
C# 3.0 Pocket Reference
by Joseph Albahari; Ben Albahari

Publisher: O'Reilly
Pub Date: February 15, 2008
Print ISBN-13: 978-0-59-651922-3
Pages: 242

Table of Contents
| Index

Overview

This book is for busy programmers who want a succinct and yet readable guide to C# 3.0 and LINQ. C# 3.0
Pocket Reference tells you exactly what you need to know, without long introductions or bloated samples.
Despite its conciseness, this book doesn't skimp on depth or detail, and embraces the conceptual challenges in
learning C# 3.0 and LINQ. Tightly focused and highly practical, this pocket reference covers more ground than
many of the big books on C#. C# 3.0 Pocket Reference includes plenty of illustrations and code examples to
explain:

Features new to C# 3.0, such as lambda expressions, anonymous types, automatic properties, and more

All aspects of C# syntax, predefined types, expressions, and operators

Creating classes, structs, delegates and events, enums, generics and constraints, exception handling, and
iterators

The subtleties of boxing, operating overloading, delegate covariance, extension method resolution,
interface reimplementation, nullable types, and operating lifting

LINQ, starting with the principles of sequences, deferred execution and standard query operators, and
finishing with a complete reference to query syntax-including multiple generators, joining, grouping, and
query continuations

Consuming, writing, and reflecting on custom attributes

You'll also find chapters on unsafe code and pointers, preprocessor directives, XML documentation, and a
framework overview. If you're already familiar with Java, C++, or an earlier version of C#, C# 3.0 Pocket
Reference is an ideal choice. No other book or online resource can get you up to speed so quickly.

C# 3.0 Pocket Reference
by Joseph Albahari; Ben Albahari

Publisher: O'Reilly
Pub Date: February 15, 2008
Print ISBN-13: 978-0-59-651922-3
Pages: 242

Table of Contents
| Index

C# 3.0 Pocket Reference, Second Edition
Chapter 1. C# 3.0 Pocket Reference

Section 1.1. What's New in C# 3.0
Section 1.2. A First C# Program
Section 1.3. Syntax
Section 1.4. Type Basics
Section 1.5. Numeric Types
Section 1.6. Boolean Type and Operators
Section 1.7. Strings and Characters
Section 1.8. Arrays
Section 1.9. Variables and Parameters
Section 1.10. Expressions and Operators
Section 1.11. Statements
Section 1.12. Namespaces
Section 1.13. Classes
Section 1.14. Inheritance
Section 1.15. The object Type
Section 1.16. Structs
Section 1.17. Access Modifiers
Section 1.18. Interfaces
Section 1.19. Enums
Section 1.20. Nested Types
Section 1.21. Generics
Section 1.22. Delegates
Section 1.23. Events
Section 1.24. Lambda Expressions (C# 3.0)
Section 1.25. Anonymous Methods
Section 1.26. try Statements and Exceptions
Section 1.27. Enumeration and Iterators
Section 1.28. Nullable Types
Section 1.29. Operator Overloading
Section 1.30. Extension Methods (C# 3.0)
Section 1.31. Anonymous Types (C# 3.0)
Section 1.32. LINQ (C# 3.0)
Section 1.33. Attributes
Section 1.34. Unsafe Code and Pointers
Section 1.35. Preprocessor Directives
Section 1.36. XML Documentation
Section 1.37. Framework Overview

Index

C# 3.0 Pocket Reference, Second Edition

by Joseph Albahari and Ben Albahari

Copyright © 2008 Joseph Albahari and Ben Albahari. All rights reserved. Printed in Canada.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (safari.oreilly.com). For more information, contact our corporate/ institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Editor: Laurel R.T. Ruma Cover Designer: Karen Montgomery

Production Editor: Loranah Dimant Interior Designer: David Futato

Proofreader: Loranah Dimant Illustrator: Jessamyn Read

Indexer: Angela Howard

Printing History:

November 2002: First Edition.

February 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly
Media, Inc. The Pocket Reference/Pocket Guide series designations, C# 3.0 Pocket Reference, the image of an
African crowned crane, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

.NET is a registered trademark of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-0-596-51922-3

[TM]

Chapter 1. C# 3.0 Pocket Reference

C# is a general-purpose, type-safe, object-oriented programming language whose goal is programmer
productivity. To this end, the language balances simplicity, expressiveness, and performance. The C# language
is platform-neutral, but it was written to work well with the Microsoft .NET Framework. C# 3.0 targets .NET
Framework 3.5.

1.1. What's New in C# 3.0

C# 3.0 features are centered on Language Integrated Query capabilities, or LINQ for short. LINQ enables SQL-
like queries to be written directly within a C# program, and checked statically for correctness. Queries can
execute either locally or remotely; the .NET Framework provides LINQ-enabled APIs across local collections,
remote databases, and XML.

C# 3.0 features include:

Lambda expressions

Extension methods

Implicitly typed local variables

Query comprehensions

Anonymous types

Implicitly typed arrays

Object initializers

Automatic properties

Partial methods

Expression trees

Lambda expressions are like miniature functions created on the fly. They are a natural evolution of anonymous
methods introduced in C# 2.0, and in fact, completely subsume the functionality of anonymous methods. For
example:

 Func<int,int> sqr = x => x * x;

 Console.WriteLine (sqr(3)); // 9

The primary use case in C# is with LINQ queries, such as the following:

 string[] names = { "Tom", "Dick", "Harry" };

 // Include only names of >= 4 characters:

 IEnumerable<string> filteredNames =

 Enumerable.Where (names, n => n.Length >= 4);

Extension methods extend an existing type with new methods, without altering the type's definition. They act as
syntactic sugar, making static methods feel like instance methods. Because LINQ's query operators are
implemented as extension methods, we can simplify our preceding query as follows:

 IEnumerable<string> filteredNames =

 names.Where (n => n.Length >= 4);

Implicitly typed local variables let you omit the variable type in a declaration statement, allowing the compiler
to infer it. Because the compiler can determine the type of filteredNames, we can further simplify our query:

 var filteredNames = names.Where (n => n.Length == 4);

Query comprehension syntax provides SQL-style syntax for writing queries. Comprehension syntax can simplify
certain kinds of queries substantially, as well as serving as syntactic sugar for lambda-style queries. Here's the
previous example in comprehension syntax:

 var filteredNames = from n in names

 where n.Length >= 4

 select n;

Anonymous types are simple classes created on the fly, and are commonly used in the final output of queries:

 var query = from n in names where n.Length >= 4

 select new {

 Name = n,

 Length = n.Length

 };

Here's a simpler example:

 var dude = new { Name = "Bob", Age = 20 };

Implicitly typed arrays eliminate the need to state the array type, when constructing and initializing an array in
one step:

 var dudes = new[]

 {

 new { Name = "Bob", Age = 20 },

 new { Name = "Rob", Age = 30 }

 };

Object initializers simplify object construction by allowing properties to be set inline after the constructor call.

Object initializers work with both anonymous and named types. For example:

 Bunny b1 = new Bunny {

 Name = "Bo",

 LikesCarrots = true,

 };

The equivalent in C# 2.0 is:

 Bunny b2 = new Bunny();

 b2.Name = "Bo";

 b2.LikesCarrots = false;

Automatic properties cut the work in writing properties that simply get/set a private backing field. In the

following example, the compiler automatically generates a private backing field for X:

 public class Stock

 {

 public decimal X { get; set; }

 }

Partial methods let an auto-generated partial class provide customizable hooks for manual authoring. LINQ to
SQL makes use of partial methods for generated classes that map SQL tables.

Expression trees are miniature code DOMs that describe lambda expressions. The C# 3.0 compiler generates
expression trees when a lambda expression is assigned to the special type Expression<TDelegate>:

 Expression<Func<string,bool>> predicate =

 s => s.Length > 10;

Expression trees make it possible for LINQ queries to execute remotely (e.g., on a database server) because
they can be introspected and translated at runtime (e.g., into an SQL statement).

Chapter 1. C# 3.0 Pocket Reference

C# is a general-purpose, type-safe, object-oriented programming language whose goal is programmer
productivity. To this end, the language balances simplicity, expressiveness, and performance. The C# language
is platform-neutral, but it was written to work well with the Microsoft .NET Framework. C# 3.0 targets .NET
Framework 3.5.

1.1. What's New in C# 3.0

C# 3.0 features are centered on Language Integrated Query capabilities, or LINQ for short. LINQ enables SQL-
like queries to be written directly within a C# program, and checked statically for correctness. Queries can
execute either locally or remotely; the .NET Framework provides LINQ-enabled APIs across local collections,
remote databases, and XML.

C# 3.0 features include:

Lambda expressions

Extension methods

Implicitly typed local variables

Query comprehensions

Anonymous types

Implicitly typed arrays

Object initializers

Automatic properties

Partial methods

Expression trees

Lambda expressions are like miniature functions created on the fly. They are a natural evolution of anonymous
methods introduced in C# 2.0, and in fact, completely subsume the functionality of anonymous methods. For
example:

 Func<int,int> sqr = x => x * x;

 Console.WriteLine (sqr(3)); // 9

The primary use case in C# is with LINQ queries, such as the following:

 string[] names = { "Tom", "Dick", "Harry" };

 // Include only names of >= 4 characters:

 IEnumerable<string> filteredNames =

 Enumerable.Where (names, n => n.Length >= 4);

Extension methods extend an existing type with new methods, without altering the type's definition. They act as
syntactic sugar, making static methods feel like instance methods. Because LINQ's query operators are
implemented as extension methods, we can simplify our preceding query as follows:

 IEnumerable<string> filteredNames =

 names.Where (n => n.Length >= 4);

Implicitly typed local variables let you omit the variable type in a declaration statement, allowing the compiler
to infer it. Because the compiler can determine the type of filteredNames, we can further simplify our query:

 var filteredNames = names.Where (n => n.Length == 4);

Query comprehension syntax provides SQL-style syntax for writing queries. Comprehension syntax can simplify
certain kinds of queries substantially, as well as serving as syntactic sugar for lambda-style queries. Here's the
previous example in comprehension syntax:

 var filteredNames = from n in names

 where n.Length >= 4

 select n;

Anonymous types are simple classes created on the fly, and are commonly used in the final output of queries:

 var query = from n in names where n.Length >= 4

 select new {

 Name = n,

 Length = n.Length

 };

Here's a simpler example:

 var dude = new { Name = "Bob", Age = 20 };

Implicitly typed arrays eliminate the need to state the array type, when constructing and initializing an array in
one step:

 var dudes = new[]

 {

 new { Name = "Bob", Age = 20 },

 new { Name = "Rob", Age = 30 }

 };

Object initializers simplify object construction by allowing properties to be set inline after the constructor call.

Object initializers work with both anonymous and named types. For example:

 Bunny b1 = new Bunny {

 Name = "Bo",

 LikesCarrots = true,

 };

The equivalent in C# 2.0 is:

 Bunny b2 = new Bunny();

 b2.Name = "Bo";

 b2.LikesCarrots = false;

Automatic properties cut the work in writing properties that simply get/set a private backing field. In the

following example, the compiler automatically generates a private backing field for X:

 public class Stock

 {

 public decimal X { get; set; }

 }

Partial methods let an auto-generated partial class provide customizable hooks for manual authoring. LINQ to
SQL makes use of partial methods for generated classes that map SQL tables.

Expression trees are miniature code DOMs that describe lambda expressions. The C# 3.0 compiler generates
expression trees when a lambda expression is assigned to the special type Expression<TDelegate>:

 Expression<Func<string,bool>> predicate =

 s => s.Length > 10;

Expression trees make it possible for LINQ queries to execute remotely (e.g., on a database server) because
they can be introspected and translated at runtime (e.g., into an SQL statement).

1.2. A First C# Program

Here is a program that multiplies 12 x 30, and prints the result, 360, to the screen. The double-forward slash
indicates that the remainder of a line is a comment.

 using System; // importing namespace

 class Test // class declaration

 {

 static void Main() // method declaration

 {

 int x = 12 * 30; // statement 1

 Console.WriteLine (x); // statement 2

 } // end of method

 } // end of class

At the heart of this program lie two statements. Statements in C# execute sequentially. Each statement is
terminated by a semicolon:

 int x = 12 * 30;

 Console.WriteLine (x);

The first statement computes the expression 12 * 30 and stores the result in a local variable, named x, which is

an integer type. The second statement calls the Console class's WriteLine method to print the variable x to a

text window on the screen.

A method performs an action in a series of statements, called a statement block-a pair of braces containing
zero or more statements. We defined a single method named Main:

 static void Main()

 {

 ...

 }

Writing higher-level functions that call upon lower-level functions simplifies a program. We can refactor our
program with a reusable method that multiplies an integer by 12 as follows:

 using System;

 class Test

 {

 static void Main()

 {

 Console.WriteLine (FeetToInches (30)); // 360

 Console.WriteLine (FeetToInches (100)); // 1200

 }

 static int FeetToInches (int feet)

 {

 int inches = feet * 12;

 return inches;

 }

 }

A method can receive input data from the caller by specifying parameters, and output data back to the caller by
specifying a return type. We defined a method called FeetToInches that has a parameter for inputting feet, and

a return type for outputting inches:

 static int InchesToFeet (int feet) {...}

The literals 30 and 100 are the arguments passed to the FeetToInches method. The Main method in our

example has empty parentheses because it has no parameters, and it is void because it doesn't return any

value to its caller:

 static void Main()

C# recognizes a method called Main as signaling the default entry point of execution. The Main method may

optionally return an integer (rather than void) to return a value to the execution environment. The Main

method can also optionally take an array of string arguments (that will be populated with any arguments passed
to the executable). For example:

 static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of elements of a particular type

(see the upcoming "Arrays," section).

Methods are one of several kinds of functions in C#. Another kind of function we used was the * operator, used
to perform multiplication. There are also constructors, properties, events, indexers, and finalizers.

In our example, the two methods are grouped into a class. A class groups function members and data members
to form an object-oriented building block. The Console class groups members that handle command-line

input/output functionality, such as the WriteLine method. Our Test class groups two methods-the Main

method and the FeetToInches method. A class is a kind of type, which we will examine later in the "Type

Basics" section.

At the outermost level of a program, types are organized into namespaces. The using directive made the

System namespace available to our application, so we could reference System.Console without the System.

prefix. We could define all our classes within the TestPrograms namespace, as follows:

 using System;

 namespace TestPrograms

 {

 class Test {...}

 class Test2 {...}

 }

The .NET Framework is organized into nested namespaces. For example, this is the namespace that contains
types for handling text:

 using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully qualified name, which is

the type name prefixed with its namespace, such as System.Text. StringBuilder.

1.2.1. Compilation

The C# compiler compiles source code, specified as a set of files with the .cs extension, into an assembly. An
assembly is the unit of packaging and deployment in .NET., and it can be either an application or a library. A
normal console or Windows application has a Main method and is an .exe. A library is a .dll, and is equivalent to

an .exe without an entry point. Its purpose is to be called upon (referenced) by an application or by other
libraries. The .NET Framework is a set of libraries.

The name of the C# compiler is csc.exe. You can either use an IDE such as Visual Studio .NET to call csc

automatically, or compile manually from the command line. To compile manually, first save a program to a file
such as MyFirstProgram.cs, and then invoke csc (located under <windows>/Microsoft.NET/Framework) from

the command line, as follows:

 csc MyFirstProgram.cs

This produces an application named MyFirstProgram.exe.To produce a library (.dll), you'd do the following:

 csc /target:library MyFirstProgram.cs

1.3. Syntax

C# syntax is based on C and C++ syntax. In this section, we describe C#'s elements of syntax, using the
following program:

 using System;

 class Test

 {

 static void Main()

 {

 int x = 12 * 30;

 Console.WriteLine (x);

 }

 }

1.3.1. Identifiers and Keywords

Identifiers are names that programmers choose for their classes, methods, variables, and so on. These are the
identifiers in our example program in the order in which they appear:

 System Test Main x Console WriteLine

An identifier must be a whole word, essentially made up of Unicode characters starting with a letter or
underscore. C# identifiers are case-sensitive. By convention, arguments, local variables, and private fields
should be in camel case (e.g., myVariable), and all other identifiers should be in Pascal case (e.g., MyMethod).

Keywords are names reserved by the compiler that you can't use as identifiers. These are the keywords in our
example program:

 using class static void int

Here is the full list of C# keywords:

abstract enum long stackalloc

as event namespace static

base explicit new string

bool extern null struct

break false object switch

byte finally operator this

case fixed out throw

catch float override true

char for params try

abstract enum long stackalloc

checked foreach private typeof

class goto protected uint

const if public ulong

continue implicit readonly unchecked

decimal in ref unsafe

default int return ushort

delegate interface sbyte using

do internal sealed virtual

double is short void

else lock sizeof while

1.3.1.1. Avoiding conflicts

If you really want to use an identifier that clashes with a keyword, you can qualify it with the @ prefix. For
instance:

 class class {...} // illegal

 class @class {...} // legal

The @ symbol doesn't form part of the identifier itself, so @myVariable is the same as myVariable.

1.3.1.2. Contextual keywords

Some keywords are contextual, meaning that they can also be used as identifiers-without an @ symbol. The
following are contextual keywords:

add get let set

ascending global on value

by group orderby var

descending in partial where

equals into remove yield

from join select

With contextual keywords, ambiguity cannot arise within the context in which they are used.

1.3.2. Literals, Punctuators, and Operators

checked foreach private typeof

class goto protected uint

const if public ulong

continue implicit readonly unchecked

decimal in ref unsafe

default int return ushort

delegate interface sbyte using

do internal sealed virtual

double is short void

else lock sizeof while

1.3.1.1. Avoiding conflicts

If you really want to use an identifier that clashes with a keyword, you can qualify it with the @ prefix. For
instance:

 class class {...} // illegal

 class @class {...} // legal

The @ symbol doesn't form part of the identifier itself, so @myVariable is the same as myVariable.

1.3.1.2. Contextual keywords

Some keywords are contextual, meaning that they can also be used as identifiers-without an @ symbol. The
following are contextual keywords:

add get let set

ascending global on value

by group orderby var

descending in partial where

equals into remove yield

from join select

With contextual keywords, ambiguity cannot arise within the context in which they are used.

1.3.2. Literals, Punctuators, and Operators

Literals are primitive pieces of data statically embedded into the program. The literals in our example program
are 12 and 30.

Punctuators help demarcate the structure of the program. These are the punctuators in our example program:

 ; { }

The semicolon is used to terminate a statement and allows statements to wrap multiple lines:

 Console.WriteLine

 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

The braces are used to group multiple statements into a statement block.

Operators transform and combine expressions. Most operators in C# are denoted with a symbol, such as the
multiplication operator, *. We will discuss operators in more detail later in this book. These are the operators
we used in our example program:

 . () * =

The period refers to a member of something. The parentheses are used when declaring or calling a method;
empty parentheses are used when the method does not accept arguments. The equals sign is used for
assignment (the double equals sign, = =, is used for equality comparison).

1.3.3. Comments

C# offers two different styles of source code documentation: single-line comments and multiline comments. A
single-line comment begins with a double-forward slash and continues until the end of the line. For example:

 int x = 3; // comment about assigning 3 to x

A multiline comment begins with /* and ends with */:

 int x = 3; /* this is a comment that

 spans two lines */

Comments may embed XML documentation tags (see the upcoming "XML Documentation" section).

1.4. Type Basics

A type defines the blueprint for a value. A value is a storage location denoted by a variable or a constant. A
variable represents a value that can change, whereas a constant represents an invariant. We created a local
variable named x in our first program:

 static void Main()

 {

 int x = 12 * 30;

 Console.WriteLine (x);

 }

All values in C# are instances of a specific type. The meaning of a value, and the set of possible values a
variable can have, is determined by its type. The type of x is int.

1.4.1. Predefined Type Examples

Predefined types are types that are specially supported by the compiler. The int type is a predefined primitive

type for representing the set of integers that fits into 32 bits of memory, from –231 to 231–1. We can perform
functions such as arithmetic with instances of the int type, as follows:

 int x = 12 * 30;

Another predefined C# type is the string type. The string type represents a sequence of characters, such as

".NET" or http://oreilly.com. We can manipulate strings by calling functions on them as follows:

 string message = "Hello world";

 string upperMessage = message.ToUpper();

 Console.WriteLine (upperMessage); // HELLO WORLD

 int x = 2007;

 message = message + x.ToString();

 Console.WriteLine (message); // Hello world2007

The primitive bool type has exactly two possible values: true and false. The bool type is commonly used to

conditionally branch execution flow based with an if statement. For example:

 bool simpleVar = false;

 if (simpleVar)

 Console.WriteLine ("This will not print");

 int x = 5000;

 bool lessThanAMile = x < 5280;

 if (lessThanAMile)

 Console.WriteLine ("This will print");

http://oreilly.com

In C#, predefined types (also referred to as built-in types) are recognized with a C#
keyword. The System namespace in the .NET Framework contains many important types

that C# does not predefine (e.g., DateTime).

1.4.2. Custom Type Examples

Just as we can build complex functions from simple functions, we can build complex types from primitive types.
In this example, we will define a custom type named UnitConverter- a class that serves as a blueprint for unit

conversions:

 using System;

 public class UnitConverter

 {

 int ratio; // Field

 public UnitConverter (int unitRatio) // Constructor

 { ratio = unitRatio; }

 public int Convert (int unit) // Method

 { return unit * ratio; }

 }

 class Test

 {

 static void Main()

 {

 UnitConverter feetToInches = new UnitConverter(12);

 UnitConverter milesToFeet = new UnitConverter(5280);

 Console.Write (feetToInches.Convert(30)); // 360

 Console.Write (feetToInches.Convert(100)); // 1200

 Console.Write (feetToInches.Convert

 (milesToFeet.Convert(1))); // 63360

 }

 }

1.4.2.1. Members of a type

A type contains data members and function members. The data member of UnitConverter is the field called

ratio. The function members of UnitConverter are the Convert method and the UnitConverter's

constructor.

1.4.2.2. Symmetry of predefined types and custom types

A beautiful aspect of C# is that predefined types and custom types have few differences. The primitive int type

serves as a blueprint for integers. It holds data-32 bits-and provides function members that use that data,
such as ToString. Similarly, our custom UnitConverter type acts as a blueprint for unit conversions. It holds

data-the ratio-and provides function members to use that data.

1.4.2.3. Constructors and instantiation

Data is created by instantiating a type. Primitive types can be instantiated simply by using a literal. For
example, the following line instantiates two integers (12 and 30), which are used to compute a third instance, x:

 int x = 12 * 30;

The new operator is needed to create a new instance of a custom type. We created and declared an instance of

the UnitConverter type with this statement:

 UnitConverter feetToInchesConverter =

 new UnitConverter(12);

Immediately after the new operator instantiates an object, the object's constructor is called to perform

initialization. A constructor is defined like a method, except that the method name and return type are reduced
to the name of the enclosing type:

 public class UnitConverter

 {

 ...

 public UnitConverter (int r) // Constructor

 { ratio = r; }

 ...

 }

1.4.2.4. Instance versus static members

The data members and function members that operate on the instance of the type are called instance members.
The UnitConverter's Convert method and the int's ToString method are examples of instance members.

By default, members are instance members.

Data members and function members that don't operate on the instance of the type, but rather on the type
itself, must be marked as static. The Test.Main and Console.WriteLine methods are static methods. The

Console class is actually a static class, where all its members are static. You never actually create instances of a

Console-one console is shared across the whole application.

To contrast instance versus static members, the instance field Name pertains to an instance of a particular

Panda, whereas Population pertains to the set of all Panda instances:

 using System;

 public class Panda

 {

 public string Name; // Instance field

 public static int Population; // Static field

 public Panda (string n) // Constructor

 {

 Name = n; // Assign instance field

 Population = Population+1; // Increment static field

 }

 }

The following code creates two instances of the Panda, prints their names and then the total population:

 Panda p1 = new Panda ("Pan Dee");

 Panda p2 = new Panda ("Pan Dah");

 Console.WriteLine (p1.Name); // Pan Dee

 Console.WriteLine (p2.Name); // Pan Dah

 Console.WriteLine (Panda.Population); // 2

1.4.2.5. The public keyword

The public keyword exposes members to other classes. In this example, if the Name field in Panda was not

public, the Test class could not call it. Marking a member public is how a type communicates: "Here is what I

want other types to see-everything else is my own private implementation details." In object-oriented terms,
we say that the public members encapsulate the private members of the class.

1.4.3. Conversions

C# can convert between instances of compatible types, through implicit and explicit conversions. A conversion
always creates a new value from an existing one. Conversions can be either implicit or explicit; implicit
conversions happen automatically, and explicit conversions require a cast. In the following example, we
implicitly cast an int to a long type (which has twice the capacity of an int) and explicitly cast an int to a

short type (which has half the capacity of an int):

 int x = 123456; // int is a 32-bit integer

 long y = x; // Implicit conversion to 64-bit int

 short z = (short)x; // Explicit conversion to 16-bit int

Implicit conversions are allowed when:

The compiler can guarantee they will always succeed, and no information is lost in conversion.

Conversely, explicit conversions are required when:

The compiler cannot guarantee they will always succeed, or o information may be lost during conversion.

Most conversions are built into the language, such as the previously shown numeric conversions. Occasionally, it
is useful to write custom conversions (see the upcoming "Operator Overloading" section).

1.4.4. Value Types Versus Reference Types

All C# types fall into the following categories:

Value types

Reference types

Pointer types

Value types comprise most built-in types (specifically, all numeric types, the char type, and the bool type) as

well as custom struct and enum types.

Reference types comprise all class, array, delegate, and interface types.

The fundamental difference between value types and reference types is how they are handled in memory.
Pointer types fall outside mainstream C# usage (see the upcoming "Unsafe Code and Pointers" section).

1.4.4.1. Value types

The content of a value type variable or constant is simply a value. For example, the content of the built-in value
type int is 32 bits of data.

You can define a custom value type with the struct keyword as follows (see Figure 1-1).

 public struct Point { public int X, Y; }

Figure 1-1. A value type instance in memory

The assignment of a value type instance always copies the instance. For example:

 Point p1 = new Point();

 p1.X = 7;

 Point p2 = p1; // Assignment causes copy

 Console.WriteLine (p1.X); // 7

 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9

 Console.WriteLine (p2.X); // 7

Figure 1-2 shows that p1 and p2 have independent storage.

Figure 1-2. Assignment copies a value type instance

1.4.4.2. Reference types

A reference type is more complex than a value type, having two parts: an object and the reference to that
object. The content of a reference type variable or constant is a reference to an object that contains the value.
Here is the Point type from our previous example rewritten as a class, rather than a struct (seeFigure 1-3).

 public class Point { public int X, Y; }

Figure 1-3. A reference type instance in memory

Assigning a reference type variable copies the reference, not the object instance. This allows multiple variables
to refer to the same object-something not ordinarily possible with value types. If we repeat the previous
example, but with Point now a class, an operation to X affects Y:

 Point p1 = new Point();

 p1.X = 7;

 Point p2 = p1; // Copies p1 reference

 Console.WriteLine (p1.X); // 7

 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9

 Console.WriteLine (p2.X); // 9

Figure 1-4 shows that p1 and p2 are two references that point to the same object.

Figure 1-4. Assignment copies a reference

1.4.4.3. Null

A reference can be assigned the literal null, indicating that the reference points to no object:

 class Point {...}

 ...

 Point p = null;

 Console.WriteLine (p == null); // True

 // The following line generates a runtime

 // error (a NullReferenceException is thrown):

 Console.WriteLine (p.X);

In contrast, a value type cannot ordinarily have a null value:

 struct Point {...}

 ...

 Point p = null; // Compile-time error

 int x = null; // Compile-time error

C# has a construct called nullable types for representing value-type nulls (see the later
"Nullable Types" section).

1.4.4.4. Storage overhead

Value type instances occupy precisely the sum of the memory occupied by their fields.

Reference types require separate allocations of memory for the reference and object. The object consumes as
many bytes as its fields, plus additional administrative overhead (typically 12 bytes). Each reference to an object
requires an extra 4 or 8 bytes, depending on whether the .NET runtime is running on a 32- or 64-bit platform.

1.4.5. Predefined Type Taxonomy

The following are the predefined types in C#:

Value types

Numeric types

- Signed integer (byte, short, int, long)

- Unsigned integer (byte, ushort, unit, ulong)

- Real number (float, double, decimal)

Logical (bool)

Character (char)

Reference types

String (string)

Object (object)

Predefined types in C# alias Framework types in the System namespace. There is only a syntactic difference

between these two statements:

 int i = 5;

 System.Int32 i = 5;

The predefined value types are also known as primitive types. Primitive types are so called because they are the
atoms, or smallest possible building blocks of data, in a language, and most have a direct representation in
machine code.

1.5. Numeric Types

C# has the following predefined numeric types.

C# type System type Suffix Size Range

Integral-unsigned

sbyte SByte 8 bits –27 to 27–1

short Int16 16 bits –215 to 215–1

int Int32 32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

Integral-signed

byte Byte 8 bits 0 to 28–1

ushort UInt16 16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

Real

float Single F 32 bits ±(~10–45 to 1038)

double Double D 64 bits ±(~10–324 to 10308)

decimal Decimal M 128 bits ±(~10–28 to 1028)

Of the integral types, int and long are first-class citizens and C# and the runtime favor both. The other integral

types are typically used for interoperability or when space efficiency is paramount.

Of the real number types, float and double are called floating-point types and are typically used for scientific

calculations. The decimal type is typically used for financial calculations, where base-10-accurate arithmetic and

high precision are required.

1.5.1. Numeric Literals

Integral literals can use decimal or hexadecimal notation; hexadecimal is denoted with the 0x; prefix. For

example:

 int x = 127;

 long y = 0x7F;

Real literals can use decimal and/or exponential notation. For example:

 double d = 1.5;

 double million = 1E06;

1.5.1.1. Numeric literal type inference

By default, the compiler infers a numeric literal to be either double or an integral type:

If the literal contains a decimal point or the exponential symbol (E), it is a double.

Otherwise, the literal's type is the first type in this list that can fit the literal's value: int, uint, ulong,

and long.

For example:

 Console.Write(1.0.GetType()); // Double (double)

 Console.Write(1E06.GetType()); // Double (double)

 Console.Write(1.GetType()); // Int32 (int)

 Console.Write(0xF0000000.GetType()); // UInt32 (uint)

1.5.1.2. Numeric suffixes

Numeric suffixes explicitly define the type of a literal (suffixes can be either lower- or uppercase):

Category C# type Notes Example

F float float f = 1.0F;

D double double d = 1D;

M decimal decimal d = 1.0M;

U uint or ulong Combinable with L uint i = 1U;

L long or ulong Combinable with U ulong i = 1UL;

The suffixes U and L are rarely necessary because the uint, long, and ulong types can nearly always be either

inferred or implicitly converted from int:

 long i = 5; // implicit lossless conversion from

 // int literal to long

The D suffix is technically redundant, in that all literals with a decimal point are inferred to be double. And you

can always add a decimal point to a numeric literal:

 double x = 4.0;

The F and M suffixes are the most useful and should always be applied when specifying float or decimal

literals. Without the F suffix, the following line would not compile because 4.5 would be inferred to be of type

double, which has no implicit conversion to float:

 float f = 4.5F;

The same principle is true for a decimal literal:

 decimal x = -1.23M; // Will not compile without

 // the M suffix.

The semantics of numeric conversions are described in detail in the following section.

1.5.2. Numeric Conversions

1.5.2.1. Integral to integral conversions

Integral conversions are implicit when the destination type can represent every possible value of the source
type. Other-wise, an explicit conversion is required.

1.5.2.2. Floating-point to floating-point conversions

A float can be implicitly converted to a double,as a double can represent every possible value of a float. The

reverse conversion must be explicit.

1.5.2.3. Floating-point to integral conversions

All integral types may be implicitly converted to all floating point numbers:

 int i = 1;

 float f = i;

The reverse conversion must be explicit:

 int i2 = (int)f;

When you cast from a floating-point number to an integral, any fractional portion is
truncated; no rounding is performed. The static class System.Convert provides

methods that round while converting between various numeric types.

