variable mVMatrix is obtained by using
the eyepoint API or the look-at point of the camera. The Projection matrix mProjMatrix is
obtained by using the frustum specification. Both these concepts, the eye point and the
frustum, are identical to the concepts covered in OpenGL ES 1.0. The MVP matrix is just
a multiplication of these matrices. Finally, the call glUniformMatrix4fv sets this up as a
variable in the vertex shader so that the vertex shader can multiply each vertex position
with this matrix to get the final position (see Listing 20–42).

Listing 20–49 shows the code for GS20SimpleTriangleRenderer that extends the abstract
renderer and the minimum necessary to define the points and draw.

Listing 20–49. ES20SimpleTriangleRenderer

public class ES20SimpleTriangleRenderer extends ES20AbstractRenderer
{
 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;
 private static final int FLOAT_SIZE_BYTES = 4;
 private final float[] mTriangleVerticesData = {
 // X, Y, Z
 -1.0f, -0.5f, 0,
 1.0f, -0.5f, 0,
 0.0f, 1.11803399f, 0 };

 public ES20SimpleTriangleRenderer(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(mTriangleVerticesData.length
 * FLOAT_SIZE_BYTES);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();
 mFVertexBuffer.put(mTriangleVerticesData);
 mFVertexBuffer.position(0);
 }

 protected void draw(GL10 gl, int positionHandle)
 {
 GLES20.glVertexAttribPointer(positionHandle, 3, GLES20.GL_FLOAT, false,
 0, mFVertexBuffer);
 checkGlError("glVertexAttribPointer maPosition");
 GLES20.glEnableVertexAttribArray(positionHandle);
 checkGlError("glEnableVertexAttribArray maPositionHandle");

u

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 689

 this.setupMatrices();
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 3);
 checkGlError("glDrawArrays");
 }
}

Now if we invoke the activity in Listing 20–38, we will see a triangle drawn to the
dimension specified. To do this, we will need the following additional files:

 ES20AbstractRenderer.java (Listing 20–48)

 ES20SimpleTriangleRenderer.java (Listing 20–49)

 OpenGL20MultiveTestHarnessActivity.java (Listing 20–38)

Once we have these files compiled, we can run the program again and chose the menu
option "ES20 Triangle." This will display a single triangle very similar to that in Figure 20–3.

However, as suggested, it will not work on the emulator. You have to hook up a real
device to eclipse to test this. We tested it using the first Motorola Droid from Verizon.
The directions to hook up a device are covered in the second chapter of this book. We
have also included a URL in the reference section where we intend to update our notes
to cover a variety of devices.

Further Reading on OpenGL ES 2.0
The "References" section can help you with resources on OpenGL ES 2.0. Once you get
a feel for these shader programs, the background on OpenGL 1.0, and the few starting
points on OpenGL ES 2.0, you can follow the samples in the Android SDK to make
headway when you have suitable hardware.

Finally, we have included all of the sample code for the OpenGL ES 20 triangle in the
downloadable project. The triangle has all the steps needed for OpenGL ES 2.0.

Instructions for Compiling the Code
The best way to play around with the code listed in this chapter is to download the ZIP
file dedicated for this chapter. The URL for this file is listed in the "References" section.
Every class file listed here is in the ZIP file. If you want to write your program directly
from the listings, we have included all files here. There may be few resources wanting
such as the starting icon, etc. If you are not sure how to hook those up, download the
ZIP file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 690

References
We have found the following resources useful in understanding and working with
OpenGL:

Android’s android.opengl package reference URL:
http://developer.android.com/reference/android/opengl/GLSurface
View.html.

The Khronos Group’s OpenGL ES Reference Manual.
www.khronos.org/opengles/documentation/opengles1_0/html/index.h
tml.

OpenGL Programming Guide (the red book).
www.glprogramming.com/red/. Although this online reference is handy,
it stops at OpenGL 1.1. You will need to buy the 7th edition for
information on the recent stuff including OpenGL shaders.

The following is a very good article on texture mapping from Microsoft:
http://msdn.microsoft.com/en-us/library/ms970772(printer).aspx.

You can find very insightful course material on OpenGL from Wayne O.
Cochran from Washington State University at this URL:
http://ezekiel.vancouver.wsu.edu/~cs442/.

Documentation for JSR 239 (Java Binding for the OpenGL ES API) is at
http://java.sun.com/javame/reference/apis/jsr239/.

The man pages at khronos.org for OpenGL ES 2.0 are useful as a
reference but not a guide. www.khronos.org/opengles/sdk/docs/man/.

Understanding shading language is essential to understand the new
OpenGL direction including the OpenGL ES 2.0.
www.opengl.org/documentation/glsl/

OpenGL Shading Language, 3rd Edition, Randi J Rost, etc. We haven't
personally read this book but it seems promising.

GLES20 API reference from the Android SDK.
http://developer.android.com/reference/android/opengl/GLES20.html

GLSurfaceView Reference.
http://developer.android.com/reference/android/opengl/GLSurfaceView.ht
ml#setEGLContextClientVersion(int)

You can find one of the authors of this book’s research on OpenGL here:
http://www.androidbook.com/akc/display?url=NotesIMPTitlesURL&ow
nerUserId=satya&folderName=OpenGL&order_by_format=news.

You can find one of the authors of this book’s research on OpenGL
textures here: http://www.androidbook.com/item/3190.

How to run Android applications on the device from Eclipse ADB.
http://www.androidbook.com/item/3574

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 691

 Download the test project dedicated for this chapter at
www.androidbook.com/projects. The name of the ZIP file is
ProAndroid3_ch20_TestOpenGL.zip.

Summary
We have covered a lot of ground in OpenGL—especially if you are new to OpenGL
programming. We would like to think that this is a great introductory chapter on
OpenGL, not only for Android but any other OpenGL system.

In this chapter, you learned the fundamentals of OpenGL. You learned the Android-
specific API that allows you to work with OpenGL standard APIs. You played with shapes
and textures, and you learned how to use the drawing pipeline to draw multiple figures.
You were introduced to OpenGL ES 2.0, its shading language, the basic differences from
OpenGL 1.0, and a set of references to further explore OpenGL ES 2.0.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 20: Programming 3D Graphics with OpenGL 692

http://lib.ommolketab.ir
http//lib.ommolketab.ir

693

693

 Chapter

Exploring Live Folders
Live folders, introduced in SDK 1.5, allow developers to expose content providers such

as contacts, notes, and media on the device’s default opening screen (which we will

refer to as the device’s home page). When a content provider such as Android’s

contacts content provider is exposed as a live folder on the home page, this live folder

will be able to refresh itself as contacts are added, deleted, or modified in the contacts

database. We will explain what these live folders are, how to implement them, and how

to make them “live.”

Exploring Live Folders
A live folder in Android is to a content provider what an RSS reader is to a publishing

web site. We said in Chapter 4 that content providers are similar to web sites that

provide information based on URIs. As web sites proliferated, each publishing its

information in a unique way, there was a need to aggregate information from multiple

sites so that a user could follow the developments through a single reader. RSS saw a

common pattern among disparate sets of information. Having a common pattern allows

for the design of a reader that can read any content, as long as the content has a

uniform structure.

Live folders are not that different in concept. As an RSS reader provides common

interface to published web site content, a live folder defines a common interface to a

content provider in Android. As long as the content provider or a wrapper to the content

provider can satisfy this protocol, Android can create a live folder icon on the device’s

home page to represent that content provider. When a user clicks this live folder icon,

the system will contact the content provider. The content provider is then expected to

return a cursor. According to the live folder contract, this cursor must have a predefined

set of columns. This cursor is then visually presented through a ListView or a GridView.

Based on this common format idea, live folders work like this:

1. First, you create an icon on the home page representing a collection of rows

coming from a content provider. You make this connection by specifying a URI

along with the icon.

21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 694

2. When a user clicks that icon, the system takes the URI and uses it to call the

content provider. The content provider returns a collection of rows through a

cursor.

3. As long as this cursor has the columns expected by the live folder (such as name,

description, and the program to invoke when that row is clicked), the system will

present these rows as a ListView or a GridView.

4. Because the ListViews and GridViews are capable of updating their data when

the underlying data store changes, these views are called live—hence the name

live folders.

Two key principles are at work in live folders. The first principle is that the column names

are common across cursors. This principle allows Android to treat all cursors targeted

for live folders the same way. The second principle is that the Android views know how

to look for any updates in the underlying cursor data and change themselves

accordingly. This second principle is not unique to live folders; in fact, it’s natural to all

views in the Android UI, especially those views that rely on cursors.

Now that we have presented the idea of what live folders are, we’ll systematically

explore the live-folder framework. We will do that in two main sections. In the first main

section, we will examine the overall end user experience of a live folder. This should

further clarify live folders.

In the second main section, we will show you how to build a live folder correctly so that

it is actually live. It does take some extra work to make a live folder “live,” so we will

explore this not-so-obvious aspect of live folders.

How a User Experiences Live Folders
Live folders are exposed to end users through the device’s home page. Users make use

of live folders by performing steps similar to the following:

1. Access the device’s home page.

2. Go to the context menu of the home page. You can see the context menu by

long-clicking on an empty space on the home page.

3. Locate a context menu option called Folders and click it to see the live folders

that might be available.

4. From the list, choose and click the live folder name you want to expose on the

home page. This creates an icon on the home page representing the chosen live

folder.

5. Click the live folder icon that was created in step 4 to bring up the rows of

information (the data represented by that live folder) in a ListView or a GridView.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 695

6. Click one of the rows to invoke the application that knows how to display that row

of data.

7. Use further menu options displayed by that application to view or manipulate a

desired item. You can also use that application’s menu options to create any new

items allowed by that application.

8. Note that the live folder display automatically reflects any changes to the item or

set of items.

We’ll walk you through these steps, illustrating them with screenshots. We will start with

step 1: a typical Android home page (see Figure 21–1). Note that this home page may

look a bit different depending on the Android release and the device you are using.

Figure 21–1. Android home page

If you long-click this home page, you will see its context menu (see Figure 21–2).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 696

Figure 21–2. Context menu on the Android home page

If you click the Folders option, Android will open another menu showing the live folders

that are available (see Figure 21–3). We will build a live folder in the next section, but for

now, assume that the live folder we want has already been built and is called “New live

folder” (see Figure 21–3).

NOTE: If you want to walk through this exercise prior to developing it, you can download the
project for this chapter and install it on your emulator. See the “References” section for the URL
to download. Also, you need to use the contacts application that come with the SDK and is

available on the emulator in order to add a few contacts. Once you download and import the
project into Eclipse, run it in the emulator to install it as a live folder. Once it is installed on the

emulator, it will show up as an option in Figure 21-3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 697

Figure 21–3. Viewing the list of available live folders

If you click the New live folder option, Android creates an icon on the home page

representing the live folder. In our example, the name of this folder will be “Contacts

LF,” short for “Contacts Live Folder” (see Figure 21–4). This live folder will display

contacts from the contacts database. During the implementation of the live folder we will

show you how the name “Contacts LF” is specified.

Figure 21–4. The live folder icon on the home page

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 698

You will see in the next section that an activity is responsible for creating the Contacts

LF folder. For now, as far as the user experience is concerned, you can click the

Contacts LF icon to see a list of contacts displayed in a ListView (see Figure 21–5).

Again, depending on the release of Android, this list may be presented differently.

Figure 21–5. Showing live folder contacts

Depending on the number of contacts you have, this list might look different. You can

click one of the contacts to display its details (see Figure 21–6). Note that because the

details of this contact are presented by the contact application, the appearance is also

dependent on the Android release.

Figure 21–6. Opening a live folder contact

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 699

You can click the Menu button at the bottom to see how you can manipulate that

individual contact (see Figure 21–7). The options available here are also presented by

the contact application. Again, the appearance is release- and device-dependent.

Figure 21–7. Menu options for an individual contact

If you choose to edit the contact, you will see the (release dependent) screen shown in

Figure 21–8.

Figure 21–8. Editing contact details

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 700

To see the “live” aspect of this live folder, you can update the first name or last name of

the contact. Then, when you go back to the live folder view of Contacts LF, you will see

those changes reflected. You can do this by clicking the Back button repeatedly until

you see the Contacts LF folder.

Building a Live Folder
Now that you know all about live folders and their relevance, we will show you how to

build one. To build a live folder, you need two things: an activity and a dedicated content

provider. Android uses the label of this activity to populate the list of available live

folders, as in Figure 21–3. Android also invokes this activity to get a URI that will be

invoked to get a list of rows to display.

The URI supplied by the activity should point to the dedicated content provider that is

responsible for returning the rows. The content provider returns these rows through a

well-defined cursor. We call the cursor well defined because the cursor is expected to

have a known predefined set of column names.

Typically, you package these two entities in an application and then deploy that

application onto the device. You will also need some supporting files to make it all work.

We will explain and demonstrate these ideas using a sample, which contains the

following files:

AndroidManifest.xml: This file defines which activity needs to be

called to create the definition for a live folder.

AllContactsLiveFolderCreatorActivity.java: This activity is

responsible for supplying the definition for a live folder that can display

all contacts in the contacts database.

MyContactsProvider.java: This content provider will respond to the

live folder URI that will return a cursor of contacts. This provider

internally uses the contacts content provider that ships with Android.

MyCursor.java: This is a specialized cursor that knows how to perform

a requery when underlying data changes.

BetterCursorWrapper.java: This file is needed by MyCursor to

orchestrate the requery.

We’ll describe each of these files to give you a detailed understanding of how live

folders work.

AndroidManifest.xml
You’re already familiar with AndroidManifest.xml; it’s the same file that is needed for all

Android applications. The live folders section of the file, which is demarcated with a

comment, indicates that we have an activity called

AllContactsLiveFolderCreatorActivity that is responsible for creating the live folder

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 701

(see Listing 21–1). This fact is expressed through the declaration of an intent whose

action is android.intent.action.CREATE_LIVE_FOLDER.

The label of this activity, “New live folder,” will show up in the context menu of the home

page (see Figure 21–3). As we explained in the “How a User Experiences Live Folders”

section, you can get to the context menu of the home page by long-clicking the home

page.

Listing 21–1. AndroidManifest.xml File for a Live Folder Definition

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.livefolders"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <!-- LIVE FOLDERS -->
 <activity
 android:name=".AllContactsLiveFolderCreatorActivity"
 android:label="New live folder "
 android:icon="@drawable/icon">

 <intent-filter>
 <action android:name="android.intent.action.CREATE_LIVE_FOLDER" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 <provider android:authorities="com.androidbook.livefolders.contacts"
 android:multiprocess="true"
 android:name=".MyContactsProvider" />

 </application>
 <uses-sdk android:minSdkVersion="3" />
 <uses-permission android:name="android.permission.READ_CONTACTS"/>
</manifest>

Another notable point of the code in Listing 21–1 is the provider declaration, which is

anchored at the URI content://com.androidbook.livefolders.contacts and serviced

by the provider class MyContactsProvider. This provider is responsible for providing a

cursor to populate the ListView that opens when the corresponding live-folder icon is

clicked (Figure 21–5). The live folder activity AllContactsLiveFolderCreatorActivity
needs to know what this URI is and return it to Android when it is invoked. Android

invokes this activity when the live folder name is chosen to create a live folder icon on

the home page.

According to the live folder protocol, the CREATE_LIVE_FOLDER intent will allow the home

page’s context menu to show the AllContactsLiveFolderCreatorActivity as an option

titled “New live folder” (see Figure 21–3). Clicking this menu option will create an icon on

the home page, as shown in Figure 21–4.

It is the responsibility of AllContactsLiveFolderCreatorActivity to define this icon,

which will consist of an image and a label. In our case, the code in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 702

AllContactsLiveFolderCreatorActivity specifies this label as Contacts LF (see Listing

21–2). So let’s take a look at the source code for this live folder creator.

AllContactsLiveFolderCreatorActivity.java
The AllContactsLiveFolderCreatorActivity class has one responsibility: to serve as

the generator or creator of a live folder (see Listing 21–2). Think of it as a template for

the live folder. Every time this activity is invoked (through the Folders option in the home

page’s context menu), it results in a live folder on the home page.

This activity accomplishes its task by telling the invoker—the home page or live folder

framework, in this case—the name of the live folder, the image to use for the live folder

icon, the URI where the data is available, and the display mode (list or grid). The

framework, in turn, is responsible for creating the live folder icon on the home page.

NOTE: For all the contracts needed by a live folder, see the Android SDK documentation for the

android.provider.LiveFolders class.

Listing 21–2. AllContactsLiveFolderCreatorActivity Source Code

public class AllContactsLiveFolderCreatorActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 final Intent intent = getIntent();
 final String action = intent.getAction();

 if (LiveFolders.ACTION_CREATE_LIVE_FOLDER.equals(action)) {
 setResult(RESULT_OK,
 createLiveFolder(MyContactsProvider.CONTACTS_URI,
 "Contacts LF",
 R.drawable.icon)
);
 }
 else {
 setResult(RESULT_CANCELED);
 }
 finish();
 }

 private Intent createLiveFolder(Uri uri, String name, int icon)
 {
 final Intent intent = new Intent();
 intent.setData(uri);
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_NAME, name);
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_ICON,
 Intent.ShortcutIconResource.fromContext(this, icon));
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE,
 LiveFolders.DISPLAY_MODE_LIST);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 703

 return intent;
 }
}

The createLiveFolder method essentially sets values on the intent that invoked it. When

this intent is returned to the caller, the caller will know the following:

 The live folder name

 The image to use for the live folder icon

 The display mode: list or grid

 The data or content URI to invoke for data

This information is sufficient to create the live folder icon shown in Figure 21–4. When a

user clicks this icon, the system will call the URI to retrieve data. It is up to the content

provider identified by this URI to provide the standardized cursor. We’ll now show you

the code for that content provider: the MyContactsProvider class.

MyContactsProvider.java
MyContactsProvider has the following responsibilities:

1. Identify the incoming URI that looks like

content://com.androidbook.livefolders.contacts/contacts.

2. Make an internal call to the Android-supplied contacts content provider identified

by content://contacts/people/. (Pay attention to the Contacts application that

came with Android SDK and adjust this URL as it may change with a release.)

3. Read every row from the cursor and map it back to a cursor like MatrixCursor

with proper column names required by the live folder framework.

4. Wrap the MatrixCursor in another cursor so that the requery on this wrapped

cursor will make calls to the contacts content provider when needed.

The code for MyContactsProvider is shown in Listing 21–3. Significant items are

highlighted based on the responsibilities listed above. The code is explained after the

listing.

Listing 21–3. MyContactsProvider Source Code

public class MyContactsProvider extends ContentProvider
{
 public static final String AUTHORITY =
 "com.androidbook.livefolders.contacts";

 //Uri that goes as input to the livefolder creation
 public static final Uri CONTACTS_URI =
 Uri.parse("content://" + AUTHORITY + "/contacts");

 //To distinguish this URI
 private static final int TYPE_MY_URI = 0;
 private static final UriMatcher URI_MATCHER;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 704

 static{
 URI_MATCHER = new UriMatcher(UriMatcher.NO_MATCH);
 URI_MATCHER.addURI(AUTHORITY, "contacts", TYPE_MY_URI);
 }
 @Override
 public boolean onCreate() {
 return true;
 }
 @Override
 public int bulkInsert(Uri arg0, ContentValues[] values) {
 return 0; //nothing to insert
 }
 //Set of columns needed by a LiveFolder
 //This is the live folder contract

 private static final String[] CURSOR_COLUMNS = new String[]{

 BaseColumns._ID,
 LiveFolders.NAME,
 LiveFolders.DESCRIPTION,
 LiveFolders.INTENT,
 LiveFolders.ICON_PACKAGE,
 LiveFolders.ICON_RESOURCE
 };

 //In case there are no rows
 //use this stand in as an error message
 //Notice it has the same set of columns of a live folder
 private static final String[] CURSOR_ERROR_COLUMNS = new String[]{
 BaseColumns._ID,
 LiveFolders.NAME,
 LiveFolders.DESCRIPTION
 };
 //The error message row
 private static final Object[] ERROR_MESSAGE_ROW =
 new Object[]
 {
 -1, //id
 "No contacts found", //name
 "Check your contacts database" //description
 };

 //The error cursor to use
 private static MatrixCursor sErrorCursor =
 new MatrixCursor(CURSOR_ERROR_COLUMNS);
 static {
 sErrorCursor.addRow(ERROR_MESSAGE_ROW);
 }

 //Columns to be retrieved from the contacts database

 private static final String[] CONTACTS_COLUMN_NAMES =

 new String[]{

 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME,
 ContactsContract.Contacts.TIMES_CONTACTED,
 ContactsContract.Contacts.STARRED

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 705

 };

 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder)
 {
 //Figure out the uri and return error if not matching
 int type = URI_MATCHER.match(uri);
 if(type == UriMatcher.NO_MATCH){
 return sErrorCursor;
 }
 Log.i("ss", "query called");
 try
 {
 MatrixCursor mc = loadNewData(this);
 mc.setNotificationUri(getContext().getContentResolver(),
 Uri.parse("content://contacts/people/"));
 MyCursor wmc = new MyCursor(mc,this);
 return wmc;
 }
 catch (Throwable e){
 return sErrorCursor;
 }
 }

 public static MatrixCursor loadNewData(ContentProvider cp)

 {
 MatrixCursor mc = new MatrixCursor(CURSOR_COLUMNS);
 Cursor allContacts = null;
 try
 {
 allContacts = cp.getContext().getContentResolver().query(
 ContactsContract.Contacts.CONTENT_URI,
 CONTACTS_COLUMN_NAMES,
 null, //row filter
 null,
 ContactsContract.Contacts.DISPLAY_NAME); //order by

 while(allContacts.moveToNext())
 {
 String timesContacted = "Times contacted: "+allContacts.getInt(2);
 Object[] rowObject = new Object[]
 {
 allContacts.getLong(0), //id
 allContacts.getString(1), //name
 timesContacted, //description
 Uri.parse("content://contacts/people/"
 +allContacts.getLong(0)), //intent
 cp.getContext().getPackageName(), //package
 R.drawable.icon //icon
 };
 mc.addRow(rowObject);
 }
 return mc;
 }
 finally {
 allContacts.close();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 706

 }
 @Override
 public String getType(Uri uri)
 {
 //indicates the MIME type for a given URI
 //targeted for this wrapper provider
 //This usually looks like
 // "vnd.android.cursor.dir/vnd.google.note"
 return ContactsContract.Contacts.CONTENT_TYPE;
 }

 public Uri insert(Uri uri, ContentValues initialValues) {
 throw new UnsupportedOperationException(
 "no insert as this is just a wrapper");
 }
 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 throw new UnsupportedOperationException(
 "no delete as this is just a wrapper");
 }
 public int update(Uri uri, ContentValues values,
 String selection, String[] selectionArgs)
 {
 throw new UnsupportedOperationException(
 "no update as this is just a wrapper");
 }
}

Note how the set of columns required by a live folder are initialized in Listing 21–3 and

repeated in Listing 21-4 for immediate reference .

Listing 21–4. Columns Needed to Fulfill the Live Folder Contract

 private static final String[] CURSOR_COLUMNS = new String[]
 {
 BaseColumns._ID,
 LiveFolders.NAME,
 LiveFolders.DESCRIPTION,
 LiveFolders.INTENT,
 LiveFolders.ICON_PACKAGE,
 LiveFolders.ICON_RESOURCE
 };

Most of these fields are self-explanatory, except for the INTENT item. If you look at Figure

21–5, you will see that NAME relates to the title of the item in the list. The DESCRIPTION will

be underneath the NAME in the same list item.

The INTENT field is actually a string field pointing to the URI of the item in the content

provider. Android will use a VIEW action by using this URI when a user clicks on that

item. That is why this string field is called an INTENT field, because internally Android will

derive the INTENT from the string URI.

The last two fields relate to the icon that is displayed as part of the list. Again, refer to

Figure 21–5 to see the icons. Study Listing 21–3 to see how these columns are provided

values from the contacts database.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 707

Also note that the MyContactsContentProvider (the wrapper content provider) executes

the code from Listing 21–5 to tell the underlying cursor that it needs to watch for any

data changes.

Listing 21–5. Registering a URI with a Cursor

MatrixCursor mc = loadNewData(this);
mc.setNotificationUri(getContext().getContentResolver(),
 Uri.parse("content://contacts/people/"));

The function loadNewData() retrieves a set of contacts from the contact provider and

creates MatrixCursor, which has the columns shown in Listing 21–4. The code then

instructs the MatrixCursor to register itself with the ContentResolver so that the

ContentResolver can alert the cursor when the data pointed to by the URI

(content://contacts/people) changes in any manner.

You should find it interesting that the URI to watch is not the URI of our

MyContactsProvider content provider, but the URI of the Android-supplied content

provider for contacts. This is because MyContactsProvider is just a wrapper for the

“real” content provider. So this cursor needs to watch the underlying content provider

instead of the wrapper.

It is also important that we wrap the MatrixCursor in our own cursor, as shown in Listing

21–6.

Listing 21–6. Wrapping a Cursor

MatrixCursor mc = loadNewData(this);
mc.setNotificationUri(getContext().getContentResolver(),
 Uri.parse("content://contacts/people/"));
MyCursor wmc = new MyCursor(mc,this);

To understand why we need to wrap the cursor, we need to examine how views operate

to update changed content. A content provider, like Contacts, typically tells a cursor that

it needs to watch for changes by registering a URI as part of implementing the query

method. This is done through cursor.setNotificationUri. The cursor then will register

this URI and all its children URIs with the content provider. Then when an insert or delete

happens on the content provider, the code for the insert and delete operations needs to

raise an event signifying a change to the data in the rows identified by a particular URI.

This will trigger the cursor to get updated via requery, and the view will update

accordingly. Unfortunately, the MatrixCursor is not geared for this requery.

SQLiteCursor is geared for it, but we can’t use SQLiteCursor here because we’re

mapping the columns to a new set of columns.

To accommodate this restriction, we have wrapped the MatrixCursor in a cursor

wrapper and overridden the requery method to drop the internal MatrixCursor and

create a new one with the updated data. To elaborate further, every time data changes,

we want to get a new MatrixCursor. However, to the Android LiveFolder framework we

return only the wrapped outer cursor. This will tell the live folder framework that there is

only one cursor, but underneath we are coming up with new cursors as data changes.

This is illustrated in the following two classes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 708

MyCursor.java
Notice how MyCursor is initialized with a MatrixCursor in the beginning (see Listing

21–7). On requery, MyCursor will call back the provider to return a MatrixCursor. Then

the new MatrixCursor will replace the old one by using the set method.

NOTE: We could have done this by overriding the requery of the MatrixCursor, but that

class does not provide a way to clear the data and start all over again. So this is a reasonable

workaround. (Note that MyCursor extends BetterCursorWrapper, which we’ll discuss next.)

Listing 21–7. MyCursor Source Code

public class MyCursor extends BetterCursorWrapper
{
 private ContentProvider mcp = null;

 public MyCursor(MatrixCursor mc, ContentProvider inCp)
 {
 super(mc);
 mcp = inCp;
 }
 public boolean requery()
 {
 MatrixCursor mc = MyContactsProvider.loadNewData(mcp);
 this.setInternalCursor(mc);
 return super.requery();
 }
}

Now let’s look at the BetterCursorWrapper class to get an idea of how to wrap a cursor.

BetterCursorWrapper.java
The BetterCursorWrapper class (see Listing 21–8) is very similar to the CursorWrapper

class in the Android database framework. But we need the BetterCursorWrapper to

contain two things that CursorWrapper lacks. First, CursorWrapper doesn’t have a set

method to replace the internal cursor from the requery method. Second, CursorWrapper

is not a CrossProcessCursor. Live folders need a CrossProcessCursor as opposed to a

plain cursor because live folders work across process boundaries.

Listing 21–8. BetterCursorWrapper Source Code

public class BetterCursorWrapper implements CrossProcessCursor
{
 //Holds the internal cursor to delegate methods to
 protected CrossProcessCursor internalCursor;

 //Constructor takes a crossprocesscursor as an input
 public BetterCursorWrapper(CrossProcessCursor inCursor)
 {
 this.setInternalCursor(inCursor);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 709

 //You can reset in one of the derived class's methods
 public void setInternalCursor(CrossProcessCursor inCursor)
 {
 internalCursor = inCursor;
 }

 //All delegated methods follow
 public void fillWindow(int arg0, CursorWindow arg1) {
 internalCursor.fillWindow(arg0, arg1);
 }
 // other delegated methods
}

We haven’t shown you the entire BetterCursorWrapper class in Listing 21-8, but you can

easily use Eclipse to generate the rest of it. Once you have this partial class loaded into

Eclipse, place your cursor on the variable named internalCursor. Right-click and

choose Source ➤ Generate Delegated Methods. Eclipse will then populate the rest of

the class for you. Once Eclipse generates the delegated methods, you will need to

delegate all methods to the internal cursor class as we have done for the fillWindow

method in Listing 21-8. (If you don’t want to go through this process, you can see this

file in the download project for this chapter.)

Now you have all the classes you need to build, deploy, and run the sample live folder

project through Eclipse. Because no activity class is registered as a MAIN category, you

won’t see any UI show up when you deploy this project, but you will see a message in

the Eclipse console that the project is successfully installed.

Let’s conclude this section on live folders by showing you what happens when you

access the live folder.

Exercising Live Folders
Once you have all these files for the live folder project ready, you can build them and

deploy them to the emulator. You are now ready to make use of the live folder that we

have constructed.

Navigate to the device’s home page; it should look like the screen in Figure 21–1. Follow

the steps outlined at the beginning of the “How a User Experiences Live Folders”

section. Specifically, locate the live folder you created and create the live folder icon

shown in Figure 21–4. Click the Contacts LF live folder icon, and you will see the contact

list populated with contacts (Figure 21–5).

Instructions for Compiling the Code
The best way to play around with the code listed in this chapter is to download the ZIP

file dedicated for this chapter. The URL for this file is listed in the “References” section.

Every class file listed in this chapter is in the downloadable ZIP file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 21: Exploring Live Folders 710

Unlike a number of projects in this book, this project does not have an activity that gets

started when you run it in the emulator. However, you can see in the console of Eclipse

that the package is installed successfully.

References
We have found the following resources useful in understanding and working with Live

Folders:

This URL documents the LiveFolders class.
http://developer.android.com/reference/android/provider/LiveFolders.html

This article documents how to use the contacts API. You will need this as the

live folder in this chapter uses the contacts underneath.
http://developer.android.com/resources/articles/contacts.html

You can download the test project dedicated for this chapter from

www.androidbook.com/projects. The name of the zip file is
ProAndroid3_ch21_TestLiveFolders.zip.

Summary
Live folders provide an innovative single-click mechanism to display changing data on

the home page. The data can be virtually anything as long as it can be laid out as a set

of rows displayed in a list. All the data needs to have is a sense of how to identify and

describe itself through name and description. Almost any data element will meet this

requirement since most data can be named and described in some manner. It also helps

if there is an activity that can display that data when clicked for further details through

the live folder. This data can be local, such as contacts, or even Internet-based, such as

a summary of blogs.

In this chapter, we have explained the nuances of live folder cursors and what

mechanisms you will need to use if you wish to expose already-existing content

providers as sources for live folders. We explained the need for cursor wrappers and

showed you how to register with a ContentResolver to receive data updates.

In the next chapter, we will introduce you to another home page innovation called

Home Screen Widgets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

711

711

 Chapter

Home Screen Widgets
In this chapter, we will cover Android’s home screen widgets in detail. Home screen
widgets, like live folders (covered in Chapter 21), offer one more way of presenting
frequently changing information on the home screen of Android. From a high-level
perspective, home screen widgets are disconnected views (albeit populated with data)
that are displayed on the home screen. The data content of these views is updated at
regular intervals by background processes.

For example, an e-mail home screen widget might alert you to the number of
outstanding e-mails to be read. The widget may just show you the number of e-mails
and not the messages themselves. Clicking the e-mail count may then take you to the
activity that displays actual e-mails. These could even be external e-mail sources such
as Yahoo, Gmail, or Hotmail, as long as the device has a way to access the counts
through HTTP or other connectivity mechanisms.

NOTE: Android 3.0 has enhanced support for home screen widgets. These enhancements are

covered in Chapter 31.

We will divide this chapter into three sections. In the first section, we will introduce home
screen widgets and their architecture. We will describe how Android uses RemoteViews
for showing widgets, and co-opts broadcast receivers to update those RemoteViews. You
will learn how to create activities to configure widgets on the home screen and discover
the relationship between services and widgets. At the end of this section, you will have a
clear understanding of the architecture and life cycle of home screen widgets.

In the second section, we will show you how to design and develop a home screen widget
and annotate the code. You will learn how to define widgets to Android and how to write
broadcast receivers to update these widgets. We will show you how to manage widget
state through shared preferences and how to write an activity to configure widgets.

In the third section, we will talk about suitability, limitations, and broader guidelines for
working with widgets. We will, in addition, discuss the scope and applicability of
widgets. We will also offer design suggestions to write widgets that require far more
frequent updates.

22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 712

We will conclude the chapter with a collection of widget related programming resources.

Architecture of Home Screen Widgets
Let’s start our discussion of home screen widgets architecture by considering what
home screen widgets are in greater detail.

What Are Home Screen Widgets?
Home screen widgets are views that can be displayed on a home page and updated
frequently. As a view, a widget’s look and feel is defined through a layout XML file. For a
widget, in addition to the layout of the view, you will need to define how much space the
view of the widget will need on the home screen.

A widget definition also includes a couple of Java classes that are responsible for
initializing the view and updating it frequently. These Java classes are responsible for
managing the life cycle of the widget on the home screen. These classes respond when
the widget is dragged onto the home page and when the widget is uninstalled by
dragging it to the trash can.

NOTE: The view and the corresponding Java classes are architected in such a way that they are
disconnected from each other. For example, any Android service or activity can retrieve the view
using its layout ID, populate that view with data (just like populating a template), and send it to

the home screen. Once the view is sent to the home screen, it is dislodged from the underlying

Java code.

At a minimum, a widget definition contains the following:

 A view layout to be displayed on the home screen, along with how big
it should be to fit on a home page. Keep in mind that this is just the
view without any data. It will be the responsibility of a Java class to
update the view.

 A timer that specifies the frequency of updates.

 A Java class called a widget provider that can respond to timer
updates in order to alter the view in some fashion by populating with
data.

Once a widget is defined and the Java classes are provided, the widget will be available
for use. We’ll give you an overview of such a defined widget is used in practice.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 713

User Experience with Home Screen Widgets
Home screen widget functionality in Android allows you to choose a preprogrammed
widget to be placed on the home screen. When placed, the widget will allow you to
configure it using an activity (defined as part of the widget package), if necessary. It is
important to understand this interaction before actually going into the details how a
widget is programmed.

In other words, we want you to experience how one would use a widget before
programming one.

We are going to walk you through a widget called Birthday Widget that we have created
for this chapter. We will present the source code for it later in the chapter. First, we are
going to use this widget as an example for our walk through. As a consequence of
source code coming later, we need your consideration to read along and follow the
pictures and not look for this widget on your screen. If you follow the provided figures
and explanation, you will know the nature and behavior of the birthday widget which will
make things clear when we code it subsequently.

Let’s start this tour by locating the widget we want and creating an instance of it on the
home screen.

Creating a Widget Instance on the Home Screen
To access the available widget list you need to long-click on the home page. This will
bring up the home screen context menu as shown in Figure 22–1.

Figure 22–1. Home screen context menu

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 714

If you choose widgets from this list, you will be shown another screen that is a pick list
of available widgets as shown in Figure 22–2.

Figure 22–2. Home screen widget pick list

Most of these widgets come as part of Android. Depending on the release of Android
you are looking at, these may vary. In this list, the widget named Birthday Widget is the
widget that we designed for this exercise. If you choose that widget, it will create a
corresponding widget instance on the home screen that looks like the example Birthday
Widget shown in Figure 22–3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 715

Figure 22–3. An example birthday widget

This birthday widget will indicate in its header the name of a person, how many days away
this person’s birthday is, the date of the birthday, and a link to buy gifts.

You may be wondering how the name of the person and the date of birth were
configured? What if you want two of instances of this widget, each with the name and
date of birth for a different person. This is where the widget configurator activity comes
into play and is the topic we are covering next.

NOTE: The view that is created on the home page for this widget definition is called a widget

instance. The implication is that you can create more than one instance of this widget definition.

Understanding Widget Configurator
A widget definition optionally includes a specification of an activity called a widget
configurator activity. When you choose a widget from the home page widget pick list to
create the widget instance, Android invokes the corresponding widget configuration
activity. This activity is something you need to write, which is then responsible for
configuring the widget instance.

In the case of our birthday widget, this configuration activity will prompt you for the
name of the person and the upcoming birth date as shown in Figure 22–4. It is the
responsibility of the configurator to save this information in a persistent place so that
when an update is called on the widget provider, the widget provider will be able to
locate this information and update the view with proper values which are set by the
configurator.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 716

Figure 22–4. Birthday widget configurator activity

NOTE: When a user chooses to create two birthday widget instances on the home screen, the

configurator activity will be called twice (once for each widget instance).

Internally, Android keeps track of the widget instances by allocating them an ID. This ID
is passed to the Java callbacks and to the configurator Java class so that initial
configuration and updates can be directed to the right instance. In Figure 22–3, in the
later part of the string satya:3, the 3 is the widget ID—or, more accurately, the widget
instance ID. The widget itself is identified by its java component name (which is itself the
class name and the package that the widget class is in); “Widget ID” and “widget
instance ID” are interchangeably used in this chapter and refer to the widget instance ID.
We have included the widget instance ID in Figure 22–3 to illustrate the point.

With this overview of a widget, we will now examine the life cycle of a widget in greater
detail.

Life Cycle of a Widget
We have mentioned the widget definition a few times so far. We have also briefly talked
about the role of Java classes. In this section, we will lay out both these ideas in a lot
more detail and examine the life cycle of a widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 717

The life cycle of a widget has the following phases:

1. Widget definition

2. Widget instance creation

3. onUpdate() (when the time interval expires)

4. Responses to clicks (on the widget view on the home screen)

5. Widget deletion (from the home screen)

6. Uninstallation

We will go through each of these phases in detail now.

Widget Definition Phase
The life cycle of a widget starts with the definition of the widget view. This definition tells
Android to show the widget name in the widget pick list (Figure 22–2) invoked from the
home page. You will need two things to complete this definition: a Java class that
implements the AppWidgetProvider and a layout view for the widget.

You start off this widget definition with the following entry in the android manifest file
where you specify the AppWidgetProvider (Listing 22–1).

Listing 22–1. Widget Definition in Android Manifest File

<manifest..>
<application>
....
 <receiver android:name=".BDayWidgetProvider">
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/bday_appwidget_provider" />
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 </receiver>
 ...
 <activity>

 </activity>
<application>
</manifest>

This definition indicates that there is a broadcast receiver Java class called
BDayWidgetProvider (as you will see, this inherits from the Android core class
AppWidgetProvider from the widget package) that receives broadcast messages
intended for application widget updates.

NOTE: Android delivers the update messages as broadcast messages based on the frequency of

the time interval.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 718

The widget definition in Listing 22–1 also points to an xml file in the /res/xml directory
that, in turn, specifies the widget view and the update frequency, as shown in Listing 22–2.

Listing 22–2. Widget View Definition in Widget Provider Information XML File

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="150dp"
 android:minHeight="120dp"
 android:updatePeriodMillis="43200000"
 android:initialLayout="@layout/bday_widget"
 android:configure="com.ai.android.BDayWidget.ConfigureBDayWidgetActivity"
 >
</appwidget-provider>

This XML file is called the App widget provider information file. Internally, this gets
translated to the AppWidgetProviderInfo Java class. This file identifies the width and
height of the layout to be 150dp and 120dp respectively. This definition file also indicates
the update frequency to be 12 hours translated to milliseconds. The definition also
points to a layout file (Listing 22–7) that describes what the widget view looks like (see
Figure 22–5).

However, note that the layout for these widget views is restricted to contain only certain
types of view elements. The views allowed in a widget layout fall under a class of views
called RemoteViews, and only certain types of child views are allowed for these remote
views. The allowed subview elements are shown in Listing 22–3.

Listing 22–3. Allowed View Controls in RemoteViews

FrameLayout
LinearLayout
RelativeLayout

AnalogClock
Button
Chronometer
ImageButton
ImageView
ProgressBar
TextView

This list may grow with each release. The primary reason for restricting what is allowed
in a remote view is that these views are disconnected from the processes that actually
control them. These widget views are hosted by an application like the Home
application. The controllers for these views are background processes that get invoked
by timers. For this reason, these views are called remote views. There is a
corresponding Java class called RemoteViews that allows access to these views. In other
words, programmers do not have direct access to these views to call methods on them.
You have access to these views only through the RemoteViews (like a gatekeeper).

We will cover the relevant methods of a RemoteViews class when we explore the example
in the next main section. For now, remember that only a limited set of views is allowed in
the widget layout file (see Listing 22–3).

The widget definition (Listing 22–2) also includes a specification of the configuration
activity that needs to be invoked when the user creates a widget instance. This

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 719

configuration activity in Listing 22–2 is the ConfigureBDayWidgetActivity. This activity is
like any other Android activity with a number of form fields. The form fields are used to
collect the information needed by a widget instance.

Widget Instance Creation Phase
Once all the XML pieces needed by a widget definition are in place and all the widget
Java classes are available, let’s see what happens when a user chooses the widget
name in the widget pick list (see Figure 22–2) to create a widget instance. Android
invokes the configurator activity (see Figure 22–3) and expects that configurator activity
to do the following:

1. Receive the widget instance ID from the invoking intent that started the

configurator.

2. Prompt the user through a set of form fields to collect the widget-instance-

specific information.

3. Persist the widget instance information so that subsequent calls to widget update

have access to this information.

4. Prepare to display the widget view for the first time by retrieving the widget view

layout and create a RemoteViews object with it.

5. Call methods on the RemoteViews object to set values on individual view objects,

such as text and images.

6. Also use the RemoteViews object to register any onClick events on any of the

subviews of the widget

7. Tell the AppWidgetManager to paint the RemoteViews on the home screen using the

instance ID of that widget

8. Return the widget ID and close.

Notice that the first painting of the widget in this case is done by the configurator and
not AppWidgetProvider's onUpdate() method.

NOTE: The configurator activity is optional. If the configurator activity is not specified, the call
goes directly to the onUpdate() of the AppWidgetProvider. It is up to onUpdate() to

update the view.

Android will repeat this process for each widget instance that the user creates. Also note
that there is no direct documented support for restricting the user to a single widget
instance.

Besides invoking the configurator activity, Android also invokes the onEnabled callback
of the AppWidgetProvider. Let us briefly consider the callbacks on an AppWidgetProvider

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 720

class by taking a look at the shell of our BDayWidgetProvider (see Listing 22–4). We will
examine the complete listing of this file later in Listing 22–9.

Listing 22–4. A Widget Provider Shell

public class BDayWidgetProvider extends AppWidgetProvider
{
 public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds){}

 public void onDeleted(Context context, int[] appWidgetIds){}
 public void onEnabled(Context context){}
 public void onDisabled(Context context) {}
}

The onEnabled() callback method indicates that there is at least one instance of the
widget up and running on the home screen. This means a user must have dropped the
widget on the home page at least once. In this call, you will need to enable receiving
messages for this component (you will see this in Listing 22–9). In Android, classes are
sometimes referred to as components, especially when they form a reusable unit such
as an activity, a service, or a broadcast receiver. In this case, the base class
AppWidgetProvider is a broadcast receiver component; we can enable or disable it to
receive broadcast messages.

The onDeleted() callback method is called when a user drags the widget instance view
to the trash can. This is where you will need to delete any persistence values you are
holding for that widget instance.

The onDisabled() callback method is called after the last widget instance is removed
from the home screen. This happens when a user drags the last instance of a widget to
the trash. You should use this method to unregister your interest in receiving any
broadcast messages intended for this component (you will see this in Listing 22–9).

The onUpdate() callback method is called every time the timer specified in Listing 22–2
expires. This method is also called the very first time the widget instance is created if
there is no configurator activity. If there is a configurator activity, this method is not
called at the creation of a widget instance. This method will subsequently be called
when the timer expires at the frequency indicated.

onUpdate Phase
Once the widget instance shows up on the home screen, the next significant event is the
expiration of the timer. As indicated, Android will call the onUpdate() in response to that
timer. The onUpdate() is called is through a broadcast receiver. This means the
corresponding Java process in which the onUpdate() is defined will be loaded and will
remain alive until the end of that call. Once the call returns, the process will be ready to
be taken down.

It is also recommended that you use a mechanism such as a long-running broadcast
receiver as documented in Chapter 14 if your response is going to take more than 10
seconds to work. If you do not, you will get an ANR (Android Not Responding) error.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 721

Either way, once you have the necessary data available to update the widget in
onUpdate() method, you can invoke the AppWidgetManager to paint the remote view. If
you were to invoke a long-running service to do the update instead, you would need to
pass the widget ID as extra data to the intent that starts the service.

This goes to show that the AppWidgetProvider class is stateless and may even be
incapable of maintaining static variables between invocations. This is because the Java
process containing this broadcast receiver class could be taken down and
reconstructed between two invocations resulting in re-initialization of static variables.

As a result, you will need to come up with a scheme to remember state if that is
required. When the updates are not too frequent, such as every few seconds, it is quite
reasonable to save the state of the widget instance in a persistent store such as a file,
shared preferences, or a SQLite database. In the next example, we will use shared
preferences as the persistence API.

WARNING: To save power, Google strongly recommends that the duration of the updates be
more than an hour, so the device won’t wake up too often. Google also warns that, in future

releases, a restriction of 30 minutes or more may be enforced.

For durations that are shorter, such as only seconds, you need to call this onUpdate()
method yourself by using the facilities in the AlarmManager class. When you use the
AlarmManager, you also have the option not to call onUpdate() but, instead, do the work
of onUpdate() in alarm callbacks. Refer to Chapter 15 for working with alarm manager.

This is what you typically need to do in an onUpdate() method:

1. Make sure the configurator has finished its work; otherwise, just return. This

should not be problem in releases 2.0 and above, where the duration is expected

to be longer. Otherwise, it is possible that the onUpdate() will be called before the

user has finished configuring the widget in the configurator.

2. Retrieve the persisted data for that widget instance.

3. Retrieve the widget view layout, and create a RemoteViews object with it.

4. Call methods on the RemoteViews to set values on individual view objects such as

text and images.

5. Register any onClick events on any of the views by using pending intents.

6. Tell the AppWidgetManager to paint the RemoteViews using the instance ID.

As you can see, there is a lot of overlap between what a configurator does initially and
what the onUpdate() method does. You may want to reuse this functionality between the
two places.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 722

Widget View Mouse Click Event Callbacks
As stated, the onUpdate() method keeps the widget views up to date. The widget view
and subelements in that view could have callbacks registered for a mouse click.
Typically, the onUpdate() method uses a pending intent to register an action for an event
like a mouse click. This action could then start a service or start an activity such as
opening up a browser.

This invoked service or activity can then communicate back with the view, if needed,
using the widget instance ID and the AppWidgetManager. Hence, it is important that the
pending intent carries with it the widget instance ID.

Deleting a Widget Instance
Another distinct event that can happen to a widget instance is that it can get deleted. To
do this, a user has to tap the widget on the home screen. This will enable the trash can
to show at the bottom of the home screen. The user can then drag the widget instance
to the trash can to delete the widget instance from the screen.

Doing so calls the onDelete() method of the widget provider. If you have saved any
state information for this widget instance, you will need to delete that data in this
onDelete method.

Android also calls onDisable() if the widget instance that is just deleted is the last of the
widget instances of this type. You will use this callback to clean up any persistence
attributes that are stored for all widget instances and also unregister for callbacks from
the widget onUpdate() broadcasts (see Listing 22–9).

Uninstalling Widget Packages
That is the complete life cycle of a widget. We will move on to the next section by briefly
mentioning the need to clean up the widgets if you are planning to uninstall and install a
new release of your .apk file containing these widgets.

It is recommended that you remove or delete all widget instances before trying to
uninstall the package. Follow the directions in the “Deleting a Widget Instance” section
to delete each widget instance until none remains.

Then, you can uninstall and install the new release. This is especially important if you are
using the Eclipse ADT to develop your widgets, because during the development time,
ADT tries to do this every time you run the application. So, between runs, make sure you
remove the widget instances.

A Sample Widget Application
So far, we have covered the theory and approach behind widgets. Let us use that
knowledge to create the sample widget whose behavior has been used as the example

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 723

to explain widget architecture. We will develop, test, and deploy this now-familiar
birthday widget.

Each birthday widget instance will show a name, the date of the next birthday, and how
many days from today until the birthday. It will also create an onClick area where you
can click to buy gifts. This click will open a browser and take you to
http://www.google.com.

The layout of the finished widget should look like Figure 22–5.

Figure 22–5. Birthday widget look and feel

The implementation of this widget consists of the following widget-related files.
Depending on the source Java package you would like to use, the Java files will be
under the src subdirectory followed by a directory structure that you would use for your
Java packages. For brevity and space, we have used ellipses (. . .) to indicate those
subdirectories.

 AndroidManifest.xml //: Where the AppWidgetProvider is defined (see
Listing 22–5)

 res/xml/bday_appwidget_provider.xml //: Widget dimensions and
layout (see Listing 22–6)

 res/layout/bday_widget.xml //: The widget layout (see Listing 22–7)

 res/drawable/box1.xml //: Provides boxes for sections of the widget
layout (see Listing 22–8)

 src/.../BDayWidgetProvider //: Implementation of the
AppWidgetProvider class (see Listing 22–9)

The implementation also contains the following files to manage the state of a widget:

 src/.../IWidgetModelSaveContract //: Contract for saving a widget
model (see Listing 22–10)

 src/.../APrefWidgetModel //: Abstract preference-based widget
model (see Listing 22–11)

 src/.../BDayWidgetModel //: Widget model holding the data for a
widget view (see Listing 22–12)

 src/.../Utils.java //: A few utility classes (see Listing 22–13)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 724

In addition, the implementation has the following files for the widget configuration
activity:

 src/.../ConfigureBDayWidgetActivity.java //: Configuration activity
(see Listing 22–14)

 layout/edit_bday_widget.xml //: Layout for taking the name and
birthday (see Listing 22–15)

We will walk through each file and explain any additional concepts that bear further
consideration. At the end of this section, you can also copy and paste these files to
create and test the birthday widget in your own environment.

Defining the Widget Provider
Definition of a widget starts in the Android application manifest file. This is where you
specify the widget provider, widget configuration activity, and a pointer to another XML
file that further defines the widget layout.

For the birthday widget, you can see all of these highlighted in the following Android
manifest file (see Listing 22–5). Notice the definition of BDayAppWidgetProvider as a
broadcast receiver and also the definition for the configuration activity
ConfigureBDayWidgetActivity.

Listing 22–5. Android Manifest File for BDayWidget Sample Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ai.android.BDayWidget"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="Birthday Widget">
<!--
**
* Birthday Widget Provider Receiver
**
 -->
 <receiver android:name=".BDayWidgetProvider">
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/bday_appwidget_provider" />
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 </receiver>
<!--
**
* Birthday Provider Confiurator Activity
**
 -->
 <activity android:name=".ConfigureBDayWidgetActivity"
 android:label="Configure Birthday Widget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_CONFIGURE" />
 </intent-filter>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 725

 </activity>

 </application>
 <uses-sdk android:minSdkVersion="3" />
</manifest>

NOTE: The receiver node is a sibling node to the activity node, if you are familiar with the

manifest file. It is also the immediate child of the application node.

The application label identifier by "Birthday Widget" in the following line

 <application android:icon="@drawable/icon" android:label="Birthday Widget">

is what shows up in the widget pick list (see Figure 22–2) of the home page. If you are
creating a widget definition for the first time, make sure the following line is replicated
exactly:

 <meta-data android:name="android.appwidget.provider"

The specification "android.appwidget.provider" is Android specific and should be
mentioned as such; the same is true the lines below:

 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>

Finally, the configuration activity definition is like any other normal activity, except that it
needs to declare itself as capable of responding to APPWIDGET_CONFIGURE actions.

Defining Widget Size
Although the Android manifest file defines the widget provider, the additional details of
the widget are provided in a separate XML file. The additional details include the size of
the widget, the layout file name for the widget, the update time period, and the
configuration activity component (or class) name.

This additional XML file is indicated by the android:resource node of the previous
widget provider definition (see Listing 22–5). Listing 22–6 shows that widget provider
information file (/res/xml/bday_appwidget_provider.xml).

Listing 22–6. Widget View Definition for BDayWidget

<!-- res/xml/bday_appwidget_provider.xml -->
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="150dp"
 android:minHeight="120dp"
 android:updatePeriodMillis="4320000"
 android:initialLayout="@layout/bday_widget"
 android:configure="com.ai.android.BDayWidget.ConfigureBDayWidgetActivity"
 >
</appwidget-provider>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 726

This file indicates to Android the width and height that you want in pixels. However,
Android will round them to the nearest cell. Android organizes its home screen area into
a matrix of cells; each cell carries 74 density-independent pixels (dp) in width and
height. Android recommends that you specify your width and height in multiples of these
cells minus 2 pixels (to adjust for rounding etc.).

This file also indicates how often the onUpdate() needs to be called. Android highly
recommends that this value be no more than a few times a day. You can put a value of 0
to indicate never to call the update. This is useful when you want to control your own
updates through the Alarm Manager class.

The initial layout attribute points to the actual layout of the widget (see Listing 22–7).
Finally, the configure attribute points to the configuration activity class. This class needs
to be fully qualified in its definition.

Let us examine the actual layout for the widget now.

Widget Layout-Related Files
From the previous section and Listing 22–6, you can see that the layout of a widget is
defined in a layout file. This layout file is just like any other layout file for a view in
Android.

However, to guide standardization around widgets, Android published a set of widget
design guidelines. You can access these guidelines at

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html

In addition to the guidelines, this link has a set of view backgrounds that you can use to
improve the look and feel of your widgets. In this example, we took a different route and
used the traditional approach of view layouts with background shapes instead.

Widget Layout File
Listing 22–7 shows the layout file we used to produce the widget layout shown in Figure
22–5.

Listing 22–7. Widget View Layout Definition for BDayWidget

<!-- res/layout/bday_widget.xml -->
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="150dp"
 android:layout_height="120dp"
 android:background="@drawable/box1"
 >
<TextView
 android:id="@+id/bdw_w_name"
 android:layout_width="fill_parent"
 android:layout_height="30dp"
 android:text="Anonymous"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 727

 android:background="@drawable/box1"
 android:gravity="center"
 />
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="60dp"
 >
 <TextView
 android:id="@+id/bdw_w_days"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:text="0"
 android:gravity="center"
 android:textSize="30sp"
 android:layout_weight="50"
 />
 <TextView
 android:id="@+id/bdw_w_button_buy"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textSize="20sp"
 android:text="Buy"
 android:layout_weight="50"
 android:background="#FF6633"
 android:gravity="center"
 />
</LinearLayout>
<TextView
 android:id="@+id/bdw_w_date"
 android:layout_width="fill_parent"
 android:layout_height="30dp"
 android:text="1/1/2000"
 android:background="@drawable/box1"
 android:gravity="center"
 />
</LinearLayout>

This layout uses nested LinearLayout nodes to get the desired effect. Some of the
controls also use a shape definition file called box1.xml to define the borders.

Widget Background Shape File
The code for this shape definition is shown in Listing 22–8 (this file should be in the
/res/drawable subdirectory).

Listing 22–8. A Boundary Box Shape Definition

<!-- res/drawable/box1.xml -->
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <stroke android:width="4dp" android:color="#888888" />
 <padding android:left="2dp" android:top="2dp"
 android:right="2dp" android:bottom="2dp" />
 <corners android:radius="4dp" />
</shape>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 728

We have used this layout approach because it is quite handy not only for widgets but
also for your other layouts.

You may want to build an activity and test these layouts separately before actually
testing them with your widget (at least, that is what we did). It took us a number of trials
to get the look and feel right. It can be tedious to attempt to experiment directly with
widgets; every time you run the application, you have to delete the widgets, uninstall,
install, and then drag them back to the home page.

The files discussed so far complete the XML definitions needed by a typical widget. Let
us see now how we will respond to the life cycle events of widgets by examining the
widget provider class.

Implementing a Widget Provider
As part of widget architecture, we have talked about the responsibilities of a widget
provider class. A widget provider needs to implement the following broadcast receiver
callback methods.

 onUpdate()

 onDelete()

 onEnable()

 onDisable()

The Java code in Listing 22–9 demonstrates the implementation of each of these
methods.

Listing 22–9. Sample Widget Provider: BDayWidgetProvider

///src/<your-package>/BDayWidgetProvider.java
public class BDayWidgetProvider extends AppWidgetProvider
{
 private static final String tag = "BDayWidgetProvider";
 public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 final int N = appWidgetIds.length;
 for (int i=0; i<N; i++)
 {
 int appWidgetId = appWidgetIds[i];
 updateAppWidget(context, appWidgetManager, appWidgetId);
 }
 }

public void onDeleted(Context context, int[] appWidgetIds)
{
 final int N = appWidgetIds.length;
 for (int i=0; i<N; i++)
 {
 BDayWidgetModel bwm =
 BDayWidgetModel.retrieveModel(context, appWidgetIds[i]);
 bwm.removePrefs(context);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 729

 }
}
 @Override
 public void onReceive(Context context, Intent intent) {
 final String action = intent.getAction();
 if (AppWidgetManager.ACTION_APPWIDGET_DELETED.equals(action)) {
 Bundle extras = intent.getExtras();
 final int appWidgetId = extras.getInt
 (AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);

 if (appWidgetId != AppWidgetManager.INVALID_APPWIDGET_ID) {
 this.onDeleted(context, new int[] { appWidgetId });
 }
 }
 else {
 super.onReceive(context, intent);
 }
 }

 public void onEnabled(Context context) {
 BDayWidgetModel.clearAllPreferences(context);
 PackageManager pm = context.getPackageManager();
 pm.setComponentEnabledSetting(
 new ComponentName("com.ai.android.BDayWidget",
 ".BDayWidgetProvider"),
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP);
 }

 public void onDisabled(Context context) {
 BDayWidgetModel.clearAllPreferences(context);
 PackageManager pm = context.getPackageManager();
 pm.setComponentEnabledSetting(
 new ComponentName("com.ai.android.BDayWidget",
 ".BDayWidgetProvider"),
 PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
 PackageManager.DONT_KILL_APP);
 }

 private void updateAppWidget(Context context,
 AppWidgetManager appWidgetManager,
 int appWidgetId) {
 BDayWidgetModel bwm = BDayWidgetModel.retrieveModel(context, appWidgetId);
 if (bwm == null) {
 return;
 }
 ConfigureBDayWidgetActivity
 .updateAppWidget(context, appWidgetManager, bwm);
 }
}

Refer to the “Architecture of Home Screen Widgets” section to see what needs to
happen in each of these methods. For the birthday widget, all these methods in turn
make use of methods from the BDayWidgetModel class. Some of these methods are
removePrefs(), retrievePrefs(), and clearAllPreferences().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 730

The BDayWidgetModel class is used to encapsulate the state of our birthday widget
instances (we will cover this class in the next section). To understand this widget
provider class, all you need to know is that we are using a model class to retrieve data
needed for this widget instance. This data is kept in preferences, which is why the
methods are named removePrefs(), retrievePrefs(), and clearAllPreferences(). The
names might make more sense if Android had substituted Data for Prefs resulting in
removeData(), retrieveData(), and clearAllData(). Anyway that translation is just to
make a point, and you will not find methods named with Data() suffix.

As indicated, the update method is called for all the widget instances. This method must
update all the widget instances. The widget instances are passed in as an array of IDs.
For each id, the onUpdate() method will locate the corresponding widget instance
model and call the same method that is used by the configurator activity (see Listing 22–
14) to display the retrieved widget model.

In the onDelete() method, we have instantiated a BDayWidgetModel and then asked it to
remove itself from the preferences persistence store.

In the onEnabled() method, because it is called only once when the first instance comes
into play, we have cleared all persistence of the widget models so that we start with a
clean slate. We do the same in the onDisabled() method so that no memory of widget
instances exists.

In the onEnabled() method, we enable the widget provider component so that it can
receive broadcast messages. In the onDisabled() method, we disable the component
so that it won’t look for any broadcast messages.

NOTE: The onReceive() method is a special case. Prior to release 1.6, there was a bug where
onDelete() was not being called. Google provided a workaround by explicitly providing an
onReceive() method. In release 1.6 and up, you will not need this method; the same method

from the base class is sufficient.

By employing the idea of widget models, the code stays clean. We’ll explore the widget
models and their implementation next.

Implementing Widget Models
What is a widget model? The widget model is not an Android concept. If you are familiar
with traditional UI programming, you will recall the concept of Model, View Controller
(MVC) architecture, where the model holds data needed by a view; the view is
responsible for display; and the controller is responsible for mediating between the view
and the model.

Although Android SDK does not mandate a specific approach, we have used the MVC
idea to simplify widget programming. In this approach, for every widget instance view,
you will have an equivalent Java class that is a widget model. This model will have all the
methods that can supply the needed data for the widget instances.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 731

In addition to supplying the data, we have created some base classes for these models
so that they know how to save and retrieve themselves from a persistent store such as
shared preferences. We will go through the model class hierarchy and show you how we
use shared preferences to store and retrieve data. You can refer to Chapter 9 to read
more about preferences.

Interface for a Widget Model
We will start this discussion with an interface that acts as a contract for a widget model
so that the widget model can declare the fields to be saved in a persistent data base.
The contract also defines how to set a field when that field is retrieved from a database.
The interface, in addition, provides an init() callback so that it is called when a model
is newly retrieved from the database and before being passed on to a requesting client.

Listing 22–10 shows the source code for the widget contract interface.

Listing 22–10. Saving Widget State: The Contract

//filename: src/…/IWidgetModelSaveContract.java
public interface IWidgetModelSaveContract
{
 public String getPrefname();
 public void setValueForPref(String key, String value);

 //return key value pairs you want to be saved
 public Map<String,String> getPrefsToSave();

 //gets called after restore
 public void init();
}

This interface is designed in such a way that a derived abstract class will provide an
implementation using a specific persistence store. As mentioned before, we will use the
shared preferences facility of Android as the persistence store. As the name of this
interface indicates, it is purely a save contract. The clients such as the
BDayWidgetProvider will still rely on the most-often derived class of this interface for
specific methods.

The implementer of this interface will need to provide the name of a preference file in
response to the method getPrefname(). This preference file is then used to save the
key/value pairs obtained from getPrefsToSave(). In an inverse operation
(setValueForPref()), the derived class is asked to set its internal value given a key and
value restored from the preferences store.

Finally, the method init() is called on the derived class to indicate that the values have
been restored from the persistent store or any other initializations that could happen.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 732

NOTE: Please remember that, in a real-world application, you would structure this inheritance a
bit differently; you would probably use a delegation mechanism for reuse instead of inheritance.
However, this inheritance hierarchy will work well for our test case to demonstrate widget

models.

Let us consider now the abstract implementation that stores the data fields of a widget
as shared preferences.

Abstract Implementation of a Widget Model
All the code that is responsible for interacting with a persistent store is implemented in
the APrefWidgetModel class (see Listing 22–11). The Pref in this class stands for
“preference,” because this class uses the SharedPrferences facility of Android to store
the widget model data.

In addition, this class represents the idea of a basic widget. The field id represents the
instance ID of the widget. This class always needs a constructor that takes the widget
instance ID as an argument to accommodate the instance ID requirement.

Let’s take a look at the source code of this class in Listing 22–11. Key methods of this
class are highlighted.

Listing 22–11. Implementing Widget Saves Through Shared Preferences

//filename: /src/…/APrefWidgetModel.java
public abstract class APrefWidgetModel
implements IWidgetModelSaveContract
{
 private static String tag = "AWidgetModel";

 public int iid;
 public APrefWidgetModel(int instanceId) {
 iid = instanceId;
 }
 //abstract methods
 public abstract String getPrefname();
 public abstract void init();
 public Map<String,String> getPrefsToSave(){ return null;}

 public void savePreferences(Context context){
 Map<String,String> keyValuePairs = getPrefsToSave();
 if (keyValuePairs == null){
 return;
 }
 //going to save some values
 SharedPreferences.Editor prefs =
 context.getSharedPreferences(getPrefname(), 0).edit();

 for(String key: keyValuePairs.keySet()){
 String value = keyValuePairs.get(key);
 savePref(prefs,key,value);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 733

 }
 //finally commit the values
 prefs.commit();
 }

 private void savePref(SharedPreferences.Editor prefs,
 String key, String value) {
 String newkey = getStoredKeyForFieldName(key);
 prefs.putString(newkey, value);
 }
 private void removePref(SharedPreferences.Editor prefs, String key) {
 String newkey = getStoredKeyForFieldName(key);
 prefs.remove(newkey);
 }
 protected String getStoredKeyForFieldName(String fieldName){
 return fieldName + "_" + iid;
 }
 public static void clearAllPreferences(Context context, String prefname) {
 SharedPreferences prefs=context.getSharedPreferences(prefname, 0);
 SharedPreferences.Editor prefsEdit = prefs.edit();
 prefsEdit.clear();
 prefsEdit.commit();
 }

 public boolean retrievePrefs(Context ctx) {
 SharedPreferences prefs = ctx.getSharedPreferences(getPrefname(), 0);
 Map<String,?> keyValuePairs = prefs.getAll();
 boolean prefFound = false;
 for (String key: keyValuePairs.keySet()){
 if (isItMyPref(key) == true){
 String value = (String)keyValuePairs.get(key);
 setValueForPref(key,value);
 prefFound = true;
 }
 }
 return prefFound;
 }
 public void removePrefs(Context context) {
 Map<String,String> keyValuePairs = getPrefsToSave();
 if (keyValuePairs == null){
 return;
 }
 //going to save some values
 SharedPreferences.Editor prefs =
 context.getSharedPreferences(getPrefname(), 0).edit();

 for(String key: keyValuePairs.keySet()){
 removePref(prefs,key);
 }
 //finally commit the values
 prefs.commit();
 }
 private boolean isItMyPref(String keyname) {
 if (keyname.indexOf("_" + iid) > 0){
 return true;
 }
 return false;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 734

 }
 public void setValueForPref(String key, String value) {
 return;
 }
}

Let us see how the key methods of this class are implemented. We’ll start by saving the
widget model attributes in a shared preferences file:

public void savePreferences(Context context)
{
 Map<String,String> keyValuePairs = getPrefsToSave();
 if (keyValuePairs == null){ return; }

 //going to save some values
 SharedPreferences.Editor prefs =
 context.getSharedPreferences(getPrefname(), 0).edit();

 for(String key: keyValuePairs.keySet()){
 String value = keyValuePairs.get(key);
 savePref(prefs,key,value);
 }
 //finally commit the values
 prefs.commit();
}

This method starts off by asking the derived classes to return a map of key/value pairs,
where the keys are the attributes of the model, and values are string representations of
those attribute values. It will then ask the android context to get hold of a
SharedPreferences file through context.getSharedPreferences(). This API needs a
unique name for this package. The derived model is responsible for supplying this.

Once we get the shared preferences, by following the Android documentation, we will
ask to get an editable version of the shared preferences. Then, we update the
preferences one by one. Once that is complete, we run the commit() method, so the
preferences are persisted.

Read the API references and Chapter 9 for more information about the
SharedPreferences and the SharedPreferences.Editor classes; the “Resources” section
of this chapter has URLs pointing out where this information is. It is also worth noting
that these shared preference files are XML files and can be found in the data directory of
the package.

Because we have used a single file to store data for all widget instances, we need a
way to distinguish field names among multiple widget instances. For example, if we
have two widget instances named 1 and 2, we will need two keys to store the Name
attribute so that there is a name_1 and name_2. We do this translation in the following
method:

protected String getStoredKeyForFieldName(String fieldName) {
 return fieldName + "_" + iid;
}

The derived class also uses this method to examine which field to update when it is
called with a setValue() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 735

Implementation of a Widget Model for Birthday Widget
Ultimately the most-often derived class in this hierarchy of widget models is responsible
for actually maintaining all the fields needed by the view. It relies on its base classes to
store and retrieve. We have designed this most-often derived class in such a way that
the clients that are dealing with these models directly deal with the most-often derived
class, as this is the class that is most pertinent to them.

For example, when a widget instance is first created by the configurator activity, the
configurator activity instantiates one of these classes and fills up its values and asks to
save itself.

This class, because of the needs of the view, maintains three fields:

 name: Name of the person

 bday: The date the next birthday falls on

 url: The URL to go to for buying gifts

The class then has a calculated attribute called howManyDays, which represents the
number of days from today to the date of the next birthday.

You will also notice that this class is responsible for fulfilling the save contract. These
methods are as follows:

 public void setValueForPref(String key, String value);
 public String getPrefname();
 public Map<String,String> getPrefsToSave();

Listing 22–12 lays out the code that orchestrates all of this.

Listing 22–12. BDayWidgetModel: Implementing a State Model

//filename: /src/…/BDayWidgetModel.java
public class BDayWidgetModel extends APrefWidgetModel
{
 private static String tag="BDayWidgetModel";

 // Provide a unique name to store date
 private static String BDAY_WIDGET_PROVIDER_NAME=
 "com.ai.android.BDayWidget.BDayWidgetProvider";

 // Variables to paitn the widget view
 private String name = "anon";
 private static String F_NAME = "name";

 private String bday = "1/1/2001";
 private static String F_BDAY = "bday";

 private String url="http://www.google.com";

 // Constructor/gets/sets
 public BDayWidgetModel(int instanceId){
 super(instanceId);
 }
 public BDayWidgetModel(int instanceId, String inName, String inBday){

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 736

 super(instanceId);
 name=inName;
 bday=inBday;
 }
 public void init(){}
 public void setName(String inname){name=inname;}
 public void setBday(String inbday){bday=inbday;}

 public String getName(){return name;}
 public String getBday(){return bday;}

 public long howManyDays(){
 try {
 return Utils.howfarInDays(Utils.getDate(this.bday));
 }
 catch(ParseException x){
 return 20000;
 }
 }

 //Implement save contract

 public void setValueForPref(String key, String value){
 if (key.equals(getStoredKeyForFieldName(BDayWidgetModel.F_NAME))){
 this.name = value;
 return;
 }
 if (key.equals(getStoredKeyForFieldName(BDayWidgetModel.F_BDAY))){
 this.bday = value;
 return;
 }
 }
 public String getPrefname() {
 return BDayWidgetModel.BDAY_WIDGET_PROVIDER_NAME;
 }

 //return key value pairs you want to be saved
 public Map getPrefsToSave() {
 Map map
 = new HashMap();
 map.put(BDayWidgetModel.F_NAME, this.name);
 map.put(BDayWidgetModel.F_BDAY, this.bday);
 return map;
 }
 public String toString() {
 StringBuffer sbuf = new StringBuffer();
 sbuf.append("iid:" + iid);
 sbuf.append("name:" + name);
 sbuf.append("bday:" + bday);
 return sbuf.toString();
 }
 public static void clearAllPreferences(Context ctx){
 APrefWidgetModel.clearAllPreferences(ctx,
 BDayWidgetModel.BDAY_WIDGET_PROVIDER_NAME);
 }

 public static BDayWidgetModel retrieveModel(Context ctx, int widgetId){

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 737

 BDayWidgetModel m = new BDayWidgetModel(widgetId);
 boolean found = m.retrievePrefs(ctx);
 return found ? m:null;
 }
}

As you can see, this class uses a couple of date-related utilities. We will show you the
source code for these utilities before moving on to explaining the widget configuration
activity implementation.

A Few Date-Related Utilities
Listing 22–13 contains a utility class that is used to work with dates. It takes a date
string and validates if it is a valid date. It also calculates how far a date is from today.
The code is self-explanatory. We have included it here for completeness.

Listing 22–13. Date Utilities

public class Utils
{
 private static String tag = "Utils";
 public static Date getDate(String dateString)
 throws ParseException {
 DateFormat a = getDateFormat();
 Date date = a.parse(dateString);
 return date;
 }
 public static String test(String sdate){
 try {
 Date d = getDate(sdate);
 DateFormat a = getDateFormat();
 String s = a.format(d);
 return s;
 }
 catch(Exception x){
 return "problem with date:" + sdate;
 }
 }
 public static DateFormat getDateFormat(){
 SimpleDateFormat df = new SimpleDateFormat("MM/dd/yyyy");
 //DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);
 df.setLenient(false);
 return df;
 }

 //valid dates: 1/1/2009, 11/11/2009,
 //invalid dates: 13/1/2009, 1/32/2009
 public static boolean validateDate(String dateString){
 try {
 SimpleDateFormat df = new SimpleDateFormat("MM/dd/yyyy");
 df.setLenient(false);
 Date date = df.parse(dateString);
 return true;
 }
 catch(ParseException x) {
 return false;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 738

 }
 }
 public static long howfarInDays(Date date){
 Calendar cal = Calendar.getInstance();
 Date today = cal.getTime();
 long today_ms = today.getTime();
 long target_ms = date.getTime();
 return (target_ms - today_ms)/(1000 * 60 * 60 * 24);
 }
}

Now, let’s look at the implementation of the configuration activity that we have talked
about already.

Implementing Widget Configuration Activity
In the “Architecture of Home Screen Widgets” section, we explained the role of
configuration activity and its responsibilities. For the birthday widget example, these
responsibilities are implemented in an activity class called ConfigureBDayWidgetActivity.
You can see the source code for this class in Listing 22–14.

This class collects the name of the person and the next birthday. It then creates a
BDayWidgetModel and stores it in shared preferences. It also has a function that knows
how to transfer the BDayWidgetModel to a corresponding widget view.

Listing 22–14. Implementing a Configurator Activity

public class ConfigureBDayWidgetActivity extends Activity
{
 private static String tag = "ConfigureBDayWidgetActivity";
 private int mAppWidgetId = AppWidgetManager.INVALID_APPWIDGET_ID;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.edit_bday_widget);
 setupButton();

 Intent intent = getIntent();
 Bundle extras = intent.getExtras();
 if (extras != null) {
 mAppWidgetId = extras.getInt(
 AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 }

 private void setupButton(){
 Button b = (Button)this.findViewById(R.id.bdw_button_update_bday_widget);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 739

 parentButtonClicked(v);
 }
 });

 }
 private void parentButtonClicked(View v){
 String name = this.getName();
 String date = this.getDate();
 if (Utils.validateDate(date) == false){
 this.setDate("wrong date:" + date);
 return;
 }
 if (this.mAppWidgetId == AppWidgetManager.INVALID_APPWIDGET_ID){
 return;
 }
 updateAppWidgetLocal(name,date);
 Intent resultValue = new Intent();
 resultValue.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, mAppWidgetId);
 setResult(RESULT_OK, resultValue);
 finish();
 }
 private String getName(){
 EditText nameEdit = (EditText)this.findViewById(R.id.bdw_bday_name_id);
 String name = nameEdit.getText().toString();
 return name;
 }
 private String getDate(){
 EditText dateEdit = (EditText)this.findViewById(R.id.bdw_bday_date_id);
 String dateString = dateEdit.getText().toString();
 return dateString;
 }
 private void setDate(String errorDate){
 EditText dateEdit = (EditText)this.findViewById(R.id.bdw_bday_date_id);
 dateEdit.setText("error");
 dateEdit.requestFocus();
 }
 private void updateAppWidgetLocal(String name, String dob){
 BDayWidgetModel m = new BDayWidgetModel(mAppWidgetId,name,dob);
 updateAppWidget(this,AppWidgetManager.getInstance(this),m);
 m.savePreferences(this);
 }

 public static void updateAppWidget(Context context,
 AppWidgetManager appWidgetManager,
 BDayWidgetModel widgetModel)
 {
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.bday_widget);

 views.setTextViewText(R.id.bdw_w_name
 , widgetModel.getName() + ":" + widgetModel.iid);

 views.setTextViewText(R.id.bdw_w_date
 , widgetModel.getBday());

 //update the name
 views.setTextViewText(R.id.bdw_w_days,Long.toString(widgetModel.howManyDays()));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 740

 Intent defineIntent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("http://www.google.com"));
 PendingIntent pendingIntent =
 PendingIntent.getActivity(context,
 0 /* no requestCode */,
 defineIntent,
 0 /* no flags */);
 views.setOnClickPendingIntent(R.id.bdw_w_button_buy, pendingIntent);

 // Tell the widget manager
 appWidgetManager.updateAppWidget(widgetModel.iid, views);
 }
}

If you look at the code for the function updateAppWidgetLocal(), you will notice that it is
the function that creates and stores the model. It then uses the function
updateAppWidget() to display it. It is worth noting how this function updateAppWidget()
uses a pending intent to register a callback. The pending intent takes a primary intent
such as

 Intent defineIntent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("http://www.google.com"));

and creates a pending intent to start an activity. In contrast, a pending intent can be
used to start a service as well. It is also noteworthy that this function works with
RemoteViews and AppWidgetManager. Notice that this function accomplishes the following
tasks:

Obtaining RemoteViews from the layout

Setting text values on the RemoteViews

Registering a pending intent through RemoteViews

Invoking the AppWidgetManager to send the RemoteViews to the widget

Returning at the end with a result

NOTE: The static function udpateAppWidget can be called from anywhere as long as you
know the widget ID. This suggests that you can update a widget from anywhere on your device

and from any process, both visual and nonvisual.

It is also important that you use the following code to end the activity:

 Intent resultValue = new Intent();
 resultValue.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, mAppWidgetId);
 setResult(RESULT_OK, resultValue);
 finish();

Notice how we are passing the widget ID back to the caller. This is how
AppWidgetManager knows that the configurator activity is completed for that widget
instance.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 741

Let us conclude this discussion of widget configuration by presenting the form layout for
the widget configuration activity in Listing 22–15. This view is pretty straightforward: it
has a couple of text boxes and edit controls with an update button. You can also see
this visually in Figure 22–4.

Listing 22–15. Layout Definition for Configurator Activity

<!-- res/layout/edit_bday_widget.xml -->
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root_layout_id"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/bdw_text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Name:"
 />
<EditText
 android:id="@+id/bdw_bday_name_id"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Anonymous"
 />
<TextView
 android:id="@+id/bdw_text2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Birthday (9/1/2001):"
 />
<EditText
 android:id="@+id/bdw_bday_date_id"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="ex: 10/1/2009"
 />
<Button
 android:id="@+id/bdw_button_update_bday_widget"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="update"
/>
</LinearLayout>

This concludes our discussion on implementing a sample widget. As part of this
exercise, we have demonstrated the following:

 Defining a widget

 Responding to widget callbacks

 Providing a configuration activity for the widget

 Showing the use of RemoteViews

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 742

 Providing a framework for state management

 Designing a pleasing layout for a widget

With that, we will proceed by offering a few guidelines for widgets.

Widget Limitations and Extensions
Android home widgets appear simple when you first look at them. However, they have
many nuances that need to be looked at when you start writing widgets that are a bit off
the beaten path.

If your widget doesn’t require any state management and doesn’t need to be invoked
more than a few times a day, you have a widget that is very simple to write.

The next level of widget is one where you will need to manage the state but it is invoked
infrequently, like the one we have shown here. These types of widget can benefit from a
state management framework. We have shown in this chapter a bare-bones state
management framework. We assume that more sophisticated ones will be available or
that you could write one that is more robust and flexible.

The next level of widgets must be invoked at the levels of seconds and milliseconds. For
these widgets, you will need to rig your own update calls using the Alarm Manager. You
will also likely need a service to manage state frequently, rather than relying on a
persistent framework. For example, if you were to write a widget for a StopWatch, you
would need to have a timer that counts at least every second, and you would also need
to keep track of your counters, which implies state.

Another factor to consider is that the RemoteViews on which the widget view framework
relies have no mechanism to edit directly on a widget (at least none that is documented).
RemoteViews also put restrictions on what kinds of views and layouts can be used. You
don’t have direct control of the views, only control through the methods supplied by the
RemoteViews class.

Based on the current design and intentions of widgets, Google seems to expect that the
widgets mostly fall under category 1 or 2. There is lot of opportunity to expand the
widget framework in coming releases.

Resources
As we prepared material for this chapter, we found the following resources to be useful,
and we present them here in the order of their utility:

 The official Android SDK documentation on app widgets is available at
http://developer.android.com/guide/topics/appwidgets/index.html.

 You will need to understand the SharedPreferences API for managing state. The
URL for this class is http://developer.android.com/reference/android/
content/SharedPreferences.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 743

 Related to shared preferences is the SharedPreferences.Editor API. This is
available at http://developer.android.com/reference/android/
content/SharedPreferences.Editor.html.

 Use the following link from Android to design pleasing widget layouts:
http://developer.android.com/guide/practices/ui_guidelines/widget_design
.html.

 You will need to understand the RemoteViews API to paint and manipulate widget
views. This API is available at http://developer.android.com/reference/
android/widget/RemoteViews.html.

 The widgets themselves are managed by a widget manager class. You can
explore the API for this class at http://developer.android.com/reference/
android/appwidget/AppWidgetManager.html.

 If you are in a hurry to borrow some code to get started on widgets, you can use
the following URL, where one of our co-authors’ gathers useful code snippets:
http://www.androidbook.com/item/3300

 You can also find at the following link the research notes that were used in
writing this chapter: http://www.androidbook.com/item/3299

 At http://www.androidbook.com/projects, you can download the test project
dedicated for this chapter. The name of the ZIP file is
ProAndroid3_ch22_TestWidgets.zip.

Summary
We had fun in this chapter exploring the possibilities provided by Android home screen
widgets. These widgets are simple ideas that could benefit user experience
considerably.

We have covered the theory behind widgets and given you a working example to
illustrate the nuances. We have elaborated the need for widget models and widget state
management, and qe hope that the state management code we presented can be used
for your own widgets. Finally, we have touched on the design issues and limitations of
widgets. See Chapter 31 for substantially more coverage of widgets in Android 3.0

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 22: Home Screen Widgets 744

http://lib.ommolketab.ir
http//lib.ommolketab.ir

745

745

 Chapter

Android Search
In the last two chapters, 21 and 22, we introduced two home screen-based Android

innovations. In Chapter 21, we explained how live folders can reside on the home

page and provide quick access to changing data in content providers. In Chapter 22,

we explored home screen widgets that provide snapshots of information on the

home screen.

Continuing with the theme of information at your fingertips,we will now cover the

Android search framework. The Android search framework is extensive. Even though

Android search appears to be available only on the home screen of the device, its

influence can be extended to activities in your application.

We will start this chapter with a tour of the Android search facility. We will demonstrate

global search, search suggestions, suggestion rewriting, and searching the Web. We

will show how to include and exclude local applications from participating in global

search.

Following the usability tour, we will explore how activities in your applications integrate

with the search key. We will work with activities that are not explicitly programmed for

search, and we will examine an activity that disables search. We will explore a topic

called type-to-search that can be used by activities in applications to invoke search. We

will also show you an activity that explicitly invokes search through a menu item.

The key to Android search extensibility is a concept called a suggestion provider. We will

explore this concept and write a simple suggestion provider by inheriting from a base

suggestion provider available in Android.

However, you often will need to write a custom suggestions provider from scratch. We

will discuss this, which will take us to the core of the Android search architecture.

Finally, we will cover two advanced topics and show how you can use action keys

available on a device to invoke custom actions using search suggestions. We will also

describe how you can pass application-specific data to search when it is invoked. We

will conclude the chapter with a list of references.

23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 746

Android Search Experience
Search capabilities in Android extend the familiar web-based Google search bar to

search both device-based local content and Internet-based external content. You can

also use this search mechanism to invoke applications directly from the search bar on

the home page. Android makes these features possible by providing a search framework

that allows local applications to participate.

Android search protocol is simple. It involves a single search box to let users enter

search data. This is true whether you are using the global search box on the home page

or searching through your own application: you use the same search box.

As the user enters text, Android takes the text and passes it to various applications that

have registered to respond to search. Applications will respond by returning a collection

of responses. Android aggregates these responses from multiple applications and

presents them as a list of possible suggestions.

When the user clicks on one of these responses, Android invokes the application that

presented the suggestion. In this sense, Android search is a federated search among a

set of participating applications.

Although the overall idea is simple, the details of the search protocol are extensive. We

will cover these details through working samples later in this chapter. In this first section,

we will explore the search from a user’s perspective.

Exploring Android Global Search
As we explore Android search, although not a prerequisite, we recommend that you also

go through the “search” chapter in the Android users guide. We have provided a link to

the latest online Android users guide in the references section.

NOTE: As we were writing the book the Android releases went from 2.0 to 2.2 to 2.3 and 3.0.
With each release, although the underlying API hasn’t changed, the UI experience has changed
slightly. The screen shots here in this chapter are from 2.2 emulator. Although we have tested
the code on 2.3 and 3.0, we haven’t replicated the screenshots from those releases. Where

applicable we have indicated the differences in text. Depending on the Android release you have,
it should not be too hard to figure out the equivalent UI functionality. Take search settings for
example. In each release the place to invoke the search settings screen has changed. But the

search settings screen looks the same. So we appreciate if you can keep this discrepancy in

mind as you go through this chapter.

You can’t miss search on an Android device; it is usually displayed on the home page,

as shown in Figure 23–1. This search box is also referred to as the Quick Search Box

(QSB). In some releases of Android, or depending on the device manufacturer/carrier,

one may not see this search box by default on the home screen. However, you are sure

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 747

to see the QSB if you click the search button on the device. Or in devices that don’t

have physical keys (such as tablets), you may see yet another obvious mechanism to

invoke QSB. Do check with the user guide or manual for that version of Android.

Figure 23–1. Android home page with QSB widget and key pad

Because QSB is implemented as a widget (see to Chapter 22 for more on widgets) you

can drag and drop the search widget on to the home screen if it is not already on the

home page. You can also remove the QSB from the home page by dragging it to the

trash can. Of course you can redrag it from the widgets screen again.

You can directly type into the QSB to start your search. An interesting side effect of QSB

being a widget is that shifting focus to the QSB on the home page will basically launch

you into global search activity (see Figure 23–2), whereby you leave the home page

context. Figure 23–2 is captured in Android release 2.2. It looks identical in Android

release 2.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 748

Figure 23–2. Global search activity spawned off from the Home search widget

As indicated you can also invoke the search by clicking on the Search action key. Action

keys are the set of buttons that are shown in Figure 23–1 on the right hand side. The

search key in the set is indicated by the magnifying glass.

Much like the HOME key, you can click the search key any time, irrespective of the

application that is visible. However, when an application is in focus there is an

opportunity for the application to specialize the search, which we will go into later. This

customized search is called a local search. The more general, common, and non-

customized search is called a global search.

NOTE: When the search key is pressed when an application is in focus, it is up to the application
to allow or disallow both local and global searches. In releases prior to 2.0 the default action is to

allow the global search. In releases 2.2 and 2.3 the default behavior is to disable global search.
This means when an activity is in focus the user has to click the home key first and then click the

search key.

Prior to release 2.2, Android global search box did not distinguish between individual

search suggestion providers (or search applications). Starting in 2.2, Android Search

allows you to pick a particular search context (synonymous with a suggestion provider).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 749

You can do this by clicking the left hand side icon of the QSB. This will open up a

selection of the individual search applications that are providing searches. This is shown

in Figure 23–3 for Android release 2.2. For Android release 2.3, this view is very slightly

different — a small search settings icon is introduced on the right hand top portion of

the expanded search categories section.

Figure 23–3. Global QSB with various application search contexts

This is the default set of search applications (or contexts or search types or suggestion

providers) that come with the emulator as of release 2.2 and 2.3. This list may vary with

subsequent releases. The search context All behaves much like the global search of

prior releases.

You can also create your own search context by coding search suggestion providers and

local search activities. We will cover this as we work through the samples in this chapter.

Let’s focus on the search context that is indicated by “all” (represented by the

magnifying glass icon). You give focus to QSB (Figure 23–1) either by directly clicking on

the QSB or by clicking on the search key. Do not type anything in the QSB yet. At this

point, Android will display a screen that may look like Figure 23–2.

Depending on your usage of the device in the past, the image shown in Figure 23–2 may

vary, since Android guesses what you are searching for based on past actions. This

search mode, when there is no text entered in the QSB, is called zero suggestions mode.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 750

Depending on the search text that is entered, Android will provide a number of

suggestions to the user. These suggestions show up below the QSB as a list. These are

often called search suggestions. As you type each letter, Android will dynamically

replace the search suggestions. When there is no search text, Android will display what

are called zero suggestions. In Figure 23–2, Android has determined that Settings is an

application the user has used before and that it is a suitable suggestion to present even

though no search text has been entered. Although we haven’t typed anything in the

QSB, Android also shows the “soft keyboard” in anticipation of an entry. This soft

keyboard is also shown in Figure 23–2.

When we type a in the QSB, Android looks for suggestions that start with “a” or related

to “a”. You will see that Android has already searched for local installed applications that

start with “a” and a number of other search suggestions.

Now we’ll use the down arrow button to highlight the first suggestion. Figure 23–4

shows the view.

Figure 23–4. Search suggestions

Notice that the first suggestion is highlighted and the focus has shifted from QSB to the

first highlighted suggestion. Click the arrow on the right side of the QSB to proceed with

the search. Android also expanded the screen to full screen by removing the soft

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 751

keyboard, because you will not be typing when you navigate. The expanded screen size

shows you more suggestions as well.

But let’s look at suggestions one more time. Android takes the search text that has been

typed so far and looks for what are called suggestion providers. Android calls each

suggestion provider asynchronously to retrieve a set of matching suggestions as a set of

rows. Android expects that these rows (called search suggestions) conform to a set of

predefined columns (suggestion columns). By exploring these well-known columns,

Android will paint the suggestion list. When the search text changes, Android repeats

the process all over again. This interaction of calling all suggestion providers for search

suggestions is true for the “search all” context. However, if you were to choose a

specific search application context from Figure 23–3 only the suggestion provider that is

defined for that application will be invoked to retrieve search suggestions.

NOTE: The set of search suggestions is also called the suggestions cursor. This is because the

content provider representing the suggestion provider returns a cursor object.

At this point, if you were to navigate back to the QSB, Android would bring back the soft

keyboard. Another thing to notice in Figure 23–4 is the relationship between the

highlighted suggestion and the search text in the QSB. The search text remains “a” even

though the highlighted suggestion is pointing to a specific item such as the Alarm Clock

application. This is not always the case, however, as you can see in Figure 23–5, where

we have navigated to a suggestion entry pointing Amazon.

Figure 23–5. Suggestion rewriting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 752

Notice how the search text “a” is replaced by a whole URL representing Amazon. Now

you can either click on the arrow (which we’ll call the Go Arrow) to go to Amazon, or

simply click on the highlighted suggestion. Both have the same result.

NOTE: This process of modifying the search text based on the highlighted suggestion is called

suggestion rewriting.

We will talk about suggestion rewriting in greater detail a bit later, but briefly, Android uses

one of the columns in the suggestion cursor to look for this text. If that column exists, it

will rewrite the search text; otherwise it will leave the entered search text as it is.

When a suggestion is not rewritten, there are two possibilities. If you click the Go Arrow

icon in the QSB it will search Google for that search text irrespective of what is

highlighted. If you click the suggestion item directly it will call an activity called a search
activity in the application that put up the suggestion to begin with. This search activity is

then responsible for displaying the results of the search.

Figure 23–6 is an example of directly invoking a suggestion. In this example, the

suggestion is an application called Alarm Clock. When you click it, Android will invoke that

application directly. How this actually happens is a bit involved, and we will go through

later in this chapter (see the section “Implementing a Custom Suggestions Provider”).

Figure 23–6. Invoking an application through Search

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 753

Figure 23–7 shows what happens if you click the Go Arrow when your search text is “a.”

Figure 23–7. Searching the Web

Now that you are familiar with using the QSB for your searching needs, in the next part

of our tour we will explain how to enable or disable specific applications from

participating in global search.

Enabling Suggestion Providers for Global Search
As we have already pointed out, applications use suggestion providers to respond to

searches. Just because your application has the infrastructure necessary to respond to

searches doesn’t mean your suggestions will show up in the QSB automatically. A user

will need to explicitly allow your suggestion provider to participate. We will now walk you

through the process of enabling or disabling available suggestion providers. The way

you get to the settings that follow is slightly different between Android releases 2.2 and

2.3. We will cover 2.2 first.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 754

Working with Search Settings in Android Release 2.2
Let’s start with the screen that will take us to the Android settings (Figure 23–8).

Figure 23–8. Locating the settings application

You can reach this view by clicking on the List of Applications icon at the bottom of the

device screen (see Figure 23–1 for the home screen). Use your arrow down key to

navigate to the application that is named Settings, as shown in Figure 23–8. This will

take you to the Android settings page, which looks like Figure 23–9.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 755

Figure 23–9. Getting to the settings of the Searc” application

Among the many Android settings, choose the Search (Manage search settings and history)

option. This will bring you to the Search settings application shown in Figure 23–10.

Figure 23–10. Search settings application

In this activity, look for the tab called Quick Search Box and choose Searchable items

(Choose what to search on the phone). This will show a list of available suggestion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 756

providers (sometimes also referred as search applications), as shown in Figure 23–11.

Again this list may vary from release to release.

Figure 23–11. Enabled/disabled search applications

Suggestion providers (or the applications of which they are a part) that are included in

global search are selected in Figure 23–11. By default, a new suggestion provider or

search application is not selected. You can click on a suggestion provider to enable it

for search. When it is enabled this suggestion provider will offer suggestions to the

global search. The enabled suggestion provider will also show up in the list of

searchable applications in Figure 23–3.

Working with Search Settings in Android Release 2.3
When you are looking to discover suggestion provider settings the difference between

Android releases 2.2 and 2.3 (and hopefully future a future phone SDK release) is how

you get to the search settings screen of Figure 23–10 or 23–11.

In Android release 2.3 you can directly reach figure 23–11 from the expanded search

categories screen of Figure 23–2. In Android release 2.3 this figure 23–2 has a small

settings icon on it. If you click this icon you will be directly taken to Figure 23–11 where

you will see your custom search activities.

To get to the general search settings screen of Figure 23–10 you will need to revisit

screen of Figure 23–2 or 23–3 or 23–4. Essentially you clicked on QSB. While the focus

is with the QSB if you click the Menu button you will see a menu item called “Search

Settings.” If you click this menu item you will be taken to the general search settings of

Figure 23–10. Once you are at this screen the instructions to work with the settings are

same as those for Android release 2.2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 757

So far, we’ve given you a high-level view of how search works in Android. Next we will

explore these ideas further and show you how all this works through examples. We’ll

start by exploring how simple activities interact with search.

Activities and Search Key Interaction
What happens when a user clicks on the search key when an activity is in focus? The

answer depends on the type of activity that is in focus. We will explore behavior for the

following types of activities:

 A regular activity that is unaware of search

 An activity that explicitly disables search

 An activity that invokes global search explicitly

 An activity that specifies a local search

We will explore these options by a working sample containing the following files (after

going through each of them we will show you the screens from this application to

demonstrate the concepts).

The primary Java files are

 RegularActivity.java (Listing 23–1)

 NoSearchActivity.java (Listing 23–6)

 SearchInvokerActivity.java (Listing 23–8)

 LocalSearchEnabledActivity.java (Listing 23–13)

 SearchActivity.java (Listing 23–11)

Each of these files, except the last one (SearchActivity.java), represents each type of

activity that we want to examine as mentioned above. The last file,

SearchActivity.java, is needed by the LocalSearchEnabledActivity. Each of these

activities, including the SearchActivity has a simple layout with a text view in it. Each is

supported by the following layout files:

 res/layout/main.xml (for the RegularActivity) (Listing 23–3)

 res/layout/no_search_activity.xml Listing 23–7)

 res/layout/search_invoker_activity.xml (Listing 23–9)

 res/layout/local_search_enabled_activity.xml (Listing 23–14)

 res/layout/search_activity.xml (part of listing 23–11)

The following two files define these activities to Android and also search metadata for

the one local search activity:

 AndroidManifest.xml (Listing 23–2)

 xml/searchable.xml (Listing 23–12)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 758

The following file contains the text commentary for each of the layouts:

 res/values/strings.xml (Listing 23–4)

The following two menu files provide menus needed to invoke the activities and also

global search where needed:

 res/menu/main_menu.xml (Listing 23–5)

 res/menu/search_invoker_menu.xml (Listing 23–10)

We will now explore the interaction between activities and the search key by

methodically walking through the source code of these files by each activity type.

NOTE: If you would like to compile and test these files, we recommend you to download the

importable Eclipse projects for this chapter from the URL provided at the end of this chapter.

Let us start to explore the behavior of search key in the presence of a regular Android

activity.

Behavior of Search Key on a Regular Activity
To test what happens when an activity that is unaware of search is in focus we’ll show

you an example of a regular activity. Listing 23–1 shows the java source code

representing this RegularActivity.

Listing 23–1. Regular Activity Source Code

//filename: RegularActivity.java
public class RegularActivity extends Activity
{
 private final String tag = "RegularActivity";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 //call the parent to attach any system level menus
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 //getMenuInflater() is from base activity

 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 759

 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear) {
 this.emptyText();
 return true;
 }

 if (item.getItemId() == R.id.mid_no_search) {
 this.invokeNoSearchActivity();
 return true;
 }
 if (item.getItemId() == R.id.mid_local_search) {
 this.invokeLocalSearchActivity();
 return true;
 }
 if (item.getItemId() == R.id.mid_invoke_search) {
 this.invokeSearchInvokerActivity();
 return true;
 }
 return true;
 }

 private TextView getTextView()
 {
 return (TextView)this.findViewById(R.id.text1);
 }

 private void appendMenuItemText(MenuItem menuItem)
 {
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 private void emptyText()
 {
 TextView tv = getTextView();
 tv.setText("");
 }
 private void invokeNoSearchActivity()
 {
 //Uncomment the following two lines when you
 //you add this activity to your project

 //Intent intent =
 // new Intent(this,NoSearchActivity.class);
 //startActivity(intent);
 }
 private void invokeSearchInvokerActivity()
 {
 //Uncomment the following two lines when you
 //you add this activity to your project

 //Intent intent =
 // new Intent(this,SearchInvokerActivity.class);
 //startActivity(intent);
 }
 private void invokeLocalSearchActivity()
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 760

 //Uncomment the following two lines when you
 //you add this activity to your project

 //Intent intent =
 // new Intent(this,LocalSearchEnabledActivity.class);
 //startActivity(intent);
 }
}

The goal of this activity is to play the role of a simple activity that is unaware of search.

In this example, however, this activity also works as the driver to invoke other activity

types that we would like to test. This is why you see some menu items being introduced

to represent these additional activities. Each function that starts with invoke... has

code to start the other type of activities that we want to test.

We will present the necessary files to compile this code in quick order. However, you

may want to comment out the “invoke…” functions or include listings for those classes

as well at this time. For your benefit we have already commented out these lines.

Let us take a look at the manifest file to see how this activity is defined (see Listing

23–2). You can also see the definition of other activities here, although they will not be

explained until later. Again we have commented out those additional activities until a

later time when they are needed.

Listing 23–2. Activity/Search Key Interaction: Manifest file

//filename: AndroidManifest.xml
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.search.nosearch">
<application android:icon="@drawable/icon"
 android:label="Test Activity QSB Interaction">
 <activity android:name=".RegularActivity"
 android:label="Activity/QSB Interaction:Regular Activity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

<!-- Uncomment the following activities as you create them.
 We will indicate when you need to uncomment each activity

 <activity android:name=".NoSearchActivity"
 android:label="Activity/QSB Interaction::Disabled Search">
 </activity>

 <activity android:name=".SearchInvokerActivity"
 android:label="Activity/QSB Interaction::Search Invoker">
 </activity>

 <activity android:name=".LocalSearchEnabledActivity"
 android:label="Activity/QSB Interaction::Local Search">
 <meta-data android:name="android.app.default_searchable"
 android:value=".SearchActivity" />
 </activity>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 761

 <activity android:name=".SearchActivity"
 android:label="Activity/QSB Interaction::Search Results">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />
 </activity>
-->
</application>
<uses-sdk android:minSdkVersion="4" />
</manifest>

Notice that the RegularActivity is defined as the main activity for this project and has

no other characteristics related to search.

The layout file for this activity is shown in Listing 23–3.

Listing 23–3. Regular Activity Layout File

//filename: layout/main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/regular_activity_prompt"
 />
</LinearLayout>

Now we’ll show you the string resources used by this project. Listing 23–4 contains

string resources for other activities of this project as well. However, these additional

string resources should not interfere with compilation of the current activity, even if you

haven’t introduced the other activities.

With that, Listing 23–4 shows the strings.xml that is responsible for the text you will

see on this activity’s display. The individual string resources related to each activity are

highlighted and commented.

Listing 23–4. Activity/Search Key Interaction: strings.xml

//filename: /res/values/strings.xml
<?xml version="1.0" encoding="utf-8"?>
<resources>
<!--
**
* regular_activity_prompt
**
-->
 <string name="regular_activity_prompt">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 762

 This is a sample application to test how QSB and Search Key
 interacts with activities. This application has 4 activities
 including this one. The activity you are looking at is
 called a Regular Activity and is one of 4. The other three
 you can access through the menu.
 \n\n
 This activity is a regular activity that is unaware of
 any search capabilities. If you click search key now
 it will NOT invoke the global search.
 \n
 \nThe other activities demonstrate:`
 \n\n1) No search Activity: An activity that disables search
 \n2) Invoke search: programatically invoke global search
 \n3) Local Search Activity: Invoke Local Search
 \n
 \nYour debug will appear here
 </string>

<!--
**
* no_search_activity_prompt
**
-->
 <string name="no_search_activity_prompt">
 In this activity the onSearchRequested
 returns a false. The search button
 should be ignored now.
 \n
 \nYou can click back now to access the
 previous activity and use the menus again
 to choose other activities.
 </string>
<!--
**
* search_activity_prompt
**
-->
<string name="search_activity_prompt">
This is called a search activity or search results activity.
This activity is invoked by clicking on the search key when
some other activity uses this activity as its
search results activity.
\n\n
Typically you can retrieve the query string
from the intent to see what the query is.
</string>
<!--
**
* search_invoker_activity_prompt
**
-->
<string name="search_invoker_activity_prompt">
In this activity a search menu item is used
to invoke the default search. In this case
as there is no local search for this activity
specified global search is invoked. Use the
menu button to see the "search" menu. when you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 763

click on that search menu you will see the
global search.
</string>
<!--
**
* local_search_enabled_activity_prompt
**
-->
<string name="local_search_enabled_activity_prompt">
This is a very simple activity that has indicated through
the manifest file that there is a an associated search
activity. With this association when the search key is
pressed the local search is presented instead of global.
\n\n
You can see the local nature of it by looking at the
label of the QSB and also the hint in the QSB. Both
came from the search metadata.
\n\n
Once you click on the query icon, it will transfer
you to the local search activity.
</string>
<!--
**
* Other values
**
-->
 <string name="search_label">Local Search Demo</string>
 <string name="search_hint">Local Search Demo Hint</string>
</resources>

Like the Android manifest, this single strings.xml is serving all of the activities in this

project. You can see that the string constant named regular_activity in the

strings.xml is pointing to the text you will see on the regular activity.

To assist the compilation of the regular activity let us present now the menu resource file

in Listing 23–5. Although this menu file contains menu items for other activities yet to be

introduced, it won’t interfere with compiles and assists in having the regular activity of

Listing 23–1 compiled.

Listing 23–5. Regular Activity Menu File

<menu xmlns:android="http://schemas.android.com/apk/res/android">
<!-- filename: /res/menu/main_menu.xml
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/mid_no_search"
 android:title="No Search Activity" />

 <item android:id="@+id/mid_local_search"
 android:title="Local Search Activity" />

 <item android:id="@+id/mid_invoke_search"
 android:title="Search Invoker Activity" />

 <item android:id="@+id/menu_clear"
 android:title="clear" />
 </group>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 764

</menu>

With these files in place, you should be able to compile and test this activity (or you can

wait until we have looked at all the activities for this project). If you would like to compile

now, you will need to keep the rest of activities commented out in listings 23–1 and 23–2.

Or you can use the listings identified at the beginning of this sample to compile the

entire application first and then follow along.

 When you finish compiling the application and run the main regular activity we

introduced, the layout should look like Figure 23–12.

Figure 23–12. Regular activity/search interaction

Listing 23–5 shows the menu XML file that is used for the regular activity. You can see

this menu in action in Figure 23–13.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 765

Figure 23–13. Accessing other test activities

Now, when you have this activity running (as in Figure 23–12) click the search key (see

Figure 23–1 to locate the search key). The documentation indicates that this should

invoke the global search dialog.

