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Preface
Microsoft's XNA Framework provides C# developers with a robust and efficient method of 
utilizing the DirectX and Direct3D Application Programming Interfaces (APIs) in order to 
build 3D games for the Windows, Xbox 360, and Windows Phone platforms.

This book will present a series of video games, utilizing the XNA Framework to create  
3D environments and objects. The games we build in this book will be targeted to the 
Windows platform, though they can be compiled to run on both the Xbox 360 and  
Windows Phone with minor changes to accommodate input methods on those devices.

Each of the games presented will build on the 3D concepts of the previous games, and finally 
wrapping up with a game built around the Game State Management system sample code 
available from the Microsoft XNA website.

What this book covers
Chapter 1, Introduction to XNA, begins by installing the Windows Phone Development Tools 
package that includes the Version 4.0 release of the XNA tools. We will examine the basic 
building blocks of an XNA game and create a 2D mini game called Speller to establish a 
baseline of 2D techniques that will be needed while building 3D games later.

Chapter 2, Cube Chaser – A Flat 3D World, introduces basic 3D concepts such as cameras and 
projections. We will build a floor for our 3D maze using colored triangles and allow the player 
to walk around on it.

Chapter 3, Cube Chaser – It's A-Mazing!, explores the generation of a random maze layout 
using the Depth-first search method. We will construct walls based on the generated maze 
and restrict player movement within those walls.
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Chapter 4, Cube Chaser – Finding Your Way, guides us through the construction of the  
cube we will be chasing, including mapping textures to the faces of an object. We will 
randomly position the cube and rotate it to perform a simple animation. We will take a  
closer look at matrix math in order to understand just what is happening when we move, 
rotate, and scale objects.

Chapter 5, Tank Battles – A War-torn Land, embarks on the building of a tank combat game. 
In this chapter we will build a new type of 3D camera and generate a terrain based on a 
heightmap image. We will explore the fundamentals of High Level Shader Language (HLSL) 
used to create shader effects that describe the surfaces of the objects we will be rendering.

Chapter 6, Tank Battles – The Big Guns, adds 3D models to our game, importing a tank 
model and positioning it appropriately on the game's terrain. We also delve into bone-based 
animation for 3D models, allowing the tank's turret and cannon to be moved by the player.

Chapter 7, Tank Battles – Shooting Things, combines our existing 3D elements with a  
2D interface, allowing us to accept input from the user via onscreen buttons. We will create 
and track shots fired by the players and implement billboard-based particle explosions.

Chapter 8, Tank Battles – Ending the War, wraps up the Tank Battles game by incorporating 
a simple game flow structure to surround game play and establishing a sequence of turns 
between two players, modifying the state of our user interface elements appropriately. We 
will determine the result of fired shots, allowing players to score hits on the enemy tank and 
win the game. Additionally, we will return to HLSL to implement lighting and multitexturing 
effects on our terrain to improve the graphical quality of the game.

Chapter 9, Mars Runner, begins a new game – a side-scrolling, jumping game on the  
surface of Mars. We will work with the Game State Management sample code provided 
by Microsoft to build the structure of our game. The backdrop for Mars Runner will be 
implemented as a 3D skybox that surrounds the stationary camera. Finally, we will revisit  
the heightmap-based terrain by generating terrain tiles that can be joined together to create 
a track for the player's rover to drive on.

Chapter 10, Mars Runner – Reaching the Finish Line, completes the Mars Runner game by 
enhancing our handling of 3D models and adding both the player's Mars rover and an enemy 
alien saucer to the game. We allow both the player and the enemy to fire shots at each other 
and use bounding box collision detection to determine when one of the entities has been hit. 
To finish up, we will implement a basic sound effect system, allowing us to play audio clips 
based on the events taking place in the game.
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What you need for this book
In order to install and use the Microsoft XNA 4.0 tools, you will need a Windows PC with 
either Microsoft Windows Vista or Microsoft Windows 7, and a video card supporting  
DirectX 9 or later. Shader Model 1.1 is required for XNA, but it is highly recommended that 
your video card support Shader Model 2.0 or later, as many of the XNA samples available 
online require 2.0 support.

Who this book is for
If you are an aspiring game developer, looking to get started with XNA, or to expand your  
2D XNA knowledge into the 3D realm, this book is for you. A basic knowledge of C# is helpful 
to kick start your game development, but is not essential.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own 
understanding.
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Have a go hero – heading
These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " You may notice that we used the Unix command 
rm to remove the Drush directory rather than the DOS del command."

A block of code is set as follows: 

# * Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

# * Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

Any command-line input or output is written as follows:

cd /ProgramData/Propeople

rm -r Drush

git clone --branch master http://git.drupal.org/project/drush.git

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "On the Select Destination 
Location screen, click on Next to accept the default destination.".
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Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you 
find any errata, please report them by visiting http://www.packtpub.com/support, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata 
will be uploaded to our website, or added to any list of existing errata, under the Errata 
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.
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1
Introduction to XNA

Microsoft's XNA Framework provides a powerful set of tools for building 
both 2D and 3D games for Windows, the Xbox 360, and the Windows Phone 
platforms. As an extension of the Visual Studio development environment, XNA 
provides developers with a set of free tools for these environments.

The XNA project templates include an integrated game loop, easy to use (and 
fast) methods to display graphics, full support for 3D models, and simple access 
to multiple types of input devices.

In this introductory chapter, we will do the following:

 � Review the system requirements for XNA development

 � Install the Windows Phone Tools SDK, which includes Visual Studio Express and the 
XNA 4.0 extensions

 � Examine the basic structure of an XNA game by building a simple 2D game

 � Explore a fast-paced rundown of 2D techniques that will provide a foundation for 
moving forward into 3D with XNA

Starting out a book on 3D game development by building a 2D game may seem like an odd 
approach, but most 3D games use a number of 2D techniques and resources, even if only to 
display a readable user interface to the player.

If you already have an understanding of 2D game development in XNA, you may want to 
glance over this chapter and proceed to Chapter 2, Cube Chaser – A Flat 3D World, where we 
begin building our first 3D game.
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System requirements
In order to develop games using XNA Game Studio, you will need a computer capable 
of running both Visual Studio 2010 and the XNA Framework extensions. The general 
requirements are as follows:

Component Minimum requirements Notes

Operating System Windows Vista SP2

or

Windows 7 (except Starter Edition)

Windows XP is not 
supported.

Graphics Card Shader Model 1.1 support

DirectX 9.0 support

Microsoft recommends 
Shader Model 2.0 support as 
it is required for many of the 
XNA Starter Kits and code 
samples. The projects in this 
book also require Shader 
Model 2.0 support.

Development Platform Visual Studio 2010

or

Visual Studio 2010 Express

Visual Studio 2010 Express is 
installed along with the XNA 
Framework.

Optional

Windows Phone Windows Phone Development Tools, 
DirectX 10 or later, compatible video 
card

The Windows Phone SDK 
includes a Windows Phone 
emulator for testing.

Xbox Live Xbox Live Silver membership 
XNA Creator's Club Premium 
membership

Xbox Live Silver is free. The 
XNA Creator's Club Premium 
membership costs $49 for 4 
months or $99 for 1 year.

Installing the Windows Phone SDK
Originally developed as a separate product, XNA is now incorporated in the Windows Phone 
SDK. You can still develop games for Windows and the Xbox 360 using the tools installed by 
the Windows Phone SDK.

If you have an existing version of Visual Studio 2010 on your PC, the XNA Framework 
templates and tools will be integrated into that installation as well as the Visual Studio 2010 
Express for Windows Phone installation that is part of the Windows Phone SDK, which we 
are going to install now.
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Time for action – installing Windows Phone SDK
To install Windows Phone SDK , perform the following steps:

1. Visit http://create.msdn.com/en-us/home/getting_started and 
download the latest version of the Windows Phone SDK package. Run the setup 
wizard and allow the installation package to complete.

2. Open Visual Studio 2010 Express. Click on the Help menu and select Register 
Product. Click on the Register Now link to go to the Visual Studio Express 
registration page. After you have completed the registration process, return to 
Visual Studio 2010 Express and enter the registration number into the registration 
dialog box.

3. Close Visual Studio 2010 Express.

4. Launch Visual Studio 2010 Express, and the Integrated Development Environment 
(IDE) will be displayed as shown in the following screenshot:
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What just happened?
You have now successfully installed the Windows Phone SDK, which includes Visual Studio 
2010 Express, the XNA Extensions for Visual Studio, and the Redistributable Font Pack 
provided by Microsoft for XNA developers.

Speller – Our first XNA game
If you have never used XNA before, it would be helpful to review a number of concepts 
before you dive into 3D game design. In most 3D games, there will be at least some 2D 
content for user interfaces, Heads-up display (HUD) overlays, text alerts, and so on. In 
addition, many 3D game constructions are really evolutions of 2D game concepts.

In order to provide both an overview of the XNA game template and to build a foundation 
for moving forward into 3D development, we will construct a simple game called Speller. In 
Speller, the player controls a small square using the keyboard. During each round we will 
generate a random set of letters, including the letters needed to spell a particular word. The 
player's job is to navigate through the forest of letters and hit only the correct ones in the 
right order to spell the indicated word.

By building this game, we will be:

 � Performing initialization when our game is executed

 � Adding graphical assets to the game and loading them at run time

 � Displaying 2D images with the SpriteBatch class

 � Drawing text to the screen with the SpriteFont class

 � Colorizing images and fonts

 � Handling keyboard input and calculating player movement adjusted for the  
frame rate

 � Bounding box collision detection

 � Keeping and displaying the score

 � Generating random numbers

That is quite a bit of ground to cover in a very small game, so we had better get started!
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Time for action – creating an XNA project
To create an XNA project, perform the following steps:

1. In the Visual Studio window, open the File menu and select New Project....

2. Under Project Type, make sure C# is selected as the language and that the XNA 
Game Studio 4.0 category is selected.

3. Under Templates, select Windows Game (4.0).

4. Name the project Speller (this will automatically update the Solution Name).

5. Click on OK.

The Speller game's Game1.cs file, when opened in Visual Studio, would look like the 
following screenshot:
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What just happened?
We now have the skeleton of a project upon which we can build the Speller game. Each of 
the major XNA methods is declared, usually with no additional code except the execution of 
the method's base. We will examine each area of the XNA game template as we create the 
pieces necessary for Speller.

Managing content
Two separate projects get created when you start a new XNA Game Studio project in Visual 
Studio. The first is your actual game project, and the second is a special type of project called 
a content project. This is shown in the following screenshot:

Any non-code pieces of your game, including graphical resources, sounds, fonts, and any 
number of other item types (you can define your own content interpreters to read things 
such as level maps) are added to the content project. This project gets built along with the 
code in your primary project and the two are combined into a single location with everything 
your game needs to run.

When the content project is built, each item is examined by a content importer—a bit of 
code that interprets the raw data of the content file, a .jpg image for example, and converts 
it into a format that can be passed into a content processor. The content processor's job is 
to convert this file into a managed code object that can be stored on a disk and read directly 
into memory by XNA's ContentManager class. These compiled binary files carry the .xnb 
file extension and are located, by default, in a subdirectory of your game's executable folder 
called Content.
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ContentManager
Though its primary job is to load the content resources into memory at 
runtime, ContentManager does more than that. Each instance of 
ContentManager maintains a library of all of the content that has been 
loaded. If multiple requests to load the same content file are sent to a 
ContentManager instance, it will only load the resource from the disk 
the first time. The remaining requests are supplied with a reference to the 
item that already exists in memory.

Out of the box, XNA contains importers/processors for 3D meshes, images, fonts, audio, 
shaders, and XML data. We will create the content used for Speller with an image editor and 
the tools built into XNA Game Studio.

Time for action – creating content assets
To create content assets, perform the following steps:

1. Open Microsoft Paint, or your favorite image creation program, and create a new 16 
x 16 image. Fill the image with white color and save the file to a temporary location 
as SQUARE.BMP.

2. Switch back to Visual Studio and right-click on the SpellerContent (Content) project 
in Solution Explorer.

3. Select Add | Existing Item… from the pop-up menu and browse to the SQUARE.BMP 
file. Select it and click on Add to add it to the content project.

4. Again, right-click on the content project in Solution Explorer and this time select 
Add | New Item….

5. In the Add New Item window, select Sprite Font from the window's center pane.

6. Enter Segoe14.spritefont as the name of the file and click on Add.

7. Close the XML document that appears after Sprite Font has been added to  
the project.

What just happened?
We have now added both an image and a font to our content project. We will see how we 
load these assets into the game at runtime and how we can use them during gameplay.
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Alternatives when adding content
You can also drag-and-drop files directly from Windows Explorer into the 
Solution Manager pane in Visual Studio to add them to your content project. 
If you have the full version of Visual Studio, you can add a new bitmap object 
by selecting Add | New Item… from the project's pop-up menu and selecting 
Bitmap as the type. The free version of Visual Studio does not support 
creating bitmaps from within Visual Studio.

The SpriteFont file that we created in step 6 and the XML document mentioned in step 
7 actually load an XML template that describes how the content pipeline should create 
the resulting .xnb file. In this case, the default values for the SpriteFont template are 
sufficient for our game. This resulted in the Segoe UI Mono font (added to your system 
when the Windows Phone SDK is installed), with a value of 14 points being used. As we will 
only be using the standard A to Z character set, we do not need to make any changes to this 
template for Speller.

Member variables
Just after the Game1 class declaration in the Game1.cs file there are two class member 
declarations:

GraphicsDeviceManager graphics;
SpriteBatch spriteBatch; 

These two members will provide access to the system's video hardware (graphics)  
and an instance of a class that can be used to draw 2D images and text (spriteBatch).  
We can add our own member variables here for things we need to keep track of while our 
game is running.

Time for action – declaring new member variables
Just after the graphics and spriteBatch declarations, add the following code snippet to 
include the new members:

SpriteFont letterFont;
Texture2D playerSquare;

Vector2 playerPosition;
Vector2 moveDirection; 
int playerScore;

Random rand = new Random();

string currentWord = "NONE";
int currentLetterIndex = 99;
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class GameLetter
{
    public string Letter;   
    public Vector2 Position;
    public bool WasHit;
}
List<GameLetter> letters = new List<GameLetter>();
const float playerSpeed = 200.0f;

What just happened?
We have declared all of the member variables we will need for the Speller game. The 
letterFont member will hold the sprite font object that we added to the content project 
earlier, and work in conjunction with the predefined spriteBatch object to draw text on 
the screen.

The square image that will represent the player will be stored in the Texture2D member 
called playerSquare. We can use the Texture2D objects to hold graphics that we wish to 
draw to the screen using the SpriteBatch class.

The playerPosition Vector2 value will be used to hold the positions of the player, while 
moveDirection stores a vector pointing in the direction that the player is currently moving. 
Each time the player picks up a correct letter, playerScore will be incremented. Hitting an 
incorrect letter will cost the player one point.

An instance of the Random class, rand, will be used to select which word to use in each 
round and to place letters on the screen in random locations.

In order to keep track of which word the player is currently working on, we store that word 
in the currentWord variable, and track the number of letters that have been spelled in that 
word in currentLetterIndex.

The letters that are being displayed on the screen need several pieces of information to keep 
track of them. First, we need to know which letter is being displayed; next, we need to know 
the position the letter should occupy on the screen. Finally we need some way for our code 
to recognize that after we have hit an incorrect letter, we lose some of our score for it, but 
that we may spend several game update frames in contact with that letter and should not 
lose some of our score more than once for the infraction.

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account athttp://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
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All three pieces of information are wrapped into a child class of the Game1 class called 
GameLetter. If we were not intentionally keeping everything in Speller in the Game1 class, 
we would most likely create a separate code file for the GameLetter class for organizational 
purposes. Since Speller will be very straightforward, we will leave it inside Game1 for now.

As the GameLetter class defines a letter, we need a way to store all of the letters currently 
on the screen, so we have declared letters as a .NET List collection object. A List 
is similar to an array in that it can store a number of values of the same type, but it has 
the advantage that we can add and remove items from it dynamically via the Add() and 
RemoveAt() methods.

Finally, we declare the playerSpeed variable, which will indicate how fast the player's cube 
moves around the screen in response to the player's input. This value is stored in pixels per 
second, so in our case, one second of movement will move the character 200 pixels across 
the screen.

The Game1 constructor
The Game1 class has a simple constructor with no parameters. An instance of this class will 
be created by the shell contained in the Program.cs file within the project when the game 
is launched.

The Program.cs file
When your XNA game starts, the Main() method in the Program.cs file is 
what actually gets executed. This method creates an instance of your Game1 
class and calls the Run() method, which performs the initialization we will 
discuss shortly. It then begins executing the game loop, updating and drawing 
your game repeatedly until the program exits. In many games, we will not have 
to worry about Program.cs, but there are some instances (combining XNA 
and Windows Forms, for example) when it is necessary to make changes here.

By default, the constructor has created an instance of the GraphicsDeviceManager class 
to store in the graphics member, and has established the base directory for the Content 
object, which is an instance of the ContentManager class.

When we build our project, all of the items in the content project are translated into a 
format specific to XNA, with the .xnb file extension. These are then copied to the Content 
folder in the same directory as our game's executable file.

Our Speller game will not need to make any changes to the class constructor, so we will 
simply move on to the next method that is called when our game starts.
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Initialization
Once the instance of the Game1 class has been created and the constructor has been 
executed, the Initialize() method is executed. This is the only time during our game's 
execution that this method will execute, and it is responsible for setting up anything in our 
class that does not require the use of content assets.

The default Initialize() method is empty and simply calls the base class' 
Initialize() method before exiting.

Time for action – customizing the Initialize() method
Add the following code snippet to the Initialize() method before 
base:Initialize():

playerScore = 0;

What just happened?
The only initialization we need to do is set the player's score to zero. Even this initialization is 
not strictly necessary, as zero is the default value for an int variable, but it is a good practice 
not to assume that this work will have been done for us.

Initialize() versus LoadContent()
In practice, much of a game's initialization actually takes place in the 
LoadContent() method, which we will discuss next, instead of the 
Initialize() method. This is because many times the items we want 
to initialize require content assets in order to be properly created. One 
common use for the Initialize() method is to set the initial display 
area (resolution) and switch into full screen mode.

Loading content
After the Initialize() method has run, the LoadContent() method is called. Here,  
we initialize any items in our game that require the content assets we included in the  
content project.
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Time for action – creating a square texture
Add the following code snippet to the LoadContent() method:

letterFont = Content.Load<SpriteFont>("Segoe14");
playerSquare = Content.Load<Texture2D>("Square");

CheckForNewWord();

What just happened?
The default Content object can be used to load any type of asset from our content project 
into an appropriate instance in memory. The type identifier in angle brackets after the 
Load() method name identifies the type of content we will be loading, while the parameter 
passed to the Load() method specifies the asset name of the content.

Asset names can be set via the Properties window in Visual Studio, but would default to 
the name of the content file, path included, without an extension. Since all of the content 
objects will be translated into .xnb files by the content pipeline, there is no need to specify 
the format that the file was in before it was processed.

In our case, both of our content items are in the root of the content project's file structure. 
It is possible (and recommended) to create subdirectories to organize your content assets, 
in which case you would need to specify the relative path as part of the asset name. For 
example, if the Segoe14 sprite font was located in a folder off the root of the content 
project called Fonts, the default asset name would be Fonts\Segoe14.

Special characters in asset names
If you do organize your assets into folders (and you should!) your asset 
names will include the backslash character (\) in them. Because C# 
interprets this as an escape sequence in a string, we need to specify the 
name in the Content.Load() call as either "Fonts\\Segoe14" or 
@"Fonts\Segoe14". Two backslashes are treated as a single backslash by 
C#. Prefacing a string with the @ symbol lets C# know that we are not using 
escape sequences in the string so we can use single backslash characters. A 
string prefaced with the @ symbol is called a verbatim string literal.

The last thing our LoadContent() method does is call the (as yet undefined) 
checkForNewWord() method. We will construct this method towards the end of this 
chapter in order to generate a new word both at the beginning of the game and when the 
player has completed spelling the current word.
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Updating
Our game will now enter an endless loop in which the Update() and Draw() methods are 
called repeatedly until we exit the application. By default, this loop attempts to run 60 times 
per second on the Windows and Xbox platforms, and 30 times per second on the Windows 
Phone platform.

The Update() method is used to process all of our game logic, such as checking for and 
reacting to player input, updating the positions of objects in the game world, and detecting 
collisions. The Update() method has a single parameter, gameTime, which identifies 
how much real time has passed since the last call to Update(). We can use this to scale 
movements smoothly over time to reduce stuttering that would occur if we make the 
assumption that our update will always run at a consistent frame rate, and code on other 
system events impacted by the update cycle.

Time for action – customizing the Update() method
Add the following code snippet to the Update() method before base.Update():

Vector2 moveDir = Vector2.Zero;
KeyboardState keyState = Keyboard.GetState();

if (keyState.IsKeyDown(Keys.Up)) 
    moveDir += new Vector2(0, -1);

if (keyState.IsKeyDown(Keys.Down))
    moveDir += new Vector2(0, 1);

if (keyState.IsKeyDown(Keys.Left))
    moveDir += new Vector2(-1, 0);

if (keyState.IsKeyDown(Keys.Right))
    moveDir += new Vector2(1, 0);

if (moveDir != Vector2.Zero)
{
    moveDir.Normalize();
    moveDirection = moveDir;
}

playerPosition += (moveDirection * playerSpeed * 
    (float)gameTime.ElapsedGameTime.TotalSeconds);

playerPosition = new Vector2(
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    MathHelper.Clamp(
        playerPosition.X, 
        0, 
        this.Window.ClientBounds.Width - 16),
    MathHelper.Clamp(
        playerPosition.Y, 
        0, 
        this.Window.ClientBounds.Height - 16));

CheckCollisions();

CheckForNewWord();

What just happened?
During each frame, we will begin by assuming that the player is not pressing any movement 
keys. We create a Vector2 value called moveDir and set it to the predefined value of 
Vector2.Zero, meaning that both the x and y components of the vector will be zero.

In order to read the keyboard's input to determine if the player is pressing a key, we use the 
Keyboard.GetState() method to capture a snapshot of the current state of all the keys 
on the keyboard. We store this in the keyState variable, which we then use in a series of if 
statements to determine if the up, down, left, or right arrow keys are pressed. If any of them 
are pressed, we modify the value of moveDir by adding the appropriate vector component 
to its current value.

After all the four keys have been checked, we will check to see if the value is still Vector2.
Zero. If it is, we will skip updating the moveDirection variable. If there is a non-zero 
value in moveDir, however, we will use the Normalize() method of the Vector2 class 
to divide the vector by its length, resulting in a vector pointing in the same direction with a 
length of one unit. We store this updated direction in the moveDirection variable, which is 
maintained between frames.

When we have accounted for all of the possible inputs, we update the player's position 
by multiplying the moveDirection by playerSpeed and the amount of time that has 
elapsed since Update() was last called. The result of this multiplication is added to the 
playerPosition vector, resulting in the new position for the player.

Before we can assume that the new position is ok, we need to make sure that the player 
stays on the screen. We do this by using MathHelper.Clamp() on both the X and Y 
components of the playerPosition vector. Clamp() allows us to specify a desired value 
and a range. If the value is outside the range, it will be changed to the upper or lower limit 
of the range, depending on which side of the range it is on. By limiting the range between 
zero and the size of the screen (minus the size of the player), we can ensure that the player's 
sprite never leaves the screen.
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Finally, we call two functions that we have not yet implemented: CheckCollisions() 
and CheckForNewWord(). We discussed CheckForNewWord() in the LoadContent() 
section, but CheckCollisions() is new. We will use this method to determine when the 
player collides with a letter and how to respond to that collision (increase or decrease the 
player's score, advance the spelling of the current word, and so on).

The Draw() method
The last of the predefined methods in the XNA game template is Draw(). This method is 
called once after each call to Update() and is responsible for the game state for the current 
frame. By default, all that the Draw() method does is clears the display and sets it to the 
CornflowerBlue color.

Time for action – drawing Speller
To draw the visual components of our Speller game, perform the following steps:

1. Alter the GraphicsDevice.Clear(Color.CornflowerBlue) call and replace 
Color.CornflowerBlue with Color.Black to set the background color.

2. Add the following code after the call to clear the display:
spriteBatch.Begin();
spriteBatch.Draw(playerSquare, playerPosition, Color.White);

foreach (GameLetter letter in letters)
{
    Color letterColor = Color.White;

    if (letter.WasHit)
        letterColor = Color.Red;

    spriteBatch.DrawString(
        letterFont, 
        letter.Letter, 
        letter.Position, 
        letterColor);
}

spriteBatch.DrawString(
    letterFont, 
    "Spell: ", 
    new Vector2(
        this.Window.ClientBounds.Width / 2 - 100,

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Introduction to XNA

[ 22 ]

        this.Window.ClientBounds.Height - 25), 
    Color.White);

string beforeWord = currentWord.Substring(0, currentLetterIndex);
string currentLetter = currentWord.Substring(currentLetterIndex, 
1);
string afterWord = "";

if (currentWord.Length > currentLetterIndex) 
    afterWord = currentWord.Substring( 
    currentLetterIndex + 1);

spriteBatch.DrawString(
    letterFont, 
    beforeWord, 
    new Vector2(
        this.Window.ClientBounds.Width / 2,
        this.Window.ClientBounds.Height - 25), 
    Color.Green);

spriteBatch.DrawString(
    letterFont, 
    currentLetter, 
    new Vector2(
        this.Window.ClientBounds.Width / 2 +   
            letterFont.MeasureString(beforeWord).X,
        this.Window.ClientBounds.Height - 25), 
    Color.Yellow);

spriteBatch.DrawString(
    letterFont, 
    afterWord, 
    new Vector2(
      this.Window.ClientBounds.Width / 2 + 
         letterFont.MeasureString(beforeWord+currentLetterIndex)
.X,
      this.Window.ClientBounds.Height - 25), 
    Color.LightBlue);

spriteBatch.DrawString(
    letterFont, 
    "Score: " + playerScore.ToString(), 
    Vector2.Zero, 
    Color.White);

spriteBatch.End();
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What just happened?
When using the SpriteBatch class, any calls to draw graphics or text must be wrapped in 
calls to Begin() and End(). SpriteBatch.Begin() prepares the rendering system for 
drawing 2D graphics and sets up a specialized render state. This is necessary because all 2D 
graphics in XNA are actually drawn in 3D, with the projection and orientation configurations 
in the render state to display the 2D images properly.

In our case, the only graphical image we are drawing is the square that represents the player. 
We draw this with a simple call to SpriteBatch.Draw(), which requires the texture we 
will use, the location where the texture will be drawn on the screen (relative to the upper-
left corner of the display area), and a tint color. Because our square image is white, we could 
set any color we wish here and the player's square would take on that color when displayed. 
We will use that to our advantage in just a moment when we draw the text of the word the 
player is trying to spell.

After the player has been drawn, we loop through each of the letters in the letters list and 
use the SpriteBatch.DrawString() method to draw the letter at its position, using the 
letterFont we created earlier. Normally, we will draw the letters in white, but if the player 
runs into this letter (and it is not the letter they are supposed to hit) we will draw it in red.

Next, we need to display the word that the player is attempting to spell. We display the text 
Spell: near the bottom center of the display, using the bounds of the current window to 
determine the location to draw.

In order to colorize the word properly, we need to split the word into different parts as what 
the player has already spelled, the current letter they are targeting, and the letters after 
the current letter. We do this using the Substring() method of the string class, and then 
draw these three components with different color tints. We utilize the MeasureString() 
method of letterFont to determine how much space each of these components occupies 
on the screen so that we can position the subsequent strings properly.

Finally, we display the player's score at the upper-left corner of the screen.

Helper methods
All that remains to finish the Speller game is to create our two missing methods, 
CheckForNewWord() and CheckCollisions(). We will actually break these down  
into other helper functions as well.
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Time for action – words and letters
To implement the CheckForNewWord() and its helper methods, we will perform the 
following steps:

1. Add the PickAWord() method to the end of the Game1 class, after Draw():
private string PickAWord()
{
    switch (rand.Next(15))
    {
        case 0: return "CAT"; 
        case 1: return "DOG"; 
        case 2: return "MILK";
        case 3: return "SUN";
        case 4: return "SKY";
        case 5: return "RAIN";
        case 6: return "SNOW";
        case 7: return "FAR";
        case 8: return "NEAR";
        case 9: return "FRIEND";
        case 10: return "GAME";
        case 11: return "XNA";
        case 12: return "PLAY";
        case 13: return "RUN";
        case 14: return "FUN";
    }

    return "BUG";
}

2. Add the FillLetters() method to the Game1 class, after PickAWord():
private void FillLetters(string word)
{
  Rectangle safeArea = new Rectangle(
    this.Window.ClientBounds.Width / 2 - playerSquare.Width,
    this.Window.ClientBounds.Height / 2 - playerSquare.Height,
    playerSquare.Width * 2,
    playerSquare.Height * 2);

  string alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

  List<Vector2> locations = new List<Vector2>();
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  for (int x=25; 
       x < this.Window.ClientBounds.Width - 50; 
       x += 50)
  {
    for (int y=25; 
         y < this.Window.ClientBounds.Height - 50; 
         y += 50)
    {
      Rectangle locationRect = new Rectangle(
        x,
        y,
        (int)letterFont.MeasureString("W").X,
        (int)letterFont.MeasureString("W").Y);

      if (!safeArea.Intersects(locationRect))
      {
        locations.Add(new Vector2(x, y));
      }
    }
  }

  letters.Clear();
  for (int x = 0; x < 20; x++)
  {
    GameLetter thisLetter = new GameLetter();

    if (x < word.Length)
        thisLetter.Letter = word.Substring(x, 1);
    else
        thisLetter.Letter = alphabet.Substring(
            rand.Next(0,26),1);

        int location = rand.Next(0,locations.Count);
        thisLetter.Position = locations[location];
        thisLetter.WasHit = false;
        locations.RemoveAt(location);
  
        letters.Add(thisLetter);
    }

}
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3. Add the CheckForNewWord() method to the end of the Game1 class, after 
FillLetters():
private void CheckForNewWord()
{
    if (currentLetterIndex >= currentWord.Length)
    {
        playerPosition = new Vector2(
            this.Window.ClientBounds.Width / 2,
            this.Window.ClientBounds.Height / 2);
        currentWord = PickAWord();
        currentLetterIndex = 0;
        FillLetters(currentWord);
    }
}

What just happened?
In step 1, we generate a random number using the Next() method of the Random class. 
Given an integer value, Next() will return an integer between zero and that number minus 
one, meaning we will have a return value from zero to fourteen. Using a select statement, 
we return the randomly determined word. Note that we should never hit the last return 
statement in the function, so if we are ever asked to spell the word BUG, we know something 
is wrong.

The FillLetters() method is used to populate the letters list with letters and their 
locations on the screen. We could simply generate random locations for each letter, but then 
this would leave us with the potential for letters overlapping each other, requiring a check as 
each letter is generated to ensure this does not happen.

Instead, we will generate a list of potential letter positions by building the locations list. 
This list will contain each of the possible places on the screen where we will put a letter 
by spacing through a grid and adding entries every 25 pixels in the x and y directions. The 
exception is that we define an area in the center of the screen where the player will start and 
we will not place letters. This allows the player to start each round without being in contact 
with any of the game letters.

Once we have our list of locations, we clear the letters list and generate 20 letters. We 
start with the letters required to spell the target word, pulling letters from the currentWord 
string until we reach the end. After that, the letters will come from the alphabet string 
randomly. Each letter is assigned one of the locations from the locations list, and that 
location is then removed from the list so we will not have two letters on top of each other.
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Lastly, the CheckForNewWord() method checks to see if currentLetterIndex is larger 
than the length of currentWord. If it is, the player's position is reset to the center of the 
screen and a new word is generated using PickAWord(). currentLetterIndex is reset, 
and the letters list is rebuilt using the FillLetters() method.

Time for action – completing the Speller project
To complete the Speller project we need to add the CheckCollosions() method by 
performing the following steps:

1. Add the CheckCollisions() method to the Game1 class after 
CheckForNewWord():
private void CheckCollisions()
{
    for (int x = letters.Count - 1; x >= 0; x--)
    {
        if (new Rectangle(
            (int)letters[x].Position.X,
            (int)letters[x].Position.Y,
            (int)letterFont.MeasureString(
                letters[x].Letter).X,
            (int)letterFont.MeasureString(
                letters[x].Letter).Y).Intersects(
                    new Rectangle(
                        (int)playerPosition.X,
                        (int)playerPosition.Y,
                        playerSquare.Width,
                        playerSquare.Height)))
        {
           if (letters[x].Letter == 
               currentWord.Substring(currentLetterIndex, 1))
           {
               playerScore += 1;
               letters.RemoveAt(x);
               currentLetterIndex++;
           }
           else
           {
               if (!letters[x].WasHit)
               {
                   playerScore -= 1;
                   letters[x].WasHit = true;
               }
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           }
        }
        else
        {
            letters[x].WasHit = false;
        }
    }
}

2. Execute the Speller project and play! The following screenshot shows how our game 
will look when we execute it:

What just happened?
CheckCollisions() loops backward through the letters list, looking for letters that 
the player has collided with. Going backwards is necessary because we will (potentially) be 
removing items from the list, which cannot be done in a foreach loop. If we were moving 
forward through the list, we would disrupt our loop by deleting the current item, which 
would cause it to skip over the next items in the list. Moving backwards through the list 
allows us to remove items without adjusting our loop's logic.
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In order to determine if we have collided with a letter, we build two rectangles. The first 
rectangle represents the position and size of the letter we are checking against, by using the 
letter's Position value and the size of the letter calculated with MeasureString(). The 
second rectangle represents the area occupied by the player's sprite.

The Intersects() method of the Rectangle class will return true if these two rectangles 
overlap at any point. If they do, we know we have hit a letter and need to take action.

If the letter impacted is the next letter in the word that the player is spelling, we 
increment the player's score and remove the letter from the list. We also advance 
currentLetterIndex so that when Update() next calls CheckForNewWord(), we will 
know if this word has been completed.

If the letter is not the player's current target, we check the letter's WasHit value. If it is false, 
we have not run into this letter, so we reduce the player's score and mark WasHit to true. 
If WasHit is already true, we simply do nothing so as not to deduct from the player's score 
multiple times while the player passes over an incorrect letter.

When the rectangles do not intersect, we know we are not currently in contact with this 
letter, so we set its WasHit variable to false. This has the effect that once we leave an 
incorrect letter, it becomes re-enabled for future collisions (and point deductions).

Have a go hero
Speller is a pretty simple game, but could be enhanced to make a more full-fledged game, by 
including the following, depending on your level of experience with 2D XNA development:

 � Beginner: Raise the difficulty by increasing the speed of the player's square as they 
complete each word.

 � Intermediate: Record the words with a microphone and play those recordings when 
a new word is generated. Instead of displaying the entire word during the update() 
method, display only the letters that have been spelled so far. This would turn the 
game into more of an educational kid's game with the player having to spell out the 
words they hear.
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Summary
As a quick-fire introduction to a number of essential XNA topics, Speller covers quite a bit  
of ground. We have a functional game that accepts player input, draws graphics and text to 
the screen, generates a random playfield of letters, and detects player collision with them. 
We got an overview of the structure of an XNA game and the basic Update()/Draw()  
game loop.

As we will see, many of these concepts translate into a 3D environment with very little need 
for modification, other than the need to keep track of positions and movement with an extra 
dimension attached. We will utilize the Vector3 objects instead of the Vector2 objects, 
and we will still rely on a 2D plane for much of the layout of our game world.

Additionally, although much of the work in the following chapters will take place with  
3D drawing commands and constructs, we will still be returning to the 2D SpriteBatch  
and SpriteFont classes to construct interface elements and convey textual information  
to the player.
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2
Cube Chaser – A Flat 3D World

Our first 3D game will feature a very straight forward design: the player is 
trapped in a randomly generated maze, and must seek out the great green 
cube! Every time the player reaches this goal, they are awarded points for  
how quickly they found the cube and it is relocated to a different portion  
of the maze.

While simple in design, building Cube Chaser will cover a number of important topics related 
to 3D game development. In this chapter, we will look at:

 � Building an FPS (First Person Shooter) style camera

 � Drawing surfaces using triangles in the 3D world

 � Generating a floor as a base for our maze

 � Detecting input and allowing first-person movement through the maze

Designing the game
Cube Chaser will take place in a randomly generated 3D maze. We will use triangle lists  
to build the floor and walls of the maze and instruct the graphics card to draw them to  
the screen.

The maze itself is actually a 2D construction, with the walls being rendered in 3D. The floor 
of the maze will be laid out along the X-Z plane, with the walls extending upwards along the 
positive Y axis. The player will be able to move in the X and Z plane, but will be restricted to a 
single, pre-defined elevation along the Y axis.
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3D coordinates
You may have noticed in the previous statement that the player will move along the X-Z 
plane. If you have spent any time developing 2D games, you will likely be used to working 
with X-Y coordinates, with X running across the screen from left to right and Y running down 
the screen from top to bottom.

When we move into 3D, we no longer have a fixed viewing angle on our action. In a 2D 
game, we typically describe actions in the X-Y plane for a side-scrolling game, overhead 
shooter, or a puzzle game. Since there are only two dimensions to deal with, the relationship 
between objects on the screen is the same type of relationship they would have if you drew 
them on a piece of paper. The only time we even really consider a third dimension in a 2D 
game, we refer to it as the Z-Order, or the order in which the sprites will be drawn to make 
some appear on top of others.

Y

-Z

X

-Y

Z

-X

Knowing that we have three axes to deal with, X, Y, and Z, the next step is to determine how 
coordinates along each axis relate to the others. XNA uses a right-handed coordinate system, 
meaning that you can try to contort your hand in various directions to have your palm, 
fingers, and thumb pointing along the positive directions for each axis. Without spraining 
anything, what it really means is that if you were standing in the 3D world at a point where 
you could see the positive Y axis shooting up into the sky and the positive X axis running off 
to the right as in the previous diagram, the positive Z axis would be pointing towards you.

Left-handed and right-handed coordinates
XNA uses a right-handed coordinate system. If you hold your hands with your 
palms facing up, and curl your fingers  90 degrees up from your palm, your 
palm points along the positive X axis, and your fingers point along the positive 
Y axis. If you point your thumb out away from your hand, the thumb points 
along the positive Z axis, relative to X and Y. Which hand you use determines 
which direction is positive along the Z axis. The coordinate system in XNA is 
based on the right-handed rule.
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Creating the project
We will begin the construction of Cube Chaser by creating a new XNA 4.0 Windows Game in 
Visual Studio.

Time for action – creating the Cube Chaser project
1. Open Visual Studio 2010 and select File | New | Project… from the menu bar.

2. Open the Visual C# tree in the Installed Templates portion of the New Project 
window, and open the XNA Game Studio 4.0 tree under it.

3. Select the Windows Game (4.0) project template from the central portion of the 
window.

4. Under Name, enter Cube Chaser and click the Ok button.

5. After Visual Studio has created the solution, right-click on the Game1.cs file in the 
Solution Explorer window and select Rename.

6. Change the name of the file to CubeChaserGame.cs. When asked if you wish to 
update the references to the file, click Yes.

What just happened?
We now have the shell for our Cube Chaser game. We could have left our main game class as 
Game1 as we did  for the Speller game, but giving the class a more descriptive name helps to 
keep our code as self-documenting as possible.

Our view of the world
Before we can place objects and geometry into our virtual representation of a 3D world, we 
need to come up with a way to describe to XNA how we are going to control the viewpoint 
of the player. In many 2D games, a simple Vector2 value is often enough to cover the 
requirements of the camera – assuming the 2D game needed a camera at all. The camera 
viewing a 2D world might only need to know how far across and down the game world 
the current view should be located. Other aspects of the view, such as the distance from 
which the player is viewing the action, may be fixed due to the size of the pre-drawn sprites 
representing the game environment and objects.

In contrast, we need a bit more information to define the camera in a 3D game. The fact that 
we need a third coordinate (the Z coordinate) should not be surprising; since we have moved 
from 2D to 3D, it only stands to reason that we need three coordinates to define a point. 
What may be less obvious, however, is that we also need a way to identify what direction the 
camera is pointing in. Two cameras in the same position will have very different views if they 
are pointed in opposite directions.
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We will build the Camera class in several stages, adding more detail with each visit to the 
code file.

Time for action – beginning the Camera class
1. Add a new class to the Cube Chaser project by right-clicking on the project in 

Solution Explorer and selecting Add | Class….

2. Ensure that the Visual C# | Code is selected under Installed Templates and select 
the Class template.

3. Enter Camera.cs as the name of the class file.

4. Add the following using directive to the top of the Camera.cs file:
using Microsoft.Xna.Framework;

5. Add the following fields and properties to the Camera class:
#region Fields
private Vector3 position = Vector3.Zero;
private float rotation;
#endregion

#region Properties
public Matrix Projection { get; private set; }
#endregion

6. Add a constructor for the Camera class:
#region Constructor
public Camera(
    Vector3 position, 
    float rotation, 
    float aspectRatio, 
    float nearClip, 
    float farClip)
{
    Projection = Matrix.CreatePerspectiveFieldOfView(
        MathHelper.PiOver4, 
        aspectRatio, 
        nearClip, 
        farClip);
    MoveTo(position, rotation);
}
#endregion
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What just happened?
We have now put together some of the basic information our Camera class will track, 
including the position of the camera and the angle it is facing.

What is an FPS (First Person Shooter) camera?
When working with cameras in 3D, there are several different kinds of 
cameras we might want to deal with. An FPS camera, so named because it 
is the style of camera used in First Person Shooter games, it is a camera that 
is placed in the location of the character's eyes, resulting in a first-person 
view. As the player moves, the camera moves and rotates directly with the 
player. Other types of cameras include chase cameras, which follow along 
behind the player, and arc-ball cameras, which circle around a fixed point in 
3D space. We will implement an arc-ball camera in Chapter 5, Tank Battles 
– A War-Torn Land.

Additionally, we have defined a matrix, called Projection, which we will create based on 
the values passed into the constructor for the Camera class. It is defined as a property that 
can be obtained from outside our code, but can only be set within the Camera class itself. 

What is a matrix?
The short answer is that a matrix is a two-dimensional array of numbers 
used to transform points in 3D space. The long answer to this question is 
presented in Chapter 4, Cube Chaser – Finding Your Way, where we will dive 
into details about what a matrix is and the "magic" behind how they work. 
For now, we can define a matrix as a construct that we can use to manipulate 
points by applying different effects to them.

We have not yet defined the MoveTo() method, which will allow us to specify the camera 
position and rotation in a single call. We need a few more elements in our class before we 
can implement MoveTo().

Also, note that we have enclosed sections of our code in #region…#endregion directives. 
These tell the Visual Studio IDE that these sections of the code can be collapsed as a unit 
to hide the details while we work on other sections of the code. We will use these regions 
throughout the book to keep our code organized.
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The Projection matrix
On a physical camera, you might have a selection of various lenses with different properties – 
a wide angled lens for wide shots, or a telephoto lens for zooming in close. The Projection 
matrix is the way we describe such properties to the XNA rendering system. The 
Projection matrix describes to the graphics card how to translate (or project) 3D objects 
onto the 2D viewing area of the screen. The following image illustrates the parameters used 
to construct the Projection matrix:

Field of view
Angle

Camera
Near Clip Plane

Far Clip
Plane

Width  /  Hight - Aspect Ratio

The Matrix.CreatePerspectiveFieldOfView() method accepts four parameters that 
define how our virtual camera will view the 3D scene. The first is the field of view, or viewing 
angle, that the camera covers. The larger this value is, the wider the angle the camera will 
display. In this case, we specify MathHelper.PiOver4, which translates to a 45 degree angle.

Angles in XNA
XNA handles all angles in radians. In a full circle there are 2*pi radians. Half 
of a circle is 180 degree, or pi radians. XNA provides the MathHelper.
ToRadians() method if you wish to track angles in your code in degrees 
and convert them before use.
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A 45 degree field of view is a fairly standard value for 3D games, and represents a realistic 
view angle. As the angle gets larger, you will begin to notice a fish-eye effect and the 
rotation of the camera will seem more and more unusual. In fact, some games have used 
an expanded field of view to distort the player's perspective when their character becomes 
disoriented or incapacitated in some way. The following image shows the impact of changing 
only the field of view angle while viewing the same scene:

In all three of the previous images, the player is standing in exactly the same spot in identical 
mazes. The only difference between each image is the field of view angle specified in the 
Projection matrix. As the viewing angle increases, objects become stretched out and 
distorted the further they are away from the center of the viewing area.
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The second parameter, the aspect ratio, determines the shape of the viewing area. The most 
familiar use of aspect ratios in daily life is in televisions and monitors. A standard-definition 
television has a 4:3 (or 4 divided by 3, or 1.333) aspect ratio, while high-definition displays often 
use a 16:9 (1.777) or 16:10 (1.6) aspect ratio. Generally, the aspect ratio of your Projection 
matrix should match the aspect ratio of the viewport you are displaying your graphics in (in 
fact, when we define an instance of our camera, we will simply pass the viewport's aspect ratio 
property in for this parameter). Using a mismatched value will cause your image to be either 
stretched out or squashed together. A similar effect can be seen in films, when the ending 
credits of a wide-screen movie are scaled to display on a standard-definition television. The 
text looks correct while the actors and scenes in the background become stretched vertically, 
appearing tall and thin.

The last two parameters define clipping planes associated with the Projection matrix. 
A clipping plane defines the point, past which objects in the 3D world will no longer be 
displayed. Any 3D geometry closer than the near clipping distance will not be drawn to the 
display, nor will any geometry further away than the far clipping distance. In other words, 
the only things in our game world that will be drawn to the screen are the items which lie 
further away than the near distance, but closer than the far distance.

We need the far clipping plane to place reasonable limits on the objects we draw for 
performance purposes. Some games allow the player to modify the drawing distance for the 
far clipping plane based on the graphical horsepower of their system.

The reason for the near clipping plane is less obvious, but still important. Let's say, for 
example, that we are creating a multi-player, first-person shooter style game. In this case, our 
player is represented to other players by a 3D avatar that exists in the game world just like 
other players, enemies, and objects. If we define the location of the camera near the avatar's 
eyes, the movement and animation of the avatar may cause parts of the avatar's model to 
push their way in front of the camera position. By specifying a near clipping plane, we can 
prevent these pieces of the player's own avatar from being drawn so that the player's view is 
not obscured by the inside of their own head!

Looking at something
While we have a rotation value already associated with the Camera class, it does not mean 
anything to the class currently. An angle only exists in one plane in our 3D coordinate system, 
so we cannot simply specify an angle at which to point the camera. We need to convert the 
angle into a point in 3D space that lies in the direction we wish the camera to face relative to 
its current location.
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Time for action – implementing a look-at point
1. Add the following properties to the Fields region of the Camera class:

private Vector3 lookAt;
private Vector3 baseCameraReference = new Vector3(0, 0, 1);
private bool needViewResync = true;

2. Add the following region and method to the Camera class:
#region Helper Methods
private void UpdateLookAt()
{
    Matrix rotationMatrix = Matrix.CreateRotationY(rotation);
    Vector3 lookAtOffset = Vector3.Transform(
        baseCameraReference, 
        rotationMatrix);
    lookAt = position + lookAtOffset;
    needViewResync = true;
}
#endregion

3. Define the MoveTo() method that is called in the constructor. This method should 
be placed inside the Helper Methods region you just created:
public void MoveTo(Vector3 position, float rotation)
{
    this.position = position;
    this.rotation = rotation;
    UpdateLookAt();
}

4. Add two new public properties to the Properties region of the Camera class:
public Vector3 Position 
{
    get
    {
        return position;
    }
    set
    {
        position = value;
        UpdateLookAt();
    }
}

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Cube Chaser – A Flat 3D World

[ 40 ]

public float Rotation
{
    get
    {
        return rotation;
    }
    set
    {
        rotation = value;
        UpdateLookAt();
    }
}

What just happened?
Just like the camera's position, the point we are going to look at is stored as a Vector3. 
In order to build this point, we need a frame of reference, indicating the direction the 
camera would be pointing if it were not rotated at all. We define this direction in the 
baseCameraReference field, specifying that the non-rotated camera will point along the Z 
axis (assuming that the camera was located at the origin point (0, 0, 0)).

The last field we added, needViewResync, will be used to determine when we need to 
rebuild the next important matrix we will be discussing – the View matrix. We will return to 
that topic in a moment.

In order to determine the point in 3D space that the camera will look towards (called the 
Look At point), we create a rotation matrix around the Y axis (which points up from 
the X-Z plane) equal to the current value of the rotation field. We then transform the 
baseCameraReference vector with this rotation matrix, resulting in a Vector3 which 
points in the direction of the rotation relative to the world origin at (0, 0, 0) in 3D space.

We then build the lookAt point field by adding this offset vector to the camera's current 
position, in effect relocating the lookAt point from the origin to be relative to the camera 
position. Finally, we mark the needViewResync flag as true.