Implicitly converting a large integral type to a floating-point type preserves magnitude but may occasionally
lose precision. This is because floating-point types always have more magnitude than integral types, but they
may have less precision. Rewriting our example with a larger number demonstrates:

 int i1 = 100000001;

 float f = i1; // Magnitude preserved, precision lost

 int i2 = (int)f; // 100000000

1.5.2.4. Decimal conversions

All integral types can be implicitly converted to the decimal type because a decimal can represent every possible
C# integral value. All other numeric conversions to and from a decimal type must be explicit.

1.5.3. Arithmetic Operators

The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8- and 16-bit integral types:

 + Addition

 - Subtraction

 * Multiplication

 / Division

 % Remainder after division

1.5.4. Increment and Decrement Operators

The increment and decrement operators (++, --) increment and decrement numeric types by one. The operator
can either precede or follow the variable, depending on whether you want the variable to be updated before or
after the expression is evaluated. For example:

 int x = 0;

 Console.WriteLine (x++); // outputs 0; x is now 1

 Console.WriteLine (++x); // outputs 2; x is now 2

 Console.WriteLine (--x); // outputs 1; x is now 1

1.5.5. Specialized Integral Operations

1.5.5.1. Integral division

Division operations on integral types always truncate remainders. Dividing by a variable whose value is 0
generates a runtime error (a DivisionByZeroException). Dividing by the literal 0 generates a compile-time

error.

1.5.5.2. Integral overflow

At runtime, arithmetic operations on integral types can overflow. By default, this happens silently-no exception
is thrown. While the C# specification is agnostic as to the result of an overflow, the CLR always causes
wraparound behavior. For example, decrementing the minimum possible int value results in the maximum

possible int value:

 int a = int.MinValue;

 a--;

 Console.WriteLine (a == int.MaxValue); // True

1.5.5.3. Integral arithmetic overflow check operators

The checked operator tells the runtime to generate an OverflowException rather than failing silently when an

integral expression or statement exceeds the arithmetic limits of that type. The checked operator affects

expressions with the ++, --, (unary) -, +, -, *, /, and explicit conversion operators between integral types.

checked can be used around either an expression or a statement block. For example:

 int a = 1000000, b = 1000000;

 int c = checked (a*b); // Checks just the expression

 checked // Checks all expressions

 { // in statement block

 c = a * b;

 ...

 }

You can make arithmetic overflow checking the default for all expressions in a program by compiling with the
/checked+ command-line switch (in Visual Studio, go to Advanced Build Settings). If you then need to disable

overflow checking just for specific expressions or statements, you can do so with the unchecked operator.

1.5.5.4. Overflow checking for constant expressions

Regardless of the /checked compiler switch, expressions evaluated at compile time are always overflow-

checked-unless you apply the unchecked operator:

 int x = int.MaxValue + 1; // Compile-time error

 int y = unchecked (int.MaxValue + 1); // No errors

1.5.5.5. Bitwise operators

C# supports these standard C-style bitwise operations.

Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ̂ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

1.5.6. 8-and 16-Bit Integrals

The 8-and 16-bit integral types are byte, sbyte, short, and ushort. These types lack their own arithmetic

operators, so C# implicitly converts them to larger types as required. This can cause a compile-time error when
trying to assign the result back to a small integral type:

 short x = 1, y = 1;

 short z = x + y; // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be performed. This means the

result is also an int, which cannot be implicitly cast back to a short (because it could cause loss of data). To

make this compile, we must add an explicit cast:

 short z = (short) (x + y); // OK

1.5.7. Special Float and Double Values

Unlike integral types, floating-point types have values that certain operations treat specially. These special
values are NaN (Not a Number), + ,- and –0. The float and double classes have constants for NaN,+ , and -

, as well as other values (MaxValue, MinValue, and Epsilon). For example:

 Console.Write (double.Negative Infinity); // -Infinity

The constants that represent special values for double and float are as follows.

Special value Double constant Float constant

NaN double.NaN float.NaN

+ double.PositiveInfinity float.PositiveInfinity

- double.NegativeInfinity float.NegativeInfinity

–0 -0.0 -0.0f

Dividing a nonzero number by zero results in an infinite value. For example:

 Console.WriteLine (1.0 / 0.0) ; // Infinity

 Console.WriteLine (-1.0 / 0.0) ; // -Infinity

 Console.WriteLine (1.0 / -0.0); // -Infinity

 Console.WriteLine (-1.0 / -0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN. For example:

 Console.WriteLine (0.0 / 0.0); // NaN

 Console.WriteLine ((1.0 / 0.0) - (1.0 / 0.0)); // NaN

When using = =, a NaN value is never equal to another value, even another NaN value:

 Console.WriteLine (0.0 / 0.0 == double.NaN); // False

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN method, as follows:

 Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True

float and double follow the specification of the IEEE 754 format types, supported

natively by almost all processors. You can find detailed information on the behavior of
these types at http://www.ieee.org.

When using object.Equals, however, two NaN values are equal:

 Console.WriteLine

 (object.Equals (0.0 / 0.0, double.NaN)); // True

1.5.8. double Versus decimal

double is useful for scientific computations (such as computing spatial coordinates); decimal is useful for

financial computations.

http://www.ieee.org

Category double decimal

Internal
representation

Base 2 Base 10

Precision 15-16 significant figures 28-29 significant figures

Range ±(~10–324 to ~10308) ±(~10–28 to ~1028)

Special values +0, –0, + , - , and
NaN

None

Speed Native to processor Nonnative to processor (about 10 times slower than
double)

1.5.9. Real Number Rounding Errors

float and double internally represent numbers in base 2. For this reason, only numbers expressible in base 2

are represented precisely. Practically, this means most literals with a fractional component (which are in base 10)
will not be represented precisely. For example:

 float tenth = 0.1f; // Not quite 0.1

 float one = 1f;

 Console.WriteLine (one - tenth * 10f); // -1.490116E-08

This is why float and double are bad for financial calculations. In contrast, decimal works in base 10 and so

can precisely represent numbers expressible in base 10 (as well as its factors, base 2 and base 5). Because real
literals are in base 10, decimal can precisely represent numbers such as 0.1. However, neither double nor

decimal can precisely represent a fractional number whose base–10 representation is recurring:

 decimal m = 1M / 6M; // 0.1666666666666666666666666667M

 double d = 1.0 / 6.0; // 0.16666666666666666

This leads to accumulated rounding errors:

 decimal notQuiteWholeM =

 m+m+m+m+m+m; // 1.0000000000000000000000000002M

 double notQuiteWholeD =

 d+d+d+d+d+d; // 0.99999999999999989

which breaks equality and comparison operations:

 Console.WriteLine (notQuiteWholeM == 1M); // False

 Console.WriteLine (notQuiteWholeD < 1.0); // True

1.6. Boolean Type and Operators

C#'s bool type (aliasing the System.Boolean type) is a logical value that can be assigned the literal true or

false.

Although a Boolean value requires only one bit (zero or one) of storage, the runtime will use one or two bytes of
memory, as this is the minimum chunk that the runtime and processor can efficiently work with. To avoid
space-inefficiency in the case of arrays, the Framework provides a BitArray class in the System.Collections

namespace, which is designed to use just one bit per Boolean value.

1.6.1. Equality and Comparison Operators

= = and != test for equality and inequality of any type, but always return a bool value. Value types typically

have a very simple notion of equality:

 int x = 1, y = 2, z = 1;

 Console.WriteLine (x == y); // False

 Console.WriteLine (x == z); // True

For reference types, equality, by default, is based on reference, as opposed to the actual value of the underlying
object:

 public class Dude

 {

 public string Name;

 public Dude (string n) { Name = n; }

 }

 Dude d1 = new Dude ("John");

 Dude d2 = new Dude ("John");

 Console.WriteLine (d1 == d2); // False

 Dude d3 = d1;

 Console.WriteLine (d1 == d3); // True

The comparison operators, <, >, <=, and >=, work for all numeric types, but should be used with caution with
real numbers (see the previous section "Real Number Rounding Errors"). The comparison operators also work on
enum type members, by comparing their underlying integral values.

We'll explain the equality and comparison operators in greater detail, later, in the "The object Type" and
"Operator Overloading" sections.

1.6.2. Conditional Operators

The && and || operators test for and and or conditions. They are frequently used in conjunction with the !
operator, which expresses not. In this example, the Use Umbrella method returns true if it's rainy or sunny (to

protect us from the rain or the sun), as long as it's not also windy (as umbrellas are useless in the wind):

 static bool UseUmbrella (bool rainy, bool sunny,

 bool windy)

 {

 return ! windy && (rainy || sunny);

 }

Conditional operators short-circuit evaluation when possible. In the preceding example, if it is not windy, the
expression (rainy || sunny) is not even evaluated.

The & and | operators can be used in a similar manner:

 return ! windy & (rainy | sunny);

The difference is that they do not short-circuit. For this reason, they are rarely used in
place of conditional operators.

The ternary conditional operator has the form q ? a : b, where if condition q is true, a is evaluated, else b is

evaluated. For example:

 static int Max (int a, int b)

 {

 return (a > b) ? a : b;

 }

1.7. Strings and Characters

C#'s char type (aliasing the System.Char type) represents a Unicode character, and it occupies two bytes. A

char literal is specified inside single quotes:

 char c = 'A'; // simple character

Escape sequences express characters that cannot be expressed or interpreted literally. An escape sequence is a
backslash followed by a character with a special meaning. For example:

 char newLine = '\n';

 char backSlash = '\\';

The escape sequence characters are outlined below.

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its four-digit hexadecimal code:

 char copyrightSymbol = '\u00A9';

 char omegaSymbol = '\u03A9';

 char newLine = '\u000A';

1.7.1. Char Conversions

An implicit conversion from a char to a numeric type works for the numeric types that can accommodate an

unsigned short. For other numeric types, an explicit conversion is required.

1.7.2. String Type

C#'s string type (aliasing the System.String type) represents an immutable sequence of Unicode characters. A

string literal is specified inside double quotes:

 string a = "Heat";

string is a reference type, not a value type. Its equality operators, however, implement

value-type semantics.

The escape sequences that are valid for char literals also work inside strings:

 string a = "Here's a tab:\t";

The cost being that whenever you need a literal backslash, you must write it twice:

 string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is prefixed with @ and does

not support escape sequences. The following verbatim string is identical to the preceding one:

 string a2 = @"\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines:

 string escaped = "First Line\r\nSecond Line";

 string verbatim = @"First Line

 Second Line";

 Console.WriteLine (escaped == verbatim); // True

You can include the double-quote character in a verbatim literal by writing it twice:

 string xml = @"<customer id=""123""></customer>";

1.7.2.1. String concatenation

The + operator concatenates two strings:

 string s = "a" + "b";

The righthand operand may be a non-string value, in which case ToString is called on that value. For example:

 string s = "a" + 5; // a5

Because string is immutable, using the + operator repeatedly to build up a string can be inefficient. The

solution is to instead use the System.Text.String Builder type-this represents a mutable (editable) string,

and it has methods to efficiently Append, Insert, Remove, and Replace substrings.

1.7.2.2. String comparisons

string does not support < and > operators for comparisons. You must instead use string's CompareTo

method, which returns a positive number, a negative number, or zero, depending on whether the first value
comes after, before, or alongside the second value:

 Console.Write ("Boston".CompareTo ("Austin")); // 1

 Console.Write ("Boston".CompareTo ("Boston")); // 0

 Console.Write ("Boston".CompareTo ("Chicago")); // -1

1.7.2.3. Searching within strings

String's indexer returns a character at a specified position:

 Console.Write ("word"[2]); // r

The Index Of/Last Index Of methods search for a character within the string; the Contains, StartsWith,

and EndWith methods search for a substring within the string.

1.7.2.4. Manipulating strings

Because String is immutable, all the methods that "manipulate" a string return a new one, leaving the original

untouched:

Substring extracts a portion of a string.

Insert and Remove insert and remove characters at a specified position.

PadLeft and PadRight add whitespace.

TrimStart, TrimEnd, and Trim remove whitespace.

The string class also defines ToUpper and ToLower methods for changing case, a Split method to split a string

into substrings (based on supplied delimiters), and a static Join method to join substrings back into a string.

1.8. Arrays

An array represents a fixed number of elements of a particular type. The elements in an array are always stored
in a contiguous block of memory, providing highly efficient access.

An array is denoted with square brackets after the element type. For example:

 char[] vowels = new char[5]; // Declare an array of 5

 characters

Square brackets also index the array, accessing a particular element by position:

 vowels [0] = 'a';

 vowels [1] = 'e';

 vowels [2] = 'i';

 vowels [3] = 'o';

 vowels [4] = 'u';

 Console.WriteLine (vowels [1]); // e

This prints "e" because array indexes start at zero. We can use a for loop statement to iterate through each

element in the array. The for loop in this example cycles the integer i from 0 to 4:

 for (int i = 0; i < vowels.Length; i++)

 Console.Write (vowels [i]); // aeiou

Arrays also implement IEnumerable<T>, so you can enumerate members with the foreach statement:

 foreach (char c in vowels) Console.Write (c); // aeiou

The Length property of an array returns the number of elements in the array. Once an array has been created,

its length cannot be changed. The System.Collection namespace and subnamespaces provide higher-level

data structures, such as dynamically sized arrays and dictionaries.

An array initialization expression specifies each element of an array. For example:

 char[] vowels = new char[] {'a','e','i','o','u'};

All arrays inherit from the System.Array class, which defines common methods and properties for all arrays.

This includes instance properties such as Length and Rank, and static methods to:

Dynamically create an array (CreateInstance)

Get and set elements regardless of the array type (GetValue/SetValue)

Search a sorted array (BinarySearch) or an unsorted array (IndexOf, LastIndexOf, Find, FindIndex,

FindLastIndex)

Sort an array (Sort)

Copy an array (Copy)

1.8.1. Default Element Initialization

Creating an array always preinitializes the elements with default values. The default value for a type is the result
of a bitwise-zeroing of memory. For example, consider creating an array of integers. Because int is a value type,
it allocates 1,000 integers in one contiguous block of memory. The default value for each element will be 0:

 int[] a = new int[1000];

 Console.Write (a[123]); // 0

1.8.1.1. Value types versus reference types

Whether an array element type is a value type or a reference type has important performance implications.
When the element type is a value type, each element value is allocated as part of the array. For example:

 public struct Point { public int X, Y; }

 ...

 Point[] a = new Point[1000];

 int x = a[500].X; // 0

Had Point been a class, creating the array would have merely allocated 1,000 null references:

 public class Point { public int X, Y; }

 ...

 Point[] a = new Point[1000];

 int x = a[500].X; // Runtime error

 // (NullReferenceException)

To avoid this error, we must manually instantiate 1,000 Point objects after instantiating the array:

 Point[] a = new Point[1000];

 for (int i = 0; i < a.Length; i++) // Iterate i from

 // 0 to 999

 a[i] = new Point(); // Set array element

 // i with new point

An array itself is always a reference type object, regardless of element type:

 int[] a = null; // Legal - int[] is reference type

1.8.2. Multidimensional Arrays

Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular arrays represent an n-
dimensional block of memory, and jagged arrays are arrays of arrays.

1.8.2.1. Rectangular arrays

Rectangular arrays are declared using commas to separate each dimension. The following declares a rectangular
twodimensional array, where the dimensions are 3 by 3:

 int[,] matrix = new int [3, 3];

The Get Length method of an array returns the length for a given dimension (starting at 0):

 for (int i = 0; i < matrix.GetLength (0); i++)

 for (int j = 0; j < matrix.GetLength (1); j++)

 matrix [i, j] = i * 3 + j;

A rectangular array can be initialized as follows (each element in this example is initialized to be identical to the
previous example):

 int[,] matrix = new int[,]

 {

 {0,1,2},

 {3,4,5},

 {6,7,8}

 };

1.8.2.2. Jagged arrays

Jagged arrays are declared using successive square brackets to represent each dimension. Here is an example of
declaring a jagged two-dimensional array, where the outermost dimension is 3:

 int [][] matrix = new int [3][];

The inner dimensions aren't specified in the declaration. Unlike a rectangular array, each inner array can be an
arbitrary length. Each inner array is implicitly initialized to null rather than an empty array. Each inner array
must be created manually:

 for (int i = 0; i < matrix.Length; i++)

 {

 matrix[i] = new int [3]; // create inner array

 for (int j = 0; j < matrix[i].Length; j++)

 matrix[i][j] = i * 3 + j;

 }

A jagged array can be initialized as follows (each element in this example is initialized to be identical to the
previous example):

 int[][] matrix = new int[][]

 {

 new int[] {0,1,2},

 new int[] {3,4,5},

 new int[] {6,7,8}

 };

1.8.3. Simplified Array Initialization Expressions

There are two ways to shorten array initialization expressions; the first is to omit the new operator and type

qualifications:

 char[] vowels = {'a','e','i','o','u'};

 int[,]rectangularMatrix =

 {

 {0,1,2},

 {3,4,5},

 {6,7,8}

 };

 int[][]jaggedMatrix =

 {

 new int[] {0,1,2},

 new int[] {3,4,5},

 new int[] {6,7,8}

 };

In C# 3.0, the second approach is to use the var keyword, which tells the compiler to implicitly type a local

variable:

 var i = 3; // i is implicitly of type int

 var s = "sausage"; // s is implicitly of type string

 // Therefore:

 var rectMatrix = new int[,] // rectMatrix is implicitly

 { // of type int[,]

 {0,1,2},

 {3,4,5},

 {6,7,8}

 };

 var jaggedMat = new int[][] // jaggedMat is implicitly

 { // of type int[][]

 new int[] {0,1,2},

 new int[] {3,4,5},

 new int[] {6,7,8}

 };

Implicit typing can be taken one stage further with single-dimensional arrays. You can omit the type qualifier
after the new keyword, and have the compiler infer the array type:

 // Compiler infers char[]

 varvowels =new[]{'a','e','i','o','u'};

The elements must have identical types for implicit array typing to work. For example:

 var x = new[] {1, "a"}; // Error, elements are of

 // multiple types

1.8.4. Bounds Checking

All array indexing is bounds-checked by the runtime. An IndexOutOfRangeException is thrown if you use an

invalid index:

 int[] arr = new int[3];

 arr[3] = 1; // IndexOutOfRangeException thrown

Like with Java, array bounds checking is necessary for type safety, and it simplifies debugging.

Generally, the performance hit from bounds checking is minor, and the JIT (Just-in-Time
compiler) can perform optimizations, such as determining in advance whether all indices
will be safe before entering a loop, thus avoiding a check on each iteration. In addition,
C# provides "unsafe" code that can explicitly bypass bounds checking (see the upcoming
"Unsafe Code and Pointers" section).

1.9. Variables and Parameters

A variable represents a storage location that has a modifiable value. A variable can be a local variable,
parameter (value, ref, or out), field (instance or static), or array element.

1.9.1. The Stack and the Heap

The stack and the heap are the places where variables and constants reside. Each has very different lifetime
semantics.

1.9.1.1. Stack

The stack is a block of memory for storing local variables and parameters. The stack automatically grows and
shrinks as a function is entered and exited. Consider the following method (to avoid distraction, input argument
checking is ignored):

 static int Factorial (int x)

 {

 if (x == 0) return 1;

 return x * Factorial (x-1);

 }

This method is recursive, meaning that it calls itself. Each time the method is entered, a new int is allocated on

the stack, and each time the method exits, the int is deallocated.

1.9.1.2. Heap

The heap is a block of memory in which objects (i.e., reference type instances) reside. Whenever a new object
is created, it is allocated on the heap, and a reference to that object is returned. During a program's execution,
the heap starts filling up as new objects are created. The runtime has a garbage collector that periodically
deallocates objects from the heap, so your computer does not run out of memory. An object is eligible for
deallocation as soon as nothing references it. In the following example, the StringBuilder object is created on

the heap, while the sb reference is created on the stack:

 static void Test()

 {

 StringBuilder sb = new StringBuilder();

 Console.WriteLine (sb.Length);

 }

After the Test method finishes, sb pops off the stack, and the StringBuilder object is no longer referenced, so

it becomes eligible for garbage collection.

Value type instances (and object references) live wherever the variable was declared. If the instance was
declared as a field within an object, or as an array element, that instance lives on the heap.

You can't explicitly delete objects in C#, as you can in C++. An unreferenced object is
eventually collected by the garbage collector.

You can't explicitly delete objects in C#, as you can in C++. An unreferenced object is eventually collected by
the garbage collector.The heap is also used to store static fields and constants. Unlike objects allocated on the
heap (which can get garbage collected), these will live until the application domain is torn down.

1.9.2. Definite Assignment

C# enforces a definite assignment policy. In practice, this means that outside of an unsafe context, it's

impossible to access uninitialized memory. Definite assignment has three implications:

Local variables must be assigned a value before they can be read.

Function arguments must be supplied when a method is called.

All other variables (such as fields and array elements) are automatically initialized by the runtime.

For example, the following code results in a compile-time error:

 static void Main()

 {

 int x;

 Console.WriteLine (x); // compile-time error

 }

Fields and array elements are automatically initialized with the default values for their type. The following code
outputs 0 because array elements are implicitly assigned to their default values:

 static void Main()

 {

 int[] ints = new int[2];

 Console.WriteLine (ints[0]); // 0

 }

The following code outputs 0 because fields are implicitly assigned to a default value:

 class Test

 {

 static int x;

 static void Main() { Console.WriteLine (x); } // 0

 }

1.9.3. Default Values

All type instances have a default value. The default value for the primitives is the result of a bitwise-zeroing of
memory.

Type Defaultvalue

Reference null

Numeric type or enum type 0

char type '\0'

bool type false

The default value in a custom value type (i.e., struct) is the same as the default value for each field defined by
the custom type.

1.9.4. Parameters

A method has a sequence of parameters. Parameters define the set of arguments that must be provided for that
method. In this example, the method Foo has a single parameter named p, of type int:

 static void Foo (int p)

 {

 p = p + 1; // increment p by 1

 Console.WriteLine(p); // write p to screen

 }

 static void Main() { Foo(8); }

You can control how parameters are passed with the ref and out modifiers.

Parameter modifier Passed by Variable must be definitely assigned

None Value Going in

ref Reference Going in

out Reference Going out

1.9.4.1. Passing arguments by value

By default, arguments in C# are passed by value, which is by far the most common case. This means a copy of
the value is created when passed to the method:

 class Test

 {

 static void Foo (int p)

 {

 p = p + 1; // Increment p by 1

 Console.WriteLine (p); // Write p to screen

 }

 static void Main()

 {

 int x = 8;

 Foo (x); // Make a copy of x

 Console.WriteLine (x); // x will still be 8

 }

 }

Assigning p a new value does not change the contents of x because p and x reside in different memory

locations.

Passing a reference type object by value copies the reference, but not the object. In the following example, Foo

sees the same StringBuilder object that Main instantiated, but has an independent reference to it. In other

words, sb and fooSB are separate variables that reference the same StringBuilder object:

 class Test

 {

 static void Foo (StringBuilder fooSB)

 {

 fooSB.Append ("test");

 fooSB = null;

 }

 static void Main()

 {

 StringBuilder sb = new StringBuilder();

 Foo (sb);

 Console.WriteLine (sb.ToString()); // test

 }

 }

Because fooSB is a copy of a reference, setting it to null doesn't make sb null. (If, however, fooSB was

declared and called with the ref modifier, sb would become null.)

1.9.4.2. The ref modifier

To pass by reference, C# provides the ref parameter modifier. In the following example, p and x refer to the

same memory locations:

 class Test

 {

 static void Foo (ref int p)

 {

 p = p + 1; // increment p by 1

 Console.WriteLine(p); // write p to screen

 }

 static void Main()

 {

 int x = 8;

 Foo (ref x); // Ask Foo to deal directly

 // with x

 Console.WriteLine(x); // x is now 9

 }

 }

Now assigning p a new value changes the contents of x. Notice how the ref modifier is required both when

writing and when calling the method. This makes it very clear what's going on.

A parameter can be passed by reference or by value, regardless of whether the
parameter type is a reference type or a value type.

1.9.4.3. The out modifier

An out argument is like a ref argument, except it:

Need not be assigned before it goes into the function

Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a method. Like a ref

parameter, an out parameter is passed by reference.

1.9.4.4. Implications of passing by reference

When you pass an argument by reference, you alias the storage location of an existing variable, rather than
creating a new storage location. In the following example, the variables x and y represent the same instance:

 class Test

 {

 static int x;

 static void Main() { Foo (out x); }

 static void Foo (out int y)

 {

 Console.WriteLine (x); // x is 0

 y = 1; // Mutate y

 Console.WriteLine (x); // x is 1

 }

 }

1.9.4.5. The params modifier

The params modifier may be specified on the last parameter of a method so that the method accepts any

number of parameters of a particular type. The parameter type must be declared as an array. For example:

 static int Sum (params int[] ints)

 {

 int sum = 0;

 for (int i = 0; i < ints.Length; i++)

 sum += ints[i]; // increase sum by ints[i]

 return sum;

 }

 static void Main()

 {

 int total = Sum (1, 2, 3, 4);

 Console.WriteLine (total); // 10

 }

You can also supply a params argument as an ordinary array. The first line in Main is semantically equivalent to

this:

 int total = Sum (new int[] { 1, 2, 3, 4 });

1.9.5. var: Implicitly Typed Local Variables (C# 3.0)

It is often the case that you declare and initialize a variable in one step. If the compiler is able to infer the type
from the initialization expression, you can use the word var in place of the type declaration. For example:

 var x = 5;

 var y = "hello";

 var z = new System.Text.StringBuilder();

 var req = (System.Net.FtpWebRequest)

 System.Net.WebRequest.Create ("...");

This is precisely equivalent to:

 int x = 5;

 string y = "hello";

 System.Text.StringBuilder z =

 new System.Text.StringBuilder();

 System.Net.FtpWebRequest req =

 (System.Net.FtpWebRequest)

 System.Net.WebRequest.Create ("...");

Because of this direct equivalence, implicitly typed variables are statically typed. For example, the following
generates a compile-time error:

 var x = 5;

 x = "hello"; // Compile-time error; x is of type int

var can decrease code readability in the case you can't deduce the type purely from

looking at the variable declaration. For example:

 Random r = new Random();

 var x = r.Next();

What type is x?

In the upcoming section "Anonymous Types (C# 3.0)," we describe a scenario in which the use of var is

mandatory.

1.10. Expressions and Operators

An expression essentially denotes a value. The simplest kinds of expressions are constants and variables.
Expressions can be transformed and combined using operators. An operator takes one or more input operands
to output a new expression.

Here is an example of a constant expression:

 12

We can use the * operator to combine two operands (the literal expressions 12 and 30), as follows:

 12 * 30

Complex expressions can be built because an operand may itself be an expression, such as the operand (12*30)

in the following example:

 1 + (12 * 30)

Operators in C# are classed as unary, binary, or ternary- depending on the number of operands they work on
(one, two, or three). The binary operators always use infix notation, where the operator is placed between the
two operands.

1.10.1. Primary Expressions

Primary expressions include expressions composed of operators that are intrinsic to the basic plumbing of the
language. Here is an example:

 Math.Log (1)

This expression is composed of two primary expressions. The first expression performs a member-lookup (with
the . operator), and the second expression performs a method call (with the () operator).

1.10.2. Void Expressions

A void expression is an expression that has no value. For example:

 Console.WriteLine (1)

A void expression-because it has no value-cannot be used as an operand to build more complex expressions:

 1 + Console.WriteLine(1) // Compile-time error

1.10.3. Assignment Expressions

An assignment expression uses the = operator to assign a variable the result of another expression. For
example:

 x = x * 5

An assignment expression is not a void expression. It actually carries the assignment value and thus can be
incorporated into another expression. In the following example, the expression assigns 2 to x and 10 to y:

 y = 5 * (x = 2)

This style of expression can be used to initialize multiple values:

 a = b = c = d = 0

The compound assignment operators are syntactic shortcuts that combine assignment with another operator.
For example:

 x *= 2 // equivalent to x = x * 2

 x <<= 1 // equivalent to x = x << 1

1.10.4. Operator Precedence and Associativity

When an expression contains multiple operators, precedence and associativity determine the order of
evaluation. Operators with higher precedence execute before operators of lower precedence. If the operators
have the same precedence, the operator's associativity determines the order of evaluation.

1.10.4.1. Precedence

The following expression:

 1 + 2 * 3

is evaluated as follows, as * has a higher precedence than +:

 1 + (2 * 3)

1.10.4.2. Left-associative operators

Binary operators (except for assignment operators) are left-associative; in other words, they are evaluated from
left to right. For example, the following expression:

 8 / 4 / 2

is evaluated as follows due to left associativity:

 (8 / 4) / 2 // 1

You can insert parentheses to change the default order of evaluation:

 8 / (4 / 2) // 4

1.10.4.3. Right-associative operators

The assignment operators, the unary operators, and the conditional operator are right-associative; in other
words, they are evaluated from right to left. For example:

 int x = 0;

 int y = -~x; // 1 (Complements first, then negates)

 int z = ~-x; // -1 (Negates first, then complements)

1.10.5. Operator Table

Table 1-1 lists C#'s operators in order of precedence. Operators in the same category have the same
precedence. See the upcoming "Operator Overloading" section for information on how to overload operators.

Table 1-1. C# operators (categories in order of precedence)

Operator symbol Operator name Example Useroverloadable

Primary (highest precedence)

() Grouping while(x) No

. Member access x.y No

-> Pointer to struct (unsafe) x->y No

() Function call x() No

[] Array/index a[x] Via indexer

++ Post-increment x++ Yes

-- Post-decrement x-- Yes

new Create instance new Foo() No

stackalloc Unsafe stack allocation stackalloc (10) No

typeof Get type from identifier typeof (int) No

checked Integral overflow check
on

checked (x) No

unchecked Integral overflow check
off

unchecked (x) No

Unary

sizeof Get size of struct sizeof (int) No

+ Positive value of +x Yes

- Negative value of -x Yes

! Not !x Yes

~ Bitwise complement ~x Yes

++ Pre-increment ++x Yes

Operator symbol Operator name Example Useroverloadable

-- Pre-decrement --x Yes

() Cast (int)x No

* Value at address
(unsafe)

*x No

& Address of value
(unsafe)

&x No

Multiplicative

* Multiply x * y Yes

/ Divide x / y Yes

% Remainder x % y Yes

Additive

+ Add x + y Yes

- Subtract x - y Yes

Shift

<< Shift left x >> 1 Yes

>> Shift right x << 1 Yes

Relational

< Less than x < y Yes

> Greater than x > y Yes

<= Less than or equal to x <= y Yes

>= Greater than or equal to x >= y Yes

is Type is or is subclass of x is y No

as Type conversion x as y No

Equality

== Equals x == y Yes

!= Not equals x != y Yes

Equality

== Equals x == y Yes

!= Not equals x != y Yes

Logical And

& And x & y Yes

-- Pre-decrement --x Yes

() Cast (int)x No

* Value at address
(unsafe)

*x No

& Address of value
(unsafe)

&x No

Multiplicative

* Multiply x * y Yes

/ Divide x / y Yes

% Remainder x % y Yes

Additive

+ Add x + y Yes

- Subtract x - y Yes

Shift

<< Shift left x >> 1 Yes

>> Shift right x << 1 Yes

Relational

< Less than x < y Yes

> Greater than x > y Yes

<= Less than or equal to x <= y Yes

>= Greater than or equal to x >= y Yes

is Type is or is subclass of x is y No

as Type conversion x as y No

Equality

== Equals x == y Yes

!= Not equals x != y Yes

Equality

== Equals x == y Yes

!= Not equals x != y Yes

Logical And

& And x & y Yes

Operator symbol Operator name Example Useroverloadable

Logical Xor

^ Exclusive Or x ^ y Yes

Logical Or

| Or x | y Yes

Conditional And

&& Conditional And x && y Via &

Conditional Or

|| Conditional Or x || y Via |

Conditional

?: Conditional isTrue ? thenThis :

elseThis

No

Assignment

= Assign x = y No

*= Multiply self by x *= 2 Via *

/= Divide self by x /= 2 Via /

+= Add to self x += 2 Via +

-= Subtract from self x -= 2 Via -

<<= Shift self left by x <<= 2 Via <<

>>= Shift self right by x >>= 2 Via >>

&= And self by x &= 2 Via &

^= Exclusive-Or self by x ^= 2 Via ^

|= Or self by x |= 2 Via |

Lambda (lowest
precedence)

=> Lambda x => x + 1 No

Logical Xor

^ Exclusive Or x ^ y Yes

Logical Or

| Or x | y Yes

Conditional And

&& Conditional And x && y Via &

Conditional Or

|| Conditional Or x || y Via |

Conditional

?: Conditional isTrue ? thenThis :

elseThis

No

Assignment

= Assign x = y No

*= Multiply self by x *= 2 Via *

/= Divide self by x /= 2 Via /

+= Add to self x += 2 Via +

-= Subtract from self x -= 2 Via -

<<= Shift self left by x <<= 2 Via <<

>>= Shift self right by x >>= 2 Via >>

&= And self by x &= 2 Via &

^= Exclusive-Or self by x ^= 2 Via ^

|= Or self by x |= 2 Via |

Lambda (lowest
precedence)

=> Lambda x => x + 1 No

1.11. Statements

Functions comprise statements that execute sequentially in the textual order in which they appear. A statement
block is a series of statements appearing between braces (the {} tokens).