In releases prior to 2.0 the search key was bringing the global search in response. In

releases 2.2 and 2.3 pressing the search key does not bring up the global search.

If you want to force this regular activity to allow global search instead it needs to

override the onSearchRequested() and do the following:

@Override
public boolean onSearchRequested()
{
 Log.d(tag,"onsearch request called");
 this.startSearch("test",true,null,true);
 return true;
}

With this code in place in the ReqularActivity.java, you can press the search key and

it will invoke the global search. The method “startSearch()” and its arguments are

covered later in the chapter. This global search will look just like the global search in

Figure 23-2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 766

Behavior of an Activity that Disables Search
An activity has the option to entirely disable the search (both global and local) by

returning false from the onSearchRequested() callback method of the activity class.

Listing 23–6 shows the source code for such an activity, which we named

“NoSearchActivity”.

Listing 23–6. Activity-disabling Search

//filename: NoSearchActivity.java
public class NoSearchActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.no_search_activity);
 return;
 }
 @Override
 public boolean onSearchRequested()
 {
 return false;
 }
}

Listing 23–7 shows the corresponding layout file for this activity.

Listing 23–7. NoSearchActivity XML File

//filename: layout/no_search_activity.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/no_search_activity_prompt"
 />
</LinearLayout>

With these two files in place (Listing 23–6 and 23–7), you need to uncomment a couple

sections in the following two files:

RegularActivity.java (Listing 23–1)
AndroidManifest.xml (Listing 23–2)

In the RegularActivity.java file (Listing 23–1), uncomment the java code in the body of

the function “invokeNoSearchActivity()”.

In the AndroidManifest.xml (Listing 23–2) uncomment the activity definition for

NoSearchActivity. Notice that this is an XML file. How you comment and uncomment an

XML file differs from uncommenting Java code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 767

Once you complete these two uncommenting tasks you will be able to compile the

project again. Now you can invoke this NoSearchActivity by clicking the menu item No

Search Activity in Figure 23–13.

When displayed, this activity will look like that shown in Figure 23–14. Now if you press

the search key, it will not have any impact; you will not see anything happen.

Figure 23–14. Disabled search activity

TIP: When there is an activity that disables search, clicking the search key does not result in the

invocation of search both local and global.

Explicitly Invoking Search Through a Menu
In addition to being able to respond to the search key, an activity can also choose to

explicitly invoke search through a search menu item. Listing 23–8 shows the source

code for an example activity (SearchInvokerActivity) that does this.

Listing 23–8. SearchInvokerActivity

//filename: SearchInvokerActivity.java
public class SearchInvokerActivity extends Activity

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 768

{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.search_invoker_activity);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.search_invoker_menu, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 appendMenuItemText(item);
 if (item.getItemId() == R.id.mid_si_clear)
 {
 this.emptyText();
 return true;
 }
 if (item.getItemId() == R.id.mid_si_search)
 {
 this.invokeSearch();
 return true;
 }
 return true;
 }

 private TextView getTextView()
 {
 return (TextView)this.findViewById(R.id.text1);
 }

 private void appendMenuItemText(MenuItem menuItem)
 {
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 private void emptyText()
 {
 TextView tv = getTextView();
 tv.setText("");
 }
 private void invokeSearch()
 {
 this.onSearchRequested();
 }
 @Override
 public boolean onSearchRequested()
 {
 this.startSearch("test",true,null,true);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 769

 return true;
 }
}

Key portions of source code are highlighted in bold. Notice how a menu ID

(R.id.mid_si_search) is calling the function invokeSearch, which will in turn call the

onSearchRequested(). This method, onSearchRequested(), invokes the search.

The base method “startSearch” has the following arguments

initialQuery: Text to search for.

selectInitialQuery: A boolean indicating whether to highlight the search text or not. In

this case we used “true” to hightlight the text so that it can deleted in favor of a new text

if desired.

appSearchData: A bundle object to pass to the search activity. In our case, we are not

targeting any particular search activity we passed null.

globalSearch: If it is true, the global search is invoked. If it is false, a local search is

invoked if available; otherwise a global search is invoked.

SDK documentation recommends to call the base onSearchRequested() unlike what we

have shown in Listing 23–8. However, the default onSearchRequested() is using false

for the last argument of startSearch(). According to the documentation this should

invoke the global search if no local search is available. However, in this release (both 2.2

and 2.3) the global search is not being invoked. This could either be a bug or designed

that way and requiring a documentation update.

In this example we have forced a global search by passing true to this last argument of

startSearch().

Listing 23–9 shows the layout for this activity.

Listing 23–9. SearchInvokerActivity XML

//filename: layout/search_invoker_activity.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/search_invoker_activity_prompt"
 />
</LinearLayout>

Listing 23–10 shows the corresponding menu XML for this activity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 770

Listing 23–10. SearchInvokerActivity Menu XML

//filename:menu/search_invoker_menu.xml
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/mid_si_search"
 android:title="Search" />

 <item android:id="@+id/mid_si_clear"
 android:title="clear" />
 </group>
</menu>

With these three files in place (Listing 23–8, 23–9, 23–10) you need to uncomment a

couple sections in the following two files:

RegularActivity.java (Listing 23–1)
AndroidManifest.xml (Listing 23–2)

In the RegularActivity.java file (Listing 23–1) uncomment the java code in the body of

the function “invokeSearchInvokerActivity().”

In the AndroidManifest.xml (Listing 23–2) uncomment the activity definition for

SearchInvokerActivity. Once you complete these two uncommenting tasks you will be

able to compile the project again.

With the layout and menu in place, Figure 23–15 shows how this activity looks when

invoked from the main menu on the RegularActivity (see Figure 23–13 for the menu

item Search Invoker Activity that invokes this).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 771

Figure 23–15. Search invoker activity

From this activity, if you click the Search menu option it will invoke the familiar global

search QSB, as shown in Figure 23–2. As we have also overridden the

“onSearchRequested()” from the base activity, the device Search Key will bring up the

global QSB as well.

Understanding Local Search and Related Activities
Now let’s look at the circumstances under which the search key will not invoke a global

search, but instead invoke a local search. But first, we have to explain local search a bit

further.

A local search has three components. The first component is a search box that is very

similar, if not the same, as the global search QSB. This QSB, whether local or global,

provides text control to enter text and a search icon to click. A local QSB is typically

invoked instead of the global one when an activity declares in the manifest file that it

wants a local search. You can distinguish the invoked local QSB from the global one by

looking at the heading of the QSB (see the title of a future Figure 23–18) and the hint (the

text inside the search box) in the QSB. These two values, as you will see, come from a

search metadata XML file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 772

The second component of local search is an activity that can receive the search string

from the local QSB and show a set of results or any output that is related to the search

text. Often this activity is called the search activity or search results activity.

The optional third component of local search is an activity that is allowed to invoke the

search results activity just described (the second component). This invoking activity is

often called search invoker or search invoking activity. This search invoker activity is

optional because it is possible to have the global search directly invoke the local search

activity (the second component) through a suggestion.

You can see these three components and how they interact with each other in context in

Figure 23–16.

Figure 23–16. Local search activity interaction

In Figure 23–16 important interactions are shown as annotated (circled numbers) arrows.

Here’s a more detailed explanation:

 A SearchActivity needs to be defined in the manifest file as an activity

that is capable of receiving search requests. SearchActivity also uses

a mandatory XML file to declare how the local QSB should be

presented (such as with a title, hint, and so on) and if there is an

associated suggestion provider. (See Listing 23–12). In Figure 23–16

you can see this as a couple of “Definition” lines that go between the

SearchActivity and the two XML files (manifest file and the search

metadata file).

 Once the SearchActivity is defined in the manifest file (see Listing 23–2),

the Search InvokingActivity indicates in the manifest file that it is

associated with the SearchActivity through a metadata definition
android.app.default_searchable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 773

 With the definitions for both activities in place, when the

SearchInvokingActivity is in focus, the press of the search key will

invoke the local QSB. You can see this in Figure 23–16 – the circles

numbered 1 and 2. You can tell that the invoked QSB is a local QSB

by looking at the caption and hint of the QSB. These two values are

set up in the mandatory search metadata XML definition. Once QSB is

invoked through the search key, you will be able to type query text in

the QSB. This local QSB, similar to the global QSB, is capable of

suggestions. You can see this in Figure 23–16 (circle 3).

 Once the query text is entered and the search icon is clicked, the local

QSB will transfer the search to the SearchActivity which is

responsible for doing something with it, such as displaying a set of

results. This is shown in Figure 23–16 (circle 4).

We will examine each of these interactions by looking at the source code. We will start

with Listing 23–11, the source code for SearchActivity, (which, again, is responsible for

receiving the query and displaying search results).

Listing 23–11. SearchActivity and Its Layout File

//filename: SearchActivity.java
public class SearchActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.search_activity);
 return;
 }
}

//And the corresponding res/layout/search_activity.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/search_activity_prompt"
 />
</LinearLayout>

We took a simplest possible search activity. Later you’ll see how queries are retrieved by

this activity. For now we will show how this activity ends up being invoked by the QSB.

Here is how it is defined as a search activity responsible for results in the manifest file

(see Listing 23–2):

<activity android:name=".SearchActivity"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 774

 android:label="Activity/QSB Interaction::Search Results">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable"/>
</activity>

NOTE: There are two things that need to be specified for a search activity. The activity needs to
indicate that it can respond to SEARCH actions. It also needs to specify an xml file that describes

the metadata that is required to interact with this search activity.

Listing 23–12 shows the search metadata XML file for this SearchActivity.

Listing 23–12. Searchable.xml: Search Metadata

<!-- /res/xml/searchable.xml -->
<searchable xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/search_label"
 android:hint="@string/search_hint"
 android:searchMode="showSearchLabelAsBadge"
/>

TIP: The various options available in this XML are documented in the SDK at

http://developer.android.com/reference/android/app/SearchManager.html.

We will cover more of these attributes later in the chapter. For now, the attribute

android:label is used to label the search box. The attribute android:hint is used to place

the text in the search box, similar to what’s shown in Figure 23–18.

Now let’s examine how an activity can specify this SearchActivity as its search. We will

call this the LocalSearchEnabledActivity. Listing 23–13 shows the source code for this

activity.

Listing 23–13. LocalSearchEnabledActivity

//filename: LocalSearchEnabledActivity.java
public class LocalSearchEnabledActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.local_search_enabled_activity);
 return;
 }
}

Listing 23–14 shows the corresponding layout xml file for this activity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 775

Listing 23–14. LocalSearchEnabledActivity Layout File

<?xml version="1.0" encoding="utf-8"?>
<!-- filename: layout/local_search_enabled_activity.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/local_search_enabled_activity_prompt"
 />
</LinearLayout>

Also notice how this LocalSearchEnabledActivity (Listing 23–13) is targeting the

SearchActivity (Listing 23–11) as its target search activity. You can uncover this

relationship by looking at the manifest file definition (Listing 23–2) for the

LocalSearchEnabledActivity. Here is that definition replicated for quick browsing:

<activity android:name=".LocalSearchEnabledActivity"
 android:label="Activity/QSB Interaction::Local Search">
 <meta-data android:name="android.app.default_searchable"
 android:value=".SearchActivity" />
</activity>

It is time to review what new files we have presented so far so that you can test these

two activities: LocalSearchEnabledActivity and the SearchActivity. These new files

and their listing numbers are:

SearchActivity.java (Listing 23–11)
layoyut/search_activity.xml (presented as part of Listing 23–11)
res/xml/searchable.xml (Listing 23–12)
LocalSearchEnabledActivity.java (Listing 23–13)
local_search_enabled_activity (Listing 23–14)

With these files in place, you need to uncomment a couple sections in the following two

files:

RegularActivity.java (Listing 23–1)
AndroidManifest.xml (Listing 23–2)

In the RegularActivity.java file (Listing 23–1) uncomment the java code in the body of

the function “invokeLocalSearchActivity().”

In the AndroidManifest.xml (Listing 23–2) uncomment the activity definition for

LocalSearchEanabledActivity and SearchActivity.

Once you complete these two uncommenting tasks, you will be able to compile the

project again.

With these new activities and their layouts in place, you can invoke this

LocalSearchEnabledActivity from the main RegularActivity by clicking the Local

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 776

Search Activity menu item (see Figure 23–13 to locate the menus). When invoked, this

activity looks like Figure 23–17.

Figure 23–17. Local search-enabled activity

With this activity in focus, if you click on the device search it will invoke a local search

box (local QSB), as shown in Figure 23–18.

Figure 23–18. Local Search QSB

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 777

Notice the label of this search box and the hint of this search box. See how they differ

from the global search (see Figure 23–2). The label and hint came from the search

metadata (searchable.xml Listing 23–12) specified for the SearchActivity. Now if you

type text in the QSB and click the search icon you will end up invoking the

SearchActivity (see Listing 23–11). Here is what this SearchActivity looks like

(Figure 23–19).

Figure 23–19. Search results in response to the local search QSB

Although this activity does not make use of any query search text to pull up results, it

demonstrates how a search activity is defined and gets invoked. Later in the chapter

we’ll show how this SearchActivity makes use of search queries and various search-

related actions to which it needs to respond.

Enabling Type-to-Search
So far we have explored a few ways of invoking search, both local and global. We have

showed you how to search using QSB on the home page of the device. We have told

you how to invoke global search from any activity as long as the activity doesn’t prevent

such a search. We have also showed you how an activity can specify local search. We

will close this topic by showing one more way of invoking search called type-to-search.

When you are looking at an activity such as the RegularActivity shown in Figure 23–12

there is a way to invoke search by typing a random letter (such as “t,” for example). This

mode is called type-to-search because any key you type that is not handled by the

activity will invoke search.

The intention of type-to-search is this. On any Android activity you can tell Android that

any key press can invoke search—except for the keys that the activity explicitly handles.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 778

For example, if an activity handles “x” and “y” but doesn’t care about any other keys,

the activity can choose to invoke the search for any other keys such as “z” or “a”. This

mode is useful for an activity that is already displaying search results. Such an activity

can interpret a key press as a cue to start search again.

Here are a couple of lines of code you can use in onCreate() method of the activity to

enable this behavior (the first line is used to invoke the global search and the second is

used to invoke the local search):

this.setDefaultKeyMode(Activity.DEFAULT_KEYS_SEARCH_GLOBAL);

or

this.setDefaultKeyMode(Activity.DEFAULT_KEYS_SEARCH_LOCAL);

The invocation of the global search through this “type-to-search” mechanism doesn’t

seem to go through the onSearchRequested() route. These keys are directly invoking the

global search. As a result, the RegularActivity we have in this example seem to invoke

global search if we enable type to search. (If you recall, in our tests, the regular activity

that doesn’t explicitly enable or disable search failed to invoke global search if search

key is pressed). You can test this type-to-search behavior by placing the following line at

the end of the onCreate() method of the RegularActivity class (Listing 23–1)

this.setDefaultKeyMode(Activity.DEFAULT_KEYS_SEARCH_GLOBAL);

Then pressing a letter such as “t” in Figure 23–12 will invoke the global search.

This concludes our discussion of the various ways in which Android search interacts

with activities and how to use search. We will now see how to participate in search and

not just use it. We will implement a simple suggestion provider application that can

provide search suggestions to a QSB, both local and global.

Implementing a Simple Suggestion Provider
This is a large chapter, so if you have been reading this chapter continuously thus far,

take a break – as we are about to start another large body of text and will need your full

attention.

We have indicated how suggestion providers are used to allow applications to

participate in global search. We will now design and write a simple suggestion provider.

You can create a simple suggestion provider using only a few lines by deriving from the

prefabricated provider called SearchRecentSuggestionsProvider, which is available in

the Android SDK.

We will start by explaining how a simple suggestion provider application is expected to

work. We will give you the list of files that are used in the implementation. These files

should give you a general idea of the application and what is involved in implementing it.

When you are writing a suggestion provider there are three main components. The first

is a suggestion provider that is responsible for returning suggestions to Android search.

The second is a search activity that takes a query or a suggestion and turns it into

search results. The third is an XML file called search metadata, which is defined in the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 779

context of the search activity. We will describe the responsibilities of each of these

components and show how they are implemented through source code.

But first, let us first plan our simple suggestions provider application.

Planning the Simple Suggestions Provider
Because we are planning on inheriting from the SearchRecentSuggestionsProvider, the

functionality of the resulting suggestion provider is pretty fixed.

The SearchRecentSuggestionsProvider allows you to replay the queries as they are

presented to the search activity from the QSB. Once these queries are saved by the

search activity, they will be prompted back to the QSB through the suggestion provider

as users type search letters or text in the QSB.

In the derived suggestion provider we initialize the base provider by indicating what

portions of search text needs to be replayed. There is not much else we need to do

there. We will also use a minimal search activity that is just a text view, to show that the

search activity has been invoked. Inside the search activity we will show you the

methods that are used to retrieve and save the queries so that they are available to the

search provider.

Once the application is complete, our goal is to see the previous queries prompted as

suggestions in the local and global QSB.

Now we’ll show you the list of files that are used in the implementation of this project.

You can also download importable projects for this chapter using the download URL at

the end of this chapter.

Simple Suggestions Provider Implementation Files
The primary files that take part in the implementation of a suggestion provider

application are SearchActivity.java , SimpleSuggestionProvider.java, and
searchable.xml (search metadata). However, you will need a number of supporting

files to complete the project. We will list all of these files first and briefly mention what

each one does. We include the source code for all of the files as we explain the solution.

Let’s start with java files first:

 SimpleSuggestionProvider.java: Implements the suggestion provider

that we are talking about by inheriting from a base SDK provided

suggestion provider. (Listing 23–15)

 SearchActivity.java: A mandatory file to work with the suggestion

provider that receives search text to search and show search results. It

is also responsible for saving the queries for the suggestion provider.

(Listing 23–17)

 SimpleMainActivity.java: An activity to invoke local search and

demonstrate local suggestions. (Listing 23–19)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 780

Here are the corresponding layout files:

main.xml: A layout file for the SimpleMainActivity (Part of Listing 23–

19)

/res/layout/layout_search_activity.xml: A layout file for the

SearchActivity (Part of Listing 23–17)

/res/values/strings.xml: The layout files use common string

definitions from here (Part of Listing 23–19)

Here is the search metadata file.

 /xml/searchable.xml: This file is where the search activity is

connected to the suggestion provider. (Listing 23–18)

Of course we need the manifest file as well:

 AndroidManifest.xml: This is where all application components are

defined to Android. (Listing 23–16)

If you are planning on compiling this project from the source code presented in the book

directly by copy/paste, we advise that you do so now with the files just mentioned by

going to their listing numbers. Another method is to download the projects for this

chapter using the link provided in the references at the end of this chapter.

Let us explore these files starting with the implementation of the

SimpleSuggestionProvider class.

Implementing the SimpleSuggestionProvider class
In this simple suggestion provider project, the SimpleSuggestionProvider class acts as a

suggestion provider by inheriting from the SearchRecentSuggestionsProvider. First let’s

look at the responsibilities of this simple suggestion provider.

Responsibilities of a Simple Suggestion Provider
Because the simple suggestion provider is derived from the

SearchRecentSuggestionsProvider most of the responsibilities are handled by the base

class. To give hints to the base provider the derived suggestion provider needs to

initialize the base class with an authority that is unique. This is because Android search

invokes a suggestion provider based on a unique content provider URI. And content

providers in Android are invoked through their domain like string called authority (Refer

to chapter 4 on content providers for fully understanding content provider authority

strings)

Once the suggestion provider is implemented using this simple call to the base class, it

needs to be configured in the manifest file as a regular content provider with an

authority. It then needs to be tied (indirectly via the searchable metadata xml file) to a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 781

search activity. The search activity definition refers to the searchable.xml file which in

turn points to the suggestion provider.

Let’s examine the source code of this provider and see how some of these responsibilities

are met.

Complete Source Code of SimpleSuggestionProvider
Because we are inheriting from the SearchRecentSuggestionsProvider, the source code

for the simple suggestions provider is going to be quite simple, as shown in Listing 23–

15.

Listing 23–15. SimpleSuggestionProvider.java

//SimpleSuggestionProvider.java
public class SimpleSuggestionProvider
extends SearchRecentSuggestionsProvider {

final static String AUTHORITY =
 "com.androidbook.search.simplesp.SimpleSuggestionProvider";

 final static int MODE =
 DATABASE_MODE_QUERIES | DATABASE_MODE_2LINES;

 public SimpleSuggestionProvider() {
 super();
 setupSuggestions(AUTHORITY, MODE);
 }
}

There are a couple of things noteworthy in Listing 23–15.

1. Initialize the parent class

2. Setup the base provider with an authority and mode (indicating what portions of a

search text that needs to be remembered)

The authority string needs to be unique. The authority string needs to match its content

provider definition in the manifest file. (See the future android manifest file for this

project in Listing 23–16.)

Let us talk about the database mode, the second argument of setupSuggestions()

method.

Understanding SearchRecentSuggestionsProvider Database Modes
Key functionality of Android-supplied SearchRecentSuggestionsProvider facility is to

store/replay queries from the database so that they are available as future suggestions.

A suggestion has two text strings with it (see Figure 23–2). Only the first string is

mandatory. As you use SearchRecentSuggestionsProvider to replay these strings you

need to tell it whether you want to use one string or two strings.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 782

To accommodate this, there are two modes (mode bits) supported by the base

suggestion provider. Both modes use the following prefix:

DATABASE_MODE_...

Here are these two modes:

 DATABASE_MODE_QUERIES (value of binary 1)

 DATABASE_MODE_2LINES (value of binary 2)

The first mode indicates that just a single query string needs is stored and replayed

when needed. The second mode indicates that there are two strings that the suggestion

provider can replay. One string is the query and the other is the description line that

shows up in the suggestion display item.

The SearchActivity is responsible for saving these when it is called to respond to

queries. The SearchActivity would call the following method to store these items (we

will cover this in greater detail when we discuss the search activity):

pulbic class SearchRecentSuggestions
{
 ...
 public void saveRecentQuery (String queryString, String line2);
 ...
}

NOTE: The class SearchRecentSuggestions is an SDK class and we will cover more of this

when we cover the search activity code in Listing 23–17.

The queryString is the string as typed by the user. This string will be displayed as the

suggestion, and if the user clicks on the suggestion, this string will be sent to your

searchable activity (as a new search query).

Here is what the Android docs say about the line2 argument:

If you have configured your recent suggestions provider with
DATABASE_MODE_2LINES, you can pass a second line of text here. It will be shown in
a smaller font, below the primary suggestion. When typing, matches in either line of text
will be displayed in the list. If you did not configure two-line mode, or if a given
suggestion does not have any additional text to display, you can pass null here.

In our example we would like to save both the query and also the helpful text that shows

along with the query in a suggestion. Or at least we want to show helpful text such as

SSSP (Search Simple Suggestion Provider) at the bottom of the suggestion, so when

suggestions from this provider are shown in the global search we can see what

application is responsible for searching the text in the suggestion.

The way you specify this mode so you can save the suggestion and the helpful text is to

set the two mode bits as indicated in Listing 23–15. If you just set the mode bit to saving

two lines you will get an invalid argument exception. The mode bits must include at least

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 783

the DATABASE_MODE_QUERIES bit. Essentially you need to do a bitwise OR. So the modes

are complimentary in nature and not exclusive.

TIP: You can learn more about this prefabricated suggestions provider at

http://developer.android.com/reference/android/provider/SearchRecentSugg

estions.html.

Now that we have the source code for our simple suggestions provider, let’s see how

we register this provider in the manifest file.

Declaring the Suggestion Provider in the Manifest File
Because our SimpleSuggestionProvider is essentially a content provider, it is registered

in the manifest file like any other content provider. Listing 23–16 shows the manifest file

for this project. Note that key sections of this manifest file are highlighted.

Listing 23–16. SimpleSuggestionProvider Manifest File

//filename: AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.search.simplesp"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"
 android:label="Simple Search Suggestion Provider:SSSP">
 <activity android:name=".SimpleMainActivity"
 android:label="SSSP:Simple Main Activity">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

<!--
**
* Search related code: search activity
**
 -->
 <activity android:name=".SearchActivity"
 android:label="SSSP: Search Activity"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />
 </activity>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 784

 <meta-data android:name="android.app.default_searchable"
 android:value=".SearchActivity" />

 <provider android:name=".SimpleSuggestionProvider"
 android:authorities
 ="com.androidbook.search.simplesp.SimpleSuggestionProvider" />
</application>
 <uses-sdk android:minSdkVersion="4" />
</manifest>

Notice how the authority of the simple suggestions provider matches in the source code

(Listing 23–15) and the manifest files (Listing 23–16). In both cases the value of this

authority is

com.androidbook.search.simplesp.SimpleSuggestionProvider

We will talk about the other sections of this manifest file when we cover other aspects of

this Simple Suggestions Provider. As you can see from this manifest file, a search

activity plays a key role. So let’s talk about that search activity now. We will cover the

other activity SimpleMainActivity in this manifest file toward the end of this section, as it

is just a driver activity to start things off.

Understanding Simple Suggestions Provider Search
Activity
A search activity is invoked by Android search (QSB) with a query string. A search

activity in turn needs to read this query string from the intent and do what is necessary

and perhaps show results.

Because a search activity is an activity, it is possible that it can be invoked by other

intents and other actions. For this reason, it is a good practice to check the intent action

that invoked it. In our case, when the Android search invokes this activity this action is

ACTION_SEARCH.

Under some circumstances a search activity can invoke itself. When this is likely to

happen, you should define the search activity launch mode as a singleTop. The activity

will also need to deal with firing of onNewIntent(). We will cover this as well in the

section “Understanding onCreate and onNewIntent.”

When it comes to doing something with the query string, we will just log it. Once the

query is logged we will need to save it in the SearchRecentSuggestionsProvider so that

it is available as a suggestion for future searches.

Now let’s look at the source code of the search activity class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 785

Complete Source Code of a Search Activity
Listing 23–17 shows the source code for this SearchActivity class.

Listing 23–17. SimpleSuggestionProvider Search Activity

//filename: SearchActivity.java
public class SearchActivity extends Activity
{
 private final static String tag ="SearchActivity";
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Log.d(tag,"I am being created");
 //otherwise do this
 setContentView(R.layout.layout_search_activity);
 //this.setDefaultKeyMode(Activity.DEFAULT_KEYS_SEARCH_GLOBAL);
 this.setDefaultKeyMode(Activity.DEFAULT_KEYS_SEARCH_LOCAL);

 // get and process search query here
 final Intent queryIntent = getIntent();
 final String queryAction = queryIntent.getAction();
 if (Intent.ACTION_SEARCH.equals(queryAction))
 {
 Log.d(tag,"new intent for search");
 this.doSearchQuery(queryIntent);
 }
 else {
 Log.d(tag,"new intent NOT for search");
 }
 return;
 }

 @Override
 public void onNewIntent(final Intent newIntent)
 {
 super.onNewIntent(newIntent);
 Log.d(tag,"new intent calling me");

 // get and process search query here
 final Intent queryIntent = getIntent();
 final String queryAction = queryIntent.getAction();
 if (Intent.ACTION_SEARCH.equals(queryAction))
 {
 this.doSearchQuery(queryIntent);
 Log.d(tag,"new intent for search");
 }
 else {
 Log.d(tag,"new intent NOT for search");
 }
 }
 private void doSearchQuery(final Intent queryIntent)
 {
 final String queryString =
 queryIntent.getStringExtra(SearchManager.QUERY);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 786

 // Record the query string in the recent
 // queries suggestions provider.
 SearchRecentSuggestions suggestions =
 new SearchRecentSuggestions(this,
 SimpleSuggestionProvider.AUTHORITY,
 SimpleSuggestionProvider.MODE);
 suggestions.saveRecentQuery(queryString, "SSSP");
 }
}

//Here is the corresponding Layout file presented in the same
//listing. Cut the following code and create a separate
//layoutfile. See the embedded file location

<?xml version="1.0" encoding="utf-8"?>
<!-- /res/layout/layout_search_activity.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Test Search Activity view"
 />
</LinearLayout>

Given code in Listing 23–17, let us see how the search activity checks the action and

retrieves the query string.

Checking the Action and Retrieving the Query
The search activity code checks for the invoking action by looking at the invoking intent

and comparing it to the constant intent.ACTION_SEARCH. If the action matches then it

invokes the doSearchQuery() function.

In the doSearchQuery() function, search activity retrieves the query string using an intent

extra. Here is the code:

 final String queryString =
 queryIntent.getStringExtra(SearchManager.QUERY);

Notice that intent extra is defined as SearchManager.QUERY. As you work through this

chapter, you will see a number of these extras defined in the SearchManager API

reference. (Its URL is included in the “Resources” section at the end of this chapter.)

Understanding onCreate() and onNewIntent()
A search activity is kicked off by Android when a user enters text into a search box and

clicks either a suggestion or the Go Arrow. This results in creating the search activity

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 787

and calling its onCreate() method. The intent that is passed to this onCreate() will have

the action set to ACTION_SEARCH.

There are times when the activity is not created, but instead passed the new search

criteria through the onNewIntent() method. How does this happen? The callback

onNewIntent() is closely related to the launching mode of an activity. If you look at

Listing 23–16 you will notice that the search activity is set up as a singleTop in the

manifest file.

When an activity is set up as a singleTop, it instructs Android not to create a new

activity when that activity is already on top of the stack. In that case Android calls

onNewIntent() instead of onCreate(). This is why in the activity source in Listing 23–17

we have two places where we examine the intent.

Testing for onNewIntent()
Once you have onNewIntent() implemented, you will start noticing that it doesn’t get

invoked in the normal flow of things. This begs the question: when will the search

activity be on top of the stack? This usually doesn’t happen.

Here;s why: say a search invoker Activity A invokes search and that causes a search

Activity B to come up. Activity B then displays the results and the user uses a back

button to go back, at which time the Activity B, which is our search activity, is no longer

on top of the stack, Activity A is. Or the user may click home key and use the global

search on the home screen in which case home activity is the activity on top.

One way the search activity can be on top is this: say Activity A results in Activity B due

to search. If Activity B defines a type-to-search then when you are focused on Activity B

a search will invoke Activity B again with the new criteria. Listing 23–17 shows how we

have set up the type-to-search to demonstrate. Here is the code again:

this.setDefaultKeyMode(Activity.DEFAULT_KEYS_SEARCH_LOCAL);

Saving the Query Using SearchRecentSuggestionsProvider
We have talked about how the search activity needs to save the queries that it has

encountered so that they can be played back as suggestions through the suggestion

provider. Here is the code segment that saves these queries:

final String queryString =
 queryIntent.getStringExtra(SearchManager.QUERY);

// Record the query string in the
// recent queries suggestions provider.
SearchRecentSuggestions suggestions =
 new SearchRecentSuggestions(this,
 SimpleSuggestionProvider.AUTHORITY,
 SimpleSuggestionProvider.MODE);
suggestions.saveRecentQuery(queryString, “SSSP”);

From this code you see that Android passes the query information as an EXTRA

(SearchManager.QUERY) through the intent.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 788

Once you have the query available you can make use of the SDK utility class

SearchRecentSuggestions to save the query and a hint (“SSSP”) by instantiating a new

suggestions object and asking it to save. Because we have chosen to use the 2line

mode and the query mode, the second argument to the saveRecentQuery is SSSP

(again, this stands for Simple Search Suggestions Provider). You will see this text

appear at the bottom of the suggestions from this provider.

Now we’ll look at the search metadata definition where we tie the search activity with

the search suggestion provider.

Search Metadata
The definition of Search in Android starts with a search activity. You first define a search

activity in the manifest file. As part of this definition you will tell Android where to find the

search metadata XML file. See Listing 23–16 where our search activity is defined along

with a path to the search metadata xml file (searchable.xml)

Listing 23–18 shows this corresponding search metadata xml file.

Listing 23–18. SimpleSuggestionProvider Search Metadata

<!-- filename: /res/xml/searchable.xml -->
<searchable
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/search_label"
 android:hint="@string/search_hint"
 android:searchMode="showSearchLabelAsBadge"
 android:queryAfterZeroResults=”true”

 android:includeInGlobalSearch="true"
 android:searchSuggestAuthority=
 "com.androidbook.search.simplesp.SimpleSuggestionProvider"
 android:searchSuggestSelection=" ? "
/>

Let’s work through some of the key attributes in Listing 23–18.

The attribute includeInGlobalSearch tells Android to use this suggestion provider as

one of the sources in global QSB.

The attribute, searchSuggestAuthority, points to the authority of the suggestion provider

as defined in the manifest file for that suggestion provider (see Listing 23–16).

The attribute queryAfterZeroResults indicates whether the QSB should send more

letters to a suggestion provider if the current set of letters did not return any results.

Because we are testing, we don’t want to leave any stones unturned, and so we set this

attribute to true so that we give every opportunity to the provider to respond.

When you are deriving from the recent search suggestions provider, the attribute,

searchSuggestSelection, is always the character string represented by “ ? “ . This string

is passed to the suggestion provider as the selection string (where clause) of the content

provider query method. Typically, this would represent the where clause that goes into a

select statement of any content provider.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 789

Specific to suggestion providers, when there is a value specified for

“searchSuggestSelection”, (as a protocol) Android passes the search query string (entered

in the QSB) as the first entry in the select arguments array of the content provider query

method.

The code to respond to these nuances (how these strings are used internally by the

provider) is hidden in the recent search suggestions provider, we won’t be able to show

you how these arguments are used in the query method of the content provider.

We will go into this in more detail in the next section, in which you will see the full picture

of the string “ ? “. In fact it is quite unlikely that this string is used at all to narrow the

results because it doesn’t qualify any field to query on such as “someid == ?”. It is likely

that it’s shear presence prompts the Android to pass the QSB string as the first argument

to the provider. And the SDK search suggestion provider merely relies on this protocol to

receive the QSB string in a convenient array provided by the select argument list of the

content provider query() method.

Now let us talk about a search invoker activity that we will use as the main entry point

for this application. This main activity allows us to test local search.

Search Invoker Activity
This main activity will let us invoke the local search when it is in focus. Listing 23–19

shows the source code for this search invoker activity, its layout file, and the strings.xml

belonging to this project.

Listing 23–19. SimpleSuggestionProvider: Main Activity

public class SimpleMainActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

//filename: /res/layout/main.xml
//Copy the following xml file as main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/main_activity_text"
 />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 790

</LinearLayout>

//filename: /res/values/strings.xml
//Copy the following xml file as strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="main_activity_text">
 This is a simple activity. Click on the search key
 to invoke the local search.
 \n\n
 The suggestion provider will also participate
 in the global search. when you come to this
 application through the global search you will
 not see this view but instead be directly
 taken to the searchactivity view.
 </string>

 <string name="search_activity_text">
 If you are seeing this activity you are directed
 here either through the global search or through
 the local search.
 \n\n
 This activit also enables type-to-search. It also
 demonstrates the singletop/new intent concepts.
 </string>

 <string name="app_name">Simple Suggestion Provider</string>
 <string name="search_label">Local Search Demo</string>
 <string name="search_hint">Local Search Hint</string>
</resources>

If you see the activity definition for this activity in the manifest file (Listing 23–16) you will

notice that it doesn't explicitly say that it uses the SearchActivity as its default local

search. This is because we have used that specification at the application level as

opposed to at the activity level by introducing the following lines in the manifest file:

 <meta-data android:name="android.app.default_searchable"
 android:value=".SearchActivity" />

Notice how these lines are outside any activity in the manifest file (Listing 23–16). This

specification tells Android that all activities in this application use SearchActivity as

their default search activity, including SearchActivity itself. You can take advantage of

this later fact to invoke onNewIntent() by clicking on the search key when you are

examining the results on the SearchActivity. This won’t be the case if you were to

define the default search only for the search invoker activity and not the whole

application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 791

Simple Suggestion Provider User Experience
As you are getting ready to run this program, make sure that your suggestion provider

authority matches in the following three fields:

 AndroidManifest.xml

 searchable.xml

 SimpleSuggestionProvider.java

If you run this application you will see a home screen that looks like the one shown in

Figure 23–20 (this is our main search invoker activity).

Figure 23–20. Simple suggestion provider: main activity (enabled for local search)

If you click the search key while this activity is in focus, you will see the local search

invoked as in Figure 23–21.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 792

Figure 23–21. Simple suggestion provider: local search QSB

As you can see, there are no suggestions in Figure 23–21 because we haven’t searched

for any so far. You can also see that this is a local search; the label and hint of the

search are as we specified in the search metadata XML file.

Let us go ahead and search for string test1. This will take you to the Search Activity

screen as shown in Figure 23–22.

Figure 23–22. Simple suggestion provider: local search results activity

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 793

As you can see from the SearchActivity source in Listing 23–17, SearchActivity does

nothing spectacular on the screen, but behind the scenes it is saving the query strings in

the database. Now if you navigate back to the main screen (by pressing the back button)

and invoke search again you will see the following screen (as shown in Figure 23–23)

where the search suggestions are populated with the previous query text. You can also

see in Figure 23–23 the bottom part of the suggestion “SSSP”. This may seem

extraneous here as this is a local search and clearly indicates that it comes from our

application. However this string “SSSP” will distinguish the “test1” search string when it

is displayed as part of the global search suggestions.

Figure 23–23. Simple suggestion provider: retrieved local suggestion

This is a good moment to see how we can invoke onNewIntent(). When you are on the

search activity (Figure 23–22) you can type a letter like t and it will invoke the search

again using type-to-search and you will see onNewIntent() called in the debug log.

Let us see what we need to see these suggestions show up in the global QSB. Because

we have enabled includeInGlobalSearch in searchable.xml you should be able to see

these suggestions in the global QSB as well. However, before you can do that you need

to enable this application for global QSB suggestions as shown in Figure 23–24.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 794

Figure 23–24. Enable simple suggestion provider

We showed you how to reach this screen at the beginning of the chapter. The simple

custom suggestion provider we have coded is now available in the list of searchable

applications as “SSSP:Search Activity”. This text string comes from the activity name for

the SearchActivity (see Listing 23–16).

 With this selection in place you can see the global search shown in Figure 23–25

working with our suggestion provider.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 795

Figure 23–25. Global Suggestions From Simple Suggestion provider

In the global search, if you type a text like “t” it will bring up the suggestions from our

suggestion provider of this section. When you navigate through the global search to the

specific item you will see the local search activity as shown in Figure 23–22.

This concludes our discussion of the simple suggestion provider. You have learned

about using the built-in RecentSearchSuggestionProvider to remember searches that are

specific to your application. Using this approach, with minimal code you should be able

to take local searches and make them available as suggestions even in a global context.

However, this simple exercise hasn’t shown you how to write suggestion providers from

scratch. More important, we haven’t given you the slightest clue as to how a suggestion

provider returns a set of suggestions and what columns are available in this suggestion

set. To understand this and more, we need to implement a custom suggestions provider

from scratch.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 796

Implementing a Custom Suggestion Provider
Android search is too flexible not to customize. Because we used a pre-built suggestion

provider in the last section, many features of a suggestion provider were hidden in the

SearchRecentSuggestionsProvider and not discussed. We will explore these details next

by implementing a custom suggestion provider called a SuggestUrlProvider.

We will start by explaining how this SuggestUrlProvider is expected work. We will then

give you the file list in the implementation. These files should give you a general idea of

how to build a custom suggestion provider.

Finally, we will show you how the completed application is used. Let’s get started.

Planning the Custom Suggestion Provider
We are going to call our custom suggestion provider a SuggestURLProvider. The object

of this provider is to monitor what is being typed in the QSB. If the search query has text

that looks something like “great.m” (the suffix .m is chosen to represent meaning) the

provider will interpret the first part of the query as a word and suggest an Internet-based

URL that can be invoked to look up the meaning of the word.

For every word, this provider suggests two URLs. The first is a URL that allows the user

to search for the word using http://www.thefreedictionary.com and a second URL

using http://www.google.com. Choosing one of these suggestions takes the user to one

of these sites directly. If the user clicks on the search icon of the QSB, then the search

activity will simply log the query text on a simple layout of this activity. You will see this

more clearly when we show you the screen images of this interaction.

Let’s see the list of files that make up this project. You can also download the zip file for

this project by following the URL at the end of this chapter.

SuggestURLProvider Project Implementation Files
The two primary files are SearchActivity.java and SuggestUrlProvider.java. However,

you will need a number of supporting files to complete the project. Here is a list of these

files and a brief description of what each one does. We have included the source code

for all of the files with the solution.

 SuggestUrlProvider.java: This file implements the protocol of a

custom suggestion provider. In this case the custom suggestion

provider interprets query strings as words and returns a couple of

suggestions using a suggestion cursor. (Listing 23–20)

 SearchActivity.java: This activity is responsible for receiving the

queries or suggestions provided by the suggestion provider.

SearchActivity definition is also responsible for tying up the

suggestion provider with this activity. (Listing 23–23)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 797

 layout/layout_search_activity.xml: This layout file is optionally used

by the SearchActivity. In our example, we use this layout to log the

query that is sent in. (Listing 23–24)

 values/strings.xml: Contains string definitions for the layout, local

search title, local search hint, and the like. (Listing 23–25)

 xml/searchable.xml: Search metadata XML file that ties the

SearchActivity, suggestion provider, and the QSB. (Listing 23–21)

 AndroidManifest.xml: application manifest file when the search

activity and suggestion provider are defined. This is also where you

declare that the SearchActivity is to be invoked as a local search for

this application. (Listing 23–27)

We will start by exploring SuggestUrlProvider.

Implementing the SuggestUrlProvider Class
In our custom suggestion provider project, the SuggestUrlProvider class is the one that

implements the protocol of the suggestion provider. We will explore the implementation

of SuggestUrlProvider beginning with its responsibilities.

Responsibilities of a Suggestion Provider
At the core, a suggestion provider is a content provider. Much like a content provider a

suggestion provider is invoked by Android search using a URI that identifies the provider

and an additional argument representing the query.

Android search uses two types of URIs to invoke the provider. The first is called the

search URI., This URI is used to collect the set of suggestions. The response needs to

be one or more rows, with each row containing a set of well-known columns.

The second URI is called a suggest URI. This URI is used to update a suggestion that is

previously cached. The response needs to be a single row containing a set of well-

known columns.

A suggestion provider also needs to specify in the search metadata XML file

(searchable.xml) how it wants to receive the search query, including as it is getting

typed. This can be done through the select argument of the query method of a provider

or the last path segment of the URI itself (which is also passed as one of the arguments

to the query method of the provider).

For a suggestion provider there are a number of columns that are available, each

enabling a certain search behavior. A provider first needs to decide on this set of

controlling columns it wants to return. Some of these controlling columns are:

 A column to enable/disable caching of suggestions that are returned

to the Android search.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 798

 Columns to control if you want the suggestions to rewrite the text in

the query box.

 Columns to invoke an action directly instead of showing a set of

search results when the user clicks on a suggestion.

Overall Source Code for SuggestUrlProvider
Listing 23–20 is the source code for the SuggestUrlProvider class. Sections of this

code are also examined in greater detail later in the chapter as we explain each of the

listed responsibilities in greater detail.

Listing 23–20. CustomSuggestionProvider Source Code

public class SuggestUrlProvider extends ContentProvider
{
 private static final String tag = "SuggestUrlProvider";
 public static String AUTHORITY =
 "com.androidbook.search.custom.suggesturlprovider";

 private static final int SEARCH_SUGGEST = 0;
 private static final int SHORTCUT_REFRESH = 1;
 private static final UriMatcher sURIMatcher =
 buildUriMatcher();

 private static final String[] COLUMNS = {
 "_id", // must include this column
 SearchManager.SUGGEST_COLUMN_TEXT_1,
 SearchManager.SUGGEST_COLUMN_TEXT_2,
 SearchManager.SUGGEST_COLUMN_INTENT_DATA,
 SearchManager.SUGGEST_COLUMN_INTENT_ACTION,
 SearchManager.SUGGEST_COLUMN_SHORTCUT_ID
 };

 private static UriMatcher buildUriMatcher()
 {
 UriMatcher matcher =
 new UriMatcher(UriMatcher.NO_MATCH);

 matcher.addURI(AUTHORITY,
 SearchManager.SUGGEST_URI_PATH_QUERY,
 SEARCH_SUGGEST);
 matcher.addURI(AUTHORITY,
 SearchManager.SUGGEST_URI_PATH_QUERY +
 "/*",
 SEARCH_SUGGEST);
 matcher.addURI(AUTHORITY,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT,
 SHORTCUT_REFRESH);
 matcher.addURI(AUTHORITY,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT +
 "/*",
 SHORTCUT_REFRESH);
 return matcher;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 799

 @Override
 public boolean onCreate() {
 //lets not do anything in particular
 Log.d(tag,"onCreate called");
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection,
 String[] selectionArgs, String sortOrder)
 {
 Log.d(tag,"query called with uri:" + uri);
 Log.d(tag,"selection:" + selection);

 String query = selectionArgs[0];
 Log.d(tag,"query:" + query);

 switch (sURIMatcher.match(uri)) {
 case SEARCH_SUGGEST:
 Log.d(tag,"search suggest called");
 return getSuggestions(query);
 case SHORTCUT_REFRESH:
 Log.d(tag,"shortcut refresh called");
 return null;
 default:
 throw
 new IllegalArgumentException("Unknown URL " + uri);
 }
 }

 private Cursor getSuggestions(String query)
 {
 if (query == null) return null;
 String word = getWord(query);
 if (word == null)
 return null;

 Log.d(tag,"query is longer than 3 letters");

 MatrixCursor cursor = new MatrixCursor(COLUMNS);
 cursor.addRow(createRow1(word));
 cursor.addRow(createRow2(word));
 return cursor;
 }
 private Object[] createRow1(String query)
 {
 return columnValuesOfQuery(query,
 "android.intent.action.VIEW",
 "http://www.thefreedictionary.com/" + query,
 "Look up in freedictionary.com for",
 query);
 }

 private Object[] createRow2(String query)
 {
 return columnValuesOfQuery(query,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 800

 "android.intent.action.VIEW",
 "http://www.google.com/search?hl=en&source=hp&q=define%3A/"
 + query,
 "Look up in google.com for",
 query);
 }
 private Object[] columnValuesOfQuery(String query,
 String intentAction,
 String url,
 String text1,
 String text2)
 {
 return new String[] {
 query, // _id
 text1, // text1
 text2, // text2
 url,
 // intent_data (included when clicking on item)
 intentAction, //action
 SearchManager.SUGGEST_NEVER_MAKE_SHORTCUT
 };
 }

 private Cursor refreshShortcut(String shortcutId,
 String[] projection) {
 return null;
 }

 public String getType(Uri uri) {
 switch (sURIMatcher.match(uri)) {
 case SEARCH_SUGGEST:
 return SearchManager.SUGGEST_MIME_TYPE;
 case SHORTCUT_REFRESH:
 return SearchManager.SHORTCUT_MIME_TYPE;
 default:
 throw
 new IllegalArgumentException("Unknown URL " + uri);
 }
 }

 public Uri insert(Uri uri, ContentValues values) {
 throw new UnsupportedOperationException();
 }

 public int delete(Uri uri, String selection,
 String[] selectionArgs) {
 throw new UnsupportedOperationException();
 }

 public int update(Uri uri, ContentValues values,
 String selection,
 String[] selectionArgs) {
 throw new UnsupportedOperationException();
 }

 private String getWord(String query)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 801

 int dotIndex = query.indexOf('.');
 if (dotIndex < 0)
 return null;
 return query.substring(0,dotIndex);
 }
}

Understanding Suggestion Provider URIs
Now that you have seen the complete source code of a custom suggestion provider,

let’s look at how portions of this source code that fulfills the URI responsibilities.

First let’s look at the format of the URI that Android uses to invoke the suggestion

provider. If our suggestion provider has an authority of

com.androidbook.search.custom.suggesturlprovider

then Android will send in two possible URIs. The first type of URI, a search URI, looks

like one of the following:

content://com.androidbook.search.suggesturlprovider/search_suggest_query

or

content://com.androidbook.search.suggesturlprovider/search_suggest_query/<your-query>

This URI is issued when the user starts typing some text in the QSB. In one variation of

this, the query is passed as an additional element at the end of the URI as a path

segment. Whether or not to pass the query as a path segment is specified in the search

metadata file searchable.xml. We will discuss that specification when we cover the

search metadata in more detail.

The second type of URI that is targeted for a suggestion provider relates to Android

search shortcuts. Android search shortcuts are suggestions (see Figure 23–3) that

Android decides to cache, instead of calling the suggestion provider for fresh content.

We will talk about Android search shortcuts more when we discuss the suggestion

columns. For now, this second URI looks like the following:

content://com.androidbook.search.suggesturlprovider/search_suggest_shortcut

or this:

content://com.androidbook.search.suggesturlprovider/search_suggest_shortcut/<shortcut-
id>

This URI is issued by Android when it tries to determine if the shortcuts that it had

cached are still valid. This type of URI is called the shortcut URI. If the provider returns a

single row it will replace the current shortcut with the new one. If the provider sends a

null then Android assumes this suggestion is no longer valid.

The SearchManager class in Android defines two constants to represent these URI

segments that distinguish them (search_suggest_search and search_suggest_shortcut).

They are, respectively:

SearchManager.SUGGEST_URI_PATH_QUERY
SearchManager.SUGGEST_URI_PATH_SHORTCUT

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 802

It is the responsibility of the provider to recognize these incoming URIs in its query()

method. See Listing 23–20 to see how the UriMatcher is used to accomplish this. (You

can refer to Chapter 5 on how to use UriMatcher in greater detail.)

Implementing getType() and Specifying MIME Types
Because a suggestion provider is ultimately a content provider it has the responsibility of

implementing a content provider contract, which includes defining an implementation for

the getType() method.

You can consult Listing 23–20 again to see how getType() is implemented in this case.

That code is replicated here for a quick review.

 public String getType(Uri uri) {
 switch (sURIMatcher.match(uri)) {
 case SEARCH_SUGGEST:
 return SearchManager.SUGGEST_MIME_TYPE;
 case SHORTCUT_REFRESH:
 return SearchManager.SHORTCUT_MIME_TYPE;
 default:
 throw
 new IllegalArgumentException("Unknown URL " + uri);
 }
 }

Android search framework through its SearchManager class provides a couple of

constants to help with these MIME types. These MIME types are

SearchManager.SUGGEST_MIME_TYPE
SearchManager.SHORTCUT_MIME_TYPE

These translate to

vnd.android.cursor.dir/vnd.android.search.suggest
vnd.android.cursor.item/vnd.android.search.suggest

Passing Query to the Suggestion Provider: The Selection Argument
When Android uses one of the URIs to call the provider, Android ends up calling the

query() method of the suggestion provider to receive a suggestion cursor. If you see the

implementation of the query() method in Listing 23–20 you will notice that we are using

the selection argument and the selectionArgs argument in order to formulate and

return the cursor. Here is that code replicated for quick review:

 public Cursor query(Uri uri, String[] projection,
 String selection,
 String[] selectionArgs, String sortOrder)
 {
 Log.d(tag,"query called with uri:" + uri);
 Log.d(tag,"selection:" + selection);

 String query = selectionArgs[0];
 Log.d(tag,"query:" + query);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 803

 switch (sURIMatcher.match(uri)) {
 case SEARCH_SUGGEST:
 Log.d(tag,"search suggest called");
 return getSuggestions(query);
 case SHORTCUT_REFRESH:
 Log.d(tag,"shortcut refresh called");
 return null;
 default:
 throw
 new IllegalArgumentException("Unknown URL " + uri);
 }
 }

To understand what is passed to through the two arguments “selection” and

“selectionArgs” you will need to see the searchable.xml, the search metadata file.

Listing 23–21 shows the code for this search metadata XML file.

Listing 23–21. CustomSuggestionProvider Search Metadata

//xml/searchable.xml
<searchable
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/search_label"
 android:hint="@string/search_hint"
 android:searchMode="showSearchLabelAsBadge"
 android:searchSettingsDescription="suggests urls"
 android:includeInGlobalSearch="true"
 android:queryAfterZeroResults="true"

 android:searchSuggestAuthority=
 "com.androidbook.search.custom.suggesturlprovider"

 android:searchSuggestIntentAction=
 "android.intent.action.VIEW"
 android:searchSuggestSelection=" ? "
/>

NOTE: Please note the searchSuggestAuthority string value. It should match the corresponding

content provider URL definition in the Android manifest file.

Notice the searchSuggestSelection attribute in the previous search metadata definition

file listing. It directly corresponds to the selection argument of the content provider’s

query() method. If you revisit Chapter4 you will know that this argument is used to pass

the where clause with substitutable “?” symbols.

The array of substitutable values are then passed through the selectionArgs array

argument. That indeed is the case here. When you specify searchSuggestSelection

Android assumes that you don’t want to receive the search text through the URI but

instead through the selection argument of the query() method. In that case Android

search will send the "?" (notice the empty space before and after the “?” mark) as the

value of the selection argument and passes the query text as the first element of the

selection arguments array.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 804

If you don’t specify the searchSuggestSelection, then it will pass the search text as the

last path segment of the URI. You can choose one or the other. In our example, we have

chosen the selection approach and not the URI approach.

Exploring Search Metadata for Custom Suggestion Providers
While we are on this topic of search metadata attributes, let’s explore what other

attribute are available. We will cover those attributes that are often used or relevant to

suggestion providers. For a complete list you can refer to the SearchManager API URL:

http://developer.android.com/guide/topics/search/searchable-config.html

The searchSuggestIntentAction attribute (Listing 23–21) is used to pass or specify the

intent action when the SearchActivity is invoked through an intent. This allows the

SearchActivity to do something other than the default search. Here is an example of

how an intent action is used in the “onCreate()” of a responding search activity:

 //Body of onCreate

// get and process search query here
 final Intent queryIntent = getIntent();
 //query action
 final String queryAction = queryIntent.getAction();
 if (Intent.ACTION_SEARCH.equals(queryAction))
 {
 this.doSearchQuery(queryIntent);
 }
 else if (Intent.ACTION_VIEW.equals(queryAction))
 {
 this.doView(queryIntent);
 }
 else {
 Log.d(tag,"Create intent NOT from search");
 }

You will see this code in context in the future Listing 23–23 where the searchActivity is

looking for either a VIEW action or the SEARCH action by examining the action value of

the intent.

Another attribute that we are not using here, but available to suggestion providers, is

called searchSuggestPath. If specified, this string value is appended to the URI (one that

invokes the suggestion provider) after the SUGGEST_URI_PATH_QUERY. This allows a

single custom suggestion provider to respond to two different search activities. Each

SearchActivity will use a different URI suffix. The suggestion provider can use this path

suffix to return different set of results to a targeted search activity.

Just as with the Intent action, you can also specify intent data using the

searchSuggestIntentData attribute. This is a data URI that can be passed along the

action to the search activity, as part of the intent, when invoked.

The attribute called searchSuggestThreshold indicates the number of characters that

have to be typed in QSB before invoking this suggestion provider. The default threshold

value is zero.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 805

The attribute queryAfterZeroResults (true or false) indicates if the provider should be

contacted if the current set of characters returned zero set of results for the next set of

characters. In our particular url suggest provider it is important to turn this flag on so

that we get a look at the whole query text every time.

Now that we have looked at the URIs, selection arguments, and search metadata, let’s

move on now to the most important aspect of a suggestion provider: the suggestion

cursor.

Suggestion Cursor Columns
A suggestion cursor is, after all, a cursor. It is no different from the database cursors we

discussed at length in Chapter 4. The suggestion cursor acts as the contract between

the Android search facility and a suggestion provider. This means the names and types

of the columns that the cursor returns are fixed and known to both parties.

To provide flexibility to search, Android search offers a large number of columns, most

of which are optional. A suggestion provider does not need to return all these columns;

it can ignore sending in the columns that are not relevant to this suggestion provider. In

this section we will cover the meaning and significance of most of the columns (for the

rest, you can refer to the SearchManager API URL, which we have mentioned a few times

already).

First, we’ll talk about the columns that are available for a suggestion provider to return,

what each column means, and how it affects search.

Like all cursors, a suggestion cursor also has to have an _id column. This is a

mandatory column. Every other column starts with a SUGGEST_COLUMN_ prefix.

These constants are defined as part of the SearchManager API reference. We will talk

about the most frequently used columns below. For the complete list use the API

references indicated at the end of this chapter.

 text_1: This is the first line of text in your suggestion (see Figure 23–3).

 text_2: This is the second line of text in your suggestion (see Figure

23–3).

 icon_1: This is the icon on the left side in a suggestion and is typically

a resource ID.

 icon_2: This is the icon on the right side in a suggestion and is

typically a resource ID.

 intent_action: This is what is passed to the SearchActivity when it is

invoked as the intent action. This will override the corresponding intent

action when available in the search metadata (see Listing 23–21).

 intent_data: This is what is passed to the SearchActivity when it is

invoked as the intent data. This will override the corresponding intent

action when available in the search metadata (see Listing 23–21). This

is a data URI.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 806

 intent_data_id: This gets appended to the data URI. It is especially

useful if you want to mention the root part of the data in the metadata

one time and then change this for each suggestion. It is a bit more

efficient that way.

 query: The query string to be used to send to the search activity.

 shortcut_id: As indicated earlier, Android search caches suggestions

provided by a suggestion provider. These cached suggestions are

called shortcuts. If this column is not present, Android will cache the

suggestion and will never ask for an update. If this contains a value

equivalent to SUGGEST_NEVER_MAKE_SHORTCUT, then Android

will not cache this suggestion. If it contains any other value, this ID is

passed as the last path segment of the shortcut URI. (See the section

“Understanding Suggestion Provider URIs.”)

 spinner_while_refreshing: This boolean value will tell Android if it

should use a spinner when it is in the process of updating the

shortcuts.

There is a variable set of additional columns for responding to action keys. We will cover

that in the action keys section later. Let’s see how our custom suggestion provider

returns these columns.

Populating and Returning the List of Columns
Each custom suggestion provider is not required to return all these columns. For our

suggestion provider we will return only a subset of the columns based on the

functionality indicated in the “Planning the Custom Suggestion Provider” section.

By looking at Listing 23–20 you can see that out list of columns is as follows (extracted

and reproduced in Listing 23–22).

Listing 23–22. Defining Suggestion Cursor Columns

 private static final String[] COLUMNS = {
 "_id", // must include this column
 SearchManager.SUGGEST_COLUMN_TEXT_1,
 SearchManager.SUGGEST_COLUMN_TEXT_2,
 SearchManager.SUGGEST_COLUMN_INTENT_DATA,
 SearchManager.SUGGEST_COLUMN_INTENT_ACTION,
 SearchManager.SUGGEST_COLUMN_SHORTCUT_ID
 };

These columns are chosen so that the following functionality is met:

The user enters a word with a hint like “great.m” in the QSB, our suggestion provider will

not respond until there is a “.” in the search text. Once it is recognized, the suggestion

provider will extract the word from it (in this case, “great”) and then provide two

suggestions back.

The first suggestion is to invoke the thefreewebdictionary.com with this word and a

second suggestion is to search Google with a pattern of define:great.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 807

To accomplish this, the provider loads up the column intent_action as

intent.action.view and the intent data containing the entire URI. The hope is that

Android will launch the browser when it sees the data URI starting with http://.

We will populate the text1 column with search some-website with: and text2 with the

word itself (again, great, in this case). We will also set the shortcut ID to

SUGGEST_NEVER_MAKE_SHORTCUT to simplify things. This setting disables caching

and also prevents the suggest shortcut URI being fired.

This completes our analysis of custom suggestion provider class source code. We have

learned about URIs, suggestion cursors, and suggestion provider–specific search

metadata. We also know how to populate suggestion columns.

Now let’s look into implementing the search activity for our custom suggestion provider.

Implementing a Search Activity for a Custom Suggestion
Provider
During the simple suggestion provider implementation we covered only some of the

responsibilities of a search activity. Now let’s look at the aspects we overlooked.

Android search invokes a search activity in order to respond to search actions from one

of two ways. This can happen either when a search icon is clicked from the QSB or

when the user directly clicks on a suggestion.

When invoked, a search activity needs to examine why it is invoked. This information is

available in the intent action. The search activity needs to examine intent action to do

the right thing. In many cases, this action is ACTION_SEARCH. However, a suggestion

provider has the option of overriding it by specifying an explicit action either through

search metadata or through a suggestion cursor column. This type of action can be

anything. In our case, we are going to be using a VIEW action.

As we pointed out in our discussion of the simple suggestion provider, it is also possible

to set up the launch mode of the search activity as a singleTop. In this case, the search

activity has the added responsibility of responding to onNewIntent() in addition to

onCreate(). We will cover both these cases and show how similar they are.

We will use both onNewIntent() and onCreate() to examine both ACTION_SEARCH and

also ACTION_VIEW. In case of search action we will simply display the query text back

to the user. In case of view action we will transfer control to a browser and finish the

current activity so that the user has the impression of invoking the browser by directly

clicking on the suggestion.

NOTE: This SearchActivity does not need to be a launchable activity from the main
applications menu of Android. Make sure you don’t inadvertently set intent filters for this activity

like other activities that need to be invoked from the device main applications screen.

With that, let’s examine the source code of SearchActivity.java.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 808

SearchActivity for a Custom Suggestion Provider
Now that we know the responsibilities of a search activity and, specifically, which ones

are applicable for our example, we can show you the source code of this search activity

(Listing 23–23).

Listing 23–23. SearchActivity

//file: SearchActivity.java
public class SearchActivity extends Activity
{
 private final static String tag ="SearchActivity";
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Log.d(tag,"I am being created");
 setContentView(R.layout.layout_test_search_activity);

 // get and process search query here
 final Intent queryIntent = getIntent();

 //query action
 final String queryAction = queryIntent.getAction();
 Log.d(tag,"Create Intent action:"+queryAction);

 final String queryString =
 queryIntent.getStringExtra(SearchManager.QUERY);
 Log.d(tag,"Create Intent query:"+queryString);

 if (Intent.ACTION_SEARCH.equals(queryAction))
 {
 this.doSearchQuery(queryIntent);
 }
 else if (Intent.ACTION_VIEW.equals(queryAction))
 {
 this.doView(queryIntent);
 }
 else {
 Log.d(tag,"Create intent NOT from search");
 }
 return;
 }

 @Override
 public void onNewIntent(final Intent newIntent)
 {
 super.onNewIntent(newIntent);
 Log.d(tag,"new intent calling me");

 // get and process search query here
 final Intent queryIntent = newIntent;

 //query action
 final String queryAction = queryIntent.getAction();
 Log.d(tag,"New Intent action:"+queryAction);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 809

 final String queryString =
 queryIntent.getStringExtra(SearchManager.QUERY);
 Log.d(tag,"New Intent query:"+queryString);

 if (Intent.ACTION_SEARCH.equals(queryAction))
 {
 this.doSearchQuery(queryIntent);
 }
 else if (Intent.ACTION_VIEW.equals(queryAction))
 {
 this.doView(queryIntent);
 }
 else {
 Log.d(tag,"New intent NOT from search");
 }
 return;
 }
 private void doSearchQuery(final Intent queryIntent)
 {
 final String queryString =
 queryIntent.getStringExtra(SearchManager.QUERY);
 appendText("You are searching for:" + queryString);
 }
 private void appendText(String msg)
 {
 TextView tv = (TextView)this.findViewById(R.id.text1);
 tv.setText(tv.getText() + "\n" + msg);
 }
 private void doView(final Intent queryIntent)
 {
 Uri uri = queryIntent.getData();
 String action = queryIntent.getAction();
 Intent i = new Intent(action);
 i.setData(uri);
 startActivity(i);
 this.finish();
 }
}

We’ll start our analysis of this source code by examining first how this search activity is

invoked.

Details of SearchActivity Invocation
Like all activities, we know that a search activity must have been invoked through an

intent. However, it would be wrong to assume that it is always the action of the intent

that is responsible for this. As it turns out, the search activity is invoked explicitly

through its component name specification.

You might ask why this is important. Well, we know that in our suggestion provider we

are explicitly specifying an intent action in the suggestion row. If this intent action is

VIEW and the intent data is an HTTP URL, then an unsuspecting programmer would

think that a browser will be launched in response, and not the search activity. That

would certainly be desirable. But because the ultimate intent is also loaded with the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 810

component name of search activity in addition to the intent action and data, the

component name will take precedence.

We are not sure why this restriction is there or how to overcome it. But the fact is,

irrespective of the intent action that your suggestion provider specifies, search activity is

the one that is going to be invoked. In our case, we will simply launch the browser from

the search activity and close the search activity.

To demonstrate this, here is the intent that Android fires off to invoke our search activity

when we click on a suggestion:

launching Intent {
act=android.intent.action.VIEW
dat=http://www.google.com
flg=0x10000000
cmp=com.androidbook.search.custom/.SearchActivity (has extras)
}

Notice the component spec of the intent. It is directly pointing to the search activity. So

no matter what intent action you indicate, Android will always invoke search activity. As

a result, it becomes the responsibility of the search activity to invoke the browser.

Now let’s look at what we do with these intents in the search activity.

Responding to ACTION_SEARCH and ACTION_VIEW
We know that a search activity is explicitly invoked by name by Android search.

However, the invoking intent also carries with it the action that is specified. When QSB

invokes this activity through the search icon this action is ACTION_SEARCH.

This action could be different if it was invoked by a search suggestion. It depends on

how the suggestion provider set up the suggestion. In our case, the suggestion provider

set this up as an ACTION_VIEW.

As a result, a search activity needs to examine the type of action. Here is how we

examine this code to see whether to call a search query method or the view method.

(This code segment is extracted from Listing 23–23):

 if (Intent.ACTION_SEARCH.equals(queryAction))
 {
 this.doSearchQuery(queryIntent);
 }
 else if (Intent.ACTION_VIEW.equals(queryAction))
 {
 this.doView(queryIntent);
 }

From the code you can see that we invoke doView() for a view action and

doSearchQuery() in the case of a search action.

In the doView() function we will retrieve the action and the data URI and populate a new

intent with them and then invoke the activity. This will invoke the browser. We will finish

the activity so that the back button takes you back to whatever search invoked it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 811

In the doSearchQuery() we are just logging the search query text to the view. Let us take

a look at the layout that is used to support doSearchQuery().

Search Activity Layout
Listing 23–24 is a simple layout that is used by a search activity in case of

doSearchQuery().The only important element is highlighted in bold.

Listing 23–24. SearchActivity Layout XML

<?xml version="1.0" encoding="utf-8"?>
<!-- file: layout/layout_search_activity.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/search_activity_main_text"
 />
</LinearLayout>

It is appropriate at this point to show you the strings.xml that is responsible for some of

the text needs of this application.

Corresponding strings.xml
This strings.xml as shown in Listing 23–25 defines text strings for the layout and also

such things as the name of the application, some strings for configuring the local search,

and the like.

Listing 23–25. strings.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- file: values/strings.xml -->
<resources>
 <string name="search_activity_main_text">
 This is the search activity.
 \n\n
 This will be invoked if action_search
 is used as opposed to action_view.
 \n\n
 action_search happens if you press the search icon.
 \n\n
 action_view happens if you press on the suggestion
 </string>

 <string name="app_name">Custom Suggest Application
 </string>

 <string name="search_label">Custom Suggest Demo

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 812

 </string>

 <string name="search_hint">Custom Suggest Demo Hint
 </string>
</resources>

Responding to onCreate() and onNewIntent()
If you examine Listing 23–23, you will see that the code in onCreate() and

onNewIntent() is almost identical. This is not an uncommon pattern.

When a search activity is invoked, depending on the launch mode of the search activity,

either onCreate() or a onNewIntent() is called.

NOTE: For a useful reference on launch modes and onNewIntent() see the “References”

section at the end of this chapter.

Notes on Finishing a Search Activity
Earlier in this discussion we briefly mentioned how to respond to doView(). Listing 23–26

is the code for this function (excerpted from Listing 23–26).

Listing 23–26. Finishing the Search Activity

 private void doView(final Intent queryIntent)
 {
 Uri uri = queryIntent.getData();
 String action = queryIntent.getAction();
 Intent i = new Intent(action);
 i.setData(uri);
 startActivity(i);
 this.finish();
 }

The goal of this function is to invoke the browser. If we were not doing the finish() at

the end, the user would be taken back to the search activity from the browser after

clicking the back button, instead of back to the search screen where they came from,

as expected.

Ideally, to give the best user experience the control should never pass through the

search activity. Finishing this activity solves that problem. Listing 23–26 also gives us an

opportunity to examine how we transfer the intent action and intent data from the

original intent (which are set by the suggestion provider) and then pass them on to a

new browser intent.

We just covered a lot of ground. We have shown you a detailed suggestion provider

implementation and a search activity implementation. In the process, we have also

shown you the search metadata file and the strings.xml. We will conclude our

examination of the files needed for implementing this chapter’s project with a look at the

application level manifest file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 813

Custom Suggestions Provider Manifest File
The manifest file is where you bring together many components of your application. For

our custom suggestions provider application as in other examples, this is where you

declare its components, such as the search activity and the suggestion provider. You

also use the manifest file to declare that this application is enabled for local search by

declaring the “search activity” as the default search. Also pay attention the intent filters

defined for the search activity.

These details are highlighted bold in the manifest file code (Listing 23–27).

Listing 23–27. Custom Suggestion Provider Manifest File

//file:AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.search.custom"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"
 android:label="Custom Suggestions Provider">
<!--
**
* Search related code: search activity
**
 -->
 <activity android:name=".SearchActivity"
 android:label="Search Activity Label"
 android:launchMode="singleTop">
 <intent-filter>
 <action
 android:name="android.intent.action.SEARCH" />
 <category
 android:name="android.intent.category.DEFAULT" />
 </intent-filter>

 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />
 </activity>

<!-- Declare default search -->
 <meta-data android:name="android.app.default_searchable"
 android:value=".SearchActivity" />

<!-- Declare Suggestion Provider -->
 <provider android:name="SuggestUrlProvider"
 android:authorities=
 "com.androidbook.search.custom.suggesturlprovider" />
</application>
 <uses-sdk android:minSdkVersion="4" />
</manifest>

As you can see, we have highlighted three things:

 Defining the search activity along with its search metadata XML file

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 814

 Defining the search activity as the default search for the application

 Defining the suggestion provider and its authority

With all of the source code in place, it is time to take a tour of the application and see

how it looks in the emulator.

Custom Suggestion User Experience
Once you build and deploy this app through ADT you will not see any activity pop-up

because there is no activity to start. Instead, you will see that the application is

successfully installed in the Eclipse console.

This means that the suggestion provider is ready to respond to the global QSB. But

before that can take place, you will need to enable this suggestion provider to

participate in global search.

Earlier in this chapter we showed you how to reach the search settings application. Here

is a shortcut which uses the very search facility we have learned so far.

Open the global QSB and type sett in the QSB. This will bring up the settings

application as one of the suggestions to be invoked. See Figure 23–26.

Figure 23–26. Invoking settings through search

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 815

Notice how we are using what we have learned about QSB to invoke the settings

application. Follow the approach specified at the beginning of this chapter to enable this

application for suggestions. Once this is done, type the text in the QSB shown in

Figure 23–27.

Figure 23–27. More results from the custom suggestions provider

Notice how search suggestions from the custom suggestions provider are presented.

Now if you click on the search icon on the top left and change the search application to

the “custom suggestion provider” application and navigate to one of the suggestions

provided by our custom suggestions provider and click the QSB search icon, Android

will take you to the search activity directly without invoking any browser, as shown in

Figure 23–28. (This demonstrates the two types of intent actions we discussed: the

search and the view.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 816

Figure 23–28. Query search invoking search results

So this example demonstrates the ACTION_SEARCH vs. the ACTION_VIEW.

Now if you click on the free dictionary suggestion in Figure 23–27, you will see the

invoked browser as in Figure 23–29.

Figure 23–29. Free dictionary

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 817

If you click on the Google suggestion item in Figure 23–27, you will see the browser shown

in Figure 23–30.

Figure 23–30. Searching Google for a definition

Figure 23–31 shows what happens if you don’t type the suffix .m in the global search.

Figure 23–31. Custom provider without a hint

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 818

Notice how the suggestion provider hasn’t provided anything back.

This concludes our discussion of building a functional custom suggestions provider from

scratch. Although we’ve covered any aspects of search, there are still a couple of topics

that we haven’t talked about. These are action keys and Application-Specific search

data. We will cover these next.

Using Action Keys and Application-Specific Search
Data
Action keys and application-specific search data add further flexibility to Android search.

Action keys allow us to employ specialized device keys for search-related functionality.

Application-specific search data allow an activity to pass additional data to the search

activity.

NOTE: Please note that the code listings in the rest of the chapter do not form a testable project.

These code listings are there only to support the ideas presented in text.

Let’s begin with action keys.

Using Action Keys in Android Search
So far we’ve shown a number of ways to invoke search:

 The search icon available in the QSB

 The search key that is part of a set of action keys (shown on the right

side of Figure 23–1)

 An explicit icon or button that is displayed by an activity

 Any key press based on a type-to-search declaration

In this section we will look at invoking search through action keys. Action keys are a set

of keys available on the device which are tied to specific actions. Some examples of

these action keys are shown in Listing 23–28.

Listing 23–28. List of Action Key Codes

keycode_dpad_up
keycode_dpad_down
keycode_dpad_left
keycode_dpad_right
keycode_dpad_center
keycode_back
keycode_call
keycode_camera
keycode_clear
kecode_endcall

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 819

keycode_home
keycode_menu
keycode_mute
keycode_power
keycode_search
keycode_volume_up
keycode_volume_down

You can see these action keys defined in the API for KeyEvent, which is available at

http://developer.android.com/reference/android/view/KeyEvent.html

NOTE: Not all of these action keys can be co-opted for search, but some can, such as

keycode_call. You will have to try each and see which is suitable for your need.

Once you know which action key you want to use you can tell Android that you are

interested in this key by dropping it in the metadata using the XML segment in Listing

23–29.

Listing 23–29. Action Key Definition Example

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/search_label"
 android:hint="@string/search_hint"
 android:searchMode="showSearchLabelAsBadge"

 android:includeInGlobalSearch="true"
 android:searchSuggestAuthority=
 "com.androidbook.search.simplesp.SimpleSuggestionProvider"
 android:searchSuggestSelection=" ? "
>
 <actionkey
 android:keycode="KEYCODE_CALL"
 android:queryActionMsg="call"
 android:suggestActionMsg="call"
 android:suggestActionMsgColumn="call_column" />

 <actionkey
 android:keycode="KEYCODE_DPAD_CENTER"
 android:queryActionMsg="doquery"
 android:suggestActionMsg="dosuggest"
 android:suggestActionMsgColumn="my_column" />

</searchable>

You can also have multiple action keys for the same search context. Here is what each

attribute of the actionKey element stands for and how it is used to respond to an action

key press.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 820

keycode: This is the key code as defined in the KeyEvent API class that

should be used to invoke the search activity. There are two times

when this key identified by the keycode can be pressed. The first is

when the user enters query text in the QSB but hasn’t navigated to any

suggestions. Typically the user, without an action key implementation,

will have pressed the search icon of the QSB. With an action key

specified in the metadata of the search, Android allows the user to

click the action key instead of the QSB search Go icon. The second is

when the user navigates to a specific suggestion and then clicks the

action key. In both cases the search activity is invoked with an action

of ACTION_SEARCH. To know that this action is invoked through an

action key, look for an extra string called SearchManager.ACTION_KEY. If

you see a value here, you know that you are being called in response

to an action key press.

queryActionMsg: Any text you enter in this element is passed to the

search activity invoking intent as an extra string called

SearchManager.ACTION_MSG. If you retrieve this message from the intent

and it is the same as what you have specified in the metadata, then

you know that you are being called directly from the QSB as a result of

clicking on the action key. Without this test, you will not know if the

ACTION_SEARCH is called due to an action key click on the suggestion

directly.

suggestActionMsg: Any text you enter in this element is passed to the

search activity invoking intent as an extra string called

SearchManager.ACTION_MSG. The extra keys for this and the

queryActionMsg are the same. If you give the same value for both of

these fields, such as call, then you will not know in what way user has

invoked the action key. In many cases, this is irrelevant so you can just

give the same value for both. But if you have a need to distinguish one

from the other, you will need to specify a value that is different from

the queryActionMsg.

suggestActionMsgColumn: The values queryActionMsg and

suggestActionMsg apply globally to this search activity and the

suggestion provider. There isn’t a way to alter the action meaning

based on the suggestion. If you would like to do that then you will

need to tell the metadata that there is an extra column in the

suggestion cursor. This will allow Android to pick up the text from that

extra column and send it to the activity as part of the invoking

ACTION_SEARCH intent. Interestingly, the value of this additional column

is sent through the same extra key in the intent, namely

SearchManager.ACTION_MSG.

Among these attributes the key code is mandatory. In addition, there needs to be at

least one of the additional three attributes present for the action key to fire.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 821

If you were to use the suggestActionMsgColumn, you would need to populate this column

in the suggestion provider class. In Listing 23–29 if you were to use both these keys then

you would need to have two additional string columns defined in the suggest cursor (see

Listing 23–22), namely call_column and my_column. In that case, your cursor column

array would be as shown in Listing 23–30.

Listing 23–30. Example of Action Key Columns in the Suggestion Cursor

 private static final String[] COLUMNS = {
 "_id", // must include this column
 SearchManager.SUGGEST_COLUMN_TEXT_1,
 SearchManager.SUGGEST_COLUMN_TEXT_2,
 SearchManager.SUGGEST_COLUMN_INTENT_DATA,
 SearchManager.SUGGEST_COLUMN_INTENT_ACTION,
 SearchManager.SUGGEST_COLUMN_SHORTCUT_ID,
 "call_column",
 "my_column"
 };

Working with Application-Specific Search Context
Android search allows an activity to pass additional search data to the search activity

when it is invoked. We will walk through the details of this now.

As we have shown, an activity in your application can override the onSearchRequested()

method to disable search by returning false. Interestingly, the same method can be used

instead to pass additional application-specific data to the search activity. Listing 23–31

is an example.

Listing 23–31. Passing Additional Context

public boolean onSearchRequested()
{
 Bundle applicationData = new Bundle();
 applicationData.putString("string_key","some string value");
 applicationData.putLong("long_key",290904);
 applicationData.putFloat("float_key",2.0f);

 startSearch(null, // Initial Search search query string
 false, // don't "select initial query"
 applicationData, // extra data
 false // don't force a global search
);

 return true;
}

NOTE: You can use the following Bundle API reference to see the various functions available on

the bundle object:

http://developer.android.com/reference/android/os/Bundle.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 822

Once the search has started this way, the activity can use the extra called

SearchManager.APP_DATA to retrieve the application data bundle. Listing 23–32 shows

how you can retrieve each of the above fields.

Listing 23–32. Retrieving Additional Context

 Bundle applicationData =
 queryIntent.getBundleExtra(SearchManager.APP_DATA);
 if (applicationData != null)
 {
 String s = applicationData.getString("string_key");
 long l = applicationData.getLong("long_key");
 float f = applicationData.getFloat("float_key");
 }

We have introduced the startSearch() method earlier in the chapter briefly. You can find

more about this method at the following URL as part of the Activity API:

http://developer.android.com/reference/android/app/Activity.html

Once again this method takes the following four arguments

 initialQuery // a string argument

 selectInitialQuery // boolean

 applicationDataBundle //Bundle

 globalSearchOnly //boolean

The first argument, if available, will populate the query text in the QSB.

The second boolean argument will highlight the text if true. Doing so will enable the user

to replace all of the selected query text with what is typed over. If this is false, then the

cursor will be at the end of the query text.

The third argument is, of course, the bundle that we are preparing.

The fourth argument, if true, will always invoke a global search. If it is false, then the

local search is invoked first, if available; otherwise, it will use the global search.

Resources
As we come to the end of this chapter, we would like to give you a list of resources that

we found valuable in writing it.

 www.google.com/googlephone/AndroidUsersGuide.pdf: This is a good Android 2.2.1

reference for understanding how to use Android Search from a user’s

perspective.

 www.google.com/help/hc/pdfs/mobile/AndroidUsersGuide-30-
100.pdf: This is a users guide for Android 3.0 release. These URLs

seem to change quickly every couple of months. You should be able

to locate by searching google using the key words "Android User's

Guide"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 823

 http://developer.android.com/reference/android/app/SearchManager.html:

You can use this URL to find the main documentation on Android search from

Google. The same URL also works as the API reference for the main Android

search facility, namely SearchManager

 http://developer.android.com/reference/android/app/Activity.html#onNewIn
tent(android.content.Intent): As you design your own search activities, it is

sometimes advantageous to set them up as singleTop resulting in the

generation of a onNewIntent(). You can find more about this method here.

 http://developer.android.com/guide/samples/SearchableDictionary/index.ht
ml: You can refer to this Google sample online to see how an example

suggestion provider is implemented. This link points to the source code of the

implementation.

 http://developer.android.com/reference/android/provider/SearchRecentSugg
estions.html: At this URL you can read about the Search Recent
Suggestions API.

 http://developer.android.com/guide/topics/fundamentals.html: This site will

help you understand activities, tasks, and launch modes, especially the

singleTop launch mode, which is used often as a search activity.

 http://developer.android.com/reference/android/os/Bundle.html:YYou can

use this Bundle API reference to see the various functions available on the

bundle object. This is useful for application-specific search data.

 http://www.androidbook.com/notes_on_search: At this URL you can find the

authors’ notes on Android search. We will continue to update the content even

after this book goes to press.

 http://www.androidbook.com/projects: You can use this URL to download the

test projects dedicated for this chapter. The name of the zip files for this chapter

are: ProAndroid3_ch23_SearchRegularActivities.zip,

ProAndroid3_ch23_SimpleSuggestionProvider.zip,

ProAndroid3_ch23_CustomSuggestionProvider.zip.

Implications for Tablets
The underlying Search API remains unchanged in 3.0. However the QSB and search

settings (essentially the user experience) are altered slightly to make use of more real

estate. Other than that the ideas presented in this chapter are equally applicable for

tablets.

Summary
In this chapter we presented, in a fair amount of detail, the internal workings of Android

search. You have learned how activities and suggestion providers interact with Android

search. We have showed you how to use the SearchRecentSuggestionsProvider.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 23: Android Search 824

We coded from scratch a custom suggestions provider and, in the process,

demonstrated the suggestion cursor and its columns in detail. We explored the URIs

that are responsible for getting data from suggestion providers. We have presented a lot

of sample code that should make it easy to devise and implement your creative search

strategies.

Based on the flexibility of the suggestion cursor alone, Android search transcends a

simple search to a conduit of information at fingertips.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

825

825

 Chapter

Exploring Text to Speech
Android, versions 1.6 and later, features a multilingual speech synthesis engine called

Pico. It allows any Android application to speak a string of text with an accent that

matches the language. Text-to-speech software allows users to interact with

applications without having to look at the screen. This can be extremely important for a

mobile platform. How many people have accidentally walked into traffic when they were

reading a text message? What if you could simply listen to your text messages instead?

What if you could listen to a walking tour instead of reading while walking? There are

countless applications where the inclusion of voice would improve an application’s

usefulness. In this chapter, we’ll explore the TextToSpeech class of Android and learn

what it takes to get our text spoken to us. We’ll also learn how to manage the locales,

languages, and voices available.

The Basics of Text-to-Speech Capabilities in Android
Before we begin to integrate text to speech (TTS) into an application, you should listen

to it in action. In the emulator or device (Android SDK 1.6 or above), go to the main

Settings screen and choose “Voice input & output” and then “Text-to-speech settings”

(or from Settings choose Text-to-speech or “Speech synthesis”, depending on which

version of Android you’re running). Click the “Listen to an example” option, and you

should hear the words, “This is an example of speech synthesis in English with Pico.”

Notice the other options in this list (see Figure 24–1).

24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 826

Figure 24–1. Settings screen for Text to Speech

You can change the language of the voice and the speech rate. The language option

both translates the example words that are spoken and changes the accent of the voice

doing the speaking, although the example is still “This is an example of speech

synthesis” in whatever language you’ve set in the Language option. Be aware that the

text-to-speech capability is really only the voice part. Translating text from one language

to another is done via a separate component, such as Google Translate, which we

covered in Chapter 11. Later, when we’re actually implementing TTS in our application,

we’ll want to match the voice with the language, so the French text is spoken with a

French voice. The speech rate value goes from “Very slow” to “Very fast”.

Pay careful attention to the option “Always use my settings”. If this is set by you or the

user in system settings, your application may not behave as you expect, since the

settings here could override what you want to do in your application.

With Android 2.2, we gained the ability to use TTS engines besides Pico (and thus, prior

to Android 2.2, you would not see the Default Engine option in this Settings page). The

choice provides flexibility, because Pico may not work well in all situations. Even with

multiple TTS engines, there is only one TTS service on the device. The TTS service is

shared across all activities on the device, so we must be aware that we may not be the

only ones using TTS. Also, we cannot be sure when our text will be spoken or even if it

will be spoken at all. However, the interface to the TTS service provides us with

callbacks, so we have some idea of what is going on with the text we’ve sent to be

spoken. The TTS service will keep track of which TTS engine we want and will use our

desired TTS engine when doing things for us. The TTS service will use whatever TTS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 827

engine each calling activity wants, so other applications can use a different TTS engine

than our application and we don’t need to worry about it.

Let’s explore what is happening when we play with these TTS settings. Behind the

scenes, Android has fired up a text-to-speech service and Pico, a multilingual speech

synthesis engine. The preferences activity we’re in has initialized the engine for our

current language and speech rate. When we click “Listen to an example”, the

preferences activity sends text to the service, and the engine speaks it to our audio

output. Pico has broken down the text into pieces it knows how to say, and it has

stitched those pieces of audio together in a way that sounds fairly natural. The logic

inside the engine is actually much more complex than that, but for our purposes, we can

pretend it’s magic. Fortunately for us, this magic takes up very little room in terms of

disk space and memory, so Pico is an ideal addition to a phone.

In this example, we’re going to create an application that will read our typed text back to

us. It is fairly simple, but it’s designed to show you how easy it can be to set up text to

speech. To begin, create a new Android Project using the artifacts from Listing 24–1.

NOTE: We will give you a URL at the end of the chapter which you can use to download projects

of this chapter. This will allow you to import these projects into your Eclipse directly.

Listing 24–1. XML and Java Code for Simple TTS Demo

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:id="@+id/wordsToSpeak"
 android:hint="Type words to speak here"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/speak"
 android:text="Speak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick=”doSpeak”
 android:enabled="false" />

</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.speech.tts.TextToSpeech;
import android.speech.tts.TextToSpeech.OnInitListener;
import android.util.Log;
import android.view.View;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 828

import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends Activity implements OnInitListener {
 private EditText words = null;
 private Button speakBtn = null;
 private static final int REQ_TTS_STATUS_CHECK = 0;
 private static final String TAG = "TTS Demo";
 private TextToSpeech mTts;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 words = (EditText)findViewById(R.id.wordsToSpeak);
 speakBtn = (Button)findViewById(R.id.speak);

 // Check to be sure that TTS exists and is okay to use
 Intent checkIntent = new Intent();
 checkIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(checkIntent, REQ_TTS_STATUS_CHECK);
 }

 public void doSpeak(View view) {
 mTts.speak(words.getText().toString(),
 TextToSpeech.QUEUE_ADD, null);
 }

 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == REQ_TTS_STATUS_CHECK) {
 switch (resultCode) {
 case TextToSpeech.Engine.CHECK_VOICE_DATA_PASS:
 // TTS is up and running
 mTts = new TextToSpeech(this, this);
 Log.v(TAG, "Pico is installed okay");
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_BAD_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_VOLUME:
 // missing data, install it
 Log.v(TAG, "Need language stuff: " + resultCode);
 Intent installIntent = new Intent();
 installIntent.setAction(
 TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(installIntent);
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_FAIL:
 default:
 Log.e(TAG, "Got a failure. TTS not available");
 }
 }
 else {
 // Got something else
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 829

 }

 public void onInit(int status) {
 // Now that the TTS engine is ready, we enable the button
 if(status == TextToSpeech.SUCCESS) {
 speakBtn.setEnabled(true);
 }
 }

 @Override
 public void onPause()
 {
 super.onPause();
 // if we're losing focus, stop talking
 if(mTts != null)
 mTts.stop();
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy();
 mTts.shutdown();
 }
}

Our UI for this example is a simple EditText view to allow us to type in the words to be

spoken, plus a button to initiate the speaking (see Figure 24–2). Our button has a

doSpeak() method, which grabs the text string from the EditText view and queues it for

the TTS service using speak() with QUEUE_ADD. Remember that the TTS service is being

shared, so in this case, we queue up our text for speaking behind whatever else might

be there (which is most likely nothing). The other option besides QUEUE_ADD is

QUEUE_FLUSH, which will throw away the other text in the queue and immediately play

ours instead. At the end of our onCreate() method, we initiate an Intent that requests

the TTS engine to let us know if everything is OK for text to be spoken. Because we

want the answer back, we use startActivityForResult() and pass a request code. We

get the response in onActivityResult() where we look for CHECK_VOICE_DATA_PASS.

Because the TTS service can return more than one type of resultCode meaning “OK,”

we cannot just look for RESULT_OK. See the other values we can get by reviewing the

switch statement.

Figure 24–2. User interface of TTS demonstration

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 830

If we get CHECK_VOICE_DATA_PASS back, we instantiate a TextToSpeech object. Notice that

our MainActivity implements OnInitListener. This allows us to receive a callback when

the TTS service interface has been created and is available, which we receive with the

onInit() method. If we get SUCCESS inside of onInit(), we know we’re ready to speak

text, and we enable our button in the UI. Two more things to note are the call to stop()
in onPause(), and the call to shutdown() in onDestroy(). We call stop() because if

something goes in front of our application, it’s lost focus and should stop talking. We

don’t want to interrupt something audio-based in another activity that has jumped in

front. We call shutdown() to notify Android that we’re through with the TTS engine and

that the resources, if not needed by anyone else, are eligible to be released.

Go ahead and experiment with this example. Try different sentences or phrases. Now,

give it a large block of text so you can hear the speech go on and on. Consider what

would happen if our application were interrupted while the large block of text was being

read, perhaps if some other application made a call to the TTS service with QUEUE_FLUSH,

or the application simply lost focus. To test out this idea, go ahead and press the Home

button while a large block of text is being spoken. Because of our call to stop() in

onPause(), the speaking stops, even though our application is still running in the

background. If our application regains focus, how can we know where we were? It

would be nice if we had some way to know where we left off so we could begin

speaking again, at least close to where we left off. There is a way, but it takes a bit of

work.

Using Utterances to Keep Track of Our Speech
The TTS engine can invoke a callback in your application when it has completed

speaking a piece of text, called an utterance in the TTS world. We set the callback using

the setOnUtteranceCompletedListener() method on the TTS instance, mTts in our

example. When calling speak(), we can add a name/value pair to tell the TTS engine to

let us know when that utterance is finished being played. By sending unique utterance

IDs to the TTS engine, we can keep track of which utterances have been spoken and

which have not. If the application regains focus after an interruption, we could resume

speaking with the next utterance after the last completed utterance. Building on our

previous example, change the code as shown in Listing 24–2, or see project TTSDemo2

in the source code from the book’s web site.

Listing 24–2. Changes to MainActivity to Illustrate Utterance Tracking

// Add these imports
import java.util.HashMap;
import java.util.StringTokenizer;
import android.speech.tts.TextToSpeech.OnUtteranceCompletedListener;

// Change MainActivity
public class MainActivity extends Activity implements OnInitListener,
OnUtteranceCompletedListener {

 // Add these private fields
 private int uttCount = 0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 831

 private int lastUtterance = -1;
 private HashMap<String, String> params = new HashMap<String, String>();

 // Modify onInit
 public void onInit(int status) {
 // Now that the TTS engine is ready, we enable the button
 if(status == TextToSpeech.SUCCESS) {
 speakBtn.setEnabled(true);
 mTts.setOnUtteranceCompletedListener(this);
 }
 }

 // Add new method onUtteranceCompleted
 public void onUtteranceCompleted(String uttId) {
 Log.v(TAG, "Got completed message for uttId: " + uttId);
 lastUtterance = Integer.parseInt(uttId);
 }

 // Modify doSpeak
 public void doSpeak(View view) {
 StringTokenizer st = new StringTokenizer(words.getText().toString(),",.");
 while (st.hasMoreTokens()) {
 params.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID,
 String.valueOf(uttCount++));
 mTts.speak(st.nextToken(), TextToSpeech.QUEUE_ADD, params);
 }
 }

The first thing we need to do is make sure our MainActivity also implements the

OnUtteranceCompletedListener interface. This will allow us to get the callback from the

TTS engine when the utterances finish being spoken. We also need to modify our button

doSpeak() method to pass the extra information to associate an utterance ID to each

piece of text we send. For this new version of our example, we’re going to break up our

text into utterances using the comma and period characters as separators. We then loop

through our utterances passing each with QUEUE_ADD and not QUEUE_FLUSH (we don’t

want to interrupt ourselves!) and a unique utterance ID, which is a simple incrementing

counter, converted to a String, of course. We can use any unique text for an utterance

ID; since it’s a String, we’re not limited to numbers. In fact, we could use the string itself

as the utterance ID, although if the strings get very long, we might not want to do that

for performance reasons. We need to modify the onInit() method to register ourselves

for receiving the utterance completed callbacks, and finally, we need to provide the

callback method onUtteranceCompleted() for the TTS service to invoke when an

utterance completes. For this example, we’re simply going to log a message to LogCat

for each completed utterance.

When you run this new example, type some text that contains commas and periods, and

click the Speak button. Watch the LogCat window as you listen to the voice reading your

text. You will notice that the text is queued up immediately, and as each utterance

completes, our callback is invoked, and a message is logged for each utterance. If you

interrupt this example, for instance, by clicking Home while the text is being read, you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 832

will see that the voice and the callbacks stop. We now know what the last utterance

was, and we can pick up where we left off later when we regain control.

Using Audio Files for Your Voice
The TTS engine provides a way to properly pronounce words or utterances that, by

default, come out wrong. For example, if you type in “Don Quixote” as the text to be

spoken, you will hear a pronunciation of the name that is not correct. To be fair, the TTS

engine is able to make a good guess at how words should sound and cannot be

expected to know every exception to all the rules. So how can this be fixed? One way is

to record a snippet of audio to be played back instead of the default audio. To get the

same voice as everything else, we want to use the TTS engine to make the sound and

record the result, and then we tell the TTS engine to use our recorded sound in place of

what it would normally do. The trick is to provide text that sounds like what we want.

Let’s get started.

Create a new Android project in Eclipse. Use the XML from Listing 24–3 to create the

main layout. We’re going to make this simpler by putting text directly into our layout file

instead of using references to strings. Normally, you would want to use string resource

IDs in your layout file. The layout will look like Figure 24–3.

Listing 24–3. A Layout XML file to Demonstrate Saved Audio for Text

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:id="@+id/wordsToSpeak"
 android:text="Dohn Keyhotay"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/speakBtn"
 android:text="Speak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doButton"
 android:enabled="false" />

 <TextView android:id="@+id/filenameLabel"
 android:text="Filename:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <EditText android:id="@+id/filename"
 android:text="/sdcard/donquixote.wav"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/recordBtn"
 android:text="Record"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 833

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:enabled="false"
 android:onClick="doButton"/>

 <Button android:id="@+id/playBtn"
 android:text="Play"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doButton"
 android:enabled="false" />

 <TextView android:id="@+id/useWithLabel"
 android:text="Use with:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <EditText android:id="@+id/realText"
 android:text="Don Quixote"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button android:id="@+id/assocBtn"
 android:text="Associate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doButton"
 android:enabled="false" />

</LinearLayout>

Figure 24–3. User interface of TTS demonstration that associates a sound file with text

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 834

We need a field to hold the special text that we’ll record with the TTS engine into a

sound file. We supply the file name in the layout as well. Finally, we need to associate

our sound file to the actual string we want the sound file to play for.

Now, let’s look at the Java code for our MainActivity (see Listing 24–4). In the

onCreate() method, we set up button click handlers for the Speak, Play, Record, and

Associate buttons, and then we initiate the TTS engine using an intent. The rest of the

code consists of callbacks to handle the result from the intent that checks for a properly

set up TTS engine and handles the initialization result from the TTS engine and the

normal callbacks for pausing and shutting down our activity.

Listing 24–4. Java Code to Demonstrate Saved Audio for Text

import java.io.File;
import java.util.ArrayList;

import android.app.Activity;
import android.content.Intent;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.speech.tts.TextToSpeech;
import android.speech.tts.TextToSpeech.OnInitListener;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

public class MainActivity extends Activity implements OnInitListener {
 private EditText words = null;
 private Button speakBtn = null;
 private EditText filename = null;
 private Button recordBtn = null;
 private Button playBtn = null;
 private EditText useWith = null;
 private Button assocBtn = null;
 private String soundFilename = null;
 private File soundFile = null;
 private static final int REQ_TTS_STATUS_CHECK = 0;
 private static final String TAG = "TTS Demo";
 private TextToSpeech mTts = null;
 private MediaPlayer player = null;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 words = (EditText)findViewById(R.id.wordsToSpeak);
 filename = (EditText)findViewById(R.id.filename);
 useWith = (EditText)findViewById(R.id.realText);

 speakBtn = (Button)findViewById(R.id.speakBtn);
 recordBtn = (Button)findViewById(R.id.recordBtn);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 835

 playBtn = (Button)findViewById(R.id.playBtn);
 assocBtn = (Button)findViewById(R.id.assocBtn);

 // Check to be sure that TTS exists and is okay to use
 Intent checkIntent = new Intent();
 checkIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(checkIntent, REQ_TTS_STATUS_CHECK);
 }

 public void doButton(View view) {
 switch(view.getId()) {
 case R.id.speakBtn:
 mTts.speak(words.getText().toString(),
 TextToSpeech.QUEUE_ADD, null);
 break;
 case R.id.recordBtn:
 soundFilename = filename.getText().toString();
 soundFile = new File(soundFilename);
 if (soundFile.exists())
 soundFile.delete();

 if(mTts.synthesizeToFile(words.getText().toString(),
 null, soundFilename) == TextToSpeech.SUCCESS) {
 Toast.makeText(getBaseContext(),
 "Sound file created",
 Toast.LENGTH_SHORT).show();
 playBtn.setEnabled(true);
 assocBtn.setEnabled(true);
 }
 else {
 Toast.makeText(getBaseContext(),
 "Oops! Sound file not created",
 Toast.LENGTH_SHORT).show();
 }
 break;
 case R.id.playBtn:
 try {
 player = new MediaPlayer();
 player.setDataSource(soundFilename);
 player.prepare();
 player.start();
 }
 catch(Exception e) {
 Toast.makeText(getBaseContext(),
 "Hmmmmm. Can't play file",
 Toast.LENGTH_SHORT).show();
 e.printStackTrace();
 }
 break;
 case R.id.assocBtn:
 mTts.addSpeech(useWith.getText().toString(), soundFilename);
 Toast.makeText(getBaseContext(),
 "Associated!",
 Toast.LENGTH_SHORT).show();
 break;
 }
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 836

 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == REQ_TTS_STATUS_CHECK) {
 switch (resultCode) {
 case TextToSpeech.Engine.CHECK_VOICE_DATA_PASS:
 // TTS is up and running
 mTts = new TextToSpeech(this, this);
 Log.v(TAG, "Pico is installed okay");
 ArrayList<String> available =
 data.getStringArrayListExtra("availableVoices");
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_BAD_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_VOLUME:
 // missing data, install it
 Log.v(TAG, "Need language stuff: " + resultCode);
 Intent installIntent = new Intent();
 installIntent.setAction(
 TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(installIntent);
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_FAIL:
 default:
 Log.e(TAG, "Got a failure. TTS not available");
 }
 }
 else {
 // Got something else
 }
 }

 public void onInit(int status) {
 // Now that the TTS engine is ready, we enable buttons
 if(status == TextToSpeech.SUCCESS) {
 speakBtn.setEnabled(true);
 recordBtn.setEnabled(true);
 }
 }

 @Override
 public void onPause()
 {
 super.onPause();
 // if we're losing focus, stop playing
 if(player != null) {
 player.stop();
 }
 // if we're losing focus, stop talking
 if(mTts != null)
 mTts.stop();
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 837

 if(player != null) {
 player.release();
 }
 if(mTts != null) {
 mTts.shutdown();
 }
 }
}

For this example to work, we need to add a permission in our AndroidManifest.xml file

for android.permission.WRITE_EXTERNAL_STORAGE. When you run this example, you

should see the UI as displayed in Figure 24–3.

We’re going to record some text that sounds like what we want “Don Quixote” to sound

like, so we can’t use the real words. We need to make up text to get the sounds we

want. Click the Speak button to hear how the fake words sound. Not too bad! Next, click

Record to write the audio to a WAV file. When the recording is successful, the Play and

Associate buttons get enabled. Click the Play button to hear the WAV file directly using a

media player. If you like how this sounds, click the Associate button. This invokes the

addSpeech() method on the TTS engine, which then ties our new sound file to the string

in the “Use with” field. If this is successful, go back up to the top EditText view; type

Don Quixote, and click Speak. Now it sounds like it’s supposed to.

Note that the synthesizeToFile() method only saves to the WAV file format, regardless

of the file name extension, but you can associate other formatted sound files using

addSpeech()—for example, MP3 files. The MP3 files will have to be created some way

other than by using the synthesizeToFile() method of the TTS engine.

The uses of this method for speaking are very limited. In a scenario with unbounded

words—that is, when you don’t know in advance which words will be presented for

speech—it is impossible to have at the ready all of the audio files you would need to fix

the words that do not get pronounced correctly by Pico. In scenarios with a bounded

domain of words—for example, reading the weather forecast—you could go through an

exercise of testing all of the words in your application to find those that don’t sound right

and fixing them. Even in an unbounded situation, you could prepare some word sounds

in advance so that critical words you expect will sound correct. You might, for instance,

want to have a sound file at the ready for your company’s name or your own name!

There’s a dark side to the use of this method however: the text you pass to speak()

must match exactly the text you used in the call to addSpeech(). Unfortunately, you

cannot provide an audio file for a single word and then expect the TTS engine to use the

audio file for that word when you pass that word as part of a sentence to speak(). To

hear your audio file you must present the exact text that the audio file represents.

Anything more or less causes Pico to kick in and do the best it can.

One way around this is to break up our text into words and pass each word separately

to the TTS engine. While this could result in our audio file being played (of course, we’d

need to record “Quixote” separately from “Don”), the overall result will be choppy

speech, as if each word were its own sentence. In some applications, this might be

acceptable. The ideal use case for audio files occurs when we need to speak

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 838

predetermined canned words or phrases, where we know exactly in advance the text

we’ll need to have spoken.

So what are we to do when we know we’ll get words in sentences that cannot be

properly spoken by Pico? One method might be to scan our text for known “trouble”

words and replace those words with “fake” words that we know Pico can speak

properly. We don’t need to show the text to the user that we give to the speak()

method. So perhaps we could replace “Quixote” in our text with “Keyhotay” before we

call speak(). The outcome is that it sounds right and the user is none the wiser. In terms

of resource usage, storing the fake string is much more efficient than storing an audio

file, even though we’re still calling Pico. We had to call Pico for the rest of our text, so

it’s not much of a loss at all. However, we don’t want to do too much second-guessing

of Pico. That is, Pico has a lot of intelligence on how to pronounce things, and if we try

to do Pico’s job for it, we could run into trouble quickly.

In our last example, we recorded a sound file for a piece of text, so that when the TTS

engine reads it back to us later, it accesses the sound file instead of generating the

speech using Pico. As you might expect, playing a small sound file takes fewer device

resources than running a TTS engine and interfacing with it. Therefore, if you have a

manageable set of words or phrases to provide sound for, you might want to create

sound files in advance, even if the Pico engine pronounces them correctly. This will help

your application run faster. If you have a small number of sound files, you will probably

use less overall memory too. If you take this approach, you will want to use the following

method call:

TextToSpeech.addSpeech(String text, String packagename, int soundFileResourceId)

This is a very simple way of adding sound files to the TTS engine. The text argument is

the string to play the sound file for; packagename is the application package name where

the resource file is stored, and soundFileResourceId is the resource ID of the sound file.

Store your sound files under your application’s /res/raw directory. When your

application starts up, add your prerecorded sound files to the TTS engine by referring to

their resource ID (e.g., R.raw.quixote). Of course, you’ll need some sort of database, or

a predefined list, to know which text each sound file is for. If you are internationalizing

your application, you can store the alternate sound files under the appropriate /res/raw

directory; for example /res/raw-fr for French sound files.

