
Learning UML 2.0

By Kim Hamilton, Russell Miles

...

Publisher: O'Reilly

Pub Date: April 2006

Print ISBN-10: 0-596-00982-8

Print ISBN-13: 978-0-59-600982-3

Pages: 286

Table of Contents | Index

"Since its original introduction in 1997, the Unified Modeling Language has revolutionized
software development. Every integrated software development environment in the world--open-
source, standards-based, and proprietary--now supports UML and, more importantly, the model-
driven approach to software development. This makes learning the newest UML standard, UML
2.0, critical for all software developers--and there isn't a better choice than this clear, step-by-
step guide to learning the language."
--Richard Mark Soley, Chairman and CEO, OMG

If you're like most software developers, you're building systems that are increasingly complex.
Whether you're creating a desktop application or an enterprise system, complexity is the big hairy
monster you must manage.

The Unified Modeling Language (UML) helps you manage this complexity. Whether you're looking
to use UML as a blueprint language, a sketch tool, or as a programming language, this book will
give you the need-to-know information on how to apply UML to your project. While there are
plenty of books available that describe UML, Learning UML 2.0 will show you how to use it. Topics
covered include:

Capturing your system's requirements in your model to help you ensure that your designs
meet your users' needs

Modeling the parts of your system and their relationships

Modeling how the parts of your system work together to meet your system's requirements

Modeling how your system moves into the real world, capturing how your system will be
deployed

Engaging and accessible, this book shows you how to use UML to craft and communicate your
project's design. Russ Miles and Kim Hamilton have written a pragmatic introduction to UML
based on hard-earned practice, not theory. Regardless of the software process or methodology
you use, this book is the one source you need to get up and running with UML 2.0. Additional
information including exercises can be found at www.learninguml2.com.

Russ Miles is a software engineer for General Dynamics UK, where he works with Java and
Distributed Systems, although his passion at the moment is Aspect Orientation and, in particular,
AspectJ. Kim Hamilton is a senior software engineer at Northrop Grumman, where she's designed
and implemented a variety of systems including web applications and distributed systems, with
frequent detours into algorithms development.

Learning UML 2.0

By Kim Hamilton, Russell Miles

...

Publisher: O'Reilly

Pub Date: April 2006

Print ISBN-10: 0-596-00982-8

Print ISBN-13: 978-0-59-600982-3

Pages: 286

Table of Contents | Index

 Copyright

 Preface

 Chapter 1. Introduction

 Section 1.1. What's in a Modeling Language?

 Section 1.2. Why UML 2.0?

 Section 1.3. Models and Diagrams

 Section 1.4. "Degrees" of UML

 Section 1.5. UML and the Software Development Process

 Section 1.6. Views of Your Model

 Section 1.7. A First Taste of UML

 Section 1.8. Want More Information?

 Chapter 2. Modeling Requirements: Use Cases

 Section 2.1. Capturing a System Requirement

 Section 2.2. Use Case Relationships

 Section 2.3. Use Case Overview Diagrams

 Section 2.4. What's Next?

 Chapter 3. Modeling System Workflows: Activity Diagrams

 Section 3.1. Activity Diagram Essentials

 Section 3.2. Activities and Actions

 Section 3.3. Decisions and Merges

 Section 3.4. Doing Multiple Tasks at the Same Time

 Section 3.5. Time Events

 Section 3.6. Calling Other Activities

 Section 3.7. Objects

 Section 3.8. Sending and Receiving Signals

 Section 3.9. Starting an Activity

 Section 3.10. Ending Activities and Flows

 Section 3.11. Partitions (or Swimlanes)

 Section 3.12. Managing Complex Activity Diagrams

 Section 3.13. What's Next?

 Chapter 4. Modeling a System's Logical Structure: Introducing Classes and Class Diagrams

 Section 4.1. What Is a Class?

 Section 4.2. Getting Started with Classes in UML

 Section 4.3. Visibility

 Section 4.4. Class State: Attributes

 Section 4.5. Class Behavior: Operations

 Section 4.6. Static Parts of Your Classes

 Section 4.7. What's Next

 Chapter 5. Modeling a System's Logical Structure: Advanced Class Diagrams

 Section 5.1. Class Relationships

 Section 5.2. Constraints

 Section 5.3. Abstract Classes

 Section 5.4. Interfaces

 Section 5.5. Templates

 Section 5.6. What's Next

 Chapter 6. Bringing Your Classes to Life: Object Diagrams

 Section 6.1. Object Instances

 Section 6.2. Links

 Section 6.3. Binding Class Templates

 Section 6.4. What's Next?

 Chapter 7. Modeling Ordered Interactions: Sequence Diagrams

 Section 7.1. Participants in a Sequence Diagram

 Section 7.2. Time

 Section 7.3. Events, Signals, and Messages

 Section 7.4. Activation Bars

 Section 7.5. Nested Messages

 Section 7.6. Message Arrows

 Section 7.7. Bringing a Use Case to Life with a Sequence Diagram

 Section 7.8. Managing Complex Interactions with Sequence Fragments

 Section 7.9. What's Next?

 Chapter 8. Focusing on Interaction Links: Communication Diagrams

 Section 8.1. Participants, Links, and Messages

 Section 8.2. Fleshing out an Interaction with a Communication Diagram

 Section 8.3. Communication Diagrams Versus Sequence Diagrams

 Section 8.4. What's Next?

 Chapter 9. Focusing on Interaction Timing: Timing Diagrams

 Section 9.1. What Do Timing Diagrams Look Like?

 Section 9.2. Building a Timing Diagram from a Sequence Diagram

 Section 9.3. Applying Participants to a Timing Diagram

 Section 9.4. States

 Section 9.5. Time

 Section 9.6. A Participant's State-Line

 Section 9.7. Events and Messages

 Section 9.8. Timing Constraints

 Section 9.9. Organizing Participants on a Timing Diagram

 Section 9.10. An Alternate Notation

 Section 9.11. What's Next?

 Chapter 10. Completing the Interaction Picture: Interaction Overview Diagrams

 Section 10.1. The Parts of an Interaction Overview Diagram

 Section 10.2. Modeling a Use Case Using an Interaction Overview

 Section 10.3. What's Next?

 Chapter 11. Modeling a Class's Internal Structure: Composite Structures

 Section 11.1. Internal Structure

 Section 11.2. Showing How a Class Is Used

 Section 11.3. Showing Patterns with Collaborations

 Section 11.4. What's Next?

 Chapter 12. Managing and Reusing Your System's Parts: Component Diagrams

 Section 12.1. What Is a Component?

 Section 12.2. A Basic Component in UML

 Section 12.3. Provided and Required Interfaces of a Component

 Section 12.4. Showing Components Working Together

 Section 12.5. Classes That Realize a Component

 Section 12.6. Ports and Internal Structure

 Section 12.7. Black-Box and White-Box Component Views

 Section 12.8. What's Next?

 Chapter 13. Organizing Your Model: Packages

 Section 13.1. Packages

 Section 13.2. Namespaces and Classes Referring to Each Other

 Section 13.3. Element Visibility

 Section 13.4. Package Dependency

 Section 13.5. Importing and Accessing Packages

 Section 13.6. Managing Package Dependencies

 Section 13.7. Using Packages to Organize Use Cases

 Section 13.8. What's Next?

 Chapter 14. Modeling an Object's State: State Machine Diagrams

 Section 14.1. Essentials

 Section 14.2. States

 Section 14.3. Transitions

 Section 14.4. States in Software

 Section 14.5. Advanced State Behavior

 Section 14.6. Composite States

 Section 14.7. Advanced Pseudostates

 Section 14.8. Signals

 Section 14.9. Protocol State Machines

 Section 14.10. What's Next?

 Chapter 15. Modeling Your Deployed System: Deployment Diagrams

 Section 15.1. Deploying a Simple System

 Section 15.2. Deployed Software: Artifacts

 Section 15.3. What Is a Node?

 Section 15.4. Hardware and Execution Environment Nodes

 Section 15.5. Communication Between Nodes

 Section 15.6. Deployment Specifications

 Section 15.7. When to Use a Deployment Diagram

 Section 15.8. What's Next?

 Appendix A. Object Constraint Language

 Section A.1. Building OCL Expressions

 Section A.2. Types

 Section A.3. Operators

 Section A.4. Pulling It Together

 Section A.5. Context

 Section A.6. Types of Constraints

 Section A.7. OCL Automation

 Appendix B. Adapting UML: Profiles

 Section B.1. What Is a Profile?

 Section B.2. Stereotypes

 Section B.3. Tagged Values

 Section B.4. Constraints

 Section B.5. Creating a Profile

 Section B.6. Working with the Meta-Model

 Section B.7. Using a Profile

 Section B.8. Why Bother with Profiles?

 Appendix C. A History of UML

 Section C.1. Take One Part OOAD...

 Section C.2. ...with a Sprinkling of OOSE...

 Section C.3. ...Add a Dash of OMT...

 Section C.4. ...and Bake for 10 to 15 Years

 About the Authors

 Colophon

 Index

Learning UML 2.0

by Russ Miles and Kim Hamilton

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Brett McLaughlin and Mary T. O'Brien

Production Editor: Laurel R.T. Ruma

Copyeditor: Laurel R.T. Ruma

Proofreader: Reba Libby

Indexer: Angela Howard

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Cover Illustrator: Karen Montgomery

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Learning UML 2.0, the image of a gorilla, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00982-8

[M]

Preface
The Unified Modeling Language (UML) is the standard way to model systems, particularly software
systems. If you are working on a system beyond "Hello, World," then having UML in your toolbox of
skills is a must, and that's where Learning UML 2.0 comes in.

Learning UML 2.0 is about coming to grips with UML quickly, easily, and practically. Along with a
thorough set of tutorials on each of the different UML diagram types, this book gives you the tools
to use UML effectively when designing, implementing, and deploying systems. The topics covered
include:

A brief overview of why it is helpful to model systems

How to capture high-level requirements in your model to help ensure the system meets users'
needs

How to model the parts that make up your system

How to model the behavior and interactions between parts when the system is running

How to move from the model into the real world by capturing how your system is deployed

How to create custom UML profiles to accurately model different system domains

Audience

Learning UML 2.0 is for anyone interested in learning about UML, but it is helpful to have some
exposure to object-oriented (OO) design and some familiarity with Java. However, even if you have
only a small amount of experience with object orientation, Learning UML 2.0 will improve and
extend your knowledge of OO concepts and give you a comprehensive set of tools to work with
UML.

Although this book is intended to take you through each subject on the path to learning UML, some
UML modeling subjects, such as use cases and activity diagrams, are self-explanatory, which
means you can dive right into them.

About This Book

Learning UML 2.0 aims to answer the "what," "how," and "why should I care?" for every aspect of
UML. Each chapter picks one subject from UML and explains it based on these questions.

Since not everyone is new to UML, there are two main routes through this book. If you're new to

UML as a subject and want to get an overview of where the modeling language came from, then
you should start with Chapter 1. However, if you want to get your hands dirty as quickly as
possible, then you can either skip the introduction chapter to delve directly into use cases or jump
to the chapter that describes the UML diagram in which you are most interested.

Now you know what Learning UML 2.0 is about, it should be explained what this book is not about.
This book is not about any one particular modeling tool or implementation language. However,
some tools have their own way of doing things, and some implementation languages do not
support everything you can legally model in UML. Wherever appropriate, we have tried to point out
where UML tools or implementation languages deviate from or follow the UML standard.

Lastly, because of the large variation in software development processes, this book is not about any
particular process or methodology. Instead, it focuses on modeling and provides guidelines about
appropriate levels of modeling that can be applied in the context of your software development
process. Since this book adheres to the UML 2.0 standard, it works alongside any process or
methodology you use.

Assumptions This Book Makes

The following general assumptions are made as to the reader's knowledge and experience:

An understanding of object orientation

Knowledge of the Java? language for some of the examples

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant amount of
example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Learning UML 2.0, by Russ Miles and Kim Hamilton. Copyright
2006 O'Reilly Media, Inc., 0-596-00982-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free
to contact us at permissions@oreilly.com.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

How to Contact Us

http://safari.oreilly.com

Everything has been done to ensure that the examples within this book are accurate, tested, and
verified to the best of the authors' ability. However, even though UML is a standard modeling
language, the best practices as to its usage may change with time and this may have an impact on
this book's contents. If so, please address comments and questions concerning this book to the
publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book where you can find errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/learnuml2

To comment or ask technical questions about this book, email:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network,
see our web site:

http://www.oreilly.com

Additional information about this topic, including exercises, can be found at:

http://www.learninguml2.com

Acknowledgments

From the Authors

Thanks to Brett and Mary, our ace editors. We are indebted to Brett for providing valuable guidance
throughout, and to Mary for her UML expertise, her amazing work bringing this book to completion,
and her ability to line up an outstanding team of reviewers.

We'd also like to thank all the kind individuals who put in the hours to provide such excellent
technical feedback on this book. Thanks to Ed Chou, Glen Ford, Stephen Mellor, Eric Naiburg,
Adewale Oshineye, Dan Pilone and Neil Pitman, and Richard Mark Soley (the history of UML would
not have been nearly as interesting without your help).

From Russ Miles

First and foremost, my thanks go to my family and friends: Mum, Dad, Bobbie, Rich, Ad, Corinne
(thanks for all your help through the last hectic stages, you're one in a million!), Martin and Sam,

http://www.oreilly.com/catalog/learnuml2
http://www.oreilly.com
http://www.learninguml2.com

Jason and Kerry, and Aimee (wonder dog!). You are always there for me 100 percent and, as a
bonus, have the uncanny but very useful ability to get me away from the Mac once in a while when
I really need it.

I'd also like to take this opportunity to thank my uncle, Bruce Sargent. You got me started on the
first steps in this career and for that I am, and always will be, very grateful!

I'd like to thank all my proofreaders, including Rob Wilson, Laura Paterson, and Grant Tarrant-
Fisher. You've been great proofreaders, tech reviewers and, most of all, friends. With your
comments this a much better book than anything I could have put together on my own. Also, a
special thanks to Rachel "Kong" Stevens for being the unwitting inspiration for the front coverwe
love ya!

A big thanks must go to M. David Peterson (http://www.xsltblog.com) and Sylvain Hellegouarch
(http://www.defuze.org) for all their help and inspiration with the CMS example that is used
throughout this book. You're both top bloggers, developers, and friends and I want to say thanks to
you and all the LLUP hackers (http://www.x2x2x.org/projects/wiki) for making my coding life that
much more interesting, cheers!

Last, but not leastwith what is quickly becoming a standard catch-allthanks to everyone who has
helped me out while writing this book. I haven't forgotten your help and I know I owe you all a
beer or two!

From Kim Hamilton

Thanks again to Ed Chou for his gaming expertise that helped create the FPS example (among his
many other excellent contributions!) and for the long hours spent reviewing this book at every
phase. A big thanks goes to my reviewers: Frank Chiu, Albert Chu, Yu-Li Lin, Justin Lomheim,
Samarth Pal, Leland So, and Delson Ting. You were great at everythingfrom providing technical
feedback to pointing out the humor in the word OMG. Thanks to John Arcos, Ben Faul, Mike Klug,
Dwight Yorke, and Paul Yuenger, whose support helped me get this book out the door. Also, thanks
to Thomas Chen for his CMS help!

Most of all, thanks to my wonderful family and friendsMom, Dad, Ron, Mark, Grandma and Ed,
Grandpa (in loving memory), Aunt Gene, Anne Marie, Kim, Ed C, Sokun, and Tienwho have all been
so supportive this past year. Special thanks to my Mom and Dad: my Mom keeps me going with her
love, friendship, and phone calls; and my Dad has always been my number one technical mentor.

http://www.xsltblog.com
http://www.defuze.org
http://www.x2x2x.org/projects/wiki

Chapter 1. Introduction
The Unified Modeling Language (UML) is the standard modeling language for software and systems
development. This statement alone is a pretty conclusive argument for making UML part of your
software repertoire, however it leaves some questions unanswered. Why is UML unified? What can
be modeled? How is UML a language? And, probably most importantly, why should you care?

Systems design on any reasonably large scale is difficult. Anything from a simple desktop
application to a full multi-tier enterprise scale system can be made up of hundredsand potentially
thousandsof software and hardware components. How do you (and your team) keep track of which
components are needed, what their jobs are, and how they meet your customers' requirements?
Furthermore, how do you share your design with your colleagues to ensure the pieces work
together? There are just too many details that can be misinterpreted or forgotten when developing
a complex system without some help. This is where modelingand of course UMLcomes in.

In systems design, you model for one important reason: to manage complexity. Modeling helps you
see the forest for the trees, allowing you to focus on, capture, document, and communicate the
important aspects of your system's design.

A model is an abstraction of the real thing. When you model a system, you abstract away any
details that are irrelevant or potentially confusing. Your model is a simplification of the real system,
so it allows the design and viability of a system to be understood, evaluated, and criticized quicker
than if you had to dig through the actual system itself. Even better, with a formal modeling
language, the language is abstract yet just as precise as a programming language. This precision
allows a language to be machine-readable, so it can be interpreted, executed, and transformed
between systems.

To effectively model a system, you need one very important thing: a language with which the
model can be described. And here's where UML comes in.

1.1. What's in a Modeling Language?

A modeling language can be made up of pseudo-code, actual code, pictures, diagrams, or long
passages of description; in fact, it's pretty much anything that helps you describe your system. The
elements that make up a modeling language are called its notation . Figure 1-1 shows an example
of a piece of UML notation.

Figure 1-1. A class declaration as it can be shown using UML notation

There are references to the UML meta-model and profiles throughout this book. A more complete
description of what the UML meta-model contains and why it is useful is available in Appendix B ,
but for now, just think of the UML meta-model as the description of what each element of notation
means and a profile as a customization of that description for a specific domain (i.e., banking).

However, notation is not the whole story. Without being told that one of the boxes in Figure 1-1
represents a class, you wouldn't necessarily know what it is, even though you might be able to
guess. The descriptions of what the notation means are called the semantics of the language and
are captured in a language's meta-model.

A modeling language can be anything that contains a notation (a way of expressing the model) and
a description of what that notation means (a meta-model). But why should you consider using UML
when there are so many different ways of modeling, including many you could make up on your
own?

Every approach to modeling has different advantages and disadvantages, but UML has six main
advantages:

It's a formal language

Each element of the language has a strongly defined meaning, so you can be confident that
when you model a particular facet of your system it will not be misunderstood.

It's concise

The entire language is made up of simple and straightforward notation.

It's comprehensive

It describes all important aspects of a system.

It's scaleable

Where needed, the language is formal enough to handle massive system modeling projects,
but it also scales down to small projects, avoiding overkill.

It's built on lessons learned

UML is the culmination of best practices in the object-oriented community during the past 15
years.

It's the standard

UML is controlled by an open standards group with active contributions from a worldwide
group of vendors and academics, which fends off "vendor lock-in." The standard ensures
UML's transformability and interoperability, which means you aren't tied to a particular
product.

1.1.1. Detail Overload: Modeling with Code

Software code is an example of a potential modeling language where none of the detail has been
abstracted away. Every line of code is the detail of how your software is intended to work. Example
1-1 shows a very simple class in Java, yet there are many details in this declaration.

Example 1-1. Even in a simple Java class, there can be a lot of detail to
navigate through

package org.oreilly.learningUML2.ch01.codemodel;

public class Guitarist extends Person implements MusicPlayer {

 Guitar favoriteGuitar;

 public Guitarist (String name) {

 super(name);
 }

 // A couple of local methods for accessing the class's properties
 public void setInstrument(Instrument instrument) {
 if (instrument instanceof Guitar) {
 this.favoriteGuitar = (Guitar) instrument;
 }
 else {
 System.out.println("I'm not playing that thing!");
 }
 }

 public Instrument getInstrument() {
 return this.favoriteGuitar;
 }

 // Better implement this method as MusicPlayer requires it
 public void play() {
 System.out.println(super.getName() + "is going to do play the guitar now ...");

 if (this.favoriteGuitar != null) {
 for (int strum = 1; strum < 500; strum++) {
 this.favoriteGuitar.strum();
 }
 System.out.println("Phew! Finished all that hard playing");
 }
 else {
 System.out.println("You haven't given me a guitar yet!");
 }
 }

 // I'm a main program so need to implement this as well
 public static void main(String[] args) {
 MusicPlayer player = new Guitarist("Russ");
 player.setInstrument(new Guitar("Burns Brian May Signature"));
 player.play();
 }
}

Example 1-1 shows all of the information about the Guitar class, including inheritance relationships
to other classes, member variables involving other classes, and even implementation details for the
methods themselves.

What's wrong with using software source code as your model? All of the details are there, every
element of the language's notation has meaning to the compiler, and with some effective code-level
comments, such as JavaDoc, you have an accurate representation of your software system, don't
you?

The truth is that you haven't actually modeled anything other than the software implementation.

The source code focuses only on the software itself and ignores the rest of the system. Even though
the code is a complete and (generally) unambiguous definition of what the software will do, the
source code alone simply cannot tell you how the software is to be used and by whom, nor how it is
to be deployed; the bigger picture is missing entirely if all you have is the source code.

As well as ignoring the bigger picture of your system, software code presents a problem in that you
need to use other techniques to explain your system to other people. You have to understand code
to read code, but source code is the language for software developers and is not for other
stakeholders, such as customers and system designers. Those people will want to focus just on
requirements or perhaps see how the components of your system work together to fulfill those
requirements. Because source code is buried in the details of how the software works, it cannot
provide the higher level abstract views of your system that are suitable for these types of
stakeholders.

Now imagine that you have implemented your system using a variety of software languages. The
problem just gets worse. It is simply impractical to ask all the stakeholders in your system to learn
each of these implementation languages before they can understand your system.

Finally, if your design is modeled as code, you also lose out when it comes to reuse because design
is often reusable whereas code may not be. For example, reimplementing a Java Swing application
in HTML or .NET is much simpler if the design is modeled rather than reverse engineering the code.
(Reverse engineering is extracting the design of a system from its implementation.)

All of these problems boil down to the fact that source code provides only one level of abstraction:
the software implementation level. Unfortunately, this root problem makes software source code a
poor modeling language.

1.1.2. Verbosity, Ambiguity, Confusion: Modeling with Informal
Languages

At the opposite end of the spectrum from complete and precise source code models are informal
languages. Informal languages do not have a formally defined notation; there are no hard and fast
rules as to what a particular notation can mean, although sometimes there are guidelines.

A good example of an informal language is natural language. Natural languagethe language that
you're reading in this bookis notoriously ambiguous in its meaning. To accurately express
something so that everyone understands what you are saying is at best a challenge and at worst
flat-out impossible. Natural language is flexible and verbose, which happens to be great for
conversation but is a real problem when it comes to systems modeling.

The following is a slightly exaggerated but technically accurate natural language model of Example
1-1 :

Guitarist is a class that contains six members: one static and five non-static. Guitarist uses,
and so needs an instance of, Guitar ; however, since this might be shared with other classes
in its package, the Guitar instance variable, called favoriteGuitar , is declared as default .

Five of the members within Guitarist are methods. Four are not static. One of these methods
is a constructor that takes one argument, and instances of String are called name , which
removes the default constructor.

Three regular methods are then provided. The first is called setInstrument , and it takes one

parameter, an instance of Instrument called instrument , and has no return type. The second
is called getInstrument and it has no parameters, but its return type is Instrument . The final
method is called play . The play method is actually enforced by the MusicPlayer interface that
the Guitarist class implements. The play method takes no parameters, and its return type is
void .

Finally, Guitarist is also a runable program. It contains a method that meets the Java
specification for a main method for this reason.

If you take a hard look at this definition, you can see problems everywhere, almost all resulting
from ambiguity in the language. This ambiguity tends to result in the, "No, that's not what I
meant!" syndrome, where you've described something as clearly as possible, but the person that
you are conveying the design to has misunderstood your meaning (see Figure 1-2).

Figure 1-2. Even a simple natural language sentence can be interpreted
differently by different stakeholders in the system

The problems with informal languages are by no means restricted to written languages. The same
description of Guitarist might be presented as a picture like that shown in Figure 1-3 .

Figure 1-3. Informal notation can be confusing; even though my
intentions with this diagram might appear obvious, you really can't be

sure unless I also tell you what the notation means

Figure 1-3 is another example of an informal language, and it happens to be a notation that I just
made up. It makes perfect sense to me, but you could easily misinterpret my intentions.

As with the natural language model, all of the details are present in Figure 1-3 's picture, but
without a definition of what the boxes, connections, and labels mean, you can't be sure about your
interpretation (or mine!).

So, why does any of this matter if your team has a home-grown modeling technique it's been using
for years and you all understand what each other means? If you ever have to show your design to
external stakeholders, they might become frustrated trying to understand your home-grown
symbols, when you could have used a standard notation they already know. It also means you
don't have to learn a new modeling technique every time you switch jobs!

The basic problem with informal languages is that they don't have exact rules for their notation. In
the natural language example, the meanings of the model's sentences were obscured by the
ambiguity and verbosity of the English language. The picture in Figure 1-3 may not have suffered
from quite the same verbosity problems, but without knowing what the boxes and lines represent,
the meaning of the model was left largely to guesswork.

Because informal languages are not precise, they can't be transformed into code as a formal
language can. Imagine if Figure 1-3 had a set of formal rules; then you could generate code that
implemented the classes for Guitarist , Person , and so on. But this is impossible without
understanding the rules. Unfortunately, informal languages will always suffer from the dual
problem of verbosity and ambiguity, and this is why they are a poorand sometimes extremely
dangeroustechnique for modeling systems, as shown in Figure 1-4 .

Figure 1-4. With an informal notation, the problem of confusion through

ambiguity still exists

Although natural language is dangerously ambiguous, it is still one of the best techniques for
capturing requirements, as you will see when you learn about use cases in Chapter 2 .

1.1.3. Getting the Balance Right: Formal Languages

You've now seen some of the pitfalls of using a too-detailed language for modeling (source code)
and a too-verbose and ambiguous language for modeling (natural language). To effectively model
a systemavoiding verbosity, confusion, ambiguity, and unnecessary detailsyou need a formal
modeling language .

Ideally, a formal modeling language has a simple notation whose meaning is well-defined. The
modeling language's notation should be small enough to be learned easily and must have an
unambiguous definition of the notation's meaning. UML is just such a formal modeling language.

Figure 1-5 shows how the code structure in Example 1-1 can be expressed in UML. For now, don't
worry too much about the notation or its meaning; at this point, the UML diagram is meant to be
used only as a comparison to the informal pictorial and natural language models shown previously.

Figure 1-5. Expressing the static structure of the Guitarist class structure
in formal UML notation

Even if you don't yet understand all of the notation used in Figure 1-5 , you can probably start to
grasp that there are some details present in the codesee Example 1-1 that are not modeled here.
For example, the specific implementation of the play() method has been abstracted away,
allowing you to visualize the code's structure without excess clutter.

The best thing about having modeled the system using UML is that the notation in Figure 1-5 has a
specific and defined meaning. If you were to take this diagram to any other stakeholder in your
system, provided he knows UML, the design would be clearly understood. This is the advantage of
using formal languages for modeling as shown in Figure 1-6 .

Figure 1-6. With a modeling language that has a formally defined
meaning, you can ensure that everyone is reading the picture the same

way

1.2. Why UML 2.0?

The first version of UML allowed people to communicate designs unambiguously, convey the
essence of a design, and even capture and map functional requirements to their software solutions.
However, the world changed more fundamentally with the recognition that systems modeling,
rather than just software modeling, could also benefit from a unified language such as UML.

The driving factors of component-oriented software development, model-driven architectures,
executable UML, and the need to share models between different tools placed demands on UML that
it had not originally been designed to meet.

Also, UML 1.x and all of its previous revisions were designed as a unified language for humans.
When it became important for models to be shared between machinesspecifically between
Computer Aided Systems Engineering (CASE) toolsUML 1.x was again found wanting. UML 1.x's
underlying notation rules and its meta-model were (ironically) not formally defined enough to
enable machine-to-machine sharing of models.

MDA and Executable UML

Two reasonably new approaches to system development inspired many of the
improvements made in UML 2.0. In a nutshell, Model Driven Architectures (MDAs)
provide a framework that supports the development of Platform Independent Models
(PIMs) models that capture the system in a generic manner that is divorced from
concerns such as implementation language and platform.

PIMs can then be transformed into separate Platform Specific Models (PSMs) that
contain concrete specifications for a particular system deployment (containing details
such as implementation language and communications protocols, etc.). MDA requires a
formally structured and interoperable meta-model to perform its transformations, and
this level of meta-model is now provided by UML 2.0.

For many of the same reasons, executable UML provides a means by which a PSM could
contain enough complete information so that the model can be effectively run. Some
day, you could conceivably drag around a few symbols, and complete, runnable
software would pop out! An executable UML engine requires that the UML model be
defined well enough for it to be able to generate and execute the modeled system.

Unfortunately, even though UML 2.0 is supposed to provide the mechanisms to make
MDA and executable UML a reality, tools support is not yet fully developed.

Although UML 1.5 described a system fairly well, the model describing the modelthe meta-

modelhad become patched and overly complex. Like any system that has an overly complex
design, and is fragile and difficult to extend, UML had become overly complex, fragile, and difficult
to extend; it was time for a re-architecture.

The designers of UML 2.0 were very careful to ensure that UML 2.0 would not be too unfamiliar to
people who were already using UML 1.x. Many of the original diagrams and associated notations
have been retained and extended in UML 2.0 as shown in Table 1-1. However, new diagram types
have been introduced to extend the language just enough so that it can support the latest best
practices.

With Version 2.0, UML has evolved to support the new challenges that software and system
modelers face today. What began many years ago as a unification of the different methods for
software design has now grown into a unified modeling language that is ready and suitable to
continue to be the standard language for the myriad of different tasks involved in software and
systems design.

Table 1-1. To describe the larger landscape of systems design, UML 2.0
renamed and clarified its diagrams for the new challenges facing system

modelers today

Diagram type What can be modeled?

Originally
introduced by
UML 1.x or UML
2.0

To learn about
this diagram
type, go to...

Use Case

Interactions between your system and
users or other external systems. Also
helpful in mapping requirements to your
systems.

UML 1.x Chapter 2

Activity
Sequential and parallel activities within
your system.

UML 1.x Chapter 3

Class
Classes, types, interfaces, and the
relationships between them.

UML 1.x
Chapters 4 and
5

Object
Object instances of the classes defined in
class diagrams in configurations that are
important to your system.

Informally UML 1.x Chapter 6

Sequence
Interactions between objects where the
order of the interactions is important.

UML 1.x Chapter 7

Communication
The ways in which objects interact and
the connections that are needed to
support that interaction.

Renamed from UML
1.x's collaboration
diagrams

Chapter 8

Timing
Interactions between objects where
timing is an important concern.

UML 2.0 Chapter 9

Diagram type What can be modeled?

Originally
introduced by
UML 1.x or UML
2.0

To learn about
this diagram
type, go to...

Interaction
Overview

Used to collect sequence,
communication, and timing diagrams
together to capture an important
interaction that occurs within your
system.

UML 2.0 Chapter 10

Composite
Structure

The internals of a class or component,
and can describe class relationships
within a given context.

UML 2.0 Chapter 11

Component
Important components within your
system and the interfaces they use to
interact with each other.

UML 1.x, but takes
on a new meaning
in UML 2.0

Chapter 12

Package
The hierarchical organization of groups
of classes and components.

UML 2.0 Chapter 13

State Machine
The state of an object throughout its
lifetime and the events that can change
that state.

UML 1.x Chapter 14

Deployment
How your system is finally deployed in a
given real-world situation.

UML 1.x Chapter 15

Interaction
Overview

Used to collect sequence,
communication, and timing diagrams
together to capture an important
interaction that occurs within your
system.

UML 2.0 Chapter 10

Composite
Structure

The internals of a class or component,
and can describe class relationships
within a given context.

UML 2.0 Chapter 11

Component
Important components within your
system and the interfaces they use to
interact with each other.

UML 1.x, but takes
on a new meaning
in UML 2.0

Chapter 12

Package
The hierarchical organization of groups
of classes and components.

UML 2.0 Chapter 13

State Machine
The state of an object throughout its
lifetime and the events that can change
that state.

UML 1.x Chapter 14

Deployment
How your system is finally deployed in a
given real-world situation.

UML 1.x Chapter 15

1.3. Models and Diagrams

Many newcomers to UML focus on the different types of diagrams used to model their system. It's
very easy to assume that the set of diagrams that have been created actually are the model. This is
an easy mistake to make because when you are using UML, you will normally be interacting with a
UML tool and a particular set of diagrams. But UML modeling is not just about diagrams; it's about
capturing your system as a modelthe diagrams are actually just windows into that model.

A particular diagram will show you some parts of your model but not necessarily everything. This
makes sense, since you don't want a diagram showing everything in your model all at onceyou
want to be able to split contents of your model across several diagrams. However, not everything in
your model needs to exist on a diagram for it to be a part of your model.

So, what does this mean? Well, the first thing to understand is that your model sits behind your
modeling tool and diagrams as a collection of elements. Each of those elements could be a use
case, a class, an activity, or any other construct that UML supports. The collection of all the
elements that describe your system, including their connections to each other, make up your
model.

However, if all you could do was create a model made up of elements, then you wouldn't have
much to look at. This is where diagrams come in. Rather than actually being your model, diagrams
are used merely as a canvas on which you can create new elements that are then added to your
model and organize related elements into a set of views on your underlying model.

So, when you next use your UML tool to work with a set of diagrams in UML notation, it is worth
remembering that what you are manipulating is a view of the contents of your model. You can
change elements of your model within the diagram, but the diagram itself is not the modelit's just a
useful way of presenting some small part of the information your model contains.

1.4. "Degrees" of UML

UML can be used as much or as little as you like. Martin Fowler describes three common ways that
people tend to use UML:

UML as a sketch

Use UML to make brief sketches to convey key points. These are throwaway sketchesthey
could be written on a whiteboard or even a beer coaster in a crunch.

UML as a blueprint

Provide a detailed specification of a system with UML diagrams. These diagrams would not be
disposable but would be generated with a UML tool. This approach is generally associated
with software systems and usually involves using forward and reverse engineering to keep
the model synchronized with the code.