Rotating base Camera Reference
gives the look at offset Vector

The base Camera Reference vector
points along the positive z axis

Adding the look At offset to the
camera position determines the

look At point

X

Z

X

Z

X

Z

Camera Position Camera Position Camera Position

Look At
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The remaining code mentioned previously implements the MoveTo() method, and exposes 
public properties for the Position and Rotation values. All three of these items simply 
set their related fields and call the UpdateLookAt() method we just defined.

The View matrix
The last bit of information we need our camera to provide in order to be able to draw a 
scene is called the View matrix. This matrix defines the position and direction from which 
the camera views the 3D world. In other words, we combine our camera position and the 
point we are looking at, to create the structure that XNA needs, to interpret how we wish 
our camera to view the 3D scene.

Time for action – the View matrix
1. Add the following variable to the Fields region of the Camera class:

private Matrix cachedViewMatrix;

2. Add the following property to the Properties region of the Camera class:
public Matrix View
{
    get
    {
        if (needViewResync)
            cachedViewMatrix = Matrix.CreateLookAt(
                Position, 
                lookAt, 
                Vector3.Up);

        return cachedViewMatrix;
    }
}

What just happened?
We could simply recalculate the View matrix every time the Camera class was asked for 
it, but doing so would incur a small performance penalty. Because we do not have a lot of 
action happening in Cube Chaser, this penalty would not impact our game, but we can avoid 
it altogether. We are building a caching mechanism into the camera code in the event our 
game develops to the point that this optimization is helpful. Any time the View matrix is 
calculated, we will store it in cachedViewMatrix and simply return that matrix if the View 
matrix is requested without the underlying camera information having been modified.
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In order to create the View matrix, we use the convenient Matrix.CreateLookAt() 
method, which accepts the camera position, the look at point we calculated previously, and a 
vector indicating what direction is considered to be up for the camera. In our case, we are using 
the pre-defined Vector3.Up, which translates to (0, 1, 0), or up along the positive Y axis.

That is enough of the camera to get us started. We will return to the Camera class later 
when we implement movement. For now, let's get on with actually drawing something  
to the screen!

From the ground up
Even if we were to go ahead and implement the code to allow us to utilize the Camera class, 
there would be nothing to display at this point, as we have not defined any objects in our 3D 
world other than the camera, and it is invisible.

There are several different ways we could approach drawing the floor of the maze. We could 
draw the whole floor as a single square in a particular color. We could draw the same giant 
square using a texture that was repeated over the whole thing.

Both of these methods are quite valid, but we are going to take a slightly different approach. 
We will build a square for each cell of the maze floor, alternating the colors of the squares 
to create a checkerboard-like pattern. We will draw all of the floor tiles in a single operation, 
sending all of the geometry to the graphics card at once.

Time for action – creating the Maze classes
1. Add a new class file called Maze.cs to the Cube Chaser project.

2. Add the following using directives to the top of the Maze.cs class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Add the following fields to the Maze class:
#region Fields
public const int mazeWidth = 20;
public const int mazeHeight = 20;

GraphicsDevice device;

VertexBuffer floorBuffer;

Color[] floorColors = new Color[2] { Color.White, Color.Gray };
#endregion
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4. Add a constructor for the Maze class:
#region Constructor
public Maze(GraphicsDevice device)
{
    this.device = device;
    
    BuildFloorBuffer();
} 
#endregion

5. Add the following region and helper methods to the Maze class:
#region The Floor
private void BuildFloorBuffer()
{
    List<VertexPositionColor> vertexList = 
        new List<VertexPositionColor>();

    int counter = 0;

    for (int x = 0; x < mazeWidth; x++)
    {
        counter++;
        for (int z = 0; z < mazeHeight; z++)
        {
            counter++;
            foreach (VertexPositionColor vertex in 
                FloorTile(x, z, floorColors[counter % 2]))
            {
                vertexList.Add(vertex);
            }
        }
    }

    floorBuffer = new VertexBuffer(
        device, 
        VertexPositionColor.VertexDeclaration, 
        vertexList.Count, 
        BufferUsage.WriteOnly);

    floorBuffer.SetData<VertexPositionColor>(vertexList.
ToArray());
}

private List<VertexPositionColor> FloorTile(
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    int xOffset, 
    int zOffset, 
    Color tileColor)
{
    List<VertexPositionColor> vList = 
        new List<VertexPositionColor>();

    vList.Add(new VertexPositionColor(
        new Vector3(0 + xOffset, 0, 0 + zOffset), tileColor));
    vList.Add(new VertexPositionColor(
        new Vector3(1 + xOffset, 0, 0 + zOffset), tileColor));
    vList.Add(new VertexPositionColor(
        new Vector3(0 + xOffset, 0, 1 + zOffset), tileColor));

    vList.Add(new VertexPositionColor(
        new Vector3(1 + xOffset, 0, 0 + zOffset), tileColor));
    vList.Add(new VertexPositionColor(
        new Vector3(1 + xOffset, 0, 1 + zOffset), tileColor));
    vList.Add(new VertexPositionColor(
        new Vector3(0 + xOffset, 0, 1 + zOffset), tileColor));

    return vList;
}
#endregion

What just happened?
So far, we have not really defined anything about the actual maze associated with the Maze 
class other than the width and height of the maze we will be generating. The goal at this 
point is to build the floor of the maze and then bring our Maze and Camera classes together 
to allow us to display something to the game screen.

After we have generated all of the triangles necessary for our floor, they will be stored in the 
floorBuffer field. This field is a VertexBuffer, which holds a list of 3D vertices that can 
be sent to the graphics card in a single push.

Drawing with triangles
While we want to draw square floor tiles, the graphics card really only 
works with triangles. Even the most complex 3D models are made up 
of thousands or millions of small triangles. Fortunately, a square can be 
easily created with two equally-sized right triangles placed next to each 
other. Even when we load and display complex 3D models they are actually 
composed of lots of small triangles positioned to make up the surface of the 
object we are displaying.
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In order to fill out this VertexBuffer, we need to generate the points that make 
up the triangles for the floor. This is the job of the BuildFloorBuffer() method, 
and its helper, FloorTile(). BuildFloorBuffer() begins by defining a List of 
VertexPositionColor objects. The built-in vertex declarations in XNA allow for different 
combinations of color, texture, and normal vectors to be associated with the position of the 
vertex (no matter what else a vertex has, it will always have a position). As the name implies, a 
VertexPositionColor defines a vertex with a position in 3D space and an associated color.

We will determine the color of the vertices (and thus the triangles and the squares) on 
the floor of the maze by alternating between white and gray, picking the colors from the 
floorColors list as the vertices are built.

The vertices for each square are built by calling the FloorTile() method, which returns a 
list of VertexPositionColor objects. Because we need two triangles to make up a square, 
we need to return six VertexPositionColor elements. We will use a similar technique 
when we build the maze walls later in this chapter.

The FloorTile() method accepts the X and Z offsets for this tile (if we were looking 
down at the maze from above, the number of squares across and down the maze we are 
building this square for) and the color for this particular tile. It then builds a new set of 
VertexPositionColor objects by adding six new vertices, three for each triangle, to a 
List object. The order that we define the vertices, called the winding order, is important. 
The vertices of each triangle need to be specified in a clockwise direction based on the 
angle from which the triangle will be viewed. The graphics device considers triangles to be 
single-sided entities. If we were to swing our camera underneath the maze, the floor would 
completely disappear.

X Axis

(0, 0, 0)

(0, 0, 0)

(1, 0, 0)

(1, 0, 0)

In the previous image, we can see that we need four vertices to define the two triangles 
which compose a single floor square. We build the first triangle from the upper-left,  
upper-right, and lower-left vertices, and the second triangle from the upper-right,  
lower-right, and lower-left vertices, in those orders.
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In the FloorTile() method mentioned previously, we explicitly add these six points to the 
list of vertices that will be returned from the function, offsetting the X and Z values of each 
vertex by the values passed into the function. This has the effect of translating the triangles 
to their appropriate positions in the 3D world; otherwise they would be stacked all on top of 
each other near the world origin.

Drawing the floor
Now that we have defined all of the triangles that will make up the checker-boarded floor for 
our maze, let's go ahead and complete the code necessary to draw the floor to the screen.

Time for action – drawing the floor
1. Add the Draw region and the Draw() method to the Maze class:

#region Draw
public void Draw(Camera camera, BasicEffect effect)
{
    effect.VertexColorEnabled = true;
    effect.World = Matrix.Identity;
    effect.View = camera.View;
    effect.Projection = camera.Projection;

    foreach (EffectPass pass in effect.CurrentTechnique.Passes)
    {
        pass.Apply();
        device.SetVertexBuffer(floorBuffer);
        device.DrawPrimitives(
            PrimitiveType.TriangleList, 
            0, 
            floorBuffer.VertexCount / 3);
    }
}
#endregion

2. In the CubeChaserGame class, add the following declarations to the declarations 
area of the class:
Camera camera;
Maze maze;
BasicEffect effect;
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3. In the Initialize()method of the CubeChaserGame class, initialize the camera, 
maze, and effect objects, placing this code before the call to base.Initialize():
camera = new Camera(
    new Vector3(0.5f, 0.5f, 0.5f), 
    0, 
    GraphicsDevice.Viewport.AspectRatio, 
    0.05f, 
    100f);
effect = new BasicEffect(GraphicsDevice);
maze = new Maze(GraphicsDevice);

4. In the Draw() method of the CubeChaserGame class, add a call to draw the maze 
after the GraphicsDevice.Clear() statement:
maze.Draw(camera, effect);

5. Execute the Cube Chaser game project:
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What just happened?
The Maze class' Draw() method accepts two parameters: the camera that will be used as 
the viewing point for drawing the maze, and an object called a BasicEffect. Whenever we 
draw anything with XNA's 3D drawing system, we need an effect associated with what we 
are going to display.

An effect describes to the rendering system how the pixels on the display should be 
constructed based on the code for each particular effect. Effects are constructed with a  
mini-programming language called High Level Shader Language (HLSL), and can produce a 
wide variety of surfaces and special effects. We will touch a bit on effects and how they work 
in more detail in Chapter 5, Tank Battles – A War-Torn Land, but for now, the BasicEffect 
class which is built into XNA contains everything we need for Cube Chaser.

In order to use our BasicEffect, we need to specify a few parameters that instruct it how 
it should view the 3D scene and what to do with the vertices and triangles we give it.

First, we set VertexColorEnabled to true, since we are going to rely on the colors we 
passed into our FloorTile() method to create the checkerboard effect for the floor.

Next, we need to specify three matrices for the effect. The first of these, the World matrix, 
we set to Matrix.Identity. This special matrix is similar to multiplying a number by one. 
You get the same original number as the result. The World matrix allows us to transform 
everything we are drawing with the effect. Because we specified the absolute coordinates 
we want for our floor tiles when we created them, we do not want to transform them with 
the World matrix. We set the View and Projection matrices equal to the View and Projection 
matrices that our Camera class has calculated for us.

Any given effect can contain multiple techniques, each potentially completely unrelated to 
the other techniques in the effect file. In the case of the BasicEffect, we are using the 
default technique.

Each technique can additionally be composed of multiple passes. Each pass runs sequentially, 
building up the final image as its particular shader effects are applied. The default technique 
for the BasicEffect class uses a single pass, but as written, our code could support more 
advanced techniques that iterate over multiple passes.

When the pass begins, we call the Apply() method to signal that the pass has begun. Next, 
we tell the graphics device about the vertex buffer we wish to use to draw our maze floor 
using the SetVertexBuffer() method.

Finally, we call DrawPrimitives() to cause the graphics device to interpret the vertex 
buffer and output the triangles it contains to the graphics card. We do this by specifying that 
we are drawing a list of triangles (PrimitiveType.TriangleList), beginning with the 
first element in the vertex buffer (element 0), and drawing a number of triangles equal to the 
number of vertices divided by three (because each triangle is composed of three vertices).
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In order to utilize the Draw() method that we have added to the Maze class, we need to  
set up a few items in the CubeChaserGame class, including the camera we will be using,  
an instance of the maze itself, and the BasicEffect object that we will pass to the  
Draw() method.

When the camera is initialized during the Initialize() method, we pass it a location 
(0.5f, 0.5f, 0.5f) that will place the camera directly in the center of the upper-left 
corner of the maze, one half of a unit off the floor.

The second parameter for the camera constructor is the beginning rotation angle for the 
camera, which we specify as 0. Recall that our camera code specifies that without any 
rotation, our camera will be facing along the positive Z axis, looking along the side of the 
maze, which grows ahead and to the left of us.

The remaining camera parameters specify the aspect ratio (which we simply pass along from 
GraphicsDevice.Viewport.AspectRatio, which will correspond to the aspect ratio 
of the window or full screen resolution we are using), and the near and far clipping plane 
distances. Here, we specify that anything closer to the camera than 0.05f units will not be 
drawn, and the maximum distance we will consider for drawing anything is 100f units. Since 
our entire maze will be contained within a 20x20 unit area, this means we could theoretically 
see the entire thing from any point in the maze.

Moving around
Now that we have a floor to walk on, we need to implement the code necessary to allow the 
player to move about within our environment. In order to facilitate this, we will first expand 
on our Camera class to add a couple of new helper methods.

Time for action – expanding the Camera
1. In the Helper Methods region of the Camera class, add the following  

new methods:
public Vector3 PreviewMove(float scale)
{
    Matrix rotate = Matrix.CreateRotationY(rotation);
    Vector3 forward = new Vector3(0, 0, scale);
    forward = Vector3.Transform(forward, rotate);
    return (position + forward);
}

public void MoveForward(float scale)
{
    MoveTo(PreviewMove(scale), rotation);
}
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What just happened?
PreviewMove()accepts a distance we wish to move along the direction that the camera 
is facing. It then calculates a matrix which is used to rotate a vector by the current camera 
rotation. Recall that an unrotated camera will always be pointing in the 0, 0, 1 direction, so 
we replace the 1 in this vector with the distance we wish to move, creating vector forward. 
We then apply the rotate transform to this vector, resulting in a vector that points in the 
direction the camera is actually facing, with a length equal to the distance we want to move 
the camera.

The PreviewMove() method is used by the MoveForward() method to get this vector and 
call MoveTo() to actually move the camera. The reason we split the movement process into 
two different methods is that we will need to check for collisions with walls later on, and we 
want to be able to see where we will end up if we allow the player to move forward without 
actually executing the move. Since we have built that ability into PreviewMove(), there is 
no reason to duplicate the code in the MoveForward() method.

Of course, now that our camera supports moving around the scene, we need to allow the 
player to actually do so.

Time for action – letting the player move
1. Add the following fields to the declarations area of the CubeChaserGame class:

float moveScale = 1.5f;
float rotateScale = MathHelper.PiOver2;

2. Add the following to the Update() method of the CubeChaserGame class:
float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
KeyboardState keyState = Keyboard.GetState();
float moveAmount = 0;
            
if (keyState.IsKeyDown(Keys.Right))
{
    camera.Rotation = MathHelper.WrapAngle(
        camera.Rotation - (rotateScale * elapsed));
}

if (keyState.IsKeyDown(Keys.Left))
{
    camera.Rotation = MathHelper.WrapAngle(
        camera.Rotation + (rotateScale * elapsed));
}

if (keyState.IsKeyDown(Keys.Up))
{
    //camera.MoveForward(moveScale * elapsed);
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    moveAmount = moveScale * elapsed;
}

if (keyState.IsKeyDown(Keys.Down))
{
    //camera.MoveForward(-moveScale * elapsed);
    moveAmount = -moveScale * elapsed;
}

if (moveAmount != 0)
{
    Vector3 newLocation = camera.PreviewMove(moveAmount);
    bool moveOk = true;

    if (newLocation.X < 0 || newLocation.X > Maze.mazeWidth)
        moveOk = false;
    if (newLocation.Z < 0 || newLocation.Z > Maze.mazeHeight)
        moveOk = false;
    
    if (moveOk)
        camera.MoveForward(moveAmount);
}

3. Execute the Cube Chaser game and use the arrow keys to move around:
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What just happened?
As with the movement of the player's square in Speller, we use the gameTime parameter 
that gets passed to Update() to scale everything we do in relation to the time that has 
elapsed since the last call time the game was updated.

We can directly rotate the camera in response to player input because we never need to 
check to see if rotation causes us a problem. The player is free to spin in any place they 
want without worrying about walls or the boundaries of the maze. In order to do this, we 
use the MathHelper.WrapAngle() method to constrain the newly modified angle (based 
on the current angle and the speed at which the camera will rotate) to one full revolution. 
WrapAngle() will handle going past 360 degrees or below 0 degrees for us and return a 
value that traverses this boundary without us having to do the calculations ourselves.

Movement requires a bit more work, as we do not want the player to leave the area of the 
maze. In this case, we use the camera's PreviewMove() method to predict where the 
camera will be if we allow the movement the player is requesting. For now, we will simply 
check to make sure the new movement bounds are within the maze area. If everything 
checks out ok, we go ahead and execute the move.

Summary
Cube Chaser is well under way! Even though it currently has no walls, we can draw the 
beginnings of our 3D world and move around using an FPS style camera. We have looked 
at the 3D coordinate system and the various components of the camera used to view the 
world. We now have the basic mechanism in place that we will build upon to limit the 
player's ability to move through walls once we have constructed them.

In the next chapter, we will continue to build the Cube Chaser game, creating the maze walls 
and detecting player-wall collisions.
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3
Cube Chaser – It's A-Mazing!

Now that we have constructed a floor that we can render in 3D and walk 
around on, we need to generate the maze of walls that will be placed onto the 
floor and prevent the player from walking through them.

In this chapter, we will:

 � Randomly generate a maze using the depth-first search method

 � Use the generated maze layout to construct walls in our 3D world

 � Implement player-wall collisions

Maze generation
Before we can generate the walls of our maze, we need to determine how we are going to 
represent the maze in memory. In order to do this, we need to decide what kind of maze we 
will be creating.

In some games, we may want to construct the maze by hollowing corridors and rooms out 
of a solid block, so that each floor tile would either be open or impassable. In the case of 
Cube Chaser, we want all of the floor areas of the maze to be accessible, with walls between 
the floor tiles providing the challenge to navigate the maze. Instead of open and closed floor 
tiles, each floor tile will have four walls, each of which can be passable or impassable. We will 
define a class that describes an individual cell of the maze along with the walls it contains.
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Time for action – defining a MazeCell
1. Right-click on the Cube Chaser project in Solution Explorer and select Add | Class….

2. Name the new class MazeCell and click OK.

3. Add the following declarations to the MazeCell class:
public bool[] Walls = new bool[4] {true, true, true, true};
public bool Visited = false;

What just happened?
The definition of each maze cell is very straightforward. We have an array of Boolean values 
for the walls of the cell. A true value indicates that a wall exists in that position, and a 
false value indicates that the wall is an opening. In the declaration of the array, we have 
provided initialization values, specifying that a newly-generated cell will have walls on all 
four sides. We will arbitrarily decide that the first entry in the array (index 0) is the north wall 
of the cell. From there, we will proceed clockwise around the cell for the remaining walls (1 
is equal to east, 2 is equal to south, and 3 is equal to west) as shown in the following image:

The Visited value, which is initially set to false for a newly-created MazeCell, will be 
used during the generation of the maze to control how walls are removed from the map 
to generate the final layout. This represents the maze generation algorithm, which we will 
discuss shortly, visiting the cell, not the player.

Now that we can describe a maze cell, we need to build a class to contain the maze itself.
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Time for action – generating the Maze class
1. In the Maze.cs class file, add the following to the Fields region:

private Random rand = new Random();
public MazeCell[,] MazeCells = new MazeCell[mazeWidth, 
mazeHeight];

2. In the Maze class constructor, add the following after the call to 
BuildFloorBuffer():
for (int x = 0; x < mazeWidth; x++)
    for (int z = 0; z < mazeHeight; z++)
    {
        MazeCells[x, z] = new MazeCell();
    }

GenerateMaze();

3. Add a new region to the Maze class:
#region Maze Generation
#endregion

4. Add the GenerateMaze() method to the Maze Generation region of the  
Maze class:
public void GenerateMaze()
{
    for (int x = 0; x < mazeWidth; x++)
        for (int z = 0; z < mazeHeight; z++)
    {
        MazeCells[x, z].Walls[0] = true;
        MazeCells[x, z].Walls[1] = true;
        MazeCells[x, z].Walls[2] = true;
        MazeCells[x, z].Walls[3] = true;
        MazeCells[x, z].Visited = false;
    }

    MazeCells[0,0].Visited = true;
    EvaluateCell(new Vector2(0, 0));
}

5. Add the EvaluateCell() method to the Maze Generation region of the Maze 
class, as shown in the following code:
private void EvaluateCell(Vector2 cell)
{
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    List<int> neighborCells = new List<int>();
    neighborCells.Add(0);
    neighborCells.Add(1);
    neighborCells.Add(2);
    neighborCells.Add(3);

    while (neighborCells.Count > 0)
    {
        int pick = rand.Next(0, neighborCells.Count);
        int selectedNeighbor = neighborCells[pick];
        neighborCells.RemoveAt(pick);

        Vector2 neighbor = cell;

        switch (selectedNeighbor)
        {
            case 0: neighbor += new Vector2(0, -1);
                break;
            case 1: neighbor += new Vector2(1, 0);
                break;
            case 2: neighbor += new Vector2(0, 1);
                break;
            case 3: neighbor += new Vector2(-1, 0);
                break;
        }

        if (
            (neighbor.X >= 0) && 
            (neighbor.X < mazeWidth) &&
            (neighbor.Y >= 0) &&
            (neighbor.Y <mazeHeight)
            ) 
        {
            if (!MazeCells[(int)neighbor.X, (int)neighbor.Y].
Visited) 
            {
                MazeCells[
                    (int) neighbor.X, 
                    (int) neighbor.Y].Visited = true;
                MazeCells[
                    (int)cell.X, 
                    (int)cell.Y].Walls[selectedNeighbor] = false;
                MazeCells[
                    (int)neighbor.X, 
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                    (int)neighbor.Y].Walls[
                        (selectedNeighbor + 2) % 4] = false;
                EvaluateCell(neighbor);
            }
        }
                
    }
}

What just happened?
The information we need to construct the 3D walls of the maze is stored in the MazeCells 
array, a two-dimensional array of MazeCell objects. By modifying the constructor, we can 
fill this array with MazeCell objects when an instance of the Maze class is created, ensuring 
we always have cells in a known starting state to work with.

When we call the GenerateMaze() method, it begins by setting all of the walls of the maze to 
true, meaning that each cell of the maze is completely closed off from all of the other cells in 
the maze. While the default setting for a newly-created MazeCell is to have walls on all four 
sides, we will be calling GenerateMaze() again to build a new maze when the player locates 
the cube, so we need to initialize the walls to a known state before we begin generation, 
instead of assuming that the walls will always be in the state we need them to be in.

We then select the first cell of the maze (0, 0), which will correspond to the north-west 
corner of our maze in the 3D world, and call the recursive EvaluateCell() method on it. It 
is EvaluateCell() that does the real work of generating the maze, following a randomized 
depth-first search pattern.

Depth-first is a search algorithm that can be used to locate nodes in a tree or graph 
structure. When searching using the depth-first algorithm, a node is selected as the 
beginning point for the search. One of the nodes connected to this point is selected to 
explore, and the algorithm proceeds along this branch of the structure until it reaches a dead 
end. At that point, the algorithm returns to the most recent node it has visited and picks a 
new branch to explore.

Our maze generation technique is a modification of this search pattern. We select a starting 
node (in our case, the (0, 0) node) and mark the cell as having been visited by our search. 
We then select a random neighbor cell that we have not yet visited. We remove the wall 
between the current cell and that neighbor. We then make that neighbor the current cell and 
repeat the process until we have run out of neighboring cells to visit.

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Cube Chaser – It’s A-Mazing!

[ 58 ]

EvaluateCell() implements this by starting off with a list of all four neighbors for the cell 
being evaluated. It then randomly selects one of these neighbors from the list and removes 
the entry from the list. In our code, we have assigned a number to each of the four directions 
a neighbor can lie in. A 0 represents the neighbor above, 1 is to the right, 2 is below, and 3 is 
to the left of the current node in relation to the layout of the 2D array. We can also think of 
this as north, east, south, and west for 0, 1, 2, and 3 respectively. This is the same order that 
we designated for the walls in a MazeCell object.

After selecting the appropriate neighbor and locating it in the array, we check to make sure 
that we are still within the array bounds and that we have not yet visited the cell. If we have, 
we simply do nothing.

Because our walls are one-sided, when we remove a wall from a cell, we also need to remove 
the corresponding wall from its neighboring cell, as illustrated in the following image:

If the cell has not been visited, we mark it as visited and then set the two wall's values 
between the current cell and the neighbor cell to false. Recall that each cell has four walls, 
so even though the walls of two neighbor cells are logically shared, they exist on both 
sides of the boundary and we need to set both of them to false. For the current cell, this 
is straightforward. We simply use the neighbor direction and modify the corresponding 
Walls[] entry. For the neighbor cell, we need to modify the opposite wall. For example, if 
our neighbor value is 1, meaning the neighbor is to the east of the current cell, we need to 
modify the west wall of the neighbor cell.
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We could accomplish this with a lookup table, where 0 matches 2, 1 matches 3, and so on. 
Alternatively (and the way we have implemented it here), we know that for 0 and 1 the 
opposing values are always simply two higher than the current value. If we were to wrap 
around from 3 to 0, the same would be true for values of 2 and 3. We can accomplish this by 
using the modulo (%) operator, specifying an upper limit of 4. Hence, (2 + 2) % 4 will result in 
0, and (3 + 2) % 4 will result in 1.

As we can see in the previous image, which is a 2D rendering of a maze generated by the 
depth-first maze building code, there are several advantages to the way we have generated 
the maze.

First, the maze is completely enclosed around the outer edges. This is because each edge 
node does not have a neighbor cell outside the map, so there is never a situation where 
those walls will be removed by the EvaluateCell() method.

Second, every node in the maze is accessible via some route. There are no closed off areas, 
though you may have to travel a distance out of your way to reach any given location. This 
means that, when it is time to place the cube, we can place it anywhere on the map and not 
have to worry about the player being able to reach the cube.

Finally, while the maze contains a number of small room-like areas, none of them are large 
enough to create wide-open spaces in the maze.
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Constructing the walls
Unfortunately, we still have no visual representation of the maze we have generated. If we 
execute our game at this point, the Maze class constructor will generate the maze, but we do 
not yet have triangles in 3D to represent the walls that our algorithm has laid out for us.

We will build upon the technique we used to build the floor to create the triangles needed to 
represent the walls of the maze.

Time for action – building walls
1. Add the following to the declarations area of the Maze class:

VertexBuffer wallBuffer;
Vector3[] wallPoints = new Vector3[8];
Color[] wallColors = new Color[4] { 
    Color.Red, Color.Orange, Color.Red, Color.Orange };

2. Add the following code to the end of the constructor in the Maze class to initialize 
the wallPoints array and build the walls:
wallPoints[0] = new Vector3(0, 1, 0);
wallPoints[1] = new Vector3(0, 1, 1);
wallPoints[2] = new Vector3(0, 0, 0);
wallPoints[3] = new Vector3(0, 0, 1);
wallPoints[4] = new Vector3(1, 1, 0);
wallPoints[5] = new Vector3(1, 1, 1);
wallPoints[6] = new Vector3(1, 0, 0);
wallPoints[7] = new Vector3(1, 0, 1);

BuildWallBuffer();

3. Add the BuildWallBuffer() method to the Maze class as follows:
#region Walls
private void BuildWallBuffer()
{
    List<VertexPositionColor> wallVertexList = new 
List<VertexPositionColor>();

    for (int x = 0; x < mazeWidth; x++)
    {
        for (int z = 0; z < mazeHeight; z++)
        {
            foreach (VertexPositionColor vertex 
                in BuildMazeWall(x, z))
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            {
                wallVertexList.Add(vertex);
            }
        }
    }

    wallBuffer = new VertexBuffer(
        device, 
        VertexPositionColor.VertexDeclaration, 
        wallVertexList.Count, 
        BufferUsage.WriteOnly);

    wallBuffer.SetData<VertexPositionColor>(
        wallVertexList.ToArray());
}
#endregion

4. Add the BuildMazeWall() method to the Walls region of the Maze class, shown 
as follows:
private List<VertexPositionColor> BuildMazeWall(int x, int z)
{
    List<VertexPositionColor> triangles = new 
        List<VertexPositionColor>();

    if (MazeCells[x, z].Walls[0])
    {
        triangles.Add(CalcPoint(0, x, z, wallColors[0]));
        triangles.Add(CalcPoint(4, x, z, wallColors[0]));
        triangles.Add(CalcPoint(2, x, z, wallColors[0]));
        triangles.Add(CalcPoint(4, x, z, wallColors[0]));
        triangles.Add(CalcPoint(6, x, z, wallColors[0]));
        triangles.Add(CalcPoint(2, x, z, wallColors[0]));
    }

    if (MazeCells[x, z].Walls[1])
    {
        triangles.Add(CalcPoint(4, x, z, wallColors[1]));
        triangles.Add(CalcPoint(5, x, z, wallColors[1]));
        triangles.Add(CalcPoint(6, x, z, wallColors[1]));
        triangles.Add(CalcPoint(5, x, z, wallColors[1]));
        triangles.Add(CalcPoint(7, x, z, wallColors[1]));
        triangles.Add(CalcPoint(6, x, z, wallColors[1]));
    }
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    if (MazeCells[x, z].Walls[2])
    {
        triangles.Add(CalcPoint(5, x, z, wallColors[2]));
        triangles.Add(CalcPoint(1, x, z, wallColors[2]));
        triangles.Add(CalcPoint(7, x, z, wallColors[2]));
        triangles.Add(CalcPoint(1, x, z, wallColors[2]));
        triangles.Add(CalcPoint(3, x, z, wallColors[2]));
        triangles.Add(CalcPoint(7, x, z, wallColors[2]));
    }

    if (MazeCells[x, z].Walls[3])
    {
        triangles.Add(CalcPoint(1, x, z, wallColors[3]));
        triangles.Add(CalcPoint(0, x, z, wallColors[3]));
        triangles.Add(CalcPoint(3, x, z, wallColors[3]));
        triangles.Add(CalcPoint(0, x, z, wallColors[3]));
        triangles.Add(CalcPoint(2, x, z, wallColors[3]));
        triangles.Add(CalcPoint(3, x, z, wallColors[3]));
    }

    return triangles;
}

5. Add the calcPoint() method to the Walls region of the Maze class:
private VertexPositionColor CalcPoint(
    int wallPoint, int xOffset, int zOffset, Color color)
{            
    return new VertexPositionColor(
        wallPoints[wallPoint] + new Vector3(xOffset, 0, zOffset),
        color);
}

What just happened?
We begin by establishing a list of points that define a standard block inside our game world. 
We need eight points to define the corners of a cube, and we store these in the wallPoints 
array that we declared previously. We will create walls for the maze by using these eight 
points to create triangles and then offsetting their locations to move them to the appropriate 
position within the maze, as shown in the following diagram:
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In this diagram, we can see that any wall in the maze can be defined using four of the eight 
points from a cube. When we define the wallPoints array, we fill in the coordinates 
corresponding to each of the points in the same order as the labeled points in the preceding 
illustration. The north wall will use points 0, 2, 4, and 6, for example.

When we construct the triangles that make up our walls, it is important to remember that 
we need to wind the triangles in a clockwise direction, as we would see them standing inside 
the cube.

For this reason, the north wall of the cube, comprised of point 0, 2, 4, and 6, are defined  
in the BuildMazeWall() method in the order 0, 4, 2, and 4, 6, 2. The reverse of this  
point is also true. An observer standing outside the cube would not see the wall we just  
built at all because the vertices of the triangles would be in counter-clockwise order from 
that vantage point.

This is the reason we define walls on all four sides of a cell instead of simply defining walls 
along two adjacent directions. Our walls are only visible from one direction, so we need to 
create wall triangles on both sides of the boundary between two cells when a wall exists at 
that location.

BuildWallBuffer() loops through each of the cells in our maze and calls 
BuildMazeWall() in order to accumulate a list of triangles that are then stored in the 
wallBuffer, just like we did when building the floor of the maze.

The CalcPoint() method does the work of looking up the points that will comprise  
each wall segment and building the actual VertexPositionColor element that will be 
added to wallBuffer. Again, just like building the floor, we use fixed points relative to  
each other as the basis for our vertices and offset them by the location of the wall segment 
within the maze.
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Time for action – drawing the walls
1. In the Draw() method of the Maze class, after the existing call to device.

DrawPrimitives(), add the following lines of code:
device.SetVertexBuffer(wallBuffer);
device.DrawPrimitives(
    PrimitiveType.TriangleList, 
    0, 
    wallBuffer.VertexCount / 3);

2. Execute your game and wander around in the maze:

What just happened?
Since the result of all of our wall generation code is to create another vertex buffer, all we 
need to do to draw the walls is to pass the buffer along to the graphics device, just like we 
did with the floor buffer.

You will notice, however, that you can walk right through all of the walls in the maze, which 
makes finding your way around a bit less than challenging.
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Solid walls
Giving our maze walls the ability to stop players from walking through them can be 
accomplished in several different ways. The simplest, brute force method would be to create 
a list of the bounding boxes (cubes in 3D space that represent the wall edges) for all of the 
walls in the maze and check to see that our camera location never crosses into one of these 
solid areas.

For a small map like we are using here, this method would work, but as our map grows larger 
we would end up making a lot more bounding box checks than we would ever need. In fact, 
we really only ever need to check four boxes – the four surrounding our current location – to 
determine if we have run into a wall.

Time for action – bouncing off the walls
1. Add the BuildBoundingBox() method to the Walls region of the Maze  

class as follows:
private BoundingBox BuildBoundingBox(
    int x, 
    int z, 
    int point1, 
    int point2)
{
    BoundingBox thisBox = new BoundingBox(
        wallPoints[point1], 
        wallPoints[point2]);
    thisBox.Min.X += x;
    thisBox.Min.Z += z;
    thisBox.Max.X += x;
    thisBox.Max.Z += z;

    thisBox.Min.X -= 0.1f;
    thisBox.Min.Z -= 0.1f;
    thisBox.Max.X += 0.1f;
    thisBox.Max.Z += 0.1f;

    return thisBox;
}

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Cube Chaser – It’s A-Mazing!

[ 66 ]

2. Add the GetBoundsForCell() method to the Walls region of the Maze class:
public List<BoundingBox> GetBoundsForCell(int x, int z)
{
    List<BoundingBox> boxes = new List<BoundingBox>();

    if (MazeCells[x, z].Walls[0])
        boxes.Add(BuildBoundingBox(x, z, 2, 4));

    if (MazeCells[x, z].Walls[1])
        boxes.Add(BuildBoundingBox(x, z, 6, 5));

    if (MazeCells[x, z].Walls[2])
        boxes.Add(BuildBoundingBox(x, z, 3, 5));

    if (MazeCells[x, z].Walls[3])
        boxes.Add(BuildBoundingBox(x, z, 2, 1));

    return boxes;
}

3. In the Update() method of the CubeChaserGame class, add the following code 
snippet right before the line that reads if (moveOk), after the X and Z components 
of newLocation have been checked for residing within the size of the maze:
foreach (BoundingBox box in 
    maze.GetBoundsForCell((int)newLocation.X, (int)newLocation.Z))
{
    if (box.Contains(newLocation) == ContainmentType.Contains)
        moveOk = false;
}

4. Execute your game and wander around in the maze. Notice that you are no longer 
able to walk through the walls.

What just happened?
The BuildBoundingBox() helper method accepts a location and two points from the 
wallPoints array. It initially constructs a box using the two given points, constructing the 
basic boundary.

Using the location passed into the method by the x and z variables, the bounding box is 
offset from the world origin in the same way that we moved the triangle vertices that make 
up the visible walls. We add the location to the base values for the points to get the offset 
wall locations.
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Finally, a small padding factor is added to each end of the X and Z components of the box, 
pushing the boundary out away from the wall itself by 0.1f units. Recall that we have a near 
clipping plane defined in our Camera of 0.05f, so if we allow the camera too close to the 
wall, we will be stopped by the bounding box, but the wall will not be drawn to the screen 
because it will be inside the near clipping plane.

When the time comes to actually check for wall collisions, we call a second method, 
GetBoundsForCell(), which uses BuildBoundingBox() up to four times, depending on 
which of the walls exist for the location passed into the method. In the CubeChaserGame.
Update() method, we call GetBoundsForCell() and check against the bounding boxes it 
returns, to decide if we should disallow the movement the player is trying to make.

Have a go hero
The maze generated by the DFS system is a classic maze, with tightly restrictive corridors and 
dead ends aplenty. Try opening up the maze design by removing random walls after the maze 
has been generated but before the 3D geometry has been built. This will create rooms within 
the maze and allow for more open views and multiple paths through the labyrinth. Wander 
the maze and note the larger open spaces and determine if you wish to remove more walls to 
create larger or more frequent open areas.

Summary
We have generated a random maze and translated its walls into 3D geometry. In addition, we 
have added the ability for Cube Chaser to enforce the solidity of the walls of the maze.

In the next chapter, we will implement the cube the player is chasing, allow for tracking the 
player's score, and generate new cubes as the player collects them.
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4
Cube Chaser – Finding Your Way

We are nearing completion of the Cube Chaser game, with just a few more 
features to complete to make it playable. Our goal now is to implement the 
cube that the player is chasing.

In this chapter, we will:

 � Randomly place the goal cube within the maze

 � Draw the cube, making it rotate slowly in place while the player searches for it

 � Detect player-to-cube collisions to determine when the player has scored points

In addition to completing the Cube Chaser game, we will take a more in-depth look at the 
matrices we use to manipulate objects in 3D.

The cube
With our maze in place, we can now turn our attention to creating the cube that the player 
will be chasing in Cube Chaser. We will continue to use triangles built by hand to represent 
our cube, but this time instead of giving the triangles solid colors, we will see how to map a 
texture image onto the faces of the cube.

A texture is a two-dimensional bitmap image that is projected onto a 3D object in order to 
give the object the desired appearance. By using a texture instead of a vertex color, we can 
give the cube surface details. In the case of our cube, we will use a circuit board image, but 
we could just as easily apply a photograph or any other type of image as the cube's texture.

In order to create the cube, we will add the texture to our game's content project and build 
the cube's vertices.
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Time for action – placing the cube
1. From the book's companion website, download the 7089_04_GRAPHICSPACK.ZIP 

file and extract the circuitboard.png file to a temporary location.

2. Back in Visual Studio, right-click on the content project (listed as Cube 
ChaserContent (Content)) in Solution Explorer and select Add | Existing Item….

3. Browse to the circuitboard.png file you just extracted, select it, and click Add:

4. Add a new class file called Cube.cs to the Cube Chaser project.

5. Add the following using directives to the top of the class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

6. Add the following fields to your new Cube class:
#region Fields
private GraphicsDevice device;
private Texture2D texture;

private Vector3 location;

private VertexBuffer cubeVertexBuffer;
private List<VertexPositionTexture> vertices = new 
    List<VertexPositionTexture>();
#endregion
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7. Add a constructor to the Cube class:
#region Constructor
public Cube(
    GraphicsDevice graphicsDevice, 
    Vector3 playerLocation, 
    float minDistance, 
    Texture2D texture)
{
    device=graphicsDevice;
    this.texture = texture;

    PositionCube(playerLocation, minDistance);

    // Create the cube's vertical faces
    BuildFace(new Vector3(0, 0, 0), new Vector3(0, 1, 1));
    BuildFace(new Vector3(0, 0, 1), new Vector3(1, 1, 1));
    BuildFace(new Vector3(1, 0, 1), new Vector3(1, 1, 0));
    BuildFace(new Vector3(1, 0, 0), new Vector3(0, 1, 0));

    // Create the cube's horizontal faces
    BuildFaceHorizontal(new Vector3(0, 1, 0), new Vector3(1, 1, 
1)); 
    BuildFaceHorizontal(new Vector3(0, 0, 1), new Vector3(1, 0, 
0)); 

    cubeVertexBuffer = new VertexBuffer(
        device, 
        VertexPositionTexture.VertexDeclaration, 
        vertices.Count, 
        BufferUsage.WriteOnly);

    cubeVertexBuffer.SetData<VertexPositionTexture>(
        vertices.ToArray());
}
#endregion

8. Add the BuildFace() helper method to the Cube class as follows:
#region Helper Methods
private void BuildFace(Vector3 p1, Vector3 p2)
{
    vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 1, 0));
    vertices.Add(BuildVertex(p1.X, p2.Y, p1.Z, 1, 1));
    vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 0, 1));
    vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 0, 1));
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    vertices.Add(BuildVertex(p2.X, p1.Y, p2.Z, 0, 0));
    vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 1, 0));
}
#endregion

9. Add BuildFaceHorizontal() to the Helper Methods region of the Cube class, 
shown as follows:
private void BuildFaceHorizontal(Vector3 p1, Vector3 p2)
{
    vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 0, 1));
    vertices.Add(BuildVertex(p2.X, p1.Y, p1.Z, 1, 1));
    vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 1, 0));
    vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 0, 1));
    vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 1, 0));
    vertices.Add(BuildVertex(p1.X, p1.Y, p2.Z, 0, 0));
}

10. Add the BuildVertex() method to the Helper Methods region of the Cube class:
private VertexPositionTexture BuildVertex(
    float x, 
    float y, 
    float z, 
    float u, 
    float v)
{
        return new VertexPositionTexture(
        new Vector3(x, y, z),
        new Vector2(u,v));
}

11. Add a temporary PositionCube() method to the Helper Methods region of the 
Cube class:
public void PositionCube(
    Vector3 playerLocation, 
    float minDistance)
{
     location = new Vector3(1.5f, 0.5f, 1.5f);
}

12. Add the Draw() method to the Cube class:
#region Draw
public void Draw(Camera camera, BasicEffect effect)
{
    effect.VertexColorEnabled = false;
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    effect.TextureEnabled = true;
    effect.Texture = texture;

    Matrix center = Matrix.CreateTranslation(
        new Vector3(-0.5f, -0.5f, -0.5f));
    Matrix scale = Matrix.CreateScale(0.5f);
    Matrix translate = Matrix.CreateTranslation(location);

    effect.World = center * scale * translate;
    effect.View = camera.View;
    effect.Projection = camera.Projection;

    foreach (EffectPass pass in effect.CurrentTechnique.Passes)
    {
        pass.Apply();
        device.SetVertexBuffer(cubeVertexBuffer);
        device.DrawPrimitives(
            PrimitiveType.TriangleList, 
            0, 
            cubeVertexBuffer.VertexCount / 3);
    }
}
#endregion

13. In the fields area of the CubeChaserGame class, add a declaration for an instance of 
the Cube class as follows:
private Cube cube;

14. In the LoadContent()method of the CubeChaserGame class, initialize this 
instance of Cube:
cube = new Cube(
    this.GraphicsDevice, 
    camera.Position, 
    10f, 
    Content.Load<Texture2D>("circuitboard"));

15. Modify the Draw() method of the CubeChaserGame class by commenting out the 
line that draws the maze by placing two slashes in front of it:
//maze.Draw(camera, effect);

16. Right after this commented out line, add a line to draw the cube:
cube.Draw(camera, effect);
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17. Execute your game and turn slightly left to face the cube. Note that you may not be 
able to move directly to the cube, as even though we are not drawing the walls of 
the maze, they are still there for collision purposes:

What just happened? 
We have covered quite a bit of ground with the previous code, so let's break it down  
step-by-step.

In steps 1 through 3, we are adding a new texture image to the content project of our game. 
We used both textures and fonts as content objects in Chapter 1, Introduction to XNA, but 
have not found it necessary to revisit them until now because we have been drawing with 
solid colors for the walls and floor of our maze.

Next, in steps 4 through 6, we create the basic cube class, adding the declarations we need 
to be able to display the cube. We will actually add two more items to this list in the next 
section, but for now, we need to cache the graphics device for our game and store the 
texture we will use to draw the faces of the cube.

Additionally, we have a location within the world that we wish the cube to be placed, as well 
as the now familiar list of vertices and a vertex buffer to hold them, meaning we know that 
we will be drawing with triangles again.
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While creating the constructor in step 7, we store the GraphicsDevice and Texture2D 
objects that we receive from the caller and call PositionCube(). Glancing down at step 11, 
we can see that, for now, we are simply setting the location of the cube to a hard-coded value 
of (1.5f, 0.5f, 1.5f), meaning that the center of the cube will be in the center of the square at  
1 unit along the positive X and Z axis, and 0.5 units above the floor of the maze, shown  
as follows:

(1, 1, 0)

(0, 1, 1)
(1, 1, 1)

(1, 0, 0)

(0, 0, 0)

(0, 1, 0)

(0, 0, 1) (1, 0, 1)

The constructor then calls BuildFace() four times and BuildFaceHorizontal() twice, 
giving the method's pairs of points on each call. In the previous diagram, we can see that 
these points correspond to the opposite corners of each face of a cube that is positioned 
with one point at the world origin and extending 1 unit along each axis. We only need to 
specify these opposite corners to build the two triangles for our cube faces, because we are 
using a perfect cube and can determine the position of the other vertices needed to build 
the triangle from the components of these points.

For instance, the western face of the previous cube is defined by the points (0, 0, 0) and 
(0, 1, 1). We know that we need the point above the origin, and can calculate it by taking 
the X and Z component of the first point and the Y component of the second. We can 
calculate the final point for the square by taking the X and Z component from the second 
point, and Y from the first. Note that this will work for the vertical faces of the cube, but the 
same would not hold true for the top or bottom of the cube. For this reason, we also have 
buildFaceHorizontal(), which adjusts the previous procedure slightly to account for the 
points being in the same vertical position.

After all of the faces have been built, the vertex buffer itself is populated with these points.

We implement the logic to build faces in steps 9 and 10, building six vertices for each 
face and adding them to the vertices list. In addition to the points with which to build the 
triangles, we are also passing two float values to the BuildVertex() method that are 
either 0 or 1, and correspond to that method's u and v parameters.
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So what are u and v? In step 11, we implement BuildVertex() to build a new type of 
vertex called a VertexPositionTexture. For our walls and floor, we specified a position 
and a color for each vertex. For the cube, we want to place the circuit board texture onto the 
faces of the cube, so we no longer need to specify a color, but need some way to specify how 
the parts of the texture image are mapped onto the faces of the cube.

A texture is simply a two-dimensional image, so we might be tempted to use X and Y 
coordinates to reference the parts of the texture. Because we are working in 3D, however, 
X and Y already have meanings within our coordinate system. Since the texture will not be 
aligned on the X-Y plane, referencing positions on the texture as X-Y coordinates would be 
potentially confusing.

For this reason, coordinates on a texture are referred to with u and v instead of x and y. The 
u coordinate references the horizontal position within the texture, while the v coordinate 
represents the vertical position. Why u and v in particular? Simply because they are the 
letters before x, y, and z!

Another important distinction when mapping textures to 3D objects is we do not reference 
the size of the texture in pixels to determine u/v coordinates. The circuitboard.png 
image we are using for the cube is 512 x 512 pixels in size, but if we were using an image that 
had multiple resolution levels in it (called mipmaps) there might be a 256 x 256 version of 
this texture, a 64 x 64 version, and so on.

Mipmaps (or MIP maps)
When using large textures in 3D, on-the-fly sampling of these textures by the 
graphics card can produce poor results as objects get further and further away 
from the viewer. Mipmaps help resolve this problem by pre-building lower 
detail textures with slower scaling algorithms that produce better results. If 
you want to try this with the cube, select the circuitboard.png file in 
Solution Explorer, click on the little triangle next to Content Processor in the 
properties pane, and change Generate Mipmaps from false to true. Rerun 
your game and notice the smoother appearance of the cube.

To allow for these multiple texture sizes, the u-v coordinates range from 0, 0 (upper-left 
corner of the texture) to 1, and 1 (lower-right corner of the texture). This means that a u-v 
coordinate of (0.5, 0.5) would be halfway through the texture, or at (256, 256) in the case of 
our circuit board.
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When we construct the previous faces, we are specifying that the first point we pass into  
the BuildFace() method is the lower-left corner of the face, while the second point is  
the upper-right corner, relative to the way the texture should be mapped onto the face. 
Looking at the first triangle created for the face, we see that the first vertex has u-v 
coordinates of (0, 1), or the lower-left corner of the texture. The second vertex, located 
directly above the first, has u-v coordinates of (0, 0) – the upper-left corner of the texture. 
Finally, the last vertex of the triangle corresponds to the upper-right corner of the texture, 
and has u-v coordinates of (1, 0).

In step 12, it is finally time to draw the cube to the screen, and most of this code should look 
familiar. We are still drawing with a vertex buffer as we have in the past, but with a couple of 
important changes.

First, since we are going to be using textures instead of colors, we set 
VertexColorEnabled to false and TextureEnabled to true on our BasicEffect 
instance. We then supply the texture we will be drawing to the Effect.

Next, we generate three different matrices. All of these will be combined to form the World 
matrix parameter of the effect instance, but each has a different function.