Advanced Features of the TTS Engine
Now that you’ve, learned the basics of TTS, let’s explore some advanced features of the

Pico engine. We’ll start with setting audio streams, which help you direct the spoken

voice to the proper audio output channel. Next, we’ll cover playing earcons (audible

icons) and silence. Then, we’ll cover setting language options and finish with a few

miscellaneous method calls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 839

Setting Audio Streams
Earlier, we used a params HashMap to pass extra arguments to the TTS engine. One of

the arguments we can pass (KEY_PARAM_STREAM) tells the TTS engine which audio stream

to use for the text we want to hear spoken. See Table 24–1 for a list of the available

audio streams.

Table 24–1. Available Audio Streams

Audio Stream Description

STREAM_ALARM The audio stream for alarms

STREAM_DTMF The audio stream for DTMF tones (i.e., phone

button tones)

STREAM_MUSIC The audio stream for music playback

STREAM_NOTIFICATION The audio stream for notifications

STREAM_RING The audio stream for the phone ring

STREAM_SYSTEM The audio stream for system sounds

STREAM_VOICE_CALL The audio stream for phone calls

If the text we want spoken is related to an alarm, we want to tell the TTS engine to play

the audio over the audio stream for alarms. Therefore, we’d want to make a call like this

prior to calling the speak() method:

params.put(TextToSpeech.Engine.KEY_PARAM_STREAM,
 String.valueOf(AudioManager.STREAM_ALARM));

Review Listing 24–2 to recall how we set up and passed a params HashMap to the

speak() method call. You can put utterance IDs into the same params HashMap as the

one you use to specify the audio stream.

Using Earcons
There is another type of sound that the TTS engine can play for us called an earcon. An

earcon is like an audible icon. It’s not supposed to represent text but rather provide an

audible cue to some sort of event or to the presence of something in the text other than

words. An earcon could be a sound to indicate that we’re now reading bullet points from a

presentation or that we’ve just flipped to the next page. Maybe your application is for a

walking tour, and the earcon tells the listener to move on to the next location on the tour.

To set up an earcon for playback, you need to invoke the addEarcon() method, which

takes two or three arguments, similar to addSpeech(). The first argument is the name of

the earcon, similar to the text field of addSpeech(). Convention says that you should

enclose your earcon name in square brackets (e.g., “[boing]”). In the two-argument

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 840

case, the second argument is a file name string. In the three-argument case, the second

argument is the package name, and the third argument is a resource ID that refers to an

audio file most likely stored under /res/raw. To get an earcon played, use the

playEarcon() method, which looks just like the speak() method with its three

arguments. An example of using earcons is shown in Listing 24–5.

Listing 24–5: Sample Code Using Earcons

String turnPageEarcon = "[turnPage]";
mTts.addEarcon(turnPageEarcon, "com.androidbook.tts.demo",
 R.raw.turnpage);
mTts.playEarcon(turnPageEarcon, TextToSpeech.QUEUE_ADD, params);

We use earcons instead of simply playing audio files using a media player because of

the queuing mechanism of the TTS engine. Instead of having to determine the

opportune moment to play an audible cue and relying on callbacks to get the timing

right, we can instead queue up our earcons among the text we send to the TTS engine.

We then know that our earcons will be played at the appropriate time, and we can use

the same pathway to get our sounds to the user, including the onUtteranceCompleted()
callbacks to let us know where we are.

Playing Silence
The TTS engine has yet one more play method that we can use: playSilence(). This

method also has three arguments like speak() and playEarcon(), where the second

argument is the queue mode and the third is the optional params HashMap. The first

argument to playSilence() is a long that represents the number of milliseconds to play

silence for. You’d most likely use this method with the QUEUE_ADD mode to separate two

different strings of text in time. That is, you could insert a period of silence between two

strings of text without having to manage the wait time in your application. You’d simply

call speak(), playSilence(), and speak() again to get the desired effect. Here is an

example of using playSilence() to get a two-second delay:

mTts.playSilence(2000, TextToSpeech.QUEUE_ADD, params);

Choosing a Different Text-to-Speech Engine
To specify a particular TTS engine, the setEngineByPackageName() method can be used

with an appropriate engine package name as the argument. For Pico, the package name

is com.svox.pico. To get the user’s default TTS engine package name, use the

getDefaultEngine() method. These two methods must not be called before reaching

the onInit() method, as they will not work otherwise. These two methods are also not

available prior to Android 2.2.

Using Language Methods
We haven’t yet addressed the question of language, so we’ll turn to that now. The TTS

capability reads text using a voice that corresponds to the language the voice was

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 841

created for, that is, the Italian voice is expecting to see text in the Italian language. The

voice recognizes features of the text to pronounce it correctly. For this reason, it doesn’t

make sense to use the wrong language voice with the text sent to the TTS engine.

Speaking French text with an Italian voice is likely to cause problems; it is best to match

up the locale of the text with the locale of the voice.

The TTS engine provides some methods for languages, to both find out what languages

are available and set the language for speaking. The TTS engine has only a certain

number of language packs available, although it will be able to reach out to the Android

Market to get more if they are available. You saw some code for this in Listing 24–1

within the onActivityResult() callback, where an Intent was created to get a missing

language. Of course, it is possible that the desired language pack has not been made

available yet, but more and more will be available over time.

The TextToSpeech method to check on a language is isLanguageAvailable(Locale
locale). Since locales can represent a country and a language, and sometimes a variant

too, the answer back is not a simple true or false. The answer could be one of the

following: TextToSpeech.LANG_COUNTRY_AVAILABLE, which means that both country and

language are supported; TextToSpeech.LANG_AVAILABLE, which means that the language

is supported but not the country; and TextToSpeech.LANG_NOT_SUPPORTED, which means

that nothing is supported. If you get back TextToSpeech.LANG_MISSING_DATA, the

language is supported, but the data files were not found by the TTS engine. Your

application should direct the user to the Android Market, or another suitable source, to

find the missing data files. For example, the French language might be supported, but

not Canadian French. If that were the case and Locale.CANADA_FRENCH was passed to

the TTS engine, the response would be TextToSpeech.LANG_AVAILABLE, not

TextToSpeech.LANG_COUNTRY_AVAILABLE. The other possible return value is a special case

where the locale might include a variant, in which case the response could be

TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE, which means everything is supported.

Using isLanguageAvailable() is a tedious way to determine all of the languages

supported by the TTS engine. Fortunately, we can ask the TTS engine to tell us which

languages are ready to be used. If you look carefully at Listing 24–4, in the

onActivityResult() callback contained in the section where we receive the response

from the intent, you’ll see that the data object contains a list of languages that are

supported by the TTS engine. Look under the CHECK_VOICE_DATA_PASS case for the

ArrayList variable called available. It has been set to an array of voice strings. The

values will look something like eng-USA or fra-FRA. While locale strings are usually of the

form ll_cc where ll is a two-character representation of a language and cc is a two-

character representation of a country, these lll-ccc strings from the TTS engine can

also be used to construct a locale object for use with the TTS engine. Unfortunately,

we’ve received back an array of strings instead of locales, so we’ll have to do some

parsing or mapping to figure out what voices are truly available for your desired TTS

engine.

The method to set a language is setLanguage(Locale locale). This returns the same

result codes as isLanguageAvailable(). If you wish to use this method, invoke it once

the TTS engine has been initialized, that is, in the onInit() method or later. Otherwise,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 842

your language choice may not take effect. To get the current default locale of the device,

use the Locale.getDefault() method, which will return a locale value such as en_US or

the appropriate value for where you are. Use the getLanguage() method of the

TextToSpeech class to find out the current locale of the TTS engine. As you did with

setLanguage(), do not call getLanguage() before onInit(). Values from getLanguage()

will look like eng_USA. Notice that now we’ve got an underscore instead of a hyphen

between the language and the country. While Android appears to be forgiving when it

comes to locale strings, it would be nice to see the API get more consistent in the future.

It would have been quite acceptable for us to use something like this in our example to

set the language for the TTS engine:

switch(mTts.setLanguage(Locale.getDefault())) {
case TextToSpeech.LANG_COUNTRY_AVAILABLE: …

At the beginning of this chapter, we pointed out the main text-to-speech setting of

“Always use my settings”, which overrides application settings for language. As of

Android 2.2, the method areDefaultsEnforced() of the TextToSpeech class will tell you

whether or not the user has selected this option by returning true or false. Within your

application, you can tell if your language choice would be overridden and take

appropriate action as necessary.

Finally, to wrap up this discussion of TTS, we’ll cover a few other methods you can use.

The setPitch(float pitch) method will change the voice to be higher or lower pitched,

without changing the speed of the speaking. The normal value for pitch is 1.0. The

lowest meaningful value appears to be 0.5 and the highest 2.0; you can set values lower

and higher, but they don’t appear to change the pitch any more after crossing these

thresholds. The same thresholds appear to hold for the setSpeechRate(float rate)

method. That is, you pass this method a float argument with a value between 0.5 and

2.0, where 1.0 would be a normal speech rate. A number higher than 1.0 yields faster

speech, and one lower than 1.0 yields slower speech. Another method you might want

to use is isSpeaking(), which returns true or false to indicate whether or not the TTS

engine is currently speaking anything (including silence from playSilence()). If you need

to be notified when the TTS engine has completed saying everything from its queue, you

could implement a BroadcastReceiver for the ACTION_TTS_QUEUE_PROCESSING_COMPLETED

broadcast.

References
Here are some helpful references to topics you may wish to explore further:

 http://www.androidbook.com/projects. Look here for a list of downloadable

projects related to this book. For this chapter look for a zip file called

ProAndroid3_Ch24_TextToSpeech.zip. This zip file contains all projects from

this chapter, listed in separate root directories. There is also a README.TXT file

that describes exactly how to import projects into Eclipse from one of these zip

files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 843

 http://groups.google.com/group/tts-for-android: This URL is for the Google

group for discussing the TextToSpeech API.

 https://groups.google.com/group/eyes-free: This URL is for the Eyes-Free

Project Google Group, for discussing an open source project to provide

accessibility capabilities for Android. Plus, there are links here to source code.

Summary
In this chapter, we’ve shown you how to get your Android application to talk to the user.

Android has incorporated a very nice TTS engine to facilitate this functionality. For a

developer, there’s not much to figure out. The Pico engine takes care of most of the

work for us. When Pico runs into trouble, there are ways to get to the desired effect, as

we’ve demonstrated. The advanced features make life pretty easy too. The thing to keep

in mind when working with text-to-speech engines is that you must be a good mobile

citizen: conserve resources, share the TTS engine responsibly, and use your voice

appropriately.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 24: Exploring Text to Speech 844

http://lib.ommolketab.ir
http//lib.ommolketab.ir

845

845

 Chapter

Touch Screens
Many Android devices incorporate touch screens. When a device does not have a
physical keyboard, much of the user input must come through the touch screen.
Therefore your applications will often need to be able to deal with touch input from the
user. You’ve most likely already seen the virtual keyboard that displays on the screen
when text input is required from the user. We used touch with mapping applications in
Chapter 17 to pan the maps sideways. The implementations of the touch screen
interface have been hidden from you so far, but now we’ll show you how to take
advantage of the touch screen.

This chapter is made up of four major parts. The first section will deal with MotionEvent
objects, which is how Android tells an application that the user is touching a touch
screen. We’ll also cover the VelocityTracker and drag and drop. The second section
will deal with multitouch, where a user can have more than one finger at a time on the
touch screen. The third section covers touches with maps, since there are some special
classes and methods to help us with maps and touch screens. Finally, we will include a
section on gestures, a specialized type of capability in which touch sequences can be
interpreted as commands.

Understanding MotionEvents
In this section, we’re going to cover how Android tells applications about touch events
from the user. For now, we will only be concerned with touching the screen one finger at
a time (we’ll cover multi-touch in a later section).

At the hardware level, a touch screen is made up of special materials that can pick up
pressure and convert that to screen coordinates. The information about the touch is
turned into data, and that data is passed to the software to deal with it.

The MotionEvent Object
When a user touches the touch screen of an Android device, a MotionEvent object is
created. The MotionEvent contains information about where and when the touch took

25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 846

place, as well as other details of the touch event. The MotionEvent object gets passed to
an appropriate method in your application. This could be the onTouchEvent() method of
a View object. Remember that the View class is the parent of quite a few classes in
Android, including Layouts, Buttons, Lists, Surfaces, Clocks, and more. This means we
can interact with all of these different types of View objects using touch events. When
the method is called, it can inspect the MotionEvent object to decide what to do. For
example, a MapView could use touch events to move the map sideways to allow the user
to pan the map to other points of interest. Or a virtual keyboard object could receive
touch events to activate the virtual keys to provide text input to some other part of the
user interface (UI).

A MotionEvent object is one of a sequence of events related to a touch by the user. The
sequence starts when the user first touches the touch screen, continues through any
movements of the finger across the surface of the touch screen, and ends when the
finger is lifted from the touch screen. The initial touch (an ACTION_DOWN action), the
movements sideways (ACTION_MOVE actions) and the up event (an ACTION_UP action) of
the finger all create MotionEvent objects. You could receive quite a few ACTION_MOVE
events as the finger moves across the surface before you receive the final ACTION_UP
event. Each MotionEvent object contains information about what action is being
performed, where the touch is taking place, how much pressure was applied, how big
the touch was, when the action occurred, and when the initial ACTION_DOWN occurred.
There is a fourth possible action, which is ACTION_CANCEL. This action is used to indicate
that a touch sequence is ending without actually doing anything. Finally, there is
ACTION_OUTSIDE, which is set in a special case where a touch occurs outside of our
window but we still get to find out about it.

There is another way to receive touch events, and that is to register a callback handler
for touch events on a View object. The class to receive the events must implement the
View.OnTouchListener interface, and the View object’s setOnTouchListener() method
must be called to set up the handler for that View. The implementing class of the
View.OnTouchListener must implement the onTouch() method. Whereas the
onTouchEvent() method takes just a MotionEvent object as a parameter, onTouch()
takes both a View and a MotionEvent object as parameters. This is because the
OnTouchListener could receive MotionEvent objects for multiple views. This will become
clearer with our next example application.

If a MotionEvent handler (either through the onTouchEvent() or onTouch() method)
consumes the event and no one else needs to know about it, the method should return
true. This tells Android that the event does not need to be passed to any other views. If
the View object is not interested in this event or any future events related to this touch
sequence, it returns false. The onTouchEvent() method of the base class View doesn’t
do anything and returns false. Subclasses of View may or may not do the same. For
example, a Button object will consume a touch event, since a touch is equivalent to a
click, and therefore returns true from the onTouchEvent() method. Upon receiving an
ACTION_DOWN event, the Button will change its color to indicate that it is in the process of
being clicked. The Button also wants to receive the ACTION_UP event to know when the
user has let go, so it can initiate the logic of clicking the button. If a Button object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 847

returned false from onTouchEvent(), it would not receive any more MotionEvent objects
to tell it when the user lifted a finger from the touch screen.

When we want touch events to do something new with a particular View object, we can
extend the class, override the onTouchEvent() method, and put our logic there. We can
also implement the View.OnTouchListener interface and set up a callback handler on the
View object. By setting up a callback handler with onTouch(), MotionEvents will be
delivered there first before they go to the View’s onTouchEvent() method. Only if the
onTouch() method returned false would our View’s onTouchEvent() method get called.
Let’s get to our example application where this should be easier to see.

NOTE: We will give you a URL at the end of the chapter which you can use to download projects

of this chapter. This will allow you to import these projects into your Eclipse directly.

Listing 25–1 shows the XML of a layout file. Create a new Android project in Eclipse
starting with this layout.

Listing 25–1. XML Layout File for TouchDemo1

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <RelativeLayout android:id="@+id/layout1"
 android:tag="trueLayoutTop" android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1" >

 <com.androidbook.touch.demo1.TrueButton android:text="returns true"
 android:id="@+id/trueBtn1" android:tag="trueBtnTop"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <com.androidbook.touch.demo1.FalseButton android:text="returns false"
 android:id="@+id/falseBtn1" android:tag="falseBtnTop"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/trueBtn1" />

 </RelativeLayout>
 <RelativeLayout android:id="@+id/layout2"
 android:tag="falseLayoutBottom" android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1" android:background="#FF00FF" >

 <com.androidbook.touch.demo1.TrueButton android:text="returns true"
 android:id="@+id/trueBtn2" android:tag="trueBtnBottom"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 848

 <com.androidbook.touch.demo1.FalseButton android:text="returns false"
 android:id="@+id/falseBtn2" android:tag="falseBtnBottom"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/trueBtn2" />

 </RelativeLayout>
</LinearLayout>

There are a couple of things to point out about this layout. We’ve incorporated tags on
our UI objects, and we’ll be able to refer to these tags in our code as events occur on
them. We’ve also used RelativeLayouts to position our objects. Also notice how we’ve
used custom objects (TrueButton and FalseButton). You’ll see in the Java code that
these are classes extended from the Button class. Since these are Buttons, we can use
all of the same XML attributes we would use on other buttons. Figure 25–1 shows what
this layout looks like, and Listing 25–2 shows our button Java code.

Figure 25–1. The UI of our TouchDemo1 application

Listing 25–2. Java Code for the Button Classes for TouchDemo1

// This file is BooleanButton.java
import android.content.Context;
import android.util.AttributeSet;
import android.util.Log;
import android.view.MotionEvent;
import android.widget.Button;

public abstract class BooleanButton extends Button {
 protected boolean myValue() {
 return false;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 849

 public BooleanButton(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 String myTag = this.getTag().toString();
 Log.v(myTag, "-----------------------------------");
 Log.v(myTag, MainActivity.describeEvent(this, event));
 Log.v(myTag, "super onTouchEvent() returns " +
 super.onTouchEvent(event));
 Log.v(myTag, "and I'm returning " + myValue());
 return(myValue());
 }
}

// This file is TrueButton.java
import android.content.Context;
import android.util.AttributeSet;

public class TrueButton extends BooleanButton {
 protected boolean myValue() {
 return true;
 }

 public TrueButton(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

// This file is FalseButton.java
import android.content.Context;
import android.util.AttributeSet;

public class FalseButton extends BooleanButton {

 public FalseButton(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

The BooleanButton class was built so we can reuse the onTouchEvent() method, which
we’ve customized by adding the logging. Then, we created TrueButton and FalseButton,
which will respond differently to the MotionEvents passed to them. This will be made
clearer when you look at the main activity code, which is shown in Listing 25–3.

Listing 25–3. Java Code for Our Main Activity

// This file is MainActivity.java
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 850

import android.widget.Button;
import android.widget.RelativeLayout;

public class MainActivity extends Activity implements OnTouchListener {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 RelativeLayout layout1 =
 (RelativeLayout) findViewById(R.id.layout1);
 layout1.setOnTouchListener(this);
 Button trueBtn1 = (Button)findViewById(R.id.trueBtn1);
 trueBtn1.setOnTouchListener(this);
 Button falseBtn1 = (Button)findViewById(R.id.falseBtn1);
 falseBtn1.setOnTouchListener(this);

 RelativeLayout layout2 =
 (RelativeLayout) findViewById(R.id.layout2);
 layout2.setOnTouchListener(this);
 Button trueBtn2 = (Button)findViewById(R.id.trueBtn2);
 trueBtn2.setOnTouchListener(this);
 Button falseBtn2 = (Button)findViewById(R.id.falseBtn2);
 falseBtn2.setOnTouchListener(this);
 }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 String myTag = v.getTag().toString();
 Log.v(myTag, "-----------------------------");
 Log.v(myTag, "Got view " + myTag + " in onTouch");
 Log.v(myTag, describeEvent(v, event));
 if("true".equals(myTag.substring(0, 4))) {
 /* Log.v(myTag, "*** calling my onTouchEvent() method ***");
 v.onTouchEvent(event);
 Log.v(myTag, "*** back from onTouchEvent() method ***"); */
 Log.v(myTag, "and I'm returning true");
 return true;
 }
 else {
 Log.v(myTag, "and I'm returning false");
 return false;
 }
 }

 protected static String describeEvent(View view, MotionEvent event) {
 StringBuilder result = new StringBuilder(300);
 result.append("Action: ").append(event.getAction()).append("\n");
 result.append("Location: ").append(event.getX()).append(" x ")
 .append(event.getY()).append("\n");
 if(event.getX() < 0 || event.getX() > view.getWidth() ||
 event.getY() < 0 || event.getY() > view.getHeight()) {
 result.append(">>> Touch has left the view <<<\n");
 }
 result.append("Edge flags: ").append(event.getEdgeFlags());
 result.append("\n");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 851

 result.append("Pressure: ").append(event.getPressure());
 result.append(" ").append("Size: ").append(event.getSize());
 result.append("\n").append("Down time: ");
 result.append(event.getDownTime()).append("ms\n");
 result.append("Event time: ").append(event.getEventTime());
 result.append("ms").append(" Elapsed: ");
 result.append(event.getEventTime()-event.getDownTime());
 result.append(" ms\n");
 return result.toString();
 }
}

Our main activity code sets up callbacks on our buttons and the layouts so we can
process the touch events (i.e., the MotionEvent objects) for everything in our UI. We’ve
added lots of logging, so you’ll be able to tell exactly what’s going on as touch events
occur. When you compile and run this application, you should see a screen that looks
like Figure 25–1.

To get the most out of this application, you need to open LogCat in Eclipse to watch the
messages fly by as you touch the touch screen. This works in the emulator as well as on
a real device. We also advise you to maximize the LogCat window, so you can more
easily scroll up and down to see all of the generated events from this application. To
maximize the window, just double-click the LogCat tab. Now, go to the application UI,
and touch and release on the topmost button marked “returns true” (if you’re using the
emulator, use your mouse to click and release the button). You should see at least two
events logged in LogCat. The messages are tagged as coming from trueBtnTop and
were logged from the onTouch() method in MainActivity. See MainActivity.java for the
onTouch() method’s code. As you view the LogCat output, see which method calls are
producing the values. For example, the value displayed after Action comes from the
getAction() method. Listing 25–4 shows a sample of what you might see in LogCat
from the emulator, and Listing 25–5 shows a sample of what you might see from a real
device.

Listing 25–4. Sample LogCat Messages from TouchDemo1 from the Emulator

trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 0
trueBtnTop Location: 52.0 x 20.0
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.0 Size: 0.0
trueBtnTop Down time: 163669ms
trueBtnTop Event time: 163669ms Elapsed: 0 ms
trueBtnTop and I'm returning true
trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 1
trueBtnTop Location: 52.0 x 20.0
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.0 Size: 0.0
trueBtnTop Down time: 163669ms
trueBtnTop Event time: 163831ms Elapsed: 162 ms
trueBtnTop and I'm returning true

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 852

Listing 25–5. Sample LogCat Messages from TouchDemo1 from a Real Device

trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 0
trueBtnTop Location: 42.8374 x 25.293747
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.05490196 Size: 0.2
trueBtnTop Down time: 24959412ms
trueBtnTop Event time: 24959412ms Elapsed: 0 ms
trueBtnTop and I'm returning true
trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 2
trueBtnTop Location: 42.8374 x 25.293747
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.05490196 Size: 0.2
trueBtnTop Down time: 24959412ms
trueBtnTop Event time: 24959530ms Elapsed: 118 ms
trueBtnTop and I'm returning true
trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 1
trueBtnTop Location: 42.8374 x 25.293747
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.05490196 Size: 0.2
trueBtnTop Down time: 24959412ms
trueBtnTop Event time: 24959567ms Elapsed: 155 ms
trueBtnTop and I'm returning true

The first event has an action of 0, which is ACTION_DOWN. The last event has an action of
1, which is ACTION_UP. If you used a real device, you might see more than two events.
Any events in between ACTION_DOWN and ACTION_UP will most likely have an action of 2,
which is ACTION_MOVE. The other possibilities are an action of 3, which is ACTION_CANCEL,
and 4, which is ACTION_OUTSIDE. When using real fingers on a real touch screen, you
can’t always touch and release without a slight movement on the surface, so some
ACTION_MOVE events are not unexpected.

There are some other differences between the emulator and a real device. Notice that
the precision of the location within the emulator is in whole numbers (52 by 20), whereas
on a real device you see fractions (42.8374 by 25.293747). The location for a
MotionEvent has an X and Y component, where X represents the distance from the left-
hand side of the View object to the point touched and Y represents the distance from the
top of the View object to the point touched.

You should also notice that the pressure in the emulator is 0, as is the size. For a real
device, the pressure represents how hard the finger pressed down, and size represents
how large the touch is. If you touch lightly with the tip of your pinky finger, the values for
pressure and size will be small. If you press hard with your thumb, both pressure and
size will be larger. The documentation says that the values of pressure and size will be
between 0 and 1. However, due to differences in hardware, it may be very difficult to use
any absolute numbers in your application for making decisions about pressure and size.
It would be fine to compare pressure and size between MotionEvents as they occur in
your application, but you may run into trouble if you decide that pressure must exceed a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 853

value such as 0.8 to be considered a hard press. On that particular device, you might
never get a value above 0.8. You might not even get a value above 0.2.

The down time and event time values operate in the same way between the emulator
and a real device, the only difference being that the real device has much larger values.
The elapsed times work the same.

The edge flags are for detecting when a touch has reached the edge of the physical
screen. The Android SDK documentation says that the flags are set to indicate that a
touch has intersected with an edge of the display (top, bottom, left, or right). However,
the getEdgeFlags() method may always return zero, depending on what device or
emulator it is used on. With some hardware, it is too difficult to actually detect a touch at
the edge of the display, so Android is supposed to pin the location to the edge and set
the appropriate edge flag for you. This doesn’t always happen, so you should not rely on
the edge flags being set properly. The MotionEvent class provides a setEdgeFlags()
method so you can set the flags yourself if you want to.

The last thing to notice is that our onTouch() method returns true, because our
TrueButton is coded to return true. Returning true tells Android that the MotionEvent
object has been consumed and there is no reason to give it to someone else. It also tells
Android to keep sending touch events from this touch sequence to this method. That’s
why we got the ACTION_UP event, as well as the ACTION_MOVE event in the case of the real
device.

Now touch the “returns false” button near the top of the screen. For the remainder of
this section, we will show only sample LogCat output from a real device. The differences
have been explained, so if you are working with the emulator, you should understand
why you are seeing what you are seeing. Listing 25–6 shows a sample LogCat output for
your “returns false” touch.

Listing 25–6. Sample LogCat from Touching the Top “returns false” Button

falseBtnTop -----------------------------
falseBtnTop Got view falseBtnTop in onTouch
falseBtnTop Action: 0
falseBtnTop Location: 61.309372 x 44.281494
falseBtnTop Edge flags: 0
falseBtnTop Pressure: 0.0627451 Size: 0.26666668
falseBtnTop Downtime: 28612178ms
falseBtnTop Event time: 28612178ms Elapsed: 0 ms
falseBtnTop and I'm returning false
falseBtnTop -----------------------------------
falseBtnTop Action: 0
falseBtnTop Location: 61.309372 x 44.281494
falseBtnTop Edge flags: 0
falseBtnTop Pressure: 0.0627451 Size: 0.26666668
falseBtnTop Downtime: 28612178ms
falseBtnTop Event time: 28612178ms Elapsed: 0 ms
falseBtnTop super onTouchEvent() returns true
falseBtnTop and I'm returning false
trueLayoutTop -----------------------------
trueLayoutTop Got view trueLayoutTop in onTouch
trueLayoutTop Action: 0
trueLayoutTop Location: 61.309372 x 116.281494

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 854

trueLayoutTop Edge flags: 0
trueLayoutTop Pressure: 0.0627451 Size: 0.26666668
trueLayoutTop Downtime: 28612178ms
trueLayoutTop Event time: 28612178ms Elapsed: 0 ms
trueLayoutTop and I'm returning true
trueLayoutTop -----------------------------
trueLayoutTop Got view trueLayoutTop in onTouch
trueLayoutTop Action: 2
trueLayoutTop Location: 61.309372 x 111.90039
trueLayoutTop Edge flags: 0
trueLayoutTop Pressure: 0.0627451 Size: 0.26666668
trueLayoutTop Downtime: 28612178ms
trueLayoutTop Event time: 28612217ms Elapsed: 39 ms
trueLayoutTop and I'm returning true
trueLayoutTop -----------------------------
trueLayoutTop Got view trueLayoutTop in onTouch
trueLayoutTop Action: 1
trueLayoutTop Location: 55.08958 x 115.30792
trueLayoutTop Edge flags: 0
trueLayoutTop Pressure: 0.0627451 Size: 0.26666668
trueLayoutTop Downtime: 28612178ms
trueLayoutTop Event time: 28612361ms Elapsed: 183 ms
trueLayoutTop and I'm returning true

Now, you’re seeing very different behavior, so we’ll explain what happened. Android
receives the ACTION_DOWN event in a MotionEvent object and passes it to our onTouch()
method in the MainActivity class. Our onTouch() method records the information in
LogCat and returns false. This tells Android that our onTouch() method did not
consume the event, so Android looks to the next method to call, which in our case is the
overridden onTouchEvent() method of our FalseButton class. Since FalseButton is an
extension of the BooleanButton class, refer to the onTouchEvent() method in
BooleanButton.java to see the code. In the onTouchEvent() method, we again write
information to LogCat, we call the parent class’s onTouchEvent() method, and then we
also return false. Notice that the location information in LogCat is exactly the same as
before. This should be expected because we’re still in the same View object, the
FalseButton. We see that our parent class wants to return true from onTouchEvent()
and we can see why. If you look at the button in the UI it should be a different color from
the “returns true” button. Our “returns false” button now looks like it’s partway through
being pressed. That is, it looks like a button looks when it has been pressed but has not
been released. Our custom method returned false instead of true. Because we again
told Android that we did not consume this event, by returning false, Android never
sends the ACTION_UP event to our button so our button doesn’t know that the finger ever
lifted from the touch screen. Therefore, our button is still in the pressed state. If we had
returned true like our parent wanted to, we would eventually have received the
ACTION_UP event so we could change the color back to the normal button color. To
recap, every time we return false from a UI object for a received MotionEvent object,
Android stops sending MotionEvent objects to that UI object, and Android keeps looking
for another UI object to consume our MotionEvent object.

You might have realized that when we touched our “returns true” button, we didn’t get a
color change in the button. Why is that? Well, our onTouch() method was called before
any actual button methods got called, and onTouch() returned true, so Android never

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 855

bothered to call the “returns true” button’s onTouchEvent() method. If you add a
v.onTouchEvent(event); line to the onTouch() method just before returning true, you will
see the button change color. You will also see more log lines in LogCat, since our
onTouchEvent() method is also writing information to LogCat.

Let’s keep going through the LogCat output. Now that Android has tried twice to find a
consumer for the ACTION_DOWN event and failed, it goes to the next View in the application
that could possibly receive the event, which in our case is the layout underneath the
button. We called our top layout trueLayoutTop, and we can see that it received the
ACTION_DOWN event.

Notice that our onTouch() method got called again, although now with the layout view
and not the button view. Everything about the MotionEvent object passed to onTouch()
for trueLayoutTop is the same as before, including the times, except for the Y coordinate
of the location. The Y coordinate changed from 44.281494 for the button to 116.281494
for the layout. This makes sense because the button is not in the upper left corner of the
layout, it’s below the “returns true” button. Therefore the Y coordinate of the touch
relative to the layout is larger than the Y coordinate of the same touch relative to the
button; the touch is further away from the top edge of the layout than it is from the top
edge of the button. Because onTouch() for the trueLayoutTop returns true, Android
sends the rest of the touch events to the layout and we see the log records
corresponding to the ACTION_MOVE and the ACTION_UP events. Go ahead and touch the
top “returns false” button again, and notice that the same set of log records occurs.
That is, onTouch() is called for the falseBtnTop, onTouchEvent() is called for
falseBtnTop, and then onTouch() is called for trueLayoutTop for the rest of the events.
Android only stops sending the events to the button for one touch sequence at a time.
For a new sequence of touch events, Android will send to the button unless it gets
another return of false from the called method, which it still does in our sample
application.

Now touch your finger on the top layout but not on either button, and then drag your
finger around a bit and lift it off the touch screen (if you’re using the emulator, just use
your mouse to make a similar motion). Notice a stream of log messages in LogCat,
where the first record has an action of ACTION_DOWN, and then many ACTION_MOVE events
are followed by an ACTION_UP event.

Now, touch the top “returns true” button, and before lifting your finger from the button,
drag your finger around the screen and then lift it off. Listing 25–7 shows some new
information in LogCat.

Listing 25–7. LogCat Records Showing a Touch Outside of Our View

[… log messages of an ACTION_DOWN event followed by some ACTION_MOVE events …]

trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 2
trueBtnTop Location: 150.41768 x 22.628128
trueBtnTop >>> Touch has left the view <<<
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.047058824 Size: 0.13333334
trueBtnTop Downtime: 31690859ms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 856

trueBtnTop Event time: 31691344ms Elapsed: 485 ms
trueBtnTop and I'm returning true

[… more ACTION_MOVE events logged …]

trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 1
trueBtnTop Location: 291.5864 x 223.43854
trueBtnTop >>> Touch has left the view <<<
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.047058824 Size: 0.13333334
trueBtnTop Downtime: 31690859ms
trueBtnTop Event time: 31692493ms Elapsed: 1634 ms
trueBtnTop and I'm returning true

Even after your finger drags itself off of the button, we continue to get notified of touch
events related to the button. The first record in Listing 25–7 shows an event record
where we’re no longer on the button. In this case, the X coordinate of the touch event is
to the right of the edge of our button object. However, we keep getting called with
MotionEvent objects until we get an ACTION_UP event, because we continue to return
true from the onTouch() method. Even when you finally lift your finger off of the touch
screen, and even if your finger isn’t on the button, our onTouch() method still gets called
to give us the ACTION_UP event because we keep returning true. This is something to
keep in mind when dealing with MotionEvents. When the finger has moved off of the
view, we could decide to cancel whatever operation might have been performed and
return false from the onTouch() method, so we don’t get notified of further events. Or
we could choose to continue to receive events (by returning true from the onTouch()
method) and only perform the logic if the finger returns to our view before lifting off.

The touch sequence of events got associated to our top “returns true” button when we
returned true from onTouch(). This told Android that it could stop looking for an object
to receive the MotionEvent objects and just send all future MotionEvent objects for this
touch sequence to us. Even if we encounter another view when dragging our finger,
we’re still tied to the original view for this sequence.

Let’s see what happens with the lower half of our application. Go ahead and touch the
“returns true” button in the bottom half. We see the same thing as happened with the
top “returns true” button. Because onTouch() returns true, Android sends us the rest of
the events in the touch sequence until the finger is lifted from the touch screen. Now,
touch the bottom “returns false” button. Once again, the onTouch() method and
onTouchEvent() methods return false (both associated with the falseBtnBottom view
object). But this time, the next view to receive the MotionEvent object is the
falseLayoutBottom object, and it also returns false. Now, we’re finished.

Because the onTouchEvent() method called the super’s onTouchEvent() method, the
button has changed color to indicate it’s halfway through being pressed. Again, the
button will stay this way, because we never get the ACTION_UP event in this touch
sequence, since our methods return false all the time. Unlike before, even the layout is
not interested in this event. If you were to touch the bottom “returns false” button and
hold it down and then drag your finger around the display, you would not see any extra
records in LogCat, because no more MotionEvent objects are sent to us. We always

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 857

returned false, so Android won’t bother us with any more events for this touch
sequence. Again, if we start a new touch sequence, we can see new LogCat records
showing up. If you initiate a touch sequence in the bottom layout and not on a button,
you will see a single event in LogCat for falseLayoutBottom that returns false and then
nothing after that (until you start a new touch sequence).

So far, we’ve used buttons to show you the effects of MotionEvent events from touch
screens. It’s worth pointing out that, normally, you would implement logic on buttons
using the onClick() method. We used buttons for this sample application, because
they’re easy to create and they are subclasses of View that can therefore receive touch
events just like any other view. Remember that these techniques apply to any View
object in your application, be it a standard or customized view class.

Recycling MotionEvents
You may have noticed the recycle() method of the MotionEvent class in the Android
reference documentation. It is tempting to want to recycle the MotionEvents that you
receive in onTouch() or onTouchEvent(), but don’t do it. If your callback method is not
consuming the MotionEvent object and you’re returning false, the MotionEvent object is
likely to be handed to some other method or view or our activity, so you don't want
Android recycling it yet. Even if you consumed the event and returned true, the event
object doesn't belong to you, so you should not recycle it.

If you look at MotionEvent, you will see a few variations of a method called obtain().
This is either creating a copy of a MotionEvent or a brand new MotionEvent. Your copy,
or your brand new event object, is the event object that you should recycle when you
are done with it. For example, if you want to hang onto an event object that is passed to
you via a callback, you should use obtain() to make a copy, because once you return
from the callback, that event object will be recycled by Android, and you may get
strange results if you continue to use it. When you are finished using your copy, you
invoke recycle() on it.

Using VelocityTracker
Android provides a class to help handle touch screen sequences, and that class is
VelocityTracker. When a finger is in motion on a touch screen, it might be nice to know
how fast it is moving across the surface. For example, if the user is dragging a finger
quickly across the screen, this could indicate a flinging motion, for which your
application may wish to perform flinging logic. Android provides VelocityTracker to help
with the math involved.

To use VelocityTracker, you first get an instance of a VelocityTracker by calling the
static method VelocityTracker.obtain(). You can then add MotionEvent objects to it
with the addMovement(MotionEvent ev) method. You would call this method in your
handler that receives MotionEvent objects, from a handler method such as onTouch(), or
from a view’s onTouchEvent(). The VelocityTracker uses the MotionEvent objects to
figure out what is going on with the user’s touch sequence. Once VelocityTracker has

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 858

at least two MotionEvent objects in it, we can use the other methods to find out what’s
happening.

The two VelocityTracker methods—getXVelocity() and getYVelocity()—return the
corresponding velocity of the finger in the X and Y directions respectively. The value
returned from these two methods will represent pixels per time period. This could be
pixels per millisecond or per second or really anything you want. To tell the
VelocityTracker what time period to use, and before you can call these two getter
methods, you need to invoke the VelocityTracker’s computeCurrentVelocity(int
units) method. The value of units represents how many milliseconds are in the time
period for measuring the velocity. If you want pixels per millisecond, use a units value of
1; if you want pixels per second, use a units value of 1000. The value returned by the
getXVelocity() and getYVelocity() methods will be positive if the velocity is toward the
right (for X) or down (for Y). The value returned will be negative if the velocity is toward
the left (for X) or up (for Y).

When you are finished with the VelocityTracker object you got with the obtain()
method, call the VelocityTracker object’s recycle() method. Listing 25–8 shows a
sample onTouchEvent() handler for an activity. It turns out that an activity has an
onTouchEvent() callback, which is called whenever no views have handled the touch
event. Since we’re using a stock, empty layout, we have no views consuming our touch
events.

Listing 25–8. Sample Activity That Uses VelocityTracker

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.VelocityTracker;

public class MainActivity extends Activity {
 private static final String TAG = "VelocityTracker";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 private VelocityTracker vTracker = null;

 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 switch(action) {
 case MotionEvent.ACTION_DOWN:
 if(vTracker == null) {
 vTracker = VelocityTracker.obtain();
 }
 else {
 vTracker.clear();
 }
 vTracker.addMovement(event);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 859

 break;
 case MotionEvent.ACTION_MOVE:
 vTracker.addMovement(event);
 vTracker.computeCurrentVelocity(1000);
 Log.v(TAG, "X velocity is " + vTracker.getXVelocity() +
 " pixels per second");
 Log.v(TAG, "Y velocity is " + vTracker.getYVelocity() +
 " pixels per second");
 break;
 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_CANCEL:
 vTracker.recycle();
 break;
 }
 return true;
 }
}

There are a few key things to note about VelocityTracker. Obviously, when you’ve only
added one MotionEvent to a VelocityTracker (i.e., the ACTION_DOWN event), the velocities
cannot be computed as anything other than zero. But we need to add the starting point
so that the subsequent ACTION_MOVE events can calculate velocities then. It turns out that
the velocities reported after ACTION_UP is added to our VelocityTracker are also zero.
Therefore, do not read the X and Y velocities after adding ACTION_UP expecting to get
motion. For example, if you’re writing a gaming application in which the user is throwing
an object on the screen, use the velocities after adding the last ACTION_MOVE event to
calculate the object’s trajectory across the game view.

VelocityTracker is somewhat costly in terms of performance, so use it sparingly. Also,
make sure that you recycle it as soon as you are done with it in case someone else
wants to use one. There can be more than one VelocityTracker in use in Android, but
they can take up a lot of memory, so give yours back if you’re not going to continue to
use it. In Listing 25–8, we also use the clear() method if we’re starting a new touch
sequence (i.e., if we get an ACTION_DOWN event and our VelocityTracker object already
exists) instead of recycling this one and obtaining a new one.

Exploring Drag and Drop
Now that you’ve seen how to receive MotionEvent objects in code, let’s do something
interesting with them. We’re going to explain how to implement drag and drop. To start,
let’s do some dragging. In this next sample application, we’re going to take a white dot
and drag it to a new location in our layout. Using Listing 25–9, create a new Android
project, set up the layout XML file as indicated, and add a new class called Dot using the
Java code. Note that the package name in the layout XML file for the Dot element must
match the package name you use for your application. Also note that we can leave the
main Activity class alone, since it is fine as-is. The UI for this application is shown in
Figure 25–2.

Listing 25–9. Sample Layout XML and Java Code for Our Drag Example

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 860

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

 <com.androidbook.touch.dragdemo1.Dot
 android:id="@+id/dot" android:tag="trueDot"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.View;

public class Dot extends View {
 private static final float RADIUS = 20;
 private float x = 30;
 private float y = 30;
 private float initialX;
 private float initialY;
 private float offsetX;
 private float offsetY;
 private Paint backgroundPaint;
 private Paint myPaint;

 public Dot(Context context, AttributeSet attrs) {
 super(context, attrs);

 backgroundPaint = new Paint();
 backgroundPaint.setColor(Color.BLUE);

 myPaint = new Paint();
 myPaint.setColor(Color.WHITE);
 myPaint.setAntiAlias(true);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 switch(action) {
 case MotionEvent.ACTION_DOWN:
 // Need to remember where the initial starting point
 // center is of our Dot and where our touch starts from
 initialX = x;
 initialY = y;
 offsetX = event.getX();
 offsetY = event.getY();
 break;
 case MotionEvent.ACTION_MOVE:
 case MotionEvent.ACTION_UP:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 861

 case MotionEvent.ACTION_CANCEL:
 x = initialX + event.getX() - offsetX;
 y = initialY + event.getY() - offsetY;
 break;
 }
 return(true);
 }

 @Override
 public void draw(Canvas canvas) {
 int width = canvas.getWidth();
 int height = canvas.getHeight();
 canvas.drawRect(0, 0, width, height, backgroundPaint);

 canvas.drawCircle(x, y, RADIUS, myPaint);
 invalidate();
 }
}

Figure 25–2. User interface for our Drag Demo application

When you run this application, you will see a white dot on a blue background. You can
touch the dot and drag it around the screen. When you lift your finger, the dot stays
where it is until you touch it again and drag it somewhere else. We’ve really simplified
this to show you just the basics of how to move an object on the screen. The draw()
method puts the dot at its current location of X and Y. By receiving MotionEvent objects
in the onTouchEvent() method, we can modify the X and Y values by the movement of
our touch. We record the starting position of the dot when we get the ACTION_DOWN
action, as well as the starting touch location. Because the user won’t always touch the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 862

exact center of the object, the touch coordinates will not be the same as the location
coordinates of the object. Also, if our object’s reference point is not the center but the
upper-left corner, we must be sure we take that into account as well.

When your finger starts moving across the screen, we adjust the location of the object
by the deltas in x and y based on the MotionEvents that we get. When you stop moving
(i.e., ACTION_UP), we finalize our location using the last coordinates of your touch. We’re
doing a little cheating here because our Dot view is positioned on the screen relative to
(0,0). That means that we can simply draw the circle relative to (0,0) as opposed to some
other reference point. If our object is not positioned relative to (0,0), we might need to
provide additional offsets for the location of our object. We also don’t have to worry
about scrollbars in this example, which could complicate the calculation of the position
of our object on the screen. But the basic principle is still the same. By knowing the
starting location of the object to be moved, and keeping track of the delta values of a
touch from ACTION_DOWN through to ACTION_UP, we can adjust the location of the object
on the screen.

Dropping an object onto another object on the screen has much less to do with touch
than it does with knowing where things are on the screen. We’re not going to provide an
example here of dropping, but we will explain the principles. As you saw earlier, as we
drag an object around the screen, we are aware of its position relative to one or more
reference points. We can also interrogate objects on the screen for their locations and
sizes. We can then determine if our dragged object is “over” another object. The typical
process of figuring out a drop target for a dragged object is to iterate through the
available objects that can be dropped on and determine if our current position overlaps
with that object. Each object’s size and position (and sometimes shape) can be used to
make this determination. If we get an ACTION_UP event, meaning that the user has let go
of our dragged object, and the object is over something we can drop onto, we can fire
the logic to process the drop action. This might be the action of dragging something to
the trash can, where the object being dragged should be deleted, or it could be
dragging a file to a folder for the purposes of moving or copying it.

NOTE: With Honeycomb (i.e., Android 3.0), Android provides direct support for drag and drop.

We’ll revisit drag and drop in Chapter 31.

Multitouch
Now that you’ve seen single touches in action, let’s move on to multitouch. Multitouch
has gained a lot of interest ever since the TED conference in 2006 at which Jeff Han
demonstrated a multitouch surface for a computer user interface. Using multiple fingers
on a screen opens up a lot of possibilities for manipulating what’s on the screen. For
example, putting two fingers on an image and moving them apart could zoom in on the
image. By placing multiple fingers on an image and turning clockwise, you could rotate
the image on the screen. Android introduced support for multitouch with Android SDK
2.0. In that release you were able to (technically) use up to three fingers on a screen at

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 863

the same time to perform actions such as zoom, rotate, or whatever else you could
imagine doing with multiple touches (we say “technically” because the first Android
devices to support multitouch only supported two fingers). If you think about it, though,
there is no magic to this. If the screen hardware can detect multiple touches as they
initiate on the screen, notify your application as those touches move in time across the
surface of the screen, and notify you when those touches lift off of the screen, your
application can figure out what the user is trying to do with those touches. While it’s not
magic, it isn’t easy either. We’re going to help you understand multitouch in this section.

NOTE: With Android 2.2, the MotionEvent class underwent some changes that make
mutlitouch even more difficult to keep straight, including deprecating a couple of the constants
we’re going to talk about in this section (ACTION_POINTER_ID_MASK and

ACTION_POINTER_ID_SHIFT). This means that for older devices, you will use what we’ll talk
about next. For devices at 2.2 or later, you can make some modifications, which we’ll cover after

this section.

Multitouch Before Android 2.2
The basics of multitouch are exactly the same as for single touches. MotionEvent
objects get created for touches, and these MotionEvent objects are passed to your
methods just like before. Your code can read the data about the touches and decide
what to do. At a basic level, the methods of MotionEvent are the same; that is, we call
getAction(), getDownTime(), getX(), and so on. However, when more than one finger is
touching the screen, the MotionEvent object must include information from all fingers,
with some caveats. The action value from getAction() is for one finger, not all. The
down time value is for the very first finger down and measures the time as long as at
least one finger is down. The location values getX() and getY(), as well as
getPressure() and getSize(), can take an argument for the finger; therefore, you need
to use a pointer index value to request the information for the finger you’re interested in.
There are method calls that we used previously that did not take any argument to
specify a finger (e.g., getX(), getY()), so which finger would the values be for if we used
those methods? You can figure it out, but it takes some work. Therefore, if you don’t
take into account multiple fingers all of the time, you might end up with some strange
results. Let’s dig into this to figure out what to do.

The first method of MotionEvent you need to know about for multitouch is
getPointerCount(). This tells you how many fingers are represented in the MotionEvent
object but doesn’t necessarily tell you how many fingers are actually touching the
screen; that depends on the hardware and on the implementation of Android on that
hardware. You may find that, on certain devices, getPointerCount() does not report all
fingers that are touching, just some. But let’s press on. As soon as you’ve got more than
one finger being reported in MotionEvent objects, you need to start dealing with the
pointer indexes and the pointer IDs.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 864

The MotionEvent object contains information for pointers starting at index 0 and going
up to the number of fingers being reported in that object. The pointer index always starts
at 0; if three fingers are being reported, pointer indexes will be 0, 1, and 2. Calls to
methods such as getX() must include the pointer index for the finger you want
information about. Pointer IDs are integer values representing which finger is being
tracked. Pointer IDs start at 0 for the first finger down, but don’t always start at 0 once
fingers are coming and going on the screen. Think of a pointer ID as the name of that
finger while it is being tracked by Android. For example, imagine a pair of touch
sequences for two fingers, starting with finger 1 down, and followed by finger 2 down,
finger 1 up, and finger 2 up. The first finger down will get pointer ID 0. The second finger
down will get pointer ID 1. Once the first finger goes up, the second finger will still be
associated with pointer ID 1. At that point, the pointer index for the second finger
becomes 0, because the pointer index always starts at 0. In this example, the second
finger (pointer ID 1) starts as pointer index 1 when it first touches down and then shifts
to pointer index 0 once the first finger leaves the screen. But even when the second
finger is the only finger on the screen, it remains as pointer ID 1. Your applications will
use pointer IDs to link together the events associated to a particular finger even as other
fingers are involved. Let’s look at an example.

Listing 25–10 shows our new XML layout plus our Java code for a multitouch
application. Create a new application using Listing 25–10, and run it. Figure 25–3 shows
what it should look like.

Listing 25–10. XML Layout and Java for a Multitouch Demonstration

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/layout1"
 android:tag="trueLayout" android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 >

 <TextView android:text="Touch fingers on the screen and look at LogCat"
 android:id="@+id/message"
 android:tag="trueText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true" />

</RelativeLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;
import android.widget.RelativeLayout;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 865

public class MainActivity extends Activity implements OnTouchListener {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 RelativeLayout layout1 =
 (RelativeLayout) findViewById(R.id.layout1);
 layout1.setOnTouchListener(this);
 }

 public boolean onTouch(View v, MotionEvent event) {
 String myTag = v.getTag().toString();
 Log.v(myTag, "-----------------------------");
 Log.v(myTag, "Got view " + myTag + " in onTouch");
 Log.v(myTag, describeEvent(event));
 logAction(event);
 if("true".equals(myTag.substring(0, 4))) {
 return true;
 }
 else {
 return false;
 }
 }

 protected static String describeEvent(MotionEvent event) {
 StringBuilder result = new StringBuilder(500);
 result.append("Action: ").append(event.getAction()).append("\n");
 int numPointers = event.getPointerCount();
 result.append("Number of pointers: ");
 result.append(numPointers).append("\n");
 int ptrIdx = 0;
 while (ptrIdx < numPointers) {
 int ptrId = event.getPointerId(ptrIdx);
 result.append("Pointer Index: ").append(ptrIdx);
 result.append(", Pointer Id: ").append(ptrId).append("\n");
 result.append(" Location: ").append(event.getX(ptrIdx));
 result.append(" x ").append(event.getY(ptrIdx)).append("\n");
 result.append(" Pressure: ");
 result.append(event.getPressure(ptrIdx));
 result.append(" Size: ").append(event.getSize(ptrIdx));
 result.append("\n");

 ptrIdx++;
 }
 result.append("Downtime: ").append(event.getDownTime());
 result.append("ms\n").append("Event time: ");
 result.append(event.getEventTime()).append("ms");
 result.append(" Elapsed: ");
 result.append(event.getEventTime()-event.getDownTime());
 result.append(" ms\n");
 return result.toString();
 }

 private void logAction(MotionEvent event) {
 int action = event.getAction();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 866

 int ptrIndex = (action & MotionEvent.ACTION_POINTER_ID_MASK) >>>
 MotionEvent.ACTION_POINTER_ID_SHIFT;
 action = action & MotionEvent.ACTION_MASK;
 if(action == 5 || action == 6)
 action = action - 5;
 int ptrId = event.getPointerId(ptrIndex);

 Log.v("Action", "Pointer index: " + ptrIndex);
 Log.v("Action", "Pointer Id: " + ptrId);
 Log.v("Action", "True action value: " + action);
 }
}

Figure 25–3. Our multitouch demonstration application

If you only have the emulator, this application will still work, but you won’t be able to get
multiple fingers simultaneously on the screen. You’ll see output similar to what we saw
in the previous application. Listing 25–11 shows sample LogCat messages for a touch
sequence like we described earlier. That is, the first finger presses on the screen, and
then the second finger presses, the first finger leaves the screen, and the second finger
leaves the screen.

Listing 25–11. Sample LogCat Output for a Multitouch Application

trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 0
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 114.88211 x 499.77502

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 867

trueLayout Pressure: 0.047058824 Size: 0.13333334
trueLayout Downtime: 33733650ms
trueLayout Event time: 33733650ms Elapsed: 0 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 0
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 2
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 114.88211 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Downtime: 33733650ms
trueLayout Event time: 33733740ms Elapsed: 90 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 2
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 261
trueLayout Number of pointers: 2
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 114.88211 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Pointer Index: 1, Pointer Id: 1
trueLayout Location: 320.30692 x 189.67395
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Downtime: 33733650ms
trueLayout Event time: 33733962ms Elapsed: 312 ms
Action Pointer index: 1
Action Pointer Id: 1
Action True Action value: 0
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 2
trueLayout Number of pointers: 2
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 111.474594 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Pointer Index: 1, Pointer Id: 1
trueLayout Location: 320.30692 x 189.67395
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Downtime: 33733650ms
trueLayout Event time: 33734189ms Elapsed: 539 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 2
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 6
trueLayout Number of pointers: 2
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 111.474594 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Pointer Index: 1, Pointer Id: 1
trueLayout Location: 320.30692 x 189.67395

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 868

trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Downtime: 33733650ms
trueLayout Event time: 33734228ms Elapsed: 578 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 1
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 2
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 1
trueLayout Location: 318.84656 x 191.45105
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Downtime: 33733650ms
trueLayout Event time: 33734240ms Elapsed: 590 ms
Action Pointer index: 0
Action Pointer Id: 1
Action True Action value: 2
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 1
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 1
trueLayout Location: 314.95224 x 190.5625
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Downtime: 33733650ms
trueLayout Event time: 33734549ms Elapsed: 899 ms
Action Pointer index: 0
Action Pointer Id: 1
Action True Action value: 1

We’ll now discuss what is going on with this application. The first event we see is the
ACTION_DOWN (action value of 0) of the first finger. We learn about this using the
getAction() method. Please refer to the describeEvent() method in MainActivity.java
to follow along with which methods produce which output. We get one pointer with
index 0 and pointer ID 0. After that, you’ll probably see several ACTION_MOVE events
(action value of 2) for this first finger, even though we’re only showing one of these in
Listing 25–11. We still only have one pointer and the index and ID are still both 0.

A little later we get the second finger touching the screen. The action is now a decimal
value of 261. What does this mean? The action value is actually made up of two parts:
an indicator of which pointer the action is for and what action that pointer is doing.
Converting decimal 261 to hexadecimal, we get 0x00000105. The action is the smallest
byte (5 in this case), and the pointer index is the next byte over (1 in this case). Note that
this tells us the pointer index but not the pointer ID. If you pressed a third finger onto the
screen, the action would be 0x00000205 (or decimal 517). A fourth finger would be
0x00000305 (or decimal 773) and so on. You haven’t seen an action value of 5 yet, but
it’s known as ACTION_POINTER_DOWN. It’s just like ACTION_DOWN except that it’s used in
multitouch situations.

Now, look at the next pair of records from LogCat in Listing 25–11. The first record is for
an ACTION_MOVE event (action value of 2). Remember that it is difficult to keep fingers
from moving on a real screen. We’re only showing one ACTION_MOVE event but you might
see several. When the first finger is lifted off of the screen, we get an action value of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 869

0x00000006 (or decimal 6). Like before, we have pointer index 0 and an action value that
is ACTION_POINTER_UP (similar to ACTION_UP but for multitouch situations). If the second
finger was lifted in a multitouch situation, we would get an action value of 0x00000106
(or decimal 262). Notice how we still have information for two fingers when we get the
ACTION_UP for one of them.

The last pair of records in Listing 25–11 shows one more ACTION_MOVE event for the
second finger, followed by an ACTION_UP for the second finger. This time, we see an
action value of 1 (ACTION_UP). We didn’t get an action value of 262, but we’ll explain that
next. Also, notice that once the first finger left the screen, the pointer index for the
second finger has changed from 1 to 0, but the pointer ID has remained as 1.

ACTION_MOVE events do not tell you which finger moved. You will always get an action
value of 2 for a move regardless of how many fingers are down or which finger is doing
the moving. All down finger positions are available within the MotionEvent object, so you
need to read the positions and then figure things out. If there’s only one finger left on the
screen, the pointer ID will tell you which finger it is that’s still moving since it’s the only
finger left. In Listing 25–11, when the second finger was the only one left on the screen,
the ACTION_MOVE event had a pointer index of 0 and a pointer ID of 1, so we knew it was
the second finger that was moving.

Going back to the beginning of Listing 25–11, the first finger down is pointer index 0 and
pointer ID 0, so why don’t we get 0x00000005 (or decimal 5) for the action value when
the first finger is pressed to the screen before any other fingers? Unfortunately, this
question doesn’t have a happy answer. We can get an action value of 5 in the following
scenario: Press the first finger to the screen and then the second finger, resulting in
action values of 0 and 261 (ignoring the ACTION_MOVE events for the moment). Now, lift
the first finger (action value of 6), and press it back down on the screen. The pointer ID
of the second finger remained as 1. For the moment when the first finger was in the air,
our application knew about pointer ID 1 only. Once the first finger touched the screen
again, Android re-assigned pointer ID 0 to the first finger. Since now we know there are
multiple fingers involved, we get an action value of 5 (pointer index of 0 and the action
value of 5). The answer to the question, therefore, is backward compatibility, but it is not
a happy answer. The action values of 0 and 1 are pre-multitouch, and applications
written before multitouch will still work as long as only one finger is used. In a scenario
with two fingers, if the first finger touches the screen in one location followed by a
second finger in a different location on the screen, the up action of the first finger would
not be recognized by an application not expecting multitouch events. This is because
the lifting of the first finger first would give an action value of 6, not 1. It’s when the
second finger is lifted that the application will receive an action value of 1. This
application would think that the first finger magically moved across the screen to where
the second finger was.

When only one finger remains on the screen, Android treats it like a single-touch case.
So we get the old ACTION_UP value of 1 instead of a multitouch ACTION_UP value of 6. Our
code will need to consider these cases carefully. A pointer index of 0 could result in an
ACTION_DOWN value of 0 or 5, depending on which pointers are in play. The last finger up
will get an ACTION_UP value of 1 no matter which pointer ID it has.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 870

The MotionEvent class used to come with some helper constants to figure out what is
going on, for example, MotionEvent.ACTION_POINTER_3_DOWN is 0x00000205 (or decimal
517), which we described earlier as the third finger down. These values were not all that
useful, however, since you’d be better off looking at the pointer index in the second byte
and the action in the first byte. In fact, it would be even better to use some other
constants from the MotionEvent class to read the value returned by getAction(). Those
constants are MotionEvent.ACTION_POINTER_ID_MASK, MotionEvent.ACTION_MASK, and
MotionEvent.ACTION_POINTER_ID_SHIFT. By combining the action value with each of
these masks using “and,” and shifting the result for the pointer index, you’d be able to
reliably figure out what is going on, no matter how many fingers the device can support.
The Android team must have also realized this because the constants like
ACTION_POINTER_3_DOWN have been deprecated.

But wait; these index constants use ID and not INDEX in their names, and we told you
the second byte is the pointer index. Sadly, before version 2.2, Android is confused with
regard to what is in that byte. With Android 2.2, these constants have been renamed
ACTION_POINTER_INDEX_MASK and ACTION_POINTER_INDEX_SHIFT while keeping the same
values as before. The second byte has always been the pointer index, but prior to
Android 2.2, the names of the constants were just plain wrong. The constants’ names
have been replaced since Android 2.2, and the constant names with ID in them have
been deprecated. Feel free to create your own constants that you can use across all
versions of Android.

We used a logAction() method in the previous example, which used these constants to
decode our action value. We provide the relevant code again in Listing 25–12.

Listing 25–12. Sample Code for Figuring Out the Result from MotionEvent.getAction()

 int action = event.getAction();
 int ptrIndex = (action & MotionEvent.ACTION_POINTER_ID_MASK) >>>
 MotionEvent.ACTION_POINTER_ID_SHIFT;
 action = action & MotionEvent.ACTION_MASK;
 if(action == 5 || action == 6)
 action = action - 5;
 int ptrId = event.getPointerId(ptrIndex);

After these statements in Listing 25–12 have executed, ptrId will hold the pointer ID
associated to the action; action will have a value between 0 and 4, and ptrIndex will
have the pointer index value for use with getX() and similar methods of MotionEvent.
One way to look at the values returned from getAction() is to realize that any value
greater than 4 represents a value that relates to a pointer ID. Any value less than or
equal to 4 represents a value that relates to the only finger we know about, regardless of
what its pointer ID is. In some cases, you may want to subtract 5 from the action to get
ACTION_DOWN and ACTION_UP even in multitouch situations. At other times, it’s useful to
not do so. The choice is yours.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 871

Multitouch Since Android 2.2
Android 2.2 introduced a few changes to how multitouch works. We mentioned the
deprecation of some of the constants and the addition of new ones in the previous
section. With version 2.2, we also get a couple of new methods—getActionMasked()
and getActionIndex()— to make it easier to figure out which pointer and which index
are involved in the action. With these new methods, we can replace the code from
Listing 25–12 with the code in Listing 25–13.

Listing 25–13. Sample Code for Figuring Out Our Action

 int action = event.getActionMasked();
 int ptrIndex = event.getActionIndex();
 int ptrId = event.getPointerId(ptrIndex);

This is a lot simpler than the code in Listing 25–12. However, note that our action
variable is going to be ACTION_DOWN, ACTION_UP, ACTION_MOVE, ACTION_CANCEL,
ACTION_OUTSIDE, ACTION_POINTER_DOWN, or ACTION_POINTER_UP (these are the values 0
through 6 respectively). If you wanted to make it just like before, you could subtract the
value 5 if getActionMasked() returns a value above 4. Or you could simply deal with the
extra two values.

As mentioned before, if you choose to do your own masking, as in Listing 25–12, in
Android 2.2 or later, the constants ACTION_POINTER_ID_MASK and
ACTION_POINTER_ID_SHIFT have been deprecated, and new constants were created with
the names ACTION_POINTER_INDEX_MASK and ACTION_POINTER_INDEX_SHIFT to represent
the exact same values. Because the new constants are not known in earlier versions of
Android, you’d be better off creating your own constants with the values 0x0000ff00 and
0x00000008 respectively, since those constants will be valid in any version of Android.

Touches with Maps
Maps can receive touch events as well. You have already seen how touching a map can
bring up a zoom control or allow us to pan the map sideways. These are built-in
functions of maps. But what if we want to do something different? We’re going to show
you how to implement some interesting functionality with maps, including the ability to
click a location and get its latitude and longitude. From there, we can do lots of very
useful things.

One of the main classes for maps is MapView. This class has an onTouchEvent() method
just like the Views we covered earlier and takes a MotionEvent object as its only
argument. We can also use the setOnTouchListener() method to set up a callback
handler for touch events on a MapView. Other main types of objects for maps are the set
of Overlays, including ItemizedOverlay and MyLocationOverlay. These were all
introduced in Chapter 17. These Overlay classes also have an onTouchEvent() method,
although the signature is slightly different from the onTouchEvent() method on a regular
View. For an Overlay, the method signature is

onTouchEvent(android.view.MotionEvent e, MapView mapView)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 872

We can override this onTouchEvent() method if we want to do different things with maps.
It is more common to override methods in an Overlay class than in MapView, so we will
focus our attention there in this section. As before, the onTouchEvent() method for
Overlays deals with MotionEvent objects. Even with maps, the MotionEvent object gives
us X and Y coordinates of where the user has touched the touch screen. This is only
marginally useful when dealing with maps, since we often want to know the actual location
on the map where the user touched. Fortunately, there are ways to figure this out.

MapView provides an interface called Projection, and Projection has methods to
convert from a pixel to a GeoPoint or from a GeoPoint to a pixel. To get a Projection,
call the MapView.getProjection() method. Once you have the Projection, the methods
fromPixels() and toPixels() can be used for the conversions. Keep in mind that the
Projection is only good while the map doesn’t change in the view. Within your
onTouchEvent() method, you can convert the X and Y location values to a GeoPoint
using fromPixels().

An interesting and very useful method of Overlay is the onTap() method, which is similar
to the onTouch() method you saw earlier in this chapter but different in a key way. Map
Overlays do not have an onTouch() method. The signature of the onTap() method is

public boolean onTap(GeoPoint p, MapView mapView)

This means that when a user touches on our Overlay, our onTap() method gets called
with the GeoPoint of where the user touched. This will save us a lot of time trying to
figure out where on the map the user is touching. We no longer need to worry about
converting from an X and Y coordinate location to a latitude and longitude coordinate;
Android takes care of this for us.

We’re now going to revisit the example from Chapter 17 in which we displayed a map
with buttons for the different modes (Satellite, Street, Traffic, and Normal). We’re going
to add the ability to launch StreetView on a location from the map. To do this we need
to add an Overlay object to our MapView, and when the Overlay object receives a touch
event, we’ll convert that touch event to a location on the map. With the converted
location, we’ll launch an intent to invoke StreetView on that location. We’ll start by
making a copy in Eclipse of our MapViewDemo from Chapter 17 (see Listings 17-2 and
17-3). Then, we’ll use Listing 25–14 to modify the onCreate() method of the main
Activity, plus add a new class with the file ClickReceiver.java, also provided in this
listing. The changes to the onCreate() method are shown in bold. The UI will still look
just like it did in Figure 17-3.

Listing 25–14. Adding Touch to Our Maps Demonstration

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.mapview);

 mapView = (MapView)findViewById(R.id.mapview);

 ClickReceiver clickRecvr = new ClickReceiver(this);
 mapView.getOverlays().add(clickRecvr);
 mapView.invalidate();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 873

 }

// This file is ClickReceiver.java
import android.content.Context;
import android.content.Intent;
import android.net.Uri;
import android.util.Log;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class ClickReceiver extends Overlay{
 private static final String TAG = "ClickReceiver";
 private Context mContext;

 public ClickReceiver(Context context) {
 mContext = context;
 }

 @Override
 public boolean onTap(GeoPoint p, MapView mapView) {
 Log.v(TAG, "Received a click at this point: " + p);

 if(mapView.isStreetView()) {
 Intent myIntent = new Intent(Intent.ACTION_VIEW, Uri.parse
 ("google.streetview:cbll=" +
 (float)p.getLatitudeE6() / 1000000f +
 "," + (float)p.getLongitudeE6() / 1000000f
 +"&cbp=1,180,,0,1.0"
));
 mContext.startActivity(myIntent);
 return true;
 }
 return false;
 }
}

That’s all we need to do for this new example to work—unless of course you don’t have
StreetView available in your emulator or device. StreetView was included in the
emulators for CupCake (1.5) and Donut (1.6) but was not in the Éclair (2.0) emulator. If
you’re missing StreetView in your emulator, one workaround is to get a real device,
which should have it installed, and test there. If all you have is an emulator, you could try
the following simple procedure:

1. Set up an AVD that is based on Google APIs version 1.6 or 1.5.

2. Start the emulator with the AVD from step 1.

3. Use adb pull /system/app/StreetView.apk StreetView.apk to copy this

application from your emulator to your workstation’s hard drive.

4. Set up an AVD that is based on Google APIs for the version you want to run on.

5. Stop the emulator from step 2 and start the emulator from step 4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 874

6. Use adb install StreetView.apk for the .apk file you copied in step 3.

This should install the StreetView application into your emulator and allow our example
above to work. In later versions of Android, the .apk file is called Street.apk, so you
may be able to find something newer than 1.6 and use that.

When you run your newly modified Maps Demo application, zoom in on a city so you
can see the streets. Click the Street button to get the blue outlines on streets that
support StreetView (i.e., the streets have pictures in the Google database). Now, you
can touch a street and the onTap() method of our ClickReceiver will be called, which in
turn will contact the StreetView activity with the location from our touch event using an
intent. If you touch an area of the map where StreetView does not have pictures, you
will see an empty StreetView screen with an indication such as “Invalid panorama.” This
means Google can’t find any images near enough to that location. Click the back button
to return to our Maps application and try another location. If you look in LogCat you will
see that we’ve logged the latitude and longitude of the map location that was touched.
Notice that the GeoPoint object uses ints for the lat and long, while the StreetView Uri
requires floats.

For this sample application, we’ve chosen to send an intent with the lat/long of our
touched location to the StreetView activity. But you can imagine the other possibilities
open to you. With the lat/long of a location, we could use the Geocoder to find out what’s
around that location. We could use the location to navigate to it using turn-by-turn
directions. We could measure how far away the location is from where we are. We can
even store the location for later use.

Gestures
Gestures are a special type of a touch screen event. The term “gesture” is used for a
variety of things in Android, from a simple touch sequence like a fling or a pinch to the
formal Gesture class that we’re going to talk about later in this section. Flings, pinches,
long presses, and scrolls have expected behaviors with expected triggers. That is, it is
pretty clear to most people that a fling is a gesture where a finger touches the screen,
drags somewhat quickly off in a single direction, and then lifts up. For example, when
someone use a fling in the Gallery application (the one that shows images in a left-to-
right chain), the images will move sideways to show new images to the user.

In this section, we’re going to take what you’ve learned about MotionEvents and expand
on that to show how to use the pinch gesture. It’s not as hard as you might think. The
pinch gesture is not explicitly supported in Android prior to version 2.2, so to implement
the pinch gesture in prior versions, you have to create code yourself to read event
objects and take appropriate action, which is what we will do here. From version 2.2
onward, we have some helpful new features to use with gestures such as the pinch;
you’ll see these later in the section.

Next, we’re going to introduce some helpful classes for other gestures, such as flings
and long presses. From there, we’ll cover custom gestures, that is, gestures that you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 875

can prerecord to allow the user to initiate action in your application by dragging a finger
in custom patterns. But first, let’s get pinching!

The Pinch Gesture
One of the cool applications of multitouch is the pinch gesture, which is used for
zooming. The idea is that if you place two fingers on the screen and spread them apart,
the application should respond by zooming in. If your fingers come together, the
application should zoom out. The application is usually showing images, which could be
maps.

To demonstrate one way to implement pinches, we’re going to modify the previous
application to include a pinch capability for zooming. Listing 25–15 shows a replacement
for the ClickReceiver class of that example; everything else stays the same. Note that
this example will work fine on a device running Android 2.2 or later, which we'll explain
after the code listing.

Listing 25–15. Java Code for the Pinch Gesture

// This file is ClickReceiver.java
import android.content.Context;
import android.content.Intent;
import android.net.Uri;
import android.util.FloatMath;
import android.util.Log;
import android.view.MotionEvent;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class ClickReceiver extends Overlay {
 private static final String TAG = "ClickReceiver";
 private static final float ZOOMJUMP = 75f;
 private Context mContext;
 private boolean inZoomMode = false;
 private boolean ignoreLastFinger = false;
 private float mOrigSeparation;

 public ClickReceiver(Context context) {
 mContext = context;
 }

 @Override
 public boolean onTap(GeoPoint p, MapView mapView) {
 Log.v(TAG, "Received a click at this point: " + p);

 if(mapView.isStreetView()) {
 Intent myIntent = new Intent(Intent.ACTION_VIEW, Uri.parse
 ("google.streetview:cbll=" +
 (float)p.getLatitudeE6() / 1000000f +
 "," + (float)p.getLongitudeE6() / 1000000f
 +"&cbp=1,180,,0,1.0"
));
 mContext.startActivity(myIntent);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 876

 return true;
 }
 return false;
 }

 public boolean onTouchEvent(MotionEvent e, MapView mapView) {
 Log.v(TAG, "in onTouchEvent, action is " + e.getAction());
 int action = e.getAction() & MotionEvent.ACTION_MASK;

 if(e.getPointerCount() == 2) {
 inZoomMode = true;
 }
 else {
 inZoomMode = false;
 }

 if(inZoomMode) {
 switch(action) {
 case MotionEvent.ACTION_POINTER_DOWN:
 // We may be starting a new pinch so get ready
 mOrigSeparation = calculateSeparation(e);
 break;
 case MotionEvent.ACTION_POINTER_UP:
 // We're ending a pinch so prepare to
 // ignore the last finger while it's the
 // only one still down.
 ignoreLastFinger = true;
 break;
 case MotionEvent.ACTION_MOVE:
 // We're in a pinch so decide if we need to change
 // the zoom level.
 float newSeparation = calculateSeparation(e);
 if(newSeparation - mOrigSeparation > ZOOMJUMP) {
 // we got wider, zoom in
 mapView.getController().zoomIn();
 mOrigSeparation = newSeparation;
 }
 else if (mOrigSeparation - newSeparation > ZOOMJUMP) {
 // we got narrower, zoom out
 mapView.getController().zoomOut();
 mOrigSeparation = newSeparation;
 }
 break;
 }
 // Don't pass these events to Android because we're
 // taking care of them.
 return true;
 }
 else {
 // cleanup if necessary from zooming logic
 }

 // Throw away events if we're on the last finger
 // until the last finger goes up.
 if(ignoreLastFinger) {
 if(action == MotionEvent.ACTION_UP)
 ignoreLastFinger = false;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 877

 return true;
 }

 return super.onTouchEvent(e, mapView);
 }

 private float calculateSeparation(MotionEvent e) {
 float x = e.getX(0) - e.getX(1);
 float y = e.getY(0) - e.getY(1);
 return FloatMath.sqrt(x * x + y * y);
 }
}

We’ve added an onTouchEvent() callback to our ClickReceiver overlay. Within this
callback, we’re getting every single MotionEvent object from the touch screen that is
directed to our MapView. For most of them, we simply want to pass them along. This will
allow dragging to continue to work, as well as launching StreetView from a tap when in
StreetView mode. When there are two fingers down on the touch screen though, we
could be sensing a pinch, so we set zoom mode to true. If we’re getting information on
two fingers, we need to decide what’s going on, hence the switch statement on the
event action.

If we just got the ACTION_POINTER_DOWN action (remember that we only get this in
multitouch situations, which this must be since we have two fingers reporting), we just
went from one finger to two fingers. After this event, we could see a pinch from the user.
To determine if the fingers move closer together or further apart, we must remember the
separation distance of the fingers at the beginning of the gesture. The distance
calculation is a square root of the sum of the squares of the coordinate differences
between the two fingers—in other words, we use the Pythagorean theorem. We are
confident that with two fingers down, the event object will have coordinates at indexes 0
and 1, and it doesn’t really matter which finger is which.

If we just got the ACTION_POINTER_UP action, this is the last event we’ll see with two
fingers reported before the MotionEvent objects start coming to us with only one finger
reported. We know that our pinch is over. If we simply start letting Android see event
objects with one finger on the screen, we could get some weird behavior. For example,
if Android were to get the ACTION_UP event from the last finger, Android could decide
that it has seen a tap on a location and launch the StreetView application, which would
not be desirable. We expect that the user will be lifting the last finger off of the screen to
end the pinch gesture, so we decide to throw away any events until that happens. We
do this by setting the ignoreLastFinger variable to true, which we’ll check later when
deciding what to do with events.

If we just got the ACTION_MOVE action, our fingers may have moved together or apart. By
calculating the new separation distance between the two fingers and comparing to the
old separation distance, we can decide if we want to zoom in, zoom out, or do no
zooming at all. If we do some zooming, we need to reset the old separation distance for
the next time. The user could leave the fingers on the screen and spread them apart and
together, and our application should respond properly to those gestures. If we don’t
detect a significant change in the separation distance, we’re simply going to continue to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 878

receive events until either we do get sufficient separation or the user ends the pinch
gesture.

Regardless of what action comes in, if we’re in zoom mode, we return true from
onTouchEvent(). This tells Android we took care of the event and to keep sending new
ones to us. At the end of our onTouchEvent() method, we need to decide whether or not
to let Android have the event. Using the ignoreLastFinger variable, we decide not to
give events to Android if we’re after a pinch gesture and the last finger is still down.
Once the last finger goes up, which we learn from the ACTION_UP event action, we can go
back to passing events to Android. In this way, we let Android take care of the tap and
the drag, but we take care of the pinch. Of course, if you wanted to, you could take care
of the tap and drag features too in this callback.

When you try this application, you will see you can still drag the map sideways, and
when in street mode, you can tap a location to launch the StreetView activity. But now,
you can also pinch to zoom in and out on the map.

We’ve ignored for the moment the possibility that the user could get to two fingers by
lifting one finger off from having three fingers down. Many devices only recognize up to
two fingers down, but you should probably expect that some device will eventually allow
more than two. If you want to use the pinch gesture on things other than maps, you will
need to figure out how to do zooming for those things. For example, if you have an
image on the screen and you want to zoom in and out using a pinch, you would need to
manipulate the image to make it bigger or smaller triggered by the ACTION_MOVE events
similarly to how we’ve done things here. We’ll be getting to an example like that very
soon in this chapter.

As mentioned before, the pinch gesture was not explicitly supported until Android 2.2,
and while the preceding code will work for Android 2.2, you might want to take
advantage of the newer features to get the pinch gesture into your application. It’s worth
noting here that the MapView class in Android versions 2.2 and above supports pinch
zooming with nothing required from the developer at all; it just works, so we don’t need
to address the pinch gesture for maps from newer Android versions. Before we get to
the pinch gesture’s native support, we first need to cover a class that’s been around
from the beginning—GestureDetector.

GestureDetector and OnGestureListeners
The work we just did to implement the pinch gesture wasn’t too bad, but it would be
nice if Android could provide some help so gestures that are common could be figured
out for us. Then, all we’d have to do is perform the appropriate application logic when
that gesture occurred. Fortunately, Android has exactly that, although it took until
Android 2.2 to get a class that deals explicitly with the pinch gesture.

The first class is GestureDetector, which has been around from the very beginning of
Android, and its purpose in life is to receive MotionEvent objects and tell us when a
sequence of events looks like a common gesture. We pass all of our event objects to the
GestureDetector from our callback, and it calls other callbacks when it recognizes a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 879

gesture, such as a fling or long press. We need to register a listener for the callbacks
from the GestureDetector, and this is where we put our logic that says what to do if the
user has performed one of these common gestures. Unfortunately, this class does not
tell us if a pinch gesture is taking place; for that, we need to use a new class, which we’ll
get to shortly.

There are a few ways to build the listener side. Your first option is to write a new class
that implements the appropriate gesture listener interface, for example, the
GestureDetector.OnGestureListener interface. There are several abstract methods that
must be implemented for each of the possible callbacks.

Your second option is to pick one of the simple implementations of a listener and
override the appropriate callback methods that you care about. For example, the
GestureDetector.SimpleOnGestureListener class has implemented all of the abstract
methods to do nothing and return false. All you have to do is extend that class and
override the few methods you need to act on those few gestures you care about. The
other methods have their default implementations. It’s more future-proof to choose the
second option even if you decide to override all of the callback methods, since if a future
version of Android adds another abstract callback method to the interface, the simple
implementation will provide a default callback method, so you’re covered.

Android 2.2 introduced the ScaleGestureDetector class, and this is the one that figures
out the pinch gesture for us. We’re going to explore this, plus the corresponding listener
class, to see how to use the pinch gesture to resize an image. In this example, we
extend the simple implementation
(ScaleGestureDetector.SimpleOnScaleGestureListener) for our listener. Listing 25–16
has the XML layout and the Java code for our MainActivity.

Listing 25–16. Layout and Java Code for the Pinch Gesture Using ScaleGestureDetector

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/layout" android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent" >

 <TextView android:text="Use the pinch gesture to change the image size"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

 <ImageView android:id="@+id/image" android:src="@drawable/icon"
 android:layout_width="match_parent" android:layout_height="match_parent"
 android:scaleType="matrix" />

</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.graphics.Matrix;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.ScaleGestureDetector;
import android.widget.ImageView;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 880

public class MainActivity extends Activity {
 private static final String TAG = "ScaleDetector";
 private ImageView image;
 private ScaleGestureDetector mScaleDetector;
 private float mScaleFactor = 1f;
 private Matrix mMatrix = new Matrix();
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 image = (ImageView)findViewById(R.id.image);
 mScaleDetector = new ScaleGestureDetector(this,
 new ScaleListener());
 }

 @Override
 public boolean onTouchEvent(MotionEvent ev) {
 Log.v(TAG, "in onTouchEvent");
 // Give all events to ScaleGestureDetector
 mScaleDetector.onTouchEvent(ev);

 return true;
 }

 private class ScaleListener extends
ScaleGestureDetector.SimpleOnScaleGestureListener {
 @Override
 public boolean onScale(ScaleGestureDetector detector) {
 mScaleFactor *= detector.getScaleFactor();

 // Make sure we don't get too small or too big
 mScaleFactor = Math.max(0.1f, Math.min(mScaleFactor, 5.0f));

 Log.v(TAG, "in onScale, scale factor = " + mScaleFactor);
 mMatrix.setScale(mScaleFactor, mScaleFactor);

 image.setImageMatrix(mMatrix);
 image.invalidate();
 return true;
 }
 }
}

Our layout is straightforward. We have a simple TextView with our message to use the
pinch gesture, and we have our ImageView with the standard Android icon. We’re going
to resize this icon image using a pinch gesture. Of course, feel free to substitute your
own image file instead of the icon. Just copy your image file into a drawable folder, and
be sure to change the android:src attribute in the layout file. Notice the
android:scaleType attribute in the XML layout for our image. This tells Android that we’ll
be using a graphics matrix to do scaling operations on the image. While a graphics
matrix can also do movement of our image within the layout, we’re only going to focus
on scaling for now. Also notice that we set the ImageView size to as big as possible. As
we scale the image, we don’t want it clipped by the boundaries of the ImageView.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 881

The code is also straightforward. Within onCreate(), we get a reference to our image
and create our ScaleGestureDetector. Within our onTouchEvent() callback, all we do is
pass every event object we get to the ScaleGestureDetector's onTouchEvent() method
and return true so we keep getting new events. This allows the ScaleGestureDetector
to see all events and decide when to notify us of gestures.

The ScaleListener is where the zooming happens. There are actually three callbacks
within the listener class, onScaleBegin(), onScale(), and onScaleEnd(). We don’t need
to do anything special with the begin and end methods, so we didn’t implement them
here.

Within onScale(), the detector passed in can be used to find out lots of information
about the scaling operation. The scale factor is a value that hovers around 1. That is, as
the fingers pinch closer together, this value is slightly below 1; as the fingers move apart,
this value is slightly larger than 1. Our mScaleFactor member starts at 1, so it gets
progressively smaller or larger than 1 as the fingers move together or apart. If
mScaleFactor equals 1, our image will be normal size. Otherwise, our image will be
smaller or larger than normal as mScaleFactor moves below or above 1. We set some
bounds on mScaleFactor with the elegant min/max function combination. This prevents
our image from getting too small or too large. We then use mScaleFactor to scale the
graphics matrix, and we apply the newly scaled matrix to our image. The invalidate()
call forces a redraw of the image on the screen.

As you can see, this is a lot less effort than in the previous example where we had to
deal with the event objects ourselves. We can concern ourselves with performing the
appropriate application logic when the common gesture has been performed. To work
with the OnGestureListener interface, you’d do something very similar to what we’ve
done here with our ScaleListener, except that the callbacks will be for different
common gestures.

Common gestures are one thing, but what if you want to have custom gestures with
your application? For example, what if you wanted the user to be able to draw a
checkmark on the screen and have your application perform some function? For that,
we need custom gestures, which is where we turn next.

Custom Gestures
In the final section of this chapter, we’ll cover the formal Gesture classes of Android.
Formally, a gesture is a prerecorded touch screen motion that your application can
expect from the user. If the user performs the same gesture as the prerecorded gesture
when using your application, your application can invoke specific logic according to
what that gesture means to your application. Gestures require an overlay that can detect
a gesture by the user to pass it to the underlying activity. Using gestures can simplify a
user interface by eliminating buttons or other controls in favor of finger swipes or
drawing motions. They can also make for interesting game interfaces. In this section, we
will explore how to record custom gestures and how to use them in your application.
Note that the gesture-related classes we used earlier are not used in this example at all;
this section explores a different set of gesture classes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 882

The Gestures Builder Application
Before we get into gesture code, let’s play with the Gestures Builder application that
comes with the Android SDK, which will help you understand what a gesture is.
Gestures Builder creates and manages a gestures file that contains a library of gestures.
Launch an emulator from Eclipse; unlock the emulator device; go to your applications,
and choose Gestures Builder. Figure 25–4 shows the application icon.

Figure 25–4. The Gestures Builder icon

If you don’t see Gestures Builder within your emulator, you’ll have to create a new
project in Eclipse. Gestures Builder is provided as a sample application under your
Android SDK directory, in platforms/<version>/samples/GestureBuilder, or in samples
under the Android SDK directory. You can create a new Android project in Eclipse using
the “Create project from existing sample” option. Select the desired Android version as
a Build Target to enable the “Create project from existing sample” drop-down menu,
then choose GestureBuilder from the drop-down menu. You can then deploy this
application to your emulator.

The Gestures Builder application will open to a mostly blank screen. Click the Add
gesture button. You will be prompted for a name; the name you give will be associated
to the gesture you’re about to record. This name will be used in your code to refer to the
gesture and will serve as a sort of command name. When the user performs the gesture
to your application, the name will be passed to your methods so your application can do
what the user is expecting it to do. The name you give could be a noun like “spiral” or
“checkmark,” or it could be like a command such as “fetch” or “stop.” For now, let’s call
our first gesture “checkmark,” so type checkmark for the Name. Now, draw a check
mark in the big blank space underneath, either with your mouse if using the emulator, or
with your finger if using a device. If you don’t like your first attempt, simply redraw a new
check mark; the old one will be erased as soon as you start drawing a new one. When
you’re happy with your check mark, click Done. You should see a screen like the one
shown in Figure 25–5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 883

Figure 25–5. Our check mark gesture saved to the /sdcard

Note that you could record different types of check marks and give them all the same
name of “checkmark.” Record at least one more check mark–like gesture and name it
checkmark too; it could be smaller or bigger or in some way different than your first
check mark while still retaining the same basic shape. Add some different gestures with
different names using the “Add gesture” button. Each time you click Done, you add
another gesture to your library. You might try to use a multitouch gesture, for example,
drawing two fingers across the screen at the same time to make an equals sign. This
doesn’t work and you get only one line. Maybe in the future, multitouch gestures—that
is, gestures where two or more fingers are touching the screen at the same time—will be
supported.

Each gesture has a name and is made up of strokes. A gesture stroke is a touch
sequence starting from when a finger touches down on the screen to when that finger
lifts from the screen. As you learned earlier, a touch sequence is made up of
MotionEvent objects. Similarly, a gesture stroke is made up of gesture points. Gestures
get collected into a gesture store. A gesture library contains one gesture store. In
Android, these are all classes that you can use in your code. See Figure 25–6 for a
diagram that shows the classes’ relationships.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 884

Figure 25–6. The structure of gesture classes

While we can’t use multitouch to create a custom gesture, we can have multiple gesture
strokes in a single gesture. For example, to create a letter “E” gesture, you would need
at least two gesture strokes: one gesture stroke could trace the top, back, and bottom
sides of the “E,” and a second stroke could provide the center dash to complete the
letter. You could also draw the back of the “E” with a vertical gesture stroke, followed by
three separate horizontal gesture strokes to finish the letter. There are other ways you
could draw an “E,” and fortunately, the gesture library allows you to give all of them the
name “E” while recording different gestures. Go ahead and record “E” a few different
ways, since your users might draw the letter in any one of those ways and you want your
application to recognize an “E” however the user decides to draw it. Figure 25–7 shows
different ways of recording an E.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 885

Figure 25–7. Different ways to record an “E” gesture

You may find it challenging to create a multistroke gesture in Gestures Builder in the
emulator. As we noted earlier, you can simply redraw your gesture over the last one, and
the preceding one will be erased. So how does Android know when you’re starting over
and when you’re adding another gesture stroke to the current gesture? Android uses a
value called the FadeOffset, which is a time value in milliseconds. If you wait longer than
this time value to start the next gesture stroke, Android assumes you’re starting over or
starting a new gesture. By default, the time value is 420 milliseconds. This means that if
you are drawing a gesture on the screen, and you lift your finger for longer than 420
milliseconds before drawing the next gesture stroke in your gesture, Android will assume
you’ve already finished and will use what you’ve just drawn so far as the entirety of your
gesture. On a real device, the default value might be long enough to start the next stroke
of a gesture. On the emulator, though, it might not be. It depends on how fast your
workstation is.

If you’re having trouble getting Gestures Builder in the emulator to accept a multistroke
gesture, you can create your own version of Gestures Builder and modify the default
value of FadeOffset. We described earlier how to create a Gestures Builder project in
Eclipse. Follow those instructions, and then go into the project’s /res/layout/
create_gesture.xml file to add the attribute android:fadeOffset="1000" to the
GestureOverlayView element. This will extend FadeOffset to 1 second (1,000
milliseconds). You are free to choose a different value if you wish.

Let’s investigate where these gestures went. The Toast message in Gestures Builder
tells us the gestures are being saved to /sdcard/gestures (or /mnt/sdcard/gestures on
Android 2.2 and later). Use File Explorer in Eclipse, or adb, to navigate to the /sdcard
folder of the emulator. There, you will see a file called gestures. Notice that it is not very
big. The gestures file is a binary file, so you will not be able to edit it by hand. To modify
the contents, you will need to use the Gestures Builder application. When building your
gesture-enabled application, you will need to copy the gestures file to your application’s
/res/raw directory. For this, you will need to use the File Copy feature of File Explorer, or

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 886

use adb pull to get the gestures file onto your workstation so you can copy it into your
project.

Besides adding new gestures in Gestures Builder, you can click and hold an existing
gesture to bring up a menu. From the menu, you can change the gesture’s name or
delete it. You cannot record the gesture again, so if you don’t like the gesture itself,
you’ll need to delete it and add it anew. As mentioned earlier, one thing you might want
to do is record variations of gestures and give them the same name to account for user
variation in inputting the gesture. The gesture name does not have to be unique,
although gestures with the same name should be similar.

Now, we’re going to create a sample application that uses our new gestures file. Using
Eclipse, create a new Android Project. See Listing 25–17 for the XML of our layout file
and for the code of our Activity class.

Listing 25–17. Java Code for Our Gesture Revealer Application

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Draw gestures and I'll guess what they are" />

 <android.gesture.GestureOverlayView android:id="@+id/gestureOverlay"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gestureStrokeType="multiple" android:fadeOffset="1000" />

</LinearLayout>

import java.util.ArrayList;
import android.app.Activity;
import android.gesture.Gesture;
import android.gesture.GestureLibraries;
import android.gesture.GestureLibrary;
import android.gesture.GestureOverlayView;
import android.gesture.Prediction;
import android.gesture.GestureOverlayView.OnGesturePerformedListener;
import android.os.Bundle;
import android.util.Log;
import android.widget.Toast;

public class MainActivity extends Activity implements OnGesturePerformedListener {
 private static final String TAG = "Gesture Revealer";
 GestureLibrary gestureLib = null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 887

// gestureLib = GestureLibraries.fromRawResource(this,
// R.raw.gestures);
 gestureLib = GestureLibraries.fromFile("/sdcard/gestures");
 if (!gestureLib.load()) {
 Toast.makeText(this, "Could not load /sdcard/gestures",
 Toast.LENGTH_SHORT).show();
 finish();
 }

 // Let's take a look at the gesture library we have work with
 Log.v(TAG, "Library features:");
 Log.v(TAG, " Orientation style: " +
 gestureLib.getOrientationStyle());
 Log.v(TAG, " Sequence type: " + gestureLib.getSequenceType());
 for(String gestureName : gestureLib.getGestureEntries()) {
 Log.v(TAG, "For gesture " + gestureName);
 int i = 1;
 for(Gesture gesture : gestureLib.getGestures(gestureName))
 {
 Log.v(TAG, " " + i + ": ID: " + gesture.getID());
 Log.v(TAG, " " + i + ": Strokes count: " +
 gesture.getStrokesCount());
 Log.v(TAG, " " + i + ": Stroke length: " +
 gesture.getLength());
 i++;
 }
 }

 GestureOverlayView gestureView =
 (GestureOverlayView) findViewById(R.id.gestureOverlay);
 gestureView.addOnGesturePerformedListener(this);
 }

 @Override
 public void onGesturePerformed(GestureOverlayView view,
 Gesture gesture)
 {
 ArrayList<Prediction> predictions =
 gestureLib.recognize(gesture);

 if (predictions.size() > 0) {
 Prediction prediction = (Prediction) predictions.get(0);
 if (prediction.score > 1.0) {
 Toast.makeText(this, prediction.name,
 Toast.LENGTH_SHORT).show();
 for(int i=0;i<predictions.size();i++)
 Log.v(TAG, "prediction " + predictions.get(i).name +
 " - score = " + predictions.get(i).score);
 }
 }
 }
}

In this example, we’re going to simply access the exact same file that the Gestures
Builder application wrote to. In our onCreate() method, we use the
GestureLibraries.fromFile() method to do this. But we also show in the comments

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 888

how you would access a gestures file that is part of your application. If you were to use
the fromRawResource() method, you’d use an argument like our regular resource IDs,
and you’d put the gestures file into the /res/raw directory.

Our application doesn’t do a whole lot, but running it will give you a better
understanding of what is going on inside Android as it processes gestures. At startup,
our application loads the gestures file and logs what it finds. It also logs the results of
trying to match a sample gesture drawn into the input screen of our application. Go
ahead and run the Gesture Revealer application, assuming, of course, that you’ve run
Gestures Builder already and have some gestures in the /sdcard/gestures file. See how
each gesture is logged with the ID, the number of strokes, and the length.

Use some gestures on the screen that you know exist in your gesture library. Then use
some that you know do not exist. Watch the LogCat records to see what’s happening.
You may notice that sometimes what you draw is not recognized when you think it
should be or that what Android recognized was not what you had in mind, but most of
the time it correctly recognizes what you drew. You may also have noticed that when
Android recognizes your input gesture, you get scores for all gestures in your library in
predictions, but when Android doesn’t recognize your input gesture, you don’t get
anything at all.

Also note what happens if you have a multistroke gesture, such as the letter E, and you
take too long between strokes. The application will take what you’ve drawn so far and
use that to compare to your gesture library, which is likely to result in an incorrect match
or no match at all. This time delay is controlled by FadeOffset. Here is where it gets
tricky. We want Android to begin matching gestures as soon as we’re finished making
our gesture, but we have no way to know if the user is finished unless we wait for some
period of time and don’t see the start of a new gesture stroke. Therefore, FadeOffset
serves two purposes: one is to control how long to wait for a new gesture stroke as part
of the current gesture, and the other is to control how long to wait to begin matching our
gesture against the known gestures in our gesture library. Making FadeOffset very large
means having to wait a long time before the matching process begins. Making
FadeOffset too small means not being able to use a multistroke gesture because
Android will think the gesture is finished before the user gets to the next gesture stroke.
Whether 420 milliseconds is the right value to use is up to you. You might want to use a
Preference value so users can adjust it for themselves.

While we’re on the topic of multistroke gestures, note that the GestureOverlayView has a
setting that controls whether or not multistroke gestures are expected. The attribute in
XML is android:gestureStrokeType, and its value is either single (the default) or
multiple. If you want to be able to draw multistroke gestures, this attribute must be set.
You can also set it programmatically using setGestureStrokeType(int type), using an
argument of either GestureOverlayView.GESTURE_STROKE_TYPE_SINGLE or
GestureOverlayView.GESTURE_STROKE_TYPE_MULTIPLE. GestureOverlayView also has XML
attributes and methods for setting colors and line thicknesses.

To create your own gesture-aware application, you will need to decide what gestures
your application will act on, create a library of those gestures, and implement the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 889

onGesturePerformedListener interface, probably in your Activity, to recognize the
gestures and take appropriate action.

What if you want your users to be able to record their own gestures? For example, what
about using a different gesture for an action in your application than the one that you
provide? This is possible, but means that you need to have a gesture library file that can
be written to, and the logical place to put this is the SD card. It’s fairly simple to create a
new gesture library file, read out the default gestures from the gesture library file that
comes with your application, and overwrite gestures that the user wants to replace. You
can use the implementation of the Gestures Builder application as mentioned previously
to see how to create a gesture recorder. Or maybe someone will write a Gestures
Builder application that responds to intents, so you could simply invoke that activity to
add a new gesture. Alternatively, you could record just the user’s gestures into a new
writable gesture library file and load two gesture libraries into your application, the user’s
and your original. Within the onGesturePerformed() method, you could first try
recognize() on the user’s library and then on your own. You could compare the top
scores from any predictions from each library to decide which action to take.

References
Here are some helpful references to topics you may wish to explore further.

 http://www.androidbook.com/projects. Look here for a list of
downloadable projects related to this book. For this chapter look for a
zip file called ProAndroid3_Ch25_Touchscreens.zip. This zip file
contains all projects from this chapter, listed in separate root
directories. There is also a README.TXT file that describes exactly
how to import projects into Eclipse from one of these zip files.

 http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchs
creen.html: Jeff Han demonstrates his multi-touch computer user
interface at TED in 2006—very cool.

 http://android-developers.blogspot.com/2010/06/making-sense-of-
multitouch.html: This Android blog post about multi-touch offers yet
another way to implement a GestureDetector inside an extension of a
view.

Summary
In this chapter, we showed you how to deal with touch screens, starting with single-
touch applications and then moving on to multi-touch. We explained how touch works
with maps and the helpful classes and methods Android provides for dealing with
touches and maps. Finally, we explored the gesture mechanisms in Android that allow
your applications to receive user input in a new, and perhaps simpler, way than using
keyboards or other UI controls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 25: Touch Screens 890

http://lib.ommolketab.ir
http//lib.ommolketab.ir

891

891

 Chapter

Using Sensors
Android devices often come with hardware sensors built in, and Android provides a

framework for working with those sensors. Working with sensors can be fun. Measuring

the outside world and using that in software in a device is pretty cool. It is the kind of

programming experience you just don’t get on a regular computer that sits on a desk or

in a server room. The possibilities for new applications that use sensors are huge, and

we hope you are inspired to realize them.

In this chapter we’ll explore the Android sensor framework. We’ll explain what sensors

are, how we get sensor data, and then discuss some specifics of the kinds of data we

can get from sensors and what we can do with it. While Android has defined several

sensor types already, there are no doubt more sensors in Android’s future, and we

expect that future sensors will get incorporated into the sensor framework.

What Is a Sensor?
In Android, a sensor is a piece of hardware that has been wired into the device to feed

data from the physical world to applications. Applications in turn use the sensor data to

inform the user about the physical world, to control game play, to do augmented reality,

or to provide useful tools for working in the real world. Sensors operate in one direction

only; they’re read-only (with one exception, the NFC sensor, which we’ll cover). That

makes using them fairly straightforward. You set up a listener to receive sensor data,

then you process the data as it comes in. GPS hardware is like the sensors we cover in

this chapter. In Chapter 17 we set up listeners for GPS location updates, and we

processed those location updates as they came in. But although GPS is similar to a

sensor, it is not part of the sensor framework that is provided by Android.

Some of the sensor types that can appear in an Android device include:

 Light sensor

 Proximity sensor

 Temperature sensor

 Pressure sensor

26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 892

 Gyroscope sensor

 Accelerometer

 Magnetic field sensor

 Orientation sensor

 Gravity sensor (as of Android 2.3)

 Linear acceleration sensor (as of Android 2.3)

 Rotation vector sensor (as of Android 2.3)

 Near Field Communication (NFC) sensor (as of Android 2.3)

The NFC sensor is not like the others in this list. We’re going to cover the NFC sensor

later on in this chapter, because it is accessed in a completely different way from the

rest of these sensors.

Detecting Sensors
Please don’t assume, however, that all Android devices have all of these sensors. In

fact, many devices have just some of these sensors. The Android emulator, for example,

has only an accelerometer. So how do you know which sensors are available on a

device? There are two ways, one direct and one indirect.

The first way is that you ask the SensorManager for a list of the available sensors. It will

respond with a list of sensor objects that you can then set up listeners for and get data

from. We’ll show you how a bit later in this chapter. This method assumes that the user

has already installed your application onto a device, but what if the device doesn’t have

a sensor that your application needs?

That’s where the second method comes in. Within the AndroidManifest.xml file, you can

specify the features a device must have in order to properly support your application. If

your application needs a proximity sensor, you specify that in your manifest file with a

line such as the following:

<uses-feature android:name=”android.hardware.sensor.proximity” />

Now your application will only be installed on a device that has a proximity sensor, so

you know it’s there when your application runs.

What Can We Know About a Sensor?
While using the uses-feature tags in the manifest file lets you know that a sensor your

application requires exists on a device, it doesn’t tell you everything you may want to

know about the actual sensor. Let’s build a simple application that queries the device for

sensor information. Listing 26–1 shows the XML of our layout, and the Java code of our

MainActivity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 893

NOTE: You can download this chapter’s projects. We will give you the URL at the end of the

chapter. This will allow you to import these projects into your Eclipse directly.

Listing 26–1. XML and Java for a Sensor List app

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <ScrollView android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1" >
 <TextView android:id="@+id/text"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 </ScrollView>
</LinearLayout>

// This file is MainActivity.java
import java.util.HashMap;
import java.util.List;
import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView text = (TextView)findViewById(R.id.text);

 SensorManager mgr =
 (SensorManager) this.getSystemService(SENSOR_SERVICE);

 List<Sensor> sensors = mgr.getSensorList(Sensor.TYPE_ALL);

 StringBuilder message = new StringBuilder(2048);
 message.append("The sensors on this device are:\n");

 for(Sensor sensor : sensors) {
 message.append(sensor.getName() + "\n");
 message.append(" Type: " +
 sensorTypes.get(sensor.getType()) + "\n");
 message.append(" Vendor: " +
 sensor.getVendor() + "\n");
 message.append(" Version: " +
 sensor.getVersion() + "\n");
 message.append(" Resolution: " +

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 894

 sensor.getResolution() + "\n");
 message.append(" Max Range: " +
 sensor.getMaximumRange() + "\n");
 message.append(" Power: " +
 sensor.getPower() + " mA\n");
 }
 text.setText(message);
 }

 private HashMap<Integer, String> sensorTypes =
 new HashMap<Integer, String>();

 {
 sensorTypes.put(Sensor.TYPE_ACCELEROMETER, "TYPE_ACCELEROMETER");
 sensorTypes.put(Sensor.TYPE_GYROSCOPE, "TYPE_GYROSCOPE");
 sensorTypes.put(Sensor.TYPE_LIGHT, "TYPE_LIGHT");
 sensorTypes.put(Sensor.TYPE_MAGNETIC_FIELD, "TYPE_MAGNETIC_FIELD");
 sensorTypes.put(Sensor.TYPE_ORIENTATION, "TYPE_ORIENTATION");
 sensorTypes.put(Sensor.TYPE_PRESSURE, "TYPE_PRESSURE");
 sensorTypes.put(Sensor.TYPE_PROXIMITY, "TYPE_PROXIMITY");
 sensorTypes.put(Sensor.TYPE_TEMPERATURE, "TYPE_TEMPERATURE");
 sensorTypes.put(Sensor.TYPE_GRAVITY, "TYPE_GRAVITY");
 sensorTypes.put(Sensor.TYPE_LINEAR_ACCELERATION,
 "TYPE_LINEAR_ACCELERATION");
 sensorTypes.put(Sensor.TYPE_ROTATION_VECTOR,
 "TYPE_ROTATION_VECTOR");
 }
}

Notice that we’ve used a ScrollView in this example, since we could easily get more

rows than our screen can display at one time. Within our onCreate() method, we start

by getting a reference to the SensorManager. There can only be one of these, so we

retrieve it as a system service. We then call its getSensorList() method to get a list of

sensors. For each sensor, we write out information about it. The output will look

something like Figure 26–1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 895

Figure 26–1. Output from our Sensor List app

There are a few things to know about this sensor information. The type value tells you

the basic type of the sensor without getting specific. A light sensor is a light sensor, but

you could get variations in light sensors from one device to another. For example, the

resolution of a light sensor on one device could be different than on another device.