UML as a programming language

This goes directly from a UML model to executable code (not just portions of the code as with
forward engineering), meaning that every aspect of the system is modeled. Theoretically, you
can keep your model indefinitely and use transformations and code generation to deploy to
different environments.

The approach used depends on the type of application you're building, how rigorously the design
will be reviewed, whether you are developing a software system, and, if it is software, the software
development process you're using.

In certain industries, such as medical and defense, software projects tend to lean toward UML as a
blueprint because a high level of quality is demanded. Software design is heavily reviewed since it
could be mission-critical: you don't want your heart monitoring machine to suddenly display the
"blue screen of death."

Some projects can get away with less modeling. In fact, some commercial industries find that too
much modeling is cumbersome and slows down productivity. For such projects, it makes sense to
use UML as a sketch and have your model contain some architectural diagrams and a few class and
sequence diagrams to illustrate key points.

1.5. UML and the Software Development Process

When you are using UML to model a software system, the "degree of UML" you apply is partially
influenced by the software development process you use.

A software development process is a recipe used for constructing softwaredetermining the
capabilities it has, how it is constructed, who works on what, and the timeframes for all activities.
Processes aim to bring discipline and predictability to software development, increasing the chance
of success of a project. Since UML is the language for modeling your software, it's an important
part of the software development process.

A few well-known software development processes include:

Waterfall

The waterfall method attempts to pin down the requirements early in the project life cycle.
After gathering requirements, software design is performed in full. Once the design is
complete, the software is implemented. The problem with this method is that if a change in
requirements occurs, the impact can be devastating.

Iterative

Iterative methods attempt to address the shortcomings of the waterfall approach by
accepting that change will happen and, in fact, embracing it. The Unified Process is a well-
known iterative process. It consists of multiple phases, each phase containing some amount
of the following activities: requirements, design, and implementation (coding). Iterative
methods encompass a wider range of approaches (e.g., agile iterative processes), and they
can range from using UML as sketch to using UML as blueprint.

Agile methods

Agile methods use iterations in extremely short bursts and attempt to minimize risk by
always having a working system of expanding capabilities. Methodologies under this category
have introduced some of the more interesting development practices, such as pair
programming and test-driven development. Agile methods emphasize using UML as a sketch.

1.6. Views of Your Model

There are a number of ways to break up your UML model diagrams into perspectives or views that
capture a particular facet of your system. In this book, we use Kruchten's 4+1 view model to help
you show you how each diagram type plays a part in the overall model, as shown in Figure 1-7 .

Figure 1-7. Philippe Kruchten's 4+1 view model

The 4+1 view model breaks down a model into a set of views, each capturing a specific aspect of
your system:

Logical view

Describes the abstract descriptions of a system's parts. Used to model what a system is made
up of and how the parts interact with each other. The types of UML diagrams that typically
make up this view include class, object, state machine, and interaction diagrams.

Process view

Describes the processes within your system. It is particularly helpful when visualizing what
must happen within your system. This view typically contains activity diagrams.

Development view

Describes how your system's parts are organized into modules and components. It is very
useful to manage layers within your system's architecture. This view typically contains
package and component diagrams.

Physical view

Describes how the system's design, as described in the three previous views, is then brought
to life as a set of real-world entities. The diagrams in this view show how the abstract parts
map into the final deployed system. This view typically contains deployment diagrams.

Use case view

Describes the functionality of the system being modeled from the perspective of the outside
world. This view is needed to describe what the system is supposed to do. All of the other
views rely on the use case view to guide themthat's why the model is called 4+1. This view
typically contains use case diagrams, descriptions, and overview diagrams.

Each view offers a different and important perspective on your model. If you find yourself asking,
"Why do I care about this?" as you read about a particular notation or diagram, refer to the view
that the diagram or notation provides to understand why it is needed.

To learn more about Kruchten's 4+1 view model, check out "Architectural BlueprintsThe '4+1' View
Model of Software Architecture" by Philippe Kruchten, at
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf .
For an overview, visit http://www-128.ibm.com/developerworks/wireless/library/wi-arch11/ .

http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf

1.7. A First Taste of UML

Before jumping into the different types of diagrams that make up UML, you need to know about two
elements of UML notation that are used throughout a model: notes and stereotypes .

1.7.1. Notes

Notes allow you to enter additional comments that aren't captured in your diagrams. You can write
anything you want in a note to explain your diagram, similar to a comment in code. Notes are
pictured with the folded rectangle notation as shown in Figure 1-8.

Figure 1-8. A UML note

Notes can be placed on a diagram in isolation or attached to a specific part of the diagram as
shown in Figure 1-9.

Figure 1-9. A note is attached to another element on the diagram using a
dotted line

In this book, notes are used to explain something more about a particular diagram. Notes are just
aids for the reader of a diagram; they don't change the meaning of the diagram or the underlying
model at all.

1.7.2. Stereotypes

Stereotypes signify a special use or intent and can be applied to almost any element of UML
notation. Stereotypes modify the meaning of an element and describe the element's role within
your model.

A stereotype sometimes has an associated icon, such as in Figure 1-10's stick-figure actor symbol.
To learn more about actors, see Chapter 2.

Figure 1-10. The Administrator is represented in the role of an actor
because it is using the stick figure notation associated with that

stereotype

There isn't always a special icon for a stereotype; sometimes they take up too much room and
clutter a diagram. In these cases, the stereotype is shown using guillemots at either end of the
stereotype name, as in «stereotype_name», shown in Figure 1-11. However, because guillemots
require an extended character set, you can substitute them for angle brackets, as in
<<stereotype_name>>.

Figure 1-11. The Administrator element is still an actor, but its
stereotype is now specified using a name rather than an icon

There is no limit to the number of stereotypes with which an element can be associated; sometimes
you may end up specifying more than one stereotype, as shown in Figure 1-12.

Figure 1-12. The Administrator is now stereotyped as an actor and a

person

The UML specification defines a set of "standard" or predefined stereotypes. Some of the more
useful standard stereotypes include:

1.7.2.1. Stereotype applied to classes (see Chapters 4 and 5)

utility

Represents a class that provides utility services through static methods, just as Java's Math
class.

1.7.2.2. Stereotypes applied to components (see Chapter 12)

service

A stateless, functional component that computes a value; could be used to represent a web
service.

subsystem

A large component that is actually a subordinate system of a larger system.

1.7.2.3. Stereotypes applied to artifacts (see Chapter 15)

executable

A physical file that is executable, such as an .exe file.

file

A physical file used by your system; this could be a configuration file such as a .txt file.

library

A static or dynamic library file; you could use this to model .dll or .jar library files.

source

A source file containing code, such as a .java or .cpp file.

1.7.2.4. Tagged values

Stereotypes can contain extra information that relates to the element to which they are applied.
This extra information is specified using tagged values .

Tagged values are associated with a stereotype. Say you had an element in your model that
represented a login page on a web site, and it was stereotyped as a form. The form stereotype
needs to know whether it should validate the contents of the form or not in this case. This
validation decision should be declared as a tagged value of the form stereotype because it is
associated with the stereotype that is applied to an element, not with the element itself.

A tagged value is drawn on a diagram using a similar notation to notes, but the folded rectangle
contains the name of any stereotypes and settings for any associated tagged values. The tagged
value note is then attached to the stereotyped element using a dotted line with a circle at the
element end, as shown in Figure 1-13. (This example was adapted from UML 2.0 in a Nutshell
[O'Reilly].)

Figure 1-13. The form stereotype has an associated validate tagged
value, which is set to true in this case

In UML 2.0, stereotypes and their tagged values are defined using profiles. To
learn more about stereotypes and how to create roles for the elements of your
model, see Appendix B.

1.8. Want More Information?

The next step is to jump into Chapter 2 and start learning UML. If you're a bit of a history buff, then
you can also check out a brief history of UML in Appendix C.

UML is a concise language but a big subject. As well as learning about UML, it's worth reading
through the tutorials and documentation available at the Object Management Group 's web site,
http://www.omg.org.

http://www.omg.org

Chapter 2. Modeling Requirements: Use
Cases
Imagine that it's Monday morning and your first day on a new project. The requirements folks have
just popped in for a coffeeand to leave you the 200-page requirements document they've been
working on for the past six months. Your boss's instructions are simple: "Get your team up to
speed on these requirements so that you can all start designing the system." Happy Monday, huh?

To make things just a bit more difficult, the requirements are still a little fuzzy, and they are all
written in the language of the userconfusing and ambiguous natural language rather than in a
language that your system stakeholders can easily understand. See the "Verbosity, Ambiguity,
Confusion: Modeling with Informal Languages" section in Chapter 1 for more on the problems of
modeling with natural and informal languages.

What is the next step, apart from perhaps a moment or two of sheer panic? How do you take this
huge set of loosely defined requirements and distill it into a format for your designers without
losing important detail? UML, as you know from Chapter 1, is the answer to both of these
questions. Specifically, you need to work with your system's stakeholders to generate a full set of
requirements and something newuse cases .

A use case is a case (or situation) where your system is used to fulfill one or more of your user's
requirements; a use case captures a piece of functionality that the system provides. Use cases are
at the heart of your model, shown in Figure 2-1, since they affect and guide all of the other
elements within your system's design.

Figure 2-1. Use cases affect every other facet of your system's design;
they capture what is required and the other views on your model, then

show how those requirements are met

Use cases are an excellent starting point for just about every facet of object-oriented system

development, design, testing, and documentation. They describe a system's requirements strictly
from the outside looking in; they specify the value that the system delivers to users. Because use
cases are your system's functional requirements, they should be the first serious output from your
model after a project is started. After all, how can you begin to design a system if you don't know
what it will be required to do?

Use cases specify only what your system is supposed to do, i.e., the system's
functional requirements. They do not specify what the system shall not do,
i.e., the system's nonfunctional requirements. Nonfunctional requirements
often include performance targets and programming languages, etc.

When you are working on a system's requirements, questions often arise as to whether the system
has a particular requirement. Use cases are a means to bring those gaps in the user's requirements
to the forefront at the beginning of a project.

This is a real bonus for the system designer since a gap or lack of understanding identified early on
in a project's development will cost far less in both time and money than a problem that is not
found until the end of a project. Once a gap has been identified, go back to the system's
stakeholdersthe customers and usersso they can provide the missing information.

It's even better when a requirement is presented as a use case and the
stakeholder sees that the requirement has little or no value to the system. If a
stakeholder can discard unnecessary requirements, both money and time are
saved.

Once priority and risk are assigned to a use case, it can help manage a project's workload. Your use
cases can be assigned to teams or individuals to be implemented and, since a use case represents
tangible user value, you can track the progress of the project by use cases delivered. If and when a
project gets into schedule trouble, use cases can be jettisoned or delayed to deliver the highest
value soonest.

Last but not least, use cases also help construct tests for your system. Use cases provide an
excellent starting point for building your test cases and procedures because they precisely capture
a user's requirements and success criteria. What better way to test your system than by using the
use cases that originally captured what the user wanted in the first place?

2.1. Capturing a System Requirement

Enough theory for now; let's take a look at a simple example. Suppose we're defining requirements
for a weblog content management system (CMS).

Requirement A.1

The content management system shall allow an administrator to create a new blog
account, provided the personal details of the new blogger are verified using the author
credentials database.

There's actually no specific "best way" to start analyzing Requirement A.1, but one
useful first step is to look at the things that interact with your system. In use cases,
these external things are called actors .

The terms shall and should have a special and exact meaning when it comes
to requirements. A shall requirement must be fulfilled; if the feature that
implements a shall requirement is not in the final system, then the system
does not meet this requirement. A should requirement implies that the
requirement is not critical to the system working but is still desirable. If a
system's development is running into problems that will cause delivery
delays, then it's often the should requirements that are sacrificed first.

Blog Features

Weblogs, commonly referred to as blogs, originally started out as privately maintained
web pages for authors to write about anything. These days, blogs are usually packaged
into an overall CMS. Bloggers submit new entries to the system, administrators allocate
blogging accounts, and the systems typically incorporate advanced features, such as
RSS feeds. A well-publicized blog can attract thousands of readers (see O'Reilly's
blogging site at http://weblogs.oreillynet.com).

2.1.1. Outside Your System: Actors

http://weblogs.oreillynet.com

An actor is drawn in UML notation using either a "stick man" or a stereotyped box (see
"Stereotypes" in Chapter 1) and is labeled with an appropriate name, as shown in Figure 2-2.

Figure 2-2 captures the Administrator role as it is described in Requirement A.1. The system that
is being modeled is the CMS; the requirement's description indicates

Figure 2-2. Requirement A.1 contains an Administrator actor that
interacts with the system to create a blog account

that the Administrator interacts with the system to create a new blogger's account. The
Administrator interacts with the system and is not part of the system; therefore, the Administrator
is defined as an actor.

What's in a Name?

It's actually worth being very careful when naming your actors. The best approach is to
use a name that can be understood by both your customer and your system designers.
Wherever possible, use the original term for the actor as identified within your
customer's requirements; that way, at least your use cases will be familiar to your
customers. This approach also lets system designers get comfortable with the system's
unique context.

Deciding what is and what is not an actor is tricky and is something best learned by experience.
Until you've gained some of that experience, Figure 2-3 shows a simple technique for analyzing a
"thing" that you've found in your requirements and how to decide whether it is an actor or not.

Actors don't have to be actual people. While an actor might be a person, it could also be a third
party's system, such as in a business-to-business (B2B) application. Think of an actor as a black
box: you cannot change an actor and you are not interested in how it works, but it must interact
with your system.

2.1.1.1. Tricky actors

Not all actors are obvious external systems or people that interact with your system. An example of
a common tricky actor is the system clock. The name alone implies that the clock is part of the

system, but is it really?

The system clock comes into play when it invokes some behavior within your system. It is hard to
determine whether the system clock is an actor because the clock is not clearly outside of your
system. As it turns out, the system clock is often best described as an actor because it is not
something that you can influence. Additionally, describing the clock as an actor will help when
demonstrating that your system needs to perform a task based on the current time.

Figure 2-3. Here are a couple of questions to ask yourself when trying to
identify an actor

It is also tempting to focus on just the users of your systems as the actors in your model, but don't
forget about other people, such as auditors, installers, maintainers, upgraders, and so on. If you
focus on only the obvious users of your system, then you might forget about some of these other
stakeholders, and that can be very dangerous! Those actors may have a veto ("We can't certify this
system without proof that the data has not been tampered with") or they may have to enforce
important nonfunctional requirements, such as an upgrade in a 10-minute system downtime
window and an upgrade without shutting the system down, etc. If these actors are ignored, these
important functions of your system won't be documented, and you risk ending up with a worthless
system.

2.1.1.2. Refining actors

When going through the process of capturing all of the actors that interact with your system, you
will find that some actors are related to each other, as shown in Figure 2-4.

The Administrator actor is really a special kind of system user. To show that an administrator can
do whatever a regular user can do (with some extra additions), a generalization arrow is used. For
more on generalization and the generalization arrow, see Chapter 5.

Figure 2-4. Showing that an administrator is a special kind of user

2.1.2. Use Cases

Once you have captured an initial set of actors that interact with your system, you can assemble
the exact model of those interactions. The next step is to find cases where the system is being used
to complete a specific job for an actoruse cases, in fact. Use cases can be identified from your
user's requirements. This is where those wordy, blurry definitions in the user requirements
document should be distilled into a clear set of jobs for your system.

Remember, if use cases are truly requirements, then they must have very
clear pass/fail criteria. The developer, the tester, the technical writer, and the
user must explicitly know whether the system fulfils the use case or not.

A use case, or job, might be as simple as allowing the user to log in or as complex as executing a
distributed transaction across multiple global databases. The important thing to remember is that a
use casefrom the user's perspectiveis a complete use of the system; there is some interaction with

the system, as well as some output from that interaction. For example, Requirement A.1 describes
one main use of the CMS: to create a new blog account. Figure 2-5 shows how this interaction is
captured as a use case.

Figure 2-5. A use case in UML is drawn as an oval with a name that
describes the interaction that it represents

After all that build-up, you might have expected a use case to be a complex piece of notation.
Instead, all you get is an oval! The notation for a use case is very simple and often hides its
importance in capturing system concerns. Don't be deceived; the use case is probably the single
most powerful construct in UML to make sure your system does what it is supposed to.

What Makes a Good Use Case?

Experience will help you determine when you have a good use case, but there is a rule
of thumb that can be used to specify a use case:

A use case is something that provides some measurable result to the user or an
external system.

Any piece of system behavior that meets this simple test is likely to be a good
candidate for a use case.

2.1.3. Communication Lines

At this point, we've identified a use case and an actor, but how do we show that the Administrator
actor participates in the Create a new Blog Account use case? The answer is by using
communication lines .

A communication line connects an actor and a use case to show the actor participating in the use
case. In this example, the Administrator actor is involved in the Create a new Blog Account use
case; this is shown in Figure 2-6 by adding a communication line.

Figure 2-6. A communication line joins the Administrator actor to the
"Create a new Blog Account" use case; the Administrator is involved in

the interaction that the use case represents

This simple example shows a communication line between only one actor and only one use case.
There is potential to have any number of actors involved in a use case. There is no theoretical limit
to the number of actors that can participate in a use case.

To show a collection of actors participating in a use case, all you have to do is draw a
communication line from each of the participating actors to the use case oval, as shown in Figure 2-
7.

Figure 2-7. The login use case interacts with three actors during its
execution

Sometimes UML diagrams will have communication lines with navigability; for example, a diagram
with an arrow at one end will show the flow of information between the actor and the use case, or
show who starts the use case. Although this notation is not really a crime in UML terms, it's not a
very good use of communication lines.

The purpose of a communication line is to show that an actor is simply involved in a use case, not
to imply an information exchange in any particular direction or that the actor starts the use case.
That type of information is contained within a use case's detailed description, therefore it doesn't
make sense to apply navigation to communication lines. For more on use cases and descriptions,
see "Use Case Descriptions," later in this chapter.

2.1.4. System Boundaries

Although there is an implicit separation between actors (external to your system) and use cases
(internal to your system) that marks your system's boundary, UML does provide another small
piece of notation if you want to make things crystal clear.

To show your system's boundary on a use case diagram, draw a box around all of the use cases but
keep the actors outside of the box. It's also good practice to name your box after the system you
are developing, as shown for the CMS in Figure 2-8.

Figure 2-8. The Administrator actor is located outside of the CMS,
explicitly showning that the system boundary box use cases must fall

within the system boundary box, since it doesn't make sense to have a
use case outside of your system's boundary

2.1.5. Use Case Descriptions

A diagram showing your use cases and actors may be a nice starting point, but it does not provide
enough detail for your system designers to actually understand exactly how the system's concerns
will be met. How can a system designer understand who the most important actor is from the use
case notation alone? What steps are involved in the use case? The best way to express this
important information is in the form of a text-based descriptionevery use case should be
accompanied by one.

There are no hard and fast rules as to what exactly goes into a use case description according to
UML, but some example types of information are shown in Table 2-1.

Table 2-1. Some types of information that you can include in your use
case descriptions

Use case
description detail

What the detail means and why it is useful

Related
Requirements

Some indication as to which requirements this use case partially or
completely fulfills.

Goal In Context The use case's place within the system and why this use case is important.

Use case
description detail

What the detail means and why it is useful

Preconditions What needs to happen before the use case can be executed.

Successful End
Condition

What the system's condition should be if the use case executes successfully.

Failed End Condition
What the system's condition should be if the use case fails to execute
successfully.

Primary Actors
The main actors that participate in the use case. Often includes the actors
that trigger or directly receive information from a use case's execution.

Secondary Actors
Actors that participate but are not the main players in a use case's
execution.

Trigger The event triggered by an actor that causes the use case to execute.

Main Flow
The place to describe each of the important steps in a use case's normal
execution.

Extensions
A description of any alternative steps from the ones described in the Main
Flow.

Table 2-2 shows an example use case description for the Create a new Blog Account use case and
provides a handy template for your own descriptions.

Table 2-2. A complete use case description for the "Create a new Blog
Account" use case

Use case name Create a new Blog Account

Related
Requirements

Requirement A.1.

Goal In Context
A new or existing author requests a new blog account from the
Administrator.

Preconditions
The system is limited to recognized authors and so the author needs to have
appropriate proof of identity.

Successful End
Condition

A new blog account is created for the author.

Failed End Condition The application for a new blog account is rejected.

Primary Actors Administrator.

Secondary
Actors

Author Credentials Database.

 Trigger
The Administrator asks the CMS to create a new blog
account.

Main Flow Step Action

Preconditions What needs to happen before the use case can be executed.

Successful End
Condition

What the system's condition should be if the use case executes successfully.

Failed End Condition
What the system's condition should be if the use case fails to execute
successfully.

Primary Actors
The main actors that participate in the use case. Often includes the actors
that trigger or directly receive information from a use case's execution.

Secondary Actors
Actors that participate but are not the main players in a use case's
execution.

Trigger The event triggered by an actor that causes the use case to execute.

Main Flow
The place to describe each of the important steps in a use case's normal
execution.

Extensions
A description of any alternative steps from the ones described in the Main
Flow.

Table 2-2 shows an example use case description for the Create a new Blog Account use case and
provides a handy template for your own descriptions.

Table 2-2. A complete use case description for the "Create a new Blog
Account" use case

Use case name Create a new Blog Account

Related
Requirements

Requirement A.1.

Goal In Context
A new or existing author requests a new blog account from the
Administrator.

Preconditions
The system is limited to recognized authors and so the author needs to have
appropriate proof of identity.

Successful End
Condition

A new blog account is created for the author.

Failed End Condition The application for a new blog account is rejected.

Primary Actors Administrator.

Secondary
Actors

Author Credentials Database.

 Trigger
The Administrator asks the CMS to create a new blog
account.

Use case name Create a new Blog Account

Main Flow Step Action

 1
The Administrator asks the system to create a new blog
account.

 2 The Administrator selects an account type.

 3 The Administrator enters the author's details.

 4
The author's details are verified using the Author
Credentials Database.

 5 The new blog account is created.

 6
A summary of the new blog account's details are emailed
to the author.

Extensions Step Branching Action

 4.1
The Author Credentials Database does not verify the
author's details.

 4.2 The author's new blog account application is rejected.

The format and content in Table 2-2 is only an example, but it's worth remembering that use case
descriptions and the information that they contain are more than just extra information to
accompany the use case diagrams. In fact, a use case's description completes the use case; without
a description a use case is, well, not very useful.

The description in Table 2-2 was reasonably straightforward, but something's not quite right when
you compare the description to the original use case diagram (shown in Figure 2-9; although the
use case description mentions two actors, this use case diagram shows only one).

Figure 2-9. Ensuring that your use case diagrams match the more
detailed use case descriptions is critical

The use case description has identified a new actor, the Author Credentials Database. By creating
a complete description of the Create a new Blog Account use case, it becomes clear that this actor
is missing.

Main Flow Step Action

 1
The Administrator asks the system to create a new blog
account.

 2 The Administrator selects an account type.

 3 The Administrator enters the author's details.

 4
The author's details are verified using the Author
Credentials Database.

 5 The new blog account is created.

 6
A summary of the new blog account's details are emailed
to the author.

Extensions Step Branching Action

 4.1
The Author Credentials Database does not verify the
author's details.

 4.2 The author's new blog account application is rejected.

The format and content in Table 2-2 is only an example, but it's worth remembering that use case
descriptions and the information that they contain are more than just extra information to
accompany the use case diagrams. In fact, a use case's description completes the use case; without
a description a use case is, well, not very useful.

The description in Table 2-2 was reasonably straightforward, but something's not quite right when
you compare the description to the original use case diagram (shown in Figure 2-9; although the
use case description mentions two actors, this use case diagram shows only one).

Figure 2-9. Ensuring that your use case diagrams match the more
detailed use case descriptions is critical

The use case description has identified a new actor, the Author Credentials Database. By creating
a complete description of the Create a new Blog Account use case, it becomes clear that this actor
is missing.

If you can, it's worth reviewing your use case model with your users as much
as possible to ensure that you have captured all of the key uses of your
system and that nothing has been missed.

You will often find that items are missing from your diagrams as more detail goes into your use
case descriptions. The same goes for any aspect of your model: the more detail you put in, the
more you might have to go back and correct what you did before. This is what iterative system
development is all about. Don't be too worried though, this refinement of your model is a good
thing. With each iteration of development you will (hopefully!) get a better and more accurate
model of your system.

Figure 2-10 shows the corrected use case diagram incorporating the new Author Credentials
Database actor.

Figure 2-10. Bring the use case diagram in sync with the use case's
description by adding the Author Credentials Database actor

How Many Use Cases Should Your Model Have?

There is no set rule for the number of use cases that your use case model should
contain for a given system. The number of use cases depends on the of the jobs that
your system has to do according to the requirements. This means that for a particular
system, you might only need two use cases or you might need hundreds.

It is more important that you have the right use cases, rather than worrying about the
amount you have. As with most things in system modeling, the best way to get your
use cases right is to get used to applying them; experience will teach you what is right
for your own systems.

2.2. Use Case Relationships

A use case describes the way your system behaves to meet a requirement. When filling out your
use case descriptions, you will notice that there is some similarity between steps in different use
cases. You may also find that some use cases work in several different modes or special cases.
Finally, you may also find a use case with multiple flows throughout its execution, and it would be
good to show those important optional cases on your use case diagrams.

Wouldn't it be great if you could get rid of the repetition between use case descriptions and show
important optional flows right on your use case diagrams? OK, so that was a loaded question. You
can show reusable, optional, and even specialized use case behavior between use cases.

2.2.1. The <<include>> Relationship

So far, you have seen that use cases typically work with actors to capture a requirement.
Relationships between use cases are more about breaking your system's behavior into manageable
chunks than adding anything new to your system. The purpose of use case relationships is to
provide your system's designers with some architectural guidance so they can efficiently break
down the system's concerns into manageable pieces within the detailed system design.

In addition to blogs, a CMS can have any number of means for working with
its content. One popular mechanism for maintaining documents is by creating
a Wiki. Wikis allow online authors to create, edit, and link together web pages
to create a web of related content, or a Wiki-web. A great example of a Wiki is
available at http://www.Wikipedia.org.

Take another look at the Create a new Blog Account use case description shown in Table 2-2. The
description seems simple enough, but suppose another requirement is added to the Content
Management System.

Requirement A.2

The content management system shall allow an administrator to create a new personal
Wiki, provided the personal details of the applying author are verified using the Author
Credentials Database.

http://www.Wikipedia.org

To capture Requirement A.2 a new use case needs to be added to the Content Management System,
as shown in Figure 2-11.

Now that we have added the new use case to our model, it's time to fill out a detailed use case
description (shown in Table 2-3). See Table 2-1 if you need to refresh your memory about the
meaning of each of the details within a use case description.

Figure 2-11. A new requirement can often mean a new use case for the
system, although it's not always a one-to-one mapping

Table 2-3. The detailed description for the "Create a new Personal Wiki"
use case

Use case name Create a new Personal Wiki

Related Requirements Requirement A.2.

Goal In Context
A new or existing author requests a new personal Wiki from the
Administrator.

Preconditions The author has appropriate proof of identity.

Successful End
Condition

A new personal Wiki is created for the author.

Failed End Condition The application for a new personal Wiki is rejected.

Primary Actors Administrator.

Secondary Actors Author Credentials Database.

Trigger The Administrator asks the CMS to create a new personal Wiki.

Main Flow Step Action

 1 The Administrator asks the system to create a new personal Wiki.

 2 The Administrator enters the author's details.

Use case name Create a new Personal Wiki

 3
The author's details are verified using the Author Credentials
Database.

 4 The new personal Wiki is created.

 5
A summary of the new personal Wiki's details are emailed to the
author.

Extensions Step Branching Action

 3.1
The Author Credentials Database does not verify the author's
details.

 3.2 The author's new personal Wiki application is rejected.

The first thing to notice is that we have some redundancy between the two use case descriptions
(Tables 2-2 and 2-3). Both Create a new Blog Account and Create a new Personal Wiki need to
check the applicant's credentials. Currently, this behavior is simply repeated between the two use
case descriptions.

This repetitive behavior shared between two use cases is best separated and captured within a
totally new use case. This new use case can then be reused by the Create a new Blog Account and
Create a new Personal Wiki use cases using the <<include>> relationship (as shown in Figure 2-
12).

Figure 2-12. The <<include>> relationship supports reuse between use
cases

The <<include>> relationship declares that the use case at the head of the dotted arrow completely
reuses all of the steps from the use case being included. In Figure 2-12, the Create a new Blog

 3
The author's details are verified using the Author Credentials
Database.

 4 The new personal Wiki is created.

 5
A summary of the new personal Wiki's details are emailed to the
author.

Extensions Step Branching Action

 3.1
The Author Credentials Database does not verify the author's
details.

 3.2 The author's new personal Wiki application is rejected.

The first thing to notice is that we have some redundancy between the two use case descriptions
(Tables 2-2 and 2-3). Both Create a new Blog Account and Create a new Personal Wiki need to
check the applicant's credentials. Currently, this behavior is simply repeated between the two use
case descriptions.

This repetitive behavior shared between two use cases is best separated and captured within a
totally new use case. This new use case can then be reused by the Create a new Blog Account and
Create a new Personal Wiki use cases using the <<include>> relationship (as shown in Figure 2-
12).

Figure 2-12. The <<include>> relationship supports reuse between use
cases

The <<include>> relationship declares that the use case at the head of the dotted arrow completely
reuses all of the steps from the use case being included. In Figure 2-12, the Create a new Blog

Account and Create a new Personal Wiki completely reuse all of the steps declared in the Check
Identity use case.

You can also see in Figure 2-12 that the Check Identity use case is not directly connected to the
Administrator actor; it picks this connection up from the use cases that include it. However, the
connection to the Author Credentials Database is now solely owned by the Check Identity use
case. A benefit of this change is that it emphasizes that the Check Identity use case is the only one
that relies directly on a connection to the Author Contact Details Database actor.

To show the <<include>> relationship in your use case descriptions, you need to remove the
redundant steps from the Create a new Blog Account and Create new Personal Wiki use case
descriptions and instead use the Included Cases field and include::<use case name> syntax to
indicate the use case where the reused steps reside, as shown in Tables 2-4 and 2-5.

Table 2-4. Showing <<include>> in a use case description using
Included Cases and include::<use case name>

Use case name Create a new Blog Account

Related
Requirements

Requirement A.1.

Goal In Context
A new or existing author requests a new blog account from the
Administrator.

Preconditions The author has appropriate proof of identity.

Successful End
Condition

A new blog account is created for the author.

Failed End Condition The application for a new blog account is rejected.

Primary Actors Administrator

Secondary Actors None

Trigger The Administrator asks the CMS to create a new blog account.

Included Cases Check Identity

Main Flow Step Action

 1
The Administrator asks the system to create a new
blog account.

 2 The Administrator selects an account type.

 3 The Administrator enters the author's details.

4

include::Check
Identity

The author's details are checked.

 5 The new account is created.

Use case name Create a new Blog Account

 6
A summary of the new blog account's details are
emailed to the author.

Table 2-5. The Create a new Personal Wiki use case description also gets
a makeover

Use case name Create a new Personal Wiki

Related
Requirements

Requirement A.2

Goal In Context
A new or existing author requests a new personal Wiki from the
Administrator.

Preconditions The author has appropriate proof of identity.

Successful End
Condition

A new personal Wiki is created for the author.

Failed End Condition The application for a new personal Wiki is rejected.

Primary Actors Administrator

Secondary Actors None

Trigger The Administrator asks the CMS to create a new personal Wiki.

Included Cases Check Identity

Main Flow Step Action

 1
The Administrator asks the system to create a new
personal Wiki.

 2 The Administrator enters the author's details.

3

include::Check
Identity

The author's details are checked.

 5 The new personal Wiki is created.

 6
A summary of the new personal Wiki's details are
emailed to the author.

Now you can create a use case description for the reusable steps within the Check Identity use
case, as shown in Table 2-6.

Table 2-6. The Check Identity use case description contains the reusable
steps

 6
A summary of the new blog account's details are
emailed to the author.

Table 2-5. The Create a new Personal Wiki use case description also gets
a makeover

Use case name Create a new Personal Wiki

Related
Requirements

Requirement A.2

Goal In Context
A new or existing author requests a new personal Wiki from the
Administrator.

Preconditions The author has appropriate proof of identity.

Successful End
Condition

A new personal Wiki is created for the author.

Failed End Condition The application for a new personal Wiki is rejected.

Primary Actors Administrator

Secondary Actors None

Trigger The Administrator asks the CMS to create a new personal Wiki.

Included Cases Check Identity

Main Flow Step Action

 1
The Administrator asks the system to create a new
personal Wiki.

 2 The Administrator enters the author's details.

3

include::Check
Identity

The author's details are checked.

 5 The new personal Wiki is created.

 6
A summary of the new personal Wiki's details are
emailed to the author.

Now you can create a use case description for the reusable steps within the Check Identity use
case, as shown in Table 2-6.

Table 2-6. The Check Identity use case description contains the reusable
steps

Use case name Check Identity

Related Requirements Requirement A.1, Requirement A.2.

Goal In Context An author's details need to be checked and verified as accurate.

Preconditions The author being checked has appropriate proof of identity.

Successful End
Condition

The details are verified.

Failed End Condition The details are not verified.

Primary Actors Author Credentials Database.

Secondary Actors None.

Trigger An author's credentials are provided to the system for verification.

Main Flow Step Action

 1 The details are provided to the system.

 2 The Author Credentials Database verifies the details.

 3
The details are returned as verified by the Author Credentials
Database.

Extensions Step Branching Action

 2.1 The Author Credentials Database does not verify the details.

 2.2 The details are returned as unverified.

Why bother with all this hassle with reuse between use cases? Why not just have two use cases and
maintain the similar steps separately? All this reuse has two important benefits:

Reuse using <<include>> removes the need for tedious cut-and-paste operations between use
case descriptions, since updates are made in only one place instead of every use case.

The <<include>> relationship gives you a good indication at system design time that the
implementation of Check Identity will need to be a reusable part of your system.