Remember that we specified the points of our cube relative to the origin point, with one 
corner of the cube at the origin. Any manipulation we make to the vertices in the cube are 
relative to the origin, so we create the center matrix to translate the cube from its default 
location by -0.5f units in each direction. This has the effect of moving it so that the center of 
the cube is at the origin of the 3D world.

Next we use Matrix.CreateScale() to shrink the cube by 50 percent. If we did not resize 
the cube, it would occupy an entire square within our maze and look like it was an oddly-
textured maze wall.

Finally, we build a matrix called location by simply passing the location field to the 
CreateTranslation() method. This will enable us to push our cube out from the origin 
to where it is supposed to be in the world.
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Centering and scaling
Why not just create the cube centered around the origin and at the right 
size in the first place? This is a good point, as it would allow us to skip the 
centering and scaling described previously. We have opted to implement the 
cube as we have in order to illustrate the origin-centric nature of transforms 
and the importance of the order in which matrix operations are performed.

All of these matrices are then applied to effect.World, in the order in which we want 
them to happen. The order is critical. We can build a single matrix that will incorporate all 
of the movement, scaling, and rotation we wish to perform on a set of vertices as long as 
we multiply them in the order in which we want them to happen. In this case, we center the 
cube first, then scale it, and finally move it out to its destination within the world.

The remainder of our drawing code is identical to the code we use to draw the walls and 
floor of the maze, with the exception that we specify the new vertex format during the 
DrawPrimitives() call.

Wrapping up with steps 13 through 16, we make the necessary changes to the 
CubeChaserGame class to draw the cube (and temporarily hide the maze) so we can  
see the results of our efforts.

Rotating the cube
The cube is nice (and if you have enabled mipmaps, it looks pretty good sitting there in the 
middle of nowhere) but we can give it a bit more character by making it rotate slowly while 
waiting for the player to pick it up.

Time for action – rotating the cube
1. Add the following declaration to the Fields region of the Cube class:

private float rotation = 0f;
private float zrotation = 0f;

2. Add an Update() method to the Cube class as follows:
#region Update 
public void Update(GameTime gameTime)
{
    rotation = MathHelper.WrapAngle(rotation + 0.05f);
    zrotation = MathHelper.WrapAngle(zrotation + 0.025f);
}
#endregion
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3. In the Draw() method of the Cube class, add two new items to the list of the 
generated matrices:
Matrix rot = Matrix.CreateRotationY(rotation);
Matrix zrot = Matrix.CreateRotationZ(zrotation);

4. Still in the Draw() method, replace the current line that sets effect.World with 
the following:
effect.World = center * rot * zrot * scale * translate;

5. In the Update() method of the CubeChaserGame class, add the following line 
right before the existing call to base.Update(gameTime):
cube.Update(gameTime);

6. Execute your game and turn to face the cube:

What just happened?
Just like translation and scaling, rotation can be accomplished with a matrix. Here we create 
two different rotations, one to spin the cube around the Y axis, and a second to rotate it 
around the Z axis. By combining these two rotations, we can create a more interesting 
rotation effect than if we simply had the cube spinning around a single axis. We have 
now used matrices for three types of transformation effects, but so far we have not really 
answered the following question: What in the world is a matrix, anyway?
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Matrices – big scary math things?
You knew we could not avoid it forever, right? It is time to talk briefly about matrices and 
matrix math. Don't worry! It is not nearly as scary as it sounds at first.

A matrix is really nothing more than a grid of numbers. Mathematically, a matrix can have 
any number of rows and columns, but in XNA we use 4 by 4 matrices, meaning the matrix 
has four rows of four columns. Each of these columns contains a number. The XNA Matrix 
class defines these values as floats, and assigns them names of M11 through M44 (the 
first number being the row, the second being the column; so M23 is the second row, third 
column). We will also use 1 by 4 matrices, or matrices with one column and four rows. We 
have already used them, in fact, though you may not immediately recognize them as 1 by 4 
matrices because of the way they are declared in our code. More on that in a moment.

We have used the identity matrix before, and it looks like this:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

When we multiply two matrices together, we work across each row of the first matrix, 
multiplying the values in the row by the descending columns of the second matrix and  
then adding all of these values together to get the resulting value in the new matrix.  
That sounds awfully confusing, but the following diagram, which shows a 4 by 4 matrix 
multiplied by a 1 by 4 matrix, should help:

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

*

A

B

C

D

=

M11*A + M12*B + M13*C + M14*D

M21*A + M22*B + M23*C + M24*D

M31*A + M32*B + M33*C + M34*D

M41*A + M42*B + M43*C + M44*D

The shape of the two matrices being multiplied together will determine the shape of the 
resultant matrix. The number of rows in the resultant matrix will match the number of rows 
in the first matrix being multiplied. The number of columns in the resultant matrix will match 
the number of columns in the second matrix of the multiplication. As you can see in the 
previous diagram, the result matrix has four rows (matching the first matrix) and one column 
(matching the second matrix). The second matrix must have the same number of rows as the 
first matrix has columns in order to be valid for multiplication.
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So how does this relate to matrices and vectors in XNA? We represent all of our vertices as 
Vector3s which specify a location in 3D space. This would seem to pose a problem, since 
we want to multiply a 4 by 4 matrix by a 1 by 3 vector. We can resolve this problem by 
pretending there is a fourth component of the Vector3 that has a value of 1. This is how we 
end up with the 1 by 4 matrices we talked about previously.

Now, when we want to multiply a Vector3 by a matrix, we simply need to follow the 
multiplication pattern, summing up all of the results into a final value:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

*

X

Y

Z

1

X

Y

Z

1

( 1*X ) + ( 0*Y ) + ( 0*Z ) + ( 0*1 )

( 0*X ) + ( 1*Y ) + ( 0*Z ) + ( 0*1 )

( 0*X ) + ( 0*Y ) + ( 1*Z ) + ( 0*1 )

( 0*X ) + ( 0*Y ) + ( 0*Z ) + ( 1*1 )

= =

Here we can see that the identity matrix really works just like multiplying a simple number  
by 1. The result you get out of the multiplication is the same as the value you put into  
the multiplication.

The translation matrix
In our code so far, we have used several matrices other than the identity matrix. Let's look at 
a translation matrix. For a translation matrix, the X, Y, and Z components of the translation 
are placed in the fourth column of the matrix, with a 1 filling in the last value. If we wish to 
translate a point 5 units along the X axis, and 3 units along the Z axis, while leaving the Y axis 
unchanged, we would create the matrix as follows:

Matrix.CreateTranslation(5, 0, 3)

The resulting matrix would look as follows:

1 0 0 5

0 1 0 0

0 0 1 3

0 0 0 1
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To apply this matrix as a transformation to a 3D point (the Vector3 of (2, 3, 4) in this case), 
we would follow the pattern and get the following:

1 0 0 5

0 1 0 0

0 0 1 3

0 0 0 1

*

2

3

4

1

7

3

7

1

( 1*2 ) + ( 0*3 ) + ( 0*4 ) + ( 5*1 )

( 0*2 ) + ( 1*3 ) + ( 0*4 ) + ( 0*1 )

( 0*2 ) + ( 0*3 ) + ( 1*4 ) + ( 3*1 )

( 0*2 ) + ( 0*3 ) + ( 0*4 ) + ( 1*1 )

= =

Since translation is a fairly straightforward transformation, we can easily check the math here 
and see that, indeed, moving (2, 3, 4) by (5, 0, 3 ) will result in (7, 3, 7).

Transformations
There are a few terms we have been using that should be clarified 
here. A transformation refers to the altering of the values of a set of 
vertices, and these transformations can be of three different types: 
scaling, rotation, and translation. Scaling is used to alter the overall 
size of the set of vertices, rotation moves the vertices around an axis, 
and translation moves the vertices by a fixed given distance in a  
three-dimensional direction.

The rotation matrix
As we saw previously, in a translation matrix the components of the translation are 
contained in the right-most column of the matrix. When a rotation matrix is created, the 
values in the matrix and where they are placed are determined by the axis the rotation is 
around. You will remember that in our code to rotate the cube, we create a rotation around 
the Y axis to make the cube spin horizontally.

The matrices created by Matrix.CreateRotationX(), Matrix.CreateRotationY(), 
and Matrix.CreateRotationZ() look as follows, where theta (ɵ) is the angle specified 
when the matrix is created:

1 0 0

0

0 cos

0 0 0

0

0

0

1

cos ( )

-sin ( ) ( )

sin ( )

0

0

0

1

cos ( ) sin ( )

cos ( )-sin ( )

0

0

0

1

0

0

0

0

0

1

cos ( ) sin ( )

cos ( )-sin ( )

0

0

1

1

00

0 0

Rotation around X axis Rotation around Y axis Rotation around Z axis

The values for sine and cosine will always be numbers between -1 and 1. Just as with our 
translation points, we can use matrix multiplication to apply these transforms to points 
within our world.
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When we rotate the cube, we first translate it so that the center of the cube is located at the 
world origin point (0, 0, 0) because all rotation is relative to the origin. If we were simply to 
rotate the cube without centering it first, it would end up orbiting around the origin instead 
of spinning in place.

The scale matrix
The final type of matrix we need to look at is also the simplest. A scale matrix simply 
duplicates the same scalar value diagonally down and to the right by three places as shown 
in the following image:

S 0 0 0

0 S 0 0

0 0 S 0

0 0 0 1

We can see right away that the identity matrix is the same as a scaling matrix with the scale 
value set to 1. This makes sense, as scaling something to 1.0 times its size leaves you with an 
object of the same size as you started with.

Combining matrices
One nice feature of matrices, which we have used in the previous code, is that if we multiply 
them together, the resulting matrix contains all of the transformations that the component 
matrices contained.

The order is critical however. When working with simple numbers, multiplication is 
commutative, meaning that the order in which the operations are performed does not 
matter. If we multiply 2 * 5, we get 10. The same is true for 5 * 2.

Matrix multiplication, however, is non-commutative. Matrix A * matrix B gives a different 
result than matrix B * matrix A, as we can see in the following image. Here we are 
multiplying two 2 x 2 matrices following the pattern shown previously. Changing the order 
that two matrices are multiplied in completely changes the result:

5 6

7 8

1 2

3 4

23 34

31 46
* =

1 2

3 4

5 6

7 8

19 22

43 50
* =
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Another way to think of the requirement that matrices be combined in a particular order 
is to imagine that you have driving directions that say to drive 10 miles (translation) and 
then turn left (rotation). If you turn left first and then drive 10 miles, you will end up in a 
completely different place because the order in which you do the operations is critical  
to the outcome.

What does it all mean?
The important point to take away from all of this is that we specify groups of vertices in our 
world using vectors and use transformations, represented by matrices, to position them 
appropriately. Even the view and projection matrices we calculate for our camera are doing 
nothing more than altering the positions of the vertices that are shown on the display. In 
effect, you can think of your display as a fixed point in 3D space, around which the entire 
game world is rotated, scaled, skewed, and otherwise coerced so that what you are intended 
to see falls within the display area of your monitor.

It is also important to note that the cube itself, as we have defined the vertices, is not really 
located at the point we place it in the game world. We have defined a cube that has one 
corner at the origin (0, 0, 0) and the opposite corner at (1, 1, 1). We never compute and 
store a translated version of the cube. It always has the same vertices. Only when the cube 
is drawn do we apply our transformations, in order to move the visual representation of the 
cube into the position we wish for it to appear in.

All of this matrix calculation and applying transformations during every draw cycle may seem 
like an awful lot of work for our game to be performing. Fortunately, modern video cards are 
purpose-built to be very good at working with matrices. While it might take us some time to 
figure out what is going on with our matrices, the video card hardware will make short work 
of them, displaying the results very, very quickly.

Positioning the cube
Now that we have looked at matrix math, let's return to Cube Chaser and position the cube 
somewhere in the maze other than right next to the starting point.

Time for action – randomly positioning the cube
1. Add the following declaration to the Fields region of the Cube class:

private Random rand = new Random();

2. Replace the current PositionCube() method in the Cube class with the following:
public void PositionCube(Vector3 playerLocation, float 
minDistance)
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{
    Vector3 newLocation;

    do
    {
        newLocation = new Vector3(
            rand.Next(0, Maze.mazeWidth) + 0.5f,
            0.5f,
            rand.Next(0, Maze.mazeHeight) + 0.5f);
    }
    while (
        Vector3.Distance(playerLocation, newLocation) < 
minDistance);

    location = newLocation;
}

3. In the Draw() method of the Maze class, add the following to the top of the 
method to make sure we have the correct current settings for our effect, now that 
we are also using textures:
effect.TextureEnabled = false;

4. In the Draw() method of the CubeChaserGame class, uncomment the line that 
draws the maze by removing the two slashes (//) from the front of the line.

5. Execute the game and search the maze for the cube. Note that if you have 
implemented the random removal of some of the walls from the maze to create 
rooms, finding the cube will be much easier than in the fully restricted maze:
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What just happened?
When generating a position for the cube, we generate random X and Z coordinates, and 
add 0.5f to them (to elevate the cube to the center of the square it is located in). We keep 
generating coordinates until the cube is at a reasonable distance away from the player's 
current position, as determined by the minDistance parameter, so that the cube cannot 
appear right on top of the player.

Also note that we needed to go back and update the Maze class to turn off 
TextureEnabled for our effect. If we do not do this, we will get an error from Visual 
Studio after the first frame is drawn, saying that the vertex definition we are using does not 
contain all of the necessary elements. This is because our effect, along with its parameters, 
persists between frames. When we started using textures to draw the cube, we enabled 
textures on the effect. Since the Maze class uses VertexPositionColor as its vertex 
declaration, it does not contain the texture coordinates that the effect expects to find when 
TextureEnabled is true.

Catching the cube
We need to implement the ability to actually collect the cube by running into it. We could 
accomplish this with a bounding box the same way we check for walls, but since our cube 
will be spinning in mid-air, a bounding sphere would be a more appropriate shape.

Time for action – catching the cube
1. Add the following declaration to the Fields region of the Cube class:

private const float collisionRadius = 0.25f;

2. Add a Properties region of the Cube class:
#region Properties
public BoundingSphere Bounds
{
    get
    {
        return new BoundingSphere(location, collisionRadius);
    }
}
#endregion

3. In the CubeChaserGame class, add the following to the class declarations area to 
hold the player's current score:
float lastScoreTime = 0f;
int score = 0;

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Chapter 4

[ 87 ]

4. In the Update() method of the CubeChaserGame class, add the following code 
right before the call to cube.Update():
if (cube.Bounds.Contains(camera.Position) == 
    ContainmentType.Contains)
{
    cube.PositionCube(camera.Position, 5f);
    float thisTime = (float)gameTime.TotalGameTime.TotalSeconds;
    float scoreTime = thisTime - lastScoreTime;
    score += 1000;
    if (scoreTime < 120)
    {
        score += (120 - (int)scoreTime) * 100;
    }
    lastScoreTime = thisTime;
}

5. In the Draw() method of the CubeChaserGame class, add the following code at the 
end of the method, right before the call to base.Draw():

this.Window.Title = score.ToString();

6. Run the Cube Chaser game and go hunting for the cube. When you have located it, 
move into the cube to increase your score and reposition the cube within the maze. 
Notice that your current score is displayed in the title bar of the game's window, as 
shown in the following screenshot:
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What just happened?
In step 1, we specify how close the player needs to get to the cube in order to collect it. In 
this case, we use 0.25f units, or one quarter of the width of one of our floor tiles. Since our 
cube is half the size of a tile and located in the center of the tile horizontally and vertically, 
this means our player will have to actually run into the cube in order to grab it. The Bounds 
property uses this radius, along with the location of the cube, to return a BoundingSphere 
object, which we can use to determine if a given point lies within the area of the sphere.

After establishing variables to hold the time the player last recovered the cube and the 
player's score, we check against the Bounds property to see if it contains the camera's 
current position. Since we have not defined a separate player avatar, the camera position 
also represents the player's position within the world.

If Bounds contains the camera's location, we have collected the cube. We relocate 
it somewhere else in the maze and store the time at which we found the cube. We 
automatically add 1000 points to the player's score, and then check to see if it has been less 
than two minutes since the player last found the cube. If it has, we award an extra 100 points 
for every second under two minutes that the player spent searching.

Finally, since we have not yet delved into mixing 2D and 3D in the same project, we use the 
window title area of the game's window to display the player's current score.

Have a go hero!
The Cube Chaser game, while playable, could use some improving! There are many different 
things we could implement, based on your level of familiarity with XNA, which are as follows:

 � Modify the code that generates the maze walls to use a texture instead of the plain 
color walls we are currently using. Adding textured walls will give the maze a bit 
more visual appeal, as it will be easier to identify wall corners and distances based 
on the scaling of the textured image.

 � Increase the height of the maze walls a bit (perhaps to 1.5 units in height) and add a 
textured ceiling. Keep the winding order of the triangles used to build the ceiling in 
mind so that you can see it from underneath!

 � If you are familiar with 2D game development in XNA, or if you come back to  
this section after completing Chapter 8, Tank Battles – Ending the War, refactor  
the Cube Chaser code and build a game state management structure around the 
Cube Chaser game, including a title screen and conditions for losing the game  
(such as not finding the cube for 5 minutes, decreasing the time limit slightly as  
each cube is found). Alternatively, implement Cube Chaser as screens in a Game 
State Management sample project as discussed in Chapter 9, Mars Runner and 
Chapter 10, Mars Runner – Reaching the Finish Line.
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 � Build a game state system via one of the two previous methods, but include a 
3D-rendered version of the spinning cube on the title screen.

Summary
While not a blockbuster, the Cube Chaser game demonstrates the fundamentals of  
building 3D objects with triangles and displaying them on the screen. We have also  
covered important 3D concepts such as cameras, view, and projections matrices, and  
gotten an introduction to matrix math and how it allows us to position and display the 
components of our 3D world.

Over the course of the next four chapters, we will be looking at a new game that combines 
both triangle-based drawing techniques with externally generated 3D models, and including 
2D components in our 3D games.
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5
Tank Battles – A War-torn Land

In Tank Battles, we will create a 3D version of a classic game, in which the 
player controls a stationary tank doing battle against a computer-controlled 
tank, by alternating turns while firing shots at each other.

The player can adjust the direction, elevation, and power applied to their shots 
to zero in on the settings necessary to hit the enemy target, but they need to do 
so before the enemy does the same to them.

We will build tank battles over four chapters, and in this initial chapter, we will look at:

 � Implementing an arc-ball camera

 � Generating terrain based on a height map image

 � Applying textures to our generated terrain geometry

Along the way, we will also take a look at the basics of HLSL (High Level Shader Language), the 
programming language used to instruct the graphics card on how to render our 3D world.

Creating the project
We will, of course, begin by creating a new XNA 4.0 Windows Game project for Tank Battles.

Time for action – creating the Tank Battles project
1. Download the 7089_05_GRAPHICSPACK.ZIP file from the book's website and 

extract the files it contains to a temporary folder.

2. Open Visual Studio 2010 and select File | New Project… from the menu bar.
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3. Open the Visual C# tree in the Installed Templates portion of the New Project 
window, and open the XNA Game Studio 4.0 tree under it.

4. Select the Windows Game (4.0) project template from the central portion of  
the window.

5. Under Name, enter Tank Battles and click the OK button.

6. After Visual Studio has created the solution, right-click on the Game1.cs file in the 
Solution Explorer window and select Rename.

7. Change the name of the file to TankBattlesGame.cs. If you are asked if you wish 
to update references to the file, click Yes.

8. Right-click on the Tank BattlesContent (Content) project and select Add | New 
Folder and create a new folder named Textures.

9. Add a second new folder to the content project called Effects.

10. Add a third new folder to the content project called Models.

11. Add a fourth new folder to the content project called Fonts.

12. Copy all of the PNG files from the temporary folder you extracted them to in  
step 1 into the Textures folder created in step 8. You can do this by dragging the  
files directly from Windows Explorer into the folder inside Solution Explorer in 
Visual Studio. This will automatically include them in the content project, as shown 
in the following screenshot:
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What just happened?
Just as we did with Cube Chaser, we have created an empty XNA game project for Tank 
Battles and renamed the default Game1.cs file to something more meaningful. We have 
also created four folders to hold various content items we will be using in Tank Battles. We 
will make use of the Textures and Effects folders in this chapter, and save Models and Fonts 
for later.

An arc-ball camera
While building Cube Chaser, we implemented an FPS or First Person Shooter style camera. 
For Tank Battles, we want to take a different approach. The player will not be moving around 
on the terrain from a first person perspective, but will instead hover over the playfield, with 
the ability to rotate the camera around while focusing on the center of the game area.

Imagine a dome covering the play area, with the camera being able to slide along the dome 
to any position while still pointing inward at the center of the action. This kind of camera is 
known as an arc-ball camera, and acts as if the camera rides around on a ball surrounding 
the target point, as seen in the following image:

No matter where the camera is placed on the surface of the dome, it rotates to face the 
target point in the center. In order to implement our arc-ball camera, we will construct 
a class similar to the camera we created in Cube Chaser, but with modified controls for 
positioning the camera to maintain its position on the dome and view of the target point.
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Time for action – the ArcBallCamera class – part 1
1. Add a new class to the Tank Battles project by right-clicking on the project in 

Solution Explorer and selecting Add | Class….

2. Ensure that Visual C# | Code is selected under Installed Templates and select the 
Class template.

3. Enter ArcBallCamera.cs as the name of the class file.

4. Add the following using directive to the top of the ArcBallCamera.cs file:
using Microsoft.Xna.Framework;

5. Add the following fields to the ArcBallCamera class:
#region Fields
private Vector3 cameraPosition = Vector3.Zero;
private Vector3 targetPosition = Vector3.Zero;

private float elevation;
private float rotation;

private float minDistance;
private float maxDistance;
private float viewDistance = 12f;

private Vector3 baseCameraReference = new Vector3(0, 0, 1);
private bool needViewResync = true;

private Matrix cachedViewMatrix;
#endregion

6. Add the following properties to the ArcBallCamera class:
#region Properties
public Matrix Projection { get; private set; }

public Vector3 Target
{
    get { return targetPosition; }
    set 
    { 
        targetPosition = value;
        needViewResync = true;
    }
}
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public Vector3 Position
{
    get
    {
        return cameraPosition;
    }
}

public float Elevation
{
    get { return elevation; }
    set
    {
        elevation = MathHelper.Clamp(
            value, 
            MathHelper.ToRadians(-70), 
            MathHelper.ToRadians(-10));
        needViewResync = true;
    }
}

public float Rotation
{
    get { return rotation; }
    set
    {
        rotation = MathHelper.WrapAngle(value);
        needViewResync = true;
    }
}

public float ViewDistance
{
    get { return viewDistance; }
    set
    {
        viewDistance = MathHelper.Clamp(
            value, 
            minDistance, 
            maxDistance);
    }
}
#endregion
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What just happened?
The basics of the ArcBallCamera may at first appear similar to the FPS camera from Cube 
Chaser, and in fact, in some cases that is true. We are still going to track the position of the 
camera. We will need to provide Projection and View matrices. Finally, we will use the same 
caching mechanism for the View matrix that we did with the Camera class in Cube Chaser.

There are, though, some important differences even in those few pieces. First of all, notice 
that the Position property is read-only. We cannot directly set the position of the camera 
because, by definition, its position must be fixed along the ball. Instead, we will allow 
an external code to specify an elevation angle and a rotation angle, which we will use to 
calculate the position of the camera.

The Elevation and Rotation properties contain constraints in their set code that limit 
the values that can be stored in the internal fields. In the case of Rotation, we are using 
MathHelper.WrapAngle() to keep the value of the angle within one full circle of rotation.

Elevation requires somewhat more detailed restrictions. Remember that, by default, 
everything we draw is one-sided. If we were to allow the camera to move too close to, or 
below the horizon, we would be unable to see the triangles that will make up our game's 
terrain. An angle of 0 degrees would be looking straight along the X-Z plane, while an angle 
of -90 degrees will allow us to look straight down on the X-Z plane. To prevent either side-on 
or directly top-down viewing, both of which would look a bit strange, we use MathHelper.
Clamp() to keep the value of the elevation angle between -70 and -10 degrees, padding 
the viewing angle a bit on either end. There is nothing magical about these figures; they 
were just what looked good via experimentation.

The minDistance, maxDistance, and viewDistance fields, along with the 
ViewDistance property, control how far back from the target point the camera will be 
placed. This allows us to define the radius of the ball that the camera rides on. It will also 
allow us to move the camera closer to the playfield to view details, or move further back to 
gain a wider perspective on the battle.

One property that you might notice is missing from what we have implemented so far is the 
View matrix. This is because, of all of the aspects of our camera, it is the View matrix that 
differs most from what we did with our FPS camera in Cube Chaser. Let's go ahead and add a 
constructor for the ArcBallCamera and then finish up by adding the property to return the 
View matrix.
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Time for action – finishing the ArcBallCamera class
1. Add the Constructor region to the ArcBallCamera class as follows:

#region Constructor
public ArcBallCamera(
    Vector3 targetPosition,
    float initialElevation,
    float initialRotation,
    float minDistance,
    float maxDistance,
    float initialDistance,
    float aspectRatio,
    float nearClip,
    float farClip)
{
    Target = targetPosition;
    Elevation = initialElevation; 
    Rotation = initialRotation;
    this.minDistance = minDistance;
    this.maxDistance = maxDistance;
    ViewDistance = initialDistance;

    Projection = Matrix.CreatePerspectiveFieldOfView(
        MathHelper.PiOver4,
        aspectRatio,
        nearClip,
        farClip);

    needViewResync = true;
}
#endregion

2. Add the View property to the Properties region of the ArcBallCamera class:
public Matrix View

{
    get
    {
        if (needViewResync)
        {
            Matrix transformMatrix = Matrix.
CreateFromYawPitchRoll(
                rotation, 
                elevation, 
                0f);
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            cameraPosition = Vector3.Transform(
                baseCameraReference, 
                transformMatrix);
            cameraPosition *= viewDistance;
            cameraPosition += targetPosition;

            cachedViewMatrix = Matrix.CreateLookAt(
                cameraPosition,
                targetPosition,
                Vector3.Up);
        }

        return cachedViewMatrix;
    }
}

What just happened?
The constructor for the ArcBallCamera just passes the parameters given to it along to the 
various class fields, sets up the Projection matrix just like we did with the FPS camera in 
Cube Chaser, and sets the needViewResync flag to true. This flag indicates that one of the 
components that make up the View matrix has changed, and that the View matrix will need 
to be recalculated the next time it is requested.

In addition to calculating and returning a View matrix, the View property has the additional 
job of determining the camera position based on the Elevation and Rotation fields 
whenever the view needs to be resynced.

We start off by using Matrix.CreateFromYawPitchRoll() to build a matrix using 
the camera's Rotation field as the Yaw, and Elevation as the Pitch. We leave the Roll 
parameter as zero to keep the camera oriented vertically.

As we can see in the following image, Yaw, Pitch, and Roll are simply names for rotation 
around a specific axis:

Yaw (Y Axis)

Roll

(Z Axis)

Pitch

(X Axis)
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YawPitchRoll versus CreateRotation
In Cube Chaser, we used Matrix.CreateRotationX() and 
Matrix.CreateRotationZ() in order to calculate rotation matrices. 
This would work here as well, but we would need to be careful to combine 
the rotations in the correct order. We would need to use Matrix.
CreateRotationX(elevation) first and multiply it by Matrix.
CreateRotationY(rotation) in order to produce the same matrix 
created by Matrix.CreateFromYawPitchRoll().

Let's assume for a moment that the point we are focused on is the world origin (0, 0, 0). 
Recall that with our FPS camera, we used baseCameraReference to point along a default 
viewing direction. In the case of the ArcBallCamera class, baseCameraReference 
has a similar purpose, and even has the same value (0, 0, 1). This time, however, instead 
of representing the direction we are looking in, it represents the position we would be 
looking from if we were looking at the origin, assuming zero values for both Rotation and 
Elevation. In other words, if we have not rotated or elevated our camera, the camera 
would be sitting at zero on the X and Y axis, one unit along the positive Z axis:

Y

-Z

X

-Y

Z

-X

In order to determine the actual position of the camera, we first transform the 
baseCameraReference with the matrix we built using the elevation and rotation 
values. This leaves the camera in the appropriate direction relative to the origin, but exactly 
one unit away. To pull the camera out to the appropriate viewing distance, we multiply this 
position by the viewDistance field.

Our camera would now be in the correct position if the point we wanted to look at is the 
world origin. In order to move it to focus on the point we wish to view, we simply need to 
add the target position to the position we have so far worked out for our camera.

Finally, we once again use Matrix.CreateLookAt(), specifying the position we just 
calculated for our camera along with the fixed target position we wish to look at.
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Building the playfield
Now that we have a fancy new style of camera, we need something to actually point it at. For 
Tank Battles, we are going to use height maps to generate terrain for the playfield.

Height maps
What is a height map anyway? A height map is nothing more than a 2D image that we 
will use to represent the height of each vertex that makes up our terrain. To generate the 
height maps included in the resources file for this chapter, the Clouds effect of Paint.
NET (available at no cost at http://www.getpaint.net) was used on empty images 
of 128x128 pixels. The size of the height map image will determine the number of nodes 
present in the terrain when we convert the height map into vertices:

The Clouds filter of programs like Paint.NET and Photoshop produce smoothly transitioning 
gradients with some degree of randomization applied to them. The previous image contains 
a few of these randomly generated images as an example. Their smooth transition between 
light and dark levels makes them perfect for quick height maps because they will create 
realistically transitioning terrain levels.

Height maps can also be created by hand, by darkening and lightening areas of a grayscale 
image to create valleys (darker areas) and mountains (lighter areas). Any area of the same 
color will have the same elevation in the generated terrain.

Generating the terrain
The process of generating the terrain for Tank Battles is somewhat similar to creating the 
floor of the maze in Cube Chaser. When we built the floor, we created a number of triangles 
to represent the floor tiles, always placing them along the X-Z plane (in other words, with a 0 
as the Y coordinate of the Vector3 describing the vertex). We will do nearly the same thing 
with the terrain for Tank Battles, with a couple of important changes.
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First, we will use both a vertex buffer and an index buffer. We are already familiar with a 
vertex buffer – it supplies the location of the vertices we wish the graphics card to use, to 
the effect that it will render the 3D geometry for us. In Cube Chaser, we supplied the vertex 
buffer with vertices in groups of three to form individual triangles. For our terrain in Tank 
Battles, though, we will simply build a grid of vertices to supply to the graphics card in our 
vertex buffer. While we will create them in a specific order, we will not be relying on the 
vertex buffer to also provide information about the triangles themselves.

Instead, we will use an index buffer, which will supply the indices of the vertices in the vertex 
buffer that we will use to draw each triangle. In other words, the vertex buffer holds the 
locations of the points, while the index buffer stores the list of points that make up each 
triangle we will draw.

Why the split? Remember that it takes two triangles to make up a single square. That square 
contains four vertices (upper-left, upper-right, lower-left, and lower-right). In order to define 
those two triangles, we need to specify six vertices. We ended up duplicating the upper-right 
and lower-left vertices for each square of the floor in Cube Chaser. Neighboring squares also 
shared two vertices. In fact, many of our vertices were part of six different triangles, and 
therefore repeated six times in our vertex buffer. We can cut down considerably on the number 
of vertices we need to specify by leaving out the duplicates and specifying indices instead.

The second major difference between the floor in Cube Chaser and the terrain in Tank Battles, 
of course, is that we will not be leaving the Y coordinate as a zero! We will use the color value 
of each pixel on the height map to determine the elevation of that vertex in the terrain.

Time for action – generating the terrain
1. Add a new class to the Tank Battles project by right-clicking on the project in 

Solution Explorer and selecting Add | Class….

2. Ensure that the Visual C# | Code is selected under Installed Templates and select 
the Class template.

3. Enter Terrain.cs as the name of the class file.

4. Add the following using directive to the top of the Terrain.cs file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

5. Add the following fields to the Terrain class:
#region Fields
private VertexBuffer vertexBuffer;
private IndexBuffer indexBuffer;

private GraphicsDevice device;
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private Texture2D terrainTexture;
private float textureScale;
private float[,] heights;
#endregion

6. Add a constructor to the Terrain class:
#region Constructor
public Terrain(
    GraphicsDevice graphicsDevice,
    Texture2D heightMap,
    Texture2D terrainTexture,
    float textureScale,
    int terrainWidth,
    int terrainHeight,
    float heightScale)
{
    device = graphicsDevice;
    this.terrainTexture = terrainTexture;
    this.textureScale = textureScale;

    ReadHeightMap(
        heightMap, 
        terrainWidth, 
        terrainHeight, 
        heightScale);

    BuildVertexBuffer(
        terrainWidth, 
        terrainHeight, 
        heightScale);

    BuildIndexBuffer(
        terrainWidth, 
        terrainHeight);
}
#endregion
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What just happened?
We now have the shell of our Terrain class, so let's look at the components we have now 
before we move on to filling out the rest of the class.

As described previously, we will now be using both a VertexBuffer and an IndexBuffer 
to describe to the graphics card what we wish to draw. The fields of the Terrain class also 
include a texture to use for the terrain, and a two-dimensional array of float values that will 
store the heights read from the height map image.

The Terrain class constructor stores the graphics device and textures passed to it, and 
then calls three helper methods: ReadHeightMap(), BuildVertexBuffer(), and 
BuildIndexbuffer(). We will add each of these methods to the class individually, 
discussing the code after each one.

Height data
The bitmaps we will be using are grayscale images, so the red, green, and blue values of  
each pixel are identical. The lighter the pixel on the image, the higher each of these values 
will be. A fully black pixel has an RGB value of 0, 0, 0, while a fully white pixel has a value of 
255, 255, 255.

The goal of our ReadHeightMap() method is to examine each pixel of the height 
map and translate the color values into the heights array which we will use in 
BuildVertexBuffer().

Time for action – adding the ReadHeightMap() method
1. Add the Height Map region to the Terrain class, shown as follows:

#region Height Map
private void ReadHeightMap(
    Texture2D heightMap, 
    int terrainWidth, 
    int terrainHeight, 
    float heightScale)
{
    float min = float.MaxValue;
    float max = float.MinValue;

    heights = new float[terrainWidth, terrainHeight];

    Color[] heightMapData = new Color[
        heightMap.Width * heightMap.Height];
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    heightMap.GetData(heightMapData);
    for (int x = 0; x < terrainWidth; x++)
        for (int z = 0; z < terrainHeight; z++)
        {
            byte height = heightMapData[x + z * terrainWidth].R;
            heights[x, z] = (float)height / 255f;

            max = MathHelper.Max(max, heights[x, z]);
            min = MathHelper.Min(min, heights[x, z]);
        }

    float range = (max - min);

    for (int x = 0; x < terrainWidth; x++)
        for (int z = 0; z < terrainHeight; z++)
        {
            heights[x, z] = 
                ((heights[x, z] - min) / range) * heightScale;
        }
}
#endregion

What just happened?
We begin by declaring min and max to allow us to track both the highest and lowest point 
in the height data we retrieve from the height map. We set min to float.MaxValue, and 
max to float.MinValue, ensuring that the values in our height map will replace them 
immediately.

Next, we create the two-dimensional array of floats that will hold the height of each vertex in 
the terrain we will generate later.

In order to read the color values from the height map, we use the GetData() method of the 
Texture2D class to copy the colors into an array of Color objects. This array has the same 
number of elements as the image has pixels (width * height). To read each value, we use a 
pair of for loops to iterate through the height and width of the image.

As we loop, we read the value of the red component (R) from the heightMapData array 
and store it in the height variable. We then place the value into the heights array, after 
dividing it by 255. Since we know that the R property of the Color type is a byte, we know 
that the value returned will be between 0 and 255. By dividing this value by 255, we end up 
with a float value between 0 (the lowest possible valley) and 1 (the highest mountaintop).
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Why red?
In a grayscale image, the red, green, and blue values are all the same, 
so we simply choose one to read for our height map data. Either of the 
others would have produced identical results. You could store additional 
information in your height map; for instance, the location of trees to 
be placed on the landscape, by using the other color channels without 
impacting the height generation.

With each run through the loop, we check to see if we need to update min, max, or both. 
Finally, when the loop has been completed, we loop through the heights array we just 
filled in. This time, we subtract the min value from each height, and divide the value by the 
spread between min and max, and then multiply the result by the desired height scale. The 
purpose of all of this manipulation is to place the lowest point in our terrain at zero on the Y 
axis, while scaling the rest of the terrain so that the highest point matches the heightScale 
value passed to the constructor.

Building vertices
Building the vertices for our terrain is actually a simpler process than building the floor of 
the maze in Cube Chaser, because we are not worried about connecting the vertices to each 
other to form triangles at this point. We are simply going to create a grid of vertices and 
store them in the vertex buffer.

Time for action – adding the BuildVertexBuffer() method
1. Add the Vertex Buffer region to the Terrain class as follows:

#region Vertex Buffer
private void BuildVertexBuffer(
    int width, 
    int height, 
    float heightScale)
{
    VertexPositionNormalTexture[] vertices = 
        new VertexPositionNormalTexture [width*height];
            
    for (int x=0; x<width; x++)
        for (int z=0; z<height; z++)
        {
          vertices[x + (z*width)].Position = 
            new Vector3(x, heights[x,z], z);
        }

    vertexBuffer = new VertexBuffer(
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        device, 
        typeof(VertexPositionNormalTexture), 
        vertices.Length, 
        BufferUsage.WriteOnly);

    vertexBuffer.SetData(vertices);
}
#endregion

What just happened?
After creating an empty array of VertexPositionNormalTexture 
objects, we loop through the width and height of our terrain, creating a new 
VertexPositionNormalTexture for each vertex. The X and Z coordinates of the vertex 
are directly equal to the current position within our loops. Each vertex will be one unit away 
from its neighboring vertices along the X and Z axes. If the vertices were rendered as points 
and viewed from directly above, they would appear as a simple grid of evenly-spaced dots.

The Y coordinate of the vertex is retrieved from the heights array that we filled in with the 
ReadHeightMap() method.

Once we have the array of vertices created, we add it to the vertex buffer in the same way 
we did with the floor tiles in Cube Chaser. Namely, we create the VertexBuffer to be 
of the appropriate size and then use the SetData() method to copy the contents of the 
vertices array into the buffer.

Building the indices
The last thing we need to do to build the structure of our terrain is to fill out the index buffer 
that will instruct the graphics card on how to use the vertex buffer to create triangles.

Time for action – the buildIndexBuffer() method
1. Add the Index Buffer region to the Terrain class:

#region Index Buffer
private void BuildIndexBuffer(int width, int height)
{
    int indexCount = (width-1) * (height-1) * 6;
    short[] indices = new short[indexCount];
    int counter = 0;

    for (short z = 0; z < height - 1; z++)
        for (short x = 0; x < height - 1; x++)
        {
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            short upperLeft = (short)(x + (z * width));
            short upperRight = (short)(upperLeft + 1);
            short lowerLeft = (short)(upperLeft + width);
            short lowerRight = (short)(upperLeft + width + 1);

            indices[counter++] = upperLeft;
            indices[counter++] = lowerRight;
            indices[counter++] = lowerLeft;
            indices[counter++] = upperLeft;
            indices[counter++] = upperRight;
            indices[counter++] = lowerRight;
        }

    indexBuffer = new IndexBuffer(
        device, 
        IndexElementSize.SixteenBits, 
        indices.Length, 
        BufferUsage.WriteOnly);
    indexBuffer.SetData(indices);
}
#endregion

What just happened?
We will still create our triangles in pairs, as that makes creating the whole set a simple 
matter of looping through the terrain just like we did when creating the vertices. We want 
to stop one vertex before the end in both directions. If we have, say 10 vertices, there would 
only be nine lines needed to connect them. The same is true for generating the triangles for 
our terrain.

Since we still need three points to define a triangle and two triangles per square, we need six 
indices per terrain square, so the total number of indices we are going to create is calculated 
and used to create the indices array. You may have noticed that this array is of type short, 
which we have not yet used.

The reason for this is that the Reach graphics profile (the default for XNA 4.0) does not 
support 32-bit index elements. The short type is 16-bits, which we specify when creating 
the indexBuffer at the bottom of the method. Otherwise, we set the index buffer the 
same way we set the vertex buffer – creating the space to hold the values and then using 
SetData() to copy them in.
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Let's see the terrain already!
We have done quite a bit of background work with nothing to show for it so far. Let's change 
that by adding enough code to allow us to at least see what we have created so far. We will 
also get a sneak peek of HLSL!

Time for action – drawing the terrain
1. In Solution Explorer, right-click on the Effects folder in the content project. Select 

Add | New Item….

2. In the central pane of the Add New Item window, select Effect File.

3. Name the file Terrain.fx and click Add.

4. If you wish, browse through the template effect file that opens when it is added 
to the project, and then close the file.

5. Add the Draw region to the Terrain class:
#region Draw
public void Draw(
    ArcBallCamera camera,
    Effect effect)
{
    effect.CurrentTechnique = effect.Techniques["Technique1"];
    effect.Parameters["World"].SetValue(Matrix.Identity);
    effect.Parameters["View"].SetValue(camera.View);
    effect.Parameters["Projection"].SetValue(camera.Projection);

    foreach (EffectPass pass in effect.CurrentTechnique.Passes)
    {
        pass.Apply();
        device.SetVertexBuffer(vertexBuffer);
        device.Indices = indexBuffer;
        device.DrawIndexedPrimitives(
            PrimitiveType.TriangleList,
            0, 
            0, 
            vertexBuffer.VertexCount,
            0,
            indexBuffer.IndexCount / 3);
    }
}
#endregion
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6. In the TankBattlesGame class, add the following declarations right after the 
declarations for GraphicsDeviceManager and SpriteBatch:
ArcBallCamera camera;
Terrain terrain;
Effect effect;

7. In the Initialize() method of the TankBattlesGame class, initialize  
the camera:
camera = new ArcBallCamera(
    new Vector3(64f, 16f, 64f),
    MathHelper.ToRadians(-30),
    0f,
    32f,
    192f,
    128f,
    GraphicsDevice.Viewport.AspectRatio,
    0.1f,
    512f);

8. In the LoadContent() method of the TankBattlesGame class, initialize the 
terrain and load the effect file:
terrain = new Terrain(
    GraphicsDevice,
    Content.Load<Texture2D>(@"Textures\HeightMap_02"),
    Content.Load<Texture2D>(@"Textures\Grass"),
    32f,
    128,
    128,
    30f);

effect = Content.Load<Effect>(@"Effects/Terrain");

9. In the Draw() method of the TankBattlesGame class, add the following line after 
the graphics device has been cleared:
terrain.Draw(camera, effect);
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10. Execute the game and view the bright red hill-like blob floating in the middle  
of nowhere!

What just happened?
While we could have gone ahead and used a BasicEffect like we did in Cube Chaser, 
we have instead created our own effect file that we will examine more closely later 
in this chapter. Everything that we will do in this chapter could have been handled by 
BasicEffect, but when we add new features to our terrain (like multi-texturing in  
Chapter 8, Tank Battles – Ending the War), we will need to use the extra power available  
to us by creating our own effect in order to implement them, so we might as well start  
off on the right foot in the first place.

The usage of our custom effect is not too different from using the BasicEffect, except that 
we have to specify a technique (if you browsed through the Terrain.fx file, you should 
have seen a technique called Technique1 near the bottom of the file). We also need to use 
a different format for specifying the parameters we are going to pass to the effect. While 
BasicEffect declares things such as Texture, World, and View for us, our effect may not 
use them or may call them different things depending on what we are trying to achieve. For 
this reason, we use the Parameters collection of the effect along with the SetValue() 
method to set the parameters we are passing to the effect.
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The remainder of the Draw() method should be familiar – it works the same way the draw 
method for the maze did in Cube Chaser after the parameters have been set.

When we initialize the camera in the Initialize() method of the TankBattleGame 
class, we specify that it is looking at (64, 16, 64). If we glance ahead to the declaration of our 
terrain, we find that the terrain is declared as 128 units of length and width, with the X and 
Z spacing set to 1.0f. This means that the look at point for the camera will be the center of 
the terrain, 16 units above the X-Z plane.

The camera is elevated -30 degrees and rotated 0 degrees around the Y axis. It will have a 
minimum view distance of 32 units and a maximum of 192 units, with an initial value of 128 
units. The remaining parameters are identical to the FPS camera we created for Cube Chaser.

When declaring the terrain itself in LoadContent(), we pass it a height map and a 
texture to use (though we are not currently displaying the texture). We will look at the 
textureScale parameter a bit later in this chapter (the value is set to 32f here). Like the 
texture itself, this value is currently unused by our code.

As we saw before, the terrain is 128x128 units with a spacing of 1 in both the X and Z 
directions. Finally, we specify a scaling factor of 30, meaning that the highest point in the 
terrain should be at 30f on the Y axis. The lowest point on the terrain will be at 0f, and the 
values in between will be scaled appropriately to fit within that range.

But, why is it red? We are using VertexPositionNormalTexture as our vertex 
declaration, but we have not specified a texture, or texture coordinates, so the Technique1 
of the Terrain effect just uses default values. The result is that the pixels in our terrain end 
up showing as solid red.

Adding texture – a gentle introduction to HLSL
We have already specified the texture we want to use for the terrain in the LoadContent() 
event, so now we just need to adjust our code to take the texture into account. Since we are 
not using a BasicEffect for rendering, we will need to expand the code in the Terrain.
fx file in order to utilize the texture we pass to the Terrain class.

While a full discussion of the intricacies of High Level Shader Language (HLSL) is well beyond 
the scope of this book – entire books can and have been written about writing shaders – we 
can certainly cover enough of the basics to allow us to generate all of the effects we will 
need for Tank Battles.

Originally developed by Microsoft and NVIDIA for Direct3D, HLSL is a programming language 
designed for the creation of shaders. We can work with both vertex shaders, which convert 
the vertex information for our triangles into pixels to be rendered to the display, and pixel 
shaders, which describe the characteristics of each pixel, such as its color and transparency 
level. The conversion of our 3D geometry to the 2D screen is called Rasterization.
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Shader models and other shader types
DirectX defines a series of specification versions for developing shaders called 
shader models. Each successive model builds on the capabilities of the model 
before it. XNA supports shader models 1 through 3, and the default effect file 
specifies 2.0 as the target shader model (in the technique at the bottom of the 
file, the Vertex and Pixel shaders are compiled with vs_2_0 and ps_2_0 as 
their specified shader models).
Newer shader models include support for new types of shaders, namely the 
geometry shader in shader model 4, useful for things like point sprites and 
particle effects as it allows the shader to create additional primitives to be 
rendered into the scene, and compute shaders in shader model 5 which do not 
necessarily involve graphics at all and allows general code to be executed on 
the graphics card to take advantage of the high-speed nature of the hardware. 
Since these shader models are associated with DirectX 10 and 11, while XNA is 
designed around DirectX 9, these are not available to us in XNA.

For our own Terrain.fx file, we will need to make changes to both the vertex and pixel 
shaders that are built into the default effect file, as well as adding our own parameters to 
the effect. We will cover each of the areas of the effect code we need to modify as their own 
separate short section.

Declaring variables
Just like we would in a C# program, we can define effect-wide variables for our HLSL code to 
use. We generally place these variables at the top of the effect file. The default file contains 
three fields already, and we will add two new declarations to this area.

Time for action – HLSL declarations
1. Update the declarations area of the Terrain.fx file (at the very top of the file) 

to include a declaration for the texture we will be passing to the effect. The section 
should now read:
float4x4 World;
float4x4 View;
float4x4 Projection;

texture terrainTexture1;

sampler2D textureSampler = sampler_state {
  Texture = (terrainTexture1);
  AddressU = Wrap;
  AddressV = Wrap;
};
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What just happened?
At the top of the default file that is generated when we add a new effect to our project, 
three variables of the type float4x4 are declared for us. These variables have familiar 
names, World, View, and Projection. If you think back to our discussion on matrices, an 
XNA matrix is a 4 by 4 array of float values, so the HLSL type float4x4 corresponds to an 
XNA matrix. In fact, these are the variables in the effect file that we set when we use the 
Parameters[].SetValue() method in our draw code.

We add the terrainTexture1 variable here, declaring it as type texture. Since HLSL is 
designed specifically for working with the graphics card, texture is one of the built-in data 
types that the language understands. The texture type corresponds to a Texture2D in XNA.

In order for our HLSL functions to read portions of our texture to map them to the display (a 
process called sampling) we need to define a sampler2D. It explains to HLSL how it should 
handle providing information about the texture to functions in our HLSL code. In this case, we 
are specifying that we want the sampler to use terrainTexture1 as the source for texture 
information. By specifying AddressU and AddressV as Wrap, we indicate that, if we specify 
values greater than 1 or less than 0 for texture coordinates, the texture will wrap around and 
start sampling from the other side, allowing the texture to be tiled onto a surface.

Texture address modes
The AddressU and AddressV settings are known as texture address 
modes. There are two other settings we can use in addition to wrapping 
the texture. Clamp mode will use the nearest edge texture value for texture 
coordinates outside the 0 to 1 range. A texture coordinate less than 0 will be 
assumed to be 0. The mirror mode works similarly to the wrap mode, in that 
the texture will be tiled as values increase, however, it will be mirrored for 
each odd increment of the texture coordinate. Coordinates from 0 to 1 will 
appear normally, while 1 to 2 will appear reversed, or mirrored. Coordinates 
from 2 to 3 will sample normally again, and so on.