When you specify that your app needs a light sensor in a <uses-feature> tag, you don’t

know in advance exactly what type of light sensor you’re going to get. So you’ll need to

query the device to find out, and adjust your code accordingly.

The values you get for resolution and maximum range will be in the appropriate units for

that sensor. The power measurement is in milliamperes (mA) and represents the

electrical current that the sensor draws from the device’s battery; smaller is better.

Now that we know what sensors we have available to us, how do we go about getting

data from them? As we explained earlier, we set up a listener in order to get sensor data

sent to us. Let’s explore that now.

Getting Sensor Events
Sensors provide data to our application once we register a listener to receive the data.

When our listener is not listening, the sensor can be turned off, conserving battery life,

so make sure you only listen when you really need to. Setting up a sensor listener is

easy to do. Let’s say that we want to measure the light levels from the light sensor.

Listing 26–2 shows the Java code for a sample app that does this. We’ll use the same

XML layout as in Listing 26–1 for this example.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 896

Listing 26–2. Java Code for a Light Sensor Monitor app

// This file is MainActivity.java
import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity implements SensorEventListener {
 private SensorManager mgr;
 private Sensor light;
 private TextView text;
 private StringBuilder msg = new StringBuilder(2048);

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);

 light = mgr.getDefaultSensor(Sensor.TYPE_LIGHT);

 text = (TextView) findViewById(R.id.text);
 }

 @Override
 protected void onResume() {
 mgr.registerListener(this, light,
 SensorManager.SENSOR_DELAY_NORMAL);
 super.onResume();
 }

 @Override
 protected void onPause() {
 mgr.unregisterListener(this, light);
 super.onPause();
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 msg.insert(0, sensor.getName() + " accuracy changed: " +
 accuracy + (accuracy==1?" (LOW)":(accuracy==2?" (MED)":
 " (HIGH)")) + "\n");
 text.setText(msg);
 text.invalidate();
 }

 public void onSensorChanged(SensorEvent event) {
 msg.insert(0, "Got a sensor event: " + event.values[0] +
 " SI lux units\n");
 text.setText(msg);
 text.invalidate();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 897

In this sample app, we again get a reference to the SensorManager, but instead of getting

a list of sensors, we query specifically for the light sensor. We then set up a listener in

the onResume() method of our activity, and we unregister the listener in the onPause()

method. We don’t want to be worrying about the light levels when our application is not

in the foreground.

For the registerListener() method, we pass in a value representing how often we want

to be notified of sensor value changes. This parameter could be

 SENSOR_DELAY_NORMAL

 SENSOR_DELAY_UI

 SENSOR_DELAY_GAME

 SENSOR_DELAY_FASTEST

It is important to select an appropriate value for this parameter. Some sensors are very

sensitive and will generate a lot of events in a short amount of time. If you choose

SENSOR_DELAY_FASTEST you might even overrun your application’s ability to keep up.

Depending on what your application does with each sensor event, it is possible that you

will be creating and destroying so many objects in memory that garbage collection will

cause noticeable slowdowns and hiccups on the device. On the other hand, certain

sensors pretty much demand to be read as often as possible; this is true of the rotation

vector sensor in particular.

Because our Activity implements the SensorEventListener interface, we have two

callbacks for sensor events: onAccuracyChanged() and onSensorChanged(). The first

method will let us know if the accuracy changes on our sensor (or sensors, since it could

be called for more than one). The value of the accuracy parameter will be 0, 1, 2 or 3 for

unreliable, low, medium, or high accuracy, respectively. Unreliable accuracy does not

mean that the device is broken; it normally means that the sensor needs to be

calibrated. The second callback method tells us when the light level has changed, and

we get a sensor event object to tell us the details of the new value or values from the

sensor.

A SensorEvent object has several members, one of them being an array of float values.

For a light sensor event, only the first float value has meaning, which is the SI lux value

of the light that was detected by the sensor. For our sample app, we build up a message

string by inserting the new messages on top of the older messages, and then display the

batch of messages in a TextView. Our newest sensor values will always be displayed at

the top of the screen.

When you run this application (on a real device, of course, since the emulator does not

have a light sensor), you may notice that nothing is displayed at first. Just change the

light that is shining on the upper left corner of your device. This is most likely where your

light sensor is. If you look very carefully, you might see the dot behind the screen that is

the light sensor. If you cover this dot with your finger, the light level will probably change

to a very small value (although may not reach zero). The messages should display on the

screen telling you about the changing light levels.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 898

NOTE: You might also notice that, by covering up the light sensor, your buttons light up (if you
have a device with lighted buttons). This is because Android has detected the darkness and lights

up the buttons to make the device easier to use.

Issues with Getting Sensor Data
The Android sensor framework has problems that you need to be aware of. This is the

part that’s not fun. In some cases, we have ways of working around the problem, in

others we don’t, or it’s very difficult.

onAccuracyChanged() Always Says the Same Thing
Up until Android 2.2, the onAccuracyChanged() callback would get called every time

there was a new sensor reading, and the accuracy parameter would always be 3 (for

high). It’s a good idea to accommodate changing accuracies of sensor data, but don’t

be surprised if this method gets called all the time even though the accuracy has not

changed.

No Direct Access to Sensor Values
You may have noticed that there is no direct way to query the sensor’s current value.

The only way to get data from a sensor is through a listener. This means that, even once

we’ve setup the listener, there are no guarantees that we’ll get a new datum within a set

period of time. At least the callback is asynchronous so we won’t block the UI thread

waiting for a piece of data from a sensor. However, your application has to

accommodate the fact that sensor data may not be available at the exact moment that

you want it.

It is possible to directly access sensors using native code and the JNI feature of

Android. You’ll need to know the low-level native API calls for the sensor driver you’re

interested in, plus be able to setup the interface back to Android. So it can be done, but

it’s not easy.

Sensor Values not Sent Fast Enough
Even at SENSOR_DELAY_FASTEST, we might not get new values more often than every 20

ms (it depends on the device). If you need more rapid sensor data than you can get with

a rate setting of SENSOR_DELAY_FASTEST, it is possible to use native code and JNI to get

to the sensor data faster, but similar to the previous situation, it is not easy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 899

Sensors Turn Off with Screen in Android 2.1
There have been problems in Android 2.1 with sensor updates that get turned off when

the screen is turned off. Apparently someone thought it was a good idea to not send

sensor updates if the screen is off, even if your application (most likely using a service)

has a wake lock. Basically your listener gets unregistered when the screen turns off.

There are several workarounds to this problem. The first is that you can set the screen

timeout so it doesn’t turn off while you want to continue receiving sensor updates. This

has the major disadvantage of using up the battery. In order to change the screen off

timeout, you’ll need to do something like the following where myDelay is a time period in

milliseconds:

Settings.System.putInt(getContentResolver(),
 Settings.System.SCREEN_OFF_TIMEOUT, myDelay);

You can use a value of -1 so the screen will never turn off. Your application also needs

to have the proper permission (android.permission.WRITE_SETTINGS) in the

AndroidManifest.xml file in order to do this. The other drawback to this approach is that

the screen-off timeout is a global value. When your application changes it, it’s changed

for everyone. Your application should really remember the previous setting and restore it

when your application ends. Even this can be problematic because, in theory, the user

could start your application, wonder why the screen doesn’t turn off anymore, go into

Settings, and change it to something else entirely, then return to your application later

and end it. Not to mention that if the user changes the setting after your application has

started, the screen could then turn off and your application would stop getting sensor

updates.

The Unregister/Register Technique for Continual Sensor Updates
One method to keep sensor updates coming is to register to receive a broadcast

notification when the screen turns off, then unregister your sensor event listener, and re-

register your sensor event listener in the onReceive() method of your

BroadcastReceiver. This has been shown to work on some 2.1 phones, but not all.

Because your application would normally be paused when the screen goes dark, first

you need to acquire a partial wake lock to keep your application running even when the

screen is off. Our example uses an Activity but in a real application you’d most likely put

your sensor listening code into a service. Listing 26–3 shows what this might look like as

an Activity.

Listing 26–3. Working Around Issues with SensorListeners Turning Off

package com.androidbook.sensor.accel;

// This file is MainActivity.java
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;
import android.app.Activity;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 900

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.os.Environment;
import android.os.PowerManager;
import android.os.PowerManager.WakeLock;
import android.provider.Settings;
import android.util.Log;

public class MainActivity extends Activity implements SensorEventListener {
 private static final String TAG = "AccelerometerRecordToFile";
 private WakeLock mWakelock = null;
 private SensorManager mMgr;
 private Sensor mAccel;
 private BufferedWriter mLog;
 final private SimpleDateFormat mTimeFormat =
 new SimpleDateFormat("HH:mm:ss - ");
 private int mSavedTimeout;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mMgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);

 mAccel = mMgr.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 // Setup the log file to write to. We will append it just
 // in case this activity restarts in the middle of our
 // experiment.
 try {
 String filename =
 Environment.getExternalStorageDirectory().getAbsolutePath() +
 "/accel.log";
 mLog = new BufferedWriter(new FileWriter(filename, true));
 }
 catch(Exception e) {
 Log.e(TAG, "Unable to initialize the logfile");
 e.printStackTrace();
 finish();
 }

 PowerManager pwrMgr =
 (PowerManager) this.getSystemService(POWER_SERVICE);
 mWakelock = pwrMgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
 "Accel");
 mWakelock.acquire();

 // Save the current value of the screen timeout, then set it
 // to a small value

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 901

 try {
 mSavedTimeout = Settings.System.getInt(getContentResolver(),
 Settings.System.SCREEN_OFF_TIMEOUT);
 }
 catch(Exception e) {
 mSavedTimeout = 120000; // default to 2 minutes if we
 // can’t read the current value
 }
 Settings.System.putInt(getContentResolver(),
 Settings.System.SCREEN_OFF_TIMEOUT, 5000); // 5 seconds
 }

 public BroadcastReceiver mReceiver = new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 if (Intent.ACTION_SCREEN_OFF.equals(intent.getAction())) {
 writeLog("The screen has turned off");
 // Unregisters the listener and registers it again.
 // Should only need to do this in Android 2.1 although
 // it doesn't hurt to do this in any version.

 mMgr.unregisterListener(MainActivity.this);
 mMgr.registerListener(MainActivity.this, mAccel,
 SensorManager.SENSOR_DELAY_NORMAL);

 }
 }
 };

 @Override
 protected void onStart() {
 writeLog("starting...");
 mMgr.registerListener(this, mAccel,
 SensorManager.SENSOR_DELAY_NORMAL);

 IntentFilter filter = new IntentFilter(Intent.ACTION_SCREEN_OFF);
 registerReceiver(mReceiver, filter);

 super.onStart();
 }

 @Override
 protected void onStop() {
 writeLog("stopping...");
 mMgr.unregisterListener(this, mAccel);
 unregisterReceiver(mReceiver);
 try {
 mLog.flush();
 } catch (IOException e) {
 // ignore any errors with the logfile
 }
 super.onStop();
 }

 @Override
 protected void onDestroy() {
 writeLog("shutting down...");
 try {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 902

 mLog.flush();
 mLog.close();
 }
 catch(Exception e) {
 // ignore any errors with the logfile
 }

 // Restore the screen off timeout to the previous value
 Settings.System.putInt(getContentResolver(),
 Settings.System.SCREEN_OFF_TIMEOUT, mSavedTimeout);

 mWakelock.release();

 super.onDestroy();
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // ignore
 }

 public void onSensorChanged(SensorEvent event) {
 writeLog("Got a sensor event: " + event.values[0] + ", " +
 event.values[1] + ", " + event.values[2]);
 }

 private void writeLog(String str) {
 try {
 Date now = new Date();
 mLog.write(mTimeFormat.format(now));
 mLog.write(str);
 mLog.write("\n");
 }
 catch(IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

We don’t need to worry about an XML layout with this example since we’re not

displaying anything other than our application title. We do need to worry about

permissions though, so Listing 26–4 shows our AndroidManifest.xml file for this

application.

Listing 26–4. AndroidManifest.xml for our Accelerometer Monitor app

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0" package="com.androidbook.sensor.accel">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 903

 </application>
 <uses-sdk android:minSdkVersion="3" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_SETTINGS" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
</manifest>

In this example, the main objective is writing accelerometer events to a log file. In the

onCreate() method, we need to acquire a partial wake lock so our application will not be

put to sleep when the screen is turned off (we covered wake locks in Chapter 14). We

also set the screen off timeout to a value of five seconds so it will turn off fairly quickly,

but the previous value of the timeout is saved so it can be restored in the onDestroy()

method later.

NOTE: We’re modifying the screen off timeout so you can see what happens to our sensor event

listener when the screen turns off. We wouldn’t want to do this in a real application.

We also set up a BroadcastReceiver that is notified when the screen is turned off. We

log that fact in onReceive() and then do the Android 2.1 workaround for continuing to

receive sensor events. The onStart() method is where the sensor event listener is

registered, and also where the BroadcastReceiver is registered. Both of these listeners

are unregistered in onStop(). We use onStart() and onStop() instead of onResume() and

onPause() because we want to keep listening to sensors even if the user goes to another

Activity while we’re running.

The onDestroy() method does the cleanup, flushing and closing the log file, restoring

the screen off timeout, and releasing the wake lock. Unlike the previous example, the

onAccuracyChanged() callback does nothing. The onSensorChanged() method is where

the event data is written to the log file.

This pattern of working with a sensor event listener is what you would do as well in a

real application. Unlike in our previous example that did not concern itself with the

device going to sleep, you most likely need to acquire a wake lock to ensure that your

application is capturing events as they happen even if the screen goes dark. Note that if

you are targetting Android 2.2 and later, you shouldn’t need to worry about the

unregistering and re-registering of the sensor event listener in a BroadcastReceiver. And

with versions of Android prior to 2.0, you should be fine as well.

This is an interesting application to run. One thing you may want to do is

1. Install the app, then disconnect your device from your workstation so it

is not tethered with a USB cable (this sometimes causes the screen to

stay on regardless of the display setting).

The application will appear, then you move the device around and in

approximately five seconds the screen will go dark.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 904

2. Continue to move the device around to trigger accelerometer events,

then after several seconds, unlock the device and use the Back key to

end the application.

You will find a log file called access.log in the main directory of the SD card of the

device.

3. Plug the device back into the USB cable for your workstation, then copy

the access.log file to your workstation and take a look.

You should see a start message, many event messages, and then a message that

says “The screen has turned off.” Depending on your device and the version of

Android it is running, you will either see additional events occurring immediately

after this message, or you will see a gap in events until the time you unlocked the

device and ended the application.

The Keep-the-Screen-On Technique for Continual Sensor Updates
There is another possible workaround for Android 2.1. The basic symptom is that the

sensors on some Android 2.1 devices are simply off anytime the screen is off. So the

workaround is to make sure the screen stays on. Listing 26–5 shows an alternate version

of our BroadcastReceiver from the previous example application, only this time we turn

the screen back on (albeit in dimmed mode) as soon as it goes off, plus some small

modifications to other parts of the code. Since the screen is technically on even when

dimmed, the sensor data continues to flow to our Android 2.1 application. If you’re

importing projects from our website, this project is called

AccelerometerRecordToFileAlwaysOn.

Listing 26–5. Keeping the Screen on Even When the User Turns It Off

// Add these objects to our Activity
 private PowerManager mPwrMgr;
 private WakeLock mTurnBackOn = null;
 private Handler handler = new Handler();

// Add these 3 lines to our onCreate() method
 mPwrMgr = (PowerManager) this.getSystemService(POWER_SERVICE);
 mWakelock = mPwrMgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, "Accel");
 mWakelock.acquire();

// This code replaces BroadcastReceiver in MainActivity.java
 public BroadcastReceiver mReceiver = new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 if (Intent.ACTION_SCREEN_OFF.equals(intent.getAction())) {
 writeLog("The screen has turned off");
 // Turn the screen back on again, from the main thread
 handler.post(new Runnable() {
 public void run() {
 if(mTurnBackOn != null)
 mTurnBackOn.release();

 mTurnBackOn = mPwrMgr.newWakeLock(

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 905

 PowerManager.SCREEN_DIM_WAKE_LOCK |
 PowerManager.ACQUIRE_CAUSES_WAKEUP,
 "AccelOn");
 mTurnBackOn.acquire();
 }});
 }
 }
 };

// Don’t forget to add this to onDestroy()
 if(mTurnBackOn != null)
 mTurnBackOn.release();

Now when you run this application, even if the user presses the Power key to turn off the

screen, this application catches the event, and using a wake lock, turns the screen back

on in dimmed mode. There may be a very short gap in sensor events while this is

happening, but it’s better than a big gap with the screen off. Notice how we used a

Handler to post a Runnable from the BroadcastReceiver. This ensures that our code runs

on the main thread, which is important for when we want to release the wake lock in

onDestroy(). The acquire and release must be from the same thread.

Also notice that we release the wake lock in the onReceive() method of our

BroadcastReceiver before getting one. This is done in case the user presses the Power

key more than once while we’re recording sensor events. We need to match wake lock

releases with acquires so if we had one coming in, we release that one before getting a

new one.

Now that you know how to get data from sensors, what can you do with the data? As

we said earlier, depending on which sensor you’re getting data from, the values returned

in the values array mean different things. The next section will explore each of the

sensor types and what their values mean.

Interpreting Sensor Data
Now that we understand how to get data from a sensor, we must do something

meaningful with the data. The data we get, however, will depend on which sensor we’re

getting the data from. Some sensors are simpler than others. In the sections that follow,

we will describe the data that you’ll get from the sensors we currently know about. As

new devices come into being, new sensors will undoubtedly be introduced as well. The

sensor framework is very likely to remain the same, so the techniques we show here

should apply equally well to the new sensors.

Light Sensors
The light sensor is one of the simplest sensors on a device, and one we’ve used in our

first sample applications of this chapter. The sensor gives a reading of the light level

detected by the light sensor of the device. As the light level changes, the sensor

readings change. The units of the data are in SI lux units. To learn more about what this

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 906

means, please see the References section at the end of this chapter for links to more

information.

For the values array in the SensorEvent object, a light sensor uses just the first element,

values[0]. This value is a float, and ranges technically from zero to the maximum value

for the particular sensor. We say technically because the sensor may only send very

small values when there’s no light, and never actually send a value of 0.

Remember also that the sensor can tell us the maximum value that it can return and that

different sensors can have different maximums. For this reason, it may not be useful to

consider the light-related constants in the SensorManager class. For example,

SensorManager has a constant called LIGHT_SUNLIGHT_MAX, which is a float value of

120,000; however, when we queried our device earlier, the maximum value returned was

10,240, clearly much less than this constant value. There’s another one called

LIGHT_SHADE at 20,000 which is also above the maximum of the device we tested. So

keep this in mind when writing code that uses light sensor data.

Proximity Sensors
The proximity sensor measures either the distance that some object is from the device

(in centimeters), or represents a flag to say whether an object is close or far. Some

proximity sensors will give a value ranging from 0.0 to the maximum in increments, while

others return either 0.0 or the maximum value only. If the maximum range of the

proximity sensor is equal to the sensor’s resolution, then you know it’s one of those that

only returns 0.0, or the maximum. There are devices with a maximum of 1.0; others

where it’s 6.0. Unfortunately, there’s no way to tell before the application is installed and

run which proximity sensor you’re going to get. Even if you put a <uses-feature> tag in

your AndroidManifest.xml file for the proximity sensor, you could get either kind. Unless

you absolutely need to have the more granular proximity sensor, your application should

accommodate both types gracefully.

Here’s an interesting fact about proximity sensors: the proximity sensor is sometimes

the same hardware as the light sensor. Android still treats them as logically separate

sensors though, so if you need data from both you will need to set up a listener for each

one. Here’s another interesting fact: the proximity sensor is often used in the phone

application to detect the presence of a person’s head next to the device. If the head is

that close to the touchscreen, the touchscreen is disabled so no keys will be accidently

pressed by the ear or cheek while the person is talking on the phone.

The source code projects for this chapter include a simple proximity sensor monitor

application, which is basically the light sensor monitor application modified to use the

proximity sensor instead of the light sensor. We won’t include the code text here in this

chapter, but feel free to experiment with it on your own.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 907

Temperature Sensors
The temperature sensor provides a temperature reading, and also returns just a single

value in values[0]. The value represents the temperature in degrees Celsius. You can

get to Fahrenheit degrees from Celsius by multiplying by 9/5 and adding 32. For

example, 0 degrees Celsius is 32 Fahrenheit (temperature at which water freezes) and

100 degrees Celsius is 212 degrees Fahrenheit (temperature at which water boils).

The placement of the temperature sensor is device-dependent, and it is possible that

the temperature readings could be impacted by the heat generated by the device itself.

For example, on some devices, the temperature sensor is reading the temperature of the

device’s battery. Keep this in mind when writing applications that use the temperature

sensor, and don’t expect that the readings from the temperature sensor are the air

temperature around the device.

The projects for this chapter include one for the temperature sensor called

TemperatureSensor.

Pressure Sensors
Interestingly, these sensors haven’t been seen in any devices as of this writing. The idea

is that future devices could have a barometric pressure sensor, which could detect

altitude for example. This sensor should not be confused with the ability of a

touchscreen to generate a MotionEvent with a pressure value (the pressure of the touch).

We covered this touch type of pressure sensing in Chapter 25. Touchscreen pressure

sensing doesn’t use the Android sensor framework.

While it would be easy to copy and modify the sensor monitor applications used so far

to accommodate a pressure sensor, we have no way yet to know what the unit of

measurement is going to be, so it won’t do us much good. Obviously the folks at Google

are thinking ahead.

Gyroscope Sensors
Gyroscopes are very cool components that can measure the twist of a device about a

reference frame. Said another way, gyroscopes measure the rate of rotation about an

axis. When the device is not rotating, the sensor values will be zeroes. When there is

rotation in any direction, you’ll get non-zero values from the gyroscope. By itself, a

gyroscope can’t tell you everything you need to know. And unfortunately, errors creep in

over time with gyroscopes. But coupled with accelerometers, you can determine the

path of movement of the device. Kalman filters can be used to link data from the two

sensors together. Accelerometers are not terribly accurate in the short-term, and

gyroscopes are not very accurate in the long-term, so combined they can be reasonably

accurate all the time. While Kalman filters are very complex, there is an alternative called

Complementary filters which are easier to implement in code, and produce results that

are pretty good. These concepts are beyond the scope of this book.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 908

The Gyroscope sensor returns three values in the values array for the x, y, and z axes.

The units are radians per second and represent the rate of rotation around each of those

axes. One way to work with these values is to integrate them over time to calculate an

angle change. This is a similar calculation to integrating linear speed over time to

calculate distance.

Accelerometers
Accelerometers are probably the most interesting of the sensors on a device. Using

these sensors our application can determine the physical orientation of the device in

space relative to gravity’s pull straight down, plus be aware of forces pushing on the

device. Providing this information allows an application to do all sorts of interesting

things, from game play to augmented reality. And of course, the accelerometers tell

Android when to switch the orientation of the user interface from portrait to landscape

and back again.

The accelerometer coordinate system works like this: the accelerometer’s x axis

originates in the bottom left corner of the device and goes across the bottom to the

right. The y axis also originates in the bottom left corner and goes up along the left of the

display. The z axis originates in the bottom left corner and goes up in space away from

the device. Figure 26–2 shows what this means.

Figure 26–2. Accelerometer coordinate system

This coordinate system is different than the one used in layouts and 2D graphics. In that

coordinate system, the origin (0, 0) is at the top left corner and Y is positive in the

direction down the screen from there. It is easy to get confused when dealing with

coordinate systems in different frames of reference so be careful.

We haven’t yet said what the accelerometer values mean, so what do they mean?

Acceleration is measured in meters per second squared (m/s2). Normal earth gravity is

9.81 m/s2 pulling down toward the center of the earth. From the accelerometer’s point of

view, the measurement of gravity is -9.81. If your device is completely at rest (not

moving), and is on a perfectly flat surface, the x and y readings will be 0 and the z
reading will be +9.81. Actually, the values won’t be exactly these because of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 909

sensitivity and accuracy of the accelerometer, but they will be close. Gravity is the only

force acting on the device when the device is at rest, and because gravity pulls straight

down, and if our device is perfectly flat, its effect on the x and y axes is zero. On the z

axis, the accelerometer is measuring the force on the device minus gravity. Therefore, 0

minus -9.81 is +9.81 and that’s what the z value will be (a.k.a. values[2] in the

SensorEvent object).

The values sent to our application by the accelerometer always represent the sum of the

forces on the device minus gravity. If we were to take our perfectly flat device and lift it

straight up, the z value would increase at first, because we increased the force in the up

(z) direction. As soon as our lifting force stops, the overall force will return to being just

gravity. If the device were to be dropped (hypothetically – please don’t do this) it would

be accelerating toward the ground, which zeroes out gravity so the accelerometer would

read 0 force.

Let’s take the device from Figure 26–2 and rotate it up so it is in portrait mode and

vertical. The x axis is the same, pointing left to right. Our y axis is now straight up and

down, and the z axis is pointing out of the screen straight at us. The y value will be +9.81

and both x and z will be zero.

What happens when we rotate the device to landscape mode and continue to hold it

vertically, i.e. so the screen is right in front of our face? If you guessed that y and z are

now zero and x is +9.81 you’d be correct. Figure 26–3 shows what it might look like.

Figure 26–3. Accelerometer values in landscape vertical

When the device is not moving, or is moving with a constant velocity, the

accelerometers are only measuring gravity. And in each axis, the value from the

accelerometer is gravity’s component in that axis. Therefore, using some trigonometry,

you could figure out the angles and know how the device is oriented relative to gravity’s

pull. That is, you could tell if the device were in portrait mode or in landscape mode or in

some tilted mode. In fact, this is exactly what Android does to figure out which display

mode to use (portrait or landscape). Note, however, that the accelerometers do not say

how the device is oriented with respect to magnetic north. That’s where the magnetic

field sensor will come in, which we will cover in the next section.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 910

Accelerometers and Display Orientation
Accelerometers in a device are hardware and they’re firmly attached, and as such have a

specific orientation relative to the device that does not change as the device is turned this

way or that. The values that the accelerometers send into Android will change of course as

a device is moved, but the coordinate system of the accelerometers will stay the same

relative to the physical device. The coordinate system of the display, however, changes as

the user goes from portrait to landscape and back again. In fact depending on which way

the screen is turned, portrait could be right-side up, or 180 degrees upside down.

Similarly, landscape could be in one of two different rotations 180 degrees apart.

When our application is reading accelerometer data and wanting to affect the user

interface correctly, our application must know how much rotation of the display has

occurred to properly compensate. As our screen is re-oriented from portrait to

landscape, the screen’s coordinate system has rotated with respect to the coordinate

system of the accelerometers. To handle this, our application must use the method

Display.getRotation(), which was introduced in Android 2.2. The return value is a

simple integer but not the actual number of degrees of rotation. The value will be one of

Surface.ROTATION_0, Surface.ROTATION_90, Surface.ROTATION_180, or

Surface.ROTATION_270. These are constants with values of 0, 1, 2, and 3 respectively.

This return value tells us how much the display has rotated from the “normal” orientation

of the device. Because not all Android devices are normally in portrait mode, we cannot

assume that portrait is at ROTATION_0.

Not all devices will give you all four return values. On the HTC Droid Eris running Android

2.1, Display.getOrientation() (the precursor to Display.getRotation() and now

deprecated) will return 0 or 1 and that’s it. In normal portrait mode, the value returned is

0. If you turn the device 90 degrees counter-clockwise, the screen will rotate and

Display.getOrientation() will return 1. If you turn the device clockwise 90 degrees

from portrait mode, the screen stays in portrait mode, and you still get a return value of

0 from Display.getOrientation().

On the Motorola Droid running Android 2.2, Display.getRotation() returns 0, 1, or 3. It

does not return a 2 and will not show portrait upside down. Here is a disappointing

result though: if you rotate the device 270 degrees in the counter-clockwise direction

from straight-up portrait, Display.getRotation() returns a 1 at 90 degrees and the

display switches to landscape mode, at 180 degrees you still get a 1 and the display

does not change, at 270 degrees the display flips to the other landscape mode, but

Display.getRotation() still returns 1. If you rotate the device 90 degrees in the

clockwise direction from normal portrait mode, then you’ll get a 3 from

Display.getRotation(). This last position looks exactly the same as 270 degrees

counter-clockwise, but you get a different return value from Display.getRotation()
depending on how you got there.

Accelerometers and Gravity
So far we’ve only briefly touched on what happens to the accelerometer values when

the device is moved. Let’s explore that further. All forces acting on the device will be

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 911

detected by the accelerometers. If we lift the device, the initial lifting force is positive in

the z direction, and we get a z value greater than +9.81. If we push the device on its left

side, we’ll get an initial negative reading in the x direction.

What we’d like to be able to do is separate out the force of gravity from the other forces

acting on the device. There’s a fairly easy way to do this, and it’s called a low-pass filter.

Forces other than gravity acting on the device will do so in a way that is typically not

gradual. In other words, if the user is shaking the device, the shaking forces are reflected

in the accelerometer values quickly. A low-pass filter will in effect strip out the shaking

forces and leave only the steady force which for us is gravity. Let’s use a sample

application to illustrate this concept. It’s called GravityDemo. Listing 26–6 shows the

layout XML and the Java code.

Listing 26–6. Measuring gravity From the accelerometers

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView android:id="@+id/text" android:textSize="20sp"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity implements SensorEventListener {
 private SensorManager mgr;
 private Sensor accelerometer;
 private TextView text;
 private float[] gravity = new float[3];
 private float[] motion = new float[3];
 private double ratio;
 private double mAngle;
 private int counter = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);

 accelerometer = mgr.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 text = (TextView) findViewById(R.id.text);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 912

 }

 @Override
 protected void onResume() {
 mgr.registerListener(this, accelerometer,
 SensorManager.SENSOR_DELAY_UI);
 super.onResume();
 }

 @Override
 protected void onPause() {
 mgr.unregisterListener(this, accelerometer);
 super.onPause();
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // ignore
 }

 public void onSensorChanged(SensorEvent event) {
 // Use a low-pass filter to get gravity.
 // Motion is what's left over
 for(int i=0; i<3; i++) {
 gravity [i] = (float) (0.1 * event.values[i] +
 0.9 * gravity[i]);
 motion[i] = event.values[i] - gravity[i];
 }

 // ratio is gravity on the Y axis compared to full gravity
 // should be no more than 1, no less than -1
 ratio = gravity[1]/SensorManager.GRAVITY_EARTH;
 if(ratio > 1.0) ratio = 1.0;
 if(ratio < -1.0) ratio = -1.0;

 // convert radians to degrees, make negative if facing up
 mAngle = Math.toDegrees(Math.acos(ratio));
 if(gravity[2] < 0) {
 mAngle = -mAngle;
 }

 // Display every 10th value
 if(counter++ % 10 == 0) {
 String msg = String.format(
 "Raw values\nX: %8.4f\nY: %8.4f\nZ: %8.4f\n" +
 "Gravity\nX: %8.4f\nY: %8.4f\nZ: %8.4f\n" +
 "Motion\nX: %8.4f\nY: %8.4f\nZ: %8.4f\nAngle: %8.1f",
 event.values[0], event.values[1], event.values[2],
 gravity[0], gravity[1], gravity[2],
 motion[0], motion[1], motion[2],
 mAngle);
 text.setText(msg);
 text.invalidate();
 counter=1;
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 913

The result of running this application is a display that looks like Figure 26–4. This

screenshot was taken as the device lay flat on a table.

Figure 26–4. Gravity, motion, and angle values

Most of this sample application is the same as our Accel Sensor application from before.

The differences are in the onSensorChanged() method. Instead of simply displaying the

values from the event array, we attempt to keep track of gravity and motion. We get

gravity by using only a small portion of the new value from the event array, and we use a

large portion of the previous value of the gravity array. The two portions used must add

up to 1.0. We used 0.9 and 0.1. You could try other values, too, such as 0.8 and 0.2. Our

gravity array cannot possibly change as fast as the actual sensor values are changing.

But this is closer to reality. And this is what a low-pass filter does. The event array

values would only be changing if forces were causing the device to move, and we don’t

want to measure those forces as part of gravity. We only want to record into our gravity

array the force of gravity itself. The math here does not mean we’re magically recording

only gravity, but the values we’re calculating are going to be a lot closer than the raw

values from the event array.

Notice also the motion array in the code. By tracking the difference between the raw

event array values and the calculated gravity values, we are basically measuring the

active, non-gravity, forces on the device in the motion array. If the values in the motion

array are zero or very close to zero, it means the device is probably not moving. This is

useful information. Technically, a device moving in a constant speed would also have

values in the motion array close to zero, but the reality is that if a user is moving the

device, the motion values will be somewhat larger than zero.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 914

Using Accelerometers to Measure the Device’s Angle
We wanted to show you one more thing about the accelerometers before we move on. If

we go back to our trigonometry lessons, we remember that the cosine of an angle is the

ratio of the near side and the hypotenuse. If we consider the angle between the Y axis

and gravity itself, we could measure the force of gravity on the Y axis, and take the

arccosine to determine the angle. We’ve done that in this code as well. Although here

we have to deal yet again with some of the messiness of sensors in Android. There are

constants in SensorManager for different gravity constants, including Earth’s. But our

actual measured values could possibly exceed the defined constants. We will explain

what we mean by this next.

In theory, our device at rest would measure a value for gravity equal to the constant

value, but this is rarely the case. At rest, the accelerometer sensor is very likely to give

us a value for gravity that is larger or smaller than the constant. Therefore, our ratio

could end up greater than one, or less than negative one. This would make the acos()

method complain so we fix the ratio value to be no more than 1 and no less than -1. The

corresponding angles in degrees range from 0 to 180. That’s fine except that we don’t

get negative angles from 0 to -180 this way. To get the negative angles, we use another

value from our gravity array, which is the z value. If the Z value of gravity is negative, it

means the device’s face is oriented downward. For all those values where the device

face is pointed down, we make our angle negative as well, with the result being that our

angle goes from -180 to +180, just as we would expect.

Go ahead and experiment with this sample application. Notice that the value of the

angle is 90 when the device is laid flat, and it’s zero (or close to it) when the device is

held straight up and down in front of us. If we keep rotating down past flat we will see

the value of the angle exceed 90. If we tilt the device up more from the 0 position, the

value of angle goes negative until we’re holding the device above our heads and the

value of the angle is -90. Finally, you may have noticed our counter that controls how

often the display is updated. Because the sensor events can come rather frequently, we

decided to only display every tenth time we get values.

Magnetic Field Sensors
The magnetic field sensor measures the ambient magnetic field in the x, y, and z axes.

This coordinate system is aligned just like the accelerometers, so x, y, and z are as

shown in Figure 26–2. The units of the magnetic field sensor are micro-Teslas (uT). This

sensor can detect the earth’s magnetic field and therefore tell us where north is. This

sensor is also referred to as the compass, and in fact the <uses-feature> tag uses

android.hardware.sensor.compass as the name of this sensor. Because this sensor is so

tiny and sensitive, it can be affected by magnetic fields generated by things near the

device, and even to some extent to components within the device. Therefore the

accuracy of the magnetic field sensor may at times be suspect.

We’ve included a simple CompassSensor application in the download section of the web

site, so feel free to import that and play with it. If you bring metal objects close to the

device while this application is running, you might notice the values changing in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 915

response. Certainly if you bring a magnet close to the device you will see the values

change but we don’t recommend that you mix Android devices and magnets.

You might be asking, can I use the compass sensor as a compass to detect where north

is? And the answer is: not by itself. While the compass sensor can detect magnetic

fields around the device, if the device is not being held perfectly flat in relation to the

earth’s surface, you’d have no way of correctly interpreting the compass sensor values.

But we have accelerometers that can tell us the orientation of the device relative to the

earth’s surface! Therefore, we can create a compass from the compass sensor, but we

need help from the accelerometers too. So let’s see how to do that.

Using Accelerometers and Magnetic Field Sensors
Together
The SensorManager provides some methods that allow us to combine the compass

sensor and the accelerometers to figure out orientation. As we just discussed, you can’t

use just the compass sensor alone to do the job. So SensorManager provides a method

called getRotationMatrix(), which takes the values from the accelerometers and from

the compass and returns a matrix that can be used to determine orientation.

Another SensorManager method, getOrientation(), takes the rotation matrix from the

previous step and gives an orientation matrix. The values from the orientation matrix tell

us our device’s rotation relative to the earth’s magnetic north, as well as the device’s

pitch and roll relative to the ground. This would be terrific if it did the job for us.

Unfortunately, at least until Android 2.2, using this mechanism has some big challenges,

not the least of which is the discontinuity when the device is in front of us and it goes

from facing us, to where we’ve tilted it up a bit as if we’re looking up at the screen. This

discontinuity is basically saying that as soon as we tip up past the 0 degree mark (where

it seems we’re still facing forward), our orientation is now pointing behind us. This is not

intuitive at all. Fortunately, Android 2.3 came along and provided additional methods to

clear this all up for us (see Rotation Vector Sensors). But in the meantime, as long as

you deploy applications to pre-Android 2.3 devices, you’ll need to worry about what

values to use with your sensors.

Orientation Sensors
We’ve avoided the orientation sensors until now, but it’s time we introduced them.

We’ve just explained how the magnetic field and the accelerometer sensors can be

combined and made to work together to produce orientation values to tell you in which

direction the phone is facing. There is another sensor that does the same thing: the

orientation sensor. The orientation sensor is actually a combination of the magnetic field

and accelerometer sensors at the driver level of Android. In other words, there is no

extra hardware for the orientation sensor, but within the Android OS, there is code to

expose these two sensors as if they were another sensor for orientation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 916

NOTE: We avoided talking about orientation sensors until now because they were deprecated as
of Android 2.2 and you’re not supposed to use them anymore. However, this sensor is very useful

and much easier to use than the preferred method, as you’ll soon see.

We just discussed how using the preferred method of calculating orientation is

challenging. In our next sample application, we’ll expose the orientation values from the

preferred method as well as the orientation sensor so you can see for yourself the

differences between them.

We’re going to have a little fun with this application. While we can easily show the values

returned from the sensors, we’re also going to do something interesting with them.

Imagine you’re standing in a street in Jacksonville, FL. Our application is going to show

you pictures from Streetview as if you were there, using the orientation of your phone to

select which way you’re facing. As you change the orientation of your phone, the view in

Streetview will change accordingly. Listing 26–7 shows the XML layout and the Java

code for our sample application which we call VirtualJax.

Listing 26–7. Getting orientation from sensors

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <Button android:id="@+id/update" android:text="Update Values"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doUpdate" />
 <Button android:id="@+id/show" android:text="Show Me!"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="doShow" android:layout_toRightOf="@id/update" />
 <TextView android:id="@+id/preferred" android:textSize="20sp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/update" />
 <TextView android:id="@+id/orientation" android:textSize="20sp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/preferred" />
</RelativeLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.content.Intent;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.net.Uri;
import android.os.Build;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 917

import android.os.Bundle;
import android.view.View;
import android.view.WindowManager;
import android.widget.TextView;

public class MainActivity extends Activity implements SensorEventListener {
 private static final String TAG = "VirtualJax";
 private SensorManager mgr;
 private Sensor accel;
 private Sensor compass;
 private Sensor orient;
 private TextView preferred;
 private TextView orientation;
 private boolean ready = false;
 private float[] accelValues = new float[3];
 private float[] compassValues = new float[3];
 private float[] inR = new float[9];
 private float[] inclineMatrix = new float[9];
 private float[] orientationValues = new float[3];
 private float[] prefValues = new float[3];
 private float mAzimuth;
 private double mInclination;
 private int counter;
 private int mRotation;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 preferred = (TextView)findViewById(R.id.preferred);
 orientation = (TextView)findViewById(R.id.orientation);

 mgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);

 accel = mgr.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 compass = mgr.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
 orient = mgr.getDefaultSensor(Sensor.TYPE_ORIENTATION);

 WindowManager window = (WindowManager)
 this.getSystemService(WINDOW_SERVICE);
 int apiLevel = Integer.parseInt(Build.VERSION.SDK);
 if(apiLevel < 8) {
 mRotation = window.getDefaultDisplay().getOrientation();
 }
 else {
 mRotation = window.getDefaultDisplay().getRotation();
 }
 }

 @Override
 protected void onResume() {
 mgr.registerListener(this, accel,
 SensorManager.SENSOR_DELAY_GAME);
 mgr.registerListener(this, compass,
 SensorManager.SENSOR_DELAY_GAME);
 mgr.registerListener(this, orient,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 918

 SensorManager.SENSOR_DELAY_GAME);
 super.onResume();
 }

 @Override
 protected void onPause() {
 mgr.unregisterListener(this, accel);
 mgr.unregisterListener(this, compass);
 mgr.unregisterListener(this, orient);
 super.onPause();
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // ignore
 }

 public void onSensorChanged(SensorEvent event) {
 // Need to get both accelerometer and compass
 // before we can determine our orientationValues
 switch(event.sensor.getType()) {
 case Sensor.TYPE_ACCELEROMETER:
 for(int i=0; i<3; i++) {
 accelValues[i] = event.values[i];
 }
 if(compassValues[0] != 0)
 ready = true;
 break;
 case Sensor.TYPE_MAGNETIC_FIELD:
 for(int i=0; i<3; i++) {
 compassValues[i] = event.values[i];
 }
 if(accelValues[2] != 0)
 ready = true;
 break;
 case Sensor.TYPE_ORIENTATION:
 for(int i=0; i<3; i++) {
 orientationValues[i] = event.values[i];
 }
 break;
 }

 if(!ready)
 return;

 if(SensorManager.getRotationMatrix(
 inR, inclineMatrix, accelValues, compassValues)) {
 // got a good rotation matrix

 SensorManager.getOrientation(inR, prefValues);

 mInclination = SensorManager.getInclination(inclineMatrix);

 // Display every 10th value
 if(counter++ % 10 == 0) {
 doUpdate(null);
 counter = 1;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 919

 }
 }

 public void doUpdate(View view) {
 if(!ready)
 return;

 mAzimuth = (float) Math.toDegrees(prefValues[0]);
 if(mAzimuth < 0) {
 mAzimuth += 360.0f;
 }

 String msg = String.format(
 "Preferred:\nazimuth (Z): %7.3f \npitch (X): %7.3f\nroll (Y): %7.3f",
 mAzimuth, Math.toDegrees(prefValues[1]),
 Math.toDegrees(prefValues[2]));
 preferred.setText(msg);

 msg = String.format(
 "Orientation Sensor:\nazimuth (Z): %7.3f\npitch (X): %7.3f\nroll (Y): %7.3f",
 orientationValues[0],
 orientationValues[1],
 orientationValues[2]);
 orientation.setText(msg);

 preferred.invalidate();
 orientation.invalidate();
 }

 public void doShow(View view) {
 // google.streetview:cbll=30.32454,-81.6584&cbp=1,yaw,,pitch,1.0
 // yaw = degrees clockwise from North
 // For yaw we can use either mAzimuth or orientationValues[0].
 //
 // pitch = degrees up or down. -90 is looking straight up,
 // +90 is looking straight down
 // except that pitch doesn't work properly
 Intent intent=new Intent(Intent.ACTION_VIEW, Uri.parse(
 "google.streetview:cbll=30.32454,-81.6584&cbp=1," +
 Math.round(orientationValues[0]) + ",,0,1.0"
));
 startActivity(intent);
 return;
 }
}

The user interface is two buttons and a pair of sensor value listings, one for the preferred

method and one for the orientation sensor output. When you run this, you should see

something like Figure 26–5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 920

Figure 26–5. Orientation done two ways

Before we look at the results, let’s explain what this application is doing. In the

onCreate() method, we’re doing the same sorts of things we did before: we’re getting

references to our text views, a SensorManager and the three sensors we want to use

here: accelerometers, compass, and the orientation sensor. We’re also defining a

variable to hold a rotation value. We’ll get to that in a minute.

In onResume() we activate the sensors and in onPause() we disable them.

When we get a sensor value update, we switch on which type it is and record the values

into local members: accelValues, compassValues, or orientationValues. Note that we

could have cloned the event array to keep local copies of the values; however, that

would mean instantiating objects constantly, which we don’t really want to do. The cost

of creating new objects, and garbage cleaning up after them, could really hurt

performance so we simply update our existing arrays.

Notice how we make sure we have values for both the accelValues and compassValues,

using the boolean ready, before we proceed into the next section of code. Now we see

the getRotationMatrix() method call, followed by the getOrientation() method call.

We also included the getInclination() method call. We’re not going to use that here,

but know that it represents the angle of the magnetic waves relative to the earth’s

surface. The closer you are to the earth’s poles, the larger an angle this returns. Next we

check a counter, like before, to only update the display every tenth update. Again, this is

to prevent too much UI activity which might cause our application to behave very poorly.

Within our doUpdate() method, which can also be called via the button in the UI, we’re

doing a few calculations and displaying the results. Using the preferred method, the first

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 921

value, the azimuth, has a value in radians from negative pi to positive pi, representing

180 degrees to +180 degrees. The orientation sensor provides a value from 0 (north) to

360 degrees. To make these values comparable, we took the first value from the

prefValues array, converted from radians to degrees, and added 360 if the value was

negative. Now we’re comparable to the orientation sensor. The rest of this method

simply displays the sensor values in the UI.

Our last method in this sample application is doShow(). This is the fun one. In Chapter

25, we showed you how to invoke the Streetview application using an intent. In that

chapter, we skipped over the part about setting the yaw value to indicate which way we

want to be facing when displaying the image. Now we can show you how to pass in the

yaw value as well as the pitch value.

For the latitude and longitude, we’ve preselected a location in Jacksonville, FL. You’re

free of course to substitute your own value. For yaw, we need to pass the number of

degrees from north (0 - 360) so we use the value from either mAzimuth or

orientationValues[0], converted to an integer. For pitch, in theory we could use the

second value from either array, after adding 90 to it. However, the Streetview application

doesn’t seem to like pitch values other than 0, at least in this location. So we chose to

set it to 0 for now. If you click on the Show Me! button, you will get Streetview and the

image will be as if you were facing in the same direction as you are now, but in that

location. If you click on the Back button, rotate yourself, and click Show Me! again, you’ll

see the image from your new perspective. Now let’s look more closely at the actual

values from the sensors.

The values between the preferred method and the orientation sensor seem to be the

same or very close to it. The values from the orientation sensor appear to be more

stable. They also appear to be integer values. Looks pretty good right? But not so fast.

When you start moving the device around, you’ll find that if you tilt it such that you’re

looking up at it, the values get quite different. Now rotate the device so it’s in landscape

mode. You might see something that looks like Figure 26–6.

Figure 26–6. Orientation done two ways in landscape mode

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 922

What happened? Our roll value is opposite between the preferred method and the

orientation sensor. What’s going on is that the frames of reference are different between

the two.

We haven’t discussed yet what happens if we’re not in portrait mode but rather in

landscape mode. If the device is right in front of us in landscape mode, the

accelerometers are still fixed in position, so instead of y going up, it’s really x. We could do

some math gymnastics to make everything work out for us, but fortunately, the

SensorManager class has yet another method to help us out. This time the method is called

remapCoordinateSystem(). It would be called in between getting the rotation matrix and

calling getOrientation(). The basic function of remapCoordinateSystem() is to modify the

rotation matrix by swapping axes around. The method signature looks like this:

public static boolean remapCoordinateSystem (float[] inR, int X, int Y, float[] outR)

We pass in our rotation matrix, plus values to indicate how to swap our x and y axes,

and we get back a new rotation matrix (outR) plus a boolean return value that indicates if

the remapping was successful. The values for x and y are constants from

SensorManager, such as AXIS_Z or AXIS_MINUS_Y.

We’ve included a new sample application called VirtualJaxWithRemap with the

downloads on the web site so you can see what this looks like.

Magnetic Declination and GeomagneticField
There’s another topic we want to cover with regard to orientation and devices. The

compass sensor will tell you where magnetic north is, but it won’t tell you where true

north is (a.k.a., geographic north). Imagine you are standing at the midpoint between the

magnetic north pole and the geographic north pole. They’d be 180 degrees apart. The

further away you get from the two north poles, the smaller this angle difference

becomes. The angle difference between magnetic north and true north is called

magnetic declination. And the value can only be computed relative to a point on the

planet’s surface. That is, you have to know where you’re standing to know where

geographic north is in relation to magnetic north. Fortunately, Android has a way to help

us out, and it’s the GeomagneticField class.

In order to instantiate an object of the GeomagneticField class, you need to pass in a

latitude and longitude. Therefore, in order to get a magnetic declination angle, we need

to know where the point of reference is. You also need to know the time at which you

want the value. Magnetic north drifts over time. Once instantiated, you simply call this

method to get the declination angle (in degrees):

float declinationAngle = geoMagField.getDeclination();

The value of declinationAngle will be positive if magnetic north is to the east of

geographic north.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 923

Gravity Sensors
Android 2.3 introduced the gravity sensor. This isn’t really a separate piece of hardware.

It’s a virtual sensor based on the accelerometers. In fact, this sensor uses logic similar to

what we described earlier for accelerometers to produce the gravity component of the

forces acting on a device. We cannot access this logic however, so whatever factors

and logic is used inside of the gravity sensor class are what we must accept. It’s

possible, though, that the virtual sensor will take advantage of other hardware such as a

gyroscope to help it calculate gravity more accurately. The values array for this sensor

reports gravity just like the accelerometer sensor reports its values.

Linear Acceleration Sensors
Similar to the gravity sensor, the linear acceleration sensor is a virtual sensor that

represents the accelerometer forces minus gravity. Again, we did our own calculations

earlier on the accelerometer sensor values to strip out gravity to get just these linear

acceleration force values. This sensor makes that more convenient for us. And it could

take advantage of other hardware, such as a gyroscope, to help it calculate linear

acceleration more accurately. The values array reports linear acceleration just like the

accelerometer sensor reports its values.

Rotation Vector Sensors
The rotation vector sensor is like the deprecated orientation sensor in that it represents

the orientation of the device in space, with angles relative to the frame of reference of

the hardware accelerometer (see Figure 26–2). As of this writing, information about this

sensor is not readily available. Please check our website (www.androidbook.com) for

updates on this particular sensor.

Near Field Communication Sensors
With the introduction of Android 2.3, we now have the ability to work with special tags

using Near Field Communications (NFC). NFC tags are similar to Radio Frequency ID

tags (RFID) except that the range for NFC is less than four inches. This means the

sensor in the Android device must come very close to the tag to be scanned. NFC tags

can be programmed to give out text information, URIs and metadata, such as the

language of the information.

Note that NFC is not a new technology, and has been used in other parts of the world

for years. In fact, in several countries, point of sale terminals that read NFC tags are

quite common. When these terminals detect an NFC tag, the shopper can complete the

financial transaction using an account linked to their NFC tag ID. There are many

demonstration videos on the Internet that show how a user can tap an object carrying an

NFC tag next to one of these terminals to begin the payment process. Google talks

about a promise of one day being able to use the phone in place of your wallet. This is a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 924

promising concept indeed. Android supports being able to let the device act like a tag to

another reader, or to be a reader to detect and scan NFC tags.

There are actually three modes of NFC operation. The first mode of NFC is the reading

and writing of contactless tags. The second mode is card emulation mode. This allows

an Android device to act like a tag itself. The obvious benefit of this is that your device

could act like one tag, then act like a different tag at the touch of a button. This is how

an Android device could replace your wallet. Whatever credit card you own, or bus pass,

or ticket, your Android device could impersonate (securely of course) that item, so the

reader on the other side of the transaction thinks it is working with your credit card when

in fact it’s dealing with your Android device. The third mode of NFC is peer-to-peer

communication. In this last mode, each side recognizes that it is talking to another

device and not just a tag.

With the release of Android 2.3.3, you can read tags with an Android device, similar to

what a point of sale terminal would do in the example above, and you can also write to

writable NFC tags. If the user’s device has been setup properly, it can transmit data via

NFC to another NFC device, using a peer-to-peer protocol defined by Google. What is

not yet available, as of this writing, is the ability to emulate a card, or more precisely, an

NFC tag. This is actually very difficult to do, in part due to the very different ways that

NFC can be done in hardware. There is no published date when NFC card emulation

might be supported in the SDK, but we expect that it will be someday. In the meantime,

it is possible to do some amount of card emulation at the driver level, using the Android

Native Development Kit (NDK). But we won’t be covering that here.

Beyond using NFC to conduct financial transactions, NFC tags could be used in many

other scenarios. For example, a museum could place an NFC tag next to items in its

collection, allowing visitors to wave their phone close to the tag in order to access a web

page that could provide multi-media information about that item. Bus stops could

display an NFC tag allowing people to find out when the next bus is coming and where it

is going. Businesses could display an NFC tag allowing easy check-in for location-aware

services as a person walks in. Perhaps hotel room keys will be irrelevant when you can

use your phone to unlock an NFC-equipped door. Even products on store shelves could

come with NFC tags to allow shoppers to get more information on that product, such as

nutritional information, or perhaps technical specifications and promotional videos.

Enabling The NFC Sensor
The support in Android for NFC is not like the other sensor types. Instead of working

with the SensorManager, you work with the NfcAdapter. There is typically only one

adapter on a device, and its job is to manage the reading and writing of tags, and the

distribution of tags to activities on the device. The adapter can be either on or off, and

there are controls under Settings to enable or disable the NFC adapter. The NFC

adapter setting is with the Wireless settings. If the adapter is on, and an NFC tag is

detected, a somewhat complicated process is followed to determine which activity, if

any, should receive an intent informing the activity about the detected NFC tag.

Everything hinges around what sort of data is in the NFC tag, and what intent filters exist

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 925

for the installed applications on the device. And there is one other bit of information that

is considered, and that is whether or not the activity currently in the foreground on the

device has expressed a specific desire to receive NFC tags. We’ll explore this more fully

very soon.

To access the adapter, you first acquire an NfcManager instance using

getSystemService(). Then you call the getDefaultAdapter() method on that, like so:

NfcManager manager = (NfcManager)
 context.getSystemService(Context.NFC_SERVICE);
NfcAdapter adapter = manager.getDefaultAdapter();

This returns the singleton object that is the NfcAdapter. To determine if the NfcAdapter

is currently enabled, use the isEnabled() method, which returns a boolean answer

telling you whether the NFC adapter is enabled in Settings. There is no documented way

to programmatically turn on (or off) the NFC adapter. If the NFC adapter is off and you

want it turned on, you’ll need to notify the user to ask them to enable the NFC adapter

under Settings. To launch the appropriate Settings screen for the user from your

application, you could use code like the following:

startActivityForResult(new Intent(
 android.provider.Settings.ACTION_WIRELESS_SETTINGS), 0);

When this runs, the appropriate Settings screen will be displayed and the user can

choose to enable NFC, or not. Your activity’s onActivityResult() callback will be called

when the user is finished with the wireless settings screen. Keep in mind that the user

may choose not to enable NFC even though you asked them to. Your application should

take appropriate action if the NFC adapter stays disabled.

Routing NFC Tags
This seems like a good time to discuss the different types of NFC tags and technologies.

NFC is not one single standard. In fact there are several types of NFC tags that a user

could come across. There is variation among the tag types, which means that Android

must support them with different classes related to each tag type. If you look inside the

android.nfc.tech package, you will find several different tag technology classes, from

MifareClassic to NfcV to ISO-DEP. The internal structures of each tag type can be

different, and there are different methods for accessing and manipulating data in these

tag types. Fortunately, Android provides a Tag class to help manage NFC

communications, and each specific type of tag can be created from a Tag object. Once

you have an instance of a specific NFC tag, you can perform operations on it that are

specific to that tag type. This also means that to choose which activity to send a tag to,

several factors must be considered. We’ll first describe how an NFC tag intent is

created, then you can understand how to create an appropriate intent filter.

When an intent is being sent with tag data, a Tag object is always parceled into the

intent’s extras bundle, with a key of EXTRA_TAG. If the tag contains NDEF data, another

extras value is set with a key of EXTRA_NDEF_MESSAGES. Lastly, the intent could have

an extras value of the tag’s Id with a key of EXTRA_ID. These last two extras values are

optional and depend on the existence of the data on the tag. All NFC intents are sent

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 926

using startActivity(). Note that you never need to actually access the NFC adapter to

receive NFC messages. The intent messages will come into your application just like

other intents that are sent from other sources, as long as they match your intent filter(s).

NOTE: It is important to note that there is an NFC ecosystem in an Android device that supports
NFC. The logic to create these NFC intents uses capabilities that are not exposed in the Android

SDK. That means you cannot easily create a fake sender activity yourself. What we’re about to
explain is what happens in the NFC ecosystem, and it is not something you can write your own
code for. This also means that if you really want to test an NFC application, you will need to use a

real device, with real NFC tags. Unless Google someday provides some support in the emulator

or in DDMS or both.

The action value of the tag intent depends on what information was discovered about

the detected tag. There are three possible action values for the intent:

1. ACTION_NDEF_DISCOVERED is the action if an NDEF payload is found in the

tag. If this is the case, Android then looks for the existence of a NdefRecord in the

first NdefMessage. If that NdefRecord is a URI or SmartPoster record, the intent

will get the URI in its data field. If a MIME record is found, the intent’s type field

will be set to the MIME type of the tag. Android then looks for a suitable activity to

start using this intent and the intent matching algorithm. If no activity can be

found, this intent is abandoned and Android tries to create the next type of NFC

intent.

2. ACTION_TECH_DISCOVERED is the action if NDEF is not detected, or no NDEF

activity could be found, but a tag technology exists. In this scenario, Android adds

meta-data to the intent indicating which tag technologies were detected. An NFC

tag can implement more than one technology, especially since Ndef is more like a

virtual technology. Android looks for an activity that will match this intent and if

found, sends it on. If not, Android throws this intent away and tries the third type

of NFC intent.

3. ACTION_TAG_DISCOVERED is the final action choice for an NFC tag. This is the

action when all others failed to match an activity. This intent also does not carry

data or a MIME type. If this intent does not match an activity on the device, then

the NFC ecosystem gives up, and the tag information is thrown away.

Receiving NFC Tags
Whether you decide to create your intent filters in code or in the AndroidManifest.xml

file, you will need to know what you are looking for and prepare your intent filters

carefully. For example, if you specify too rigidly, you won’t get notified of tags. If you

specify too loosely, you’ll get called for tags that you don’t want to handle. And if your

app is sent an NFC tag that you don’t want to handle, that means another app might

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 927

possibly exist on the device that could handle it, but didn’t get it. This could happen if

the intent matching logic found more than one app and asked the user which one to run,

and the user chose yours. That’s yet another reason you want to be careful when

defining your intent filters for NFC tags; if the user is prompted for which app to run,

they very likely need to move the device away from the NFC tag to make the choice, and

now the tag is out of range. If you have choice in what data the tags are going to have

on them, you could make that data very specific to your needs, using a custom URI

scheme or a custom MIME type for example.

Your choice of intent filter depends on which action was put into the NFC tag intent (see

above). Listing 26–8 shows a sample intent filter for an NDEF tag that would go into your

AndroidManifest.xml file.

Listing 26–8. Intent filter for an NDEF tag with a MIME type

<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <data android:mimeType="type/subtype" />
</intent-filter>

Instead of “type/subtype” you would of course put the specific MIME type that you are

looking for, or use wildcards if you will accept any type or subtype. For example you

could set mimeType to “text/*” to match all text types. But you don’t need to specify a

MIME type for an NDEF tag. If the tag has a URI instead of a MIME type, you would

want to use an intent filter like in Listing 26–9.

Listing 26–9. Intent filter for an NDEF tag with a URI

<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <data android:scheme="geo" />
</intent-filter>

In this example we use the geo scheme so our activity would be launched if a tag with a

geo: URI was detected. You could use any of the other attributes of the <data> tag to

specify what NFC data your activity is looking for.

If your activity is looking for NFC tags that have a particular technology, you would use

an intent filter as in Listing 26–10. It is also possible that a tag with NDEF was detected,

but no activity could be found to process the NDEF_DISCOVERED intent. That could

also result in your activity receiving the intent, as long as it matches your intent filter. In

other words, if an NDEF_DISCOVERED tag intent could not be delivered to an activity

looking for NDEF tags, an activity looking for a particular technology could end up

receiving a technology intent for that tag.

Listing 26–10. Intent filter for an NFC tag with technology

<intent-filter>
 <action android:name="android.nfc.action.TECH_DISCOVERED"/>
</intent-filter>
<meta-data android:name="android.nfc.action.TECH_DISCOVERED"
 android:resource="@xml/nfc_tech_filter" />

Notice that we have a different action now to match technology, and instead of a <data>

tag, we have a <meta-data> tag, and it’s outside of the <intent-filter> tag. The attributes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 928

of the <meta-data> tag are different too, and refer to another file that we must create

under the /res/xml directory of our application’s project. Listing 26–11 shows a sample

nfc_tech_filter.xml file.

Listing 26–11. A sample NFC tech filter XML file

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.NfcA</tech>
 <tech>android.nfc.tech.MifareUltralight</tech>
 </tech-list>
</resources>

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.NfcB</tech>
 <tech>android.nfc.tech.Ndef</tech>
 </tech-list>
</resources>

What this filter file does is specify two types of tags that our activity wants to see. An

NFC tag usually has its list of technologies that it enumerates. If any one of the tech-lists

in Listing 26–11 is a subset of our Tag’s tech-list, then this is a match and our activity

will get that NFC tag intent.

In Listing 26–11, the first type of tag has NfcA and MifareUltralight technologies, and the

second type of tag has NfcB and Ndef technologies. We could add additional

<resources> to this file to specify additional tags that our activity could want to see. The

list of available technologies to put into this file are the tag class names that are

available in the android.nfc.tech package, but only put in what you want your activity to

receive. The child tags of a <tech-list> specify all of the technologies that a tag must

report for its intent to match our activity. All of the technologies in a specific tech-list

must exist in the list of technologies enumerated by the tag. Therefore, the tech-list in

the intent-filter could have fewer technologies than the tag specifies, but could not have

more and still match. For the example above in Listing 26–11, if a tag presented just the

Ndef technology it would not match either specification and your activity would not

receive the intent. None of the intent-filter tech-lists is a sub-set of the tag’s list. If a tag

had NfcA, NfcB and Ndef technologies it would match the second specification and your

activity would receive the intent. The second tech-list is a sub-set of the tag’s tech list.

We would match even though the tag enumerates one more technology than is in the

intent filter’s tech-list.

The final intent filter that you might use is shown in Listing 26–12, and represents the

catch-all intent filter. That is, if a tag was received and no NDEF or tech activity could be

found to process the intent, or if the tag is an unknown type, an intent will be created

with the ACTION_TAG_DISCOVERED action.

Listing 26–12. Intent filter for an unknown or unprocessed NFC tag

<intent-filter>
 <action android:name="android.nfc.action.TAG_DISCOVERED"/>
</intent-filter>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 929

Notice that there is no <data> and no <meta-data> tags for this intent filter, because

there will not be any data in an intent that has an action of ACTION_TAG_DISCOVERED.

Which would normally mean that we must have a <category> tag. However, this is not

the case with NFC tag intents. NFC tag intents are special, so no <category> tags are

required in intent-filters for NFC tag intent matching. Getting back to our tag matching

flow, when we’re getting an ACTION_TAG_DISCOVERED intent, Android has almost

given up trying to find an activity for the detected NFC tag. At this point, any activity that

will take an ACTION_TAG_DISCOVERED action will receive these tag intents. In most

normal operations, you won’t ever see an ACTION_TAG_DISCOVERED tag intent,

because almost all NFC tags that you’ll come across will match on NDEF or on TECH.

There is one other way that your activity could receive an NFC tag intent, and that is by

using the foreground dispatch system. If your activity is in the foreground (which means

onResume() is firing or has fired and the user can interact with your activity), you can

make a pending intent, an array of intent filters, an array of techlists lists, and then you

make a call like the following:

mAdapter.enableForegroundDispatch(this, pendingIntent,
 intentFiltersArray, techListsArray);

where mAdapter is the NFC adapter, and this is a reference to your activity. By making

this call, you effectively insert your activity in front of all others, and if any of this

activity’s intent filters match a detected tag, your activity will get to process it. If your

activity does not get the NFC tag intent because it doesn’t match the setup of this call,

the NFC tag intent will be tried with other activities using the logic above. You must call

this method from the UI thread, and the best place to call this is from the onResume()

method of your activity. You would also need to call:

mAdapter.disableForegroundDispatch(this);

from the onPause() callback of your activity, so that your activity won’t get an intent it

can’t process. When your activity does get an intent in this way, the onNewIntent()

callback will be used to receive it into your activity.

The pending intent is a standard one. The intentFiltersArray would be the collection of

IntentFilter objects that you desire, each one specifying an appropriate action and any

data or MIME types as needed. For example, Listing 26–13 shows some code to create

an intent filter for Ndef and then add it to an array.

Listing 26–13. Code for an intent filter for Ndef

IntentFilter ndef = new IntentFilter(NfcAdapter.ACTION_NDEF_DISCOVERED);
try {
 ndef.addDataType("text/*");
}
catch (MalformedMimeTypeException e) {
 throw new RuntimeException("fail", e);
}
intentFiltersArray = new IntentFilter[] {
 ndef,
};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 930

Keep in mind that the intent filter array can contain multiple instances of IntentFilter,

each set with the same or different action, and with or without data and/or type field

values.

The techListsArray is an array of arrays, where each inside array is the list of class

names that a tag would enumerate, and you can have multiple lists of class names to

match against. Listing 26–14 shows a sample of this, which is equivalent to the tech-list

resource file shown in Listing 26–11.

Listing 26–14. Code for a tech-list array

techListsArray = new String[][] {
 new String[] { NfcA.class.getName(),
 MifareUltralight.class.getName() },
 new String[] { NfcB.class.getName(),
 Ndef.class.getName() }
 };

When all of this setup has been done, if this activity does receive an NFC tag intent, it

will be the onNewIntent() callback that will be triggered to receive it. From there, you

would access the extras bundle to read the tag, which we’ll cover next. This is a lot of

setup to do a dynamic claim for an NFC tag intent, but on the flip side, if you only want

this activity to receive tags if it has already been started by the user, this is the way to do

it. Note that it probably doesn’t make sense to use this method and to also have intent

filters in the manifest to receive NFC tag intents, but technically it is possible.

Reading NFC Tags
As alluded to earlier, the reading of NFC tags is somewhat complicated. Or rather, the

process by which a tag gets delivered to your application can be complicated. At the

most basic level, when an NFC tag is detected, the system will determine an activity to

send the tag to, and then send it. Unlike with the sensors covered earlier in this chapter,

the activity interested in NFC tags may not be running at the time of tag detection, and

certainly won’t receive the tag information through a sensor listener. A notified activity

will receive an intent, and this may mean launching the activity in order for it to process

the NFC tag intent.

One of your first considerations when designing an application that receives and

processes NFC tag information is that you are dealing with a physical tag in the

environment of the device through a hardware interface. The NFC API has blocking

calls, which means they might not return as quickly as you’d like, which means you need

to run the tag methods on a separate thread from the main UI thread.

The NFC tag data will be in the extras bundle of the received intent. Upon receiving the

intent, you would access the NFC data using something like this:

Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
String[] techlists = tag.getTechLists();

If your intent filter was very precise, you already know what type of tag you have. But if

there is a selection of tag technologies that could be present, you can now interrogate

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 931

techlists to find out what technologies are in the tag. Each string is the class name of the

tag technology that is enumerated by the detected tag.

If you find out that android.nfc.tech.Ndef is supported in this tag, you could do the

following to get to the NDEF data more directly:

NdefMessage[] ndefMsgs = intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

In theory you could get a null value if no NDEF messages were in the intent. Otherwise,

you should now be able to parse the NDEF messages sent to you. You could read the

NdefMessages from the intent, count them, and for each one, retrieve the NdefRecords

contained within.

The NdefRecords are where things get interesting. You would be well-served to refer to

the NFC specifications, located here: http://www.nfc-forum.org/specs/. To access these

specifications, you will need to accept a licensing agreement with the NFC Forum. It is

free but you will need to provide your name, address, telephone number and email

address. Your other option is to look at the NfcDemo application that Google provides.

That sample is included with the Android 2.3.3 SDK package under the samples folder.

You can also view the source of that application here:

http://developer.android.com/resources/samples/NFCDemo/index.html. This sample

application receives NFC intents and displays the contents of the NdefRecords in a

ListView. The reason this gets complicated is that there are several types of

NdefRecords that you could receive in each NdefMessage. Each type serves a different

purpose. For example, the Text type contains text in a specified language. The Uri type

contains a Uri. Of the known NDEF record types, the NfcDemo sample application uses

just three, the two just described and SmartPoster, which we’ll describe shortly.

The format of an NdefRecord includes a 3-bit Type Name Format (TNF) field, a variable

length type field, a variable length ID field, and a variable length payload field. Yes there

are two type fields. The TNF field is the top-level type of this record, and tells you what

the rest of the record is. For example, it could be an absolute URI record

(TNF_ABSOLUTE_URI), or an official RTD record (TNF_WELL_KNOWN). The next type

field gets more specific about what this record is, based on the value of TNF. If the TNF

value is TNF_WELL_KNOWN, this next type field will be one of the RTD_* constants of

the NdefRecord class, such as RTD_SMART_POSTER. If the TNF value is

TNF_ABSOLUTE_URI, the next type field will follow the absolute-URI BNF construct

defined by RFC 3986.

NOTE: The TNF_UNCHANGED record type is used when the message payload spans multiple
NdefRecords because of its size. Google has taken care of handling chunked NdefRecords for
you, so you should never see a type value of TNF_UNCHANGED. The android.nfc package

combines the pieces of the payload into one big, single NdefRecord.

The next field in an NdefRecord is an identifier for this NdefRecord. The NdefRecord

you’re reading may or may not have an identifier.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 932

Finally, there is the payload. This can be a rather large byte array, but it has some

internal structure to it that you must be aware of, depending on which type of

NdefRecord this is. For an RTD URI record type, the first byte of the payload byte array

represents the beginning of the URI. For example, the byte value of 1 represents

“http://www.” and this would precede the rest of the URI in the rest of the payload. For a

Text record type, the first byte of the payload byte array represents the “status byte

encodings” value, which identifies the text encoding value (UTF-8 or UTF-16), as well as

the length of the language byte array which immediately follows this status field. After

the language field is the text. For SmartPoster, things get more complicated, with the

NdefRecord containing an NdefMessage which in turn contains more NdefRecords. The

bottom NdefRecords can include Title records (just like a Text record), a URI record (just

like before), a recommended action record, a size record, an icon record and a type

record. The recommended action value indicates what your application might want to do

with the SmartPoster data. Note that these values are not provided as part of Android’s

NdefRecord class documentation. And they are:

 -1 UNKNOWN
 0 DO_ACTION
 1 SAVE_FOR_LATER
 2 OPEN_FOR_EDITING

What you do with them is up to you, although obviously you probably want to attempt to

perform the recommended action for the tag being read. For example, if TNF is

TNF_WELL_KNOWN, the type is RTD_SMART_POSTER and the recommended action is

0 (DO_ACTION) combined with a web page URL, you might want to launch the browser

with that URL. The size record allows the tag to say how big the thing is at the other end

of that URL. If the tag is referring to a downloadable executable, the size record could

say how big the download file is. The icon record holds an icon image that can be used

by a device to display an image along with the title and the URI.

The type record is yet another type value, different from the TNF and the NdefRecord’s

type. The type record is for SmartPoster tags, and in this case, the type represents the

MIME type of the thing at the other end of the URI. A device could decide it can’t

support that object type, so avoid downloading it in the first place.

The only mandatory sub-record for a SmartPoster tag is the URI record, and there can

be only one per SmartPoster. You can have multiple Title records, as long as each

record is for a different language. You can also have multiple icon records as long as

each has a different MIME type for its format.

For all types of NFC tags, including the NDEF tags, you can use something like the

following to get an instance of that particular tag type:

NfcA nfca = NfcA.get(tag);

From this new object, we can access the specific methods that are appropriate for that

tag type. For Ndef and NdefFormatable tags, the NdefMessage and NdefRecord classes

are very helpful to deal with the tag data. The other tag classes have appropriate

methods to help deal with those tags and their data. There are methods for reading and

for writing data to a tag. Note that writing to a tag is not the same as the device doing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 933

card emulation. Writing a tag means that the device is close enough to some other tag

to be able to write to it (with proper permissions of course). Card emulation is different.

NFC Card Emulation
Card emulation means that the device will appear to another NFC reader as if the device

is an NFC tag. This means our local device has a place in the hardware to store some

data, and if an NFC reader gets within range of our device, and asks for the data, our

device will send that data to the reader. This feature was not available at the time of this

writing, although we expect it will be available eventually. If you really want to do card

emulation, check out online resources that describe how to do this at the lowest level of

the device, that is, in the Native Development Kit (NDK) level.

NFC Peer-to-Peer (P2P)
The Android SDK provides some limited support for peer-to-peer (P2P) communication

over NFC between two devices.

There are some caveats to this feature, namely that P2P only works when your

application is running and in the foreground, and also that your application must format

with NDEF. Other tag technologies may be supported in P2P in the future, but for now

it’s just NDEF. This also means that your phone must be turned on and running your

application for it to be able to talk NFC with another device.

To implement the P2P feature, you will use the NfcAdapter method called

enableForegroundNdefPush(). This takes two parameters, the activity and the

NdefMessage to be sent when an NFC device asks for our data. Similar to the

foreground dispatch system described above, this method should be called in

onResume(), and disabled in onPause(). Your NdefMessage can be whatever you want it

to be, but your activity should be in the foreground when the reader attempts to get our

data. Google has said that for the other device to be able to pick up our information, it

will have to implement the com.android.npp NDEF push protocol, but there is no

information on that at the time of this writing. Check our website for updates.

Earlier we covered the use of the uses-feature tag and sensors, so you can make sure

that a device has the appropriate sensor in order to see your application. The NFC

sensor is no exception. You should use the following in your AndroidManifest.xml to

ensure that the device for your application has the necessary NFC hardware:

<uses-feature android:name=”android.hardware.nfc” />

You should also ensure that your AndroidManifest.xml file contains an appropriate

permission to allow your application to access the NFC hardware:

<uses-permission android:name=”android.permission.NFC” />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 934

Testing NFC with NFCDemo
We’ve covered much of the NFC API for Android, but the question now is, how do you

test your application? For NFC tags, maybe you could find some objects that already

have NFC tags in them. In countries that have been using NFC for a while, this might not

be too difficult. In the US it’s likely much harder. You could buy your own NFC tags;

several vendors around the world sell tags as well as developer kits so you could write

what you want onto your tags. Unfortunately, DDMS does not yet come with support for

sending tag discovery intents to the emulator. The NfcDemo sample application that is

available in the Android SDK was first released with Android 2.3, back when there was

only ACTION_TAG_DISCOVERED for the intents. Android advanced a lot with the

release of 2.3.3, and unfortunately the NfcDemo couldn’t keep up. There is some useful

information in there about NFC tag layouts, and what the bytes mean for NDEF tags.

Hopefully this will get an update soon and will work with real tags and the new NFC

ecosystem.

If you do decide to load the NfcDemo sample application, you will need to add an

external library to your project. The download file for this library is located here:

http://code.google.com/p/guava-libraries/. When you open the zip file you will find

jar files. Save the guava jar file, the one without gwt, onto your workstation. You need to

refer to the guava jar file from your Eclipse project by right-clicking on the project,

choosing Build Path, then Configure Build Path and the Libraries tab. Next click on Add

External JARs, navigate to the guava jar file, select it and click Open. Now rebuild the

NfcDemo project by right-clicking on the project and choosing Build Project.

References
Here are some helpful references to topics you may wish to explore further.

 www.androidbook.com/projects. Look here for a list of downloadable

projects related to this book. For this chapter look for a zip file called

ProAndroid3_Ch26_Sensors.zip. This zip file contains all projects from

this chapter, listed in separate root directories. There is also a

README.TXT file that describes exactly how to import projects into

Eclipse from one of these zip files.

 http://en.wikipedia.org/wiki/Lux. This is the Wikipedia entry for lux,

the unit of light measurement.

 http://android-developers.blogspot.com/2010/09/one-screen-turn-
deserves-another.html. This is an Android blog post on dealing with

screen rotation and updating the display properly.

 www.ngdc.noaa.gov/geomag/faqgeom.shtml. Here you’ll find information

on geomagnetism from NOAA.

 www.youtube.com/watch?v=C7JQ7Rpwn2k. This is a Google TechTalk

from David Sachs on accelerometers, gyroscopes, compasses and

Android development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 935

 http://stackoverflow.com/questions/1586658/combine-gyroscope-
and-accelerometer-data. A nice posting on stackoverflow.com that

talks about combining gyroscope and accelerometer sensor data for

use in applications.

 www.nfc-forum.org/specs. The official site for the NFC specifications.

 www.slideshare.net/tdelazzari/architecture-and-development-of-
nfc-applications. A very thorough Slideshare presentation by

Thomas de Lazzari on NFC.

Summary
In this chapter, we covered the main Sensor framework, as well as Near Field

Communications capabilities in Android. We showed how your applications can read

sensor values and act on them. This should help you develop some really cool

applications that can respond to the real world.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 26: Using Sensors 936

http://lib.ommolketab.ir
http//lib.ommolketab.ir

937

937

 Chapter

Exploring the Contacts
API
In Chapter 4, which covered content providers, we listed the benefits of exposing data

through content provider abstraction and showed that such abstracted data is exposed

as a series of URLs that can be used to read, query, update, insert, and delete. These

URLs and their corresponding cursors become the API for that content provider.

The Contact API is one such content provider API for working with the contact data.

Contacts in Android are maintained in a database and exposed through a content

provider whose authority is rooted at

content://com.android.contacts

The Android SDK documents the various contracts offered by this contact content

provider using a set of java interfaces and classes that are rooted at the Java package

android.provider.ContactsContract

You will see numerous classes whose parent context is ContactsContract that are useful

in querying, reading, updating, and inserting contacts into and from the content

database. The primary documentation for using the contacts API is available on the

Android site at

http://developer.android.com/resources/articles/contacts.html

The primary API entry point ContactsContract is appropriately named because this class

defines the contract between the clients of the contacts and the provider and protector

of the contacts database.

This chapter explores this contract in a fair amount of detail but does not cover every

nuance. The contacts API is large and its tentacles far-reaching. However, when you

approach the contact API it will take a few weeks of research to realize that it is simple

in its underlying structure. This is where we would like to contribute the most and

explain these basics in the time it takes to read this chapter.

27

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 938

Understanding Accounts
All contacts in Android work in the context of an account. What is an account? Well, for

example, f you have your e-mail through Google, you are said to have an account with

Google. If you set up yourself as a user of Facebook, you are said to have an account

with Facebook.

Even though you use only the e-mail service with Google, the same login and password

could be used to access other Google services, meaning that e-mail account of yours

with Google is not limited to just e-mail. However, some be accounts are restricted to

just one type of service such as a POP (Post Office Protocol) e-mail account. On your

mobile device, you may be able to register to a variety of these account-based services.

You will be able to set up some of these accounts such as Google or Facebook or a

corporate Microsoft Exchange account through the “Accounts & sync” Settings option

on the device. See the Android User’s Guide to get more details around accounts. We

have included a URL for the Android User’s Guide in the References section at the end

of this chapter.

A Quick Tour of Account Screens
To solidify the nature of accounts, let’s show you a few account related screens from the

emulator. To start off, Figure 27–1 shows the account Settings options screen.

Figure 27–1. Invoking “Accounts & sync” application settings

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 939

When you choose the “Accounts & sync” menu item, you will see the “Accounts & sync

settings” screen shown in Figure 27–2. This screen displays, along with some account-

based options, a list of available accounts.

Figure 27–2. Accounts & sync settings

In Figure 27–2, we are mainly interested in the list of available accounts. To practice adding a new
account, click the “Add account” button, and you will see the screen in Figure 27–3 with a list of
possible accounts that can be set up or added.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 940

Figure 27–3. List of accounts that can be set up

This list of possible accounts to add will vary based on the type of device and what is

available. The list in Figure 27–3 shows what is available in the Android 2.3 emulator

when it is set up with Google API 9 as the target. If you have only downloaded the core

SDK, you will not see the option to choose the Google API as the target for that

emulator, so you won’t see the option for setting up the Google account in Figure 27–3.

This also means that this picture of available accounts could change with each Andriod

release, device maker, and carrier or service provider.

Also the fields needing to be set up for each account vary by account provider. For

example, if you click to add a Google account in our emulator example, you will be

presented with an option to create or sign in to a Google account (see Figure 27–4).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 941

Figure 27–4. Adding a Google account

If you click the Create button, the fields to create a Google account appear, as shown in

Figure 27–5.

Figure 27–5. Creating a Google account

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 942

Figure 27–5 illustrates the fields required to set up a Google account if you don’t have

one already. As stated, these fields could clearly vary from account type to account

type. For example, we’ll show you the account settings if you already have a Google

account. In this case, the account setup merely involves signing into the account, as

shown in Figure 27–6.

Figure 27–6. Signing into an existing Google account

Now that we have demonstrated the basics of an account and how it might end up on a

device, the next section goes into how accounts become relevant to contacts.

Relevance of Accounts to Contacts
The contacts you manage are tied to a specific account. In other words, each account

you have registered on the device can hold a number of contacts that are specific to

that account. An account owns its set of contacts—or an account is said to be the

parent of a contact. Also, an account may have zero or more contacts.

An account is identified by two strings: the account name and the account type. In the

case of Google, your account name is your e-mail user name at Gmail and your account

type is com.google. Clearly, the account type must be unique across the device. Your

account name is unique with in that account type. Together an account type and an

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 943

account name form an account, and only once the account is formed can a set of

contacts be inserted using it.

Enumerating Accounts
The contact API primarily deals with contacts that exist in various accounts. The

mechanism of creating accounts is outside of the contact API, so explaining the ability

to write your own account providers and how to sync the contacts with in those

accounts is outside the scope of this chapter. For this chapter, how accounts get set up

is not very relevant. However, when you want to add a contact or a list of contacts, you

do need to know what accounts exist on the device. You can use the code in Listing 27–

1 to enumerate the accounts and their necessary properties (the account name and

type). The code in Listing 27–1 lists the account name and types given a context

variable.

Listing 27–1. Code to Display a List of Accounts

public void listAccounts(Context ctx)
{
 AccountManager am = AccountManager.get(ctx);
 Account[] accounts = am.getAccounts();
 for(Account ac: accounts)
 {
 String acname=ac.name;
 String actype = ac.type;
 Log.d(“accountInfo”, acname + ":" + actype);
 }
}

Of course, to run the code in Listing 27–1 , the manifest file needs to ask for permission

using the line in Listing 27–2.

Listing 27–2. Permission to Read Accounts

<uses-permission android:name="android.permission.GET_ACCOUNTS"/>

The code from Listing 27–1 will print something like the following:

Your-email-at-gmail:com.google

This assumes that you have only one account (Google) configured. If you have more

than one account, all of those accounts will be listed in a similar manner.

Before diving more deeply into the contact details, let’s consider how end users create

contacts using the contacts application that comes with the Android platform.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 944

Understanding Contacts Application
In case your device maker, like Motorola, or carrier, such as Verizon, does not provide

its own contacts application, the Android platform comes with a default contacts

application. You can easily find this application in the roster of applications on the

device and see it’s documentation in the Android User’s Guide.

Show Contacts
When you choose the contacts application, the first screen you see is a list of contacts

(see Figure 27–7). A contact is essentially a person that you know in the context of an

account such as your Gmail account. If you have more than one account, the screen in

Figure 27–7 will list all contacts from all accounts. By looking at this screen, you will not

know what contact came from what account. Unless explicitly prevented, Android tries

not to repeat contacts if they appear similar between two different accounts. We will

cover this “appear similar” heuristic in the next main section.

Figure 27–7. Displaying aggregated contacts

Figure 27–7 assumes you have a couple of contacts available, and the listed contacts

are grouped alphabetically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 945

Show Contact Detail
If you click one of the contacts in Figure 27–7, the contacts application will show the

details of that contact, as in Figure 27–8.

Figure 27–8. A contact’s details

Figure 27–8 illustrates the various sets of information a contact can carry. The figure also

shows the number of actions the contact application can directly provide for each

contact based on information in that row. For some rows, the contacts application

enabled calling and texting, and for others, e-mail or chat.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 946

Edit Contact Details
Let’s now look at how a contact, like the one in Figure 27–8, can be edited (or a new one

created). You can do this by clicking the menu and choosing Edit or New contact. This

will bring up the screen shown in Figure 27–9.

Figure 27–9. Editing a contact

In Figure 27–9, at the top of the “Edit contact” screen, you see the account under which

this contact is being edited or created. For this contact, the account is shown as phone

only, which implies there is no sever side account (like Google) available on the phone

but just a local default one. In fact, in the database of contacts, both the account name

and type null values.

Google strongly suggests that you create at least one Google account before

proceeding to activate an Android device, be it a phone or a tablet.

However, as you can see, it does allow a contact to be created without a particular

associated account, and in such cases, what you see when you create a contact is

shown in Figure 27–9.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 947

Following the account indicator (e.g., “Phone-Only…”) in Figure 27–9 is the photo for

the contact and then a series of fields. Figure 27–10 shows more fields belonging to that

contact that appear as you scroll down.

Figure 27–10. Further contact editing fields

As Figure 27–10 illustrates, it is possible to have different types of phone numbers and

e-mail addresses. You may also be wondering if the contacts allow an arbitrary set of

rows containing arbitrary data. (For example in Figure 27–10 phone and email are well

known predefined data types. What if you want store some data that is not anticipated.

This is what we mean by arbitrary). Contact API does allow this arbitrary set of set of

data, as shown in Figure 27–11 where address information is added to a contact.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 948

Figure 27–11. Editing arbitrary contact data

Setting a Contact’s Photo
You can also set up the photo for a contact. Figure 27–12 shows the photo setting

screen that opens when you click the photo icon shown in Figure 27–9 (the first page of

the contact details).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 949

Figure 27–12. Editing a contact’s photo

Exporting Contacts
Let’s conclude this tour of the contacts application by showing how you can export

contacts to an SD card. Among other things, this sdcard export facility allows you to see

what kind of information is captured for a contact and how it is exposed as text.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 950

Figure 27–13. Exporting contacts

Once you export the contacts to an SD card, you can explore the SD card files using the

Eclipse ADT. See Figure 27–14, where one of the exported .vcf files is visible in the

Eclipse File Explorer.

Figure 27–14. Contact information on an SD Card

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 951

You can copy the .vcf file in Figure 27–14 from the device to a local file using the icons at

the top-right corner of the File Explorer tab. For the two contacts shown in Figure 27–8,

the contents of the .vcf file are displayed in Listing 27–3.

Listing 27–3. Exported Contacts in VCF Format

BEGIN:VCARD
VERSION:2.1
N:C1-Last;C1-First;;;
FN:C1-First C1-Last
TEL;TLX:55555
TEL;WORK:66666
EMAIL;HOME:test@home.com
EMAIL;WORK:test@work.com
ORG:WorkComp
TITLE:President
ORG:Work Other
TITLE:President
URL:www.com
NOTE:Note1
X-AIM:aim
X-MSN:wlive
END:VCARD

BEGIN:VCARD
VERSION:2.1
N:C2-Last;C2-first;;;
FN:C2-first C2-Last
END:VCARD

Various Contact Data Types
In the figures so far, you have seen how to add distinct sets of information for a contact.

Listing 27–4 shows a list of these data types as defined in the API (this list could grow

with new releases and is current as of version 2.3).

Listing 27–4. Standard Contact Data Types

email
event
groupmemebership
im
nickname
note
organization
phone
photo
relation
SipAddress
structuredname
structuredpostal
website

Each data type, such as email or structuredpostal (indicating a postal address), has its

own set of fields. So how do you know what these fields are? They are defined in the

helper classes available in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 952

android.provider.ContactsContract.CommonDataKinds

The URL for this class is
http://developer.android.com/reference/android/provider/ContactsContract.Common
DataKinds.html.

For example the class CommonDataKinds.Email defines the fields shown in Listing 27–5.

Listing 27–5. Specific Fields of an Email Contact

Email address
Type of email: type_home, type_work, type_other, type_mobile
Label: to support type_other

Now that you have the background and tools necessary to work with accounts and

contacts, let’s get into the real details of the contacts API.

Understanding Contacts
As we have stated contacts are owned by an account. Each account has its own set of

contacts. Each contact then has its own set of data elements (for example, e-mail

address, phone number, name, and postal address). Furthermore, Android presents an

aggregated view of raw contacts by listing only once any contacts that seem to match.

These aggregated contacts form the set of contacts you see when you open the contact

application (see Figure 27–8).

We will now examine how contact-related data is stored in various tables.

Understanding these contact tables and their associated views is key to understanding

the contacts API.

Examining the Contents SQLite Database
One way to understand and examine the content database tables is to download the

content database from the device or the emulator and open it using one of the SQLite

explorer tools.

To download the contacts database, use the File Explorer shown in Figure 27–14, and

navigate to the following directory on your emulator:

/data/data/com.android.providers.contacts/databases

Depending on the release, the database file name may differ slightly, but it should be

called contacts.db or contacts2.db or something similar.

In theory, all you have to do is open it with a SQLite tool. However, we found a problem

opening this database. Most tools we tried barfed (figuratively speaking). The problem is

to do with the custom collation sequences defined by Android for such things as

comparing phone numbers.

Apparently, for SQLite, the custom collation sequences are compiled as part of the

SQLite distribution. If you don’t have the DLL files that were compiled with the Android

distribution, the general-purpose explorer tools won’t be able to read the database

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 953

accurately. Because the tools are using the Windows SQLite DLL files to open the

database that was created with Linux distribution of Android, they are not successful.

And the Windows distribution of SQLite does not have the collations sequences that are

defined as required by the contacts database.

However, we are lucky enough that a program called SQLite Explorer has a glitch that

allowed us to browse the tables even though it refused to publish the schema for the

database. You may have better luck with other pricier tools. If you would like to explore

further options, here is a link to see a list of available tools for SQLite:

http://www.sqlite.org/cvstrac/wiki?p=ManagementTools

Should you be really inquisitive, you can read more about the collation sequences from

our research article “Exploring Contacts db” available at

http://www.androidbook.com/item/3582.

If you do have difficulties exploring the database, all is not lost, because we have listed

all the important tables in this chapter. With that, we will start with exploring what are

called raw contacts first.

Raw Contacts
Again, the contacts we have seen when opening up the contacts application are called

aggregated contacts. Underneath each aggregated contact lies a set of contacts called

raw contacts. An aggregated contact is merely a view on a set of similar raw contacts.

To understand the aggregated contacts, one has to understand the raw contacts and

the data that belongs to a raw contact. So we will talk about the raw contacts first.

The set of contacts belonging to an account are really called raw contacts. Each raw

contact points to the detail of one person that you know in the context of that account.

This is in contrast to an aggregated contact, which crosses account boundaries and

ends up belonging to the device as a whole.

This relationship between an account and its set of raw contacts is maintained in the

raw contacts table. Listing 27–6 shows the structure of the raw contacts table in the

contacts database.

Listing 27–6. Raw Contact Table Definition

CREATE TABLE raw_contacts
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
is_restricted INTEGER DEFAULT 0,
account_name STRING DEFAULT NULL,
account_type STRING DEFAULT NULL,
sourceid TEXT,
version INTEGER NOT NULL DEFAULT 1,
dirty INTEGER NOT NULL DEFAULT 0,
deleted INTEGER NOT NULL DEFAULT 0,
contact_id INTEGER REFERENCES contacts(_id),
aggregation_mode INTEGER NOT NULL DEFAULT 0,
aggregation_needed INTEGER NOT NULL DEFAULT 1,
custom_ringtone TEXT
send_to_voicemail INTEGER NOT NULL DEFAULT 0,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 954

times_contacted INTEGER NOT NULL DEFAULT 0,
last_time_contacted INTEGER,
starred INTEGER NOT NULL DEFAULT 0,
display_name TEXT,
display_name_alt TEXT,
display_name_source INTEGER NOT NULL DEFAULT 0,
phonetic_name TEXT,
phonetic_name_style TEXT,
sort_key TEXT COLLATE PHONEBOOK,
sort_key_alt TEXT COLLATE PHONEBOOK,
name_verified INTEGER NOT NULL DEFAULT 0,
contact_in_visible_group INTEGER NOT NULL DEFAULT 0,
sync1 TEXT, sync2 TEXT, sync3 TEXT, sync4 TEXT)

The important fields are highlighted. As with every other Android table, the raw contacts

table has the _ID column that uniquely identifies a raw contact. Together, the fields

account_name and account_type identify the account this contact (specifically, the raw

contact) belongs to. The sourceid field indicates how this raw contact is uniquely

identified in the account identified by the account name and account type fields. For

example, assume you need to know how a raw contact id is identified in the Google e-

mail account. Typically, in that case, this field would have carried the user’s e-mail ID.

The field contact_id refers to the aggregated contact that this raw contact is one of. An

aggregated contact points to one or more similar contacts that are essentially the same

person set up among multiple accounts.

The field display_name points to the display name of the contact. This is primarily a

read-only field. It is set by triggers based on the data rows added in the data table

(which is covered in the next subsection) for this raw contact.

The sync fields are used by the account to sync contacts between the device and the

server-side account such as Google mail.

Although we have used SQLite tools to explore these fields, there is more than one way

to discover these fields. The recommended way is to follow the class definitions as

declared in the ContactsContract API. To explore the columns belonging to a raw

contact, you can look at the class documentation for ContactsContract.RawContact.

There are advantages and disadvantages to this approach. A significant advantage is

that you get to know the published and acknowledged fields by the Android SDK. The

database columns may get added or dropped with out changing the public interface. So

if you were to use the database columns directly, they may or may not be there. Instead,

if you use the public definitions for these columns, you are safe between releases.

One disadvantage, however, is that the class documentation has many other constants

interspersed with column names, even we kind of got lost in figuring out what was what.

These numerous class definitions give the impression that the API is complex when, in

reality, 80 percent of the class documentation for the contact API is to define constants

for these columns and the URIs to access these rows.

When we practice using the contacts API in later sections, we will use the class-

documentation–based constants instead of direct column names. However, we felt the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 955

direct exploration of the tables is the quickest way to help you understand the contacts

API.

Let’s talk next about how the data relating to a contact such as e-mail and phone

number are stored.

Data Table
As indicated from the raw contact table definition, the raw contact (in an anticlimactic

sense) is just an ID indicating what account it belongs to. Most of the data pertaining to

the contact is not in the raw contact table but saved in the data table. Each data

element, such as e-mail and phone number, are stored as separate rows in the data

table. All of these related data rows are tied to a raw contact through the raw contact ID,

which is one of the columns of the data table and also the primary ID of the raw contact

table.

This data table contains 16 generic columns that can store any 16 different data points

for any given data element, such as e-mail. Listing 27–7 describes how the data table is

organized.

Listing 27–7. Contact Data Table Defintion

CREATE TABLE data
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
package_id INTEGER REFERENCES package(_id),
mimetype_id INTEGER REFERENCES mimetype(_id) NOT NULL,
raw_contact_id INTEGER REFERENCES raw_contacts(_id) NOT NULL,
is_primary INTEGER NOT NULL DEFAULT 0,
is_super_primary INTEGER NOT NULL DEFAULT 0,
data_version INTEGER NOT NULL DEFAULT 0,
data1 TEXT,data2 TEXT,data3 TEXT,data4 TEXT,data5 TEXT,
data6 TEXT,data7 TEXT,data8 TEXT,data9 TEXT,data10 TEXT,
data11 TEXT,data12 TEXT,data13 TEXT,data14 TEXT,data15 TEXT,
data_sync1 TEXT, data_sync2 TEXT, data_sync3 TEXT, data_sync4 TEXT)

Critical columns in the data table shown in Listing 27–7 are bolded. As you might have

anticipated, the raw_contact_id points to the raw contact to which this data row

belongs.

The mimetype_id points to the MIME type entry indicating one of the types identified in

the contact data types in Listing 27–4. The columns data1 through data15 are generic

string-based tables that can store anything that is necessary based on the MIME type.

Again, the sync fields are there to support contact syncing. The table that resolves the

MIME type IDs is in Listing 27–8.

Listing 27–8. MIME Type Lookup Table Definition

CREATE TABLE mimetypes
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
mimetype TEXT NOT NULL)

As with the raw contacts table, you can discover the data table columns through the

helper class documentation for ContactsContract.Data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 956

Although you can figure out the columns from this class definition, you will not know

what is stored in each of the generic columns from data1 through data15. To know this,

you will need to see the class definitions for a number of classes under the namespace

ContactsContract.CommonDataKinds.

Some examples of these classes follow:

 ContactsContract.CommonDataKinds.Email

 ContactsContract.CommonDataKinds.Phone

In fact, you will see one class for each of the listed common data types in Listing 27–4.

Ultimately, all the CommonDataKinds classes do is indicate which generic data fields

(data1 through data15) are in use and what for.

Aggregated Contacts
Ultimately, a contact and its related data are unambiguously stored in the raw contacts

table and the data table. An aggregated contact on the other hand is more of heuristic in

nature and could be a bit ambiguous.

When there is a contact that is the same between multiple accounts, you may want to

see one name instead of seeing the same or similar name repeated once for every

account. Android addresses this by aggregating contacts into a read-only view. Android

stores these aggregated contacts in a table called contacts. Android uses a number of

triggers on the raw contact table and the data table to populate or change this

aggregated contact table.

Before going into explaining the logic behind aggregation, let us show you the contact

table definition (see Listing 27–9).

Listing 27–9. Aggregated Contact Table Definition

CREATE TABLE contacts
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
name_raw_contact_id INTEGER REFERENCES raw_contacts(_id),
photo_id INTEGER REFERENCES data(_id),
custom_ringtone TEXT,
send_to_voicemail INTEGER NOT NULL DEFAULT 0,
times_contacted INTEGER NOT NULL DEFAULT 0,
last_time_contacted INTEGER,
starred INTEGER NOT NULL DEFAULT 0,
in_visible_group INTEGER NOT NULL DEFAULT 1,
has_phone_number INTEGER NOT NULL DEFAULT 0,
lookup TEXT,
status_update_id INTEGER REFERENCES data(_id),
single_is_restricted INTEGER NOT NULL DEFAULT 0)

The important columns are highlighted. No client directly updates this table. When a raw

contact is added with its concomitant detail, Android searches other raw contacts to see

if there are similar raw contacts. If there is one, it will use the aggregated contact ID of

that raw contact as the aggregated contact ID of the new raw contact as well. No entry

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 957

is made into the aggregated contact table. If none is found it will create an aggregated

contact and uses that aggregated contact as the contact id for that raw contact.

Android uses the following algorithm to determine which raw contacts are similar:

1. The two raw contacts have matching names.

2. The words in the name are the same but vary in order: “first last“ or

“first, last“ or “last, first.”

3. The shorter versions of the names match, such as “Bob” for “Robert.”

4. If one of the raw contacts has just a first or last name, this will trigger a

search for other attributes, such as phone number or e-mail, and if the

other attributes match, the contact will be aggregated.

5. If one of the raw contacts is missing the name altogether, this will also

trigger a search for other attributes as in step 4.

Because these rules are heuristic, some contacts may be aggregated unintentionally.

The client applications need to provide a mechanism to separate the contacts in such a

case. If you refer to the Android User’s Guide, you will see that the default contacts

application allows you to separate contacts that are unintentionally merged.

You can also prevent the aggregation by setting the aggregation mode when you insert

the raw contact. The available aggregation modes are shown in Listing 27–10.

Listing 27–10. Aggregation Mode Constants

AGGREGATION_MODE_DEFAULT
AGGREGATION_MODE_DISABLED
AGGREGATION_MODE_SUSPENDED

The first options is obvious; it is how aggregation works.

The second option (disabled) indicates that keep this raw contact out of aggregation.

Even if it is aggregated already, Android will pull it out of aggregation and allocate a new

aggregated contact ID dedicated to this raw contact.

The third option suspended indicates that even though the properties of the contact may

change, which will make it invalid for the aggregation into that batch of contacts keep it

tied to that aggregated contact.

The last point brings out the volatile dimension of the aggregated contact. Say you have

a unique raw contact with a first name and a last name. Right now, it doesn’t match any

other raw contact, so this unique raw contact gets its own allocation of an aggregated

contact. The aggregated contact ID will be stored in the raw contact table against that

raw contact row.

However, you go and change the last name of this raw contact, which makes it a match

to another set of contacts that are aggregated. In that case, it will remove the raw

contact from this aggregated contact and move it to the other one abandoning this

single aggregated contact by itself. In this case, the ID of the aggregated contact

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 958

becomes entirely abandoned, as it will not match anything in the future because it is just

an ID without an underlying raw contact.

So an aggregated contact is volatile. There is not a significant value to hold on to this

aggregated contact ID over time.

Android offers some respite from this predicament by providing a field called lookup in

the aggregated contacts tables.

This lookup field is an aggregation (concatenation) of the account and the unique ID of

this contact in that account for each raw contact. This information is further codified so

that it can be passed as a URL parameter to retrieve the latest aggregated contact ID.

Android looks at the lookup key and sees which underlying raw contact IDs are there for

this lookup key. It then uses a best-fit algorithm to return a suitable (or perhaps new)

aggregated contact ID.

While we are explicitly examining the contacts database, let’s consider a couple of

contact-related database views that are useful.

view_contacts
The first of these views is the view_contacts. Although there is a table that holds the

aggregated contacts (contacts table) the API doesn’t expose the contacts table directly.

Instead, it uses view_contacts as the target for reading the aggregated contacts. When

you query based on the URI ContactsContract.Contacts.CONTENT_URI. The columns

returned are based on this view view_contacts. The definition of this view is shown in

Listing 27–11.

Listing 27–11. A View to Read Aggregated Contacts

CREATE VIEW view_contacts AS

SELECT contacts._id AS _id,
contacts.custom_ringtone AS custom_ringtone,
name_raw_contact.display_name_source AS display_name_source,
name_raw_contact.display_name AS display_name,
name_raw_contact.display_name_alt AS display_name_alt,
name_raw_contact.phonetic_name AS phonetic_name,
name_raw_contact.phonetic_name_style AS phonetic_name_style,
name_raw_contact.sort_key AS sort_key,
name_raw_contact.sort_key_alt AS sort_key_alt,
name_raw_contact.contact_in_visible_group AS in_visible_group,
has_phone_number,
lookup,
photo_id,
contacts.last_time_contacted AS last_time_contacted,
contacts.send_to_voicemail AS send_to_voicemail,
contacts.starred AS starred,
contacts.times_contacted AS times_contacted, status_update_id

FROM contacts JOIN raw_contacts AS name_raw_contact
ON(name_raw_contact_id=name_raw_contact._id)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 959

Notice that this view combines the contacts table with the raw contact table based on

the aggregated contact id.

contact_entities_view
Another useful view is the view that combines raw contacts table with the data table.

This view allows retrieving all the data elements of a given raw contact one time. Or even

the data elements of multiple raw contacts belonging to the same aggregated contact.

Listing 27–12 presents the definition of the entities view.

Listing 27–12. Contact Entities View

CREATE VIEW contact_entities_view AS

SELECT raw_contacts.account_name AS account_name,
raw_contacts.account_type AS account_type,
raw_contacts.sourceid AS sourceid,
raw_contacts.version AS version,
raw_contacts.dirty AS dirty,
raw_contacts.deleted AS deleted,
raw_contacts.name_verified AS name_verified,
package AS res_package,
contact_id,
raw_contacts.sync1 AS sync1,
raw_contacts.sync2 AS sync2,
raw_contacts.sync3 AS sync3,
raw_contacts.sync4 AS sync4,
mimetype, data1, data2, data3, data4, data5, data6, data7, data8,
data9, data10, data11, data12, data13, data14, data15,
data_sync1, data_sync2, data_sync3, data_sync4,

raw_contacts._id AS _id,

is_primary, is_super_primary,
data_version,
data._id AS data_id,
raw_contacts.starred AS starred,
raw_contacts.is_restricted AS is_restricted,
groups.sourceid AS group_sourceid

FROM raw_contacts LEFT OUTER JOIN data
 ON (data.raw_contact_id=raw_contacts._id)
LEFT OUTER JOIN packages
 ON (data.package_id=packages._id)
LEFT OUTER JOIN mimetypes
 ON (data.mimetype_id=mimetypes._id)
LEFT OUTER JOIN groups
 ON (mimetypes.mimetype='vnd.android.cursor.item/group_membership'
 AND groups._id=data.data1)

The URIs needed to access this view are available in the class

ContactsContract.RawContacts.RawContactsEntity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 960

Working with the Contacts API
So far, we have explored the basic idea behind the contacts API by exploring its tables

and views. We will now develop a few sample programs exercising what we learned.