2.2.2. Special Cases

Sometimes you'll come across a use case whose behavior, when you start to analyze it more
carefully, can be applied to several different cases, but with small changes. Unlike the <<include>>
relationship, which allows you to reuse a small subset of behavior, this is applying a use case with
small changes for a collection of specific situations. In object-oriented terms, you potentially have a
number of specialized cases of a generalized use case.

Let's take a look at an example. Currently, the Content Management System contains a single Create
a new Blog Account use case that describes the steps required to create an account. But what if the
CMS supports several different types of blog accounts, and the steps required to create each of

these accounts differs ever so slightly from the original use case? You want to describe the general
behavior for creating a blog accountcaptured in the Create a new Blog Account use caseand then
define specialized use cases in which the account being created is a specific type, such as a regular
account with one blog or an editorial account that can make changes to entries in a set of blogs.

This is where use case generalization comes in. A more common way of referring to generalization
is using the term inheritance . Use case inheritance is useful when you want to show that one use
case is a special type of another use case. To show use case inheritance , use the generalization
arrow to connect the more general, or parent, use case to the more specific use case. Figure 2-13
shows how you could extend the CMS's use cases to show that two different types of blog accounts
can be created.

Figure 2-13. Two types of blog account, regular and editorial, can be
created by the Management System

Taking a closer look at the Create a new Editorial Blog Account specialized use case description,
you can see how most of the behavior from the more general Create a new Blog Account use case
is reused. Only the details that are specific to creating a new editorial account need to be added
(see Table 2-7).

Table 2-7. You can show that a use case is a special case of a more
general use case within the detailed description using the Base Use

Cases field

Use case name Create a new Editorial Blog Account

Related
Requirements

Requirement A.1.

Goal In Context
A new or existing author requests a new editorial blog account from the
Administrator .

Preconditions The author has appropriate proof of identity.

Successful End
Condition

A new editorial blog account is created for the author.

Failed End
Condition

The application for a new editorial blog account is rejected.

Primary Actors Administrator.

Secondary Actors None.

Trigger
The Administrator asks the CMS to create a new editorial account that will
allow an author to edit entries in a set of blogs.

Base Use Cases Create a new Blog Account

Main Flow Step Action

 1
The Administrator asks the system to create a new blog
account.

 2
The Administrator selects the editorial account
type.

 3 The Administrator enters the author's details.

 4
The Administrator selects the blogs that the
account is to have editorial rights over.

5

include::Check
Identity

The author's details are checked.

 6 The new editorial account is created.

 7
A summary of the new editorial account's details are
emailed to the author.

Extensions Step Branching Action

 5.1
The author is not allowed to edit the indicated
blogs.

 5.2 The editorial blog account application is rejected.

 5.3
The application rejection is recorded as part of the
author's history.

Use case inheritance is a powerful way of reusing a use case so that you only have to specify the
extra steps that are needed in the more specific use cases. See Chapter 5 for more information on

inheritance between classes.

But be carefulby using inheritance, you are effectively saying that every step in the general use
case must occur in the specialized use cases. Also, every relationship that the general use case has
with external actors or use cases, as shown with the <<include>> relationship between Create a
new Blog Account and Check Identity, must also make sense in the more specialized use cases,
such as Create a new Editorial Blog Account.

If you really don't want your more specific use case to do everything that the general use case
describes, then don't use generalization. Instead, you might want to consider using either the
<<include>> relationship shown in the previous section or the <<extend>> relationship coming up in
the next section.

2.2.3. The <<extend>> Relationship

Any explanation of the <<extend>> stereotype should be preceded by a warning that it is the most
heavily debated type of use case relationship. Almost nothing is less understood or harder to
accurately communicate within the UML modeling community than the <<extend>> use case
relationship, and this presents a bit of a problem when you are trying to learn about it. Figure 2-14
shows you how <<extend>> works; take a look, and then let's dive into some UML concept and
theory.

Figure 2-14. The <<extend>> use case relationship looks a bit like the
<<include>> relationship, but that's where the similarities end

At first glanceparticularly if you are a Java programmer<<extend>> seems very similar to
inheritance between classes. In Java, a class can extend from a base class. Similarly, in C++ and
C#, you can declare inheritance between classes, and you would often say that a class extends
another class. In both these cases, the extend relationship between classes means inheritance. So,
for a programmer, it follows that <<extend>> should mean something like inheritance, right?

Alarm bells should definitely be going off now. You already saw in the previous section how use
cases declare inheritance using a generalization arrow, so why would you need yet another type of
arrow with an <<extend>> stereotype? Does the generalization arrow mean the same thing as the
<<extend>> stereotype? Unfortunately, the <<extend>> stereotype has very little in common with
inheritance, and so the two definitely do not mean the same thing.

The designers of UML 2.0 took a very different view as to the meaning of <<extend>> between use
cases. They wanted a means for you to show that a use case might completely reuse another use
case's behavior, similar to the <<include>> relationship, but that this reuse was optional and
dependent either on a runtime or system implementation decision.

From the CMS example, the Create a new Blog Account use case might want to record that a new
author applied for an account and was rejected, adding this information to the author's application
history. Extra steps can be added to the Create a new Blog Account use case's description to show
this optional behavior, as shown in Step 4.3 in Table 2-8.

Table 2-8. Behavior that is a candidate for <<extend>> relationship
reuse can usually be found in the Extensions section of a use case

description

Use case name Create a new Blog Account

Related
Requirements

Requirement A.1.

Goal In Context
A new or existing author requests a new blog account from the
Administrator.

Preconditions The author has appropriate proof of identity.

Successful End
Condition

A new blog account is created for the author.

Failed End Condition The application for a new blog account is rejected.

Primary Actors Administrator.

Secondary Actors None.

Trigger The Administrator asks the CMS to create a new blog account.

Included Cases Check Identity

Main Flow Step Action

 1
The Administrator asks the system to create a new
blog account.

 2 The Administrator selects an account type.

 3 The Administrator enters the author's details.

4

include::Check
Identity

The author's details are checked.

 5 The new account is created.

 6
A summary of the new blog account's details are
emailed to the author.

Extensions Step Branching Action

 4.1 The author is not allowed to create a new blog.

 4.2 The blog account application is rejected.

 4.3
The application rejection is recorded as part of
the author's history.

The same behavior captured in Step 4.3 would also be useful if the customer was refused an
account for some reason during the Create a new Personal Wiki use case's execution. According to
the requirements, this reusable behavior is optional in both cases; you don't want to record a
rejection if the application for a blog account or a personal Wiki was accepted. The <<extend>>
relationship is ideal in this sort of reuse situation, as shown in Figure 2-15.

Figure 2-15. The <<extend>> relationship comes into play to show that
both the "Create a new Personal Wiki" and "Create a new Blog Account"
use cases might occasionally share the application rejection recording

behavior

The new Record Application Failure use case, as the name implies, captures all of the behavior
associated with recording an author's application failure whether it be for a personal Wiki or for a
specific type of blog account. Using the <<extend>> relationship, the Record Application Failure
use case's behavior is optionally reused by the Create a new Blog Account and Create a new
Personal Wiki use cases if an application is rejected.

2.3. Use Case Overview Diagrams

When you are trying to understand a system, it is sometimes useful to get a glimpse of the context
within which it sits. For this purpose, UML provides the Use Case Overview diagram. Use Case
Overview diagrams give you an opportunity to paint a broad picture of your system's context or
domain (see Figure 2-16 for an example).

Figure 2-16. The CMS's context as shown on a Use Case Overview
diagram

Unfortunately, Use Case Overviews are badly named as they don't usually contain any use cases.
The use cases are not shown because the overview is designed to provide a context to your system;
the system's internalscaptured by use casesare not normally visible.

Use Case Overviews are a useful place to show any extra snippets of information when
understanding your system's place within the world. Those snippets often include relationships and
communication lines between actors. These contextual pieces of information do not usually contain
a great deal of detail, they are more a placeholder and starting point to for the rest of your model's
detail.

2.4. What's Next?

Although this book, like UML, does not push any particular system development process, there are
some common steps that are taken after the first cut of use cases are captured.

With your use case model in hand, it is often a good time to start delving into the high-level
activities that your system will have to execute to fulfill its use cases. See Chapter 3 for information
on activity diagrams.

Once you have a good grip on the high-level activities, look at the classes and components that will
actually make up the parts of your system. You already might have some idea of what those classes
contain, and so the next stop naturally would be to create a few rudimentary class diagrams. See
Chapter 4 for information on class diagrams.

Regardless of your next step, just because you have a use case model does not necessarily mean
that you are finished with use cases altogether. The only constant in life is change, and this
certainly applies to your system's requirements. As a requirement changeseither because some new
system constraint has been found or because a user has changed his mindyou need to go back and
refine your use cases to make sure you are still developing the system that the users want.

Chapter 3. Modeling System Workflows:
Activity Diagrams
Use cases show what your system should do. Activity diagrams allow you to specify how your
system will accomplish its goals. Activity diagrams show high-level actions chained together to
represent a process occurring in your system. For example, you can use an activity diagram to
model the steps involved with creating a blog account.

Activity diagrams are particularly good at modeling business processes . A business process is a set
of coordinated tasks that achieve a business goal, such as shipping customers' orders. Some
business process management (BPM) tools allow you to define business processes using activity
diagrams, or a similar graphical notation, and then execute them. This allows you to define and
execute, for example, a payment approval process where one of the steps invokes a credit card
approval web serviceusing an easy graphical notation such as activity diagrams.

Activity diagrams are the only UML diagram in the process view of your system's model, as shown
in Figure 3-1.

Figure 3-1. The Process View shows the high-level processes in your
systemthis is exactly what activity diagrams are good at doing

Activity diagrams are one of the most accessible UML diagrams since they use symbols similar to
the widely-known flowchart notation; therefore, they are useful for describing processes to a broad
audience. In fact, activity diagrams have their roots in flowcharts, as well as UML state diagrams,
data flow diagrams, and Petri Nets.

3.1. Activity Diagram Essentials

Let's look at the basic elements of activity diagrams by modeling a process encountered earlier in
the bookthe steps in the blog account creation use case. Table 3-1 contains the Create a new Blog
Account use case description (originally Table 2-1). The Main Flow and Extension sections describe
steps in the blog account creation process.

Table 3-1. Create a new Blog Account use case description

Use case name Create a new Blog Account

Related
Requirements

Requirement A.1.

Goal In Context
A new or existing author requests a new blog account from the
Administrator.

Preconditions
The system is limited to recognized authors, and so the author needs to
have appropriate proof of identity.

Successful End
Condition

A new blog account is created for the author.

Failed End Condition The application for a new blog account is rejected.

Primary Actors Administrator.

Secondary Actors Author Credentials Database.

Trigger
The Administrator asks the Content Management System to create a new
blog account.

Main Flow Step Action

 1 The Administrator asks the system to create a new blog account.

 2 The Administrator selects an account type.

 3 The Administrator enters the author's details.

 4
The author's details are verified using the Author Credentials
Database.

 5 The new blog account is created.

 6
A summary of the new blog account's details are emailed to the
author.

Extensions Step Branching Action

 4.1 The Author Credentials Database does not verify the author's details.

Use case name Create a new Blog Account

 4.2 The author's new blog account application is rejected.

Figure 3-2 shows this blog account creation process in activity diagram notation. An activity
diagram is useful here because it helps you to better visualize a use case's steps (compared to the
table notation in the use case description), especially the branching steps that depend on whether
the author is verified.

In Figure 3-2, the activity is launched by the initial node , which is drawn as a filled circle. The
initial node simply marks the start of the activity. At the other end of the diagram, the activity final
node, drawn as two concentric circles with a filled inner circle, marks the end of the activity.

Figure 3-2. Activity diagrams model dynamic behavior with a focus on
processes; the basic elements of activity diagrams are shown in this blog

account creation process

 4.2 The author's new blog account application is rejected.

Figure 3-2 shows this blog account creation process in activity diagram notation. An activity
diagram is useful here because it helps you to better visualize a use case's steps (compared to the
table notation in the use case description), especially the branching steps that depend on whether
the author is verified.

In Figure 3-2, the activity is launched by the initial node , which is drawn as a filled circle. The
initial node simply marks the start of the activity. At the other end of the diagram, the activity final
node, drawn as two concentric circles with a filled inner circle, marks the end of the activity.

Figure 3-2. Activity diagrams model dynamic behavior with a focus on
processes; the basic elements of activity diagrams are shown in this blog

account creation process

In between the initial node and the activity final node are actions , which are drawn as rounded
rectangles. Actions are the important steps that take place in the overall activity, e.g., Select
Account Type, Enter Author's Details, and so on. An action could be a behavior performed, a
computation, or any key step in the process.

The flow of the activity is shown using arrowed lines called edges or paths. The arrowhead on an
activity edge shows the direction of flow from one action to the next. A line going into a node is
called an incoming edge, and a line exiting a node is called an outgoing edge. Edges string the
actions together to determine the overall activity flow: first the initial node becomes active, then

Ask System to create new Blog Account, and so on.

The first diamond-shaped node is called a decision, analogous to an if-else statement in code.
Notice that there are two outgoing edges from the decision in Figure 3-2, each labeled with Boolean
conditions. Only one edge is followed out of the decision node depending on whether the author is
authorized. The second diamond-shaped node is called a merge. A merge node combines the edges
starting from a decision node, marking the end of the conditional behavior.

The word "flow" was mentioned several times previously and you may askwhat's flowing? The
answer depends on the context. Typically, it's the flow of control from one action to the next: one
action executes to completion, then gives up its control to the next action. In later sections you'll
see that, along with control, objects can flow through an activity.

3.2. Activities and Actions

Actions are active steps in the completion of a process. An action can be a calculation, such as
Calculate Tax, or a task, such as Verify Author's Details.

The word "activity" is often mistakenly used instead of "action" to describe a step in an activity
diagram, but they are not the same. An activity is the process being modeled, such as washing a
car. An action is a step in the overall activity, such as Lather, Rinse, and Dry.

The actions in this simple car-washing activity are shown in Figure 3-3.

Figure 3-3. Capturing the three actionsLather, Rinse, and Drythat make
up washing a car in an activity diagram

In Figure 3-3, the entire activity is enclosed within the rounded rectangle called an activity frame .
The activity frame is used to contain an activity's actions and is useful when you want to show more
than one activity on the same diagram. Write the name of the activity in the upper left corner.

The activity frame is optional and is often left out of an activity diagram, as shown in the
alternative Wash Car activity in Figure 3-4.

Figure 3-4. The activity frame can be omitted

Although you lose the name of the activity being displayed on the diagram itself, it is often more
convenient to leave out the activity frame when constructing a simple activity diagram.

3.3. Decisions and Merges

Decisions are used when you want to execute a different sequence of actions depending on a
condition. Decisions are drawn as diamond-shaped nodes with one incoming edge and multiple
outgoing edges, as shown in Figure 3-5.

Figure 3-5. Only one edge is followed after a decision node

Each branched edge contains a guard condition written in brackets. Guard conditions determine
which edge is taken after a decision node.

They are statements that evaluate to true or false, for example:

[authorized]

If the authorized variable evaluates to true, then follow this outgoing edge.

[wordCount >= 100]

If the wordCount variable is greater than or equal to 1,000, then follow this outgoing edge.

The branched flows join together at a merge node, which marks the end of the conditional behavior
started at the decision node. Merges are also shown with diamond-shaped nodes, but they have
multiple incoming edges and one outgoing edge, as shown in Figure 3-6.

Figure 3-6. If the input value of age is 1200, then the Notify Blog Entry
too long action is performed

Activity diagrams are clearest if the guards at decision nodes are complete and mutually exclusive.
Figure 3-7 shows a situation in which the paths are not mutually exclusive.

If an item is in stock and the order is a rush order, then two guards evaluate to true. So which edge
is followed? According to the UML specifications, if multiple guards evaluate to true, then only one
edge is followed and that choice is out of your control unless you specify an order. You can avoid
this complicated situation by making guards mutually exclusive.

The other situation to avoid is incomplete guards. For example, if Figure 3-7 had no guard covering
out of stock items, then an out of stock item can't follow any edge out of the decision node. This
means the activity is frozen at the decision node. Modelers sometimes leave off guards if they
expect a situation not to occur (or if they want to defer thinking about it until later), but to
minimize confusion, you should always include a guard to cover every possible situation. If it's
possible in your activity, it's helpful to label one path with else, as shown in Figure 3-7, to make
sure all situations are covered.

Figure 3-7. Beware of diagrams where multiple guards evaluate to true

If you're coming from a UML 1.x background, it may not seem necessary to show merge nodes. In
UML 1.x, it was common to see multiple edges starting at a decision node flow directly into an
action, as shown in the top part of Figure 3-8. This meant the flows were merged implicitly.

As of UML 2.0, when multiple edges lead directly into an action, all incoming flows are waited on
before proceeding. But this doesn't make sense because only one edge is followed out of a decision
node. You can avoid confusing your reader by explicitly showing merge nodes.

3.4. Doing Multiple Tasks at the Same Time

Consider a computer assembly workflow that involves the following steps:

Prepare the case.1.

Prepare the motherboard.2.

Install the motherboard.3.

Install the drives.4.

Install the video card, sound card, and modem.5.

So far we've covered enough activity diagram notation to model this workflow sequentially. But
suppose the entire workflow can by sped up by preparing the case and the motherboard at the
same time since these actions don't depend on each other. Steps that occur at the same time are
said to occur concurrently or in parallel.

Figure 3-8. In UML 2.0, it's better to be as clear as possible and to show
merge nodes

You represent parallel actions in activity diagrams by using forks and joins, as shown in the activity
diagram fragment in Figure 3-9.

Figure 3-9. Both outgoing paths are followed at the fork, in contrast with
decision nodes, where only one outgoing path is taken

After a fork in Figure 3-9, the flow is broken up into two or more simultaneous flows, and the
actions along all forked flows execute. In Figure 3-9, Prepare Case and Prepare Motherboard begin
executing at the same time.

The join means that all incoming actions must finish before the flow can proceed past the join.
Forks and joins look identicalthey are both drawn with thick barsbut you can tell the difference
because forks have multiple outgoing flows, whereas joins have multiple incoming flows.

In a detailed design model, you can use forks to represent multiple processes
or multiple threads in a program.

Figure 3-10 completes the activity diagram for the computer assembly workflow.

Figure 3-10. The computer assembly workflow demonstrates how forks
and joins work in a complete activity diagram

When actions occur in parallel, it doesn't necessarily mean they will finish at the same time. In fact,
one task will most likely finish before the other. However, the join prevents the flow from
continuing past the join until all incoming flows are complete. For example, in Figure 3-10 the
action immediately after the joinInstall Motherboardexecutes only after both the Prepare Case and
Prepare Motherboard actions finish.

3.5. Time Events

Sometimes time is a factor in your activity. You may want to model a wait period, such as waiting
three days after shipping an order to send a bill. You may also need to model processes that kick
off at a regular time interval, such as a system backup that happens every week.

Time events are drawn with an hourglass symbol. Figure 3-11 shows how to use a time event to
model a wait period. The text next to the hourglassWait 3 Daysshows the amount of time to wait.
The incoming edge to the time event means that the time event is activated once. In Figure 3-11,
the bill is sent only oncenot every three days.

Figure 3-11. A time event with an incoming edge represents a timeout

A time event with no incoming flows is a recurring time event, meaning it's activated with the
frequency in the text next to the hourglass. In Figure 3-12, the progress bar is updated every
second.

Figure 3-12. A time event with no incoming flows models a repeating
time event

Notice that there is no initial node in Figure 3-12; a time event is an alternate way to start an
activity. Use this notation to model an activity that is launched periodically.

3.6. Calling Other Activities

As detail is added to your activity diagram, the diagram may become too big, or the same
sequence of actions may occur more than once. When this happens, you can improve readability by
providing details of an action in a separate diagram, allowing the higher level diagram to remain
less cluttered.

Figure 3-13 shows the computer assembly workflow from Figure 3-10, but the Prepare Motherboard
action now has an upside-down pitchfork symbol indicating that it is a call activity node. A call
activity node calls the activity corresponding to its node name. This is similar to calling a software
procedure.

Figure 3-13. Rather than cluttering up the top-level diagram with details
of the Prepare Motherboard action, details are provided in another

activity diagram

The Prepare Motherboard node in Figure 3-13 invokes the Prepare Motherboard activity in Figure 3-
14. You associate a call activity node with the activity it invokes by giving them the same name.
Call activities essentially break an action down into more details without having to show everything
in one diagram.

Figure 3-14. The Prepare Motherboard activity elaborates on the
motherboard preparation process

The Prepare Motherboard activity diagram has its own initial and activity final nodes. The activity
final node marks the end of Prepare Motherboard, but it doesn't mean the calling activity is
complete. When Prepare Motherboard terminates, control is returned to the calling activity, which
proceeds as normal. This is another reason call activities resemble invoked software procedures.

Although it's acceptable to omit the activity frame for top-level activities, you
should always show it for invoked activities. The name of the activity in the
activity frame will help you associate invoked activities with the invoker.

3.7. Objects

Sometimes data objects are an important aspect of the process you're modeling. Suppose your
company decides to sell the CMS as a commercial product, and you want to define a process for
approving incoming orders. Each step in the order approval process will need information about the
order, such as the payment information and transaction cost. This can be modeled in your activity
diagram with an Order object, which contains the order information needed by the steps. Activity
diagrams offer a variety of ways to model objects in your processes.

Objects don't have to be software objects. For example, in a non-automated
computer assembly activity, an object node may be used to represent a
physical work order that starts the process.

3.7.1. Showing Objects Passed Between Actions

In activity diagrams, you can use object nodes to show data flowing through an activity. An object
node represents an object that is available at a particular point in the activity, and can be used to
show that the object is used, created, or modified by any of its surrounding actions.

An object node is drawn with a rectangle, as shown in the order approval process in Figure 3-15.
The Order object node draws attention to the fact that the Order object flows from the Receive
Order Request action to the Approve Payment action.

Figure 3-15. The Order object node emphasizes that it is important data
in this activity and shows which actions interact with it

See "Sending and Receiving Signals" for a more precise way of modeling the Receive Order
Request actionas a receive signal node.

3.7.2. Showing Action Inputs and Outputs

Figure 3-16 shows a different perspective on the previous activity using pins . Pins show that an
object is input to or output from an action.

An input pin means that the specified object is input to an action. An output pin means that the
specified object is output from an action. In Figure 3-16, an Order object is input to the Approve
Payment action and an Order object is output from the Receive Order Request action.

Figure 3-16. Pins in this change request approval process allow finer-
grained specification of input and output parameters

Figures 3-15 and 3-16 show similar situations, but pins are good at emphasizing that an object is
required input and output, whereas an object node simply means that the object is available at that
particular point in the activity. However, object nodes have their own strength; they are good at
emphasizing the flow of data through an activity.

If the Approve Payment action needs only parts of the Order objectnot the whole objectyou can use a
transformation to show which parts are needed. Transformations allow you to show how the output
from one action provides the input to another action.

Figure 3-17 specifies that the Approve Payment action requires the Cost object as input and shows
how this data is obtained from the Order object using the transformation specified in a note.

Figure 3-17. Transformations show where input parameters come from

3.7.3. Showing How Objects Change State During an Activity

You can also show an object changing state as it flows through an activity. Figure 3-18 shows that

the Order object's state is pending before Approve Payment and changes to approved afterward. The
state is shown in brackets.

Figure 3-18. The focus of this diagram is the change of state of the Order
object throughout the order approval process

3.7.4. Showing Input to and Output from an Activity

In addition to acting as inputs to and outputs from actions, object nodes can be inputs to and
outputs from an activity. Activity inputs and outputs are drawn as object nodes straddling the
boundary of the activity frame, as shown in Figure 3-19. This notation is useful for emphasizing
that the entire activity requires input and provides output.

Figure 3-19 shows the Order object as input and output for the Approve Payment activity. When
input and output parameters are shown, the initial node and activity final node are omitted from
the activity.

Figure 3-19. Object nodes can be used to emphasize input to and output
from an activity

3.8. Sending and Receiving Signals

Activities may involve interactions with external people, systems, or processes. For example, when
authorizing a credit card payment, you need to verify the card by interacting with an approval
service provided by the credit card company.

In activity diagrams, signals represent interactions with external participants. Signals are messages
that can be sent or received, as in the following examples:

Your software sends a request to the credit card company to approve a credit card
transaction, and your software receives a response from the credit card company (sent and
received, from the perspective of your credit card approval activity).

The receipt of an order prompts an order handling process to begin (received, from the
perspective of the order handling activity).

The click of a button causes code associated with the button to execute (received, from the
perspective of the button event handling activity).

The system notifies a customer that his shipment has been delayed (sent, from the
perspective of the order shipping activity).

A receive signal has the effect of waking up an action in your activity diagram. The recipient of the
signal knows how to react to the signal and expects that a signal will arrive at some time but
doesn't know exactly when. Send signals are signals sent to an external participant. When that
external person or system receives the message, it probably does something in response, but that
isn't modeled in your activity diagram.

Figure 3-20 refines the steps in Figure 3-19 to show that the credit card approval action requires
interaction with external software. The send signal node shows that a signal is sent to an outside
participant. In this example, the signal is a credit card approval request. Signals are sent
asynchronously, meaning the activity does not wait for the response but moves immediately to the
next action after the signal is sent.

Figure 3-20. Send and receive signal nodes show interactions with
external participants

The receive signal node shows that a signal is received from an external process. In this case, the
system waits for a response from the credit card company. At a receive signal node, the action
waits until a signal is received and proceeds only when a signal is received.

Notice that combining send and receive signals results in behavior similar to a
synchronous call, or a call that waits for a response. It's common to combine
send and receive signals in activity diagrams because you often need a
response to the signal you sent.

When you see a receive signal node with no incoming flows, it means that the node is always
waiting for a signal when its containing activity is active. In the case of Figure 3-21, the activity is
launched every time an account request signal is received.

Figure 3-21. Starting an activity with a receive signal node: the receive
signal node replaces the usual initial node

This differs from a receive signal node with an incoming edge, such as the Receive Response node
in Figure 3-20; a receive signal node with an incoming edge only starts waiting when the previous
action is complete.

3.9. Starting an Activity

The simplest and most common way to start an activity is with a single initial node; most of the
diagrams you've seen so far in this chapter use this notation. There are other ways to represent the
start of an activity that have special meanings:

The activity starts by receiving input data, shown previously in "Showing Input to and Output
from an Activity."

The activity starts in response to a time event, shown previously in "Time Events."

The activity starts as a result of being woken up by a signal.

To specify that an activity starts as a result of being woken up by a signal, use a receive signal node
instead of an initial node. Inside the receive signal, node you specify what type of event starts the
activity. Figure 3-21 shows an activity starts upon receipt of an order.

3.10. Ending Activities and Flows

The end nodes in this chapter haven't been very interesting so far; in fact, they haven't acted as
much more than end markers. In the real world, you can encounter more complex endings to
processes, including flows that can be interrupted and flows that end without terminating the
overall activity.

3.10.1. Interrupting an Activity

Figure 3-21 above shows a typical activity diagram with a simple ending. Notice there's only one
path leading into the activity final node; every action in this diagram gets a chance to finish.

Sometimes you need to model that a process can be terminated by an event. This could happen if
you have a long running process that can be interrupted by the user. Or, in the CMS order handling
activity, you may need to account for an order being canceled. You can show interruptions with
interruption regions .

Draw an interruption region with a dashed, rounded rectangle surrounding the actions that can be
interrupted along with the event that can cause the interruption. The interrupting event is followed
by a line that looks like a lightning bolt. Figure 3-22 extends Figure 3-21 to account for the
possibility that an order might be canceled.

Figure 3-22. Interruption region showing a process that can be
interrupted

In Figure 3-22, if a cancellation is received while Process Order is active, Process Order will be
interrupted and Cancel Order will become active. Cancellation regions are relevant only to the
contained actions. If a cancellation is received while Ship Order is active, Ship Order won't be
interrupted since it's not in the cancellation region.

Sometimes you'll see activity diagrams with multiple activity final nodes
instead of multiple flows into a single activity final node. This is legal and can
help detangle lines in a diagram that has many branches. But activity
diagrams are usually easier to understand if they contain a single activity final
node.

3.10.2. Ending a Flow

A new feature of UML 2.0 is the ability to show that a flow dies without ending the whole activity. A
flow final node terminates its own pathnot the whole activity. It is shown as a circle with an X
through it, as in Figure 3-23.

Figure 3-23. A flow final node terminates only its own pathnot the whole
activity

Figure 3-23 shows a search engine for the CMS with a two-second window to generate the best
possible search results. When the two-second timeout occurs, the search results are returned, and
the entire activity ends, including the Improve Search Results action. However, if Improve Search
Results finishes before the two-second timeout, it will not stop the overall activity since its flow
ends with a flow final node.

Be careful when using a flow final node after a fork. As soon as the activity
final node is reached, all other actions in the activity (including the ones
before the final node) terminate. If you want all forked actions to run to
completion, make sure to add a join.

3.11. Partitions (or Swimlanes)

Activities may involve different participants, such as different groups or roles in an organization or
system. The following scenarios require multiple participants to complete the activity (participant
names are italicized):

An order processing activity

Requires the shipping department to ship the products and the accounts department to bill
the customer.

A technical support process

Requires different levels of support, including 1st level Support, Advanced Support, and
Product Engineering.

You use partitions to show which participant is responsible for which actions. Partitions divide the
diagram into columns or rows (depending on the orientation of your activity diagram) and contain
actions that are carried out by a responsible group. The columns or rows are sometimes referred to
as swimlanes.

Figure 3-24 shows a technical support process involving three types of participants: 1st level
Support, Advanced Support, and Product Engineering.

Figure 3-24. Partitions help organize this activity diagram by clarifying
responsible parties

You can also show responsibility by using annotations. Notice that there are no swimlanes; instead,
the name of the responsible party is put in parentheses in the node, shown in Figure 3-25. This
notation typically makes your diagram more compact, but it shows the participants less clearly
than swimlanes.

Figure 3-25. Annotations can be used instead of swimlanes as a way of
showing responsibility directly in the action

3.12. Managing Complex Activity Diagrams

Activity diagrams have many additional symbols to model a wide range of processes. The following
sections feature some convenient shortcuts for simplifying your activity diagrams. See UML 2.0 in a
Nutshell (O'Reilly) for a more complete list.

3.12.1. Connectors

If your activity diagram has a lot of actions, you can end up with long, crossing lines, which make
the diagram hard to read. This is where connectors can help you out.

Connectors help untangle your diagrams, connecting edges with symbols instead of explicit lines. A
connector is drawn as a circle with its name written inside. Connectors are typically given single
character names. In Figure 3-26, the connector name is n.

Connectors come in pairs: one has an incoming edge and the other has an outgoing edge. The
second connector picks up where the first connector left off. So the flow in Figure 3-26 is the same
as if Step 3 had an edge leading directly into Step 4.

Figure 3-26. Connectors can improve the readability of a large activity
diagram

Be careful with connectors: if you use too many different connectors in one
diagram, the reader may have a hard time pairing them.

3.12.2. Expansion Regions

Expansion regions show that actions in a region are performed for each item in an input collection.
For example, an expansion region could be used to model a software function that takes a list of
files as input and searches each file for a search term.

Draw an expansion region as a large rounded rectangle with dashed lines and four aligned boxes
on either side. The four boxes represent input and output collections (but they don't imply that the
collection size is four). Figure 3-27 shows that the bug report is discussed for each bug report in an
input collection. If it's a real bug, then the activity proceeds; otherwise the bug is discarded and the
flow for that input ends.

Figure 3-27. The actions in an expansion region are performed for each
item in a collection

3.13. What's Next?

Sequence and communication diagrams are other UML diagrams that can model the dynamic
behavior of your system. These diagrams focus on showing detailed interactions, such as which
objects are involved in an interaction, which methods are invoked, and the sequence of events.
Sequence diagrams can be found in Chapter 7. Communication diagrams are covered in Chapter 8.

If you haven't already, it's also worth reading Chapter 2 on use cases because activity diagrams
offer a great way of showing a visual representation of a use case's flow.

Chapter 4. Modeling a System's Logical
Structure: Introducing Classes and Class
Diagrams
Classes are at the heart of any object-oriented system; therefore, it follows that the most popular
UML diagram is the class diagram. A system's structure is made up of a collection of pieces often
referred to as objects. Classes describe the different types of objects that your system can have,
and class diagrams show these classes and their relationships. Class relationships are covered in
Chapter 5.

Use cases describe the behavior of your system as a set of concerns. Classes describe the different
types of objects that are needed within your system to meet those concerns. Classes form part of
your model's logical view, as shown in Figure 4-1.

Figure 4-1. The Logical View on your model contains the abstract
descriptions of your system's parts, including classes

4.1. What Is a Class?

Like any new concept, when first coming to grips with what classes are, it's usually helpful to start
with an analogy. The analogy we'll use here is that of guitars, and my favorite guitar is the Burns
Brian May Signature (BMS) guitar, shown in Figure 4-2.

Figure 4-2. One of my guitars: a good example of an object

The guitar in Figure 4-2 is an example of an object. It has an identity: it's the one I own. However,
I'm not going to pretend that Burns made only one of this type of guitar and that it was just for
meI'm not that good a guitarist! Burns as a company will make hundreds of this type of guitar or,
to put it another way, this class of guitar.

A class is a type of something. You can think of a class as being the blueprint out of which objects
can be constructed, as shown in Figure 4-3.

Figure 4-3. The class defines the main characteristics of the guitar; using
the class, any number of guitar objects can be constructed

In this analogy, the BMS guitar that Burns manufactures is an example of a class of guitar. Burns
know how to build this type of guitar from scratch based on its blueprints. Each guitar constructed
from the class can be referred to as an instance or object of the class, and so my guitar in Figure 4-
2 is an instance of the Burns BMS Guitar class.

At its simplest, a class's description will include two pieces of information: the state information
that objects of the class will contain and the behavior that they will support. This is what
differentiates OO from other forms of system development. In OO, closely related state and
behavior are combined into class definitions, which are then used as the blueprints from which
objects can be created.