The vertex shader structures
Our HLSL code needs some way to pass information about vertices around to the vertex  
and pixel shader functions. In order to do this, two structures are defined in the default 
effect file. These default structures do not include the information necessary for mapping a 
texture to our surfaces, so we will need to modify the definitions of the structures to include 
this information.
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Time for action – Vertex Shader Input and Output definition
1. Modify the declaration for the VertexShaderInput struct by adding an entry 

for a texture coordinate. The new struct should be as follows:
struct VertexShaderInput
{
    float4 Position : POSITION0;
    float2 TextureCoordinate : TEXCOORD0;
};

2. Similarly, modify the declaration for the VertexShaderOutput function in the 
same way:
struct VertexShaderOutput
{
    float4 Position : POSITION0;
    float2 TextureCoordinate : TEXCOORD0;
};

What just happened?
The VertexShaderInput structure is passed to our vertex shader function, which 
we will be modifying in the next section. The return value of the vertex shader is a 
VertexShaderOutput structure. This is similar to what we would do with C# to define the 
type of data we are passing into a function and specifying what type of information it returns.

The default shader code already has the Position field, which is declared as a float4. 
Once again, thinking back to our discussion on matrices in Chapter 4, Cube Chaser – Finding 
your Way, recall that a Vector3 contains three float types, but that for the purposes of 
matrix math, we assume that there are four values and that the last value is a one. Thus, 
when we specify a position as a Vector3 in XNA, it will be translated to a float4 in our 
shader code.

When we add the TextureCoordinate field, we specify that it is a float2, which matches 
nicely with the Vector2 type in XNA. Recall that our texture coordinates are specified as 
U and V offsets into our texture image, and we store them as Vector2 values in the vertex 
buffer. These Vector2 values will be placed in the TextureCoordinate field automatically 
by the effect when it is processed.

That leaves the question of exactly how these values get placed. After all, if you look through 
the rest of the HLSL code, even if you are not sure exactly what it does, the values of the 
VertexShaderInput are never set anywhere. In reality, this is happening for us behind the 
scenes. Notice that the Position field has: POSITION0 tacked onto the end of the line. 
Similarly, the TextureCoordinate field has the cryptic: TEXCOORD0 trailing it.
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These identifiers are called semantics, and indicate to HLSL what type of data our variables 
contain. We could just as easily call our TextureCoordinate "Fred" and as long as we 
specified the TEXCOORD0 semantic, it would still be used in the same way by the shader.

While these semantics allow us to specify what gets fed into our input structure, they are 
also used to indicate what comes out in our output structure. In our code, both Position 
and TextureCoordinate are identical in the input and output structures, but they do not 
necessarily need to be that way. As long as the two semantics we are using are included in 
both structures, it really does not matter what we call the fields internally.

The vertex shader
The vertex shader converts the vertex information about our triangles into pixels to be 
displayed to the screen. We need to modify the default vertex shader in order to include 
support for texture mapping, even though we are not going to reference the texture at all in 
the function.

Time for action – the vertex shader
1. Modify the default code for the VertexShaderFunction function to include 

setting texture coordinates:
VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
    VertexShaderOutput output;

    float4 worldPosition = mul(input.Position, World);
    float4 viewPosition = mul(worldPosition, View);
    output.Position = mul(viewPosition, Projection);

 output.TextureCoordinate = input.TextureCoordinate;

    return output;
}

What just happened?
Similar to a C# function, an HLSL function declaration begins with a return type, followed  
by the function name and the parameters it takes inside the parenthesis. The first line of  
the function declares a variable to hold the output value that will be returned at the end  
of the function.
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The next three lines use the World, View, and Projection matrices to transform the input 
position of the vertex to position them properly for display on the screen. As we can see, the 
first step is to multiply the position by the World matrix. In our case, the World matrix has 
always been equal to the identity matrix, so the resulting world position will be equal to the 
input position.

Next, the world position is multiplied by the View matrix, which is set based on the position 
of the camera. The resulting view position represents the vertex transformed into its 
appropriate location relative to the camera.

Finally, the view position is multiplied by the Projection matrix. This accounts for the 
properties of the camera that we specified when we created it, such as the field of view and 
the aspect ratio. The value we get from this multiplication is the final position of this vertex, 
so it is stored in the Position field of the output structure.

Our addition to the code is to simply copy the TextureCoordinate field from the input 
structure to the output structure. We are not manipulating the texture coordinate at all in 
the vertex shader; we just need to pass the information along so that things further down 
the rendering pipeline can use it.

The pixel shader
The output of the vertex shader gets sent to the pixel shader, which is responsible for 
determining the characteristics of the pixel that will be rendered. We will now replace the 
default pixel shader with a new code to sample from our texture, according to the texture 
coordinate passed in via the VertexShaderOutput structure.

Time for action – the pixel shader
1. Examine the code of the PixelShaderFunction, in particular the line that reads 

return float4(1, 0, 0, 1).

2. Modify the code for the PixelShaderFunction, replacing the contents with  
the following:
float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 return tex2D(textureSampler, input.TextureCoordinate);
}
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What just happened?
In step 1, we see that the default pixel shader function is quite simple. All it does is return a 
float4 value of (1, 0, 0, 1). But what does this mean? Note the COLOR0 at the end of the 
declaration for the pixel shader function. This is another semantic that indicates that this 
function returns the color of the pixel that will be sent to the display.

If we interpret the float4 value as a color, in the order Red, Green, Blue, Alpha, we see that 
the default pixel shader simply returns a non-transparent red. Ah ha! This is why our terrain 
is currently rendering as a large red blob!

Our replacement function uses the tex2D HLSL method, passing it our texture sampler and 
the TextureCoordinate that gets passed to the pixel shader (note that the input of the 
pixel shader is of type VertexShaderOutput). The tex2D method uses the sampler to 
look up the color of the desired location on the texture and returns it to be used for that 
particular pixel.

Techniques and passes
We do not need to modify the last part of the default effect file, which declares 
the Technique1 technique and a single pass inside it. More complicated 
shaders can have many different techniques, and each technique may contain 
multiple passes. In the default pass, the built-in VertexShader and 
PixelShader values are set to the functions that we modified previously. 
Any number of different shader functions can be included in the effect file.

We are almost ready to render our terrain with a texture. All we need to do now is modify 
the drawing code so that we use the new features we have added to our shader, and modify 
the code that builds our vertices to include texture coordinates.

Time for action – utilizing Terrain.fx
1. In the Terrain.cs class file, add the following to the Draw() method, right after 

setting CurrentTechnique for the effect:
effect.Parameters["terrainTexture1"].SetValue(terrainTexture);

2. In the BuildVertexBuffer() method of the Terrain class, add the following 
right after the position of the vertex is set inside the loop:
vertices[x + (z * width)].TextureCoordinate =
    new Vector2((float)x / textureScale, (float)z / textureScale);

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Tank Battles – A War-torn Land

[ 118 ]

3. Execute the program and view the textured terrain, as shown in the  
following screenshot:

What just happened?
We now have a simple grass texture mapped to our terrain. It is still a bit difficult to  
make out the features of the landscape, but they are certainly more visible than when  
the whole thing was just a red blob. We will come back to improving the look of our  
terrain in Chapter 8, Tank Battles – Ending the War.

Moving the camera
Before we move on to loading 3D models, let's see how we can rotate our view around the 
terrain we are now rendering in the center of the screen. We will implement mouse-based 
camera rotation similar to what you might see in a first-person shooter game, where you 
hold down the right mouse button to activate camera movement mode.
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Time for action – moving the camera with the mouse
1. In the TankBattlesGame class, add five fields to the declarations area:

Point screenCenter;
Point saveMousePoint;
bool moveMode = false;
float scrollRate = 1.0f;
MouseState previousMouse;

2. In the Initialize() method of the TankBattlesGame class, add the following 
before the call to base.Initialize():
screenCenter.X = this.Window.ClientBounds.Width / 2;
screenCenter.Y = this.Window.ClientBounds.Height / 2;

this.IsMouseVisible = true;

previousMouse = Mouse.GetState();
Mouse.SetPosition(screenCenter.X, screenCenter.Y);

3. In the Update() method of the TankBattlesGame class, add the following before 
the call to base.Update():
if (this.IsActive) {

  MouseState mouse = Mouse.GetState();

  if (moveMode)
  {
      camera.Rotation += MathHelper.ToRadians(
          (mouse.X - screenCenter.X) / 2f);
      camera.Elevation += MathHelper.ToRadians(
          (mouse.Y - screenCenter.Y) / 2f);

      Mouse.SetPosition(screenCenter.X, screenCenter.Y);
  }

  if (mouse.RightButton == ButtonState.Pressed)
  {
      if (!moveMode && 
          previousMouse.RightButton == ButtonState.Released)
      {
          if (graphics.GraphicsDevice.Viewport.Bounds.Contains(
              new Point(mouse.X, mouse.Y)))
          {
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              moveMode = true;
              saveMousePoint.X = mouse.X;
              saveMousePoint.Y = mouse.Y;
              Mouse.SetPosition(screenCenter.X, screenCenter.Y);
              this.IsMouseVisible = false;
          }
      }
  }
  else
  {
      if (moveMode)
      {
          moveMode = false;
          Mouse.SetPosition(saveMousePoint.X, saveMousePoint.Y);
          this.IsMouseVisible = true;
      }
  }

  if (mouse.ScrollWheelValue - previousMouse.ScrollWheelValue != 
0)
    {
        float wheelChange = mouse.ScrollWheelValue -
            previousMouse.ScrollWheelValue;

        camera.ViewDistance -= (wheelChange / 120) * scrollRate;
    }

  previousMouse = mouse;
}

4. Execute the game and hold down the right mouse button to rotate your view and 
change elevation by moving the mouse. Use the mouse scroll wheel to zoom in  
and out.

What just happened?
When the user wishes to rotate the camera, we need to know how far the mouse has travelled 
during each frame of game time. We begin by establishing the center of the game window, 
which we will use to evaluate how far the mouse has travelled. We establish that, when 
launched, the game will not be in the camera moving mode by setting moveMode to false.

During the Update() method, we start off by checking that the game is the active window 
on the computer via this.IsActive. If some other window is active, we do not want to 
steal the mouse cursor when the user is trying to do something in another program.
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Assuming we are active, we then need to decide if we should move the camera during this 
frame. We track a Boolean value that determines if we are currently moving the camera or 
not based on the state of the right mouse button.

When the movement mode is initiated, we move the mouse cursor to the center of the 
window and hide it. Even when hidden, the mouse still tracks its current position. This is 
important to us because, during each frame, while we are in move mode, we will follow 
these steps to determine how to move the camera:

1. Compare the current mouse position to the center of the screen.

2. Add half the distance the mouse has travelled horizontally to the camera's rotation.

3. Add half the distance the mouse has travelled vertically to the camera's elevation.

4. Move the mouse cursor to the center of the window.

Because we treat the center of the screen as the starting point for our movement, if the 
mouse moves left, the value for the horizontal movement (X) will be negative. The same is 
true for the vertical position (Y) if the mouse moves upward. We divide these values by 2 
simply to present a reasonable movement rate for the camera. If you wish to slow down the 
camera rotation, the divisor in both of these statements just needs to be increased.

Remember that both the Rotation and Elevation properties of the Camera class take 
care of things like wrapping angles and limiting the elevation for us, so we do not need to 
worry about that in our code that uses the camera.

When the user leaves movement mode (by releasing the right mouse button), we reset the 
mouse cursor back to the center of the screen and make the cursor visible again.

The other method the user can use to manipulate the camera is to zoom in and out using 
the mouse's scroll wheel. The ScrollWheelValue property of the Mouse class keeps track 
of how far the scroll wheel has moved since your game started. This value starts at zero 
when the game launches and is updated every time the scroll wheel is moved. Every click 
of the scroll wheel changes the value by 120 in either the positive (scrolling up) or negative 
(scrolling down) direction.

We compare the current and previous value of the scroll wheel and divide the result by 
120 which gives the number of stops the wheel has moved in the last frame. We have set 
a scrollRate of 1.0f, meaning we will simply use the resultant value as the amount we 
modify the camera's ViewDistance by during the frame. If we want to scroll faster,  
we would increase scrollRate. To allow for finer (and slower) zooming, we could  
decrease scrollRate.
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Just as with the Elevation and Rotation properties, the ViewDistance property takes 
care of making sure the values are in the allowed range for us, so we do not need to perform 
those checks in our Update() method. We simply supply our intent to the property and let 
it decide what to do with it.

Summary
As we begin Tank Battles, we have covered quite a bit of ground! We implemented a basic 
arc-ball camera that we can rotate around our game world, read a bitmap image to create a 
three-dimensional terrain map, and implemented HLSL code to texture the terrain.

In Chapter 6, Tank Battles – The Big Guns, we will look at adding a 3D tank model to our 
game and positioning it within the game world.
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Tank Battles – The Big Guns

Now that we have a landscape for our tanks to fight on, it is time to bring them 
into the mix. Our tanks will be 3D models created externally to XNA in one of 
several different 3D modeling packages.

In this chapter, we will cover all that is necessary to get our tanks into the game and placed 
in the game world, including:

 � Adding models to our game's content project and loading them into the game

 � Drawing the tank model to the screen

 � Animating the various components of the tank model

 � Matching the elevation of the tank to its position on the generated terrain

 � Adding a second tank and positioning both tanks appropriately on the map

Adding the tank model
For tank battles, we will be using a 3D model available for download from the App Hub 
website (http://create.msdn.com) in the Simple Animation CODE SAMPLE available 
at http://xbox.create.msdn.com/en-US/education/catalog/sample/simple_
animation.

Our first step will be to add the model to our content project in order to bring it into  
the game.

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Tank Battles – The Big Guns

[ 124 ]

Time for action – adding the tank model
We can add the tank model to our project by following these steps:

1. Download the 7089_06_GRAPHICSPACK.ZIP file from the book's website and 
extract the contents to a temporary folder.

2. Select the .fbx file and the two .tga files from the archive and copy them to the 
Windows clipboard.

3. Switch to Visual Studio and expand the Tank BattlesContent (Content) project.

4. Right-click on the Models folder and select Paste to copy the files on the clipboard 
into the folder.

5. Right-click on engine_diff_tex.tga inside the Models folder and select Exclude 
From Project.

6. Right click on turret_alt_diff_tex.tga inside the Models folder and select 
Exclude From Project.

What just happened?
Adding a model to our game is like adding any other type of content, though there are a 
couple of pitfalls to watch out for.

Our model includes two image files (the .tga files – an image format commonly associated 
with 3D graphics files because the format is not encumbered by patents) that will provide 
texture maps for the tank's surfaces. Unlike the other textures we have used, we do not want 
to include them as part of our content project. Why not?

The content processor for models will parse the .fbx file (an Autodesk file format used by 
several 3D modeling packages) at compile time and look for the textures it references in the 
directory the model is in. It will automatically process these into .xnb files that are placed in 
the output folder—Models, for our game.

If we were to also include these textures in our content project, the standard texture 
processor would convert the image just like it does with the textures we normally use. When 
the model processor comes along and tries to convert the texture, an .xnb file with the same 
name will already exist in the Models folder, causing compile time errors.

Incidentally, even though the images associated with our model are not included in our 
content project directly, they still get built by the content pipeline and stored in the output 
directory as .xnb files. They can be loaded just like any other Texture2D object with the 
Content.Load() method.

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Chapter 6

[ 125 ]

Free 3D modeling software
There are a number of freely available 3D modeling packages 
downloadable on the Web that you can use to create your own 3D 
content. Some of these include:

 � Blender: A free, open source 3D modeling and animation 
package. Feature rich, and very powerful. Blender can be found at 
http://www.blender.org.

 � Wings 3D: Free, open source 3D modeling package. Does not 
support animation, but includes many useful modeling features. 
Wings 3D can be found at http://wings3d.com.

 � Softimage Mod Tool: A modeling and animation package 
from Autodesk. The Softimage Mod Tool is available freely for 
non-commercial use. A version with a commercial-friendly 
license is also available to XNA Creator's Club members at 
http://usa.autodesk.com/adsk/servlet/pc/
item?id=13571257&siteID=123112.

Building tanks
Now that the model is part of our project, we need to create a class that will manage 
everything about a tank. While we could simply load the model in our TankBattlesGame 
class, we need more than one tank, and duplicating all of the items necessary to handle both 
tanks does not make sense.

Time for action – building the Tank class
We can build the Tank class using the following steps:

1. Add a new class file called Tank.cs to the Tank Battles project.

2. Add the following using directives to the top of the Tank.cs class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Add the following fields to the Tank class:
#region Fields
private Model model;
private GraphicsDevice device;
        
private Vector3 position;
private float tankRotation;
private float turretRotation;
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private float gunElevation;

private Matrix baseTurretTransform;
private Matrix baseGunTransform;
private Matrix[] boneTransforms;
#endregion

4. Add the following properties to the Tank class:
#region Properties
public Vector3 Position
{
    get
    {
        return position;
    }
    set
    {    
        position = value;
    }
}

public float TankRotation
{
    get
    {
        return tankRotation;
    }
    set
    {
        tankRotation = MathHelper.WrapAngle(value);
    }
}
        
public float TurretRotation
{
    get
    {
        return turretRotation;
    }
    set
    {
        turretRotation = MathHelper.WrapAngle(value);
    }
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}

public float GunElevation 
{
    get
    {
        return gunElevation;
    }
    set
    {
        gunElevation = MathHelper.Clamp(
            value, 
            MathHelper.ToRadians(-90), 
            MathHelper.ToRadians(0));
    }
}
#endregion

5. Add a constructor to the Tank class, as follows:
#region Constructor
public Tank(GraphicsDevice device, Model model, Vector3 position)
{
    this.device = device;
    this.model = model;
    Position = position;
    boneTransforms = new Matrix[model.Bones.Count];
}
#endregion

6. Add the Draw() method to the Tank class, as follows:
#region Draw
public void Draw(ArcBallCamera camera)
{
    model.Root.Transform = Matrix.Identity * 
        Matrix.CreateScale(0.005f) *  
        Matrix.CreateRotationY(TankRotation) * 
        Matrix.CreateTranslation(Position);

    model.CopyAbsoluteBoneTransformsTo(boneTransforms);

    foreach (ModelMesh mesh in model.Meshes)
    {
        foreach (BasicEffect basicEffect in mesh.Effects)
        {
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          basicEffect.World = boneTransforms[mesh.ParentBone.
Index];
          basicEffect.View = camera.View;
          basicEffect.Projection = camera.Projection;

          basicEffect.EnableDefaultLighting();
        }

        mesh.Draw();
    }
}
#endregion

7. In the declarations area of the TankBattlesGame class, add a new List object to 
hold a list of Tank objects, as follows:
List<Tank> tanks = new List<Tank>();

8. Create a temporary tank so we can see it in action by adding the following to the 
end of the LoadContent() method of the TankBattlesGame class:
tanks.Add(
    new Tank(
        GraphicsDevice, 
        Content.Load<Model>(@"Models\tank"), 
        new Vector3(61, 40, 61)));

9. In the Draw() method of the TankBattlesGame class, add a loop to draw all of 
the Tank objects in the tank's list after the terrain has been drawn, as follows:
foreach (Tank tank in tanks)
{
    tank.Draw(camera);
}

10. Execute the game. Use your mouse to rotate and zoom in on the tank floating above 
the top of the central mountain in the scene, as shown in the following screenshot:
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What just happened?
The Tank class stores the model that will be used to draw the tank in the model field. Just as 
with our terrain, we need a reference to the game's GraphicsDevice in order to draw our 
model when necessary.

In addition to this information, we have fields (and corresponding properties) to represent 
the position of the tank, and the rotation angle of three components of the model. The first, 
TankRotation, determines the angle at which the entire tank is rotated.

As the turret of the tank can rotate independently of the direction in which the tank itself is 
facing, we store the rotation angle of the turret in TurretRotation. Both TankRotation 
and TurretRotation contain code in their property setters to wrap their angles around if 
we go past a full circle in either direction.

The last angle we want to track is the elevation angle of the gun attached to the turret. This 
angle can range from 0 degrees (pointing straight out from the side of the turret) to -90 
degrees (pointing straight up). This angle is stored in the GunElevation property.

The last field added in step 3 is called boneTransforms, and is an array of matrices. We 
further define this array while defining the Tank class' constructor by creating an empty 
array with a number of elements equal to the number of bones in the model.
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But what exactly are bones? When a 3D artist creates a model, they can define joints that 
determine how the various pieces of the model are connected. This process is referred to as 
"rigging" the model, and a model that has been set up this way is sometimes referred to as 
"rigged for animation".

The bones in the model are defined with relationships to each other, so that when a bone 
higher up in the hierarchy moves, all of the lower bones are moved in relation to it. Think for 
a moment of one of your fingers. It is composed of three distinct bones separated by joints. 
If you move the bone nearest to your palm, the other two bones move as well – they have to 
if your finger bones are going to stay connected!

The same is true of the components in our tank. When the tank rotates, all of its pieces 
rotate as well. Rotating the turret moves the cannon, but has no effect on the body or the 
wheels. Moving the cannon has no effect on any other parts of the model, but it is hinged at 
its base, so that rotating the cannon joint makes the cannon appear to elevate up and down 
around one end instead of spinning around its center.

We will come back to these bones in just a moment, but let's first look at the current Draw() 
method before we expand it to account for bone-based animation.

Model.Root refers to the highest level bone in the model's hierarchy. Transforming this 
bone will transform the entire model, so our basic scaling, rotation, and positioning happen 
here. Notice that we are drastically scaling down the model of the tank, to a scale of 0.005f. 
The tank model is quite large in raw units, so we need to scale it to a size that is in line with 
the scale we used for our terrain.

Next, we use the boneTransforms array we created earlier by calling the model's 
CopyAbsoluteBoneTransformsTo() method. This method calculates the resultant 
transforms for each of the bones in the model, taking into account all of the parent bones 
above it, and copies these values into the specified array.

We then loop through each mesh in the model. A mesh is an independent piece of the 
model, representing a movable part. Each of these meshes can have multiple effects tied to 
it, so we loop through those as well, using an instance of BasicEffect created on the spot 
to render the meshes.

In order to render each mesh, we establish the mesh's world location by looking up the 
mesh's parent bone transformation and storing it in the World matrix. We apply our View 
and Projection matrices just like before, and enable default lighting on the effect. Finally, we 
draw the mesh, which sends the triangles making up this portion of the model out to the 
graphics card.
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The tank model
The tank model we are using is from the Simple Animation sample for 
XNA 4.0, available on Microsoft's MSDN website at http://xbox.
create.msdn.com/en-US/education/catalog/sample/
simple_animation. The license document for the model is included in 
the graphics package archive for this chapter.

Bringing things down to earth
You might have noticed that our tank is not actually sitting on the ground. In fact, we have 
set our terrain scaling so that the highest point in the terrain is at 30 units, while the tank is 
positioned at 40 units above the X-Z plane.

Given a (X,Z) coordinate pair, we need to come up with a way to determine what height we 
should place our tank at, based on the terrain.

Time for action – terrain heights
To place our tank appropriately on the terrain, we first need to calculate, then place our tank 
there. This is done in the following steps:

1. Add a helper method to the Terrain class to calculate the height based on a given 
coordinate as follows:
#region Helper Methods
public float GetHeight(float x, float z)
{
    int xmin = (int)Math.Floor(x);
    int xmax = xmin + 1;
    int zmin = (int)Math.Floor(z);
    int zmax = zmin + 1;

    if (
        (xmin < 0) || (zmin < 0) || 
        (xmax > heights.GetUpperBound(0)) || 
        (zmax > heights.GetUpperBound(1)))
    {
        return 0;
    }
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    Vector3 p1 = new Vector3(xmin, heights[xmin, zmax], zmax);
    Vector3 p2 = new Vector3(xmax, heights[xmax, zmin], zmin);
    Vector3 p3;

    if ((x - xmin) + (z - zmin) <= 1)
    {
        p3 = new Vector3(xmin, heights[xmin, zmin], zmin);
    }
    else
    {
        p3 = new Vector3(xmax, heights[xmax, zmax], zmax);
    }

    Plane plane = new Plane(p1, p2, p3);

    Ray ray = new Ray(new Vector3(x, 0, z), Vector3.Up);

    float? height = ray.Intersects(plane);

    return height.HasValue ? height.Value : 0f; 
}
#endregion

2. In the LoadContent() method of the TankBattlesGame class, modify  
the statement that adds a tank to the battlefield to utilize the GetHeight() 
method as follows:
tanks.Add(
    new Tank(
        GraphicsDevice,
        Content.Load<Model>(@"Models\tank"),
        new Vector3(61, terrain.GetHeight(61,61), 61)));

3. Execute the game and view the tank, now placed on the terrain as shown in the 
following screenshot:
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What just happened?
You might be tempted to simply grab the nearest (X, Z) coordinate from the heights[] 
array in the Terrain class and use that as the height for the tank. In fact, in many cases that 
might work. You could also average the four surrounding points and use that height, which 
would account for very steep slopes.

The drawbacks with those approaches will not be entirely evident in Tank Battles, as our 
tanks are stationary. If the tanks were mobile, you would see the elevation of the tank jump 
between heights jarringly as the tank moved across the terrain because each virtual square 
of terrain that the tank entered would have only one height.

In the GetHeight() method that we just saw, we take a different approach. Recall that the 
way our terrain is laid out, it grows along the positive X and Z axes. If we imagine looking 
down from a positive Y height onto our terrain with an orientation where the X axis grows to 
the right and the Z axis grows downward, we would have something like the following:
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As we discussed when we created our index buffer, our terrain is divided up into squares 
whose corners are exactly 1 unit apart. Unfortunately, these squares do not help us in 
determining the exact height of any given point, because each of the four points of the 
square can theoretically have any height from 0 to 30 in the case of our terrain scale.

Remember though, that each square is divided into two triangles. The triangle is the basic 
unit of drawing for our 3D graphics. Each triangle is composed of three points, and we know 
that three points can be used to define a plane. We can use XNA's Plane class to represent 
the plane defined by an individual triangle on our terrain mesh.

To do so, we just need to know which triangle we want to use to create the plane. In order 
to determine this, we first get the (X, Z) coordinates (relative to the view in the preceding 
figure) of the upper-left corner of the square our point is located in. We determine this point 
by dropping any fractional part of the x and z coordinates and storing the values in xmin and 
zmin for later use.

We check to make sure that the values we will be looking up in the heights[] array are 
valid (greater than zero and less than or equal to the highest element in each direction in the 
array). This could happen if we ask for the height of a position that is outside the bounds of 
our map's height. Instead of crashing the game, we will simply return a zero. It should not 
happen in our code, but it is better to account for the possibility than be surprised later.

We define three points, represented as Vector3 values p1, p2, and p3. We can see right 
away that no matter which of the two triangles we pick, the (xmax, zmin) and (xmin, zmax) 
points will be included in our plane, so their values are set right away.

To decide which of the final two points to use, we need to determine which side of the 
central dividing line the point we are looking for lies in. This actually turns out to be fairly 
simple to do for the squares we are using. In the case of our triangle, if we eliminate the 
integer portion of our X and Z coordinates (leaving only the fractional part that tells us how 
far into the square we are), the sum of both of these values will be less than or equal to the 
size of one grid square (1 in our case) if we are in the upper left triangle. Otherwise our point 
is in the right triangle.
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The code if ((x - xmin) + (z - zmin) <= 1) performs this check, and sets the 
value of p3 to either (xmin, zmin) or (xmax, zmax) depending on the result.

Once we have our three points, we ask XNA to construct a Plane using them, and then  
we construct another new type of object we have not yet used – an object of the Ray class. 
A Ray has a base point, represented by a Vector3, and a direction – also represented by  
a Vector3.

Think of a Ray as an infinitely long arrow that starts somewhere in our world and heads off 
in a given direction forever. In the case of the Ray we are using, the starting point is at the 
zero point on the Y axis, and the coordinates we passed into the method for X and Z. We 
specify Vector3.Up as the direction the Ray is pointing in. Remember from the FPS camera 
that Vector3.Up has an actual value of (0, 1, 0), or pointing up along the positive Y axis.

The Ray class has an Intersects() method that returns the distance from the origin point 
along the Ray where the Ray intersects a given Plane. We must assign the return value 
of this method to a float? instead of a normal float. You may not be familiar with this 
notation, but the question mark at the end of the type specifies that the value is nullable—
that is, it might contain a value, but it could also just contain a null value. In the case of the 
Ray.Intersects() method, the method will return null if the object of Ray class does 
not intersect the object of the Plane class at any point. This should never happen with our 
terrain height code, but we need to account for the possibility.

When using a nullable float, we need to check to make sure that the variable actually has a 
value before trying to use it. In this case, we use the HasValue property of the variable. If it 
does have one, we return it. Otherwise we return a default value of zero.

Animating the tank
Now that we have a tank in our game, let's look at how we can animate the bones defined 
in the model in order to aim the turret and the cannon. We will be adding some temporary 
code to our TankBattlesGame class in order to see our animations in action.

Time for action – tank animation
In order to animate our tank, we perform the following steps:

1. In the constructor of the Tank class, add the following two lines to the end  
of the method:
baseTurretTransform = model.Bones["turret_geo"].Transform;
baseGunTransform = model.Bones["canon_geo"].Transform;
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2. In the Draw() method of the Tank class, add the following before the call to 
model.CopyAbsoluteBoneTransformsTo():
model.Bones["turret_geo"].Transform =
    Matrix.CreateRotationY(TurretRotation) * baseTurretTransform;

model.Bones["canon_geo"].Transform =
    Matrix.CreateRotationX(gunElevation) * baseGunTransform;

3. In the Update() method of the TankBattlesGame class, add some temporary 
code to allow us to animate the tank with the keyboard. Place this code after 
the existing camera movement code, inside the if block that checks for (this.
IsActive) – directly after the current mouse position is stored in previousMouse:
// Begin temporary code
KeyboardState ks = Keyboard.GetState();
if (ks.IsKeyDown(Keys.A))
{
    tanks[0].TankRotation += 0.05f;
}

if (ks.IsKeyDown(Keys.Z))
{
    tanks[0].TankRotation -= 0.05f;
}

if (ks.IsKeyDown(Keys.S))
{
    tanks[0].TurretRotation += 0.05f;
}

if (ks.IsKeyDown(Keys.X))
{
    tanks[0].TurretRotation -= 0.05f;
}

if (ks.IsKeyDown(Keys.D))
{
    tanks[0].GunElevation += 0.05f;
}

if (ks.IsKeyDown(Keys.C))
{
    tanks[0].GunElevation -= 0.05f;
}
//End temporary code
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4. Launch the game, use the mouse to zoom in on the tank, and then use the keyboard 
to rotate the tank with keys A and Z, the turret with keys S and X, and the cannon 
with keys D and C. Our tank would look like the one in the following screenshot:

What just happened?
Each of the bones within the tank model we are using has a name assigned to it. In this case, 
the turret bone is named turret_geo, while the bone for the gun is named canon_geo. 
In step 1, we store the base transformations for these bones so that we have their baseline 
positions, which we will use to apply our modifications to later.

When drawing the model, recall that we can produce a matrix that includes all of the 
transforms we wish to apply by multiplying the component matrices together. This is  
done in step 2.

Finally, we modify the Update() method of the TankBattlesGame class to allow us to use 
the keyboard to modify the various rotation values associated with the parts of our tank. We 
will pull this code back out of our project later, so it is marked with start and end comments 
to make it easy to recognize.

The combatants
Now that we can render and animate tanks, we will add a second tank to our game and 
position the two tanks randomly within the game world.
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Time for action – positioning tanks
To position tanks within our game, perform the following steps:

1. Add the following fields to the declarations area of the TankBattlesGame class:
ContentManager p2Content;
Random rand = new Random();

2. In the Initialze() method of the TankBattlesGame class, add the following 
lines right before the call to base.Initialize():
p2Content = new ContentManager(this.Services);
p2Content.RootDirectory = "Content";

3. Add the StartNewRound() method to the TankBattlesGame class as follows:
public void StartNewRound()
{
    tanks.Clear();

    Vector3 p1Position = 
        new Vector3(rand.Next(8, 56), 0, rand.Next(8, 56));
    Vector3 p2Position = 
        new Vector3(rand.Next(8, 56), 0, rand.Next(8, 56));

    int p1Quadrant = rand.Next(0, 4);

    switch (p1Quadrant)
    {
        case 0: 
            p2Position += new Vector3(64, 0, 64);
            break;

        case 1: 
            p1Position += new Vector3(64, 0, 0);
            p2Position += new Vector3(0, 0, 64);
            break;

        case 2:
            p1Position += new Vector3(0, 0, 64);
            p2Position += new Vector3(64, 0, 0);
            break;

        case 3:
            p1Position += new Vector3(64, 0, 64);
            break;
    }

    p1Position.Y = terrain.GetHeight(p1Position.X, p1Position.Z);
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    p2Position.Y = terrain.GetHeight(p2Position.X, p2Position.Z);

    tanks.Add(
        new Tank(
            GraphicsDevice,
            Content.Load<Model>(@"Models\tank"),
            p1Position));

    tanks.Add(
        new Tank(
            GraphicsDevice,
            p2Content.Load<Model>(@"Models\tank"),
            p2Position));
}

4. In the LoadContent() method of the TankBattlesGame class, remove the 
current code that adds a tank to the Tanks list, and replace it with the following:
StartNewRound();

5. Execute the game. Verify that two tanks have been added to the battlefield in 
opposite quadrants of the map as shown in the following screenshot:
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What just happened?
We logically divide our battlefield into four quadrants, numbered 0, 1, 2, and 3. As our 
battlefield is 128 units on a side, each quadrant is 64 by 64 units. Using this information we 
generate two positions within quadrant 0 (the upper left quadrant). We pad these positions 
a bit to keep the tanks from being too close to the outside edges of the map, or to the 
dividing lines between the quadrants.

Once we have two positions, we randomly select a quadrant for the first tank to occupy. 
In order to position it in the correct quadrant, we add 64 to the X, Z, both, or neither 
components of the position depending on the quadrant we selected. We similarly add offsets 
to the second tank based on the quadrant the first tank is located in, so that the two tanks 
are in diagonally opposite quadrants.

We calculate the height of each of the final points for the tanks and then generate and add 
both of them to the tanks list.

You might be wondering though, why we went through the trouble of creating a second 
instance of the ContentManager class to load the model for the second player's tank. This 
is because when we load a model (or any other resource) with ContentManager, it checks 
to see if it has already loaded that content. If it has, you simply get a pointer to the existing 
content object in memory. In most cases this is not a problem. If we are using the same 
texture in multiple classes in our game, there really is no need to have multiple copies of the 
same data in memory.

With our models, though, the transforms that make up the animations will be changing over 
time. This means that we have to have some way to separate the different instances of our 
tank models from each other. There are, of course, multiple ways to do this. You could write 
your own code to draw the model's meshes, taking each set of bone transforms into account 
and applying them separately.

The approach we have taken here is far simpler. By creating a second instance of 
ContentManager, it does not know that the first instance has already loaded, so it happily 
loads a new copy of it from the disk and supplies it for the second tank. Now both tanks can 
operate independently.
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Summary
We have a pair of tanks on our battlefield now, and they are ready to fight! In this chapter, 
we covered the addition of 3D model content to our project along with the textures to 
support them, loading and displaying a 3D model, and animating a 3D model by applying 
bone transforms.

We have also seen how to precisely determine the elevation of a given point on our terrain 
using Ray/Plane intersection and how to lay the groundwork for our game flow by randomly 
positioning enemy tanks on the battlefield.

In Chapter 7, Tank Battles – Shooting Things we will add interface elements, mixing 2D with 
our 3D world, and allow our tanks to actually fire at each other!
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7
Tank Battles – Shooting Things

We have two tanks facing off on the field of battle, but at the moment, the only 
way we have to control our tanks at all is a few temporary keyboard controls. In 
order to allow the players to interact with our game, we need to present some 
kind of user interface.

In this chapter, we will achieve the following:

 � Implement pseudo event-driven user interface buttons

 � Create and track shots fired by the player

 � Determine where fired shots land

 � Generate 3D particle-based explosions

Interface components
While we currently use an undocumented set of keyboard keys to rotate the various parts of 
our tank, such controls are not very user friendly. After all, if you did not know they were in 
the code, how would you ever know to press them without some kind of prompting?

Instead of using keys, we will implement a basic set of user interface controls right on the 
game screen itself. These will include buttons and text fields, both to provide the player with 
information about the game and to accept user input and commands.

Even in 3D games, most of the user interface (UI) elements will be composed of 2D items, 
so we will return to using SpriteBatch for the first time since our introduction to XNA in 
Chapter 1, Introduction to XNA.
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In designing our user interface, we know we will need to accomplish two main goals:

 � Allow each player to aim their cannon and fire at the opponent

 � Display information about the current aiming values for the cannon, so the player 
can make the appropriate adjustments in subsequent turns to zero in on their target

In order to accomplish this, we will need user interface controls that perform roughly the 
same jobs as the Windows Forms label and button controls. We will create a hierarchy 
of classes to support our interface needs, starting with a simple base class that our other 
controls can build on.

The UIWidget class
We will begin the process of creating these controls by creating a base class for all of the 
controls our game will be able to handle, called the UIWidget class.

Time for action – creating the UIWidget class
In order to build a base class for all of the game controls, perform the following steps:

1. Download the 7089_07_GRAPHICSPACK.ZIP file from the book's companion 
website and extract its contents to a temporary folder.

2. Select the two .png files (button_50px.png and Explosion.png) from the 
graphics package and copy them to the Windows clipboard.

3. In Visual Studio, right-click on the Textures folder in the TankBattlesContent 
(Content) project and select Paste to add the textures to your game.

4. Back in the temporary folder, select the Sphere.x file and the Sphere folder and 
copy them to the Windows clipboard.

5. Paste these items into the Models folder in Solution Explorer.

6. Right-click on the Sphere folder under Models in Solution Explorer and select 
Exclude from Project.

7. Add a new class file called UIWidget.cs to the TankBattlesGame project.

8. Add the following using declarations at the beginning of the UIWidget.cs file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
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9. Add properties to the UIWidget class as follows:
#region Properties
public string ID { get; private set; }
public bool Visible { get; set; }
public Vector2 Position { get; set; }
#endregion

10. Add a constructor to the UIWidget class as follows:
#region Constructor
public UIWidget(string id, Vector2 position)
{
    ID = id;
    Position = position;
    Visible = false;
}
#endregion

11. Add empty Update() and Draw() methods to the UIWidget class as follows:
#region Virtual methods
public virtual void Update(GameTime gameTime)
{

}

public virtual void Draw(SpriteBatch spriteBatch)
{

}
#endregion

What just happened?
In steps 1 through 6, we add the various content items we will use throughout this chapter 
to the game's content project. Just as with our tank model, we exclude the texture files for 
the sphere (contained in the Sphere folder) from the content project because they will be 
referenced by the model importer.

Beginning in step 7, we construct the UIWidget, which does not do a whole lot on its own. 
In fact, it only has two methods, and neither of them does anything at all! The real purpose 
of the UIWidget class is to provide the common properties that our different UI controls will 
have so that we do not need to duplicate them in each of our subsequent classes.
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All of our UI components will have an ID that uniquely identifies the UI element. If you are 
familiar with Windows Forms programming, think of this as the object name of the textbox, 
button, label, or whatever other control you are creating.

Additionally, all UI elements will have a flag that marks them as visible and an onscreen 
position. These values are tracked in the Visible and Position properties, respectively. 
In the constructor, we set the Visible property to false by default, which will allow us 
to create all of our UI elements ahead of time and only show them when they should be 
displayed on the screen instead of creating them and setting each one invisible.

Using a base class also makes it possible to update and draw our UI elements as a group. As 
our text block and button classes will inherit from the UIWidget class, they can be treated 
as UIWidget objects from a code standpoint. We will look at this more closely after we have 
created our UI classes and added them to the game.

UITextblocks
The first type of UIWidget we create will hold text to be displayed on the screen. It will not 
have any type of associated graphics or interactivity, so it is not much complicated than the 
UIWidget itself.

Time for action – creating UITextblocks
To create the UITextblock class, perform the following steps:

1. Add a new class file called UITextblock.cs to the TankBattlesGame project.

2. Add the following using directives at the beginning of the UITextblock class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Modify the declaration of the UITextblock class to derive it from UIWidget by 
adding : UIWidget at the end of the declaration. The class declaration should be 
as follows:
class UITextblock : UIWidget

4. Add properties to the UITextblock class as follows:
#region Properties
public Vector2 TextOffset { get; set; }
public SpriteFont Font { get; set; }
public string Text { get; set; }
public Color TextTint { get; set; }
#endregion
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5. Add a constructor to the UITextblock class as follows:
#region Constructor
public UITextblock(
    string id, 
    Vector2 position, 
    Vector2 textOffset, 
    SpriteFont font, 
    string text, 
    Color textTint)
    : base(id, position)
{
    TextOffset = textOffset;
    Font = font;
    Text = text;
    TextTint = textTint;
}
#endregion

6. Add an override Draw() method to the UITextblock class as follows:
#region Draw
public override void Draw(SpriteBatch spriteBatch)
{

    if (Visible)
    {
        spriteBatch.DrawString(
            Font, 
            Text, 
            Position + TextOffset, 
            TextTint);
    } 
            
    base.Draw(spriteBatch);
}
#endregion

What just happened?
We have added a number of properties to our UITextblock, all dealing with the text that 
will be displayed. We store a text offset (which will be relative to the position of the widget 
itself), the font we will use to draw the text, the text to draw, and the color to use.
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Remember that because a UITextblock is a UIWidget, it already has the ID, Visible, 
and Position properties available to it as well. We do not need to recreate them in the 
UITextblock class itself.

Our constructor passes the id and position parameters along to the base UIWidget 
constructor, and uses the text-related parameters to set the properties of this particular text 
block. As we are passing variables to the constructor of the UIWidget class, we only need to 
initialize properties here that are specific to the UITextblock class.

When drawing our text block, we make sure the control should be visible first, and then use 
SpriteBatch.DrawString() to render it if it should be displayed. Finally, the Draw() 
method calls its base class' Draw() method. In the case of the UIWidget base class, nothing 
further is drawn since the Draw() method is empty.

It may not be immediately obvious why we use TextOffset in the UITextblock class. 
After all, UIWidget itself has a Position property, so why not simply use that? While the 
text offset might have other uses, (for example, if you expanded the class to support right-
aligned, or centered text) the primary reason we are implementing it here is because the 
buttons we create will actually be based on the UITextblock class.

UIButtons
Instead of deriving directly from UIWidget, the UIButton class will inherit from 
UITextblock. Specifying a text-specific offset allows us to treat the position of the  
text in any child control differently than the position of the control itself.

Time for action – creating buttons
The UIButton class for Tank Battles can be created as follows:

1. Add a new class file called UIButtonArgs.cs to the TankBattlesGame project.

2. Add the following using declaration at the beginning of the UIButtonArgs  
class file:
using Microsoft.Xna.Framework;

3. Modify the declaration of the UIButtonArgs class to derive it from the System.
EventArgs class by adding : System.EventArgs at the end of the declaration 
line. The declaration should read:
class UIButtonArgs : System.EventArgs
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4. Add properties to the UIButtonArgs class as follows:
#region Properties
public Vector2 Location { get; private set; }
public string ID { get; private set; }
#endregion

5. Add a constructor to the UIButtonArgs class as follows:
#region Constructor
public UIButtonArgs(string id, Vector2 location)
{
    ID = id;
    Location = location;
}
#endregion

6. Add another new class file, this time called UIButton.cs to the 
TankBattlesGame project.

7. Add the following using directives to the UIButton class:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

8. Change the declaration of the UIButton class to derive it from the UITextblock 
class by adding : UITextblock at the end of the line. The declaration should read:
class UIButton : UITextblock

9. Add properties to the UIButton class:
#region Properties
public Texture2D Texture { get; set; }
public bool Disabled { get; set; }
public bool Pressed { get; set; }
public Rectangle Bounds { get; private set; }
#endregion

10. Add a delegate and an event declaration to the UIButton class as follows:
#region Event-related Items
public delegate void ClickHandler(object sender, UIButtonArgs e);
public event ClickHandler Clicked;
#endregion

11. Add a constructor to the UIButton class as follows:
#region Constructor
public UIButton(
    string id, 
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    Vector2 position, 
    Vector2 textOffset, 
    SpriteFont font, 
    string text, 
    Color textTint, 
    Texture2D texture) 
    : base(id, position, textOffset, font, text, textTint)
{
    Texture = texture;
    this.Bounds = new Rectangle(
        (int)position.X,
        (int)position.Y,
        Texture.Width,
        Texture.Height / 3);
}
#endregion

12. Add helper methods to the UIButton class as follows:
#region Helper Methods
public bool Contains(Point location)
{
    return Visible && Bounds.Contains(location);
}

public bool Contains(Vector2 location)
{
    return Contains(new Point((int)location.X, (int)location.Y));
}

public void HitTest(Point location)
{
    if (Visible && !Disabled)
    {
        if (Contains(location))
        {
            Pressed = true;
            Clicked(
                this, 
                new UIButtonArgs(
                    this.ID, 
                    new Vector2(location.X, location.Y)));
        }
        else
        {
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            Pressed = false;
        }
    }
}
#endregion

13. Add a new Draw() method to the UIButton class as follows:
#region Draw
public override void Draw(SpriteBatch spriteBatch)
{
    if (Visible)
    {
        Point drawBase = Point.Zero;

        if (Disabled)
            drawBase = new Point(0, Bounds.Height);

        if (Pressed)
            drawBase = new Point(0, Bounds.Height * 2);

        spriteBatch.Draw(
            Texture, 
            Position, 
            new Rectangle(
                drawBase.X, drawBase.Y, 
                Bounds.Width, Bounds.Height), 
            Color.White);
    }

    base.Draw(spriteBatch);
}
#endregion

What just happened?
We actually create two classes to support our buttons here. The first is a small class derived 
from System.EventArgs, which we will use to pass information back to our game when 
the player clicks on a button object. When that happens, we will pass back the ID of the 
button that was clicked and the screen location of the mouse when the click happened. We 
will not actually make use of the screen location for our button code here, but if you were 
to create a spinner-type control, with two subbuttons on it (one for spinning up, one for 
spinning down) you could use this information to determine which of the subareas the user 
clicked on.
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The UIButton class itself adds yet more properties in addition to those inherited from 
UIWidget and UITextblock. This time, we add a texture that will represent the button 
on the screen. We also declare two Boolean variables, Disabled and Pressed, which will 
alter the visual representation of the button on the screen. The Disabled flag will also be 
checked to determine if the user is allowed to interact with the button. Finally, we store a 
rectangle that holds the screen area the button occupies, so that we can easily check to see 
if any given point lies inside the button.

The next two declarations, labeled as the Event-related Items region, will allow us to 
hook up an event in our main game code that will be fired whenever the button is pressed. 
We will be implementing a quasi-event-driven system for the UI elements in our game.

In a Windows Forms application, we have Windows itself always watching what the user is 
doing and sending messages to controls that get clicked on, causing them to fire their events. 
We do not have the same type of built-in functionality in XNA, so we will implement a similar 
system inside the game's Update()/Draw() loop.

Events versus Polling
It would be completely valid to do away with all of the event-based code 
in our UI classes and instead poll each control during the Update() 
method. In fact, even though we are using an event-style system we will 
still have to implement a polling-style mechanism to tell each control to 
check if it should fire its event.
The biggest advantage to the event system we are implementing would 
be evident while adding new controls and new types of controls. Instead 
of modifying a large conditional statement to include functionality for the 
new controls, we would simply need to add instances of the control and 
create a new callback method to handle what happens when the user 
interacts with them.

In the constructor of UIButton, we cache the texture, and then calculate a rectangle to 
store the bounds of the image we want to draw to the screen. Notice that the height of 
the bounding rectangle is equal to the height of the image divided by three. We will be 
borrowing a trick from CSS-based web development to build buttons that contain multiple 
states (normal, disabled, and pressed) in the same image, stacked on top of each other.
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The image files for our buttons have a normal button at the top, a grayed out disabled button 
in the middle, and a button with a beveled edge at the bottom to be displayed while the 
button is pressed.

We can see this in action if we skip briefly to the Draw() method in step 13. Draw() 
assumes a 0-pixel offset for the source rectangle when drawing the button. It then modifies 
this offset if the Disabled or Pressed properties are true.

Returning to step 12, we set up a pair of shortcut methods called Contains() to determine 
if a given point lies within the screen coordinates of the button. We then use these 
methods during the HitTest() method, which checks to see if the button is available for 
pressing—that is, it is both visible and not disabled. If the button can be clicked, we check 
to see if the passed location is within the button's area. If so, we set Pressed to true 
and call the Clicked delegate, which we will hook up when we create our buttons in the 
TankBattlesGame class shortly.