Although you can use the listings in this chapter to make your Eclipse projects, we have

also included a URL for the downloadable project files at the end of this chapter.

Exploring Accounts
We will start out our exercise by writing a program that can print out the list of accounts.

To do this, we have prepared the following files

TestContactsDriverActivity.java: The main driver activity for this

chapter with a set of menu items to invoke various samples.

DebugActivity.java: Base class of the driver activity to hide a few

implementation details that don't directly contribute to the

understanding of the contacts API.

debug_activity_layout.xml: Layout file required by the debug activity

and resides in the /res/layout filesubdirectory.

AccountFunctionTester.java: Java class that will respond to the menu

item to print available accounts on the emulator or the device through

the driver activity.

BaseTester.java: A base class for the AccountFunctionTester that

hides the details of coordination between the main driver activity and

each of the individual function testers (Each exercise we demonstrate

is implemented as one of these function testers so that each concept

can be presented in a file that is meaningful to that function.)

IReportBack.java: An interface implemented by the DebugActivity
and passed to the BaseTester, which allows the inherited function

testers to report text to be displayed or debug messages to be logged

and printed to the screen using DebugActivity

main_menu.xml: Menu file to support each of the functions that we are

going to demonstrate

AndroidManifest.xml: The mandatory manifest file

We will now present these files one by one. We will start with the menu file

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 961

The Menu file
The menu file in Listing 27–13 needs to be named main_menu.xml and made available in

the /res/menu subdirectory of your project.

Listing 27–13. Main Menu File for the Project

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_show_accounts"
 android:title="Accounts" />

 <item android:id="@+id/menu_da_clear"
 android:title="clear" />
 </group>
</menu>

At this point in the exercise, we have listed only two menu items. As we go through the

other exercises later in this chapter, you will be adding to those menu items. The first

menu item is intended to list the accounts available, and the second is a general-

purpose helpful menu item to clear the debug/informational messages from the test

driver activity.

Account Function Tester-Related files
With the menu file in place, let’s look at the files that are related to implementing code

that will be called in response to the menu item Accounts from Listing 27–13.

IReportBack.java
The first of these files is IReportBack.java, shown in Listing 27–14.

Listing 27–14. IReportBack.java

//IReportBack.java
public interface IReportBack
{
 public void reportBack(String tag, String message);
 public void reportTransient(String tag, String message);
}

This interface is a contract to its inherited clients that they will be able to send

informational and debug messages not worrying about where those messages to be

displayed and how.

BaseTester.java
All function testers will have access to the IReportBack interface so that they can report

messages as they perform the function of a menu item. This is done through a base

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 962

class for all function testers called BaseTester. The source code for the BaseTester class

is given in Listing 27–15.

Listing 27–15. BaseTester Source Code

public class BaseTester
{
 protected IReportBack mReportTo;
 protected Context mContext;
 public BaseTester(Context ctx, IReportBack target)
 {
 mReportTo = target;
 mContext = ctx;
 }
}

BaseTester class keeps an interface for IReportBack and a reference to the Context

(usually the parent driver activity). These two variables are utilized by the derived

function testers.

AccountsFunctionTester.java
We will show now the first of these function testers the AccountFunctionTester in Listing

27–16.

Listing 27–16. AccountsFunctionTester

public class AccountsFunctionTester extends BaseTester
{
 private static String tag = "tc>";
 public AccountsFunctionTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }
 public void testAccounts()
 {
 AccountManager am = AccountManager.get(this.mContext);
 Account[] accounts = am.getAccounts();
 for(Account ac: accounts)
 {
 String acname=ac.name;
 String actype = ac.type;
 this.mReportTo.reportBack(tag,acname + ":" + actype);
 }
 }
}

The code in Listing 27–16 is quite simple. We have already covered the topic of

accounts and how we go about getting a list of accounts in the beginning of this

chapter. The code in Listing 27–16 is merely getting the account name and type for each

account and then calling the report back interface to log it. As long as there is a driver

activity that can call the method testAccounts(), this code can report back the account

name and type. Let’s now examine the driver-activity—related classes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 963

Driver Activity Classes
We will start with the base class of the driver activity class. This base class activity has

the following responsibilities:

 Provide a text view to report messages. It uses a layout resource

called debug_activity_layout.

 Provide a menu so that individual function testers can be invoked. It

takes in the menu resource ID from the derived classes through its

constructor. It then assumes that there is a predefined menu item

called menu_da_clear to clear the text view as defined in the debug

layout. This base class also writes out the menu item that is selected

to the debug text view in the debug layout.

With that here is the source code for DebugActvity.java in Listing 27–17

DebugActivity.java
Listing 27–17. DebugActivity Class Definition

public abstract class DebugActivity extends Activity
implements IReportBack
{
 //Derived classes needs first
 protected abstract boolean onMenuItemSelected(MenuItem item);

 //private variables set by constructor
 private static String tag=null;
 private int menuId = 0;

 public DebugActivity(int inMenuId, String inTag)
 {
 tag = inTag;
 menuId = inMenuId;

 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.debug_activity_layout);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(menuId, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item){
 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_da_clear){
 this.emptyText();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 964

 return true;
 }
 return onMenuItemSelected(item);
 }
 private TextView getTextView(){
 return (TextView)this.findViewById(R.id.text1);
 }
 protected void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle().toString();
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + title);
 }
 protected void emptyText(){
 TextView tv = getTextView();
 tv.setText("");
 }
 private void appendText(String s){
 TextView tv = getTextView();
 tv.setText(tv.getText() + "\n" + s);
 Log.d(tag,s);
 }
 public void reportBack(String tag, String message)
 {
 this.appendText(tag + ":" + message);
 Log.d(tag,message);
 }
 public void reportTransient(String tag, String message)
 {
 String s = tag + ":" + message;
 Toast mToast = Toast.makeText(this, s, Toast.LENGTH_SHORT);
 mToast.show();
 reportBack(tag,message);
 Log.d(tag,message);
 }
}

In addition to the methods available to report back debug and informational messages

on the debug text view, the method reportTransient() from the IReportBack is

available to present text through the Toast interface of Android.

debug_layout_activity.java
This file debug_layout_activity.xml, shown in Listing 27–18, needs to be in the

/res/layout subdirectory.

Listing 27–18. Debug Layout File: debug_activity_layout.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/text1"
 android:layout_width="fill_parent"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 965

 android:layout_height="wrap_content"
 android:text="Debut Text Appears here"
 />
</LinearLayout>

TestContactsDriverActivity.java
Listing 27–19 is the main driver activity that coordinates the menu items and calling the

respective methods from the corresponding function testers.

Listing 27–19. Main Driver Activity

public class TestContactsDriverActivity
extends DebugActivity
implements IReportBack
{
 public static final String tag="Test Contacts";
 AccountsFunctionTester accountsFunctionTester = null;

 public TestContactsDriverActivity()
 {
 super(R.menu.main_menu,tag);
 accountsFunctionTester = new AccountsFunctionTester(this,this);
 }
 protected boolean onMenuItemSelected(MenuItem item)
 {
 Log.d(tag,item.getTitle().toString());
 if (item.getItemId() == R.id.menu_show_accounts)
 {
 accountsFunctionTester.testAccounts();
 return true;
 }
 return true;
 }
}

Because we pushed most of the functionality of the driver to the base class, the driver

activity is clean and direct.

First thing to notice in Listing 27–19 is how the driver activity passes the menu resource

as defined in Listing 27–13 (main_menu.xml) to the base debug activity. The debug

activity then attaches this menu.

Second thing to notice is how this driver activity uses function testers. In the code in

Listing 27–19, we have shown only the accounts function tester. We will be adding more

function testers as we go along. The pattern to use those additional function testers is

identical.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 966

Manifest File
Listing 27–20 shows the manifest file to round off all the files necessary.

Listing 27–20. Manifest File for the Program

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.contacts"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"
 android:label="Test Contacts">
 <activity android:name=".TestContactsDriverActivity"
 android:label="Test Contacts">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
</application>
 <uses-sdk android:minSdkVersion="5" />
 <uses-permission android:name="android.permission.GET_ACCOUNTS"/>
</manifest>

Running the Program
Listing 27–21 contains the files you will need to compile and run this simple test

Listing 27–21. Complete List of Files for the First Sample

IReportBack.java
BaseTester.java
AccountsFunctionTester.java
DebugActivity.java
TestContactsDriverActivity.java
/res/menu/main_menu.xml
/res/layout/debug_layout_activity.xml
Manifest.xml

When you compile and run this file and click the menu item while looking at the main

driver activity, you will see the screen shown in Figure 27–15.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 967

Figure 27–15. Main driver activity with the menu

Figure 27–15 has two menu options. The “clear” option is a generic menu provided by

the base class debug activity, which will clear any text in the debug text view.

“Acccounts” will list the set of accounts available. Go ahead and click that menu item if

you are playing along. This will bring up the screen shown in Figure 27–16.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 968

Figure 27–16. Main driver activity showing a list of accounts

The emulator we tested on has only one account setup, which is a Google account. So

our sample has shown that one account.

Exploring Aggregated Contacts
In the next sample, let’s see how we can explore aggregated contacts. We will

demonstrate three things in this exercise around aggregated contacts:

 Discover all the fields returned by firing off a URI that knows how to

read aggregated contacts.

 List all aggregated contacts.

 Discover all the fields returned by a cursor based on a lookup URI.

To read contacts, you need to request the following permission in the manifest file

(Listing 27–20):

android.permission.READ_CONTACTS

You will also need the following new files (in addition to the ones from the previous

sample) to test this sample:

 Utils.java

 URIFunctionTester.java

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 969

 AggregatedContactFunctionTester.java

 AggregatedContact.java

These files will be presented as we cover the details of this sample in this section.

You will also need to update the following files from the previous example:

 main_menu.xml

 TestContactsDriverActivity.java

The changes you need to make to these files are also covered in this section.

As the functionality we are testing deals with content providers, URIs, and cursors, we

have coded a couple of utility functions in the file Utils.java shown in Listing 27–22.

Listing 27–22. Utility Functions for Working with Cursors

public class Utils
{
 public static String getColumnValue(Cursor cc, String cname)
 {
 int i = cc.getColumnIndex(cname);
 return cc.getString(i);
 }

 protected static String getCursorColumnNames(Cursor c)
 {
 int count = c.getColumnCount();
 StringBuffer cnamesBuffer = new StringBuffer();
 for (int i=0;i<count;i++)
 {
 String cname = c.getColumnName(i);
 cnamesBuffer.append(cname).append(';');
 }
 return cnamesBuffer.toString();
 }
}

The first function getColumnValue() returns the value of a column given its name from

the current row of the cursor. It returns the value of the column as a string irrespective of

its fundamental type.

The second function is quite useful. It takes any cursor and returns a separated list of all

its available columns. This is handy when we explore new URIs to discover the type of

fields those URIs return. Although one is supposed to document such columns in the

Java code, this method of discovering them at run time could come handy.

As this example and the upcoming examples in this chapter use the idea of submitting a

URI and getting the cursor back through an activity, we have abstracted out those utility

functions into a base class called URIFunctionTester. Listing 27–23 shows the source

code followed by an explanation of each method of this base class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 970

Listing 27–23. A Base Class to Explore URI-Related Functions

public class URIFunctionTester extends BaseTester
{
 protected static String tag = "tc>";
 public URIFunctionTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }
 protected Cursor getACursor(String uri,String clause)
 {
 // Run query
 Activity a = (Activity)this.mContext;
 return a.managedQuery(Uri.parse(uri), null, clause, null, null);
 }

 protected Cursor getACursor(Uri uri,String clause)
 {
 // Run query
 Activity a = (Activity)this.mContext;
 return a.managedQuery(uri, null, clause, null, null);
 }
 protected void printCursorColumnNames(Cursor c)
 {
 this.mReportTo.reportBack(tag,Utils.getCursorColumnNames(c));
 }
}

The function getACursor() takes a URI either as a string or a URI object and a string-

based where clause and returns a cursor. Throughout the examples, as we often print

out the column names of a cursor returned, we have created a method called

printCursorColumnNames(), which, in turn, uses the Utils class to explore the cursor

and get the column names.

Each row returned by the contact cursor will have a number of fields. For our example,

we are not interested in all the fields but a few. We have abstracted this out into another

class called an AggregatedContact. Listing 27–24 defines this class

Listing 27–24. A Few Fields from an Aggregated Contact

public class AggregatedContact
{
 public String id;
 public String lookupUri;
 public String lookupKey;
 public String displayName;

 public void fillinFrom(Cursor c)
 {
 id = Utils.getColumnValue(c,"_ID");
 lookupKey = Utils.getColumnValue(c,ContactsContract.Contacts.LOOKUP_KEY);
 lookupUri = ContactsContract.Contacts.CONTENT_LOOKUP_URI + "/" + lookupKey;
 displayName = Utils.getColumnValue(c,ContactsContract.Contacts.DISPLAY_NAME);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 971

Listing 27–24 is nothing too complex. In this code, we used the cursor to load up the

fields that we are interested in. We’ll now present you with the

AggregatedFunctionTester, which will help us with the goals set at the beginning of this

example.

Listing 27–25. Code Testing Aggregated Contacts

public class AggregatedContactFunctionTester extends URIFunctionTester
{
 public AggregatedContactFunctionTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }
 /*
 * Get a cursor of all contacts
 * No where clause
 * Don't use it on a large set
 */
 private Cursor getContacts()
 {
 // Run query
 Uri uri = ContactsContract.Contacts.CONTENT_URI;
 String sortOrder = ContactsContract.Contacts.DISPLAY_NAME
 + " COLLATE LOCALIZED ASC";
 Activity a = (Activity)this.mContext;
 return a.managedQuery(uri, null, null, null, sortOrder);
 }

 /*
 * Use the getContacts above
 * to list the set of columns in the cursor
 */
 public void listContactCursorFields()
 {
 Cursor c = null;
 try
 {
 c = getContacts();
 int i = c.getColumnCount();
 this.mReportTo.reportBack(tag, "Number of columns:" + i);
 this.printCursorColumnNames(c);
 }
 finally
 {
 if (c!= null) c.close();
 }
 }

 /*
 * Given a cursor worth of contacts
 * Print the contact names followed by
 * their look up keys
 */
 private void printLookupKeys(Cursor c)
 {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext())
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 972

 String name=this.getContactName(c);
 String lookupKey = this.getLookupKey(c);
 String luri = this.getLookupUri(lookupKey);
 this.mReportTo.reportBack(tag, name + ":" + lookupKey);
 this.mReportTo.reportBack(tag, name + ":" + luri);
 }
 }

 /*
 * Use the getContacts() function
 * to get a cursor and print all
 * the contact names followed by look up keys
 * uses the printLookyupKeus() function
 */
 public void listContacts()
 {
 Cursor c = null;
 try
 {
 c = getContacts();
 int i = c.getColumnCount();
 this.mReportTo.reportBack(tag, "Number of columns:" + i);
 this.printLookupKeys(c);
 }
 finally
 {
 if (c!= null) c.close();
 }
 }

 /*
 * A utility function to retrieve the
 * look up key from a contact cursor
 */
 private String getLookupKey(Cursor cc)
 {
 int lookupkeyIndex = cc.getColumnIndex(ContactsContract.Contacts.LOOKUP_KEY);
 return cc.getString(lookupkeyIndex);
 }

 /*
 * A utility function to retrieve the
 * display name from a contact cursor
 */
 private String getContactName(Cursor cc)
 {
 return Utils.getColumnValue(cc,ContactsContract.Contacts.DISPLAY_NAME);
 }

 /**
 * Construct a look up URI based on the
 * Contacts URI and a lookup key
 */
 private String getLookupUri(String lookupkey)
 {
 String luri = ContactsContract.Contacts.CONTENT_LOOKUP_URI + "/" + lookupkey;
 return luri;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 973

 }

 /**
 * Use the lookup uri
 * to retrieve a single aggregated contact
 */
 private Cursor getASingleContact(String lookupUri)
 {
 // Run query
 Activity a = (Activity)this.mContext;
 return a.managedQuery(Uri.parse(lookupUri), null, null, null, null);
 }

 /*
 * A function to see if the URI constructed by the lookup
 * uri returns a cursor that has a different set of columns.
 * It returns a similar cursor with similar columns
 * as one would expect.
 */
 public void listLookupUriColumns()
 {
 Cursor c = null;
 try
 {
 c = getContacts();
 String firstContactLookupUri = getFirstLookupUri(c);
 printLookupUriColumns(firstContactLookupUri);
 }
 finally
 {
 if (c!= null) c.close();
 }
 }

 public void printLookupUriColumns(String lookupuri)
 {
 Cursor c = null;
 try
 {
 c = getASingleContact(lookupuri);
 int i = c.getColumnCount();
 this.mReportTo.reportBack(tag, "Number of columns:" + i);
 int j = c.getCount();
 this.mReportTo.reportBack(tag, "Number of rows:" + j);
 this.printCursorColumnNames(c);
 }
 finally
 {
 if (c!=null)c.close();
 }
 }

 /*
 * Take a list of contacts
 * look up the first contact
 * return null if there are no contacts
 */

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 974

 private String getFirstLookupUri(Cursor c)
 {
 c.moveToFirst();
 if (c.isAfterLast())
 {
 Log.d(tag,"No rows to get the first contact");
 return null;
 }
 //There is a row
 String lookupKey = this.getLookupKey(c);
 String luri = this.getLookupUri(lookupKey);
 return luri;
 }

 /*
 * Take a list of contacts
 * look up the first contact and return it
 * as an object AggregatedContact.
 */
 protected AggregatedContact getFirstContact()
 {
 Cursor c=null;
 try
 {
 c = getContacts();
 c.moveToFirst();
 if (c.isAfterLast())
 {
 Log.d(tag,"No contacts");
 return null;
 }
 //contact is there
 AggregatedContact firstcontact = new AggregatedContact();
 firstcontact.fillinFrom(c);
 return firstcontact;
 }
 finally
 {
 if (c!=null) c.close();
 }
 }
}

The key public functions are highlighted. The comments section for each of the

functions explains what each function does. Once you have this function tester

available, add the menu items in Listing 27–26 to the menu XML

(/res/menu/main_menu.xml).

Listing 27–26. Testing Aggregated Contacts Menu Items

 <item android:id="@+id/menu_show_contact_cursor"
 android:title="Contacts Cursor" />

 <item android:id="@+id/menu_show_contacts"
 android:title="Contacts" />

 <item android:id="@+id/menu_show_single_contact_cursor"
 android:title="Single Contact Cursor" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 975

You can add them anywhere in the main_menu.xml, but we suggest you add them from

top to bottom so that newer menu items show first in the menu list. Once you have

added the menus, change the main driver activity so that it looks like Listing 27–27.

Listing 27–27. Main Driver Activity Updated for Testing Aggregated Contacts

public class TestContactsDriverActivity extends DebugActivity
implements IReportBack
{
 public static final String tag="TestContactsDriverActivity ";
 AccountsFunctionTester accountsFunctionTester = null;
 AggregatedContactFunctionTester aggregatedContactFunctionTester = null;

 public TestContactsDriverActivity()
 {
 super(R.menu.main_menu,tag);
 accountsFunctionTester = new AccountsFunctionTester(this,this);
 aggregatedContactFunctionTester =
 new AggregatedContactFunctionTester(this,this);
 }
 protected boolean onMenuItemSelected(MenuItem item)
 {
 Log.d(tag,item.getTitle().toString());
 if (item.getItemId() == R.id.menu_show_accounts)
 {
 accountsFunctionTester.testAccounts();
 return true;
 }
 if (item.getItemId() == R.id.menu_show_contact_cursor)
 {
 aggregatedContactFunctionTester.listContactCursorFields();
 return true;
 }
 if (item.getItemId() == R.id.menu_show_contacts)
 {
 aggregatedContactFunctionTester.listContacts();
 return true;
 }
 if (item.getItemId() == R.id.menu_show_single_contact_cursor)
 {
 aggregatedContactFunctionTester.listLookupUriColumns();
 return true;
 }
 return true;
 }
}

Notice the three public functions that we end up calling for each of the menu options:

 listContactCursorFields()

 listContacts()

 listLookupUriColumns()

Let’s talk about what each of these functions does based on the code in Listing 27–26.

The listContactCursorFields function reads the entire list of contacts and prints out the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 976

column names in the cursor. The URI used to read all the contacts is

ContactsContract.Contacts.CONTENT_URI.

You can pass this URI to the managedQuery() function to retrieve a cursor. You can pass

null as the column projection to receive all columns. Although this is not recommended

in practice, in our case, it makes sense because we want to know about all the columns

it returns. Listing 27–28 contains list of columns returned by this URI.

Listing 27–28. Contacts Content URI Cursor Columns

times_contacted;
contact_status;
custom_ringtone;
has_phone_number;
phonetic_name;
phonetic_name_style;
contact_status_label;
lookup;
contact_status_icon;
last_time_contacted;
display_name;
sort_key_alt;
in_visible_group;
_id;
starred;
sort_key;
display_name_alt;
contact_presence;
display_name_source;
contact_status_res_package;
contact_status_ts;
photo_id;
send_to_voicemail;

The sample program will print these columns both to the screen and LogCat. We copied

these fields from LogCat and formatted them as shown in Listing 27–28.

NOTE: When working with content providers, the technique of going after the URIs and printing

the columns they return can be very useful.

Now that we’ve explored the columns available with the contacts content URI, let’s pick

a few columns and see what contact rows are available. To do this, click the menu item

“contacts”. This will invoke the function listContacts(). listContacts() method uses

the same contacts content URI but now prints the following columns for each contact:

 display name

 lookup key

 lookup uri

We are considering these fields because we wanted to see what the lookup key and

lookup key URI look like based on what is covered in the theory part of this chapter.

Specifically, we are interested in firing off the lookup URI and see what type of a cursor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 977

it would return. To see this, click the menu item Single Contact Cursor. This will invoke

the function listLookupUriColumns(). This function will take the first contact from the list

of all contacts and then formulate a look up URI for that contact and fire off the URI to

see what it returns.

As it turns out, it just returns a cursor that is identical in the columns in Listing 27–28,

except that it has only one row pointing to the contact for which this is the lookup key.

Also notice that we have used the following lookup URI definition

ContactsContract.Contacts.CONTENT_LOOKUP_URI

You know from the discussion of the contact lookup URIs that each lookup URI

represents a collection of raw contact identities that have been concatenated. That

being the case, you might have expected the lookup URI to return a series of matching

raw contacts. However, the test above (Listing 27–28) is showing that it is not returning a

cursor of raw contacts but instead a cursor of contacts.

NOTE: A lookup based on the contact lookup Uri returns an aggregated contact and not a raw

contact.

Another important tidbit is that the lookup process for the aggregated contact based on

the lookup URI is not linear or exact. Meaning, Android will not look for an exact match

of the lookup key. Instead, Android parses the lookup key into its constituent raw

contacts. Then find the aggregated contact ID that matches the most of the raw contact

records and return that aggregated contact record back.

One consequence of this is that there is no public mechanism available to go from the

look up key to its constituent raw contacts. Instead, you have to find the contact id for

that lookup key and then fire off a raw contact URI for that contact ID to retrieve the

corresponding raw contacts.

Exploring Raw Contacts
In the next sample, let’s see how we can explore the raw contacts. We will try to do

three things in this exercise around raw contacts:

 Discover all the fields returned by firing off a URI that knows how to

read raw contacts.

 Show all raw contacts.

 List all raw contacts for a set of aggregated contacts.

You will need the following new files to test this sample:

 RawContact.java

 RawContactFunctionTester.java

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 978

These files will be presented as we cover the details of this sample in this section. You

will also need to update the following files from the previous example:

 main_menu.xml

 TestContactsDriverActivity.java

The changes you need to make these files are also covered in this section.

The file in Listing 27–29, RawContact.java, is there to capture a few important fields from

the raw contacts table.

Listing 27–29. Raw Contact

public class RawContact
{
 public String rawContactId;
 public String aggregatedContactId;
 public String accountName;
 public String accountType;
 public String displayName;

 public void fillinFrom(Cursor c)
 {
 rawContactId = Utils.getColumnValue(c,"_ID");
 accountName = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_NAME);
 accountType = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_TYPE);
 aggregatedContactId = Utils.getColumnValue(c,
 ContactsContract.RawContacts.CONTACT_ID);
 displayName = Utils.getColumnValue(c,"display_name");
 }
 public String toString()
 {
 return displayName
 + "/" + accountName + ":" + accountType
 + "/" + rawContactId
 + "/" + aggregatedContactId;
 }
}

To test the functionality of this sample, you will need to add the menu items in Listing

27–30 to the main_menu.xml.

Listing 27–30. Menu Items to Test Raw Contacts

 <item android:id="@+id/menu_show_rc_all"
 android:title="all raw contacts" />

 <item android:id="@+id/menu_show_rc"
 android:title="raw contacts" />

 <item android:id="@+id/menu_show_rc_cursor"
 android:title="raw contacts cursor" />

Each of these menu options ends up calling three public functions from the

RawContactFunctionTester.java. The code for this file is in Listing 27–31.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 979

Listing 27–31. Testing Raw Contacts

public class RawContactsFunctionTester
extends AggregatedContactFunctionTester
{
 public RawContactsFunctionTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }
 public void showAllRawContacts()
 {
 Cursor c = null;
 try
 {
 c = this.getACursor(getRawContactsUri(), null);
 this.printRawContacts(c);
 }
 finally
 {
 if (c!=null) c.close();
 }
 }
 public void showRawContactsForFirstAggregatedContact()
 {
 AggregatedContact ac = getFirstContact();
 this.mReportTo.reportBack(tag, ac.displayName + ":" + ac.id);

 Cursor c = null;

 try
 {
 c = this.getACursor(getRawContactsUri(), getClause(ac.id));
 this.printRawContacts(c);
 }
 finally
 {
 if (c!=null) c.close();
 }
 }
 private void printRawContacts(Cursor c)
 {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext())
 {
 RawContact rc = new RawContact();
 rc.fillinFrom(c);
 this.mReportTo.reportBack(tag, rc.toString());
 }
 }
 public void showRawContactsCursor()
 {
 AggregatedContact ac = getFirstContact();
 this.mReportTo.reportBack(tag, ac.displayName + ":" + ac.id);

 Cursor c = null;

 try
 {
 c = this.getACursor(getRawContactsUri(),null);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 980

 this.printCursorColumnNames(c);
 }
 finally
 {
 if (c!=null) c.close();
 }
 }
 private Uri getRawContactsUri()
 {
 return ContactsContract.RawContacts.CONTENT_URI;
 }
 private String getClause(String contactId)
 {
 return "contact_id = " + contactId;
 }

}

Listing 27–32 presents the updated driver file that facilitates the menu items from calling

the public functions of the raw contacts function tester.

Listing 27–32. Updated Driver Activity to Test Raw Contacts

public class TestContactsDriverActivity extends DebugActivity
implements IReportBack
{
 //........continuation
 RawContactsFunctionTester rawContactFunctionTester = null;

 public TestContactsDriverActivity()
 {
 //........continuation
 rawContactFunctionTester = new RawContactsFunctionTester(this,this);
 }
 protected boolean onMenuItemSelected(MenuItem item)
 {
 //........continuation
 if (item.getItemId() == R.id.menu_show_single_contact_cursor)
 {
 aggregatedContactFunctionTester.listLookupUriColumns();
 return true;
 }
 //new entries start
 if (item.getItemId() == R.id.menu_show_rc_cursor)
 {
 rawContactFunctionTester.showRawContactsCursor();
 return true;
 }
 if (item.getItemId() == R.id.menu_show_rc_all)
 {
 rawContactFunctionTester.showAllRawContacts();
 return true;
 }
 if (item.getItemId() == R.id.menu_show_rc)
 {
 rawContactFunctionTester.showRawContactsForFirstAggregatedContact();
 return true;
 }
 //new entries end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 981

 return true;
 }
}

We have only indicated the new lines you need to add to this driver file, because this is

an update file.

As with the aggregated contact URIs, let’s first examine the nature of the raw contact

URI and what it returns. The signature for the raw contact uri is defined as follows:

ContactsContract.RawContacts.CONTENT_URI;

If you follow the code path for the function showRawContactsCursor(), you will notice

that it is using the preceding raw contacts contact URI and is printing out the cursor

fields. Go ahead and click the “raw contacts cursor” menu item. This will show that the

raw contact cursor has the fields shown in Listing 27–33.

Listing 27–33. Raw Contacts Cursor Fields

times_contacted;
phonetic_name;
phonetic_name_style;
contact_id;version;
last_time_contacted;
aggregation_mode;
_id;
name_verified;
display_name_source;
dirty;
send_to_voicemail;
account_type;
custom_ringtone;
sync4;sync3;sync2;sync1;
deleted;
account_name;
display_name;
sort_key_alt;
starred;
sort_key;
display_name_alt;
sourceid;

Once you know the columns of a raw contact cursor, you may be curious as to see the

rows of this table. Go ahead and click “all raw contacts”. This will call the method

showAllRawContacts(). This method will walk the cursor with no WHERE clause (so that it

can get all the rows) and creates a RawContact object for each row and prints it out. You

can see these raw contacts both on the screen and LogCat.

Using the columns of the cursor in Listing 27–34, let’s see if we can refine our query to

retrieve the contacts for a given aggregated contact ID. You can test this by clicking the

“raw contacts” menu item. This will look up the first aggregated contact and then issue a

raw contact URI with a where clause specifying a value for the contact_id column. You

can see the results of this both in the UI and also in LogCat.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 982

Although we have explored aggregated contacts and raw contacts, we haven't really

retrieved the important parts of a contact, such as the e-mail address and phone

number. You’ll see how to do this in the next section.

Exploring Raw Contact Data
In the this example, you’ll see how we can explore the data values corresponding to raw

contacts. We will try to do two things in this exercise around raw contact data:

 Discover all the fields returned by firing off a URI that knows how to

read raw contact data.

 Retrieve the data elements for a set of aggregated contacts.

You will need the following new files to test this sample:

 ContactData.java

 ContactDataFunctionTester.java

These files will be presented as we cover the details of this sample in this section. You

will also need to update the following files from the previous sample:

 main_menu.xml

 TestContactsDriverActivity.java

The changes you need to make to these files are also covered in this section. The file

ContactData.java is there to capture a representative set of a contact data. The source

code for this file is given in Listing 27–34.

Listing 27–34. Contact Data

public class ContactData
{
 public String rawContactId;
 public String aggregatedContactId;
 public String dataId;
 public String accountName;
 public String accountType;
 public String mimetype;
 public String data1;

 public void fillinFrom(Cursor c)
 {
 rawContactId = Utils.getColumnValue(c,"_ID");
 accountName = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_NAME);
 accountType = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_TYPE);
 aggregatedContactId =
 Utils.getColumnValue(c,ContactsContract.RawContacts.CONTACT_ID);
 mimetype = Utils.getColumnValue(c,ContactsContract.RawContactsEntity.MIMETYPE);
 data1 = Utils.getColumnValue(c,ContactsContract.RawContactsEntity.DATA1);
 dataId = Utils.getColumnValue(c,ContactsContract.RawContactsEntity.DATA_ID);
 }
 public String toString()
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 983

 return data1 + "/" + mimetype
 + "/" + accountName + ":" + accountType
 + "/" + dataId
 + "/" + rawContactId
 + "/" + aggregatedContactId;
 }
}

The functionality for this sample is defined in the file ContactFunctionTester.java. The

code for this file is in Listing 27–35.

Listing 27–35. Testing Contact Data

public class ContactDataFunctionTester extends RawContactFunctionTester
{
 public ContactDataFunctionTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }
 public void showRawContactsEntityCursor()
 {
 Cursor c = null;
 try
 {
 Uri uri = ContactsContract.RawContactsEntity.CONTENT_URI;
 c = this.getACursor(uri,null);
 this.printCursorColumnNames(c);
 }
 finally
 {
 if (c!=null) c.close();
 }
 }
 public void showRawContactsData()
 {
 Cursor c = null;
 try
 {
 Uri uri = ContactsContract.RawContactsEntity.CONTENT_URI;
 c = this.getACursor(uri,"contact_id in (3,4,5)");
 this.printRawContactsData(c);
 }
 finally
 {
 if (c!=null) c.close();
 }
 }
 protected void printRawContactsData(Cursor c)
 {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext())
 {
 ContactData dataRecord = new ContactData();
 dataRecord.fillinFrom(c);
 this.mReportTo.reportBack(tag, dataRecord.toString());
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 984

To invoke the public functions from this class, we will need the menu items in Listing 27–36

added to the main_menu.xml.

Listing 27–36. Menu Items to Test Contact Data

 <item android:id="@+id/menu_show_rce_data"
 android:title="contact data" />
 <item android:id="@+id/menu_show_rce_cursor"
 android:title="contact entity cursor" />

The driver activity needs to be changed as shown in listing 27–37 to respond to these

menu items and call the public functions of the ContactDataFunctionTester.

Listing 27–37. Updated main activity for testing contact data

public class TestContactsDriverActivity extends DebugActivity
implements IReportBack
{
 public static final String tag="TestContacts";
 ...other testers
 ...add this at the end of these testers
 ContactDataFunctionTester contactDataFunctionTester = null;

 public TestContactsDriverActivity()
 {
 ...add this line at the end of this function
 contactDataFunctionTester = new ContactDataFunctionTester(this,this);
 }
 protected boolean onMenuItemSelected(MenuItem item)
 {
 respond to other menu items
 Add the following lines
 if (item.getItemId() == R.id.menu_show_rce_cursor)
 {
 contactDataFunctionTester.showRawContactsEntityCursor();
 return true;
 }
 if (item.getItemId() == R.id.menu_show_rce_data)
 {
 contactDataFunctionTester.showRawContactsData();
 return true;
 }
 ...end of new lines
 return true;
 }
}

Let's analyze this code and sample now. Android presents a special view called a

RawContactEntity view to retrieve data from a raw contact table and the corresponding

data tables as indicated in section Contact_entities_view of this chapter. The URI to

access this view is defined in a java helper class. The full Java path for this URI constant

is in Listing 27–38.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 985

Listing 27–38. Raw Entities Content URI

ContactsContract.RawContactsEntity.CONTENT_URI

This sample uses this URI to get an idea of the fields that are returned. You can see this

set of fields by clicking “contact entity cursor.” Listing 27–39 shows what this menu item

prints out as the list of columns returned by this cursor.

Listing 27–39. Contact Entities Cursor Columns

data_version;
contact_id;
version;
data12;data11;data10;
mimetype;
res_package;
_id;
data15;data14;data13;
name_verified;
is_restricted;
is_super_primary;
data_sync1;dirty;data_sync3;data_sync2;
data_sync4;account_type;data1;sync4;sync3;
data4;sync2;data5;sync1;
data2;data3;data8;data9;
deleted;
group_sourceid;
data6;data7;
account_name;
data_id;
starred;
sourceid;
is_primary;

Once you know this set of columns, you can narrow down the result set of this cursor by

formulating a proper where clause. For example, in the next menu item of this example,

we will retrieve the data elements pertaining to the contact IDs 3, 4, and 5. To do this, all

you have to do in code is add a WHERE clause such as

"contact_id in (3,4,5)"

and send it along with the cursor. This is exactly what we did in the “contact data” menu

item. If you click this item, you will such things as name and e-mail address printed out

(you can identify the data element by looking at the MIME type).

Adding a Contact and Its Details
So far, we have only read the contacts. Let’s see through an example what it takes to

add a contact with a name, e-mail, and phone number.

To write to contacts, you need to request the following permission in the manifest file

(see Listing 27–20):

android.permission.WRITE_CONTACTS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 986

You will need the following new file to test this sample:

 AddContactFunctionTester.java

You will also need to update the following files from the previous sample:

 main_menu.xml

 TestContactsDriverActivity.java

The file AddContactFunctionTester.java is responsible for adding a contact with its

details. Listing 27–40 shows the source code for it.

Listing 27–40. Adding Contacts with Details

Import android.provider.ContactsContract.Data;
//..other imports that you can use eclipse to resolve

public class AddContactFunctionTester extends ContactDataFunctionTester
{
 public AddContactFunctionTester(Context ctx, IReportBack target)
 {
 super(ctx, target);
 }
 public void addContact()
 {
 long rawContactId = insertRawContact();
 this.mReportTo.reportBack(tag, "RawcontactId:" + rawContactId);
 insertName(rawContactId);
 insertPhoneNumber(rawContactId);
 showRawContactsDataForRawContact(rawContactId);
 }
 private void insertName(long rawContactId)
 {
 ContentValues cv = new ContentValues();
 cv.put(Data.RAW_CONTACT_ID, rawContactId);
 cv.put(Data.MIMETYPE, StructuredName.CONTENT_ITEM_TYPE);
 cv.put(StructuredName.DISPLAY_NAME,"John Doe_" + rawContactId);
 this.mContext.getContentResolver().insert(Data.CONTENT_URI, cv);
 }
 private void insertPhoneNumber(long rawContactId)
 {
 ContentValues cv = new ContentValues();
 cv.put(Data.RAW_CONTACT_ID, rawContactId);
 cv.put(Data.MIMETYPE, Phone.CONTENT_ITEM_TYPE);
 cv.put(Phone.NUMBER,"123 123 " + rawContactId);
 cv.put(Phone.TYPE,Phone.TYPE_HOME);
 this.mContext.getContentResolver().insert(Data.CONTENT_URI, cv);
 }
 private long insertRawContact()
 {
 ContentValues cv = new ContentValues();
 cv.put(RawContacts.ACCOUNT_TYPE, "com.google");
 cv.put(RawContacts.ACCOUNT_NAME, "satya.komatineni@gmail.com");
 Uri rawContactUri =
 this.mContext.getContentResolver()
 .insert(RawContacts.CONTENT_URI, cv);
 long rawContactId = ContentUris.parseId(rawContactUri);
 return rawContactId;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 987

 }
 private void showRawContactsDataForRawContact(long rawContactId)
 {
 Cursor c = null;
 try
 {
 Uri uri = ContactsContract.RawContactsEntity.CONTENT_URI;
 c = this.getACursor(uri,"_id = " + rawContactId);
 this.printRawContactsData(c);
 }
 finally
 {
 if (c!=null) c.close();
 }
 }
}

The only public function is the addContact(). You will need to add the menu indicated in

Listing 27–41 to invoke this function.

Listing 27–41. Menu Item for Adding a Contact

<item android:id="@+id/menu_add_contact"
 android:title="Add Contact" />

You will be adding these lines to the main_menu.xml. You will also need to change the

driver activity to translate this menu item to the method call of addContact(). Listing 27–42

shows the source code for the driver activity (note this is not a new file but an update to

the corresponding file).

Listing 27–42. Updated Driver Activity to Test Adding a Contact

public class TestContactsDriverActivity extends DebugActivity
implements IReportBack
{
 ...other stuff
 AddContactFunctionTester addContactFunctionTester = null;

 public TestContactsDriverActivity()
 {
 ...other stuff
 addContactFunctionTester = new AddContactFunctionTester(this,this);
 }
 protected boolean onMenuItemSelected(MenuItem item)
 {
 other stuff
 if (item.getItemId() == R.id.menu_add_contact)
 {
 addContactFunctionTester.addContact();
 return true;
 }
 return true;
 }
}

Now if you click the Add Contact menu item, the code in listing 27–40 (add contact

function tester) will do the following:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 988

1. First add a new raw contact for a predefined account using its name

and type, represented by the method insertRawContact().

2. Take the raw contact ID, and insert a name record—the insertName()

method—in the data table.

3. Take the raw contact ID, and insert a phone number record—the

insertPhone() method—in the data table.

Listing 27–40 shows the column aliases used by these methods as they insert records.

These columns aliases are repeated here in Listing 27–43 for quick review.

Listing 27–43. Using Column Aliases for Standard Contact Data Structures

cv.put(Data.RAW_CONTACT_ID, rawContactId);
cv.put(Data.MIMETYPE, StructuredName.CONTENT_ITEM_TYPE);
cv.put(StructuredName.DISPLAY_NAME,"John Doe_" + rawContactId);

cv.put(Data.RAW_CONTACT_ID, rawContactId);
cv.put(Data.MIMETYPE, Phone.CONTENT_ITEM_TYPE);
cv.put(Phone.NUMBER,"123 123 " + rawContactId);
cv.put(Phone.TYPE,Phone.TYPE_HOME);

cv.put(RawContacts.ACCOUNT_TYPE, "com.google");
cv.put(RawContacts.ACCOUNT_NAME, "satya.komatineni@gmail.com");

Especially important to know is that constants like Phone.TYPE and Phone.NUMBER actually

point to generic data table column names data1 and data2.

Finally, to see a record added, go ahead and click the “add contact” menu option. This

will add the record and show you the details of that record by reading it back through

the function showRawContactsDataForRawContact(). You will see each of the data fields

displayed through the ContactData structure.

Controlling Aggregation
It should be clear by now that clients that update or insert contacts do not explicitly

change the contact table. The contact table is updated by triggers that look into the raw

contact table and raw contact data table.

Raw contacts that get added or changed, in turn, affect the aggregated contacts in the

contacts table. However, you may not want to allow two contacts to be aggregated.

You can control the aggregation behavior of a raw contact by setting the aggregation

mode when that contract is created. As you can see from raw contact table columns in

Listing 27–33, the raw contact table contains a field called aggregation_mode. The values

for these aggregation modes are shown in Listing 27–2 and explained in section titled

“Aggregated Contacts.”

You can also keep two contacts always apart by inserting rows into a table called

agg_exceptions. The URIs needed to insert into this table are defined in the Java class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 989

ContactsContract.AggregationExceptions. The table structure of agg_exceptions is

shown in Listing 27–44.

Listing 27–44. Aggregate Exceptions Table Definition

CREATE TABLE agg_exceptions
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
type INTEGER NOT NULL,
raw_contact_id1 INTEGER REFERENCES raw_contacts(_id),
raw_contact_id2 INTEGER REFERENCES raw_contacts(_id))

The type column can hold one of the constants in Listing 27–45.

Listing 27–45. Aggregation Types in Aggregation Exception Table

TYPE_KEEP_TOGETHER
TYPE_KEEP_SEPARATE
TYPE_AUTOMATIC

The type definition and what they indicate is fairly clear. The TYPE_KEEP_TOGETHER says

the two raw contacts should never be broken apart. The TYPE_KEEP_SEPARATE says that

these raw contacts should never be joined. The TYPE_AUTOMATIC indicates that use the

default algorithm to aggregate contacts.

They URI you will use insert, read, and update this table is defined as

ContactsContract.AggregationExceptions.CONTENT_URI

Constants for the field definitions to work with this table are also available in the Java

class ContactsContract.AggregationExceptions.

Impacts of Syncing
So far, we have mainly talked about manipulating the contacts on the device. However,

accounts and their contacts typically work hand in hand with syncing. For example, if

you have created a Google account on your Android phone, the account will pull all your

Gmail contacts and make them available to you on your device.

Every time you add a new contact on the device or a new server account, those

contacts will be synced and reflected in both places.

However, we have not covered the syncing API and how it works in this edition of the

book. Like contacts, it is a large topic. Knowing how contacts work significantly helps to

understand the sync API. Please check our updates at www.androidbook.com.

The nature of a sync also has impacts to deleting contacts on the device. When you

delete a contact using the aggregated contact URI, it will delete all its corresponding

raw contacts and the data elements of each of those raw contacts. However, Android

will only mark them as deleted on the device and expects the background sync to

actually sync with the server and then delete the contacts permanently from the device.

This cascading of deletes also happens at the raw contact level where the

corresponding data elements of that raw contact are deleted.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 990

References
The following annotated references are useful for supporting and enhancing material of

this chapter. The last reference URL of this section allows you to download projects

developed for this chapter.

http://www.google.com/googlephone/AndroidUsersGuide.pdf: This URL points

to the 2.2.1 version of the Android User’s Guide. You can use this guide to read

about the contacts application that allows you manage your contacts. Although

we have covered the basic information here on how to use the contacts

application, this user’s guide is the authority, and you may pick up things that

we might have overlooked.

http://www.google.com/help/hc/pdfs/mobile/AndroidUsersGuide-30-100.pdf:

You will find Android 3.0 users guide here.

http://developer.android.com/resources/articles/contacts.html: This URL

points to an article on the Android site that documents how to use the contacts

API. This is the primary documentation on the contacts API from Google.

http://www.androidbook.com/item/3585: Understanding the contacts API is

about understanding its table structure. The ContactsContract is just a thin

wrapper around this basic table structure. The authors have published the

various table structures at this URL. You will be able to see the field names, their

types, aggregated views, and so on.

http://developer.android.com/reference/android/provider/ContactsContract
.html: This URL points to the Javadoc of the entry class for the published

contacts contract. You will need this URL often as you code to the contacts API.

http://www.netmite.com/android/mydroid/2.0/packages/providers/ContactsPr
ovider/: Because of the paucity of information on how contacts are treated, you

may want to see the source code of the contacts content provider. This URL

from Netmite provides access to all the source files of the content provider.

http://www.netmite.com/android/mydroid/2.0/packages/apps/Contacts/src/co
m/android/contacts: Similarly, this URL points to the source code of the

contacts application. If you want to know how the aggregated contact is painted

or updated, this is your ticket to research.

http://www.androidbook.com/item/3537: If you were to go through the source

code of the preceding two URLs, you will see that Java generics will generously

befuddle you. This URL contains the summarization of Java generics that could

be of some help.

http://www.androidbook.com/projects: You can use this URL to download the

test project dedicated for this chapter. The name of the ZIP file is

ProAndroid3_ch20_TestContacts.zip.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 991

Summary
In this chapter, we unraveled the structure of contacts on the Android platform. You can

use this information to read or update contacts through the public contact API.

Although we have covered the contacts API extensively in this chapter, we haven’t

covered the mode of working with content provides in a batch mode to add or update

contacts in a batch mode. Android SDK uses a class called ContentProviderOperation

to batch up database inserts, updates, and deletes as an optimization for individual

updates.

The batch mode is much more important for sync providers as a large number of

contacts get added and updated. For queries and occasional updates, what we have

covered in this chapter is sufficient. However, do check with www.androidbook.com for

updates on this topic.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 27: Exploring the Contacts API 992

http://lib.ommolketab.ir
http//lib.ommolketab.ir

993

993

 Chapter

Deploying Your
Application: Android
Market and Beyond
Creating a great application that people will love is one thing, but you also need an easy
way for people to find and download it. Google created Android Market for this purpose.
From an icon right on the device, users can click straight into the Market to browse,
search, review, and download applications. Users can also access Android Market over
the Internet to do those same things, although the downloading is not to the computer
but rather is sent to the user’s device. Many applications are free; for those that are not,
the Market provides payment mechanisms for easy purchasing.

The Market is even accessible from intents inside of applications, making it easy for
applications to reach out to the Market to guide the user into getting what they need for
your application to be successful. For example, when a new version of your application
becomes available, you can make it easy for the user to go straight to that Market page
to get or buy the new version. Android Market is not the only way to get applications to
devices, however; other channels are popping up on the Internet.

The Android Market application is not available from within the emulator (although hacks
exist to make it available). This makes things a little more difficult for a developer. Ideally
you will have a device of your own that you can use with Android Market. Android
Market is available on the Android Developer Phone, but will not show or download any
paid applications. This is one of Google’s ways to attempt to keep paid apps from being
pirated.

In this chapter, we’ll explore how to get you set up for publishing applications to the
Market, how to prepare your application for sale through the Market, how you can
protect yourself from piracy, how users will find, download, and use your applications,
and finally, alternative ways to make your applications available.

28

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 994

Becoming a Publisher
Before you can upload an application to Android Market, you need to become a
publisher. To do so, you must create a Developer Account. Once that’s done, you will be
able to upload your applications to the Market so they can be found and downloaded by
users. Google has made the process to get a Developer Account relatively painless, and
reasonably priced.

To publish anything, you first need to have a Google account—for example, a gmail.com
e-mail account. Next, you establish an identity with the Android Market. You do this by
going to http://market.android.com/publish/signup. You will need to provide a
developer name, an e-mail address, a web site address, and a phone number where you
can be contacted. You will be able to change these values later, once your account is
set up. You will also need to pay the registration fee. This is done via Google Checkout.
In order to continue with the transaction, you will be required to log in with a Google
account.

One of the options presented to you during the payment process is “Keep my email
address confidential.” This refers to the current transaction between you and Google
Android Market to “purchase” publisher access. If you choose yes, you’ll keep your e-
mail address secret from Google Android Market. This has nothing to do with keeping
your e-mail address secret from buyers of your application. Buyers’ ability to see your e-
mail address has nothing to do with this option. More on that later.

Next up is the Android Market Developer Distribution Agreement. This is the legal
contract between Google and you. It spells out the rules for distributing apps, collecting
payments, granting refunds, feedback, ratings, user rights, developer rights, and so on.
There’s more on these in the “Following the Rules” section of this chapter.

Upon accepting the Agreement, you will be taken to a page commonly called the
Developer Console at http://market.android.com/publish/Home.

Following the Rules
The Android Market Developer Distribution Agreement (AMDDA) spells out a lot of rules.
You might want legal counsel to review the contract before agreeing to it, depending on
how seriously you plan to operate within Android Market. This section describes some
highlights you might be interested in.

 You have to be a developer in good standing to use the Android
Market. This means you must go through the process as described to
get registered, you must accept the Agreement, and you must abide
by the rules in the Agreement. Breaking the rules could get you barred
and your products removed from the Market.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 995

 You can distribute products for free or for a price. The Agreement
applies either way. If selling products, you must have a payment
processor such as Google Checkout. When Android 2.0 was
introduced, Google Checkout was the only way to collect money
through the Android Market. It is becoming possible for users to
simply charge to their phone bill for downloading applications from
Android Market, as announced by T-Mobile in 2009 and AT&T in 2010.
PayPal announced integration with the Android Market in October of
2010, but five months later it still isn’t an option. This may change in a
future release, however.

 Paid apps will incur a transaction fee, and possibly a fee from the
device carrier, to be deducted from the sale price. As of January 2011,
the transaction fee is 30 percent, so if the sale price is $10, Google
collects $3 and you get $7 (assuming no carrier fees).

 It is your responsibility to remit appropriate taxes to your taxing
authorities. When you set up your merchant account, you specify the
appropriate tax rates to apply to purchases from people in other
locations. Google Checkout will collect the appropriate taxes based on
how you set up Google Checkout. This money will be provided to you,
and you must remit it appropriately. For additional information on sales
taxes in the U.S., try
http://biztaxlaw.about.com/od/businesstaxes/f/onlinesalestax.ht
m and www.thestc.com.

 You are allowed to distribute a free demo version of your application,
with an option to pay to unlock the application’s full set of features;
however, you must collect the payment via an authorized Android
Market Payment Processor. You are not allowed to redirect users of
your free application to some other payment processor to collect
upgrade fees. You are also not allowed to charge a subscription fee
for applications distributed through Android Market. Service fees are
actually a good way to go if you can, since they help prevent piracy of
your application and can improve your overall cash flow. However,
applying service fees means you can’t sell that version of your
application from within Android Market. This feature may be provided
in Android Market in the future. You could think of it this way: if you're
making money via the Android Market, Google wants its share.

 In February 2011, Google announced in-app billing. This is an add-on
SDK that allows an application to charge for digital goods or assets
used within the application. A digital asset could be something like a
virtual weapon or new levels for a game, or a music or graphics file.
The checkout process is the same as for purchasing applications,
which means users could pay from their phone bill for these digital
assets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 996

 If your application requires a user to have a login on a web server
somewhere, and that web server charges the user a subscription fee,
that web server could collect the subscription fee any way it wants to.
In this way you have disconnected the subscription fee from the
application and it’s okay by Google to make the application available
in Android Market—as long as your free application is not directing
users to the web site. But really, why not just distribute your free
Android app from the same web server as the service?

 It seems that you can use alternate payment processors to accept
donations from users of your free app, but you cannot create
incentives within your app to encourage those donations.

 Refunds are a nasty subject with Android Market. Originally, users had
24 hours to request a refund of the purchase price. Then it was
changed to 48 hours. In December 2010 it was changed to 15
minutes! And that’s 15 minutes from when the purchase is made, not
from when the download has successfully completed. There have
been cases where a user hasn’t even been able to finish downloading
the application and the refund window has passed. Strangely, the
AMDDA was not updated in December 2010 to reflect 15 minutes and
still said 48 hours. Refunds are not given to users who can preview the
product prior to download. This includes ringtones and wallpapers.
Google Checkout however, does allow the developer to issue a refund
even if the refund window has passed, so users do have a way to get a
refund no matter what. But developers don’t want to be issuing
refunds manually.

 You are required to provide adequate support for your product. If
adequate support is not provided, users can request refunds and
these will be charged back to you, possibly including handling fees.

 Users get unlimited reinstalls of applications downloaded from the
Android Market. If a user does a factory reset of their device, this
feature allows them to get all their apps back without having to
repurchase.

 Developers agree to protect the privacy and legal rights of users. This
includes protecting (securing) any data that might be collected in the
process of using the application. It is possible to change the rules
regarding users’ data protection, but only by displaying and having the
user accept a separate agreement between you and that user.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 997

 Your application must not compete with Android Market. Google does
not want an application from within Android Market to sell Android
products from outside of Android Market, thus bypassing its payment
processor. This does not mean that you can’t also sell your application
through other channels: but your application on Android Market
cannot itself be doing the selling of Android products outside of the
Android Market.

 Google will assign product ratings to your products. The ratings could
be based on user feedback, install rates, uninstall rates, refund rates,
and/or a Developer Composite Score. The Developer Composite
Score may be calculated by Google using past history across
applications, and this could influence the rating of new applications.
For this reason, it is important to release good quality applications
associated to you, even the free ones. It’s not clear that the Developer
Composite Score even exists, but if it does there’s no way to see
yours.

 By selling your application through Android Market, you are granting
the user a “non-exclusive, worldwide, perpetual license to perform,
display and use the Product on the device.” However, it is quite all
right for you to write a separate End User License Agreement (EULA)
that supersedes this statement. Make this EULA available on your web
site, or provide another way for shoppers and users to be able to read
it.

 Google requires that you abide by the branding rules for Android.
These include restrictions on the use of the word Android, as well as
use of the robot graphic, logo, and custom typeface. For more details,
go to www.android.com/branding.html.

Developer Console
The Developer Console is your landing page for controlling your applications in Android
Market. From the Developer Console you can buy an Android development phone, set
up a merchant account in Google Checkout (so you can charge for your applications),
upload applications, and get information about your uploaded applications. You can
also edit your account details including developer name, e-mail address, web address,
and phone number. Figure 28–1 shows the Developer Console.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 998

Figure 28–1. The Android Market Developer Console

There are now three Android development phones: the Android Developer Phone, the
Google Nexus One, and the Google Nexus S. The Android Developer Phone (ADP) was
the one-and-only original development phone for Android developers. The ADP is a
special device created specifically for Android developers. It is a full-featured device that
is unlocked and not tied to any particular carrier. It will accept all SIM cards and comes
with a 1GB SD card, a camera, a slider keyboard, and GPS. Unlocked means that you
can do just about anything to it, including load a new version of the firmware and the
Android platform, not just applications. While you can load new versions of firmware on
the ADP, it ships with Android 1.6.

You may remember when Google introduced its first phone, called the Nexus One. Built
in collaboration with HTC, Google discontinued the Nexus One due to lackluster sales,
and then offered it to developers as the second developer phone to clear their inventory.
It became very popular, so Google ordered more. The specs of the Nexus One are very
good. In the sensor category, it comes with a proximity sensor, light sensor, G-sensor
(accelerometers), and a compass. It easily runs Android 2.2 and will most likely support
the latest versions of Android for some time. The specification page can be found at

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 999

www.htc.com/www/product/nexusone/specification.html. On the negative side, the
Nexus One does not work with all carriers’ 3G signals, so it uses other wireless network
types (AT&T and 2G or EDGE).

In December 2010, Google released the Nexus S, but this phone is not available through
the Developer Console. It was first released through Best Buy in the U.S., and The
Carphone Warehouse in the UK, and could be purchased with or without a carrier
contract. Even more advanced and faster than the Nexus One, this phone adds support
for a gyroscope sensor, a Near Field Communication (NFC) sensor, and a front-facing
camera. It also ships with Android 2.3 (a.k.a. Gingerbread). The specs, complete with
videos, can be found at www.google.com/nexus/#.

If you want to test out new versions of Android firmware, or the Android platform itself,
then you’ll need to get a developer phone. Of the three developer phones, your best bet
is the Nexus S. One of the nice aspects of the Nexus phones is that they are usually one
of the first devices to get Android updates. This is another reason you might choose to
go with a Nexus over a commercial phone tied to a carrier. If all you want to do is
develop applications and not mess with the Android OS itself, the commercial phones
can do the job for you. Any Android device can be connected to your workstation to do
development and testing work. You’ll want to pay attention to the hardware specs
though. Not all phones get upgraded to the latest version of Android, especially the less
powerful ones.

If you do not set up a merchant account using Google Checkout, you will be unable to
charge for your products in the Android Market. Setting up a merchant account is not
difficult. Click the link from the Developer Console, fill out the application, agree to the
Terms of Service, and you’re all set. You will need to provide a US Federal tax ID (EIN), a
credit card number plus a US Social Security Number (SSN), or just a credit card
number. The tax information is used to verify your credit status to ensure timely
deposits. The credit card information is used to handle chargebacks due to buyer
disputes when there are insufficient funds in your Google Checkout account. You can
also supply bank account information to enable electronic funds transfers from the
proceeds of your sales. Note that Google Checkout is a service for more than just
Android Market. Therefore, do not get confused by the transaction fee information for
Google Checkout for non-Android Market sales. The 30 percent mentioned previously is
the transaction fee rate for Android Market. There is also additional Google Checkout
transaction fee information for non-Android Market sales and those do not apply to
Android Market.

Uploading and monitoring your applications are probably the main functions of the
Developer Console that you will use. We’ll discuss uploading applications later in this
chapter. For monitoring, the Market provides tools to see how your application is doing
in terms of total downloads, and how many users still have it installed. You can see the
overall rating of your apps in terms of 0 to 5 stars, and how many people have submitted
a rating. The Developer Console allows you to republish your application—for upgrades,
for example—or to unpublish the application. Unpublishing does not remove it from
devices, nor does it even necessarily remove it from the Google servers, especially if it’s
a paid app. A user who has paid for your application and who has uninstalled it, but not

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1000

requested a refund, is allowed to reinstall it later even if you’ve unpublished it. The only
way it is truly unavailable to users is if Google pulls it due to violation of the rules. In
March 2011, Google added charts and graphs to the Developer Console so you can see
how your application is doing in different versions of Android, on different devices, in
different countries and in different languages.

Users can submit comments in addition to rating your application. It is in your best
interest to read the comments in order to address any problems quickly. Included with a
comment is the user’s rating of your app, a name of the user as typed by them, and the
date of the comment. Unfortunately, there is no way to reply to commenters directly, or
even comment on the comment. In an extreme case, where a comment is particularly
harmful or inappropriate, you can contact Google support by starting here:
http://market.android.com/support/

You can also look at errors that were generated by your application and see application
freezes and crashes. Figure 28–2 shows the Application Error Reports screen.

Figure 28–2. The Application Error Reports screen

Drilling into the details of a crash report, you can see the stack trace of the crash, as well
as which type of device was running the application and the time of the crash. But as
with the user comments, you cannot communicate back to the user who experienced
the problem to get additional details, or to help them get the issue resolved. You have to
hope that the affected users will get in touch with you through e-mail or your web site.
Otherwise, you’ll just have to figure out from the crash report what went wrong and try
to fix it.

There’s one more feature of the Developer Console you may need to use: the Help
portion of the web site. The Help button is in the upper right corner. Clicking it takes you
to a Help web site that has a lot of decent documentation on how to use Android

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1001

Market, and it also has a forum where you can search for questions and answers, and
post your own. For example, the forum is where you can read up on the latest refund
policies, issues, and complaints. If the forum is not helpful, there is a Contacting
Support link that will take you to a page where you can send a message specifically to
Google for help.

We’ve now introduced you to some of the nice features of the Developer Console, but
you probably want to get into the most useful part, which is getting your applications
into the Android Market so users can find them and download them. But before we do
that, let’s go over how to prepare your application for upload and sale.

Preparing Your Application for Sale
There are quite a few things to think about and do to take an application from code
complete to Android Market. This section will help you through those items.

Testing for Different Devices
With more and more Android devices becoming available, and each one potentially
having some new hardware configuration, it is very important that you test for those
devices you want to support. The ideal case would be to get access to one of each type
of device to test your application on. That’s an expensive proposition. The next best
choice is to configure Android Virtual Devices (AVDs) for each type of device, specifying
the appropriate hardware configuration, then testing with the emulator and each AVD.
Some device manufacturers make Android packages available that are specific to their
devices, so check out their web sites for download options. The Android SDK provides
the Instrumentation class to assist with testing, as well as the UI/Application Exerciser
Monkey. These tools will help you do automated testing so you don’t spend forever
testing your application. Before you begin testing, you probably want to remove any
testing artifacts that you no longer need from your code and from /res. You want your
application to be as small as possible and to run as quickly as possible with the least
amount of memory.

Supporting Different Screen Sizes
When Android SDK 1.6 came out, developers had to contend with new screen sizes. In
order to run on the new smaller size, you must set a specific <supports-screens>
element as a child element of <manifest> within the AndroidManifest.xml file. Without
this new tag specifying that your application supports the small screen size, your
application will not be visible in Market to devices that have a small screen. Of course
this means that your application needs to be compiled against Android SDK 1.6 or
newer. If you want your application to run on devices still using Android SDK 1.5, you’ll
need to be sure you don’t take advantage of any new APIs that were introduced with
Android SDK 1.6 or later. Then test against AVDs for older devices as well as newer
devices. To support different screen sizes, you may need to create alternate resource

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1002

files under /res. For example, for files in /res/layout, you may need to create
corresponding files in /res/layout-small to support small screens. This does not mean
you must also create corresponding files in /res/layout-large and /res/layout-normal,
since Android will look in /res/layout if it can’t find what it needs in a more specific
resource directory such as /res/layout-large. Remember, too, that you can have
combinations of qualifiers for these resource files; for example, /res/layout-small-land
would contain layouts for small screens in landscape mode. We talked about this in
Chapter 6. Supporting small screens probably means creating alternate versions of
drawables such as icons, too. For drawables, you may need to create alternate resource
directories, taking into account screen resolution as well as screen size.

Tablets of course go in the opposite direction in terms of screen size, using the label
“xlarge”. The same <supports-screen> tag as before is used to specify if your application
will run on extra large screens, and the attribute to use inside of this tag is
android:xlargeScreens. In some cases, you may have a tablet-only application, in which
case you would specifically indicate that for the other sizes, their attribute value is “false”.

Preparing AndroidManifest.xml for Uploading
Your AndroidManifest.xml file may need to be tweaked a little bit before you can upload
it to Android Market. ADT normally puts the android:icon attribute in the <application>
tag, and not in <activity> tags. If you have more than one activity that can be launched,
you’ll want to specify separate icons for each activity so the user can more easily tell
them apart. But you’ll still need an icon specified in <application>, which also serves as
the default activity icon for any activities that don’t specify their own icon. Your
application will work fine on devices and in the emulator with the android:icon only
specified in the <activity> tags, but when Android Market inspects your application’s
.apk file when uploading, it looks for icon information in the <application> tag. Android
Market also prevents uploading your application if the package name you’ve used starts
with com.google, com.android, android, or com.example, but hopefully you didn’t use
one of those in your application.

There are many other compatibilities to consider as you test your application against
device configurations. Some devices have cameras, some don’t have physical
keyboards, and some have trackballs instead of directional pads. Use <uses-
configuration> and <uses-feature> tags in your AndroidManifest.xml file as needed to
define what hardware/platform requirements your application has. Android Market will
enforce this and not let your application be shown to a user on a device that won’t
support your application. Note that these tags are different and separate from the <uses-
permission> tags of the AndroidManifest.xml file. While the user’s device may come
equipped with a camera, that doesn’t mean the user wants to grant your application
permission to use it. At the same time, declaring that your application needs permission
to use the camera does not tell Android Market that your application requires a camera
on the device. In most cases, you would end up with both tags in your
AndroidManifest.xml file, for specifying that a camera is required, and for specifying that
permission to use the camera is required. But not all features require permission, so it is
in your best interest to specify the features you need.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1003

There is another big difference between <uses-permissions> and <uses-feature>: the
<uses-feature> tag can say that your application requires that feature, or that your
application can function without it. That is, there is an attribute called android:required
that can be set to either true or false and by default it’s true. For example, your
application may take advantage of Bluetooth if it's available, but will work just fine if it is
not. Therefore, in the manifest file, you'd have something like this:

<uses-feature android:name="android.hardware.bluetooth" android:required="false" />

Within your application's code, you should make a call to the PackageManager to find out
if Bluetooth is available or not, which you could do with the following:

boolean hasBluetooth = getPackageManager().hasSystemFeature(
 PackageManager.FEATURE_BLUETOOTH);

Then take appropriate action in your application if Bluetooth is not there. The Android
documentation can be confusing in this area. If you look at the Developer Guide page for
<uses-feature>, you will not see as many features as are described on the
PackageManager reference page, which defines a FEATURE_* constant for each available
feature.

The <uses-configuration> tag is a little different. It specifies what sort of keyboard,
touchscreen, and/or navigational controls the device must have. But instead of being
independent choices such as <uses-feature>, you would put the combinations of
configuration choices together into what your application requires. For example, if your
application requires a five-way navigation control (i.e., a D-pad or a trackball) and a
touchscreen (using either a stylus or a finger), you would specify two tags as follows:

<uses-configuration android:reqFiveWayNav="true" android:reqTouchScreen="stylus" />
<uses-configuration android:reqFiveWayNav="true" android:reqTouchScreen="finger" />

Localizing Your Application
If your application will be used in other countries, you might want to consider localizing
it. This is relatively easy to do technically. Finding someone to do the localizing is
another matter. From the technical point of view, you simply create another folder under
/res—for example, /res/values-fr to hold a French version of strings.xml. Take your
existing strings.xml file, translate the string values to the new language, and save the
new translated file under the new resource folder using the same file name as the
original file. The same technique works for the other types of resource files—for
example, drawables and menus. Images and colors may work better for your users if
they are different for different countries or cultures. For this reason, it is a good idea to
not use true color names for your resource names for colors. In the online
documentation for colors, it is common to see something like this:

<color name="solid_red">#f00</color>

This means that in your code or other resource files, you’re referring to the color by the
actual name of the color, in this case, solid_red. In order to localize the color to
something more appropriate for the other country or culture, it would be better to use a
color name such as accent_color1 or alert_color. In English, red might be the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1004

appropriate color value to use while in Spanish it might be better to use a shade of yellow.
Because a color name like alert_color does not reveal the actual color that you’re using, it
is less confusing when you want to change the actual color value to something else. At the
same time, you can design a pleasing color scheme, with base colors and accent colors,
and be more confident that you’re using the correct colors in the correct places.

Menu choices might need to be changed in different countries, using fewer or more
menu items, or be organized differently, depending on where the application is being
used. Menus are typically stored under /res/menu. If you are faced with this situation,
you are probably better off putting all your string text into strings.xml, or other files
located under the /res/values directory, and using string IDs in the appropriate
resource files everywhere else. This makes it far less likely that you will miss translating a
string value in some obscure resource file. Your language translation work is then limited
to the files under /res/values.

Preparing Your Application Icon
Shoppers and your users will see your application’s icon and label prominently in both
Android Market and on their device once they’ve downloaded it. Please take special
care to create good icons and good labels for your application and its activities. Localize
them as necessary or desired. And remember that for different screen sizes, your icons
may need to be tweaked to look good. Check out what other developers have done with
their icons, especially those applications in the same category as your application. You
want your application to get noticed, so it’s better not to blend in with all the others. At
the same time, you want your icon and label to work well on a device when surrounded
by lots of other application icons that do other things. You don’t want a user to be
confused about what your application does, so make the icon representative of the
functionality of your application.

When creating any image for your application, but especially your icon, you need to consider
the screen density of the target device. Density means the number of pixels per inch. A small
screen usually has low density, meaning fewer pixels per unit of distance, whereas a large
screen is often higher density. For a low-density screen, making an icon appear to be the
right size means making the icon with fewer pixels, typically 36x36. For a high-density
screen, you will probably choose an icon with 72x72 pixels. The medium-density icon will
usually be of size 48x48 pixels. And for extra-high-density it’s 96x96 pixels.

Considerations for Making Money From Apps
If you are selling your application for a price, you have some other considerations to
think about. Do you offer separate free and paid applications, requiring you to build and
manage two applications? Or do you keep one code base and use some sort of
technique to tell if this application was paid for or not? No matter which approach you
take, how do you protect your application from being copied and installed on other
devices for other people? Due to security vulnerabilities in phones, and due to the ability

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1005

of certain people to get inside devices, foolproof guarantees of copy protection are
extremely difficult to manage.

One technique for maintaining a single code base, but allowing for separate free and
paid modes, is to take advantage of the PackageManager:

this.getPackageManager().checkSignatures(mainAppPkg, keyPkg)

This method compares the signatures of the two named packages and returns
PackageManager.SIGNATURE_MATCH if they both exist and are the same. The package
names must be different for each app to coexist in Android Market, but that’s fine. In
your code, when you need to decide whether or not to allow functionality, you can call
this method and provide the package name of your main application as well as the
package name of your unlocking application. You then make the unlocking application a
paid app in Android Market. If the user buys the unlocking application and downloads it
to their device, the main application will then get a signature match and unlock the extra
functionality. A less clean way to deal with a single code base is to use source code
versioning systems to configure appropriate sharing of common elements, and build
scripts to handle creating the free and paid versions of your application.

Another way that you can make money from Android apps is with in-app advertising.
There are many opportunities for embedding ads in your app. A couple of common
examples are AdMob and AdSense. The process is basically to incorporate their SDK
into your application, figure out where and when to display ads in your app, add the
INTERNET permission to your app (so the ad SDK can get to the ads to display), and you
get paid as users click on the ads. Your app can be free, so it’s easier to get it into
Android Market, plus you don’t need to worry as much about piracy. Many developers
report making some decent money from ads.

Another new feature introduced in February 2011 is Buyer’s Currency. Prior to this time,
buyers had to pay in the currency of the seller, which could easily get confusing for
buyers who had a hard time converting from the seller’s currency amount to their own. It
also meant that a seller could only really have one price for the world. Now that the seller
can specify a price for a country, not only can the selling price be higher or lower in
other countries, but the buyers’ experience is much nicer and more convenient.

Directing Users Back to the Market
Android has introduced a new URI scheme to help facilitate finding applications in
Android Market: market://. For example, if you want to direct your users to the Market
to locate a needed component, or to upsell to an additional app that unlocks features in
your application, you would do something shown here, where MY_PACKAGE_NAME would
be replaced by your real package name:

Intent intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("market://search?q=pname:MY_PACKAGE_NAME"));
startActivity(intent);

This will launch the Market app on the device and take the user to that package name.
The user can then choose to download or buy the application. Note that this scheme

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1006

does not work in a normal web browser. In addition to searching using package name
(pname), you can search by developer name using market://search?q=pub:\"Fname
Lname\" or against any of the public fields (application title, developer name, and
application description) in Android Market using market://search?q=<querystring>.

If we combine what we’ve just learned with the technique in the previous section, our
code could look for the unlocking package on the device. If we don’t find it, we could
prompt the user to see if they want to go get the unlocking app. If they answer yes, we
invoke an intent, which opens the Market app and takes the user straight to our
unlocking app to be purchased and downloaded.

The Android Licensing Service
The way that Android apps are constructed unfortunately makes them targets for piracy.
It is possible to make copies of Android apps that can then be distributed to other
devices. So how can you ensure that users who have not purchased your application
cannot run it? The Android team has created something called the License Verification
Library (LVL) to meet this need. Here’s how it works.

If your application was downloaded via Android Market, then there must be a copy of
the Android Market app on the device. In addition, the Android Market app has elevated
permissions to be able to read values from the device such as the user's Google
account name, the IMSI, and other information. The Android Market app has been
modified, going back to Android version 1.5, to respond to a license verification request
from an application. You make calls into the LVL from your application, LVL
communicates with the Android Market app, the Android Market app communicates
with Google servers, and your application gets an answer back indicating whether or not
this user on this device is licensed to use your application. There are settings under your
control to decide what to do if the network is unavailable. A full description of the
process of implementing LVL can be found at
http://developer.android.com/guide/publishing/licensing.html.

One thing to be aware of though is that the LVL mechanism is subject to hacking. If
someone can get to your application's apk file, they can disassemble the app and then
patch it if they know where to look for the return value from the LVL call. If you use the
obvious pattern of a switch statement after getting the response from LVL, to branch to
the appropriate logic based on the return code, a hacker can simply force a successful
return code value and they own your app. For this reason, the Android team highly
recommends that you implement obfuscation of your app to hide the part of your
application where you check the return code from LVL. This gets fairly complicated as
you can imagine.

With Android 2.3, Google has provided some support for obfuscation in the form of the
ProGuard feature. When you set the target build of your application to 2.3 or later, your
application will automatically get a proguard.cfg file. By configuring ProGuard using this
file, you can tell ADT to obfuscate your code when building a production version of your
apk file. You can also configure ant to obfuscate using ProGuard if you use ant to do
your builds. To turn on obfuscation, you need to set the proguard.config property in the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1007

application’s default.properties file to the location of the proguard.cfg file. When
ProGuard does its thing, you’ll get a file called mapping.txt along with your apk file.
Hang onto this file because you will need it to de-obfuscate a stack trace from your
application.

Preparing Your .apk File for Uploading
To get your tested application ready for uploading—that is, to create the .apk file to
upload— you need to do the following things (all covered in Chapter 10):

1. Create (if you haven’t already) a production certificate with which to sign your

application.

2. If you’re using maps, replace the MAP API key in AndroidManifest.xml with your

production MAP API key. If you forget to do this, none of your users will be able to

see maps.

3. Export your application by right-clicking on your project in Eclipse, choosing

Android Tools ➤ Export Unsigned Application Package, and choosing an

appropriate file name. It is convenient to give this file a temporary name, because

when you run zipalign in step 5, you need to provide an output file name and that

should be your production .apk file name.

4. Run jarsigner on your new .apk file to sign it with the production certificate from

step 1.

5. Run zipalign on your new .apk file to adjust any uncompressed data to the

appropriate memory boundaries for better performance at runtime. This is where

you will provide the final filename for your application’s .apk file.

6. Android now provides an Export Signed Application Package option in Eclipse,

which uses a wizard to do steps 3, 4 and 5.

Uploading Your Application
Uploading is easy to do, but takes some preparation. Before you begin an upload, there
are some things you will need to have ready and decisions you have to make. This
section covers that preparation and those decisions. Then when you’ve got everything
you need, go to the Developer Console and choose Upload Application. You’ll be
prompted to supply lots of information about your application, the Market will run some
processing of your application and the information, and then your application will be
ready to publish to the Market.

The previous section covered preparing your application .apk file for uploading. Making
your application attractive to shoppers requires some marketing on your part. You need
good descriptions of what it is and does, and you need good images so shoppers
understand what they might download.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1008

One of the first items you’ll be asked for when uploading an application is screenshots.
The easiest way to capture screenshots of your application is to use DDMS. Fire up
Eclipse, launch your application in the emulator or on a real device, and then switch
Eclipse perspectives to DDMS and the Device view. From within the Device view, select
the device where your application is running, and then click on the Screen Capture
button (it looks like a little painting in the upper-right corner) or choose it from the View
menu. If you have a choice when saving, choose 24-bit color. Android Market will
convert your screenshots to compressed JPEG; starting with 24-bit will produce better
results than starting with 8-bit color. Choose screenshots that will make your application
stand out from the rest, but that also show the important functionality. You must supply
at least two screenshots, and you can provide up to eight.

Next up is a high-res application icon. This could be the exact same design as your
application icon, but Android Market wants a 512x512 icon image. This is required.

You can provide a promotional graphic as well, but its size is smaller than a screenshot.
Although this graphic is optional, it is a good idea to include it. You never know when
the graphic could be displayed; without one, you don’t know what will be displayed in its
place, if anything. One place the Promo Graphic appears is at the top of your
application’s Details page in Android Market.

The feature graphic is another optional field and is a large 1024x500 in size. This graphic
is used in the Featured section of Android Market so you want this to look really good.

The last bit of graphics related to your application is an optional video that you can put
out on YouTube and link to from your Android Market page.

Android Market asks for textual information about your application to display to
shoppers, including the title, descriptive text, and promotional text. Promotional text can
only be provided if you already provided a promotional graphic. Text can be provided in
multiple languages, since you can choose to distribute your application to countries all
over the world. The graphics mentioned can only be supplied to Android Market once,
so if your screenshots look different in different locales, you’ll need to consider other
ways to make those available to shoppers, perhaps on your own web site. This may
change in the future.

If you have written a separate EULA for your users, provide a link to it in your descriptive
text so shoppers can view it prior to downloading your application. Consider that
shoppers will likely use search to locate applications, so be sure to put appropriate
words into your text to maximize your hit rate on searches related to your application’s
functionality. Finally, it’s worthwhile to put a short comment in the text that says to e-
mail you if the user runs into problems. Without this simple prompt, people are more
likely to leave a negative comment, and a negative comment really limits your ability to
troubleshoot and solve the problem, as compared to an e-mail exchange with the
affected user.

One drawback to the user comments mechanism described earlier is that it does not
distinguish the version of your application. If negative reviews are received against
version 1 and you release version 2 with everything fixed, the reviews from version 1 are
still there and shoppers may not realize that those comments don’t apply to the new

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1009

version. When releasing a new version of an application, the application rating (number
of stars) does not get reset, either. Partly for this reason, Google started providing a
Recent Changes text field where you can describe what’s new in this release. This is
where you could indicate that a certain problem has been fixed, or tell what the new
features are.

There’s also a separate Promo Text field which only has 80 characters. When your app
is shown at the top of a list in Android Market, it’s the Promo Graphic and the Promo
Text that get displayed here. It’s definitely a good idea to supply these.

One of your responsibilities when writing the text for your application is to disclose the
permissions that are required. These are the same permissions as set in the <uses-
permission> tags of your AndroidManifest.xml file within your application. When the
user downloads your application to their device, Android will check the
AndroidManifest.xml file and ask the user about all of the uses-permission requirements
before completing the install. So you might as well disclose this upfront. Otherwise you
risk negative reviews from users surprised that an application requires some permission
that they are not prepared to grant. Not to mention the refunds, which also count
against your Developer Composite Score. Similar to permissions, if your application
requires a certain type of screen, a camera, or other device feature, this should be
disclosed in your text descriptions of your application. As a best practice, you should
not only disclose what permissions and features your application needs, but what your
application will do with them. You should answer the user’s question in advance: why
does this app require X?

When uploading your application, you will need to choose an application type and a
category. As these values change with time we won’t list them here, but it’s easy to go
to the Upload Application screen to see what they are.

Next you set the price of your application. By default the price is “Free,” and you must
have previously set up a Merchant Account in Google Checkout if you want to charge
for your application. Setting the right price for an application is tricky, unless you’ve got
some sophisticated market research capabilities, and even then it’s still tricky. Prices set
too high could turn people off, and you risk the effects of refunds if people don’t feel the
price was worth it. Prices set too low could also turn people off because they might
think it’s a cheap application.

Android Market provides an option to set copy protection on applications when you are
uploading them. The Market takes care of applying this copy protection for you, but note
that the copy protection will make your application use more device memory. It is also
not fool-proof, and there are no guarantees that your application cannot be copied off of
a device. Since the copy protection method is being deprecated, you probably want to
consider additional or alternative ways to prevent pirating of your application, such as
the Android Licensing Service described earlier.

In late 2010, Google introduced an application rating scheme. The idea is to give
consumers an idea of the appropriateness of an application for certain age groups.
Unfortunately, half of the age groups have the word “teen” in them. The ratings are All,
Pre-teen, Teen, and Mature. Choosing the right level depends on the content in your

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1010

application and how much of that content there is. Google has rules about location-
awareness and posting or publishing locations. It’s best to read the rules for yourself
here: www.google.com/support/androidmarket/bin/answer.py?hl=en&answer=188189.

One of the last decisions to make before uploading your application is to choose the
locations and carriers for your application to be visible to. By choosing All, your
application will be available everywhere. However, you may want to restrict distribution
geographically or by carrier. Depending on what functionality is in your application, you
may need to restrict by location in order to comply with US export law. You may choose
to restrict your application by carrier if your application has compatibility issues with
certain carrier’s devices or policies. To see carriers, click on a country link and the
available carriers for that country will be displayed, allowing you to choose the ones you
want. Choosing All also means that any new locations or carriers that Google adds will
automatically see your application with no intervention from you.

Even though your developer profile contains your contact information, you can set
different information when uploading each application. The Market asks for the web site,
e-mail address, and phone number as contact information related to this application.
You must supply at least one of these so buyers can get support, but you don’t need to
supply all three. It is a good idea to not use your personal e-mail address here, just as
you probably wouldn't really want to give your personal phone number out. When you've
made millions of dollars from selling your application, you’ll want to let someone else
receive and deal with the e-mails from users. By setting up an application-support type
of e-mail address in advance, you can easily separate the support e-mails from your
personal e-mails.

With all these decisions made, you must then attest that your application abides by
Android’s Content Guidelines (basically no nasty stuff), and make a second attestation
that the software is okay for export from the United States. US export laws apply
because Google’s servers are located inside the US, even if you are outside of the US,
and even if both you and your customer are outside of the US. Remember that you can
always choose to distribute your application through other channels. When all your
information is in and your graphics uploaded, go ahead and press the Save button. This
will prepare everything for your application to be ready to “go live.”

You can then publish your application by clicking on the Publish button. Android Market
will perform some checks on your application, for instance checking your application’s
certificate for the expiration date. If all goes well, your application will now be available
for download. Congratulations!

User Experience on Android Market
Android Market has been available on devices for some time now, and as of February
2011 is available over the Internet. Developers don’t have any control over how Android
Market works, other than to provide good text and graphics for their application’s listing
in the Market. Therefore, the user experience is pretty much up to Google. From a
device, a user can search by keyword, look at top downloaded applications (both free
and paid), featured applications, or new applications, or browse by categories. Once

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1011

they find an application they want they simply select it, which pops up an item details
screen allowing them to install it or buy it. Buying will take the user to Google Checkout
to conduct the financial part of the transaction. Once downloaded, the new application
shows up with all the other applications.

From the Internet web site for Android Market (http://market.android.com), the user
interface looks about the same, albeit much larger than most device screens. One
difference is that the web-based Android Market expects the user to login to their
Google account to use the Market. This allows Google to connect your web experience
on Android Market to your actual device. This means two things: when using the web
site, Android Market knows what applications are already installed on your device, and
when you make a purchase on the Android Market web site, the download can be sent
to your device and not to whatever computer you happen to be browsing on.

Android Market has an option to view downloaded applications in My Downloads. This
area contains all installed apps, and any apps that you’ve purchased, even if you’ve
removed them (perhaps you removed them just to make room for other applications).
This means you could delete a paid app from your phone, then reinstall it later without
having to repurchase it. Of course, if you opted for a refund, the app will not show up in
My Downloads. Also, free apps that you remove from your device will also not show up
in My Downloads. The list of apps in My Downloads is tied to your Google Account used
for the device. This means you could switch to a new physical device and still have
access to all the apps you’ve paid for. But beware. Since you might have multiple
identities with Google, you must use the exact same identity as before to get your apps
on a new device. When viewing apps in My Downloads, any that have upgrades
available will indicate this and allow you to get the upgrade.

Android Market filters applications available to users. It does this in a number of ways.
Users in some countries can only see free applications because of the commerce
legalities involved for Google in that country. Google is trying hard to overcome
commerce hurdles so all paid apps will be available everywhere. Until that time comes,
users in some countries will be unable to access paid apps. Users with devices running
older versions of Android will not be able to see applications that require a newer
version of the Android SDK. Users with device configurations that are not compatible
with the requirements of the application (expressed via <uses-feature> tags in the
AndroidManifest.xml file) will not be able to see those applications. For example,
applications not specifically supporting small screens cannot be seen in Android Market
by users on devices with small screens. This filtering is mostly intended to protect users
from downloading applications that will not work on their device.

If you are purchasing apps in Android Market from other countries, your transaction may
be subject to currency conversion, which can also carry an additional fee. Unless of
course the seller has specified pricing in your local currency. You’re really purchasing
using the Google Checkout from the seller’s country. Android Market will display an
approximate amount but the actual charges could vary, depending on when the
transaction is placed, and with which payment processor. Buyers may notice a pending
transaction against their account for a small amount (for example US$1). This is done by

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1012

Google to ensure that the payment information provided is correct, and this pending
charge will not actually go through.

A few web sites are available that mirror Android Market. Shoppers can search, browse
categories, and find out about Android Market applications over the Internet without
having a device. This gets around the filtering that Android Market does based on your
device configuration and location. However, this does not get apps onto your device.
Examples of these mirror sites are www.cyrket.com, www.androlib.com, and
www.androidzoom.com.

Beyond Android Market
Android Market is not the only game in town. You are not forced into using the Android
Market at all. You should consider utilizing other channels of distribution, not only to
make your app available to more people in more countries, but also to take advantage of
other payment processors and opportunities to make money.

There are Android app stores completely separate from Android Market. Examples of
these are www.andappstore.com, http://slideme.org, www.getjar.com, and
www.androidgear.com. Amazon is launching an Android App Store. From these sites you
can search, browse, find out about apps, and also download apps, either from a device
or via a web browser. These sites don’t have to abide by Google’s rules, including the
transaction fees for paid apps and methods of payment. PayPal and other payment
processors can be used to purchase apps on these separate sites. These sites also
don’t restrict by location or device configuration. Some of them provide an Android
client that can be installed, or in some cases may come pre-installed on a device. Users
can simply launch a browser on their device and find the app they want to download via
the web site; when the file is saved to the device, Android knows what to do with it. That
is to say, a downloaded .apk file is treated as an Android application. If you click on it in
the Download history of the browser (not to be confused with My Downloads, covered
earlier) you will be prompted to see if you want to install it or not. This freedom means
you can set up your own methods of downloading Android applications to users, even
from your own web site and with your own payment methods. You must still deal though
with collecting any necessary sales tax and remitting those to the appropriate
authorities.

While not restricted by Google’s rules, these alternate methods of app distribution may
not offer the same sort of buyer protections that are found in Android Market. It may be
possible to purchase an application through an alternate market that will not work on the
buyer’s device. The buyer may also be responsible for creating backups, in case they
lose the application from their device, or for transferring applications if they switch to a
new device.

These other markets allow you to make money on the sale of each app, which is very
similar to what you get from Android Market. You've also got the ability within these
other markets to implement alternate payment mechanisms. You can of course
implement ads as we described above and make money that way. You can also embed
other payment mechanisms right into your application. For example, PayPal introduced

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1013

a payment library for Android apps (see http://www.x.com). With it you could allow users
to purchase add-ons, content or upgrades from right inside your app. They could make
donations too. You could implement a mobile store using PayPal for checkout.

Remember that Google does not restrict developers from selling their applications in
multiple markets at the same time as they sell through Android Market. So consider all
your options to make the most of your efforts.

References
Here are some helpful references to topics you may wish to explore further.

 http://developer.android.com/guide/topics/manifest/manifest-
intro.html. This is the Developer Guide page to the
AndroidManifest.xml file, with descriptions of how to use the supports-
screen, uses-configuration and uses-feature tags.

 http://developer.android.com/guide/practices/screens_support.ht
ml. This is the Developer Guide page called Supporting Multiple
Screens and contains lots of good information on dealing with different
sizes and densities of screens.

 http://developer.android.com/guide/practices/ui_guidelines/icon
_design.html. This is the Developer Guide page called Icon Design
Guidelines and contains lots of good information on designing
effective icons for your application.

 http://android-developers.blogspot.com/2010/09/securing-
android-lvl-applications.html and http://android-
developers.blogspot.com/2010/09/proguard-android-and-licensing-
server.html. A couple of blog posts on how to use the License
Verification Library (LVL) in ways that prevent piracy.

 http://developer.android.com/guide/market/billing/index.html.
This is the documentation for the in-app billing module.

Summary
You are now equipped to take on the world with your Android applications! We’ve
shown you how to get yourself ready, how to get your application ready, how to publish,
and how users will find, download and use your application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 28: Deploying Your Application: Android Market and Beyond 1014

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1015

1015

 Chapter

Fragments for Tablets and
More
Up until this chapter, we’ve covered topics that are common to all versions of Android.

It’s amazing to think that Android had only been seen on commercial devices for about

two years before the dawn of a new era of Android device: the Android tablet. The

Android 3.0 UI is described as being designed from the ground up for tablets.

Thankfully, this does not mean you must throw away everything you’ve learned so far

and start over. In fact, everything you’ve learned will help you write Android applications

for tablets. What Android 3.0 brings is a set of new concepts and features that you must

master to write applications that take advantage of the extra large (xlarge) screen sizes

of Android tablets. While most applications written prior to Android 3.0 will work on an

Android 3.0 tablet, they won’t be optimized for tablets. This chapter starts your learning

on these new concepts and features.

One of the new core classes in Android 3.0 is the Fragment class, which has several

offspring. This chapter will introduce you to the fragment, what it is, how it fits into an

application’s architecture, and how to use it. Fragments make a lot of interesting things

possible that were difficult before. Also interesting is that you can use fragments with

older versions of Android because Google released a fragment SDK that works on old

Androids. So even if you’re not interested in writing applications for tablets, you may find

that fragments will make your life easier on non-tablet devices as well.

Let’s get started with Android fragments.

What is a Fragment?
This first section will explain what a fragment is and what it does. But first, let’s set the

stage to see why we need fragments at all. As you learned earlier, an Android

application on small screen devices uses activities to show data and functionality to a

user, and each activity has a fairly simple, well-defined purpose. For example, an activity

might show the user a list of contacts from their address book. Another activity might

29

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1016

allow the user to type an e-mail. The Android application is the series of these activities

grouped together to achieve a larger purpose, such as managing an e-mail account via

the reading and sending of messages. This is fine for a small screen device, but when

the user’s screen is very large (10 inches or larger), there’s room on the screen to do

more than just one simple thing. An application might want to let the user view the list of

e-mails in their inbox and at the same time show the currently selected e-mail text in

another window. Or an application might want to show a list of contacts and at the same

time show the currently selected contact in a detail view.

As an Android developer, you know that this functionality could be accomplished by

defining yet another layout for the xlarge screen with ListViews and layouts and all sorts

of other views. And by “yet another layout” we mean layouts in addition to those you’ve

probably already defined for the smaller screens. Of course you’ll want to have separate

layouts for the portrait case as well as the landscape case. And with the size of an xlarge

screen, this could mean quite a few views for all of the labels and fields and images and

so on that you’ll need to lay out and then provide code for. If only there were a way to

group these view objects together and consolidate the logic for them, so that chunks of

an application could be reused across screen sizes and devices, minimizing how much

work a developer has to do to maintain their application. And that is why we have

fragments.

One way to think of a fragment is as a sub-activity. And in fact, the semantics of a

fragment are a lot like an activity. A fragment can have a view hierarchy associated with

it, and it has a lifecycle much like an activity’s lifecycle. Fragments can even respond to

the Back button like activities do. If you were thinking, if only I could put multiple

activities together on a tablet’s screen at the same time, then you’re on the right track.

But because it would be too messy to have more than one activity of an application

active at the same time on a tablet screen, fragments were created to implement

basically that thought. This means that fragments are contained within an activity.

Fragments can only exist within the context of an activity; you can’t use a fragment

without an activity. Fragments can co-exist with other elements of an activity, which

means you do not need to convert the entire user interface of your activity to use

fragments. You can create an activity’s layout as before and only use a fragment for one

piece of the user interface.

Fragments are not like activities, however, when it comes to saving state and restoring it

later. The fragments framework provides several features to make saving and restoring

fragments much simpler than the work you need to do on activities.

How you decide when to use a fragment depends on a few considerations, which are

discussed next.

When to Use Fragments
One of the primary reasons to use a fragment is so you can reuse a chunk of user

interface and functionality across devices and screen sizes. This is especially true with

tablets. Think of how much can happen when the screen is as large as a tablet’s. It’s

more like a desktop than a phone, and many of your desktop applications have a multi-

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1017

pane user interface. As described earlier, you can have a list and a detail view of the

selected item on screen at the same time. This is easy to picture in a landscape

orientation with the list on the left and the details on the right. But what if the user

rotates the device to portrait mode so that now the screen is taller than it is wide?

Perhaps you now want the list to be in the top portion of the screen and the details in

the bottom portion. But what if this application is running on a small screen and there’s

just no room for the two portions to be on the screen at the same time? Wouldn’t you

want the separate activities for the list and for the details to be able to share the logic

that you’ve built into these portions for a large screen? We hope you answered yes.

Fragments can help with that.

Let’s go back to the rotating orientation example. If you’ve had to code for orientation

changes of an activity, you know that it can be a real pain to save the current state of

the activity and to restore the state once the activity has been recreated. Wouldn’t it be

nice if your activity had chunks that could be easily retained across orientation changes,

so you could avoid all the tearing down and recreating every time the orientation

changes? Of course it would. Fragments can help with that.

Now imagine that a user is in your activity and they’ve been doing some work. And

imagine that the user interface has changed within the same activity, and now the user

wants to go back a step, or two, or three. In an old-style activity, pressing the Back

button will take the user out of the activity entirely. With fragments, the Back button can

step backwards through a stack of fragments while staying inside the current activity.

Next, think about an activity’s user interface where a big chunk of content changes;

you’d like to make the transition look smooth, like a polished application. Fragments can

do that, too.

Now that you have some idea of what a fragment is and why you’d want to use one,

let’s dig a little deeper into the structure of a fragment.

The Structure of a Fragment
As mentioned, a fragment is like a sub-activity: it has a fairly specific purpose and

almost always displays a user interface. But where an activity is subclassed below

Context, a fragment is extended from Object in package android.app. A fragment is not
an extension of activity. Like Activities however, you will always extend Fragment (or one

of its subclasses) so you can override its behavior.

A fragment can have a view hierarchy to engage with a user. This view hierarchy is like

any other view hierarchy in that it can be created (inflated) from an XML layout

specification or created in code. The view hierarchy needs to be attached to the view

hierarchy of the surrounding activity if it is to be seen by the user, which you’ll get to

shortly. The view objects that make up a fragment’s view hierarchy are the same sorts of

views that are used elsewhere in Android. So everything you know about views applies

to fragments as well.

Besides the view hierarchy, a fragment has a bundle that serves as its initialization

arguments. Similar to an activity, a fragment can be saved and later restored

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1018

automatically by the system. When the system restores a fragment, it calls the default

constructor (i.e., with no arguments), then restores this bundle of arguments to the

newly created fragment. Subsequent callbacks on the fragment have access to these

arguments and can use them to get the fragment back to its previous state. For this

reason, it is imperative that you

 Ensure there’s a default constructor for your fragment class .

 Add a bundle of arguments as soon as you create a new fragment so

these subsequent methods can properly setup your fragment, and so

the system can restore your fragment properly if necessary.

An activity can have multiple fragments in play at one time, and if a fragment has been

switched out with another fragment, the fragment-switching transaction can be saved

on a back stack. The back stack is managed by the fragment manager tied to the

activity. The back stack is how the Back button behavior is managed. The fragment

manager is discussed later in this chapter. What you need to know here is that a

fragment knows which activity it is tied to, and from there it can get to its fragment

manager. A fragment can also get to the activity’s resources through its activity.

Because a fragment can be managed, it has some identifying information about itself,

including a tag and an ID. These identifiers can be used to find this fragment later, which

helps with reuse.

Also similar to an activity, a fragment can save state into a bundle object when the

fragment is being recreated, and this bundle object gets given back to the fragment’s

onCreate() callback. This saved bundle is also passed to onInflate(), onCreateView(),

and onActivityCreated(). Note that this is not the same bundle as the one attached as

initialization arguments. This bundle is one in which you are likely to store the current

state of the fragment, not the values that should be used to initialize it.

A Fragment’s Lifecycle
Before you start using fragments in sample applications, you really need understand the

lifecycle of a fragment. Why? A fragment’s lifecycle is more complicated than an

activity’s lifecycle, and it’s very important to understand when you can do things with

fragments. Figure 29–1 shows the lifecycle of a fragment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1019

Figure 29–1. Lifecycle of a fragment

If you compare this to Figure 2-15 (the lifecycle for an activity), you’ll notice several

differences, due mostly to the interaction required between an activity and a fragment. A

fragment is very dependent on the activity in which it lives and can go through multiple

steps while its activity goes through one.

At the very beginning, a fragment is instantiated. It now exists as an object in memory.

The first thing that is likely to happen is that initialization arguments will be added to your

fragment object. This is definitely true in the situation where the system is recreating

your fragment from a saved state. When the system is restoring a fragment from saved

state, the default constructor is invoked, followed by the attachment of the initialization

arguments bundle. If you are doing the creation of the fragment, a nice pattern to use is

that of Listing 29–1, which shows a factory type of instantiator within the MyFragment

class definition.

Listing 29–1. Instantiating a Fragment Using a Static Factory Method

public static MyFragment newInstance(int index) {
 MyFragment f = new MyFragment();
 Bundle args = new Bundle();
 args.putInt(“index”, index);
 f.setArguments(args);
 return f;
}

From the client’s point of view, they get a new instance by calling the static

newInstance() method with a single argument. They get the instantiated object back,

and the initialization argument has been set on this fragment in the arguments bundle. If

this fragment gets saved and reconstructed later, the system will go through a very

similar process of calling the default constructor, then reattaching the initialization

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1020

arguments. For your particular case, you would define the signature of your

newInstance() method (or methods) to take the appropriate number and type of

arguments, and then build the arguments bundle appropriately. This is all you want your

newInstance() method to do. The callbacks that follow will take care of the rest of the

setup of your fragment.

The onInflate() Callback
The next thing that could happen is layout view inflation. If your fragment is defined by a

<fragment> tag in a layout that is being inflated (typically when an activity has called

setContentView() for its main layout), your fragment would have its onInflate()
callback called. This passes in an AttributeSet, with the attributes from the <fragment>
tag, and a saved bundle. If the fragment is being recreated and if some state was saved

previously in onSaveInstanceState(), this bundle is the one with the saved state values

in it. The expectation of onInflate() is that you’ll read attribute values and save them

for later use. At this stage in the fragment’s life, it’s too early to actually do anything with

the user interface. The fragment is not even associated to its activity yet. But that’s the

next event to occur to your fragment.

NOTE: Defect #14796 was filed because of a discrepancy between the documentation for
onInflate() and reality in Honeycomb. The documentation says that onInflate() will

always be called before onAttach(). In reality, after an activity restart, onInflate() could be
called after onCreateView(). This is too late for setting values into a bundle and calling
setArguments(). See http://code.google.com/p/android/issues/

detail?id=14796. This is also why onInflate() does not appear in the state diagram in

Figure 29–1; it’s too difficult to predict when this callback will be called.

The onAttach() Callback
The onAttach() callback gets invoked after your fragment is associated with its activity.

The activity reference is passed to you if you want to use it. You can at least use the

activity to interrogate information about your enclosing activity. You can also use the

activity as a context to do other operations. One thing to note is that the Fragment class

has a getActivity() method that will always return the attached activity for your

fragment should you need it. Keep in mind that all along this lifecycle, the initialization

arguments bundle is available to you from the getArguments() method of fragment.

However, once the fragment is attached to its activity, you can’t call setArguments()
again. So you can’t add to the initialization arguments except in the very beginning.

The onCreate() Callback
Next up is the onCreate() callback. While this is similar to the activity’s onCreate(), the

difference is that you should not put code in here that relies on the existence of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1021

activity’s view hierarchy. While your fragment may be associated to its activity by now,

you haven’t yet been notified that the activity’s onCreate() has finished. That’s coming

up. This callback gets the saved state bundle passed in if there is one. This callback is

about as early as possible to create a background thread to go get data that this

fragment will need. Your fragment code is running on the UI thread, and you don’t want

to do disk I/O or network accesses on the UI thread. In fact, it makes a lot of sense to

fire off a background thread to get things ready. Your background thread is where

blocking calls should be. You’ll need to hook up with the data later, but there are ways

to do that.

NOTE: One of the ways to load data in a background thread is to use the Loader class. We didn't

have room in the book to cover this, but check our website for more information.

The onCreateView() Callback
The next callback is onCreateView(). The expectation here is that you will return a view

hierarchy for this fragment. The arguments passed in to this callback include a

LayoutInflater (which you can use to inflate a layout for this fragment), a ViewGroup

parent (called container in Listing 29–2), and the saved bundle if one exists. It is very

important to note here that you should not attach the view hierarchy to the ViewGroup

parent passed in. That association will happen automatically later. The parent is

provided so you can use it with the inflate() method of the LayoutInflater, although

you could also interrogate the parent yourself if necessary. But you will very likely get

exceptions if you attach the fragment’s view hierarchy to the parent in this callback.

Listing 29–2 shows a sample of what you might want to do in this method.

Listing 29–2. Creating a Fragment View Hierarchy in onCreateView()

@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.details, container, false);
 TextView text1 = (TextView) v.findViewById(R.id.text1);
 text1.setText(myDataSet[getPosition()]);
 return v;
}

Here you see how you can access a layout XML file that is just for this fragment and

inflate it to a view that you return to the caller. There are several advantages to this

approach. You could always construct the view hierarchy in code, but by inflating a

layout XML file, you’re taking advantage of the resource-finding logic of the system.

Depending on which configuration the device is in, or for that matter which device you’re

on, the appropriate layout XML file will be chosen. You can then access a particular view

within the layout; in your case, the text1 TextView field, to do what you want with it. To

repeat a very important point: do not attach the fragment’s view to the container parent

in this callback. You can see in Listing 29–2 that you use container in the call to

inflate(), but you also pass false for the attachToRoot parameter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1022

The onActivityCreated() Callback
You’re now getting close to the point where the user can interact with your fragment.

The next callback is onActivityCreated(). This is called after the activity has completed

its onCreate() callback. You can now trust that the activity’s view hierarchy, including

your own view hierarchy if you returned one earlier, is ready and available. This is where

you can do final tweaks to the user interface before the user sees it. This could be

especially important if this activity and its fragments are being recreated from a saved

state. It’s also where you can be sure that any other fragment for this activity has been

attached to your activity.

The onStart() Callback
The next callback in your fragment lifecycle is onStart(). Now your fragment is visible to

the user. But you haven’t started interacting with the user just yet. This callback is tied to

the activity’s onStart(). As such, where previously you may have put your logic into the

activity’s onStart(), now you’re more likely to put your logic into the fragment’s

onStart(), since that is also where the user interface components are.

The onResume() Callback
The last callback before the user can interact with your fragment is onResume(). This

callback is tied to the activity’s onResume(). When this callback returns, the user is free

to interact with this fragment. For example, if you have a Camera preview in your

fragment, you would probably enable it in the fragment’s onResume().

So now you’ve reached the point where the app is happily making the user happy. And

then the user decides to get out of your app, either by Back’ing out, or pressing the

Home button, or by launching some other application. The next sequence, similar to

what happens with an activity, goes in the opposite direction of setting up the fragment

for interaction.

The onPause() Callback
The first undo callback on a fragment is onPause(). This callback is tied to the activity’s

onPause(); just like with an activity, if you have a media player in your fragment or some

other shared object, you could pause it, stop it, or give it back via your onPause()

method. The same “good citizen” rules apply here: you don’t want to be playing audio if

the user is taking a phone call. It is possible that a fragment could go from onPause()

back to onResume().

The onStop() Callback
The next undo callback is onStop(). This one is tied to the activity’s onStop() and serves

a similar purpose as an activity’s onStop(). A fragment that has been stopped could go

straight back to the onStart() callback, which then leads to onResume().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1023

The onDestroyView() Callback
If your fragment is on its way to being killed off or saved, the next callback in the undo

direction is onDestroyView(). This will be called after the view hierarchy you created on

your onCreateView() callback earlier has been detached from your fragment.

The onDestroy() Callback
Next up is onDestroy(). This is called when the fragment is no longer in use. Note that it

is still attached to the activity and is still “findable,” but it can’t do much.

The onDetach() Callback
The final callback in a fragment’s lifecycle is onDetach(). Once this is invoked, the

fragment is not tied to its activity, it does not have a view hierarchy anymore, and all its

resources should have been released.