In the case of the Burns BMS Guitar class, the class's state could include information about how
many strings the guitar has and what condition the guitar is in. Those pieces of information are the
class's attributes .

To complete the description, we need to know what the guitar can do. This includes behavior such
as tuning and playing the guitar. A class's behavior is described as the different operations that it
supports.

Attributes and operations are the mainstays of a class's description (see "Class State: Attributes").
Together, they enable a class to describe a group of parts within your system that share common
characteristics such as staterepresented by the class's attributesand behaviorrepresented by the
class's operations (see "Class Behavior: Operations" later in this chapter).

4.1.1. Abstraction

A class's definition contains the details about that class that are important to you and the system
you are modeling. For example, my BMS guitar might have a scratch on the backor severalbut if I
am creating a class that will represent BMS guitars, do I need to add attributes that contain details

about scratches? I might if the class were to be used in a repair shop; however, if the class were to
be used only in the factory system, then scratches are one detail that I can hopefully ignore.
Discarding irrelevant details within a given context is called abstraction.

Let's have a look at an example of how a class's abstraction changes depending on its context. If
Burns were creating a model of its guitar production system, then it would probably be interested
in creating a Burns BMS Guitar class that models how one is constructed, what materials are to be
used, and how the guitar is to be tested. In contrast, if a Guitar World store were creating a model
of its sales system, then the Burns BMS Guitar class might contain only relevant information, such
as a serial number, price, and possibly any special handling instructions.

Getting the right level of abstraction for your model, or even just for a class, is often a real
challenge. Focus on the information that your system needs to know rather than becoming bogged
down with details that may be irrelevant to your system. You will then have a good starting point
when designing your system's classes.

Abstraction is key not only to class diagrams but to modeling in general. A
model, by definition, is an abstraction of the system that it represents. The
actual system is the real thing; the model contains only enough information to
be an accurate representation of the actual system. In most cases, the model
abstracts away details that are not important to the accuracy of the
representation.

4.1.2. Encapsulation

Before we take a more detailed look at attributes, operations, and how classes can work together,
it's worth focusing on what is the most important characteristic of classes and object orientation:
encapsulation .

According to the object-oriented approach to system development, for an object to be an object, it
needs to contain both dataattributesand the instructions that affect the dataoperations. This is the
big difference between object orientation and other approaches to system development: in OO,
there is the concept of an object that contains, or encapsulates, both the data and the operations
that work on that data.

Referring back to the guitar analogy, the Burns BMS Guitar class could encapsulate its strings, its
body, its neck, and probably some neat electrics that no one should mess around with. These parts
of the guitar are effectively its attributes, and some of the attributes, such as the strings, are
accessible to the outside world and others, such as electrics, are hidden away. In addition to these
attributes, the Burns BMS Guitar class will contain some operations that will allow the outside world
to work with the guitar's attributes. At a minimum, the guitar class should at least have an
operation called play so that the guitar objects can be played, but other operations such as clean
and possibly even serviceElectrics may also be encapsulated and offered by the class.

Encapsulation of operations and data within an object is probably the single most powerful and
useful part of the object-oriented approach to system design. Encapsulation enables a class to hide
the inner details of how it works from the outside worldlike the electrics from the example guitar
classand only expose the operations and data that it chooses to make accessible.

Encapsulation is very important because with it, a class can change the way it works internally and
as long as those internals are not visible to the rest of the system, those changes will have no effect
on how the class is interacted with. This is a useful feature of the object-oriented approach because
with the right classes, small changes to how those classes work internally shouldn't cause your
system to break.

4.2. Getting Started with Classes in UML

So far we've been looking at what a class is and how it enables the key benefits of the object-
oriented approach of system development: abstraction and encapsulation. Now it's time to take a
look at how classes are represented in UML.

At its simplest, a class in UML is drawn as a rectangle split into up to three sections. The top section
contains the name of the class, the middle section contains the attributes or information that the
class contains, and the final section contains the operations that represent the behavior that the
class exhibits. The attributes and operations sections are optional, as shown in Figure 4-4. If the
attributes and operations sections are not shown, it does not necessarily imply that they are empty,
just that the diagram is perhaps easier to understand with that information hidden.

Figure 4-4. Four different ways of showing a class using UML notation

A class's name establishes a type for the objects that will be instantiated based on it. Figure 4-5
shows a couple of classes from the CMS in Chapter 2: the BlogAccount class defines the information
that the system will hold relating to each of the user's accounts, and the BlogEntry class defines
the information contained within an entry made by a user into her blog.

Figure 4-5. Two classes of objects have been identified in the CMS

The interaction diagrams covered in Chapters 7 through 10 are used to show how class instances,
or objects, work together when a system is running.

4.3. Visibility

How does a class selectively reveal its operations and data to other classes? By using visibility.
Once visibility characteristics are applied, you can control access to attributes, operations, and even
entire classes to effectively enforce encapsulation. See "Encapsulation" earlier in this chapter for
more information on why encapsulation is such a useful aspect of object-oriented system design.

There are four different types of visibility that can be applied to the elements of a UML model, as
shown in Figure 4-6. Typically these visibility characteristics will be used to control access to both
attributes, operations, and sometimes even classes (see the "Packages" section in Chapter 13 for
more information on class visibility).

Figure 4-6. UML's four different visibility classifications

4.3.1. Public Visibility

Starting with the most accessible of visibility characteristics, public visibility is specified using the
plus (+) symbol before the associated attribute or operation (see Figure 4-7). Declare an attribute
or operation public if you want it to be accessible directly by any other class.

Figure 4-7. Using public visibility, any class within the model can access
the publicURL attribute

The collection of attributes and operations that are declared public on a class create that class's
public interface. The public interface of a class consists of the attributes and operations that can be
accessed and used by other classes. This means the public interface is the part of your class that
other classes will depend on the most. It is important that the public interface to your classes
changes as little as possible to prevent unnecessary changes wherever your class is used.

Public Attributes

To have public attributes or to not have public attributes? That is the question. Many
object-oriented designers groan at the use of public attributes: opening a class's
attributes to the rest of the system is like exposing your house to any person off the
street without requiring him to check with you before entering. There is just as much
potential for abuse.

It's usually best to avoid public attributes, but there are always exceptions to the rule.
One example where it is generally accepted to use a public attribute is when the
attribute is a constant that may be used by a number of different classes. Attributes
that act as constants, i.e., to be given an initial unchangeable value are given the
property of readOnly (see "Attribute Properties"). In this situation, exposing the
attribute to the rest of your system is not quite so dangerous since its value cannot be
changed.

4.3.2. Protected Visibility

Protected attributes and operations are specified using the hash (#) symbol and are more visible to
the rest of your system than private attributes and operations, but are less visible than public.
Declared protected elements on classes can be accessed by methods that are part of your class and
also by methods that are declared on any class that inherits from your class. Protected elements
cannot be accessed by a class that does not inherit from your class whether it's in the same
package or not, as shown in Figure 4-8. See Chapter 5 for more information on inheritance
relationships between classes.

Protected visibility is crucial if you want allow specialized classes to access an attribute or operation
in the base class without opening that attribute or operation to the entire system. Using protected
visibility is like saying, "This attribute or operation is useful inside my class and classes extending
my class, but no one else should be using it."

Java confuses the matter a little further by allowing access to protected parts
of a class to any other class in the same package. This is like combining the
accessibility of protected and package visibility, which is covered in the next
section.

Figure 4-8. Any methods in the BlogAccount class or classes that inherit
from the BlogAccount class can access the protected creationDate

attribute

4.3.3. Package Visibility

Package visibility, specified with a tilde (~), when applied to attributes and operations, sits in
between protected and private. As you'd expect, packages are the key factor in determining which
classes can see an attribute or operation that is declared with package visibility .

The rule is fairly simple: if you add an attribute or operation that is declared with package visibility
to your class, then any class in the same package can directly access that attribute or operation, as
shown in Figure 4-9. Classes outside the package cannot access protected attributes or operations
even if it's an inheriting class.In practice, package visibility is most useful when you want to declare
a collection of methods and attributes across your classes that can only be used within your
package.

For example, if you were designing a package of utility classes and wanted to reuse behavior
between those classes, but not expose the rest of the system to that behavior, then you would
declare package visibility to those particular operations internally to the package. Any functionality
of utility classes that you wanted to expose to the rest of the application could then be declared
with public visibility.

See "Package Diagrams" in Chapter 13 for more on how packages control visibility of elements
such as classes.

Figure 4-9. The countEntries operation can be called by any class in the
same package as the BlogAccount class or by methods within the

BlogAccount class itself

4.3.4. Private Visibility

Last in line in the UML visibility scale is private visibility . Private visibility is the most tightly
constrained type of visibility classification, and it is shown by adding a minus (-) symbol before the
attribute or operation. Only the class that contains the private element can see or work with the
data stored in a private attribute or make a call to a private operation, as shown in Figure 4-10.

Private visibility is most useful if you have an attribute or operation that you want no other part of
the system to depend on. This might be the case if you intend to change an attribute or operation
at a later time but don't want other classes with access to that element to be changed.

It's a commonly accepted rule of thumb that attributes should always be
private and only in extreme cases opened to direct access by using something
more visible. The exception to this rule is when you need to share your class's
attribute with classes that inherit from your class. In this case, it is common
to use protected. In well-designed OO systems, attributes are usually private
or protected, but very rarely public.

Figure 4-10. aMethod is part of the BlogAccount class, so it can access
the private name attribute; no other class's methods can see the name

attribute

4.4. Class State: Attributes

A class's attributes are the pieces of information that represent the state of an object. These
attributes can be represented on a class diagram either by placing them inside their section of the
class boxknown as inline attributes or by association with another class, as shown in Figure 4-11.
Associations are covered in more detail in Chapter 5.

Figure 4-11. The BlogAccount class contains two inlined attributes, name
and publicURL, as well as an attribute that is introduced by the

association between the BlogAccount and BlogEntry classes

It doesn't matter if you are declaring an inline or associated attribute. At a minimum, your attribute
will usually have a signature that contains a visibility property, a name, and a type, although the
attribute's name is the only part of its signature that absolutely must be present for the class to be
valid.

4.4.1. Name and Type

An attribute's name can be any set of characters, but no two attributes in the same class can have
the same name. The type of attribute can vary depending on how the class will be implemented in
your system but it is usually either a class, such as String, or a primitive type, such as an int in
Java.

Choosing Attribute Names

Remember, one of the primary aims of modeling your system is to communicate your
design to others. When picking names of attributes, operations, classes, and packages,
make sure that the name accurately describes what is being named. When naming
attributes, it's worth trying to come up with a name that describes the information that
the attribute represents.

Also, if your class is to be implemented in a specific software language, check to make
sure that the name meets the conventions of that language. In Java, it is common to
use an uppercase character for each word in your class's names, e.g., BlogAccount,
while Java packages are usually named all in lowercase (see Chapter 13).

In Figure 4-11, the name attribute is declared as private (indicated by the minus (-) sign at the
beginning of the signature) and after the colon, the type is specified as being of the class String.
The associated entries attribute is also private, and because of that association, it represents a
number of instances of the BlogEntry class.

If the BlogAccount class in Figure 4-11 was going to be implemented as a Java class in software,
then the source code would look something like that shown in Example 4-1.

Example 4-1. Java inline and by-association attributes

public class BlogAccount
{
 // The two inline attributes from Figure 4-11.
 private String name;
 private URL publicURL;

 // The single attribute by association, given the name 'entries'
 BlogEntries[] entries;

 // ...

}

It's pretty clear how the two inline attributes are implemented in the BlogAccount Java class; the
name attribute is just a Java String and the publicURL attribute is a Java URL object. The entries
attribute is a bit more interesting since it is introduced by association. Associations and
relationships between classes are covered in Chapter 5.

4.4.2. Multiplicity

Sometimes an attribute will represent more than one object. In fact, an attribute could represent
any number of objects of its type; in software, this is like declaring that an attribute is an array.
Multiplicity allows you to specify that an attribute actually represents a collection of objects, and it
can be applied to both inline and attributes by association, as shown in Figure 4-12.

Figure 4-12. Applying several flavors of attribute multiplicity to the
attributes of the BlogAccount and BlogEntry classes

In Figure 4-12, the trackbacks, comments, and authors attributes all represent collections of
objects. The * at the end of the trackbacks and comments attributes specifies that they could
contain any number of objects of the TRackback and Comment class, respectively. The authors
attribute is a little more constrained since it specifies that it contains between one and five authors.

The enTRies attribute that is introduced using an association between the BlogAccount class and
the BlogEntry class has two multiplicity properties specified at either end of the association. A * at
the BlogEntry class end of the association indicates that any number of BlogEntry objects will be
stored in the enTRies attribute within the BlogAccount class. The 1 specified at the other end of the
association indicates that each BlogEntry object in the enTRies attribute is associated with one and
only one BlogAccount object.

Those with a keen eye will have also noticed that the trackbacks, comments, and entries attributes
also have extra properties to describe in even more detail what the multiplicity on the attributes
means. The TRackbacks attribute represents any number of objects of the TRackback class, but it
also has the unique multiplicity property applied to it. The unique property dictates that no two
TRackback objects within the array should be the same. This is a reasonable constraint since we
don't want an entry in another blog cross-referencing one of our entries more than once; otherwise
the list of TRackbacks will get messy.

By default, all attributes with multiplicity are unique. This means that, as well as the trackbacks
attribute in the BlogEntry class, no two objects in the authors attributes collection in the
BlogAccount class should be the same because they are also declared unique. This makes sense
since it specifies that a BlogAccount can have up to five different authors; however, it wouldn't
make sense to specify that the same author represents two of the possible five authors that work
on a blog! If you want to specify that duplicates are allowed, then you need to use the not unique
property, as used on the comments attribute in the BlogEntry class.

The final property that an attribute can have that is related to multiplicity is the ordered property.
As well as not having to be unique, the objects represented by the comments attribute on the
BlogEntry class need to be ordered. The ordered property is used in this case to indicate that each

of the Comment objects is stored in a set order, most likely in order of addition to the BlogEntry. If
you don't care about the order in which objects are stored within an attribute that has multiplicity,
then simply leave out the ordered property.

4.4.3. Attribute Properties

As well as visibility, a unique name, and a type, there is also a set of properties that can be applied
to attributes to completely describe an attribute's characteristics.

Although a complete description of the different types attribute properties is probably a bit beyond
this bookalso, some of the properties are rarely used in practiceit is worth looking at what is
probably the most popular attribute property: the readOnly property.

Other properties supported by attributes in UML include union, subsets,
redefines, and composite. For a neat description of all of the different
properties that can be applied to attributes, check out UML 2.0 in a Nutshell
(O'Reilly).

If an attribute has the readOnly property applied, as shown in Figure 4-13, then the value of the
attribute cannot be changed once its initial value has been set.

Figure 4-13. The createdBy attribute in the ContentManagementSystem
class is given a default initial value and a property of readOnly so that
the attribute cannot be changed throughout the lifetime of the system

If the ContentManagementSystem class were to be implemented in Java source code, then the
createdBy attribute would be translated into a final attribute, as shown in Example 4-2.

Example 4-2. Final attributes in Java are often referred to as constants
since they keep the same constant value that they are initially set up
with for their entire lifetime

public class ContentManagementSystem
{
 private final String createdBy = "Adam Cook Software Corp.";
}

4.4.4. Inline Attributes Versus Attributes by Association

So, why confuse things with two ways of showing a class's attributes? Consider the classes and
associations shown in Figure 4-14.

Figure 4-14. The MyClass class has five attributes, and they are all shown
using associations

When attributes are shown as associations, as is the case in Figure 4-14, the diagram quickly
becomes busyand that's just to show the associations, nevermind all of the other relationships that
classes can have (see Chapter 5). The diagram is neater and easier to manage with more room for
other information when the attributes are specified inline with the class box, as shown in Figure 4-
15.

Figure 4-15. The MyClass class's five attributes shown inline within the
class box

Choosing whether an attribute should be shown inline or as an association is really a question of
what the focus of the diagram should be. Using inline attributes takes the spotlight away from the
associations between MyClass and the other classes, but is a much more efficient use of space.
Associations show relationships between classes very clearly on a diagram but they can get in the
way of other relationships, such as inheritance, that are more important for the purpose of a
specific diagram.

One useful rule of thumb: "simple" classes, such as the String class in Java,
or even standard library classes, such as the File class in Java's io package,
are generally best shown as inline attributes.

4.5. Class Behavior: Operations

A class's operations describe what a class can do but not necessarily how it is going to do it. An
operation is more like a promise or a minimal contract that declares that a class will contain some
behavior that does what the operation says it will do. The collection of all the operations that a
class contains should totally encompass all of the behavior that the class contains, including all the
work that maintains the class's attributes and possibly some additional behavior that is closely
associated with the class.

Operations in UML are specified on a class diagram with a signature that is at minimum made up of
a visibility property, a name, a pair of parentheses in which any parameters that are needed for the
operation to do its job can be supplied, and a return type, as shown in Figure 4-16.

Figure 4-16. Adding a new operation to a class allows other classes to
add a BlogEntry to a BlogAccount

In Figure 4-16, the addEntry operation is declared as public; it does not require any parameters to
be passed to it (yet), and it does not return any values. Although this is a perfectly valid operation
in UML, it is not even close to being finished yet. The operation is supposed to add a new BlogEntry
to a BlogAccount, but at the moment, there is no way of knowing what entry to actually add.

4.5.1. Parameters

Parameters are used to specify the information provided to an operation to allow it to complete its
job. For example, the addEntry(..) operation needs to be supplied with the BlogEntry that is to be
added to the account, as shown in Figure 4-17.

Figure 4-17. Adding a new parameter to the addEntry operation saves a

bit of embarrassment when it comes to implementing this class; at least
the addEntry operation will now know which entry to add to the blog!

The newEntry parameter that is passed to the addEntry operation in Figure 4-17 shows a simple
example of a parameter being passed to an operation. At a minimum, a parameter needs to have
its type specifiedin this case, BlogEntry class. More than one parameter can be passed to an
operation by splitting the parameters with a comma, as shown in Figure 4-18. For more
information on all the nuances of parameter notation, see UML 2.0 in a Nutshell (O'Reilly).

Figure 4-18. As well as passing the new blog entry that is to be added, by
adding another parameter, we can also indicate which author wrote the

entry

4.5.2. Return Types

As well as a name and parameters, an operation's signature also contains a return type. A return
type is specified after a colon at the end of an operation's signature and specifies the type of object
that will be returned by the operation, as shown in Figure 4-19.

There is one exception where you don't need to specify a return type: when you are declaring a
class's constructor. A constructor creates and returns a new instance of the class that it is specified
in, therefore, it does not need to explicitly declare any return type, as shown in Figure 4-20.

Figure 4-19. The addEntry(..) operation now returns a Boolean indicating
whether the entry was successfully added

Figure 4-20. The BlogAccount(..) constructor must always return an
instance of BlogAccount, so there is no need to explicitly show a return

type

4.6. Static Parts of Your Classes

To finish off this introduction to the fundamentals of class diagrams, let's take a look at one of the
most confusing characteristics of classes: when a class operation or attribute is static .

In UML, operations, attributes, and even classes themselves can be declared static. To help us
understand what static means, we need to look at the lifetime of regular non-static class members.
First, lets take another look at the BlogAccount class from earlier on in this chapter, shown in
Figure 4-21.

Figure 4-21. The BlogAccount class is made up of three regular attributes
and one regular operation

Because each of the attributes and operations on the BlogAccount class are non-static, they are
associated with instances, or objects, of the class. This means that each object of the BlogAccount
class will get their own copy of the attributes and operations, as shown in Figure 4-22.

Figure 4-22. Both account1 and account2 contain and exhibit their own
copy of all the regular non-static attributes and operations declared on

the BlogAccount class

Sometimes you want all of the objects in a particular class to share the same copy of an attribute
or operation. When this happens, a class's attributes and operations are associated with the class
itself and have a lifetime beyond that of the any objects that are instantiated from the class. This is
where static attributes and operations become useful.

For example (and let's ignore the possibility of multiple classloaders for now), if we wanted to keep
a count of all the BlogAccount objects currently alive in the system, then this counter would be a
good candidate for being a static class attribute. Rather than the counter attribute being associated
with any one object, it is associated with the BlogAccount class and is therefore a static attribute,
as shown in Figure 4-23.

The accountCounter attribute needs to be incremented every time a new BlogAccount is created.
The accountCounter attribute is declared static because the same copy needs to be shared between
all of the instances of the BlogAccount class. The instances can increment it when they are created
and decrement it when they are destroyed, as shown in Figure 4-24.

Figure 4-23. An attribute or operation is made static in UML by
underlining it; the accountCounter attribute will be used to keep a

running count of the number of objects created from the BlogAccount
class

Figure 4-24. The static accountController attribute is shared between the
different BlogAccount objects to keep a count of the currently active

BlogAccount objects within the system

If the accountCounter attribute were not static, then every BlogAccount instance would get its own
copy of the accountCounter attribute. This would not be very useful at all since each BlogAccount
object would update only its own copy of accountCounter rather than contributing to a master
object instance counterin fact, if accountCounter were not static, then every object would simply
increment its own copy to 1 and then decrement it to 0 when it is destroyed, which is not very
useful at all!

The Singleton Design Pattern

Another great example of when static attributes and operations are used when you
want to apply the Singleton design pattern . In a nutshell, the Singleton design pattern
ensures that one and only one object of a particular class is ever constructed during the
lifetime of your system. To ensure that only one object is ever constructed, typical
implementations of the Singleton pattern keep an internal static reference to the single
allowed object instance, and access to that instance is controlled using a static
operation. To learn more about the Singleton pattern, check out Head First Design
Patterns (O'Reilly).

4.7. What's Next

This chapter has given you only a first glimpse of all that is possible with class diagrams. Classes
can be related to one another, and there are even advanced forms of classes, such as templates,
that can make your system's design even more effective. Class relationships, abstract classes, and
class templates are all covered in Chapter 5.

Class diagrams show the types of objects in your system; a useful next step is to look at object
diagrams because they show how classes come alive at runtime as object instances, which is useful
if you want to show runtime configurations. Object diagrams are covered in Chapter 6.

Composite structures are a diagram type that loosly shows context-sensitive class diagrams and
patterns in your software. Composite structures are described in Chapter 11.

After you've decided the responsibilities of the classes in your system, it's common to then create
sequence and communication diagrams to show interactions between the parts. Sequence diagrams
can be found in Chapter 7. Communication diagrams are covered in Chapter 8.

It's also common to step back and organize your classes into packages. Package diagrams allow
you to view dependencies at a higher level, helping you understand the stability of your software.
Package diagrams are described in Chapter 13.

Chapter 5. Modeling a System's Logical
Structure: Advanced Class Diagrams
If all you could do with class diagrams was declare classes with simple attributes and operations,
then UML would be a pretty poor modeling language. Luckily, object orientation and UML allows
much more to be done with classes than just simple declarations. For starters, classes can have
relationships to one another. A class can be a type of another classgeneralizationor it can contain
objects of another class in various ways depending on how strong the relationship is between the
two classes.

Abstract classes help you to partly declare a class's behavior, allowing other classes to complete
the missingabstractbits of behavior as they see fit. Interfaces take abstract classes one stage
further by specifying only the needed operations of a class but without any operation
implementations. You can even apply constraints to your class diagrams that describe how a class's
objects can be used with the Object Constraint Language (OCL).

Templates complete the picture by allowing you to declare classes that contain completely generic
and reusable behavior. With templates , you can specify what a class will do and then waitas late
as runtime if you chooseto decide which classes it will work with.

Together, these techniques complete your class diagram toolbox. They represent some of the most
powerful concepts in object-oriented design and, when applied correctly, can make the difference
between an OK design and a great piece of reusable design.

5.1. Class Relationships

Classes do not live in a vacuumthey work together using different types of relationships.
Relationships between classes come in different strengths, as shown in Figure 5-1.

The strength of a class relationship is based on how dependent the classes involved in the
relationship are on each other. Two classes that are strongly dependent on one another are said to
be tightly coupled ; changes to one class will most likely affect the other class. Tight coupling is
usually, but not always, a bad thing; therefore, the stronger the relationship, the more careful you
need to be.

Figure 5-1. UML offers five different types of class relationship

5.1.1. Dependency

A dependency between two classes declares that a class needs to know about another class to use
objects of that class. If the UserInterface class of the CMS needed to work with a BlogEntry class's
object, then this dependency would be drawn using the dependency arrow, as shown in Figure 5-2.

Figure 5-2. The UserInterface is dependent on the BlogEntry class
because it will need to read the contents of a blog's entries to display

them to the user

The UserInterface and BlogEntry classes simply work together at the times when the user
interface wants to display the contents of a blog entry. In class diagram terms, the two classes of
object are dependent on each other to ensure they work together at runtime.

A dependency implies only that objects of a class can work together; therefore, it is considered to
be the weakest direct relationship that can exist between two classes.

The dependency relationship is often used when you have a class that is
providing a set of general-purpose utility functions, such as in Java's regular
expression (java.util.regex) and mathematics (java.math) packages.
Classes depend on the java.util.regex and java.math classes to use the
utilities that those classes offer.

5.1.2. Association

Although dependency simply allows one class to use objects of another class, association means
that a class will actually contain a reference to an object, or objects, of the other class in the form
of an attribute. If you find yourself saying that a class works with an object of another class, then
the relationship between those classes is a great candidate for association rather than just a
dependency. Association is shown using a simple line connecting two classes, as shown in Figure 5-
3.

Figure 5-3. The BlogAccount class is optionally associated with zero or
more objects of the BlogEntry class; the BlogEntry is also associated with

one and only one BlogAccount

Navigability is often applied to an association relationship to describe which class contains the
attribute that supports the relationship. If you take Figure 5-3 as it currently stands and implement
the association between the two classes in Java, then you would get something like that shown in
Example 5-1.

Example 5-1. The BlogAccount and BlogEntry classes without navigability
applied to their association relationship

public class BlogAccount {

 // Attribute introduced thanks to the association with the BlogEntry class
 private BlogEntry[] entries;

 // ... Other Attributes and Methods declared here ...
}

public class BlogEntry {

 // Attribute introduced thanks to the association with the Blog class
 private BlogAccount blog;

 // ... Other Attributes and Methods declared here ...
}

Without more information about the association between the BlogAccount and BlogEntry classes, it
is impossible to decide which class should contain the association introduced attribute; in this case,
both classes have an attribute added. If this was intentional, then there might not be a problem;
however, it is more common to have only one class referencing the other in an association.

In our system, it makes more sense to be able to ask a blog account what entries it contains, rather
than asking the entry what blog account it belongs to. In this case, we use navigability to ensure
that the BlogAccount class gets the association introduced attribute, as shown in Figure 5-4.

Figure 5-4. If we change Figure 5-3 to incorporate the navigability arrow,
then we can declare that you should be able to navigate from the blog to

its entries

Updating the association between the BlogAccount class and the BlogEntry class as shown in Figure
5-4 would result in the code shown in Example 5-2.

Example 5-2. With navigability applied, only the BlogAccount class
contains an association introduced attribute

public class BlogAccount {

 // Attribute introduced thanks to the association with the BlogEntry class
 private BlogEntry[] entries;

 // ... Other Attributes and Methods declared here ...
}

public class BlogEntry
{
 // The blog attribute has been removed as it is not necessary for the
 // BlogEntry to know about the BlogAccount that it belongs to.

 // ... Other Attributes and Methods declared here ...
}

5.1.2.1. Association classes

Sometimes an association itself introduces new classes. Association classes are particularly useful
in complex cases when you want to show that a class is related to two classes because those two
classes have a relationship with each other, as shown in Figure 5-5.

In Figure 5-5, the BlogEntry class is associated with a BlogAccount. However, depending on the
categories that the account contains, the blog entry is also associated with any number of
categories. In short, the association relationship between a blog account and a blog entry results in
an association relationship with a set of categories (whew!).

Figure 5-5. A BlogEntry is associated with an Author by virtue of the fact
that it is associated with a particular BlogAccount

There are no hard and fast rules for exactly how an association class is implemented in code, but,
for example, the relationships shown in Figure 5-5 could be implemented in Java, as shown in
Example 5-3.

Example 5-3. One method of implementing the BlogEntry to BlogAccount
relationship and the associated Category class in Java

public class BlogAccount {
 private String name;
 private Category[] categories;
 private BlogEntry[] entries;
}

public class Category {
 private String name;
}

public class BlogEntry {
 private String name;
 private Category[] categories
}

5.1.3. Aggregation

Moving one step on from association, we encounter the aggregation relationship. Aggregation is
really just a stronger version of association and is used to indicate that a class actually owns but
may share objects of another class.

Aggregation is shown by using an empty diamond arrowhead next to the owning class, as shown in
Figure 5-6.

Figure 5-6. An aggregation relationship can show that an Author owns a

collection of blogs

The relationship between an author and his blogs, as shown in Figure 5-6, is much stronger than
just association. An author owns his blogs, and even though he might share them with other
authors, in the end, his blogs are his own, and if he decides to remove one of his blogs, then he
can!

Where's the code? Actually, the Java code implementation for an aggregation
relationship is exactly the same as the implementation for an association
relationship; it results in the introduction of an attribute.

5.1.4. Composition

Moving one step further down the class relationship line, composition is an even stronger
relationship than aggregation, although they work in very similar ways. Composition is shown
using a closed, or filled, diamond arrowhead, as shown in Figure 5-7.

Figure 5-7. A BlogEntry is made up of an Introduction and a MainBody

A blog entry's introduction and main body sections are actually parts of the blog entry itself and
won't usually be shared with other parts of the system. If the blog entry is deleted, then its
corresponding parts are also deleted. This is exactly what composition is all about: you are
modeling the internal parts that make up a class.

Similar to aggregation, the Java code implementation for a composition
relationship results only in the introduction of an attribute.

5.1.5. Generalization (Otherwise Known as Inheritance)

Generalization and inheritance are used to describe a class that is a type of another class. The
terms has a and is a type of have become an accepted way of deciding whether a relationship
between two classes is aggregation or generalization for many years now. If you find yourself
stating that a class has a part that is an object of another class, then the relationship is likely to be
one of association, aggregation, or composition. If you find yourself saying that the class is a type
of another class, then you might want to consider using generalization instead.

In UML, the generalization arrow is used to show that a class is a type of another class, as shown in
Figure 5-8.

Figure 5-8. Showing that a BlogEntry and WikiPage are both types of
Article

The more generalized class that is inherited fromat the arrow end of the generalization relationship,
Article in this caseis often referred to as the parent, base, or superclass. The more specialized
classes that do the inheritingBlogEntry and WikiPage in this caseare often referred to as the
children or derived classes. The specialized class inherits all of the attributes and methods that are

declared in the generalized class and may add operations and attributes that are only applicable in
specialized cases.

The key to why inheritance is called generalization in UML is in the difference between what a
parent class and a child class each represents. Parent classes describe a more general type, which
is then made more specialized in child classes .

If you need to check that you've got a generalization relationship correct, this
rule of thumb can help: generalization relationships make sense only in one
direction. Although it's true to say that a guitarist is a musician, it is not true
to say that all guitarists are musicians.

5.1.5.1. Generalization and implementation reuse

A child class inherits and reuses all of the attributes and methods that the parent contains and that
have public, protected, or default visibility. So, generalization offers a great way of expressing that
one class is a type of another class, and it offers a way of reusing attributes and behavior between
the two classes. That makes generalization look like the answer to your reuse prayers, doesn't it?

Just hold on a second! If you are thinking of using generalization just so you can reuse some
behavior in a particular class, then you probably need to think again. Since a child class can see
most of the internals of its parent, it becomes tightly coupled to its parent's implementation.

One of the principles of good object-oriented design is to avoid tightly coupling classes so that
when one class changes, you don't end up having to change a bunch of other classes as well.
Generalization is the strongest form of class relationship because it creates a tight coupling
between classes. Therefore, it's a good rule of thumb to use generalization only when a class really
is a more specialized type of another class and not just as a convenience to support reuse.

If you still want to reuse a class's behavior in another class, think about using
delegation . For more information on how delegation works and why it is
preferred over inheritance, check out the excellent book, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison Wesley).

5.1.5.2. Multiple inheritance

Multiple inheritanceor multiple generalization in the official UML terminologyoccurs when a class
inherits from two or more parent classes, as shown in Figure 5-9.

Figure 5-9. The DualPurposeAccount is a BlogAccount and a WikiAccount
all combined into one

Although multiple inheritance is supported in UML, it is still not considered to be the best practice in
most cases. This is mainly due to the fact that multiple inheritance presents a complicated problem
when the two parent classes have overlapping attributes or behavior.

So, why the complication? In Figure 5-9, the DualPurposeAccount class inherits all of the behavior
and attributes from the BlogAccount and WikiAccount classes, but there is quite a bit of duplication
between the two parent classes. For example, both BlogAccount and WikiAccount contain a copy of
the name attribute that they in turn inherited from the Account class. Which copy of this attribute
does the DualPurposeAccount class get, or does it get two copies of the same attribute? The
situation becomes even more complicated when the two parent classes contain the same operation.
The BlogAccount class has an operation called getEnTRies() and so does the WikiAccount.

Although the BlogAccount and WikiAccount classes are kept separate, the fact that they both have a
getEntries() operation is not a problem. However, when both of these classes become the parent
to another class through inheritance, a conflict is created. When DualPurposeAccount inherits from
both of these classes, which version of the getEntries() method does it get? If the
DualPurposeAccount's getEnTRies() operation is invoked, which method should be executed to get
the Wiki entries or the blog entries?

The answers to these question are unfortunately often hidden in implementation details. For
example, if you were using the C++ programming language, which supports multiple inheritance,
you would use the C++ language's own set of rules about how to resolve these conflicts. Another
implementation language may use a different set of rules completely. Because of these
complications, multiple inheritance has become something of a taboo subject in object-oriented
software developmentto the point where the current popular development languages, such as Java
and C#, do not even support it. However, the fact remains that there are situations where multiple
inheritance can make sense and be implementedin languages such as C++, for exampleso UML still
needs to support it.