Working with our UI objects
Instead of embedding all of the code to create buttons and other UI elements into our  
game code, we will put together a static helper class, called UIHelper, to do some of this 
work for us.

Time for action – adding the UIHelper class
In order to add the static helper class, perform the following steps:

1. Add a new class file called UIHelper.cs to the Tank Battles project.

2. Add the following using directives at the beginning of the UIHelper class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

3. Modify the declaration of the class to add the modifier static before it. The new 
class declaration should read:
static class UIHelper

4. Add fields to the UIHelper class as follows:
#region Fields
public static Texture2D ButtonTexture;
public static SpriteFont ButtonFont;
#endregion
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5. Add methods to the UIHelper class as follows:
#region Helper Methods
public static UIButton CreateButton(
    string id, 
    string text, 
    int x, 
    int y)
{
    UIButton b = new UIButton(
        id,
        new Vector2(x,y),
        new Vector2(25 - ButtonFont.MeasureString(text).X / 2, 
10),
        ButtonFont,
        text,
        Color.White,
        ButtonTexture);

    b.Disabled = false;
    return b;
}

public static UITextblock CreateTextblock(
    string id, 
    string text, 
    int x,
    int y)
{
    UITextblock b = new UITextblock(
        id,
        new Vector2(x,y),
        Vector2.Zero,
        ButtonFont,
        text,
        Color.White);

    return b;
}

public static void SetButtonState(
    string prefix, 
    Boolean disabled, 
    Dictionary<string, UIWidget> uiElements)
{
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    foreach (string widget in uiElements.Keys)
    {
        if (uiElements[widget].ID.StartsWith(prefix))
            if (uiElements[widget] is UIButton)
                ((UIButton)uiElements[widget]).Disabled = 
disabled;
    }
}

public static void SetElementVisibility(
    string prefix, 
    Boolean visible, 
    Dictionary<string, UIWidget> uiElements)
{
    foreach (string widget in uiElements.Keys)
    {
        if (uiElements[widget].ID.StartsWith(prefix))
            ((UIWidget)uiElements[widget]).Visible = visible;
    }
}

public static void SetElementText(UIWidget uiElement, string text)
{
    if (uiElement is UITextblock)
        ((UITextblock)uiElement).Text = text;
}
#endregion

6. In the Solution Explorer pane in Visual Studio, right-click on the Fonts folder in the 
TankBattlesContent (Content) project and select Add | New Item.

7. From the Add New Item window, select Sprite Font from the center pane.

8. Enter Pericles14.spritefont as the name of the font file and click on Add.

9. In the XML font definition document that opens automatically, change the font 
name (Between the <FontName> and </FontName> tags) from Segoe UI Mono  
to Pericles.

10. In the LoadContent() method of the TankBattlesGame class, initialize the 
UIHelper class with the texture we added at the beginning of this chapter, and  
the font we just created. Place this code before the call to StartNewRound()  
as follows:

UIHelper.ButtonTexture =
    Content.Load<Texture2D>(@"Textures\button_50px");
UIHelper.ButtonFont = 
    Content.Load<SpriteFont>(@"Fonts\Pericles14");
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What just happened?
The first thing to note about the UIHelper class is that the class itself is declared as 
static, meaning that we will never create an instance of UIHelper. Since the class is 
static, all of its members must also be static.

The UIHelper class has two basic jobs. First, it makes it easy for us to create instances of the 
UIButton and UITextblock classes via the CreateButton() and CreateTextblock() 
methods respectively. These methods accept the ID, text to display, and position of the 
element and use the preconfigured font and texture (for a button) settings to create the 
elements. In the case of a button, the text offset is calculated to center the text on the 
button's surface. In reality, these methods are just shortcuts to reduce the work we need to 
do in our main game code for each UI element we create.

The second job of the UIHelper class is to allow other parts of our code to easily 
interact with our UI elements. To accomplish this, we have the SetButtonState(), 
SetElementVisibility(), and SetElementText() methods. Two of these methods, 
SetButtonState() and SetElementVisibility(), accept an ID prefix and a dictionary 
of UI elements. They iterate through the list and apply the appropriate setting (enabled, 
disabled, visible, or hidden) to each matching element in the dictionary.

The SetElementText() method accepts a UIWidget and a text string. It ensures that the 
element can be cast as a UITextBlock. As long as this is true, the method goes ahead and 
sets the Text property of the passed UIWidget object to the text string provided to it.

What's with all the casting and type checking?
As we are using the UIWidget class as a base class from which the 
UITextBlock class is derived, all UITextBlock objects are UIWidget 
objects. Additionally, all UIButton objects are UITextBlock objects and 
therefore UIWidget objects. If we want to set the Text value of a button, 
which is a property of the UITextBlock class, we can ask C# to treat the 
button as a UITextBlock object so that we do not have to manage text 
blocks and buttons separately. In the case of SetElementVisiblity(), 
the Visible property is a property of the UIWidget class, so all three of 
our classes can be treated as UIWidgets for setting visibility.

In the remainder of the steps we just saw, we added a new SpriteFont object to our project 
and initialized the UIHelper class by setting both the ButtonTexture and ButtonFont 
values. These are then used by the CreateButton() method for all future buttons.

Creating the user interface
Now that we have the groundwork in place, we can actually start adding UI elements to our 
game screen. We will add a series of buttons for each player, and some informational text 
blocks to use when aiming shots.
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Time for action – creating the UI
To create the user interface for our game, perform the following steps:

1. Add the following declaration to the declarations area of the TankBattlesGame 
class as follows:
Dictionary<string, UIWidget> uiElements = 
    new Dictionary<string, UIWidget>();

2. Create a new region in the TankBattlesGame to hold UI-related code as follows:
#region User Interface
#endregion

3. In the new User Interface region, add a shell for a callback method for handling 
button-click events as follows:
void UIButton_Clicked(object sender, UIButtonArgs e)
{

}

4. Still inside the User Interface region, add the CreateUIElements() method 
as follows:
public void CreateUIElements()
{
  uiElements.Add("p1Up", 
    UIHelper.CreateButton("p1Up", "U", 60, 10));
  uiElements.Add("p1Down", 
    UIHelper.CreateButton("p1Down", "D", 60, 65));
  uiElements.Add("p1Left", 
    UIHelper.CreateButton("p1Left", "L", 5, 35));
  uiElements.Add("p1Right", 
    UIHelper.CreateButton("p1Right", "R", 115, 35));
  uiElements.Add("p1Fire",
    UIHelper.CreateButton("p1Fire", "Fire", 175, 35));
  uiElements.Add("p1Rotation",
    UIHelper.CreateTextblock("p1Rotation", "x", 5, 120));
  uiElements.Add("p1Elevation",
    UIHelper.CreateTextblock("p1Elevation", "x", 5, 135));

  uiElements.Add("p2Up", 
    UIHelper.CreateButton("p2Up", "U", 685, 10));
  uiElements.Add("p2Down", 
    UIHelper.CreateButton("p2Down", "D", 685, 65));
  uiElements.Add("p2Left", 
    UIHelper.CreateButton("p2Left", "L", 630, 35));
  uiElements.Add("p2Right", 
    UIHelper.CreateButton("p2Right", "R", 740, 35));
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  uiElements.Add("p2Fire",
    UIHelper.CreateButton("p2Fire", "Fire", 570, 35)); 
  uiElements.Add("p2Rotation",
    UIHelper.CreateTextblock("p2Rotation", "x", 580, 120));
  uiElements.Add("p2Elevation",
    UIHelper.CreateTextblock("p2Elevation", "x", 580, 135));

  foreach (UIWidget widget in uiElements.Values)
  {
      if (widget is UIButton)
      {
          ((UIButton)widget).Clicked += new 
              UIButton.ClickHandler(UIButton_Clicked);
      }
  }
}

5. In the LoadContent() method of the TankBattlesGame class, right after the 
initialization of the ButtonTexture and ButtonFont values of the UIHelper 
class, call the CreateUIElements() method as follows:
CreateUIElements();
UIHelper.SetElementVisibility("p", true, uiElements);

6. In the Update() method of the TankBattlesGame class, just before the line that 
reads previousMouse = mouse; add the following code:
if (mouse.RightButton == ButtonState.Released)
{
    if (mouse.LeftButton == ButtonState.Pressed)
    {
        foreach (UIWidget widget in uiElements.Values)
        {
            if (widget is UIButton)
            {
                ((UIButton)widget).HitTest(
                    new Point(mouse.X, mouse.Y));
            }
        }
    }
    else
    {
        foreach (UIWidget widget in uiElements.Values)
        {
            if (widget is UIButton)
            {
                ((UIButton)widget).Pressed = false;
            }
        }
    }
}
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7. In the Draw() method of the TankBattlesGame class, just after the call to 
GraphicsDevice.Clear() add the following code:
GraphicsDevice.DepthStencilState = DepthStencilState.Default;

8. Still in the Draw() method of the TankBattlesGame class, just before the call to 
base.Draw(), add the following code:
spriteBatch.Begin();

foreach (UIWidget widget in uiElements.Values)
    widget.Draw(spriteBatch);

spriteBatch.End();

9. Execute the game to see the new interface buttons as shown in the  
following screenshot:

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Tank Battles – Shooting Things

[ 160 ]

What just happened?
We keep all of our user interface elements in a Dictionary object, with the string-based ID 
that we assign to each element as the dictionary key.

In step 3, we define a shell for the UIButton_Clicked() method, which we will soon fill 
out to handle the user clicking on one of our user interface buttons. For now though, let's 
look at the largest of the code blocks that we just saw—the CreateUIElements() method.

In this method, we make repeated use of the UIHelper class' methods to create our 
interface elements and add them to the UIElements dictionary. Each element is assigned 
an ID, with the elements for the first player beginning with p1 and the elements for the 
second player starting with p2.

After all of the elements have been created, we loop through each element in the dictionary 
and look for items of the UIButton type. For each button, we hook up the UIButton_
Clicked event—the empty event handler we created in step 3.

In step 5, we actually call CreateUIElements() during the game's LoadContent() 
method. We follow this immediately with a call to UIHelper.SetElementVisiblity(), 
telling it to make all UI elements with names starting with p visible. This is actually only a 
temporary measure so that we can see the buttons and text blocks in this chapter. When 
we build the game-state system around the game in the next chapter, we will control the 
visibility of the buttons based on the current game state.

In step 6, we implement the code to check each of our buttons to see if the player is pressing 
them. We check to make sure that the right mouse button is not pressed and the left mouse 
button is. This is important because the mouse pointer is hidden when the player is using the 
right mouse button to move the camera. Potentially, the player could move the mouse over 
one of the buttons while it is invisible and cause the button to be pressed.

Assuming the buttons are in the correct configuration, we loop through each UIElement 
and call the HitTest() method on any button element, giving it the current location 
of the mouse. The HitTest() method will call the callback method we defined earlier 
(UIButton_Clicked()) if the mouse lies within the bounds of the button. HitTest() also 
sets the button's Pressed property to true if appropriate.

If the user is not pressing either mouse button, the update code runs through each button in 
the interface and sets Pressed to false to make sure they do not continue to be displayed 
as Pressed when they should not be.
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We make two modifications to the Draw() method in steps 7 and 8. First, we set the 
DepthStencilState to DepthStencilState.Default. Whenever you mix 2D and 3D 
graphics in XNA, you need to remember to reset the value of the DepthStencilState 
setting, because drawing with SpriteBatch alters it internally. Go ahead and try 
commenting this line out and running the program, and you will notice that you can see 
through objects and terrain in strange ways, as if all of the pieces of them are piled up on top 
of each other.

We will go into more detail about the DepthStencilState when we discuss particle 
effects later in this chapter. For now, we simply need to set it back to its default value before 
we draw any of our 3D graphics.

Drawing the UI elements themselves is just a matter of looping through each item in the 
dictionary and calling its own Draw() method.

Responding to interface events
We have two sets of buttons (one set for each player), along with four informational  
text blocks on our display. We now need to hook these buttons up to the game controls  
so they actually do something. In order to accomplish this, we will flesh out the  
UIButton_Clicked() method that we added to the TankBattlesGame class.

Time for action – responding to events
To enable our buttons to do something, we need to add code to the UIButton_Clicked() 
method by performing the following steps:

1. Modify the UIButton_Clicked() method in the TankBattlesGame class to 
respond to button clicks as follows:
void UIButton_Clicked(object sender, UIButtonArgs e)
{
    int playerNumber = int.Parse(e.ID.Substring(1, 1)) - 1;
    string buttonName = e.ID.Substring(2);

    switch (buttonName)
    {
        case "Left":
            tanks[playerNumber].TurretRotation += 0.01f;
            break;

        case "Right":
            tanks[playerNumber].TurretRotation -= 0.01f;
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            break;

        case "Up":
            tanks[playerNumber].GunElevation -= 0.01f;
            break;

        case "Down":
            tanks[playerNumber].GunElevation += 0.01f;
            break;

        case "Fire":
            break;
    }
}

2. In the User Interface region of the TankBattlesGame class, add a helper 
method for updating the contents of the four text blocks on the screen as follows:
private void UpdateTextBlocks()
{
    float p1Elevation = 
        MathHelper.ToDegrees(tanks[0].GunElevation) * -1;
    float p1Rot = MathHelper.ToDegrees(tanks[0].TurretRotation);
    p1Rot = 180 - p1Rot;

    UIHelper.SetElementText(
        uiElements["p1Rotation"],
        "Angle: " + p1Rot.ToString("N2"));

    UIHelper.SetElementText(
        uiElements["p1Elevation"], 
        "Elevation: " + p1Elevation.ToString("N2"));

    float p2Elevation = 
        MathHelper.ToDegrees(tanks[1].GunElevation) * -1;
    float p2Rot = MathHelper.ToDegrees(tanks[1].TurretRotation);
    p2Rot = 180 - p2Rot;

    UIHelper.SetElementText(
        uiElements["p2Rotation"],
        "Angle: " + p2Rot.ToString("N2"));
 

    UIHelper.SetElementText(
        uiElements["p2Elevation"],
        "Elevation: " + p2Elevation.ToString("N2"));
}
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3. In the Update() method of the TankBattlesGame class, call the 
UpdateTextBlocks() method right after the statement previousMouse = 
mouse;:
UpdateTextBlocks();

4. Still in the Update() method of the TankBattlesClass, remove all of the 
temporary code that we added to allow for keyboard rotation of the tank elements. 
This code is marked with //Begin Temporary Code and //End Temporary 
Code comments.

5. Execute the game and use the buttons to rotate the tank turrets and elevate their 
cannons as shown in the following screenshot:

What just happened?
To determine which button event we are responding to, we dissect the ID value that is 
passed to the UIButton_Clicked() event handler. First, we extract the second character 
from the ID, which will have the player number that the button is intended for. Remember 
that the first tank in the tanks list is tanks[0], so we subtract 1 from the player number to 
get the actual internal player number value.

The remainder of the string is stored in the buttonName variable, which is then checked for 
the various button types (Left, Right, Up, Down, and Fire). For most of these variables, all 
that is necessary is to increment or decrement one of the rotation values associated with the 
player's tank.
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In UpdateTextBlocks(), we need to make a few adjustments to the raw values stored 
with the tanks for the sake of user friendliness. First, the elevation value for the tank's 
cannon ranges from 0 (horizontal) to -90 (straight up). We multiply the elevation value  
by -1 in order to make this value positive for display purposes.

Similarly, rotation is stored in radians, and when converted to degrees, will have a value 
between -180 and 180. In order to eliminate the negative value and align zero with what  
we have been considering the top of the map, we subtract the converted value of the 
rotation angle from 180. This gives us numbers in the range of 0 to 360 degrees as the  
player might expect.

The one button we have not yet accounted for is the FIRE button. In order to hook up this 
functionality, we will need to do a bit more groundwork. After all, we do not yet have any 
ammunition for the players to fire at each other!

Firing shots
We need some kind of visual representation of the cannonballs that will be fired between 
the players, and as it happens, we have already added a model file called Sphere.x to our 
content project.

This model is somewhat different than our Tank model. First of all, the model is really 
nothing more than a sphere created in a 3D graphics program with a very basic brick texture. 
The model was saved as a binary encoded .x file (Microsoft's DirectX model format), so 
we cannot open it up like we can open the tank's .fbx file and look at the contents with a 
simple text editor.

Time for action – ShotManager-part 1
To manage the shots fired at each other by the tanks, we will add a ShotManager class by 
performing the following steps:

1. Add a new class file called ShotManager.cs to the Tank Battles project.

2. Add the following declarations at the beginning of the ShotManager class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Modify the declaration of the class to make it a static class. The class definition line 
should now read as follows:
static class ShotManager
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4. Add fields to the ShotManager class as follows:
#region Fields
public static Model ShotModel;
public static Vector3 Position;
public static Vector3 Velocity;
public static Vector3 Gravity = new Vector3(0, -20, 0);
public static bool ShotActive = false;
public static bool HitProcessed = true;
public static Terrain Terrain;
private static float modelScale = 0.2f;
#endregion

5. Add a method to fire shots to the ShotManager class as follows:
#region Shot Handling
public static void FireShot(
    Vector3 startingPosition, 
    Vector3 initialVelocity)
{
    if (!ShotActive)
    {
        Position = startingPosition;
        Velocity = initialVelocity;
        ShotActive = true;
        HitProcessed = false;
    }
}
#endregion

6. Add the Update() method to the ShotManager class as follows:
#region Update
public static void Update(GameTime gameTime)
{
    if (ShotActive)
    { 
        float elapsed = (float)gameTime.ElapsedGameTime.
TotalSeconds;

        Position += (Velocity * elapsed);
        Velocity += (Gravity * elapsed);

        if (Position.Y < Terrain.GetHeight(Position.X, 
Position.Z))
        {
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            ShotActive = false;
        }
    }
}
#endregion

7. Add the Draw() method to the ShotManager class as follows:
#region Draw
public static void Draw(ArcBallCamera camera)
{
    if (ShotActive)
    {
        ShotModel.Root.Transform = Matrix.Identity *
            Matrix.CreateScale(modelScale) *
            Matrix.CreateTranslation(Position);

        foreach (ModelMesh mesh in ShotModel.Meshes)
        {
            foreach (BasicEffect basicEffect in mesh.Effects)
            {
                basicEffect.World = ShotModel.Root.Transform;
                basicEffect.View = camera.View;
                basicEffect.Projection = camera.Projection;

                basicEffect.EnableDefaultLighting();
            }

            mesh.Draw();
        }
    }
}
#endregion

8. In the declarations section of the TankBattlesGame class, add a float variable to 
control the power of fired shots:
float shotPower = 50f;

9. At the end of the LoadContent() method of the TankBattlesGame class, 
initialize the ShotManager class as follows:
ShotManager.ShotModel = Content.Load<Model>(@"Models\Sphere");
ShotManager.Terrain = terrain;
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10. In the Update() method of the TankBattlesGame class, just before the call to 
base.Update() add the following line of code:
ShotManager.Update(gameTime);

11. In the Draw() method of the TankBattlesGame class, add the following to draw 
the ShotManager right before the spriteBatch.Begin() call that begins the 
drawing of the UI widgets:
ShotManager.Draw(camera);

12. In the UIButton_Clicked() method of the TankBattlesGame class, modify the 
case section for the FIRE buttons as follows:
case "Fire":
    Vector3 fireAngle = Vector3.Zero;
    float rotation = tanks[playerNumber].TankRotation;
    rotation += tanks[playerNumber].TurretRotation;
    float elevation = tanks[playerNumber].GunElevation;
                        
    Matrix rotMatrix = Matrix.CreateFromYawPitchRoll(
        rotation,
        MathHelper.ToRadians(90) + elevation, 0);
                        
    fireAngle = Vector3.Transform(Vector3.Up, rotMatrix);
    fireAngle.Normalize();
  
    ShotManager.FireShot(
        tanks[playerNumber].Position + 
            new Vector3(0f, 1f, 0f) + fireAngle * 2,
        fireAngle * shotPower);
    break;

13. Execute the game and use the buttons to rotate the tank turrets, raise the gun 
elevations, and fire off a few shots as shown in the following screenshot:
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What just happened?
We have quite a bit going on here, so we will break it down step-by-step to see how 
ShotManager works.

In steps 1 through 3 we create the ShotManager class, declaring the class to be static. 
Just like our UIManager, we will not be creating instances of the ShotManager class. It is 
available to the rest of our code as is.

We declare fields in step 4. We begin with the ShotModel field, which holds the sphere 
model we will use to represent the cannon ball. Next, the Position field tracks the current 
location of the shot in 3D space. The Velocity field represents how fast, and in what 
direction, the ball is currently moving.

Each time we apply the value of the shot's Velocity field to its Position field, we will also 
apply the value in the Gravity field to the Velocity field. In our case, the Gravity field is 
defined as a Vector3 object pointing down with a length of 20 units.

When a shot is fired, ShotActive will be set to true, and HitProcessed will be set to 
false. We will eventually use these variables to determine when another shot can be fired 
and to check to see if the shot impacted close enough to the enemy tank to score a hit.

In order to determine where a shot has impacted, the ShotManager needs to know about 
the terrain being used in the game, so we store the current terrain in the Terrain field. 
Finally, as the raw sphere model is about as large as one of our scaled down tanks, we 
need to scale the cannon ball model down to a reasonable size. We define this size in the 
modelScale field, with a value of 0.2f.

Actually firing a shot in step 5 is fairly straightforward from the point of view of the 
ShotManager. It accepts an initial position for the shot and a velocity. Assuming a shot is not 
already active, it sets these two values and sets the ShotActive and HitProcessed flags.

In step 6, we see how the fired shot actually travels. Each time through the update loop, 
the current value of the Velocity field is added to the shot's position. The value of 
the Gravity field is then added to the Velocity field, resulting in an ever-increasing 
downward pull on the shot's Velocity field. Both of these values are scaled according 
to the amount of game time that has passed since the last update, so even though the 
raw value of the Gravity field indicates downwards by 20 units, that much change in the 
Velocity would take a full second to be applied. One sixtieth of the Gravity field's value 
is added to the Velocity field during each Update() cycle if the game is running at the 
default frame rate.

Drawing our sphere in step 7 is a simplified version of the drawing code used for our tanks. In 
the case of the sphere, we do not need to worry about bone-based transformations, so we 
simply loop through the meshes in the model and draw them.
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The shotPower field, defined in step 8, controls how much force is behind our cannon. This 
determines how quickly the cannon ball will be moving when it leaves the tank.

In steps 9 through 11, we integrate the ShotManager with the TankBattlesGame code, 
initializing the model and providing a link to the terrain we are using. The Update() and 
Draw() methods are integrated into the corresponding methods.

Finally, in step 12 we update the UIButton_Clicked() event handler to account for the 
FIRE buttons. When either of the FIRE buttons is clicked, we combine the rotation of both 
the tank itself and the turret into a single value. We also determine the elevation of the gun.

While we can use the resulting rotation value directly as the yaw parameter for the  
Matrix.CreateFromYawPitchRoll() method, the elevation needs to be modified  
to account for the fact that it runs from 0 to -90 degrees. We simply add 90 degrees to this 
value, and use the result as the pitch parameter. The roll value is zero since we are only 
rotating in two directions.

Using Vector3.Transform(), we apply the matrix we have just created to the standard 
Vector3.Up vector. Recall from our camera implementation that this vector is equal to (0, 
1, 0), and points along the positive Y axis. By applying the rotation matrix generated prior 
to the Vector.Up vector, we obtain a vector pointing in the same direction as our cannon.

All that is left now is to call ShotManager.FireShot() to create our projectile. We supply 
the position of the tank firing the shot, but apply two modifications to it. First, we simply 
bump the position up by one unit along the Y axis. As the origin point of the tank is in the 
center of its base, this elevates the starting point of the projectile off the ground.

The second thing we add to the position is double the fireAngle vector to move the 
projectile out of the center of the tank and along its flight path slightly.

The velocity vector we supply to the FireShot() method is equal to the fireAngle 
multiplied by the shotPower value. This extends the length of the fireAngle vector 
and provides an initial thrust to propel the cannon ball into the air. After it has been fired, 
the rest of the projectile's movement is entirely up to gravity, as implemented in the 
ShotManager class.

Particles in 3D
What happens when the cannon ball hits the ground? Or the enemy tank? Right now, 
nothing, except that the ShotManager is freed up to fire another shot. We need some way 
to visually represent the impact of the cannon ball.

If you have worked with 2D game development, you may have used sprites to create a 
particle system. Particles are usually short-lived small images, many of which are added to 
the scene to create a flashy effect of some kind.
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We can implement a similar system in 3D, but we are immediately faced with a problem. In a 
2D game, we always see the sprites we draw head-on. The 2D pixel image is copied from the 
source and placed at the destination unchanged.

When working in 3D, however, all of our textures are mapped onto triangles (or surfaces 
composed of multiple triangles). If we use a standard quad (two triangles forming a square) 
to display our 3D particles, it will look just fine from one angle.

If our camera is not looking head-on at the image, however, it will shift perspective, until it 
disappears completely if we are looking at it either side-on or from the back (remember that 
all of our 3D drawings so far have been one-sided).

We can use a technique called billboarding to overcome this problem. In 3D terms, a 
billboard is a texture mapped onto a quad that is always rotated to face the camera. 
Billboards are commonly used in 3D games to represent trees (especially at a distance) 
without the need to display complex geometry for objects that will be so far away from the 
camera that the player will not be able to distinguish fine details anyway.

If you have ever been playing a 3D game and noticed that the trees suddenly change shape 
from flat images to full 3D objects as you get close to them, you have seen billboards 
working to simplify 3D rendering. Billboards also work well for particles, as they can ensure 
that the appropriate face of the texture is visible at all times.

Billboarded particles
We will begin building our 3D particle system by defining the Particle class to handle 
the particles themselves. We will be creating hundreds of instances of this class, each one 
responsible for its own drawing and updating.
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Time for action – the Particle class-part 1
To add particles to our game using the Particle class, perform the following steps:

1. Add a new class file called Particle.cs to the Tank Battles project.

2. Add the following declarations at the beginning of the Particle class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Add a region of static fields to the Particle class as follows:
#region Static Fields
public static GraphicsDevice GraphicsDevice;
private static Vector3 Gravity = new Vector3(0, -5, 0);
private static VertexBuffer vertexBuffer;
private static IndexBuffer indexBuffer;
#endregion

4. Add a region of non-static fields to the Particle class as follows:
#region Instance Fields
private Vector3 position;
private Vector3 velocity;
public float duration;
private float initialDuration;
private float scale;
#endregion

5. Add the following property to the Particle class:
#region Properties
public bool IsActive { get { return (duration > 0); }}
#endregion

6. Add a constructor to the Particle class as follows:
#region Constructor
public Particle()
{
    if (vertexBuffer == null)
    {
        InitializeParticles();
    }
}
#endregion
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7. Add the InitializeParticles() method to the Particle class as follows:
#region Static Methods
public static void InitializeParticles()
{           
    VertexPositionTexture[] vertices = new 
VertexPositionTexture[4];

    vertices[0] = new VertexPositionTexture(
        new Vector3(0, 1, 0), new Vector2(0, 0));
    vertices[1] = new VertexPositionTexture(
        new Vector3(1, 1, 0), new Vector2(1, 0));
    vertices[2] = new VertexPositionTexture(
        new Vector3(0, 0, 0), new Vector2(0, 1));
    vertices[3] = new VertexPositionTexture(
        new Vector3(1, 0, 0), new Vector2(1, 1));

    vertexBuffer = new VertexBuffer(
        GraphicsDevice,
        typeof(VertexPositionTexture),
        vertices.Length,
        BufferUsage.WriteOnly);

    vertexBuffer.SetData(vertices);

    int indexCount = 6;
    short[] indices = new short[indexCount];

    indices[0] = 0;
    indices[1] = 1;
    indices[2] = 2;
    indices[3] = 2;
    indices[4] = 1;
    indices[5] = 3;

    indexBuffer = new IndexBuffer(
        GraphicsDevice,
        IndexElementSize.SixteenBits,
        indices.Length,
        BufferUsage.WriteOnly);
    indexBuffer.SetData(indices);
}
#endregion
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What just happened?
The Particle class is not yet complete, but let's stop here and take a look at what we have. 
The first thing you will notice is that the fields for the Particle class are split into two 
groups—static fields and instanced fields. Unlike many of our classes, we will make heavy use 
of static fields and methods in the Particle class, even though the class itself is not a fully 
static class.

The reason we have set the Particle class up this way is that there could be hundreds, or 
even thousands of instances of the Particle class in memory at the same time. Much of 
the data for each particle is shared across all of the particles, so pulling these items out as 
static reduces the resource requirements for our overall particle system.

For example, much like when building our terrain, we define a pair of triangles in the 
InitializeParticles() method and store them in a vertex/index buffer pair. There is 
really no need to store hundreds of these pairs in memory – they will all be identical.

The constructor for the Particle class just checks to see if the InitializeParticles() 
method has been run yet (by checking to see if vertexBuffer has been created). If not, it 
runs the InitializeParticles() method and exits. The first particle instance we create 
will cause the initialization routine to be run, after which creating a new particle involves no 
extra code.

The InitializeParticle() method itself should be very familiar. We have used the 
technique of building vertex and index buffers several times already. Here, we manually 
create four vertices and six indices to tie them together as a quad.

Time for action – finishing the Particle class
We will now finish the Particle class we just created by performing the following steps:

1. Add the Activate() method to the Particle class as follows:
#region Particle Activation
public void Activate(
    Vector3 position, 
    Vector3 velocity, 
    float duration, 
    float scale)
{
    this.duration = duration;
    initialDuration = duration;
    this.position = position;
    this.velocity = velocity;
    this.scale = scale;
}
#endregion
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2. Add the Update() method to the Particle class as follows:
#region Update
public void Update(GameTime gameTime)
{
    float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
    duration -= elapsed;
    velocity += (Gravity * elapsed);
    position += (velocity * elapsed);
}        
#endregion

3. Add the Draw() method to the Particle class as follows:
#region Draw
public void Draw(ArcBallCamera camera, Effect effect)
{
    Matrix billboard = Matrix.CreateBillboard(
        position, 
        camera.Position, 
        Vector3.Up, 
        null);

    effect.Parameters["World"].SetValue(
        Matrix.CreateScale(scale) * billboard );

    effect.Parameters["alphaValue"].SetValue(
        duration/initialDuration);

    foreach (EffectPass pass in effect.CurrentTechnique.Passes)
    {
        pass.Apply();
        GraphicsDevice.SetVertexBuffer(vertexBuffer);
        GraphicsDevice.Indices = indexBuffer;
        GraphicsDevice.DrawIndexedPrimitives(
            PrimitiveType.TriangleList,
            0,
            0,
            6,
            0,
            2);
    }
}
#endregion
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What just happened?
Activating a particle sets the instanced values to the passed parameters. As long as the 
duration is greater than zero, the particle is considered active. We will actually check for 
active particles outside the Particle class itself, when we create a manager class to deal 
with our particles as a group.

Just like our cannon ball, a particle's Update() method applies its current velocity to its 
position and then modifies the velocity by adding the value of the Gravity field to it. In the 
case of the particle system, we have lowered the gravity value compared to the cannon ball 
to allow our particles to float in the air a bit as they drift downwards.

There are a few odd things you may have noticed about the Draw() method for particles. 
First, we seem to be missing all of the preliminaries about setting the current technique for 
the effect we are using. We also never set a texture, or even the view and projection matrices.

As all of our particles will be drawn at the same time, most of this code has been moved out 
of the actual Particle class. When we build the ParticleManager class, we will set all of 
these parameters once before we start drawing. We can save quite a bit of processing time 
simply by not setting the same values several hundred times for each frame.

You will also notice that we use the Matrix.CreateBillboard() method to create 
the matrix that we use when specifying the World matrix for our particle. The Matrix.
CreateBillboard() method does the work of figuring out for us how the quad that 
represents our particle should be rotated to face the camera. Given an object's position, a 
camera position, and the direction that we consider to be up, (our standard Vector3.Up 
in this case) the matrix we get back will position the quad appropriately for viewing the full 
texture, regardless of where our camera is located.

Lastly, we set a parameter on the effect we are using called alphaValue. As this is not one 
of the standard effect parameters, we can tell right away that there is a bit of High Level 
Shader Language (HLSL) work in our future. As a particle gets older, we want it to fade out 
slowly. By setting the alphaValue parameter to duration/initialDuration, we get a 
value ranging between 0.0f and 1.0f that represents how long the particle has left to live. 
The lower the number, the closer the particle is to expiration, and hence lower will be the 
alpha value we wish to use for this particle.

Managing particles
Our Particle class on its own is missing quite a bit of the required drawing code 
for efficiency reasons. To easily deal with a large number of particles, we will create a 
ParticleManager class that will not only maintain a list of particles in our game, but also 
be responsible for completing the steps necessary to successfully draw them on the screen.
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Time for action – the ParticleManager class
To manage the particles in our game, we will create the PraticleManager class by 
performing the following steps:

1. Add a new class called ParticleManager.cs to the Tank Battles project.

2. Add the following declarations at the beginning of the ParticleManager class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Modify the declaration of the ParticleManager class to make it a static class. The 
declaration should now read as follows:
static class ParticleManager

4. Add fields to the ParticleManager class as follows:
#region Fields
private static GraphicsDevice graphicsDevice;
private static List<Particle> particles = new List<Particle>();
private static Effect particleEffect;
private static Texture2D particleTexture;
private static Random rand = new Random();
#endregion

5. Add the Initialize() method to the ParticleManager class as follows:
#region Initialization
public static void Initialize(
    GraphicsDevice device, 
    Effect effect, 
    Texture2D texture)
{
    graphicsDevice = device;
    particleEffect = effect;
    particleTexture = texture;
    Particle.GraphicsDevice = device;
    for (int x = 0; x < 300; x++)
    {
        particles.Add(new Particle());
    }
}
#endregion
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6. Add the AddParticle() method to the ParticleManager class as follows:
#region Particle Creation
public static void AddParticle(
    Vector3 position, 
    Vector3 velocity, 
    float duration, 
    float scale)
{
  for (int x = 0; x < particles.Count; x++)
  {
    if (!particles[x].IsActive)
    {
        particles[x].Activate(position, velocity, duration, 
scale);
        return;
    }
  }
}
#endregion

7. Add the Update() method to the ParticleManager class as follows:
#region Update
public static void Update(GameTime gameTime)
{
    foreach (Particle particle in particles)
    {
        if (particle.IsActive)
            particle.Update(gameTime);
    }
}
#endregion

8. Add the Draw() method to the ParticleManager class as follows:
#region Draw
public static void Draw(ArcBallCamera camera)
{
    graphicsDevice.BlendState = BlendState.Additive;

    particleEffect.CurrentTechnique =
        particleEffect.Techniques["ParticleTechnique"];

    particleEffect.Parameters["particleTexture"].SetValue(
        particleTexture);
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    particleEffect.Parameters["View"].SetValue(camera.View);

    particleEffect.Parameters["Projection"].SetValue(
        camera.Projection);

    graphicsDevice.RasterizerState = RasterizerState.CullNone;
    graphicsDevice.BlendState = BlendState.Additive;
    graphicsDevice.DepthStencilState = DepthStencilState.
DepthRead;

    foreach (Particle particle in particles)
    {
        if (particle.IsActive)
            particle.Draw(camera, particleEffect);
    }
    graphicsDevice.RasterizerState =
       RasterizerState.CullCounterClockwise;
    graphicsDevice.BlendState = BlendState.Opaque;
    graphicsDevice.DepthStencilState = DepthStencilState.Default;
}
#endregion

9. Add a helper method to the ParticleManager class as follows:
#region Helper Methods
public static void MakeExplosion(Vector3 position, int 
particleCount)
{
    for (int i = 0; i < particleCount; i++)
    {
        float duration = (float)(rand.Next(0, 20)) / 10f + 2;
        float x = ((float)rand.NextDouble() - 0.5f) * 1.5f;
        float y = ((float)rand.Next(1, 100)) / 10f;
        float z = ((float)rand.NextDouble() - 0.5f) * 1.5f;
        float s = (float)rand.NextDouble() + 1.0f;
        Vector3 direction = Vector3.Normalize(
            new Vector3(x, y, z)) *  
            (((float)rand.NextDouble() * 3f) + 6f);     
   

        AddParticle(
            position + new Vector3(0, -2, 0), 
            direction, 
            duration, s);
    }
}
#endregion
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What just happened?
The ParticleManager class maintains a list of particles, as well as references to the 
graphics device, the texture used for particles, and the effect used to draw them.

During initialization, the ParticleManager class creates 300 particles and adds them to 
the particles list. These 300 particles will not be displayed anywhere (there is no duration 
set for them, so they are inactive). By precreating the particles, we can save .NET from the 
work of creating and disposing off hundreds of objects as particles come and go. We will 
simply re-use particles that have expired as new particles.

We implement this logic in the AddParticle() method. This method loops through the 
particles list looking for an inactive particle. When it finds one, it calls the particle's 
Activate() method, passing it the new parameters for the active particle. When a particle 
has been activated, the method exits. If all of the particles in the list are currently active, 
the method will end without doing anything. In this way, we have set a limit of 300 particles 
active at a time in our game. That will be plenty for the effects we will be creating, but you 
could raise or lower this value depending on the resource requirements of your game. 
This would also be a good value over which the player have some influence, if you were to 
expand Tank Battles and add the ability for the player alter the configuration of the game. 
Dropping the number of active particles can improve performance on low-end hardware, 
and it is one of the most frequently modified settings in commercial games.

When Draw() is called, we do the work of setting up the effect we will be using to draw all 
of our particles. We set the current technique, the texture, view, and projection matrices.

In addition, we make several changes to the way the graphics device displays the objects we 
give it to render. The first thing we do is set the RasterizerState property to CullNone. 
Recall that when we define vertices, we need to define them in a clockwise order. This is 
because the normal setting for RasterizerState is CullCounterClockwise. One of the 
quirks of the Matrix.CreateBillboard() method is that the matrix we get back actually 
has the particles facing away from us, meaning that we will not see them with the default 
culling enabled. We could handle this in several different ways, including modifying the 
matrix or changing the order we specify the vertices for the quad that makes up the particle. 
Instead, however, we simply tell the graphics device to show us the triangles no matter what 
the winding order of the vertices is.

The second thing is to set the particle's BlendState to Additive. In Additive mode, the 
current value of the pixels being drawn is blended with the value of the particle. As more 
particles are drawn on the same spot, a more intense effect will be created. We might be 
tempted to use BlendState.AlphaBlending here, and that will certainly work (try it out 
once we have the full particle system in place) but it does not look as convincing as additive 
blending for the explosions we are creating. With additive blending, the central areas of the 
explosion will look brighter while the edges fade away.
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Finally, we set the DepthStencilState property to DepthRead. You might remember that 
we saw the DepthStencilState briefly when drawing our 2D buttons to the screen with 
existing 3D graphics. The DepthStencilState property controls how objects that overlap 
get drawn. When in default mode, each time an object is drawn, the pixels of that object are 
compared with the depths of the objects that have already been drawn. If the new object is 
closer to the camera, its pixel value will be selected and it will be drawn to the display.

Because our explosion is a square texture with a circular flame image, if we allow the depth 
stencil to function in this manner, we will have strange looking box outlines around each of 
the particle sprites instead of a smooth blending of the particle images.

After looping through all of the active particles and drawing them, we reset each of these 
values to their defaults.

In the final step, we add a helper method called MakeExplosion(), which accepts a 
location and a desired particle count. The method generates a random duration, direction, 
and scale for the particle. These values are skewed so that the y component is generally 
larger than the x and z components, giving the particle a boost upwards. The resulting 
direction is then scaled six to nine times its length so that the particles will naturally spread 
themselves randomly across the area of the explosion.

HLSL for our particles
We already know that we need to create a new effect for our particles, so let's go ahead and 
build the effect file.

Time for action – building Particles.fx
In order to create effects for our particles, perform the following steps:

1. Right-click on the Effects folder in the game's content project and select  
Add | New Item.

2. From the Add New Item dialog box, select the Effect File type from the central pane.

3. Name the effect file Particles.fx and click on Add.

4. In the declarations area at the beginning of the file, add the following new declarations:
float alphaValue;

texture particleTexture;

sampler2D textureSampler = sampler_state {
  Texture = (particleTexture);
  AddressU = Wrap;
  AddressV = Wrap;
};
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5. Replace the current VertexShaderInput and VertexShaderOutput structs with 
new ones that include texture coordinates as follows:
struct VertexShaderInput
{
    float4 Position : POSITION0;
    float2 TextureCoordinate : TEXCOORD0;
};

struct VertexShaderOutput
{
    float4 Position : POSITION0;
    float2 TextureCoordinate : TEXCOORD0;
};

6. Replace the current VertexShaderFunction() method with a new version that 
supports the texture coordinates we added to the structs as follows:
VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
    VertexShaderOutput output;

    float4 worldPosition = mul(input.Position, World);
    float4 viewPosition = mul(worldPosition, View);
    output.Position = mul(viewPosition, Projection);

    output.TextureCoordinate = input.TextureCoordinate;

    return output;
}

7. Replace the PixelShaderFunction() method with a new version that supports 
both texture coordinates and the alphaValue parameter as follows:
float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
    return tex2D(
        textureSampler, input.TextureCoordinate) * alphaValue;
}
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8. Replace Technique1 technique with ParticleTechnique as follows:
technique ParticleTechnique 
{
    pass Pass1
    {
        VertexShader = compile vs_2_0 VertexShaderFunction();
        PixelShader = compile ps_2_0 PixelShaderFunction();
    }
}

What just happened?
Our Particle.fx effect file is very similar to the effect we are currently using to render our 
terrain with a texture. In fact, the only real difference is the inclusion of the alphaValue 
parameter. Recall that we set this value in relation to the time the particle has left to live 
during each frame. As the particle is about to disappear, this value will approach 0.0f.

In the PixelShaderFunction() method of the Particle.fx effect, we use a texture 
sampler to read from the texture for the particle, just like we do for our terrain, but we 
multiply the result by the alphaValue parameter for the particle. Multiplying a color by the 
alphaValue parameter's value will scale all of the components of that color (red, green, 
blue, and alpha) by the desired alpha level, resulting in a darker, partially transparent pixel.

Adding particles
Now that we have a system in place to add 3D particles to Tank Battles, it is time to actually 
get them into the game! Let's go ahead and make the necessary modifications to bring our 
explosions to life inside the game world.

Time for action – implementing particles
To implement the particles for our game, perform the following steps:

1. In the LoadContent() method of the TankBattlesGame class, initialize the 
ParticleManager as follows:
ParticleManager.Initialize(
    GraphicsDevice,
    Content.Load<Effect>(@"Effects\Particles"),
    Content.Load<Texture2D>(@"Textures\Explosion"));
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2. Add the CheckForShotImpacts() helper method to the TankBattlesGame class 
as follows:
private void CheckForShotImpacts()
{
    if (!ShotManager.ShotActive && !ShotManager.HitProcessed)
    {
        Vector3 impactPoint = new Vector3(
            ShotManager.Position.X, 0, ShotManager.Position.Z);
        impactPoint.Y = terrain.GetHeight(
            impactPoint.X, impactPoint.Z);
        ParticleManager.MakeExplosion(impactPoint, 200);
        ShotManager.HitProcessed = true;
    }
}

3. In the Update() method of the TankBattlesGame class, add the following lines of 
code right after the ShotManager is updated:
CheckForShotImpacts();
ParticleManager.Update(gameTime);

4. In the Draw() method of the TankBattlesGame class, draw the 
ParticleManager right after the ShotManager is drawn as follows:
ParticleManager.Draw(camera);

5. Execute the game, position the camera, align the guns, and fire. When the cannon 
ball lands, you should see an explosion at the point of impact as shown in the 
following screenshot:
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What just happened?
When a projectile has been fired, we need some way to identify that it has landed and 
should produce an explosion. We track two Boolean variables in the ShotManager class. 
One of these, ShotActive, indicates whether a shot is currently in flight. The second, 
HitProcessed, is set to false when a shot is fired.

In the CheckForShotImpacts() method, we are interested in the point where a shot has 
finished flying, but we have not yet done anything as a result. When this is the case, both 
ShotActive and HitProcessed will be false. In that case, we retrieve the position of the 
shot and calculate that point's elevation (the shot could have travelled significantly below 
the terrain if it is falling particularly fast, so we do not use the y coordinate of the shot itself).

We ask the ParticleManager class to create an explosion consisting of 200 particles at 
that location, and set the HitProcessed flag to true.

Summary
We have covered a lot of ground in this chapter, bringing Tank Battles to the point where it is 
almost a playable game. You have now implemented the user interface widgets to display text 
values and button images, event-driven responses to UI button clicks, creation and tracking of 
projectiles as they fly across the game world, and particle explosions based on billboards.

In Chapter 8, Tank Battles – Ending the War, we will finish up the Tank Battles game by 
wrapping a game structure around our code and looking at ways we can polish some of our 
existing systems to improve the visual quality of the game.
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Tank Battles – Ending the War

We almost have a playable game on our hands now!

In this chapter, we will finish up the Tank Battles game by covering the following tasks:

 � Creating a basic game flow structure to surround the game play

 � Cycling between game states based on player input and the results of the gameplay

 � Allowing two players to take turns adjusting their aim and firing shots

 � Determining when a player has scored a hit on the opposing tank – or their own

 � Enhancing the visual appeal of our terrain by adding lighting and multitexturing effects

Managing game states
While we could certainly get very elaborate with our game state management system, we 
are going to take a simple approach. Our game will have three basic states as follows:

 � TitleScreen

 � Playing

 � GameOver
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Our simple state system will progress through a loop of these three states, as illustrated in 
the following diagram:

The state cycle will be a simple loop between our three states, so from the title screen,  
we play the game. When someone wins, we display a game over message and then  
return to the TitleScreen.

In addition, while in the Playing state, we will track turns for each player, enabling and 
disabling interface components as appropriate depending on the currently active player.

Time for action – implementing a title screen
1. Download the 7089_08_GRAPHICSPACK.ZIP file from the book's website and 

extract the files it contains to a temporary location.

2. In Windows Explorer, select all of the .png files in the temporary folder and copy 
them to the clipboard.

3. Switch back to Visual Studio, right-click on the Textures folder in the content project, 
and select Paste.

4. To the TankBattlesGame class' declarations area, add the following declarations:
Texture2D titleScreen;
int currentPlayer = 0;
enum GameState { TitleScreen, Playing, GameOver }
GameState gameState = GameState.TitleScreen;

5. In the LoadContent() method of the TankBattlesGame class, remove the line 
that reads StartNewRound();.

6. At the bottom of the LoadContent() method of the TankBattlesGame class, 
initialize the titleScreen texture field as follows:
titleScreen = Content.Load<Texture2D>(@"Textures\TitleScreen");

7. In the Update() method of the TankBattlesGame class, use the mouse to 
highlight everything within the if (this.IsActive) block, excluding the if 
statement itself.
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8. Right-click on the highlighted code and select Refactor | Extract Method.