1.11.1. Declaration Statements

A declaration statement declares a new variable, optionally initializing the variable with an expression. A
declaration statement ends in a semicolon. You may declare multiple variables of the same type in a comma-
separated list. For example:

 string someWord = "rosebud";

 int someNumber = 42;

 bool rich = true, famous = false;

A constant declaration is like a variable declaration, except that the variable cannot be changed after it has
been declared, and the initialization must occur with the declaration:

 const double c = 2.99792458E08;

 c+=10; // error

1.11.1.1. Local variables

The scope of a local or constant variable extends to the end of the current block. You cannot declare another
local variable with the same name in the current block or in any nested blocks. For example:

 static void Main()

 {

 int x;

 {

 int y;

 int x; // Error, x already defined

 }

 {

 int y; // OK, y not in scope

 }

 Console.WriteLine(y); // Error, y is out of scope

 }

1.11.2. Expression Statements

Expression statements are expressions that are also valid statements. An expression statement must either
change state or call something that might change state. Changing state essentially means changing a variable.
The possible expression statements are:

Assignment expressions (including increment and decrement expressions)

Method call expressions (both void and nonvoid)

Object instantiation expressions

Here are some examples:

 // Declare variables with declaration statements:

 string s;

 int x, y;

 System.Text.StringBuilder sb;

 // Expression statements

 x = 1 + 2; // Assignment expression

 x++; // Increment expression

 y = Math.Max (x, 5); // Assignment expression

 Console.WriteLine (y); // Method call expression

 sb = new StringBuilder(); // Assignment expression

 new StringBuilder(); // Object instantiation

 // expression

When you call a constructor or a method that returns a value, you're not obliged to use the result. However,
unless the constructor or method changes state the statement is completely useless:

 new StringBuilder(); // Legal, but does nothing

 new string ('c', 3); // Legal, but does nothing

 x.Equals (y); // Legal, but does nothing

1.11.3. Selection Statements

C# has the following mechanisms to conditionally control the flow of program execution:

Selection statements (if, switch)

Conditional operator (? :)

Loop statements (while, do..while, for, foreach)

This section covers the simplest two constructs: the if-else statement and the switch statement.

1.11.3.1. The if statement

An if statement executes a body of code depending on whether a bool expression is true. For example:

 if (5 < 2 * 3)

 {

 Console.WriteLine ("true"); // true

 }

If the body of code is a single statement, you can optionally omit the braces:

 if (5 < 2 * 3)

 Console.WriteLine ("true"); // true

1.11.3.2. The else clause

An if statement is optionally followed by an else clause:

 if (2 + 2 == 5)

 Console.WriteLine ("Does not compute");

 else

 Console.WriteLine ("false"); // false

Within an else clause, you can nest another if statement:

 if (2 + 2 == 5)

 Console.WriteLine ("Does not compute");

 else

 if (2 + 2 == 4)

 Console.WriteLine ("Computes"); // Computes

1.11.3.3. Changing the flow of execution with braces

An else clause always applies to the immediately preceding if statement in the statement block. For example:

 if (true)

 if (false)

 Console.WriteLine();

 else

 Console.WriteLine("executes");

This is semantically identical to:

 if (true)

 {

 if (false)

 Console.WriteLine();

 else

 Console.WriteLine("executes");

 }

We can change the execution flow by moving the braces:

 if (true)

 {

 if (false)

 Console.WriteLine();

 }

 else

 Console.WriteLine("does not execute");

With braces, you explicitly state your intention. This can improve the readability of nested if statements-even

when not required by the compiler. A notable exception is with the following pattern:

 static void TellMeWhatICanDo (int age)

 {

 if (age >= 35)

 Console.WriteLine ("You can be president!");

 else if (age >= 21)

 Console.WriteLine ("You can drink!");

 else if (age >= 18)

 Console.WriteLine ("You can vote!");

 else

 Console.WriteLine ("You can wait!");

 }

Here, we've arranged the if and else statements to mimic the "elsif" construct of other languages (and C#'s

#elif preprocessor directive). Visual Studio's auto-formatting recognizes this pattern and preserves the

indentation. Semantically, though, each if statement following an else statement is functionally nested within

the else statement.

1.11.3.4. The switch statement

switch statements let you branch program execution based on a selection of possible values a variable may

have. switch statements may result in cleaner code than multiple if statements, as switch statements require

an expression to be evaluated only once. For instance:

 static void ShowCard (int cardNumber)

 {

 switch (cardNumber)

 {

 case 13:

 Console.WriteLine ("King");

 break;

 case 12:

 Console.WriteLine ("Queen");

 break;

 case 11:

 Console.WriteLine ("Jack");

 break;

 case -1: // Joker

 goto case 12; // Make joker count as queen

 default: // Executes for any other cardNumber

 Console.WriteLine (cardNumber);

 break;

 }

 }

You can only switch on an expression of a type that can be statically evaluated, which restricts it to the primitive
types, string types, and enum types.

At the end of each case clause, you must say explicitly where execution is to go next, with some kind of jump

statement. Here are the options:

break (jumps to the end of the switch statement)

goto case x (jumps to another case clause)

goto default (jumps to the default clause)

Any other jump statement-namely, return, throw, continue, or goto label

When more than one value should execute the same code, you can list the common cases sequentially:

 switch (cardNumber)

 {

 case 13:

 case 12:

 case 11:

 Console.WriteLine ("Face card");break;

 default:

 Console.WriteLine ("Plain card");break;

 }

This feature of a switch statement can be pivotal in terms of producing cleaner code than multiple if-else

statements.

1.11.4. Iteration Statements

C# enables a sequence of statements to execute repeatedly with the while, do-while, and for statements.

1.11.4.1. while and do-while loops

while loops repeatedly execute a body of code while a bool expression is true. The expression is tested before

the body of the loop is executed. For example:

 int i = 0;

 while (i < 3)

 {

 Console.Write (i); // 012

 i++;

 }

do-while loops differ in functionality from while loops only in that they test the expression after the statement

block has executed. Here's the preceding example rewritten with a do-while loop:

 int i = 0;

 do

 {

 Console.WriteLine(i);

 i++;

 }

 while (i < 3);

1.11.4.2. for loops

for loops are like while loops with special clauses for initialization and iteration of a loop variable. A for loop

contains three clauses as follows:

 for (initialization-clause;

 condition-clause;

 iteration-clause)

 statement-or-statement-block

Initialization clause

Executes before the loop begins, used to initialize one or more variables

Condition clause

A bool expression, evaluated before each loop iteration; if false, the loop terminates

Iteration clause

Executes after each iteration of the statement block, used typically to update the loop variable

For example, the following prints the numbers 0 through 2:

 for (int i = 0; i < 3; i++)

 Console.WriteLine (i);

Any of the three parts of the for statement may be omitted. One can implement an infinite loop such as the

following (though while (true) may be used instead):

 for (;;)

 Console.WriteLine("interrupt me");

1.11.4.3. foreach loops

The foreach statement iterates over each element in an enumerable object. Most of the types in C# and the

.NET Framework that represent a set or list of elements are enumerable. For example, both an array and a
string are enumerable. Here is an example of enumerating over the characters in a string, from the first
character through to the last:

 foreach (char c in "beer")

 Console.Write (c + " "); // b e e r

We define enumerable objects in the upcoming "Enumeration and Iterators" section.

1.11.5. Jump Statements

The C# jump statements are break, continue, goto, return, and throw. Jump statements obey the

reliability rules of try statements (see the upcoming "try Statements and Exceptions" section). First, a jump out

of a try block always executes the try's finally block before reaching the target of the jump. Second, a jump

cannot be made from the inside to the outside of a finally block.

1.11.5.1. The break statement

The break statement ends the execution of the body of a while loop, for loop, or switch statement:

 int x = 0;

 while (true)

 {

 if (x++ > 5)

 break; // break from the loop

 }

 // execution continues here after break

 ...

1.11.5.2. The continue statement

The continue statement forgoes the remaining statements in the loop and makes an early start on the next

iteration. The following loop skips even numbers:

 for (int i = 0; i < 10; i++)

 {

 if ((i % 2) == 0) continue;

 Console.Write (i + " "); // 1 3 5 7 9

 }

1.11.5.3. The goto statement

The goto statement transfers execution to another label within the statement block. The form is as follows:

 goto statement-label;

or, when used within a switch statement:

 goto case case-constant;

A label statement is just a placeholder in a code block, denoted with a colon suffix. The following example
iterates the numbers 1 through 5, mimicking a for loop:

 int i = 1;

 startLoop:

 if (i <= 5)

 {

 Console.Write (i + " "); // 1 2 3 4 5

 i++;

 goto startLoop;

 }

The goto case statement transfers execution to another case label in a switch block (see the earlier "The switch

statement" section).

1.11.5.4. The return statement

The return statement exits the method, and must return an expression of the method's return type if the

method is nonvoid:

 static decimal AsPercentage (decimal d)

 {

 decimal p = d * 100m;

 return p; // Return to the calling method

 // with value

 }

A return statement can appear anywhere in a method.

1.11.5.5. The throw statement

The throw statement throws an exception to indicate an error has occurred (see the upcoming "try Statements

and Exceptions" section):

 if (w == null)

 throw new ArgumentNullException (...);

1.11.6. Miscellaneous Statements

The lock statement is a syntactic shortcut for calling the Enter and Exit methods of the Monitor class, which

provide exclusive locking functionality for multithreaded programs. (For an extensive online resource on
multithreading, see www.albahari.com/threading/.)

The using statement provides an elegant syntax for declaring a local variable that implements IDisposable

(see the upcoming "try Statements and Exceptions" section).

C# overloads the using keyword to have independent meanings in different contexts.

Specifically, the using directive is different from the using statement.

1.12. Namespaces

A namespace is a domain within which type names must be unique. Types are typically organized into
hierarchical namespaces-both to avoid naming conflicts and to make type names easier to find. For example,
the RSA type, which handles public key encryption, is defined within the following namespace:

 System.Security.Cryptography

A namespace forms an integral part of a type's name. The following code calls RSA's Create method:

 System.Security.Cryptography.RSA rsa =

 System.Security.Cryptography.RSA.Create();

Namespaces are independent of assemblies, which are units of deployment such as an
.exe or .dll. Namespaces also have no impact on member visibility- public, internal,

private, and so on.

The namespace keyword defines a type within a namespace. For example:

 namespace Outer.Middle.Inner

 {

 class Class1 {}

 class Class2 {}

 }

The dots in the namespace indicate a hierarchy of nested namespaces. The following is semantically identical to
the preceding example:

 namespace Outer

 {

 namespace Middle

 {

 namespace Inner

 {

 class Class1 {}

 class Class2 {}

 }

 }

 }

You can refer to a type with is fully qualified name, which includes all namespaces from the outermost to the
innermost. For example, we could refer to Class1 in the preceding example as Outer.Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the global namespace. The global namespace also
includes top-level namespaces, such as Outer in our example.

1.12.1. The using Directive

The using directive imports a namespace. This is a convenient way to refer to types without their fully qualified

names. For example:

 using Outer.Middle.Inner;

 class Test // Test is in the global namespace

 {

 static void Main()

 {

 Class1 c; // Don't need fully qualified name

 }

 }

A using directive can be nested within a namespace itself to limit the scope of the directive.

1.12.2. Rules Within a Namespace

1.12.2.1. Name scoping

All names present in outer namespaces are implicitly imported into inner namespaces. In this example, the
names Middle and Class1 are implicitly imported into Inner:

 namespace Outer

 {

 namespace Middle

 {

 class Class1 {}

 namespace Inner

 {

 class Class2 : Class1 {}

 }

 }

 }

If you want to refer to a type in a different branch of your namespace hierarchy, you can use a partially qualified
name. In the following example, we base SalesReport on Common.ReportBase:

 namespace MyTradingCompany

 {

 namespace Common

 {

 class ReportBase {}

 }

 namespace ManagementReporting

 {

 class SalesReport : Common.ReportBase {}

 }

 }

1.12.2.2. Name hiding

If the same type name appears in both an inner and outer namespace, the inner name wins. To refer to the
outer type, you must use its fully qualified name.

All type names are converted to fully qualified names at compile time. Intermediate
Language (IL) code does not contain any unqualified or partially qualified names.

1.12.2.3. The global:: qualifier

Occasionally, a fully qualified type name may conflict with an inner name. You can force C# to use the fully
qualified type name by prefixing it with global:: as follows:

 global:: System.Text.StringBuilder sb;

1.12.2.4. Repeated namespaces

You can repeat a namespace declaration, as long as the type names within the namespaces don't conflict:

 namespace Outer.Middle.Inner { class Class1 {} }

 namespace Outer.Middle.Inner { class Class2 {} }

1.12.3. Aliasing Types and Namespaces

Importing a namespace can result in type-name collision. Rather than importing the whole namespace, you can
import just the specific types you need, giving each type an alias. For example:

 using PropertyInfo2 = System.Reflection.PropertyInfo;

 class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

 using R = System.Reflection;

 class Program { R.PropertyInfo p; }

1.13. Classes

A class is the most common kind of reference type. The simplest possible class declaration is as follows:

 class YourClassName

 {

 }

A more complex class optionally has:

preceding the keyword
class

attributes and class modifiers. The non-nested class modifiers are public,

internal, abstract, sealed, static, unsafe, and partial

following
YourClassName

generic type parameters, a base class, and interfaces

within the braces class members (these are methods, properties, indexers, events, fields, constructors,
operator functions, nested types, and a finalizer)

1.13.1. Fields

A field is a variable that is a member of a class or struct. For example:

 class Octopus

 {

 string name;

 public int Age = 10;

 }

A field may have the readonly modifier to prevent it from being modified after construction. A read-only field

can be assigned only in its declaration or within the enclosing type's constructor.

1.13.1.1. Field initialization

Field initialization is optional. An uninitialized field has a default value (0, \0, null, false). Field initializers

run before constructors:

 string name = "anonymous";

1.13.1.2. Declaring multiple fields together

For convenience, you may declare multiple fields of the same type in a comma-separated list. This is a
convenient way for all the fields to share the same attributes and field modifiers. For example:

 static readonly int legs = 8, eyes = 1;

1.13.2. Methods

A method performs an action in a series of statements. A method can receive input data from the caller by
specifying parameters, and output data back to the caller by specifying a return type. A method can specify a
void return type, indicating that it doesn't return any value to its caller. A method can also output data back to

the caller via ref/out parameters.

A method's signature must be unique within the type. A method's signature comprises its name and parameter
types (but not the parameter names, nor the return type).

1.13.2.1. Overloading methods

A type may overload methods (have many methods with the same name), as long as the signatures are
different. For example, the following methods can all coexist in the same type:

 void Foo (int x);

 void Foo (double x);

 void Foo (int x, float y);

 void Foo (float x, int y);

However, the following pairs of methods cannot coexist in the same type, as the return type and the params

modifier are not part of a method's signature:

 void Foo (int x);

 float Foo (int x); // Compile error

 void Goo (int[] x);

 void Goo (params int[] x); // Compile error

1.13.2.2. Pass-by-value versus pass-by-reference

Whether a parameter is pass-by-value or pass-by-reference is also part of the signature. For example,
Foo(int) can coexist with either Foo(ref int) or Foo(out int). However, Foo(ref int) and Foo(out int)

cannot coexist:

 void Foo (int x);

 void Foo (ref int x); // OK so far

 void Foo (out int x); // Compile error

1.13.3. Instance Constructors

Constructors run initialization code on a class or struct. A constructor is defined like a method, except the
method name and return type are reduced to the name of the enclosing type:

 public class Panda

 {

 string name; // Define field

 public Panda (string n) // Define constructor

 {

 name = n; // Initialization code

 // (set up field)

 }

 }

 ...

 Panda p = new Panda ("Petey"); // Call constructor

1.13.3.1. Overloading constructors

A class or struct may overload constructors. To avoid code duplication, one constructor may call another, using
the this keyword:

 using System;

 public class Wine

 {

 public decimal Price;

 public int Year;

 public Wine (decimal price) { Price = price; }

 public Wine (decimal price, int year)

 : this (price) { Year = year; }

 }

When one constructor calls another, the called constructor executes first.

You can pass an expression into another constructor as follows:

 public Wine (decimal price, DateTime year)

 : this (price, year.Year) { }

The expression itself cannot make use of the this reference, for example, to call an instance method. It can,

however, call static methods.

1.13.3.2. Implicit parameterless constructors

For classes, the C# compiler automatically generates a parameterless constructor if and only if you do not
define any constructors. However, as soon as you define at least one constructor, the parameterless constructor
is no longer automatically generated.

For structs, a parameterless constructor is intrinsic to the struct; therefore, you cannot define your own. The
role of a struct's implicit parameterless constructor is to initialize each field with default values.

1.13.3.3. Constructor and field initialization order

We saw previously that fields can be initialized with default values in their declaration:

 class Player

 {

 int shields = 50; // Initialized first

 int health = 100; // Initialized second

 }

Field initializations occur before the constructor is executed, and in the declaration order of the fields.

1.13.3.4. Nonpublic constructors

Constructors do not need to be public. A common reason to have a nonpublic constructor is to control instance
creation via a static method call, which can be used to return an object from a pool rather than necessarily
creating a new object, or return various subclasses based on input arguments.

1.13.4. Object Initializers (C# 3.0)

To simplify object initialization, the accessible fields or properties of an object can be initialized in a single
statement directly after construction. For example, consider the following class:

 public class Bunny

 {

 public string Name;

 public bool LikesCarrots;

 public bool LikesHumans;

 public Bunny () { }

 public Bunny (string n) { Name = n; }

 }

Using object initializers, you can instantiate Bunny objects as follows:

 // Note parameterless constructors can omit

 // empty parenthesis

 Bunny b1 = new Bunny {

 Name="Bo",

 LikesCarrots = true,

 LikesHumans = false

 };

 Bunny b2 = new Bunny ("Bo") {

 LikesCarrots = true,

 LikesHumans = false

 };

1.13.5. The this Reference

The this reference refers to the instance itself. In the following example, the Marry method uses this to set

the partner's mate field:

 public class Panda

 {

 public Panda Mate;

 public void Marry (Panda partner)

 {

 Mate = partner;

 partner.Mate = this;

 }

 }

The this reference also disambiguates a local variable or argument from a field. For example:

 public class Test

 {

 string name;

 public Test (string name) { this.name = name; }

 }

The this reference is valid only within nonstatic members of a class or struct.

1.13.6. Properties

Properties look like fields from the outside but act like methods on the inside. For example, you can't tell by
looking at the following code whether CurrentPrice is a field or a property:

 Stock msft = new Stock();

 msft.CurrentPrice = 30;

 msft.CurrentPrice -= 3;

 Console.WriteLine (msft.CurrentPrice);

A property is declared like a field, but with a get/set block added. Here's how to implement CurrentPrice as a

property:

 public class Stock

 {

 decimal currentPrice; // The private "backing" field

 public decimal CurrentPrice // The public property

 {

 get { return currentPrice; }

 set { currentPrice = value; }

 }

 }

get and set denote property accessors. The get accessor runs when the property is read. It must return a

value of the property's type. The set accessor is run when the property is assigned. It has an implicit parameter

named value of the property's type that you typically assign to a private field (in this case, currentPrice).

Although properties are accessed in the same way as fields, they differ in that they give the implementer
complete control over getting and setting its value. This control enables the implementer to choose whatever
internal representation is needed, without exposing the internal details to the user of the property. In this
example, the set method could throw an exception if value was outside a valid range of values.

Throughout this book, we use public fields extensively to keep the examples free of
distraction. In a real application, you would typically favor public properties over public
fields to promote encapsulation.

1.13.6.1. Read-only and calculated properties

A property is read-only if it specifies only a get accessor, and it is write-only if it specifies only a set accessor.

Write-only properties are rarely used.

A property typically has a dedicated backing field to store the underlying data. However, a property can also be
computed from other data, for example:

 decimal currentPrice, sharesOwned;

 public decimal Worth

 {

 get { return currentPrice * sharesOwned; }

 }

1.13.6.2. Automatic properties (C# 3.0)

The most common implementation for a property is a getter and/or setter that simply reads and writes to a
private field of the same type as the property. An automatic property declaration instructs the compiler to
provide this implementation. We can redeclare the first example in this section as follows:

 public class Stock

 {

 ...

 public decimal CurrentPrice { get; set; }

 }

The compiler automatically generates a private backing field of a compiler-generated name that cannot be
referred to. The set accessor can be marked private if you want to expose the property as read-only to other

types.

1.13.6.3. get and set accessibility

The get and set accessors are permitted to have different access levels. The typical use case is to have a

public property with an internal or private access modifier on the setter:

 private decimal x;

 public decimal X

 {

 get { return x; }

 internal set { x = value; }

 }

1.13.7. Indexers

Indexers provide a natural syntax for accessing elements in a class or struct that encapsulates a list or
dictionary of values. Indexers are similar to properties, but are accessed via an index argument rather than a
property name. The string class has an indexer that lets you access each of its char values via an int index:

 string s = "hello";

 Console.WriteLine (s[0]); // 'h'

 Console.WriteLine (s[3]); // 'l'

The syntax for using indexers is like that of using arrays, when the index is an integer type.

Indexers allow the same modifiers as properties (see the previous section on property
modifiers).

1.13.7.1. Implementing an indexer

To write an indexer, define a property called this, specifying the arguments in square brackets. For instance:

 class Sentence

 {

 string[] words = "The quick brown fox".Split();

 public string this [int wordNum] // indexer

 {

 get { return words [wordNum]; }

 set { words [wordNum] = value; }

 }

 }

Here's how we could use this indexer:

 Sentence s = new Sentence();

 Console.WriteLine (s[3]); // fox

 s[3] = "kangaroo";

 Console.WriteLine (s[3]); // kangaroo

A type may declare multiple indexers, each with parameters of different types. An indexer can also take more
than one parameter:

 public string this [int arg1, string arg2]

 {

 get { ... } set { ... }

 }

1.13.8. Constants

A constant is a field whose value can never change. A constant is evaluated statically at compile time and its
value is literally substituted by the compiler whenever used, rather like a macro in C++. A constant can be any
of the built-in numeric types, bool, char, string, or an enum type.

A constant is declared with the const keyword and must be initialized with a value. For example:

 public class Test

 {

 public const string Message = "Hello World";

 }

A constant is much more restrictive than a static readonly field-both in the types you can use, and in field

initialization semantics. A constant also differs from a static readonly field in that the evaluation of the

constant occurs at compile time. For example:

 public static double Circumference (double radius)

 {

 return 2 * System.Math.PI * radius;

 }

is compiled to:

 public static double Circumference (double radius)

 {

 return 6.2831853071795862 * radius;

 }

It makes sense for PI to be a constant, as it can never change. In contrast, a static readonly field can have a

different value per application.

Constants can also be declared local to a method. For example:

 static void Main()

 {

 const double twoPI = 2 * System.Math.PI;

 ...

 }

1.13.9. Static Constructors

A static constructor executes once per type-rather than once per instance. A static constructor executes before
any instances of the type are created, and before any other static members are accessed. A type can define
only one static constructor, and it must be parameterless and have the same name as the type:

 class Test

 {

 static Test()

 {

 Console.WriteLine ("Type Initialized");

 }

 }

The only modifiers allowed by static constructors are unsafe and extern.

Any static field assignments are performed before the static constructor is called, in the declaration order in
which the fields appear.

1.13.9.1. Nondeterminism of static constructors

A static constructor is always invoked indirectly by the runtime-it cannot be called explicitly. The runtime
guarantees to invoke a type's static constructor at some point prior to the type being used; it doesn't commit,
though, to exactly when. For example, a subclass's static constructor can execute before or after that of its base
class. The runtime may also choose to invoke static constructors unnecessarily early, from a programmer's
perspective.

1.13.10. Static Classes

A class can be marked static, indicating that it must be comprised solely of static members and cannot be

subclassed. The System.Console and System.Math classes are good examples of static classes.

1.13.11. Finalizers

Finalizers are class-only methods that execute just before the garbage collector reclaims the memory for an
unreferenced object. The syntax for a finalizer is the name of the class prefixed with the ~ symbol:

 class Class1

 {

 ~Class1() { ... }

 }

This is actually C# syntax for overriding Object's Finalize method, and it is expanded by the compiler into

the following method declaration:

 protected override void Finalize()

 {

 ...

 base.Finalize();

 }

We describe the implications of finalizers in detail in Chapter 12 of C# 3.0 in a Nutshell (O'Reilly).

1.13.12. Partial Classes and Methods

Partial classes allow a class definition to be split, typically across multiple files. A common scenario is for a
partial class to be auto-generated from some other source (e.g., an XSD), and for that class to be augmented
with additional hand-authored methods. For example:

 // PaymentFormGen.cs - auto-generated

 partial class PaymentForm { ... }

 // PaymentForm.cs - hand-authored

 partial class PaymentForm { ... }

Each participant must have the partial declaration; the following is illegal:

 partial class PaymentForm { }

 class PaymentForm { }

Participants cannot have conflicting members. A constructor with the same arguments, for instance, cannot be
repeated. Partial classes are resolved entirely by the compiler, which means that each participant must be
available at compile time and must reside in the same assembly.

You can specify a base class on one or more partial participants-as long as there's no disagreement in the base
class name. Base classes are used for inheritance (see the upcoming "Inheritance" section).

1.13.12.1. Partial methods (C# 3.0)

A partial class may contain partial methods. Partial methods let an auto-generated partial class provide
customizable hooks for manual authoring. For example:

 partial class PaymentForm // In auto-generated file

 {

 ...

 partial void ValidatePayment (decimal amount);

 }

 partial class PaymentForm // In hand-authored file

 {

 ...

 partial void ValidatePayment (decimal amount)

 {

 if (amount > 100)

 throw new ArgumentException ("Too expensive");

 }

 }

A partial method consists of two parts: a definition and an implementation. The definition is typically written by

a code generator, and the implementation is typically manually authored. If an implementation is not provided,
the definition of the partial method is compiled away. This allows auto-generated code to be liberal in providing
hooks, without having to worry about code bloat. Partial methods must be void and are implicitly private.

1.14. Inheritance

A class can inherit from another class to extend or customize the original class. Inheriting from a class lets you
reuse the functionality in that class instead of building it from scratch. A class can inherit from only a single
class, but can itself be inherited by many classes, thus forming a class hierarchy. In this example, we start by
defining a class called Asset:

 public class Asset

 {

 public string Name;

 }

Next, we define classes called Stock and House, which will inherit from Asset. Stock and House get everything

an Asset has, plus any additional members that they define:

 public class Stock : Asset // inherits from Asset

 {

 public long SharesOwned;

 }

 public class House : Asset // inherits from Asset

 {

 public decimal Mortgage;

 }

Here's how we can use these classes:

 Stock msft = new Stock { Name="MSFT",

 SharesOwned=1000 };

 Console.WriteLine (msft.Name); // MSFT

 Console.WriteLine (msft.SharesOwned); // 1000

 House mansion = new House { Name="Mansion",

 Mortgage=250000 };

 Console.WriteLine (mansion.Name); // Mansion

 Console.WriteLine (mansion.Mortgage); // 250000

The subclasses Stock and House inherit the Name property from the base class Asset.

A subclass is also called a derived class. A base class is also called a superclass.

1.14.1. Polymorphism

References are polymorphic, which means a reference to a base class can refer to an instance of a subclass. For
instance, consider the following method:

 public static void Display (Asset asset)

 {

 System.Console.WriteLine (asset.Name);

 }

This method can display both a Stock and a House because they are both Assets:

 Stock msft = new Stock ... ;

 House mansion = new House ... ;

 Display (msft);

 Display (mansion);

Polymorphism works on the basis that subclasses (Stock and House) have all the features of their base class

(Asset). The converse, however, is not true. If Display was modified to accept a House, you could not pass in

an Asset.

1.14.2. Casting

An object reference can be:

Implicitly upcast to a base class reference

Explicitly downcast to a subclass reference

Casting only affects references; the object itself is not converted or altered. An upcast always succeeds; a
downcast succeeds only if the object is suitably typed.

1.14.2.1. Upcasting

An upcast operation creates a base class reference from a subclass reference. For example:

 Stock msft = new Stock ...;

 Asset a = msft; // upcast

After the upcast, variable a still references the same Stock object as variable msft. The object being referenced

is not itself altered or converted:

 Console.WriteLine (a == msft); // True

Although a and msft refer to the identical object, a has a more restrictive view on that object:

 Console.WriteLine (a.Name); // OK

 Console.WriteLine (a.SharesOwned); // Error

The last line generates a compile-time error because the reference a is of type Asset, even though it refers to

an object of type Stock. To get to its SharedOwned field, you must downcast the Asset to a Stock.

1.14.2.2. Downcasting

A downcast operation creates a subclass reference from a base class reference. For example:

 Stock msft = new Stock();

 Asset a = msft; // upcast

 Stock s = (Stock)a; // downcast

 Console.WriteLine (s.SharesOwned); // <No error>

 Console.WriteLine (s == a); // true

 Console.WriteLine (s == msft); // true

As with an upcast, only references are affected-not the underlying object. A downcast requires an explicit cast
because it can potentially fail at runtime:

 House h = new House();

 Asset a = h; // Upcast always succeeds

 Stock s = (Stock)a; // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is an example of dynamic type checking (we will

elaborate on this concept in the upcoming "Static and Dynamic Type Checking" section).

1.14.2.3. The as operator

The as operator performs a downcast that evaluates to null if the downcast fails (rather than throwing an

exception):

 Asset a = new Asset();

 Stock s = a as Stock; // s is null

1.14.2.4. The is operator

The is operator tests whether a downcast would succeed; in other words, whether an object derives from a

specified class (or implements an interface). It is often used to test before downcasting:

 if (a is Stock)

 Console.WriteLine (((Stock)a).SharesOwned);

1.14.3. Virtual Function Members

A function marked as virtual can be overridden by subclasses wanting to provide a specialized implementation.

Methods, properties, indexers, and events can all be declared virtual:

 public class Asset

 {

 public string Name;

 public virtual decimal Liability

 { get { return 0; } }

 }

A subclass overrides a virtual method by applying the override modifier:

 public class Stock : Asset { public long SharesOwned; }

 public class House : Asset

 {

 public decimal Mortgage;

 public override decimal Liability

 { get { return Mortgage; } }

 }

By default, the Liability of an Asset is 0. A Stock does not need to specialize this behavior. However, the

Hous specializes the Liability property to return the value of the Mortgage:

 House mansion = new House { Name="Mansion",

 Mortgage=250000 };

 Asset a = mansion;

 decimal d2 = mansion.Liability; // 250000

The signatures, return types, and accessibility of the virtual and overridden methods must be identical. An
overridden method can call its base class implementation via the base keyword (we will cover this shortly, in

the upcoming "The base Keyword" section).