Using setRetainInstance()
You may have noticed the dotted lines in the diagram in Figure 29–1. One of the cool

features of a fragment is that you can specify that you don’t want the fragment

completely destroyed if the activity is being recreated and therefore your fragments will

be coming back also. Therefore, fragment comes with a method called

setRetainInstance(), which takes a boolean parameter to tell it “Yes; I want you to

hang around when my activity restarts” or “No; go away and I’ll create a new fragment

from scratch.” The best place to call setRetainInstance() is in the onCreate() callback

of a fragment.

If the parameter is true, that means you want to keep your fragment object in memory

and not start over completely from scratch. However, if your activity is going away and

being recreated, you’ll have to detach your fragment from this activity and attach it to

the new one. The bottom line is that if the retain instance value is true, you won’t

actually destroy your fragment instance, and therefore you won’t need to create a new

one on the other side. All other callbacks will be invoked, however. The dotted lines on

the diagram mean that you would skip the onDestroy() callback on the way out, and

you’d skip the onCreate() callback when your fragment is being re-attached to your new

activity. Since an activity will get recreated most likely for configuration changes, your

fragment callbacks should probably assume that the configuration has changed and

therefore should take appropriate action. This would include inflating the layout to create

a new view hierarchy in onCreateView(), for example. The code provided in Listing 29–2

would take care of that as it is written. If you choose to use the retain instance feature,

you may decide not to put some of your initialization logic in onCreate() since it won’t

always get called the way the other callbacks will.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1024

Sample Fragment App Showing the Lifecycle
There’s nothing like seeing a real example to get an appreciation for a concept. You’ll

create a sample application that has been instrumented so you can see all these

callbacks in action. You’re going to work with a sample application that uses a list of

Shakespeare titles in one fragment; when the user clicks on one of the titles, some text

from that play will appear in a separate fragment. This sample application will work in

both landscape and portrait modes on a tablet. Then you’ll configure it to run as if on a

smaller screen so you can see how to separate the text fragment into an activity. You’ll

start with the XML layout of your activity in landscape mode in Listing 29–3, which will

look like Figure 29–2 when it runs.

NOTE: At the end of the chapter is the URL that you can use to download the projects in this

chapter. This will allow you to import these projects into your Eclipse directly.

Listing 29–3. Your Activity’s Layout XML for Landscape Mode

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout-land/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment class="com.androidbook.fragments.bard.TitlesFragment"
 android:id="@+id/titles" android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />

 <FrameLayout
 android:id="@+id/details" android:layout_weight="2"
 android:layout_width="0px"
 android:layout_height="match_parent" />

</LinearLayout>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1025

Figure 29–2. The user interface of your sample fragment application

This layout looks like a lot of other layouts you’ve seen throughout the book, horizontally

left to right with two main objects. Three’s a special new tag, though, called <fragment>

and this tag has a new attribute called class. Keep in mind that a fragment is not a view,

so the layout XML is a little different for a fragment than it is for everything else. The

other thing to keep in mind is that the <fragment> tag is just a placeholder in this layout.

You should not put child tags under <fragment> in a layout XML file.

The other attributes for a fragment look familiar and serve a similar purpose as they do

for a view. The fragment tag’s class attribute specifies your extended class for the titles

of your application. That is, you must extend one of the Android Fragment classes to

implement your logic, and the <fragment> tag must know the name of your extended

class. A fragment has its own view hierarchy that will be created later by the fragment

itself. The next tag is a FrameLayout—not another <fragment> tag. Why is that? We’ll

explain in more detail later but for now, you should be aware that you’re going to be

doing some transitions on the text, swapping out one fragment with another. You use

the FrameLayout as the view container to hold the current text fragment. With your titles

fragment, you have one—and only one—fragment to worry about; no swapping and no

transitions. For the area that displays the Shakespearean text, you’ll have several

fragments.

Your MainActivity Java code is in Listing 29–4.

Listing 29–4. Your MainActivity Source Code

// This file is MainActivity.java
import android.app.Activity;
import android.app.Fragment;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1026

import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.content.Intent;
import android.content.res.Configuration;
import android.os.Bundle;
import android.os.Environment;
import android.util.Log;

public class MainActivity extends Activity {
 public static final String TAG = "Shakespeare";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 Log.v(TAG, "in MainActivity onCreate");
 super.onCreate(savedInstanceState);
 FragmentManager.enableDebugLogging(true);
 setContentView(R.layout.main);
 }

 @Override
 public void onAttachFragment(Fragment fragment) {
 Log.v(TAG, "in MainActivity onAttachFragment. fragment id = "
 + fragment.getId());
 super.onAttachFragment(fragment);
 }

 @Override
 public void onStart() {
 Log.v(TAG, "in MainActivity onStart");
 super.onStart();
 }

 @Override
 public void onResume() {
 Log.v(TAG, "in MainActivity onResume");
 super.onResume();
 }

 @Override
 public void onPause() {
 Log.v(TAG, "in MainActivity onPause");
 super.onPause();
 }

 @Override
 public void onStop() {
 Log.v(TAG, "in MainActivity onStop");
 super.onStop();
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 Log.v(MainActivity.TAG, "in MainActivity onSaveInstanceState");
 super.onSaveInstanceState(outState);
 }

 @Override

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1027

 public void onDestroy() {
 Log.v(TAG, "in MainActivity onDestroy");
 super.onDestroy();
 }

 public boolean isMultiPane() {
 return getResources().getConfiguration().orientation
 == Configuration.ORIENTATION_LANDSCAPE;
 }

 /**
 * Helper function to show the details of a selected item, either by
 * displaying a fragment in-place in the current UI, or starting a
 * whole new activity in which it is displayed.
 */
 public void showDetails(int index) {
 Log.v(TAG, "in MainActivity showDetails(" + index + ")");

 if (isMultiPane()) {
 // Check what fragment is shown, replace if needed.
 DetailsFragment details = (DetailsFragment)
 getFragmentManager().findFragmentById(R.id.details);
 if (details == null || details.getShownIndex() != index) {
 // Make new fragment to show this selection.
 details = DetailsFragment.newInstance(index);

 // Execute a transaction, replacing any existing
 // fragment with this one inside the frame.
 Log.v(TAG, "about to run FragmentTransaction...");
 FragmentTransaction ft
 = getFragmentManager().beginTransaction();
 ft.setTransition(
 FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 //ft.addToBackStack("details");
 ft.replace(R.id.details, details);
 ft.commit();
 }

 } else {
 // Otherwise you need to launch a new activity to display
 // the dialog fragment with selected text.
 Intent intent = new Intent();
 intent.setClass(this, DetailsActivity.class);
 intent.putExtra("index", index);
 startActivity(intent);
 }
 }
}

This is a very simple activity to write. The only reason most callbacks are in the source

code is to include a logging message. Otherwise, you’d only need onCreate() and the

helper methods isMultiPane() and showDetails(). And you can’t get much simpler than

your onCreate(). All it does is turn on fragment manager debugging and set the content

view to the layout from Listing 29–3. To determine multi-pane mode (i.e., if you need to

use fragments side by side), you just use the orientation of the device. If you’re in

landscape mode, you’re multi-pane; if you’re in portrait mode, you’re not. Lastly, the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1028

helper method showDetails() is there to figure out how to show the text when a title is

selected. The index is just the position of the title in the title list. If you’re in multi-pane

mode, you’re going to use a fragment to show the text. You’re calling this fragment a

DetailsFragment, and you use a factory-type method to create one with the index. The

code for the DetailsFragment class is shown in Listing 29–5. You’ll come back to your

showDetails() method later.

Listing 29–5. Source Code for DetailsFragment

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;
import android.util.AttributeSet;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class DetailsFragment extends Fragment {

 private int mIndex = 0;

 public static DetailsFragment newInstance(int index) {
 Log.v(MainActivity.TAG, "in DetailsFragment newInstance(" +
 index + ")");

 DetailsFragment df = new DetailsFragment();

 // Supply index input as an argument.
 Bundle args = new Bundle();
 args.putInt("index", index);
 df.setArguments(args);
 return df;
 }

 public static DetailsFragment newInstance(Bundle bundle) {
 int index = bundle.getInt("index", 0);
 return newInstance(index);
 }

 @Override
 public void onInflate(AttributeSet attrs, Bundle savedInstanceState)
 {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onInflate. AttributeSet contains:");
 for(int i=0; i<attrs.getAttributeCount(); i++)
 Log.v(MainActivity.TAG, " " + attrs.getAttributeName(i) +
 " = " + attrs.getAttributeValue(i));
 super.onInflate(attrs, savedInstanceState);
 }

 @Override
 public void onAttach(Activity myActivity) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onAttach; activity is: " +
 myActivity);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1029

 super.onAttach(myActivity);
 }

 @Override
 public void onCreate(Bundle myBundle) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onCreate. Bundle contains:");
 if(myBundle != null) {
 for(String key : myBundle.keySet()) {
 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " myBundle is null");
 }
 super.onCreate(myBundle);

 mIndex = getArguments().getInt("index", 0);
 }

 public int getShownIndex() {
 return mIndex;
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onCreateView. container = " +
 container);

 // Don't tie this fragment to anything through the inflater.
 // Android takes care of attaching fragments for us. The
 // container is only passed in so you can know about the
 // container where this View hierarchy is going to go.
 View v = inflater.inflate(R.layout.details, container, false);
 TextView text1 = (TextView) v.findViewById(R.id.text1);
 text1.setText(Shakespeare.DIALOGUE[mIndex]);
 return v;
 }

 @Override
 public void onActivityCreated(Bundle savedState) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onActivityCreated. savedState contains:");
 if(savedState != null) {
 for(String key : savedState.keySet()) {
 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " savedState is null");
 }
 super.onActivityCreated(savedState);
 }

 @Override

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1030

 public void onStart() {
 Log.v(MainActivity.TAG, "in DetailsFragment onStart");
 super.onStart();
 }

 @Override
 public void onResume() {
 Log.v(MainActivity.TAG, "in DetailsFragment onResume");
 super.onResume();
 }

 @Override
 public void onPause() {
 Log.v(MainActivity.TAG, "in DetailsFragment onPause");
 super.onPause();
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onSaveInstanceState");
 super.onSaveInstanceState(outState);
 }

 @Override
 public void onStop() {
 Log.v(MainActivity.TAG, "in DetailsFragment onStop");
 super.onStop();
 }

 @Override
 public void onDestroyView() {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onDestroyView, view = " +
 getView());
 super.onDestroyView();
 }

 @Override
 public void onDestroy() {
 Log.v(MainActivity.TAG, "in DetailsFragment onDestroy");
 super.onDestroy();
 }

 @Override
 public void onDetach() {
 Log.v(MainActivity.TAG, "in DetailsFragment onDetach");
 super.onDetach();
 }
}

The DetailsFragment class is actually fairly simple as well. The only reason the source

code is so long is because you added all the logging statements. If you didn’t need to

show the logging statements, you’d only need the newInstance() methods,

getShownIndex(), onCreate(), and onCreateView(). Now you can see how to instantiate

this fragment. It’s important to point out that you’re instantiating this fragment in code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1031

because your layout defines the ViewGroup container (a FrameLayout) that your details

fragment is going to go into. Since the fragment is not itself defined in the layout XML for

the activity, as your titles fragment was, you need to instantiate your details fragments in

code.

To create a new details fragment , you use your newInstance() method. As discussed

earlier, this factory method invokes the default constructor and then sets the arguments

bundle with the value of index. Once newInstance() has run, your details fragment can

retrieve the value of index in any of its callbacks by referring to the arguments bundle via

getArguments(). For your convenience, in onCreate() you can save the index value from

the arguments bundle to a member field in your DetailsFragment class.

You might wonder why you didn’t simply set the mIndex value in newInstance(). The

reason is because Android will, behind the scenes, recreate your fragment using the

default constructor. Then it sets the arguments bundle to what it was before. Android

won’t use your newInstance() method, so the only reliable way to ensure mIndex is set is

to read the value from the arguments bundle and set it in onCreate(). The convenience

method getShownIndex() retrieves the value of that index. Now the only method left to

describe in the details fragment is onCreateView(). And this is very simple, too.

The purpose of onCreateView() is to return the view hierarchy for your fragment.

Remember that based on your configuration, you could want all kinds of different

layouts for this fragment. Therefore, the most common thing to do is utilize a layout XML

file for your fragment. In your sample application, you specify the layout for the fragment

to be details.xml using the resource R.layout.details. The XML for details.xml is in

Listing 29–6.

Listing 29–6. The details.xml Layout File for the Details Fragment

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/details.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ScrollView android:id="@+id/scroller"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/text1"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 </ScrollView>
</LinearLayout>

For your sample application, you can use the exact same layout file for details whether

you’re in landscape mode or in portrait mode. This layout is not for the activity, it’s just

for your fragment to display the text. Because it could be considered the default layout,

you can store it in the /res/layout directory and it will be found and used even if

you’re in landscape mode. When Android goes looking for the details XML file, it tries

the specific directories that closely match the device’s configuration, but it will end up in

the /res/layout directory if it can’t find the details.xml file in any of the other places.

Of course, if you want to have a different layout for your fragment in landscape mode,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1032

you could define a separate details.xml layout file and store it under /res/layout-land.

Feel free to experiment with different details.xml files.

When your details fragment’s onCreateView() is called, you will simply grab the

appropriate details.xml layout file, inflate it, and set the text to the text from the

Shakespeare class. I won’t include the entire Java code for Shakespeare here, but a

portion is in Listing 29–7 so you understand how it was done. For the complete source,

please access the projects download files, as described in the References section at the

end of this chapter.

Listing 29–7. Source Code for Shakespeare

public class Shakespeare {
 public static String TITLES[] = {
 "Henry IV (1)",
 "Henry V",
 "Henry VIII",
 "Romeo and Juliet",
 "Hamlet",
 "The Merchant of Venice",
 "Othello"
 };
 public static String DIALOGUE[] = {
 "So shaken as we are, so wan with care,\n...
... and so on ...

So now your details fragment view hierarchy contains the text from the selected title.

Your details fragment is ready to go. And now you can return to the showDetails()

method to talk about FragmentTransactions.

FragmentTransactions and the Fragment Back Stack
The code in showDetails() that pulls in your new details fragment (shown again in

Listing 29–8) looks rather simple, but there’s a lot going on here. It’s worth spending

some time to explain what is happening and why. If your activity is in multi-pane mode,

you want to show the details in a fragment next to the title list. You may already be

showing details, which means you may have a details fragment visible to the user. Either

way, the resource ID R.id.details is for the FrameLayout for your activity, as listed in

Listing 29–3. If you have a details fragment sitting in the layout, because you didn’t

assign any other ID to it, it will have this ID. Therefore, to find out if there’s a details

fragment in the layout, you can ask the fragment manager using findFragmentById().

This will return null if the frame layout is empty or will give you the current details

fragment. You can then decide if you need to place a new details fragment in the layout,

either because the layout is empty, or there’s a details fragment there for some other

title. Once you make the determination to create and use a new details fragment, you

invoke the factory method to create a new instance of a details fragment. Now you can

put this new fragment into place for the user to see it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1033

Listing 29–8. Fragment Transaction Example

 public void showDetails(int index) {
 Log.v(TAG, "in MainActivity showDetails(" + index + ")");

 if (isMultiPane()) {
 // Check what fragment is shown, replace if needed.
 DetailsFragment details = (DetailsFragment)
 getFragmentManager().findFragmentById(R.id.details);
 if (details == null || details.getShownIndex() != index) {
 // Make new fragment to show this selection.
 details = DetailsFragment.newInstance(index);

 // Execute a transaction, replacing any existing
 // fragment with this one inside the frame.
 Log.v(TAG, "about to run FragmentTransaction...");
 FragmentTransaction ft
 = getFragmentManager().beginTransaction();
 ft.setTransition(
 FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 //ft.addToBackStack("details");
 ft.replace(R.id.details, details);
 ft.commit();
 }
 // The rest was left out to save space.
 }

A key concept to understand is that a fragment must live inside of a view container, also

known as a view group. This is partly because a fragment is not a view itself. The

ViewGroup class includes such things as layouts and their derived classes. This is why

you chose the FrameLayout for the main.xml layout file of your activity. The FrameLayout

is where your details fragment is going to go. If you had instead specified another

<fragment> tag in the activity’s layout file, you would not be able to do the swapping that

you want to do. The FragmentTransaction is what you use to do your swapping. You tell

the fragment transaction that you want to replace whatever is in your frame layout with

your new details fragment. You could have avoided all this by locating the resource ID of

the details TextView and just setting the text of it to the new text for the new

Shakespeare title. But there’s another side to fragments that explains why you use

FragmentTransactions.

As you know, activities are arranged in a stack, and as you get deeper and deeper into

an application, it’s not uncommon to have a stack of several activities going at once.

When you press the Back button, the top-most activity goes away and you are returned

to the activity below, which resumes for you. This can continue all the way down until

you’re at the home screen again.

This was fine when an activity was just single-purpose, but now that an activity can have

several fragments going at once, and because you can go deeper into your application

without leaving the top-most activity, Android really needed to extend the Back button

stack concept to include fragments as well. In fact, fragments demand this even more.

When there are several fragments interacting with each other at the same time in an

activity, and there’s a transition to new content across several fragments at once,

pressing the Back button should cause each of the fragments to roll back one step

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1034

together. To ensure that each fragment properly participates in the rollback, a

FragmentTransaction is created and managed to perform that coordination.

Be aware that a back stack for fragments is not required within an activity. You can code

your application to let the Back button work at the activity level and not at the fragment

level at all. If there’s no back stack for your fragments, pressing the Back button will pop

the current activity off the stack and return the user to whatever was underneath. If you

choose to take advantage of the back stack for fragments, you will want to uncomment

in Listing 29–8 the line that says ft.addToBackStack("details"). For this particular case,

you’ve hardcoded the tag parameter to be the string “details”. This tag should be an

appropriate string name that represents the state of the fragments at the time of the

transaction. You will be able to interrogate the back stack in code using the tag value to

delete entries, as well as pop entries off. You will want meaningful tags on these

transactions to be able to find the appropriate ones later.

Fragment Transaction Transitions and Animations
One of the very nice things about fragment transactions is that you can perform

transitions from an old fragment to a new fragment using transitions and animations.

These are not like the animations in Chapters 16 and 20. These are much simpler and

do not require in-depth graphics knowledge. Let’s use a fragment transaction transition

to add special effects when you swap out the old details fragment with a new details

fragment. This can add polish to your application, making the switch from the old to the

new fragment look smooth. One method to accomplish this is setTransition(), as

shown in Listing 29–8. However, there are a few different transitions available. You used

a fade in your example, but you can also use the setCustomAnimations() method to

describe other special effects, such as sliding one fragment out to the right as another

slides in from the left. The custom animations use the new object animation definitions,

not the old ones. The old anim XML files use tags such as <translate>, while the new

XML files use <objectAnimator>. The old standard XML files are located in the

/data/res/anim directory under the appropriate Android SDK platforms directory (such

as platforms/android-11 for Honeycomb). There are some new XML files located in the

/data/res/animator directory here, too. Your code could be something like

ft.setCustomAnimations(android.R.animator.fade_in, android.R.animator.fade_out);

which will cause the new fragment to fade in as the old fragment fades out. The first

parameter applies to the fragment entering and the second parameter applies to the

fragment exiting. Feel free to explore the Android animator directory for more stock

animations. If you’d like to create your own, there’s section on the object animator later

in this chapter to help you out. The other very important bit of knowledge you need is

that the transition calls need to come before the replace() call, otherwise they will have

no effect.

Using object animator for special effects on fragments can be a fun way to do

transitions. There are two other methods on FragmentTransaction you should know

about: hide() and show(). Both of these methods take a fragment as a parameter, and

they do exactly what you’d expect. For a fragment in the fragment manager associated

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1035

to a view container, the methods simply hide or show the fragment in the user interface.

The fragment does not get removed from the fragment manager in the process, but it

certainly must be tied into a view container in order to affect its visibility. If a fragment

does not have a view hierarchy, or if its view hierarchy is not tied into the displayed view

hierarchy, then these methods won’t do anything.

Once you’ve specified the special effects for your fragment transaction, you have to tell

it the main work that you want done. In your case, you’re replacing whatever is in the

frame layout with your new details fragment. That’s where the replace() method comes

in. This is equivalent to calling remove() for any fragments that are already in the frame

layout and then add() for your new details fragment, which means you could just call

remove() or add() as needed instead.

The final action you must take when working with a fragment transaction is to commit it.

The commit() method does not cause things to happen immediately but rather

schedules the work for when the UI thread is ready to do it.

Now you should understand why you need to go to so much trouble to change the

content in a simple fragment. It’s not just that you want to change the text; you might

want a special graphics effect during the transition. You may also want to save the

transition details in a fragment transaction that you can reverse later. That last point may

be confusing so we’ll clarify.

This is not a transaction in the truest sense of the word. When you pop fragment

transactions off of the back stack, you are not undoing the data changes that may have

taken place. If data changed within your activity, for example, as you created fragment

transactions on the back stack, pressing the back button does not cause the activity

data changes to revert back to their previous values. You are merely stepping back

through the user interface views the way you came in, just like you do with activities, but

in this case it’s for fragments. Because of the way that fragments are saved and

restored, the inner state of a fragment that has been restored from a saved state will

depend on what values you saved with the fragment and how you manage to restore

them. So your fragments may look the same as they did previously but your activity will

not, unless you take steps to restore activity state when you restore fragments.

In your example, you’re only working with one view container and bringing in one details

fragment. If your user interface were more complicated, you could manipulate other

fragments within the fragment transaction. What you are actually doing is beginning the

transaction, replacing any existing fragment in your details frame layout with your new

details fragment, specifying a fade-in animation, and committing the transaction. You

commented out the part where this transaction is added to the back stack, but you

could certainly uncomment that to take part in the back stack.

The FragmentManager
The FragmentManager is a component that takes care of the fragments belonging to an

activity. This includes fragments on the back stack and fragments that may just be

hanging around. We’ll explain. Fragments should only be created within the context of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1036

an activity. This occurs either through the inflation of an activity’s layout XML or

through direct instantiation using code like that in Listing 29–1. When instantiated

through code, a fragment usually gets attached to the activity using a fragment

transaction. In either case, the FragmentManager class is used to access and manage

these fragments for an activity.

You use the getFragmentManager() method on either an activity or an attached

fragment to retrieve a fragment manager. You saw in Listing 29–8 that a fragment

manager is where you get a fragment transaction from. Besides getting a fragment

transaction, you can also get a fragment using the fragment’s ID, tag, or a

combination of bundle and key.

For this, the getter methods include findFragmentById(), findFragmentByTag(), and

getFragment(). The latter method would be used in conjunction with putFragment()

which also takes a bundle, a key, and the fragment to be put. The bundle is most likely

going to be the savedState bundle and the putFragment() will be used in the

onSaveInstanceState() callback to save the state of the current activity (or another

fragment). The getFragment() method would probably be called in onCreate() to

correspond to the putFragment(), although for a fragment, the bundle is available to the

other callback methods, as described earlier.

Obviously you can’t use the getFragmentManager() method on a fragment that has not

been attached to an activity yet. But it’s also true that you can attach a fragment to an

activity without making it visible to the user yet. If you do this, you really should

associate a String tag to the fragment so that you can get to it in the future. You’d most

likely use this method of FragmentTransaction to do this:

public FragmentTransaction add (Fragment fragment, String tag)

In fact, you can have a fragment that does not exhibit a view hierarchy. This might be

done to encapsulate certain logic together such that it could be attached to an activity,

yet still retain some autonomy from the activity’s lifecycle and from other fragments.

When an activity goes through a recreate cycle due to a device configuration change,

this non-UI fragment could remain largely intact while the activity goes away and comes

back again. This would be a good candidate for the setRetainInstance() option.

The fragment back stack is also the domain of the fragment manager. While a fragment

transaction is used to put fragments onto the back stack, the fragment manager can

take fragments off the back stack. This is usually done using the fragment’s ID or tag,

but it can be done based on position in the back stack or just to pop the top-most

fragment.

Finally, the fragment manager has methods for some debugging features, such as

turning on debugging messages to LogCat using enableDebugLogging() or dumping the

current state of the fragment manager to a stream using dump(). Note that you turned on

fragment manager debugging in the onCreate() method of your activity in Listing 29–4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1037

Caution When Referencing Fragments
It’s time to revisit the earlier discussion of the fragment’s lifecycle and the arguments

and saved-state bundles. Android could save off one of your fragments at many

different times. This means that at the moment your application wants to retrieve that

fragment, it’s possible that it is not in memory. For this reason, I caution you not to think

that a variable reference to a fragment is going to remain valid for a long time. If

fragments are being replaced in a container view using fragment transactions, any

reference to the old fragment is now pointing to a fragment that is possibly on the back

stack. Or a fragment may get detached from the activity’s view hierarchy during an

application configuration change such as a screen rotation. Be careful.

If you’re going to hold onto a reference to a fragment, be aware of when it could get

saved away; when you need to find it again, use one of the getter methods of the

fragment manager. If you want to hang onto a fragment reference, such as when an

activity is going through a configuration change, you can use the putFragment() method

with the appropriate bundle. In the case of both activities and fragments, the appropriate

bundle is the savedState bundle that is used in onSaveInstanceState() and that

reappears in onCreate() (or in the case of fragments, the other early callbacks of the

fragment’s lifecycle). You will probably never store a direct fragment reference into the

arguments bundle of a fragment; if you’re tempted to do so, please think very carefully

about it first.

The other way you can get to a specific fragment is by querying for it using a known tag

or known ID. The getter methods described previously will allow retrieval of fragments

from the fragment manager this way, which means you have the option of just

remembering the tag or ID of a fragment so that you can retrieve it from the fragment

manager using one of those values, as opposed to using putFragment() and

getFragment().

ListFragments and <fragment>
There are still a few more things to cover to make your sample application complete.

The first is the TitlesFragment class. This is the one that is created via the layout.xml

file of your main activity. The <fragment> tag serves as your placeholder for where this

fragment will go and does not define what the view hierarchy will look like for this

fragment. The code for your TitlesFragment is in Listing 29–9. TitlesFragment displays

the list of titles for your application.

Listing 29–9. TitlesFragment Java Code

import android.app.Activity;
import android.app.ListFragment;
import android.os.Bundle;
import android.util.AttributeSet;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1038

import android.widget.ListView;

public class TitlesFragment extends ListFragment {
 private MainActivity myActivity = null;
 int mCurCheckPosition = 0;

 @Override
 public void onInflate(AttributeSet attrs, Bundle savedInstanceState) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onInflate. AttributeSet contains:");
 for(int i=0; i<attrs.getAttributeCount(); i++) {
 Log.v(MainActivity.TAG, " " + attrs.getAttributeName(i) +
 " = " + ("id".equals(attrs.getAttributeName(i))?
 Integer.toHexString(attrs.getAttributeIntValue(i, -1)):
 attrs.getAttributeValue(i)));
 }
 super.onInflate(attrs, savedInstanceState);
 }

 @Override
 public void onAttach(Activity myActivity) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onAttach; activity is: " + myActivity);
 super.onAttach(myActivity);
 this.myActivity = (MainActivity)myActivity;
 }

 @Override
 public void onCreate(Bundle myBundle) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onCreate. Bundle contains:");
 if(myBundle != null) {
 for(String key : myBundle.keySet()) {
 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " myBundle is null");
 }
 super.onCreate(myBundle);
 }

 @Override
 public View onCreateView(LayoutInflater myInflater,
 ViewGroup container, Bundle myBundle) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onCreateView. container is "
 + container);
 return super.onCreateView(myInflater, container, myBundle);
 }

 @Override
 public void onActivityCreated(Bundle savedState) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onActivityCreated. savedState contains:");
 if(savedState != null) {
 for(String key : savedState.keySet()) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1039

 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " savedState is null");
 }
 super.onActivityCreated(savedState);

 // Populate list with your static array of titles.
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1,
 Shakespeare.TITLES));

 if (savedState != null) {
 // Restore last state for checked position.
 mCurCheckPosition = savedState.getInt("curChoice", 0);
 }

 // Get your ListFragment’s ListView and update it
 ListView lv = getListView();
 lv.setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 lv.setSelection(mCurCheckPosition);

 // Activity is created, fragments are available
 // Go ahead and populate the details fragment
 myActivity.showDetails(mCurCheckPosition);
 }

 @Override
 public void onStart() {
 Log.v(MainActivity.TAG, "in TitlesFragment onStart");
 super.onStart();
 }

 @Override
 public void onResume() {
 Log.v(MainActivity.TAG, "in TitlesFragment onResume");
 super.onResume();
 }

 @Override
 public void onPause() {
 Log.v(MainActivity.TAG, "in TitlesFragment onPause");
 super.onPause();
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 Log.v(MainActivity.TAG, "in TitlesFragment onSaveInstanceState");
 super.onSaveInstanceState(outState);
 outState.putInt("curChoice", mCurCheckPosition);
 }

 @Override
 public void onListItemClick(ListView l, View v, int pos, long id) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onListItemClick. pos = "

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1040

 + pos);
 myActivity.showDetails(pos);
 mCurCheckPosition = pos;
 }

 @Override
 public void onStop() {
 Log.v(MainActivity.TAG, "in TitlesFragment onStop");
 super.onStop();
 }

 @Override
 public void onDestroyView() {
 Log.v(MainActivity.TAG, "in TitlesFragment onDestroyView");
 super.onDestroyView();
 }

 @Override
 public void onDestroy() {
 Log.v(MainActivity.TAG, "in TitlesFragment onDestroy");
 super.onDestroy();
 }

 @Override
 public void onDetach() {
 Log.v(MainActivity.TAG, "in TitlesFragment onDetach");
 super.onDetach();
 myActivity = null;
 }
}

Similar to before, most of this code doesn’t need to be here except that you’ve added

logging statements so you’ll be able to see when things fire. Unlike the DetailsFragment,

for this fragment you don’t do anything in the onCreateView() callback. This is because

you’re extending the ListFragment class, which contains a ListView already. The default

onCreateView() for a ListFragment creates this ListView for you and returns it. It’s not

until onActivityCreated() that you do any real application logic. By this time in your

application, you can be sure that the activity’s view hierarchy, plus this fragment’s, has

been created. The resource ID for that ListView is android.R.id.list1 but you can

always call getListView() if you need to get a reference to it, which you do in

onActivityCreated(). However, because a ListFragment is not the same as a ListView,

do not attach the adapter to the ListView directly. You must use the ListFragment’s

setListAdapter() method instead. Because the activity’s view hierarchy is set up,

you’re safe going back into the activity to do the showDetails() call.

At this point in your sample activity’s life, you’ve added a list adapter to your list view,

you’ve restored the current position (if you came back from a restore, due perhaps to a

configuration change), and you’ve asked the activity (in showDetails()) to set the text to

correspond to the selected Shakespearean title.

Your TitlesFragment class also has a listener on the list so when the user clicks on

another title, the onListItemClick() callback is called, and you switch the text to

correspond to that title, again using the showDetails() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1041

Another difference between this fragment and the earlier details fragment is that when

this fragment is being destroyed and recreated, you save state in a bundle (the value of

the current position in the list) and you read it back in onCreate(). Unlike the details

fragments that get swapped in and out of the FrameLayout on your activity’s layout,

there is just one titles fragment to think about. So when there is a configuration change

and your titles fragment is going through a save-and-restore operation, you want to

remember where you were. With the details fragments, you can recreate them without

having to remember the previous state.

Invoking a Separate Activity When Needed
There’s a piece of code I haven’t talked about yet, and that is in showDetails() when

you’re in portrait mode and the details fragment won’t fit properly on the same page as

the titles fragment. You’re going to pretend that’s the case even though it really isn’t on

a tablet screen. As fragments get made available for the older Android releases, you will

be able to use fragments on phones as well as tablets, which means the scenario

described here could be quite common. If the screen real estate won’t permit feasible

viewing of a fragment that would otherwise be shown alongside the other fragments,

you will need to launch a separate activity to show the user interface of that fragment.

For your sample application, you chose to implement a details activity; the code is in

Listing 29–10.

Listing 29–10. Showing a New Activity When a Fragment Won’t Fit

// This file is DetailsActivity.java
import android.app.Activity;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;

public class DetailsActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 Log.v(MainActivity.TAG, "in DetailsActivity onCreate");
 super.onCreate(savedInstanceState);

 if (getResources().getConfiguration().orientation
 == Configuration.ORIENTATION_LANDSCAPE) {
 // If the screen is now in landscape mode, it means
 // that your MainActivity is being shown with both
 // the titles and the text, so this activity is
 // no longer needed. Bail out and let the MainActivity
 // do all the work.
 finish();
 return;
 }

 if(getIntent() != null) {
 // This is another way to instantiate a details
 // fragment.
 DetailsFragment details =
 DetailsFragment.newInstance(getIntent().getExtras());

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1042

 getFragmentManager().beginTransaction()
 .add(android.R.id.content, details)
 .commit();
 }
 }
}

There are several interesting aspects to this code. For one thing, it is really simple to

implement. You make a simple determination of the device’s orientation, and as long as

you’re in portrait mode, you set up a new details fragment within this details activity. If

you’re in landscape mode, your MainActivity is able to display both the titles fragment

and the details fragment, so there is no reason to be displaying this activity at all. You

may wonder why you would ever launch this activity if you’re in landscape mode, and

the answer is, you wouldn’t. However, once this activity has been started in portrait

mode, if the user rotates the device to landscape mode, this details activity will get

restarted due to the configuration change. So now the activity is starting up and it’s in

landscape mode. At that moment, it makes sense to just finish this activity and let the

MainActivity take over and do all the work.

Another interesting aspect about this details activity is that you never set the root

content view using setContentView(). So how does the user interface get created? If

you look carefully at the add() method call on the fragment transaction, you will see that

the view container that you add the fragment to is specified as the resource

android.R.id.content. This is the top-level view container for an Activity, and therefore

when you attach your fragment view hierarchy to this container, it means your fragment

view hierarchy becomes the only view hierarchy for the activity. You used the very same

DetailsFragment class as before with the other newInstance() method to create the

fragment (i.e., the one that takes a bundle as a parameter), then you simply attached it

to the top of the activity’s view hierarchy. This causes the fragment to be displayed

within this new activity.

From the user’s point of view, they are now looking at just the details fragment view,

which is the text from the Shakespeare play. If the user wants to select a different title,

they would press the Back button, which would pop this activity to reveal your main

activity below (with the titles fragment only). The other choice for the user is to rotate the

device to get back to landscape mode. Then your details activity will call finish() and

go away, revealing the also-rotated main activity underneath.

When the device is in portrait mode, if you’re not showing the details fragment in your

main activity, you should have a separate main.xml layout file for portrait mode like the

one in Listing 29–11.

Listing 29–11. The Layout for a Portrait Main Activity

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1043

 <fragment class="com.androidbook.fragments.bard.TitlesFragment"
 android:id="@+id/titles"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</LinearLayout>

Of course, you could make this layout whatever you want it to be. For your purposes

here, you simply make it show the titles fragment by itself. It’s very nice that your titles

fragment class doesn’t need to include much code to deal with the device

reconfiguration.

The final piece that you’d like to include in this section is the AndroidManifest.xml file,

as shown in Listing 29–12.

Listing 29–12. The AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0" package="com.androidbook.fragments.bard">
 <uses-sdk android:minSdkVersion="11" />

 <application android:icon="@drawable/icon"
 android:label="Shakespeare">

 <activity
 android:name="com.androidbook.fragments.bard.MainActivity"
 android:label="Shakespeare">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity
 android:name="com.androidbook.fragments.bard.DetailsActivity"
 android:label="ShakespeareD">

 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 </application>
</manifest>

This is a pretty standard manifest file. You have the main activity with a category of

LAUNCHER so that it will show up in the device’s list of Apps. Then you have the separate

DetailsActivity with a category of DEFAULT. This allows you to start the details activity

from code but will not show the details activity as an App in the App list.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1044

Persistence of Fragments
When you play with this sample application, make sure you rotate the device (pressing

the Ctrl-F11 keys rotates the device in the emulator). You will see that the device

rotates, and that the fragments rotate right along with it. If you watch the LogCat

messages, you will see a lot of them for this application. In particular, during a device

rotation, pay careful attention to the messages about fragments; not only does the

activity get destroyed and recreated, but the fragments do also.

So far, you only wrote a tiny bit of code on the titles fragment to remember the current

position in the titles list across restarts. You didn’t do anything in the details fragment

code to handle reconfigurations, and that’s because you didn’t need to. Android will

take care of hanging onto the fragments that are in the fragment manager, saving them

away, then restoring them when the activity is being recreated. You should realize that

the fragments you get back after the reconfiguration is complete are very likely not the

same fragments in memory that you had before. These fragments have been

reconstructed for you. Android saved away the arguments bundle and the knowledge of

which type of fragment it was, and it saved the icicle bundles for each fragment that

contain saved state information about the fragment to use to restore it on the other side.

The LogCat messages show you the fragments going through their lifecycles in sync

with the activity. You will see that your details fragment gets recreated but your

newInstance() method does not get called again. Instead, Android simply uses the

default constructor, then attaches the arguments bundle to it, then starts calling the

callbacks on the fragment. This is why it is so important not to do anything fancy in the

newInstance() method, since when the fragment gets recreated, it won’t do it through

newInstance().

You should also appreciate by now that you’ve been able to reuse your fragments in a

few different places. The titles fragment was used in two different layouts, but if you look

at the titles fragment code, it doesn’t worry about the attributes of each layout. You

could make the layouts rather different from each other and the titles fragment code

would look the same. The same can be said of the details fragment. It was used in your

main landscape layout and within the details activity all by itself. Again, the layout for the

details fragment could have been very different between the two and the code of the

details fragment would be the same. The code of the details activity was very simple,

also.

So far, you’ve explored two of the fragment types: the base Fragment class and the

ListFragment subclass. Now you’ll move on to one of the other subclasses of Fragment,

namely the DialogFragment.

Understanding Dialog Fragments
In Chapter 8, you learned how to approach Android dialogs for SDKs prior to Android

3.0. Android SDK 3.0 has provided another mechanism to work with dialogs that is

based on fragments. The fragment-based approach to dialogs is expected to supercede

the Android managed dialog protocol that was presented in Chapter 8.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1045

In this section, you’ll learn how to use dialog fragments to present a simple alert dialog

and a custom dialog that is used to collect prompt text.

DialogFragment Basics
Before we show you working examples of prompt dialog and alert dialog, we would like

to cover the high level idea of dialog fragments first. Dialog-related functionality in

release 3.0 is focused in a class called DialogFragment. A DialogFragment is derived

from the class Fragment and behaves much like a fragment. You will then use the

DialogFragment as your base class for your dialogs. Once you have a derived dialog

from this class such as

public class MyDialogFragment extends DialogFragment { ... }

you can then show this dialog fragment MyDialogFragment as a dialog using a fragment

transaction. Listing 29–13 shows the pseudo code to do this.

Listing 29–13. Showing a Dialog Fragment

SomeActivity
{
 //....other activity functions
 public void showDialog()
 {
 //construct MyDialogFragment
 MyDialogFragment mdf = MyDialogFragment.newInstance(arg1,arg2);
 FragmentManager fm = getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 mdf.show(ft,"my-dialog-tag");
 }
 //....other activity functions
}

From Listing 29–13 the steps to show a dialog fragment are

1. Create a dialog fragment.

2. Get a fragment transaction.

3. Show the dialog using the fragment transaction from step 2.

Let's talk about each of these steps.

Constructing a Dialog Fragment
A dialog fragment being a fragment, the same rules and regulations apply when

constructing a dialog fragment. The recommended pattern is to use a factory method

such as newInstance() as you did before. Inside that newInstance() method, you would

use the default constructor for your dialog fragment, then you would add an arguments

bundle that contains your passed-in parameters. You don’t want to do other work inside

this method because you must make sure that what you do here will be the same as what

Android will do when it restores your dialog fragment from a saved state. And all that

Android will do is call the default constructor and recreate the arguments bundle on it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1046

Overriding onCreateView
When you inherit from a dialog fragment, you need to override one of two methods to

provide the view hierarchy for your dialog. The first option is to override onCreateView()

and return a view. The second option is to override onCreateDialog() and return a

Dialog (like the one constructed by an AlertDialog.Builder).

Listing 29–14 shows an example of overriding the onCreateView().

Listing 29–14. Overriding onCreateView() of a DialogFragment

MyDialogFragment
{
 other functions
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 //Create a view by inflating desired layout
 View v =
 inflater.inflate(R.layout.prompt_dialog,container,false);

 //you can locate a view and set values
 TextView tv = (TextView)v.findViewById(R.id.promptmessage);
 tv.setText(this.getPrompt());

 //You can set callbacks on buttons
 Button dismissBtn = (Button)v.findViewById(R.id.btn_dismiss);
 dismissBtn.setOnClickListener(this);

 Button saveBtn = (Button)v.findViewById(
 R.id.btn_save);
 saveBtn.setOnClickListener(this);
 return v;
 }
 other functions
}

In Listing 29–14 you are loading a view identified by a layout. Then you look for two

buttons and set up callbacks on them. This is very similar to how you created your

details fragment earlier. However, unlike the earlier fragments, a dialog fragment has

another way to create the view hierarchy.

Overriding onCreateDialog

As an alternate to supplying a view in onCreateView(), you can override

onCreateDialog() and supply a dialog instance. Listing 29–15 supplies sample code for

this approach.

Listing 29–15. Overriding onCreateDialog of a DialogFragment

MyDialogFragment
{
 other functions
 @Override
 public Dialog onCreateDialog(Bundle icicle)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1047

 AlertDialog.Builder b = new AlertDialog.Builder(getActivity());
 b.setTitle("My Dialog Title");
 b.setPositiveButton("Ok", this);
 b.setNegativeButton("Cancel", this);
 b.setMessage(this.getMessage());
 return b.create();
 }
 other functions
}

In this example, you use the alert dialog builder to create a dialog object to return. This

will work well for simple dialogs. The first option of overriding onCreateView() is equally

easy and provides much more flexibility.

Displaying a Dialog Fragment
Once you have a dialog fragment constructed, you will need a fragment transaction to

show it. Like all other fragments, operations on dialog fragments are conducted through

fragment transactions.

The show() method on a dialog fragment takes a fragment transaction as an input. You

can see this in Listing 29–13. The show() method uses the fragment transaction to add

this dialog to the activity and then commits the fragment transaction. However, the

show() method does not add the transaction to the back stack. If you want to do this,

you need to add this transaction to the back stack first and then pass it to the show()

method. The show() method of a dialog fragment has the following signatures:

public int show(FragmentTransaction transaction, String tag)
public int show(FragmentManager manager, String tag)

The first show() method displays the dialog by adding this fragment to the passed-in

transaction with the specified tag. This method then returns the identifier of the

committed transaction.

The second show() method automates getting a transaction from the transaction

manager. This is a shortcut method. However, when you use this second method, you

don't have an option to add the transaction to the back stack. If you want that control,

you will need to use the first method. The second method could be used if you wanted

to simply display the dialog and you had no other reason to work with a fragment

transaction at that time.

A nice thing about a dialog being a fragment is that the underlying fragment manager

does the basic state management. For example, even if the device rotates when a dialog

is being displayed, the dialog is reproduced without you performing any state

management.

The dialog fragment also offers methods to control the frame in which the dialog's view

is displayed such as the title and the appearance of the frame. Refer to the

DialogFragment class documentation to see more of these options; this URL is provided

at the end of this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1048

Dismissing a Dialog Fragment
There are two ways you can dismiss a dialog fragment. The first one is to explicitly call

the dismiss() method on the dialog fragment in response to a button or some action on

the dialog view, as shown in Listing 29–16.

Listing 29–16. Calling dismiss()

if (someview.getId() == R.id.btn_dismiss)
{
 //use some callbacks to advise clients
 //of this dialog that it is being dismissed
 //and call dismiss
 dismiss();
 return;
}

The dialog fragment’s dismiss() method will remove the fragment from the fragment

manager and then commit that transaction. If there is a back stack for this dialog

fragment, then the dismiss() will just pop the current dialog out of the transaction stack

and present the previous fragment transaction state. Whether there is a back stack or

not, calling dismiss() will result in calling the standard dialog fragment destroy callbacks

including onDismiss().

One thing to note is that you can't rely on onDismiss() to conclude that a dismiss() has

been called by your code. This is because onDismiss() is also called when a device

configuration changes and hence is not a good indicator of what the user did to the

dialog itself. If the dialog is being displayed when the user rotates the device, the dialog

fragment will see onDismiss() called even though the user did not press a button inside

of the dialog. Instead, you should probably always rely on explicit button clicks on the

dialog view.

If the user presses the Back button while the dialog fragment is displayed, this will cause

the onCancel() callback to fire on the dialog fragment. By default, Android will make the

dialog fragment go away, so you won’t need to call dismiss() on the fragment yourself.

But if you want the calling activity to be notified that the dialog has been cancelled, you

will need to invoke logic from within onCancel() to make that happen. This is a

difference between onCancel() and onDismiss() with dialog fragments. With

onDismiss(), you still can’t be sure exactly what happened that caused the onDismiss()

callback to fire. You might also have noticed that a dialog fragment does not have a

cancel() method, just dismiss(), but as we said, when a dialog fragment is being

cancelled by pressing the Back button, Android takes care of cancelling/dismissing it for

you.

The other way to dismiss a dialog fragment is to present another dialog fragment. The

way you dismiss the current dialog and present the new one is slightly different than just

dismissing the current dialog. Listing 29–17 shows an example.

Listing 29–17. Setting Up a Dialog for Back Stack

if (someview.getId() == R.id.btn_invoke_another_dialog)
{
 Activity act = getActivity();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1049

 FragmentManager fm = act.getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 ft.remove(this);

 ft.addToBackStack(null);
 //null represents no name for the back stack transaction

 HelpDialogFragment hdf =
 HelpDialogFragment.newInstance(R.string.helptext);
 hdf.show(ft, "HELP");
 return;
}

Within a single transaction you’re removing the current dialog fragment and you’re

adding the new dialog fragment. This has the effect of making the current dialog

disappear visually and making the new dialog appear. If the user presses the Back

button, because you’ve saved this transaction on the back stack, the new dialog would

be dismissed and the previous dialog would be displayed. This is a handy way of

displaying a help dialog, for example.

Implications of a Dialog Dismiss
When you add any fragment to a fragment manager, the fragment manager will do the

state management for that fragment. This means when a device configuration changes

(for example, the device rotates), the activity will be restarted and the fragments are also

restarted. You saw this earlier when you rotated the device while running the

Shakespeare sample application.

A device configuration change doesn’t affect dialogs because they are also managed by

the fragment manager. But the implicit behavior of show() and dismiss() means that

you can easily lose track of a dialog fragment if you’re not careful. The show() method

automatically adds the fragment to the fragment manager; the dismiss() method

automatically removes the fragment from the fragment manager. You may have a direct

pointer to a dialog fragment before you start showing the fragment. But you can’t add

this fragment to the fragment manager and later call show(), since a fragment can only

be added once to the fragment manager. You may plan to retrieve this pointer through

restore of the activity. However, if you were to show and dismiss this dialog, this

fragment is implicitly removed from fragment manager, thereby denying the ability for

that fragment to be restored and repointed (because the fragment manager doesn't

know this fragment exists after it gets removed).

If you want to keep the state of a dialog after it was dismissed you will need to maintain

the state outside of the dialog either in the parent activity or a non-dialog fragment that

hangs around for a longer time.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1050

DialogFragment Sample Application
You’ll now create a sample application that demonstrates these concepts of a dialog

fragment. You’re also going to introduce a concept of communication between a

fragment and the activity that contains it. To make it all happen, you need five Java files.

MainActivity.java is the main activity of your application. This will

display a simple view with help text in it and a menu from which

dialogs can be started.

PromptDialogFragment.java is an example of a dialog fragment that

defines its own layout in XML and allows input from the user. It has

three buttons on the dialog: Save, Dismiss (i.e., cancel), Help.

AlertDialogFragment.java is an example of a dialog fragment that

uses the AlertBuilder class to create a dialog within this fragment.

This is the old-school way of creating a dialog; it allows you to reuse

what you already know about dialogs within a fragment.

HelpDialogFragment.java is a very simple fragment that displays a

help message from the applications resources. The specific help

message is identified when a help dialog object is created. This help

fragment can be shown from both the main activity and from the

prompt dialog fragment.

OnDialogDoneListener.java is an interface that you’ll require your

activity to implement in order to get messages back from the

fragments. Using an interface means that your fragments don’t need

to know too much about the calling activity, except that it must have

implemented this interface. This helps encapsulate functionality where

it belongs. From the activity’s point of view, it has a common way to

receive information back from fragments without having to know too

much about them.

There are three layouts for this application: for your main activity, for the prompt dialog

fragment, and for the help dialog fragment. Note that you don’t need a layout for the

alert dialog fragment because the AlertBuilder will take care of that layout for you

internally. When you’re done, your application will look like Figure 29–3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1051

Figure 29–3. The user interface for the dialog fragment sample application

Dialog Sample: MainActivity
Let’s get to the source code. Listing 29–18 shows your main activity.

Listing 29–18. The Main Activity for Dialog Fragments

// This file is MainActivity.java
import android.app.Activity;
import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;

public class MainActivity extends Activity
implements OnDialogDoneListener
{
 public static final String LOGTAG = "DialogFragmentDemo";
 public static final String ALERT_DIALOG_TAG = "ALERT_DIALOG_TAG";
 public static final String HELP_DIALOG_TAG = "HELP_DIALOG_TAG";
 public static final String PROMPT_DIALOG_TAG = "PROMPT_DIALOG_TAG";

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1052

 setContentView(R.layout.main);
 FragmentManager.enableDebugLogging(true);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 if (item.getItemId() == R.id.menu_show_alert_dialog)
 {
 this.testAlertDialog();
 return true;
 }
 if (item.getItemId() == R.id.menu_show_prompt_dialog)
 {
 this.testPromptDialog();
 return true;
 }
 if (item.getItemId() == R.id.menu_help)
 {
 this.testHelpDialog();
 return true;
 }
 return true;
 }

 private void testPromptDialog()
 {
 FragmentTransaction ft = getFragmentManager().beginTransaction();

 PromptDialogFragment pdf =
 PromptDialogFragment.newInstance("Enter Something");

 pdf.show(ft, PROMPT_DIALOG_TAG);
 }

 private void testAlertDialog()
 {
 FragmentTransaction ft = getFragmentManager().beginTransaction();

 AlertDialogFragment adf =
 AlertDialogFragment.newInstance("Alert Message");

 adf.show(ft, ALERT_DIALOG_TAG);
 }

 private void testHelpDialog()
 {
 FragmentTransaction ft = getFragmentManager().beginTransaction();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1053

 HelpDialogFragment hdf =
 HelpDialogFragment.newInstance(R.string.help_text);

 hdf.show(ft, HELP_DIALOG_TAG);
 }

 public void onDialogDone(String tag, boolean cancelled,
 CharSequence message) {
 String s = tag + " responds with: " + message;
 if(cancelled)
 s = tag + " was cancelled by the user";
 Toast.makeText(this, s, Toast.LENGTH_LONG).show();
 Log.v(LOGTAG, s);
 }
}

The code for your main activity is very straightforward. In onCreate(), you set the

content view and you turn on fragment manager debugging. You then have a couple of

methods related to setting up your options menu. For each menu option chosen, you

call a simple method. Each method does basically the same thing: gets a fragment

transaction, creates a new fragment, and shows the fragment. Note that each fragment

has a unique tag supplied to the show() method. This tag becomes associated to the

fragment in the fragment manager, so you can locate these fragments later by tag name.

The fragment can also determine its own tag value with the getTag() method on

Fragment.

The last method definition in your main activity is onDialogDone(), which is a callback

that is part of the OnDialogDoneListener interface that your activity is implementing. As

you can see, the callback supplies a tag of the fragment that is calling you, a boolean

value indicating whether or not the dialog fragment was cancelled, and a message. For

your purposes, you merely want to log the information to LogCat; you also show it to the

user using Toast.

Dialog Sample: OnDialogDoneListener
So that you can know when a dialog has gone away, create a listener interface that your

dialog callers will implement. The code of the interface is in Listing 29–19.

Listing 29–19. The Listener Interface

// This file is OnDialogDoneListener.java
/*
 * An interface implemented typically by an activity
 * so that a dialog can report back
 * on what happened.
 */
public interface OnDialogDoneListener {
 public void onDialogDone(String tag, boolean cancelled, CharSequence message);
}

This is a very simple interface, as you can see. You’ve only chosen one callback for this

interface, which the activity will have to implement. Your fragments won’t need to know

the specifics of the calling activity, only that the calling activity must implement the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1054

OnDialogDoneListener interface; therefore the fragments can call this callback to

communicate with the calling activity. Depending on what the fragment is doing, there

could be multiple callbacks in the interface. For this sample application, you’re showing

the interface separately from the fragment class definitions. For easier management of

code, you could embed the fragment listener interface inside of the fragment class

definition itself, thus making it easier to keep the listener and the fragment in sync with

each other.

Dialog Sample: PromptDialogFragment
Now let’s take a look at your first fragment, the PromptDialogFragment, whose layout

and Java code is shown in Listing 29–20.

Listing 29–20. The PromptDialogFragment Layout and Java Code

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/prompt_dialog.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:padding="4dip"
 android:gravity="center_horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/promptmessage"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_marginLeft="20dip"
 android:layout_marginRight="20dip"
 android:text="Enter Text"
 android:layout_weight="1"
 android:layout_gravity="center_vertical|center_horizontal"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:gravity="top|center_horizontal" />

 <EditText
 android:id="@+id/inputtext"
 android:layout_height="wrap_content"
 android:layout_width="400dip"
 android:layout_marginLeft="20dip"
 android:layout_marginRight="20dip"
 android:scrollHorizontally="true"
 android:autoText="false"
 android:capitalize="none"
 android:gravity="fill_horizontal"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <Button android:id="@+id/btn_save"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1055

 android:layout_weight="0"
 android:text="Save">
 </Button>

 <Button android:id="@+id/btn_dismiss"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="0"
 android:text="Dismiss">
 </Button>

 <Button android:id="@+id/btn_help"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="0"
 android:text="Help">
 </Button>

 </LinearLayout>
</LinearLayout>

// This file is PromptDialogFragment.java
import android.app.Activity;
import android.app.DialogFragment;
import android.app.FragmentTransaction;
import android.content.DialogInterface;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class PromptDialogFragment
extends DialogFragment
implements View.OnClickListener
{
 private EditText et;

 public static PromptDialogFragment
 newInstance(String prompt)
 {
 PromptDialogFragment pdf = new PromptDialogFragment();
 Bundle bundle = new Bundle();
 bundle.putString("prompt",prompt);
 pdf.setArguments(bundle);

 return pdf;
 }

 @Override
 public void onAttach(Activity act) {
 // If the activity you're being attached to has
 // not implemented the OnDialogDoneListener

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1056

 // interface, the following line will throw a
 // ClassCastException. This is the earliest you
 // can test if you have a well-behaved activity.
 OnDialogDoneListener test = (OnDialogDoneListener)act;
 super.onAttach(act);
 }

 @Override
 public void onCreate(Bundle icicle)
 {
 super.onCreate(icicle);
 this.setCancelable(true);
 int style = DialogFragment.STYLE_NORMAL, theme = 0;
 setStyle(style,theme);
 }

 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle icicle)
 {
 View v = inflater.inflate(R.layout.prompt_dialog, container,
 false);

 TextView tv = (TextView)v.findViewById(R.id.promptmessage);
 tv.setText(getArguments().getString("prompt"));

 Button dismissBtn = (Button)v.findViewById(R.id.btn_dismiss);
 dismissBtn.setOnClickListener(this);

 Button saveBtn = (Button)v.findViewById(R.id.btn_save);
 saveBtn.setOnClickListener(this);

 Button helpBtn = (Button)v.findViewById(R.id.btn_help);
 helpBtn.setOnClickListener(this);

 et = (EditText)v.findViewById(R.id.inputtext);
 if(icicle != null)
 et.setText(icicle.getCharSequence("input"));
 return v;
 }

 @Override
 public void onSaveInstanceState(Bundle icicle) {
 icicle.putCharSequence("input", et.getText());
 super.onPause();
 }

 @Override
 public void onCancel(DialogInterface di) {
 Log.v(MainActivity.LOGTAG, "in onCancel () of PDF");
 super.onCancel (di);
 }

 @Override
 public void onDismiss(DialogInterface di) {
 Log.v(MainActivity.LOGTAG, "in onDismiss() of PDF");
 super.onDismiss(di);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1057

 public void onClick(View v)
 {
 OnDialogDoneListener act = (OnDialogDoneListener)getActivity();
 if (v.getId() == R.id.btn_save)
 {
 TextView tv =
 (TextView)getView().findViewById(R.id.inputtext);
 act.onDialogDone(this.getTag(), false, tv.getText());
 dismiss();
 return;
 }
 if (v.getId() == R.id.btn_dismiss)
 {
 act.onDialogDone(this.getTag(), true, null);
 dismiss();
 return;
 }
 if (v.getId() == R.id.btn_help)
 {
 FragmentTransaction ft =
 getFragmentManager().beginTransaction();
 ft.remove(this);

 // in this case, you want to show the help text, but
 // come back to the previous dialog when you're done
 ft.addToBackStack(null);
 //null represents no name for the back stack transaction

 HelpDialogFragment hdf =
 HelpDialogFragment.newInstance(R.string.help1);
 hdf.show(ft, MainActivity.HELP_DIALOG_TAG);
 return;
 }
 }
}

Your prompt dialog layout looks like many you’ve seen previously. There is a TextView to

serve as the prompt; an EditText to take the user’s input; and three buttons for saving

the input, dismissing (i.e., cancelling) the dialog fragment, and popping a help dialog.

Your PromptDialogFragment Java code starts out looking just like your earlier fragments.

You have a newInstance() static method to create new objects, and within this method

you call the default constructor, build an arguments bundle, and attach it to your new

object. Next, you have something new within the onAttach() callback. You want to

make sure that the activity you just got attached to has implemented the

OnDialogDoneListener interface. In order to test that, you cast the activity passed in to

the OnDialogDoneListener interface. If the activity does not implement this interface,

you’ll get a ClassCastException thrown. You could have handled this exception and

dealt with it more gracefully, but you’re trying to keep the code as simple as possible for

now.

Next up is the onCreate() callback. As is common with fragments, you don’t build your

user interface here, but you can set the dialog style. This is unique to dialog fragments.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1058

You can set both the style and the theme yourself, or you can set just style and use a

theme value of zero (0) to let the system choose an appropriate theme for you.

In onCreateView() you create the view hierarchy for your dialog fragment. Just like other

fragments, you do not attach your view hierarchy to the view container passed in (i.e., by

setting the attachToRoot parameter to false). You then proceed to set up the button

callbacks and you set the dialog prompt text to the prompt that was passed originally to

newInstance(). Finally, you check to see if there are any values being passed in through

the icicle bundle. This would indicate that your fragment is being recreated, most likely

due to a configuration change, and it’s possible that the user had already typed some

text. If so, you need to populate the EditText with what the user had done so far.

Remember that because your configuration has changed, the actual view object in

memory is not the same as before, so you must locate it and set the text accordingly.

The very next callback is onSaveInstanceState(); it’s where you save any current text

typed in by the user into the icicle bundle.

Your onCancel() and onDismiss() callbacks are only shown because of the logging, so

you’ll be able to see when these callbacks fire during the lifecycle of your fragment.

The final callback in your prompt dialog fragment is for the buttons. Once again, you

grab a reference to your enclosing activity and you cast it to the interface you expect the

activity to have implemented. If the user pressed the Save button, you grab the text as

entered and you call the interface’s callback onDialogDone(). As shown earlier, this

callback takes the tag name of this fragment, a boolean indicating whether or not this

dialog fragment was cancelled, and a message, which in this case is the text as typed

by the user.

You then call dismiss() to get rid of the dialog fragment. Remember that dismiss() not

only makes the fragment go away visually, but it pops the fragment out of the fragment

manager so it is no longer available to you. If the button pressed is Dismiss, you again

call the interface callback, this time with no message, and then you call dismiss(). And

finally, if the user pressed the Help button, you don’t actually want to lose the prompt

dialog fragment, so you do something a little different. We described this earlier. In order

to remember your prompt dialog fragment so you can come back to it later, you need to

create a fragment transaction to remove the prompt dialog fragment and to add the help

dialog fragment with the show() method; this needs to go onto the back stack. Notice,

too, how the help dialog fragment is created with a reference to a resource ID. This

means your help dialog fragment can be used with any help text available to your

application.

Dialog Sample: HelpDialogFragment
We’ll show the code for the help dialog fragment shortly, but we’ll describe the

operation now. You created a fragment transaction to go from the prompt dialog

fragment to the help dialog fragment, and you placed that fragment transaction on the

back stack. This has the effect of making the prompt dialog fragment disappear from

view, but it’s still accessible through the fragment manager and the back stack. The new

help dialog fragment appears in its place and allows the user to read the help text. When

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1059

the user dismisses the help dialog fragment, the fragment back stack entry will be

popped, with the effect of the help dialog fragment being dismissed (both visually and

from the fragment manager) and the prompt dialog fragment restored to view. This is

actually a pretty easy way to make all this happen. The code in Listing 29–21 is very

simple yet very powerful; it even works if the user rotates the device while these dialogs

are being displayed.

Listing 29–21. The HelpDialogFragment Layout and Java Code

<?xml version="1.0" encoding="utf-8"?>
<!-- this file is /res/layout/help_dialog.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:padding="4dip"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/helpmessage"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_marginLeft="20dip"
 android:layout_marginRight="20dip"
 android:text="Help Text"
 android:layout_weight="1"
 android:layout_gravity="center_vertical|center_horizontal"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:gravity="top|center_horizontal" />

 <Button android:id="@+id/btn_close"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="0"
 android:text="Close">
 </Button>

</LinearLayout>

// This file is HelpDialogFragment.java
import android.app.DialogFragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.TextView;

public class HelpDialogFragment
extends DialogFragment
implements View.OnClickListener
{
 public static HelpDialogFragment
 newInstance(int helpResId)
 {
 HelpDialogFragment hdf = new HelpDialogFragment();
 Bundle bundle = new Bundle();
 bundle.putInt("help_resource", helpResId);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1060

 hdf.setArguments(bundle);

 return hdf;
 }

 @Override
 public void onCreate(Bundle icicle)
 {
 super.onCreate(icicle);
 this.setCancelable(true);
 int style = DialogFragment.STYLE_NORMAL, theme = 0;
 setStyle(style,theme);
 }

 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle icicle)
 {
 View v = inflater.inflate(R.layout.help_dialog, container,
 false);

 TextView tv = (TextView)v.findViewById(R.id.helpmessage);
 tv.setText(getActivity().getResources()
 .getText(getArguments().getInt("help_resource")));

 Button closeBtn = (Button)v.findViewById(R.id.btn_close);
 closeBtn.setOnClickListener(this);
 return v;
 }

 public void onClick(View v)
 {
 dismiss();
 }
}

Here is another dialog fragment, and it’s even simpler than the last one. The point of this

dialog fragment is to display some help text. The layout is a TextView and a Close

button. The Java code should be starting to look familiar to you now. There’s a

newInstance() method to create a new help dialog fragment, an onCreate() to set the

style and theme, and an onCreateView() to build the view hierarchy. In this particular

case, you want to locate a string resource to populate the TextView, so you access the

resources through the activity, and choose the resource ID as was passed in to

newInstance(). Finally, onCreateView() sets up a button click handler to capture the

clicks on the Close button. In this case, you don’t need to do anything interesting at the

time of dismissal.

There are two ways this fragment is being called: from the activity and from the prompt

dialog fragment. When this help dialog fragment is shown from the main activity,

dismissing it will simply pop the fragment off the top and reveal the main activity

underneath. When this help dialog fragment is shown from the prompt dialog fragment,

because this fragment was part of a fragment transaction on the back stack, dismissing

it will cause the fragment transaction to be rolled back, which will pop the help dialog

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1061

fragment, but will restore the prompt dialog fragment. The user will see the prompt

dialog fragment reappear.

Dialog Sample: AlertDialogFragment
We have one last dialog fragment to show you in this sample application, and that is the

alert dialog fragment. While you could always create an alert dialog fragment in a way

similar to the help dialog fragment, you can also create a dialog fragment using the old

AlertBuilder framework that has worked for many releases of Android. Listing 29–22

shows the source code of the alert dialog fragment.

Listing 29–22. The AlertDialogFragment Java Code

import android.app.AlertDialog;
import android.app.Dialog;
import android.app.DialogFragment;
import android.content.DialogInterface;
import android.os.Bundle;

public class AlertDialogFragment
extends DialogFragment
implements DialogInterface.OnClickListener
{
 public static AlertDialogFragment
 newInstance(String message)
 {
 AlertDialogFragment adf = new AlertDialogFragment();
 Bundle bundle = new Bundle();
 bundle.putString("alert-message",message);
 adf.setArguments(bundle);

 return adf;
 }

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 this.setCancelable(true);
 int style = DialogFragment.STYLE_NORMAL, theme = 0;
 setStyle(style,theme);
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState)
 {
 AlertDialog.Builder b =
 new AlertDialog.Builder(getActivity());
 b.setTitle("Alert!!");
 b.setPositiveButton("Ok", this);
 b.setNegativeButton("Cancel", this);
 b.setMessage(this.getArguments().getString("alert-message"));
 return b.create();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1062

 public void onClick(DialogInterface dialog, int which)
 {
 OnDialogDoneListener act = (OnDialogDoneListener) getActivity();
 boolean cancelled = false;
 if (which == AlertDialog.BUTTON_NEGATIVE)
 {
 cancelled = true;
 }
 act.onDialogDone(getTag(), cancelled, "Alert dismissed");
 }
}

You don’t need a layout for this one because the AlertBuilder takes care of that for

you. You’ll note that this dialog fragment starts out like any other, but instead of an

onCreateView() callback, you now have a onCreateDialog() callback instead. You either

implement onCreateView() or onCreateDialog() but not both. The return from

onCreateDialog() is not a view; it’s a Dialog. Now you can reuse what you learned in

Chapter 8 to build a dialog the old-fashioned way. What’s different is that to get

parameters for your dialog, you should be accessing your arguments bundle. In this

example application, you only do this for the alert-message, but you could access other

parameters through the arguments bundle as well.

Notice also that with this type of dialog fragment, you need your fragment class to

implement the DialogInterface.OnClickListener, which means your dialog fragment

must implement the onClick() callback. This callback will be fired when the user acts on

the embedded dialog. Once again, you get a reference to the dialog that fired and an

indication of which button was pressed. As before, you should be careful not to depend

on an onDismiss() because this could fire when there is a device configuration change.

Dialog Sample: Main Layout main.xml
For completeness, Listing 29–23 shows the layout for your main activity.

Listing 29–23. The Main Layout

<?xml version="1.0" encoding="utf-8"?>
<!-- /res/layout/main.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height=" match_parent"
 android:gravity="fill"
 >
<TextView android:id="@+id/textViewId"
 android:layout_width=" match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white"
 android:text="@string/help_text"
 android:textColor="@android:color/black"
 android:textSize="25sp"
 android:scrollbars="vertical"
 android:scrollbarStyle="insideOverlay"
 android:scrollbarSize="25dip"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1063

 android:scrollbarFadeDuration="0"
 />
</LinearLayout>

When you run this sample application, make sure you try all the menu options in

different orientations of the device. Try to rotate the device while the dialog fragments

are displayed. You should be pleased to see that the dialogs go with the rotations and

you do not need to worry about a lot of code to manage the saving and restoring of

fragments due to configuration changes.

The other thing we hope you appreciate is the ease with which you can communicate

between the fragments and the activity. Of course, the activity has references, or can

get references, to all of the available fragments, so it can access methods exposed by

the fragments themselves. This isn’t the only way to communicate between fragments

and with the activity. You can always use the getter methods on the fragment manager

to retrieve an instance of a managed fragment, then cast that reference appropriately

and call a method on that fragment directly. You can even do this from within another

fragment. The degree to which you isolate your fragments from each other with

interfaces and through activities, or build in dependencies with fragment-to-fragment

communication, is based on how complex your application is and how much reuse you

want to get.

More Communications with Fragments
We’ve covered a clean way to do communication between fragments, that is, to define

and use an interface to implement callbacks from fragments back to the calling activity.

But this is not the only way to do communication between fragments. Since the

fragment manager knows about all fragments attached to the current activity, the activity

or any fragment in that activity can ask for any other fragment using the getter methods

described earlier.

Once the fragment reference has been obtained, the activity or fragment could cast the

reference appropriately and then call methods directly on that activity or fragment. This

would cause your fragments to have more knowledge about the other fragments than

might normally be desired, but don’t forget that you’re running this application on a

mobile device, so cutting corners can sometimes be justified. A code snippet is

provided in Listing 29–24 to show how one fragment might communicate directly with

another fragment.

Listing 29–24. Direct Fragment-to-Fragment Communication

FragmentOther fragOther =
 (FragmentOther)getFragmentManager().findFragmentByTag(“other”);
fragOther.callCustomMethod(arg1, arg2);

In Listing 29–24, there is no interface involved. The current fragment has direct

knowledge of the class of the other fragment and also which methods exist on that

class. This may be okay since these fragments are part of one application, and it can be

easier to simply accept the fact that some fragments will know about other fragments.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1064

Using startActivity() and setTargetFragment()
A feature of fragments that is very much like activities is the ability of a fragment to start

an activity. Fragment has a startActivity() method and startActivityForResult()

method. These work just like the ones for activities do; when a result is passed back, it

will cause the onActivityResult() callback to fire on the fragment that started the

activity.

There’s another communication mechanism you should know about. When one

fragment wants to start another fragment, there is a feature that lets the calling fragment

set its identity with the called fragment. Listing 29–25 shows an example of what it might

look like.

Listing 29–25. Fragment-to-Target-Fragment Setup

mCalledFragment = new CalledFragment();
mCalledFragment.setTargetFragment(this, 0);
fm.beginTransaction().add(mCalledFragment, "work").commit();

With these few lines, you’ve created a new CalledFragment object, set the target

fragment on the called fragment to the current fragment, and added the called fragment

to the fragment manager and activity using a fragment transaction. When the called

fragment starts to run, it will be able to call getTargetFragment(), which will return a

reference to the calling fragment. With this reference, the called fragment could invoke

methods on the calling fragment or even access view components directly. For example,

in Listing 29–26, the called fragment could set text in the UI of the calling fragment

directly.

Listing 29–26. Target Fragment-to-Fragment Communication

TextView tv = (TextView)
 getTargetFragment().getView().findViewById(R.id.text1);
tv.setText(“Set from the called fragment”);

Custom Animations with ObjectAnimator
Earlier we exposed you to a little custom animations on fragments. You used a custom

animation to fade out the current details fragment while you faded in the new details

fragment. We also told you that the stock animations under the Android SDK were few

and some don’t even work. This section will help you understand how to create your

own custom animations so you can do interesting transitions between old fragments

and new fragments.

The mechanism for implementing custom animations on fragments is the

ObjectAnimator class. This is actually a generic feature in Android that can be applied to

View objects and not just fragments. You’re only going to worry about fragments in this

section, but the principles here can apply to other objects as well. An object animator is

a device that takes an object and animates it from a “from” state to a “to” state over a

period of time. The period of time is defined in the animator in milliseconds. There is a

routine that defines how the animation behaves over that period of time; these routines

are called interpolators.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1065

If you imagine the transition from the “from” state to the “to” state as a straight line, the

interpolator defines where along that straight line the transition will be at any point during

the time period. One of the simplest interpolators is the linear interpolator; it divides the

straight line into equal chunks and steps evenly through those chunks for the duration of

the time period. The effect is that the object moves at a constant speed from the “from” to

the “to” with no acceleration at the beginning and no deceleration at the end.

The default interpolator is accelerate_decelerate which adds a smooth accelerated

beginning and a smooth decelerated end. What’s really interesting is that the

interpolator could go past the “to” point on that line and then come back. This is what

the overshoot interpolator does. There’s another interpolator called bounce that goes

from “from” to “to,” but when it first gets to the “to” point, it bounces back towards

“from” a few times before finally settling to rest on the “to” point.

An interpolator acts on a dimension of the object. For the fade_in and fade_out

animators you used earlier, the dimension was the fragment’s alpha (that is, the amount

of transparency of the object). The fade_in animator took the alpha dimension from zero

(0) to one (1). The fade_out animator took the alpha dimension of the other fragment

from one (1) to zero (0). One fragment went from invisible to completely visible, while the

other went from completely visible to invisible.

Behind the scenes, the object animator is finding the root view of the fragment and

applying repeated calls to the setAlpha() method, changing the parameter value over

the time period a little bit in each call. The frequency of the repeated calls depends on

the interpolator. The linear interpolator makes regular calls at regular intervals in time.

The accelerate_decelerate interpolator starts out setting the parameter values smaller

at first per unit of time, then makes the parameter values larger, creating the effect of an

acceleration. It then does the opposite at the other end making the object appear to

decelerate on its dimension.

Dimensions can be many of the values that are settable and gettable on a View. In fact,

reflection is used by the object animator to work on the view being manipulated. If you

specify that you want to animate rotation, the object animator will call the setRotation()

method on the object (or object’s view). The animator takes a “from” and a “to” value,

and uses them to animate the object from “from” to “to”. If the “from” value is not

specified, a getter method will be determined and used to get the current value from the

object. Let’s see how this applies to your fragments.

The only method in the FragmentTransaction class that specifies a custom animation is

the setCustomAnimations() method, which takes two resource ID parameters.

 The first parameter specifies an animator resource for the fragment

entering the view container.

 The second specifies an animator resource for the fragment exiting the

view container.

These two animators do not need to even be related, but it’s probably best visually to

pair them. In other words, if you’re fading one fragment out, fade the other fragment in.

Or if you’re sliding one fragment out to the right, slide the other fragment in from the left.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1066

Animator resources can be found in the Android SDK folder, under the appropriate

platform, then under /data/res/animator. This is where you will find fade_in.xml and

fade_out.xml that you used earlier. Or you could create your own. If you decide to

create your own, it would be best to use your project’s /res/animator directory, creating

it manually if you need to. For an example of a simple local animator XML file

(slide_in_left.xml), refer to Listing 29–27.

Listing 29–27. A Custom Animator to Slide in From the Left

<?xml version="1.0" encoding="utf-8" ?>
<objectAnimator xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:interpolator/accelerate_decelerate"
 android:valueFrom="-1280"
 android:valueTo="0"
 android:valueType="floatType"
 android:propertyName="x"
 android:duration="2000" />

This resource file uses the new (in Android 3.0) objectAnimator tag. The basic structure

of this file should look familiar to you. It is a bunch of android: attributes to indicate what

you want to do. For object animator, there are several things that you need to specify.

The first one is the interpolator. The types that are available to you are listed in

android.R.interpolator. Using your knowledge of resource names, the interpolator

attribute resolves to a file in the Android SDK, under the appropriate platform, in

/data/res/interpolator, with a filename of accelerate_decelerate.xml.

The android:propertyName attribute specifies the dimension that you want to animate

on. In this case, you want to animate on the X dimension. If you investigate the setX()

method on a View, you will find that it takes a float value as a parameter, and that is why

the android:valueType attribute is set to floatType. The android:duration value is set

to 2000, which means 2 seconds. This is probably too slow for a real production app,

but it helps you to see what’s happening as it happens. Finally, the android:valueFrom

and android:valueTo attributes have values of -1280 and 0 respectively. These are

chosen because you want the fragment to be at 0 when the animation is done. That is,

you want the fragment to be visible to the user with its left edge on the left edge of the

view container when the animation stops. Because you want to have the effect of the

fragment sliding in from the left, you want it to start from off to the left, and -1280 seems

like a big enough number to make that happen. As you might expect, an animator

resource file that slides out to the right would look very similar to the one in Listing 29–

27, except that the valueFrom would be 0 and the valueTo would be some large positive

number, such as 1280.

Most of the time, you will find that the dimension you’re interested in animating is a

floatType, although there may be times when you pick an intType. Just look at the type

of the parameter that the setter requires. This is where the object animator gets really

powerful. In fact, it does not care where the setter method came from. That means you

could add your own dimension to an object, and the object animator can animate it for

you. All you need to do is supply the setter method, then set the attributes in a resource

file; the object animator will do the rest. One caveat here is that if you do not specify a

valueFrom attribute in your XML, the object animator will use a getter method to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1067

determine the starting value for the object. The getter method must return the

appropriate type for the dimension in question.

You might also be interested in animating more than one dimension at a time. For this,

you can use the <set> tag to enclose more than one <objectAnimator> tag. Listing 29–

28 shows an animator resource file (slide_out_down.xml) that animates along Y at the

same time that it animates on alpha.

Listing 29–28. A Custom Animator that Animates on Y and Alpha

<?xml version="1.0" encoding="utf-8" ?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<objectAnimator
 android:interpolator="@android:interpolator/accelerate_cubic"
 android:valueFrom="0"
 android:valueTo="1280"
 android:valueType="floatType"
 android:propertyName="y"
 android:duration="2000" />
<objectAnimator
 android:interpolator="@android:interpolator/accelerate_cubic"
 android:valueFrom="1"
 android:valueTo="0"
 android:valueType="floatType"
 android:propertyName="alpha"
 android:duration="2000" />
</set>

The <set> tag corresponds to the AnimatorSet class in Android; however in XML, <set>

only has one attribute and that is android:ordering. The allowed attribute values are

together, the default, which causes the enclosed object animators to run in parallel, and

sequential, which causes the object animators to run one after the other in the order in

which they are declared in the XML file.

References
Here are some helpful references to topics you may wish to explore further:

 www.androidbook.com/projects. This is a list of downloadable projects related to

this book. The file called ProAndroid3_Ch29_Fragments.zip contains all projects

from this chapter, listed in separate root directories. There is also a README.TXT

file that describes exactly how to import projects into Eclipse from one of these

zip files. It includes some projects that utilize the Fragment Compatibility SDK

for older Androids as well.

 ApiDemos. Within the Android SDK samples, there is a project called ApiDemos.

This project includes several example applications that use fragments and

should help you to understand how to use them.

 http://developer.android.com/guide/topics/fundamentals/fragments.html.

This is the Android Developer’s Guide page to fragments.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 29: Fragments for Tablets and More 1068

 http://android-developers.blogspot.com/2011/02/android-30-fragments-
api.html. The Android blog post that introduced fragments.

 http://android-developers.blogspot.com/2011/02/animation-in-
honeycomb.html. The Android blog post that introduced the new animations

framework and object animators.

Summary
This chapter introduced a core new class in Android 3.0, the Fragment class, and its

related classes for the manager, transactions, and subclasses. Fragments are a powerful

new way to organize functionality and the corresponding user interfaces. While they

were developed with tablet screens in mind, fragments will also be available on small

screen devices to help encapsulate behavior into nice, neat chunks that can be reused,

moved around, and managed in ways that you couldn’t do before. You learned about

one of the cool new features in Android, the object animator, which can very easily make

fragment transitions very interesting.

The next chapter will cover another significant new aspect of Android tablet

applications, namely the ActionBar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1069

1069

 Chapter

Exploring ActionBar
ActionBar is a new API in Android 3.0 SDK. It allows you to customize the title bar of an
activity. Prior to the 3.0 SDK release, the title bar of an activity merely contained the title
of an activity.

As the Android SDK matures with each new release, it is taking on more and more
desktop UI patterns. In a desktop application, you see a menu bar and a number of
action icons. It is this desktop title/menu bar pattern that is emulated in the ActionBar
implementation.

Android ActionBar is particularly modeled after the menu/title bar of a web browser. The
ActionBar is designed in such a way that you can apply the familiar browser-like
navigation patterns to your applications.

NOTE: In this chapter we refer to both ActionBar and “action bar.” When we say ActionBar

we are referring to the actual class, and when we want to talk about the concept we refer to it as

“action bar.”

A key goal of the action bar design is to make the frequently used actions easily
available to the user without searching through option menus or context menus.

NOTE: In the current computer technology literature, the convenient access to actions is
fashionably called “Affordance,” which refers to the ability to conveniently discover/invoke

actions. We have included a few reference URLs on Affordance at the end of the chapter.

As you go through this chapter we are going to demonstrate the following about an
action bar:

 An action bar is owned by an Activity and follows its lifecycle.

 An action bar can take one of three forms: tabbed action bar, list
action bar and a standard action bar. We will show how these various
action bars look and behave in each of the modes.

30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1070

We will talk about how tabbed listeners allow us to interact with a
tabbed action bar.

We will talk about how spinner adapters and list listeners are used to
interact with the list action bar.

We will show you how the Home icon of an action bar interacts with
the menu infrastructure.

We will show you how icon menu items can be shown and reacted to
on the action bar real estate.

We will demonstrate these concepts by planning three different activities. Each activity
will sport an action bar in a different mode. This will give us an opportunity to examine
the behavior of the action bar in each mode. But first, let’s take a quick look at visual
aspects of an action bar.

Anatomy of an ActionBar
Figure 30–1 shows a typical action bar in tabbed navigation mode.

Figure 30–1. An Activity with a Tabbed ActionBar

This screenshot is taken from the actual working example that is presented later in the
chapter. This action bar in Figure 30–1 has five parts in it. These parts are (from left to
right):

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1071

 Home Icon area: The icon on the top left-hand side of the action bar is
sometimes called the “Home” icon. This is similar to a web site
navigation context, where clicking on the Home icon will take you to a
starting point. You will see later that clicking on this Home icon will
send a callback to the option menu call back with menu id:
android.R.id.home.

 Title area: The Title area displays the title for the action bar.

 Tabs area: The Tabs area is where the action bar paints the list of tabs
specified. The content of this area is variable. If the action bar
navigation mode is Tabs, then tabs are shown here. If the mode is list
navigation mode then a navigable list of drop-down items are shown.
In standard mode this area is ignored and left empty.

 Action Icon area: Following the Tabs area, the Action Icon area shows
some of the option menu items as icons. We will show you how to
choose which option menus are displayed as action icons in our
example later.

 Menu Icon area: The last area is the Menu area. It is a single standard
menu icon. When you click on this menu icon you will see the
expanded menu. This expanded menu will look differently or show up
in a different location depending on the size of the Android device.

In addition to the action bar, the activity in Figure 30–1 is showing a debug text view
where a number of actions are logged to. These actions may be a result of clicking the
tabs or the home icon or the action menus or the actual option menus.

Let’s look at how to implement the three types of action bar activities we talked about
earlier: the tabbed action bar, the list action bar, and the standard action bar. As we
have introduced the tabbed action bar as the visual example of an action bar, we will
start with the implementation of a Tabbed Action bar first.

Tabbed Navigation Action Bar Activity
Although we are planning three different activities, each with its own type of action bar,
there is a lot of common functionality we would like to see in all these activities.

 All of these activities have the same debug text view so that we can
monitor the actions as they get invoked.

 All of these activities have the same Home icon.

 All of these activities have a title.

 All of these activities have the same Action icons.

 All of these activities have the same Options menu.

The primary difference with these activities is that each configures the action bar
differently. In our example we will encapsulate the common behavior in a base class and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1072

allow each of the derived activities, including this tabbed action bar activity, to configure
the action bar.

It is difficult to explain these common files with out the context of at least one action bar
activity. So we will present these common files and how the tabbed action bar activity
uses these common files in one section first. Then the other two status bar activities can
be added to this project with fewer files.

Below is a list of files that are needed for this tabbed action bar exercise. These files
include both the common files and the files specific to the tabbed action bar. The list
seems numerous because we are encapsulating the common behavior into base
classes. This will reduce the number of files for later examples. We have also indicated
the listing numbers for each of the files.

 DebugActivity.java: Base class activity that allows for a debug text
view as shown in Figure 30–1 (Listing 30–2).

 BaseActionBarActivity.java: Derived from DebugActivity and allows
for common navigation (such as responding to common actions
including switching between the three activities) (Listing 30–3).

 IReportBack.java: An interface that works as a communication
vehicle between the debug activity and the various listeners of the
action bar (Listing 30–1).

 BaseListener.java: Base listener class that works with the
DebugActivity and the various actions that gets invoked from the
action bar. Acts as a base class for both tab listeners and list
navigation listeners (Listing 30–4).

 TabNavigationActionBarActivity.java: inherits from
BaseActionBarActivity.java and configures the action bar as a tabbed
action bar. Most of the code pertaining to the tabbed action bar is in
this class (Listing 30–6).

 TabListener.java: Required to add a tab to the tabbed action bar. This
where you respond to tab clicks. In our case this simply logs a
message to the debugview through the BaseListener (Listing 30–5).

 AndroidManifest.xml: where activities are defined to be invoked
(Listing 30–13).

 Layout/main.xml: Layout file for the DebugActivity. As all the three
status bar activities inherit this base DebugActivity they all share the
this layout file (Listing 30–7).

 menu/menu.xml: A set of menu items to test the menu interaction
with the action bar. The menu file is also shared across all the derived
status bar activities (Listing 30–9).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1073

Implementing Base Activity Classes
A number of the base classes use IReportBack interface. This interface was introduced
in previous chapters. It serves the same purpose here. It is reintroduced in Listing 30–1
so that you don’t have to refer back to previous chapters.

Listing 30–1. IReportBack.java

//IReportBack.java
package com.androidbook.actionbar;

public interface IReportBack
{
 public void reportBack(String tag, String message);
 public void reportTransient(String tag, String message);
}

A class that implements this interface takes a message and report it on a screen, like a
debug message. This is done through the reportBack() method. The method
reportTransient does the same except it uses a Toast to report that message to the
user.

In our example the class that implements IReportBack is DebugActivity. The source
code for DebugActivity is presented in listing 30–2.

Listing 30–2. DebugActivity with a Debug Text View

//DebugActivity.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public abstract class DebugActivity
extends Activity
implements IReportBack
{
 //Derived classes needs first
 protected abstract boolean
 onMenuItemSelected(MenuItem item);

 //private variables set by constructor
 private static String tag=null;
 private int menuId = 0;
 private int layoutid = 0;
 private int debugTextViewId = 0;

 public DebugActivity(int inMenuId,
 int inLayoutId,
 int inDebugTextViewId,
 String inTag)
 {
 tag = inTag;
 menuId = inMenuId;
 layoutid = inLayoutId;
 debugTextViewId = inDebugTextViewId;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1074

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(this.layoutid);

 //You need the following to be able to scroll
 //the text view.
 TextView tv = this.getTextView();
 tv.setMovementMethod(
 ScrollingMovementMethod.getInstance());
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(menuId, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item){
 appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_da_clear){
 this.emptyText();
 return true;
 }
 boolean b = onMenuItemSelected(item);
 if (b == true)
 {
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
 protected TextView getTextView(){
 return
 (TextView)this.findViewById(this.debugTextViewId);
 }
 protected void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle().toString();
 appendText("MenuItem:" + title);
 }
 protected void emptyText(){
 TextView tv = getTextView();
 tv.setText("");
 }
 protected void appendText(String s){
 TextView tv = getTextView();
 tv.setText(s + "\n" + tv.getText());
 Log.d(tag,s);
 }
 public void reportBack(String tag, String message)
 {
 this.appendText(tag + ":" + message);
 Log.d(tag,message);
 }
 public void reportTransient(String tag, String message)
 {
 String s = tag + ":" + message;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1075

 Toast mToast =
 Toast.makeText(this, s, Toast.LENGTH_SHORT);
 mToast.show();
 reportBack(tag,message);
 Log.d(tag,message);
 }
}//eof-class

The primary goal of this base activity class is to present an activity with a debug text
view in it. This text view is used to log messages coming from the reportBack() method.
We will use this activity as the base activity for the action bar activities.

Assigning Uniform Behavior for the ActionBar
We have more opportunities to refactor the code from the derived activities into another
level of a base class called BaseActionBarActivity.

The primary goal of this refactoring class is to provide a common behavior in response
to the menu items. These menu items are there to switch between the three activities
that represent three different action bar modes. Once switched you can test that
particular action bar activity.

This activity is presented in Listing 30–3.

Listing 30–3. A Common Base Class for Action Bar Enabled Activities

// BaseActionBarActivity.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public abstract class BaseActionBarActivity
extends DebugActivity
{
 private String tag=null;
 public BaseActionBarActivity(String inTag)
 {
 super(R.menu.menu,
 R.layout.main,
 R.id.textViewId,
 inTag);
 tag = inTag;
 }
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 TextView tv = this.getTextView();
 tv.setText(tag);
 }
 protected boolean onMenuItemSelected(MenuItem item)
 {
 //Responding to Home Icon
 if (item.getItemId() == android.R.id.home) {
 this.reportBack(tag,"Home Pressed");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1076

 return true;
 }

 //Common behavior to invoke sibling activities
 if (item.getItemId() == R.id.menu_invoke_tabnav){
 if (getNavMode() ==
 ActionBar.NAVIGATION_MODE_TABS)
 {
 this.reportBack(tag,
 "You are already in tab nav");
 }
 else {
 this.invokeTabNav();
 }
 return true;
 }
 if (item.getItemId() == R.id.menu_invoke_listnav){
 if (getNavMode() ==
 ActionBar.NAVIGATION_MODE_LIST)
 {
 this.reportBack(tag,
 "You are already in list nav");
 }
 else{
 this.invokeListNav();
 }
 return true;
 }
 if (item.getItemId() == R.id.menu_invoke_standardnav){
 if (getNavMode() ==
 ActionBar.NAVIGATION_MODE_STANDARD)
 {
 this.reportBack(tag,
 "You are already in standard nav");
 }
 else{
 this.invokeStandardNav();
 }
 return true;
 }
 return false;
 }
 private int getNavMode(){
 ActionBar bar = this.getActionBar();
 return bar.getNavigationMode();
 }
 private void invokeTabNav(){
 Intent i = new Intent(this,
 TabNavigationActionBarActivity.class);
 startActivity(i);
 }

 //Uncomment the following method bodies
 //as you implement these additional activities

 private void invokeListNav(){
 //Intent i = new Intent(this,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1077

 // ListNavigationActionBarActivity.class);
 //startActivity(i);
 }
 private void invokeStandardNav(){
 //Intent i = new Intent(this,
 // StandardNavigationActionBarActivity.class);
 //startActivity(i);
 }
}//eof-class

If you notice the code responding to menu items in Listing 30–3, you see that we are
checking if the current activity is also the one that is being asked to switch to. If it is, we
log a message and don’t switch the current activity.

This base action bar activity also simplifies the derived action bar navigation activities
including the tabbed navigation action bar activity.

Implementing the Tabbed Listener
Before we are able to work with a tabbed action bar we need a tabbed listener. A
tabbed listener allows us to respond to the click events on the tabs. We will derive our
tabbed listener from a base listener that will allow us to log tab actions. Listing 30–4
shows the base listener that uses the IReportBack for logging.

Listing 30–4. A Common Listener for Action Bar Enabled Activities

//BaseListener.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public class BaseListener
{
 protected IReportBack mReportTo;
 protected Context mContext;
 public BaseListener(Context ctx, IReportBack target)
 {
 mReportTo = target;
 mContext = ctx;
 }
}

This base class holds a reference to an implementation of IReportBack and also the
activity that can be used as a context. In our case, the DebugActivity of Listing 30–2 is
the implementer of IReportBack and also plays the role of the context.

Now that we have a base listener, Listing 30–5 shows the tabbed listener.

Listing 30–5. Tab Listener to Respond to Tab Actions

// TabListener.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public class TabListener extends BaseListener

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1078

implements ActionBar.TabListener
{
 private static String tag = "tc>";
 public TabListener(Context ctx,
 IReportBack target)
 {
 super(ctx, target);
 }
 public void onTabReselected(Tab tab,
 FragmentTransaction ft)
 {
 this.mReportTo.reportBack(tag,
 "ontab re selected:" + tab.getText());
 }
 public void onTabSelected(Tab tab,
 FragmentTransaction ft)
 {
 this.mReportTo.reportBack(tag,
 "ontab selected:" + tab.getText());
 }
 public void onTabUnselected(Tab tab,
 FragmentTransaction ft)
 {
 this.mReportTo.reportBack(tag,
 "ontab un selected:" + tab.getText());
 }
}

This tabbed listener merely documents the call backs from the action bar tabs to the
debug text view of Figure 30–1.

Implementing the Tabbed Action Bar Activity
With the tabbed listener in place, we can finally construct the tabbed navigation activity.
This is presented in Listing 30–6.

Listing 30–6.Tab-navigation Enabled Action Bar Activity

// TabNavigationActionBarActivity.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public class TabNavigationActionBarActivity
extends BaseActionBarActivity
{
 private static String tag =
 "Tab Navigation ActionBarActivity";
 public TabNavigationActionBarActivity()
 {
 super(tag);
 }
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1079

 workwithTabbedActionBar();
 }

 public void workwithTabbedActionBar()
 {
 ActionBar bar = this.getActionBar();
 bar.setTitle(tag);
 bar.setNavigationMode(
 ActionBar.NAVIGATION_MODE_TABS);

 TabListener tl = new TabListener(this,this);

 Tab tab1 = bar.newTab();
 tab1.setText("Tab1");
 tab1.setTabListener(tl);
 bar.addTab(tab1);

 Tab tab2 = bar.newTab();
 tab2.setText("Tab2");
 tab2.setTabListener(tl);
 bar.addTab(tab2);
 }
}//eof-class

We will now discuss this code of tabbed action bar activity (Listing 30–6) in multiple sub
sections as we draw attention to each aspect of working with a tabbed action bar. We
will start with getting access to the action bar belonging to an activity.

Obtaining an Action Bar Instance
In Listing 30–6, notice that the code that controls the action bar is pretty simple. You get
access to the action bar of an activity by calling getActionbar() on the activity. Here is
that line of code again:

 ActionBar bar = this.getActionBar();

As this snippet of code shows, action bar is a property of the activity, and does not
cross activity boundaries. In other words, one cannot use an action bar to control or
influence multiple activities.

Action Bar Navigation Modes
In Listing 30–6, once we obtain the action bar for an activity we set its navigation mode
to ActionBar.NAVIGTION_MODE_TABS: Here is that line of code again:

 bar.setNavigationMode(
 ActionBar.NAVIGATION_MODE_TABS);

The other two possible action bar navigation modes are

 ActionBar.NAVIGTION_MODE_LIST

 ActionBar.NAVIGTION_MODE_STANDARD

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1080

Once we set the tabbed navigation mode we have a number of tab related methods in
the API of ActionBar class to work with. In Listing 30–6 we have used these tab related
APIs to add two tabs to the action bar. We have also used the tabbed listener of listing
30–5 to initialize the tabs.

Here is a quick code snippet borrowed from Listing 30–6 that shows how a tab is added
to the action bar:

 Tab tab1 = bar.newTab();
 tab1.setText("Tab1");
 tab1.setTabListener(tl);
 bar.addTab(tab1);

If you were to forget to call the setTabListener() on a tab that is added to the action bar,
you will get a runtime error indicating that a listener is needed.

Scrollable Debug Text View Layout
As the tabs of the action bar are clicked on, the tab listeners are set up in such a way
that debug messages are sent to the debug text view. Listing 30–7 shows the layout file
for the DebugActivity, which in turn contains the debug text view.

Listing 30–7. Debug Activity Text View Layout File

<?xml version="1.0" encoding="utf-8"?>
<!-- /res/layout/main.xml -->
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="fill"
 >
<TextView android:id="@+id/textViewId"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@android:color/white"
 android:text="Initial Text Message"
 android:textColor="@android:color/black"
 android:textSize="25sp"
 android:scrollbars="vertical"
 android:scrollbarStyle="insideOverlay"
 android:scrollbarSize="25dip"
 android:scrollbarFadeDuration="0"
 />
</LinearLayout>

There are a few things worth noting about this layout. We set the background color of
the text view to white. This will let us capture screens in brighter light. The text size is
also set to large font to aid screen capture.

We have also set up the text view so that it is enabled for scrolling. Although typically
layouts use ScrollView, a text view is already enabled for scrolling by itself. In addition

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1081

to enabling the scrolling properties in the XML file for the text view you will need to call
the setMovementMethod() on the text view as shown in Listing 30–8.

Listing 30–8. Enabling Text View for Scrolling

TextView tv = this.getTextView();
tv.setMovementMethod(
 ScrollingMovementMethod.getInstance());

This code is extracted from the DebugActivity (Listing 30–2).

Also as the text view is scrolled you notice that the scroll bar appears and then fades
away. This is not a good indicator if there is text beyond visible range. You can tell the
scrollbar to stay by setting the fade duration to 0. See listing 30–7 for how to set this
parameter.

Action Bar and Menu Interaction
We also want to demonstrate in this example how menus interact with action bar. So we
will need to set up a menu file. This file is presented in Listing 30–9.

Listing 30–9. Menu XML File for This Project

<!-- /res/menu/menu.xml -->
<menu
xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">

 <item android:id="@+id/menu_action_icon1"
 android:title="Action Icon1"
 android:icon="@drawable/creep001"
 android:showAsAction="ifRoom"/>

 <item android:id="@+id/menu_action_icon2"
 android:title="Action Icon2"
 android:icon="@drawable/creep002"
 android:showAsAction="ifRoom"/>

 <item android:id="@+id/menu_icon_test"
 android:title="Icon Test"
 android:icon="@drawable/creep003"/>

 <item android:id="@+id/menu_invoke_listnav"
 android:title="Invoke List Nav"
 />
 <item android:id="@+id/menu_invoke_standardnav"
 android:title="Invoke Standard Nav"
 />
 <item android:id="@+id/menu_invoke_tabnav"
 android:title="Invoke Tab Nav"
 />
 <item android:id="@+id/menu_da_clear"
 android:title="clear" />
 </group>
</menu>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1082

NOTE: This menu XML file in listing 30–9 uses 3 icons (creep001, 002, and 003) from
www.androidicons.com. As per the web site, these icons are under Creative Commons License

3.0.

The following section talks about this menu in a bit more detail.

Displaying the Menu
In releases 2.3 and earlier, devices often had an explicit menu button. In 3.0 the
emulator doesn’t show physical Home, Back, or Menu buttons. These may still be
available on some devices.

As seen in Figure 30–2, the Back and Home buttons are now soft buttons available at
the bottom of the screen. However, the Menu button is shown in the context of an
application, specifically as part of the action bar to the top right-hand corner.

Figure 30–2 shows what the menu looks when it is expanded.

Figure 30–2. An activity with a tabbed action bar and expanded menu

One thing of note is that a menu bar may not show the icons for menu items. One
should not rely on icons for menu items being shown in all cases.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1083

Menu Items as Actions
As indicated at the beginning of the chapter, you can assign some of the menu items to
show up directly on the action bar. These menu items are indicated with the tag
showAsAction. You can see this tag in Listing 30–9 of the menu XML file. This tag line is
extracted and shown again listing 30–10.

Listing 30–10. Menu Item Attribute for showAsAction

android:showAsAction="ifRoom"

The other possible values for this Xml tag are:

 always

 never

 withText

You can also accomplish the same affect with a Java API available on the MenuItem
class.

menuItem.setShowAsAction(int actionEnum)

The values for the actionEnum are:

 SHOW_AS_ACTION_ALWAYS

 SHOW_AS_ACTION_IF_ROOM

 SHOW_AS_ACTION_NEVER

 SHOW_AS_ACTION_WITH_TEXT

Because these actions are merely menu items they behave as such and call the
onOptionsItemSelected() callback method of the activity class.

Finally the example uses a number of icons. You can replace these icons with some of
your own or you can download the project for this chapter using the URL at the end of
this chapter.

Android Manifest File
Listing 30–11 shows the manifest file for this project so far.

Listing 30–11. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.actionbar"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"
 android:label="ActionBars Demo App">
 <activity android:name=".TabNavigationActionBarActivity"
 android:label="Action Bar Demonstration: TabNav">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1084

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="11" />
</manifest>

The minSDKVersion need to point to 11, the API number for release 3.0.

Examining the Tabbed Action Bar Activity
Once you compile these files and run you will see the tabbed action bar, as seen
Figure 30–1. Then if you click on the menu icon to the right you will see the menu of the
application, as expanded in Figure 30–2.

The application is designed such a way that any action on the action bar is logged to the
debug text view. While you are running this application you can test the following:

 If you click the Home icon you will see a message logged to the debug
screen indicating that the Home button is pressed.

 If you click on tab1, you will see a message that the “tab1” is reselected.

 If you click on tab2, you will see two messages. The first one indicates
that tab1 is losing focus and that tab2 is clicked. These messages are
provisioned through the tab listener in Listing 30–5.

 If you click on the action buttons on the right-hand side, you will see
that their corresponding menu items are invoked and debug messages
logged to the debug view.

 If you expand the menu, you will see that there are menu items to
invoke other activities, which will demonstrate the rest of the action
bar modes. However, you will need to wait until the other activities are
developed later in the chapter. Until then you will just notice that those
items are invoked and debug messages logged.

This concludes our implementation of not only the tabbed action bar activity but also the
setting up of the base framework so that coding the rest of the two activities is much
simpler. Let’s move onto the list navigation mode action bar.

List Navigation Action Bar Activity
As our base classes are carrying the most of the work, it is fairly easy to implement and
test the list action bar navigation activity. You will need the following additional files to
implement this activity:

 SimpleSpinnerArrayAdapter.java: This class is needed to setup the
list navigation bar along with the listener. This class provides the rows
required by a drop-down navigation list (Listing 30–12).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1085

 ListListener.java: This class acts as a listener to the list navigation
activity. This class needs to be passed to the action bar when setting it
up as a list action bar (Listing 30–13).

 ListNavigationActionBarActivity.java: This is where we implement
the list navigation action bar activity (Listing 30–14).

Once you have these three new files you will need to update the following two files:

 BaseActionBarActivity.java: You will need to uncomment the
invocation of list action bar activity (Listing 30–3).

 AndroidManifest.xml: You will need to define the new list navigation
action bar activity in the manifest file (Listing 30–11).

Creating a SpinnerAdapter
To be able to initialize the action bar with list navigation mode we need the following two
things:

 A spinner adapter that can tell the list navigation what the list of navigation text is.

 To supply a list navigation listener so that when one of the list items is
picked we can get a call back.

Listing 30–12 presents the SimpleSpinnerArrayAdapter that implements the
SpinnerAdapter interface. As stated earlier the goal of this class is to give a list of items
to show.

Listing 30–12. Creating a Spinner Adapter for List Navigation

//SimpleSpinnerArrayAdapter.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public class SimpleSpinnerArrayAdapter
extends ArrayAdapter<String>
implements SpinnerAdapter
{
 public SimpleSpinnerArrayAdapter(Context ctx)
 {
 super(ctx,
 android.R.layout.simple_spinner_item,
 new String[]{"one","two"});

 this.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 }
 public View getDropDownView(
 int position, View convertView, ViewGroup parent)
 {
 return super.getDropDownView(
 position, convertView, parent);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1086

There is no SDK class that directly implements the SpinnerAdapter interface required by
list navigation. So we have derived this class from an ArrayAdapter and provided a
simple implementation for the SpinnerAdapter. We have also provided a reference URL
on spinner adapters for further reading. Let’s move on now to the list navigation listener.

Creating a List Listener
This is a simple class implementing the ActionBar.OnNavigationListener. Listing 30–13
shows the code for this class.

Listing 30–13. Creating a List Listener for List Navigation

//ListListener.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public class ListListener
extends BaseListener
implements ActionBar.OnNavigationListener
{
 public ListListener(
 Context ctx, IReportBack target)
 {
 super(ctx, target);
 }
 public boolean onNavigationItemSelected(
 int itemPosition, long itemId)
 {
 this.mReportTo.reportBack(
 "list listener","ItemPostion:" + itemPosition);
 return true;
 }
}

Like the tabbed listener of Listing 30–5, we have inherited from our BaseListener so that
we can log events to the debug text view through the IReportBack interface.

Setting Up a List Action Bar
We now have what we require to set up a list navigation action bar. Let us show you the
source code for the list navigation action bar activity in Listing 30–14. This class is very
similar to the tabbed activity we have coded earlier.

Listing 30–14. List Navigation Action Bar Activity

// ListNavigationActionBarActivity.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public class ListNavigationActionBarActivity
extends BaseActionBarActivity
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1087

 private static String tag=
 "List Navigation ActionBarActivity";

 public ListNavigationActionBarActivity()
 {
 super(tag);
 }
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 workwithListActionBar();
 }
 public void workwithListActionBar()
 {
 ActionBar bar = this.getActionBar();
 bar.setTitle(tag);
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
 bar.setListNavigationCallbacks(
 new SimpleSpinnerArrayAdapter(this),
 new ListListener(this,this));
 }
}//eof-class

The important code is highlighted in Listing 30–14. The code is quite simple. We take a
spinner adapter and a list listener and set them as list navigation callbacks on the action
bar.