5.2. Constraints

Sometimes you will want to restrict the ways in which a class can operate. For example, you might
want to specify a class invariant a rule that specifies that a particular condition should never
happen within a classor that one attribute's value is based on another, or that an operation should
never leave the class in an irregular state. These types of constraints go beyond what can be done
with simple UML notation and calls for a language in its own right: the OCL.

There are three types of constraint that can be applied to class members using OCL:

Invariants

An invariant is a constraint that must always be true; otherwise the system is in an invalid
state. Invariants are defined on class attributes.

Preconditions

A precondition is a constraint that is defined on a method and is checked before the method
executes. Preconditions are frequently used to validate input parameters to a method.

Postconditions

A postcondition is also defined on a method and is checked after the method executes.
Postconditions are frequently used to describe how values were changed by a method.

Constraints are specified using either the OCL statement in curly brackets next to the class member
or in a separate note, as shown in Figure 5-10.

Figure 5-10. Three constraints are set on the BlogEntry class:
self.url>notEmpty() and rating>=0 are both invariants, and there is a

postcondition constraint on the updateRating(..) operation

In Figure 5-10, the url attribute is constrained to never being null and the rating attribute is
constrained so that it must never be less than 0. To ensure that the updateRating(..) operation
checks that the rating attribute is not less than 0, a precondition constraint is set. Finally, the
rating attribute should never be more than 5 after it has been updated, so this is specified as a
postcondition constraint on the updateRating(..) operation.

OCL allows you to specify all sorts of constraints that limit how your classes
can operate. For more information on OCL, see Appendix A.

5.3. Abstract Classes

Sometimes when you are using generalization to declare a nice, reusable, generic class, you will
not be able to implement all of the behavior that is needed by the general class. If you are
implementing a Store class to store and retrieve the CMS's articles, as shown in Figure 5-11, you
might want to indicate that exactly how a Store stores and retrieves the articles is not known at
this point and should be left to subclasses to decide.

Figure 5-11. Using regular operations, the Store class needs to know
how to store and retrieve a collection of articles

To indicate that the implementation of the store(..) and retrieve(..) operations is to be left to
subclasses by declaring those operations as abstract, write their signatures in italics, as shown in
Figure 5-12.

Figure 5-12. The store(..) and retrieve(..) operations do not now need to
be implemented by the Store class

An abstract operation does not contain a method implementation and is really a placeholder that
states, "I am leaving the implementation of this behavior to my subclasses." If any part of a class is
declared abstract, then the class itself also needs to be declared as abstract by writing its name in
italics, as shown in Figure 5-13.

Figure 5-13. The complete abstract Store class

Now that the store(..) and retrieve(..) operations on the Store class are declared as abstract,
they do not have to have any methods implemented, as shown in Example 5-4.

Example 5-4. The problem of what code to put in the implementation of
the play()operation is solved by declaring the operation and the
surrounding class as abstract

public abstract class Store {
 public abstract void store(Article[] articles);
 public abstract Article[] retrieve();
}

An abstract class cannot be instantiated into an object because it has pieces missing. The Store
class might implement the store(..) and retrieve(..) operations but because it is abstract,
children who inherit from the Store class will have to implement or declare abstract the Store
class's abstract operations, as shown in Figure 5-14.

Figure 5-14. The BlogStore class inherits from the abstract Store class
and implements the store(..) and retrieve(..) operations; classes that

completely implement all of the abstract operations inherited from their
parents are sometimes referred to as "concrete"

By becoming abstract, the Store class has delayed the implementation of the store(..) and
retrieve(..) operations until a subclass has enough information to implement them. The
BlogStore class can implement the Store class's abstract operations because it knows how to store
away a blog, as shown in Example 5-5.

Example 5-5. The BlogStore class completes the abstract parts of the
Store class

public abstract class Store {

 public abstract void store(Article[] articles);
 public abstract Article[] retrieve();
}

public class BlogStore {

 public void store(Article[] articles) {
 // Store away the blog entries here ...
 }

 public Article[] retrieve() {
 // Retrieve and return the stored blog entries here...
 }
}

An abstract class cannot be instantiated as an object because there are parts of the class definition
missing: the abstract parts. Child classes of the abstract class can be instantiated as objects if they
complete all of the abstract parts missing from the parent, thus becoming a concrete class, as
shown in Example 5-6.

Example 5-6. You can create objects of non-abstract classes, and any
class not declared as abstract needs to implement any abstract behavior
it may have inherited

public abstract class Store {

 public abstract void store(Article[] articles);
 public abstract Article[] retrieve();
}

public class BlogStore {

 public void store(Article[] articles) {
 // Store away the blog entries here ...
 }

 public Article[] retrieve() {
 // Retrieve and return the stored blog entries here...
 }
}
public class MainApplication {

 public static void main(String[] args) {

 // Creating an object instance of the BlogStore class.
 // This is totally fine since the BlogStore class is not abstract.
 BlogStore store = new BlogStore();
 blogStore.store(new Article[]{new BlogEntry()});
 Article[] articlesInBlog = blogStore.retrieve();

 // Problem! It doesn't make sense to create an object of
 // an abstract class because the implementations of the
 // abstract pieces are missing!
 Store store = new Store(); // Compilation error here!
 }
}

Abstract classes are a very powerful mechanism that enable you to define common behavior and
attributes, but they leave some aspects of how a class will work to more concrete subclasses. A
great example of where abstract classes and interfaces are used is when defining the generic roles
and behavior that make up design patterns. However, to implement an abstract class, you have to
use inheritance; therefore, you need to be aware of all the baggage that comes with the strong and
tightly coupling generalization relationship.

See the "Generalization (Otherwise Known as Inheritance)" section earlier in this chapter for more
information on the trials and tribulations of using generalization. For more on design patterns and
how they make good use of abstract classes, check out the definitive book on the subject Design
Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley).

5.4. Interfaces

If you want to declare the methods that concrete classes should implement, but not use abstraction
since you have only one inheritance relationship (if you're coding in Java), then interfaces could be
the answer.

An interface is a collection of operations that have no corresponding method implementationsvery
similar to an abstract class that contains only abstract methods. In some software implementation
languages, such as C++, interfaces are implemented as abstract classes that contain no operation
implementations. In newer languages, such as Java and C#, an interface has its own special
construct.

Interfaces tend to be much safer to use than abstract classes because they
avoid many of the problems associated with multiple inheritance (see the
"Multiple inheritance" section earlier in this chapter). This is why
programming languages such as Java allow a class to implement any number
of interfaces, but a class can inherit from only one regular or abstract class.

Think of an interface as a very simple contract that declares, "These are the operations that must
be implemented by classes that intend to meet this contract." Sometimes an interface will contain
attributes as well, but in those cases, the attributes are usually static and are often constants. See
Chapter 4 for more on the use of static attributes.

In UML, an interface can be shown as a stereotyped class notation or by using its own ball notation,
as shown in Figure 5-15.

Figure 5-15. Capturing an interface to an EmailSystem using the
stereotype and "ball " UML notation; unlike abstract classes, an interface

does not have to show that its operations are not implemented, so it
doesn't have to use italics

If you were implementing the EmailSystem interface from Figure 5-15 in Java, then your code

would look like Example 5-7.

Example 5-7. The EmailSystem interface is implemented in Java by using
the interface keyword and contains the single send(..) operation
signature with no operation implementation

public interface EmailSystem {
 public void send(Message message);
}

You can't instantiate an interface itself, much like you can't instantiate an abstract class. This is
because all of the implementations for an interface's operations are missing until it is realized by a
class. If you are using the "ball" interface notation, then you realize an interface by associating it
with a class, as shown in Figure 5-16.

Figure 5-16. The SMTPMailSystem class implements, or realizes, all of
the operations specified on the EmailSystem interface

If you have used the stereotype notation for your interface, then a new arrow is needed to show
that this is a realization relationship , as shown in Figure 5-17.

Figure 5-17. The realization arrow specifies that the SMTPMailSystem
realizes the EmailSystem interface

Both Figures 5-16 and 5-17 and would have resulted in the same Java code being generated, as
shown in Example 5-8.

Example 5-8. Java classes realize interfaces using the implements
keyword

public interface EmailSystem
{
 public void send(Message message));
}

public class SMTPMailSystem implements EmailSystem
{
 public void send(Message message)
 {
 // Implement the interactions with an SMTP server to send the message
 }

 // ... Implementations of the other operations on the Guitarist class ...
}

If a class realizes an interface but does not implement all of the operations that the interface
specifies, then that class needs to be declared abstract, as shown in Figure 5-18.

Figure 5-18. Because the SMTPMailSystem class does not implement the
send(..) operation as specified by the EmailSystem interface, it needs to
be declared abstract; the VendorXMailSystem class completes the picture

by implementing all of its operations

Interfaces are great at completely separating the behavior that is required of a class from exactly
how it is implemented. When a class implements an interface, objects of that class can be referred
to using the interface's name rather than the class name itself. This means that other classes can
be dependent on interfaces rather than classes. This is generally a good thing since it ensures that
your classes are as loosely coupled as possible. If your classes are loosely coupled, then when a
class implementation changes other classes should not break (because they are dependent on the
interface, not on the class itself).

Using Interfaces

It is good practice to de-couple dependencies between your classes using interfaces;
some programming environments, such as the Spring Framework, enforce this
interface-class relationship. The use of interfaces, as opposed to abstract classes, is
also useful when you are implementing design patterns. In languages such as Java,
you don't really want to use up the single inheritance relationship just to use a design
pattern. A Java class can implement any number of interfaces, so they offer a way of
enforcing a design pattern without imposing the burden of having to expend that one
inheritance relationship to do it.

5.5. Templates

Templates are an advanced but useful feature of object orientation. A templateor parameterized
class, as they are sometimes referred tois helpful when you want to postpone the decision as to
which classes a class will work with. When you declare a template, as shown in Figure 5-19, it is
similar to declaring, "I know this class will have to work with other classes, but I don't know or
necessarily care what those classes actually end up being."

Figure 5-19. A template in UML is shown by providing an extra box with a
dashed border to the top right of the regular class box

The ListOfThings class in Figure 5-19 is parameterized with the type referred to as E. There is no
class in our model called E; E is nothing more than a placeholder that can be used at a later point
to tell the ListOfThings class the type of object that it will need to store.

Lists

Lists tend to be the most common examples of how to use templates , and with very
good reason. Lists and their cousins, such as maps and sets, all store objects in
different ways, but they don't actually care what classes those objects are constructed
from. For this reason, one of the best real-world uses of templates is in the Java
collection classes. Prior to Java 5, the Java programming language did not have a
means of specifying templates. With the release of Java 5 and its generics feature, you
can now not only create your own templates, but the original collection classes are all
available to use as templates as well. To find out more about Java 5 generics, check out
the latest edition of Java in a Nutshell (O'Reilly).

To use a class that is a template, you first need to bind its parameters. The ListOfSomething class
template doesn't yet know what it's supposed to be storing; you need to tell the template what
actual classes it will be working with; you need to bind the parameter referred to so far as just E to

an actual class.

You can bind a template's parameters to a specific set of classes in one of two ways. First, you can
subclass the template, binding the parameters as you go, as shown in Figure 5-20.

Figure 5-20. The ListOfThings class is subclassed into a
ListOfBlogEntries, binding the single parameter E to the concrete

BlogEntry class

Binding by subclass in Figure 5-20 allows you to reuse all of the generic behavior in the
ListOfThings class and restrict that behavior in the ListOfBlogEntries class to only adding and
removing BlogEntry objects.

The real power of templates is much more obvious when you use the second approach to template
parameter bindingbinding at runtime. You bind at runtime when a template is told the type of
parameters it will have as it is constructed into an object.

Runtime template binding is about objects rather than classes; therefore, a new type of diagram is
needed: the object diagram. Object diagrams use classes to show some of the important ways they
are used as your system runs. As luck would have it, object diagrams are the subject of the very
next chapter.

5.6. What's Next

Class diagrams show the types of objects in your system. A useful next step is to look at object
diagrams since they show how classes come alive at runtime as object instances, which is useful if
you want to show runtime configurations. Object diagrams are covered in Chapter 6.

Composite structures are a diagram type that loosely shows context sensitive class diagrams and
patterns in your software. Composite structures are described in Chapter 11.

After you've decided the responsibilities of the classes in your system, it's common to then create
sequence and communication diagrams to show interactions between the parts. Sequence diagrams
can be found in Chapter 7; communication diagrams are covered in Chapter 8.

It's also common to step back and organize your classes into packages. Package diagrams allow
you to view dependencies at a higher level, helping you understand the stability of your software.
Package diagrams are described in Chapter 13.

Chapter 6. Bringing Your Classes to Life:
Object Diagrams
Objects are at the heart of any object-oriented system at runtime. When the system you designed
is actually in use, objects make up its parts and bring all of your carefully designed classes to life.

Compared to class diagrams, object diagram notation is very simple. Despite having a fairly limited
vocabulary, object diagrams are particularly useful when you want to describe how the objects
within the system would work together in a particular scenario. Class diagrams describe how all of
the different types of objects within your system interact with each other. They also draw attention
to the many ways that the objects will exist and interact within your system at runtime. In addition
to class diagrams, object diagrams help you capture the logical view of your model, shown in
Figure 6-1.

Figure 6-1. The Logical View of your model contains the abstract
descriptions of your system's parts, including which objects exist within

your system at runtime

6.1. Object Instances

To draw an object diagram, the first thing you need to add are the actual objects themselves.
Object notation is actually very simple if you're already familiar with class notation; an object is
shown with a rectangle, just like a class, but to show that this is an instance of a class rather than
the class itself, the title is underlined, as shown in Figure 6-2 .

Figure 6-2. You show an instantiated object by using a rectangle but with
the name of the objectits identifierunderlined

The enTRy object in Figure 6-2 has only an identity with which the object can be referred tothe
enTRy name. However, if you happen to also know the class that this object instantiates, then you
can also add the class name to the object name, as shown in Figure 6-3 .

Figure 6-3. The entry object is an instance of the BlogEntry class from
Chapter 4

There is one final type of object that you might want to use on your object diagramsthe anonymous
object, shown in Figure 6-4 .

Figure 6-4. The class of this object is ActionListener, but the name or
identity is not specified; this object also shows the single

actionPerformed(...) method that is required by the ActionListener
interface

Anonymous objects are typically useful when the name of the object is not important within the
context that it is being used. For example, it is a common programming idiom when you create an
event handler in Java using an anonymous object because you don't care what the name of the
object is, just that it is registered with the appropriate event source, as shown in Example 6-1 .

Example 8-1. Using an anonymous object in Java code to register an
ActionListener

with a JButton
public void initialiseUI() {
 //... Other method implementation code ...

 JButton button = new Jbutton("Submit");
 button.addActionListener(new ActionListener{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("The button was pressed so it's time to do something ...");
 }
 });

 //... Other method implementation code ...
}

You might also notice in Example 6-1 that the anonymous object is implementing an interface as it
is declared. As the anonymous object is instantiated, it implements the actionPerformed(...)
method that is required by the ActionListener interface.

6.2. Links

Objects on their own are not very interesting or helpful. To really show how your objects will work
together in a particular runtime configuration, you need to tie those objects together using links, as
shown in Figure 6-5.

Figure 6-5. Links are shown using a line between the two objects that
are being linked

Links between objects on an object diagram show that the two objects can communicate with each
other. However, you can't just link any two objects together. If you create a link between two
objects, there must be a corresponding association between the classes.

The links on an object diagram work in a similar fashion to links on a communication diagram (see
Chapter 8). However, unlike communication diagrams, the only additional piece of information that
you can optionally add to a link is a label that indicates the purpose of the link, as shown in Figure
6-6.

6.2.1. Links and Constraints

Links between objects correspond to associations between the object's classes. This means that
where constraint rules have been applied to an association, the link must keep to those rules.

Figure 6-6. To play some tunes, a BlogEntry object is connected to a
UserInterface object

In Chapter 5, the relationship between BlogEntry, BlogAccount, and Category was modeled using
an association class, as shown in Figure 6-7.

Figure 6-7. When a BlogEntry is added to a BlogAccount, it will be
grouped under one or more categories; the Category class is associated

with the relationship between a BlogEntry and a BlogAccount

If the diagram in Figure 6-7 were left as it is, then the two object diagrams shown in Figure 6-8
would be perfectly valid.

Figure 6-8. A BlogEntry can be associated with a BlogAccount and a set
of categories, but there is no rule that states that a BlogEntry must be

associated with a category

If you wanted to show that an entry must be associated with a category when it is contained within
a blog account, you need to add some OCL to the original class diagram, as shown in Figure 6-9.
OCL was briefly covered in Chapter 5 and is covered in more depth in Appendix A.

Figure 6-9. The constraint states that within the context of the
BlogEntry, a BlogEntry object should be associated with a category and

that the association should not be null; in other words, for a BlogEntry to
be added to a BlogAccount, it must have a category assigned

Objects and their links must abide by the rules set by the OCL statementsthis is one of the reasons
why OCL is called the object constraint language, and not the class constraint language. With the
constraints applied to the class diagram in Figure 6-9, the possible options for an object diagram
based on these classes is reduced to something that makes much more sense, as shown in Figure
6-10.

Figure 6-10. The self.category->notEmpty() constraint affects the
options available when you create an object diagram, ensuring that an
entry is associated with a category for it to be added to a BlogAccount

6.3. Binding Class Templates

In Chapter 5 , we saw how the parameters declared on class templates could be realized using
subclassing on a class diagram. Although this approach works fine, the real power of templates
comes when you bind template parameters at runtime. To do this, you take a template and tell it
the types that its parameters are going to be as it is constructed into an object .

Object diagrams are ideal for modeling how runtime binding takes place. When you use runtime
template parameter binding, you are really talking about objects rather than classes, so you can't
really model this information on a regular class diagram.

Although this book talks about UML in terms of diagram types, the UML specification is not actually
constrained to a particular set of diagrams. In fact, you could show object diagram notation on a
class diagram if you wanted to group your classes and their runtime bindings on the same diagram.

Figure 6-11 shows a simple class template for a list collection taken from Chapter 4 . Collections
are great candidates for templates because they need to manage a collection of objects, but they
don't usually care what classes those objects are.

Figure 6-11. The ListOfThings collection can store and remove any class
of object to which the E parameter is bound

To model that the ListOfThings template's E parameter is to be bound at runtime to a particular
class, all you need to do is add the parameter binding details to the end of the object's class
description, as shown in Figure 6-12 .

Figure 6-12. The listOfBlogEntries reuses the generic ListOfThings
template, binding the E parameter to the BlogEntry class to store only

objects of the BlogEntry class

Up until recently, showing runtime binding of templates in Java would have been impossible; the
language did not support templates at all. However, with the release of Java 5 and the new
generics language features, the runtime binding of the BlogEntry class to the E parameter on the
ListOfThings template can now be implemented, as shown in Example 6-2 .

Example 8-2. Using Java 5 generics to implement the ListOfThings
template and a runtime binding to the ListOfBlogEntries

public class ListOfThings<E> {

 // We're cheating a bit here; Java actually already has a List template
 // and so we're using that for our ListOfThings templates operations.
 private List[E] elements;

 public ListOfThings {
 elements = new ArrayList<E>();
 }

 public int add(E object) {
 return elements.add(object);
 }

 public E remove(int index) {
 return elements.remove(index);
 }
}

public class Application {

 public static void main(String[] args) {
 // Binding the E parameter on the ListOfThings template to a Musician class
 // to create a ListOfThings that will only store Musician objects.
 ListOfThings <BlogEntry>listOfBlogEntries= new ListOfThings<BlogEntry>();
 }
}

There is a lot more to generics in Java than the simple template implementation provided here. For
more examples, see Java 5 Tiger: A Developer's Notebook (O'Reilly).

6.4. What's Next?

Now that you're considering runtime characteristics of your system, it's natural to continue on this
path by studying sequence diagrams and communication diagrams. These show messages passing
between parts on your system, demonstrating how your objects get used.

You can find sequence diagrams in Chapter 7; communication diagrams are covered in Chapter 8.

Chapter 7. Modeling Ordered Interactions:
Sequence Diagrams
Use cases allow your model to describe what your system must be able to do; classes allow your
model to describe the different types of parts that make up your system's structure. There's one
large piece that's missing from this jigsaw; with use cases and classes alone, you can't yet model
how your system is actually going to its job. This is where interaction diagrams , and specifically
sequence diagrams, come into play.

Sequence diagrams are an important member of the group known as interaction diagrams.
Interaction diagrams model important runtime interactions between the parts that make up your
system and form part of the logical view of your model, shown in Figure 7-1.

Figure 7-1. The Logical View of your model contains the abstract
descriptions of your system's parts, including the interactions between

those parts

Sequence diagrams are not alone in this group; they work alongside communication diagrams (see
Chapter 8) and timing diagrams (see Chapter 9) to help you accurately model how the parts that
make up your system interact.

Sequence diagrams are the most popular of the three interaction diagram
types. This could be because they show the right sorts of information or
simply because they tend to make sense to people new to UML.

Sequence diagrams are all about capturing the order of interactions between parts of your system.
Using a sequence diagram, you can describe which interactions will be triggered when a particular

use case is executed and in what order those interactions will occur. Sequence diagrams show
plenty of other information about an interaction, but their forté is the simple and effective way in
which they communicate the order of events within an interaction.

7.1. Participants in a Sequence Diagram

A sequence diagram is made up of a collection of participantsthe parts of your system that interact
with each other during the sequence. Where a participant is placed on a sequence diagram is
important. Regardless of where a participant is placed vertically, participants are always arranged
horizontally with no two participants overlapping each other, as shown in Figure 7-2.

Figure 7-2. At its simplest, a sequence diagram is made up of one or
more participantsonly one participant would be a very strange sequence

diagram, but it would be perfectly legal UML

Each participant has a corresponding lifeline running down the page. A participant's lifeline simply
states that the part exists at that point in the sequence and is only really interesting when a part is
created and/or deleted during a sequence (see "Participant Creation and Destruction Messages"
later in this chapter).

7.1.1. Participant Names

Participants on a sequence diagram can be named in number of different ways, picking elements
from the standard format:

name [selector] : class_name ref decomposition

The elements of the format that you pick to use for a particular participant will depend on the
information known about a participant at a given time, as explained in Table 7-1.

Table 7-1. How to understand the components of a participant's name

Example participant name Description

admin
A part is named admin, but at this point in time the part has not
been assigned a class.

: ContentManagementSystem
The class of the participant is ContentManagementSystem, but the
part currently does not have its own name.

admin : Administrator
There is a part that has a name of admin and is of the class
Administrator.

eventHandlers [2] :
EventHandler

There is a part that is accessed within an array at element 2, and
it is of the class EventHandler.

: ContentManagementSystem
ref cmsInteraction

The participant is of the class ContentManagementSystem, and
there is another interaction diagram called cmsInteraction that
shows how the participant works internally (see "A Brief
Overview of UML 2.0's Fragment Types," later in this chapter).

The format used when creating names for your participants is totally up to youor maybe your
company's style guide. In this book, we lowercase the first word in the participant name to make
sure that there is as little confusion as possible with the name of a class. However, this is just our
conventionsimilar to the conventions used when naming objects and classes in Javaand is not
something specified by UML.

What Happened to Objects?

In UML 1.x, participants on an interaction diagram were usually software objects in the
traditional object-oriented programming sense. Each object was an instance of a class,
and the object name was underlined to indicate this. Because UML 2.0 is more of a
general system modeling language, it makes much more sense to think of it in terms of
system parts interacting with each other rather than software objects. This is why
we've used the term "participant" to describe a part that is involved in the interactions
on a sequence diagram. A participant could still be a software object, a la UML 1.x, but
it could equally be any other part of the system in keeping with the spirit of UML 2.0.

7.2. Time

A sequence diagram describes the order in which the interactions take place, so time is an
important factor. How time relates to a sequence diagram is shown in Figure 7-3.

Figure 7-3. Time runs down the page on a sequence diagram in keeping
with the participant lifeline

Time on a sequence diagram starts at the top of the page, just beneath the topmost participant
heading, and then progresses down the page. The order that interactions are placed down the page
on a sequence diagram indicates the order in which those interactions will take place in time.

Time on a sequence diagram is all about ordering, not duration. Although the time at which an
interaction occurs is indicated on a sequence diagram by where it is placed vertically on the
diagram, how much of the vertical space the interaction takes up has nothing to do with the
duration of time that the interaction will take. Sequence diagrams are first about the ordering of
the interactions between participants; more detailed timing information is better shown on timing
diagrams (see Chapter 9).

7.3. Events, Signals, and Messages

The smallest part of an interaction is an event. An event is any point in an interaction where
something occurs, as shown on Figure 7-4.

Figure 7-4. Probably the most common examples of events are when a
message or signal is sent or received

Events are the building blocks for signals and messages. Signals and messages are really different
names for the same concept: a signal is the terminology often used by system designers, while
software designers often prefer messages.

In terms of sequence diagrams, signals and messages act and look the same, so we'll stick to using
the term "messages" in this book.

An interaction in a sequence diagram occurs when one participant decides to send a message to
another participant, as shown in Figure 7-5.

Figure 7-5. Interactions on a sequence diagram are shown as messages
between participants

Messages on a sequence diagram are specified using an arrow from the participant that wants to
pass the message, the Message Caller, to the participant that is to receive the message, the
Message Receiver. Messages can flow in whatever direction makes sense for the required
interactionfrom left to right, right to left, or even back to the Message Caller itself. Think of a
message as an event that is passed from a Message Caller to get the Message Receiver to do
something.

7.3.1. Message Signatures

A message arrow comes with a description, or signature. The format for a message signature is:

attribute = signal_or_message_name (arguments) : return_type

You can specify any number of different arguments on a message, each separated using a comma.
The format of an argument is:

<name>:<class>

The elements of the format that you use for a particular message will depend on the information
known about a particular message at any given time, as explained in Table 7-2.

Table 7-2. How to understand the components of a message's signature

Example message signature Description

doSomething()
The message's name is doSomething, but no further information
is known about it.

doSomething(number1 :
Number, number2 : Number)

The message's name is doSomething, and it takes two
arguments, number1 and number2, which are both of class
Number.

doSomething() : ReturnClass
The message's name is doSomething; it takes no arguments and
returns an object of class ReturnClass.

myVar = doSomething() :
ReturnClass

The message's name is doSomething; it takes no arguments,
and it returns an object of class ReturnClass that is assigned to
the myVar attribute of the message caller.

7.4. Activation Bars

When a message is passed to a participant it triggers, or invokes, the receiving participant into
doing something; at this point, the receiving participant is said to be active. To show that a
participant is active, i.e., doing something, you can use an activation bar, as shown in Figure 7-6.

Figure 7-6. Activation bars show that a participant is busy doing
something for a period of time

An activation bar can be shown on the sending and receiving ends of a message. It indicates that
the sending participant is busy while it sends the message and the receiving participant is busy
after the message has been received

Activation bars are optionalthey can clutter up a diagram.

7.5. Nested Messages

When a message from one participant results in one or more messages being sent by the receiving
participant, those resulting messages are said to be nested within the triggering message, as
shown in Figure 7-7.

Figure 7-7. Two nested messages are invoked when an initial message is
received

In Figure 7-7, participant1 sends initialMessage(..) to participant2. When participant2
receives initialMessage(..), participant2 becomes active and sends two nested messages to
participant3. You can have any number of nested messages inside a triggering message and any
number of levels of nested messages on a sequence diagram.

7.6. Message Arrows

The type of arrowhead that is on a message is also important when understanding what type of
message is being passed. For example, the Message Caller may want to wait for a message to
return before carrying on with its worka synchronous message. Or it may wish to just send the
message to the Message Receiver without waiting for any return as a form of "fire and forget"
messagean asynchronous message.

Sequence diagrams need to show these different types of message using various message arrows ,
as shown in Figure 7-8.

To explain how the different types of messages work, let's look at some simple examples where the
participants are actually software objects implemented in Java.

Figure 7-8. There are five main types of message arrow for use on
sequence diagram, and each has its own meaning

7.6.1. Synchronous Messages

As mentioned before, a synchronous message is invoked when the Message Caller waits for the
Message Receiver to return from the message invocation, as shown in Figure 7-9.

Figure 7-9. The messageCaller participant makes a single synchronous
message invocation on the messageReceiver participant

The interaction shown in Figure 7-9 is implemented in Java using nothing more than a simple
method invocation, as shown in Example 7-1.

Example 7-1. The messageCaller object makes a regular Java method call
to the foo() method on the messageReceiver object and then waits for
the messageReceiver.foo() method to return before carrying on with any
further steps in the interaction

public class MessageReceiver
{
 public void foo()
 {
 // Do something inside foo.
 }
}

public class MessageCaller
{
 private MessageReceiver messageReceiver;

 // Other Methods and Attributes of the class are declared here

 // The messageRecevier attribute is initialized elsewhere in
 // the class.

 public doSomething(String[] args)
 {
 // The MessageCaller invokes the foo() method

 this.messageReceiver.foo(); // then waits for the method to return

 // before carrying on here with the rest of its work
 }
}

7.6.2. Asynchronous Messages

It would be great if all the interactions in your system happened one after the other in a nice simple
order. Each participant would pass a message to another participant and then calmly wait for the
message to return before carrying on. Unfortunately, that's not how most systems work.
Interactions can happen at the same point in time, and sometimes you will want to initiate a
collection of interactions all at the same time and not wait for them to return at all.

For example, say you are designing a piece of software with a user interface that supports the
editing and printing of a set of documents. Your application offers a button for the user to print a
document. Printing could take some time, so you want to show that after the print button is
pressed and the document is printing, the user can go ahead and work with other things in the
application. The regular synchronous message arrow is not sufficient to show these types of
interactions. You need a new type of message arrow: the asynchronous message arrow.

An asynchronous message is invoked by a Message Caller on a Message Receiver, but the Message
Caller does not wait for the message invocation to return before carrying on with the rest of the
interaction's steps. This means that the Message Caller will invoke a message on the Message
Receiver and the Message Caller will be busy invoking further messages before the original
message returns, as shown in Figure 7-10.

A common way of implementing asynchronous messaging in Java is to use threads, as shown in
Example 7-2.

Figure 7-10. While the foo() message is being worked on by the
messageReceiver object, the messageCaller object has carried on with
the interaction by executing further synchronous messages on another

object

If you're not too familiar with how threads work in Java, check out Java in a Nutshell , Fifth Edition
(O'Reilly) or Java Threads (O'Reilly). See "Applying Asynchronous Messages" later in this chapter
for a practical example of asynchronous messages.

Example 7-2. The operation1() asynchronous message invokes an

internal thread on the message receiver that in turn spurs the message,
immediately returning the flow of execution to the messageCaller

public class MessageReceiver implements Runable {

 public void operation1() {
 // Receive the message and trigger off the thread

 Thread fooWorker = new Thread(this);
 fooWorker.start(); // This call starts a new thread, calling the run()
 // method below

 // As soon as the thread has been started, the call to foo() returns.

 }

 public void run() {
 // This is where the work for the foo() message invocation will
 // be executed.
 }
}

public class MessageCaller
{
 private MessageReceiver messageReceiver;

 // Other Methods and Attributes of the class are declared here

 // The messageRecevier attribute is initialized elsewhere in
 // the class.

 public void doSomething(String[] args) {
 // The MessageCaller invokes the operation1() operation

 this.messageReceiver.operation1();

 // then immediately carries on with the rest of its work
 }
}

7.6.3. The Return Message

The return message is an optional piece of notation that you can use at the end of an activation bar
to show that the control flow of the activation returns to the participant that passed the original
message. In code, a return arrow is similar to reaching the end of a method or explicitly calling a
return statement.

You don't have to use return messages sometimes they can really make your sequence diagram too
busy and confusing. You don't have to clutter up your sequence diagrams with a return arrow for
every activation bar since there is an implied return arrow on any activation bars that are invoked
using a synchronous message.

Although a message will often be passed between two different participants, it
is totally normal for a participant to pass a message to itself. Messages from
an object to itself are a good way of splitting up a large activation into smaller
and more manageable pieces and, in terms of software, can be thought of as
being very similar to making a method call to the this reference in Java and
C#.

7.6.4. Participant Creation and Destruction Messages

Participants do not necessarily live for the entire duration of a sequence diagram's interaction.
Participants can be created and destroyed according to the messages that are being passed, as
shown in Figure 7-11.

Figure 7-11. Both participant2 and participant3 are created throughout
the course of this sequence diagram

To show that a participant is created, you can either simply pass a create(..) message to the
participant's lifeline or use the dropped participant box notation where it is absolutely clear that the
participant does not exist before the create call is invoked. Participant deletion is shown by the
ending of the participant's lifeline with the deletion cross.

Software participant creation in Java and C# is implemented using the new keyword, as shown in
Example 7-3.

Example 7-3. The MessageCaller creates a new MessageReceiver object
simply by using the new keyword

public class MessageReceiver {
 // Attributes and Methods of the MessageReceiver class
}

public class MessageCaller {

 // Other Methods and Attributes of the class are declared here

 public void doSomething() {
 // The MessageReceiver object is created
 MessageReceiver messageReceiver = new MessageReceiver();
 }
}

With some implementation languages, such as Java, you will not have an explicit destroy method ,
so it doesn't make sense to show one on your sequence diagrams. Example 7-3 is one such case
where the messageReceiver object will be flagged for destruction when the doSomething() method
completes its execution. However, no additional messages have to be passed to the
messageReceiver to make it destroy itself since this is all handled implicitly by the Java garbage
collector.

In these cases, where another factor such as the garbage collector is involved, you can either leave
the object as alive but unused or imply that it is no longer needed by using the destruction cross
without an associated destroy method, as shown in Figure 7-12.

Figure 7-12. Using an explicit destroy message or implying that a
participant has been discarded using just a destruction cross

7.7. Bringing a Use Case to Life with a Sequence Diagram

It's time to take a closer look at a sequence. Specifically, let's look at a sequence diagram that is
going to model the interactions that need to occur to make the Create a new Regular Blog Account
use case happen.

Figure 7-13 should look familiar; it is just a quick reminder of what the Create a new Regular Blog
Account use case looks like (see Chapter 2).