9. In the Extract Method dialog box, enter ProcessPlayingInput as the name of 
the new method. For clarity, the ProcessPlayingInput() method should now be 
as follows:
private void ProcessPlayingInput()
{
    if (this.IsActive)
    {

        MouseState mouse = Mouse.GetState();

        if (moveMode)
        {
            camera.Rotation += MathHelper.ToRadians(
                (mouse.X - screenCenter.X) / 2f);
            camera.Elevation += MathHelper.ToRadians(
                (mouse.Y - screenCenter.Y) / 2f);

            Mouse.SetPosition(screenCenter.X, screenCenter.Y);
        }

        if (mouse.RightButton == ButtonState.Pressed)
        {
            if (!moveMode &&
                previousMouse.RightButton == ButtonState.Released)
            {
                if (graphics.GraphicsDevice.Viewport.Bounds.
Contains(
                    new Point(mouse.X, mouse.Y)))
                {
                    moveMode = true;
                    saveMousePoint.X = mouse.X;
                    saveMousePoint.Y = mouse.Y;
                    Mouse.SetPosition(
                        screenCenter.X, 
                        screenCenter.Y);
                    this.IsMouseVisible = false;
                }
            }
        }
        else
        {
            if (moveMode)
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            {
                moveMode = false;
                Mouse.SetPosition(
                    saveMousePoint.X, 
                    saveMousePoint.Y);
                this.IsMouseVisible = true;
            }
        }

        if (mouse.ScrollWheelValue - 
            previousMouse.ScrollWheelValue != 0)
        {
            float wheelChange = mouse.ScrollWheelValue -
                previousMouse.ScrollWheelValue;

            camera.ViewDistance -= (wheelChange / 120) * 
scrollRate;
        }

        if (mouse.RightButton == ButtonState.Released)
        {
            if (mouse.LeftButton == ButtonState.Pressed)
            {
                foreach (UIWidget widget in uiElements.Values)
                {
                    if (widget is UIButton)
                    {
                        ((UIButton)widget).HitTest(
                            new Point(mouse.X, mouse.Y));
                    }
                }
            }
            else
            {
                foreach (UIWidget widget in uiElements.Values)
                {
                    if (widget is UIButton)
                    {
                        ((UIButton)widget).Pressed = false;
                    }
                }
            }
        }

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Chapter 8

[ 189 ]

        previousMouse = mouse;

        UpdateTextBlocks();

    }
}

10. Replace the current Update() method with the following:
protected override void Update(GameTime gameTime)
{
    if (this.IsActive)
    {
        switch (gameState)
        {
            case GameState.TitleScreen:
                KeyboardState ks = Keyboard.GetState();
                if (ks.IsKeyDown(Keys.Space))
                {
                    gameState = GameState.Playing;
                    UIHelper.SetElementVisibility(
                        "p", true, uiElements);
                    StartNewRound();
                }
                break;

            case GameState.Playing:
                ProcessPlayingInput();
                break;

            case GameState.GameOver:
                break;
        }
    }

    ShotManager.Update(gameTime);
    CheckForShotImpacts();
    ParticleManager.Update(gameTime);

    base.Update(gameTime);
}
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11. Modify the current Draw() method to encapsulate the existing code within a 
conditional statement that either draws the title screen or executes the existing 
code. The entire new draw method should look like the following code:
protected override void Draw(GameTime gameTime)
{
    GraphicsDevice.Clear(Color.CornflowerBlue);

    GraphicsDevice.DepthStencilState = DepthStencilState.Default;

    if (gameState == GameState.TitleScreen)
    {
        spriteBatch.Begin();
        spriteBatch.Draw(titleScreen, Vector2.Zero, Color.White);
        spriteBatch.End();
    }
    else
    {
        terrain.Draw(camera, effect);

        foreach (Tank tank in tanks)
        {
            tank.Draw(camera);
        }

        ShotManager.Draw(camera);
        ParticleManager.Draw(camera);

        spriteBatch.Begin();

        foreach (UIWidget widget in uiElements.Values)
            widget.Draw(spriteBatch);

        spriteBatch.End();
    }

    base.Draw(gameTime);
}
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12. Execute the game. Press the Space bar at the title screen to begin a new game. The 
title screen of the game should look like the following screenshot:

What just happened?
We define an enumeration (GameState) which can have three possible values, each 
corresponding to one of the game states we are dealing with—TitleScreen, Playing, 
or GameOver. The gameState variable holds the current state, and defaults to the 
TitleScreen state, meaning that when we first execute the game, we want the title screen 
to appear, as a player might expect.

Because we are no longer jumping directly into the game, we have removed the code to start 
a new round from the LoadContent() method, and replaced it with the code necessary to 
load the title screen into memory.

Beginning with step 7, we need to restructure our existing code in order to accommodate 
the game state system. We do this by using one of Visual Studio's refactoring features. By 
highlighting a section of code and selecting Refactor | Extract Method from the right-click 
popup menu, we are telling Visual Studio that the code we have selected can stand on its 
own as a method and to extract the highlighted code from its current location and create a  
new method.

In steps 7 and 8, we perform this refactoring on the Update() method of the 
TankBattlesGame class, generating the ProcessPlayingInput() method. Notice 
that Visual Studio performs enough analysis on the code to realize that the code we have 
selected needs to make use of the gameTime variable, so it automatically includes it as a 
parameter for the new method.

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Tank Battles – Ending the War

[ 192 ]

Refactoring
In general, refactoring refers to techniques for altering the internal workings 
of a piece of code while leaving its functionality unchanged. Visual Studio 
provides several tools (available under the Refactor menu option, which 
appears in a popup menu on right-clicking the highlighted code) to assist 
with code refactoring. Besides extracting methods, you can also rename a 
field, property, method, or class and Visual Studio will rename it everywhere 
where it is referenced in your code. Other tools can generate properties to 
encapsulate fields in your classes, and change the order of parameters in a 
method, including updating all calls to that method.

All of the code that we extract from the Update() method is replaced with a single line 
that calls the extracted method. In step 10, we perform some additional tasks by replacing 
the Update() method entirely while keeping the call to the ProcessPlayingInput() 
method in the proper location.

This new Update() method, which we will be expanding on shortly, decides what actions to 
take based on the current value of the gameState variable. While displaying the title screen, 
the only processing necessary during Update() is to watch for the player starting a new 
game by pressing the Space bar.

When in the Playing state, all of the previous code is executed by calling 
ProcessPlayingInput(). Finally, when in the GameOver state, we currently do not 
perform any additional state-specific processing.

Outside the game state conditional logic, we continue to update the ShotManager and 
ParticleManager classes, and check for shot impacts. We still want particle effects to 
process in the event that one player scores a hit and the game moves to the GameOver state. 
If we did not continue this processing when the state changes, the explosions would freeze 
in place at that point instead of continuing to settle downward and fade away.

Similarly, we update the Draw() method in step 11 to account for varying game states. 
This time, however, we only need to consider two possibilities. Either we are in the 
TitleScreen state, in which case we only want to display the title screen, or we are in one 
of the two other states, and wish to draw all of our normal game components.

Again, this is because we do not want to stop drawing the terrain, tanks, and particles during 
the GameOver state. They will continue to show while the winning player is displayed and we 
pause before returning to the title screen.
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From Playing to GameOver
Tank Battles currently begins in the TitleScreen state, and we have code in place in the 
Update() method to allow us to start a new game, transitioning to the Playing state. At 
the moment, however, we do not have any way of getting out of the Playing state. Since 
we are not detecting hits against players, the game never comes to an end.

For our purposes, the game will end when a shot comes close enough to a tank to destroy 
it. In Tank Battles, we will use simple distance measurement to make this determination. 
We will implement a more detailed collision detection system in Chapter 10, Mars Runner 
– Reaching the Finish Line. The winning player will be the player whose tank survives – note 
that potentially, the player could fire a shot that hits their own tank, so the player firing the 
final shot is not necessarily the winner of the game.

We already know where a shot lands (we are creating an explosion there, after all) and we 
know the positions of each of the tanks, so determining if a tank is hit by a shot is a relatively 
straightforward matter of determining the distance between these two locations.

Time for action – detecting hits
To detect hits, perform the following steps:

1. To the TankBattlesGame class' declarations area, add the following fields:
float gameOverTimer = 0.0f;
float gameOverDelay = 8.0f;
float impactDistance = 2.5f;

2. In the CreateUIElements() method of the TankBattlesGame class, create a 
new text block to hold the Game Over message when it should be displayed by 
adding the following to the end of the method:
uiElements.Add("gameOverText",
    UIHelper.CreateTextblock("gameOverText", "", 220, 100));

3. Replace the current case GameState.GameOver section of the Update()  
method with:
case GameState.GameOver:
    gameOverTimer += (float)gameTime.ElapsedGameTime.TotalSeconds;
    if (gameOverTimer > gameOverDelay)
    {
        UIHelper.SetElementVisibility(
            "gameOverText", 
            false, 
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            uiElements);
        gameState = GameState.TitleScreen;
    }
    break;

4. To the CheckForShotImpacts() method inside the if statement and just before 
setting ShotManager.HitProcessed to true, add the following lines of code:
int hitPlayer = -1;
if (Vector3.Distance(
    impactPoint, tanks[0].Position) < impactDistance)
{
    hitPlayer = 0;
}

if (Vector3.Distance(
    impactPoint, tanks[1].Position) < impactDistance)
{
    hitPlayer = 1;
}

if (hitPlayer >= 0)
{
    string gameOverText;
    int winner = currentPlayer;
    if (hitPlayer == currentPlayer)
    {
        winner = (currentPlayer == 0 ? 1 : 0);
    }
    if (currentPlayer == hitPlayer)
    {
        gameOverText = "Player " + currentPlayer.ToString() + 
            " blew themselves up! Player " + 
            winner.ToString() + " wins!";
    }
    else
    {
        gameOverText = "Player " + currentPlayer.ToString() + 
            " scores a hit! Player " + 
            winner.ToString() + " wins!";
    }
    gameOverTimer = 0;
    UIHelper.SetElementText(
        uiElements["gameOverText"], 
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        gameOverText);
    UIHelper.SetElementVisibility("p", false, uiElements);
    UIHelper.SetElementVisibility("gameOverText", true, 
uiElements);
    gameState = GameState.GameOver;
}

5. Execute the game and fire shots until you hit one of the two tanks. (Hint: If you fire 
straight up, the shot will land on the tank that fired it.)

What just happened?
We add a UITextblock object as one of our UIElements to hold the text that will be 
displayed when the game ends. By implementing it this way, we do not have to do anything 
else to draw the message – it will be drawn if it is Visible when the UIElements list is 
drawn in the Draw() method.

When in the GameOver state, we run a timer, waiting for the amount of time dictated by 
gameOverDelay to pass. During this time, we are not accepting any player input. After the 
delay expires, we hide the game over text block and switch back to the TitleScreen state.

In order to determine when one of the tanks has been hit, we measure the distance between 
each tank and the location where the shot landed. If either of these distances is small 
enough, we store which one of the tanks has been hit in the hitPlayer variable.

If a player has been hit, we know that we are going to switch to the GameOver state. 
If we did not want to give an indication of who won the game, we could simply do that 
immediately. Instead, we check to see if the player that was hit is the same player that fired 
the shot. If it was, we know that the player has hit themselves. If not, the player has hit their 
opponent. In either case, we set the text of the gameOverText UI element to indicate the 
results of the game.

After hiding all other UI elements (elements that start with p), we show the gameOverText 
and switch to the GameOver state.

Managing turns
Either tank can fire bullets at this point, but since there is only one mouse, the player 
who physically has it, has a distinct advantage in the game! In order to rectify this rather 
significant game balance issue, we need to implement a controlled sequence of turns.
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Time for action – managing turns
1. Add the Turn Management region and its two methods to the TankBattlesGame 

class as follows:
#region Turn Management
private void ActivatePlayer(int playerNumber)
{
    UIHelper.SetElementVisibility("p", true, uiElements);
    UIHelper.SetButtonState(
        "p" + (playerNumber+1).ToString(), false, uiElements);
    currentPlayer = playerNumber;       
}

private void DeactivatePlayer(int playerNumber)
{
    UIHelper.SetButtonState(
        "p" + (playerNumber+1).ToString(), true, uiElements);
}
#endregion

2. In the checkForShotImpacts() method of the TankBattlesGame class, just 
after the line that reads ShotManager.HitProcessed = true, add the following 
lines of code:
if (gameState != GameState.GameOver)
{
    ActivatePlayer((currentPlayer + 1) % 2);
}

3. At the end of the StartNewRound() method in the TankBattlesGame class, set 
the initial state of the players when a new game is started, as follows:
DeactivatePlayer(1);
ActivatePlayer(0);

4. In the UIButton_Clicked() method of the TankBattlesGame class (inside 
the User Interface region) just before the final break in the method, add the 
following line of code:
DeactivatePlayer(playerNumber);
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5. Launch the game and fire shots back and forth between the players. We can see that 
the distant tank just missed the nearer combatant in the following screenshot:

What just happened?
We introduced two new methods in the Turn Management region that allow us to activate 
and deactivate the controls for each player. Remember that while our players are internally 
referred to as players 0 and 1, our buttons have IDs beginning with p1 and p2, so we need to 
add one to the player number in order to modify the correct set of controls.

Deactivating a player simply sets the Disabled property of all of the player's controls to 
true. On the other hand, activating a player takes the additional steps of making sure all of 
the controls are visible and setting the currentPlayer variable to the player number that 
was passed to the method.

When the game has finished processing a shot, it activates the controls for the player that is 
up next by calling activatePlayer((currentPlayer + 1) % 2). This is a shorthand 
way of making sure that the value passed to activatePlayer will always be either 0 or 1. 
This works because the following mathematical expressions are true: 0 + 1 % 2 = 1, and 
1 + 1 % 2 = 0. By using the modulo operator (%) we can wrap the player number around 
back to 0 when it reaches 2, preventing us from having to construct an if…else… structure.
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When beginning a new round, we deactivate the controls for player 1 and activate the 
controls for player 0, setting up player 0 as the first player to take a turn in the new game. 
Each time a shot is fired, the firing player's controls are all disabled. This prevents the player 
from firing more than one shot at a time.

Visual improvements
The game functionality of Tank Battles is now complete, but aside from gameplay 
improvements (see the end of this chapter for suggestions on things you could implement) 
there are a number of graphical improvements we can make to Tank Battles to make it more 
visually appealing. We will add lighting to our terrain, and implement multitexturing to vary 
the appearance of areas of the terrain based on their elevation.

While we will still only scratch the surface of what we could potentially do with XNA and 
HLSL, let's look at a few topics that will give us a taste of the graphical power at our disposal.

Lighting
Right now, our terrain is fairly drab. Everything is uniformly lit, which gives the terrain a bland 
appearance. By adjusting and expanding the way we create the vertex buffer for our terrain, 
along with a little HLSL modification, we can give our landscape a realistic lighting.

Our first step is to generate normals for each of the vertices in the vertex buffer. A normal is 
a vector that is perpendicular to a triangle or vertex in our 3D environment. In the case of a 
triangle, this is fairly easy to visualize, as shown in the following figure:

For the two triangles in the previous image, imagine they are bent along the center line, 
facing away from each other. The vectors pointing away from the surfaces of the triangles 
represent the normals of each triangle.
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We are interested in the normals of our vertices. While not as straightforward to visualize, 
these are, fortunately, easy to calculate. The normal of a given vertex is equal to the sums 
of the normal of the triangles it is a part of. The following diagram illustrates the various 
possibilities for triangles contributing to vertex normals:

We have several different scenarios for the number of triangle normals that will be added 
together to give a vertex normal. In the preceding diagram, only one triangle contributes to 
the normal of vertex V1. This will be the case for the upper-left and lower-right corners of 
our terrain. The other two corners will each have two triangles contributing to their normal.

Vertices along the sides of our terrain will have three triangles contributing to their normal, 
as does vertex V2. Finally, the internal vertices of the terrain will have six different triangles 
contributing the values of their normals to the vertex normal as is the case with vertex V3.

Why do we need these normals anyway? When we compute the light falling on a surface, we 
use the dot product of the light direction vector and the normal of each vertex. The result 
of this calculation gives the intensity of the light at that vertex. Once we get to the HLSL, we 
simply need to apply this intensity when computing the color of a pixel.

Time for action – computing normals
To complete the normals, perform the following steps:

1. Near the end of the BuildVertexBuffer() method of the Terrain class, modify 
the code that defines the vertexBuffer variable by changing BufferUsage.
WriteOnly to BufferUsage.None. The new statement should read as follows:
vertexBuffer = new VertexBuffer(
    device,
    typeof(VertexPositionNormalTexture),
    vertices.Length,
    BufferUsage.None);
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2. Similarly, near the end of the BuildIndexBuffer() method, when the 
indexBuffer is defined, change BufferUsage.WriteOnly to BufferUsage.
None. The statement should be as follows:
indexBuffer = new IndexBuffer(
    device,
    IndexElementSize.SixteenBits,
    indices.Length,
    BufferUsage.None);

3. In the Helper Methods region of the Terrain class, add the 
CalculateNormals() method as follows:
private void CalculateNormals()
{
    VertexPositionNormalTexture[] vertices = 
        new VertexPositionNormalTexture[vertexBuffer.VertexCount];
    short[] indices = new short[indexBuffer.IndexCount];

    vertexBuffer.GetData(vertices);
    indexBuffer.GetData(indices);

    for (int x = 0; x < vertices.Length; x++)
        vertices[x].Normal = Vector3.Zero;

    int triangleCount = indices.Length / 3;

    for (int x = 0; x < triangleCount; x++)
    {
        int v1 = indices[x * 3];
        int v2 = indices[(x*3) + 1];
        int v3 = indices[(x*3) + 2];

        Vector3 firstSide = 
            vertices[v2].Position - vertices[v1].Position;
        Vector3 secondSide = 
            vertices[v1].Position - vertices[v3].Position;        
        Vector3 triangleNormal = 
            Vector3.Cross(firstSide, secondSide);
        triangleNormal.Normalize();

        vertices[v1].Normal += triangleNormal;
        vertices[v2].Normal += triangleNormal;
        vertices[v3].Normal += triangleNormal;
    }
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    for (int x = 0; x < vertices.Length; x++)
        vertices[x].Normal.Normalize();

    vertexBuffer.SetData(vertices);
}

4. In the constructor of the Terrain class, after both the vertex and index buffers 
have been built, add a call to CalculateNormals() as the last line of the method, 
as follows:
CalculateNormals();

What just happened?
In the past, we have been fine with BufferUsage.WriteOnly because our C# code never 
needed to look at the vertex or index buffers after they had been set. We simply passed 
them to the shader code as whole units.

Now, however, we not only need to view their contents inside our C# code, but we will also 
be updating each of the vertices to set the normal vector. For these reasons, we need to 
change the initialization of both buffers to remove the WriteOnly declaration, otherwise 
XNA will give us an error when we try to execute the GetData() method.

To compute the normals themselves, we begin by copying both buffers to arrays to make 
them easier to work with. Even without the WriteOnly buffer mode, we cannot access 
elements of the buffers individually.

We will be adding up one normal per triangle connected to a vertex, and we need to begin 
with a known value, so we loop through all of the vertices and set the normal vector to 
Vector3.Zero.

We calculate the number of triangles we are going to process by dividing the number of 
indices in the index buffer by three. Remember that the index buffer stores a list of points 
that make up triangles, so dividing the number of points by three gives us the total number 
of triangles in the terrain.

We then loop through the triangles, extracting the three vertex positions that make up 
each triangle. We derive two vectors that describe sides of the triangle by subtracting their 
positions from each other. Thanks to the magic of vector math, computing the cross product 
of these two vectors returns the vector that is perpendicular to a plane that would contain 
those two vectors. As the triangle would also be contained in this plane, the vector is normal 
to the triangle.

We normalize the normal vector (setting its length to 1 unit, while keeping the same 
direction) and add this normal vector to the current normal vectors for the three vertices 
that make up the triangle.
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When we have done this for all of the triangles in the terrain, we run through each vertex 
once again and normalize the normal vectors. Finally, we place our modified vertex data back 
into our vertex buffer.

We saw earlier, that any given vertex may have one, two, three, or six triangles contributing 
to its normal. Instead of trying to determine this number for each of our vertices, we simply 
calculate normals for each triangle and have them update their three connected vertices. 
That way, we never need to know if a vertex is in a corner, on the side, or in the middle of 
our terrain.

Diffuse lighting
We have attached normals to all of our vertices, but if we were to run the code right now we 
would not see any difference in our terrain. As it exists, our HLSL code does not take these 
normals into account when determining the color of each pixel. We now need to expand our 
shader code to work with this new data.

Time for action – HLSL for lighting
To implement HLSL lighting, perform the following steps:

1. In the declarations area of the Terrain.fx effect file, after textureSampler is 
declared, add the following variable declarations:
float3 lightDirection;
float4 lightColor;
float lightBrightness;

2. In the VertexShaderInput struct definition, add a new struct component to pass 
in the normal associated with the vertex as follows:
float3 Normal : NORMAL0;

3. In the VertexShaderOutput struct definition, add a new struct component to 
hold the calculated lighting value for the vertex as follows:
float4 LightingColor : COLOR0;

4. In the VertexShaderFunction() function, add the following lines of code before 
the line that reads return output;:
float4 normal = normalize(mul(input.Normal, World));
float lightLevel = dot(normal, lightDirection);
output.LightingColor = saturate(
    lightColor * lightBrightness * lightLevel);
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5. Replace the current PixelShaderFunction() method with the following:
float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
    float4 pixelColor = tex2D(
        textureSampler, input.TextureCoordinate);
    pixelColor *= input.LightingColor;
    pixelColor.a = 1.0;
    return pixelColor;
}

6. In the Draw() method of the Terrain class, add the following code to set the 
additional parameters defined in the effect file, before the foreach loop that draws 
the terrain:
Vector3 lightDirection = new Vector3(-1f, 1f, -1f);
lightDirection.Normalize();
effect.Parameters["lightDirection"].SetValue(lightDirection);
effect.Parameters["lightColor"].SetValue(new Vector4(1,1,1,1));
effect.Parameters["lightBrightness"].SetValue(0.8f);

7. Execute the game and observe the lighting applied to the terrain. A comparison of 
the game's visuals with and without lighting is shown in the following screenshot:
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What just happened?
The lighting effect we have created here is known as diffuse lighting. Specifically, we are 
implementing directional diffuse lighting, meaning that the unseen light source is so far away 
that it appears to light everything in our game world uniformly. This type of lighting works 
well for simulating daylight – the sun is so far away that all objects in any specific area on the 
ground cast shadows in essentially the same direction.

In order to implement our light, we specify the direction the light is coming from, the light 
color, and its brightness level. We add these three factors to our HLSL code so that we can 
pass them in as parameters from our Draw() method.

Because we are now utilizing the normal portion of the VertexPositionNormalTexture 
vertex format that our terrain uses, we need some way to let our HLSL code know 
what it is. We do this by assigning the NORMAL0 semantic to the Normal variable in the 
VertexShaderInput structure.

We also need a way to pass the color information we calculate in the vertex shader on to the 
pixel shader, so we define a new component of the VertexShaderOutput structure called 
LightingColor. We assign the COLOR0 semantic to it.

In order to calculate the light level at a particular vertex, we first transform the normal vector 
for the vertex into world space, and normalize it—giving it a length of 1 unit. When the dot 
product is computed between this vector and the light direction vector, we get a number 
that corresponds to how closely the two vectors are aligned with each other. The resulting 
value can then be thought of as how directly the light source is shining on any given vertex, 
or the light's intensity at this point.

In order to keep things simple, let's look at a 2D example. If we create a vector pointing from 
the origin to point (1, 1) in 2D space, it will be at a 45 degree angle to a vector from the 
origin to point (1, 0). In the preceding figure, these vectors are represented as V1 and V2, 
after V1 has been normalized to a 1 unit length, making it (0.707, 0.707). Vector V2 already 
has a length of 1.
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For 2D vectors, the dot product is calculated as:

X1 * X2 + Y1 * Y2

In our case, that would be: 0.707 * 1 + 0.707 * 0 or 0.707 + 0.

When both of the vectors have a length of 1, the result of the dot product is equal to the 
cosine of the angle between the vectors. As shown in the preceding figure and calculations, 
it represents the projection of the first vector onto the second, or in other words how far in 
the direction of V2 does V1 extends.

Three dimensional vectors work the same way, except that the formula is expanded to 
include the z component of the vectors:

X1 * X2 + Y1 * Y2 + Z1 * Z2

We use this value, called the scalar projection because it projects V1 in terms of V2, to 
indicate how well aligned our vertices and the directional light are. The higher the scalar 
projection, the closer the alignment of the two vectors, and the more intense the light from 
the light source is at that location.

Given that both of our vectors are normalized, the lighting value will be between -1 and 1. 
We then use the HLSL function saturate() to calculate the overall effect of the light at 
this vertex given the color, brightness, and localized intensity of the light. The saturate() 
function actually just clamps the value passed into it between zero and one. If we pass in a 
negative number (because the dot product returns a negative number) we will end up with 
a zero for the return value of the saturate() function. This information is stored in the 
LightingColor component so that we can utilize it in the pixel shader.

In order to do so, we retrieve the pixel color from the texture just as we did before, but this 
time we multiply it by the lighting color we calculated in the vertex shader. Note that we also 
set the alpha value of the pixel to 1.0 explicitly. Because we are multiplying the colors from 
the texture by a calculated color, we will end up with partial transparency in the resulting 
color value. Setting the alpha level manually eliminates this.

Ambient lighting
Our terrain now looks a bit better, but it sure is dark! Our first thought might be to increase the 
brightness of the directional light we are already using. That would certainly work up to a point, 
but it would begin to wash out the lit areas while making the dark areas seem even darker.

Instead, we will add an ambient light to our terrain. Ambient light refers to the directionless, 
reflected light that generally fills an area. The sun is a very bright directional light source, but 
if you are standing in the shadow of a telephone pole, you are not enveloped in absolute 
darkness. The ground around you, walls of buildings, even the sky, all reflect less intense light 
that makes even shadowed areas not quite so dark.
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Time for action – using ambient light
To implement ambient light, perform the following steps:

1. Add two more declarations to the declarations area of the Terrain.fx effect file:
float4 ambientLightColor;
float ambientLightLevel;

2. In the PixelShaderFunction() of the Terrain.fx file, just before setting the 
alpha value of the pixel to 1.0 add the following line of code:
pixelColor += (ambientLightColor * ambientLightLevel);

3. In the Draw() method of the Terrain class, add two additional parameter settings 
before the terrain is drawn:
effect.Parameters["ambientLightLevel"].SetValue(0.15f);
effect.Parameters["ambientLightColor"].SetValue(
    new Vector4(1,1,1,1));

4. Execute the game and view the newly lit terrain. The game should look like the 
following screenshot:
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What just happened?
That certainly looks better! The dark areas are still dark, but they haven't completely lost 
their detail now. Ambient lighting is quite a bit simpler to implement than diffuse lighting. All 
we need to know is the color of the light and the overall ambient light level. We then simply 
add the ambient light to each pixel.

Ambient light and effects
Ambient lights can be used to produce quick effects across the whole 
terrain. Try changing the ambient light color to red (1, 0, 0, 1) and see 
how the whole landscape is now tinted a nice shade of Mars. If such an 
ambient light varied in intensity up and down over time, you would have a 
quick "red alert" type effect.

Multitexturing
One way we can introduce a bit more variety into the look of our terrain is by using different 
textures for different elevations. For the sake of Tank Battles, we will use three different 
terrain textures as shown in the following figure:

The first will be the grass texture we are familiar with. To this, we will add a rocky brown texture 
for the mid-range elevations and a snowy white texture for the highest areas of the map.

Open Game Art
The brown rock and snow textures (the latter is actually a white stone 
texture) were downloaded from the texture area of OpenGameArt.org. 
These particular textures are licensed as CC0 (Public Domain). If you are 
looking for artwork for your independent or open source game project, 
give http://www.opengameart.org a look. A lot of talented artists 
contribute a wide range of artwork available under creative commons, GPL, 
and public domain licenses to the archive there.
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In order to give our multitexturing approach a smooth appearance, we will not simply change 
textures at a certain elevation, but will instead blend the textures at the transition points, 
smoothly ramping up the ratio of the two textures over the course of a small distance in our 
terrain. This will prevent us from having a sharp dividing line between grass, rocks, and snow.

Time for action – multitexturing
1. In the declarations area of the Terrain.fx effect file, add two new texture 

variables to hold the additional textures we will be using, as follows:
texture terrainTexture2;
texture terrainTexture3;

2. Still in the declarations area, add samplers for the new textures as follows:
sampler2D textureSamplerMid = sampler_state {
  Texture = (terrainTexture2);
  AddressU = Wrap;
  AddressV = Wrap;
};

sampler2D textureSamplerHigh = sampler_state {
  Texture = (terrainTexture3);
  AddressU = Wrap;
  AddressV = Wrap;
};

3. Also in the declarations area, add the following items to control how the textures 
are split between elevations:
float maxElevation;
float trans1 = 0.50;
float trans2 = 0.75;

4. In the VertexShaderOutput structure, add a new structure member to allow us to 
pass the elevation of the current vertex to the pixel shader as follows:
float Elevation : TEXCOORD1;

5. In the VertexShaderFunction() method, right after declaring the output 
variable, store the raw elevation of this vertex as follows:
output.Elevation = input.Position.y;
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6. Replace the existing PixelShaderFunction() in the Terrain.fx file with the 
following lines of code:
float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
   float elevation = input.Elevation / maxElevation;

    float4 lowColor = tex2D(
      textureSampler, input.TextureCoordinate);
    float4 midColor = tex2D(
      textureSamplerMid, input.TextureCoordinate);
    float4 highColor = tex2D(
      textureSamplerHigh, input.TextureCoordinate);

    float4 pixelColor = lowColor;
    
    if ((elevation >= trans1 - 0.05 ) && (elevation <= trans1 + 
0.05))
    {
      float transWeight = ((trans1 + 0.05) - elevation) / 0.10;
      pixelColor = lowColor * transWeight;
      pixelColor += midColor * (1 - transWeight);
      
    }

    if ((elevation > trans1 + 0.05) && (elevation <= trans2 - 
0.05))
    {
      pixelColor = midColor;
    }

    if ((elevation > trans2 - 0.05) && (elevation <= trans2 + 
0.05))
    {
      float transWeight = ((trans2 + 0.05) - elevation) / 0.10;
      pixelColor = midColor * transWeight;
      pixelColor += highColor * (1 - transWeight);
    }

    if (elevation > trans2 + 0.05)
      pixelColor = highColor;

    pixelColor *= input.LightingColor;
    pixelColor += (ambientLightColor * ambientLightLevel);
    pixelColor.a = 1.0;
    return pixelColor;
}
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7. In the Terrain class, add the following new fields to the class declarations area:
private Texture2D terrainTexture2;
private Texture2D terrainTexture3;
private float maxHeight;

8. Modify the declaration of the constructor for the Terrain class to include the two 
additional textures. The new declaration should read as follows:
public Terrain(
    GraphicsDevice graphicsDevice,
    Texture2D heightMap,
    Texture2D terrainTexture,
    Texture2D terrainTexture2,
    Texture2D terrainTexture3,
    float textureScale,
    int terrainWidth,
    int terrainHeight,
    float heightScale)

9. Inside the constructor for the Terrain class, cache the newly created fields just 
after setting the value of this.TerrainTexture, as follows:
this.terrainTexture2 = terrainTexture2;
this.terrainTexture3 = terrainTexture3;
maxHeight = heightScale;

10. In the Draw() method of the Terrain class, set the new parameters for our effect 
in the block of parameter sets as follows:
effect.Parameters["terrainTexture2"].SetValue(terrainTexture2);
effect.Parameters["terrainTexture3"].SetValue(terrainTexture3);
effect.Parameters["maxElevation"].SetValue(maxHeight);

11. In the LoadContent() method of the TankBattlesGame class, modify the code 
that creates the terrain object to include the two new textures. The new statement 
should read as follows:
terrain = new Terrain(
    GraphicsDevice,
    Content.Load<Texture2D>(@"Textures\HeightMap_02"),
    Content.Load<Texture2D>(@"Textures\Grass"),
    Content.Load<Texture2D>(@"Textures\Rocky"),
    Content.Load<Texture2D>(@"Textures\Snowy"),
    32f,
    128,
    128,
    30f);
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12. Execute the game and view the smooth texture transitions between height ranges as 
shown in the following screenshot:

What just happened?
In order to use more than one texture, we need to define both texture variables and 
samplers inside our HLSL to manage them. We also need to know the highest elevation in 
our map so that we can determine where shifts in the terrain are going to occur.

In step 3, we set these shifts in the terrain to occur at 50% and 75% of the maximum height, 
so any terrain below 50% of the maximum height will use the grass texture. Terrain between 
50% and 75% will use the rock texture, and anything above 75% will be snow covered.

When we modify the VertexShaderOutput structure in step 4 to add the Elevation 
value, it might seem odd that we assign it the TEXCOORD1 semantic. After all, it is not a 
texture coordinate. Everything in our structure needs to be assigned to some semantic, and 
TEXCOORD1 is not used by anything else in our shader so it is available to us. We are just 
going to treat it as a simple float value and ignore the fact that it is mapped to a semantic.

To set the elevation value of a given vertex, we extract the Y component of the vertex's 
position based on the input position of the vertex and not the output position (after it 
has been transformed by the world, view, and projection matrices). This gives us the 
relative elevation of the terrain compared to the other vertices. If we had used output.
Position.y as the base instead, the terrain texture would be based on the position of the 
vertex on the screen instead of relative to the other terrain areas. It is an interesting effect 
(go ahead and try it out), but that's not what we want here.
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The real work of our multitexturing code comes into play in the PixelShaderFunction() 
method. We begin by extracting the pixel for this texture's position from each of our three 
textures and storing it in the lowColor, midColor, and highColor variables. We assume 
that the pixel will be a grass pixel to begin with, so we set pixelColor to the retrieved 
lowColor value.

We then begin a series of checks to determine if the pixel really is a grass pixel or not. We 
start by checking to see if the pixel lies within 0.05 units of the first transition zone (at the 
0.5 or 50% elevation mark).

If the elevation does lie within this zone, we calculate how far the pixel rests along the 0.1 
unit span, and use this value to come up with a weight for the two colors that will be mixed 
to create the final color for this pixel. If the value is right at the transition zone, for example 
(0.50), we will use 50% of the grass texture and 50% of the rock texture colors for this pixel.

If the pixel is higher than the first transition zone and lower than the second, we know that 
the pixel should be entirely from the rock texture. The same pair of checks apply to the rock-
to-snow transition zone and the snowy area above it.

Once we have a blended color value for our pixel, we apply the lighting values just as we did 
earlier to come up with the final color for the pixel.

In steps 7 through 11, we modify our existing code to supply the required textures and 
parameters to our newly modified shader, and we are ready to use our multitexturing  
HLSL code!

Have a go hero!
There are almost limitless ways you could expand the Tank Battles game. Here are a few 
suggestions to try out:

 � Use billboarding to create a pointer that can be placed above the current player's 
tank to highlight their location.

 � Implement movement controls, allowing each player to move their tank a limited 
distance on each turn.

 � Add health bars for each player's tank. Compute the distance between a shell  
impact and the tank to determine how badly the shot damages the tank. Players  
can then play until their tank is destroyed by multiple hits.

 � Implement gamepad controls for each player, detecting when gamepads are present 
and removing the onscreen buttons and allowing both players to move and fire at 
the same time.
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Summary
In addition to wrapping our game in a basic state-based game structure, we have expanded 
the graphical appeal of Tank Battles by including both lighting and smoothly transitioning 
textured terrain.

The basic techniques used in Tank Battles—heightMap terrain generation, 3D model 
rendering and animation, billboard particle effects, and 2D/3D interaction for interface 
objects, form a solid foundation for a wide variety of 3D games. As we can see, the 
possibilities of interesting graphical effects utilizing advanced HLSL are almost limitless.

Now that Tank Battles is complete, we are going to shift gears in the next chapter and begin a 
new game – driving a rover on the surface of Mars while under attack by alien saucers!
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Mars Runner

For our final game, we will revisit some of the topics we have already covered, 
like heightmaps and vertex-based terrain, with a few new twists to their 
implementation. We will also take a look at a couple of new techniques we can 
use to implement 3D worlds in XNA.

In this chapter, we will cover:

 � Working with the Game State Management sample project provided by Microsoft

 � Building 3D skyboxes to provide background images for a 3D world

 � Using heightmap terrain pieces as tiles to form a larger playing area

Design of Mars Runner
In Mars Runner, the player drives a vehicle on the surface of Mars, jumping over craters 
strewn about the Martian terrain while also attempting to shoot down the UFOs flying 
overhead and dropping bombs down onto both the player and the player's pathway. The 
gameplay is reminiscent of the classic arcade game Moon Patrol.

We will utilize a randomly generated pathway for each level, including rules about the 
placement of obstacles to keep the levels playable. The player's score will be based on the 
distance they travel along the track and the number of aliens they are able to shoot down 
along the way.
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In order to implement these goals, we will need to come up with a way to create a 
continuous pathway the player can drive their vehicle on. Though we could certainly lay 
out the entire world (as we did for Cube Chaser), we have an opportunity to use a different 
approach given the constraints of our gameplay.

Instead of moving the player's vehicle along a predesigned landscape and having the camera 
follow it, we will instead utilize a camera at a fixed location and move the entire world in 
front of the camera as required, to produce the movement effect we are looking for.

In addition, we will utilize the Game State Management (GSM) code sample provided by 
Microsoft on the MSDN website to build our game structure in order to see how to use the 
GSM sample in your own projects.

Getting started with the GSM sample
Available as a code sample from the education section of the MSDN website, the GSM 
sample code provides a framework for building your games that includes precoded menu 
screens, input processing, and screen stacking flow.

We will use the GSM to act as the foundation of our Mars Runner game project, customizing 
and adding screens to implement our gameplay.

Time for action – creating the Mars Runner solution
To create the Mars Runner solution, perform the following steps:

1. Visit the GSM sample page of the App Hub website at http://xbox.create.
msdn.com/en-US/education/catalog/sample/game_state_management 
and download GSMSample_4_0_WIN_XBOX.zip, and extract the contents of the 
file to a temporary location.

2. Select all of the files and folders from the archive and copy them to the Windows 
clipboard.

3. In your Visual Studio 2010 Projects folder (by default, the Visual Studio 2010\
Projects folder inside your Documents folder) create a new folder for the Mars 
Runner project, called Mars Runner.

4. Paste the files from the clipboard into this new location.

5. Still in Windows Explorer, select the GameStateManagementSample (Windows).
sln file and rename it to Mars Runner.sln.

6. Double-click on the Mars Runner.sln file to open the solution in Visual Studio.

7. In the Solution Explorer pane, right-click on the GameStateManagementSample 
(Windows) project entry and select Rename. Rename the project to Mars Runner.
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8. Double-click on the Game.cs file in the newly renamed project and  
right-click on GameStateManagmenetGame on the line that reads namespace 
GameStateManagement. Select Refactor | Rename and change the name to  
Mars_Runner. Click on Ok, click on Apply, and then click on Yes on the subsequent 
alerts that appear about the rename function.

9. Execute the game to verify that the base GSM code is functioning properly as shown 
in the following screenshot:

What just happened?
We have now downloaded the GSM sample code and renamed the components of the 
project to match our Mars Runner game's name. With the base GSM code, you can navigate 
the onscreen menu with either the keyboard or game pad. Selecting the Play Game option 
will start a simple text-based sample screen.

The Options menu item brings up a second menu screen that has various made-up settings 
that can be altered via the interface.

Finally, the Exit menu item uses a pop-up window to verify that you really wish to exit, and 
ends the game and returns to Visual Studio if you decide to do so.

Before we dive too deeply into customizing the GSM code for Mars Runner, let's look at the 
structure of the GSM system and how each screen operates within the system. At its heart, 
the GSM system is composed of three components as follows:

 � The ScreenManager class: This is a class derived from the DrawableGameComponent 
class that is responsible for keeping track of all the defined screens and letting each 
screen know what it should be doing at any given time.
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 � The InputState class: This is a helper class for dealing with keyboard, gamepad, and 
touchpad input and supplying it in a format that game screens can consume. The 
InputState class handles input for up to four players, though this implies that 
each player is using a separate physical game pad since there is usually only one 
keyboard connected to a PC.

 � The GameScreen class: This is an abstract class that acts as the base for all screens 
in the game. The GameScreen class provides code to handle transitioning a screen 
on and off, base Update() and Draw() methods, and a method for removing the 
screen from the ScreenManager class.

Included with the GSM code are a number of sample screens, including a background screen, 
loading overlay screen, menu screens, a pause screen, and a sample gameplay screen. We 
will make use of some of these screens that will remain basically unchanged (the loading 
screen, for example), customize some (the main menu screen), and completely replace 
others (the gameplay screen).

If you open the Game.cs class file included with the GSM solution, you will see that it is 
a somewhat simplified version of the standard default game class. There is no Update() 
method, and most of the action actually happens in the class constructor, named 
GameStateManagementGame().

Inside the constructor, an instance of the ScreenManager class is created and added to the 
Components collection. Two screens, BackgroundScreen and MainMenuScreen, are then 
added to the instance of the ScreenManager class.

While running, whenever a new screen is added to the instance of the ScreenManager 
class, it will become the topmost screen of the game. When this happens, other screens 
will receive a flag in their respective Update() methods indicating that they are covered by 
something else. The Update() method will still run for each screen, but we can use this flag 
to determine if we should actually do any game-related processing.

In addition to the Update() method, each screen can implement a HandleInput() 
method. This method will only be called on the currently active screen, so a screen covered 
by another screen will not receive any player input.

The GameScreen abstract class
As a base for other screens, most of the methods in the GameScreen class are empty virtual 
methods meant to be overridden and implemented by custom code in our individual screens.

One important exception here is how transitions are handled. Each screen has a defined 
state of TransitionOn, Active, TransitionOff, or Hidden. Screens begin in the 
TransitionOn state and the Update() method of the base GameScreen class is 
responsible for managing the progress of each transition and the switch between states 
when a transition has completed.
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By default, the duration of each transition is zero, so transitions will be immediate and 
invisible to the player. If we do choose to implement a transition, we need to build support 
for it into the game screens we create. The GameScreen class handles the sequencing of 
transitions automatically, but what effect the transition has on the display of the screen is 
completely up to us.

The GSM sample code includes a couple of transition samples, which you can see when 
running our current game project. When the menu screen appears as the game starts, the 
menu options slide in from the edges of the screen. Selecting Play Game from the menu 
causes the menu to slide out, the loading screen to fade in and then back out, and then the 
gameplay screen to fade in.

Customizing the default ScreenManager screens
Let's take a closer look at the two screens that get created automatically in the constructor of 
the GameStateManagementGame class. The first is an instance of the BackgroundScreen 
class. As its name implies, the BackgroundScreen class loads a background image and displays 
it behind other screens that, presumably, have at least some transparency to their content.

The BackgroundScreen class defines both TransitionOnTime and 
TransitionOffTime properties as 0.5f, meaning that instead of the default instant 
transitions, BackgroundScreen instances will take half a second to become fully visible 
after being created and half a second to fade out when being hidden. Looking at the Draw() 
method for BackgroundScreen, we can see the implementation of the fading transition 
effect as follows:

spriteBatch.Draw(backgroundTexture, fullscreen,
  new Color(TransitionAlpha, TransitionAlpha, TransitionAlpha));

Just by adjusting the draw color for the background image based on the TransitionAlpha 
(a property of the GameScreen class that computes the progress through the current 
transition), we can create the fading effect simply by switching out the color used to tint  
the texture.

Time for action – customizing the BackgroundScreen class
To customize the background image for Mars Runner, perform the following steps:

1. Download the 7089_09_GRAPICSPACK.zip file from the book's website and 
extract the contents to a temporary location.

2. Select the Textures, Models, and HeightMaps folders from the temporary 
location and copy them to the Windows clipboard.
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3. In Visual Studio, right-click on Content (the name of the content project for a GSM 
project) and select Paste to add the folders and their contents to the project.

4. Expand the Models folder in the content project and exclude all of the PNG files, 
along with the Sphere folder from the project.

5. In the LoadContent() method of the BackgroundScreen class (located inside 
the Screens folder in the project), change the name of the texture that is loaded 
from "background" to @"textures\marsrunner". The new line should read:
backgroundTexture = content.Load<Texture2D>@("textures\
marsrunner");

6. Launch the game and view the new background image as shown in the  
following screeenshot:

What just happened?
There is, of course, nothing very complicated about replacing the image used for the 
background. It does point out an issue though—we are utilizing our background image as a 
title screen of sorts, but the menu title (Main Menu) in this case, overlaps with the game title 
built into the title screen. In the preceding image, you can see Main Menu in gray text inside 
the Mars Runner title.

The second screen that is automatically created in the GameStateManagementGame class is 
an instance of MainMenuScreen. This class inherits from the MenuScreen class, which is in 
turn derived from GameScreen.

The code of the MainMenuScreen defines the menu entries that will be displayed and 
implements the callbacks associated with selecting a menu entry. The base code of the 
MenuScreen class implements updating and drawing the menu, and handles input from the 
player to move between menu items and select menu items.
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The locations of the menu items are hard coded by default in the GSM, so we will modify  
the MenuScreen class to allow us to specify the locations of these items. In addition,  
we will remove the Options menu item for now, as we will not be implementing  
options in Mars Runner.

Time for action – updating the menu
To update the menu for Mars Runner, perform the following steps:

1. In the MenuScreen class file, add two new fields to the Fields region as follows:
int menuTitleYPos = 80;
int menuEntryYStart = 175;

2. Add a new constructor to the MenuScreen class, in addition to the existing 
constructor (located in the Initialization region) as follows:
public MenuScreen(string menuTitle, int titleYPos, int menuYPos)
{
    this.menuTitle = menuTitle;

    TransitionOnTime = TimeSpan.FromSeconds(0.5);
    TransitionOffTime = TimeSpan.FromSeconds(0.5);
    menuTitleYPos = titleYPos;
    menuEntryYStart = menuYPos;
}

3. In the Update and Draw region of the MenuScreen class, modify the line of code 
in the UpdateMenuEntryLocations() method that specifies the base position 
vector, replacing 175f with our new menuEntryYStart variable, as follows:
Vector2 position = new Vector2(0f, menuEntryYStart);

4. In the Draw() method, modify the line that sets the titlePosition vector by 
replacing the 80 value with the menuTitleYPos field as follows:
Vector2 titlePosition = 
    new Vector2(graphics.Viewport.Width / 2, menuTitleYPos);

5. In the MainMenuScreen class file, modify the declaration of the constructor to 
include new positions in the call to the base class' constructor as follows:
public MainMenuScreen()
    : base("Main Menu", 175, 225)

6. In the constructor, comment out the line that adds the optionsMenuEntry to the 
MenuEntries list as follows:
//MenuEntries.Add(optionsMenuEntry);
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7.  Execute the game and view the relocated menu as shown in the following screenshot:

What just happened?
By adding a second constructor to the MenuScreen class and setting the default values of 
the menu positions equal to the existing hardcoded values, we can ensure that we will not 
break the MenuScreen code for other screens that may be derived from it.

After modifying the menu positions, we simply eliminate the addition of the Options menu 
item from the MenuItems list. The Options menu still gets created, but is never displayed. 
This way, if you choose to implement your own screen to display options later, you just need 
to uncomment the line to return the menu entry to its place.

Adding a new screen
The game in the GameplayScreen class is not too terribly exciting. It simply bounces a  
bit of text around the screen, admonishing the player to "Insert Gameplay Here". In order  
to implement our design for Mars Runner, we will create a new gameplay screen to house 
our code.

Time for action – creating the MarsRunnerPlayScreen class
To create a new gameplay screen for Mars Runner, perform the following steps:

1. Add a new class file to the Screens folder of the Mars Runner project. Name the 
class file MarsRunnerPlayScreen.cs.

2. Modify the namespace line in the newly created class by removing .Screens from 
the end of the namespace. The new line should read as follows:
namespace Mars_Runner
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3. Add the following using directives at the beginning of the class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

4. Modify the declaration of the class to derive it from the GameScreen class  
as follows:
class MarsRunnerPlayScreen : GameScreen

5. Add fields to the MarsRunnerPlayScreen class as follows:
#region Fields
ContentManager content;
Random random = new Random();
#endregion

6. In the MainMenuScreen class, inside the Handle Input region, modify the 
PlayGameMenuEntrySelected() event handler by replacing the reference to 
GameplayScreen with a reference to our new MarsRunnerPlayScreen. The new 
line should read as follows:
LoadingScreen.Load(ScreenManager, true, e.PlayerIndex, 
    new MarsRunnerPlayScreen());

7. Execute the game and select Play Game from the main menu.

What just happened?
At the moment, our MarsRunnerPlayScreen class is even less exciting than the default GSM 
game! All we get now after selecting Play Game is a black screen. We have created the shell for 
our gameplay class, but we need to do quite a bit of background work before we are ready to 
actually implement the gameplay. Note that we needed to modify the namespace associated 
with the MarsRunnerPlayScreen class because Visual Studio automatically appends the 
folder name any time you create a class file inside a folder in your project. We are using folders 
strictly for organization, so we are fine keeping our code in a single namespace.

A new camera
As we saw at the beginning of this chapter, the camera in Mars Runner will remain in a 
single location, facing a fixed point throughout the game. This simplifies the Camera class 
somewhat from the cameras we have previously implemented, but we also want to add a 
couple of new capabilities to allow us to play a few tricks with the skybox that will form the 
background of our gameplay.
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Time for action – the stationary camera
To implement a stationary camera in Mars Runner, perform the following steps:

1. Create a new class file in the Mars Runner project called Camera.cs.

2. Add the following using declaration to the Camera class file:
using Microsoft.Xna.Framework;

3. Add the following fields to the Camera class:
#region Fields
private Vector3 position = Vector3.Zero;
private float rotation;

private Vector3 lookAt;
private Vector3 baseCameraReference = new Vector3(0, 0, 1);
private bool needViewResync = true;

private Matrix cachedViewMatrix;
#endregion

4. Add the following properties to the Camera class:
#region Properties
public Matrix Projection { get; private set; }
public Matrix WideProjection { get; private set; }

public Vector3 Position
{
    get
    {
        return position;
    }
    set
    {
        position = value;
        updateLookAt();
    }
}

public float Rotation
{
    get
    {
        return rotation;
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    }
    set
    {
        rotation = value;
        updateLookAt();
    }
}

public Matrix View
{
    get
    {
        if (needViewResync)
            cachedViewMatrix = Matrix.CreateLookAt(
                Position,
                lookAt,
                Vector3.Up);

        return cachedViewMatrix;
    }
}
#endregion

5. Add a constructor to the Camera class as follows:
#region Constructor
public Camera(
    Vector3 position,
    float rotation,
    float aspectRatio,
    float nearClip,
    float farClip)
{
    Projection = Matrix.CreatePerspectiveFieldOfView(
        MathHelper.PiOver4,
        aspectRatio,
        nearClip,
        farClip);
    WideProjection = Matrix.CreatePerspectiveFieldOfView(
        MathHelper.PiOver4,
        aspectRatio/2,
        nearClip,
        farClip);
    MoveTo(position, rotation);
}
#endregion
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6. Add helper methods to the Camera class as follows:
#region Helper Methods
private void updateLookAt()
{
    Matrix rotationMatrix = Matrix.CreateRotationY(rotation);
    Vector3 lookAtOffset = Vector3.Transform(
        baseCameraReference,
        rotationMatrix);
    lookAt = position + lookAtOffset;
    needViewResync = true;
}

public void MoveTo(Vector3 position, float rotation)
{
    this.position = position;
    this.rotation = rotation;
    updateLookAt();
}
#endregion

7. In the MarsRunnerPlayScreen class, add a new field to the Fields region  
as follows:
Camera camera;

8. Also in the MarsRunnerPlayScreen class, add the LoadContent() method  
as follows:
#region Initialization
public override void LoadContent()
{
    camera = new Camera(
        new Vector3(0, 2, 115), 
        MathHelper.ToRadians(180), 
        ScreenManager.GraphicsDevice.Viewport.AspectRatio, 
        0.1f, 
        1000f);

    base.LoadContent();
}
#endregion
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What just happened?
The Camera class should look very familiar. In fact, it is nearly identical to the camera from 
Cube Chaser, with the PreviewMove() and MoveForward() methods removed, and a new 
property added.