1.14.4. Abstract Classes and Abstract Members

A class declared as abstract can never be instantiated. Instead, only its concrete subclasses can be instantiated.

Abstract classes are able to define abstract members, which are like virtual members, except they don't provide
a default implementation. That implementation must be provided by the subclass, unless that subclass is also
declared abstract:

 public abstract class Asset

 {

 // Note empty implementation

 public abstract decimal NetValue { get; }

 }

 public class Stock : Asset

 {

 public long SharesOwned;

 public decimal CurrentPrice;

 // Override like a virtual method.

 public override decimal NetValue

 {

 get { return CurrentPrice * SharesOwned; }

 }

 }

1.14.5. Hiding Inherited Members

A base class and a subclass may define identical members. For example:

 public class A { public int Counter = 1; }

 public class B : A { public int Counter = 2; }

The Counter field in class B is said to hide the Counter field in class A. Usually, this happens accidentally, when

a member is added to the base type after an identical member was added to the subtype. For this reason, the

compiler generates a warning, and then resolves the ambiguity as follows:

References to A (at compile time) bind to A.Counter.

References to B (at compile time) bind to B.Counter.

Occasionally, you want to hide a member deliberately, in which case, you can apply the new modifier to the

member in the subclass. The new modifier does nothing more than suppress the compiler warning that would

otherwise result:

 public class A { public int Counter = 1; }

 public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler-and other programmers-that the duplicate

member is not an accident.

C# overloads the new keyword to have independent meanings in different contexts.

Specifically, the new operator is different from the new member modifier.

1.14.6. Sealing Functions and Classes

An overridden function member may seal its implementation with the sealed keyword to prevent it from being

overridden by further subclasses. In our earlier virtual function member example, we could have sealed House's

implementation of Liability, preventing a class that derives from House from overriding Liability, as

follows:

 public sealed override decimal Liability

 { get { return Mortgage; } }

You can also seal the class itself, implicitly sealing all the virtual functions, by applying the sealed modifier to
the class itself. Sealing a class is more common than sealing a function member.

1.14.7. The base Keyword

The base keyword is similar to the this keyword. It serves two essential purposes:

Accessing an overridden function member from the subclass

Calling a base class constructor (see the next section)

In this example, House uses the base keyword to access Asset's implementation of Liability:

 public class House : Asset

 {

 ...

 public override decimal Liability

 {

 get { return base.Liability + Mortgage; }

 }

 }

The same approach works if Liability is hidden rather than overridden. (You can also access hidden members

by casting to the base class before invoking the function.)

1.14.8. Constructors and Inheritance

A subclass must declare its own constructors. For example, if we define Subclass as follows:

 public class Baseclass

 {

 public int X;

 public Baseclass ()

 public Baseclass (int x) { this.X = x; }

 }

 public class Subclass : Baseclass { }

the following is illegal:

 Subclass s = new Subclass (123);

Subclass must hence redeclare any constructors it wants to expose. In doing so, however, it can call any of the

base class's constructors with the base keyword:

 public class Subclass : Baseclass

 {

 public Subclass (int x) : base (x) { }

 }

The base keyword works rather like the this keyword, except that it calls a constructor in the base class.

Base class constructors always execute first; this ensures that base initialization occurs before specialized
initialization.

1.14.8.1. Implicit calling of the parameterless base class constructor

If a constructor in a subclass omits the base keyword, the base type's parameterless constructor is implicitly

called. If the base class has no parameterless constructor, subclasses are forced to use the base keyword in

their constructors.

1.14.8.2. Constructor and field initialization order

When an object is instantiated, initialization takes place in the following order:

From subclass to base class:

Fields are initialized.

Constructor arguments are evaluated.

From base class to subclass:

Constructor bodies execute.

1.14.9. Overloading and Resolution

Inheritance has an interesting impact on method overloading. Consider the following two overloads:

 static void Foo (Asset a) { }

 static void Foo (House h) { }

When an overload is called, the most specific type has precedence:

 House h = new House (...);

 Foo (h); // calls Foo (House)

The particular overload to call is determined statically (at compile time) rather than dynamically (at runtime).
The following code calls Foo(Asset), even though the runtime type of a is House:

 Asset a = new House (...);

 Foo (a); // calls Foo (Asset)

1.15. The object Type

object (System.Object) is the ultimate base class for all types. Any type can be upcast to object.

To illustrate how this is useful, consider a general-purpose stack. A stack is a data structure based on the
principle of LIFO--"Last in, First out." A stack has two operations: push an object on the stack, and pop an
object off the stack.

Here is a simple implementation that can hold up to 10 objects:

 public class Stack

 {

 int position;

 object[] data = new object[10];

 public void Push (object obj)

 { data[position++] = obj; }

 public object Pop()

 { return data[--position]; }

 }

Because Stack works with the object type, we can Push and Pop instances of any type to and from the Stack:

 Stack stack = new Stack();

 stack.Push ("sausage");

 // Explicit cast is needed because we're downcasting:

 string s = (string) stack.Pop();

 Console.WriteLine (s); // sausage

object is a reference type, by virtue of being a class. Despite this, value types, such as int, can also be cast to

and from object, and so be added to our stack. This feature of C# is called type unification:

 stack.Push (3);

 int three = (int) stack.Pop();

When you cast between a value type and object, the CLR must perform some special work to bridge the

difference in semantics between value and reference types. This process is called boxing and unboxing.

1.15.1. Boxing and Unboxing

Boxing is the act of casting a value type instance to a reference type instance. The reference type may be either
the object class, or an interface (which we will visit later). In this example, we box an int into an object:

 int x = 9;

 object obj = x; // box the int

Unboxing reverses the operation, by casting the object back to the original value type:

 int y = (int)obj; // unbox the int

Unboxing requires an explicit cast. The runtime checks that the stated value type (exactly) matches the actual
object type, and throws an InvalidCastException if the check fails. For instance, the following throws an

exception because long does not exactly match int:

 object obj = 9; // 9 is inferred to be of type int

 long x = (long) obj; // InvalidCastException

The following succeeds, however:

 object obj = 9;

 long x = (int) obj;

as does this:

 object obj = 3.5; // inferred type is double

 int x = (int) (double) obj; // x is now 3

In the last example, (int) performs a conversion; (double) performs an unboxing.

1.15.1.1. Copying semantics of boxing and unboxing

Boxing copies the value type instance into the new object, and unboxing copies the contents of the object back
into a value type instance.

1.15.2. Static and Dynamic Type Checking

C# checks types both statically and dynamically.

Static type checking occurs at compile time. Static type checking enables the compiler to verify the correctness
of your program without running it. The following code will fail because the compiler enforces static typing:

 int x = "5";

Dynamic type checking occurs at runtime. Whenever an unboxing or downcast occurs, the runtime checks the
type dynamically. For example:

 object y = "5";

 int z = (int)y; // Runtime error, downcast failed

Dynamic type checking is possible because each object on the heap internally stores a little type token. This
token can be retrieved by calling the GetType method of object.

1.15.3. Object Member Listing

Here are all the members of object:

 public class Object

 {

 public Object();

 public extern Type GetType();

 public virtual bool Equals (object obj);

 public static bool Equals (object objA, object objB);

 public static bool ReferenceEquals (object objA,

 object objB);

 public virtual int GetHashCode();

 public virtual string ToString();

 protected override void Finalize();

 protected extern object MemberwiseClone();

 }

1.15.4. GetType()and typeof

All types in C# are represented at runtime with an instance of System.Type. There are two basic ways to get a

System.Type object:

Call GetType on the instance.

Use the typeof operator on a type name.

GetType is evaluated dynamically at runtime; typeof is evaluated statically at compile time.

System.Type has properties for such things as the type's name, assembly, base type, and so on. For example:

 int x = 3;

 Console.Write (x.GetType().Name); // Int32

 Console.Write (typeof(int).Name); // Int32

 Console.Write (x.GetType().FullName); // System.Int32

 Console.Write (x.GetType() == typeof(int)); // True

System.Type also has methods that act as a gateway to the runtime's reflection model. For detailed information,

see Chapter 17 of C# 3.0 in a Nutshell.

1.15.5. Equals, ReferenceEquals, and GetHashCode

The Equals method is similar to the == operator, except that Equals is virtual, whereas == is static. The

following example illustrates the difference:

 object x = 3;

 object y = 3;

 Console.WriteLine (x == y); // False

 Console.WriteLine (x.Equals (y)); // True

Because x and y have been cast to the object type, the compiler statically binds to object's == operator,

which uses reference-type semantics to compare two instances. (And because x and y are boxed, they are

represented in separate memory locations, and so are unequal.) The virtual Equals method, however, defers to

the Int32 type's Equals method, which uses value-type semantics in comparing two values.

The static object.Equals method simply calls the virtual Equals method-after checking that the arguments

are not null.

 object x = null;

 object y = 3;

 bool error = x.Equals (y); // NullReferenceException

 bool ok = object.Equals (x, y);

ReferenceEquals forces a reference-type equality comparison (this is occasionally useful on reference types

where the == operator has been overloaded to do otherwise).

GetHashCode emits a hash code when the type is used in a hashtable-based dictionary, namely

System.Collections.Generic.Dictionary and System.Collections.Hashtable.

To customize a type's equality semantics, you must at a minimum override Equals and GetHashCode. You would

also usually overload the == and != operators. For an example on how to do both, see the upcoming "Operator
Overloading" section.

1.15.6. The ToString Method

The ToString method returns the default textual representation of a type instance. The ToString method is

overridden by all built-in types. Here is an example of using the int type's ToString method:

 int x = 1;

 string s = x.ToString(); // s is "1"

You can override the ToString method on custom types as follows:

 public class Panda

 {

 public string Name;

 public override string ToString() { return Name; }

 }

 ...

 Panda p = new Panda { Name = "Petey" };

 Console.WriteLine (p); / Petey

When you call an overridden object member such as ToString directly on a value type,

boxing doesn't occur- boxing occurs only when you cast.

1.16. Structs

A struct is similar to a class, with the following key differences:

A struct is a value type, whereas a class is a reference type.

A struct does not support inheritance (other than implicitly deriving from object).

A struct can have all the members a class can, except:

A parameterless constructor

A finalizer

Virtual members

A struct is used instead of a class when value type semantics are desirable. Good examples of structs are
numeric types, where it is more natural for assignment to copy a value rather than a reference. Because a
struct is a value type, each instance does not require instantiation of an object on the heap. This can be
important when creating many instances of a type, for example, with an array.

1.16.1. Struct Construction Semantics

The construction semantics of a struct are as follows:

A parameterless constructor implicitly exists, which you can't override. This performs a bitwise-zeroing of
its fields.

When you define a struct constructor, you must explicitly assign every field.

You can't have field initializers in a struct.

Here is an example of declaring and calling struct constructors:

 public struct Point

 {

 int x, y;

 public Point (int x, int y) {this.x = x; this.y = y;}

 }

 ...

 Point p1 = new Point (); // p1.x and p1.y will be 0

 Point p2 = new Point (1, 1); // p1.x and p1.y will be 1

The next example generates three compile-time errors:

 public struct Point

 {

 int x = 1; // Illegal, cannot initialize field

 int y;

 public Point() {} // Illegal, cannot have

 // parameterless constructor

 public Point(int x) {this.x = x;} // illegal, must

 // assign field y

 }

Changing struct to class makes this example legal.

1.17. Access Modifiers

To promote encapsulation, a type or type member may limit its accessibility to other types and other assemblies
by adding one of five access modifiers to the declaration:

public

Fully accessible. The implicit accessibility for members of an enum or interface.

internal

Accessible only within containing assembly or friend assemblies. The default accessibility for nonnested
types.

private

Visible only within containing type. The default accessibility members of a class or struct.

protected

Visible only within containing type or subclasses.

protected internal

The union of protected and internal accessibility. (This is less restrictive than protected or internal

alone.)

The CLR has the concept of the intersection of protected and internal accessibility, but
C# does not support this.

1.17.1. Examples

Class2 is accessible from outside its assembly; Class1 is not:

 class Class1 { } // Class1 is internal (default)

 public class Class2 { }

ClassB exposes field x to other types in the same assembly; ClassA does not:

 class ClassA { int x; } // x is private

 // (default)

 class ClassB { internal int x; }

Functions within Subclass can call Bar but not Foo:

 class BaseClass

 {

 void Foo() { } // Foo is private (default)

 protected void Bar() { }

 }

 class Subclass : BaseClass

 {

 void Test1() { Foo(); } // Error: cannot access Foo

 void Test2() { Bar(); } // OK

 }

1.17.2. Accessibility Capping

A type caps the accessibility of its declared members. The most common example of capping is when you have
an internal type with public members. For example:

 class C { public void Foo() {} }

C's (default) internal accessibility caps Foo's accessibility, effectively making Foo internal. The reason Foo

would be marked public is to make for easier refactoring, should C later be changed to public.

1.17.3. Restrictions on Access Modifiers

When overriding a base class function, accessibility must be identical on the overridden function.

The compiler also prevents any inconsistent use of access modifiers. For example, a subclass itself can be less
accessible than a base class, but not more accessible:

 internal class A { }

 public class B : A { } // Error

1.18. Interfaces

An interface is similar to a class, but it provides a specification rather than an implementation for its members.
An interface is special in the following ways:

A class can implement multiple interfaces. In contrast, a class can inherit from only a single class.

Interface members are all implicitly abstract. In contrast, a class can provide both abstract members and
concrete members with implementations.

Structs can implement interfaces. In contrast, a struct cannot inherit from a class.

An interface declaration is like a class declaration, but it provides no implementation for its members, as all its
members are implicitly abstract. These members will be implemented by the classes and structs that implement
the interface. An interface can contain only methods, properties, events, and indexers, which noncoincidentally
are precisely the members of a class that can be abstract.

Here is a slightly simplified version of the IEnumerator interface, defined in System.Collections:

 public interface IEnumerator

 {

 bool MoveNext();

 object Current {get;}

 }

Interface members have the same accessibility as the interface type, and they cannot declare an access
modifier.

Implementing an interface means providing a public implementation for all its members:

 internal class Countdown : IEnumerator

 {

 int count = 11;

 public bool MoveNext() { return count-- > 0 ; }

 public object Current { get { return count; } }

 }

You can implicitly cast an object to any interface that it implements. For example:

 IEnumerator e = new Countdown();

 while (e.MoveNext())

 Console.Write (e.Current); // 109876543210

Even though Countdown is an internal class, its members that implement IEnumerator

can be called publicly by casting an instance of Countdown to IEnumerator.If

IEnumerator was itself internal instead of public, this wouldn't be possible.

1.18.1. Extending an Interface

Interfaces may derive from other interfaces. For instance:

 public interface IUndoable { void Undo(); }

 public interface IRedoable : IUndoable { void Redo(); }

IRedoable inherits all the members of IUndoable.

1.18.2. Explicit Interface Implementation

Implementing multiple interfaces can sometimes result in a collision between member signatures. You can
resolve such collisions by explicitly implementing an interface member. Consider the following example:

 interface I1 { void Foo(); }

 interface I2 { int Foo(); }

 public class Widget : I1, I2

 {

 public void Foo()

 {

 Console.WriteLine

 ("Widget's implementation of I1.Foo");

 }

 int I2.Foo()

 {

 Console.WriteLine

 ("Widget's implementation of I2.Foo");

 return 42;

 }

 }

Because both I1 and I2 have conflicting Foo signatures, Widget explicitly implements I2's Foo method. This

lets the two methods coexist in one class. The only way to call an explicitly implemented member is to cast to
its interface:

 Widget w = new Widget();

 w.Foo(); // Widget's implementation of I1.Foo

 ((I1)w).Foo(); // Widget's implementation of I1.Foo

 ((I2)w).Foo(); // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to hide members that are highly specialized and
distracting to a type's normal use case. For example, a type that implements ISerializable would typically

want to avoid flaunting its ISerializable members unless explicitly cast to that interface.

1.18.3. Implementing Interface Members Virtually

An implicitly implemented interface member is, by default, sealed. It must be marked virtual or abstract in

the base class to be overridden. For example:

 public interface IUndoable { void Undo(); }

 public class TextBox : IUndoable

 {

 public virtual void Undo()

 {

 Console.WriteLine ("TextBox.Undo");

 }

 }

 public class RichTextBox : TextBox

 {

 public override void Undo()

 {

 Console.WriteLine ("RichTextBox.Undo");

 }

 }

Calling the interface member through either the base class or the interface calls the subclass's implementation:

 RichTextBox r = new RichTextBox();

 r.Undo(); // RichTextBox.Undo

 ((IUndoable)r).Undo(); // RichTextBox.Undo

 ((TextBox)r).Undo(); // RichTextBox.Undo

An explicitly implemented interface member cannot be marked virtual, nor can it be overridden in the usual

manner. It can, however, be reimplemented.

1.18.4. Reimplementing an Interface in a Subclass

A subclass can reimplement any interface member already implemented by a base class. Reimplementation
hijacks a member implementation (when called through the interface) and works whether or not the member is
virtual in the base class. It also works whether a member is implemented implicitly or explicitly-although it

works best in the latter case, as we will demonstrate.

In the following example, TextBox explicitly implements IUndo.Undo, so it cannot be marked as virtual. To

"override" it, RichTextBox must reimplement IUndo's Undo method:

 public interface IUndoable { void Undo(); }

 public class TextBox : IUndoable

 {

 void IUndoable.Undo()

 { Console.WriteLine ("TextBox.Undo"); }

 }

 public class RichTextBox : TextBox, IUndoable

 {

 public new void Undo()

 { Console.WriteLine ("RichTextBox.Undo"); }

 }

Calling the reimplemented member through the interface calls the subclass's implementation:

 RichTextBox r = new RichTextBox();

 r.Undo(); // RichTextBox.Undo Case 1

 ((IUndoable)r).Undo(); // RichTextBox.Undo Case 2

Assuming the same RichTextBox definition, suppose now that TextBox implemented Undoimplicitly:

 public class TextBox : IUndoable

 {

 public void Undo()

 { Console.WriteLine ("TextBox.Undo"); }

 }

This would give us another way to call Undo, which would "break" the system, as shown in Case 3:

 RichTextBox r = new RichTextBox();

 r.Undo(); // RichTextBox.Undo Case 1

 ((IUndoable)r).Undo(); // RichTextBox.Undo Case 2

 ((TextBox)r).Undo(); // TextBox.Undo Case 3

Case 3 demonstrates that reimplementation hijacking is effective only when a member is called through the
interface, and not through the base class. This is usually undesirable as it can mean inconsistent semantics,
making reimplementation most appropriate for overriding explicitly implemented interface members.

1.19. Enums

An enum is a special value type that lets you specify a group of named numeric constants. For example:

 public enum BorderSide { Left, Right, Top, Bottom }

We can use this enum type as follows:

 BorderSide topSide = BorderSide.Top;

 bool isTop = (topSide == BorderSide.Top); // true

Each enum member has an underlying integral value. By default:

Underlying values are of type int.

The constants 0, 1, 2… are automatically assigned in the declaration order of the enum members.

You may specify an alternative integral type, as follows:

 public enum BorderSide : byte

 { Left, Right, Top, Bottom }

You may also specify an explicit underlying value for each enum member:

 public enum BorderSide : byte

 { Left=1, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum members. The unassigned
enum members keep incrementing from the last explicit value. The preceding example
is equivalent to:

 public enum BorderSide : byte

 { Left=1, Right, Top=10, Bottom }

1.19.1. Enum Conversions

You can convert an enum instance to and from its underlying integral value with an explicit cast:

 int i = (int) BorderSide.Left;

 BorderSide side = (BorderSide) i;

 bool horizontal = (int) side <= 2;

You can also explicitly cast one enum type to another. Suppose HorizontalAlignment is defined as follows:

 public enum HorizontalAlignment

 {

 Left = BorderSide.Left,

 Right = BorderSide.Right,

 Center

 }

A translation between the enum types uses the underlying integral values:

 HorizontalAlignment h = (HorizontalAlignment)

 BorderSide.Right;

 // same as:

 HorizontalAlignment h = (HorizontalAlignment) (int)

 BorderSide.Right;

The numeric literal 0 is treated specially by the compiler in an enum expression and does not require an explicit

cast:

 BorderSide b = 0; // no cast required

 if (b == 0) ...

There are two reasons for the special treatment of 0:

The first member of an enum is often used as the "default" value.

For combined enum types, 0 means "no flags."

1.19.2. Flags Enumerations

You can combine enum members. To prevent ambiguities, members of a combinable enum require explicitly

assigned values, typically in powers of two. For example:

 [Flags]

 public enum BorderSides

 { Left=1, Right=2, Top=4, Bottom=8 }

To work with combined enum values, use bitwise operators, such as | and &. These operate on the underlying
integral values:

 BorderSides leftRight =

 BorderSides.Left | BorderSides.Right;

 if ((leftRight & BorderSides.Left) != 0)

 System.Console.WriteLine ("Includes Left");

 // OUTPUT: "Includes Left"

 string formatted = leftRight.ToString();

 // formatted is "Left, Right"

 BorderSides s = BorderSides.Left;

 s |= BorderSides.Right;

 Console.WriteLine (s == leftRight); // True

 s ^= BorderSides.Right; // Toggles BorderSides.Right

 Console.WriteLine (s); // Left

By convention, the Flags attribute should always be applied to an enum type when its members are

combinable. If you declare such an enum without the Flags attribute, you can still combine members, but calling

ToString on an enum instance will emit a number rather than a series of names.

By convention, a combinable enum type is given a plural rather than singular name.

For convenience, you can include combination members within an enum declaration itself:

 [Flags] public enum BorderSides

 {

 Left=1, Right=2, Top=4, Bottom=8,

 LeftRight = Left | Right,

 TopBottom = Top | Bottom,

 All = LeftRight | TopBottom

 }

1.19.3. Enum Operators

The operators that work with enums are:

 = == != < > <= >= + - ^ & | ~

 += -= ++ -- sizeof

The bitwise, arithmetic, and comparison operators return the result of processing the underlying integral values.
Addition and subtraction are permitted between an enum and an integral type but not between two enums.

1.20. Nested Types

A nested type is declared within the scope of another type. For example:

 public class TopLevel

 {

 public class Nested { } // Nested class

 public enum Color { Red, Blue, Tan } // Nested enum

 }

A nested type has the following features:

It can access the enclosing type's private members and everything else the enclosing type can access.

It can be declared with the full range of access modifiers, rather than just public and internal.

The default visibility for a nested type is private rather than internal.

Accessing a nested type from outside the enclosing type requires qualification with the enclosing type's
name (like when accessing static members).

For example, to access Color.Red from outside our TopLevel class, we'd have to do this:

 TopLevel.Color color = TopLevel.Color.Red;

All types can be nested; however, only classes and structs can nest. Nested types are used heavily by the
compiler itself, when it generates private classes that capture state for constructs such as iterators and
anonymous methods.

If the sole reason for using a nested type is to avoid cluttering a namespace with too
many types, consider using a nested namespace instead. A nested type should be used
because of its stronger access control restrictions, or when the nested class must access
private members of the containing class.

1.21. Generics

C# has two separate mechanisms for writing code that is reusable across different types: inheritance and
generics. Whereas inheritance expresses reusability with a base type, generics express reusability with a
"template" that contains "placeholder" types. Generics, when compared to inheritance, can increase type safety
and reduce casting and boxing.

1.21.1. Generic Types

A generic type declares generic parameters-placeholder types to be filled in by the consumer of the generic
type, who will supply the generic arguments. Here is a generic type Stack<T>, designed to stack instances of

type T. Stack<T> declares a single generic parameter T:

 public class Stack<T>

 {

 int position;

 T[] data = new T[100];

 public void Push (T obj) { data[position++] = obj; }

 public T Pop() { return data[--position]; }

 }

We can use Stack<T> as follows:

 Stack <int> stack = new Stack <int> ();

 stack. Push(5);

 stack. Push(10);

 int x = stack.Pop(); // x is 10

 int y = stack.Pop(); // y is 5

Stack<int> fills in the generic parameter T with the generic argument int, implicitly creating a type on the fly

(the synthesis occurs at runtime). Stack<int> effectively has the following definition (substitutions appear in

bold, with the class name hashed out to avoid confusion):

 public class ###

 {

 int position;

 int[] data;

 public void Push (int obj) { data[position++] = obj; }

 public int Pop() { return data[--position];}

 }

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed type. You can only

instantiate a closed type, because all the placeholder types must be filled in.

1.21.2. Why Generics Exist

Generics exist to write code that is reusable across different types. Suppose we needed a stack of integers, but
we didn't have generic types. One solution would be to hardcode a separate version of the class for every
required element type (e.g., IntStack, StringStack, etc.) Clearly, this would cause considerable code

duplication. Another solution would be to write a stack that is generalized by using object as the element type:

 public class ObjectStack

 {

 int position;

 object[] data = new object[10];

 public void Push (object obj){data[position++] = obj;}

 public object Pop() { return data[--position];}

 }

An ObjectStack, however, wouldn't work as well as a hardcoded IntStack for specifically stacking integers.

Specifically, an ObjectStack would require boxing and downcasting that could not be checked at compile time:

 // Suppose we just want to store integers here:

 ObjectStack stack = new ObjectStack();

 stack.Push ("s"); // Wrong type, but no error!

 int i = (int)stack.Pop(); // Downcast - runtime error

What we need is both a general implementation of a stack that works for all element types, and a way to easily
specialize that stack to a specific element type for increased type safety and reduced casting and boxing.
Generics give us precisely this, by allowing us to parameterize the element type. Stack<T> has the benefits of

both ObjectStack and IntStack. Like ObjectStack, Stack<T> is written once to work generally across all

types. Like IntStack, Stack<T> is specialized for a particular type-the beauty is that this type is T, which we

substitute on the fly.

ObjectStack is functionally equivalent to Stack<object>.

1.21.3. Generic Methods

A generic method declares generic parameters within the signature of a method.

With generic methods, many fundamental algorithms can be implemented in only a general-purpose way. Here
is a generic method that swaps two values of any type:

 static void Swap<T> (ref T a, ref T b)

 {

 T temp = a; a = b; b = temp;

 }

Swap<T> can be used as follows:

 int x = 5, y = 10;

 Swap (ref x, ref y);

Generally, there is no need to supply type parameters to a generic method, because the compiler can implicitly
infer the type. If there is ambiguity, generic methods can be called with the type parameters as follows:

 Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless it introduces generic parameters (with the

angle bracket syntax). The Pop method in our generic stack merely uses the type's existing generic parameter,

T, and is not classed as a generic method.

Methods and types are the only constructs that can introduce generic parameters. Properties, indexers, events,
fields, methods, operators, and so on cannot declare generic parameters, although they can partake in any
generic parameters already declared by their enclosing type. In our generic stack example, for instance, we
could write an indexer that returns a generic item:

 public T this [int index] { get {return data [index];} }

1.21.4. Declaring Generic Parameters

Generic parameters can be introduced in the declaration of classes, structs, interfaces, delegates (see the
upcoming "Delegates" section), and methods. Other constructs, such as properties, cannot introduce a generic
parameter, but can use a generic parameter. For example, the property Value uses T:

 public struct Nullable<T>

 {

 public T Value {get;}

 }

A generic type or method can have multiple parameters. For example:

 class Dictionary<TKeyType, TValueType> {...}

To instantiate:

 Dictionary<int,string> myDic =

 new Dictionary<int,string>();

or (in C# 3.0):

 var myDic = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number of generic parameters is
different. For example, the following two type names do not conflict:

 class A<T> {}

 class A<T1,T2> {}

By convention, generic types and methods with a single generic parameter typically
name their parameter T, as long as the intent of the parameter is clear. When using

multiple generic parameters, each parameter is prefixed with T, but has a more

descriptive name.

1.21.5. typeof and Generics

The typeof operator requires specifying the number of parameters when asking for the type of an open type, as

follows:

 class A<T> {}

 class A<T1,T2> {}

 ...

 Type a1 = typeof(A<>);

 Type a2 = typeof(A<,>);

Here is an example of asking for the type of a closed type:

 Type a3 = typeof(A<int,int>);

1.21.6. The default Generic Value

The default keyword can be used to get the default value given a generic type argument. The default value for

a reference type is null, and the default value for a value type is the result of bitwise-zeroing the value type's

fields:

 static void Zap<T> (T[] array)

 {

 for (int i = 0; i < array.Length; i++)

 array[i] = default(T);

 }

1.21.7. Generic Constraints

By default, a generic parameter can be substituted with any type whatsoever. Constraints can be applied to a
generic parameter to require more specific type arguments. These are the possible constraints:

 where T : base-class // Base class constraint

 where T : interface // Interface constraint

 where T: class // Class constraint

 where T : struct // Struct constraint

 where T : new() // Parameterless constructor

 // constraint

 where U : T // Naked type constraint

In the following example, GenericClass<T> requires T to derive from SomeClass and implement Interface1:

 class SomeClass {}

 interface Interface1 {}

 class GenericClass<T> where T : SomeClass, Interface1 {}

Constraints can be applied wherever generic parameters are defined, in both methods and type definitions.

A base class constaint or interface constraint specifies that the type parameter must subclass or implement a
particular class or interface. This allows instances of that type to be implicitly cast to that class or interface. For
example, suppose we want to write a generic Max method that returns the maximum of two values. We can take

advantage of the generic interface defined in the System namespace IComparable<T>:

 public interface IComparable<T>

 {

 int CompareTo (T other);

 }

CompareTo returns a positive number if other is greater than this. Using this interface as a constraint, we can

write a Max method as follows (to avoid distraction, null checking is omitted):

 static T Max <T> (T a, T b) where T : IComparable<T>

 {

 return a.CompareTo (b) > 0 ? a : b;

 }

The Max method can accept arguments of any type implementing IComparable<T> (which includes most built-in

types such as int and string):

 int z = Max (5, 10); // 10

 string last = Max ("ant", "zoo"); // zoo

The class constraint and struct constraint simply specify that T must be a class or a struct. A great example of

the struct constraint is the System.Nullable<T> struct (we will discuss this class in depth, later, in the "Nullable

Types" section):

 struct Nullable<T> where T : struct {...}

The parameterless constructor constraint requires T to have a public parameterless constructor. If this

constraint is defined, you can call new() on T:

 static void Initialize<T> (T[] array) where T : new()

 {

 for (int i = 0; i < array.Length; i++)

 array[i] = new T();

 }

The naked type constraint requires one generic parameter to derive from another generic parameter. In this
example, the method FilteredStack returns another Stack, containing only the subset of elements where the

generic parameter T is of the generic parameter U:

 class Stack<T>

 {

 Stack<U> FilteredStack<U>() where U : T {...}

 }

1.21.8. Generics and Covariance

Generic types are not covariant. This means that even if B can be cast to A, T cannot be cast to T<A>. For

example, suppose Animal and Bear are defined as follows:

 class Animal {}

 class Bear : Animal {}

The following is illegal:

 Stack<Bear> bears = new Stack <Bear>();

 // compile-time error

 Stack<Animal> animals = bears;

Lack of covariance can hinder reusability. Suppose, for instance, we wanted to write a method to Wash a stack

of animals:

 public class ZooCleaner

 {

 public static void Wash (Stack<Animal> animals) {...}

 }

Calling Wash with a stack of bears would generate a compile-time error. The workaround is to redefine the Wash

method with a constraint:

 public class ZooCleaner

 {

 public static void Wash<T> (Stack<T> animals)

 where T : Animal {}

 }

We can now call Wash as follows:

 Stack<Bear> bears = new Stack<Bear>();

 ZooCleaner.Wash (bears);

1.21.9. Subclassing Generic Types

A generic class can be subclassed just like a nongeneric class. The subclass can leave the base class's generic
parameters open, as in the following example:

 class Stack <T> {...}

 class SpecialStack <T> : Stack <T> {...}

Or the subclass can close the generic type parameters with a concrete type:

 class IntStack : Stack<int> { ... }

A subclass can also introduce fresh generic arguments:

 class Single<T> { ... }

 class Double<T,U> : Single<T> { ... }

1.21.10. Self-Referencing Generic Declarations

A type can name itself as the concrete type when closing a generic argument:

 public interface IEquatable<T> { bool Equals (T obj); }

 public class Balloon : IEquatable<Balloon>

 {

 string color;

 int cc;

 public bool Equals (Balloon b)

 {

 if (b == null) return false;

 return b.color == color && b.cc == cc;

 }

 }

1.21.11. Static Data

Static data is unique for each closed type:

 class Bob<T> { public static int Count; }

 class Test

 {

 static void Main()

 {

 Console.WriteLine (++Bob<int>.Count); // 1

 Console.WriteLine (++Bob<int>.Count); // 2

 Console.WriteLine (++Bob<string>.Count); // 1

 Console.WriteLine (++Bob<object>.Count); // 1

 }

 }

}

1.21.12. Generic Collection Initialization

You can instantiate and populate a generic collection in a single step, as follows:

 using System.Collections.Generic;

 ...