Figure 7-13. The Create a new Regular Blog Account use case diagram

Briefly, the Create a new Regular Blog Account use case is a special case of the Create a new
Blog Account use case. It also includes all of the steps provided by the Check Identity use case
and may optionally execute the steps provided by the Record Application Failure use case, if the
application for a new account is denied. Figure 7-13 is a pretty busy use case diagram, so feel free
to jump back to Chapter 2 to remind yourself of what is going on.

Supporting the Dropped Title Box Technique

It is a sad fact that many standard UML tools do not support the dropped title box
technique for showing participant creation or the cross notation for participant
destruction. For example, you will often find that your tool does not allow you to place
the participant's title box anywhere else but at the top of the diagram. In these cases,
the best approach is to show that the creation or deletion message invokes the object
being created and to rely on the reader of the diagram to realize that you mean that
the participant is being created (a note to this effect is often helpful too).
Unfortunately, this approach is not the best use of UML, but sometimes it is all you can
get the tool to do.

7.7.1. A Top-Level Sequence Diagram

Before you can specify what types of interaction are going to occur when a use case executes, you
need a more detailed description of what the use case does. If you've already completed a use case
description, you already have a good reference for this detailed information.

Table 7-3 shows the steps that occur in the Create a new Regular Blog Account use case according
to its detailed description.

Table 7-3. Most of the detailed information that you will need to start
constructing a sequence diagram for a use case should already be

available as the Main Flow within the use case's description

Main Flow Step Action

 1 The Administrator asks the system to create a new blog account.

 2 The Administrator selects the regular blog account type.

 3 The Administrator enters the author's details.

 4 The author's details are checked using the Author Credentials Database.

 5 The new regular blog account is created.

 6 A summary of the new blog account's details are emailed to the author.

Table 7-3 actually shows all of the steps involved in the Create a new Regular Blog Account use
case, including any steps that it has inherited from Create a new Blog Account or reused from
Check Identity. This has been done just so you can easily see all of the Main Flow steps in one
place.

In practice, you would probably just look up all three use case descriptions separately without

actually going to the bother of actually merging them.

Table 7-3 only shows the Main Flowthat is the steps that would occur without worrying about any
extensionsbut this is a good enough starting point for creating a top-level sequence diagram, as
shown in Figure 7-14.

Figure 7-14. This sequence diagram shows the actors that interact with
your system and your system is shown simply as a single part in the

sequence

Figure 7-14 focuses on the participants and messages that are involved in the
use case. The same use case was modeled in Chapter 3 as an activity
diagram, which focused on the processes involved rather than the particpants.

7.7.2. Breaking an Interaction into Separate Participants

At this point, Figure 7-14 shows only the interactions that must happen between the external actors
and your system because that is the level at which the use case description's steps were written. On
the sequence diagram, your system is represented as a single participant, the
ContentManagementSystem; however, unless you intend on implementing your content management
system as a single monolithic piece of code (generally not a good idea!), it's time to break apart
ContentManagementSystem to expose the pieces that go inside, as shown in Figure 7-15.

Figure 7-15. Adding more detail about the internals of your system

Sequence diagrams can get much more complicated by simply adding a couple of extra participants
and some more detailed interactions. In Figure 7-15, the original sequence diagram has been
refined so that the single ContentManagementSystem participant has been removed and in its place,
more detail has been added showing the actual participants that will be involved.

Work on sequence diagrams invariably goes on throughout the life of your system's model, and
even getting the right participants and interactions in a detailed sequence diagram at the beginning
can be hard work. Keeping your sequence diagrams up to date is also a challenge (see "Managing
Complex Interactions with Sequence Fragments" later in this chapter); therefore, expect to spend
some time working with your sequence diagrams until you get things right.

7.7.3. Applying Participant Creation

Something critical is missing from the sequence diagram shown in Figure 7-15. The title of the use
case in which the sequence diagram is operating is Create a new Regular Blog Account, but where
is the actual creation of the blog account? Figure 7-16 adds the missing pieces to the model to
show the actual creation of a regular blog account.

Figure 7-16. Showing the lifelines of your sequence diagram's
participants

Participant lifelines are particularly useful when showing that a participant has been created. In
Figure 7-16, the AuthorDetails and RegularBlogAccount participants are not in existence when the
sequence diagram begins but they are created during its execution.

The AuthorDetails and newAccount:RegularBlogAccount participants are created by corresponding
create messages. Each create message connects directly into the title box for the participant being
created, passing any information needed when creating the new participant. By dropping the
participant's title box to the point where the create message is actually invoked, the diagram can
clearly show the point where the participant's lifeline begins.

7.7.4. Applying Participant Deletion

Let's say that the authorDetails:AuthorDetails participant is no longer required once the
newAccount:RegularBlogAccount has been created. To show that the authorDetails:AuthorDetails
participant is discarded at this point, you can use an explicit destroy message connected to the
destruction cross, as shown in Figure 7-17.

7.7.5. Applying Asynchronous Messages

So far, all of the messages on our example sequence diagram have been synchronous; they are
executed one after the other in order, and nothing happens concurrently. However, there is at least
one message in the example sequence that is a great candidate for being an asynchronous
message, as shown in Figure 7-18.

Figure 7-17. Showing that a participant is discarded using the
destruction cross

Figure 7-18. The clickSubmit() message will currently produce some
irregular behavior when the admin creates a new account

In Figure 7-18, when the Administrator clicks on the submit button the system freezes, until the
new blog account has been created. It would be useful to show that the user interface allows the
Administrator to carry on with other tasks while the content management system creates the new
account. What we need is for the clickSubmit() message to be asynchronous.

Converting the clickSubmit() from a synchronous to an asynchronous message means that the
sequence diagram now shows that when the new regular blog account information is submitted, the
user interface will not lock and wait for the new account to be created. Instead, the user interface
allows the Administrator actor to continue working with the system.

For the Administrator to receive feedback as to whether the new blog account has been created,
the simple return arrow has to be replaced with a new accountCreationNotification()

asynchronous message since asynchronous messages do not have return values.

7.8. Managing Complex Interactions with Sequence
Fragments

Most of what you've seen in this chapter will have been pretty familiar to anyone who has used
sequence diagrams in UML 1.x. But now it's time for something completely different.

In the bad old days of pre-UML 2.0, sequence diagrams quickly became huge and messy, and
contained far too much detail to be easily understood or maintained. There were no built-in,
standard ways to show loops and alternative flows, so you had to "grow your own" solutions. This
tended to contribute to the size and complexity of the sequence diagrams rather than helping to
manage it.

Something new was needed to help the modeler work with the detail that a sequence diagram
needed to capture, allowing her to create organized and structured sequence diagrams that showed
complex interactions such as loops and alternate flows. The answer from the UML 2.0 designers
was the sequence fragment.

A sequence fragment is represented as a box that encloses a portion of the interactions within a
sequence diagram, as shown in Figure 7-19.

A sequence fragment's box overlaps the region of the sequence diagram where the fragment's
interactions take place. A fragment box can contain any number of interactions and, for large
complex interactions, further nested fragments as well. The top left corner of the fragment box
contains an operator. The fragment operator indicates which type of fragment this is.

Figure 7-19. A sequence fragment located as part of a larger sequence
diagram, with notes to indicate the fragment box, any parameters, and

its operator

In Figure 7-19, the operator is opt, which means that this is an optional fragment. All the
interactions contained within the fragment box will be executed according to the result of the
fragments guard condition parameter.

Some fragment types do not need additional parameters as part of their specification, such as the
ref fragment type discussed in the next section, but the guard condition parameter is needed by
the opt fragment type to make a decision as to whether it should execute its interactions or not. In
the case of the opt fragment type, the interactions that the fragment contains will be executed only
if the associated guard condition logic evaluates to true.

7.8.1. Using a Sequence Fragment: The ref Fragment

The ref type of sequence fragment finally alleviates some of the maintenance nightmare presented
by the huge sequence diagrams that are often created for complex systems. In Figure 7-20, the ref
fragment represents a piece of a larger sequence diagram.

The interactions by which the Administrator actor selects a blog account type for creation are now
contained within the referenced sequence fragment. Figure 7-21 shows how the referenced
fragment can be expressed on a separate sequence diagram.

Figure 7-20. Capturing the interactions used to select an account type
within a ref sequence fragment

Figure 7-21. A referenced sequence diagram that contains the new
account selection interactions

Along with managing the sheer size of large sequence diagrams, the ref fragment also presents an
opportunity to reuse a set of common interactions. Several ref fragment boxes can reference the
same set of interactions, thereby reusing the interactions in multiple places.

The ref fragment type works in a very similar manner to the <<include>> use
case relationship. See Chapter 2 for more about the <<include>> use case
relationship.

7.8.2. A Brief Overview of UML 2.0's Fragment Types

UML 2.0 contains a broad set of different fragment types that you can apply to your sequence
diagrams to make them more expressive, as shown in Table 7-4.

Table 7-4. The fragment family and explanations why each type might be
useful when creating sequence diagrams

Type Parameters Why is it useful?

ref None Represents an interaction that is defined elsewhere in the model.
Helps you manage a large diagram by splitting, and potentially
reusing, a collection of interactions. Similar to the reuse modeled
when the <<include>> use case relationship is applied.

assert None Specifies that the interactions contained within the fragment box must
occur exactly as they are indicated; otherwise the fragment is
declared invalid and an exception should be raised. Works in a similar
fashion to the assert statement in Java. Useful when specifying that
every step in an interaction must occur successfully, i.e., when
modeling a transaction.

loop min times,

max times,

[guard_condition]

Loops through the interactions contained within the fragment a
specified number of times until the guard condition is evaluated to
false. Very similar to the Java and C# for(..) loop. Useful when you
are trying execute a set of interactions a specific number of times.

break None If the interactions contained within the break fragment occur, then
any enclosing interaction, most commonly a loop fragment , should
be exited. Similar to the break statement in Java and C#.

alt [guard_condition1]
...

[guard_condition2]
...

[else]

Depending on which guard condition evaluates to true first, the
corresponding sub-collection of interactions will be executed. Helps
you specify that a set of interactions will be executed only under
certain conditions. Similar to an if(..) else statement in code.

Type Parameters Why is it useful?

opt [guard_condition] The interactions contained within this fragment will execute only if the
guard condition evaluates to true. Similar to a simple if(..)
statement in code with no corresponding else. Especially useful when
showing steps that have been reused from another use case's
sequence diagrams, where <<extend>> is the use case relationship.

neg None Declares that the interactions inside this fragment are not to be
executed, ever. Helpful if you are just trying to mark a collection of
interactions as not executed until you're sure that those interactions
can be removed. Most useful if you happen to be lucky enough to be
using an Executable UML tool where your sequence diagrams are
actually being run. Also can be helpful to show that something cannot
be done, e.g., when you want to show that a participant cannot call
read() on a socket after close().Works in a similar fashion to
commenting out some method calls in code.

par None Specifies that interactions within this fragment can happily execute in
parallel. This is similar to saying that there is no need for any thread-
safe locking required within a set of interactions.

region None Interactions within this type of fragment are said to be part of a
critical region. A critical region is typically an area where a shared
participant is updated. Combined with parallel interactions, specified
using the par fragment type, you can model where interactions are
not required to be thread- or process-safe (par fragment) and where
locks are required to prevent parallel interactions interleaving (region
fragment). Has similarities synchronized blocks and object locks in
Java.

Sequence fragments make it easier to create and maintain accurate sequence diagrams. However,
it's worth remembering that no fragment is an island; you can mix and match any number of
fragments to accurately model the interactions on a sequence diagram. Be wary if your diagrams
become huge and unwieldy even when you are using fragments, since you might simply be trying
to model too much in one sequence.

We've given you a brief overview of sequence diagram fragments here. All the different sequence
diagram fragment types are a big subject in their own right and are a little beyond the scope of this
book. For a more in-depth look at the different types of sequence diagram fragments, see UML 2.0
in a Nutshell (O'Reilly).

opt [guard_condition] The interactions contained within this fragment will execute only if the
guard condition evaluates to true. Similar to a simple if(..)
statement in code with no corresponding else. Especially useful when
showing steps that have been reused from another use case's
sequence diagrams, where <<extend>> is the use case relationship.

neg None Declares that the interactions inside this fragment are not to be
executed, ever. Helpful if you are just trying to mark a collection of
interactions as not executed until you're sure that those interactions
can be removed. Most useful if you happen to be lucky enough to be
using an Executable UML tool where your sequence diagrams are
actually being run. Also can be helpful to show that something cannot
be done, e.g., when you want to show that a participant cannot call
read() on a socket after close().Works in a similar fashion to
commenting out some method calls in code.

par None Specifies that interactions within this fragment can happily execute in
parallel. This is similar to saying that there is no need for any thread-
safe locking required within a set of interactions.

region None Interactions within this type of fragment are said to be part of a
critical region. A critical region is typically an area where a shared
participant is updated. Combined with parallel interactions, specified
using the par fragment type, you can model where interactions are
not required to be thread- or process-safe (par fragment) and where
locks are required to prevent parallel interactions interleaving (region
fragment). Has similarities synchronized blocks and object locks in
Java.

Sequence fragments make it easier to create and maintain accurate sequence diagrams. However,
it's worth remembering that no fragment is an island; you can mix and match any number of
fragments to accurately model the interactions on a sequence diagram. Be wary if your diagrams
become huge and unwieldy even when you are using fragments, since you might simply be trying
to model too much in one sequence.

We've given you a brief overview of sequence diagram fragments here. All the different sequence
diagram fragment types are a big subject in their own right and are a little beyond the scope of this
book. For a more in-depth look at the different types of sequence diagram fragments, see UML 2.0
in a Nutshell (O'Reilly).

7.9. What's Next?

Sequence diagrams are closely related to communication diagrams. So closely, in fact, that many
modelers often don't know when to use sequence versus communication diagrams. Chapter 8
describes communication diagrams and concludes with a comparison between the two, providing
some tips about when to use which diagram type.

Sequence and communication diagrams are both interaction diagrams; timing diagrams are yet
another type of interaction diagram. Timing diagrams specialize at showing time constraints
involved with interactions, which is especially useful for real-time systems. Timing diagrams are
covered in Chapter 9.

If your sequence diagram is getting cluttered with too many messages, step back and look at
interaction diagrams on a higher level with interaction overview diagrams. Interaction overview
diagrams model the big picture perspective on interactions that occur within your system.
Interaction overview diagrams are described in Chapter 10.

Chapter 8. Focusing on Interaction Links:
Communication Diagrams
The main purpose of sequence diagrams is to show the order of events between the parts of your
system that are involved in a particular interaction. Communication diagrams add another
perspective to an interaction by focusing on the links between the participants .

Communication diagrams are especially good at showing which links are needed between
participants to pass an interaction's messages. With a quick glance at a communication diagram,
you can tell which participants need to be connected for an interaction can take place.

On a sequence diagram, the links between participants are implied by the fact that a message is
passed between them. Communication diagrams provide an intuitive way to show the links
between participants that are required for the events that make up an interaction. On a
communication diagram, the order of the events involved in an interaction is almost a secondary
piece of information.

Sequence and communication diagrams are so similar that most UML tools
can automatically convert from one diagram type to the other. The difference
between the two approaches is largely personal preference. If you're happier
looking at interactions from a link perspective, then communication diagrams
are likely to be for you; however, if you prefer to see the order of the
interactions as clearly as possible, then you're likely to be in the sequence
diagram camp.

8.1. Participants, Links, and Messages

A communication diagram is made up of three things: participants, the communication links
between those participants, and the messages that can be passed along those communication links,
as shown in Figure 8-1.

Figure 8-1. Much simpler than sequence diagrams, communication
diagrams are made up of participants and links

Participants on a communication diagram are represented by a rectangle. The participant's name
and class are then placed in the middle of the rectangle. A participant's name is formatted as
<name> : <class>, similar to participants on a sequence diagram.

You need to specify either the participant's name or class (or both). If, for some reason, you do not
have both the name and class informationsometimes a participant is anonymous and does not have
a namethen either the class or the name can be left out.

A communication link is shown with a single line that connects two participants. A link's purpose is
to allow messages to be passed between the different participants; without a link, the two
participants cannot interact with each other. A communication link is shown in Figure 8-2.

Figure 8-2. Two messages are passed along the link between
participant1 and participant2

A message on a communication diagram is shown using a filled arrow from the message sender to
the message receiver. Similar to messages on a sequence diagram, a message's signature is made
up of the message name and a list of parameters. However, unlike sequence diagrams, the
message signature alone is not enough for a communication diagramyou also need to show the
order in which the messages are invoked during the interaction.

Communication diagrams do not necessarily flow down the page like sequence diagrams; therefore,
message order on a communication diagram is shown using a number before each message. Each
message number indicates the order in which that message is invoked, starting at 1 and increasing
until all of the messages on the diagram are accounted for. Following this rule, in Figure 8-2, 1.
messageA() is invoked first and then 2. messageB().

Things get more complicated when a message sent to a participant directly causes that participant
to invoke another message. When a message causes another message to be invoked, the second
message is said to be nested inside the original message, as shown on Figure 8-3.

Figure 8-3. Nested messages on sequence diagrams are easy to see;
when the initial message, message1(..), is invoked on participant2,
participant2 then invokes the nestedmessage2(..) on participant3

Communication diagrams use their message numbering scheme to show the order of nested
messages. If we say that the initial message is numbered 1., then any messages nested within the
initial message begin with 1., adding a number after the decimal point for the ordering of the
nested messages. If an initial message's number was 1., then the first nested message's number
would be 1.1. An example of this nested message ordering is shown in Figure 8-4.

8.1.1. Messages Occurring at the Same Time

Communication diagrams have a simple answer to the problem of messages being invoked at the
same time. Although sequence diagrams need complicated constructs, such as par fragments,
communication diagrams take advantage of their number-based message ordering by adding a
number-and-letter notation to indicate that a message happens at the same time as another
message, shown in Figure 8-5.

Figure 8-4. messageA() directly leads to nested 1.1 messageC(),
followed by nested messageD(), before message 2 is invoked

Figure 8-5. Messages 2a. messageB(), 2b. messageB(), and 2c.
messageC() are all invoked at the same time after 1. messageA() has

been invoked

8.1.2. Invoking a Message Multiple Times

When describing the messages on a communication diagram, you likely will want to show that a
message is invoked a number of times. This is similar to showing that your messages will be
invoked in a for(..) loop if you are mapping your communication diagram's participants to
software.

Although UML does not actually dictate how a communication diagram can show that a message is
invoked a number of times, it does state that an asterisk should be used before a looping constraint
is applied. This rather complicated statement means that the following example is a safe way to
specify that something is going to happen 10 times:

*[i = 0 .. 9]

In the above looping constraint, i represents a counter that will count up from 0 to 9, doing
whatever task is associated with it 10 times. Figure 8-6 shows how this looping constraint can be
applied to a message on a communication diagram.

8.1.3. Sending a Message Based on a Condition

Sometimes a message should be invoked only if a particular condition is evaluated to be true. For
example, your system might have a message that should be invoked only if the previous message
has executed correctly. Just as with sequence diagram fragments, communication diagram
messages can have guards set to describe the conditions that need to be evaluated before a
message is invoked.

Figure 8-6. The addition of a new looping constraint to 1. messageA()
means that the message will be invoked 10 times before the next set of

messages2a, 2b, and 2ccan be invoked

A guard condition is made up of a logical Boolean statement. When the guard condition evaluates
to true, the associated message will be invokedotherwise, the message is skipped.

Figure 8-7 shows how a guard condition can be applied to one of three concurrently executing
messages.

Figure 8-7. a. messageB() will be invoked only at the same time as 2b.
messageB() and messageC() if the expression condition == true is

evaluated as true; if condition == true returns false, then 2a. messageB(
) is not invoked, but message 2b. messageB() and 2c. messageC() are

8.1.4. When a Participant Sends a Message to Itself

A participant talking to itself may sound strange at first, but if you think in terms of a software
object making a call to one of its own methods, you might start to see why this form of
communication is needed (and even common). Just as on sequence diagrams, a participant on a
communication diagram can send a message to itself. All that is needed is a link from the
participant to itself to enable the message to be invoked, as shown in Figure 8-8.

Figure 8-8. The participant can invoke 1. messageA() on itself because it
has a communication line to itself

8.2. Fleshing out an Interaction with a Communication
Diagram

With the new communication diagram notation out of the way, it's now time to look at a practical
example. We're going to take one of the sequence diagrams from Chapter 7 and show how its
interactions can also be modeled on a communication diagram (see Figure 8-9).

Figure 8-9. This sequence diagram describes the interactions that take
place in a CMS when a new regular blog account is created

Don't be afraid to refer back to Chapter 7 to help you out with the notation shown on the sequence
diagram. Sequence diagrams contain a lot of unique notation, and mastering it all can take some
time! It isn't necessary to have a sequence diagram before you create a communication diagram.
You can create communication diagrams or sequence diagrams for your interactions in whatever
order you see fit.

The first step is to add the participants from Figure 8-9 to the communication diagram shown in

Figure 8-10.

Figure 8-10. The participants involved in an interaction are often the first
pieces added to a communication diagram

Next, the links between each of the participants are added so they can communicate with each
other, as shown in Figure 8-11.

It's now time to add the messages that are sent between participants during the lifetime of the
interaction, as shown on Figure 8-12. When adding messages to a communication diagram, it's
usually best to start with the participant or event that kicks off the interaction.

Figure 8-11. By looking at the sequence diagram in Figure 8-9, the links
required to support the message passing can be added to the

communication diagram

Figure 8-12. The Administrator actor starts things off by passing three
separate messages to the ui:AccountCreationUserInterface participant

Once the initial message or messages are added to the communication diagram, things start to get
more complicated. The 3. enterAuthorDetails() message triggers a nested creation message that
is sent from the ui : AccountCreationUserInterface participant to create a new authorDetails :
CustomerDetails participant. Nested messages get an additional decimal point based on the
triggering message's number, as shown in Figure 8-13.

Figure 8-13. When the <<create>> message is added to the
communication diagram, its message order number is set to 3.1. to show

that it is nested inside the 3. enterAuthorDetails() message

With that small hurdle out of the way, the rest of the messages can be added to the communication
diagram (see Figure 8-14).

Figure 8-14. The finished communication diagram shows the complete
set of messages within the Create a new Regular Blog Account

interaction according to those shown on the original sequence diagram
shown in Figure 8-9

8.3. Communication Diagrams Versus Sequence
Diagrams

Communication and sequence diagrams present such similar information that a comparison is
almost inevitable. Setting personal preferences aside, what are the best reasons for picking a
sequence diagram, a communication diagram, or even a combination of both to model a particular
interaction?

8.3.1. How the Fight Shapes Up

Figure 8-15 shows the two different representations of the same Create a new Regular Blog
Account interaction.

Figure 8-15. The Create a new Regular Blog Account interaction can be
modeled using a sequence diagram and a communication diagram

8.3.2. The Main Event

Beyond any arguments about personal preference, and using the interaction shown in Figure 8-15
as an example, Table 8-1 compares sequence diagrams and communication diagrams to help you

decide which diagram is most useful for your modeling purposes.

Table 8-1. Comparing sequence and communication diagrams

Feature Sequence diagrams
Communication
diagrams

The result

Shows
participants
effectively

Participants are mostly
arranged along the top
of page, unless the
drop-box participant
creation notation is
used. It is easy to
gather the participants
involved in a particular
interaction.

Participants as well as
links are the focus, so
they are shown clearly as
rectangles.

Communication
diagramsbarely win.
Although both types of
diagram can show
participants as effectively as
each other, it can be argued
that communication
diagrams have the edge
since participants are one of
their main focuses.

Showing the
links between
participants

Links are implied. If a
message is passed
from one participant to
another, then it is
implied that a link
must exist between
those participants.

Explicitly shows the links
between participants. In
fact, this is the primary
purpose of these types of
diagram.

Communication diagrams
win because they explicitly
and clearly show the links
between participants.

Showing
message
signatures

Message signatures
can be fully described.

Message signatures can
be fully described.

Draw! Both types of diagram
can show messages as
effectively as each other.

Supports
parallel
messages

With the introduction
of sequence fragments,
sequence diagrams are
much better.

Shown using the number-
letter notation on
message sequences.

Draw! Both types of diagram
show parallel messages
equally well.

Supports
asynchronous
messages (fire
and forget)

Achieved using the
asynchronous arrow.

Communication diagrams
have no concept of the
asynchronous message
since its focus is not on
message ordering.

Sequence diagrams are a
clear winner here because
they explicitly support
asynchronous messages.

Easy to read
message
ordering

This is a sequence
diagram's forté.
Sequence diagrams
clearly show message
ordering using the
vertical placement of
messages down the
diagram's page.

Shown using the number-
point-nested notation.

Sequence diagrams are a
clear winner here since they
really show off message
ordering clearly and
effectively.

Easy to create
and maintain
the diagram

Creating a sequence
diagram is fairly
simple. However,

Communication diagrams
are simple enough to
create; however,

This is a difficult one to
judge and is largely based on
personal preference.

Feature Sequence diagrams
Communication
diagrams

The result
the diagram simple. However,

maintaining sequence
diagrams can be a
nightmare unless a
helpful UML tool is
being used.

create; however,
maintenance, especially if
message numbering needs
to be changed, still ideally
needs the support of a
helpful UML tool.

personal preference.
However, communication
diagrams do have the edge
on the ease-of-maintenance
stakes.

OK, so the fight was a little biased and tongue-in-cheek in that the features assessed were already
clear discriminators between communication and sequence diagrams. Although the results shown in
Table 8-1 are not really surprising, it's worth stating once again that you should:

Use sequence diagrams if you are mainly interested in the flow of messages throughout a
particular interaction.

Use communication diagrams if you are focusing on the links between the different
participants involved in the interaction.

Perhaps the most important message to take away from this comparison is that although both
types of diagram convey similar information, communication diagrams and sequence diagrams
offer different benefits; therefore, the best approach, time willing, is to use both.

the diagram simple. However,
maintaining sequence
diagrams can be a
nightmare unless a
helpful UML tool is
being used.

create; however,
maintenance, especially if
message numbering needs
to be changed, still ideally
needs the support of a
helpful UML tool.

personal preference.
However, communication
diagrams do have the edge
on the ease-of-maintenance
stakes.

OK, so the fight was a little biased and tongue-in-cheek in that the features assessed were already
clear discriminators between communication and sequence diagrams. Although the results shown in
Table 8-1 are not really surprising, it's worth stating once again that you should:

Use sequence diagrams if you are mainly interested in the flow of messages throughout a
particular interaction.

Use communication diagrams if you are focusing on the links between the different
participants involved in the interaction.

Perhaps the most important message to take away from this comparison is that although both
types of diagram convey similar information, communication diagrams and sequence diagrams
offer different benefits; therefore, the best approach, time willing, is to use both.

8.4. What's Next?

You've seen sequence and communication diagrams, which are the two most commonly used types
of interaction diagrams. Timing diagrams are a more specialized interaction diagram focusing on
time constraints on interactions, which is particularly useful for expressing time constraints in real-
time systems. Timing diagrams are covered in Chapter 9.

Chapter 9. Focusing on Interaction Timing:
Timing Diagrams
Timing diagrams are, not surprisingly, all about timing. Whereas sequence diagrams (covered in
Chapter 7) focus on message order and communication diagrams (see Chapter 8) show the links
between participants, so far there has been no place on these interaction diagrams to model
detailed timing information. You may have an interaction that must take no longer than 10 seconds
to complete, or a message that should take no more than half the interaction's total time to return.
If this type of information is important to an interaction that you are modeling, then timing
diagrams are probably for you.

Interaction timing is most commonly associated with real-time or embedded systems, but it
certainly is not limited to these domains. In fact, the need to capture accurate timing information
about an interaction can be important regardless of the type of system being modeled.

In a timing diagram, each event has timing information associated with it that accurately describes
when the event is invoked, how long it takes for another participant to receive the event, and how
long the receiving participant is expected to be in a particular state. Although sequence diagrams
and communication diagrams are very similar, timing diagrams add completely new information
that is not easily expressed on any other form of UML interaction diagram. Not having a timing
diagram for an interaction is like saying, "I know what events need to occur, but I'm not really
worried about exactly when they happen or how quickly they will be worked on."

9.1. What Do Timing Diagrams Look Like?

Timing diagrams will look strangely familiar to anyone with a little experience of the analysis of
electronic circuit boards. This is because a timing diagram looks very similar to a plot that you'd
expect to see on a logic analyzer. Don't worry if you've never seen a logic analyzer before, though;
Figure 9-1 shows a typical display that you would expect to see on one of these devices.

Figure 9-1. All of the information on a logic analyzer is also shown on a
timing diagram in the form of messages, participants, and states

A logic analyzer captures a sequence of events as they occur on an electronic circuit board. A
readout from a logic analyzer (such as the one shown in Figure 9-1) will typically show the time at
which different parts of the circuit board are in particular states and the electronic signals that will
trigger changes in those states.

Timing diagrams perform a similar job for the participants within your system. On a timing
diagram, events are the logic analyzer's signals, and the states are the states that a participant is
placed in when an event is received. The similarities between a timing diagram and a logic analyzer
are apparent when you compare Figure 9-1 with Figure 9-2, which gives a sneak preview of how a
complete timing diagram looks. This example was taken from UML 2.0 in a Nutshell (O'Reilly).

Figure 9-2. Compare this simple yet complete timing diagram for a mail
server with the logic analyzer in Figure 9-1

9.2. Building a Timing Diagram from a Sequence Diagram

Let's assemble a timing diagram from scratch. We're going to work from the same example used in
the communication and sequence diagram chapters, the Create a new Regular Blog Account
interaction, shown in Figure 9-3.

Figure 9-3. A sequence diagram contains very little, if any, information
about timing, and its main focus is the order of events within an

interaction

9.2.1. Timing Constraints in System Requirements

The interaction shown in Figure 9-3 was originally the result of a requirement such as the one
described in Requirement A.2.

Requirement A.2

The content management system shall allow an administrator to create a new regular
blog account, provided the personal details of the author are verified using the Author
Credentials Database.

Now, let's extend the original requirement with some timing considerations so that we've got
something to add by modeling the interaction in a timing diagram.

Requirement A.2 (Updated)

The content management system shall allow an administrator to create a new regular
blog account within five seconds of the information being entered, provided the
personal details of the author are verified using the Author Credentials Database.

Requirement A.2 has been modified to include a timing constraint that dictates how long it should
take for the system to accept, verify, and create a new account. Now that there is more information
about the timing of Requirement A.2, there is enough justification to model the interaction that
implements the requirement using a timing diagram.

9.3. Applying Participants to a Timing Diagram

First, you need to create a timing diagram that incorporates all of the participants involved in the
Create a new Regular Blog Account interaction, as shown in Figure 9-4.

The full participant names have been left out of Figure 9-4 to keep the diagram's size manageable,
although you could equally have included the full <name>:<type> format for the title of a participant.

Another feature that is missing from Figure 9-4 is the participants that are created and destroyed
within the life of the interaction: the :AuthorDetails and :RegularBlogAccountparticipants. Details
of these participants have been left out because timing diagrams focus on timing in relation to state
changes. Apart from being created and/or destroyed, the :AuthorDetails and :RegularBlogAccount
participants do not have any complicated state changes; therefore, they are omitted because they
would not add anything of interest to this particular diagram.

During system modeling activities, you will need to decide what should and
should not be explicitly placed on a diagram. Ask yourself, "Is this detail
important to understanding what I am modeling?" and "Does including this
detail make anything clearer?" If the answer is yes to either of these
questions, then it's best to include the detail in your diagram; otherwise,
leave the additional detail out. This might sound like a fairly crude rule, but it
can be extremely effective when you are trying to keep a diagram's clutter to
a minimum.

Figure 9-4. The names of the main participants involved in an interaction
are written vertically on the lefthand side of a timing diagram

9.4. States

During an interaction, a participant can exist in any number of states. A participant is said to be in
a particular state when it receives an event (such as a message). The participant can then be said
to be in that state until another event occurs (such as the return of that message). See the "Events
and Messages" section later in this chapter for an explanation of how events and messages are
applied to timing diagrams.

States on a timing diagram are placed next to their corresponding participant, as shown in Figure
9-5.

Figure 9-5. States are written horizontally on a timing diagram and next
to the participant that they are associated with

9.5. Time

For a type of diagram that is actually called a "timing" diagram, it might seem a little strange that
we haven't yet mentioned time. So far, we've just been setting the stage, adding participants and
the states that they can be put in, but to really model the information that's important to a timing
diagram, it's now time to add time (pun intended).

9.5.1. Exact Time Measurements and Relative Time Indicators

Time on a timing diagram runs from left to right across the page, as shown in Figure 9-6.

Figure 9-6. Time measurements are placed on a timing diagram as a ruler
along the bottom of the page

Time measurements can be expressed in a number of different ways; you can have exact time
measurements , as shown in Figure 9-6, or relative time indicators , as shown in Figure 9-7.

Figure 9-7. Relative time indicators are particularly useful when you
have timing considerations such as "ParticipantA will be in State1 for

half of the time that ParticipantB is in State2"

In a timing diagram, t represents a point in time that is of interest. You don't know exactly when it
will happen because it may happen in response to a message or event, but t is a way to refer to
that moment without knowing exactly when it is. With t as a reference, you can then specify time
constraints relative to that point t.

Adding time to the diagram we've been putting together so far is tricky because we don't have any
concrete timing information in the original requirement. See the "Timing Constraints in System
Requirements" section earlier in this chapter if you need a quick reminder as to what the extended
Requirement A.2 states.

However, we still need to apply the constraints mentioned in Requirement A.2, so some measure of
relative time represented by t is shown in Figure 9-8.

Figure 9-8. The timing constraints are a blend of exact and relative
timings

In this figure, the initial stages of the interaction are simply measured as seconds, and the single t
value represents a single second wherever it is mentioned on any further timing constraints on the
diagram. See the "Timing Constraints" section later in this chapter for more on how the value t can
be used on a timing diagram.

9.6. A Participant's State-Line

Now that you have added time to the timing diagram (fancy that!), you can show what state a
participant is in at any given time. If you take a look back at Figure 9-6 and Figure 9-7, you can
already see how participant's current state is indicated: with a horizontal line that is called the
state-line.