This property, WideProjection, is initialized in the constructor with mostly the same 
parameters as the normal Projection matrix, but with half of the aspect ratio. As we saw 
when experimenting with the projection matrix in Cube Chaser, this will cause anything 
drawn using the WideProjection matrix to appear stretched out horizontally. This will help 
us mask the fact that the background we will be using is essentially plastered onto the inside 
of a cube and rotating around the player's viewpoint continuously.

When we create the instance of the Camera class, we will specify a position slightly above 
the XZ plane, and 115 pixels towards the player along the Z axis. By specifying a view angle 
of 180 degrees, we are looking back straight along the Z axis.

At the moment we have nothing for our camera to show us. Let's rectify that.

Creating the background
If the player is good at playing Mars Runner, they could drive along the surface of the planet 
for quite a while. This creates a challenge when displaying the planetary background—how 
do we display a continuous background image no matter how far the player travels?

We have a couple of options here. We could create a background panel with a seamless 
texture on it and place multiple copies of it in the right position so they march past the 
camera at the appropriate rate. We are going to do exactly that to implement the track that 
our player will drive on.

We could also revert to using 2D images for the background. We would simply need to draw 
enough copies of the image, offsetting it as the player travels, to fill the display.

Both of these approaches would work for Mars Runner as we are implementing it in 
this book, but what would happen if we allowed the camera to move or rotate? Our flat 
background panels would quickly be revealed for what they are, and if we were using a 
repeated 2D image the background might not change at all.

Instead, we will implement a very common and handy technique for 3D games: the skybox. 
By creating a cube and mapping a texture to its inside walls, we can draw it large enough 
that it encompasses our entire viewing area. The texture on the inner surfaces of the cube 
will appear to be a seamless background image.
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As with most coding tasks, there are multiple ways we could go about creating a skybox. It 
is quite common to load a model with the skybox mapped to it. On the other hand, we only 
need a cube with six faces, and we happen to have most of the code we need to create—in 
the Cube Chaser game.

Time for action – creating a skybox
To create a skybox for Mars Runner, perform the following steps:

1. Add a new class file called Skybox.cs to the Mars Runner project.

2. Add the following using declaration at the beginning of the Skybox class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Add fields to the Skybox class as follows:
#region Fields
private GraphicsDevice device;
private Texture2D texture;
private VertexBuffer cubeVertexBuffer;
private List<VertexPositionTexture> vertices = new
    List<VertexPositionTexture>();
private float rotation = 0f;
#endregion

4. Create a constructor for the Skybox class as follows:
#region Constructor
public Skybox(
    GraphicsDevice graphicsDevice,
    Texture2D texture)
{
    device = graphicsDevice;
    this.texture = texture;

    // Create the cube's vertical faces
    BuildFace(
        new Vector3(0, 0, 0), 
        new Vector3(0, 1, 1), 
        new Vector2(0, 0.25f)); // west face
    BuildFace(
        new Vector3(0, 0, 1), 
        new Vector3(1, 1, 1), 
        new Vector2(0.75f, 0.25f)); // south face
    BuildFace(

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Chapter 9

[ 229 ]

        new Vector3(1, 0, 1), 
        new Vector3(1, 1, 0), 
        new Vector2(0.5f, 0.25f)); // east face
    BuildFace(
        new Vector3(1, 0, 0), 
        new Vector3(0, 1, 0), 
        new Vector2(0.25f, 0.25f)); // North face

    // Create the cube's horizontal faces
    BuildFaceHorizontal(
        new Vector3(1, 1, 0), 
        new Vector3(0, 1, 1), 
        new Vector2(0.25f, 0)); // Top face
    BuildFaceHorizontal(
        new Vector3(1, 0, 1), 
        new Vector3(0, 0, 0), 
        new Vector2(0.25f, 0.5f)); // Bottom face

    cubeVertexBuffer = new VertexBuffer(
        device,
        VertexPositionTexture.VertexDeclaration,
        vertices.Count,
        BufferUsage.WriteOnly);

    cubeVertexBuffer.SetData<VertexPositionTexture>(
        vertices.ToArray());
}
#endregion

5. Add helper methods to implement the BuildFace(), BuildFaceHorizontal(), 
and BuildVertex() methods in the Skybox class as follows:
#region Helper Methods
private void BuildFace(Vector3 p1, Vector3 p2, Vector2 txCoord)
{
    vertices.Add(BuildVertex(
        p1.X, p1.Y, p1.Z, txCoord.X + 0.25f, txCoord.Y + 0.25f));
    vertices.Add(BuildVertex(
        p2.X, p2.Y, p2.Z, txCoord.X, txCoord.Y));
    vertices.Add(BuildVertex(
        p1.X, p2.Y, p1.Z, txCoord.X + 0.25f, txCoord.Y));

    vertices.Add(BuildVertex(
        p1.X, p1.Y, p1.Z, txCoord.X + 0.25f, txCoord.Y + 0.25f));
    vertices.Add(BuildVertex(
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        p2.X, p1.Y, p2.Z, txCoord.X, txCoord.Y + 0.25f));
    vertices.Add(BuildVertex(
        p2.X, p2.Y, p2.Z, txCoord.X, txCoord.Y));
}

private void BuildFaceHorizontal(
    Vector3 p1, Vector3 p2, Vector2 txCoord)
{
    vertices.Add(BuildVertex(
        p1.X, p1.Y, p1.Z, txCoord.X, txCoord.Y + 0.25f));
    vertices.Add(BuildVertex(
        p2.X, p2.Y, p2.Z, txCoord.X + 0.25f, txCoord.Y));
    vertices.Add(BuildVertex(
        p2.X, p1.Y, p1.Z, txCoord.X + 0.25f, txCoord.Y + 0.25f));

    vertices.Add(BuildVertex(
        p1.X, p1.Y, p1.Z, txCoord.X, txCoord.Y + 0.25f));
    vertices.Add(BuildVertex(
        p1.X, p1.Y, p2.Z, txCoord.X, txCoord.Y));
    vertices.Add(BuildVertex(
        p2.X, p2.Y, p2.Z, txCoord.X + 0.25f, txCoord.Y));
}

private VertexPositionTexture BuildVertex(
    float x,
    float y,
    float z,
    float u,
    float v)
{
    return new VertexPositionTexture(
    new Vector3(x, y, z),
    new Vector2(u, v));
}
#endregion

6. Add the Draw() method to display the skybox as follows:
#region Draw
public void Draw(Camera camera, BasicEffect effect)
{
    effect.VertexColorEnabled = false;
    effect.TextureEnabled = true;
    effect.Texture = texture;
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    effect.LightingEnabled = false;

    Matrix center = Matrix.CreateTranslation(
        new Vector3(-0.5f, -0.5f, -0.5f)); 
    Matrix scale = Matrix.CreateScale(200f);
    
    Matrix translate = Matrix.CreateTranslation(camera.Position);

    Matrix rot = Matrix.CreateRotationY(rotation);

    effect.World = center * rot * scale * translate;
    effect.View = camera.View;
    effect.Projection = camera.WideProjection;

    foreach (EffectPass pass in effect.CurrentTechnique.Passes)
    {
        pass.Apply();
        device.SetVertexBuffer(cubeVertexBuffer);
        device.DrawPrimitives(
            PrimitiveType.TriangleList,
            0,
            cubeVertexBuffer.VertexCount / 3);
    }
}
#endregion

7. In the MarsRunnerPlayScreen class, add a field for the skybox and an effect that 
we will use to draw it to the Fields region as follows:
Skybox skybox;
BasicEffect effect;

8. In the LoadContent() method of the MarsRunnerPlayScreen class, 
initialize the skybox and the effect that we will use just before the call to base.
LoadContent() as follows:
if (content == null) content = new
    ContentManager(ScreenManager.Game.Services, "Content");

skybox = new Skybox(
    ScreenManager.GraphicsDevice,
    content.Load<Texture2D>(@"textures\mars_skybox"));

effect = new BasicEffect(ScreenManager.GraphicsDevice);
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9. Finally, add an override for the Draw() method to the MarsRunnerPlayScreen 
class as follows:
#region Draw
public override void Draw(GameTime gameTime)
{

    ScreenManager.GraphicsDevice.DepthStencilState = 
        DepthStencilState.Default;
    
    skybox.Draw(camera, effect);

    base.Draw(gameTime);
}
#endregion

10. Execute the game and view the skybox from the camera's position as shown in the 
following screenshot:

What just happened?
We have quite a bit of code here, but most of it is straight from the Cube Chaser Cube class, 
with a few small modifications.

You will recall that the cube in Cube Chaser rotated in two directions, around the Y axis and 
around the Z axis and could be placed anywhere in the game level. Our skybox only needs 
to rotate around the Y axis, so we have removed all references to the zrotation field from 
the original Cube Chaser code. The location field has also been eliminated, because the 
skybox will never need to have a position within the game world.
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The second important difference between this cube and the cube we made for Cube Chaser 
is the way we want to map textures to it. Our skybox will be viewed from the inside, while 
Cube Chaser's cube was displayed from the outside. When the skybox is drawn, it will be 
positioned so that the camera is at the center of the box. If we used the same vertex creation 
order for the skybox as for the cube, we would not see any of our textures – remember that 
the triangles we draw are one-sided. By reversing the order, we are flipping each face of the 
cube around so that the textured surfaces face inward.

For this reason, we flip the second and third coordinate of each triangle's vertex in 
BuildFace() and BuildFaceHorizonal(). This gives us the vertices in the reverse order, 
allowing the triangles to be seen from the inside. Additionally, instead of specifying absolute 
(u, v) coordinates for texture mapping, we have instead passed in a Vector2 instance, 
which represents the base location inside a larger texture for each triangle to use.

We can see the reason for this by looking at the following actual texture image used  
for the skybox:

Recall that, while not strictly necessary for many of today's modern video cards, our texture 
sizes work out best when they are powers of two (64, 128, 256, and so on). In the case of our 
skybox texture, we are using a texture that is 2048 x 2048 pixels. The visuals are placed on 
the texture to form an unwrapped cube shape. If you were to print out the texture image, 
cut away the black areas, and fold the remaining shape into a box, you would have a physical 
representation of the skybox we are building, though from the outside all you would see is 
plain white paper.
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As our texture is sized to a power of two, we can divide it up nicely for texture coordinates 
in increments of 0.25f units. Remember that in (u, v) coordinates, the upper-left corner of 
the texture is (0f, 0f), while the lower-right corner is (1f, 1f). As the vertical faces of our 
cube are laid out in four sections horizontally along the texture and one quarter of the way 
down, they have (u,v) coordinates as (0f, 0.25f) for the leftmost face, (0.25f, 0.25f) for 
the second face, and so on across the texture. The portion of the texture used for each face 
is 0.25f units wide and 0.25f units tall.

The final major difference between this code and the code in Cube Chaser comes in the 
Draw() method. We still center the cube at the origin, but we now scale the cube by a 
factor of 200. The actual scale is not too important (by itself, it would look exactly the same 
without any scaling or scaled dramatically higher). The important thing is that it is scaled 
large enough to appear behind anything else that we will be drawing in the scene. Otherwise 
3D objects such as our rover and alien craft could be hidden behind the sky.

Further, instead of calculating the translation matrix based on a world position for the 
skybox, we use the camera's current location to determine the translation matrix. This 
means the skybox will always be drawn with the camera at its center. This is not too critical 
for Mars Runner since the camera will never move anyway, but in a game using an FPS 
camera, this keeps the sky in the right position as the player moves around in the level.

Also changed in the Draw() method is the projection matrix we use for drawing the 
skybox. This particular change is specific to the way we will be using the skybox in Mars 
Runner. You would normally want to use the standard projection matrix for an FPS-style 
game. The reason we are using a wider projection is that we are going to slowly rotate the 
skybox to simulate the player travelling in a straight line along the Martian terrain. With a 
standard projection, the fact that the background is rotating is easily visible as features of 
the background enter from the sides and dip downward as they approach the center of the 
screen. The wider projection helps to mask that effect somewhat, even though it does not 
eliminate it entirely.

What happens to the corners of the skybox? Since the camera is always in the center of the 
box, the texture that is mapped onto the cube's faces is seamless, and as there is no lighting 
applied to the skybox, the seams visually disappear. Here is a view of the skybox rendered 
from outside:
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From the preceding screenshot, it is a little easier to see that the image is actually being 
mapped to the inside of the box. As the faces of the box closest to the viewpoint in the 
preceding screenshot are turned inward, we do not see them from outside, allowing us to 
see into the box.

Creating your own skyboxes
The skybox image used in Mars Runner was created with Terragen Classic, 
available for no cost at http://www.planetside.co.uk/. If you 
search the web for "terragen skybox tutorial" you will find any number of 
tutorials on creating skybox images.

One last important point: In the updated Draw() method for the MarsRunnerPlayScreen 
class, before we draw our skybox, we set the GraphicsDevice.DepthStencilState 
property to its default. This might seem odd at first as we are not setting it to anything 
else, and we have not been mixing 2D and 3D graphics. Or have we? The GSM system 
uses SpriteBatch extensively for backgrounds and menu text, and as we saw when 
adding our UI to Tank Battles, the SpriteBatch.End() method does not reset all of the 
rendering parameters that the SpriteBatch.Begin() method changes. Remember that 
our background screen is still being drawn, even though we have covered it up with other 
graphics. As we never know what kind of state we might have been left in, it is safest just to 
reset this value before we draw any of our 3D meshes.

We will come back and add rotation to our skybox to give it the appearance of motion  
after we have a surface for our player to drive their rover on. In order to do that, we will 
revisit heightmaps.
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Building the Martian surface
Just as we have been able to make use of the concepts and code we have learned previously 
to allow us to build a skybox, we can also call upon our knowledge of heightmap-based 
terrain in order to create the track that the player will drive along. As earlier, we will 
customize and streamline the code a bit to implement the features we need for Mars Runner.

Simplified heightmaps
In Tank Battles, we used large, detailed heightmaps to create a nicely varied terrain. Our 
goal in Mars Runner is somewhat different, so our heightmap implementation will change to 
accommodate that difference. The heightmaps we will be using in Mars Runner are shown in 
the following image:

As you can see, our heightmaps are very simple. Each of our two heightmaps is a 16 x 16 
pixel image. The image on the left-hand side is a solid shade of gray, meaning that the entire 
map will have the same elevation if we made no changes to the code that creates the mesh.

The image on the right-hand side represents a crater in the Martian surface. It has the same 
shade of gray for the border as the first heightmap, but with a darker spot at the center 
which will produce a deeply plunging pit at the center of the mesh.

In order to form the track the player will drive on, we will create an array of integers 
representing either a clear, flat track section, or a cratered section. When we draw the track, 
we will only draw the pieces that happen to be in front of the camera at the time.

Time for action – beginning the MarsTrack class
To create a track for the player to drive on, perform the following steps:

1. Add a new class file called MarsTrack.cs to the Mars Runner project.

2. Add the following using directives to the top of the MarsTrack class file:
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework;
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3. Add fields to the MarsTrack class as follows:
#region Fields
private GraphicsDevice device;
private Texture2D marsTexture;

private List<VertexBuffer> vertexBuffers = new 
List<VertexBuffer>();
private List<IndexBuffer> indexBuffers = new List<IndexBuffer>();

private float terrainScale = 30f;

private int[] track;
#endregion

4. Add a constructor to the MarsTrack class as follows:
#region Constructor
public MarsTrack(GraphicsDevice device, ContentManager content)
{
    this.device = device;
    track = GenerateTrack(100);
    marsTexture = content.Load<Texture2D>(@"Textures\mars_
surface");
    BuildHeightMap(
        content.Load<Texture2D>(@"HeightMaps\NormalPath"), 
        new Vector3(0, -35, 49));
    BuildHeightMap(
        content.Load<Texture2D>(@"HeightMaps\CraterPath"), 
        new Vector3(0, -35, 49));

}
#endregion

5. Add the Height Maps region and the BuildHeightMap() method to the 
MarsTrack class as follows:
#region Height Maps
private void BuildHeightMap(Texture2D texture, Vector3 
vertexOffset)
{
    int width = texture.Width;
    int height = texture.Height;
    int elements = width * height;
    VertexPositionNormalTexture[] vertices = 
        new VertexPositionNormalTexture[elements];
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    Random rand = new Random();

    Color[] colorData = new Color[elements];
    texture.GetData(colorData);

    for (int x = 0; x < width; x++)
        for (int z = 0; z < height; z++)
        {
            int randFactor = rand.Next(8) - 4;
            if (x == 0 || x == width - 1)
                randFactor = 0;

            float y = (float)(colorData[x + z * width].R + 
                randFactor) / 255f * terrainScale;

            vertices[x + z * width].Position = 
                new Vector3(x * 2, y, z * 2) + vertexOffset;

            vertices[x + z * width].TextureCoordinate = 
                new Vector2(
                    (float)x / (float)width, 
                    (float)z / (float)height);

            vertices[x + z * width].Normal = Vector3.Zero;
        }

    int indexCount = (width - 1) * (height - 1) * 6;
    short[] indices = new short[indexCount];
    int counter = 0;

    for (short z = 0; z < height - 1; z++)
        for (short x = 0; x < width - 1; x++)
        {
            short upperLeft = (short)(x + (z * width));
            short upperRight = (short)(upperLeft + 1);
            short lowerLeft = (short)(upperLeft + width);
            short lowerRight = (short)(upperLeft + width + 1);

            indices[counter++] = upperLeft;
            indices[counter++] = lowerRight;
            indices[counter++] = lowerLeft;
            indices[counter++] = upperLeft;
            indices[counter++] = upperRight;
            indices[counter++] = lowerRight;
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        }

    int triangleCount = indices.Length / 3;

    for (int x = 0; x < triangleCount; x++)
    {
        int v1 = indices[x * 3];
        int v2 = indices[(x * 3) + 1];
        int v3 = indices[(x * 3) + 2];

        Vector3 firstSide = 
            vertices[v2].Position - vertices[v1].Position;

        Vector3 secondSide = 
            vertices[v1].Position - vertices[v3].Position;

        Vector3 triangleNormal = 
            Vector3.Cross(firstSide, secondSide);

        triangleNormal.Normalize();

        vertices[v1].Normal += triangleNormal;
        vertices[v2].Normal += triangleNormal;
        vertices[v3].Normal += triangleNormal;

        if (x % width == 0)
        {
            if (v1 + width < width * height)
                vertices[v1 + width].Normal += triangleNormal;

            if (v3 + width < width * height)
                vertices[v3 + width].Normal += triangleNormal;
        }

        if (x % width == width - 1)
        {
            if (v2 - width >= 0)
                vertices[v2 + width].Normal += triangleNormal;
        }
    }

    for (int x = 0; x < vertices.Length; x++)
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        vertices[x].Normal.Normalize();

    VertexBuffer vertexBuffer = new VertexBuffer(
        device,
        typeof(VertexPositionNormalTexture),
        vertices.Length,
        BufferUsage.None);

    vertexBuffer.SetData(vertices);

    IndexBuffer indexBuffer = new IndexBuffer(
        device,
        IndexElementSize.SixteenBits,
        indices.Length,
        BufferUsage.None);

    indexBuffer.SetData(indices);

    vertexBuffers.Add(vertexBuffer);
    indexBuffers.Add(indexBuffer);
}
#endregion

What just happened?
The BuildHeightMap() method contains quite a bit of code, so let's pause here and see 
what we have so far. As with the code to construct the skybox, much of this code comes 
directly from our existing work. This time, we pull it from the Terrain class in Tank Battles.

There are three new fields of interest in the MarsTrack class. The most obvious is the 
track array. track is an array of integers, each one representing a segment along the 
course of the track. For each entry in the array, a zero represents a flat portion of the track, 
while a one represents a crater.

We also have two new List objects declared, vertexBuffers and indexBuffers. 
Because we are going to have what is essentially a tile-based system of track pieces, we will 
build our mesh buffers and store them in these lists. The index into each list will determine 
which buffer will be drawn when we go to draw a track segment.

The constructor caches the GraphicsDevice and loads the texture we will be using for the 
Mars surface. This is actually just a recolored version of the rock/dirt texture we used for the 
central region of the landscape in Tank Battles.
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Next, the constructor calls BuildHeightMap() to create meshes based on the two 
heightmaps in the previous image. In addition to the heightmap image to use, a new 
parameter allowing us to specify an offset for each of the vertices generated for the 
heightmap has been added to the method call. The value here (0, -35, 49) positions the 
resulting mesh so that, given the position of our camera, it will align with the bottom of our 
display window by lowering it along the Y axis by 35 units. It is also pushed forward toward 
the player's viewpoint by 49 units along the Z axis.

Finally, the constructor calls the generateTrack() method, which we have not yet 
implemented. We will get to that shortly, but first let's look at the new BuildHeightMap() 
method.

The BuildHeightMap() method is actually a combination of the ReadHeightMap(), 
BuildVertexBuffer(), BuildIndexBuffer(), and CalculateNormals() methods 
from the Terrain class in Tank Battles, all rolled into one. Because we are doing everything 
at the same time, we can tweak the code a bit.

Instead of creating an array of heights like we did in Tank Battles, we loop through the color 
data for the heightmap and create the vertex positions directly from the image. Inside the 
nested for loops where we do this, we introduce something new, a randomization factor, 
giving each point in the height map a range of plus or minus eight from its actual color 
value everywhere except the left and right-hand sides of the heightmap (where x==0 or 
x==width-1). The randomization of the vertices will create a nice bumpy effect to keep our 
landscape from looking like a simple flat plane, but we also want the edges of the segments 
to match up seamlessly, so we ensure there is no randomization along the edges where the 
two track segments meet.

The X and Z coordinates of the vertex are multiplied by two, so given our 16 x 16 pixel 
heightmap (which would normally produce a 15 x 15 unit terrain) we will end up with a piece 
of terrain that is 30 x 30 units in size.

The indices and normals are calculated just as they are in Tank Battles. The only difference 
here is that they are calculated at the time the vertex buffer is generated instead of splitting 
them into their own methods. Since we still have the vertex and index arrays at this point, 
(they have not been placed into their respective buffers yet) we do not need to extract their 
data from the buffers. We simply use the arrays as they are.

Once all of the normals have been calculated, we build both VertexBuffer and 
IndexBuffer and store the data from our arrays into them. Finally, we add these buffers 
to the vertexBuffers and indexBuffers list so we can retrieve them for display later. 
Before we can draw our track, though, we need to generate it.
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Time for action – generating the track
To generate the track for our Mars Runner, perform the following steps:

1. Add the Helper Methods region, along with the GenerateTrack() method to 
the MarsTrack class as follows:
#region Helper Methods
private int[] GenerateTrack(int length)
{
    Random rand = new Random();

    int[] track = new int[length];
    for (int x = 0; x < length; x++)
    {
        track[x] = 0;
                
        if (x < 5)
            continue;

        if (x > length - 6)
            continue;

        if (track[x - 1] != 1)
        {
            if (rand.Next(0, 4) == 0)
            {
                track[x] = 1;
            }
        }
    }

    return track;
}
#endregion

What just happened?
We loop through each segment of the track, beginning with the assumption that each 
segment will represent solid ground (a value of zero). If we are within the first or last five 
segments of the track, we continue the loop, we do not want to have crater segments show 
up too soon or the player will not have an opportunity to jump the first crater. We also want 
a clear ending area where the player can come to a stop at the end of the level.
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If we are not within five segments of either end of the track, we need to randomly determine 
if we should change this segment of track into a crater. First, though, we check to see if the 
previous segment is a crater. We do not want to place two craters in a row, or the player will 
not have a place to land between jumps.

Assuming we actually can place a crater at a given segment, we then determine if we should 
do so. There is a one in four chance of a track space that passes the criteria ending up as 
a crater – a probability you could increase to raise the difficulty as the player progressed 
through multiple levels if you expand on the Mars Runner game. If a segment is going to 
become a crater, we set its value to one.

Drawing the track
Just like our terrain from Tank Battles, we will use the DrawIndexedPrimitives() method 
to display our Martian surface. On the other hand, we want to display one or both of our two 
possible terrain meshes multiple times. Each one will need to be drawn with an offset along 
the X axis so it appears in the appropriate position.

Time for action – drawing the track
To draw the track for Mars Runner, perform the following steps:

1. Add the Draw region and its two methods to the MarsTrack class as follows:
#region Draw
public void Draw(Camera camera, BasicEffect effect, float offset)
{
    effect.View = camera.View;
    effect.Projection = camera.Projection;
    effect.TextureEnabled = true;
    effect.Texture = marsTexture;
    effect.EnableDefaultLighting();

    float drawBase = 60f;
    drawBase += offset % 30f;
    int firstSector = (int)(offset / 30f);

    for (int x = 0; x < 5; x++)
    {
        if (firstSector + x >= 0 && firstSector + x < track.
Length)
        {
            DrawTerrainMeshInstance(
                track[firstSector + x], 
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                effect, 
                drawBase - (x * 30f));
        }
    }
}

private void DrawTerrainMeshInstance(
    int meshIndex, 
    BasicEffect effect, 
    float horizontalOffset)
{
    effect.World = Matrix.Identity * 
        Matrix.CreateTranslation(
            new Vector3(-horizontalOffset, 0, 0));

    foreach (EffectPass pass in effect.CurrentTechnique.Passes)
    {
        pass.Apply();
        device.SetVertexBuffer(vertexBuffers[meshIndex]);
        device.Indices = indexBuffers[meshIndex];
        device.DrawIndexedPrimitives(
            PrimitiveType.TriangleList,
            0,
            0,
            vertexBuffers[meshIndex].VertexCount,
            0,
            indexBuffers[meshIndex].IndexCount / 3);
    }
}
#endregion

2. In the MarsRunnerPlayScreen class, add a new field for the track itself and the 
position of the player as follows:
MarsTrack track;
float playerPosition = 0f;

3. In the LoadContent() method of the MarsRunnerPlayScreen class, initialize 
the track just before the call to base.LoadConent() method as follows:
track = new MarsTrack(ScreenManager.GraphicsDevice, content);

4. In the Draw() method of the MarsRunnerPlayScreen class, draw the track after 
the skybox has been drawn:
track.Draw(camera, effect, playerPosition);
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5. Execute the game and view the track drawn in front of the skybox as shown in the 
following screenshot:

What just happened?
The Draw() method sets up the parameters for the BasicEffect class which we will 
use to draw our heightmaps. We also call the effect.EnableDefaultLighting() 
method, which tells the BasicEffect class to use a built-in default lighting setup 
designed to simulate a standard three-light rig. Details on the default lighting setup for the 
BasicEffect class can be found in Shawn Hargreaves' blog entry on the subject here: 
http://blogs.msdn.com/b/shawnhar/archive/2007/04/09/the-standard-
lighting-rig.aspx

Why BasicEffect?
You may have noticed that we are not implementing any custom HLSL 
for Tank Battles. There are a couple of reasons for this. First, we are not 
implementing any visual effects that the BasicEffect class cannot 
already handle, so adding our own effect file would just be extra work. 
Second, if you intend to target the Windows Phone platform with your XNA 
games, custom effect files are not supported. You will need to find ways to 
produce the effects you want with the built-in effects.
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Next, we need to determine where we are going to draw the ground segments that make up 
the track. Remember that our camera is positioned along the positive Z axis, slightly above 
the XZ plane. It is looking back along the Z axis towards the origin. As the vertices in our 
terrain are designed with the upper-left corner at the origin, if we were to simply draw our 
terrain as is, each piece would be stacked on top of each other to the right-hand side of the 
center from our camera's view.

Each segment of terrain is 30 units wide. If we were to offset the draw position of the first 
terrain segment 30 units along the negative X axis, it would appear to the right-hand side 
of the center of the viewpoint, but it would not extend all the way off the screen. For this 
reason, we want to start drawing terrain segments two positions to the left-hand side of the 
center. This is the reason for the drawBase variable and its initial value of 60f.

Although we have not yet implemented the player's rover, and therefore not allowed the 
player to move along the track, we allow for the player's current position (how far they have 
travelled from their initial position of zero) to be passed to the Draw() method. Since our 
terrain tiles are 30 units wide, as the player's position slowly increments towards a multiple of 
30, we need to shift our drawing offset further to the left-hand side of the screen. To do this, 
we divide the offset by 30 and add the remainder of the division to the drawBase variable.

In order to determine which style segment to draw for each position, we need to determine 
the index into the track array that corresponds to a given offset. We can do this simply by 
dividing the offset by 30 and truncating the result.

After we have this drawBase and the index of the first segment to draw, we loop and draw 
five segments, subtracting 30 from the drawBase location each time. The actual drawing of 
the terrain is handled by the DrawTerrainMeshInstance() method.

In order to draw a terrain segment, the DrawTerrainMeshInstance() method calculates 
a world matrix based on the offset passed to it. With the translation matrix corresponding 
to this offset calculated, we draw the terrain just as we have before, passing the 
TriangleList enumeration to the DrawIndexedPrimitives() method.

Summary
We have laid the groundwork for the Mars Runner game, integrating our own code into the 
Game State Management sample system and creating both a skybox and a track for our 
player to drive along.

We have seen how the code concepts we have implemented in earlier games can be 
tweaked and updated for our new endeavors. We will continue this trend in Chapter 10, 
Mars Runner – Reaching the Finish Line, as we complete the Mars Runner game by adding 
the player's rover, the alien ship, and all of the gameplay elements we need, to tie the 
various pieces of the game together.
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Mars Runner – Reaching the  

Finish Line

The Mars Runner game is in pretty good shape so far. We have implemented 
the GSM system from the GSM sample code provided by Microsoft, and we 
have created a skybox to represent the Martian landscape. We have built 
heightmaps in such a way that they sequence as segments of a track along the 
surface of Mars for our player to drive their rover on.

Of course, to drive the rover, we actually need to implement it! Because the 
resource is available to us, we will use the same 3D model for the rover that we 
used for the tanks in Tank Battles.

In this chapter, we will cover the following:

 � Generalizing our code for using and displaying 3D models

 � Adding the player's Mars rover to the game, including movement controls

 � Animating the background, track, and rover

 � Adding an enemy UFO and allowing the player to fire shots at it

 � Detecting collisions between the player, enemy, craters, and fired shots

Abstracting support for 3D models
We know we will need to support at least three different models in Mars Runner. The 
player will need a vehicle to drive, the alien enemy will be flying a saucer, and we will need 
projectiles for both the player and the enemy to fire.
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Instead of building all of the code to support 3D model rendering into separate classes for 
each of the entities, we will create a base class that will handle the common functionality for 
our different objects' need.

Time for action – the GameEntity class
To add a class for implementing the common functionality in Mars Runner, perform the 
following steps:

1. Add a new class file called GameEntity.cs to the Mars Runner project.

2. Add the following using directives at the beginning of the GameEntity class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Add fields to the GameEntity class as follows:
#region Fields
protected Model model;
protected GraphicsDevice device;
protected Vector3 position = Vector3.Zero;
protected float scale = 1.0f;
protected float yaw = 0f;
protected float pitch = 0f;
protected float roll = 0f;
protected Dictionary<string, Matrix> baseTransforms = 
    new Dictionary<string, Matrix>();
protected Dictionary<string, Matrix> currentTransforms = 
    new Dictionary<string, Matrix>();
protected Matrix[] boneTransforms;
protected Vector3 minVector;
protected Vector3 maxVector;
protected Vector3 drawOffset = Vector3.Zero;
#endregion

4. Add properties to the GameEntity class as follows:
#region Properties
public virtual Vector3 Position
{
    get { return position; }
    set { position = value; }
}

public float Scale
{
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    get { return scale; }
    set { scale = value; }
}

public BoundingBox Bounds
{
    get
    {
        Matrix scaleMatrix = Matrix.CreateScale(scale); 
        Matrix rotate = Matrix.CreateFromYawPitchRoll(
            yaw, pitch, roll);
        Matrix translate = Matrix.CreateTranslation(position);

        Matrix transform = scaleMatrix * rotate * translate;

        Vector3 v1 = Vector3.Transform(minVector, transform);
        Vector3 v2 = Vector3.Transform(maxVector, transform);
        Vector3 boxMin = Vector3.Min(v1, v2);
        Vector3 boxMax = Vector3.Max(v1, v2);

        return new BoundingBox(
            boxMin,
            boxMax);
    }
}
#endregion

5. Add a constructor for the GameEntity class as follows:
#region Constructor
public GameEntity(
    GraphicsDevice device,
    Model model,
    Vector3 position)
{
    this.device = device;
    this.model = model;
    Position = position;
    BasicEffect effect = null;

    boneTransforms = new Matrix[model.Bones.Count];

    for (int i = 1; i < model.Bones.Count; i++)
    {
        baseTransforms[model.Bones[i].Name] =
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            model.Bones[i].Transform;

        currentTransforms[model.Bones[i].Name] = 
            model.Bones[i].Transform;
    }

    minVector = new Vector3(
        float.MaxValue, float.MaxValue, float.MaxValue);
    maxVector = new Vector3(
        float.MinValue, float.MinValue, float.MinValue);

    foreach (ModelMesh mesh in model.Meshes)
    {
        foreach (ModelMeshPart part in mesh.MeshParts)
        {
            if (effect == null)
                effect = (BasicEffect)part.Effect.Clone();

            part.Effect = effect.Clone();

            VertexPositionNormalTexture[] vertexData = new 
          VertexPositionNormalTexture[part.VertexBuffer.
VertexCount];
  part.VertexBuffer.GetData<VertexPositionNormalTexture>(vertexDa
ta);

            for (int i = 0; i < part.VertexBuffer.VertexCount; i++ 
)
            {
                minVector = Vector3.Min(
                    minVector, 
                    vertexData[i].Position);
                maxVector = Vector3.Max(
                    maxVector, 
                    vertexData[i].Position);
            }
        }
    }
}
#endregion
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6. Add an empty Update() method to the GameEntity class as follows:
#region Update
public virtual void Update(GameTime gameTime)
{

}
#endregion

7. Add the Draw() method to the GameEntity class as follows:
#region Draw
public virtual void Draw(Camera camera)
{
    model.Root.Transform = Matrix.Identity *
        Matrix.CreateScale(scale) *
        Matrix.CreateFromYawPitchRoll(yaw, pitch, roll) *
        Matrix.CreateTranslation(position + drawOffset);

    foreach (string s in currentTransforms.Keys)
    {
        model.Bones[s].Transform = currentTransforms[s];
    }

    model.CopyAbsoluteBoneTransformsTo(boneTransforms);

    foreach (ModelMesh mesh in model.Meshes)
    {
        foreach (BasicEffect basicEffect in mesh.Effects)
        {
          basicEffect.World = boneTransforms[mesh.ParentBone.
Index];
          basicEffect.View = camera.View;
          basicEffect.Projection = camera.Projection;

          basicEffect.EnableDefaultLighting();
        }

        mesh.Draw();
    }
}
#endregion
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What just happened?
Much of the GameEntity class is based on the code we used to set up and draw the tank 
model in Tank Battles. We have expanded the functionality a bit, so let's go over the whole 
thing, as it will be the basis for the other classes that we will implement later.

We store fields for familiar things like the Model, GraphicsDevice, location and rotation 
information, and the bone transformations we will apply to animate the model. We have 
also added two dictionary objects (baseTransforms and currentTransforms), and three 
Vector3 values (minVector, maxVector, and drawOffset).

The baseTransforms dictionary is populated in the constructor to store the transforms for 
each bone in the model when the model is initialized. Recall that in Tank Battles, we stored 
the base transforms for the pieces of the tank we were going to be animating. Here, we 
are really doing the same thing in a more generic way. Each bone's base transform can be 
accessed by the bone's name in the dictionary.

Along the same lines, in Tank Battles we stored rotation information for the turret and the 
cannon. These values were stored as floats and translated to matrices when the model was 
drawn back then. By moving this functionality to a dictionary that stores the final transforms, 
we create a generic interface for setting the bone transforms on our models.

The minVector and maxVector values are calculated in the constructor as well. In the 
constructor's nested foreach loop, we examine each vertex to create a pair of coordinates 
that describe the outermost limits of the model. Note that the Vector3.Min() and 
Vector3.Max() methods do not simply compare the two vectors passed to them and 
return the smaller or larger vector. They match up each of the individual vector components 
(X, Y, and Z) and return a new vector with the most extreme of each component for each 
vector passed to it. For example, the Max() method's result for the vectors (10, 10, 10) and 
(8, 500, 1) will return (10, 500, 10). The Min()method's result for the same two vectors 
would return (8, 10, 1).

The Bounds property makes use of the minVector and maxVector values, along with the 
scale, rotation, and positional information for the model, to build a bounding box around the 
model that we can use for collision detection later.

The other important job performed by the constructor is the extraction of the effects 
from the model. Beginning with effect set to null, we clone the first effect we find 
in the model, and replace all of the effects with clones of the effect. Why in the world 
would we do this? If you remember, back in Tank Battles we resorted to using a separate 
ContentManager object to load a second copy of the tank model into memory in order 
to draw our second tank. It is actually the effects on the models that cause problems if we 
simply attempt to draw a model in two different positions.

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Chapter 10

[ 253 ]

By cloning the effects for each instance of the model we wish to draw, we can draw multiple 
copies of a model without the need for a second ContentManager.

Our GameEntity class does not need to do anything during the Update() method's 
execution, but we include an empty method so that our subclasses can override it. That just 
leaves Draw() to be implemented.

Again, to support drawing more than one instance of the model, we have a few minor 
changes from our tank drawing code. We now simply set the model's root transform to 
Matrix.Identity and handle scaling, rotating, and translating our model in a separate 
matrix. This matrix (called world in our code) is applied to each effect instead of being set 
on the root transform.

The only other change is in how we copy the current transforms. In Tank Battles, we were 
setting the transforms manually at this point. For the GameEntity class, we loop through 
the currentTransforms dictionary and read the desired values from there.

Building the rover
Now that we have a base class to handle 3D models, it is time to add our first game entity—
the player's rover. We will do this over a couple of small steps, as it is important to see that 
with only a few lines of code, we can get a model up and into our game. The rest of the 
coding that we will need to do is for customizing the behaviors of each particular entity.

Time for action –building the rover
To build the player's rover, perform the following steps:

1. Add a new class file called Rover.cs to the Mars Runner project.

2. Add the following using directives to the top of the Rover class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Modify the declaration of the Rover class to inherit from GameEntity. The new 
class declaration should read as follows: 
class Rover : GameEntity

4. Add a constructor for the Rover class as follows:
#region Constructor
public Rover(GraphicsDevice device, Model model, Vector3 position)
    : base(device, model, position)
{
    scale = 0.015f;

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Mars Runner – Reaching the Finish Line

[ 254 ]

    yaw = MathHelper.ToRadians(90);
    currentTransforms["canon_geo"] = 
        Matrix.CreateRotationX(MathHelper.ToRadians(-90)) * 
        baseTransforms["canon_geo"];
}
#endregion

5. In the MarsRunnerPlayScreen class, add a new field to hold an instance of the 
Rover class as follows:
Rover rover;

6. In the LoadContent() method of the MarsRunnerPlayScreen class, initialize 
the rover as follows:
rover = new Rover(ScreenManager.GraphicsDevice,
    content.Load<Model>(@"Models\tank"),
    new Vector3(0, -14, 64));

7. In the Draw()method of the MarsRunnerPlayScreen class, draw the rover after 
the track has been drawn as follows:
rover.Draw(camera);

8. Execute the game and view the rover as shown in the following screenshot:
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What just happened?
Getting the rover into the game is pretty straightforward. All we need to do is set the scale 
(remember that the raw tank model is very large), set the yaw value to 90 degrees (causing 
the tank to face right from the camera's point of view) and point the cannon up at the sky. 
When we create the rover instance, we specify its position so that it is sitting on the track 
we created earlier. In the case of the rover, we specify -14 for the Y coordinate, which is 
different from the-35 value that we used for the track. Why the difference? Remember that 
the track is a heightmap. By giving it a Y position of -35, we set the zero-height of the terrain 
to -35. The gray color used in the heightmap image places the visible terrain somewhat 
above that zero point.

Now that we have the rover visible, it is time to add a little movement. Remember,  
though, that the way Mars Runner is designed, the movement range of the rover is very 
restricted. We will have the environment moving around the rover much more than the 
other way around.

In order to allow the player to move the rover, we need to add support for handling user 
input to the MarsRunnerPlayScreen class.

Time for action – accepting user input
To add support for handling user input to the MarsRunnerPlayScreen class, perform the 
following steps:

1. In the Fields region of the MarsRunnerPlayScreen class, add two new fields  
to track the player's desired movement direction and the base movement speed  
as follows:
int moveState = 0;
int moveSpeed = 8;

2. Add the HandleInput() override method to the MarsRunnerPlayScreen class 
as follows:
#region Handle Input
public override void HandleInput(InputState input)
{
    moveState = 0;
    if (
        (input.CurrentKeyboardStates[0].IsKeyDown(Keys.Left)) ||
        (input.CurrentGamePadStates[0].ThumbSticks.Left.X < -0.3f)
        )
    {
        moveState = 1;
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    }

    if (
        (input.CurrentKeyboardStates[0].IsKeyDown(Keys.Right)) ||
        (input.CurrentGamePadStates[0].ThumbSticks.Left.X > 0.3f)
        )
    {
        moveState = 2;
    }

    if (
        (input.CurrentKeyboardStates[0].IsKeyDown(Keys.Up)) ||
        (input.CurrentGamePadStates[0].Buttons.A == 
            ButtonState.Pressed)
        )
    {
        rover.Jump();
    }

    base.HandleInput(input);
}
#endregion

3. Add the Update() method to the MarsRunnerPlayScreen class as follows:
#region Update
public override void Update(
    GameTime gameTime, 
    bool otherScreenHasFocus, 
    bool coveredByOtherScreen)
{
    if (IsActive)
    {
        float elapsed = (float)gameTime.ElapsedGameTime.
TotalSeconds;
        if (moveState == 1)
        {
            rover.Position = new Vector3(
                rover.Position.X - (moveSpeed * elapsed), 
                rover.Position.Y, 
                rover.Position.Z);
        }
        if (moveState == 2)
        {
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            rover.Position = new Vector3(
                rover.Position.X + (moveSpeed * elapsed), 
                rover.Position.Y, 
                rover.Position.Z);
        }

        rover.Update(gameTime);

    }

    base.Update(gameTime, otherScreenHasFocus, 
coveredByOtherScreen);
}
#endregion

4. In the Rover class, add five new fields that we will use to control how the rover 
moves, as follows:
#region Fields
public float groundElevation = -14;
private float minX = -25f;
private float maxX = 25f;
public Vector3 velocity = new Vector3(0, 0, 0);
public Vector3 gravity = new Vector3(0, -30, 0);
#endregion

5. Still in the Rover class, override the Position property as follows:
#region Properties
public override Vector3 Position
{
    get { return position; }
    set
    {
        position = new Vector3(
            MathHelper.Clamp(value.X, minX, maxX),
            value.Y,
            value.Z);
    }
}
#endregion
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6. Add an additional property to the Properties region of the Rover class to 
determine if the rover is currently on the ground or not, as follows:
public bool IsOnGround
{
    get
    {
        return (position.Y <= groundElevation);
    }
}

Add an Update() method to the Rover class:
#region Update
public override void Update(GameTime gameTime)
{
    float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;

    velocity += gravity * elapsed;
    position += velocity * elapsed;
        
    if (position.Y < groundElevation)
        position.Y = groundElevation;

    base.Update(gameTime);
}
#endregion

7. Add the Jump() method to the Rover class as follows:
#region Helper Methods
public void Jump()
{
    if (IsOnGround)
    {
        velocity = new Vector3(0, 30, 0);
    }
}
#endregion

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Chapter 10

[ 259 ]

8. Launch the game and move the rover around with the arrow keys on the keyboard 
or a gamepad. The rover in motion is shown in the following screenshot:

What just happened?
One oddity of the way the GSM sample code is set up is that the HandleInput() method 
does not get a GameTime value passed to it, so if we want to scale our movement based on 
the elapsed time (and we do, to avoid choppy movement), we need to store our intended 
movement for use in the next Update() cycle. Our HandleInput() method does this by 
setting a variable called moveState when the player wishes to move to the left-hand side or 
to the right-hand side.

The other interesting thing to note about the way the GSM handles input is that the 
Update() method for all screens gets called first, and then HandleInput() is called on 
the topmost screen. The results of our input will not actually happen until the following 
Update()/Draw() cycle.

When the GSM processes input, it gathers all of the possible input sources and consolidates 
their current states into an InputState instance. When we check for input, we check the 
first keyboard state and the first gamepad state. As the GSM is set up to handle multiple 
players, the second state value in each array would correspond to the second player, the 
third to the third, and so on.
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Touch and mouse input
By default, the InputState class of GSM handles touch points and 
gesture support on platforms that support them (Windows Phone) but 
does not offer built-in support for mouse input. This can easily be added to 
the InputState class without breaking existing code that uses the class 
if you should wish to do so.

In the Update() method, we check for input we should respond to and make the 
appropriate alterations to the position of the rover. In order to constrain that position, we 
override the GameEntity class' default Position property in order to apply a clamping 
value to the X component of the position vector. This clamping range will keep the rover 
positioned within the view of the camera while allowing the tank to move to the left and 
right-hand side of the screen.

In order to implement the ability to jump (which will be critical if the player is to survive), 
we also need to implement a simple gravity simulation. In our case, we define gravity as a 
vector pointing down along the Y axis. In each Update() cycle, the gravity vector is added 
to the velocity vector for the rover, and the velocity vector is added to the rover's 
position. If the result of these modifications would take the rover below ground level, the Y 
position of the rover is reset to ground level.

All we need to do to begin a jump is set the Y component of velocity to a positive value. 
In our case, we have chosen 30 units/second as the initial jump velocity. Gravity will rapidly 
overcome this velocity, slowing the rover's upward movement until it starts to fall back 
toward the ground.

Animating the planet
We can now slide our rover back and forth along a small strip of ground, but otherwise Mars 
Runner is still relatively static. To simulate the rover actually crossing the terrain, we need to 
move both the track and the skybox in relation to the camera.

Time for action – moving the world
To move both the track and the skybox in relation to the camera, perform the  
following steps:

1. In the Skybox class, add a new property to allow us to set the rotation while 
maintaining a valid angle as follows:
#region Properties
public float Rotation
{
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    get { return rotation; }
    set { rotation = MathHelper.WrapAngle(value); }
}
#endregion

2. Inside the if statement in the Update() method of the MarsRunnerPlayScreen 
class, just before the rover is updated, update the variable that controls the track 
position and rotate the skybox as follows:
if (playerPosition < 2880)
{
    playerPosition += 15 * elapsed;
    skybox.Rotation += 0.1f * elapsed;
}

3. Execute the game.

What just happened?
The way the track is drawn is based on the playerPosition variable. Hence, updating this 
value causes the track to scroll slowly past the camera. Similarly, slowly rotating the skybox 
to match the speed that the track is moving gives the illusion that the player is now rolling 
along the surface of Mars.

Animating the rover
Currently, the rover seems to glide along the surface of the planet. We know that we have 
wheels, and we already know the basics of animating parts of the tank model, so at the very 
least we should make the wheels roll while the tank is moving.

With a little added effort, we can actually do better than that, and bounce the wheels 
vertically to simulate driving over the rough Martian terrain.