 List<int> list = new List<int> {1, 2, 3};

The compiler translates this to:

 using System.Collections.Generic;

 ...

 List<int> list = new List<int>();

 list.Add (1); list.Add (2); list.Add (3);

This requires that the collection implements the ICollection<T> interface, defined in

System.Collections.Generic-the standard .NET interface for mutable collections.

1.22. Delegates

A delegate dynamically wires up a method caller to its target method. There are two aspects to a delegate: type
and instance. A delegate type defines a protocol to which the caller and target will conform, comprising a list of
parameter types and a return type. A delegate instance refers to one or more target methods conforming to
that protocol.

A delegate instance literally acts as a delegate for the caller: the caller invokes the delegate, and then the
delegate calls the target method. This indirection decouples the caller from the target method.

A delegate type declaration is preceded by the keyword delegate, but otherwise it resembles an (abstract)

method declaration. For example:

 delegate int Transformer (int x);

To create a delegate instance, you can assign a method to a delegate variable:

 class Test

 {

 static void Main()

 {

 Transformer t = Square; // Create delegate instance

 int result = t(3); // Invoke delegate

 Console.Write (result); // 9

 }

 static int Square (int x) { return x * x; }

 }

Invoking a delegate is just like invoking a method (as the delegate's purpose is merely to provide a level of
indirection):

 t(3);

The statement:

 Transformer t = Square;

is shorthand for:

 Transformer t = new Transformer(Square);

A delegate is similar to a "callback," a general term that captures constructs such as C
function pointers.

1.22.1. Writing Plug-in Methods with Delegates

A delegate variable is assigned a method dynamically. This is useful for writing plug-in methods. In this
example, we have a utility method named Transform, which applies a transform to each element in an integer

array. The Transform method has a delegate parameter for specifying a plug-in transform.

Code View:
 public delegate int Transformer (int x);

 public class Util

 {

 public static void Transform (int[] values,

 Transformer t)

 {

 for (int i = 0; i < values.Length; i++)

 values[i] = t(values[i]);

 }

 }

 class Test

 {

 static void Main()

 {

 int[] values = new int[] {1, 2, 3};

 Util.Transform(values, Square); // Dynamically

 // hook in Square

 foreach (int i in values)

 Console.Write (i + " "); // 1 4 9

 }

 static int Square (int x) { return x * x; }

 }

1.22.2. Multicast Delegates

All delegate instances have multicast capability. This means that a delegate instance can reference not just a
single target method, but also a list of target methods. The += operator combines delegate instances. For
example:

 SomeDelegate d = SomeMethod1;

 d += SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2. Delegates are invoked in the order they are added.

The -= method removes the right delegate operand from the left delegate operand. For example:

 d -= SomeMethod1;

Invoking d will now cause only SomeMethod2 to be invoked.

Calling += on a delegate variable with a null value works, and it is equivalent to assigning the variable to a

new value:

 SomeDelegate d = null;

 d += SomeMethod1; // Equivalent (when d is

 // null) to d = SomeMethod1;

All delegate types implicitly inherit System.MulticastDelegate, which inherits from

System.Delegate. C# compiles += and -= operations made on a delegate to the static

Combine and Remove methods of the System.Delegate class.

If a multicast delegate has a nonvoid return type, the caller receives the return value from the last method to
be invoked. The preceding methods are still called, but their return values are discarded. In most scenarios in
which multicast delegates are used, they have void return types, so this subtlety does not arise.

1.22.3. Instance Versus Static Method Targets

When a delegate instance is assigned to an instance method, the delegate instance maintains a reference not
only to the method, but also to the instance of that method. (The System.Delegate class's Target property

represents this instance and will be null for a delegate referencing a static method.)

1.22.4. Generic Delegate Types

A delegate type may contain generic type parameters. For example:

 public delegate T Transformer<T> (T arg);

Here's how we could use this delegate type:

 static double Square (double x) { return x * x; }

 static void Main()

 {

 Transformer<double> s = Square;

 Console.WriteLine (s (3.3)); // 10.89

 }

1.22.5. Delegate Compatibility

1.22.5.1. Type compatibility

Delegate types are all incompatible with each other, even if their signatures are the same:

 delegate void D1();

 delegate void D2();

 ...

 D1 d1 = Method1;

 D2 d2 = d1; // compile-time error

Delegate instances are considered equal if they have the same method targets:

 delegate void D();

 ...

 D d1 = Method1;

 D d2 = Method1;

 Console.WriteLine (d1 == d2); // true

1.22.5.2. Parameter compatibility

When you call a method, you can supply arguments that have more specific types than the parameters of that
method. This is ordinary polymorphic behavior. For exactly the same reason, a delegate can have more specific
parameter types than its method target. This is called contravariance.

Here's an example:

 delegate void SpecificDelegate (SpecificClass s);

 class SpecificClass { }

 static void Main()

 {

 SpecificDelegate specificDelegate = GeneralHandler;

 specificDelegate (new SpecificClass());

 }

 static void GeneralHandler (object o)

 {

 Console.WriteLine (o.GetType()); // SpecificClass

 }

The standard event pattern is designed to help you leverage contravariance through its
use of the common EventArgs base class. For example, you can have a single method

invoked by two different delegates, one passing a MouseEventArgs and the other

passing a KeyEventArgs.

1.22.5.3. Return type compatibility

If you call a method, you may get back a type that is more specific than what you asked for. This is ordinary
polymorphic behavior. For exactly the same reason, the return type of a delegate can be less specific than the
return type of its target method. This is called covariance. For example:

 delegate Asset DebtCollector();

 class Asset { }

 class House : Asset { }

 static void Main()

 {

 DebtCollector d = new DebtCollector (GetHomeSweetHome);

 Asset a = d();

 Console.WriteLine (a.GetType()); // House

 }

 static House GetHomeSweetHome() { return new House(); }

The DebtCollector expects to get back an Asset-but any Asset will do: delegate return types are covariant.

1.23. Events

When using delegates, two emergent roles commonly appear: broadcaster and subscriber.

The broadcaster is a type that contains a delegate field. It decides when to broadcast by invoking the delegate.

The subscribers are the method target recipients. A subscriber decides when to start and stop listening by
calling += and -= on the broadcaster's delegate. A subscriber does not know about, or interfere with, other

subscribers.

Events are a language feature that formalizes this pattern. An event is a wrapper for a delegate that exposes

just the subset of delegate features required for the broadcaster/subscriber model. The main purpose of events
is to prevent subscribers from interfering with one another.

To declare an event member, you put the event keyword in front of a delegate member. For instance:

 public class Broadcaster

 {

 public event ProgressReporter Progress;

 }

Code within the Broadcaster type has full access to Progress and can treat it as a delegate. Code outside of

Broadcaster can only perform += and -= operations on Progress.

Consider the following example. The Stock class invokes its PriceChanged event every time the Price of the

Stock changes:

 public delegate void PriceChangedHandler

 (decimal oldPrice, decimal newPrice);

 public class Stock

 {

 string symbol;

 decimal price;

 public Stock (string symbol) {this.symbol = symbol;}

 public event PriceChanged PriceChanged;

 public decimal Price

 {

 get { return price; }

 set

 {

 if (price == value) return;

 if (PriceChanged != null)

 PriceChanged (price, value); // Fire event

 price = value;

 }

 }

 }

If we removed the event keyword from our example so that PriceChanged became an ordinary delegate field,

our example would give the same results. However, Stock would be less robust, in that subscribers could do the

following things to interfere with one another:

Replace other subscribers by reassigning PriceChanged (instead of using the += operator).

Clear all subscribers by setting PriceChanged to null.

Broadcast to other subscribers by invoking the delegate.

1.23.1. Standard Event Pattern

The .NET Framework defines a standard pattern for writing events. Its purpose is to provide consistency across
both Framework and user code. Here's the preceding example refactored with this pattern:

Code View:
 using System;

 public class PriceChangedEventArgs : EventArgs

 {

 public readonly decimal LastPrice;

 public readonly decimal NewPrice;

 public PriceChangedEventArgs (decimal lastPrice,

 decimal newPrice)

 {

 LastPrice = lastPrice; NewPrice = newPrice;

 }

 }

 public class Stock

 {

 string symbol;

 decimal price;

 public Stock (string symbol) {this.symbol = symbol;}

 public event EventHandler<PriceChangedEventArgs>

 PriceChanged;

 protected virtual void OnPriceChanged

 (PriceChangedEventArgs e)

 {

 if (PriceChanged != null) PriceChanged (this, e);

 }

 public decimal Price

 {

 get { return price; }

 set

 {

 if (price == value) return;

 OnPriceChanged (new PriceChangedEventArgs (price,

 value));

 price = value;

 }

 }

 }

At the core of the standard event pattern is System.EventArgs: a predefined Framework class with no

members (other than the static Empty property). EventArgs is a base class for conveying information for an

event. In this example, we subclass EventArgs to convey the old and new prices when a PriceChanged event is

fired.

The generic System.EventHandler delegate is also part of the .NET Framework and is defined as follows:

 public delegate void EventHandler<TEventArgs>

 (object source, TEventArgs e)

 where TEventArgs : EventArgs;

Before C# 2.0 (when generics were added to the language), the solution was to instead
write a custom eventhandling delegate for each EventArgs type as follows:

 delegate void PriceChangedHandler

 (object sender,

 PriceChangedEventArgs e);

For historical reasons, most events within the Framework use delegates defined in this
way.

A protected virtual method, named On-event-name, centralizes firing of the event. This allows subclasses to fire

the event (which is usually desirable) and allows subclasses to insert code before and after the event is fired.

Here's how we could use our Stock class:

 static void Main()

 {

 Stock stock = new Stock ("THPW");

 stock.Price = 27.10M;

 stock.PriceChanged += stock_PriceChanged;

 stock.Price = 31.59M;

 }

 static void stock_PriceChanged

 (object sender, PriceChangedEventArgs e)

 {

 if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)

 Console.WriteLine ("Alert, 10% price increase!");

 }

For events that don't carry additional information, the Framework also provides a nongeneric EventHandler

delegate. We can demonstrate this by rewriting our Stock class such that the PriceChanged event fires after the

price changes. This means that no additional information need be transmitted with the event:

 public class Stock

 {

 string symbol;

 decimal price;

 public Stock (string symbol) {this.symbol = symbol;}

 public event EventHandler PriceChanged;

 protected virtual void OnPriceChanged (EventArgs e)

 {

 if (PriceChanged != null) PriceChanged (this, e);

 }

 public decimal Price

 {

 get { return price; }

 set

 {

 if (price == value) return;

 price = value;

 OnPriceChanged (EventArgs.Empty);

 }

 }

 }

Note that we also used the EventArgs.Empty property-this saves instantiating an instance of EventArgs.

1.23.2. Event Accessors

An event's accessors are the implementations of its += and -= functions. By default, accessors are implemented

implicitly by the compiler. Consider this event declaration:

 public event EventHandler PriceChanged;

The compiler converts this to:

A private delegate field

A public pair of event accessor functions, whose implementations forward the += and -= operations to the
private delegate field

You can take over this process by defining explicit event accessors. Here is a manual implementation of the
PriceChanged event from our previous example:

 private EventHandler _PriceChanged; // private delegate

 public event EventHandler PriceChanged

 {

 add { _PriceChanged += value; }

 remove { _PriceChanged -= value; }

 }

This example is functionally identical to C#'s default accessor implementation. The add and remove keywords

after the event declaration instruct C# not to generate a default field and accessor logic.

With explicit event accessors, you can apply more complex strategies to the storage and access of the
underlying delegate. There are three scenarios where this is useful:

When the event accessors are merely relays for another class that is broadcasting the event.

When the class exposes a large number of events, where most of the time very few subscribers exist, such
as a Windows control. In such cases, it is better to store the subscriber's delegate instances in a
dictionary, as a dictionary will contain less storage overhead than dozens of null delegate field references.

When explicitly implementing an interface that declares an event.

Here is an example that illustrates the last point:

 public interface IFoo { event EventHandler Ev; }

 class Foo : IFoo

 {

 private EventHandler ev;

 event EventHandler IFoo.Ev

 {

 add { ev += value; } remove { ev -= value; }

 }

 }

1.23.3. Event Modifiers

Like methods, events can be virtual, overridden, abstract, and sealed. Events can also be static.

1.24. Lambda Expressions (C# 3.0)

A lambda expression is an unnamed method written in place of a delegate instance. The compiler immediately
converts the lambda expression to either:

A delegate instance.

An expression tree, of type Expression<TDelegate>, representing the code inside the lambda expression

in a traversable object model. This allows the lambda expression to be interpreted later at runtime (we
describe the process in Chapter 8 of C# 3.0 in a Nutshell).

Given the following delegate type:

 delegate int Transformer (int i);

we could assign and invoke the lambda expression x => x * x as follows:

 Transformer sqr = x => x * x;

 Console.WriteLine (sqr(3)); // 9

Internally, the compiler resolves lambda expressions of this type by writing a private
method and moving the expression's code into that method.

A lambda expression has the following form:

 (parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one parameter of an inferable type.

In our example, there is a single parameter, x, and the expression is x*x:

 x => x * x;

Each parameter of the lambda expression corresponds to a delegate parameter, and the type of the expression
(which may be void) corresponds to the return type of the delegate.

In our example, x corresponds to parameter i, and the expression x * x corresponds to the return type int,

therefore being compatible with the Transformer delegate:

 delegate int Transformer (int i);

A lambda expression's code can be a statement block instead of an expression. We can rewrite our example as
follows:

 x => {return x * x;};

1.24.1. Explicitly Specifying Lambda Parameter Types

The compiler can usually infer the type of lambda parameters contextually. When this is not the case, you

must explicitly specify the type of each parameter. Consider the following delegate type:

 delegate int Transformer (int i);

The compiler uses type inference to infer that x is an int by examining Transfomer's parameter type:

 Transformer d = x => x * x;

We could explicitly specify x's type as follows:

 Transformer d = (int x) => x * x;

1.24.2. Generic Lambda Expressions and the Func Delegates

With generic delegates, it becomes possible to write a small set of delegate types that are so general they can
work for methods of any return type and any (reasonable) number of arguments.

These delegates are the Func and Action delegates, defined in the System namespace.

Here are the Func delegates (notice that TResult is always the last type parameter):

 delegate TResult Func <T> ();

 delegate TResult Func <T, TResult>

 (T arg1);

 delegate TResult Func <T1, T2, TResult>

 (T1 arg1, T2 arg2);

 delegate TResult Func <T1, T2, T3, TResult>

 (T1 arg1, T2 arg2, T3 arg3);

 delegate TResult Func <T1, T2, T3, T4, TResult>

 (T1 arg1, T2 arg2, T3 arg3, T4 arg4);

Here are the Action delegates:

 delegate void Action();

 delegate void Action <T>

 (T arg1);

 delegate void Action <T1, T2>

 (T1 arg1, T2 arg2);

 delegate void Action <T1, T2, T3>

 (T1 arg1, T2 arg2, T3 arg3);

 delegate void Action <T1, T2, T3, T4>

 (T1 arg1, T2 arg2, T3 arg3,

 T4 arg4);

These delegates are extremely general. The Transformer delegate in our previous example can be replaced

with a Func delegate that takes a single int argument and returns an int value:

 Func<int,int> sqr = x => x * x;

 Console.WriteLine (sqr(3)); // 9

1.24.3. Outer Variables

A lambda expression can reference the local variables and parameters of the method in which it's defined. For
example:

 static void Main()

 {

 int factor = 2;

 Func<int, int> multiplier = n => n * factor;

 Console.WriteLine (multiplier (3)); // 6

 }

Local variables and parameters referenced by a lambda expression are called outer variables or captured
variables. A lambda expression that includes outer variables is called a closure.

Outer variables are evaluated when the delegate is actually invoked, not when the variables are captured:

 int factor = 2;

 Func<int, int> multiplier = n => n * factor;

 factor = 10;

 Console.WriteLine (multiplier (2)); // 20

Lambda expressions can update captured variables:

 int seed = 0;

 Func<int> natural = () => seed++;

 Console.WriteLine (natural()); // 0

 Console.WriteLine (natural()); // 1

Outer variables have their lifetimes extended to that of the delegate. In the following example, the local
variable seed would ordinarily disappear from scope when Natural finished executing. But because seed has

been captured, its lifetime is extended to that of the capturing delegate, natural:

 static Func<int> Natural()

 {

 int seed = 0;

 return () => seed++; // Returns a closure

 }

 static void Main()

 {

 Func<int> natural = Natural();

 Console.WriteLine (natural()); // 0

 Console.WriteLine (natural()); // 1

 }

A local variable instantiated within a lambda expression is unique per invocation of the delegate instance. If we
refactor our previous example to instantiate seed within the lambda expression, we get a different (in this case,

undesirable) result:

 static Func<int> Natural()

 {

 return() => { int seed = 0; return seed++; };

 }

 static void Main()

 {

 NumericSequence natural = Natural();

 Console.WriteLine (natural()); // 0

 Console.WriteLine (natural()); // 0

 }

1.25. Anonymous Methods

Anonymous methods are a C# 2.0 feature that has been subsumed by C# 3.0 lambda expressions. An
anonymous method is like a lambda expression, but it lacks the following features:

Implicitly typed parameters

Expression syntax (an anonymous method must always be a statement block)

The ability to compile to an expression tree by assigning to Expression<T>

To write an anonymous method, include the delegate keyword, followed by a parameter declaration and then a

method body. For example, given this delegate:

 delegate int Transformer (int i);

we could write and call an anonymous method as follows:

 Transformer sqr = delegate (int x) {return x * x;};

 Console.WriteLine (sqr(3)); // 9

The first line is semantically equivalent to the following lambda expression:

 Transformer sqr = (int x) => {return x * x;};

Or simply:

 Transformer sqr = x => x * x;

Anonymous methods capture outer variables in the same way lambda expressions do.

1.26. try Statements and Exceptions

A try statement specifies a code block subject to error-handling or clean-up code. The try block must be

followed by a catch block,a finally block, or both. The catch block executes when an error occurs in the try

block. The finally block executes after execution leaves the try block (or if present, the catch block), to perform

clean-up code, whether or not an error occurred.

A catch block has access to an Exception object, which contains information about the error. You use a catch

block to either compensate for the error or rethrow the exception. You rethrow an exception if you merely want
to log the problem, or if you want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program by always executing no matter what. It's useful for clean-up

tasks such as closing network connections.

A try statement looks like this:

 try

 {

 ... // exception may get thrown within execution of

 // this block

 }

 catch (ExceptionA ex)

 {

 ... // handle exception of type ExceptionA

 }

 catch (ExceptionB ex)

 {

 ... // handle exception of type ExceptionB

 }

 finally

 {

 ... // clean-up code

 }

Consider the following program:

 static void Main()

 {

 int x = 3, y = 0;

 Console.WriteLine (x / y);

 }

y is zero, so the runtime throws a DivideByZeroException, and our program terminates. We can prevent this

by catching the exception as follows:

 static void Main()

 {

 try

 {

 int x = 3, y = 0;

 Console.WriteLine (x / y);

 }

 catch (DivideByZeroException ex)

 {

 Console.WriteLine ("y cannot be zero");

 }

 Console.WriteLine ("program completed");

 }

 OUTPUT:

 x cannot be zero

 program completed

When an exception is thrown, the CLR performs a test:

Is execution currently within a try statement that can catch the exception?

If so, execution is passed to the compatible catch block. If the catch block successfully finishes

executing, execution moves to the next statement after the try statement (if present, executing the

finally block first).

If not, execution jumps back to the caller of the function, and the test is repeated (after executing any
finally blocks that wrap the statement).

If no function takes responsibility for the exception, an error dialog is displayed to the user, and the program
terminates.

1.26.1. The catch Clause

A catch clause specifies what type of exception to catch. This must either be System.Exception or a subclass of

System. Exception.

Catching System.Exception catches all possible errors. This is useful when:

Your program can potentially recover, regardless of the specific exception type.

You plan to rethrow the exception (perhaps after logging it).

Your error handler is the last resort, prior to termination of the program.

More typically, though, you catch specific exception types to avoid having to deal with circumstances for which
your handler wasn't designed (e.g., an OutOfMemoryException).

You can handle multiple exception types with multiple catch clauses:

 try

 {

 DoSomething();

 }

 catch (IndexOutOfRangeException ex) { ... }

 catch (FormatException ex) { ... }

 catch (OverflowException ex) { ... }

Only one catch clause executes for a given exception. If you want to include a safety net to catch more general

exceptions (such as System.Exception), you must put the more specific handlers first.

An exception can be caught without specifying a variable, if you don't need to access its properties:

 catch (StackOverflowException) // no variable

 { ... }

Furthermore, you can omit both the variable and the type (meaning that all exceptions will be caught):

 catch { ... }

1.26.2. The finally Block

A finally block always executes-whether or not an exception is thrown, and whether or not the try block runs

to completion. finally blocks are typically used for cleanup code.

A finally block executes:

After a catch block finishes

After control leaves the try block because of a jump statement (e.g., return or goto)

After the try block ends

A finally block helps add determinism to a program. In the following example, the file that we open always

gets closed, regardless of whether:

The try block finishes normally.

Execution returns early, as the file is empty (EndOfStream).

An IOException is thrown while reading the file.

 static void ReadFile()

 {

 StreamReader reader = null; // In System.IO

 try

 {

 reader = File.OpenText ("file.txt");

 if (reader.EndOfStream) return;

 Console.WriteLine (reader.ReadToEnd());

 }

 finally

 {

 if (reader != null) reader.Dispose();

 }

 }

In this example, we closed the file by calling Dispose on the StreamReader. Calling Dispose on an object, within

a finally block, is a standard convention throughout the .NET Frame-work and is supported explicitly in C#

through the using statement.

1.26.2.1. The using statement

Many classes encapsulate unmanaged resources, such as file handles, graphics handles, or database
connections. These classes implement System.IDisposable, which defines a single parameterless method

named Dispose to clean up these resources. The using statement provides an elegant syntax for instantiating

an IDisposable object and then calling its Dispose method within a finally block.

The following:

 using (StreamReader reader = File.OpenText (

 "file.txt"))

 {

 ...

 }

is precisely equivalent to:

 StreamReader reader = File.OpenText ("file.txt");

 try

 {

 ...

 }

 finally

 {

 if (reader != null)

 ((IDisposable)reader).Dispose();

 }

1.26.3. Throwing Exceptions

Exceptions can be thrown either by the runtime, or in user code. In this example, Display throws a System.

ArgumentNullException:

 static void Display (string name)

 {

 if (name == null)

 throw new ArgumentNullException ("name");

 Console.WriteLine (name);

 }

 static void Main()

 {

 try { Display (null); }

 catch (ArgumentNullException ex)

 {

 Console.WriteLine ("Caught the exception");

 }

 }

1.26.3.1. Rethrowing an exception

You can capture and rethrow an exception as follows:

 try { ... }

 catch (Exception ex)

 {

 // Log error

 ...

 throw; // Rethrow same exception

 }

Rethrowing in this manner lets you log an error without swallowing it. It also lets you back out of handling an
exception should circumstances be outside what you expected.

The other common scenario is to rethrow a more specific exception type. For example:

 try

 {

 ... // parse a date of birth from XML element data

 }

 catch (FormatException ex)

 {

 throw new XmlException ("Invalid date of birth", ex);

 }

Rethrowing an exception does not affect the StackTrace property of the exception (see the next section). When

rethrowing a different exception, you can set the InnerException property with the original exception if doing

so could aid debugging. Nearly all types of exceptions provide a constructor for this.

1.26.4. Key Properties of System.Exception

The following are the most important properties of System. Exception:

StackTrace

A string representing all the methods that are called from the origin of the exception to the catch block.

Message

A string with a description of the error.

InnerException

The inner exception (if any) that caused the outer exception. This, itself, may have another
InnerException.

All exceptions in C# are runtime exceptions-there is no equivalent to Java's compile-
time checked exceptions.

1.26.5. Common Exception Types

The following exception types are used widely throughout the CLR and .NET Framework. You can throw these
yourself, or use them as base classes for deriving custom exception types.

System.ArgumentException

Thrown when a function is called with a bogus argument. This generally indicates a program bug.

System.ArgumentNullException

Thrown when a function argument is (unexpectedly) null. (It is a subclass of ArgumentException.

System.ArgumentOutOfRangeException

Thrown when a (usually numeric) argument is too big or too small. (It is also a subclass of
ArgumentException.) For example, this is thrown when passing a negative number into a function that

accepts only positive values.

System.InvalidOperationException

Thrown when the state of an object is unsuitable for a method to successfully execute, regardless of any
particular argument values. Examples include reading an unopened file or getting the next element from
an enumerator where the underlying list has been modified partway through the iteration.

System.NotSupportedException

Thrown to indicate that a particular functionality is not supported. A good example is calling the Add

method on a collection for which IsReadOnly returns true.

System.NotImplementedException

Thrown to indicate that a function has not yet been implemented.

System.ObjectDisposedException

Thrown when the object upon which the function is called has been disposed.

1.27. Enumeration and Iterators

1.27.1. Enumeration

An enumerator is a read-only, forward-only cursor over a sequence of values. An enumerator is an object that
either:

Implements IEnumerator or IEnumerator<T>

Has a method named MoveNext for iterating the sequence, and a property called Current for getting the

current element in the sequence

The foreach statement iterates over an enumerable object. An enumerable object is the logical representation

of a sequence, and is not itself a cursor, but an object that produces cursors over itself. An enumerable object
either:

Implements IEnumerable or IEnumerable<T>

Has a method named GetEnumerator that returns an enumerator

IEnumerator and IEnumerable are defined in System. Collections. IEnumerator<T>

and IEnumerable<T> are defined in System.Collections.Generic.

The enumeration pattern is as follows:

 class Enumerator // typically implements IEnumerator

 // or IEnumerator<T>

 {

 public IteratorVariableType Current { get {...} }

 public bool MoveNext() {...}

 }

 class Enumerable // typically implements IEnumerable

 // or IEnumerable<T>

 {

 public Enumerator GetEnumerator() {...}

 }

Here is the high-level way of iterating through the characters in the word "beer" using a foreach statement:

 foreach (char c in "beer")

 Console.WriteLine (c);

Here is the low-level way of iterating through the characters in the word "beer" without using a foreach

statement:

 var enumerator = "beer".GetEnumerator();

 while (enumerator.MoveNext())

 {

 var element = enumerator.Current;

 Console.WriteLine (element);

 }

The foreach statement also acts as a using statement, implicitly disposing the enumerator object.

1.27.2. Iterators

Whereas a foreach statement is a consumer of an enumerator, an iterator is a producer of an enumerator. In

this example, we use an iterator to return a sequence of Fibonacci numbers (where each number is the sum of
the previous two):

Code View:
 using System;

 using System.Collections.Generic;

 class Test

 {

 static void Main()

 {

 foreach (int fib in Fibs(6))

 Console.Write (fib + " ");

 }

 static IEnumerable<int> Fibs(int fibCount)

 {

 for (int i = 0, prevFib = 1, curFib = 1;

 i < fibCount;

 i++)

 {

 yield return prevFib;

 int newFib = prevFib+curFib;

 prevFib = curFib;

 curFib = newFib;

 }

 }

 }

 OUTPUT: 1 1 2 3 5 8

Whereas a return statement expresses "Here's the value you asked me to return from this method," a yield

return statement expresses "Here's the next element you asked me to yield from this enumerator." On each

yield statement, control is returned to the caller, but the callee's state is maintained so that the method can

continue executing as soon as the caller enumerates the next element. The lifetime of this state is bound to the
enumerator, such that the state can be released when the caller has finished enumerating.

The compiler converts iterator methods into private classes that implement
IEnumerable<T> and IEnumerator<T>. The logic within the iterator block is "inverted"

and spliced into the MoveNext method and Current property on the compiler-written

enumerator class. This means that when you call an iterator method, all you're doing is
instantiating the compiler-written class; none of your code actually runs! Your code runs
only when you start enumerating over the resultant sequence, typically with a foreach

statement.

1.27.3. Iterator Semantics

An iterator is a method, property, or indexer that contains one or more yield statements. An iterator must

return one of the following four interfaces (otherwise, the compiler will generate an error):

 // Enumerable interfaces

 System.Collections.IEnumerable

 System.Collections.Generic.IEnumerable<T>

 // Enumerator interfaces

 System.Collections.IEnumerator

 System.Collections.Generic.IEnumerator<T>

Iterators that return an enumerator interface tend to be used less often. They're useful when writing a custom
collection class: typically, you name the iterator GetEnumerator and have your class implement

IEnumerable<T>.

Iterators that return an enumerable interface are more common-and simpler to use because you don't have to
write a collection class. The compiler, behind the scenes, writes a private class implementing IEnumerable<T>

(as well as IEnumerator<T>).

1.27.3.1. Multiple yield statements

In iterator can include multiple yield statements. For example:

 static void Main()

 {

 foreach (string s in Foo())

 Console.Write (s + " "); // One Two Three

 }

 static IEnumerable<string> Foo()

 {

 yield return "One";

 yield return "Two";

 yield return "Three";

 }

1.27.3.2. yield break

The yield break statement indicates that the iterator block should exit early, without returning more elements.

We can modify the preceding Foo method to demonstrate:

 static IEnumerable<string> Foo(bool breakEarly)

 {

 yield return "One";

 yield return "Two";

 if (breakEarly)

 yield break;

 yield return "Three";

 }

A return statement is illegal in an iterator block-you must use yield break instead.

1.27.4. Composing Sequences

Iterators are highly composable. We can extend our example, this time to output only even Fibonacci numbers:

Code View:
 using System;

 using System.Collections.Generic;

 class Test

 {

 static void Main()

 {

 foreach (int fib in EvenNumbersOnly (Fibs (6)))

 Console.WriteLine(fib);

 }

 static IEnumerable<int> Fibs (int fibCount)

 {

 for (int i = 0, prevFib = 1, curFib = 1;

 i < fibCount;

 i++)

 {

 yield return prevFib;

 int newFib = prevFib+curFib;

 prevFib = curFib;

 curFib = newFib;

 }

 }

 static IEnumerable<int> EvenNumbersOnly (

 IEnumerable<int> sequence)

 {

 foreach(int x in sequence)

 if ((x % 2) == 0)

 yield return x;

 }

 }

Each element is not calculated until the last moment-when requested by a MoveNext() operation. Figure 1-5

shows the data requests and data output over time.

Figure 1-5. Composing sequences

The composability of the iterator pattern is extremely useful in building LINQ queries.