At any given time in the interaction, a participant's state-line is aligned with one of the participant's
states (see Figure 9-9).

Figure 9-9. In this example, p1:Participant's state-line indicates that it is
in State1 for 1 unit of time, State2 for three units of time, and State3 for
roughly five units of time (before returning to State1 at the end of the

interaction)

Figure 9-10 shows how the Create a new Regular Blog Account timing diagram is updated to show
the state of each participant at a given time during the interaction.

In practice, you would probably add both events and states to a timing
diagram at the same time. We've split the two activities here simply because
it makes it easier for you to see how the two pieces of notation are applied
(without confusing one with the other).

That's all there is to showing that a participant is in a specific state at a given time. Now it's time to

look at why a participant changes states in the first place, which leads us neatly to events and
messages.

Figure 9-10. Each of the participants needs to have a corresponding
state-line to indicate their state at any given point in time

9.7. Events and Messages

Participants change state on a timing diagram in response to events. These events might be the
invocation of a message or they might be something else, such as a message returning after it has
been invoked. The distinction between messages and events is not as important on a timing
diagram as it is on sequence diagrams. The important thing to remember is that whatever the
event is, it is shown on a timing diagram to trigger a change in the state of a participant.

An event on a timing diagram is shown as an arrow from one participant's state-linethe event
sourceto another participant's state-linethe event receiver (as shown in Figure 9-11).

Figure 9-11. Events on a timing diagram can even have their own
durations, as shown by event1 taking 1 unit of time from invocation by

p1:Participant1 and reception by p2:Participant2

Adding events to the timing diagram is actually quite a simple task, because you have the sequence
diagram from Figure 9-3 to refer to. The sequence diagram already shows the messages that are
passed between participants, so you can simply add those messages to the timing diagram, as
shown in Figure 9-12.

9.8. Timing Constraints

Up until this point, you have really only been establishing the foundation of a timing diagram.
Participants, states, time, and events and messages are the backdrop against which you can start
to model the information that is really important to a timing diagramtiming constraints .

Timing constraints describe in detail how long a given portion of an interaction should take. They
are usually applied to the amount of time that a participant should be in a particular state or how
long an event should take to be invoked and received, as shown in Figure 9-13. By applying
constraints to this timing diagram, the duration of event1 must be less than one value of the
relative measure t, and p2:Participant2 should be in State4 for a maximum of five seconds.

Figure 9-12. Participant state changes make much more sense when you
can see the events that cause them

9.8.1. Timing Constraint Formats

A timing constraint can be specified in a number of different ways, depending on the information
your are trying to model. Table 9-1 shows some common examples of timing constraints.

Figure 9-13. Timing constraints can be associated with an event or a
state and may or may not be accompanied by constraint boundary

arrows

Table 9-1. Different ways of specifying a timing constraint

Timing
Constraint

Description

{t..t+5s} The duration of the event or state should be 5 seconds or less.

{<5s}
The duration of the event or state should be less than 5 seconds. This is a slightly
less formal than {t..t+5s}, but an equivalent notation.

{>5s, <10s}
The duration of the event or state should be greater than 5 seconds, but less
than 10 seconds.

{t}
The duration of the event or state should be equal to the value of t. This is a
relative measure, where t could be any value of time.

{t..t*5}
The duration of the event or state should be the value of t multiplied 5 times.
This is another relative measure (t could be any value of time).

9.8.2. Applying Timing Constraints to States and Events

At the beginning of this chapter, we extended Requirement A.2 to specify some timing
considerations. Requirement A.2's timing considerations can now be added to the timing diagram

as timing constraints. Figure 9-14 completes the Create a new Regular Blog Account timing
diagram, capturing Requirement A.2's timing considerations by applying constraints to the relevant
states.

As you can see from Figure 9-14, applying the 5 seconds per new regular blog account creation
timing constraint is not a straightforward job since it affects several different nested interactions
between participants. This is where the skill of the modeler comes into play on a timing diagram;
you need to decide which events or states need to be allocated portions of the available five
seconds so each participant can do its job (and get those allocations right).

Figure 9-14. From when the :Administrator clicks on submit until the
point at which the system has created a new account, no more than five

seconds have passed

9.9. Organizing Participants on a Timing Diagram

Where you arrange participants on a timing diagram does not at first appear to be very important.
However, as you add more details to your diagram in the form of events and timing information,
you'll soon discover that the place where a participant is located on the timing diagram can cause
problems if you haven't thought about it carefully enough (see Figure 9-15).

Figure 9-15. The bottom diagram is harder to read, and details are
beginning to obscure one another

If you're lucky and you already have a sequence diagram for an interaction, then there is an easy
rule of thumb to get you started when arranging participants for the first time on a timing diagram.
Simply take the order of the participants as they appear across the top of the page on a sequence
diagram and flip the list of participant names 90 degrees counterclockwise, as shown in Figure 9-
16. If your sequence diagram is well-organized, then you should now have a good candidate order
for placing the participants on your timing diagram.

Figure 9-16. Rotating a sequence diagram's major participant's 90
degrees counterclockwise is an easy way to get an initial placement for

your timing diagram's participants

9.10. An Alternate Notation

Real estate on a UML diagram is almost always at a premium. In previous versions of UML,
sequence diagrams were known as being the hardest diagram to manage when modeling a
complex interaction. Although timing diagrams are not going to steal the sequence diagram's
crown in this respect, the regular timing diagram notation shown in this chapter so far doesn't scale
particularly well when you need to model a large number of different states.

Some of the problems with sequence diagrams have been alleviated with the
inclusion of sequence fragments in UML 2.0; see Chapter 7.

The Create a new Regular Blog Account interaction's timing diagram, as shown in Figure 9-14, is
actually a fairly simple example. However, you might already be beginning to grasp how large a
timing diagram can getat least verticallyfor anything more than a trivial interaction that includes a
small number of states. A good UML 2.0 tool will help you work with and manage large timing
diagrams, but there is only so much a tool can really do.

The developers of UML 2.0 realized this problem and created an alternative, simpler notation for
when you have an interaction that contains a large number of states, shown in Figure 9-17.

When you look closely at the alternative timing diagram notation, things are not dramatically
different from the regular notation. The notation for participants and time hasn't changed at all.
The big change between the regular timing diagram notation and the alternative is in how states
and state changes are shown.

The regular timing diagram notation shows states as a list next to the relevant participant. A state-
line is then needed to show what state a participant is in at a given time. Unfortunately, if a
participant has many different states, then the amount of space needed to model a participant on
the timing diagram will grow quickly.

The alternative notation fixes this problem by removing the vertical list of different states. It places
a participant's states directly at the point in time when the participant is in that state. Therefore,
the state-line is no longer needed, and all of the states for a particular participant can be placed in
a single line across the diagram.

To show that a participant changes state because of an event, a cross is placed between the two
states and the event that caused the state change is written next to the cross. Timing constraints
can then be applied in much the same way as regular notations.

Bringing the subject of timing diagrams to a close, Figure 9-18 shows the alternate timing diagram
notation in a practical setting: modeling the Create a new Regular Blog Account interaction.

Figure 9-17. The top diagram's notation should be familiar to you, but
the diagram at the bottom uses the new alternative timing diagram

notation

A Second Notation for Timing Diagrams

So, why have a second notation for timing diagrams? Luckily, there is an easy answer
to this question: the regular timing diagram notation simply does not scale well when
you have many participants that can be put in many different states during an
interaction's lifetime. Just as the answer is quite simple, so is the rule of thumb you can
use to help you decide which notation to adopt for a particular interaction. If a
participant is placed in many different states during the course of the interaction, then
it is worth considering using the alternative notation. Otherwise, use the regular
notation since, at this point of writing, it is more widely recognized throughout the
modeling community.

Figure 9-18. Even though there are not many states in this interaction,
you can begin to see how the alternate notation is more compact and

manageable in a situation where there are many states per participant

9.11. What's Next?

The concept of an object's state is integral to timing diagrams since they show states of an object
at particular times. State machine diagrams show in detail the states of an object and triggers that
cause state changes. Both diagram types are very important to models of real-time and embedded
systems. State machine diagrams are covered in Chapter 14.

Chapter 10. Completing the Interaction
Picture: Interaction Overview Diagrams
Ever been asked to "look at the bigger picture"? Whether you are working on a new idea or
modeling in UML, sometimes it helps to take a step back from the details to get a better feel for
what you are doing and the context within which you are doing it. This is the job of interaction
overview diagrams; they exist to give you that big picture perspective on your system's
interactions.

Interaction overview diagrams provide a high-level view of how several interactions work together
to implement a system concern, such as a use case. Sequence, communication, and timing
diagrams focus on specific details concerning the messages that make up an interaction, but
interaction overview diagrams tie together the different interactions into a single complete picture
of the interactions that make up a particular system concern.

An interaction overview looks very much like an activity diagram (see Chapter 3) except that each
of the actions are interactions within their own right. Think of each part of an interaction overview
as a complete interaction in itself. If one interaction within the overview is most concerned with
timing, then a timing diagram could be employed (see Chapter 9), while another interaction of the
overview may need to focus on message ordering, and so a sequence diagram could be used (see
Chapter 7). The interaction overview glues together separate interactions within your system in the
notation that makes most sense to the particular interaction to show how they work together to
implement a system concern.

10.1. The Parts of an Interaction Overview Diagram

The best way to understand a interaction overview diagram notation is to think of it as an activity
diagram, except instead of an action, a complete interaction is described by using its own diagram,
as shown in Figure 10-1.

Any number of participants may be involved in the interactions that occur within the overview. To
see which participants are involved across the entire overview, a lifelines subtitle is added to the
diagram title, as shown in Figure 10-2.

Figure 10-1. Individual interactions are placed on an interaction
overview diagram as though they were actions on an activity diagram

Figure 10-2. The lifelines subtitle shows the combined list of participants
involved in the interactions within the overview

Similar to an activity diagram, the interaction overview begins with an initial node and ends with a
final node. Control flows between these two nodes and passes through each of the interactions in
between. However, you are limited not to just a simple sequential flow between the interactions.

Just as control flow on an activity diagram can be subjected to decisions, parallel actions, and even
loops, so can the control flow on an interaction diagram, as shown in Figure 10-3.

10.2. Modeling a Use Case Using an Interaction Overview

That's all the new notation for interaction diagrams; now it's time to look at a practical example. To
set the stage, we are going to develop an interaction overview diagram from scratch for the Create
a New Regular Blog use case reusing parts from the interaction diagrams created in the previous
chapters.

The big difference between the example in this chapter and the modeling in previous chapters is
that with an interaction overview, we can pick and choose from the different interaction diagram
types. By using an interaction overview approach, each part of the interaction is modeled using the
techniques that are most effective for that part.

10.2.1. Pulling Together the Interactions

First, we need to decide how the interaction overview will be broken down into the most effective
diagrams for each of the individual interactions, as shown in Figure 10-4.

When modeling the Select Blog Account Type, Create Regular Blog Account, and Tidy Up Author
Details interactions, message order is more important than any other factor. The relevant steps
can be reused from the sequence diagrams modeled in Chapter 7, as shown in Figure 10-5.

For variety's sake, the Enter Author Details will be displayed as a communication diagram, as
shown in Figure 10-6.

You could decide to represent the Enter Author Details interaction as a communication diagram
simply because it is easier to understand, but there is so much similarity between sequence and
communication diagrams that mixing the two on one interaction overview is not often seen;
modelers tend to prefer one type of diagram or the other.

The Check Author Details interaction must enforce the timing constraint that its messages will all
be executed within five seconds (see Chapter 9). The focus is on timing for this part of the overview
and thanks to the fact that an interaction overview can contain any of the different types of
interaction diagram, a timing diagram can be employed for the Check Author Details interaction,
as shown in Figure 10-7.

Figure 10-3. Starting with the initial node, the control flow executes
Interaction1, followed by Interactions 2 and 3 in parallel; Interaction4
will execute only if the condition is assessed as being true; otherwise,

Interaction5 is executed 10 times in a loop before the control flow
merges and the final node is reached

Figure 10-4. All three types of interaction diagram are used in this
overviewsd indicates a sequence diagram, cd is for a communication

diagram, and, not surprisingly, td stands for a timing diagram

An interaction overview diagram can offer an ideal place to use the alternative
timing diagram notation, as shown in Figure 10-7. Since interaction overviews
can get pretty big, the alternative notation often works best since it makes
good use of the space available.

Figure 10-5. Some interactions to are best modeled using sequence
diagrams to focus on message ordering

Figure 10-6. Enter Author Details in a communication diagram

Figure 10-7. Adding a timing diagram to show critical timing constraints
for one interaction within the overview

Now that all the interactions have been added to the interaction overview, all of the participants
involved are known so we can add their names to the diagram's title, as shown in Figure 10-8.

Figure 10-8. Adding each of the participants involved in an interaction to
the lifeline list in the interaction overview's title bar

10.2.2. Gluing the Interactions Together

The final piece of the puzzle in the Create a New Regular Blog Account interaction overview is the
actual flow of control between each of the separate interaction diagrams, as shown in Figure 10-9.

The control flow in Figure 10-9 shows that each of the separate interactions are executed in order.
The one deviation from the normal path occurs at the Create Regular Blog Account interaction,
shown as a sequence diagram, which is executed only if the author details checked out during the
Check Author Details interaction.

10.3. What's Next?

Interaction overview diagrams glue together combinations of sequence diagrams, communication
diagrams, and timing diagrams, showing the higher-level picture. At this point, you're done
considering interaction diagrams, but you may want to back up and review any of the interaction
diagram chapters if you weren't clear when to use which diagram type. Sequence diagrams were
covered in Chapter 7; communication diagrams were described in Chapter 8; timing diagrams were
covered in Chapter 9.

Figure 10-9. Starting with an initial node and finishing with a final node,
the flow of control is the thread that ties each of the interactions

together

Chapter 11. Modeling a Class's Internal
Structure: Composite Structures
Sometimes the primary UML diagrams, such as class and sequence diagrams, aren't a perfect
match for capturing certain details about your system. Composite structures help fill some of those
gaps. Composite structures show how objects create a big picture. They model how objects work
together inside a class, or how objects achieve a goal. Composite structures are fairly advanced,
but they're good to have in your bag of tricks because they are perfectly suited for specific
modeling situations, such as showing:

Internal structures

Show the parts contained by a class and the relationships between the parts; this allows you
to show context-sensitive relationships, or relationships that hold in the context of a
containing class

Ports

Show how a class is used on your system with ports

Collaborations

Show design patterns in your software and, more generally, objects cooperating to achieve a
goal

Composite structures provide a view of your system's parts and form part of the logical view of
your system's model, as shown in Figure 11-1.

11.1. Internal Structure

Chapter 5 introduced possession-related relationships between classes, including association ("has
a") and composition ("contains a"). Composite structures offer an alternate way of showing these
relationships; when you show the internal structure of a class, you draw the items it possesses
directly inside the class. Relationships between items in a class's internal structure hold only in the
context of the class, so you can think of them as context-sensitive relationships. To see why
internal structures are useful, let's look at a relationship that a class diagram can't model.

Figure 11-1. The logical view captures the abstract descriptions of a
system's parts, including composite structures

11.1.1. When Class Diagrams Won't Work

Figure 11-2 repeats a class diagram from Chapter 5, showing that BlogEntry contains objects of
type Introduction and MainBody tHRough composition.

Figure 11-2. Class diagram showing that BlogEntry contains Introduction
and MainBody

Suppose you want to update your diagrams to reflect that a blog entry's introduction has a
reference to its main body because it's convenient for other objects to ask an Introduction object
for the MainBody object it introduces. As a first pass, you modify the class diagram in Figure 11-2 by
drawing an association between the Introduction and the MainBody classes, as shown in Figure 11-
3.

But there's a problem. Figure 11-3 specifies that an object of type Introduction will have a
reference to an object of type MainBody, but it can be any MainBody objectnot just the one owned by
the same instance of BlogEntry. That's because the association between Introduction and MainBody
is defined for all instances of those types. Informally, Introduction doesn't concern itself with the
composition relationship between BlogEntry and MainBody; as far as an Introduction object is
concerned, all it has to do is associate with some MainBody object (but it doesn't care which one).

Because Figure 11-3 doesn't specify which Introduction and MainBody objects should be
associated, the object diagram in Figure 11-4 conforms to the class diagram in Figure 11-3.

Figure 11-3. This first pass at showing that a blog entry's introduction
introduces its main body doesn't quite work

Figure 11-4. Unintended but valid object structure

According to the class diagram in Figure 11-3, it's perfectly legal for an introduction in one blog
entry to introduce the main body of another. But what you meant to say is that the introduction
introduces the main body that is contained by the same class that contains the introduction, as
shown in Figure 11-5.

Figure 11-5. This was the intended object structure

It turns out that class diagrams are not good at expressing how items contained in a class relate to
each other. This is where internal structure comes in: it allows you to specify relationships in the
context of the class that contains them.

Right now, you may be thinking that this distinction is a bit fussy. If you're writing the code to
implement these classes, you can make sure that the correct objects are linked up. You could also
use a UML sequence diagram to show the objects' creation and how they get connected. But keep
readingthe internal structure notation is a convenient and simple way to show relationships
between contained items, especially when the contained items have complex relationships.

This is just one example of how composite structures can model relationships
that are hard to show in class diagrams. For a more thorough discussion, see
http://www.jot.fm/issues/issue_2004_11/column5.

11.1.2. Parts of a Class

http://www.jot.fm/issues/issue_2004_11/column5

Figure 11-6 shows the internal structure of BlogEntry. Its contained items are now drawn directly
inside, instead of connected through filled diamond arrowheads.

Figure 11-6. The internal structure of the BlogEntry class

When showing the internal structure of a class, you draw its parts, or items contained by
composition, inside the containing class. Parts are specified by the role they play in the containing
class, written as <roleName> : <type>. In Figure 11-6, the part of type Introduction has the role

blogIntro and the part of type MainBody has the role blogMain. The multiplicity, or number of
instances of that part, is written in the upper righthand corner of the part.

Figure 11-7 shows the internal structure diagram side by side with the class diagram from Figure
11-2, allowing you to see how the class names, roles, and multiplicities correspond.

"Part"as in the parts contained by BlogEntrysounds straightforward, but it's a subtle concept. A
part is a set of instances that may exist in an instance of the containing class at runtime. If that's
confusing, it may help to consider the example shown in Figure 11-8, in which the part with role
pic has multiplicity of zero to three in the internal structure of BlogEntry.

Figure 11-7. How the internal structure of BlogEntry matches up to the
class diagram

Figure 11-8. In the internal structure of BlogEntry, the part with role pic
has a multiplicity of zero to three

In this case, if you run across an instance of BlogEntry at runtime, it will have anywhere from zero
to three instances of type Image. It may contain one Image object, it may contain three Image
objects, and so on, but with parts, you don't have to worry about such details. A part is a general
way to describe these contained objects by the role they play, without specifying exactly which
objects are present.

Because parts represent the objects that are owned by a single instance of the containing class, you
can specify relationships between those specific parts and not arbitrary instances of the class types.
This means you can specify that an introduction introduces the main body in the same blog entry it
belongs toin other words, the introduction doesn't introduce an arbitrary main bodyand you do this
with connectors.

11.1.3. Connectors

You show relationships between parts by drawing a connector between the parts with the
multiplicities specified at each end of the connector, as shown in Figure 11-9.

Figure 11-9. Using connectors to link parts in the internal structure of a
class

The notation for multiplicities on connectors is the same as multiplicities on
associations, discussed in Chapter 4.

A connector is a link that enables communication between parts. A connector simply means that
runtime instances of the parts can communicate. A connector can be a runtime instance of an
association or a dynamic link established at runtime, such as an instance passed in as a parameter.

A connector applies only to the parts it's connected toin Figure 11-9, that means only the set of
instances that will exist in an instance of BlogEntry. You can now be certain that an introduction
introduces the main body in the same blog entry as the introduction.

11.1.4. Alternate Multiplicity Notations

Figure 11-4 showed the multiplicity by using a number in the upper right hand corner. You can also
show multiplicity in brackets after the name and type, as shown in Figure 11-10.

Figure 11-10. Equivalent notations for multiplicity

11.1.5. Properties

In addition to showing parts, which are contained by composition, you can also show properties,
which are referenced through association and therefore may be shared with other classes in the
system.

Properties are drawn with a dashed outline, unlike parts, which are drawn with a solid outline.
Figure 11-11 shows a class diagram in which Frame has an association with File, and then shows
what File looks like as a property in the internal structure of Frame. Figure 11-11 models a merge
tool GUI that displays the two files to compare in one panel and the merged file in another panel.

Figure 11-11. Parts and properties in the internal structure of a class

The notation for properties and parts is identical except for the dashed versus solid rectangle
outlines: you specify roles, types, and multiplicity the same way. As with parts, properties can be
connected to other properties or parts using connectors.

11.1.6. Showing Complex Relationships Between Contained Items

Showing a class's internal structure is especially useful when its contained items relate to each
other in unusual ways. Revisiting the merge tool example in Figure 11-11, suppose you want to
explicitly model one panel displaying the two files being compared and the other panel displaying
the merged file. You can do this by defining more detailed roles for files and panels to show how
they relate to each other within a frame, as shown in Figure 11-12.

Figure 11-2 demonstrates that there can be parts (or properties) of the same type playing different
roles. Internal structures help make these roles and their relationships explicit.

11.1.7. Internal Structure Instances

Just as you can model instances of classes (introduced in Chapter 6), you can also show instances
of classes possessing internal structure. This is essentially an object diagram for classes with
internal structure. As in Chapter 6, this lets you show important examples of the objects that exist
in your system at runtime.

Figure 11-12. A more detailed internal structure diagram that specifies
how files and panels relate to each other within a frame

If you're showing an instance of a class with internal structure, then you also show its parts and
properties as instances. Specify instances of the parts and properties by writing the name followed
by a slash, then the usual role and type, e.g., {<name>} / <role> : <type>. Since these are

instances, however, they are now underlined. Figure 11-13 shows an example runtime instance of
the internal structure diagram shown in Figure 11-12.

Figure 11-13. An instance of Frame with instances of its contained parts

As with object diagrams, showing instances of classes with internal structure allows you to show
example configurations in your runtime system.

11.2. Showing How a Class Is Used

The internal structure of a class focuses on the contents of a class; ports focus on the outside of a
class, showing how a class is used by other classes.

A port is a point of interaction between a class and the outside world. It represents a distinct way of
using a class, usually by different types of clients. For example, a Wiki class could have two distinct
uses:

Allowing users to view and edit the Wiki

Providing maintenance utilities to administrators who want to perform actions such as rolling
back the Wiki if incorrect content is provided

Each distinct use of a class is represented with a port, drawn as a small rectangle on the boundary
of the class, as shown in Figure 11-14. Write a name next to the port to show the purpose of the
port.

Figure 11-14. A class with two ports showing that the class provides
UserServices and Maintenance capabilities

It's common for classes to have interfaces associated with ports. You can use ports to group related
interfaces to show the services available at that port.

Recall from Chapter 5 that a class can realize an interface, and this relationship can be shown using
the ball interface symbol. When a class realizes an interface, the interface is called a provided
interface of the class. A provided interface can be used by other classes to access the class through
the interface.

Similarly, classes can have required interfaces. A required interface is an interface that the class
requires to function. More precisely, the class needs another class or component that realizes that

interface so it can do its job. A required interface is shown with an open lollipop, or the socket
symbol.

Provided and required interfaces are used to promote loose coupling of
classes and components. They are particularly important to components and
so are discussed in more detail in component diagrams (see Chapter 12).

Suppose the Wiki class above implements the interfaces Updateable and Viewable, allowing other
classes to update and view the Wiki through these interfaces. These interfaces are associated with
the User Services port, so you can draw them extending out from the User Services port, as
shown in Figure 11-15.

Figure 11-15. Ports can be used to group "like" interfaces

Figure 11-15 shows that the Maintenance port has a provided interface called Rollback, allowing
administrators to roll back the Wiki. It additionally has a required interface called VersionControl,
which is a service the Wiki uses for version control.

11.3. Showing Patterns with Collaborations

Collaborations show objects working together, perhaps temporarily, to get something done. This
may sound like object diagrams (see Chapter 6), but collaborations have a different focus:
describing objects by the role they play in a scenario and providing a high-level textual description
of what the objects are doing.

Collaborations are a good way to document design patterns , which are solutions to common
problems in software design. Even if you've never heard of them, you've probably used some
patterns without knowing it. Observer and Observable in the Java API are an implementation of the
Observer design patterna way for an object to receive notification that another object changed.

For more on design patterns and how they can improve your software design,
check out Design Patterns: Elements of Reusable Object Oriented Software
(Addison Wesley), or Head First Design Patterns (O'Reilly).

Let's consider a problem in the CMS design that can be solved with a design pattern, which we'll
then model using collaborations. Suppose the CMS requires a content approval process: the author
submits content, the reviewer may reject the content or pass it on to the editor, and the editor may
reject or accept the content. You decide to implement this flow with the Chain of Responsibility
(COR) design pattern. The COR design pattern allows an object to send a request without worrying
about which object will ultimately handle the request. In the COR pattern, the client submits the
request, and each handler in the chain decides whether to handle the request or to pass the request
on to the next handler. In the content approval process, the author will play the role of client, while
the reviewer and editor will each play the role of handler. The sequence diagram in Figure 11-16
illustrates this flow. Refer back to Chapter 7 for a refresher on sequence diagrams.

Figure 11-16. Sequence diagram showing how the COR pattern is used in
the content approval process

There are two ways to model this pattern using collaborations. The first way uses a large dashed-
lined oval with the collaboration participants drawn inside the oval. You name a participant by the
role it plays in the collaboration and its class or interface type, written as <role> : <type>. The

participants are linked together using connectors to show how they communicate. The name of the
collaboration is written inside the oval above a dashed line. Figure 11-17 shows a Chain of
Responsibility collaboration using the first notation. In this COR collaboration, the participant of
type Author has the role client, and the other participants have the role handler.

Figure 11-17. Collaboration showing the COR pattern in the content
approval process

You can think of participants in a collaboration as placeholders for objects because at runtime,
objects will fill those places (or play the roles). Connectors are temporary links; connectors mean
that the runtime objects communicate during the collaboration, but the objects don't have to
communicate outside the collaboration.

The second way to draw a collaboration is shown in Figure 11-18. In this notation, you show the
class (or interface) rectangles of the participants, connecting each to a small collaboration oval.
Write the participants' roles along the lines. This notation is useful for showing details of the class

or interface, such as its operations.

Figure 11-18. Alternate representation of the COR design pattern

Collaborations may not look particularly useful, but their strength is in their ability to express
patterns that may not be obvious from other diagrams, such as class or sequence diagrams.
Without collaborations, you'd have to come up with your own technique to describe what's going
on, such as the attached notes in Figure 11-16.

Because collaborations are only temporary relationships, they have some interesting runtime
properties that are best described with an everyday example of a collaboration. Suppose a
company has monthly training sessions in which the topic changes every session, and in every
session the resident expert on the topic performs the training. This is modeled as a TRaining
collaboration that has participants with roles trainer and trainee, as shown in Figure 11-19.

Figure 11-19. This Training collaboration shows that the objects
participating in a collaboration at runtime can interact with different

collaborations in different ways

Now let's turn to some objects that may play these roles at runtime. Ben is the XML expert, so
during the XML training collaboration, Ben has the role of trainer, and his co-worker Paul has the
role of trainee. However, Paul is the Java expert, so during the Java training collaboration, Paul has
the role of trainer and Ben has the role of trainee. This training example illustrates the following
points:

An object isn't bound to its role in a collaboration; it can play different roles in different
collaborations. Employee Ben and employee Paul remain the same objects; they're just playing
different roles in different training collaborations.

The objects in a collaboration aren't owned by the collaboration; they may exist before
and after. Ben and Paul have a life outside of training.

Even though objects in a collaboration are linked, they don't necessarily communicate
outside the collaboration. Ben and Paul may not talk to each other unless they absolutely have
to during the training sessions.

The training collaboration also demonstrates that you can use collaborations
to describe any type of object interaction that can be nicely summarized using
a short phrasenot just design patterns.

This is a specialized UML notation because the oval simply draws attention to the existence of a
pattern, describing it in brief, high-level terms. But collaborations are valuable for exactly that
reason. Design patterns are about building a common vocabulary among developers for solving
everyday problems, and collaborations help communicate that vocabulary. Collaborations don't
show detailed interactions such as messages being passed between objects as sequence and
communication diagrams do, but that can be a benefit when it comes to concisely expressing a
well-known pattern.

11.4. What's Next?

The concepts of ports and internal structure of a class, which are introduced in composite
structures, are heavily reused for components in component diagrams. Component diagrams allow
you to show the key components (or reusable parts) in your system. Components are typically
major players in your architecture, using other classes to achieve their behavior, which is why
internal structure is so important to components. Ports are often used to show the primary ways to
use a component. Component diagrams are covered in Chapter 12.

Chapter 12. Managing and Reusing Your
System's Parts: Component Diagrams
When designing a software system, it's rare to jump directly from requirements to defining the
classes in your system. With all but the most trivial systems, it's helpful to plan out the high-level
pieces of your system to establish the architecture and manage complexity and dependencies
among the parts. Components are used to organize a system into manageable, reusable, and
swappable pieces of software.

UML component diagrams model the components in your system and as such form part of the
development view , as shown in Figure 12-1. The development view describes how your system's
parts are organized into modules and components and is great at helping you manage layers within
your system's architecture.

Figure 12-1. The Development View of your model describes how your
system's parts are organized into modules and components

12.1. What Is a Component?

A component is an encapsulated, reusable, and replaceable part of your software. You can think of
components as building blocks: you combine them to fit together (possibly building successively
larger components) to form your software. Because of this, components can range in size from
relatively small, about the size of a class, up to a large subsystem.

Good candidates for components are items that perform a key functionality and will be used
frequently throughout your system. Software, such as loggers, XML parsers, or online shopping
carts, are components you may already be using. These happen to be examples of common third-
party components, but the same principles apply to components you create yourself.

In your own system, you might create a component that provides services or access to data. For
example, in a CMS you could have a conversion management component that converts blogs to
different formats, such as RSS feeds. RSS feeds are commonly used to provide XML-formatted
updates to online content (such as blogs).

In UML, a component can do the same things a class can do: generalize and associate with other
classes and components, implement interfaces, have operations, and so on. Furthermore, as with
composite structures (see Chapter 11), they can have ports and show internal structure. The main
difference between a class and a component is that a component generally has bigger
responsibilities than a class. For example, you might create a user information class that contains a
user's contact information (her name and email address) and a user management component that
allows user accounts to be created and checked for authenticity. Furthermore, it's common for a
component to contain and use other classes or components to do its job.

Since components are major players in your software design, it's important that they are loosely
coupled so that changes to a component do not affect the rest of your system. To promote loose
coupling and encapsulation, components are accessed through interfaces. Recall from Chapter 5
that interfaces separate a behavior from its implementation. By allowing components to access
each other through interfaces, you can reduce the chance that a change in one component will
cause a ripple of breaks throughout your system. Refer back to Chapter 5 for a review of interfaces.

12.2. A Basic Component in UML

A component is drawn as a rectangle with the <<component>> stereotype and an optional tabbed
rectangle icon in the upper righthand corner. Figure 12-2 shows a ConversionManagement
component used in the CMS that converts blogs to different formats and provides feeds such as
RSS feeds.

Figure 12-2. The basic component symbol showing a
ConversionManagement component

In earlier versions of UML, the component symbol was a larger version of the tabbed rectangle
icon, so don't be surprised if your UML tool still shows that symbol.

You can show that a component is actually a subsystem of a very large system by replacing
<<component>> with <<subsystem>>, as shown in Figure 12-3. A subsystem is a secondary or
subordinate system that's part of a larger system. UML considers a subsystem a special kind of
component and is flexible about how you use this stereotype, but it's best to reserve it for the
largest pieces in your overall system, such as a legacy system that provides data or a workflow
engine in the CMS.

Figure 12-3. You can substitute the <<subsystem>> stereotype to show
the largest pieces of your system

12.3. Provided and Required Interfaces of a Component

Components need to be loosely coupled so that they can be changed without forcing changes on
other parts of the systemthis is where interfaces come in. Components interact with each other
through provided and required interfaces to control dependencies between components and to
make components swappable.

A provided interface of a component is an interface that the component realizes. Other components
and classes interact with a component through its provided interfaces . A component's provided
interface describes the services provided by the component.

A required interface of a component is an interface that the component needs to function. More
precisely, the component needs another class or component that realizes that interface to function.
But to stick with the goal of loose coupling, it accesses the class or component through the required
interface. A required interface declares the services a component will need.

There are three standard ways to show provided and required interfaces in UML: ball and socket
symbols, stereotype notation, and text listings.

12.3.1. Ball and Socket Notation for Interfaces

You can show a provided interface of a component using the ball symbol introduced in Chapter 5. A
required interface is shown using the counterpart of the ballthe socket symboldrawn as a semicircle
extending from a line. Write the name of the interface near the symbols.

Figure 12-4 shows that the ConversionManagement component provides the FeedProvider and
DisplayConverter interfaces and requires the DataSource interface.

The ball and socket notation is the most common way to show a component's interfaces, compared
with the following techniques.

Figure 12-4. The ball and socket notation for showing a component's
provided and required interfaces

12.3.2. Stereotype Notation for Interfaces

You can also show a component's required and provided interfaces by drawing the interfaces with
the stereotyped class notation (introduced in Chapter 5). If a component realizes an interface, draw
a realization arrow from the component to the interface. If a component requires an interface, draw
a dependency arrow from the component to the interface, as shown in Figure 12-5.

Figure 12-5. The stereotyped class notation, showing operations of the
required and provided interfaces

This notation is helpful if you want to show the operations of interfaces. If not, it's best to use the
ball and socket notation, since it shows the same information more compactly.

12.3.3. Listing Component Interfaces

The most compact way of showing required and provided interfaces is to list them inside the
component. Provided and required interfaces are listed separately, as shown in Figure 12-6.