Time for action – animating the rover
To animate the rover, perform the following steps:

1. Add several new fields to the Fields region of the Rover class to support wheel 
animation, as follows:
Random rand = new Random(); 
private float wheelRotation = 0f;
private float wheelBounceDelta = 0.01f;
private int wheelBounceRange = 20;
private float[] wheelBounceTargets = new float[4] {0f, 0f, 0f, 0f} 
;
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private float[] wheelBounceCurrent = new float[4] { 0f, 0f, 0f, 0f 
};
private string[] wheelNames = new string[4] 
{
    "r_back_wheel_geo",
    "l_back_wheel_geo",
    "r_front_wheel_geo",
    "l_front_wheel_geo"
};

2. Add the Wheel Animation region and the GenerateWheelTarget() method to 
the Rover class as follows:
#region Wheel Animation
private void GenerateWheelTarget(int wheel)
{
    float newBounceTarget = (float)rand.Next(0, 
wheelBounceRange+1);
    newBounceTarget -= wheelBounceRange / 2;

    wheelBounceTargets[wheel] = newBounceTarget / 100f;
} 
#endregion

3. Add the HasWheelReachedTarget() method to the Wheel Animation region of 
the Rover class as follows:
private bool HasWheelReachedTarget(int wheel)
{
    return (Math.Abs(wheelBounceTargets[wheel] -
        wheelBounceCurrent[wheel]) <= wheelBounceDelta);            
}

4. Add the UpdateWheels() method to the Wheel Animation region of the Rover 
class as follows:
private void UpdateWheels()
{
    wheelRotation = MathHelper.WrapAngle(wheelRotation + 0.02f);

    for (int w = 0; w < 4; w++)
    {
        if (IsOnGround)
        {
            if (HasWheelReachedTarget(w))
            {
                GenerateWheelTarget(w);
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            }
     
            if (wheelBounceTargets[w] > wheelBounceCurrent[w])
            {
                wheelBounceCurrent[w] += wheelBounceDelta;
            }
            else
            {
                wheelBounceCurrent[w] -= wheelBounceDelta;
            }
        }

        currentTransforms[wheelNames[w]] =
            Matrix.CreateRotationX(wheelRotation) *
            Matrix.CreateRotationZ(wheelBounceCurrent[w]) *
            baseTransforms[wheelNames[w]];
    }
}

5. In the Update() method of the Rover class, call UpdateWheels(). Place the 
following call just before the call to the base.Update() method:
UpdateWheels();

6. Execute the game and watch the wheels rotate and bounce along the surface.

What just happened?
Of the two animations we are applying to the rover's wheels, the basic rotation is by far 
the simplest. We track a rotation amount and simply increase it by 0.02f every update() 
cycle in order to spin the wheel. If we had not rotated the rover 90 degrees, the X axis would 
be parallel to the axel through the wheels, so the rotation we want to apply to the rover's 
wheels is around the X axis.

Letting the wheels bounce is slightly more involved, but not overly complicated. We begin by 
creating two arrays to hold information about the wheels. The first, wheelBounceTargets, 
holds the amount of skew the wheels should work their way towards, while the second, 
wheelBonceCurrent, tracks how much progress toward their goals each wheel has made.

When we generate a new target for a wheel to work towards, we get a random number 
between 0 and 20, and then subtract 10 from it, giving a total range of -10 to +10 for the 
new wheel target. As all of our angles are expressed in radians, this would be a very large 
(several full rotations) range of wheel movement. We divide the target by 100 in order to get 
a more reasonable bounce range for the wheel.
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During each Update() cycle while on the ground (the wheels would not bounce up and 
down while the rover is jumping), the wheelBounceDelta value is added to or subtracted 
from the current wheel value until the desired target position has been reached. When it 
has, a new target is generated and the process starts all over again.

By setting the values of each wheel's component of the currentTransforms dictionary, we 
can combine the rotation matrices for both the wheel rotation and the wheel bounce, which 
is a rotation around the Z axis, in order to animate the model.

Crashing into craters
There are two ways the player can die in Mars Runner. The first is to fall into one of the 
craters on the track while driving. We will add support for this type of ending in a temporary 
fashion now, simply returning to the main menu when the player crashes into a crater. The 
second way to die is to be hit by a shot from the enemy saucer. That will have to wait until 
we actually create the saucer.

Time for action – detecting craters
To detect the craters on the track, perform the following steps:

1. Add the GetTrackSegment() method to Helper Methods region of the 
MarsTrack class as follows:
public int GetTrackSegment(float position)
{
    return track[(int)(position / 30f)];
}

2. Add a new field to the Fields region of the MarsRunnerPlayScreen class to flag 
the game as having ended as follows:
bool gameEnded = false;

3. At the very beginning of the Update() method in the MarsRunnerPlayScreen 
class, add the following lines of code to return to the main menu if the game has 
ended:
if (gameEnded && !otherScreenHasFocus)
{
    ScreenManager.AddScreen(new BackgroundScreen(), null);
    ScreenManager.AddScreen(new MainMenuScreen(), null);
    ExitScreen();
}
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4. Still in the Update() method, inside the if (IsActive) block, add the following 
lines of code just after the call to the rover.Update() method:
if (CheckFallInPit())
{
    EndGame();
}

5. Add the checkFallInPit() method to the MarsRunnerPlayScreen class  
as follows:
#region Helper Methods
private bool CheckFallInPit()
{
    float trackPosition = 60f + playerPosition + rover.Position.X;
    int trackType = track. GetTrackSegment(trackPosition);
    float trackSubPosition = trackPosition % 30f;

    bool isPit = false;

    if ((trackType == 1) && 
        (rover.IsOnGround) && 
        (trackSubPosition > 5) && 
        (trackSubPosition < 25))
    {
        isPit = true;
    }

    return isPit;
}
#endregion

6. Add the endGame() method to the Helper Methods region of the 
MarsRunnerPlayScreen class as follows:
private void EndGame()
{
    gameEnded = true;
}

7. Execute the game and fall into a crater.
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What just happened?
When we detect that the game has ended, we need to restore the screens that were 
in ScreenManager before MarsRunnerPlayScreen was loaded. Because the menu 
screen uses an instance of the LoadScreen class to load MarsRunnerPlayScreen, all 
of the other screens we have created and stored in ScreenManager are exited while 
MarsRunnerPlayScreen is loading.

Recall that BackgroundScreen and MainMenuScreen are the two screens added to 
ScreenManager during the initialization of the Game class. To return to that state, we 
simply add these same screens to the ScreenManager and exit our play screen.

Actually, detecting the player falling into a crater involves determining which segment on 
the track the player's rover is currently on. This involves several different variables. The 
playerPosition variable tracks how far along the track the screen has scrolled, while 
the rover's Position property determines the rover's position relative to the edge of the 
screen. By adding these two values, along with the same offset value (60f) that we used to 
offset the drawing of the track, we can determine which track segment the player is currently 
on by calling the track's GetTrackSegmentAtPosition() method.

Because the untransformed tank model would be centered at the origin, the model's 
Position property actually represents the position of the center of the model. Therefore, 
the position we just calculated is the position of the center of the rover along the track.

Additionally, the crater in our terrain mesh does not completely fill a track segment.  
For both of these reasons, we want to give the rover a bit of a cushion when it comes to 
detecting craters. We calculate trackSubPosition as the remainder obtained when 
dividing trackPosition by 30. This will give us how far into the current segment the 
center of the rover is.

If the rover is between units 6 and 24 of a segment with a crater, and the rover is not jumping, 
we consider the player to have driven into a crater. We therefore set the gameEnded flag to 
true, which will be picked up and acted upon by the next Update() cycle.

Why not simply call ExitScreen() and reload the menu right here? Two reasons: first, we 
do not want to write the same code for the second way the player can be killed (being hit 
by the alien saucer's attacks), and second, we will expand on what happens when the game 
ends later, displaying a GameOver screen instead of just dropping back to the menu.

Adding an enemy
If all the player had to do to survive was jump the occasional crater, the Mars Runner game 
would not be very exciting. To add a bit more drama to the gameplay, we will add a flying 
saucer that will make random passes across the sky, dropping bombs down at the player.
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Time for action – the basic flying saucer
To add a flying saucer to Mars Runner, perform the following steps:

1. Add a new class file called EnemySaucer.cs to the Mars Runner project.

2. Add the following using directives at the beginning of the EnemySaucer class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Modify the declaration of the EnemySaucer class to inherit from the GameEntity 
class. The new declaration should read as follows:
class EnemySaucer : GameEntity

4. Add a constructor for the EnemySaucer class as follows:
#region Constructor
public EnemySaucer(GraphicsDevice device, Model model, Vector3 
position)
    : base(device, model, position)
{
    scale = 0.0025f;
    yaw = MathHelper.ToRadians(180);
}
#endregion

5. In the Fields region of the MarsRunnerPlayScreen class, add a new field for our 
enemy saucer as follows:
EnemySaucer enemy;

6. In the LoadContent() method of the MarsRunnerPlayScreen class, initialize 
enemy as follows:
enemy = new EnemySaucer(ScreenManager.GraphicsDevice,
    content.Load<Model>(@"Models\spaceship"),
    new Vector3(0, 15, 64));

7. In the Draw() method of the MarsRunnerPlayScreen class, draw the enemy just 
after the rover has been drawn:
enemy.Draw(camera);
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8. Execute the game. The alien saucer should now be hovering in the sky right over the 
player's head as shown in the following screenshot:

What just happened?
As with adding the rover, getting the enemy saucer into the game is very straightforward 
using our GameEntity class. In the constructor, we rotate the model by setting the yaw 
property to 180 degrees. The saucer model contains a green window with an alien looking 
out of it, and we want this window to face the player, so we rotate the model to bring the 
alien into the proper orientation.

Of course, an alien ship that just sits in one spot without doing anything is not really  
very exciting. We need to expand the EnemySaucer class to add movement and action  
to the craft.

We could simply have the saucer fly across the screen in a straight line, but in order to 
make the alien's flight more interesting, we will compute a spline curve to give the saucer a 
smoother, more realistic flight path.
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Time for action – flying the saucer
In order to give the saucer a more realistic flight path, perform the following steps:

1. Add a new Fields region to the EnemySaucer class, containing the following items:
#region Fields
private Random rand = new Random();
private int flybyChance = 2;
private float minflyByDelay = 5f;
private float flyByTimer = 0f;
private float curveProgress = 0.0f;
private float curveDelta = 0.2f;
private Vector3[] curvePoints = new Vector3[4];
public bool IsOnScreen = false;
public bool IsDestroyed = false;
#endregion

2. Add the Spline Helper Methods region and its two methods to the 
EnemySaucer class as follows:
#region Spline Helper Methods
public void GenerateNewCurve()
{
  curvePoints[0] = new Vector3(-60, (rand.Next(0, 3) - 1) * 25, 
64);
  curvePoints[1] = new Vector3(-45, rand.Next(12, 19), 64);
  curvePoints[2] = new Vector3(45, rand.Next(12, 19), 64);
  curvePoints[3] = new Vector3(60, (rand.Next(0, 3) - 1 * 25), 
64);

  if (rand.Next(0, 2) == 0)
  {
      Vector3 temp = curvePoints[0];
      curvePoints[0] = curvePoints[3];
      curvePoints[3] = temp;
      temp = curvePoints[1];
      curvePoints[1] = curvePoints[2];
      curvePoints[2] = temp;
  }

  curveDelta = (float)(rand.Next(0, 4) + 1) / 10f;

  roll = 0f;
  pitch = 0f;
  IsDestroyed = false;
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  curveProgress = 0f;
  position = ComputeCurrentLocation();
}
        
public Vector3 ComputeCurrentLocation()
{
    return Vector3.CatmullRom(
        curvePoints[0], 
        curvePoints[1], 
        curvePoints[2], 
        curvePoints[3], 
        MathHelper.Clamp(curveProgress, 0f, 1f));
}
#endregion

3. Override the Update() method for the EnemySaucer class as follows:
#region Update
public override void Update(GameTime gameTime)
{
    float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;

    if (IsOnScreen)
    {
        if (curveProgress < 1.0f)
        {
            curveProgress += (curveDelta * elapsed);
            Position = ComputeCurrentLocation();
        }
        else
        {
            IsOnScreen = false;
         }
    }
    else
    {
        flyByTimer += elapsed;
        if (flyByTimer >= minflyByDelay)
        {
            if (rand.Next(0, 100) < flybyChance)
            {
                IsOnScreen = true;
                flyByTimer = 0f;
                GenerateNewCurve();
            }
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        }
    }

    base.Update(gameTime);
}
#endregion

4. Override the Draw() method for the EnemySaucer class as follows:
#region Draw
public override void Draw(Camera camera)
{
    if (!IsOnScreen)
        return;

    base.Draw(camera);
}
#endregion

5. In the Update() method of the MarsRunnerPlayScreen class, update the enemy 
saucer right after the rover has been updated:
enemy.Update(gameTime);

6. Execute the game and drive the rover, jumping over any craters, until the saucer  
flies by.

What just happened?
Our code in this section accomplishes two goals. First, it determines when the saucer should 
perform a flyby, based on the amount of time elapsed since the last flyby was completed and 
a small random factor. Second, we implement the flyby itself.

In order to initiate a flyby, two things must be true. We must have had enough time elapsed 
since the end of the last flyby (defined as 5 seconds by the minflyByDelay field), and 
a randomly generated number between 0 and 99. The result must be less than two for a 
flyby to be initiated. A two percent chance of initiating a flyby may not sound like much, but 
remember that this check will be running 60 times per second.

This logic is handled in the second portion of the Update() method, when the IsOnScreen 
flag is false. When a flyby gets initiated, IsOnScreen is set to true and the timer is reset. 
A new flight curve is then generated by calling the GenerateNewCurve() method.
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XNA includes built-in support for Catmull-Rom splines, a special-case spline type that happens 
to be very useful for computer graphics and animation because it provides a continuous curve 
between two points, with those two points guaranteed to be the beginning and ending points 
of the spline. Given the points of a Catmull-Rom spline and a distance along the spline, XNA can 
interpolate coordinates along the spline, giving us smooth, curved motion.

But if a Catmull-Rom spline uses two points that lie on the spline, why are we defining four 
points? The other two points are control points used by the Catmull-Rom equation. The 
control points define the shape of the curve, but are not actually on the curve itself, as seen 
in the following image:

In order to generate a new curve, we just need to come up with these four points. We 
randomly generate their values, with certain constraints.

The first and last points (curvePoints[0] and curvePoints[3]) are the external control 
points. We generate these to be beyond the screen horizontally (along the X axis), and either 
25 pixels above or below the origin on the Y axis. We keep the Z axis constant at 64, which is 
the same value we used for the rover.

The inner points that are actually on the curve are generated beyond the screen the screen 
along the X axis as well, with a random elevation along the Y axis. Again, the Z point is kept at 
64 to keep the saucer aligned with the rover.

In the GenerateNewCurve() method, after the four points have been generated, we also 
randomly decide if we should reverse them. The way the points are generated by default, the 
saucer would travel from left to right across the screen. By reversing the control points, we 
can reverse this flight from right to left to provide a bit of variety.

Finally, GenerateNewCurve() resets the roll, pitch, and IsDestroyed fields to their 
defaults. We will make use of these fields later when we allow the player to shoot down the 
enemy saucer.

When determining the position along the curve, we keep track of a field called 
curveProgress. This number ranges from 0.0f at the starting point to 1.0f at the ending 
point. The rate that we move along the curve is defined by the curveDelta field, which is 
randomly set between 0.1f and 0.4f when the curve is generated. Again, this is simply to 
add variety to the path of the saucer across the screen.
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The ComputeCurrentLocation() method uses the Vector3.CatmullRom() 
method to determine the current position on the curve, given the control points and the 
curveProgress field. During the Update() method, this value is stored into the saucer's 
Position property whenever the saucer is on the screen.

Shots and collisions
Now that we have a flying saucer to menace the player, both the alien and the player need 
the ability to fire shots at each other. We will implement two separate types of weapons—
one for the player and one for the alien saucer.

The player's shots will travel upward at a constant rate until they either leave the screen or 
impact the alien saucer. The enemy's shots will act more like bombs, falling under the effect 
of gravity until they reach the ground.

Time for action – Shot classes
To implement the shots that the enemy and the player will fire at each other, perform the 
following steps:

1. Add a new class file called PlayerShot.cs to the Mars Runner project.

2. Add the following using directives to the PlayerShot class:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

3. Modify the declaration of the PlayerShot class to inherit from the GameEntity 
class. The new declaration should read as follows:
class PlayerShot : GameEntity

4. Add fields to the PlayerShot class as follows:
#region Fields
private Vector3 velocity = new Vector3(0, 30, 0);
public bool IsActive;
#endregion

5. Add a constructor to the PlayerShot class as follows:
#region Constructor
public PlayerShot(
    GraphicsDevice device, 
    Model model, 
    Vector3 position)
    : base(device, model, position)
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{
    scale = 0.25f;
    IsActive = true;
}
#endregion

6. Add the ResetShot() method to the PlayerShot class as follows:
#region Helper Methods
public void ResetShot(Vector3 position)
{
    Position = position;
    IsActive = true;
}
#endregion

7. Add the Update() method to the PlayerShot class as follows:
#region Update
public override void Update(GameTime gameTime)
{
    float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;

    Position += velocity * elapsed;

    if (position.Y > 100)
    {
        IsActive = false;
    }

    base.Update(gameTime);
}
#endregion

8. Add a new class file called EnemyShot.cs to the Mars Runner project.

9. Add the following using directives to the EnemyShot class:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

10. Modify the declaration of the EnemyShot class to derive from the GameEntity 
class. The new declaration should read:
class EnemyShot : GameEntity
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11. Add fields to the EnemyShot class:
#region Fields
private Vector3 velocity = new Vector3(0, -5, 0);
private Vector3 gravity = new Vector3(0, -30, 0);
public bool IsActive;

#endregion

12. Add a constructor to the EnemyShot class as follows:
#region Constructor
public EnemyShot(
    GraphicsDevice device, 
    Model model, 
    Vector3 position)
    : base(device, model, position)
{
    scale = 0.25f;
    IsActive = true;
}
#endregion

13. Add the ResetShot() method to the EnemyShot class as follows:
#region Helper Methods
public void ResetShot(Vector3 position)
{
    Position = position;
    velocity = new Vector3(0, -5, 0);
    IsActive = true;
}
#endregion

14. Add the Update() method to the EnemyShot class as follows:
#region Update
public override void Update(GameTime gameTime)
{
    float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;

    Position += velocity * elapsed;
    velocity += gravity * elapsed;

    if (position.Y < -14)
    {
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        IsActive = false;
    }

    base.Update(gameTime);
}
#endregion

What just happened?
The PlayerShot and EnemyShot classes share quite a lot in common. Each tracks the 
velocity of the shot and has a flag to determine if the shot is active or not. The velocity for 
player shots move upward at 30 units per second, while enemy shots begin at a downward 
rate of 5 units per second.

Unlike player shots, however, the velocity of enemy shots is altered by gravity over time, so 
an enemy shot that is falling will speed up as it falls from the sky.

Both type of shots contain code in their Update() methods that sets them to inactive when 
they have passed certain points along the Y axis, indicating that they have either left the top 
of the screen (player shots) or impacted the ground (enemy shots).

Finally, both types of shots offer a ResetShot() method, which accepts a new position for 
the shot and makes it active again. In the case of the enemy shot, the velocity is also reset 
to its default to prevent a reused shot from beginning with a higher fall rate than it should. 
The ResetShot() method will allow us to reuse shots that have expired instead of creating 
new ones and incurring the performance penalty of building a new object every time a shot 
is fired.

In order to control how shots function in the world, we will build another new class that  
will be responsible for managing any outstanding shots, and also for creating new ones  
when necessary.

Time for action – the ShotManager class
To manage how the shots will function in the world, perform the following steps:

1. Add a new class file called ShotManager.cs to the Mars Runner project.

2. Add the following using directives at the beginning of the ShotManager class file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
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3. Add fields to the ShotManager class as follows:
#region Fields
List<PlayerShot> playerShots = new List<PlayerShot>();
List<EnemyShot> enemyShots = new List<EnemyShot>();
Model shotModel;
GraphicsDevice device;
#endregion

4. Add a constructor to the ShotManager class as follows:
#region Constructor
public ShotManager(GraphicsDevice device, Model model)
{
    shotModel = model;
    this.device = device;         
}
#endregion

5. Add the Helper Methods region to the ShotManager class, which contains 
methods to add shots to the shot lists as follows:
#region Helper Methods
public void AddPlayerShot(Vector3 position)
{
    bool reusedShot = false;

    foreach (PlayerShot shot in playerShots)
    {
        if (!shot.IsActive)
        {
            reusedShot = true;
            shot.ResetShot(position);
            continue;
        }
    }

    if (!reusedShot)
    {
        playerShots.Add(new PlayerShot(
            device,
            shotModel,
            position));
    }
}

public void AddEnemyShot(Vector3 position)
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{
    bool reusedShot = false;

    foreach (EnemyShot shot in enemyShots)
    {
        if (!shot.IsActive)
        {
            reusedShot = true;
            shot.ResetShot(position);
            continue;
        }
    }

    if (!reusedShot)
    {
        enemyShots.Add(new EnemyShot(
            device,
            shotModel,
            position));
    }
}
#endregion

6. Add the Update() method to the ShotManager class as follows:
#region Update
public void Update(GameTime gameTime)
{
    foreach (PlayerShot shot in playerShots)
    {
        if (shot.IsActive)
        {
            shot.Update(gameTime);
        }
    }

    foreach (EnemyShot shot in enemyShots)
    {
        if (shot.IsActive)
        {
            shot.Update(gameTime);
        }
    }
}
#endregion
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7. Add the Draw() method to the ShotManager class as follows:
#region Draw
public void Draw(Camera camera)
{
    foreach (PlayerShot shot in playerShots)
    {
        if (shot.IsActive)
        {
            shot.Draw(camera);
        }
    }

    foreach (EnemyShot shot in enemyShots)
    {
        if (shot.IsActive)
        {
            shot.Draw(camera);
        }
    }
}
#endregion

8. In the Fields region of the MarsRunnerPlayScreen class, add fields for an 
instance of the ShotManager class, and to control the player's fire rate as follows:
ShotManager shotManager;
float playerShotCooldown = 1.0f;
float playerShotTimer = 0.0f;

9. In the LoadContent() method of the MarsRunnerPlayScreen class, initialize 
shotManager as follows:
shotManager = new ShotManager(
    ScreenManager.GraphicsDevice,
    content.Load<Model>(@"Models\sphere"));

10. In the Draw() method of the MarsRunnerPlayScreen class, draw the 
shotManager after the enemy saucer has been drawn as follows:
shotManager.Draw(camera);

11. In the Update() method of the MarsRunnerPlayScreen class, update the 
shotManager and manage the player's fire rate. Place the following code just after 
the code to update the enemy saucer:
shotManager.Update(gameTime);

if (playerShotTimer < playerShotCooldown)
    playerShotTimer += elapsed;
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12. In the HandleInput()method of the MarsRunnerPlayScreen class, add a 
new if statement to detect shots fired by the player, just before the call to base.
HandleInput():
if (
    (input.CurrentKeyboardStates[0].IsKeyDown(Keys.Space)) ||
    (input.CurrentGamePadStates[0].Buttons.B == ButtonState.
Pressed)
    )
{
    FirePlayerShot();
}

13. Add the FirePlayerShot() method to the Helper Methods region of the 
MarsRunnerPlayScreen class as follows:
private void FirePlayerShot()
{
    if (playerShotTimer >= playerShotCooldown)
    {
        shotManager.AddPlayerShot(
            rover.Position + new Vector3(1, 8, 0));
        playerShotTimer = 0f;
    }
}

14. Execute the game and fire a few shots from the player's cannon as shown in the 
following screenshot:
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What just happened?
ShotManager keeps track of two lists of shots: shots fired by the player, and shots fired by 
the enemy UFO. It also stores the information needed (GraphicsDevice and Model) to 
create new shots as needed.

Whenever a shot is added through either AddPlayerShot() or AddEnemyShot(), the 
methods first look for an unused shot in the appropriate shot list. If one is found, that shot is 
reused instead of creating a new shot.

When we add ShotManager to the rest of the game, we pace player shots with a timer, 
which allows the player to fire one shot per second. We also offset the position at which 
new player shots are created by a Vector3 value of (1, 8, 0), reflecting the relative 
placement of the top of the cannon in relation to the rest of the rover. This makes shots 
appear to come from the cannon instead of the middle of the rover.

Enemy shots
Our player can now fire shots, so now it is time to even things up and allow the enemy flying 
saucer to fire them as well.

Time for action – enemy shots
To implement how the enemy flying saucer fires shots, perform the following:

1. Add the following fields to the MarsRunnerPlayScreen class:
float enemyShotCooldown = 3.0f;
float enemyShotTimer = 0.0f;
int enemyShotChance = 2;

2. In the Update() method of the MarsRunnerPlayScreen class, determine 
if the enemy should fire a shot by adding the following code just after the 
playerShotTimer value has been incremented:
if (enemy.IsOnScreen && !enemy.IsDestroyed)
{
    if (enemyShotTimer < enemyShotCooldown)
    {
        enemyShotTimer += elapsed;
    }
    else
    {
        if (random.Next(0, 100) < enemyShotChance)
        {
            FireEnemyShot();
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            enemyShotTimer = 0.0f;
        }
    }
}

3. Add the FireEnemyShot() method to Helper Methods region of the 
MarsRunnerPlayScreen class as follows:
private void FireEnemyShot()
{
    shotManager.AddEnemyShot(enemy.Position);
}

4. Execute the game. Enemies will now occasionally fire shots while flying past  
the player.

What just happened?
We use the same time-delay-with-random-element logic for allowing enemy craft to fire 
shots as we did to determine when an enemy makes a flyby. When a shot is fired, we 
leverage the AddEnemyShot() method of the ShotManager class to add it to the game.

Currently, though, our shots do not actually do anything. We will implement shot collision in 
two steps. First, we will allow the player shots to hit an alien craft.

Time for action – player shots versus aliens
To implement how the player shots hit an alien craft, perform the following steps:

1. Add the CrashSaucer() method to the EnemySaucer class as follows:
#region HelperMethods
public void CrashSaucer()
{
    curvePoints[1] = Position;
    curvePoints[2].Y = -80;
    curvePoints[2].Z = 0;
    curveProgress = 0.0f;
    curveDelta = 0.5f;
    pitch = MathHelper.ToRadians(20);
    roll = MathHelper.ToRadians(-20);
    IsDestroyed = true;
}
#endregion
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2. Add the Collision Detection region to the ShotManager class as follows:
#region Collision Detection
public bool CheckPlayerShotHits(BoundingBox target)
{
    foreach (PlayerShot shot in playerShots)
    {
        if (shot.IsActive)
        {
            if (target.Intersects(shot.Bounds))
            {
                return true;
            }
        }
    }

    return false;
}
#endregion

3. In the Update() method of the MarsRunnerPlayScreen class, add the following 
code just after shotManager has been updated:
if ((!enemy.IsDestroyed) && 
    (shotManager.CheckPlayerShotHits(enemy.Bounds)))
{
    enemy.CrashSaucer();
}

4. Execute the game and shoot down some aliens as shown in the following screenshot:
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What just happened?
When a player shot hits an alien ship, we have the saucer tilt sideways and go into a steep 
dive, crashing into the ground by setting the pitch and roll fields. This alteration takes 
place in the CrashSaucer() method, where we alter the points used for our Catmull-Rom 
spline to make the ship's current position equal to the first point, and drop the second point 
downwards beyond on the screen. We also set the second point's Z coordinate to zero, 
causing the saucer to move downward and away from the camera.

Actually detecting the collision is a simple matter of comparing the bounding boxes (the 
total area of 3D space that an object occupies) of the enemy ship and the player's shot. If the 
boxes overlap at any point, we consider the player to have hit the saucer.

Note that bounding box collision is not perfect. The furthest points from the center of the 
model determine the size of the bounding box, and as the box is rectangular, it is possible 
to have two boxes that overlap without the models actually touching each other. For our 
purposes, the simple bounding box test is accurate enough.

Per-mesh collision testing
You could dig deeper into the bounding box testing by using the initial 
bounding box collision to trigger a more detailed, per-mesh collision check. 
Each mesh part that makes up the model could have a bounding box 
constructed around it, and all of the parts of the two potentially colliding 
models could be tested against each other. This type of testing would be quite 
a bit more accurate, and would allow models to be nested closer together 
without actually colliding, depending on the shapes of the mesh parts.

In detecting the collision of the enemy shots with the player, we will need to tighten up a bit 
the bounding box we are using. Players will, rightly, be unhappy if an enemy shot that they 
just narrowly avoided still destroys their rover because the bounding box around the rover 
does not represent the actual space occupied by the model.

To make things even more interesting, XNA's BoundingBox structures are axis-aligned  
(often referred to as axis-aligned bounding box or AABB). This means that the box's walls 
are always positioned along the world axes. Applying rotation to an AABB, as we have done 
with the Bounds property, does not actually rotate the bounding box, but rather expands 
the axis-aligned box to cover the new area occupied by the rotated model.

We will compensate for this larger bounding box by shrinking the bounds of the box we 
check for collisions when determining if an enemy shot collides with the player.

This material is copyright and is licensed for the sole use by  on 3rd October 2012

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Chapter 10

[ 285 ]

Time for action – enemy shots versus the rover
To check if the enemy shots as well as rover shots have hit their respective targets, perform 
the following steps:

1. Add the CheckEnemyShotHits() method to the Collision Detection region 
of the ShotManager class as follows:
public bool CheckEnemyShotHits(BoundingBox target)
{
    foreach (EnemyShot shot in enemyShots)
    {
        if (shot.IsActive)
        {
            if (target.Intersects(shot.Bounds))
            {
                return true;
            }
        }
    }

    return false;
}

2. Add a new property to the Rover class for collision bounds checking:
public BoundingBox CollisionBounds
{
    get
    {
        BoundingBox baseBounds = Bounds;
        baseBounds.Min += new Vector3(1, 1, 1);
        baseBounds.Max += new Vector3(-1, -1, -1);
        return baseBounds;
    }
}

3. In the Update() method of the MarsRunnerGameClass, just after checking for 
hits on the alien craft, check for hits on the player as follows:
if (shotManager.CheckEnemyShotHits(rover.CollisionBounds))
    EndGame();

4. Execute the game and allow an enemy-fired shot to hit the rover.
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What just happened?
By adding to the Min and subtracting from the Max component of the Bounds property, we 
can shrink the bounding box around the rover, allowing the player a cushion against enemy 
shots that come close but should not actually hit the player.

Scoring
Our scoring system for Mars Runner will be very simple. In each update cycle, the amount 
of elapsed time will be added to the player's score. Each hit on an enemy ship will add 100 
points to the player's score as well.

Time for action – scoring
To implement the scoring system for Mars Runner, perform the following steps:

1. Add two fields to the MarsRunnerPlayScreen class as follows:
float score = 0;
SpriteFont font;

2. In the LoadContent() method of the MarsRunnerPlayScreen class, initialize 
the font field as follows:
font = content.Load<SpriteFont>("gamefont");

3. In the Update() method of the MarsRunnerPlayScreen class, inside the if 
statement that checks playerPosition, increment the player's score, and add an 
else condition that ends the game if the player has reached the end of the track. 
The new if statement should read as follows:
if (playerPosition < 2880)
{
    playerPosition += 15 * elapsed;
    skybox.Rotation += 0.1f * elapsed;
    score += elapsed;
}
else
{
    EndGame();
}

4. Still in the Update() method, inside the if statement checking for player hits on 
enemies, increase the player's score just after the call to enemy.CrashSaucer() 
as follows:
score += 100;
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5. In the Draw() method of the MarsRunnerPlayScreen class, draw the score to the 
screen as follows:
ScreenManager.SpriteBatch.Begin();
ScreenManager.SpriteBatch.DrawString(
    font,
    "Score: " + ((int)score).ToString(),
    new Vector2(10, 400),
    Color.White);
ScreenManager.SpriteBatch.End();

6. Execute the game and play it, as shown in the following screenshot:

What just happened?
Adding our scoring system just involves keeping track of the player's score and using one of 
the fonts that comes included in the GSM sample to display the score.

We have almost completed the Mars Runner game, but currently when the game ends we 
just wind up back at the main menu. As our final modification to the game, we will add a 
new screen to the game that overlays the play screen and displays the text Game over! for a 
few seconds before returning to the menu.
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Time for action – the GameOver screen
1. Add a new class file called GameOverScreen.cs to the Screens folder of the Mars 

Runner project.

2. Add the following using directives at the beginning of the GameOverScreen class 
file:
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;

3. Modify the namespace declaration for the class file by removing .Screens from 
the end of the namespace. The namespace line should now read as follows:
namespace Mars_Runner

4. Modify the declaration of the GameOverScreen class to inherit from the 
GameScreen class. The new declaration line should read as follows:
class GameOverScreen : GameScreen

5. Add fields to the GameOverScreen class as follows:
#region Fields
private float displayTimer = 8f;
private float displayCounter = 0f;
Texture2D blank;
SpriteFont font;
ContentManager content;
#endregion

6. Override the LoadContent() method in the GameOverScreen class as follows:
#region Initialization
public override void LoadContent()
{
    IsPopup = true;
    if (content == null)
        content = new ContentManager(
        ScreenManager.Game.Services, 
        "Content");

    blank = content.Load<Texture2D>("blank");
    font = content.Load<SpriteFont>("menufont");

    base.LoadContent();
}
#endregion
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7. Override the Update() method in the GameOverScreen class as follows:
#region Update
public override void Update(
    GameTime gameTime, 
    bool otherScreenHasFocus, 
    bool coveredByOtherScreen)
{
    float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
    displayCounter += elapsed;

    if (displayCounter >= displayTimer)
        ExitScreen();

    base.Update(gameTime, otherScreenHasFocus, 
coveredByOtherScreen);
}
#endregion

8. Override the Draw() method in the GameOverScreen class as follows:
#region Draw
public override void Draw(GameTime gameTime)
{

    Vector2 screenSize = new Vector2(
        ScreenManager.GraphicsDevice.Viewport.Width,
        ScreenManager.GraphicsDevice.Viewport.Height);

    ScreenManager.SpriteBatch.Begin();

    ScreenManager.SpriteBatch.Draw(
        blank,
        new Rectangle(
            0,
            0,
            (int)screenSize.X,
            (int)screenSize.Y),
        Color.Black * 0.4f);

    string gameOver = "G a m e   O v e r!";
    Vector2 stringSize = font.MeasureString(gameOver);

    ScreenManager.SpriteBatch.DrawString(
        font,
        gameOver,
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        (screenSize / 2) - (stringSize / 2),
        Color.White);

    ScreenManager.SpriteBatch.End();

    base.Draw(gameTime);
}
#endregion

9. In the EndGame() method of the MarsRunnerPlayScreen class, create a new 
instance of the GameOverScreen after setting gameEnded to true as follows:
ScreenManager.AddScreen(new GameOverScreen(), null);

10. Execute the game and play until it ends in one of the three possible ways.

What just happened?
We have added a completely new type of screen to the GSM system. This screen is identified 
in the LoadContent() method as a pop-up screen, meaning that it will not prevent the 
screens behind it from being drawn.

Instead, MarsRunnerPlayScreen continues to render the final scene of the game, while 
GameOverScreen overlays the whole screen with a partially transparent black texture. This 
is accomplished by drawing the blank texture, which is a blank white square included as 
part of the GSM resources, with a partially transparent black tint color.

The screen starts a timer when it loads, and when the timer has expired, the screen exits, 
allowing MarsRunnerPlayScreen to resume. As gameEnded has been set to true, the 
play screen will exit and return to the menu immediately.

Sound effects
Mars Runner is playable at this point, but like all of our games, so far it is completely silent. 
The audio queue provided by sound effects synced to the action in a game contributes 
greatly to the immersive feeling a player experiences. We can build an easy-to-use class to 
play sound effects that could be added to any of our games.
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Generating sound effects
There are numerous sound effect libraries on the Internet that offer 
downloadable effects, but rarely are the license terms for these libraries 
very clear on the permitted usages of the sounds, especially as many 
of them are compilations of sounds found elsewhere and not original 
creations. As with graphics resources, http://www.opengameart.
org is a great source for music and sound effects with clearly specified 
licenses. Alternatively, you can generate or record your own sound 
effects. The sound effects included with the audio package for this 
chapter were all generated using the sfxr sound generator program, 
available at http://www.drpetter.se/project_sfxr.html.

We will create a static sound effect management class that will allow us to play sounds from 
anywhere in our game with a single method call.

Time for action – building the SFXManager class
In order to build the SFXManager class, perform these steps:

1. Download the 7089_10_AUDIOPACK.zip file from the book's website and extract 
the contents to a temporary location.

2. Copy the Sounds folder from the audio pack to the clipboard.

3. In Visual Studio, select the content project in Solution Explorer, right-click and  
select Paste.

4. Create a new class file called SFXManager.cs in the Mars Runner project.

5. Add the using directive to the beginning of the SFXManager class file as follows:
using Microsoft.Xna.Framework.Audio;

6. Modify the declaration of the SFXManager class to mark it as static. The declaration 
should now read as follows:
static class SFXManager

7. Add a Dictionary object to the SFXManager class to store sound effects:
#region Fields
private static Dictionary<string, SoundEffect> soundEffects = 
    new Dictionary<string, SoundEffect>();
#endregion
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8. Add the AddEffect() method to the SFXManager class:
#region Initialization
public static void AddEffect(string name, SoundEffect effect)
{
    soundEffects[name] = effect;
}
#endregion

9. Add methods to play sounds to the SFXManager class:
#region Playing
public static void Play(string name)
{
    if (soundEffects.ContainsKey(name))
        soundEffects[name].Play();
}
#endregion

What just happened?
The SFXManager class, while not complicated, will allow us to play sound effects in Mars 
Runner (and the other games in this book if you choose to go back and add it to them) very 
easily. The class stores a dictionary of named sound effect, and when the Play() method is 
called, it plays back the named effect if it exists.

More advanced sound options
It should be noted that this is a very basic implementation of sound in 
XNA. Playing sounds directly through the SoundEffect class plays them 
in a fire-and-forget style. Once a sound effect is playing, we really cannot 
do anything with it, such as adjust its volume, pan the sound, and move 
it around in 3D space. XNA supports all of these capabilities through the 
SoundEffectInstance class, which can be created from a loaded 
SoundEffect and then the sound can be looped, started, stopped, 
panned, and positioned in 3D space.

Triggering sounds
In order to use our SFXManager class to play sounds, we need to load sounds into the class, 
and sprinkle calls to the SFXManager.Play() method throughout our code.
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Time for action – playing sound effects
To add a sound effects manager to Mars Runner, perform the following steps:

1. Add a new using direction at the beginning of the MarsRunnerPlayScreen class 
to allow us to access the XNA Audio classes as follows:
using Microsoft.Xna.Framework.Audio;

2. In the LoadContent() method of the MarsRunnerPlayScreen class, load the 
sound effects and add them to the sound effect manager's dictionary as follows:
SFXManager.AddEffect(
    "Explosion", content.Load<SoundEffect>(@"Sounds\Explosion1"));
SFXManager.AddEffect(
    "Jump", content.Load<SoundEffect>(@"Sounds\Jump"));
SFXManager.AddEffect(
    "PlayerShot", content.Load<SoundEffect>(@"Sounds\Shot1"));
SFXManager.AddEffect(
    "EnemyShot", content.Load<SoundEffect>(@"Sounds\Shot2"));

3. Inside the FirePlayerShot() method in the MarsRunnerPlayScreen class, call 
the SFXManager.Play() method just after resetting the playerShotTimer to 
0.0f as follows:
SFXManager.Play("PlayerShot");

4. Inside the FireEnemyShot() method in the MarsRunnerPlayScreen class, call 
the SFXManager.Play() method after adding the shot as follows:
SFXManager.Play("EnemyShot");

5. In the Jump() method of the Rover class, play the Jump effect after setting the 
rover's velocity as follows:
SFXManager.Play("Jump");

6. In the CrashSaucer() method of the EnemySaucer class, play the Explosion 
effect, so the the last line of the method would read as follows:
SFXManager.Play("Explosion");

7. Execute the game. Jump around and fire shots at the enemy saucers.

What just happened?
As you can see, utilizing the SFXManager class is simply a matter of loading the sounds into 
the manager and then scattering Play() calls in appropriate locations throughout our code. 
While not an in-depth sound system, it serves our purposes here and can act as a basis for 
you to expand on as you delve deeper into XNA development.
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Have a go hero!
There are nearly endless possibilities to expand the Mars Runner game. Here are just a few 
to consider trying out:

 � Right now, when the player reaches the end of the track, the game ends. Instead, 
display an interim screen showing the player's arrival at the Martian base and start a 
new level with a new track. You could increase the frequency of craters or alter the 
fire or flyby rates of the alien ships to make the game increasingly harder.

 � Transplant the particle-based explosion system from Tank Battles to Mars Runner 
and apply particles at points of impact of player shots on enemies, enemy shots on 
players, enemy shots on the ground, and the enemy saucer's crash landing point. 
The particle system could also be expanded to include smoke particles, with the 
particles drifting upwards before dissipating.

 � When an alien shot impacts the ground, have it create a new crater. The track  
array would need to have its segment value altered. If you have implemented the 
particle explosion system, the transition could be covered by the explosion and/or 
smoke particles.

 � The GSM sample contains PauseMenuScreen. Allow the user to pause their game 
by popping up this menu screen and waiting for them to continue.

Summary
The Mars Runner project is now completed – at least as far as we will take it in this book. 
Where it goes from here is up to you! Try implementing some of the suggestions above, or 
come up with your own new ideas and work them into the game.

Over the course of Mars Runner, we have covered a number of important topics, which 
include utilizing and expanding the GSM system, adding a skybox to a 3D game, drawing 
instanced terrain meshes, abstracting support for 3D models, and bounding box based 3D 
collision detection.

Over the course of this book, we have discussed and implemented many of the fundamental 
techniques necessary to create 3D video games with XNA. While it would be impossible to 
cover every possible topic, I hope that you now have the foundation needed to explore the 
possibilities XNA brings to game development.
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overview  10
visual components, drawing  21, 23

Speller project
completing  27-29
content, loading  18
content, managing  12
Draw() method  21
Game1 constructor  16
helper methods  23, 26, 27
Initialize() method, customizing  17
LoadContent() method  18
member variables, declaring  14, 15
square texture, creating  18
Update() method, customizing  19, 20

SpriteBatch class  10
SpriteBatch.DrawString() method  148
SpriteFont class  10
SpriteFont file  14

square texture
creating  18

StartNewRound() method  138, 196
stationary camera

about  224
implementing, in Mars Runner  224-227

Substring() method  23
support

abstracting, for 3D models  247-253
system requisites, XNA development

about  8
development platform  8
graphics card  8
operating system  8

T
tank

animating, steps  135, 137
placing, on terrain  131-135
positioning, steps  138-140

Tank Battles game
states, managing  185, 186

TankBattlesGame class  128
about  119, 132
Initialize() method, adding to  109
LoadContent() method, adding to  109

Tank Battles project
3D particles, adding to  182-184
ArcBallCamera class, adding to  94, 96
creating  91-93
gameover state, managing  193-195
hits, detecting  193-195
particles, adding to  171-173
particles, managing  175-180
ShotManager class, adding to  164-169
shots, firing  164-169
tank, animating  135, 137
Tank class, building  125-130
tank model, adding to  124
tank, placing on terrain  131-135
tank, positioning  138-140
terrain, drawing  108-111
terrain, generating for  100-103
terrain, generating for playfield  100
texture, adding  111, 112
title screen, implementing  186-192
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turns, managing  195, 197
UIButton class, creating for  148-153
visual improvements  198

Tank class
constructor, adding to  127
creating, steps  125-130
Draw() method, adding to  127
properties, adding to  126

tank model
adding, to tank battles project  124

terrain
drawing  108-111
generating, for playfield  100
generating, for Tank Battles project  100-103
tank, placing on  131-135
vertices, building for  105, 106

Terrain class
about  101, 131
buildIndexBuffer() method, adding to  106, 107
BuildVertexBuffer() method, adding to  105, 106
constructor, adding to  102
ReadHeightMap() method, adding to  103-105

Terrain.fx
utilizing  117, 118

texture
about  69
adding  111, 112

texture address modes
about  113
AddressU setting  113
AddressV setting  113

title screen
implementing, in Tank Battles project  186-192

track
craters, detecting on  264-266
creating, for player in Mars Runner  236-241
drawing, for Mars Runner  243-246
generating, for Mars Runner  242

transformations  82
TransitionOffTime property  219
TransitionOnTime property  219
translation  82
translation matrix  81, 82
turns

managing, in Tank Battles project  195, 197

U
UIButtonArgs class

constructor, adding  149
UIButtonArgs.cs file  148
UIButton class

creating, for Tank Battles project  148-153
properties, adding  149

UIButton_Clicked() method  161
UIButton.cs file  149
UIButtons  148
UIHelper class

creating  153-156
UIHelper.cs file  153
UI objects

working with  153-156
UITextblock class

constructor, adding  147
creating, steps  146, 147
Draw() method, adding  147

UITextblocks  146
UIWidget class

about  144
constructor, adding  145
creating  144-146
Draw() method, adding  145
Update()  method, adding  145

UpdateLookAt() method  41
Update() method

about  19, 66, 119, 120, 186, 192, 218, 259, 263
adding, to EnemyShot class  275
adding, to GameEntity class  251
adding, to Particle class  174
adding, to ParticleManager class  177
adding, to PlayerShot class  274
adding, to ShotManager clas  278
adding, to UIWidget class  145
customizing  19, 20

UpdateWheels() method  262
user input handling support

adding, to MarsRunnerPlayScreen class  255-
260

user interface (UI)
about  143
creating  157-160
designing, goals  144

using directive  101
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V
variables

defining, for HLSL  112, 113
vertex shader  115, 116
VertexShaderFunction() method  115, 181, 202, 

208
VertexShaderInput structure  114
VertexShaderOutput function  114
VertexShaderOutput structure  116
vertex shader structures  113, 114
vertices

building, for terrain  105, 106
viewDistance field  96
ViewDistance property  96, 122
View matrix  41, 42, 116
View property

adding, to ArcBallCamera class  97, 98
visual components

drawing, for Speller game  21, 23
visual improvements, Tank Battles project

about  198
lighting  198, 199
multitexturing  207-212

Visual Studio 2010 Express  9

W
walls

cnstructing, generated maze layout used  60-63

drawing, in Cube Chaser project  64
winding order  45
Windows Phone  8
Windows Phone SDK

installing  8-10
Wings 3D  125
World matrix  116

X
Xbox 360  7, 8
Xbox Live  8
XNA

about  8
angles  36

XNA development
system requisites  8

XNA Framework  7
XNA game  10
XNA project

creating  11, 12
XNA project templates  7

Y
YawPitchRoll

verus CreateRotation  99
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Thank you for buying  
XNA 4 3D Game Development by Example Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.  

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're 
using to get the job done. Packt books are more specific and less general than the IT books 
you have seen in the past. Our unique business model allows us to bring you more focused 
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order  
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home 
to books published on enterprise software – software created by major vendors, including 
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles 
will offer information relevant to a range of users of this software, including administrators, 
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get 
some additional reward for your expertise.
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XNA 4.0 Game Development by Example: Beginner's 
Guide
ISBN: 978-1-84969-066-9           Paperback: 428 pages

Create exciting games with Microsoft XNA 4.0

1. Dive headfirst into game creation with XNA

2. Four different styles of games comprising a puzzler, 
a space shooter, a multi-axis shoot 'em up, and a 
jump-and-run platformer

3. Games that gradually increase in complexity 
to cover a wide variety of game development 
techniques

4. Focuses entirely on developing games with the free 
version of XNA

Microsoft XNA 4.0 Game Development Cookbook
ISBN: 978-1-84969-198-7           Paperback: 356 pages

Over 35 intermediate-advanced recipes for taking 
your XNA development arsenal further

1. Accelerate your XNA learning with a myriad of tips 
and tricks to solve your everyday problems

2. Get to grips with adding special effects, virtual 
atmospheres and computer controlled characters 
with this book and e-book

3. A fast-paced cookbook packed with screenshots to 
illustrate each advanced step by step task

4. Apply the techniques learned for wiring games for 
PC, Xbox 360 and Windows Phone 7

Please check www.PacktPub.com for information on our titles
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3D Graphics with XNA Game Studio 4.0
ISBN: 978-1-84969-004-1           Paperback: 292 pages

Create attractive 3D graphics and visuals in your XNA 
games

1. Improve the appearance of your games by 
implementing the same techniques used by 
professionals in the game industry

2. Learn the fundamentals of 3D graphics, including 
common 3D math and the graphics pipeline

3. Create an extensible system to draw 3D models and 
other effects, and learn the skills to create your own 
effects and animate them

XNA 4.0 Game Development by Example: Beginner's 
Guide – Visual Basic Edition
ISBN: 978-1-84969-240-3           Paperback: 424 pages

Create your own exciting games with Visual Basic and  
Microsoft XNA 4.0

1. Visual Basic edition of Kurt Jaegers' XNA 4.0 Game 
Development by Example. The first book to target 
Visual Basic developers who want to develop games 
with the XNA framework

2. Dive headfirst into game creation with Visual Basic 
and the XNA Framework

3. Four different styles of games comprising a puzzler, 
space shooter, multi-axis shoot 'em up, and a jump-
and-run platformer

4. Games that gradually increase in complexity 
to cover a wide variety of game development 
techniques

Please check www.PacktPub.com for information on our titles
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