1.28. Nullable Types

1.28.1. Null Basics

Reference types can represent a nonexistent value with a null reference. Value types, however, cannot
ordinarily represent null values. For example:

 string s = null; // OK, Reference Type

 int i = null; // Compile Error, Value Type

 // cannot be null

To represent null in a value type, you must use a special construct called a nullable type. A nullable type is
denoted with a value type followed by the ? symbol:

 int? i = null; // OK, Nullable Type

 Console.WriteLine (i == null); // True

1.28.1.1. Nullable<T> struct

T? translates into System.Nullable<T>. Nullable<T> is a light-weight immutable struct, having only two fields

to represent Value and HasValue. The essence of System.Nullable<T> is very simple:

 public struct Nullable<T> where T : struct

 {

 public T Value {get;}

 public bool HasValue {get;}

 public T GetValueOrDefault();

 public T GetValueOrDefault(T defaultValue);

 ...

 }

The code:

 int? i = null;

 Console.WriteLine (i == null); // true

gets translated by the compiler to:

 Nullable<int> i = new Nullable<int>();

 Console.WriteLine (! i.HasValue); // true

Attempting to retrieve Value when HasValue is false throws an InvalidOperationException.

GetValueOrDefault() returns Value if HasValue is true; otherwise, it returns new T() or a specified a custom

default value.

The default value of T? is null.

1.28.1.2. Implicit and explicit nullable conversions

The conversion from T to T? is implicit, and from T? to T is explicit. For example:

 int? x = 5; // implicit

 int y = (int)x; // explicit

The explicit cast is directly equivalent to calling the nullable object's Value property. Hence, if HasValue is false,

an InvalidOperationException is thrown.

1.28.1.3. Boxing and unboxing nullable values

When T? is boxed, the boxed value on the heap contains T, not T?. This optimization is possible because a

boxed value is a reference type that can already express null.

1.28.2. Lifted Operators

The Nullable<T> struct does not define operators such as <, >, or even ==. Despite this, the following code

compiles and executes correctly:

 int? x = 5;

 int? y = 10;

 bool b = x < y; // true

This works because the compiler steals or "lifts" the less-than operator from the underlying value type.
Semantically, it translates the preceding comparison expression into this:

 bool b = (x.HasValue && y.HasValue)

 ? (x.Value < y.Value)

 : false;

In other words, if both x and y have values, it compares via int's less- than operator; otherwise, it returns

false.

Operator lifting means you can implicitly use T's operators on T?. You can define operators for T? to provide

special-purpose null behavior, but in the vast majority of cases, it's best to rely on the compiler automatically
applying systematic nullable logic for you. The compiler performs null logic differently depending on the
category of operator.

1.28.2.1. Equality operators (== !=)

Lifted equality operators handle nulls just like reference types do. This means two null values are equal:

 Console.Write (null == null); // True

 Console.Write ((bool?)null == (bool?)null); // True

Further:

If exactly one operand is null, the operands are unequal.

If both operands are nonnull, their Values are compared.

1.28.2.2. Relational operators (< <= >= >)

The relational operators work on the principle that it is meaningless to compare null operands. This means
comparing a null value to either a null or nonnull value returns false.

 bool b = x < y; // Translation:

 bool b = (x == null || y == null)

 ? false

 : (x.Value < y.Value);

1.28.2.3. All other operators (+ -* / % & | ^ << >> + ++ --! ~)

These operators return null when any operands are null. (This pattern should be familiar to SQL users.)

 int? c = x + y; // Translation:

 int? c = (x == null || y == null)

 ? null

 : (int?) (x.Value + y.Value);

1.28.2.4. Mixing nullable and nonnullable operators

You can mix and match nullable and nonnullable types (this works because there is an implicit conversion from T

to T?):

 int? x = null;

 int y = 2;

 int? z = x + y; // equivalent to x + (int?)y

1.28.3. bool?

When supplied operands of type bool?, the & and | operators treat null as an unknown value. So, null | true

is true because:

If the unknown value was false, the result would be true.

If the unknown value was true, the result would be true.

Similarly, null & false is false. This behavior would be familiar to SQL users. The following example

enumerates other combinations:

 bool? n = null;

 bool? f = false;

 bool? t = true;

 Console.WriteLine (n | n); // (null)

 Console.WriteLine (n | f); // (null)

 Console.WriteLine (n | t); // True

 Console.WriteLine (n & n); // (null)

 Console.WriteLine (n & f); // False

 Console.WriteLine (n & t); // (null)

1.28.4. Null Coalescing Operator

The ?? operator is the null coalescing operator, and it can be used with both nullable types and reference types.

It says, "If the operand is nonnull, give it to me; otherwise, give me a default value." For example:

 int? x = null;

 int y = x ?? 5; // y is 5

The ?? operator is equivalent to calling GetValueOrDefault with an explicit default value.

1.29. Operator Overloading

Operators can be overloaded to provide more natural syntax for custom types. Operator overloading is most
appropriately used for implementing custom structs that represent fairly primitive data types. For example, a
custom numeric type is an excellent candidate for operator overloading.

The overloadable symbolic operators are as follows:

 + (unary) - (unary) ! ~ ++

 -- + - * /

 % & | ^ <<

 >> == != > <

 >= <=

The following operators are also overloadable:

Implicit and explicit conversions (with the implicit and explicit keywords)

The literals true and false

The following operators are indirectly overloaded:

The compound assignment operators (e.g., +=, /=) are implicitly overridden by overriding the

noncompound operators (e.g., +, =).

The conditional operators && and || are implicitly overridden by overriding the bitwise operators & and |.

1.29.1. Operator Functions

An operator is overloaded by declaring an operator function. An operator function has the following rules:

The name of the function is specified with the operator keyword followed by an operator symbol.

The operator function must be marked static.

The parameters of the operator function represent the operands.

The return type of an operator function represents the result of an expression.

At least one of the operands must be the type in which the operator function is declared.

In the following example, we define a struct called Note representing a musical note, and then overload the +

operator:

 public struct Note

 {

 int value;

 public Note (int semitonesFromA)

 { value = semitonesFromA; }

 public static Note operator + (Note x, int semitones)

 {

 return new Note (x.value + semitones);

 }

 }

This overload allows us to add an int to a Note:

 Note B = new Note(2);

 Note CSharp = B + 2;

Overloading an assignment operator automatically supports the corresponding compound assignment operator.
In our example, because we overrode +, we can use += too:

 CSharp += 2;

1.29.2. Overloading Equality and Comparison Operators

Equality and comparison operators are sometimes overridden when writing structs, and in rare cases when
writing classes. Special rules and obligations come with overloading the equality and comparison operators:

Pairing

The C# compiler enforces that operators that are logical pairs are both defined. These operators are (==

!=), (< >), and (<= >=).

EqualsandGetHashCode

If you overload == and !=, you will usually need to override object's Equals and GetHashCode methods

so that collections and hashtables will work reliably with the type.

IComparableandIComparable<T>

If you overload (< >) and (<= >=), you would also typically implement IComparable and

IComparable<T>.

Extending the previous example, here's how we could overload Note's equality operators:

 public static bool operator == (Note n1, Note n2)

 {

 return n1.value == n2.value;

 }

 public static bool operator != (Note n1, Note n2)

 {

 return !(n1.value == n2.value);

 }

 public override bool Equals (object otherNote)

 {

 if (!(otherNote is Note)) return false;

 return this == (Note)otherNote;

 }

 public override int GetHashCode()

 {

 return value.GetHashCode(); // Use value's hashcode

 }

1.29.3. Custom Implicit and Explicit Conversions

Implicit and explicit conversions are overloadable operators. These conversions are typically overloaded to
make converting between strongly related types (such as numeric types) concise and natural.

To convert between weakly related types, the following strategies are more suitable:

Write a constructor that has a parameter of the type to convert from.

Write ToXXX and FromXXX methods to convert between types.

As explained in the discussion on types, the rationale behind implicit conversions is that they are guaranteed to
succeed and do not lose information during the conversion. Conversely, an explicit conversion should be
required either when runtime circumstances will determine whether the conversion will succeed or if information
may be lost during the conversion.

In this example, we define conversions between our musical Note type and a double (which represents the

frequency in hertz of that note):

 ...

 // Convert to hertz

 public static implicit operator double (Note x)

 {

 return 440 * Math.Pow (2,(double) x.value / 12);

 }

 // Convert from hertz (accurate to nearest semitone)

 public static explicit operator Note (double x)

 {

 return new Note ((int) (0.5 + 12 * (Math.Log(x/440)

 / Math.Log(2))));

 }

 ...

 Note n =(Note)554.37; // explicit conversion

 double x = n; // implicit conversion

Following our own guidelines, the example might be better implemented with a
ToFrequency (and a static FromFrequency) method, not implicit and explicit operators.

1.30. Extension Methods (C# 3.0)

Extension methods allow an existing type to be extended with new methods, without altering the definition of
the original type. An extension method is a static method of a static class, where the this modifier is applied to

the first parameter. The type of the first parameter will be the type that is extended. For example:

 public static class StringHelper

 {

 public static bool IsCapitalized (this string s)

 {

 if (string.IsNullOrEmpty (s)) return false;

 return char.IsUpper (s[0]);

 }

 }

The IsCapitalized extension method can be called as though it were an instance method on a string, as

follows:

 Console.Write ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back into an ordinary static method call:

 Console.Write (StringHelper.IsCapitalized ("Perth"));

Interfaces can be extended, too:

 public static T First<T> (this IEnumerable<T> sequence)

 {

 foreach (T element in sequence)

 return element;

 throw new InvalidOperationException ("No elements!");

 }

 ...

 Console.WriteLine ("Seattle".First()); // S

1.30.1. Extension Method Chaining

Extension methods, like instance methods, provide a tidy way to chain functions. Consider the following two
functions:

 public static class StringHelper

 {

 public static string Pluralize (this string s) {...}

 public static string Capitalize (this string s) {...}

 }

x and y are equivalent and both evaluate to "Sausages", but x uses extension methods, whereas y uses static

methods:

 string x = "sausage".Pluralize().Capitalize();

 string y = StringHelper.Capitalize

 (StringHelper.Pluralize ("sausage"));

1.30.2. Ambiguity and Resolution

1.30.2.1. Namespaces

An extension method cannot be accessed unless the namespace is in scope (typically imported with a using

statement).

1.30.2.2. Extension methods versus instance methods

Any compatible instance method will always take precedence over an extension method. In the following
example, Test's Foo method will always take precedence-even when called with an argument x of type int:

 class Test

 {

 public void Foo (object x) { } // This method

 } // always wins

 static class Extensions

 {

 public static void Foo (this Test t, int x) { }

 }

The only way to call the extension method in this case is via normal static syntax; in other words,
Extensions.Foo(…).

1.30.2.3. Extension methods versus extension methods

If two extension methods have the same signature, the extension method must be called as an ordinary static
method to disambiguate the method to call. If one extension method has more specific arguments, however,
the more specific method takes precedence.

To illustrate, consider the following two classes:

 static class StringHelper

 {

 public static bool IsCapitalized (this string s) {...}

 }

 static class ObjectHelper

 {

 public static bool IsCapitalized (this object s) {...}

 }

The following code calls StringHelper's IsCapitalized method:

 bool test1 = "Perth".IsCapitalized();

To call ObjectHelper's IsCapitalized method, we explicitly must specify it:

 bool test2 = (ObjectHelper.IsCapitalized ("Perth"));

1.31. Anonymous Types (C# 3.0)

An anonymous type is a simple class created on the fly to store a set of values. To create an anonymous type,
use the new keyword followed by an object initializer, specifying the properties and values the type will contain.

For example:

 var dude = new { Name = "Bob", Age = 1 };

The compiler resolves this by writing a private nested type with read-only properties for Name (type string) and

Age (type int). You must use the var keyword to reference an anonymous type, because the type's name is

compiler-generated.

The property name of an anonymous type can be inferred from an expression that is itself an identifier. For
example:

 int Age = 1;

 var dude = new { Name = "Bob", Age };

is equivalent to:

 var dude = new { Name = "Bob", Age = Age };

Anonymous types are used primarily when writing LINQ queries.

1.32. LINQ (C# 3.0)

LINQ allows you to write structured type-safe queries over local object collections and remote data sources. LINQ
is a new feature of C# 3.0 and .NET Framework 3.5.

LINQ lets you query any collection implementing IEnumerable<>, whether an array, list, XML DOM, or remote

data source (such as a table in SQL Server). LINQ offers the benefits of both compile-time type checking and
dynamic query composition.

A good way to experiment with LINQ is to download LINQPad at www.linqpad.net.
LINQPad lets you interactively query local collections and SQL databases in LINQ without
any setup.

1.32.1. LINQ Fundamentals

The basic units of data in LINQ are sequences and elements. A sequence is any object that implements the
generic IEnumerable interface and an element is each item in the sequence. In the following example, names is

a sequence, and Tom, Dick, and Harry are elements:

 string[] names = { "Tom", "Dick", "Harry" };

A sequence such as this we call a local sequence because it represents a local collection of objects in memory.

A query operator is a method that transforms a sequence. A typical query operator accepts an input sequence
and emits a transformed output sequence. In the Enumerable class in System.Linq, there are around 40 query

operators; all implemented as static extension methods. These are called standard query operators.

LINQ also supports sequences that can be dynamically fed from a remote data source
such as a SQL Server. These sequences additionally implement the IQueryable<>

interface and are supported through a matching set of standard query operators in the
Queryable class.

1.32.1.1. A simple query

A query is an expression that transforms sequences with one or more query operators. The simplest query
comprises one input sequence and one operator. For instance, we can apply the Where operator on a simple

array to extract those whose length is at least four characters as follows:

 string[] names = { "Tom", "Dick", "Harry" };

 IEnumerable<string> filteredNames =

 System.Linq.Enumerable.Where (

 names, n => n.Length >= 4);

 foreach (string n in filteredNames)

 Console.Write (n + "|"); // Dick|Harry|

Because the standard query operators are implemented as extension methods, we can call Where directly on

names-as though it were an instance method:

 IEnumerable<string> filteredNames =

 names.Where (n => n.Length >= 4);

(For this to compile, you must import the System.Linq namespace with a using directive.) The Where method

in System.Linq.Enumerable has the following signature:

 static IEnumerable<TSource> Where<TSource> (

 this IEnumerable<TSource> source,

 Func<TSource,bool> predicate)

source is the input sequence; predicate is a delegate that is invoked on each input element. Where method

includes all elements in the output sequence, for which the delegate returns true. Internally, it's implemented
with an iterator-here is its source code:

 foreach (TSource element in source)

 if (predicate (element))

 yield return element;

1.32.1.2. Projecting

Another fundamental query operator is the Select method. This transforms (projects) each element in the input

sequence with a given lambda expression:

 string[] names = { "Tom", "Dick", "Harry" };

 IEnumerable<string> upperNames =

 names.Select (n => n.ToUpper());

 foreach (string n in upperNames)

 Console.Write (n + "|"); // TOM|DICK|HARRY|

A query can project into an anonymous type:

 var query = names.Select (n => new {

 Name = n,

 Length = n.Length

 });

 foreach (var row in query)

 Console.WriteLine (row);

Here's the result:

 { Name = Tom, Length = 3 }

 { Name = Dick, Length = 4 }

 { Name = Harry, Length = 5 }

1.32.1.3. Take and Skip

The original ordering of elements within an input sequence is significant in LINQ. Some query operators rely on
this behavior, such as Take, Skip, and Reverse. The Take operator outputs the first x elements, discarding the

rest:

 int[] numbers = { 10, 9, 8, 7, 6 };

 IEnumerable<int> firstThree = numbers.Take (3);

 // firstThree is { 10, 9, 8 }

The Skip operator ignores the first x elements, and outputs the rest:

 IEnumerable<int> lastTwo = numbers.Skip (3);

 // lastTwo is { 7, 6 }

1.32.1.4. Element operators

Not all query operators return a sequence. The element operators extract one element from the input sequence;
examples are First, Last, Single, and ElementAt:

 int[] numbers = { 10, 9, 8, 7, 6 };

 int firstNumber = numbers.First(); // 10

 int lastNumber = numbers.Last(); // 6

 int secondNumber = numbers.ElementAt (2); // 8

 int firstOddNumber = numbers.First (n => n % 2 == 1);

 // 9

All of these operators throw an exception if no elements are present. To get a null/empty return value instead of
an exception, use FirstOrDefault, LastOrDefault, SingleOrDefault, or ElementAtOrDefault.

The Single and SingleOrDefault methods are equivalent to First and FirstOrDefault except that they

throw an exception if there's more than one match. This behavior is useful in LINQ to SQL queries, when
retrieving a row by primary key.

1.32.1.5. Aggregation operators

The aggregation operators return a scalar value, usually of numeric type. The most commonly used aggregation
operators are Count, Min, Max, and Average:

 int[] numbers = { 10, 9, 8, 7, 6 };

 int count = numbers.Count(); // 5

 int min = numbers.Min(); // 6

 int max = numbers.Max(); // 10

 double avg = numbers.Average(); // 8

Count accepts an optional predicate, which indicates whether to include a given element. The following counts

all even numbers:

 int evenNums = numbers.Count (n => n % 2 == 0); // 3

The Min, Max, and Average operators accept an optional argument that transforms each element before it is

aggregated:

 int maxRemainderAfterDivBy5 = numbers.Max (n % 5); // 4

The following calculates the root-mean-square of numbers:

 double rms = Math.Sqrt (numbers.Average (n => n * n));

1.32.1.6. Quantifiers

The quantifiers return a bool value. The quantifiers are Contains, Any, All, and SequenceEquals (which

compares two sequences):

 int[] numbers = { 10, 9, 8, 7, 6 };

 bool hasTheNumberNine = numbers.Contains (9); // true

 bool hasMoreThanZeroElements = numbers.Any(); // true

 bool hasOddNum = numbers.Any (n => n % 2 == 1); // true

 bool allOddNums = numbers.All (n => n % 2 == 1); // false

1.32.1.7. Set operators

The set operators accept two same-typed input sequences. Concat appends one sequence to another; Union

does the same but with duplicates removed:

 int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

 IEnumerable<int>

 concat = seq1.Concat (seq2), // { 1, 2, 3, 3, 4, 5 }

 union = seq1.Union (seq2), // { 1, 2, 3, 4, 5 }

The other two operators in this category are Intersect and Except:

 IEnumerable<int>

 commonality = seq1.Intersect (seq2), // { 3 }

 difference1 = seq1.Except (seq2), // { 1, 2 }

 difference2 = seq2.Except (seq1); // { 4, 5 }

1.32.2. Deferred Execution

An important feature of many query operators is that they execute not when constructed, but when enumerated
(in other words, when MoveNext is called on its enumerator). Consider the following query:

 var numbers = new List<int> { 1 };

 numbers.Add (1);

 IEnumerable<int> query = numbers.Select (n => n * 10);

 numbers.Add (2); // Sneak in an extra element

 foreach (int n in query)

 Console.Write (n + "|"); // 10|20|

The extra number that we sneaked into the list after constructing the query is included in the result because it's
not until the foreach statement runs that any filtering or sorting takes place. This is called deferred or lazy

evaluation. Deferred execution decouples query construction from query execution, allowing you to construct a
query in several steps, as well as making LINQ to SQL queries possible. All standard query operators provide
deferred execution, with the following exceptions:

Operators that return a single element or scalar value (the element operators, aggregation operators, and
quantifiers)

The following conversion operators:

 ToArray, ToList, ToDictionary, ToLookup

The conversion operators are useful, in part, because they defeat lazy evaluation. This can be useful when:

You want to "freeze" or cache the results at a certain point in time.

You want to avoid reexecuting a computationally intensive query, or a query with a remote data source
such as a LINQ to SQL table. (A side effect of lazy evaluation is the query gets reevaluated should you
later reenumerate it.)

The following example illustrates the ToList operator:

 var numbers = new List<int>() { 1, 2 };

 List<int> timesTen = numbers

 .Select (n => n * 10)

 .ToList(); // Executes immediately into a List<int>

 numbers.Clear();

 Console.WriteLine (timesTen.Count); // Still 2

Subqueries provide another level of indirection. Everything in a subquery is subject to
deferred execution-including aggregation and conversion methods-because the
subquery is itself executed only lazily upon demand. Assuming names is a string array, a

subquery looks like this:

 names.Where (

 n => n.Length ==

 names.Min (n2 => n2.Length)

)

1.32.3. Standard Query Operators

The standard query operators (as implemented in the System.Linq.Enumerable class) can be divided into 12

categories, as summarized in Table 1-2.

Table 1-2. Query operator categories

Category Description Deferred
execution?

Filtering Returns a subset of elements that satisfy a given condition Yes

Category Description Deferred
execution?

Projecting Transforms each element with a lambda function, optionally
expanding subsequences

Yes

Joining Meshes elements of one collection with another, using a time-efficient
lookup strategy

Yes

Ordering Returns a reordering of a sequence Yes

Grouping Groups a sequence into subsequences Yes

Set Accepts two same-typed sequences, and returns their commonality,
sum, or difference

Yes

Element Picks a single element from a sequence No

Aggregation Performs a computation over a sequence, returning a scalar value
(typically a number)

No

Quantifiers Performs a computation over a sequence, returning true or false No

Conversion:
Import

Converts a nongeneric sequence to a (queryable) generic sequence Yes

Conversion:
Export

Converts a sequence to an array, list, dictionary or lookup, forcing
immediate evaluation

No

Generation Manufactures a simple sequence Yes

Table 1-3–14Table 1-14 summarize each of the query operators. The operators shown in bold have special
support in C# 3.0 (see the upcoming "Query Syntax" section).

Table 1-3. Filtering operators

Method Description

Where Returns a subset of elements that satisfy a given condition

Take Returns the first x elements, and discards the rest

Skip Ignores the first x elements, and returns the rest

TakeWhile Emits elements from the input sequence until the given predicate is true

SkipWhile Ignores elements from the input sequence until the given predicate is true, and then emits the
rest

Distinct Returns a collection that excludes duplicates

Table 1-4. Projection operators

Method Description

Select Transforms each input element with a given lambda expression

Table 1-5. Joining operators

Projecting Transforms each element with a lambda function, optionally
expanding subsequences

Yes

Joining Meshes elements of one collection with another, using a time-efficient
lookup strategy

Yes

Ordering Returns a reordering of a sequence Yes

Grouping Groups a sequence into subsequences Yes

Set Accepts two same-typed sequences, and returns their commonality,
sum, or difference

Yes

Element Picks a single element from a sequence No

Aggregation Performs a computation over a sequence, returning a scalar value
(typically a number)

No

Quantifiers Performs a computation over a sequence, returning true or false No

Conversion:
Import

Converts a nongeneric sequence to a (queryable) generic sequence Yes

Conversion:
Export

Converts a sequence to an array, list, dictionary or lookup, forcing
immediate evaluation

No

Generation Manufactures a simple sequence Yes

Table 1-3–14Table 1-14 summarize each of the query operators. The operators shown in bold have special
support in C# 3.0 (see the upcoming "Query Syntax" section).

Table 1-3. Filtering operators

Method Description

Where Returns a subset of elements that satisfy a given condition

Take Returns the first x elements, and discards the rest

Skip Ignores the first x elements, and returns the rest

TakeWhile Emits elements from the input sequence until the given predicate is true

SkipWhile Ignores elements from the input sequence until the given predicate is true, and then emits the
rest

Distinct Returns a collection that excludes duplicates

Table 1-4. Projection operators

Method Description

Method Description

Select Transforms each input element with a given lambda expression

SelectMany Transforms each input element, then flattens and concatenates the resultant subsequences

Table 1-5. Joining operators

Method Description

Join Applies a lookup strategy to match elements from two collections, emitting a flat result set

GroupJoin As above, but emits a hierarchical result set

Table 1-6. Ordering operators

Method Description

OrderBy, ThenBy Returns the elements sorted in ascending order

OrderByDescending, ThenByDescending Returns the elements sorted in descending order

Reverse Returns the elements in reverse order

Table 1-7. Grouping operators

Method Description

GroupBy Groups a sequence into subsequences

Table 1-8. Set operators

Method Description

Concat Concatenates two sequences

Union Concatenates two sequences, removing duplicates

Intersect Returns elements present in both sequences

Except Returns elements present in the first, but not the second sequence

Table 1-9. Element operators

Method Description

First, FirstOrDefault Returns the first element in the sequence, or the first element satisfying a
given predicate

Last, LastOrDefault Returns the last element in the sequence, or the last element satisfying a
given predicate

Single, SingleOrDefault Equivalent to First/FirstOrDefault, but throws an exception if there is

more than one match

Select Transforms each input element with a given lambda expression

SelectMany Transforms each input element, then flattens and concatenates the resultant subsequences

Table 1-5. Joining operators

Method Description

Join Applies a lookup strategy to match elements from two collections, emitting a flat result set

GroupJoin As above, but emits a hierarchical result set

Table 1-6. Ordering operators

Method Description

OrderBy, ThenBy Returns the elements sorted in ascending order

OrderByDescending, ThenByDescending Returns the elements sorted in descending order

Reverse Returns the elements in reverse order

Table 1-7. Grouping operators

Method Description

GroupBy Groups a sequence into subsequences

Table 1-8. Set operators

Method Description

Concat Concatenates two sequences

Union Concatenates two sequences, removing duplicates

Intersect Returns elements present in both sequences

Except Returns elements present in the first, but not the second sequence

Table 1-9. Element operators

Method Description

First, FirstOrDefault Returns the first element in the sequence, or the first element satisfying a
given predicate

Last, LastOrDefault Returns the last element in the sequence, or the last element satisfying a
given predicate

Method Description

Single, SingleOrDefault Equivalent to First/FirstOrDefault, but throws an exception if there is

more than one match

ElementAt,

ElementAtOrDefault

Returns the element at the specified position

DefaultIfEmpty Returns null or default(TSource) if the sequence has no elements

Table 1-10. Aggregation operators

Method Description

Count,

LongCount

Returns the total number of elements in the input sequence, or the number of elements
satisfying a given predicate

Min, Max Returns the smallest or largest element in the sequence

Sum, Average Calculates a numeric sum or average over elements in the sequence

Aggregate Performs a custom aggregation

Table 1-11. Qualifiers

Method Description

Contains Returns true if the input sequence contains the given element

Any Returns true if any elements satisfy the given predicate

All Returns true if all elements satisfy the given predicate

SequenceEqual Returns true if the second sequence has identical elements to the input sequence

Table 1-12. Conversion operators (import)

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an exception if there are any wrongly typed

elements

Table 1-13. Table conversion operators (export)

Method Description

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

ToDictionary Converts IEnumerable<T> to Dictionary<TKey,TValue>

ToLookup Converts IEnumerable<T> to ILookup<TKey,TElement>

Single, SingleOrDefault Equivalent to First/FirstOrDefault, but throws an exception if there is

more than one match

ElementAt,

ElementAtOrDefault

Returns the element at the specified position

DefaultIfEmpty Returns null or default(TSource) if the sequence has no elements

Table 1-10. Aggregation operators

Method Description

Count,

LongCount

Returns the total number of elements in the input sequence, or the number of elements
satisfying a given predicate

Min, Max Returns the smallest or largest element in the sequence

Sum, Average Calculates a numeric sum or average over elements in the sequence

Aggregate Performs a custom aggregation

Table 1-11. Qualifiers

Method Description

Contains Returns true if the input sequence contains the given element

Any Returns true if any elements satisfy the given predicate

All Returns true if all elements satisfy the given predicate

SequenceEqual Returns true if the second sequence has identical elements to the input sequence

Table 1-12. Conversion operators (import)

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an exception if there are any wrongly typed

elements

Table 1-13. Table conversion operators (export)

Method Description

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

ToDictionary Converts IEnumerable<T> to Dictionary<TKey,TValue>

Method Description

ToLookup Converts IEnumerable<T> to ILookup<TKey,TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

Table 1-14. Generation operators

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

1.32.4. Chaining Query Operators

To build more complex queries, you chain query operators together. For example, the following query extracts
all strings containing the letter a, sorts them by length, and then converts the results to uppercase:

 string[] names = { "Tom","Dick","Harry","Mary","Jay" };

 IEnumerable<string> query = names

 .Where (n => n.Contains ("a"))

 .OrderBy (n => n.Length)

 .Select (n => n.ToUpper());

 foreach (string name in query)

 Console.Write (name + "|");

 // RESULT: JAY|MARY|HARRY|

Where, OrderBy, and Select are all standard query operators that resolve to extension methods in the

Enumerable class. The Where operator emits a filtered version of the input sequence; OrderBy emits a sorted

version of its input sequence; Select emits a sequence where each input element is transformed or projected

with a given lambda expression (n.ToUpper(), in this case). Data flows from left to right through the chain of

operators, so the data is first filtered, then sorted, then projected. The end result resembles a production line of
conveyor belts, as illustrated in Figure 1-6.

Figure 1-6. Chaining query operators

ToLookup Converts IEnumerable<T> to ILookup<TKey,TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

Table 1-14. Generation operators

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

1.32.4. Chaining Query Operators

To build more complex queries, you chain query operators together. For example, the following query extracts
all strings containing the letter a, sorts them by length, and then converts the results to uppercase:

 string[] names = { "Tom","Dick","Harry","Mary","Jay" };

 IEnumerable<string> query = names

 .Where (n => n.Contains ("a"))

 .OrderBy (n => n.Length)

 .Select (n => n.ToUpper());

 foreach (string name in query)

 Console.Write (name + "|");

 // RESULT: JAY|MARY|HARRY|

Where, OrderBy, and Select are all standard query operators that resolve to extension methods in the

Enumerable class. The Where operator emits a filtered version of the input sequence; OrderBy emits a sorted

version of its input sequence; Select emits a sequence where each input element is transformed or projected

with a given lambda expression (n.ToUpper(), in this case). Data flows from left to right through the chain of

operators, so the data is first filtered, then sorted, then projected. The end result resembles a production line of
conveyor belts, as illustrated in Figure 1-6.

Figure 1-6. Chaining query operators

Deferred execution is honored throughout with operators, so no filtering, sorting, or projecting takes place until
the query is actually enumerated.

1.32.5. Query Syntax

C# 3.0 provides special language support for writing queries, called query comprehension syntax or query
syntax. Here's the preceding query expressed in query syntax:

 using System.Linq;

 ...

 string[] names = { "Tom","Dick","Harry","Mary","Jay" };

 IEnumerable<string> query =

 from n in names

 where n.Contains ("a")

 orderby n.Length

 select n.ToUpper();

A comprehension query always starts with a from clause and ends with either a select or group clause. The

from clause declares an iteration variable (in this case, n) which you can think of as traversing the input

collection-rather like foreach. Figure 1-7 illustrates the complete syntax.

If you're familiar with SQL, LINQ's query syntax-with the from clause first and the

select clause last-might look bizarre. Query syntax is actually more logical because

the clauses appear in the order they're executed. This allows Visual Studio to prompt
you with Intellisense as you type, as well as simplifying the scoping rules for subqueries.

The compiler processes comprehension queries by translating them to lambda syntax. It does this in a fairly
mechanical fashion-much like it translates foreach statements into calls to GetEnumerator and MoveNext:

 IEnumerable<string> query = names

 .Where (n => n.Contains ("a"))

 .OrderBy (n => n.Length)

 .Select (n => n.ToUpper());.

Figure 1-7. Query comprehension syntax

The Where, OrderBy, and Select operators then resolve using the same rules that would apply if the query

were written in lambda syntax. In this case, they bind to extension methods in the Enumerable class (assuming

you've imported the System.Linq namespace) because names implements IEnumerable<string>. The compiler

doesn't specifically favor the Enumerable class, however, when translating query syntax. You can think of the

compiler as mechanically injecting the words "Where," "OrderBy," and "Select" into the statement, and then
compiling it as though you'd typed the method names yourself. This offers flexibility in how they resolve-the
operators in LINQ to SQL queries, for instance, bind instead to the extension methods in the Queryable class.

1.32.5.1. Query syntax versus lambda syntax

Query syntax and lambda syntax each have advantages.