Making Changes to BaseActionBarActivity
Once this list navigation action bar activity (listing 30–14) is available we can go back
and change the BaseActionBarActivity so that the menu item intended for
ListNavigationActionBarActivity will invoke this activity. When uncommented, the
corresponding function in Listing 30–3 will look like the extracted and uncommented
code in Listing 30–15.

Listing 30–15. Code to Uncomment for Invoking List Navigation Action Bar Activity

private void invokeListNav(){
 Intent i = new Intent(this,
 ListNavigationActionBarActivity.class);
 startActivity(i);
}

Once you uncomment this, the menu item and the code are already wired to invoke this
list navigation action bar activity.

Making Changes to AndroidManifest.xml
Before you will be able to invoke the activity, you will need to register this activity in the
Android Manifest file. You will need to add the code in Listing 30–16 to the Android
Manifest file of Listing 30–11 to complete the activity registration.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1088

Listing 30–16. Registering List Navigation Action Bar Activity

<activity android:name=".ListNavigationActionBarActivity"
 android:label="Action Bar Demonstration: ListNav">
</activity>

Examining the List Action Bar Activity
Once you compile these files covered so far (the new and changed files mentioned at
the beginning of this section on list navigation action bar) and run the application you
will see the list action bar as shown in Figure 30–3.

Figure 30–3. An activity with list navigation action bar

In Figure 30–3 you can see the unexpanded list right next to the title of the activity. This
is the same place the SDK puts the tabs when the action bar mode is tab navigation.
Now if you click on the item that said “one,” you will see the list expand allowing you to
choose. This is shown in Figure 30–4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1089

Figure 30–4. An activity with opened navigation list

When you compare this activity to the activity in figures 30–1 and 30–2, you realize that
these activities look very similar, except that in one case you have tabs and in the other
case you have a list to navigate. The motif of these two activities is illustrating an
important parallel to the way web sites are designed.

In a web site, there might be a number of web pages, but each page will display a
uniform look and feel through master pages. In our simpler case we have used the base
class to accomplish this effect.

Although we have used multiple activities to showcase action bars, the action bars in 3.0
seem to be more applicable to orchestrate fragments on a single activity. However,
should you need to work with multiple activities, you can use this pattern of base class
to provide that master page design pattern.

The behavior of this list navigation activity is very much like the one for the tabbed
activity of the previous section. The difference here is what happens when you click the
list items. Each time you choose a list item you will see a call back to the list listener and
the list listener will send a message to the debug text view.

Now that we have two activities available, the menu items will allow you to switch
between tabbed activity and the list activity.

Let’s now move on to the simpler standard action bar activity

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1090

Standard Navigation Action Bar Activity
In this section we will examine the nature of a standard navigation action bar. We will set
up an activity and sets its action bar navigation mode as standard. We will then look at
the standard navigation looks like and its behavior.

Like in the case of ListNavigationActionBarActivity, as our base classes are carrying
most of the work, it is easy to implement and test the standard action bar navigation
activity. You will need the following additional file to implement this activity:

StandardNavigationActionBarActivity.java: This is the
implementation file for configuring the action bar as a standard
navigation mode action bar (Listing 30–17).

Once you have this new file you will need to update the following two files:

BaseActionBarActivity.java: You will need to uncomment the
invocation of standard action bar activity in response to a menu item
(see Listing 30–18 for changes and Listing 30–3 for the original file).

AndroidManifest.xml: You will need to define this new activity in the
manifest file (see Listing 30–19 for this activity’s definition so that you
can add this to the main AndroidManifest file Listing 30–11).

We will explore each of these files now.

Standard Navigation Action Bar Activity
We have used tabbed listeners while setting up the tabbed action bar and we have used
list listeners for setting up the list navigation action bar. For a standard action bar there
are no listeners other than of course the menu call backs. The menu callbacks don’t
need to be specially set up as they are already hooked up automatically by the SDK. As
a result it is quite easy to set up the action bar in the standard navigation mode.

Listing 30–17 presents the source code for the standard navigation action bar activity

Listing 30–17. Standard Navigation Action Bar Activity

//StandardNavigationActionBarActivity.java
package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public class StandardNavigationActionBarActivity
extends BaseActionBarActivity
{
 private static String tag=
 "Standard Navigation ActionBarActivity";
 public StandardNavigationActionBarActivity()
 {
 super(tag);
 }
 @Override

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1091

 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 workwithStandardActionBar();
 }

 public void workwithStandardActionBar()
 {
 ActionBar bar = this.getActionBar();
 bar.setTitle(tag);
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_STANDARD);
 //test to see what happens if you were to attach tabs
 attachTabs(bar);
 }
 public void attachTabs(ActionBar bar)
 {
 TabListener tl = new TabListener(this,this);

 Tab tab1 = bar.newTab();
 tab1.setText("Tab1");
 tab1.setTabListener(tl);
 bar.addTab(tab1);

 Tab tab2 = bar.newTab();
 tab2.setText("Tab2");
 tab2.setTabListener(tl);
 bar.addTab(tab2);
 }
}//eof-class

The only thing necessary to set up an action bar as a standard navigation action bar is
to set its navigation mode as such. In Listing 30–17 we have done this and highlighted
that portion of the code.

NOTE: In listing 30–17 we have also included code to see what would happen if we were to add
tabs while the mode is standard navigation. Our testing shows that these tabs do not cause any

run time error but will be ignored by the framework.

Before seeing how the standard action bar looks like you will need to make a couple of
changes to existing files.

Making Changes to BaseActionBarActivity
Once the standard navigation action bar activity (Listing 30–17) is available we can go
back and change the BaseActionBarActivity (listing 30–3) so that the menu item
intended for StandardNavigationActionBarActivity will invoke this activity. When
uncommented, the corresponding function in Listing 30–3 will look like the code in
listing 30–18.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1092

Listing 30–18. Section to Uncomment to Invoke Standard Navigation Action Bar Activity

 private void invokeStandardNav(){
 Intent i = new Intent(this,
 StandardNavigationActionBarActivity.class);
 startActivity(i);
 }

Once you uncomment this, the menu item and the code are already wired to invoke the
StandardNavigationActionBarActivity.

Making Changes to AndroidManifest.xml
However before you will be able to invoke this activity you will need to register this
activity in the android manifest file. You will need to add the following lines to the
Android Manifest file in Listing 30–11 to complete the activity registration.

Listing 30–19. Registering Standard Navigation Action Bar Activity

<activity android:name=".StandardNavigationActionBarActivity "
 android:label="Action Bar Demonstration: Standard Nav">
</activity>

Examining the Standard Action Bar activity
Once you compile these files covered so far (and listed in section “Standard Navigation
Action Bar Activity”) and run the application you will see the application opened up with
the tabbed activity as the first activity (Figure 30–1). Now if you click on the menu item you
will see the figure 30–2. From this menu if you choose the menu item “Invoke Standard
Nav” you will see the standard navigation action bar activity as in the following figure 30–5

Figure 30–5. An activity with a standard navigation action bar

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1093

The first thing you notice in Figure 30–5 is that this action bar is missing the area that
was previously dedicated to either a tab or a list navigation. Now if you go ahead and
click the action buttons on the right, they will write their invocation to the debug text
view. Now go ahead and click the Home button. This will also write its invocation
signature to the debug text view. At the end of these three clicks the debug text view
looks like Figure 30–6.

Figure 30–6. Responding to events from an action bar

References
The following URLs have been very helpful to us as we researched material for this
chapter. The URLs also include further reading material. In addition the final URL allows
you to download a zip file of the project of this chapter.

 The Design of Everyday Things, Donald A Norman. This book appropriated a
previous idea in “visual perception” called “Affordance” for HCI (Human
Computer Interaction). This term is being increasingly used in Android UI
literature. The action bar of this chapter is touted as one of the key UI
affordances.

 http://en.wikipedia.org/wiki/Affordance: WikiPedia Reference for understanding
UI Affordances.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1094

 www.androidbook.com/item/3624: This points to our research on Android
action bar. You will see here a list of further references, sample code, links to
sample examples, and UI figures representing various action bar modes.

 http://developer.android.com/reference/android/app/ActionBar.html: This is the
API URL for the ActionBar class.

 Using Spinner Adapter (www.androidbook.com/item/3627): To set up the list
navigation mode you need to understand how dropdown lists and spinners
work. This brief article shows a few samples and reference links on how to use
spinners in Android.

 www.androidicons.com: A couple of the icons we have used in this chapter are
borrowed from this web site. These icons are under Creative Commons License
3.0.

 Pleasing Android Layouts (www.androidbook.com/item/3302): We have at this
URL few quick notes and sample source code for simple layouts.

 http://developer.android.com/reference/android/view/MenuItem.html: This URL
points to the API for the MenuItem class. You will find here documentation for
attaching menu items as action icons on the action bar.

 http://developer.android.com/guide/topics/resources/menu-resource.html: This
URL documents the XML elements available for defining menu items as action
bar icons.

 www.androidbook.com/projects: You can use this URL to download the test
project dedicated for this chapter. The name of the zip file is
ProAndroid3_ch30_TestActionbar.zip

Summary
As you can see, an action bar is not mysterious. It is a known paradigm that is used in
desktop programming. What makes it a bit hard to the beginner is that a single class is
behaving in three different ways based on a mode bit. One would always wonder if a set
of derived classes could have done the trick. But again the difference between the
modes is so small it may be better off as a single class as it is now.

The motivation for the action bar design seems to swerve towards a browser based web
navigation model.

The Android designers also seem to indicate to use action bar in association with
fragments to get the desired UI uniformity. When you have a need to switch between
activities, the designers are asking us to take a look to see if same thing can be
accomplished through fragments rather than new activities. Fragments bring lot of
advantages especially their state management as device is flipped around causing
configuration changes. An activity with fragments maintains state between configuration
changes Fragments are covered in greater detail in the previous Chapter 29.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1095

This chapter has also presented one possible way to get the design uniformity using a
base level navigation activity. This can potentially be achieved also through delegation
as opposed to inheritance. One could also borrow from well-known patterns that are
used to create master pages on web sites and see how best to orchestrate Android SDK
classes to that effect.

Action bar facilities are available only in SDKs starting at 3.0. As of now there is no
indication that these facilities are available as libraries for older releases.

There is also a bit of discrepancy between documentation and the Java API. The
documentation indicates there are only three action bar modes. However there is an
additional mode in Java API called dropdown navigation mode. When we tested this it
behaved just a list navigation mode except that it removed the title.

Also you can control what is displayed on the action bar through display flags. Refer to
the API documentation as this is pretty straightforward.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 30: Exploring ActionBar 1096

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1097

1097

 Chapter

Additional Topics in 3.0
After 30 chapters, there are still a few topics in Android 3.0 that we haven’t had a

chance to cover! In this final chapter we’re going to discuss the enhancements to home

screen widgets and the new Drag and Drop API.

There are significant enhancements to widget capabilities in 3.0. With these

enhancements, you now can add list-based widgets to the home screen. The Drag and

Drop API is entirely new in 3.0. With the Drag and Drop API, you can build rich user

interfaces similar to those so common on desktops. We will address both topics in great

detail.

List-Based Home Screen Widgets
In Chapter 22, we covered how widgets work in Android releases 2.3 and prior releases.

There are robust enhancements to home screen Widgets in Android release 3.0; it’s very

likely that these changes will be incorporated into the next optimized version of Android

for phones as well.

As a pre-requisite to reading this topic, we urge you to brush up on Chapter 22 to

appreciate the new coverage on widgets. However, this chapter will present a

comprehensive view of widgets that you can follow even if you haven’t delved into the

nuances of Chapter 22.

As you learned in Chapter 22, remote views form the core of home screen widgets. A

home screen widget is essentially a remote view that is painted on the home screen. A

remote view is a view that is entirely disconnected from the underlying data, much like a

web page is disconnected from its server.

Chapter 22 featured a list of layouts and widgets that are capable of being part of a

remote view. Collection views such as lists and grids were not part of allowed widgets in

the 2.3 release. In release 3.0 they are, allowing for a richer experience on the home

screen. Release 3.0 also offers a mini-framework around these collection-based widgets

to load and present data asynchronously. There are new classes and methods in 3.0 to

support these aspects.

31

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1098

We will first cover these enhancements conceptually and then present a working sample

to solidify that understanding. Let’s start with the new remote views in 3.0

New Remote Views in 3.0
In Android 2.3, there are 13 possible layouts and UI widgets that can be part of remote

views.

 AbsoluteLayout

 FrameLayout

 LinearLayout

 RelativeLayout

 AnalogClock

 Button

 Chronometer

 ImageButton

 ProgressBar

 ViewFlipper

 DateTimeView

 ImageView

 TextView

Some of these layouts and views may be deprecated such as the AbsoluteLayout. Do

check these classes before using them in your code. You may ask why this remote view list

is important. Do you use these view/layout classes directly to construct your remote views?

As it turns out, the class RemoteViews can’t be constructed by passing explicit objects

of any of the types listed above. Nor can these types of objects be added to a

RemoteViews directly. Instead, a RemoteViews object is constructed by passing a layout

file to its constructor. The importance of this list is that you can have only these xml

nodes in the layout files that can become remote views.

The following is the enhanced list of 16 allowed layouts, UI widgets, and views in

Android release 3.0:

 FrameLayout

 LinearLayout

 RelativeLayout

 AnalogClock

 Button

 Chronometer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1099

 ImageButton

 ProgressBar

 ListView

 GridView

 StackView

 TextView

 DateTimeView

 ImageView

 AdapterViewFlipper

 ViewFlipper

More remote views may be added in future releases. The key to finding out which of the

current UI objects are enabled for RemoteViews is the fact these classes are annotated

with an interface called RemoteViews.RemoteView.

Armed with this information, you can use Eclipse to figure out which classes in a project

use this annotation. Here’s how you do it:

1. In your source code, put an import statement for the RemoteView interface.

2. Highlight that interface name.

3. Right click and go to References tab.

4. Choose to look for references of this interface in this project.

This will present a list of classes that are annotated with the RemoteView interface.

Working with Lists in Remote Views
In Chapter 22 we covered the existing set of classes in the SDK that support home

screen widgets. The primary ones are the AppWidgetProvider, the AppWidgetManager, the

RemoteViews, and an activity that can be used to configure an AppWidgetProvider with

initialization parameters.

Briefly, here is the core idea of how home screen widgets work (knowing this should

make the rest of this section a bit easier to follow). An AppWidgetProvider is a broadcast

receiver that gets invoked every once in a while based on a timer interval that you

specify in a configuration file. This AppWidgetProvider then loads a RemoteViews instance

based on a layout file. This RemoteViews object is then passed to the AppWidgetManager

to be displayed on the home screen.

Optionally, you can tell Android that you have an activity that needs to be invoked before

placing the widget for the first time on the home screen. This allows the configuration

activity to set initialization parameters for the widget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1100

You also can set up onClick events on the remote views of the widget so that intents

can get fired based on those events. These intents then can invoke whatever

components necessary, including sending messages to the AppWidgetProvider
broadcast receiver.

At a high level, this is all there is to home screen widgets. The rest is the mechanics and

variations on each of these basic ideas.

However, Android 2.3 and earlier didn’t allow list-based remote views and didn’t provide

a mechanism to efficiently populate the list-based remote views. To support list-based

remote views, Android 3.0 has added the following new classes:

RemoteViewsFactory: This class allows you to populate a list remote

view much like list adapters populate regular list views. This class is a

thin wrapper around a list view adapter to supply individual remote

views to the list remote view in an asynchronous manner.

RemoteViewsService: This class is a service that is responsible for

returning a RemoteViewsFactory to the list RemoteViews object. It is the

responsibility of the AppWidgetProvider to tie one of these remote

views services’ to a list remote view. This is done by attaching an

intent that knows how to invoke this service to the list remote view.

This service allows you to extend the life of the process containing the

AppWidgetProvider. Otherwise, when the broadcast receiver returns,

the process can be reclaimed. Chapter 14 explains the symbiotic

relationship between broadcast receivers and long-running services.

The following new API methods have been added to support list-based remote views:

RemoteViews.setPendingIntentTemplate(): This method allows you to

set a pending intent template on the list remote view in order to

respond to click events on the list items. We will talk about the idea of

“template” when we cover the details later.

RemoteViews.setOnClickFillIntent(): This is set on the individual list

items of the list remote view and works closely with the previous

method.

These additional two methods in concert will let you respond to clicks on list-based

remote views. These two methods are designed so that as few pending intents are set

as possible.

We will cover these classes and methods in detail as we go through this chapter. Given

these new features, here are the general steps to work with a list view on a home screen

widget. Do re-read the brief overview of home screen widgets (from earlier in this

section) as you grasp these steps.

1. Prepare a remote layout: Create a suitable remote layout with a list

view in it. A remote layout is a regular layout with only allowed

remotable views. This is no different than what you have to do for any

home screen widget (and is clearly shown in Chapter 22).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1101

2. Load remote layout: In the onUpdate() method of the widget provider,

load this compound remote layout view from the previous step as a

remote view. Here, also, there is no difference. Then hook up the list

remote view with a remote view service so that the list view can get

populated through the remote view factory returned by the remote view

service.

3. Set up RemoteViewService: Locate the list remote view by its ID and set

an intent on that list remote view so that the intent invokes the list

remote view service. RemoteViewService then passes the

RemoteViewFactory to the list view so that the remote list view can get

populated.

4. Set up RemoteViewFactory: The list remote view service will need to

return a list RemoteViewFactory that knows how to populate the list

remote view

5. Set up click events: As part of setting up the list remote view in the

AppWidgetProvider, also set the onClick pending intent template so that

you can respond to that intent. However, you will also need to

correspondingly set up the individual clicks using the

RemoteViewFactory for each view in the list. This is because the items in

the remote list view are populated from the list view factory.

6. Respond to click events: Someone needs to respond to the onClick

events set on the remote list views. You can choose your

AppWidgetProvider to be the receiver for these events. You need to

prepare the broadcast receiver to receive and respond to onClick events

from remote views.

Let’s look at each of these steps with annotated sample code.

Preparing a Remote Layout
As described in the previous section, the layout for a remote view that can be displayed

as a home widget can now include a list view. Listing 31–1 shows an example remotable

layout with a list view in it.

Listing 31–1. A Remote Layout File with a List View

<?xml version="1.0" encoding="utf-8"?>
<!-- /res/layout/test_list_widget_layout.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="150dp"
 android:layout_height="match_parent"
 android:background="@drawable/box1">
<TextView
 android:id="@+id/listwidget_header_textview_id"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1102

 android:layout_width="fill_parent"
 android:layout_height="30dp"
 android:text="Header View"
 android:background="@drawable/box1"
 android:gravity="center"
 android:layout_weight="0"/>
<FrameLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:layout_gravity="center">
 <ListView android:id="@+id/listwidget_list_view_id"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
 <TextView
 android:id="@+id/listwidget_empty_view_id"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:visibility="gone"
 android:textColor="#ffffff"
 android:text="Empty Records View"
 android:textSize="20sp" />
</FrameLayout>
<TextView
 android:id="@+id/listwidget_footer_textview_id"
 android:layout_width="fill_parent"
 android:layout_height="30dp"
 android:text="Footer View"
 android:background="@drawable/box1"
 android:gravity="center"
 android:layout_weight="0"/>
</LinearLayout>

In Listing 31–1, every XML node represents a valid remote view. This layout is presented

in such a way that when shown as a home screen widget, the layout would look like that

in Figure 31–1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1103

Figure 31–1. Home screen populated with a list view widget

The layout pattern in Listing 31–1 follows a simple header, body, footer format. The

header and footer are both set at a fixed height; in this example, these heights are set to

30dp. However, you want the body height to be stretchable to take the rest of the

vertical height. The way to accomplish this is to set the android:layout_weight to zero

on the header and footer. On the body you set the android:layout_weight to 1 and the

android:layout_height to match_parent.

The framelayout that is taking the position of the body of this widget needs a bit of

explanation. A framelayout chooses one of its children as the view exclusively. In this

case, when you have data in the list, you will use the listview. When the list is empty, you

will use the empty text view. You can set this up using the RemoteViewFactory.

Also in this layout file is a custom drawable identified by @drawable/box1 to make the

corners round. Listing 31–2 is the box1.xml file that needs to be placed in the

/res/drawable sub directory.

Listing 31–2. res/drawable/box1.xml

<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <stroke android:width="4dp" android:color="#888888" />
 <padding android:left="2dp" android:top="2dp"
 android:right="2dp" android:bottom="2dp" />
 <corners android:radius="4dp" />
</shape>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1104

Now that you have a sample layout for a home screen widget, let’s discuss how you

would go about loading this layout into a remote view.

Loading a Remote Layout
For a home screen widget, a remote view is loaded and displayed in the onUpdate()

callback of the AppWidgetProvider. Listing 31–3 shows an example of how this is done.

Listing 31–3. Loading a Remote Layout in onUpdate()

public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds)
{
 int N = appWidgetIds.length;
 for (int i=0; i<N; i++)
 {
 int appWidgetId = appWidgetIds[i];

 RemoteViews rv =
 new RemoteViews(context.getPackageName(),
 R.layout.test_list_widget_layout);

 rv.setEmptyView(R.id.listwidget_list_view_id,
 R.id.listwidget_empty_view_id);

 //update this instance of the app widget
 appWidgetManager.updateAppWidget(appWidgetId, rv);
 }
 super.onUpdate(context,appWidgetManager, appWidgetIds);
}

Notice that a RemoteViews object is constructed using the ID of the layout file describing

the entire widget. This layout file is the same one that is in Listing 31–1. You then take

the resulting RemoteViews object and set an empty view for the specific list view resource

(located by its ID) inside that layout file.

In the example in Listing 31–3, the layout file is identified by

R.layout.test_list_widget_layout

The list view resource within this file is identified by

R.id.listwidget_list_view_id

The empty view for this list view resource is identified by

R.id.listwidget_empty_view_id

With these IDs, the code in Listing 31–4 demonstrates how to construct a remote view

and set an empty view for one of its list views.

Listing 31–4. Loading Remote Views

RemoteViews rv =
new RemoteViews(context.getPackageName(),
 R.layout.test_list_widget_layout);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1105

rv.setEmptyView(R.id.bdw_list_view_id,
 R.id.empty_view_id);

Setting up RemoteViewsService
So far you have successfully loaded the remote views in the onUpdate() method of the

AppWidgetProvider. Now you need to hook up the list remote view with a remote view

service so that the remote view service can return the remote view adapter that can

populate the list remote view.

Why a service? Why not directly hook up the remote view factory to the remote list view

view?

Because an AppWidgetProvider is a broadcast receiver, the onUpdate() method of the

widget provider runs under the time constraints of a broadcast receiver. To avoid the

time criticality, Android 3.0 delegated the job of populating the list view to a separate

service that is inherited from android.widget.RemoteViewsService. This

RemoteViewsService is then responsible for returning a list adapter that can populate the

list. This adapter needs to be of type RemoteViewsService.RemoteViewsFactory. In a

way, this is a rote procedure of ultimately getting the remote list view with the remote list

view factory.

Listing 31–5 shows an example of how a remote view service is coded and how it

returns the remote view factory.

Listing 31–5. RemoteViewService Example

public class TestRemoteViewsService
extends android.widget.RemoteViewsService
{
 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent)
 {
 return new TestRemoteViewsFactory(
 this.getApplicationContext(), intent);
 }
}

Notice the following in Listing 31–5:

 You will need to inherit from the RemoteViewsService.

 You will need to specialize a RemoteViewsFactory and return that

factory. We will cover this factory soon.

Being a service, the inherited RemoteViewsService (TestRemoteViewsService, in this

case) needs to be declared in the manifest file as well. Listing 31–6 shows an example.

Listing 31–6. Declaring RemoteViewsService in the Manifest File

<!-- The service serving the RemoteViews to the collection widget -->
<service android:name=".TestRemoteViewsService"
 android:permission="android.permission.BIND_REMOTEVIEWS"
 android:exported="false" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1106

Once you have this remote views service coded, you can attach this service to the list

remote view object using the code in Listing 31–7. (Recall that this code runs in the

onUpdate() method of the AppWidgetProvider.)

Listing 31–7. Associating RemoteViewsService with a RemoteViewList

final Intent intent =
 new Intent(context, TestRemoteViewsService.class);
intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 appWidgetId);
intent.setData(
 Uri.parse(
 intent.toUri(Intent.URI_INTENT_SCHEME)));

rv.setRemoteAdapter(appWidgetId,
 R.id.listwidget_list_view_id, intent);

In Listing 31–7, you first create an explicit intent by identifying the RemoteViewService

class to this intent. Then you put an extra in the intent identifying the app widget ID for

which you are calling the service. Then you do this weird self-referential act where by

you load the data portion of this intent with a string representation of the intent itself.

This approach makes the intent unique because the extras are now part of the data

portion of the intent. Without this, intents are not unique just because of their extras.

Once the uniqueness of the intent is taken care of, you can attach this intent to the

remote list view by calling setRemoteAdapter() and passing the list view ID.

Setting up RemoteViewsFactory
Although you have specified a RemoteViewService to delegate the list population,

ultimately a RemoteViewsFactory is responsible for populating the list view. To populate a

list view, you will start by implementing this adapter-like interface RemoteViewsFactory.

(See Chapter 6 to understand list controls and list adapters.)

Listing 31–8 shows the method signatures of a class that implements this factory

interface.

Listing 31–8. A RemoteViewsFactory Contract

class TestRemoteViewsFactory
implements RemoteViewsService.RemoteViewsFactory
{
 public TestRemoteViewsFactory(Context context, Intent intent);
 public void onCreate();
 public void onDestroy();
 public int getCount();
 public RemoteViews getViewAt(int position);
 private void loadItemOnClickExtras(RemoteViews rv, int position);
 public RemoteViews getLoadingView();
 public int getViewTypeCount();
 public long getItemId(int position);
 public boolean hasStableIds();
 public void onDataSetChanged();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1107

Let’s talk about each of these methods and what needs to be done in each of the

methods, starting with the constructor.

RemoteViewsFactory Constructor

The constructor here takes two arguments. (You can have a different factory that takes

different arguments.) In case of widgets, this factory is constructed by a

RemoteViewsService (as shown in Listing 31–5), so the context is the context of the

widget provider which in itself is a broadcast receiver.

The second argument to the constructor is an intent. This intent is the same intent that is

used to invoke the remote views service. When this intent is created (see Listing 31–7)

and attached to the remote view, one typically drops an extra value representing the

widget ID.

In the constructor, both these values (the context and the intent) could be maintained as

local variables so that subsequent methods could make use of these variables. It is

especially convenient to extract the widget ID from the intent and save it as a local

variable.

onCreate() Callback
The signature of onCreate() is

Public void onCreate()

Following the pattern of a number of components in Android, a RemoteViewsFactory

provides onCreate() and onDestroy() methods. The documentation suggests that the

onCreate() method is called by a client remote view when this class is first created. The

documentation further says that this factory can be shared across multiple remote view

adapters depending on the intent passed.

However, this pattern is not particularly clear in the case of RemoteViewsFactory

because, unlike an activity component or a service component, the creation of the

RemoteViewFactory is in the explicit control of the programmer. The programmer could

have done the initialization in the constructor itself. It is not clear from the

documentation if this factory object is cached by the framework based on the intent

passed to invoke the remote view service. The log messages indicate that the

onCreate() is definitely called. So you have an opportunity to initialize in this method as

well instead of the constructor.

onDestroy() Callback
The signature of onDestroy() is

Public void
 onDestroy()

This is the complement of onCreate() method. Documentation suggests that this

method is called when the last remote views adapter that is associated with this object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1108

(or factory) is unbound. However, it’s not very clear when this method is called; we have

not noticed this method being called either after a single widget is removed from the

home page or the last widget is removed from the home screen.

getCount() Callback
The signature of getCount() method is

public int getCount()

You will need to return the total number of items in this list view. This method is very

much like the corresponding method in the list adapters in Chapter 6 on controls.

getViewAt() Callback
The signature of getViewAt() method is

public RemoteViews getViewAt(int position)

The responsibility of this method is to return a remote view appropriate for this position

in the list view. Typically in this method you will load a layout that is specific to this type

of remote view at this position and then set the values in that remote view using the

position as an indicator to load the corresponding data. Listing 31–9 is an example of

loading an individual layout for a list view item.

Listing 31–9. Loading an Individual List View Item Layout

RemoteViews rv =
 new RemoteViews(
 this.mContext.getPackageName(),
 R.layout.list_item_layout);

The layout that is referred to in Listing 31–9 could look like the layout in Listing 31–10.

Listing 31–10. An Individual List View Item Layout

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/textview_widget_list_item_id"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Temporary text"
/>

Once you load the remote view (Listing 31–9), you can return that remote view to the

calling list remote view to be painted. This is also the place where you can set onClick

behavior for this particular list view.

getLoadingView() Callback
The signature of getLoadingView() method is

public RemoteViews getLoadingView()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1109

This method returns a custom loading view that appears between the time

getViewAt(position) is called and returns. You can return null if you want to use the

default loading view.

getViewTypeCount() Callback
The signature of getViewTypeCount() method is

public int getViewTypeCount()

If the remote list view contains only one type of view as a child, this method will return 1.

If there is more than one type of view, this method will need to return as many various

types of child views as are present.

getItemId() Callback

The signature of getItemId() method is

public long getItemId(int position)

This method returns the appropriate ID of the underlying item for this position in the list

view. This method is very much like the corresponding method in the list adapters

documented in Chapter 6 on controls.

hasStableIds() Callback
The signature of hasStableIds() method is

public boolean hasStableIds()

This method should return true if the same item ID from getItemId() points to the same

object. This method is very much like the corresponding method in the list adapters in

Chapter 6 on controls.

onDataSetChanged() Callback
The signature of onDataSetChanged() is

public void onDataSetChanged()

This method is called when someone tells the AppWidgetManager that the widget

containing this remote list view has changed. This call to the widget manager will

eventually trickle down to the remote view factory as an onDataSetChanged(). In

response, you will need to set up the underlying data so that other callbacks such as

getViewAt()and getCount() can respond with new data. The documentation assures

that long-running operations are permitted in this method to set up the data.

This completes the discussion of how to make a remote list view visible in a widget.

Let’s now tackle how to attach click events to a list view and even to its child views.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1110

Setting up onClick Events
Setting up click events for a list remote view is a two step process. First, you register an

onClick on the list view in the onUpdate() method of the widget provider. Then you

register onclick events for each of the individual child views of that list view in the

remote view factory's getViewAt() method.

First you’ll learn how to register for click events on the main list view. When you set up a

click event on a remote view, you need an intent to fire when that list remote view is

clicked on. Because an appwidget provider is a broadcast receiver, you can set up this

underlying app widget provider as a target for this intent. You then need to make

provisions in the app widget provider to specialize the onReceive() callback so that you

can handle this intent.

The code snippet in Listing 31–11 shows how you can set up an onClick intent with a

widget provider as its target.

Listing 31–11. Creating an Intent to Self-Invoke the Appwidget Provider

Intent onListClickIntent =
 new Intent(context,TestListWidgetProvider.class);

Notice how you set up the class name of a widget provider as the target component for

this intent. This intent will be delivered to the widget provider. However, a widget

provider is already responding to intents coming in with other widget-related actions. To

distinguish this intent from other intents, you need to set up an explicit action for it.

Listing 31–12 shows an example.

Listing 31–12. Defining a Unique Action for an onclick in the Widget Provider

onListClickIntent.setAction(
 TestListWidgetProvider.ACTION_LIST_CLICK);

Of course, the action TestListWidgetProvider.ACTION_LIST_CLICK is custom and is best

defined as part of the widget provider TestListWidgetProvider.

Because the clicks could happen on multiple instances of this widget, you need to load

the widget ID as an extra on the invoking intent. Listing 31–13 shows how to do this.

Listing 31–13. Loading Widget ID into the onclick Intent

onListClickIntent.putExtra(
 AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

Now this intent is almost ready to be set on the remote list view as an onClick intent.

You need to do one more thing to this intent. When intents are set to invoke at a later

point of time, they are set as pending intents. See Chapter 5 on intents and Chapter 15

on alarm managers for more detail on pending intents.

A pending intent does not take into account any subsequent extras you set on the

underlying intent unless that intent is unique after taking into account the extras.

However, intents don't take into account their extras when considering if they are

unique. To circumvent this issue you need to use a method called toUri() on an intent.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1111

This toUri() method takes all the extras of an intent and then makes a long string

representing this intent with extras at the end. When you take this long string and set it

as the data portion of the same intent, you essentially made this intent unique. This is

because an intent will take its data portion under consideration for uniqueness. Listing

31–14 is an example of making an intent unique by using its toUri() method.

Listing 31–14. Use of toUri() Method

onListClickIntent.setData(
 Uri.parse(
 onListClickIntent.toUri(Intent.URI_INTENT_SCHEME)));

Once you made the intent unique, you can get the necessary broadcast pending intent,

as shown in Listing 31–15.

Listing 31–15. Getting a Broadcast Pending Intent from Intent

PendingIntent onListClickPendingIntent =
 PendingIntent.getBroadcast(context, 0,
 onListClickIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

In Listing 31–15, the FLAG_UPDATE_CURRENT flag means that if you find a similar underlying

intent, just update its extras. You’ll understand why this may be necessary when we

discuss how this pending intent is utilized by the remote views.

Once you have the necessary pending intent, such as the one from Listing 31–15, you

can set the click behavior for the list view. Use a method called

setPendingIntentTemplate() to do this association between a pending intent and a list

view. Listing 31–16 shows an example of how to use setPendingIntentTemplate()

method.

Listing 31–16. Using setPendingIntentTemplate

RemoteViews rv;
rv.setPendingIntentTemplate(R.id.listwidget_list_view_id,
 onListClickPendingIntent);

In Listing 31–16, the first argument is the list view ID for the list view in the main layout

(see Listing 31–1). The second argument is the pending intent you have created and

prepared in Listings 31–11 through 31–14. Note in Listing 31–16 that you are calling the

pending intent a pending intent template. What's up with the word “template”?

As per SDK docs, the Android team doesn't want to create a pending intent for each of

the rows in a list. They want to create one pending intent for the whole list and then just

override its extras as users click on the individual items of that list. The way they have

facilitated this is to create one pending intent at the list level and then reissue that intent

with different extras. This is why the pending intent in Listing 31–15 is set with a flag of

update for its extras.

Let’s now see how the extras are supplied from the individual list item remoteviews. As

you might expect, this is done in the same place where the list remote view items are

constructed. This is in the getViewAt() method of remote view factory (see Listing 31–9).

Listing 31–17 shows how to attach intents with extras to a list view item when it is

clicked on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1112

Listing 31–17. Attaching Intents with Extras to a List Item View when Clicked

//Load your list item remote view
RemoteViews listItemRv;

//Get a fresh new intent
Intent ei = new Intent();

//Load it with whatever extra you want
ei.putExtra("com.androidbook.widgets.some_unique_extra_string_key",
 "Position of the item Clicked:" + position);

//Set it on the list remote view
listItemRv.setOnClickFillInIntent(R.id.textview_widget_list_item_id, ei);

In Listing 31–17 the key method is setOnClickFillIntent(). This method allows you to

supply a fresh intent loaded with whatever extras what you want to load. Internally, the

framework will take these extras and superimpose them on the pending intent template

that you set up as part of the view onClick.

In Listing 31–17 you just took the text from the current row and embellished it a little and

then set it as the extra. With this code in Listing 31–17, if one were to click on the list

item on the widget, it would raise an intent that is sent to the broadcast receiver with the

extras. Let’s see, then, how to prepare the broadcast receiver and retrieve this extra that

is specific for each list view item.

Responding to onClick Events
In the list view pending intent template (Listing 31–16) you see the following two things:

 The component to invoke is the widget provider itself.

 The action is set to a specific action that is unique to this widget

provider.

In response, the widget provider needs to do the following:

1. Declare a string action that it can recognize.

2. Override the onReceive() method and deal with the action in step 1.

Listing 31–18 shows how to define the unique action in the provider as a string constant.

Listing 31–18. Custom Action Definition

public static final String ACTION_LIST_CLICK =
 "com.androidbook.homewidgets.listclick";

Listing 31–19 shows how to override the onReceive(). It shows how to test for the action

of the intent and call the dealWithThisAction() method. At the end of this method, you

must call the base class's onReceive() for all other actions. If you don't do so, the

widget itself will not receive widget-based actions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1113

Listing 31–19. Overriding onReceive

@Override
public void onReceive(Context context, Intent intent)
{
 if (intent.getAction()
 .equals(TestListWidgetProvider.ACTION_LIST_CLICK))
 {
 //this action is not one widget actions
 //this is a specific action that is directed here
 dealwithListAction(context,intent);
 return;
 }

 //make sure you call this
 super.onReceive(context, intent);
}

Listing 31–20 shows the dealWithThisAction() method where you retrieve the extra that

you have loaded the intent with in Listing 31–17.

Listing 31–20. Responding to List View Item onClick

public void dealwithListAction(Context context, Intent intent)
{
 String clickedItemText =
 intent.getStringExtra(
 TestListWidgetProvider.EXTRA_LIST_ITEM_TEXT);
 if (clickedItemText == null)
 {
 clickedItemText = "Error";
 }
 clickedItemText =
 clickedItemText
 + "You have clicked on item:"
 + clickedItemText;

 Toast t =
 Toast.makeText(context,clickedItemText,Toast.LENGTH_LONG);
 t.show();
}

In Listing 31–20 you retrieved the extra through a predefined constant and provided a

toast. This method runs on the main thread so you need to make sure you don't run

long-running operations on it. (See Chapter 14 on long running services to understand

this aspect in greater depth.)

This completes the conceptual understanding of all the new features provided around

list widgets. Let’s now look at a working example to test and demonstrate these features

in action. Much of the code presented so far has been taken from this working sample,

so the working sample should be easy to follow.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1114

Working Sample: Test Home Screen List Widget
This home screen list widget sample will demonstrate the ideas covered thus far about

list-based home screen widgets. At the end of this sample you will see a list-based

widget that you can drag on to the home screen. When you drag it, you will see a widget

displaying 20 rows of list items filled with sample text. When you click on one of these

list item rows, you will see a toast on the home screen containing text from that specific

row of the list.

Here is the list of files you will need:

 TestListWidgetProvider.java is the primary class; it’s the test widget

provider that implements a widget with a list view as one of its views

(Listing 31–21).

 TestRemoteViewsFactory.java is the class that provides a list items to

show for the list view loaded by the widget provider (Listing 31–22).

 TestRemoteViewsService.java is the remote views service that

instantiates the TestRemoteViewsFactory (Listing 31–23).

 layout\test_list_widget_layout.xml is the primary layout for the

whole widget loaded by the widget provider (Listing 31–1).

 layout\list_item_layout.xml is the layout file for the individual list

item view. This layout is loaded by the remote view factory (Listing 31–

10).

 drawable\box1.xml is a simple layout helper class to provide rounded

corners to the main widget layout (Listing 31–2).

 xml\test_list_appwidget_provider.xml is the metadata file for

defining the widget to Android (Listing 31–24).

 AndroidManifest.xml is the configurations file for the application

where you define the widget provider and the remote view service

(Listing 31–25).

Creating the Test Widget Provider
The process of creating a home screen widget starts with creating a widget provider

inheriting from AppWidgetProvider and overloading its onUpdate() method to provide a

view for the widget. This process is explained in great detail in Chapter 22. In this

example, you call your example provider TestListWidgetProvider. Listing 31–21

provides the source code with comments for this class.

Listing 31–21. TestWidgetProvider.java

package com.androidbook.homewidgets.listwidget;

/*
 * Use CTRL-SHIFT-O in Eclipse to fill in imports
 */

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1115

public class TestListWidgetProvider extends AppWidgetProvider
{
 private static final String tag = "TestListWidgetProvider";

 public static final String ACTION_LIST_CLICK =
 "com.androidbook.homewidgets.listclick";

 public static final String EXTRA_LIST_ITEM_TEXT =
 "com.androidbook.homewidgets.list_item_text";

 public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds)
 {
 Log.d(tag, "onUpdate called");
 final int N = appWidgetIds.length;
 Log.d(tag, "Number of widgets:" + N);
 for (int i=0; i<N; i++)
 {
 int appWidgetId = appWidgetIds[i];
 updateAppWidget(context, appWidgetManager, appWidgetId);
 }
 super.onUpdate(context,appWidgetManager, appWidgetIds);
 }

 public void onDeleted(Context context, int[] appWidgetIds)
 {
 Log.d(tag, "onDelete called");
 super.onDeleted(context,appWidgetIds);
 }

 public void onEnabled(Context context)
 {
 Log.d(tag, "onEnabled called");
 super.onEnabled(context);
 }

 public void onDisabled(Context context)
 {
 Log.d(tag, "onDisabled called");
 super.onEnabled(context);
 }

 private void updateAppWidget(Context context,
 AppWidgetManager appWidgetManager,
 int appWidgetId)
 {
 Log.d(tag, "onUpdate called for widget:" + appWidgetId);

 final RemoteViews rv =
 new RemoteViews(context.getPackageName(),
 R.layout.test_list_widget_layout);

 rv.setEmptyView(R.id.listwidget_list_view_id,
 R.id.listwidget_empty_view_id);

 // Specify the service to provide data for the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1116

 // collection widget. Note that you need to
 // embed the appWidgetId via the data otherwise
 // it will be ignored.
 final Intent intent =
 new Intent(context, TestRemoteViewsService.class);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 appWidgetId);

 intent.setData(
 Uri.parse(
 intent.toUri(Intent.URI_INTENT_SCHEME)));

 rv.setRemoteAdapter(appWidgetId,
 R.id.listwidget_list_view_id, intent);

 //setup a list view call back.
 //you need a pending intent that is unique
 //for this widget id. Send a message to
 //ourselves which you will catch in OnReceive.
 Intent onListClickIntent =
 new Intent(context,TestListWidgetProvider.class);

 //set an action so that this receiver can distinguish it
 //from other widget related actions
 onListClickIntent.setAction(
 TestListWidgetProvider.ACTION_LIST_CLICK);

 //because this receiver serves all instances
 //of this app widget. You need to know which
 //specific instance this message is targeted for.
 onListClickIntent.putExtra(
 AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

 //Make this intent unique as you are getting ready
 //to create a pending intent with it.
 //The toUri method loads the extras as
 //part of the uri string.
 //The data of this intent is not used at all except
 //to establish this intent as a unique pending intent.
 //See intent.filterEquals() method to see
 //how intents are compared to see if they are unique.
 onListClickIntent.setData(
 Uri.parse(
 onListClickIntent.toUri(Intent.URI_INTENT_SCHEME)));

 //you need to deliver this intent later when
 //the remote view is clicked as a broadcast intent
 //to this same receiver.
 final PendingIntent onListClickPendingIntent =
 PendingIntent.getBroadcast(context, 0,
 onListClickIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 //Set this pending intent as a template for
 //the list item view.
 //Each view in the list will then need to specify
 //a set of additional extras to be appended

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1117

 //to this template and then broadcast the
 //final template.
 //See how the remoteviewsfactory() sets up
 //the each item in the list remoteview.
 //See also docs for RemoteViews.setFillIntent()
 rv.setPendingIntentTemplate(R.id.listwidget_list_view_id,
 onListClickPendingIntent);

 //update the widget
 appWidgetManager.updateAppWidget(appWidgetId, rv);
 }

 @Override
 public void onReceive(Context context, Intent intent)
 {
 if (intent.getAction()
 .equals(TestListWidgetProvider.ACTION_LIST_CLICK))
 {
 //this action is not one widget actions
 //this is a specific action that is directed here
 dealwithListAction(context,intent);
 return;
 }

 //make sure you call this
 super.onReceive(context, intent);
 }
 public void dealwithListAction(Context context, Intent intent)
 {
 String clickedItemText =
 intent.getStringExtra(
 TestListWidgetProvider.EXTRA_LIST_ITEM_TEXT);
 if (clickedItemText == null)
 {
 clickedItemText = "Error";
 }
 clickedItemText =
 clickedItemText
 + "You have clicked on item:"
 + clickedItemText;

 Toast t =
 Toast.makeText(context,clickedItemText,Toast.LENGTH_LONG);
 t.show();
 }

}//eof-class

With the background information provided, much of what this class needs to do is

already explained. The source code is also amply peppered with comments to restate

much that was discussed; however, here’s a quick overview of the functionality:

1. In onUpdate(), load the remote view.

2. Locate the list remote view and hook it up with a remote view factory via a remote

view service.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1118

3. Set the remote view with a pending intent template for onClick behavior.

4. Override onReceive() method and deal with the specialized onClick action.

Wait until you load all files into Eclipse before compiling this file as there are other files

referenced by this file.

Creating the Remote Views Factory
Listing 31–22 provides the source code for the remote view factory that is responsible

for populating the list view.

Listing 31–22. TestRemoteViewFactory.java

package com.androidbook.homewidgets.listwidget;
/*
 * Use CTRL-SHIFT-O in Eclipse to fill in imports
 */
class TestRemoteViewsFactory
implements RemoteViewsService.RemoteViewsFactory
{
 private Context mContext;
 private int mAppWidgetId;
 private static String tag="TRVF";
 public TestRemoteViewsFactory(Context context, Intent intent)
 {
 mContext = context;
 mAppWidgetId =
 intent.getIntExtra(
 AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);

 Log.d(tag,"factory created");
 }

 //Called when your factory is first constructed.
 //The same factory may be shared across multiple
 //RemoteViewAdapters depending on the intent passed.
 public void onCreate()
 {
 Log.d(tag,"onCreate called for widget id:" + mAppWidgetId);
 }

 //Called when the last RemoteViewsAdapter that is
 //associated with this factory is unbound.
 public void onDestroy()
 {
 Log.d(tag,"destroy called for widget id:" + mAppWidgetId);
 }

 //The total number of items
 //in this list
 public int getCount()
 {
 return 20;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1119

 public RemoteViews getViewAt(int position)
 {
 Log.d(tag,"getview called:" + position);
 RemoteViews rv =
 new RemoteViews(
 this.mContext.getPackageName(),
 R.layout.list_item_layout);
 String itemText = "Item:" + position;
 rv.setTextViewText(
 R.id.textview_widget_list_item_id, itemText);

 this.loadItemOnClickExtras(rv, position);
 return rv;
 }
 private void loadItemOnClickExtras(RemoteViews rv, int position)
 {
 Intent ei = new Intent();
 ei.putExtra(TestListWidgetProvider.EXTRA_LIST_ITEM_TEXT,
 "Position of the item Clicked:" + position);
 rv.setOnClickFillInIntent(R.id.textview_widget_list_item_id, ei);
 return;
 }

 //This allows for the use of a custom loading view
 //which appears between the time that getViewAt(int)
 //is called and returns. If null is returned,
 //a default loading view will be used.
 public RemoteViews getLoadingView()
 {
 return null;
 }

//How many different types of views
 //are there in this list.
 public int getViewTypeCount()
 {
 return 1;
 }

 //The internal id of the item
 //at this position
 public long getItemId(int position)
 {
 return position;
 }

 //True if the same id
 //always refers to the same object.
 public boolean hasStableIds()
 {
 return true;
 }

 //Called when notifyDataSetChanged() is triggered
 //on the remote adapter. This allows a RemoteViewsFactory

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1120

 //to respond to data changes by updating
 //any internal references.
 //Note: expensive tasks can be safely performed
 //synchronously within this method.
 //In the interim, the old data will be displayed
 //within the widget.
 public void onDataSetChanged()
 {
 Log.d(tag,"onDataSetChanged");
 }
}

Much of this code has been explained already. At a high level, this class assumes there

are 20 rows. Each row's layout is loaded from a layout file and its text set to the

corresponding position. It then loads the text from each position into the onClick intent.

This is the text that you would see as toast.

Coding Remote Views Service
Listing 31–23 shows the source code for the class that returns the remote view factory.

Listing 31–23. TestRemoteViewsService.java

package com.androidbook.homewidgets.listwidget;
import android.content.Intent;

public class TestRemoteViewsService
extends android.widget.RemoteViewsService
{
 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent)
 {
 return new TestRemoteViewsFactory(
 this.getApplicationContext(), intent);
 }
}

Main Widget Layout file
The main layout file that corresponds to how the widget looks on the home page needs

to be at \res\layout\test_list_widget_layout.xml (note that this layout file was

presented in Listing 31–1). This main layout file also requires rounded corners, which are

provided a box drawable located at \res\drawable\box1.xml, which was presented in

Listing 31–2.

Layout for the Individual List Items
This layout file corresponds to the layout of the individual list item inside the list. This

layout file needs to be at layout\list_item_layout.xml. This layout file was presented in

Listing 31–10.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1121

Widget Provider Metadata
A widget provider needs to specify a metadata XML file when that widget provider is

declared in the android manifest file. This file needs to be at \res\xml\
test_list_appwidget_provider.xml. Listing 31–24 shows this widget metadata

information file.

Listing 31–24. Widget Information File

<!-- xml/test_list_widget_layout.xml -->
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="222dp"
 android:minHeight="222dp"
 android:updatePeriodMillis="1000000"
 android:initialLayout="@layout/test_list_widget_layout"
 android:label="Test List Widget"
 >
</appwidget-provider>

This provider metadata file specifies the size for the widget and how often to fire the

onUpdate callback on the widget, specified in milliseconds. Note that this file is

discussed in greater detail in Chapter 22.

AndroidManifest.xml
Listing 31–25 shows the configuration file for the application. The widget provider

definition and the remote view service definition are highlighted.

Listing 31–25. AndroidManifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.homewidgets.listwidget"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"
 android:label="Test List Widget Application">
<!--
**
* Test List Widget Provider
**
 -->
 <receiver android:name=".TestListWidgetProvider">
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/test_list_appwidget_provider" />
 <intent-filter>
 <action
 android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 </receiver>

 <!-- The service serving the RemoteViews to the collection widget -->
 <service android:name=".TestRemoteViewsService"
 android:permission="android.permission.BIND_REMOTEVIEWS"
 android:exported="false" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1122

 </application>
 <uses-sdk android:minSdkVersion="11" />
</manifest>

Testing the Test List Widget
Once you build and deploy this project, you will see in Eclipse that the project is

successfully deployed. Because this project doesn’t contain an activity that is identified

to run at startup, you won’t see anything on the emulator by default.

To install the widget created in this sample, you need to see a list of available widgets

first. Clicking on the home screen will bring up a list of available widgets screen, as

shown in Figure 31–2.

Figure 31–2. List of widgets

The name of your widget is "Test List Widget Application," so it may be to the farthest

on the right and you may have to scroll to the right side screen to see it, as shown in

Figure 31–3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1123

Figure 31–3. Scrolling to the right to find the Test List Widget Application

Now you can drag the Test List Widget Application to the home screen of your choice.

Once your drag is recognized, you can select the Home button at the bottom to go to

the home screen. At that time you will see the widget in its main form, as shown

previously in Figure 31–1. If you click on one of the list items, a toast message

appropriate to the line item you have clicked on will appear (see Figure 31–4).

Figure 31–4. Toast in response to a list view item click

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1124

This concludes the discussion of enhancements to widgets in the 3.0 release. Now let’s

discuss the new Drag and Drop API.

Drag and Drop
Prior to Android 3.0, there was no direct support for drag and drop. You learned in

Chapter 25 how to drag a View around the screen; you also learned that it was possible

to use the current location of the dragged object to determine if there was a drop target

underneath. When the MotionEvent for the finger up event was received, your code

could figure out if that meant a drop had occurred. While this was doable, it certainly

wasn’t as easy as having direct support in Android for the drag-and-drop operation. You

now have that direct support in 3.0.

Basics of Drag and Drop in 3.0
At its most basic, the drag-and-drop operation starts with a view declaring that a drag

has started, then all interested parties watch the drag take place until the drop event is

fired. If a view catches the drop event and wants to receive it, then a drag and drop has

just occurred. If there is no view to receive the drop, or if the view that receives it

doesn’t want it, then no drop takes place. Dragging is communicated through the use of

a DragEvent object, which is passed to all of the drag listeners available.

Within the DragEvent object are descriptors for lots of information, depending on the

initiator of the drag sequence. For example, the DragEvent can contain object

references to the initiator itself, state information, textual data, Uris, or pretty much

whatever you want to pass through the drag sequence.

Information could be passed that results in view-to-view dynamic communication;

however, the originator data in a DragEvent object is set when the DragEvent is created

and it stays the same thereafter. In addition to this data, the DragEvent has an action

value, indicating what is going on with the drag sequence, and location information

indicating where the drag is on the screen.

A DragEvent has six possible actions:

 ACTION_DRAG_STARTED indicates that a new drag sequence has begun.

 ACTION_DRAG_ENTERED indicates that the dragged object has been dragged into

the boundaries of a specific view.

 ACTION_DRAG_LOCATION indicates that the dragged object has been dragged on

the screen to a new location.

 ACTION_DRAG_EXITED indicates that the dragged object has been dragged

outside the boundaries of a specific view.

 ACTION_DROP indicates that the user has let go of the dragged object. It is up to

the receiver of this event to determine if this truly means a drop has occurred.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1125

 ACTION_DRAG_ENDED tells all drag listeners that the previous drag sequence has

ended. The DragEvent.getResult() method indicates a successful drop or

failure.

You might think that you need to set up a drag listener on each view in the system that

could participate in a drag sequence, but, in fact, you can define a drag listener on just

about anything in your application and it will receive all of the drag events for all views in

the system. This can make things a little confusing since the drag listener does not need

to be associated with either the object being dragged or the drop target. The listener

can manage all of the coordination of the drag and drop.

In fact, if you inspect the drag-and-drop sample project that comes with the Android

SDK, you will see that they set up a listener on a TextView that has nothing to do with

the actual dragging and dropping. The upcoming sample project uses drag listeners that

are tied to specific views. These drag listeners each receive a DragEvent object for the

drag events that occur in the drag sequence. This means a view could receive a

DragEvent object that can be ignored because it is really about a different view. This also

means that the drag listener must make that determination in code and that there must

be enough information within the DragEvent object for the drag listener to figure out

what to do.

If a drag listener got a DragEvent object that merely said there’s an unknown object

being dragged and it’s at coordinates (15, 57), there isn’t much the drag listener can do

with it. It is much more helpful to get a DragEvent object that says a particular object is

being dragged, it’s at coordinates (15, 57), it’s a copy operation, and the data is a

specific URI. When that drops, there’s enough information to be able to initiate a copy

operation.

Drag and Drop Sample Application
For your sample application, you’re going to employ a staple of 3.0, the fragments. This,

among other things, will prove that drags can cross fragment boundaries. You’ll create a

palette of dots on the left and a square target on the right. When a dot is grabbed using

a long click, you’ll change the color of that dot in the palette and Android will show a

shadow of the dot as you drag. When the dragged dot reaches the square target, the

target will begin to glow. If you drop the dot on the square target, a message will

indicate that you’ve just added one more drop to the drop count, the glowing will stop,

and the original dot will go back to its original color.

List of Files
This application will rely on the following files:

 main.xml is the main layout that lays out the 2 fragments (Listing 31–26).

 palette.xml is the fragment layout for the dots on the left-hand side

(Listing 31–27).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1126

 dropzone.xml is the fragment layout for the square target on the right-

hand side, plus the drop count message (Listing 31–28).

 MainActivity.java is about as simple an activity as you can get. It

only sets the root content view, then leaves all the work to the

fragments (Listing 31–29).

 Palette.java is the code for the palette, which is also very simple. It

merely inflates the palette fragment layout file (Listing 31–30).

 DropZone.java is a little more complex because you implement the drop

behavior in this file. This one inflates the dropzone.xml fragment layout

file, then implements the drag listener for the drop target (Listing 31–31).

 Dot.java is your custom view class for the objects you’re going to

drag. It handles beginning the drag sequence, watching drag events,

and drawing the dots (Listing 31–32).

 attrs.xml defines a couple of XML attributes used in the palette.xml

layout file to describe attributes of your dots (Listing 31–33).

 AndroidManifest.xml is the main manifest file for this application

(Listing 31–34).

 strings.xml contains the strings used by the AndroidManifest for this

application (Listing 31–35).

Laying out the Sample Drag and Drop Application
Before we get into the code, Figure 31–5 shows what the application will look like.

Figure 31–5. Drag Drop Frags demo application user interface

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1127

Listing 31–26 shows the main layout file to support Figure 31–5. Similar to what you saw

in Chapter 29, this layout file has a simple horizontal linear layout and two fragment

specifications. The first fragment will be for the palette of dots and the second will be for

the dropzone.

Listing 31–26. The Main Layout File

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <fragment class="com.androidbook.drag.drop.demo.Palette"
 android:id="@+id/palette"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />

 <fragment class="com.androidbook.drag.drop.demo.DropZone"
 android:id="@+id/dropzone"
 android:layout_width="0px"
 android:layout_height="match_parent"
 android:layout_weight="1" />

</LinearLayout>

The palette fragment layout file (Listing 31–27) gets a bit more interesting. While this

layout represents a fragment, you don’t need to include a fragment tag within this

layout. This layout will be inflated to become the view hierarchy for your palette

fragment. The dots are specified as your custom dots, and there are two of them

arranged vertically. Notice that there are a couple of custom XML attributes in the

definition of your dots (dot:color and dot:radius). As you can see, these attributes

specify the color and the radius of your dots. These will be explained later when the

attrs.xml file is discussed. The other XML attributes are standard view attributes.

Listing 31–27. The palette.xml Layout File for the Dots

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/palette.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:dot="http://schemas.android.com/apk/res/com.androidbook.drag.drop.demo"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <com.androidbook.drag.drop.demo.Dot android:id="@+id/dot1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="30dp"
 android:tag="Blue dot"
 dot:color="#ff1111ff"
 dot:radius="20dp"
 />
 <com.androidbook.drag.drop.demo.Dot android:id="@+id/dot2"
 android:layout_width="wrap_content"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1128

 android:layout_height="wrap_content"
 android:padding="10dp"
 android:tag="White dot"
 dot:color="#ffffffff"
 dot:radius="40dp"
 />

</LinearLayout>

The dropzone fragmentlayout file in Listing 31–28 is also easy to understand. There’s a green

square and a text message arranged horizontally. This will be the drop zone for the dots you’ll

be dragging. The text message will be used to display a running count of the drops.

Listing 31–28. The dropzone.xml Layout File

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/dropzone.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >

 <View android:id="@+id/droptarget"
 android:layout_width="75dp"
 android:layout_height="75dp"
 android:layout_gravity="center_vertical"
 android:background="#00ff00" />

 <TextView android:id="@+id/dropmessage"
 android:text="0 drops"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:paddingLeft="50dp"
 android:textSize="17sp" />

</LinearLayout>

As you can see in Listing 31–29, activity files don’t get much simpler. All this does is set

the root content view of the activity to the layout file, the one that contains the two

fragments. The interesting logic is contained in other files.

Listing 31–29. The MainActivity

package com.androidbook.drag.drop.demo;

// This file is MainActivity.java
import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1129

The file in Listing 31–30 is also very simple to understand. It is the code for a fragment,

so it overrides the onCreateView() method with one that inflates the layout file into a

view, and returns that.

Listing 31–30. The Palette.java File

package com.androidbook.drag.drop.demo;

// This file is Palette.java
import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class Palette extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle icicle) {
 View v = inflater.inflate(R.layout.palette, container, false);
 return v;
 }
}

Responding to onDrag in the Drop Zone
Now that you have the main application layout set, let’s see how the drop target needs

to be organized by examining Listing 31–31.

Listing 31–31. The DropZone.java File

package com.androidbook.drag.drop.demo;

// This file is DropZone.java
import android.animation.ObjectAnimator;
import android.app.Fragment;
import android.content.ClipData;
import android.os.Bundle;
import android.util.Log;
import android.view.DragEvent;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.view.animation.CycleInterpolator;
import android.widget.TextView;

public class DropZone extends Fragment {

 private View dropTarget;
 private TextView dropMessage;

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle icicle)
 {
 View v = inflater.inflate(R.layout.dropzone, container, false);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1130

 dropMessage = (TextView)v.findViewById(R.id.dropmessage);

 dropTarget = (View)v.findViewById(R.id.droptarget);
 dropTarget.setOnDragListener(new View.OnDragListener() {
 private static final String DROPTAG = "DropTarget";
 private int dropCount = 0;
 private ObjectAnimator anim;

 public boolean onDrag(View v, DragEvent event) {
 int action = event.getAction();
 boolean result = true;
 switch(action) {
 case DragEvent.ACTION_DRAG_STARTED:
 Log.v(DROPTAG, "drag started in dropTarget");
 break;
 case DragEvent.ACTION_DRAG_ENTERED:
 Log.v(DROPTAG, "drag entered dropTarget");
 anim = ObjectAnimator.ofFloat((Object)v, "alpha", 1f, 0.5f);
 anim.setInterpolator(new CycleInterpolator(40));
 anim.setDuration(30*1000); // 30 seconds
 anim.start();
 break;
 case DragEvent.ACTION_DRAG_EXITED:
 Log.v(DROPTAG, "drag exited dropTarget");
 if(anim != null) {
 anim.end();
 anim = null;
 }
 break;
 case DragEvent.ACTION_DRAG_LOCATION:
 Log.v(DROPTAG, "drag proceeding in dropTarget: " +
 event.getX() + ", " + event.getY());
 break;
 case DragEvent.ACTION_DROP:
 Log.v(DROPTAG, "drag drop in dropTarget");
 if(anim != null) {
 anim.end();
 anim = null;
 }

 ClipData data = event.getClipData();
 Log.v(DROPTAG, "Item data is " + data.getItemAt(0).getText());

 dropCount++;
 String message = dropCount + " drop";
 if(dropCount > 1)
 message += "s";
 dropMessage.setText(message);
 break;
 case DragEvent.ACTION_DRAG_ENDED:
 Log.v(DROPTAG, "drag ended in dropTarget");
 if(anim != null) {
 anim.end();
 anim = null;
 }
 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1131

 default:
 Log.v(DROPTAG, "other action in dropzone: " + action);
 result = false;
 }
 return result;
 }
 });
 return v;
 }
}

Now you’re starting to get into interesting code. For the drop zone, you need to create

the target upon which you want to drag the dots. As you saw earlier, the layout specifies

a green square on the screen with a text message next to it. Because the drop zone is

also a fragment, you’re overriding the onCreateView() method of DropZone. The first

thing to do is inflate the drop zone layout, then extract out the view reference for the

square target (dropTarget) and for the text message (dropMessage). Then you need to set

up a drag listener on the target so it will know when a drag is underway.

The drop target drag listener has a single callback method in it: onDrag(). This callback

will receive a view reference as well as a DragEvent object. The view reference relates to

the view that the DragEvent is related to. As mentioned, the drag listener is not

necessarily connected to the view that will be interacting with the drag event, so this

callback must identify the view for which the drag event is taking place.

One of the first things you likely want to do in any onDrag() callback is read the action

from the DragEvent object. This will tell you what’s going on. For the most part, the only

thing you want to do in this callback is log the fact that a drag event is taking place. You

don’t need to actually do anything for ACTION_DRAG_LOCATION, for example. But you do

want to have some special logic for when the object is dragged within your boundaries

(ACTION_DRAG_ENTERED) that will be turned off when the object is either dragged outside

of your boundaries (ACTION_DRAG_EXITED) or when the object is dropped (ACTION_DROP).

You’re using the ObjectAnimator class that was introduced in Chapter 29, only here

you’re using it in code to specify a cyclic interpolator that modifies the target’s alpha.

This will have the effect of pulsing the transparency of the green target square, which

will be the visual indication that the target is willing to accept a drop of the object onto it.

Since you turn on the animation, you must make sure to also turn it off when the object

leaves, is dropped, or the drag and drop is ended. In theory, you shouldn’t need to stop

the animation on ACTION_DRAG_ENDED but it’s wise to do it anyway.

For this particular drag listener, you’re only going to get ACTION_DRAG_ENTERED and

ACTION_DRAG_EXITED if the dragged object interacts with the view with which you’re

associated. And as you’ll see, the ACTION_DRAG_LOCATION events only happen if the

dragged object is inside your target view.

The only other interesting condition is the ACTION_DROP itself (notice that DRAG_ is not part

of the name of this action). If a drop has occurred on your view, it means the user has let

go of the dot over top of the green square. Because you’re expecting this object to be

dropped on the green square, you can just go ahead and read the data from the first

item, then log it to LogCat. In a production application, you might pay closer attention to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1132

the ClipData object that is contained in the drag event itself. By inspecting its

properties, you could decide if you even want to accept the drop or not.

This is a good time to point out the result boolean in this onDrag() callback method.

Depending on how things go, you either want to let Android know you took care of the

drag event (by returning true) or that you didn’t (by returning false). If you don’t see what

you want to see inside of the drag event object, you could certainly return false from this

callback, which would tell Android that this drop was not handled.

Once you log the information from the drag event in LogCat, you increment the count of

the drops received; this is updated in the user interface, and that’s about it for DropZone.

If you look this class over, it’s really rather simple. You don’t actually have any code in

here that deals with MotionEvents, nor do you even need to make your own

determination on whether or not there is a drag going on. You just get appropriate

callback calls as a drag sequence unfolds.

Setting up the Drag Source Views
Let’s now consider how views corresponding to a drag source are organized, starting by

looking at Listing 31–32.

Listing 31–32. The Java for the Custom View: Dot

package com.androidbook.drag.drop.demo;

// This file is Dot.java
import android.content.ClipData;
import android.content.Context;
import android.content.res.TypedArray;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.util.Log;
import android.view.DragEvent;
import android.view.View;

public class Dot extends View
 implements View.OnDragListener
{
 private static final int DEFAULT_RADIUS = 20;
 private static final int DEFAULT_COLOR = Color.WHITE;
 private static final int SELECTED_COLOR = Color.MAGENTA;
 protected static final String DOTTAG = "DragDot";
 private Paint mNormalPaint;
 private Paint mDraggingPaint;
 private int mColor = DEFAULT_COLOR;
 private int mRadius = DEFAULT_RADIUS;
 private boolean inDrag;

 public Dot(Context context, AttributeSet attrs) {
 super(context, attrs);

 // Apply attribute settings from the layout file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1133

 // Note: these could change on a reconfiguration
 // such as a screen rotation.
 TypedArray myAttrs = context.obtainStyledAttributes(attrs,
 R.styleable.Dot);

 final int numAttrs = myAttrs.getIndexCount();
 for (int i = 0; i < numAttrs; i++) {
 int attr = myAttrs.getIndex(i);
 switch (attr) {
 case R.styleable.Dot_radius:
 mRadius = myAttrs.getDimensionPixelSize(attr, DEFAULT_RADIUS);
 break;
 case R.styleable.Dot_color:
 mColor = myAttrs.getColor(attr, DEFAULT_COLOR);
 break;
 }
 }
 myAttrs.recycle();

 // Setup paint colors
 mNormalPaint = new Paint();
 mNormalPaint.setColor(mColor);
 mNormalPaint.setAntiAlias(true);

 mDraggingPaint = new Paint();
 mDraggingPaint.setColor(SELECTED_COLOR);
 mDraggingPaint.setAntiAlias(true);

 // Start a drag on a long click on the dot
 setOnLongClickListener(lcListener);
 setOnDragListener(this);
 }

 private static View.OnLongClickListener lcListener =
 new View.OnLongClickListener() {
 private boolean mDragInProgress;

 public boolean onLongClick(View v) {
 ClipData data =
 ClipData.newPlainText("DragData", (String)v.getTag());

 mDragInProgress =
 v.startDrag(data, new View.DragShadowBuilder(v),
 (Object)v, 0);

 Log.v((String) v.getTag(),
 "starting drag? " + mDragInProgress);

 return true;
 }
 };

 @Override
 protected void onMeasure(int widthSpec, int heightSpec) {
 int size = 2*mRadius + getPaddingLeft() + getPaddingRight();
 setMeasuredDimension(size, size);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1134

 // The dragging functionality
 public boolean onDrag(View v, DragEvent event) {
 String dotTAG = (String) getTag();
 // Only worry about drag events if this is us being dragged
 if(event.getLocalState() != this) {
 Log.v(dotTAG, "This drag event is not for us");
 return false;
 }
 boolean result = true;

 // get event values to work with
 int action = event.getAction();
 float x = event.getX();
 float y = event.getY();

 switch(action) {
 case DragEvent.ACTION_DRAG_STARTED:
 Log.v(dotTAG, "drag started. X: " + x + ", Y: " + y);
 inDrag = true; // used in draw() below to change color
 break;
 case DragEvent.ACTION_DRAG_LOCATION:
 Log.v(dotTAG, "drag proceeding... At: " + x + ", " + y);
 break;
 case DragEvent.ACTION_DRAG_ENTERED:
 Log.v(dotTAG, "drag entered. At: " + x + ", " + y);
 break;
 case DragEvent.ACTION_DRAG_EXITED:
 Log.v(dotTAG, "drag exited. At: " + x + ", " + y);
 break;
 case DragEvent.ACTION_DROP:
 Log.v(dotTAG, "drag dropped. At: " + x + ", " + y);
 // Return false because we don't accept the drop in Dot.
 result = false;
 break;
 case DragEvent.ACTION_DRAG_ENDED:
 Log.v(dotTAG, "drag ended. Success? " + event.getResult());
 inDrag = false; // change color of original dot back
 break;
 default:
 Log.v(dotTAG, "some other drag action: " + action);
 result = false;
 break;
 }
 return result;
 }

 // Here is where you draw our dot, and where you change the color if
 // you're in the process of being dragged. Note: the color change affects
 // the original dot only, not the shadow.
 public void draw(Canvas canvas) {
 float cx = this.getWidth()/2 + getLeftPaddingOffset();
 float cy = this.getHeight()/2 + getTopPaddingOffset();
 Paint paint = mNormalPaint;
 if(inDrag)
 paint = mDraggingPaint;
 canvas.drawCircle(cx, cy, mRadius, paint);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1135

 invalidate();
 }
}

The Dot code looks somewhat similar to the code for DropZone. This is in part because

you’re also receiving drag events in this class. The constructor for a Dot figures out the

attributes in order to set the correct radius and color, and then it sets up the two

listeners, one for long clicks and another for the drag events.

The part where the constructor figures out the attributes is interesting. What you want is

to be able to specify properties of your dot in the XML layout file, but custom XML

attributes require some setup somewhere. In your case, this setup occurs in the

attrs.xml file located under /res/values. The attrs.xml file specifies a styleable called

Dot as well as a couple of attributes color and radius. Listing 31–33 shows the contents

of the attrs.xml file.

Listing 31–33. The attrs.xml File Used to Define New XML Attributes for the Dot

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/values/attrs.xml -->
<resources>
 <declare-styleable name="Dot">
 <attr name="color" format="color" />
 <attr name="radius" format="dimension" />
 </declare-styleable>
</resources>

As you can see, you get the name from the tag, and the attribute names (and types) are

underneath. By specifying the XML attributes in the attrs.xml file, you can then use

those attributes in your layout XML file and you can use them in code to locate specific

attributes. In code, you loop through the known attributes, and when you find either a

radius or a color, you grab the value and assign it to this dot. This is a pretty nice way

to be able to specify in XML what your objects are going to look like.

The two paints are going to be used to draw your circle. You use the normal paint when

the dot is just sitting there. But when the dot is being dragged, you want to indicate that

by changing the color of the original to magenta.

The long click listener is where you initiate a drag sequence. The only way you let the

user start dragging a dot is if the user clicks and holds on a dot. When the long click

listener is firing, you create a new ClipData object using a string and the dot’s tag. You

happen to know that the tag is the name of the dot as specified in the XML layout file.

There are several other ways to specify data into a ClipData object, so feel free to read

the reference documentation on other ways to store data in a ClipData object.

The next statement is the critical one: startDrag(). This is where Android will take over

and start the process of dragging. Note that the first argument is the ClipData object

from before, then it’s the drag shadow object, then a “local state” object, and finally the

number zero.

The drag shadow object is the image that will be displayed as the dragging is taking

place. In your case, this does not replace the original dot image on the screen but shows

a shadow of a dot as the dragging is taking place, in addition to the original dot on the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1136

screen. The default DragShadowBuilder behavior is to create a shadow that looks very

much like the original, so for your purposes, you merely call it and pass in your view.

You can get fancy here and create whatever sort of shadow view you want, but if you do

override this class, you’ll need to implement a few methods to make it work.

The onMeasure() method is here to supply dimension information to Android for the

custom view you’re using here. You have to tell Android how big your view is so it

knows how to lay it out with everything else.

Finally there’s the onDrag() callback. As mentioned, each drag listener can receive drag

events. They all get ACTION_DRAG_STARTED and ACTION_DRAG_ENDED, for example. So

when events happen, you must be careful what you do with the information. Since there

are two dots in play in this sample application, whenever you do something with the

dots, you must be careful that you’re affecting the correct one.

When both dots receive the ACTION_DRAG_STARTED action, only one should set the color

of the dot to magenta. To figure out which one is correct, compare the local state object

passed in with yourself. If you look back where you set the local state object, you

passed the current view in. So now when you’ve received the local state object out, you

compare it to yourself to see if you’re the view that initiated the drag sequence.

If you aren’t the same view, you write a log message to LogCat saying this is not for you,

and you return false to say you’re not handling this message.

If you are the view that should be receiving this drag event, you collect some values

from the drag event, then you mostly just log the event to LogCat. The first exception to

this is ACTION_DRAG_STARTED. If you got this action and it’s for you, you then know that

your dot has begun a drag sequence. Therefore, you set the inDrag boolean so the

draw() method later on will do the right thing and display a different colored dot. This

different color only lasts until ACTION_DRAG_ENDED is received, at which time you restore

the original color of the dot.

If a dot gets the ACTION_DROP action, this means the user tried to drop a dot on a dot,

maybe even the original dot. This shouldn’t do anything, so you just return false from

this callback in this case.

Finally, the draw() method of your custom view figures out the location of the center

point of your circle (i.e. dot), then draws it with the appropriate paint. The invalidate()

method is there to tell Android that you’ve modified the view and that Android should re-

draw the user interface. By calling invalidate(), you ensure that the user interface will

be updated very shortly with whatever is new.

Listing 31–34 shows the manifest file for this application.

Listing 31–34. The AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is AndroidManifest.xml -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.drag.drop.demo"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="11" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1137

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

Listing 31–35 shows the strings.xml containing string values used by the manifest file.

Listing 31–35. The strings.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/values/strings.xml -->
<resources>
 <string name="app_name">Drag Drop Frags</string>
</resources>

You now have all the files and the background necessary to compile and deploy this

sample drag-and-drop application.

Testing the Sample Drag-and-Drop Application
Below is some sample output from LogCat when we ran this sample application. Notice

how the log message used “Blue dot” to indicate messages from the blue dot, “White

dot” for messages from the white dot, and “DropTarget” for the view where the drops

are allowed to go.

White dot: starting drag? true
Blue dot: This drag event is not for us
White dot: drag started. X: 53.0, Y: 206.0
DropTarget: drag started in dropTarget
DropTarget: drag entered dropTarget
DropTarget: drag proceeding in dropTarget: 29.0, 36.0
DropTarget: drag proceeding in dropTarget: 48.0, 39.0
DropTarget: drag proceeding in dropTarget: 45.0, 39.0
DropTarget: drag proceeding in dropTarget: 41.0, 39.0
DropTarget: drag proceeding in dropTarget: 40.0, 39.0
DropTarget: drag drop in dropTarget
DropTarget: Item data is White dot
ViewRoot: Reporting drop result: true
White dot: drag ended. Success? true
Blue dot: This drag event is not for us
DropTarget: drag ended in dropTarget

In this particular case, the drag was started with the white dot. Once the long click has

triggered the beginning of the drag sequence, we get the “starting drag?” message.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1138

Notice how the next three lines all indicate that an ACTION_DRAG_STARTED action was

received. Blue dot determined that the callback was not for him. It was also not for

dropTarget.

Next, notice how the drag proceeding messages show the drag happening through

DropTarget, beginning with the ACTION_DRAG_ENTERED action. This means that the dot

was being dragged on top of the green square. The X and Y coordinates reported in the

drag event object are the coordinates of the drag point relative to the upper left corner

of the view. So in the sample app, the first record of the drag in the drop target is at

(x, y) = (29, 36) and the drop occurred at (40, 39). See how the drop target was able to

extract out the tag name of the white dot to write it to LogCat.

Also see how once again, all drag listeners received the ACTION_DRAG_ENDED action. Only

White dot determined that it’s okay to display the results using getResult().

Feel free to experiment with this sample application. Drag a dot to the other dot, or even

to itself. Go ahead and add another dot to palette.xml. Notice how when the dragged

dot leaves the green square, there’s a message saying that the drag exited. Note also

that if you drop a dot somewhere other than the green square, the drop is considered

failed.

References
 http://developer.android.com/sdk/android-3.0-highlights.html: New

features of Android in release 3.0 are listed here and there’s a section on what’s

new with home screen widgets.

 www.androidbook.com/item/3624: Our work notes for preparing the material for

home screen widgets topic of this chapter for release 3.0. You’ll find links to

APIs, code snippets, open questions, and more research.

 www.androidbook.com/item/3299: Our work notes for preparing the material for

home screen widgets topic for release 2.2. You’ll find links to APIs, code

snippets, open questions, and previous research.

 www.androidbook.com/item/3637: Our notes on RemoteViews, updated with 3.0

material including code samples, pondered questions, and internal and external

references.

 http://developer.android.com/guide/topics/appwidgets/index.html: The

main document on app widgets from the previous releases. Note that this

document is not updated for 3.0 enhancements but you can get the basics.

 http://developer.android.com/reference/android/appwidget/AppWidgetManager.
html: The reference page for the important AppWidgetManager API.

 http://developer.android.com/reference/android/widget/RemoteViewsService.
RemoteViewsFactory.html: RemoteViewFactory API reference URL.

 http://developer.android.com/reference/android/widget/RemoteViews.html:

RemoteViews API reference URL.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1139

 http://developer.android.com/reference/android/widget/RemoteViewsService
.html: RemoteViewsService API reference URL.

 www.androidbook.com/projects: The URL to download the test projects for this

chapter. The names of the zip files for this chapter are

ProAndroid3_ch31_TestListWidgets.zip and
ProAndroid3_ch31_TestDragAndDrop.zip.

Summary
This chapter covered two important enhancements in Android 3.0: list-based home

screen widgets and the Drag and Drop API.

First, we thoroughly examined the list-based home screen widget enhancements. You

learned how to load and populate list-based remote views through remote views service

and a remote views factory. You also learned how to set up onClick events and how to

rig the AppWidgetProvider itself to receive the onClick events and respond to them. This

material will allow you to implement rich useful widgets on your home screen.

In the Drap and Drop section, we covered all of the API nuances available to make use

of drag and drop operations for a rich user experience that’s on par with that of a

desktop. You have learned about drag sources, drag events, and drag targets in depth.

It’s now up to your imagination how best to put these facilities to use.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 31: Additional Topics in 3.0 1140

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1141

1141

Index

■ Special Characters &
Numbers

sign, 93
$JAVA_HOME/bin directory, 25
* (asterisk) symbol, 138
*.db files, 94
(/res/xml/bday_appwidget_provider.xml) file, 725
3D graphics, 12
3GPP (3rd Generation Partnership Project), 600
100ANDRO directory, 579

■ A
A command, 38
AAPT (Android Asset Packaging Tool), 42, 70
AbsoluteLayout layout manager, 198
Abstract Window Toolkit (AWT), Java SE, 2
abstracting common texture handling, 669–672
AbstractRenderer class, 639, 648–649, 665
AbstractRenderer.java file, 647
accelerate_decelerate interpolator, 1065
accelerate_decelerate.xml file, 1066
accelerateInterpolator tag, 506
AccelerometerRecordToFileAlwaysOn project, 904
accelerometers, interpreting data from, 908–914

and display orientation, 910
and gravity, 910–913
and magnetic field sensors together, 915
using to measure device angle, 914

ACCESS_ALL_DOWNLOADS permission, 334, 337
access.log file, 904
AccountFunctionTester.java file, 960
account_name field, 954
accounts

contacts API, 938–943, 960–968
driver activity classes, 963–966
enumerating, 943
function tester-related files, 961–962
menu file, 961
relevance to contacts, 942–943
running program, 966–968
screens, 938–942

Google, 994
"Accounts & sync settings" screen, 939
AccountsFunctionTester.java file, 962
account_type field, 954
acos() method, 914

Action Icon area, 1071
Action icons, 1071
action keys, in Android search, 818–821
<action> tag, 351, 361
ACTION_ANSWER, 570
ActionBar API, 1069–1095

anatomy, 1070–1071
list navigation, 1084–1089

AndroidManifest.xml file, 1087
BaseActionBarActivity class, 1087
examining, 1088–1089
list listener, 1086
setting up, 1086–1087
SpinnerAdapter interface, 1085–1086

standard navigation, 1090–1095
AndroidManifest.xml file, 1092
BaseActionBarActivity class, 1091–1092
examining, 1092–1095
source code, 1090–1091

tabbed navigation, 1071–1084
action bar and menu interaction, 1081–1083
assigning uniform behavior, 1075–1077
base classes, 1073–1075
examining, 1084
manifest file, 1083–1084
navigation modes, 1079–1080
obtaining action bar instance, 1079
scrollable debug text view layout, 1080–1081
tabbed listener, 1077–1078

ActionBar.OnNavigationListener, 1086
ACTION_CALL activity, 129
ACTION_CANCEL action, 846, 852
ACTION_DIAL activity, 129
ACTION_DOWN action, 846, 852
ACTION_DOWN event, 846, 854–855, 859, 862,

868–870
ACTION_DOWN method, 861
ACTION_DRAG_ENDED action, 1125, 1131, 1136,

1138
ACTION_DRAG_ENTERED action, 1124, 1131, 1138
ACTION_DRAG_EXITED action, 1124, 1131
ACTION_DRAG_LOCATION action, 1124, 1131
ACTION_DRAG_STARTED action, 1124, 1136, 1138
ACTION_DROP action, 1124, 1131, 1136
actionEnum, 1083
ACTION_GET_CONTENT intent, 141–142
actionKey element, 819
ACTION_KEY, SearchManager class, 820
ACTION_MASK constant, MotionEvent class, 870

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1142

ACTION_MOVE action, 846, 852, 877
ACTION_MOVE events, 852–853, 855, 859,

868–869, 878
ACTION_MSG string, SearchManager class, 820
ACTION_OUTSIDE action, 846, 852
ACTION_PICK action, 139–141
ACTION_PICK code, 142
ACTION_PICK intent, 140–141
ACTION_POINTER_3_DOWN constant, MotionEvent

class, 870
ACTION_POINTER_DOWN action, 877
ACTION_POINTER_DOWN event, 868
ACTION_POINTER_ID_MASK constant, MotionEvent

class, 870
ACTION_POINTER_ID_SHIFT constant, MotionEvent

class, 870
ACTION_POINTER_INDEX_MASK constants, 871
ACTION_POINTER_INDEX_SHIFT constants, 871
ACTION_POINTER_UP action, 877
ACTION_POINTER_UP event, 869
ACTION_SEARCH action, 784, 787, 807, 810–811,

816, 820
ACTION_SEND, 567
ACTION_TTS_QUEUE_PROCESSING_COMPLETED

broadcast, 842
ACTION_UP action, 846, 852
ACTION_UP event, 846, 853–855, 859, 862,

869–870, 877–878
ACTION_VIEW, 807, 810–811, 816
activities, 9, 29, 400

code for layout animation, 501
directly invoking with components, 133
files for, 414, 416
invoking separate, 1041–1043
life cycles of, 52, 418–419
regular, 758–765
related to local search, 771–777
simple suggestion provider search, 784–789
widget configuration, 738–742

Activity class, 67, 141, 191, 224, 228, 234, 240, 266,
392, 872

activity node, 725
activity object, 77
<activity> tags, 345, 606, 1002
activity windows, management of, 9
activity.onCreateContextMenu() method, 232
activity.registerForContextMenu() method, 232
AdapterContextMenuInfo class, 234
adapters

ArrayAdapter, 172–174
creating, 188–193, 213
overview, 170
SimpleCursorAdapter, 171–172
using with AdapterViews

ListView control, 175–183
overview, 174

AdapterView class, 171
Adaptive Multi-Rate (AMR), 600
adb (Android Debug Bridge) command, 55, 576
(adb) Android Debug Bridge tool, 91
adb pull, 886
adb shell, 94

adb tool, 294, 578
Add gesture button, 882–883
add() method, 174, 1035, 1042
addContact() function, 987
AddContactFunctionTester.java file, 986
addEarcon() method, 839
addFrame() method, 496
addIntentOptions method

Menu class, 236
MenuBuilder class, 237

addMovement method, 857
addPart() method, 312
addPreferencesFromResource() method, 267, 276
addRegularMenuItems function, 225
Address class, 15
addressContainer, 149
addSpeech() method, 837, 839
addSubMenu method, 231
ADP (Android Developer Phone), 997–998
ADT (Android Development Tools)

Eclipse plug-in, 8, 92
setting up environments, 26–29

ADT plug-in, Eclipse, 8
Advanced RISC Machine (ARM), 9
advanced UI (User Interface) concepts, 11–13
AGC (Auto Gain Control), 600
agg_exceptions table, 988–989
aggregated contacts, 968–977
AggregatedContact class, 970
AggregatedFunctionTester, 971
aggregation, controlling, 988–989
AIDL (Android Interface Definition Language)

defining service interface in, 347–349
implementing interface in, 349–351
services, 346

AIDL-supporting service. See remote services
Alarm Clock application, 751–752
alarm manager, 465–489

cancelling alarm, 479–480
intent primacy in setting off alarms, 484–487
multiple alarms, 480–484
persistence of alarms, 487
predicates, 487–489
repeating alarm, 476–479
simple alarm, 465–476

obtaining alarm manager, 466
PendingIntent class suitable for alarm, 467–468
receiver for alarm, 467
setting alarm, 468
test project, 468–476
time for alarm, 466–467

Alarm Manager class, 726
alarm value, 280
AlarmClock application, 18
AlarmManager class, 721
alert-dialog builder, setting up with user view, 248
alert dialogs, 244–246
alert function, 244
AlertBuilder class, 1050
AlertBuilder framework, 1061
AlertDialog builder class, 264
AlertDialogFragment dialog fragment, 1061–1062

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1143

AlertDialogFragment.java file, 1050
Alerts.showPrompt() method, 252
alias argument, 289–290
All option, 1010
all value, 280
AllContactsLiveFolderCreatorActivity.java file,

700–703
ALongRunningNonStickyBroadcastService class,

445–446, 460
ALongRunningNonStickyBroadcastService.java file,

462
ALongRunningReceiver class, 448
ALongRunningReceiver.java file, 460, 462
alpha animation, 498
AlphaAnimation class, 17
alphabeticShortcut tag, 242
ALTERNATIVE activity, 135
alternative menus, 234–238
Always use my settings option, 826
AMR (Adaptive Multi-Rate), 600
AnalogClock control, 169
AnalogClock view, 718
AnalogClock widget, 17
Android 2.0, 5
Android 2.3, 5
Android 3.0, 5
Android Asset Packaging Tool (AAPT), 42, 70
.android\AVD folder, 38
android/AVD folder, 39
Android computing platform, overview, 1–3
Android Content Guidelines, 1010
android create avd command, 39
Android cursors, 100, 694
Android DDMS node, 27
Android Debug Bridge (adb) command, 55, 576
Android Developer Phone (ADP), 997–998
Android Development Tools. See ADT
Android emulator, 8–9
android file, 37–38
Android for tablets, 5
Android foundational components, 10–11
Android home page, 695, 1070, 1082, 1088–1089,

1092, 1103, 1122–1123
Android Inc., 4
Android Interface Definition Language. See AIDL
Android Java API's main libraries, 8
Android Java packages, 14–18
android\:launchMode, 345
android list target command, 39
Android LiveFolder framework, 707
Android manifest editor tool, Eclipse, 297
Android Market

becoming publisher, 994–1001
Developer Distribution Agreement, 994
directing users back to, 1005–1006
mirror sites of, 1012
Payment Processor, 995
preparing applications for sale, 1001
uploading applications, 1007–1010
user experience, 1010–1012

Android media and telephony components, 13–14
android\:onClick attribute, 343

Android OS version 1.6, 5
android\:path attribute, 304
android/:pathPrefix, 304
android\:permission attribute, 305
Android platform, 3
Android Project option, 42, 422
android\:readPermission attribute, 305
Android SDK

advanced UI concepts, 11–13
Android emulator, 8–9
Android foundational components, 10–11
Android Java packages, 14–18
Android media and telephony components, 13–14
Android service components, 13
Android UI, 9
Release Candidate 1.0, 5
setting up environments, 23–26
for smartphones, 5
updating PATH environment variable, 25–26

Android SDK/platforms/<android-
version>/data/res/values/ folder, 197

Android service components, 13
Android settings page, 754
Android SmsMessage object, 565
android\:src property, 159
android\:text attribute, 151
Android UI (User Interface), 9
Android URIs (Uniform Resource Identifiers), 14
Android User's Guide, 944
Android views, 694
Android Virtual Device (AVD), 30–39, 92, 576, 1001
android\:writePermission attribute, 305
android:apiKey attribute, MapView control, 524
android:apiKey property, 522
android.app package, 14, 1017
android.app.Activity class, 298, 522, 541
android.app.AlertDialog.Builder class, 244
android.app.Application class, 53, 318
android.app.ListActivity, 175
android.app.Service, 338
android.appwidget.provider, 725
android.bat program, 39
android.bluetooth package, 14
android:bottomPadding property, 205
android:clickable="true"attribute, 526
android:collapseColumns property, 204
android.content package, 14
android.content.BroadcastReceiver, 563
android.content.ContentProvider interface, 16, 108
android.content.ContentResolver, 106
android.content.ContentValues class, 106
android.content.pm package, 14
android.content.res package, 14
android.database package, 14–15
android.database.sqlite package, 15, 105
android:defaultValue attribute, 268
android:description attribute, 300
android:dialogTitle attribute, 268
android:drawable tag, 496
android:entries attribute, 268
android:entryValues attribute, 268
android.gesture package, 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1144

android:gestureStrokeType, 888
android.graphics package, 15
android.graphics.drawable package, 15
android.graphics.drawable.shapes package, 15
android:gravity attribute, 200–201
android:gravity versus android:layout_gravity, 201–

202
android.hardware package, 15
android:hint attribute, 774
AndroidHttpClient class, 319–320
android:icon attribute, 300, 1002
android.intent.action.CREATE_LIVE_FOLDER intent,

701
android.intent.action.MAIN action, 44
android.intent.category.DEFAULT, 139
android.intent.extra.EMAIL, 132
android.intent.extra.SUBJECT, 132
android.jar file, 18–19
android.jar source files, 19
android:key attribute, 268
android:label attribute, 300, 774
android:layout_alignParentBottom property, 207
android:layout_alignParentTop property, 207
android:layoutAnimation tag, 504
android:layout_below property, 207
android:layout_gravity attribute, 201
android:layout_gravity versus android:gravity, 201–

202
android:layout_height attribute, 204
android:layout_margin property, 205
android:layout_weight attribute, 200
android:leftPadding property, 205
android.location package, 15, 533, 541
android.location.Geocoder class, 534
AndroidManfiest.xml file

Android 3.0, 1121–1122
exploring ActionBar, 1072, 1085
list navigation, 1087
and live folders, 700–702
NotesList activity, 45
preparing for uploading, 1002–1003
standard navigation, 1090, 1092
tweaking, 228–229
vs. web.xml file, 30

android.media package, 15, 575
android.media.MediaPlayer class, 575
android.media.MediaRecorder class, 596
android:name attribute, 300
android.net package, 15
android.net.wifi package, 16
android.nfc package, 931
android.opengl package, 16, 638, 690
android:ordering attribute, 1067
android.os package, 16
android.os.Bundle class, 131
android.os.Debug class, 55
android.os.Handler class, 540
android.os.Parcelable interface, 131, 355
android.os.Parcelable.Creator<T> interface, 357
android:padding property, 204–205
android:permission attribute, 299, 305

android.permission.ACCESS_COARSE_LOCATION,
296

android.permission.ACCESS_COARSE_LOCATION
permission, 542

android.permission.ACCESS_FINE_LOCATION, 296
android.permission.BATTERY_STATS, 296
android.permission.BLUETOOTH, 296
android.permission.CALL_PHONE permission, 571
android.permission.CAMERA permission, 296, 613
android:permissionGroup attribute, 300
android.permission.INTERNET permission, 296, 574,

584, 594
android.permission.READ_CALENDAR, 296
android.permission.READ_CONTACTS, 296
android.permission.READ_PHONE_STATE

permission, 570
android.permission.READ_SMS permission, 565
android.permission.RECEIVE_SMS permission, 563
android.permission.RECORD_AUDIO permission,

296, 600, 613
android.permission.USE_SIP, 574
android.permission.WRITE_CALENDAR, 296
android.permission.WRITE_CONTACTS, 296
android.permission.WRITE_EXTERNAL_STORAGE,

837
android.permission.WRITE_EXTERNAL_STORAGE,

permission, 613
android.preference package, 16
android.preference.PreferenceActivity class, 267
android:propertyName attribute, 1066
android:protectionLevel attribute, 300
android.provider package, 16
android.provider.Contacts.PeopleColumns class, 102
android.provider.LiveFolders class, 702
android.providers.Contacts package, 102
android.provider.Telephony.SMS_RECEIVED action,

563
android.R.color namespace, 76
android:required attribute, 1003
android:resource node, 725
android.R.id.home, 1071
android:rightPadding property, 205
android.sax package, 16
android:scaleType attribute, 880
android:screenOrientation="landscape" attribute, 606
android:shrinkColumns property, 204
android.speech package, 16
android.speech.tts package, 16
android:src attribute, 880
android:src property, 159
android:stretchColumns property, 204
android:summary attribute, 268
android.telephony package, 16
android.telephony.cdma package, 17
android.telephony.gsm package, 17
android.telephony.SmsManager class, 559
android.telephony.TelephonyManager manager, 568
android:text attribute, 160
android.text package, 17
android.text.method package, 17
android:textOff property, 160
android:textOn property, 160

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1145

android.text.style package, 17
android.text.util.Linkify class, 154
android:title attribute, 268
android:topPadding property, 205
android.util.Log class, 54
android.utils package, 17
android:valueFrom attribute, 1066
android:valueTo attribute, 1066
android:valueType attribute, 1066
android.view package, 17
android.view.animation package, 17, 499
android.view.animation.Animation class, 511
android.view.inputmethod package, 17
android.view.LayoutInflater class, 248
android.view.Menu class, 217, 220
android.view.MenuInflater class, 239
android.view.MenuItem, 217
android.view.SubMenu, 217
android.view.View class, 145, 233
android.view.ViewGroup class, 145
android.webkit package, 17
android.widget package, 17
android.widget.AdapterView, 170
android.widget.Button class, 157
android.widget.CheckBox, 160
android.widget.ListAdapter, 183
android.widget.RadioButton, 162
android.widget.RadioGroup, 162
android.widget.VideoView control, 593
android.widget.View, 203
android.widget.ViewGroup, 171, 199
anim/accelerate_interpolator, 506
anim directory, 41, 70
animate() method, 497
AnimatedSimpleTriangleRenderer class, 652–653
animateListView() method, 510
animateListView method, 516
Animation class, 17, 515
animation-list tag, 496
AnimationDrawable class, 494–496
AnimationListener class, 515–516
animations

2D frame-by-frame, 492–497
adding to activity, 494–497
creating activity, 493–494
planning for, 492–493

2D layout, 498–507
animating ListView, 502–505
creating activity and ListView, 500–502
interpolators, 506–507
planning test harness, 499
types of, 498–499

2D view, 507–516
adding animation to ListView, 511–514
AnimationListener class, 515–516
overview, 507–510
providing depth perception with camera,

514–515
transformation matrices, 516

custom, with ObjectAnimator class, 1064–1067
FragmentTransaction objects, 1034–1035
frame-by-frame, 11

tweening, 11, 17
AnimatorSet class, 1067
ANR (Application Not Responding), 399, 425
apache-http libraries, 18
Apache HttpClient, 307–309
Apache License, Version 2.0, 4
apk files, 292, 575, 585–586, 722, 874, 1002, 1007,

1012
aPosition variable, 683
appendText() method, 412
Application class, 14, 58, 318
application element, 428
Application model, 14
application node, 725
Application Not Responding (ANR), 399, 425
application preferences, 265
application-specific search context, 821–822
<application> tag, 55, 59, 1002
applicationDataBundle argument, 822
ApplicationInfo object, 59
applications

demo versions of, 995
distributing, via other methods, 1012–1013
distribution of, 1010
labels for, 1004
licensing service for, 1006–1007
localizing, 1003–1004
paid, considerations for, 1004–1005
preparing for sale, 1001
preparing icons for, 1004
reinstalls of, 996
screenshots for, 1008
selling through Android Market, 997
textual information for, 1008
updating and signing, 294
uploading, 1007–1010
viewing, 1011

applyTransformation method, 511
appSearchData argument, 769
APPWIDGET_CONFIGURE action, 725
AppWidgetManager class, 719, 721–722, 740
AppWidgetProvider class, 717, 719–721, 723
AppWidgetProviderInfo class, 718
APrefWidgetModel class, 732
APrefWidgetModel file, 723
arbitrary XML resource files, 80–81
architecture of content providers, 96–108
ArcShape, 15
areDefaultsEnforced() method, 842
arguments, for earcon, 839
ARM (Advanced RISC Machine), 9
array index values, 271
ArrayAdapter, 172–174, 1086
ArrayAdapter.createFromResource() method, 187
ArrayAdapter<T> adapter, 174
ArrayList variable, 841
arrays, string, 73
AssetFileDescriptor, 586
AssetManager class, 14, 82
assets folder, 40–41, 82, 575
Associate button, 834, 837
asterisk (*) symbol, 138

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1146

AsyncPlayer, 591–592
AsyncTask class

and configuration changes, 327–331
overview, 320–326

attachToRoot parameter, 1021, 1058
attrs.xml file, 1126, 1135
audible icon. See earcons
audio

files for TTS APIs, 832–838
playing content, 581–585
recording

with AudioRecord, 600–604
overview, 596
required permission for, 296
using intent, 615–618

setting streams with TTS APIs, 839
audioBufferSampleSize, 603
audioBufferSize, 603
AudioManager class, 15
AudioManager.STREAM_MUSIC value, 590
AUDIO_PATH variable, 586, 595
AudioRecord class, 592
AudioTrack class, 592
authority, 96
Auto Gain Control (AGC), 600
AutoCompleteTextView control, 155–156
autoPause() method, 590–591
autoResume() method, 590
autoText property, 154
AVD (Android Virtual Device), 30–39, 92, 576, 1001
AWT (Abstract Window Toolkit), Java SE, 2
awt.font package, 18

■ B
Back button, 700, 1016, 1082
back stacks, fragment, 1032–1035
background threads, geocoding with, 538–540
BackgroundService, 339, 346
base classes, tabbed navigation, 1073–1075
BaseActionBarActivity class

list navigation, 1087
standard navigation, 1091–1092

BaseActionBarActivity java file, 1072–1085, 1090
BaseAdapter class, 188
BaseColumns class, 110
BaseListener java file, 1072–1086
BaseTester.java file, 960–962
BasicResponseHandler object, 317–318
BasicViewActivity class, 126, 133
battery information, required permission for, 296
BatteryManager class, 16
BCRs (broadcast receivers)

accommodating multiple, 431–433
coding simple, sample code, 426–427
compiling code, 461–463
extending IntentService implementation for, 445–

455
abstracting wake locks with LightedGreenRoom

abstraction, 449–455
broadcast service abstractions, 445–447
long-running receivers, 447–449

notifications from, 434–440
monitoring through notification manager,

435–437
sending, 437–440

out-of-process, project for, 433–434
protocol, 441–442
references, 464
registering in manifest file, 427–428
sending broadcasts, 426–431

bday field, 735
BDayAppWidgetProvider, 724
BDayWidgetModel class, 729–730, 738
BDayWidgetModel file, 723
BDayWidgetProvider class, 717, 731
BDayWidgetProvider file, 723
Begin Recording button, 610
beginRecording() method, 599, 612
Bellard, Fabrice, 8
Berkeley Software Distribution (BSD), 7
BetterCursorWrapper class, 708–709
BetterCursorWrapper.java file, 700, 708–709
bind() method, 346
Binder class, 16
bindService() method, 30, 352, 354
birthday widget, 714–716
Bitmap class, 15, 323
BitmapDrawable class, 80
Bluetooth, required permission for, 296
BluetoothAdapter class, 14
BluetoothClass class, 14
BluetoothDevice class, 14
BluetoothServerSocket class, 14
BluetoothSocket class, 14
BookProvider content provider, 118–119
BookProviderMetaData class, 109–110
BookTableMetaData class, 110, 116
BooleanButton class, 849, 854
Bornstein, Dan, 6
BounceInterpolator, 507
boundCenter() method, 532
boundCenterBottom() method, 532
bounding box, 629
bounding volume, 629
box1.xml file, 727, 1103
broadcast menu item, 431, 434
broadcast receivers. See BCRs
BroadcastReceiver class, 427, 562–565, 842
BROWSABLE activity, 135
Browser application, 16, 18
BSD (Berkeley Software Distribution), 7
build() method, 58
Builder class, 58, 244, 247
built-in content providers, 90–95
Bundle API reference, 821
bundle object, 823
Button class, 158, 846, 848
Button controls, 157–165

Button, 157–158
CheckBox, 160–162
ImageButton, 158–159
RadioButton, 162–165
ToggleButton, 159–160

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1147

Button tag, 343
Button view, 718, 855
Button widget, 17
buttons, setting up for prompt dialog, 248

■ C
C\:\android directory, 23
c\:\android\release\myappraw.apk file, 292
c\:\avd\ folder, 38
c command, 38
C\:\eclipse folder, 23
C runtime library (libc), 7
CacheManager class, 17
calcArrays method, 664, 669
calcTextureArrays method, 669
Calculator application, 18
Calendar application, 18
CalendarProvider project, 19
CALL action, 129
call value, 820
callbacks, handleMessage method, 408
call_column, 821
callService() method, 364
CALL_STATE_RINGING state, 570
CAMCORDER audio source, 599
camcorder profiles, 613–614
Camera application, 18
Camera class, 12, 15, 515, 624
Camera directory, 579
Camera.getCameraInfo() method, 614
camera.getMatrix() method, 515
Camera.getNumberOfCameras() method, 614
camera.rotateY method, 515
cameras

and Coordinates
glFrustum and viewing volume, 636–637
gluLookAt and camera symbolism, 634–635
glViewport and screen size, 637

providing depth perception for 2D view animation,
514–515

required permission for, 296
cancel() method, 246, 1048
cancelAll() method, 342
Canvas class, 15
captureImage() method, 618
CATEGORY_ALTERNATIVE category, 135, 235
CATEGORY_BROWSABLE category, 135
CATEGORY_DEFAULT category, 135
CATEGORY_EMBED category, 135
CATEGORY_GADGET category, 134–135
CATEGORY_HOME category, 134–135
CATEGORY_LAUNCHER category, 134–136
CATEGORY_PREFERENCE category, 135
CATEGORY_SAMPLE_CODE category, 135
CATEGORY_SELECTED_ALTERNATIVE category,

135
CATEGORY_TAB category, 135
CATEGORY_TEST category, 135
CellLocation class, 16
certificates, self-signed, 288–291
CHANNEL* values, 603

check-box widget, 275
Check for Updates option, Eclipse, 27
checkable behavior tags, 241
CheckBox control, 160–162
Checkbox widget, 17
CheckBoxPreference class, 16, 275–277
CheckBoxPreference view, 275
checked tag, 241
Checkout, Google, 994–995, 999, 1009, 1011
CHECK_VOICE_DATA_PASS intent, 829–830
chkbox.xml file, 276
CHOICE_MODE_MULTIPLE mode, 181
Choose Flight Options view, 267
chown command, 383
Chronometer control, 194
Chronometer view, 718
Chronometer widget, 17
ClassCastException, 1057
ClassNotFoundException, 59
Clean option, Eclipse, 43
clear() method, 859
clearAllData() method, 730
clearAllPreferences() method, 729–730
clearCheck() method, 164
ClickReceiver class, 874–875
ClickReceiver overlay, 877
ClickReceiver.java file, 872
client applications, calling services from, 351–355
Client Manifest File, 302
ClientConnectionManager, 317
ClientCustPermMainActivity class, 302
client.execute() method, 309
Close button, 1060
Closeable object, 58
cloud-computing model, 5
Cochran, Wayne O., 690
Color class, 15
Color Drawables resources, 72, 79–80
color resources, 76
colored-ballN pattern, 493
colors, localizing, 1003
Colors resource, 71
Columns interface, 102
com.androidbook.bcr package, 462
com.androidbook.handlers package, 422
com.androidbook.hello package name, 32
com.androidbook.intents.testbc action, 427
com.androidbook.provider.BookProvider, 110
com.androidbook.salbcr package, 463
com.androidbook.samplepackage1 package, 384
com.androidbook.stockquoteclient, 351
com.android.browser package, 379
com.cust.perm package, 302
com.cust.perm.PrivActivity, 302
com.google.android.maps package, 17, 519
comma character, 831
command-line tools, 8
CommaTokenizer, 156
commit() method, 285, 734, 1035
CommonDataKinds classes, 956
CommonDataKinds.Email class, 952
Commons IO web site, 311