Query syntax supports only a small subset of query operators, namely:

 Where, Select, SelectMany

 OrderBy, ThenBy, OrderByDescending, ThenByDescending

 Group, Join, GroupJoin

For queries that use other operators, you must either write entirely in lambda syntax or construct mixed-syntax
queries, for instance:

 string[] names = { "Tom","Dick","Harry","Mary","Jay" };

 IEnumerable<string> query =

 from n in names

 where n.Length == names.Min (n2 => n2.Length)

 select n;

This query returns names whose length matches that of the shortest ("Tom" and "Jay"). The subquery (in bold)
calculates the minimum length of each name, and evaluates to 3. We have to use lambda syntax for the
subquery because the Min operator has no support in query syntax. We can, however, still use query syntax for

the outer query.

The main advantage of query syntax is that it can radically simplify queries that involve the following:

A let clause for introducing a new variable alongside the iteration variable

Multiple generators (SelectMany) followed by an outer iteration variable reference

A Join or GroupJoin equivalent, followed by an outer iteration variable reference

1.32.6. The let Keyword

The let keyword introduces a new variable alongside the iteration variable. For instance, suppose we want to

list all names whose length without vowels is greater than two characters:

 string[] names = { "Tom","Dick","Harry","Mary","Jay" };

 IEnumerable<string> query =

 from n in names

 let vowelless = Regex.Replace (n, "[aeiou]", "")

 where vowelless.Length > 2

 orderby vowelless

 select n + " - " + vowelless;

The output from enumerating this query is:

 Dick - Dck

 Harry - Hrry

 Mary - Mry

The let clause performs a calculation on each element, without losing the original element. In our query, the

subsequent clauses (where, orderby, and select) have access to both n and vowelless. Queries can include

any multiple let clauses, and they can be interspersed with additional where and join clauses.

The compiler translates the let keyword by projecting into a temporary anonymous type that contains both the

original and transformed elements:

 IEnumerable<string> query = names

 .Select (n => new

 {

 n = n,

 vowelless = Regex.Replace (n, "[aeiou]", "")

 }

)

 .Where (temp0 => (temp0.vowelless.Length > 2))

 .OrderBy (temp0 => temp0.vowelless)

 .Select (temp0 => ((temp0.n + " - ") + temp0.vowelless))

1.32.7. Query Continuations

If you want to add clauses after a select or group clause, you must use the into keyword to "continue" the

query. For instance:

 from c in "The quick brown tiger".Split()

 select c.ToUpper()

 into upper

 where upper.StartsWith ("T")

 select upper

 // RESULT: "THE", "TIGER"

Following an into clause, the previous iteration variable is out of scope.

The compiler translates queries with an into keyword simply into a longer chain of lambda operators:

 "The quick brown tiger".Split()

 .Select (c => c.ToUpper())

 .Where (upper => upper.StartsWith ("T"))

(It omits the final Select(upper=>upper), as it's redundant.)

1.32.8. Multiple Generators

A query can include multiple generators (from clauses). For example:

 int[] numbers = { 1, 2, 3 };

 string[] letters = { "a", "b" };

 IEnumerable<string> query = from n in numbers

 from l in letters

 select n.ToString() + l;

The result is a cross product, rather like you'd get with nested foreach loops:

 "1a", "1b", "2a", "2b", "3a", "3b"

When there's more than one from clause in a query, the compiler emits a call to SelectMany:

 IEnumerable<string> query = numbers.SelectMany (

 n => letters,

 (n, l) => (n.ToString() + l));

SelectMany performs nested looping. It enumerates every element in the source collection (numbers),

transforming each element with the first lambda expression (letters). This generates a sequence of

subsequences, which it then enumerates. The final output elements are determined by the second lambda
expression (n.ToString()+l).

If you subsequently apply a where clause, you can filter the cross product and project a result akin to a join:

 string[] players = { "Tom", "Jay", "Mary" };

 IEnumerable<string> query =

 from name1 in players

 from name2 in players

 where name1.CompareTo (name2) < 0

 orderby name1, name2

 select name1 + " vs " + name2;

 RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The translation of this query into lambda syntax is considerably more complex, requiring a temporary
anonymous projection. The ability to perform this translation automatically is one of the key benefits of query
syntax.

The expression in the second generator is allowed to use the first iteration variable:

 string[] fullNames =

 { "Anne Williams", "John Fred Smith", "Sue Green" };

 IEnumerable<string> query =

 from fullName in fullNames

 from name in fullName.Split()

 select name + " came from " + fullName;

 Anne came from Anne Williams

 Williams came from Anne Williams

 John came from John Fred Smith

This works because the expression fullName.Split emits a sequence (an array of strings).

Multiple generators are used extensively in LINQ to SQL queries to flatten parent-child relationships and to
perform manual joins.

1.32.9. Joining

LINQ provides joining operators for performing keyed lookup-based joins. The joining operators support only a
subset of the functionality you get with multiple generators/SelectMany, but they are more performant with

local queries because they use a hashtable-based lookup strategy rather than performing nested loops. (With
LINQ to SQL queries, the joining operators have no advantage over multiple generators.)

The joining operators support equijoins only (i.e., the joining condition must use the equality operator). There
are two methods: Join and GroupJoin. Join emits a flat result set, whereas GroupJoin emits a hierarchical

result set.

The syntax for a flat join is:

 from outer-var in outer-sequence

 join inner-var in inner-sequence

 on outer-key-expr equals inner-key-expr

For example, given the following collections:

 var customers = new[]

 {

 new { ID = 1, Name = "Tom" },

 new { ID = 2, Name = "Dick" },

 new { ID = 3, Name = "Harry" }

 };

 var purchases = new[]

 {

 new { CustomerID = 1, Product = "House" },

 new { CustomerID = 2, Product = "Boat" },

 new { CustomerID = 2, Product = "Car" },

 new { CustomerID = 3, Product = "Holiday" }

 };

we could perform a join as follows:

 IEnumerable<string> query =

 from c in customers

 join p in purchases on c.ID equals p.CustomerID

 select c.Name + " bought a " + p.Product;

The compiler translates this to:

 customers.Join (// outer collection

 purchases, // inner collection

 c => c.ID, // outer key selector

 p => p.CustomerID, // inner key selector

 (c, p) => // result selector

 c.Name + " bought a " + p.Product

);

Here's the result:

 Tom bought a House

 Dick bought a Boat

 Dick bought a Car

 Harry bought a Holiday

With local sequences, the join operators are more efficient at processing large collections than SelectMany

because they first preload the inner sequence into a keyed hashtable-based lookup. With a LINQ to SQL query,
however, you could achieve the same result equally efficiently as follows:

 from c in customers

 from p in purchases

 where c.ID == p.CustomerID

 select c.Name + " bought a " + p.Product;

1.32.9.1. GroupJoin

GroupJoin does the same work as Join, but instead of yielding a flat result, it yields a hierarchical result,

grouped by each outer element.

The comprehension syntax for GroupJoin is the same as for Join, but is followed by the into keyword. Here's a

basic example, using the customers and purchases collections we set up in the previous section:

 IEnumerable<IEnumerable<Purchase>> query =

 from c in customers

 join p in purchases on c.ID equals p.CustomerID

 into custPurchases

 select custPurchases; // custPurchases is a sequence

An into clause translates to GroupJoin only when it appears directly after a join

clause. After a select or group clause it means query continuation. The two uses of the

into keyword are quite different, although they have one feature in common: they both

introduce a new query variable.

The result is a sequence of sequences that we could enumerate as follows:

 foreach (IEnumerable<Purchase> purchaseSequence in query)

 foreach (Purchase p in purchaseSequence)

 Console.WriteLine (p.Description);

This isn't very useful, however, because outerSeq has no reference to the outer customer. More commonly,

you'd reference the outer iteration variable in the projection:

 from c in customers

 join p in purchases on c.ID equals p.CustomerID

 into custPurchases

 select new { CustName = c.Name, custPurchases };

We could obtain the same result (but less efficiently, for local queries) by projecting into an anonymous type
that included a subquery:

 from c in customers

 select new

 {

 CustName = c.Name,

 custPurchases =

 purchases.Where (p => c.ID == p.CustomerID)

 }

1.32.10. Ordering

The orderby keyword sorts a sequence. You can specify any number of expressions upon which to sort:

 string[] names = { "Tom","Dick","Harry","Mary","Jay" };

 IEnumerable<string> query = from n in names

 orderby n.Length, n

 select n;

This sorts first by length, then name, so the result is:

 Jay, Tom, Dick, Mary, Harry

The compiler translates the first orderby expression to a call to OrderBy, and subsequent expressions to a call

to ThenBy:

 IEnumerable<string> query = names

 .OrderBy (n => n.Length)

 .ThenBy (n => n)

The ThenBy operator refines rather than replaces the previous sorting.

You can include the descending keyword after any of the orderby expressions:

 orderby n.Length descending, n

This translates to the following:

 OrderByDescending (n => n.Length).ThenBy (n => n)

The ordering operators return an extended type of IEnumerable<T> called

IOrderedEnumerble<T>. This interface defines the extra functionality required by the

ThenBy operators.

1.32.11. Grouping

GroupBy organizes a flat input sequence into sequences of groups. For example, the following groups a

sequence of names by their length:

 string[] names = { "Tom","Dick","Harry","Mary","Jay" };

 var query = from name in names

 group name by name.Length;

The compiler translates this query into this:

 IEnumerable<IGrouping<int,string>> query =

 names.GroupBy (name => name.Length);

Here's how to enumerate the result:

 foreach (IGrouping<int,string> grouping in query)

 {

 Console.Write ("\r\n Length=" + grouping.Key + ":");

 foreach (string name in grouping)

 Console.Write (" " + name);

 }

 Length=3: Tom Jay

 Length=4: Dick Mary

 Length=5: Harry

Enumerable.GroupBy works by reading the input elements into a temporary dictionary of lists so that all

elements with the same key end up in the same sublist. It then emits a sequence of groupings. A grouping is a
sequence with a Key property:

 public interface IGrouping <TKey,TElement>

 : IEnumerable<TElement>, IEnumerable

 {

 // Key applies to the subsequence as a whole

 TKey Key { get; }

 }

By default, the elements in each grouping are untransformed input elements unless you specify an
elementSelector argument. The following projects each input element to uppercase:

 from name in names

 group name.ToUpper() by name.Length

which translates to this:

 names.GroupBy (

 name => name.Length,

 name => name.ToUpper())

The subcollections are not emitted in order of key. GroupBy does no sorting (in fact, it preserves the original

ordering.) To sort, you must add an OrderBy operator (which means first adding an into clause because group

by ordinarily ends a query):

 from name in names

 group name.ToUpper() by name.Length

 into grouping

 orderby grouping.Key

 select grouping

Query continuations are often used in a group by query. The next query filters out groups that have exactly two

matches in them:

 from name in names

 group name.ToUpper() by name.Length

 into grouping

 where grouping.Count() == 2

 select grouping

A where after a group by is equivalent to HAVING in SQL. It applies to each subsequence

or grouping as a whole rather than the individual elements.

1.32.12. OfType and Cast

OfType and Cast accept a nongeneric IEnumerable collection and emit a generic IEnumerable<T> sequence

that you can subsequently query:

 var classicList = new System.Collections.ArrayList();

 classicList.AddRange (new int[] { 3, 4, 5 });

 IEnumerable<int> sequence1 = classicList.Cast<int>();

This is useful because it allows you to query collections written prior to C# 2.0 (when IEnumerable<T> was

introduced), such as ControlCollection in System.Windows.Forms.

Cast and OfType differ in their behavior when encountering an input element that's of an incompatible type:

Cast throws an exception, whereas OfType ignores the incompatible element.

The rules for element compatiblity follow those of C#'s is operator. Here's the internal implementation of Cast:

 public static IEnumerable<TSource> Cast <TSource>

 (IEnumerable source)

 {

 foreach (object element in source)

 yield return (TSource)element;

 }

C# supports the Cast operator in query syntax. Simply insert the element type immediately after the from

keyword:

 from int x in classicList

 ...

This translates to the following:

 from x in classicList.Cast <int>()

 ...

1.33. Attributes

You're already familiar with the notion of attributing code elements of a program with modifiers, such as
virtual or ref. These constructs are built into the language. Attributes are an extensible mechanism for adding

custom information to code elements (assemblies, types, members, return values, and parameters). This
extensibility is useful for services that integrate deeply into the type system, without requiring special keywords
or constructs in the C# language.

A good scenario for attributes is serialization-the process of converting arbitrary objects to and from a
particular format.

In this scenario, an attribute on a field can specify the translation between C#'s representation of the field and
the format's representation of the field.

1.33.1. Attribute Classes

An attribute is defined by a class that inherits (directly or indirectly) from the abstract class System.Attribute.

To attach an attribute to a code element, you specify the attribute's type name in square brackets, before the
code element. For example, the following attaches the ObsoleteAttribute to the Foo class:

 [ObsoleteAttribute]

 public class Foo { ... }

This attribute is recognized by the compiler and will cause compiler warnings if a type or member marked
obsolete is referenced. By convention, all attribute types end in the word "Attribute." C# recognizes this and
allows you to omit the suffix when attaching an attribute:

 [Obsolete]

 public class Foo { ... }

ObsoleteAttribute is a type declared in the System namespace as follows (simplified for brevity):

 public sealed class ObsoleteAttribute : Attribute

 { ... }

1.33.2. Named and Positional Parameters

Attributes may have parameters. In the following example, we apply the XmlElement attribute to a class. The

XmlElement attribute tells the System.Xml.Linq model how an object is represented in XML. The XmlElement

attribute accepts several attribute parameters. The following attribute maps the CustomerEntity class to an

XML element named Customer, belonging to the http://oreilly.com namespace:

 [XmlElement ("Customer", Namespace="http://blah")]

 public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional and named. In the preceding example, the first
argument is a positional parameter; the second is a named parameter. Positional parameters correspond to
parameters of the attribute type's public constructors. Named parameters correspond to public fields or public
properties on the attribute type.

When specifying an attribute, you must include positional parameters that correspond to one of the attribute's

http://oreilly.com

constructors. Named parameters are optional.

1.33.3. Attribute Targets

Implicitly, the target of an attribute is the code element it immediately precedes, which is typically a type or
type member. You can also attach attributes, however, to an assembly. This requires that you explicitly specify
the attribute's target.

Here is an example of using the CLSCompliant attribute to specify CLS compliance for an entire assembly:

 [assembly:CLSCompliant(true)]

1.33.4. Specifying Multiple Attributes

Multiple attributes can be specified for a single code element. Each attribute can be listed either within the same
pair of square brackets (separated by a comma), or in separate pairs of square brackets (or a combination of
the two).

The following three examples are semantically identical:

 [Serializable, Obsolete, CLSCompliant(false)]

 public class Bar {...}

 [Serializable] [Obsolete] [CLSCompliant(false)]

 public class Bar {...}

 [Serializable, Obsolete]

 [CLSCompliant(false)]

 public class Bar {...}

1.33.5. Writing Custom Attributes

You can define your own by subclassing System.Attribute. For example, we could use the following custom

attribute for flagging a method for unit testing:

 [AttributeUsage (AttributeTargets.Method)]

 public sealed class TestAttribute : Attribute

 {

 public int Repetitions;

 public string FailureMessage;

 public TestAttribute () : this (1) { }

 public TestAttribute (int repetitions)

 {

 Repetitions = repetitions;

 }

 }

Here's how we could apply the attribute:

 class Foo

 {

 [Test]

 public void Method1() { ... }

 [Test(20)]

 public void Method2() { ... }

 [Test(20, FailureMessage="Debugging Time!")]

 public void Method3() { ... }

 }

AttributeUsage is itself an attribute that indicates the construct (or combination of constructs) that the custom

attribute can be applied to. The AttributeTargets enum includes such members as Class, Method,

Parameter, Constructor (and All, which combines all targets).

1.33.6. Retrieving Attributes at Runtime

There are two standard ways to retrieve attributes at runtime:

Call GetCustomAttributes on any Type or MemberInfo object.

Call Attribute.GetCustomAttribute or Attribute.GetCustomAttributes.

These latter two methods are overloaded to accept any reflection object that corresponds to a valid attribute
target (Type, Assembly, Module, MemberInfo, or ParameterInfo).

Here's how we can enumerate each method in the preceding Foo class that has a TestAttribute:

 foreach (MethodInfo mi in typeof (Foo).GetMethods())

 {

 TestAttribute att = (TestAttribute)

 Attribute.GetCustomAttribute

 (mi, typeof (TestAttribute));

 if (att != null)

 Console.WriteLine (

 "Method {0} will be tested; reps={1}; msg={2}",

 mi.Name, att.Repetitions, att.FailureMessage);

 }

Here's the output:

 Method Method1 will be tested; reps=1; msg=

 Method Method2 will be tested; reps=20; msg=

 Method Method3 will be tested; reps=20; msg=Debugging

 Time!

1.34. Unsafe Code and Pointers

C# supports direct memory manipulation via pointers within blocks of code marked unsafe and compiled with
the /unsafe compiler option. Pointer types are primarily useful for interoperability with C APIs, but they may

also be used for accessing memory outside the managed heap or for performance-critical hotspots.

1.34.1. Pointer Basics

For every value type or pointer type V, there is a corresponding pointer type V*. A pointer instance holds the
address of a value. This is considered to be of type V, but pointer types can be (unsafely) cast to any other
pointer type.

The main pointer operators are listed below.

Operator Meaning

& The address-of operator returns a pointer to the address of a value.

* The dereference operator returns the value at the address of a pointer.

-> The pointer-to-member operator is a syntactic shortcut, in which x->y is equivalent to (*x).y.

1.34.2. Unsafe Code

By marking a type, type member, or statement block with the unsafe keyword, you're permitted to use pointer

types and perform C++ style pointer operations on memory within that scope. Here is an example of using
pointers to quickly process a bitmap:

 unsafe void RedFilter(int[,] bitmap)

 {

 int length = bitmap.Length;

 fixed (int* b = bitmap)

 {

 int* p = b;

 for(int i = 0; i < length; i++)

 *p++ &= 0xFF;

 }

 }

Unsafe code can run faster than a corresponding safe implementation. In this case, the code would have
required a nested loop with array indexing and bounds checking. An unsafe C# method may also be faster than
calling an external C function because there is no overhead associated with leaving the managed execution
environment.

1.34.3. The fixed Statement

The fixed statement is required to pin a managed object, such as the bitmap in the previous example. During

the execution of a program, many objects are allocated and deallocated from the heap. To avoid unnecessary
waste or fragmentation of memory, the garbage collector moves objects around. Pointing to an object is futile if
its address could change while referencing it, so the fixed statement tells the garbage collector to "pin" the

object and not move it around. This may have an impact on the efficiency of the runtime, so fixed blocks should

be used only briefly, and heap allocation should be avoided within the fixed block.

Within a fixed statement, you can get a pointer to any value type, an array of value types, or a string. In the

case of arrays and strings, the pointer will actually point to the first element, which is a value type.

Value types declared inline within reference types require the reference type to be pinned, as follows:

 class Test

 {

 int x;

 static void Main()

 {

 Test test = new Test();

 unsafe

 {

 fixed (int* p = &test.x) // pins test

 {

 *p = 9;

 }

 System.Console.WriteLine (test.x);

 }

 }

 }

1.34.4. The Pointer-to-Member Operator

In addition to the & and * operators, C# also provides the C++ style -> operator, which can be used on structs:

 struct Test

 {

 int x;

 unsafe static void Main()

 {

 Test test = new Test();

 Test* p = &test;

 p->x = 9;

 System.Console.WriteLine (test.x);

 }

 }

1.34.5. Arrays

1.34.5.1. The stackalloc keyword

Memory can be allocated in a block on the stack explicitly using the stackalloc keyword. Because it is allocated

on the stack, its lifetime is limited to the execution of the method, just as with any other local variable. The
block may use the [] operator to index into memory.

 int* a = stackalloc int [10];

 for (int i = 0; i < 10; ++i)

 Console.WriteLine(a[i]); // print raw memory

1.34.5.2. Fixed-size buffers

Memory can be allocated in a block within a struct using the fixed keyword:

 unsafe struct UnsafeUnicodeString

 {

 public short Length;

 public fixed byte Buffer[30];

 }

 unsafe class UnsafeClass

 {

 private UnsafeUnicodeString uus;

 public UnsafeClass (string s)

 {

 uus.Length = (short)s.Length;

 fixed (byte* p = uus.Buffer)

 for (int i = 0; i < s.Length; i++)

 p[i] = (byte)s[i];

 }

 }

 class Test

 {

 static void Main()

 { new UnsafeClass ("Christian Troy"); }

 }

The fixed keyword is also used in this example to pin the object on the heap that contains the buffer (which will

be the instance of UnsafeClass).

1.34.6. void*

Rather than pointing to a specific value type, a pointer may make no assumptions about the type of the
underlying data. This approach is useful for functions that deal with raw memory. An implicit conversion exists
from any pointer type to void*. A void* cannot be dereferenced and arithmetic operations cannot be performed

on void pointers. For example:

 class Test

 {

 unsafe static void Main()

 {

 short[] a = {1,1,2,3,5,8,13,21,34,55};

 fixed (short* p = a)

 {

 //sizeof returns size of value-type in bytes

 Zap (p, a.Length * sizeof (short));

 }

 foreach (short x in a)

 System.Console.WriteLine (x); // prints all zeros

 }

 unsafe static void Zap (void* memory, int byteCount)

 {

 byte* b = (byte*)memory;

 for (int i = 0; i < byteCount; i++)

 *b++ = 0;

 }

 }

1.34.7. Pointers to Unmanaged Code

Pointers are also useful for accessing data outside the managed heap (such as when interacting with C DLLs or
COM), or when dealing with data not in the main memory (such as graphics memory or a storage medium on an
embedded device).

1.35. Preprocessor Directives

Preprocessor directives supply the compiler with additional information about regions of code. The most
common preprocessor directives are the conditional directives, which provide a way to include or exclude
regions of code from compilation. For example:

 #define DEBUG

 class MyClass

 {

 int x;

 void Foo()

 {

 # if DEBUG

 Console.WriteLine("Testing: x = {0}", x);

 # endif

 }

 ...

 }

In this class, the statement in Foo is compiled as conditionally dependent upon the presence of the DEBUG

symbol. If we remove the DEBUG symbol, the statement is not compiled. Preprocessor symbols can be defined

within a source file (as we have done), and they can be passed to the compiler with the /define: symbol

command-line option.

With the #if and #elif directives, you can use the ||, &&, and ! operators to perform or, and, and not

operations on multiple symbols. The following directive instructs the compiler to include the code that follows if
the TESTMODE symbol is defined and the DEBUG symbol is not defined:

 #if TESTMODE && !DEBUG

 ...

Bear in mind, however, that you're not building an ordinary C# expression, and the symbols upon which you
operate have absolutely no connection to variables-static or otherwise.

The #error and #warning symbols prevent accidental misuse of conditional directives by making the compiler

generate a warning or error given an undesirable set of compilation symbols.

Table 1-15 lists all preprocessor directives and their actions.

Table 1-15. Preprocessor directives

Preprocessor directive Action

#define symbol Defines symbol.

#undef symbol Undefines symbol.

#if symbol Conditionally compiles code.

#else Executes code to subsequent #endif.

#elif symbol Combines #else branch and #if test.

Preprocessor directive Action

#endif Ends conditional directives.

#warning text text of the warning to appear in compiler output.

#error text text of the error to appear in compiler output.

#line [number

["file"] | hidden]

number specifies the line in source code; file is the filename to appear in computer

output; hidden specifies that the compiler should generate debugger information.

#region name Marks the beginning of an outline.

#end region Ends an outline region.

1.35.1. Conditional Attributes

An attribute decorated with the Conditional attribute will be compiled only if a given preprocessor symbol is

present, e.g.:

 // file1.cs

 #define DEBUG

 using System;

 using System.Diagnostics;

 [Conditional("DEBUG")]

 public class TestAttribute : Attribute {}

 // file2.cs

 #define DEBUG

 [Test] class Foo

 {

 [Test] string s;

 }

The compiler will not incorporate the [Test] attributes if the DEBUG symbol is in scope for file2.cs.

1.35.2. Pragma Warning

The compiler generates a warning when it spots something in your code that seems unintentional. Unlike errors,
warnings don't ordinarily prevent your application from compiling.

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness, however, is undermined when
you get an excessive number of them. In a large application, maintaining a good signal-to-noise ratio is
essential if the "real" warnings are to get noticed.

To this effect, the compiler allows you to selectively suppress warnings with the #pragma warning directive. In

this example, we instruct the compiler not to warn us about the field Message not being used:

 public class Foo

 {

 static void Main() { }

 #pragma warning disable 414

 static string Message = "Hello";

 #pragma warning restore 414

#endif Ends conditional directives.

#warning text text of the warning to appear in compiler output.

#error text text of the error to appear in compiler output.

#line [number

["file"] | hidden]

number specifies the line in source code; file is the filename to appear in computer

output; hidden specifies that the compiler should generate debugger information.

#region name Marks the beginning of an outline.

#end region Ends an outline region.

1.35.1. Conditional Attributes

An attribute decorated with the Conditional attribute will be compiled only if a given preprocessor symbol is

present, e.g.:

 // file1.cs

 #define DEBUG

 using System;

 using System.Diagnostics;

 [Conditional("DEBUG")]

 public class TestAttribute : Attribute {}

 // file2.cs

 #define DEBUG

 [Test] class Foo

 {

 [Test] string s;

 }

The compiler will not incorporate the [Test] attributes if the DEBUG symbol is in scope for file2.cs.

1.35.2. Pragma Warning

The compiler generates a warning when it spots something in your code that seems unintentional. Unlike errors,
warnings don't ordinarily prevent your application from compiling.

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness, however, is undermined when
you get an excessive number of them. In a large application, maintaining a good signal-to-noise ratio is
essential if the "real" warnings are to get noticed.

To this effect, the compiler allows you to selectively suppress warnings with the #pragma warning directive. In

this example, we instruct the compiler not to warn us about the field Message not being used:

 public class Foo

 {

 static void Main() { }

 #pragma warning disable 414

 static string Message = "Hello";

 #pragma warning restore 414

 }

Omitting the number in the #pragma warning directive disables or restores all warning codes. If you are

thorough in applying this directive, you can compile with the /warnaserror switch- this tells the compiler to

treat any residual warnings as errors.

1.36. XML Documentation

A documentation comment is a piece of embedded XML that documents a type or member. A documentation
comment comes immediately before a type or member declaration, and starts with three slashes:

 /// <summary>Cancels a running query.</summary>

 public void Cancel() { ... }

Multiline comments can be done either like this:

 /// <summary>

 /// Cancels a running query

 /// </summary>

 public void Cancel() { ... }

or this (notice the extra star at the start):

 /**

 <summary> Cancels a running query. </summary>

 */

 public void Cancel() { ... }

If you compile with the /doc directive, the compiler extracts and collates documentation comments into a single

XML file. This has two main uses:

If placed in the same folder as the compiled assembly, Visual Studio automatically reads the XML file and
uses the information to provide Intellisense member listings to consumers of that assembly.

Third-party tools can transform an XML file into an HTML help file.

1.36.1. Standard XML Documentation Tags

Here are the standard XML tags that Visual Studio and documentation generators recognize:

<summary>

 <summary>...</summary>

Indicates the tool tip that IntelliSense should display for the type or member. Typically a single phrase or
sentence.

<remarks>

 <remarks>...</remarks>

Additional text that describes the type or member. Documentation generators pick this up and merge it into the
bulk of a type or member's description.

<param>

 <param name="name">...</param>

Explains a parameter on a method.

<returns>

 <returns>...</returns>

Explains the return value for a method.

<exception>

 <exception [cref="type"]>...</exception>

Lists an exception that a method may throw (cref refers to the exception type).

<permission>

 <permission [cref="type"]>...</permission>

Indicates an IPermission type required by the documented type or member.

<example>

 <example>...</example>

Denotes an example (used by documentation generators). This usually contains both description text and
source code (source code is typically within a <c> or <code> tags).

<c>

 <c>...</c>

Indicates an inline code snippet. This tag is usually used inside an <example> block.

<code>

 <code>...</code>

Indicates a multiline code sample. This tag is usually used inside an <example> block.

<see>

 <see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML documentation generators typically convert
this to a hyperlink. The compiler emits a warning if the type or member name is invalid.

<seealso>

 <seealso cref="member">...</seealso>

Cross references another type or member. Documentation generators typically write this into a separate "See
Also" section at the bottom of the page.

<paramref>

 <paramref name="name"/>

References a parameter from within a <summary> or <remarks> tag.

<list>

 <list type=[bullet | number | table]>

 <listheader>

 <term>...</term>

 <description>...</description>

 </listheader>

 <item>

 <term>...</term>

 <description>...</description>

 </item>

 </list>

Instructs documentation generators to emit a bulleted, numbered, or table-style list.

<para>

 <para>...</para>

Instructs documentation generators to format the contents into a separate paragraph.

<include>

Merges an external XML file that contains documentation. The path attribute denotes an XPath query to a
specific element in that file.

1.37. Framework Overview

Almost all the capabilities of the .NET Framework are exposed via a vast set of managed types. These types are
organized into hierarchical namespaces and packaged into a set of assemblies, which together with the CLR
comprise the .NET platform.

Some of the .NET types are used directly by the CLR and are essential for the managed hosting environment.
These types reside in an assembly called mscorlib.dll and include C#'s built-in types, as well as the basic
collection classes, and types for stream processing, serialization, reflection, threading, and native
interoperability.

At a level above this are additional types that "flesh out" the CLR-level functionality, providing features such as
XML, networking, and LINQ. These reside in System.dll, System.Xml.dll, and System.Core.dll (new to
Framework 3.5) and, together with mscorlib, they provide a rich programming environment upon which the rest
of the Framework is built.

The remainder of the .NET Framework consists of applied APIs, most of which cover three areas of functionality:

User interface technologies

Backend technologies

Distributed system technologies

Table 1-16 shows the history of compatibility between each version of C#, CLR, and the .NET Framework.
Interestingly, C# 3.0 targets a new Framework version while using the same CLR version as its predecessor. To
be precise, C# 3.0 targets an updated version of CLR 2.0, which is installed as part of Framework 3.5. This
update is designed not to break compatibility with existing applications.

Table 1-16. C# version CLR version Framework versions

C# version CLR version Framework versions

1.0 1.0 1.0

1.1 1.1 1.1

2.0 2.0 2.0

3.0

3.0 2.0 (updated) 3.5

1.37.1. The Core Framework

1.37.1.1. System types

The most fundamental types live directly in the System namespace. These include C#'s built-in types, the

Exception base class, the Enum, and Array, and Delegate base classes, Nullable and Type. The System

namespace also includes:

DateTime for representing a date and optional time

DateTimeOffset for representing a DateTime + UTC offset (new to Framework 3.5)

TimeSpan for representing a duration of time

Guid for representing a globally unique identifier

Math (static) for performing mathematical functions

Random for generating random numbers

Convert and BitConverter for converting between various types

The System namespace also defines standard interfaces such as IDisposable, IFormattable, and

IComparable (the latter provides a standard protocol for order comparison).

1.37.1.2. Text processing

The System.Text namespace contains the StringBuilder class (the editable or mutable cousin of string), and

the types for working with text encodings, such as UTF-8 (Encoding and its subtypes).

System.Text.RegularExpressions contains the Regex class and supporting types to perform advanced pattern-

based search and replace operations. The samples in LINQPad (www.linqpad.net) include a section
demonstrating the use of regular expressions.

1.37.1.3. Collections

The .NET Framework offers a variety of classes for managing collections of items. These include both list-based
structures such as List<> (think variable-length array), and Stack<> and LinkedList<>-as well as dictionary-

based structures such as Dictionary<,> (a hashtable) and SortedDictionary<> (a red-black tree). The classes

work in conjunction with a set of standard interfaces that unify their common characteristics, namely,
IEnumerable<>, ICollection<>, IList<>, and IDictionary<,>. All collection types are defined in the

following namespaces:

 System.Collections // Nongeneric collections

 System.Collections.Generic // Generic collections

 System.Collections.Specialized

 System.Collections.ObjectModel // Bases for custom types

C# 3.0 in a Nutshell covers the core framework in detail in Chapters 5–24.

1.37.1.4. Queries

The types for writing local LINQ queries (as covered in this book) reside in the System.Linq namespace (in the

System.Core.dll assembly). The Framework also provides APIs for writing LINQ queries over SQL tables (LINQ
to SQL) and in-memory XML documents:

 System.Linq // Basic infrastructure

 System.Xml.Linq // LINQ to XML

 System.Data.Linq // LINQ to SQL

 System.Linq.Expressions // For building expressions

You can find examples on using LINQ to XML and LINQ to XML in LINQPad at www.linqpad.net.

1.37.1.5. XML

XML is used widely within the .NET Framework and thus is supported extensively. LINQ to XML includes a
lightweight XML document object model that can be constructed and queried through LINQ. The Framework
also provides an older "clunky" W3C-compliant DOM(XmlDocument) and classes to support XML schemas,

stylesheets, and XPath. Finally, there's XmlReader and XmlWriter, which are performant low-level forward-only

XML reader/writers. The XML namespaces are:

 System.Xml // XmlReader, XmlWriter + old W3C DOM

 System.Xml.Linq // The LINQ to XML DOM

 System.Xml.Schema // Support for XSD

 System.Xml.XPath // XPath query language

 System.Xml.Xsl // Stylesheet support

The easiest XML DOM to work with is LINQ to XML (this is true even if you don't use the LINQ operators). The
LINQ to XML API makes the W3C-compliant API largely redundant, as well as reducing the need to use XPath
and XSL.

The Framework also includes an attribute-driven XML serialization engine in System.Xml.Serialization.

1.37.1.6. Streams and I/O

The Framework provides a stream-based model for low-level input/output. Streams are typically used to read
and write directly to files and network connections, and they can be chained or wrapped in decorator streams to
add compression or encryption functionality. The System.IO namespace contains the low-level stream types

(starting with the abstract Stream type), and types for working with files and directories (File, FileInfo,

Directory, DirectoryInfo, DriveInfo, and Path), as well as isolated storage:

 System.IO // File support + stream types

 System.IO.Pipes // Support for Windows pipes

 System.IO.Compression // Compression streams

 System.IO.IsolatedStorage // Isolated storage streams

1.37.1.7. Networking

You can directly access low-level network protocols such as HTTP, FTP, TCP/IP, and SMTP via the types in
System.Net:

 System.Net

 System.Net.Mail // For sending mail via SMTP

 System.Net.Sockets // TCP, UDP, and IP

The WebClient class is a wrapper that encapsulates most of the client-side functionality for communicating via

HTTP and FTP. The Socket class provides raw access to TCP and UDP.

1.37.1.8. Serialization

The Framework provides a number of systems for saving and restoring objects to a binary or text
representation. Such systems are required for distributed application technologies, such as Windows
Communication Foundation (WCF), Web Services, and Remoting, and also to save and restore objects to a file.
In total, there are three serialization engines:

Data contract serializion engine (FW 3.5)

The most modern engine, used implicitly by WCF. This engine is excellent at interoperable messaging and
for serializing to XML files (particularly when version tolerance or the need to preserve shared object
references is important). It can serialize to either XML or binary.

Binary serialization engine

This engine is powerful, easy to use, and well supported throughout the .NET Framework. Remoting uses
binary serialization-including when communicating between two application domains in the same
process. The disadvantage of this engine is that it tightly couples a type's internal structure to the format
of the serialized data, resulting in poor version tolerance. Further, it cannot serialize to simple XML files.

XML serialization engine

This engine produces only XML files and is less powerful than other engines in saving and restoring a
complex object graph (it cannot restore shared object references). It's the most flexible of the three,
however, in following an arbitrary XML structure. ASMX Web Services implicitly uses the XML serialization
engine (Web Services implemented through WCF, however, uses the data contract engine).

The types that support the data contact and binary engines live in System.Runtime.Serialization. The

attribute-driven XML serialization engine lives in System.Xml.Serialization.

1.37.1.9. Assemblies, reflection, and attributes

The assemblies into which C# programs compile comprise executable instructions (stored as intermediate
language or IL) and metadata, which describes the program's types, members, and attributes. Through
reflection, you can inspect this metadata at runtime, and do such things as retrieve attribute information,
inspect types and members, and dynamically invoke methods. With Reflection.Emit, you can construct new

code on the fly.

The types for reflection reside the following namespaces:

 System

 System.Reflection

 System.Reflection.Emit

The window to most of the reflection data is a class called Type; you can obtain an instance via C#'s typeof

operator or by calling GetType() on an object instance. The window to most assembly-related data is the

Assembly type.

1.37.1.10. Security

The .NET Framework provides its own permission-based security layer, comprising code access security and
role-based security. Code access security allows you to both sandbox other assemblies and be sandboxed
yourself (limiting the kinds of operations that can be performed). The central type for enforcing permission-
based security is IPermission.

 System.Security

 System.Security.Permissions

 System.Security.Policy

The Framework also provides types for encryption (symmetric and public-key), hashing, and data protection in
the System.Security.Cryptography namespace.

1.37.1.11. Threading

Multithreading allows you to execute code in parallel. Central to multithreading is the Thread class and

synchronization constructs such as exclusive locking (supported by C#'s lock statement). A free and extensive

article on multithreading is available online at www.albahari.com/threading.

All types for threading are in the System.Threading namespace.

1.37.1.12. Application domains

The CLR provides an additional level of isolation within a process called an application domain. A .NET process
normally runs in a single automatically created application domain. Creating additional application domains in
the same process is useful for such purposes as unit testing. The AppDomain type is defined in the System

namespace, and it encapsulates access to application domains.

1.37.1.13. Native interoperability

You can interoperate with native and Win32 code through the P/Invoke system. The .NET runtime allows you to
call native functions, register callbacks, map data structures, and interoperate with native and COM data types.
The namespace providing this support is System.Runtime. InteropServices.

1.37.1.14. Diagnostics

The Framework provides logging and assertion facilities through the Debug, Trace, and TraceListener classes

in System.Diagnostics. Also in this namespace is the Process class for interacting with other processes,

classes for writing to the Windows event log, and types for reading/writing performance counters for
monitoring.

1.37.2. User Interface Technologies

The .NET Framework provides three APIs for user-interfacebased applications:

ASP.NET (System.Web.UI)

For writing thin-client applications that run over a standard web browser

Windows Presentation Foundation (System.Windows)

For writing rich-client applications that target the .NET Framework 3.0

Windows Forms (System.Windows.Forms)

For writing rich-client applications that target the classic Windows API, supported in all versions of the
.NET Framework

In general, a thin-client application amounts to a web site; a rich-client application is a program the end user
must download or install on the client computer.

1.37.2.1. ASP.NET

Applications written using ASP.NET host under Windows IIS and can be accessed from almost any web browser.
Here are its advantages over rich-client technologies:

Zero deployment at the client end

Clients can run a non-Windows platform

Updates are easily deployed

Further, because most of what you write in an ASP.NET application runs on the server, you design your data
access layer to run in the same application domain-without limiting security or scalability. In contrast, a rich
client that does the same is not generally as secure or scalable. (The solution, with the rich client, is to insert a
middle tier between the client and database. The middle tier runs on a remote application server [often
alongside the database server] and communicates with the rich clients via WCF, Web Services, or Remoting.)

Another benefit of ASP.NET is that it's mature-it was introduced with the first version of .NET and has been
refined with each subsequent .NET release.

The limitations of ASP.NET are largely a reflection of the limitations of thin-client systems in general:

A web browser interface significantly restricts what you can do.

Maintaining state on the client-or on behalf of the client-is cumbersome.

You can improve the interactivity and responsiveness, however, through client-side scripting or technologies
such as AJAX; see http://ajax.asp.net/.

The types for writing ASP.NET applications are in the System.Web.UI namespace and its subnamespaces, and

they are packed in the System.Web.dll assembly.

1.37.2.2. Windows Presentation Foundation

WPF is a rich-client technology new to Framework 3.0. Framework 3.0 comes installed on Windows Vista-and is
available as a separate download for Windows XP SP2. Here are its benefits:

It supports sophisticated graphics, such as arbitrary transformations, 3D rendering, and true transparency.

Its primary measurement unit is not pixel-based, so applications display correctly at any DPI (dots per
inch).

It has extensive dynamic layout support, which means you can localize an application without danger of
elements overlapping.

Rendering uses DirectX and is fast, taking good advantage of graphics hardware acceleration.

User interfaces can be described declaratively in XAML files that can be maintained independently of the
"code-behind" files-this helps to separate appearance from functionality.

Here are its limitations:

The technology is less mature than Windows Forms or ASP.NET.

Its size and complexity make for a steep learning curve.

Your clients must run Windows Vista-or Windows XP with Framework 3.0 or later.

The types for writing WPF applications are in the System. Windows namespace and all subnamespaces except

for System. Windows.Forms.

1.37.2.3. Windows Forms

Windows Forms is a rich-client API that-like ASP.NET-is as old as the .NET Framework. Compared to WPF,
Windows Forms is a relatively simple technology that provides most of the features you need in writing a typical
Windows application. It also has significant relevancy in maintaining legacy applications. It has a number of
drawbacks, though, compared to WPF:

Controls are positioned and sized in pixels, making it easy to write applications that break on clients
whose DPI settings differ from the developer's.

http://ajax.asp.net/

The API for drawing nonstandard controls is GDI+, which-although reasonably flexible-is slow in
rendering large areas (and without double buffering, it flickers horribly).

Controls lack true transparency.

Dynamic layout is difficult to get right reliably.

The last point is an excellent reason to favor WPF over Windows Forms-even if you're writing a business
application that needs just a user interface and not a "user experience." The layout elements in WPF, such as
Grid, make it easy to assemble labels and text boxes such that they always align- even after language

changing localization-without messy logic and without any flickering. Further, you don't have to bow to the
lowest common denominator in screen resolution-WPF layout elements have been designed from the outset to
adapt properly to resizing.

On the positive side, Windows Forms is relatively simple to learn and has a wealth of support in third-party
controls.

The Windows Forms types are in the System.Windows.Forms (in System.Windows.Forms.dll) and

System.Drawing (in System.Drawing.dll) namespaces. The latter also contains the GDI+ types for drawing

custom controls.

1.37.3. Backend Technologies

1.37.3.1. ADO.NET

ADO.NET is the managed data access API. Although the name is derived from ADO (ActiveX Data Objects), the
technology is completely different. ADO.NET comprises two major components:

Provider layer

The provider model defines common classes and interfaces for low-level access to database providers.
These interfaces comprise connections, commands, adapters, and readers (forward-only, read-only
cursors over a database). The Framework ships with native support for Microsoft SQL Server and Oracle,
and it has OLE-DB and ODBC providers.

DataSet model

A DataSet is a structured cache of data. It resembles a primitive in-memory database, which defines SQL
constructs such as tables, rows, columns, relationships, constraints, and views. By programming against
a cache of data, you can reduce the number of trips to the server, increasing server scalability and the
responsiveness of a rich-client user interface. DataSets are serializable and designed to be sent across
the wire between client and server applications.

LINQ to SQL sits above the provider layer, leveraging the lower-level connection and reader types. With LINQ to
SQL, you avoid having to manually construct and parameterize SQL statements, reducing the volume of code in
an application's data access layer and improving its type safety. LINQ to SQL also partially avoids the need for
DataSets through its object-relational mapping system. DataSets have some advantages, though, such as being

able to serialize state changes to XML (something particularly useful in multitier applications). LINQ and
DataSets can interoperate, however; for instance, you can use LINQ to perform type-safe queries over DataSet
objects.

1.37.3.2. Windows Workflow

Windows Workflow is a framework for modeling and managing potentially long-running business processes. It
targets a standard runtime library, providing consistency and interoperability. Workflow also helps reduce
coding for dynamically controlled decision-making trees.

It is not strictly a backend technology-you can use it anywhere (an example is page flow in the UI).

Workflow is another part of the shipment of assemblies that came with the .NET Framework 3.0, so like WPF, it
leverages services that require the operating system support of Windows Vista-or Windows XP after a
Framework 3.0 installation. The Workflow types are defined in (and are below) the System.WorkFlow

namespace.

1.37.3.3. COM+ and MSMQ

The Framework allows you to interoperate with COM+ for services such as distributed transactions, via types in
the System.EnterpriseServices namespace. It also supports MSMQ (Microsoft Message Queuing) for

asynchronous, one-way messaging through types in System.Messaging.

1.37.4. Distributed System Technologies

1.37.4.1. Windows Communication Foundation

WCF is the communications infrastructure new to Framework 3.0. WCF is flexible and configurable enough to
make both of its predecessors-Remoting and (ASMX) Web Services-mostly redundant.

WCF, Remoting, and Web Services are all alike in that they implement the following basic model in allowing a
client and server application to communicate:

On the server, you indicate what methods you'd like remote client applications to be able to call.

On the client, you specify or infer the signatures of the server methods you'd like to call.

On both the server and the client, you choose a transport and communication protocol (in WCF, this is
done through a binding).

The client establishes a connection to the server.

The client calls a remote method, which executes transparently on the server.

WCF further decouples the client and server through service contracts and data contracts. Conceptually, the
client sends an (XML) message to an endpoint on a remote service, rather than directly invoking a remote
method. One of the benefits of this decoupling: clients have no dependency on the .NET platform or on any
proprietary communication protocols.

WCF is highly configurable and provides the most extensive support for standardized messaging protocols,

including WS-*. This lets you communicate with parties running different software-possibly on different
platforms-while still supporting advanced features such as encryption. Another benefit of WCF is that you can
change protocols without needing to change other aspects of your client or server applications.

The types for communicating with WCF are in, and under, the System.ServiceModel namespace.

1.37.4.2. Remoting and (ASMX) Web Services

Remoting and ASMX Web Services are WCF's predecessors and are almost redundant in WCF's wake-although
Remoting still has a niche in communicating between application domains within the same process.

Remoting's functionality is geared toward tightly coupled applications. A typical example is when the client and
server are both .NET applications written by the same company (or companies sharing common assemblies).
Communication typically involves exchanging potentially complex custom .NET objects that the Remoting
infrastructure serializes and deserializes without needing intervention.

The functionality of ASMX Web Services is geared toward loosely coupled or SOA-style applications. A typical
example is a server designed to accept simple SOAP-based messages that originate from clients running a
variety of software-on a variety of platforms. Web Services can only use HTTP and SOAP as transport and
formatting protocols and applications are normally hosted under IIS. The benefits of interoperability come at a
performance cost-a Web Services application is typically slower, in both execution and development time, than
a well-designed Remoting application.

The types for Remoting are in or under System.Runtime.Remoting; the types for Web Services are under

System.Web.Services.

1.37.4.3. CardSpace

CardSpace comprises the final new piece of the .NET 3.0 shipment. It is a token-based authentication and
identity management protocol designed to simplify password management for end users. CardSpace builds on
open XML standards, and parties can participate independently of Microsoft.

With CardSpace, a user can hold multiple identities, which are maintained by a third party (the identity
provider). When a user wants to access a resource at site X, the user authenticates to the identity provider,
which then issues a token to site X. This avoids having to provide a password directly to site X, and it reduces
the number of identities that the user needs to maintain.

WCF allows you to specify a CardSpace identity when connecting through a secure HTTP channel through types
in the System.IdentityModel.Claims and System.IdentityModel. Policy namespaces.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

! (exclamation point)
 != inequality operator 2nd
 not operator
" (double quote)
 enclosing string literals
 escape sequence for 2nd
#define directive
#elif directive
#else directive
#end directive
#endif directive
#error directive
#if directive
#line directive
#pragma warning directive
#region directive
#undef directive
#warning directive
% (percent sign)
 remainder operator
' (single quote)
 enclosing character literals
 escape sequence for
/ (forward slash)
 /* … */ enclosing multi-line comments
 /** … */ documentation comment
 // preceding comments
 /// documentation comment
- (minus sign)
 -> pointer-to-member operator 2nd
+ (plus sign)
 ++ increment operator
 += combining delegates
- (minus sign)
 -- decrement operator
 -= removing delegate operands
-0 (negative zero) value
16-bit integral types
8-bit integral types
: (colon)
 terminating label statement
; (semicolon)
 terminating statements
< (left angle bracket)
 << shift left operator
 <= less than or equal operator
 less than operator
<code> XML tag
<example> XML tag
<include> XML tag
<para> XML tag
<paramref> XML tag
= (equal sign)
 == equality operator 2nd
 => in lambda expressions

> (right angle bracket)
 >= greater than or equal operator
 >> shift right operator
 greater than operator
? (question mark)
 ?: ternary conditional operator
 ?? coalescing operator
 indicating nullable types
@ (at sign)
 prefixing identifiers
[] (square brackets)
 in array declaration
 indexers
 indexing arrays
\ (backslash)
 escape sequence for 2nd
 preceding escape sequences
{} (braces)
 enclosing statement blocks 2nd
| (vertical bar)
 bitwise-or operator 2nd
 || conditional or operator
~ (tilde)
 complement operator
 prefixing finalizers

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

abstract classes
abstract keyword
abstract members of classes
access modifiers 2nd 3rd 4th
accessibility capping
accessors 2nd 3rd
Action delegates
ADO.NET
Aggregate operator
aggregation operators 2nd
alert
aliasing types and namespaces
All operator 2nd
ampersand (&)
 address-of pointer operator
 bitwise-and operator 2nd
 conditional and operator &&
and operator 2nd 3rd
anonymous methods
anonymous types
Any operator 2nd
AppDomain type
application domains
ArgumentException class
ArgumentNullException class
ArgumentOutOfRangeException class
arguments 2nd
arithmetic operators
array initialization expression 2nd
arrays 2nd 3rd 4th 5th 6th
 creating dynamically
 default values for
 element types of
 getting and setting values of
 rectangular arrays
as operator 2nd
AsEnumerable operator
ASMX Web Services
ASP.NET 2nd
AsQueryable operator
assemblies
assignment expressions 2nd
assignment operators
associativity of operators
asterisk (*)
 dereference pointer operator
 multiplication operator
Attribute class
attributes 2nd 3rd 4th 5th 6th
automatic properties
Average operator 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

backend technologies
backspace
base class constraint
base classes
base keyword 2nd
binary operators
binary serialization engine
BitConverter type
bitwise operators
bitwise-or operator (|) 2nd
bool type 2nd
 default values for
 nullable types and
bounds checking of arrays
boxing 2nd
break statement 2nd
byte type

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

C# 3.0
calculated properties
camel case
captured variables
CardSpace
carriage return
case clause
case of identifiers
case of strings
Cast operator 2nd
casting
catch clause 2nd
chaining extension methods
char type
 conversions to numeric types
character literals
characters
/checked compiler switch
checked operator
class constraint
classes
 abstract classes
 declaration of
 partial classes
 sealing
 static classes
closure (lambda expression)
coalescing operator (??)
collection initialization syntax
collections
COM+
comments 2nd
CompareTo method
comparison of strings
comparison operators 2nd
compilation
compiler warnings
complement operator (~)
compound assignment operators
comprehension syntax 2nd 3rd 4th
Concat operator
Conditional attribute
conditional directives
conditional operators
const keyword
constants
constructors 2nd 3rd 4th 5th
 field initialization order
 for structs
 in base class
 nonpublic
 parameterless 2nd
 static
Contains method
Contains operator 2nd

contextual keywords
continue statement
contravariance
conversion operators 2nd 3rd
conversions
 decimal types
 explicit conversions
 floating-point types
 implicit conversions
 integral types
 numeric types 2nd
Convert type
Copy method
Count operator 2nd
covariance 2nd
CreateInstance method
.cs file extension
csc.exe file (compiler)
Current property
custom attributes
custom types 2nd 3rd 4th 5th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

D suffix
data contract serialization engine
data members of a type
DataSet model
DateTime type
DateTimeOffset type
Debug class
decimal type
 conversions to and from
 when to use 2nd
declaration statements
decrement operator (--)
default keyword
default values
DefaultIfEmpty operator
definite assignment
delegate keyword
delegate types
delegates 2nd 3rd 4th 5th 6th
 instance methods assigned to
 multicast capability of
 parameter compatibility with
 plug-in methods using
 return type compatibility
 type compatibility with
diagnostics
directives 2nd
Distinct operator
distributed system technologies 2nd 3rd 4th
division operator (/)
.dll file extension (library)
do-while statement
/doc directive
documentation comment 2nd 3rd 4th 5th
domains
double type
 special values for
downcasting
dynamic type checking

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

element operators 2nd
ElementAt operator 2nd
ElementAtOrDefault operator 2nd
elements
else clause
Empty operator
EndWith method
enums 2nd 3rd 4th
 conversions to and from
 Flags enums
 operators used with
equality operators 2nd 3rd
Equals method
escape sequences
EventArgs class
events 2nd 3rd 4th 5th 6th
Except operator
exceptions
 catching
 rethrowing
 standard exceptions
 throwing
exclusive-or operator (^)
explicit conversions 2nd
explicit interface implementation
expression statements
expression trees
expressions 2nd 3rd
extension methods 2nd 3rd 4th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

F suffix
false value
fields 2nd
filtering operators 2nd
Finalize method
finalizers
finally clause 2nd
First operator 2nd
FirstOrDefault operator 2nd
fixed keyword (allocating fixedsize buffers)
fixed statement (pinning managed objects)
Flags attribute (enums)
float type
floating-point types
 conversions between
 conversions to and from integral types
for statement
foreach statement
 enumerating arrays using
 enumerators for
form feed
from clause 2nd 3rd 4th
Func delegates
function members of a type
functions
 sealing
 virtual

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

garbage collector 2nd
generation operators 2nd
generics 2nd
 constraints
 covariance and
 generic collections
 generic delegate types
 generic methods
 generic parameters 2nd 3rd
 generic types 2nd
 static data and
 subclassing
 typeof and
get accessors 2nd
GetCustomAttribute method
GetCustomAttributes method
GetHashCode method
GetType method
GetValue method
global namespace
global:: qualifier
goto statement 2nd
greater than operator (>)
group clause
GroupBy operator
grouping operators 2nd
GroupJoin operator 2nd
Guid type

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

heap
hexadecimal codes
hiding inherited members
horizontal tab

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

I/O (input/output)
identifiers 2nd 3rd
IEnumerable interface
IEnumerator interface
if statement 2nd 3rd 4th
implicit conversions 2nd
implicit parameterless constructors
implicitly typed arrays
implicitly typed local variables
increment operator (++)
indexers
IndexOf method
IndexOutOfRangeException class
inequality operator (!=) 2nd
infinity
infix notation
inheritance
InnerException property
input/output (I/O)
Insert method
instance members
instance methods
instantiation
int type 2nd
integral literals 2nd
integral types
 8- and 16-bit
 division on
interface constraint
interfaces 2nd 3rd
 explicitly implementing members
 extending
 reimplementing in subclasses
 virtually implementing members
internal access modifier
Intersect operator
into keyword
InvalidCastException class
InvalidOperationException class
is operator 2nd
iteration statements
iterators 2nd 3rd 4th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

jagged arrays
Join method
Join operator
joining operators 2nd 3rd 4th
jump statements 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

keywords 2nd 3rd 4th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

L suffix
label statement
lambda expressions 2nd 3rd 4th 5th
 compared to LINQ query syntax
 outer variables referenced by
 parameter types for
 type inference
Last operator 2nd
LastIndexOf method
LastOrDefault operator 2nd
left-associative operators
Length property
less than operator (<)
less than or equal operator (<=)
let keyword
library
lifted operators (nullable types)
LINQ (Language Integrated Query) 2nd 3rd 4th 5th 6th 7th
 lambda syntax compared to
 queries
 continuations (into keyword) 2nd
 deferred execution of
 grouping
 joining
 multiple generators 2nd
 of collections prior to C# 2.0
 ordering
 syntax 2nd 3rd
 query operators 2nd
 subqueries
literals
local sequences
lock statement
logical operators
long type
LongCount operator

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

M suffix
Math type
Max operator
members of a type
 exposing to other classes
 instance members
memory
 heap
 stack
Message property
method call expressions
methods
 anonymous methods
 extension methods 2nd 3rd 4th
 generic methods
 overloading
 partial methods
Microsoft Message Queuing (MSMQ)
Min operator
minus sign (-)
 subtraction operator
MoveNext method
multicast delegates
multidimensional arrays
multithreading

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

naked type constraint
name hiding (namespaces)
named parameters of attributes
namespace keyword
namespaces 2nd 3rd 4th 5th
NaN value (Not a Number)
native interoperability
negative infinity value
nested types
network protocols
new line
new modifier (hiding inherited members)
new operator (instantiation)
nonpublic constructors
Not a Number (NAN) value
NotImplementedException class
NotSupportedException class
null
null literal
nullable types 2nd 3rd 4th 5th
Nullable<T> struct
numeric literals 2nd
numeric suffixes
numeric types
 list of

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

object initializers
object instantiation expressions
object type 2nd
ObjectDisposedException class
OfType operator 2nd
operator functions (overloading)
operator keyword
operators 2nd 3rd 4th 5th
 arithmetic operators
 comparison operators 2nd
 decrement operator
 equality operators
 for enums
 list of 2nd 3rd 4th 5th
 overloading 2nd 3rd
 precedence of 2nd 3rd
 query operators
 relational operators
or operator
OrderBy operator 2nd
OrderByDescending operator 2nd
ordering operators 2nd
out argument
outer variables
overflow check operators
OverflowException class
overflows on integral types
overloading constructors
overloading methods 2nd
overloading operators 2nd 3rd 4th 5th 6th
override modifier

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

PadLeft method
PadRight method
parameterless constructor constraint
parameterless constructors
parameters of attributes
parameters of methods 2nd 3rd 4th 5th
 any number of
 generic 2nd 3rd
 multiple return values with
params modifier
partial classes
partial methods
Pascal case
passing arguments by reference 2nd
passing arguments by value
plug-in methods
plus sign (+)
 addition operator
 concatenation operator
pointer operators
pointer-to-member operator (->) 2nd
pointers 2nd 3rd 4th 5th
polymorphism
positional parameters of attributes
positive infinity value
precedence of operators
predefined types 2nd 3rd
preprocessor directives 2nd 3rd 4th
primary expressions
primitive types 2nd
private access modifier 2nd
projection operators 2nd
properties 2nd 3rd 4th
protected access modifier
protected internal access modifier
provider layer
public access modifier 2nd 3rd
punctuators

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

quantifiers 2nd
query comprehension syntax 2nd 3rd 4th
query operators 2nd 3rd 4th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Random type
Range operator
read-only properties
readonly modifier
real literals
real types 2nd
rectangular arrays
ref parameter modifier
reference types 2nd
 array elements as
 equality of
 list of
 storage used by
ReferenceEquals method
reflection 2nd
Regex class
relational operators 2nd
remainder operator
remoting
Remove method
Repeat operator
return statement
return values of method
Reverse operator
right-associative operators
rounding errors from real types

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

sbyte type
scope in namespaces
scope of variables
sealed keyword
searching arrays
searching strings
security
select clause
Select operator
selection statements 2nd 3rd 4th
SelectMany operator
self-referencing generic declarations
SequenceEquals operator 2nd
sequences 2nd
serialization 2nd
set accessors 2nd
set operators 2nd 3rd
SetValue method
shift left operator (<<) 2nd
shift right operator (>>) 2nd
short circuiting operators
short type
signature of method
Single operator 2nd
SingleOrDefault operator 2nd
sizeof operator
Skip operator 2nd
SkipWhile operator
Sort method
Split method
square brackets ([])
 indexers
stack
stackalloc keyword 2nd
StackTrace property
StartsWith method
statement blocks 2nd 3rd
statements
 expression statements
 jump statements
 selection statements 2nd
 wrapping multiple lines
static classes
static constructors
static members
static type checking
streams
string literals
string type 2nd 3rd 4th
StringBuilder type 2nd
struct constraint
struct keyword
structs
 implementing interfaces
subclasses

Substring method
suffixes
Sum operator
switch statement
System namespace
system types
System.ArgumentException class
System.ArgumentNullException class
System.Attribute class
System.Data.Linq namespace
System.Diagnostics namespace
System.Drawing namespace
System.Exception class
System.IO namespace
System.Linq namespace
System.Linq.Expressions namespace
System.Messaging namespace
System.Net namespace
System.Reflection namespace
System.Runtime.InteropServices namespace
System.Security namespace
System.ServiceModel namespace
System.Text namespace
System.Text.RegularExpressions namespace
System.Threading namespace
System.Web.Services namespace
System.Web.UI namespace 2nd
System.Windows namespace 2nd
System.Windows.Forms namespace 2nd
System.WorkFlow namespace
System.Xml namespace
System.Xml.Linq namespace
System.Xml.Schema namespace
System.Xml.XPath namespace
System.Xml.Xsl namespace

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

T
Take operator 2nd
TakeWhile operator
target of attributes
ternary conditional operator (?:)
ternary operators
text processing
ThenBy operator 2nd
ThenByDescending operator
this keyword (calling another constructor)
this property (declaring an indexer)
this reference
Thread class
threading
throw statement
TimeSpan type
ToArray operator
ToDictionary operator
ToList operator 2nd
ToLookup operator
ToLower method
ToString method
ToUpper method
Trace class
TraceListener class
Trim method
TrimEnd method
TrimStart method
true value
try statement 2nd 3rd 4th 5th
type checking
type inference of numeric literals
typeof operator 2nd 3rd
types
 categories of
 custom types
 nested
 numeric types 2nd
 predefined types
 primitive types

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

U suffix
uint type
ulong type
unary operators 2nd
unboxing 2nd
unchecked operator
uninitialized variables
Union operator
unmanaged code
unsafe code 2nd
unsafe keyword
upcasting
user interface technologies 2nd 3rd 4th 5th
ushort type
using directive (importing namespaces)
using statement (leveraging IDisposable)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

value types 2nd
 equality of
 nullability of
values
var keyword 2nd
variables
verbatim identifier
verbatim string literal
version 3.0 new features
vertical tab
virtual keyword 2nd
virtual methods
visibility modifiers 2nd 3rd
void expressions
void* keyword

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

warnings
WCF (Windows Communication Foundation)
WebClient class
Where operator
whitespace
Windows Communication Foundation (WCF)
Windows Forms 2nd
Windows Presentation Foundation (WPF) 2nd
Windows Workflow
WPF (Windows Presentation Foundation)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

XML
XML documentation 2nd 3rd 4th 5th
XML serialization engine

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

yield break statement
yield return statement 2nd

	C# 3.0 Pocket Reference
	Table of Contents
	C# 3.0 Pocket Reference, Second Edition
	Chapter 1. C# 3.0 Pocket Reference
	Section 1.1. What's New in C# 3.0
	Section 1.2. A First C# Program
	Section 1.3. Syntax
	Section 1.4. Type Basics
	Section 1.5. Numeric Types
	Section 1.6. Boolean Type and Operators
	Section 1.7. Strings and Characters
	Section 1.8. Arrays
	Section 1.9. Variables and Parameters
	Section 1.10. Expressions and Operators
	Section 1.11. Statements
	Section 1.12. Namespaces
	Section 1.13. Classes
	Section 1.14. Inheritance
	Section 1.15. The object Type
	Section 1.16. Structs
	Section 1.17. Access Modifiers
	Section 1.18. Interfaces
	Section 1.19. Enums
	Section 1.20. Nested Types
	Section 1.21. Generics
	Section 1.22. Delegates
	Section 1.23. Events
	Section 1.24. Lambda Expressions (C# 3.0)
	Section 1.25. Anonymous Methods
	Section 1.26. try Statements and Exceptions
	Section 1.27. Enumeration and Iterators
	Section 1.28. Nullable Types
	Section 1.29. Operator Overloading
	Section 1.30. Extension Methods (C# 3.0)
	Section 1.31. Anonymous Types (C# 3.0)
	Section 1.32. LINQ (C# 3.0)
	Section 1.33. Attributes
	Section 1.34. Unsafe Code and Pointers
	Section 1.35. Preprocessor Directives
	Section 1.36. XML Documentation
	Section 1.37. Framework Overview

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