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1148

commons-lang JAR file, 375
communications, between fragments, 1063–1064
CompassSensor application, 914
compiled resources, 70
compiling code, instructions for, 421–422
complex types, passing to services, 355–366
components

Android, 10–11, 13–14
directly invoking activities with, 133
lifetimes of, 418–421

activities, 418–419
providers, 421
receivers, 420–421
services, 420

rules for resolving intents to, 137–139
and threading, 399–403

content providers, 401
external service components, 401
main thread, 400–401
thread pools, 401
thread utilities, 401, 403

computeCurrentVelocity method, 858
computing platform, Android, 1–3
com.syh package, 357
configuration activity class, 726
configuration qualifiers, 84
configure attribute, 726
ConfigureBDayWidgetActivity activity, 719, 724
ConfigureBDayWidgetActivity class, 738
ConfigureBDayWidgetActivity.java file, 724
ConnectivityManager class, 15
consoles, Eclipse, 814
constant intent.ACTION_SEARCH, 786
constructors, RemoteViewsFactory interface, 1107
contact table field, 988
ContactData structure, 988
ContactDataFunctionTester, 982, 984
ContactData.java file, 982
Contact_entities_view, 984
ContactFunctionTester.java file, 983
contact_id column, 981
contact_id field, 954
contacts

aggregated contacts, 956–958
contact_entities_view view, 959
data tables, 955–956
editing, 699
live-folder, 698
raw contacts, 953–955
view_contacts view, 958–959

contacts API, 937–991
accounts, 938–943, 960–968

driver activity classes, 963–966
enumerating, 943
function tester-related files, 961–962
menu file, 961
relevance to contacts, 942–943
running program, 966–968
screens, 938–942

contacts, 952–959
adding with details, 985–988
aggregated, 956–958, 968–977

contact_entities_view view, 959
data table, 955–956
examining contents SQLite database, 952–953
raw, 953–955, 977–982
view_contacts view, 958–959

contacts application, 944–952
contact data types, 951–952
edit contact screen, 946–948
exporting contacts, 949–951
photo setting screen, 948–949
show contact detail screen, 945
show contacts screen, 944

controlling aggregation, 988–989
impacts of syncing, 989–991

Contacts application, 18
Contacts content provider, 693, 707
Contacts LF folder, 698, 700
Contacts LF icon, 698, 709
Contacts provider, 100
contacts2.db, 952
ContactsContract.AggregationExceptions class, 989
ContactsContract.CommonDataKinds, 956
ContactsContract.Contacts.CONTENT_URI, 976
ContactsContract.Data, 955
ContactsContract.RawContact class, 954
ContactsContract.RawContacts.RawContactsEntity

class, 959
contacts.db database, 102
contacts.db file, 94, 952
Contacts.People.CONTENT_URI, 101
ContactsProvider project, 19
containers, description of, 146
Content Guidelines, Android, 1010
content providers

adding files to, 107
architecture of, 96–108
built-in, 90–95
concept of, 10, 694
cursor, 102–104
databases on emulator and available devices,

91–95
deletes from, 108
extending ContentProvider, 110–111
fulfilling MIME-Type contracts, 116
implementing delete method, 117
implementing insert method, 116–117
implementing query method, 116
implementing update method, 117
inserting records in, 106–107
planning database, 109–110
reading data with URIs, 100–102
registering, 119–123
setting up development environment, 30
SQLite primer, 95
structure of MIME types, 98–100
structure of URIs, 97–98
updates of, 108
using projection maps, 119
using UriMatcher to figure out URIs, 117–118
where clauses, 104–106

explicit, 105–106
passing through URIs, 104–105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1149

(content\://sms/inbox), 566
content\://sms/sent, 567
ContentProvider class, 49–50, 108, 110–111
ContentResolver object, 106–108, 707, 710
contents SQLite database, 952–953
CONTENT_URI, 46
ContentValues argument, 108
ContentValues class, 106, 618
ContentValues dictionary, 106
Context class, 425, 586
context menus, 231–233

populating, 233–234
registering view for, 233
responding to items on, 234

context.getSharedPreferences() method, 734
CONTEXT_IGNORE_SECURITY flag, 384
CONTEXT_INCLUDE_CODE flag, 384
ContextMenu class, 231–233
ContextMenuInfo class, 233–234
Context.NOTIFICATION_SERVICE service, 438
CONTEXT_RESTRICTED flag, 384
Context.startService() method, 338–339, 346
context.startService(new Intent(MyService.class))

method, 443
Context.stopService() method, 339
controls, 152–198

buttons, 157–165
Button, 157–158
CheckBox, 160–162
ImageButton, 158–159
RadioButton, 162–165
ToggleButton, 159–160

date and time
AnalogClock, 169
DatePicker, 167–168
DigitalClock, 169
TimePicker, 167–168

description of, 146
Gallery, 187–188
GridView control, 183–185
ImageView control, 165–166
MapView, 169–170
Spinner, 185–187
text, 152–157

AutoCompleteTextView, 155–156
EditText, 154–155
MultiAutoCompleteTextView, 156–157
TextView, 153–154

convertView value, 193
CookieManager class, 17
Copy projects into work space option, Eclipse, 421,

461
CountDownTimer class, 194
create avd command, 38
create() method, 585
Create new project in work space option, 422
Create project from existing sample option, Eclipse,

882
create statement, 95
createAlertDialog() method, 254
createFromResource() method, 173
createHttpClient() method, ApplicationEx, 317

createItem method, 531
CREATE_LIVE_FOLDER intent, 701
createLiveFolder method, 703
createPackageContext() API, 383
createScaledBitmap() method, 193
Criteria object, 543
CrossProcessCursor, 708
crypto package, 18
crypto.spec package, 18
CupcakeMaps.ini file, 39
Cursor interface, 14
cursor object, 97, 337, 751
CursorAdapter adapter, 174
cursors, 100, 102–104, 693–694, 700, 707
cursor.setNotificationUri, 707
CursorWrapper class, 181, 708
custom gestures, 881
custom method, 854
custom suggestion providers, 796–818

manifest file, 813–814
planning, 796
search metadata, 804–805
SuggestURLProvider class, 797–807
SuggestURLProvider project implementation files,

796–797
user experience, 814–818

CustomHttpClient class, 317, 323
CustPermMainActivity, 298

■ D
Dalvik Debug Monitor Service (DDMS), 577, 1008
Dalvik Executable (.dex) file, 6
Dalvik VM (Virtual Machine), 6–8
_data column, 107
/data directory, 271, 586
data element, 130
_data field, 107
data portion, of intents, 129
/data/res/anim directory, 1034
/data/res/animator directory, 1034, 1066
/data/res/interpolator directory, 1066
database modes for

SearchRecentSuggestionsProvider, 781–783
DatabaseHelper class, 50
DATABASE_MODE_2LINES, 782
DATABASE_MODE_QUERIES, 782–783
databases, planning, 109–110
data.getData() method, 616
date and time controls

AnalogClock, 169
DatePicker, 167–168
DigitalClock, 169
TimePicker, 167–168

date-related utilities, 737–738
DatePicker control, 167–168
DatePicker widget, 17
DatePickerDialog, 264
DCIM directory, 579
DDMS (Dalvik Debug Monitor Service), 577, 1008
DDMS node, Android, 27
dealWithThisAction() method, 1112–1113

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1150

Debug Bridge (adb) command, Android, 55, 576
debug log, 793
debug text view layout, scrollable, 1080–1081
DebugActivity java file, 960, 963–964, 1072–1073,

1077–1081
debug_activity_layout.xml file, 960, 963
DebugActvity.java file, 963
debugging

applications, 54–62
using Toast objects, 263

debug_layout_activity.java file, 964
Debug.startMethodTracing() method, 55
DebugUtils class, 17
declaring menus, 11
DEFAULT activity, 135
DEFAULT category, 139, 1043
DefaultHttpClient() method, 315, 317
defaultValue attribute, 267
DeferWorkHandler class, 408, 412–413, 417
DeferWorkHandler handler, 405, 407–408
delete method, 108, 110, 117
deleting

from content providers, 108
widget instances, 722

demo versions, distributing, 995
density-independent pixels, 206
describeEvent() method, 868
DESCRIPTION field, 706
DESCRIPTION value, 618
designing widgets, 743
DetailsFragment class, 1028, 1030–1031, 1042
details.xml file, 1031–1032
detectAll() method, 58, 60
detectDiskReads() method, 60
detecting sensors, 892
(detectOpenGLES20) function, 679
Developer Account, 994
Developer Composite Score, 997, 1009
Developer Console, 994, 997–1001, 1007
developer name, 1006
Development Tools node, Android, 27
Device view, 1008
Devices screen, Hierarchy Viewer, 214
devices, testing, 1001
.dex (Dalvik Executable) file, 6
dialog fragments, 1044–1063

DialogFragment class, 1045–1049
constructing, 1045–1047
dismissing, 1048–1049
displaying, 1047

sample application
AlertDialogFragment dialog fragment, 1061–1062
HelpDialogFragment dialog fragment, 1058–1061
Main Layout main.xml application, 1062–1063
MainActivity class, 1051–1053
OnDialogDoneListener interface, 1053–1054
PromptDialogFragment dialog fragment,

1054–1058
Dialog object, 264
dialog1.getValue1() method, 255
dialog1.show() method, 255
dialogFinished() method, 255, 259, 262

DialogFragment class, 1045–1049
constructing, 1045–1047

overriding onCreateDialog method, 1046–1047
overriding onCreateView method, 1046

dismissing, 1048–1049
displaying, 1047

DialogInterface, 246
DialogRegistry class, 259
dialogs, 243

alert, 244–246
nature of in Android, 251–252
prompt, 246–251

creating and showing, 249
PromptListener class, 249
rearchitecting, 252
setting up alert-dialog builder with user view, 248
setting up buttons and listeners, 248
XML layout file for, 247

recasting as managed dialogs, 253–255
dialog.show() method, 244
dialogTitle attribute, 267
dictionary, free, 816
Digital Camera Images directory, 579
digital certificates, 288
DigitalClock control, 169
DigitalClock widget, 17
Dimensions resource, 71, 77
DIRECTORY_ALARMS directory, 579
DIRECTORY_DCIM directory, 579
DIRECTORY_DOWNLOADS directory, 579
DIRECTORY_MOVIES directory, 579
DIRECTORY_MUSIC directory, 580
DIRECTORY_NOTIFICATIONS directory, 580
DIRECTORY_PICTURES directory, 580
DIRECTORY_PODCASTS directory, 580
DIRECTORY_RINGTONES directory, 580
disabled option, 957
disabling search activity, 766–767
Dismiss button, 1058
dismiss() method, 246, 1048–1049, 1058
display orientation, and accelerometers, 910
Display.getOrientation() method, 910
Display.getRotation() method, 910
display_name field, 954
displayNotificationMessage() method, 341
distanceBetween() method, 543
distanceTo() method, 543
divideMessage() method, 563
doClick() method, 325, 334, 344, 540, 599
doDeferredWork() method, 405
doInBackground() method, 323–324, 326
Done option, 882
doSearchQuery() method, 786, 810–811
doShow() method, 921
doSpeak() method, 831
Dot class, 859
Dot element, 859
Dot view, 862
Dot.java file, 1126
doUpdate() method, 920
doView() function, 810
doView() method, 810, 812

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1151

downloadImage() method, 323, 331
DownloadImageTask class, 323, 326, 328
DownloadManager class, 331–337
DownloadManager.Query object, 337
DownloadManager.Request object, 334, 336
DownloadProvider project, 19
DOWNLOAD_SERVICE service, 334
drag and drop, 859–862
Drag and Drop API, sample application, 1124–1137

drag source views, 1132–1137
laying out, 1126–1129
list of files, 1125–1126
overview, 1124–1125
responding to onDrag() callback method in drop

zone, 1129–1132
testing, 1137–1139

drag source views, 1132–1137
DragShadowBuilder behavior, 1136
Draw 9-patch tool, 79
draw() method, 532, 624, 639–640, 665, 674, 676,

861, 1136
drawable\box1.xml file, 1114
Drawable class, 166, 494–496, 532
drawable directory, 41, 70
<drawable> value, 72
drawing

with OpenGL ES, 628–633
with textures, 672–673

driver activity classes, 963–966
DebugActivity.java, 963–964
debug_layout_activity.java file, 964
manifest file, 966
TestContactsDriverActivity.java, 965

driver classes, examples, 413–418
activity file, 414, 416
layout file, 417
manifest file, 417–418
menu file, 417

DrmProvider project, 19
drop zone, responding to onDrag() call back method

in, 1129–1132
DropZone class, 1132
DropZone.java file, 1126
dropzone.xml file, 1126
dump() method, 1036
dynamic menus, 238

■ E
e-mail, SMS (Short Message Service), 567–568
earcons, 839–840
Éclair, 873
Eclipse 3.5, setting up environments, 23
Eclipse ADT plug-in, 8
Eclipse console, 814
Eclipse File Explorer tool, 577, 950
edge flags, 853
edit contact screen, contacts API, 946–948
editing contacts, 699
EditText control, 154–155, 205
EditText field, 156, 537, 561
EditText view, 829, 837

EditText widget, 17
EditTextPreference view, 275, 277–278
EGL Native Platform Graphics Interface, 625
Element class, 16
ElementListener interface, 16
Email application, 18
emo_im_happy.png image file, 360
emo_im_winking drawable, 342
EmptyOnClickListener, 254
emulator, 8–9, 36–37, 43
enableDebugLogging() method, 1036
enableDefaults() method, 59–60
enabling NFC (Near Field Communication) sensors,

925
End User License Agreement (EULA), 997, 1008
enqueue() method, 334
entries attribute, 267
entryValues attribute, 267
enumerating accounts, contacts API, 943
Environment method, 579
Environment Variables window, 23, 25
Environment.getExternalStorageDirectory() method,

579
Environment.getExternalStoragePublicDirectory(Strin

g type), 580
environments, setting up

ADT, 26–29
Android SDK, 23–26
Eclipse 3.5, 23
JDK 6, 22–23

ErrorText style, 196
ErrorText.Danger style, 197
ES20SimpleTriangleRenderer class, 679
EULA (End User License Agreement), 997, 1008
exceptions, consuming HTTP services, 313–315
execute() method, 310, 314, 318, 325–326
executeHttpGet() method, 315
executeHttpGetWithRetry() method, 315
Existing Projects into Workspace option, Eclipse, 421
ExpandableContextMenuInfo class, 234
expanded menus, 229
explicit class name, 129
explicit intent, 129, 137
explicit where clauses, 105–106
exporting contacts, contacts API, 949–951
extending ContentProvider, 110–111
Extensible Markup Language. See XML
extensions for widgets, 742–743
external service components, 401
EXTRA_BCC, 568
EXTRA_CC, 568
EXTRA_EMAIL key, 132
extras attribute, 131
EXTRA_SUBJECT key, 132
eye point, 634

■ F
f data type, 628
FaceDetector class, 15
fade_in animator, 1065
fade_in.xml file, 1066

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1152

FadeOffset value, 885, 888
fade_out animator, 1065
fade_out.xml file, 1066
fake words, 838
falseBtnBottom object, 856
falseBtnTop, 855
FalseButton class, 848–849, 854
falseLayoutBottom object, 856–857
far point, 636
File Copy feature, 885
File Explorer tab, 577
File Explorer tool, Eclipse, 577, 950
File/Import menu, Eclipse, 461
File object, 579–580
FileDescriptor, 585–586
FileObserver class, 16
files

.apk, 1007
adding to content providers, 107
custom suggestion provider manifest, 813–814
widget background shape, 727–728
widget layout, 726–727
widget layout-related, 726–728

FILL_PARENT constant, vs. MATCH_PARENT
constant, 152

fillWindow method, 709
find command, 94
findFragmentById() method, 1032, 1036
findFragmentByTag() method, 1036
findLocation() method, 540
findPreference() method, 283
findViewById() method, 67, 151, 284
finish() method, 812, 1042
flag_update_current flag, 1111
flight-options preference, 266–267
flightoptions.xml file, 274
FlightPreferenceActivity class, 267, 273
flight_sort_option_default_value string, 272
flight_sort_options, 274
floats, 874
Folders option, 696
folders, SMS (Short Message Service), 565–567
for loop, navigating through cursors using, 103
foundational components of Android, 10–11
Fragment class, 1015, 1020, 1025, 1044–1045
<fragment> tag, 1020, 1025, 1033, 1037–1041
FragmentManager class, 1035–1044

invoking separate activities, 1041–1043
ListFragment class and <fragment> tag,

1037–1041
persistence of fragments, 1044
referencing fragments, 1037

fragments for tablets, 1015–1068
communications between, 1063–1064
custom animations with ObjectAnimator class,

1064–1067
dialog, 1044–1063

DialogFragment class, 1045–1049
sample application, 1050–1063

fragment back stacks, 1032–1035
FragmentManager class, 1035–1044

invoking separate activities, 1041–1043

ListFragment class and <fragment> tag,
1037–1041

persistence of fragments, 1044
referencing fragments, 1037

FragmentTransaction objects, 1032–1035
lifecycle, 1018–1023

onActivityCreated() callback, 1022
onAttach() callback, 1020
onCreate() callback, 1020–1021
onCreateView() callback, 1021
onDestroy() callback, 1023
onDestroyView() callback, 1023
onDetach() callback, 1023
onInflate() callback, 1020
onPause() callback, 1022
onResume() callback, 1022
onStart() callback, 1022
onStop() callback, 1022
sample fragment app showing, 1024–1032
setRetainInstance() method, 1023

references, 1067–1068
structure of, 1017–1018
when to use, 1016–1017

FragmentTransaction class, 1032–1035, 1065
frame-by-frame animation, 2D, 492–497

adding animation to activity, 494–497
creating activity, 493–494
planning for, 492–493

frame_animation.xml file, 496
FrameLayout, 208–209
FrameLayout layout manager, 198
FrameLayout view, 718
FrameLayout widget, 17
frameworks/base directory, 18–19
free dictionary, 816
FreeType library, 7
from parameter, 172
fromPixels() method, 872
fromRawResource() method, 888
frustum, 625, 629, 636
function tester-related files, 961–962

AccountsFunctionTester.java, 962
BaseTester.java, 961–962
IReportBack.java, 961

fundamental components, 29–30
activities, 29
Android Virtual Devices, 30
AndroidManifest.xml, 30
content providers, 30
intents, 29–30
services, 30
views, 29

■ G
GADGET category, 135
Gallery control, 187–188
geGeocoder class, 537
General/Existing Projects into Workspace menu item,

Eclipse, 461
generic actions, 130–131
GenericManagedAlertDialog class, 257, 261

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1153

GenericPromptDialog class, 257, 262
genkey argument, 289
geo fix command, 558
GeoCoder class, 15, 520, 533, 540, 874
geocode.xml file, 538
geocoding

with Android, 534–537
with background threads, 538–540

GeomagneticField class, 922
GeoPoint class, 533, 872, 874
Gesture class, 15
gesture library, 883–884
gesture points, 883
gesture store, 883
gesture strokes, 883–884
GestureDetector class, 878–881
GestureLibraries.fromFile() method, 887
GestureLibrary class, 15
GestureOverlayView class, 15, 888
GesturePoint class, 15
gestures, 874–889

custom, 881
GestureDetector class, 878–881
and Gestures Builder app, 882–889
multi-touch, 883
pinch gesture, 875–878

Gestures Builder app, 882–889
Gestures Builder icon, 882
gestures file, 885
GestureStore class, 15
GestureStroke class, 15
getAccuracy() method, 543
getAction() method, 851, 863, 868, 870
getActionbar() method, 1079
getActionIndex() method, 871
getActionMasked() method, 871
getACursor() method, 970
getAllProviders() method, 542
getAngleArrays method, 663
getArguments() method, 1031
getBoolean() method, 277
getBroadcast() method, 556
getCacheDir() method, 586
getCenter() method, 533
getCenterPt() method, 533
getCheckedItemIds() method, 182–183
getCheckedItemPositions() method, 181
getColumnValue() method, 969
getComponentName() method, 236
GET_CONTENT action, 141–142
getContextViewInfo() method, 233
getCount() method, 104, 120, 192, 1108–1109
getCurrentPosition() method, 584, 592
getDefaultAdapter() method, 925
getDefaultEngine() method, 840
getDownTime() method, 863
getDrawable() method, 531
getDuration() method, 592
getEdgeFlags() method, 853
getEditText() method, 278
getEventsFromAnXMLFile function, 81
getExternalStorageDirectory() method, 581

getExternalStoragePublicDirectory() method, 581
getExtras, 131
getFilesDir() method, 586
getFragment() method, 1036–1037
getFragmentManager() method, 1036
getFromLocationName() method, 534, 537
getHttpClient() method, 318
getInclination() method, 920
getIndexBuffer method, 664
getIntent() method, Activity class, 235
getInterpolation method, 506
getIntrinsicHeight() method, 532
getIntrinsicWidth() method, 532
getItemAtPosition() method, 181
getItemId() method, 193, 221, 227, 1109
getItemViewType() method, 192
getLanguage() method, 842
getLastKnownLocation() method, 542
getLastNonConfigurationInstance() method, 327–328
getLatSpanE6() method, 533
getListView() method, 1040
getLoadingView() method, 1108–1109
getLonSpanE6() method, 533
getLRSClass() method, 448–449
getMinBufferSize() method, 603
getOrientation() method, 915, 920, 922
getPathSegments() method, 116
getPointerCount() method, 863
getPreferences(int mode) method, 284
getPrefname() method, 731
getPrefsToSave() method, 731
getPressure() method, 863
getProjection() method, 872
getPromptReply() method, 251
getProvider() method, 542
getProviders(boolean enabledOnly) method, 542
getProviders(Criteria criteria, boolean enabledOnly)

method, 542
getQuote() method, 352, 358
getResources() method, 77, 586
getResult() method, 1138
getRotationMatrix() method, 915, 920
getSamples() method, 603
getSensorList() method, 894
getShownIndex() method, 1030–1031
getSize() method, 863
getString() method, 273, 275
getSystemService() method, 541
getTag() method, 1053
getTargetFragment() method, 1064
getText() method, 178, 278
getType() method, 50, 108, 110, 116, 802
getVertexBuffer method, 664
getView() method, 172–173, 192–193
getViewAt() method, 1108–1111
getViewAt(position) method, 1109
getViewTypeCount() method, 192, 1109
getX() method, 863–864, 870
getXMultiplierArray method, 663
getXVelocity() method, 858
getY() method, 863
getYMultiplierArray method, 663

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1154

getYVelocity() method, 858
Git system, 18–19
glActiveTexture method, 672
glBindTexture method, 671
GL_CLAMP option, 672
glClear method, 632–633
glColor method, 632–633
glColor4f method, 633
GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT,

632
glDraw method, 674
glDrawElements() method, 628, 630–632, 676
gl_FragColor variable, 684
glFrustum method, 633, 636, 648
glGenTextures method, 671
GL_LINE_LOOP, 631
GL_LINES, 631
GL_LINE_STRIP, 631
global search

enabling suggestion providers for
in Android 2.2, 754–756
in Android 2.3, 756–757
overview, 753

overview, 746
QSB, 771, 793, 814

globalSearch argument, 769
globalSearchOnly argument, 822
GL_POINTS, 631
GL_REPEAT option, 672
GL_STENCIL_BUFFER_BIT, 632
GLSurfaceView class, 638, 651, 679
GLSurfaceView.Renderer interface, 638
GLSurfaceView.setEGLContextClientVersion

function, 679
glTexCoordpointer method, 672
glTexEnv method, 672
glTexParameter method, 672
GL_TRIANGLE_FAN, 631
GL_TRIANGLES, 631, 655
GL_TRIANGLE_STRIP, 631
gluLookAt method, 633, 635
GLUtils.texImage2D method, 672
glVertexPointer method, and specifying drawing

vertices, 628–630
glViewport method, 634, 637
Google

obtaining map-api key from, 520–522
searching with, 817

Google account, 994
Google Checkout, 994–995, 999, 1009, 1011
Google Translate example, using services, 366–375
GoogleContactsProvider project, 19
GoogleSearch application, 18
GoogleSubscribedFeedsProvider project, 19
GPS location information, required permission for,

296
GPS_PROVIDER, 552
GPX files, 547
GradientDrawable, 80
<grant-uri-permission> tag, 304
graphics library, 12

gravity
and accelerometers, 910–913
android:gravity versus android:layout_gravity, 201–

202
in LinearLayout, 199–201
sensors, interpreting data from, 923

GravityDemo application, 911
grep, 19
GridView control, 183–185, 191, 498, 693–694
GridView widget, 17
gridviewcustom.xml file, 191
GridViews, 694
group tags, 239, 241
guava jar file, 934
gyroscope sensors, interpreting data from,

907–908

■ H
Han, Jeff, 862
handleBroadcastIntent() method, 460
handleMessage() method, 403, 405, 408, 412, 422
Handler class, 16, 407
handlers, 399–423

compiling code for, 421–422
and components, 401
constructing message objects, 407
example driver classes, 413–418

activity file, 414–416
layout file, 417
manifest file, 417–418
menu file, 417

example that defers work, 405–406
and holding main thread, 404
and lifetimes, 418–421

of activities, 418–419
of providers, 421
of receivers, 420–421
of services, 420

references, 422–423
responding to handleMessage method callback,

408
sending message objects to queue, 407–408
and threading

main thread, 400–401
thread pools, 401
thread utilities, 401–403

using to defer work on main thread, 405
and worker threads, 408–413

communicating between main threads and,
410–412

invoking from menu, 409–410
thread behavior, 412–413

hasAccuracy() method, 543
_has_set_default_values.xml file, 274
hasStableIds() method, 183, 1109
Hello Android application name, 32
Hello World! application, 31–37
HelloActivity Create Activity name, 32
HelloActivity.java file, 33
HelloAndroid project, 32–33
helloworld message, 431–432

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1155

Help button, 1058
Help menu, Eclipse, 27
HelpDialogFragment dialog fragment, 1058–1061
HelpDialogFragment.java file, 1050
hide() method, 1034
Hierarchy Viewer, debugging and optimizing layouts

with, 213–216
hierarchyviewer.bat file, 214
history, of Android, 3–5
Home button, 1082
HOME category, 136
Home icon, 1071–1084
HOME key, 748
home page, Android, 695, 1070, 1082,

1088–1089, 1092, 1103, 1122–1123
home screen context menu, 713
home screen widgets

definition of, 712
lifecycle of widget, 716–722

definition phase, 717–719
deleting widget instance, 722
instance creation phase, 719–720
onUpdate phase, 720–721
uninstalling widget packages, 722
widget view mouse click event callbacks phase,

722
list-based, 1097–1124

remote views, 1098–1113
sample list widget, 1114–1122

sample widget application, 722–742
abstract implementation of widget model,

732–734
date-related utilities, 737–738
defining widget provider, 724–725
defining widget size, 725–726
implementation of widget model for birthday

widget, 735–737
implementing widget configuration activity,

738–742
implementing widget provider, 728–730
interface for widget model, 731–732
widget layout-related files, 726–728

user experience, 713–716
widget limitations and extensions, 742–743

howManyDays attribute, 735
hreadSafeClientConnManager, 315
HTML Viewer application, 18
HTTP GET requests, HttpClient, 308–310
HTTP POST requests, HttpClient, 310–312
HTTP services, consuming

exceptions, 313–315
multithreading issues, 315
overview, 307–308
timeouts for, 318–319
using AndroidHttpClient, 319–320
using AsyncTask, 320–331
using DownloadManager, 331–337
using HttpClient for HTTP GET requests, 308–310
using HttpClient for HTTP POST requests, 310–312
using HttpURLConnection, 319

HttpClient
HTTP GET requests, 308–310

HTTP POST requests, 310–312
HttpGet object, 318–319
HttpMime web site, 311
HttpParams object, 318
HttpPost object, 318–319
HttpURLConnection class, 319

■ I
IANA (Internet Assigned Numbers Authority) web site,

99
ICON field, 706
icon menus, 229–230
icon_1, 805
icon_2, 805
id attribute, 67
_ID column, 47, 50, 102, 805
id field, 110, 732
IDE (Integrated Development Environment) tool, 8
identity matrix, 508
IDialogFinishedCallBack interface, 260
IDialogProtocol interface, 256, 258–259
IDs, for resources, 69
ifconfig command, 26
ignoreLastFinger variable, 877–878
IllegalArgumentException, 603
IM application, 18
image resources, 78–79
ImageButton control, 158–159
ImageButton view, 718
ImageButton widget, 17
Images resource, 72
images, stretchable, 78
ImageView control, 165–166, 331, 880
ImageView objects, 209
ImageView view, 718
implicit intents, 129, 139
Import menu option, Eclipse, 421
import statement, 355, 1099
ImProvider project, 19
inches, 205
includeInGlobalSearch attribute, 788, 793
inflate() method, 1021
init() method, 731
initCamera() method, 609
initialize method, 511
Initialize Recorder button, 609
initialized, 285
initialQuery argument, 769, 822
initRecorder() method, 611, 613
InputStream method, 166
insert() method, 50–51, 108, 110, 116–117, 174
insertName() method, 988
insertPhone() method, 988
insertRawContact() method, 988
install command, 294
Install New Software feature, Eclipse, 27
Install New Software...option, Eclipse, 26
Instrumentation class, 1001
int constant, 68
Integrated Android Search, 12
Integrated Development Environment (IDE) tool, 8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1156

Intent action, 804
Intent class, 10, 131–133, 135, 273, 829
INTENT field, 706
intent filter, 137–138
<intent-filter> tag, 351
INTENT item, 706
Intent object, 236
Intent parameter, 140
intent primacy, in setting off alarms, 484–487
intent_action, 805, 807
Intent.ACTION_CALL action, 130
Intent.ACTION_DIAL action, 130
Intent.ACTION_VIEW action, 303, 571
intent_data, 805–806
Intent.FLAG_GRANT_READ_URI_PERMISSION flag,

304
intent.getExtras() method, 565
intents, 29–30

ACTION_PICK action, 139–141
available in Android, 127–128
categories of, 134–136
data portion of, 129
directly invoking activities with components, 133
extra information, 131–132
generic actions, 130–131
GET_CONTENT action, 141–142
overview, 125–126
pending, 142–144
recording audio using, 615–618
relationship to data Uniform Resource Identifiers

(URIs), 129
responding to menu items with, 222
rules for resolving to components, 137–139

IntentService class, 423, 442, 457
IntentService implementation

extending for broadcast receivers, 445–455
abstracting wake locks with LightedGreenRoom

abstraction, 449–455
broadcast service abstractions, 445–447
long-running, 447–449

overview, 442–443
source code, 443–444

IntentService.java file, 423
IntentUtils code, 130
internalCursor variable, 709
internal.db database, 620
Internet Assigned Numbers Authority (IANA) web site,

99
Internet, required permission for, 296
interpolatedTime method, 511, 515
interpolators, 506–507
interprocess communication

calling services from client applications, 351–355
passing complex types to services, 355–366

interrupt() method, 342
ints, 874
Invalid panorama indication, 874
invalidate() method, 881, 1136
invokeLocalSearchActivity() function, 775
invokeSearch function, 769
invokeSearchInvokerActivity() function, 770
invoking activities directly with components, 133

io package, 18
IP address, 26
ipconfig command, 26
IReportBack interface, 961–962, 964, 1073–1077,

1086
IReportBack.java file, 960–961, 1072
Is Library check box, 389
Is Library flag, 385
isAlive() method, 413
isCancelled() method, 326
isChecked() method, 161
isEnabled() method, 925
isLanguageAvailable() method, 841
isLocationDisplayed() method, 526, 551
isMultiPane() method, 1027
isPlaying() method, 592
isProviderEnabled(String providerName) method, 542
isRouteDisplayed() method, 526
isSpeaking() method, 842
IStockQuoteService interface, 347, 349–350, 354,

358
IStockQuoteService service, 352
IStockQuoteService.aidl file, 352, 361
IStockQuoteService.java file, 365
item node, 74
item tag, 69, 196
ItemizedOverlay class, 528, 531–532, 871
IWidgetModelSaveContract file, 723

■ J
J2EE (Java 2 Platform, Enterprise Edition), 29
jarsigner command, 381, 1007
Jarsigner tool, 288, 292
Java 2 Platform, Enterprise Edition (J2EE), 29
Java API's main libraries, Android, 8
Java Binding for the OpenGL ES API (JSR 239),

documentation for, 690
Java ME

M3G, 626–627
OpenGL ES, 626

Java packages, for Android, 14–18
Java SE (Java Platform, Standard Edition), 2
Java Specification Request (JSR) 239, 12
Java Virtual Machine (JVM), 2
JAVA_HOME environment variable, 23
java.nio classes, 629
java.nio package, 631
JavaScript Object Notation (JSON), support for, 313
JavaServer Pages (JPS), 29
javax.microedition.khronos.egl package, 16
javax.microedition.khronos.nio package, 16
javax.microedition.khronos.opengles package, 16
JDK 6, setting up environments, 22–23
JDK bin directory, 288, 292
JETCreator tool, 591
JetPlayer, 591
JIT (just-in-time) compiler, 6
JPS (JavaServer Pages), 29
JSON (JavaScript Object Notation), support for, 313
JSR 239 (Java Binding for the OpenGL ES API),

documentation for, 690

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1157

JSR (Java Specification Request) 239, 12
just-in-time (JIT) compiler, 6
JVM (Java Virtual Machine), 2

■ K
kecode_endcall action key, 818
key attribute, 267, 277
key pair, 288
key property, 267
key/value pairs, 106
keyalg argument, 289
keycode attribute, 820
keycode_back action key, 818
keycode_call action key, 818–819
keycode_camera action key, 818
keycode_clear action key, 818
keycode_dpad_center action key, 818
keycode_dpad_down action key, 818
keycode_dpad_left action key, 818
keycode_dpad_right action key, 818
keycode_dpad_up action key, 818
keycode_home action key, 819
keycode_menu action key, 819
keycode_mute action key, 819
keycode_power action key, 819
keycode_search action key, 819
keycode_volume_down action key, 819
keycode_volume_up action key, 819
KeyEvent class, 819–820
KEY_PARAM_STREAM argument, 839
keypass argument, 289
keys, 734
keystore argument, 289
keytool command, 381
keytool utility, 288–291, 521
Khronos Group, 8, 624–625
Khronos Group OpenGL ES Reference Manual, 690
killMediaPlayer() method, 584
KMZ files, 547

■ L
labels, for applications, 1004
landscape mode, 1042
lang package, 18
lang.annotation package, 18
lang.ref package, 18
lang.reflect package, 18
language methods, 840–842
Language option, 826
Launch Options dialog, 56
Launcher application, 18
LAUNCHER category, 44, 139, 274, 1043
layout animation, 2D, 498–507

animating ListView, 502–505
creating activity and ListView, 500–502
interpolators, 506–507
planning test harness, 499
types of, 498–499

layout attribute, 726

layout directory, 70
layout/edit_bday_widget.xml file, 724
layout-en directory, 85
layout files, 417
layout folder, 41, 44
layout/layout_search_activity.xml file, 797
layout/lib_main.xml file, 387
layout\list_item_layout.xml file, 1114, 1120
layout/main.xml file, 390, 414, 417, 428, 1072
layout managers

customizing layouts for multiple devices, 210–212
FrameLayout, 208–209
LinearLayout, 199–202

android:gravity versus android:layout_gravity,
201–202

weight and gravity, 199–201
overview, 198
RelativeLayout, 206–208
TableLayout, 202–206

layout resources, 66–67
layout\test_list_widget_layout.xml file, 1114
layout view, 855
layout xml file, 774, 832
layoutAnimation tag, 504–505
LayoutAnimationActivity, 502
LayoutInflater object, 248
layouts

customizing for multiple devices, 210–212
debugging and optimizing with Hierarchy Viewer,

213–216
description of, 146
Drag and Drop API, 1126–1129
main widget layout file, 1120
remote view

loading, 1104–1105
preparing, 1101–1104

layout.xml file, 1037
libc (C runtime library), 7
lib_main_menu menu, 397
library projects, 384–397

adding as dependency to package, 390–397
creating, 387–390
defined, 384
facts about, 385–387

License Verification Library (LVL), 1006
lifecycles

of activities, 418–419
of applications, 51–54
fragments, 1018–1023

onActivityCreated() callback, 1022
onAttach() callback, 1020
onCreate() callback, 1020–1021
onCreateView() callback, 1021
onDestroy() callback, 1023
onDestroyView() callback, 1023
onDetach() callback, 1023
onInflate() callback, 1020
onPause() callback, 1022
onResume() callback, 1022
onStart() callback, 1022
onStop() callback, 1022
sample fragment app showing, 1024–1032

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1158

setRetainInstance() method, 1023
methods of activities, 52
of providers, 421
of receivers, 420–421
of services, 420

light sensors, interpreting data from, 905–906
LightedGreenRoom abstraction, wake locks with,

449–455
LightedGreenRoom class, 449
LightedGreenRoom.java file, 460, 462
LightedGreenRoom.setup() method, 458
limitations of widgets, 742–743
linear acceleration sensors, interpreting data from,

923
LinearLayout class, 199–202

android:gravity versus android:layout_gravity, 201–
202

weight and gravity, 199–201
LinearLayout containers, 150
LinearLayout controls, 148–149
LinearLayout layout manager, 198–199
LinearLayout node, 67, 727
LinearLayout objects, 148
LinearLayout view, 718
Linkify class, 154
Linux kernel, 7
list-based home screen widgets, 1097–1124

remote views, 1098–1113
layout, 1101–1105
onClick events, 1110–1113
RemoteViewsFactory interface, 1106–1109
RemoteViewsService class, 1105–1106

sample list widget, 1114–1122
AndroidManifest.xml file, 1121–1122
main widget layout file, 1120
remote views, 1118–1120
test widget provider, 1114–1118
testing, 1122–1124
widget provider metadata, 1121

list listener, 1086
list navigation, 1084–1089

AndroidManifest.xml file, 1087
BaseActionBarActivity class, 1087
examining, 1088–1089
list listener, 1086
setting up, 1086–1087
SpinnerAdapter interface, 1085–1086

List Navigation Action Bar Activity, 1088
list preference view, 267
ListActivity class, 46, 175, 501, 566
listContactCursorFields function, 975
listContacts() method, 976
listen() method, 570
Listen to an example option, 825
listeners

list, 1086
responding to menu items through, 221–222
setting up for prompt dialog, 248
tabbed, 1077–1078

LISTEN_MESSAGE_WAITING_INDICATOR, 570
ListFragment class, 1037–1041, 1044
listings, creating projects from, 422, 461–463

list_layout_controller.xml file, 503
list_layout.xml file, 500, 503–504
ListListener.java file, 1085
listLookupUriColumns() function, 977
ListNavigationActionBarActivity.java file, 1085, 1087
ListPreference class, 266–275, 284
ListPreference specification, 274
ListPreference view, 275
ListView control

adding 2D view animation to, 511–514
adding controls in, 179–182
animating, 502–505
clickable items in, 177–179
creating for 2D layout animation, 500–502
displaying values in, 175–176
overview, 175
reading user input from, 182–183

ListView widget, 17
list.xml file, 182
live-folder contacts, 698
live-folder icon, 693–694, 697
live folders

building
AllContactsLiveFolderCreatorActivity.java, 702–

703
AndroidManifest.xml, 700–702
BetterCursorWrapper.java, 708–709
code for, 709–710
MyContactsProvider.java, 703–707
MyCursor.java, 708
overview, 700

overview, 693–694
testing, 709
user experience, 694–700
viewing, 697

LiveFolder framework, Android, 707
LiveFolders class, 710
llContactsLiveFolderCreatorActivity activity, 700
load() method, 590
loadNewData() function, 707
local QSB (Quick Search Box), 771, 773, 776, 791–

792
local search, 748, 771–777
Local Search Activity option, 776
local search-enabled activity, 776
local services, 30, 337, 339–346
Locale.getDefault() method, 842
localizing

colors, 1003
menu choices, 1004

LocalSearchEnabledActivity, 757, 774–775
LocalServerSocket class, 15
LocalSocket class, 15
location-based services, 519–558

location package, 533–558
geocoding with Android, 534–537
geocoding with background threads, 538–540
LocationManager service, 541–549
MyLocationOverlay overlay, 549–553
using proximity alerts, 554–558

mapping package, 520–533
MapView and MapActivity, 522–528

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1159

obtaining map-api key from Google, 520–522
overlays, 528–533

Location class, 15, 542–543
location package, 533–558

geocoding with Android, 534–537
geocoding with background threads, 538–540
LocationManager service, 541–549

enabling providers for, 543
methods for, 543–544
sending location updates to emulator, 544–549

MyLocationOverlay overlay, 549–553
using proximity alerts, 554–558

LocationManager class, 15, 542
LocationManager service, 541–549

enabling providers for, 543
methods for, 543–544
sending location updates to emulator, 544–549

LocationProvider class, 15
Log class, 17
Log command, 54
logAction() method, 870
LogCat window, 831, 851, 853–857, 866, 868, 874
Log.d debug method, 81
logThreadSignature() method, 402, 443
long click, 231
long-running services. See LRS
look-at point, 635
lookup field, 958
Looper class, 16
LRS (long-running services)

abstractions, 445–447
broadcast receiver protocol, 441–442
compiling code, 461–463
implementation, 455–460

controlling wake lock from two places, 458
nonsticky services, 456–457
picking suitable stickiness, 457–458
specifying service flags in OnStartCommand

method, 457
sticky services, 457
testing long-running services, 460

IntentService implementation
overview, 442–443
source code, 443–444

receivers, 447–449
references, 464
testing, 460

LVL (License Verification Library), 1006

■ M
m1.postTranslate() method, 517
m1.preTranslate() method, 516
M3G, 626–627
mA (milliamperes), 895
magnetic declination, and GeomagneticField class,

922
magnetic field sensors, interpreting data from, 914–

915
MAIN action, 44
MAIN category, 139
Main Layout main.xml application, 1062–1063

Main method, equivalent of in Android, 44
main threads

activities, 400
broadcast receivers, 401
communicating between worker threads and,

410–412
ReportStatusHandler class implementation,

411–412
WorkerThreadRunnable class implementation,

410–411
content providers, 401
implications of holding, 404
implications of singular, 401
services, 401
using handlers to defer work on, 405

MainActivity class, 147, 584, 607, 830–831, 834, 854,
1051–1053

MainActivity.java file, 332, 339, 352, 361, 1050, 1126
MainActivity's stopService() method, 345
main_layout.xml file, 85
main_menu menu, 397
main_menu.xml file, 960, 975, 978, 982, 984,

986–987
main.xml file, 66, 149, 212, 301, 344, 549, 780, 1033,

1042, 1125
makeCall() method, 573
makeText() method, 263
managed dialogs, 253–262

managed-dialog protocol
DialogRegistry class, 259
GenericManagedAlertDialog class, 261
GenericPromptDialog class, 262
IDialogFinishedCallBack interface, 260
IDialogProtocol interface, 258
ManagedActivityDialog class, 258
ManagedDialogsActivity class, 259
overview, 253
simplifying, 255–257

recasting non-managed dialog as, 253–255
ManagedActivityDialog class, 257–258, 260, 262
ManagedDialogsActivity class, 257, 259
managedQuery() method, 46–48, 101, 104–105, 176,

976
manifest editor tool, Android, 297
<manifest> element, 45, 574, 1001
manifest file

Contacts API, 966
for custom suggestion provider, 813–814
registering broadcast receivers in, 427–428
tabbed navigation, 1083–1084

manifest.xml file, 387, 390, 414, 428, 433, 463, 701,
780, 797, 960

MAP API key, 1007
map-api key, obtaining from Google, 520–522
map object, 110
MapActivity class, 17, 170, 519, 522–528
MapController class, 17, 525
mapping package, 520–533

MapView and MapActivity, 522–528
obtaining map-api key from Google, 520–522
overlays, 528–533

mapping.txt file, 1007

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1160

maps, touches with, 871–874
MapView class, 17, 522–528, 871–872, 878
MapView control, 169–170, 526
MapView UI control, 519
mapView.getController() method, 525
mapView.postInvalidateDelayed(2000)statement, 526
Market, Android. See Android Market
Market app, 1005
market:// scheme, 1005
match method, 118
Matcher, 117–118
MATCH_PARENT constant, vs. FILL_PARENT

constant, 152
math package, 18
Matrix class, 15, 512, 514, 516, 688
MatrixCursor class, 703, 707–708
maxResults parameter, 537
MD5 fingerprint, 520–521
media APIs

adding media content to media store, 618–620
AsyncPlayer, 591–592
audio recording, 596
AudioTrack, 592
JetPlayer, 591
MediaPlayer oddities, 592–593
MediaStore class, 614–615
overview, 575
playing audio content, 581–585
playing video content, 593–595
Secure Digital (SD) cards, 576–580
setDataSource method, 585–586
SoundPool class, 587–591
triggering MediaScanner for SD card, 621
video recording, 605–614

media components, of Android, 13–14
media content, adding to media store, 618–620
media store, adding media content to, 618–620
MediaController widget, 17, 595
MediaPlayer class, 15, 575, 581, 584–585, 592–593
MediaPlayer(Context context,int resourceId)

constructor, 585
MediaProvider project, 19
MediaRecorder class, 15, 595, 614–615
MediaRecorder interface, 607
MediaRecorder.AudioSource, 599, 603
MediaScanner, triggering for SD card, 621
MediaScannerConnection class, 618
MediaStore class, 16, 614–615
MediaStore provider, 100
MediaStore.ACTION_IMAGE_CAPTUR, 618
MediaStore.Images.ImageColumns, 618
Menu button, 271, 280, 699, 1082
menu callback, 273
menu choices, localizing, 1004
Menu class, 17, 226, 237
menu enabling/disabling tag, 242
menu file, contacts API, 961
menu folder, 41
Menu Icon area, 1071
menu icon tag, 241
Menu interface, 237
menu item shortcuts, 242

menu items, invoking worker threads from, 409–410
Menu key, Notepad application, 42
menu/lib_main_menu.xml file, 387
menu/main_menu.xml file, 390, 417, 428
menu/menu.xml, 1072
Menu object, 225, 230–231, 236
menu tag, 239
menu types

alternative menus, 234–238
context menus, 231–233

populating, 233–234
registering view for, 233
responding to items on, 234

dynamic menus, 238
expanded menus, 229
icon menus, 229–230
submenus, 230–231
system menus, 231

menu XML file, 764
menu.add method, 230
Menu.addSubMenu method, 230
MenuBuilder class, 237
Menu.CATEGORY_ALTERNATIVE constant, 218, 236
Menu.CATEGORY_CONTAINER constant, 218
Menu.CATEGORY_SECONDARY constant, 218, 226
Menu.CATEGORY_SYSTEM constant, 218–219
menu_da_clear menu item, 963
Menu.FLAG_APPEND_TO_GROUP flag, 236
MenuItem class, 221, 1083–1094
menus. See also menu types

creating, 219–220
creating test harness for, 222–224

adding regular menu items, 225–226
adding secondary menu items, 226
creating activity, 224–225
creating XML layout, 224
responding to menu-item clicks, 227–228
setting up menu, 225
tweaking AndroidManifest.xml file, 228–229

declaring, 11
groups of, 220
interaction with action bar, 1081–1083

displaying menu, 1082
menu items as actions, 1083

invoking search through, 767–771
overview, 217–219
responding to items on

with intents, 222
through listeners, 221–222
through onOptionsItemSelected method, 221

XML based, 238–242
checkable behavior tags, 241
group category tag, 241
inflating resource files, 239–240
menu enabling/disabling tag, 242
menu icon tag, 241
menu item shortcuts, 242
menu visibility, 242
responding to items, 240–241
structure of resource files, 239
tags to simulate submenu, 241

merchant account, 999, 1009

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1161

message objects
constructing, 407
sending to queue, 407–408

metadata, searching, 788–789, 804–805
micro-Teslas (uT), 914
microedition.khronos.egl package, 18
microedition.khronos.opengles package, 18
MIDI (Musical Instrument Digital Interface), 591
"mid_opengl_current" menu id, 644
milliamperes (mA), 895
millimeters, 205
MIME (Multipurpose Internet Mail Extensions) types

fulfilling contracts, 116
specifying, 802
structure of, 98–100

Mime4j web site, 311
mimeType attribute, 130
mimetype_id, 955
min/max function, 881
Miner, Rich, 4
minSdkVersion, 580
mirror sites, 1012
mksdcard utility, 576
mmap() method, 293
mMMatrix variable, 688
Mms application, 18
mMVPMatrix variable, 688
MODE_PRIVATE mode, 285
MODE_WORLD_READABLE flag, 382
MODE_WORLD_READABLE mode, 285
MODE_WORLD_WRITEABLE flag, 382
MODE_WORLD_WRITEABLE mode, 285
MotionEvent class, 853, 863, 870
MotionEvent events, 857
MotionEvent handler, 846
MotionEvent objects, 845–846, 851, 853, 856,

863–864, 869, 877–878
MotionEvent.ACTION_MASK constant, 870
MotionEvent.ACTION_POINTER_3_DOWN constant,

870
MotionEvent.ACTION_POINTER_ID_MASK constant,

870
MotionEvent.ACTION_POINTER_ID_SHIFT constant,

870
MotionEvents

drag and drop, 859–862
MotionEvent object, 845–857
recycling, 857
velocitytracker, 857–859

Motorola XOOM, 5
mouse click event callbacks, widget view, 722
moveToFirst() method, 102–103
moveToNext() method, 103
moveToPosition() method, 181
Movie class, 15
multi-pane mode, 1032
multi-touch, 862–871

gestures, 883
post version 2.2, 871
prior to version 2.2, 863–870

MultiAutoCompleteTextView control, 156–157
MultipartEntity, 312

Multipurpose Internet Mail Extensions types. See
MIME types

multithreading issues, consuming HTTP services, 315
Murphy, Mark, 445
Music application, 18
Musical Instrument Digital Interface (MIDI), 591
music_file.mp3, 585
mVMatrix variable, 688
My Downloads, 1011
my_column, 821
MyContactsContentProvider, 707
MyContactsProvider class, 701, 703, 707
MyContactsProvider code, 703
MyContactsProvider.java file, 700, 703–707
MyCursor.java file, 700, 708
MyDialogFragment class, 1045
MyFragment class, 1019
MyLocationDemoActivity.java file, 549
MyLocationOverlay class, 549–553, 871
my_menu.xml file, 239
MySMSMonitor class, 564

■ N
n command, 38
name attribute, 196, 734
NAME field, 706, 735
name property, 65
nameContainer object, 148–149
NameValuePair objects, 310
navigation modes, 1079–1080
Near Field Communication sensors. See NFC

sensors
near point, 636
nesting PreferenceScreen elements, 281
net package, 18
net.ssl package, 18
NETWORK_PROVIDER, 552
NETWORK_WIFI, 334
New Android Project button, 31
New Android Project dialog box, 31
New Android Project wizard, 572
New live folder option, 696–697, 701
New Project dialog box, 31
New Project Wizard, 31–32
newInstance() method, 319, 573, 1019,

1030–1031, 1044–1045, 1057–1058, 1060
Nexus S phone, 999
NFC (Near Field Communication) sensors,

interpreting data from, 923
enabling, 925
reading tags, 933
testing with NFCDemo, 934

nio buffers, 629, 641
nio package, 18, 626
nio.channels package, 18
nio.channels.spi package, 18
nio.charset, security, security.acl package, 18
No Search Activity option, 767
NO_MATCH, UriMatcher class, 118
noncompiled resources, 70
nonsticky services, 456–457

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1162

normalized texture coordinates, 669
NoSearchActivity, 757, 766–767
not-runnable state, 413
Notepad application, 42–51

dissecting, 44–51
loading and running, 42–43

Notepad class, 46
NotePadProvider class, 49–50
NotePadProvider database, 97
Notes class, 46
NotesList activity, 44, 47
NotesList application, 43
NotesList class, 46
NotesList.onCreate() method, 45
notification value, 280
Notification.FLAG_NO_CLEAR, 341
NotificationManager, 341
NotificationReceiver.java file, 462
notifications, from broadcast receivers, 434–440

monitoring through notification manager, 435–437
sending, 437–440

Notifications icon, 437
notifyChange method, 117
notifyDataSetChanged() method, 174, 178
null value, 272
Nvidia Tegra2, 5

■ O
ObjectAnimator class, 1064–1067, 1131
<objectAnimator> tag, 1034, 1066–1067
obtain() method, 857–858
obtainMessage() method, 407
onAccuracyChanged() method, 897–898, 903
onActivityCreated() method, 1018, 1022, 1040
onActivityResult() method, 140, 142, 543, 616, 618,

829, 841, 925, 1064
onAttach() method, 1020, 1057
onBind() method, 338, 341, 346, 350–351, 355
onCallStateChanged() method, 570
onCancel() method, 1048, 1058
onCheckedChanged() method, 165
OnCheckedChangeListener interface, 161, 163
OnCheckedChangeListener method, 165
onClick action, 1118
onClick area, 723
onClick behavior, 1118
onClick events

handler, 1110–1112
responding to, 1112–1113

onClick intent, 1110, 1120
onClick() method, 158, 161, 252, 829, 857, 1062
onClickHook method, 258, 261
onContextItemSelected() method, 234
onCreate() method, 45, 786–787, 812, 1020–1021,

1107
onCreateContextMenu() method, 232–234
onCreateDialog() method, 253–254, 1046–1047,

1062
onCreateMethod method, 255
onCreateOptionsMenu() method, 219, 225, 231–232,

235

onCreateView() method, 1018, 1021, 1023,
1031–1032, 1040, 1046, 1058, 1060, 1129

onDataSetChanged() callback method, 1109
onDelete() method, 722, 728, 730
onDeleted() method, 720
onDestory() method, 342, 419, 456, 557, 830, 903,

905, 1023, 1107–1108
onDestroyView() callback, 1023
onDetach() callback, 1023
onDialogDone() method, 1053, 1058
OnDialogDoneListener interface, 1053–1054, 1057
OnDialogDoneListener.java file, 1050
onDisable() method, 722, 728
onDisabled() method, 720, 730
onDismiss() method, 1048, 1058, 1062
onDrag() method, 1129–1132, 1136
onDraw method, 651–652
onDrawFrame() method, 638–639
onEnable() method, 728
onEnabled() method, 719–720, 730
onError() method, 613
OnErrorListener interface, 607
OneShot parameter, 497
onGesturePerformed() method, 889
onGesturePerformedListener interface, 889
onHandleIntent() method., 442
onHandleIntent() method, 443–446
onHandleIntent(Intent) method, 442
onHandleMessage() method, 444
onInflate() method, 1018, 1020
onInfo() method, 613
OnInfoListener interface, 607
onInit() method, 830–831, 840
OnInitListener class, 830
onItemClick() method, 178
onListItemClick() method, 47–48, 1040
onLoadComplete() method, 590
onLoadCompleteListener interface, 590
onLocationChanged() method, 545, 547
onMeasure() method, 1136
OnMenuClickListener interface, 221
onMenuItemClick() method, 221–222
onNewIntent() method, 784, 786–787, 790, 793, 807,

812, 823
onOptionsItemSelected() method, 219, 221–222,

227, 234, 240, 1083
onPause() method, 53, 419, 545, 570, 603,

608–609, 897, 920, 1022
onPostExecute() method, 323–324, 326–327
onPreExecute() method, 323–324, 331
onPrepare method, 259
onPrepareDialog() method, 253–254
onPrepareOptionsMenu method, 238
onProgressUpdate() method, 323–324
onProviderDisabled() method, 548
onProviderEnabled() method, 548
onReceive() method, 335, 427, 440–441, 564, 730,

899, 905, 1110, 1112
onRestart() method, 53
onResume() method, 53, 419, 545, 571, 603, 608,

897, 903, 920, 1022

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1163

onRetainNonConfigurationInstance() method,
327–328

onSaveInstanceState() method, 1020, 1036–1037,
1058

onScale() method, 881
onScaleBegin() method, 881
onScaleEnd() method, 881
onSearchRequested() method, 765–766, 769, 778,

821
onSensorChanged() method, 897, 903, 913
onServiceConnected() method, 354, 364
onServiceDisconnected() method, 354
onStart() method, 53, 339, 341, 419, 441, 444, 456,

903, 1022
onStartCommand() method, 342–343, 345–346, 441,

444, 450, 455–457
onStartCommand() version, 341
onStatusChanged() method, 548
onStop() method, 53, 419, 903, 1022
onSurfaceChanged() method, 639
onSurfaceCreated() method, 638, 671
onTap() method, 872, 874
onTouch() method, 846–847, 851, 853–857, 872
onTouchEvent() method, 846–847, 854–856, 858,

861, 872, 877, 881
onUpdate() method, 719–722, 726, 730, 1101, 1104,

1106, 1114
onUtteranceCompleted() method, 831, 840
OnUtteranceCompletedListener interface, 831
Open Handset Alliance, 4, 18
open() method, 614
OpenCORE, PacketVideo, 7
OpenGL

camera and Coordinates
glFrustum and viewing volume, 636–637
gluLookAt and camera symbolism, 634–635
glViewport and screen size, 637

drawing multiple figures, 674–678
glClear, 632–633
glColor, 633
glDrawElements, 630–632
glVertexPointer and specifying drawing vertices,

628–630
history and background of, 624–627
M3G, 626–627
resources, 690–691, 710
shapes

animating RegularPolygon shapes, 666–668
implementing RegularPolygon shapes, 657–664
rectangles, 653–655
RegularPolygon class, 656–657
rendering square using RegularPolygon class,

664–665
textures

abstracting common handling, 669–672
drawing with, 672–673
normalized coordinates, 669
overview, 668–669

OpenGL ES
drawing with, 628–633
interfacing with Android

AnimatedSimpleTriangleRenderer, 652–653

animating simple triangle, 651–653
changing camera settings, 647–648
drawing triangle with test harness, 641–647
GLSurfaceView and related classes, 638
renderer for, 638–641
using indices to add another triangle, 649–650

Java ME, 626
overview, 625

OpenGL ES 2.0, 678–689
java bindings for, 678–682
rendering in, 682
shaders, 682–685

accessing program variables for, 685
compiling into program, 684

simple triangle in, 685–689
OpenGL library, 7
OpenGL Programming Guide (book), 625, 690
openRawResourceFd() method, 586
option key, 273
option value is 1 (# of Stops) message, 271
Options menu, 1071
organizing preferences, 280–282
org.apache.http.*, 18
org.json, 18
org.w3c.dom, 18
org.xmlpull.v1, 18
org.xml.sax, 18
orientation attribute, 199
orientation property, 199
orientation sensors, interpreting data from, 915–922
orthographic projection, 636
OS version 1.6, Android, 5
out-of-process broadcast receivers, project for,

433–434
OvalShape, 15
Overlay class, 531, 871–872
overlays

MyLocationOverlay, 549–553
overview, 528–533

■ P
p command, 38
Package Manager, 14
package name, 1006
PackageInstaller application, 18
PackageManager class, 136
PackageManager method, 1005
PackageManager.SIGNATURE_MATCH, 1005
packagename application, 838
packages, 377–398

deleting through package browser, 379
and library projects, 384–397

adding as dependencyto package, 390–397
creating, 387–390
defined, 384
facts about, 385–387

listing installed, 378–379
and process name, 378
sharing data among, 382–384

code pattern for, 383–384
and shared user IDs, 382–383

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1164

signing of, 379–382
overview, 380
and PKI certificates, 381–382
and public and private keys, 381

specification details of, 377–378
Paint class, 15
PaintDrawable class, 79
Palette.java file, 1126
palette.xml file, 1125, 1138
parameters, for SoundPool, 590
params HashMap, 839–840
Parcel class, 357
Parcelable class, 357–358, 365
Parcelable interface, 356–357
parentActivity variable, 405
parentContainer, 149
Path class, 15
PATH variable, 25
PathShape, 15
path_to_/JDK_directory, 23
pause() method, 584, 592–593, 595
Pause Player button, 584
penaltyDeath() method, 58
pending intents, 142–144
Pending.getActivity() method, 143
PendingIntent class, 467–468, 556
People class, 101–102
People table, 101
period character, 831
permissions

custom, 297–303
declaring and using, 295–297
URI, 303–306

in content providers, 304–305
passing in intents, 303–304

permitDiskReads() method, 60
persistentDrawingCache tag, 504
Person class, 358, 360–361, 364
Person.aidl file, 357
Person.java file, 357–358
perspective projection, 636
Phone application, 18
PhoneNumberUtils class, 16
PhoneStateListener, 570
photo setting screen, contacts API, 948–949
PICK intent, 141
Pico engine, 827, 837–838, 843
Pico Text To Speech engine, 13
pinch gesture, 875–878
pixels, 205
PKI (public key infrastructure) certificates, and

signing of packages, 381–382
pkzip file, 19
planets.xml file, 186
platforms

adding to Android SDK, 24
on Android, 3

platforms\android-1.6\samples folder, 43
Play button, 612, 834, 837
play() method, 590, 592
playAudio() method, 584
playbackPosition integer member, 584

playEarcon() method, 840
playing audio content, 581–585
playing video content, 593–595
playRecording() method, 612
playSilence() method, 840, 842
PluralRules.java resource code, 74
plurals, 73–74
Plurals resource, 71
pname, 1006
pointer Id, 864
points, 205
populate() method, 531–532
populating context menus, 233–234
portrait mode, 1042
postInvalidate() method, 552
postTranslate method, 513, 516
PowerManager class, 16
PREFERENCE, 274
preference screen view, 267
PreferenceActivity class, 16, 271, 273–275, 283
PreferenceCategory element, 280, 282
preferences

framework, 265–286
CheckBoxPreference, 275–277
EditTextPreference, 277–278
ListPreference, 266–275
manipulating programmatically, 283–284
RingtonePreference, 278–280
saving preferences, 284–286

organizing, 280–282
preferences activity, 827
Preferences dialog box, Eclipse, 28
preferences Editor, 285
Preferences window, Eclipse, 576
PreferenceScreen element, 267, 278, 280–282
prepare() method, 584–585, 592, 612
pressure sensors, interpreting data from, 907
pressure value, 852
preTranslate method, 513, 516
primitive shapes, 628
printCursorColumnNames() method, 970
PRIORITY parameter, 590
PrivActivity class, 298–299, 303
privileged activities, 298
process boundary, 295
process lifetimes, 418–421

of activities, 418–419
of providers, 421
of receivers, 420–421
of services, 420

process name, and packages, 378
.profile file, 23, 25
ProgressBar control, 194
ProgressBar view, 718
ProgressBar widget, 17
ProgressDialog, 264
Project option, Android, 42, 422
project properties screen, 385
Projection interface, 872
projection maps, 110, 119
projection parameter, managedQuery() method, 47
projections, 102, 116

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1165

prompt dialog
designing, 246–251

creating and showing, 249
PromptListener class, 249
setting up alert-dialog builder with user view, 248
setting up buttons and listeners, 248
XML layout file for, 247

rearchitecting, 252
PromptDialogFragment dialog fragment, 1054–1058
PromptDialogFragment.java file, 1050
PromptListener class, 248–250, 252
promptReply field, 249
properties context menu, 389
properties dialog, 389
properties window, 385
provider class, 108
provider declaration, 701
Provider projects, 19
<provider> tag, 304–305
providers, life cycles of, 421
proximity sensors, interpreting data from, 906
ProximityReceiver class, 557
Proxy class, 349
ptrId, 870
ptrIndex, 870
public and private keys, and signing of packages,

381
public key infrastructure (PKI) certificates, and

signing of packages, 381–382
public Map<String,String> getPrefsToSave() method,

735
public static identifier, 47
public String getPrefname() method, 735
public void setProjectionMap(Map columnMap), 119
public void setValueForPref method, 735
Publish button, 1010
publisher, becoming, 994–1001
publishProgress() method, 323, 331
putExtras, 131
putFragment() method, 1036–1037

■ Q
QSB (Quick Search Box), 771, 773, 776, 791–793,

814–815
quantity attribute, 74
queries, passing to suggestion provider, 802–804
query() method, 108, 110, 116–117, 337, 707,

788–789, 797, 802
query string, 806
queryActionMsg attribute, 820
queryActionMsg value, 820
queryAfterZeroResults attribute, 788, 805
QueryBuilder class, 119
queryString, 782
QUEUE_ADD intent, 829, 831
QUEUE_ADD mode, 840
QUEUE_FLUSH intent, 829–831
queues, sending message objects to, 407–408
queueSound() method, 591
queuing mechanism, 840

Quick Search Box (QSB), 771, 773, 776, 791–793,
814–815

Quick Search Box tab, 755

■ R
R class, 47
Radio Frequency ID (RFID), 923
RadioButton control, 162–165
RadioButton widget, 17
RadioGroup class, 162–164
RadioGroup widget, 17
Rasterizer class, 15
RatingBar control, 194
RatingButton widget, 17
raw assest, arbitrary, 72
raw contacts, 977–985
raw directory, 70
raw files, 70, 72
raw folder, 41
raw resources, 82
RawContact object, 981
RawContactEntity view, 984
RawContactFunctionTester.java, 977
raw_contact_id, 955
RawContact.java file, 977–978
ray, 636
R.draawable.robot icon, 438
R.drawable.frame_animation resource, 497
readFromParcel() method, 357
README.TXT file, 1067
Receiver class, 426
receiver element, 428
receiver node, 725
receivers

life cycles of, 420–421
setting up for simple alarm, 467

RecentSearchSuggestionProvider, 795
recognize() method, 889
Record button, 834
recording

audio
with AudioRecord, 600–604
required permission for, 296
using intent, 615–618

video, 605–614
RECORDING message, 606, 612
recordoutput.3gpp file, 600
records, inserting in content providers, 106–107
RectShape, 15
recycle() method, 858
recycling MotionEvents, 857
red book, 625, 690
redeliver intents mode, 457
Reduced Instruction Set Computer (RISC), 9
reference syntax for resources, 67
References tab, 1099
refunds, 996
registerDialogs() function, 259
registerForContextMenu method, 233
registering view for context menus, 233
registerListener() method, 897

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1166

RegularActivity class, 758, 761, 770, 775, 777–778
RegularActivity.java file, 757, 766, 770, 775
RegularPolygon class

overview, 656–657
rendering square with, 664–665
shapes

animating, 666–668
implementing, 657–664

RelativeLayout, 198, 206–208, 527, 718, 848
release() method, 584, 593
releaseCamera() method, 609
release.keystore file, 289
releaseRecorder() method, 609
remapCoordinateSystem() method, 922
remote services, 30, 337–338
remote views, 1098–1113

factory, 1118–1120
layout

loading, 1104–1105
preparing, 1101–1104

onClick events
handler, 1110–1112
responding to, 1112–1113

RemoteViewsFactory interface, 1106–1109
constructor, 1107
getCount() callback method, 1108
getItemId() callback method, 1109
getLoadingView() callback method, 1108–1109
getViewAt() callback method, 1108
getViewTypeCount() callback method, 1109
hasStableIds() callback method, 1109
onCreate() callback method, 1107
onDataSetChanged() callback method, 1109
onDestroy() callback method, 1107–1108

RemoteViewsService class, 1105–1106
service, 1120

RemoteView interface, 1099
RemoteViews class, 711, 718–719, 721, 740–743,

1098
RemoteViewService class, 1106
RemoteViewsFactory class, 1100
RemoteViewsFactory interface, 1106–1109

constructor, 1107
getCount() callback method, 1108
getItemId() callback method, 1109
getLoadingView() callback method, 1108–1109
getViewAt() callback method, 1108
getViewTypeCount() callback method, 1109
hasStableIds() callback method, 1109
onCreate() callback method, 1107
onDataSetChanged() callback method, 1109
onDestroy() callback method, 1107–1108

RemoteViews.RemoteView interface, 1099
RemoteViewsService class, 1100, 1105–1106
RemoteViews.setOnClickFillIntent() method, 1100
RemoteViews.setPendingIntentTemplate() method,

1100
remove() method, 1035
removeData() method, 730
removePrefs() method, 729–730
Renderer interface, 638–641
RENDERMODE_CONTINUOUSLY, 651

RENDERMODE_WHEN_DIRTY, 651
replace() method, 1034–1035
reportBack() method, 1073–1075
ReportStatusHandler class, 411–412, 417
ReportStatusHandler.java class, 413
reportTransient() method, 964, 1073
REpresentational State Transfer (REST), 89
requery, 703, 707–708
requestCode, 140, 143
requestLocationUpdates() method, 545, 548
ReqularActivity.java, 765
/res/anim/alpha.xml file, 504
/res/anim subdirectory, 498, 503
/res/anim/translate_alpha.xml file, 505
/res/animator directory, 1066
res/drawable/box1.xml file, 723, 1120
/res/drawable folder, 159, 230, 438, 493, 531, 727,

1103
/res file, 1002
res folder, 40–41, 47, 70
res/layout/bday_widget.xml file, 723
/res/layout directory, 126, 1031
/res/layout file, 1002
res/layout folder, 187
/res/layout-large file, 1002
res/layout/local_search_enabled_activity.xml file, 757
/res/layout/main.xml file, 273, 332, 368, 462, 757
/res/layout-normal file, 1002
res/layout/no_search_activity.xml file, 757
res/layout/search_activity.xml file, 757
res/layout/search_invoker_activity.xml file, 757
/res/layout subdirectory, 493, 960
\res\layout\test_list_widget_layout.xml file, 1120
/res/menu/main_menu.xml file, 273, 414, 462, 643,

758
res/menu/search_invoker_menu.xml file, 758
/res/raw folder, 585–586, 838, 840, 888
/res/values/arrays.xml file, 271, 368
/res/values directory, 1004, 1135
/res/values folder, 151
/res/values-fr folder, 1003
/res/values/planets.xmlfile, 174
/res/values/strings.xml file, 155, 186, 272, 301, 368,

758, 780
/res/xml/, 267
res/xml/bday_appwidget_provider.xml file, 723
\res\xml\ test_list_appwidget_provider file, 1121
reset() method, 592
ResolveInfo API, 136
ResolveInfo class, 237
resource-reference syntax, 67
ResourceCursorAdapter adapter, 174
Resource.drawable.frame_animation resource ID,

496
resources, 63–88

arbitrary XML resource files, 80–81
assets, 82
color, 76
color-drawable, 79–80
compiled and noncompiled, 70
and configuration changes, 83–87
defining IDs for, 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1167

dimension, 77
directory structure, 83
image, 78–79
key Android, 71–80
layout, 66–67
plurals, 73–74
raw, 82
reference syntax for, 67
string, 64–66, 74–76
string arrays, 73

Resources class, 14
<resources> tag, 65, 159
Resources.java resource code, 74
respondToMenuItem() method, 405
ResportStatusHandler class, 410
REST (REpresentational State Transfer), 89
Restart Player button, 584
RESULT_CANCEL constant, 141
RESULT_FIRST_USER constant, 140–141
RESULT_OK constant, 141, 829
retrieveData() method, 730
retrievePrefs() method, 729–730
returns false button, 853–856
returns true button, 854–856
RFID (Radio Frequency ID), 923
R.id.menu_library_activity menu item, 392
R.id.mid_si_search, 769
R.id.text constant, 69
Ringtone class, 15
ringtone value, 280
RingtonePreference view, 275, 278–280
ringtoneType attribute, 280
RISC (Reduced Instruction Set Computer), 9
R.java constants file, 220
R.java file, 10, 64–65, 68, 84, 385, 395–397
R.java namespace, 77
R.layout class, 66
R.layout.details resource, 1031
R.layout.list_layout ID, 501
RootElement class, 16
rotate animation, 498
rotation vector sensors, interpreting data from, 923
RotationAnimation class, 17
RoundRectShape, 15
RPC service. See remote services
Rubin, Andy, 4
rules for becoming publisher, 994
run() method, 411–412, 540
RunHelloWorld configuration, 33
Runnable class, 495
runnable state, 413
runOnFirstFix() method, 552
runtime security checks

custom permissions, 297–303
declaring and using permissions, 295–297
process boundary, 295
URI permissions, 303–306

in content providers, 304–305
passing in intents, 303–304

■ S
Save button, 1058
saveRecentQuery, 788
scale animation, 498
scale-independent pixels, 206
ScaleAnimation class, 17
scale.xml file, 503–504
scanFile() method, 620
Screen Capture button, 1008
screen sizes, supporting, 1001–1002
screenshots, 1008
Scroller widget, 17
ScrollView control, 194, 1080
ScrollView widget, 17
SD (Secure Digital) cards, 575–580
sdcard folder, 577, 885
/sdcard/gestures file, 888
sdcard.img file, 576
SDK Manager, 28
SDK/platforms/<version>/data/res/drawable folder,

342
SDK (Software Development Kit), 2, 22, 145, 742
search

disabling, 766–767
invoking through menu, 767–771

SEARCH actions, 774, 804
search activity for custom suggestion provider

finishing, 812
layout, 811
responding to ACTION_SEARCH and

ACTION_VIEW, 810–811
responding to onCreate() and onNewIntent(), 812
responsibilities of, 807
SearchActivity invocation, 809–810
source code, 808–809
strings.xml, 811

search activity for simple suggestion provider,
784–789

Search Activity screen, 792
search box, 746
search framework, 746–822

action keys in Android search, 818–821
activities and search key interaction

disabling search, 766–767
enabling type-to-search, 777–778
invoking search through menu, 767–771
local search and related activities, 771–777
overview, 757
regular activities, 758–765

application-specific search context, 821–822
custom suggestion provider, 796–818

manifest file, 813–814
planning, 796
SuggestURLProvider class, 797–807
SuggestURLProvider project implementation

files, 796–797
user experience, 814–818

global search, 746, 753, 757
simple suggestion provider, 778–795

implementation files, 779–780
planning, 779

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1168

search activity, 784–789
search invoker activity, 789–790
SimpleSuggestionProvider class, 780–784
user experience, 791–795

search icon, 752–753, 771, 773, 796, 815
Search Invoker Activity, 770–772
search metadata XML file, 774
Search option, 755, 771
search query method, 810
Search Recent Suggestions API, 823
search results activity, 772
Search settings application, 755, 814
search suggestions, 750–751
search URI, 797, 801
Searchable items option, 755
searchable.xml file, 801, 803
SearchActivity class, 784–789, 796–797, 804, 807
SearchActivity.java file, 757, 779, 796, 807
search_activity.xml file, 780
SearchEanabledActivity, 775
SearchInvokerActivity class, 767, 770
SearchInvokerActivity XML, 769–770
SearchInvokerActivity.java file, 757
SearchInvokingActivity, 773
SearchManager class, 801–802, 805, 820, 823
SearchManager.APP_DATA, 822
SearchManager.QUERY, 786
SearchRecentSuggestionsProvider

database modes, 781–783
saving query with, 787–788

searchSuggestAuthority attribute, 788
searchSuggestIntentAction attribute, 804
searchSuggestIntentData attribute, 804
searchSuggestPath attribute, 804
searchSuggestSelection attribute, 788, 803–804
searchSuggestThreshold attribute, 804
Sears, Nick, 4
Secure Digital (SD) cards, 575–580
Secure Sockets Layer (SSl) library, 7
security

model, 294
overview, 287–288
runtime checks

custom permissions, 297–303
declaring and using permissions, 295–297
process boundary, 295
URI permissions, 303–305

signing applications for deployment, 288–294
aligning applications with zipalign, 293–294
generating self-signed certificate with Keytool,

288–291
updating and signing applications, 294
using Jarsigner tool to sign .apk file, 292

security.auth package, 18
security.auth.callback package, 18
security.auth.login package, 18
security.auth.x500 package, 18
security.cert package, 18
SecurityException, 571
security.interfaces package, 18
security.spec package, 18
seekTo() method, 584, 593, 595

select argument, 797
Select root directory option, Eclipse, 421, 461
selected_flight_sort_option argument, 273
selected_flight_sort_option string, 272
selected_flight_sort_option value, 274
selectInitialQuery argument, 769, 822
selection argument, 105, 802–804
selection parameter, managedQuery() method, 47
selection string, 788
selectionArgs argument, 802–803
selectionArgs parameter, managedQuery() method,

47
self-signed certificates, 288–291
sendBroadCast() method, 425–426, 432–433
sendDataMessage() method, 562
sendMessage() method, 407–408, 422
sendMessageDelayed() method, 407–408
sendMultipartTextMessage() method, 563
sendSmsMessage() method, 562
sendTextMessage() method, 562–563
SensorEventListener interface, 897
SensorManager class, 906, 922
sensors, 891–935

detecting, 892
interpreting data from

accelerometers, 908–914
gravity sensors, 923
gyroscope sensors, 907–908
light sensors, 905–906
linear acceleration sensors, 923
magnetic declination and GeomagneticField

class, 922
magnetic field sensors, 914–915
NFC sensors, 923
orientation sensors, 915–922
pressure sensors, 907
proximity sensors, 906
rotation vector sensors, 923
temperature sensors, 907

issues with events for, 895–905
no direct access to sensor values, 898
onAccuracyChanged() method, 898
sensor values not sent fast enough, 898
sensors turn off with screen in Android 2.1,

899–905
querying information about, 892–895

Service class, 30
service components, of Android, 13
service flags, specifying in OnStartCommand

method, 457
Service object, 341
<service> tag, 345, 351
ServiceConnection interface, 354
services

AIDL in, 346, 349–351
consuming HTTP

exceptions, 313–315
multithreading issues, 315
overview, 307–308
timeouts for, 318–319
using AndroidHttpClien, 319–320
using AsyncTask, 320–331

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1169

using DownloadManager, 331–337
using HttpClient for HTTP GET requests,

308–310
using HttpClient for HTTP POST requests,

310–312
using HttpURLConnection, 319

defining interface in Android Interface Definition
Language (AIDL), 347–349

external components, 401
Google Translate example using, 366–375
interprocess communication

calling services from client applications, 351–355
passing complex types to services, 355–366

JSON support, 313
life cycles of, 420
local, 339–346
overview, 337–339
setting up development environment, 30
SOAP support, 312–313

Service.START_NOT_STICKY flag, 456
Service.START_REDELIVER flag, 457
Service.START_STICKY flag, 457
ServiceWorker class, 342
Session Initiation Protocol (SIP), 559, 571–574
Set Package Name option, 278
Set Ringtone Preference option, 280
<set> tag, 1067
setAdapter() method, 156
setAlpha() method, 1065
setArguments() method, 1020
setAutoLinkMask() method, 153
setBounds() method, 532
setBuiltInZoomControls() method, 527
setCenter() method, 533
setChecked() method, 161, 163
setClickable(true) method, 526
setConsiderGoneChildrenWhenMeasuring() method,

209
setContentView() method, 148, 151, 181, 439, 1042
setContext() method, 331
setCustomAnimations() method, 1034, 1065
setData() method, 344, 407
setDataSource() method, 581, 585–586, 595
setDataSource(FileDescriptor desc), 586
setDestination*() methods, 336
setDropDownViewResource() method, 187
setEdgeFlags() method, 853
setEngineByPackageName() method, 840
setEntity() method, 310, 312
setEntries() method, 284
setGroupCheckable method, 220
setGroupEnabled method, 220
setGroupVisible method, 220
setHint() method, 155
setIcon method, MenuItem class, 229
setImageInView() method, 328, 331
setImageResource() method, 159, 166
setIntent() method, 222
setLanguage method, 841
setLatestEventInfo() method, 364, 439–440
setListAdapter() method, 175, 1040
setLooping() method, 592

setMarker() method, 532
setMaxDuration(int length_in_ms) method, 600
setMaxFileSize(long length_in_bytes) method, 600
setMediaController() method, 595
setMovementMethod() method, 1081
setOnCheckedChangeListener() method, 161, 163
setOnClickFillIntent() method, 1112
setOnClickListener() method, 158
setOneShot() method, 496
setOnTouchListener() method, 846, 871
setOnUtteranceCompletedListener() method, 830
setOptionText() method, 273–274
setPendingIntentTemplate() method, 1111
setPitch method, 842
setProfile() method, 614
setProgress() method, 331
setRemoteAdapter() method, 1106
setResult() method, 141
setRetainInstance() method, 1023, 1036
setRotate method, 516
setRotation() method, 1065
setScale method, 512, 516
setSkew method, 516
setSpeechRate method, 842
setTabListener() method, 1080
setTargetFragment() method, 1064
setText() method, 195
setThreadPolicy() method, 58
Settings application, 16, 18
settings page, Android, 754
Settings screen, 825
SettingsProvider project, 19
setTokenizer() method, 156
setTransition() method, 1034
setTranslate method, 516
setupMatrices function, 688
setValue() method, 734
setValueForPref() method, 731
setVideoPath() method, 595
setVideoURI() method, 595
setVolume() method, 592
setX() method, 1066
setZoom() method, 533
SGI (Silicon Graphics, Inc.) Open GL. See OpenGL
Shader class, 15
Shakespeare class, 1032
<shape> tag, 72, 79–80
shared user IDs, 382–383
SharedPreferences class, 16, 274, 742
SharedPreferences file, 734
SharedPreferences.Editor class, 734, 743
SharedPrferences facility, 732
sharing data, among packages, 382–384

code pattern for, 383–384
and shared user IDs, 382–383

shell command sets, 93
Short Message Service. See SMS
shortcut URI, 801
shortcut_id, 806
SHORTCUT_MIME_TYPE, SearchManager class, 802
show contact detail screen, contacts API, 945
show contacts screen, contacts API, 944

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1170

Show Me! button, 921
show() method, 251, 256–258, 1034, 1047, 1049,

1053, 1058
showAllRawContacts() method, 981
showAsAction tag, 1083
showDetails() method, 1027, 1032, 1040–1041
showDialog method, 254
showRawContactsCursor() function, 981
showRawContactsDataForRawContact() function,

988
showSilent attribute, 280
shutdown() method, 830
sides variable, 667
signing

applications for deployment, 288–294
aligning applications with zipalign, 293–294
generating self-signed certificate with Keytool,

288–291
updating and signing applications, 294
using Jarsigner tool to sign .apk file, 292

of packages, 379–382
overview, 380
and PKI certificates, 381–382
and public and private keys, 381

silence, playing with TTS APIs, 840
Silicon Graphics, Inc. (SGI) Open GL. See OpenGL
SIM card, 998
SIM (Subscriber Identity Module) serial number, 16
simple suggestion providers, 778–795

implementation files, 779–780
planning, 779
search activity, 784–789
SimpleSuggestionProvider class, 780–784

declaring in manifest file, 783–784
responsibilities of, 780–781
source code for, 781

user experience, 791–795
SimpleAdapter adapter, 174
SimpleCursorAdapter adapter, 47, 171–172, 174
simple_list_item_1.xml file, 173
SimpleMainActivity.java file, 779
SimpleSpinnerArrayAdapter java file, 1084–1085
SimpleSuggestionProvider class, 780–784
SimpleSuggestionProvider.java file, 779
SimpleTriangleRenderer class, 639, 642
SimpleTriangleRenderer2 class, 650
SingleAbstractTextureRenderer class, 670
singleLine property, 155
singleTop mode, 784, 787, 807, 823
SIP (Session Initiation Protocol), 559, 571–574
SipManager object, 573
Skia library, Google, 8
SkMatrix.cpp file, 19
sleep() method, 402, 404, 411
slide_out_down.xml file, 1067
SMS (Short Message Service), 559–568

e-mail, 567–568
folders, 565–567
monitoring incoming messages, 563–565
sending messages, 559–563

SmsManager class, 562–563, 565
SmsManager.sendTextMessage() method, 562

SmsMessage object, Android, 565
SmsMessage.createFromPdu() method, 565
SOAP, support for, 312–313
soft keyboard, 750
Software Development Kit (SDK), 2, 22, 145, 742
software stack, 6–8
Software Updates, Eclipse. See Install New

Software...option, Eclipse
SomeHandlerDerivedFromHandler handler, 405
some_view layout, 126
sort option, 271
sortOrder parameter, managedQuery() method, 47
soundFileResourceId, 838
SoundPool class, 587–591
SoundRecorder application, 18
source code

example that defers work, 405–406
standard navigation, 1090–1091
taking advantage of, 18–19

source variable, 684
sourceid field, 954
Spare Parts application, 750
Speak button, 831, 834, 837
speak() method, 829–830, 837–840
specification details, of packages, 377–378
speech synthesis engine, Pico, 827
Spinner class, 186
Spinner control, 185–187
Spinner widget, 17
SpinnerAdapter interface, 1085–1086
spinner_while_refreshing, 806
sql package, 18
SQLite database library, 7, 952–953
SQLite, primer on, 95
sqlite3 commands, 94
SQLiteCursor class, 15, 707
SQLiteDatabase class, 15, 117
Sqliteman tool, 95
sqlite_master table, 95
SQLiteOpenHelper class, 50
SQLiteQuery class, 15
SQLiteQueryBuilder class, 15, 105, 116, 119
SQLiteStatement class, 15
sqllite database, 721
src folder, 33, 40, 61, 723
SRC_QUALITY value, 590
SSl (Secure Sockets Layer) library, 7
stand-alone BCR files, 462–463
stand-alone BCR project, 461
StandaloneReceiver.java file, 433, 462
standard navigation, 1090–1095

AndroidManifest.xml file, 1092
BaseActionBarActivity class, 1091–1092
examining, 1092–1095
source code, 1090–1091

StandardNavigationActionBarActivity java file,
1090–1092

start event, 457
start() method, 496, 540, 584, 593, 595, 612
Start Playing Audio button, 584
startActicity() method, 48, 139, 222, 926, 1064

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1171

startActivityForResult() method, 48, 140, 616, 829,
1064

startDrag() method, 1135
startMethodTracing() method, Debug class, 55
startMyActivityDesc constant, 301
startOffset value, 503
startRecording() method, 604
startSearch() method, 765, 769, 822
startService() method, 342–343, 346, 352, 401, 420,

442, 444, 455, 457
static final property, 357
stickiness, 457–458
sticky services, 457
Stk application, 18
StockQuoteClient, 351
StockQuoteService project, 350
StockQuoteService.java class, 350
stop() method, 496, 584, 591, 593, 612, 830
Stop Recording button, 612
stopPlayback() method, 595
stopPlayingRecording() method, 612
stopRecording() method, 612
stopSelf() method, 444, 457
stopService() method, 343, 421, 456
StopWatch, 742
storepass argument, 289
storing values, 272
STREAM_ALARM audio stream, 839
STREAM_MUSIC audio stream, 839
STREAM_NOTIFICATION audio stream, 839
STREAM_RING audio stream, 839
STREAM_SYSTEM audio stream, 839
STREAM_VOICE_CALL audio stream, 839
Street button, 874
StreetView activity, 878
StreetView application, 872–874, 877, 921
StreetView mode, 877
stretchable images, 78
StrictModeWrapper class, 60
stride argument, 630
String arrays, 71, 73
string clause, 104
<string> element, 65
string resources, 64–66, 74–76
String type, 105
StringEscapeUtils, 374
Strings resource, 71
strings.xml file, 64–65, 68, 151, 272, 761, 763,

811–812, 1003
structure of Android applications, 39–42
Stub class, 349–350
styles, 194–197
styles.xml file, 197
submenus, 230–231
Subscribed FeedsProvider project, 19
Subscriber Identity Module (SIM) serial number, 16
substitutable values, 803
SUCCESS intent, 830
suggest URI, 797
suggestActionMsg attribute, 820
suggestActionMsg value, 820
suggestActionMsgColumn attribute, 820–821

suggestion columns, 751
suggestion cursor, 752, 820
suggestion list, 751
suggestion providers

custom, 796–818
manifest file, 813–814
planning, 796
SuggestURLProvider class, 797–807
SuggestURLProvider project implementation

files, 796–797
user experience, 814–818

enabling for global search
in Android 2.2, 754–756
in Android 2.3, 756–757
overview, 753

simple, 778–795
implementation files, 779–780
planning, 779
search activity, 784–789
search invoker activity, 789–790
SimpleSuggestionProvider class, 780–784
user experience, 791–795

suggestion rewriting, 752
suggestions cursor, 751
SUGGEST_MIME_TYPE, SearchManager class, 802
SuggestURLProvider class, 797–807
SuggestUrlProvider class

getType() method and specifying Multipurpose
Internet Mail Extensions (MIME) types, 802

passing query to suggestion provider: selection
argument, 802–804

populating and returning list of columns, 806–807
project implementation files, 796–797
responsibilities of, 797
search metadata for custom suggestion providers,

804–805
source code, 798
suggestion cursor columns, 805–806
URIs, 801–802

SuggestUrlProvider.java file, 796
summary attribute, 267
summary property, 267
summaryOff attribute, 277
summaryOn attribute, 277
supporting different screen sizes, 1001–1002
<supports-screens> element, 1001
Surface Manager library, 7
Surface object, 605
Surface.Callback callbacks, 608
surfaceCreated() method, 609
SurfaceHolder.Callback interface, 607
SurfaceView, 680
suspended option, 957
SweepGradient class, 15
Swing, Java SE, 2
switch statement, 227
syh.permission.STARTMYACTIVITY permission, 299,

302
Sync application, 18
sync fields, 954–955
syncing contacts, impacts of, 989–991
synonyms, 110

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1172

synthesizeToFile() method, 837
system menus, 231
SystemProperties class, 614

■ T
t command, 38
T-Mobile G1, 4
t1_1_en_p string, 87
t1_1_en_port resource ID, 85
t1_enport resource ID, 85
t1_enport string, 87
t2 resource ID, 85
t2 string, 87
tab1, 1084
tab2, 1084
Tabbed Action bar, 1071
tabbed navigation, 1071–1084

action bar and menu interaction, 1081–1083
displaying menu, 1082
menu items as actions, 1083

assigning uniform behavior, 1075–1077
base classes, 1073–1075
examining, 1084
manifest file, 1083–1084
navigation modes, 1079–1080
obtaining action bar instance, 1079
scrollable debug text view layout, 1080–1081
tabbed listener, 1077–1078

TableLayout layout manager, 198, 202–206
TableRow elements, 202–203
tablets, for Android, 5
TabListener.java file, 1072
Tabs area, 1071
TabWidget widget, 17
TED conference, 862
telephony APIs

SIP, 571–574
SMS, 559–568

e-mail, 567–568
folders, 565–567
monitoring incoming messages, 563–565
sending messages, 559–563

telephony manager, 568–571
telephony components, of Android, 13–14
TelephonyManager class, 16, 568–571
TelephonyManager.getLine1Number() function, 570
TelephonyProvider project, 19
temperature sensors, interpreting data from, 907
TemperatureSensor project, 907
Terms of Service, 999
test harness

creating for menus, 222–224
adding regular menu items, 225–226
adding secondary menu items, 226
creating activity, 224–225
creating XML layout, 224
responding to menu-item clicks, 227–228
setting up menu, 225
tweaking AndroidManifest.xml file, 228–229

planning for 2D layout animation, 499
Test List Widget Application widget, 1122–1123

test1 string, 792
Test60SecBCR.java file, 460, 463
Test60SecBCRService.java file, 460, 463
testAccounts() method, 962
TestAppActivity.java file, 390
TestBCR files, 461–462
TestBCR project, 461
TestBCRActivity.java file, 428, 461
TestContactsDriverActivity.java class, 965
TestContactsDriverActivity.java file, 960, 978, 982,

986
TestHandlersDriverActivity activity, 418, 422
TestHandlersDriverActivity.java file, 414
testing devices, different, 1001
TestLibActivity.class, 392
TestLibActivity.java file, 387
TestListWidgetProvider.ACTION_LIST_CLICK action,

1110
TestListWidgetProvider.java file, 1114
testport_port resource ID, 85
testport_port string, 87
TestReceiver.java file, 428, 430, 461
TestRemoteViewsFactory.java file, 1114
TestRemoteViewsService.java file, 1114
testSendBroadcast() method, 432
TestStandaloneBCR application, 463
teststring_all resource ID, 85
teststring_all string, 86
testThread() function, 409
TestTimeDelayReceiver.java file, 461
test.xml file, 81
text argument, 838
text controls, 152–157

AutoCompleteTextView, 155–156
EditText, 154–155
MultiAutoCompleteTextView, 156–157
TextView, 153–154

text messaging, 559
text package, 18
Text to Speech APIs. See TTS APIs
text1 constant, 67, 805
text_2 constant, 805
textColor attribute, 197
TextToSpeech class, 16, 825, 830, 842
TextToSpeech.LANG_AVAILABLE intent, 841
TextToSpeech.LANG_COUNTRY_AVAILABLE intent,

841
TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE

intent, 841
TextToSpeech.LANG_MISSING_DATA intent, 841
TextToSpeech.LANG_NOT_SUPPORTED intent, 841
TexturedSquareRenderer class, 672–673, 676
textures, OpenGL

abstracting common handling, 669–672
drawing with, 672–673
normalized coordinates, 669
overview, 668–669

TextView controls, 76, 148–149, 153–154, 195, 233,
273, 494, 880

TextView field, 1021
TextView view, 67, 718
TextView widget, 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1173

thefreewebdictionary.com, 806
\"Theme.Dialog.AppError\"styles, 198
themes, 197–198
themes.xml file, 198
this variable, 407
Thread object, 321
ThreadGroup class, 342–343
threading and components, 399–403

content providers, 401
external service components, 401
main thread, 400–401
thread pools, 401
thread utilities, 401–403

ThreadPolicy method, 58
threads

behavior of, 412–413
pools, 401
utilities, 401–403
worker, 408–413

communicating between main threads and,
410–412

invoking from menu, 409–410
thread behavior, 412–413

ThreadSafeClientConnManager, 317, 319
ThumbnailUtils class, 193
timeouts, consuming HTTP services, 318–319
TimePicker control, 167–168
TimePicker widget, 17
TimePickerDialog, 264
TimeUtils class, 17
Title area, 1071
title attribute, 267
title property, 267
TITLE value, 618
TitlesFragment class, 1037, 1040
TNF (Type Name Format), 931
TNF_UNCHANGED record type, 931
to parameter, 172
Toast class, 263, 563, 1073
Toast message, 885
toggle() method, 161, 163
ToggleButton control, 159–160, 590
Tools window, 577
toPixels() method, 872
touch events, 846
touches with maps, 871–874
touchscreens

gestures, 874–889
custom, 881
GestureDetector class, 878–881
and Gestures Builder app, 882–889
pinch gesture, 875–878

MotionEvents, 845–862
drag and drop, 859–862
MotionEvent object, 845–857
recycling, 857
velocitytracker, 857–859

multi-touch, 862–871
post version 2.2, 871
prior to version 2.2, 863–870

touches with maps, 871–874
toUri() method, 1110–1111

transaction fees, 999
transformation matrices, 516
transitions, FragmentTransaction objects, 1034–1035
translate animation, 498
Translate example, Google, 366–375
translate methods, 514
<translate> tag, 1034
TranslationAnimation class, 17
Translator.java code, 367
trouble words, 838
trueBtnTop, 851
TrueButton class, 848–849, 853
trueLayoutTop, 855
tryOneOfThese(activity), 128
TTS engine, 829, 831–832
TTS (Text to Speech) APIs, 842

advanced features of TTS engine, 838–842
earcons, 839–840
language methods, 840–842
playing silence, 840
setting audio streams, 839

audio files, 832–838
overview, 825–830
using alternative engines, 840
utterances, 830–832

tv.getText() method, 195
tweening animation, 11, 17
Type Name Format (TNF), 931
type-to-search, enabling, 777–778
TYPE_AUTOMATIC, 989
TypeFace class, 15
TYPE_KEEP_SEPARATE, 989
TYPE_KEEP_TOGETHER, 989

■ U
udpateAppWidget function, 740
UI/Application Exerciser Monkey, 1001
UI framework, Android SDK, 2
UI (User Interface), 145–152

advanced concepts, 11–13
for Android, 9
with code

overview, 147–149
and XML, 150–151

with XML
and code, 150–151
overview, 149–150

unbindService() method, 354–355
uniform behavior, assigning for tabbed navigation,

1075–1077
Uniform Resource Identifiers. See URIs
Uniform Resource Identifiers (Android URIs), 14
uninstalling widget packages, 722
unlocked, 998
up vector, 635
update method, 108, 110, 117
updateAppWidget() function, 740
updateAppWidgetLocal() function, 740
Updater application, 18
updates

of ADT, checking for, 27

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1174

of content providers, 108
updating and signing applications, 294
Upload Application screen, 1009
uploading applications, 1007–1010
Uri class, 15, 105, 568
URI parameter, managedQuery() method, 47
URIFunctionTester class, 969
UriMatcher class, 105, 111, 802
URIs (Uniform Resource Identifiers)

data, relationship to intents, 129
overview, 801–802
passing where clauses through, 104–105
permissions, 303–306

in content providers, 304–305
passing in intents, 303–304

reading data with, 100–102
structure of, 97–98

url field, 735
UrlEncodedFormEntity class, 310
Use as ringtone option, 280
Use with field, 837
user experience of Android market, 1010–1012
User Interface. See UI
User's Calendar Data, required permission for, 296
User's Contact Data, required permission for, 296
users' data protection, 996
User's Guide, Android, 944
<uses-configuration> tag, 1002–1003
<uses-feature> tag, 895, 906, 914, 933, 1002–1003
<uses-permissions> tag, 305, 599, 1002–1003, 1009
uT (micro-Teslas), 914
util package, 18
util.concurrent package, 18
util.concurrent.atomic package, 18
util.concurrent.locks package, 18
utilities, date-related, 737–738
util.jar package, 18
util.logging package, 18
util.prefs package, 18
util.regex package, 18
Utils class, 427, 970
Utils.java class, 413
Utils.java file, 427–428, 433–434, 461, 463, 969
Utils.logThreadSignature() method, 408, 411
Utils.logThreadSignature(tag) method, 432
util.zip package, 18
utterances, 830–832

■ V
v argument, 289
validity argument, 289
values

storing, 272
substitutable, 803

values directory, 41, 70, 85
values/strings.xml file, 797
variable length ID field, 931
variable length payload field, 931
variable length type field, 931
.vcf files, 950–951
VelocityTracker, 845, 857–859

video
playing content, 593–595
recording, 605–614

VideoView class, 594–595
VideoView component, 595
VideoView interface, 607
VideoView widget, 17, 593
VIEW action, 804, 807, 809
view animation, 2D, 507–516

adding animation to ListView, 511–514
AnimationListener class, 515–516
overview, 507–510
providing depth perception with camera, 514–515
transformation matrices, 516

View attributes, 196
View class, 17, 145, 194, 846
view groups, 9
VIEW intent, 130
View menu, 1008
view method, 810
View object, 158, 248, 846–847, 852, 854, 857
view point, 635
ViewAnimation class, 511
ViewAnimationActivity, 512
ViewAnimationListener class, 516
ViewGroup class, 17, 145, 1033
ViewHolder object, 192–193
viewing

live folders, 697
volume, 625, 629, 636

viewing box, 625, 629
View.OnTouchListener interface, 846–847
views, 9, 29, 146, 694
virtual keyboard object, 846
Virtual Machine (Dalvik VM), 6–8
VirtualJax application, 916
VirtualJaxWithRemap application, 922
vnd.android.cursor.item, 100
vnd.ms-excel subtype, 99
VoiceDialer application, 18
VOICE_RECOGNITION audio source, 599
v.onTouchEvent(event), 855

■ W
wake locks

abstracting with LightedGreenRoom abstraction,
449–455

controlling from two places, 458
WebKit library, 7
WebView class, 17, 194
web.xml file, 41
weight, in LinearLayout, 199–201
WHERE clause, 985
where clauses, 104–106, 116–117, 803
whereClause argument, 108
while loop, navigating through cursors using, 103
White, Chris, 4
widget background shape file, 727–728
widget configurator, 715–716
widget definition, 715, 717–719, 725
widget instance creation, 719–720

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1175

widget instance ID, 716
widget layout file, 726–727
widget layout-related files, 726–728
widget manager class, 743
widget model

abstract implementation of, 732–734
implementation for birthday widget, 735–737
interface for, 731–732
overview, 730

widget provider class, 712, 715, 728
widget providers

metadata, 1121
test, 1114–1118

widget view, mouse click event callbacks, 722
widgets

code for, 743
defining provider, 724–725
defining size, 725–726
description of, 146
designing, 743
extensions for, 742–743
implementing configuration activity, 738–742
implementing provider, 728–730
lifecycle of, 716–722

creating instance on home screen, 713–715
deleting widget instance, 722
onUpdate phase, 720–721
uninstalling widget packages, 722
widget definition phase, 717–719
widget instance creation phase, 719–720
widget view mouse click event callbacks phase,

722
limitations of, 742–743
main layout file, 1120

WiFi location information, required permission for,
296

WifiConfiguration class, 16
WifiManager class, 16
WorkerThreadRunnable class, 410–411, 413
world coordinates, 629, 634
wrapping cursors, 707
writeToParcel() method, 357

■ X
X component, 852
X coordinate, 856
x, y, z values, 628
XAL (Extensible Address Language), 15
Xml class, 17
xml directory, 70
XML (Extensible Markup Language)

arbitrary resource files, 80–81
layout files, for prompt dialog, 247
menu tags

checkable behavior tags, 241
group category tag, 241
menu enabling/disabling tag, 242
menu icon tag, 241
menu item shortcuts, 242
menu visibility, 242
to simulate submenu, 241

UI development with, 149–151
XML files, 70, 72
xml folder, 41
xml/searchable.xml file, 757, 780, 797
xml\ test_list_appwidget_provider.xml file, 1114
xmlparsers package, 18
XmlPullParser, 81
XmlResourceParser, 81

■ Y
Y coordinate, 855
YourGLESRenderer class, 679

■ Z
zero suggestions mode, 749–750
ZIP files, creating projects from, 421, 461
zipalign tool, 293–294, 1007
ZoomButton widget, 17
zoomIn() method, 525
zoomOut() method, 525

zoomToSpan() method, 5, 533

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1176

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 1177

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1178

1178

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	978-1-4302-3222-3_Front
	978-1-4302-3222-3-ch01-introduction
	978-1-4302-3222-3_Komatineni_Ch02_Dev-environment
	978-1-4302-3222-3_ch03_Resources
	978-1-4302-3222-3-ch04_ContentProviders
	978-1-4302-3222-3-ch05-intents
	978-1-4302-3222-3_Komatineni_Ch06_Controls
	978-1-4302-3222-3-ch07-menus
	978-1-4302-3222-3-ch08-dialogs
	978-1-4302-3222-3_ch09_Preferences
	978-1-4302-3222-3_Komatineni_Ch10_Security
	978-1-4302-3222-3_Komatineni_Ch11_Services
	978-1-4302-3222-3_ch12_Packages
	978-1-4302-3222-3-ch13_Handlers
	978-1-4302-3222-3-ch14_Longrunning-services
	978-1-4302-3222-3-ch15_Alarm-manager
	978-1-4302-3222-3-ch16-animation
	978-1-4302-3222-3_Komatineni_Ch17_Maps
	978-1-4302-3222-3_ch18_Telephony
	978-1-4302-3222-3_Komatineni_Ch19_Media
	978-1-4302-3222-3-ch20-opengl
	978-1-4302-3222-3-ch21-livefolders
	978-1-4302-3222-3-ch22-widgets
	978-1-4302-3222-3-ch23-search
	978-1-4302-3222-3_ch24_TextToSpeech
	978-1-4302-3222-3_Komatineni_Ch25_Touchscreens
	978-1-4302-3222-3_Komatineni_Ch26_Sensors
	978-1-4302-3222-3-ch27-contacts-api
	978-1-4302-3222-3_Komatineni_Ch28_AndroidMarket
	978-1-4302-3222-3_Komatineni_Ch29_Fragments
	978-1-4302-3222-3-ch30-actionbar
	978-1-4302-3222-3-ch31_additional_topics_in_30
	978-1-4302-3222-3_Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