Figure 12-6. Listing required and provided interfaces within the

component is the most compact representation

This notation additionally has an <<artifacts>> section listing the artifacts, or physical files,
manifesting this component. Since artifacts are concerned with how your system is deployed, they
are discussed in deployment diagrams (see Chapter 15). Listing the artifacts within the component
is an alternative to the techniques shown in Chapter 15 for showing that artifacts manifest
components.

Deciding when to use which notation for required and provided interfaces depends on what you're
trying to communicate. This question can be answered more fully when examining components
working together.

12.4. Showing Components Working Together

If a component has a required interface, then it needs another class or component in the system to
provide it. To show that a component with a required interface depends on another component that
provides it, draw a dependency arrow from the dependent component's socket symbol to the
providing component's ball symbol, as shown in Figure 12-7.

Figure 12-7. The ConversionManagement component requires the
DataSource interface, and the BlogDataSource component provides that

interface

As a presentation option for Figure 12-7, your UML tool may let you get away with snapping the
ball and socket together (omitting the dependency arrow), as shown in Figure 12-8. This is actually
the assembly connector notation, which is introduced later in this chapter.

Figure 12-8. Presentation option that snaps the ball and socket together

You can also omit the interface and draw the dependency relationship directly between the
components, as shown in Figure 12-9.

Figure 12-9. You can draw dependency arrows directly between
components to show a higher level view

The second notation (omitting the interface, shown in Figure 12-9) is simpler than the first
(including the interface, shown in Figure 12-7), so you may be tempted to use that as a shorthand,
but keep in mind a few factors when choosing how to draw component dependencies.

Remember that interfaces help components stay loosely coupled, so they are an important factor in
your component architecture. Showing the key components in your system and their
interconnections through interfaces is a great way to describe the architecture of your system, and
this is what the first notation is good at, as shown in Figure 12-10.

Figure 12-10. Focusing on the key components and interfaces in your
system

The second notation is good at showing simplified higher level views of component dependencies.
This can be useful for understanding a system's configuration management or deployment concerns
because emphasizing component dependencies and listing the manifesting artifacts allows you to
clearly see which components and related files are required during deployment, as shown in Figure
12-11.

Figure 12-11. Focusing on component dependencies and the manifesting
artifacts is useful when you are trying control the configuration or

deployment of your system

12.5. Classes That Realize a Component

A component often contains and uses other classes to implement its functionality. Such classes are
said to realize a componentthey help the component do its job.

You can show realizing classes by drawing them (and their relationships) inside the component.
Figure 12-12 shows that the BlogDataSource component contains the Blog and EnTRy classes. It also
shows the aggregation relationship between the two classes.

You can also show a component's realizing classes by drawing them outside the component with a
dependency arrow from the realizing class to the component, as shown in Figure 12-13.

Figure 12-12. The Blog and Entry classes realize the BlogDataSource
component

Figure 12-13. Alternate view, showing the realizing classes outside with
the dependency relationship

The final way to show realizing classes is to list them in a <<realizations>> compartment inside
the component, as shown in Figure 12-14.

Figure 12-14. You can also list the realizing classes inside the component

How do you decide which notation to use to show the classes that realize a component? You may be
limited by your UML tool, but if you have the choice, many modelers prefer the first notation
(drawing the realizing classes inside) rather than drawing them outside since drawing them inside
visually emphasizes that the classes make up a component to achieve its functionality. Listing the
realizing classes may be helpful if you want something compact, but keep in mind that it can't show
relationships between the realizing classes, whereas the first two notations can.

12.6. Ports and Internal Structure

Chapter 11 introduced ports and internal structure of a class. Components can also have ports and
internal structure.You can use ports to model distinct ways that a component can be used with
related interfaces attached to the port. In Figure 12-15, the ConversionManagement component has
a Formatting and a Data port, each with their associated interfaces.

Figure 12-15. Ports show unique uses of a component and group "like"
interfaces

You can show the internal structure of a component to model its parts, properties, and connectors
(see Chapter 11 for a review of internal structure). Figure 12-16 shows the internal structure of a
BlogDataSource component.

Figure 12-16. Showing the internal structure of a component

Components have their own unique constructs when showing ports and internal structurecalled
delegation connectors and assembly connectors. These are used to show how a component's
interfaces match up with its internal parts and how the internal parts work together.

12.6.1. Delegation Connectors

A component's provided interface can be realized by one of its internal parts. Similarly, a
component's required interface can be required by one of its parts. In these cases, you can use
delegation connectors to show that internal parts realize or use the component's interfaces.

Delegation connectors are drawn with arrows pointing in the "direction of traffic," connecting the
port attached to the interface with the internal part. If the part realizes a provided interface, then
the arrow points from the port to the internal part.

If the part uses a required interface, then the arrow points from the internal part to the port. Figure
12-17 shows the use of delegation connectors to connect interfaces with internal parts.

Figure 12-17. Delegation connectors show how interfaces correspond to
internal parts: the Blog class realizes the DataSource interface and the

Entry class requires the Logger interface

You can think of the delegation connectors as follows: the port represents an opening into a
component through which communications pass, and delegation connectors point in the direction of
communication. So, a delegation connector pointing from a port to an internal part represents
messages being passed to the part that will handle it.

If you're showing the interfaces of the internal parts, you can connect delegation connectors to the
interface instead of directly to the part. This is commonly used when showing a component that
contains other components. Figure 12-19 demonstrates this notation. The ConversionManagement
component has a Controller and a BlogParser component. The ConversionManagement component
provides the FeedProvider interface, but this is actually realized internally by the Controller part.

12.6.2. Assembly Connectors

Assembly connectors show that a component requires an interface that another component
provides. Assembly connectors snap together the ball and socket symbols that represent required
and provided interfaces.

Figure 12-19 shows the assembly connector notation connecting the Controller component to the
BlogParser component.

Figure 12-18. Delegation connectors can also connect interfaces of
internal parts with ports

Figure 12-19. Assembly connectors show components working together
through interfaces

Assembly connectors are special kinds of connectors that are defined for use when showing
composite structure of components. Notice that Controller and BlogParser use the

roleName:className notation introduced in composite structures and help form the internal
structure of ConversionManagement. But assembly connectors are also sometimes used as a
presentation option for component dependency through interfaces in general, as shown earlier in
Figure 12-8.

12.7. Black-Box and White-Box Component Views

There are two views of components in UML: a black-boxview and a white-box view. The black-box
view shows how a component looks from the outside, including its required interfaces, its provided
interfaces, and how it relates to other components. A black-box view specifies nothing about the
internal implementation of a component. The white-box view, on the other hand, shows which
classes, interfaces, and other components help a component achieve its functionality.

In this chapter, you've seen both black-box and white-box views. So, what's the difference in
practical terms? A white-box view is one that shows parts inside a component, whereas a black-box
view doesn't, as shown in Figure 12-20.

Figure 12-20. Black-box component views are useful for showing the big
picture of the components in your system, whereas white-box views

focus on the inner workings of a component

When modeling your system, it's best to use black-box views to focus on large-scale architectural
concerns. Black-box views are good at showing the key components in your system and how
they're connected. White-box views, on the other hand, are useful for showing how a component
achieves its functionality through the classes it uses.

Black-box views usually contain more than one component, whereas in a white-box view, it's
common to focus on the contents of one component.

12.8. What's Next?

Now that you know how to model the components in your system, you may want to look at how
your components are deployed to hardware in deployment diagrams. Deployment diagrams are
covered in Chapter 15.

There is heavy overlap between certain topics in component diagrams and composite structures.
The ability to have ports and internal structure is defined for classes in composite structures.
Components inherit this capability and introduce some of their own features, such as delegation
and assembly connectors. Refer back to Chapter 11 to refresh your memory about a class's internal
structure and ports.

Chapter 13. Organizing Your Model:
Packages
As a software program grows in complexity, it can easily contain hundreds of classes. If you're a
programmer working with such a class library, how do you make sense of it? One way to impose
structure is by organizing your classes into logically related groups. Classes concerned with an
application's user interface can belong to one group, and utility classes can belong to another.

In UML, groups of classes are modeled with packages . Most object-oriented languages have an
analog of UML packages to organize and avoid name collision among classes. For example, Java
has packages, C# has namespaces (although Java packages, and C# namespaces differ
significantly in other details). You can use UML packages to model these structures.

Package diagrams are often used to view dependencies among packages. Since a package can
break if another package on which it depends changes, understanding dependencies between
packages is vital to the stability of your software.

Packages can organize almost any UML elementnot just classes. For example, packages are also
commonly used to group use cases. Package diagrams form part of the development view, which is
concerned with how your system's parts are organized into modules and packages, as shown in
Figure 13-1.

Figure 13-1. The Development View describes how your system's parts
are organized into modules, which are represented as packages in UML

Chapter 13. Organizing Your Model:
Packages
As a software program grows in complexity, it can easily contain hundreds of classes. If you're a
programmer working with such a class library, how do you make sense of it? One way to impose
structure is by organizing your classes into logically related groups. Classes concerned with an
application's user interface can belong to one group, and utility classes can belong to another.

In UML, groups of classes are modeled with packages . Most object-oriented languages have an
analog of UML packages to organize and avoid name collision among classes. For example, Java
has packages, C# has namespaces (although Java packages, and C# namespaces differ
significantly in other details). You can use UML packages to model these structures.

Package diagrams are often used to view dependencies among packages. Since a package can
break if another package on which it depends changes, understanding dependencies between
packages is vital to the stability of your software.

Packages can organize almost any UML elementnot just classes. For example, packages are also
commonly used to group use cases. Package diagrams form part of the development view, which is
concerned with how your system's parts are organized into modules and packages, as shown in
Figure 13-1.

Figure 13-1. The Development View describes how your system's parts
are organized into modules, which are represented as packages in UML

Getting Started

Your UML tool probably doesn't have a diagram called a package diagram. Packages
are grouping structures that are used to organize almost any UML element, but their
most common use is to organize classes in class diagrams. Most of the examples in this
chapter focus on applications of packages to classes, so create a new class diagram to
work along with these examples.

13.1. Packages

Suppose that during the design of a CMS, you decide to keep classes related to security (for
example, performing user authentication) grouped together. Figure 13-2 shows the security
package and a few other packages from the CMS in UML. The symbol for a package is a folder with
a tab. The name of the package is written inside the folder.

Figure 13-2. Packages in a CMS; each package corresponds to a specific
system concern

13.1.1. Contents of a Package

Packages organize UML elements, such as classes, and the contents of a package can be drawn
inside the package or outside the package attached by a line, as shown in Figure 13-3. If you draw
the elements inside the package, write the name of the package in the folder tab.

The notation shown in Figure 13-3 is used to model Java classes belonging to a Java package. In
Java, the package keyword at the beginning of a class specifies that a class is in a package.
Example 13-1 shows a Java code sample corresponding to the Credentials class in Figure 13-3.

Figure 13-3. Two ways to show that the Credentials and IdentityVerifier
classes are contained in the security package

Example 13-1. The Credentials class is located in the security package in
this Java implementation

package security;

public class Credentials {
 ...
}

Packages can also contain other packages, as shown in Figure 13-4.

Figure 13-4. A package that contains another package

It's common to see deeply nested packages in enterprise applications. Java applications typically
use the URL-in-reverse package naming convention (omitting the www part of the URL). For
example, the ACME company with the URL http://www.acme.com would put all its packages under
the acme package, which is under com, as shown in Figure 13-5.

Figure 13-5. Deeply nested packages are common in enterprise
applications: the search and indexing packages are shown in a typical

package structure for the ACME company

http://www.acme.com

Even at this point, these packages consume a lot of space, and if you want to show classes inside
the indexing package, each package containing it would have to expand in size accordingly. Luckily,
there's an alternate notation that can be easier to work with. You can "flatten" nested packages to
write them as packageA::packageB::packageC, and so on. This converts Figure 13-5 into the less
cluttered Figure 13-6.

Figure 13-6. Flattening nested packages

13.1.2. UML Tool Variation

Currently, a small amount of UML tools don't support the notations shown in Figure 13-3. However,
almost all tools can show that a class belongs to a package using one of the notations shown in
Figure 13-7. The notation to the far right is the standard UML namespace notation, discussed next
in "Namespaces and Classes Referring to Each Other."

Figure 13-7. Common ways UML tools show that a class belongs to a
package

To specify the package that a class belongs to, most UML tools allow you to enter the package
name in a class specification dialog or manually drag the class into the package it belongs to in a
tree display of the model elements.

13.2. Namespaces and Classes Referring to Each Other

Breaking up your classes into packages introduces some bookkeeping. If you're a Java
programmer, you may have encountered a related issue before. To use an ArrayList in a Java
program, you have to specify that ArrayList is located in the java.util package. That is because
Java packages define their own namespaces, or naming contexts. If an item is not in the current
namespace, you have to specify where it is located.

Similarly, a UML package establishes a namespace. So, if an element in a package wants to use an
element in a different package, it has to specify where the desired element is. To specify the
context of a UML element, you provide the fully-scoped name, which includes the package name
and the element name separated by double colons, as in packageName::className. The fully-scoped
name for the class Credentials belonging to the package security is security::Credentials. If
you have two classes with the same name in different packages, using the fully-scoped name allows
you to distinguish between them.

Elements in a namespace must have unique names. This means the security package cannot have
two classes named Credentials, but there can be two classes called Credentials belonging to
separate packages, for example security and utils. As discussed previously in "UML Tool
Variation," your UML tool may display the classes in Figure 13-8 differently.

Figure 13-8. Representing a class with its fully-scoped name: both the
security and utils packages have a class named Credentials

Why does this matter? To specify that a class has a relationship with another class, you may have
to specify a namespace.

Classes in the same package are part of the same namespace, so they can refer to each other
without using fully-scoped names. Since they are in the same package, IdentityVerifier can have
an attribute of type Credentials and not have to specify the package (see Figure 13-9).

Figure 13-9. Classes in different packages have to provide name scope

On the other hand, a class outside the security package, such as User, would have to provide a
scope when accessing Credentials, which it can do by using the fully-scoped
namesecurity::Credentials. Later, in "Importing and Accessing Packages," you'll see that there
are other ways to provide scope when accessing a class in a different package.

In Java, a fully-scoped name corresponds to specifying the Java package,
e.g., security.Credentials instead of just Credentials.

In UML, elements in a nested package can refer to elements in the containing package without
scoping the name, which in Figure 13-10 means that an element in indexing could refer to an
element in search without using the fully-scoped name.

Figure 13-10. In UML, a nested package implies namespace
"inheritance," which doesn't apply in some implementation languages

The implication that elements in nested packages have automatic access to elements in containing
packages doesn't match with some implementation languages. For example, in Java, if a class in
the indexing package uses a class in the search package, it has to provide a scope either by using
its fully-qualified name or by importing the search package. Despite the fact that UML semantics of
nested packages differ from Java packages, you could still use Figure 13-10 to model a package
search.indexing in a Java system.

13.3. Element Visibility

Elements in a package may have public or private visibility . Elements with public visibility are
accessible outside the package. Elements with private visibility are available only to other elements
inside the package. You can model public or private visibility in UML by writing a plus or minus
symbol in front of the element's name, as shown in Figure 13-11.

Figure 13-11. Since MD5Crypt has private visibility, it isn't accessible
outside the security package

In Java, public and private visibility corresponds to a class being public or private to a Java
package. A Java class is marked as public to a package by the public access modifier, as in:

public class Credentials {}

If the public keyword is absent, then the class is private to the package. Many UML tools don't offer
the plus and minus symbols to show element visibility, so don't be surprised if yours doesn't.

13.4. Package Dependency

The previous sections showed that sometimes a class in one package needs to use a class in
another package. This causes a dependency between packages : if an element in package A uses an
element in package B, then package A depends on package B, as shown in Figure 13-12.

Figure 13-12. Package A depends on package B

Packages in Your Software

Now that you've seen the basics of package diagrams, it's a good time to consider why
you'd want to use packages in your software.

If you're creating a very small program (consisting of only a few classes), you might
not bother organizing your classes into packages. As your program gets bigger and you
add developers to the project, packages introduce structure and let you know who's
working on what.

Code related to the graphical user interface (GUI) can belong to a gui package, code
related to search capabilities can belong to a search package, and common utilities can
belong to a util package. This makes it easier to find classes when looking through a
complex API. For example, to locate a GUI dialog, you would know to look in the gui
package.

Often, programmers work roughly undisturbed in their own or their group's package.
Those working in gui generally don't change the search package and vice versa.
Everyone may use common packages, such as the util package, but such commonly
used packages are expected to be fairly stable since changes could affect
everyone.Beyond organizing elements, packages can serve other useful functions. They
can be used for access control: you can declare elements private to a package to
prevent it from being used by other packages.

Packages can assist with organizing classes as deployment modules. For example, if

you wanted to include search capability in some systems but not others, you could
choose to include or exclude the search package in the build.

Understanding the dependencies among your packages is useful for analyzing the stability of your
software, as discussed in "Managing Package Dependencies." In fact, the most common use of UML
package diagrams is to give an overview of the core packages in your software and the
dependencies among them, as shown in Figure 13-13.

Figure 13-13. A typical package diagram featuring core packages and
dependencies

"Managing Package Dependencies," later in this chapter, revisits package dependency diagrams,
showing you how to use them to understand and improve the stability of your software.

13.5. Importing and Accessing Packages

When a package imports another package, elements in the importing package can use elements in
the imported package without having to use their fully scoped names. This feature is similar to a
Java import, in which a class can import a package and use its contents without having to provide
their package names.

In an import relationship, the imported package is referred to as the target package . To show the
import relation, draw a dependency arrow from the importing package to the target package with
the stereotype import (see Figure 13-14).

Figure 13-14. The package users imports security, so classes in users
may use public classes in security without having to specify the package

name

A package can also import a specific element in another package instead of the whole package, as
shown in Figure 13-15.

Figure 13-15. The users package imports only the Credentials element
from the security package

When importing a package, only public elements of the target package are available in the
importing namespace. For example, in Figure 13-16, elements in users can see Credentials and

IdentityVerifier but not MD5Crypt.

Figure 13-16. Private visibility causes a class not to be seen even though
its package is imported

Not only do elements have visibilitythe import relation itself has visibility. An import can be a public
import or private import with public as the default. A public import means imported elements have
public visibility inside the importing namespace; a private import means imported elements have
private visibility inside the importing namespace. You show a private import with the stereotype
access instead of import.

The difference between import and access arises when a package imports a package that imports
or accesses others. Imported elements have public visibility in the importing package, so they get
passed on with further imports, whereas accessed elements do not.

In Figure 13-17, package B imports C and accesses D, so B can see public elements in C and D. A
imports B, so A can see public elements in B. A can also see public elements in C because C is publicly
imported into B, but A cannot see anything in D because D is privately imported into B.

Figure 13-17. Package A can see public elements in C but not D

Import and access relationships can be used to model the programming world concepts of
importing of classes into another namespace so that elements in the importing namespace may
refer to elements in the target namespace without scoping the name. For example, the package
relationships in Figure 13-14 could be used to model the Java code example in Example 13-2.

Example 13-2. Because the User class imports the security package, it
can refer to the Credentials class without using the fully qualified name
security

package users;

// importing all public elements in the security package
import security.*;

class User {
 Credentials credentials;
 ...
}

The element import in Figure 13-15 corresponds to the Java implementation shown in Example 13-
3.

Example 13-3. Only the Credentials class is imported from the security
package

package users;

// importing only the Credentials class
import security.Credentials;

class User {
 Credentials credentials;

 ...
}

Many modelers don't bother with specifying the import and access relationships, and instead show
generic package dependencies, discussed earlier in "Package Dependency."

13.6. Managing Package Dependencies

Having complicated dependencies among packages can lead to brittle software since changes in
one package can cause its dependent packages to break. Figure 13-18 shows a dependency
disaster: a change in any one package could ultimately affect every other package.

Figure 13-18. Directly or indirectly, a change in any one package could
affect every other package

Robert C. Martin's Agile Software Development (Prentice Hall) establishes principles and metrics
regarding dependencies between packages and deployment modules. A couple of these, such as
avoiding cyclical package dependencies and depending in the "direction of stability," can be
investigated by looking at package diagrams.

If you have cycles in your dependencies, you can break the cycles in different ways. You could
factor out a new package that both packages can depend on or you could decide that all the classes
really belong together anyway, as shown in Figure 13-19.

Figure 13-19. Removing cycles in package dependencies

Depending in the order of stability means that a package should depend only on packages more
stable than itself. An unstable package depends on many other packages; a stable package
depends on few packages. Studying package diagrams can help you spot potentially vulnerable
designs resulting from the core packages of your system (such as those containing interfaces)
depending on unstable packages.

13.7. Using Packages to Organize Use Cases

Just as packages group classes of similar functionality, packages also group other UML elements
such as use cases. Figure 13-20 shows some use case packages from a CMS.

Rolling up use cases into higher levels of your system can help organize your model, allowing you
to see which actors interact with which portions of the system, as shown in Figure 13-21.

Figure 13-20. Packaging major use case groups within a CMS

Figure 13-21. Packages enable a higher level view of how actors interact
with the system

13.8. What's Next?

Packages are used to group UML elements such as classes and use cases. You may want to review
those chapters for more detail about showing the contents of a package. Class diagrams are
covered in Chapter 4; use case diagrams are covered in Chapter 2.

One of the most important applications of package diagrams is to view dependencies in your
system. Other important high-level system diagrams include component diagrams, which show the
key software pieces, and deployment diagrams, which show how the pieces get deployed to
hardware. Component diagrams are described in Chapter 12; deployment diagrams are covered in
Chapter 15.

Chapter 14. Modeling an Object's State:
State Machine Diagrams
Activity diagrams and interaction diagrams are useful for describing behavior, but there's still a
missing piece. Sometimes the state of an object or system is an important factor in its behavior.
For example, if the CMS required potential users to submit an application for an account, which
could be approved or rejected, then the AccountApplication object may act differently depending
on whether it is pending, accepted, or rejected.

In such situations, it's helpful to model states of an object and the events causing state changesthis
is what state machine diagrams do best. Continuing the above example, the AccountApplication
object could have the states pending, accepted, and rejected as possible values of an attribute,
and change states upon events such as approve or reject. A state machine diagram allows you to
model this behavior.

State machine diagrams are heavily used in special niches of software and hardware systems,
including the following:

Real-time/mission-critical systems, such as heart monitoring software

Dedicated devices whose behavior is defined in terms of state, such as ATMs

First-person shooter games, such as Doom or Half-Life

To reflect these common uses, this chapter will deviate from the CMS example used throughout the
rest of this book.

Most of this chapter focuses on behavioral state machines , which can show states, transitions, and
behavior (inside states and along transitions). There's another type of state machine called a
protocol state machine that doesn't model behavior but is useful for modeling protocols such as
network communication protocols. Protocol state machines are discussed briefly at the end of the
chapter.

State machine diagrams are part of the logical model of your system, as shown in Figure 14-1.

Figure 14-1. The Logical View describes the abstract descriptions of a
system's parts, including when and how those parts can be in different

states using state machine diagrams

State machine diagrams are often referred to informally as state diagrams. You may also have seen
them referred to as a statechart diagrams in the past, since this diagram has undergone many
name changes.

14.1. Essentials

Let's look at the key elements of state diagrams using a simple example. Figure 14-2 shows a state
diagram modeling a light. When you lift the light switch, the light turns on. When you lower the
light switch, the light turns off.

Figure 14-2. The fundamental elements of a state diagram: states and
transitions between states

A state diagram consists of states, drawn as rounded rectangles, and transitions, drawn as arrows
connecting the states. A transition represents a change of state, or how to get from one state to the
next. A state is active when entered through a transition, and it becomes inactive when exited
through a transition.

The event causing the state change, or trigger, is written along the transition arrow. The light in
Figure 14-2 has two states: Off and On. It changes state when the lift switch or lower switch
triggers occur.

If you haven't seen state diagrams before, it may help to view the states and transitions in table
form, as shown in Table 14-1. In the left column are the states, and along the top row are triggers.
The table is interpreted as follows: when the object is in a state and receives a trigger, the object
moves to the resulting state specified in the cell. A dash (-) means that no transition happens or
that the combination is impossible. Viewing states and transitions in table form can be helpful when
getting up-to-speed, but don't depend on this too heavily; details of states and transitions can be
more complex, and it will become easier to work with state diagrams.

Table 14-1. Table view of light states and transitionsnot UML notation

State/Trigger Light switch lifted Light switch lowered

Off On -

On - Off

State diagrams usually have an initial pseudostate and a final state, marking the start and end
points of the state machine, respectively. An initial pseudostate is drawn with a filled circle, and a
final state is drawn with two concentric circles with a filled inner circle, as shown in Figure 14-3.

Figure 14-3. Initial pseudostate and final states in an AccountApplication
state diagram

Pseudostates are special markers that direct the flow of traffic in a state diagram. As mentioned
above, an initial pseudostate models the starting point of a state diagram. There are other
pseudostates discussed later in "Advanced Pseudostates" that model complex transitions between
states.

Now that you've seen the basic elements of state diagrams, let's look in detail at these elements.

14.2. States

A state is a condition of being at a certain time. A state can be a passive quality, such as On and Off
for the light object. A state can also be an active quality, or something that an object is doing. For
example, a coffeemaker has the state Brewing during which it is brewing coffee. A state is drawn as
a rounded rectangle with the name of the state in the center, as shown in Figure 14-4.

Figure 14-4. A rectangle with rounded corners and the name in the
center is the most common way to draw a state

If the state is a "doing" state, you can write the behavior inside the state, as shown in Figure 14-5.

Figure 14-5. Showing the behavior details of a "doing" state

Do behavior, written as do/behavior, is behavior that happens as long as the state is active. For

example, the coffeemaker in Figure 14-5 does the behavior brew coffee while in the Brewing state.
Similarly, a CD player could have the behavior do/read disc while in the Playing state. Do behavior
either completes on its own or is forced to complete when a trigger causes the state to exit, as
discussed in "Transitions." Later in this chapter, you'll see additional ways to show details of a
state, including entry and exit behavior, reactions to events within a state, and states within states.

14.3. Transitions

A transition, shown with an arrow, represents a change of states from a source state to a target
state . A transition description, written along the arrow, describes the circumstances causing the
state change to occur.

The previous state diagrams in this chapter had fairly simple transition descriptions because they
consisted only of triggers. For example, the light in Figure 14-2 changed state in response to the
triggers lift switch and lower switch. But transition descriptions can be more complex. The full
notation for transition descriptions is trigger[guard] / behavior, where each element is optional,

as shown in Figure 14-6. This section defines each of these elements, and then in "Transition
Variations" we'll show how these elements interact to model different types of state changes.

Figure 14-6. This input processing state diagram models features a
trigger, guard, and transition behavior along one of its transitions

A trigger is an event that may cause a transition. In a system that processes user input, a
keystroke trigger may cause the system to change states from Gathering input to Processing
input.

In addition to triggers , transitions can also be prompted by the completion of
internal behavior, as discussed later in this chapter.

A guard is a Boolean condition that permits or blocks the transition. When a guard is present, the
transition is taken if the guard evaluates to true, but the transition is blocked if the guard is false.
Continuing the user input example, after a keystroke trigger occurs, a guard can be used to block a
transition if the input is less than the required length. Guards are commonly used to model a
transition being blocked or a choice between transitions, as discussed next in "Transition
Variations."

Transition behavior is an uninterruptible activity that executes while the transition takes place (if
the transition is taken). For example, transition behavior could include submitting the user's input

for processing while changing states from Gathering input to Processing input.

Figure 14-6 shows all three elements of a transitiontrigger, guard, and transition behavior. When a
keystroke occurs and the input is the required length, the transition from Gathering input to
Processing input is taken. While the transition occurs, the transition behavior submit input is
invoked. Figure 14-6 also shows that a state can transition to itself; this is known as a self-
transition .

14.3.1. Transition Variations

Figure 14-7 shows a state diagram for a CD player. Its transition descriptions feature an
assortment of triggers, guards, and transition behavior. Let's break this diagram apart to see how
combinations of guards and triggers can be used to model different types of state changes.

Figure 14-7. CD player state diagram, featuring a variety of transition
descriptions

If a trigger is specified but no guard is, then the transition is taken when the trigger occurs. This is
useful for modeling a state change in response to an event. In Figure 14-8, the CD player moves
from the Playing state to Stopped when press stop occurs.

Figure 14-8. The most common type of transition features only a trigger

If a trigger and a guard are specified, then the transition is taken when the trigger occurs if the

guard evaluates to true. Otherwise, the transition isn't taken. Combining a trigger and a guard is
useful for modeling that a transition can be blocked depending on a condition. You can also use
guards to model a choice between transitions, as you'll see later.

In Figure 14-9, the CD player moves from the Stopped state to Playing when press play occurs,
but only if a disc is in the tray.

Figure 14-9. A guard will block a transition if it evaluates to false

If neither a trigger nor a guard are specified, then the transition is taken immediately after the
source state's internal behavior (if any) is complete. This is useful for modeling a transition caused
by completion of internal behavior. Figure 14-10 shows a triggerless, guardless transition leading
from Playing to Stopped, which means that the CD player moves to the Stopped state as soon as it
finishes reading the disc. (This transition is not seen in the full CD player state diagram in Figure
14-7, but is included to explain triggerless transitions, shown in Figure 14-11.)

Figure 14-10. In this example, a transition is caused by the completion of
internal behavior

Figure 14-11. Using guards to model a choice between paths

Figure 14-9 showed the use of guards to block a transition. You can also use guards to show a
choice between transitions: the transition whose guard evaluates to true is taken. In Figure 14-11,
after the CD player is done reading the disc, it will either move to the Stopped state if there are no
more discs or transition back to the Playing state if there are more discs. Notice that if there are
more discs, the transition includes transition behaviorchanging the disc.

As a presentation option for choices, you can use a choice pseudostate, discussed later in

"Advanced Pseudostates."

14.4. States in Software

If you're a software developer, you're probably wondering when you'll ever need to model the
operation of a CD player or coffeemaker. In software, state diagrams model an object's life cycle, or
the states it goes through during its lifespan. Figure 14-12 shows the life cycle of an
AccountApplication object as it passes from pending to approved or rejected and then to
finalizing.

Figure 14-12. The life cycle of an AccountApplication object

State diagrams are useful for modeling an object that behaves differently depending on its state.
Considering an AccountApplication object, calling the complete() method when the object is in
the pending state wouldn't make sense if the finalizing state performs wrap-up behavior, such as
creating the blog account if approvedit would first have to know whether the application was
approved. State diagrams are an effective way to make this information explicit.

If an object has a simple life cycle, then it's not worth modeling its life cycle with a state diagram.
For example, a ContactInformation object that stores an Author's contact information and doesn't
change states other than being created and destroyed probably doesn't warrant a state diagram.

If you're wondering what an object's states would look like in codethe
AccountApplication class could have a status attribute and the states shown
in Figure 14-12 could be possible values of status. transitions occur when
methods on the AccountApplication object are invoked. See Chapter 4 for a
review of how an object's state is captured in its attributes.

State diagram are also heavily used in certain software niches, such as first-person shooter (FPS)
games. In FPS games, state machines are used to model game character states. For example, a
game character, such as a troll, could have the states Neutral, Attack, Panic, and Die, as shown in
Figure 14-13. When the troll is in the Attack state, he is performing behavior, such as unsheathing

his sword or charging his opponent (that's you). Triggers causing a state change include seeing an
opponent or receiving a blow from the opponent.

Figure 14-13. State diagram modeling a troll in a FPS game; the troll's
behavior is determined by his state

14.5. Advanced State Behavior

You've seen the most common ways to model states. This section shows how to model additional
details of a state, including entry behavior, exit behavior, and reactions to events while in a state.

Figure 14-14 shows the detailed notation for a state: a large rounded rectangle with separate
compartments for internal behavior and internal transitions.

14.5.1. Internal Behavior

Internal behavior is any behavior that happens while the object is in a state. You've already seen do
behavior, which is behavior that is ongoing while the state is active. Internal behavior is a more
general concept that also includes entry and exit behavior.

Figure 14-14. Internal behavior and transitions of the Attack state

Internal behavior is written as label / behavior. The label indicates when the behavior executesin

other words, events or circumstances causing the behavior. There are three special labels: entry,
exit, and do.

Entry behavior happens as soon as the state becomes active and is written as entry/behavior. Exit
behavior happens immediately before the state becomes inactive and is written as exit/behavior.

In Figure 14-15, unsheath sword is entry behavior and sheath sword is exit behavior. Unlike do
behavior, entry and exit behaviors can't be interrupted.

Figure 14-15. The middle compartment shows internal behavior

14.5.2. Internal Transitions

An internal transition is a transition that causes a reaction within a state, but doesn't cause the
object to change states. An internal transition is different from a self transition (see Figure 14-11)
because self transitions cause entry and exit behavior to occur whereas internal transitions don't.

Internal transitions are written as trigger [guard] / behavior, and they are listed inside a state.

In Figure 14-16, the Attack has an internal transition: when an opponent swings his weapon and is
less than three feet away, the troll dodges.

Figure 14-16. The bottom compartment shows internal transitions

Use internal transitions to model reactions to events that don't cause state changes. For example,
you could use internal transitions to show that a pause-and-serve coffee-maker suspends
dispensing the coffee when you remove the coffee pot but doesn't leave the Brewing state, as
shown in Figure 14-17.

Figure 14-17. An internal transition models a reaction while staying in
the same state

14.6. Composite States

A key difference between UML state diagrams and other non-UML state diagrams you may be
familiar with is that UML allows concurrent states, or being in multiple states at the same time.
Composite states are what makes this possible.

Suppose the troll in the Neutral state is doing two things at the same time: Searching and Pacing.
You can model two simultaneous states by using a composite state, as shown in Figure 14-18.

Figure 14-18. Composite states contain one or more state diagrams; if
they contain more than one state diagram, then the state diagrams

execute in parallel

A composite state is a state that contains one or more state diagrams. Each diagram belongs to a
region, and regions are divided by a dotted line. A state in a region is referred to as a substate of
the composite state.

Composite states work as follows: when the composite state becomes active, the initial pseudostate
of each region becomes active, and the contained state diagrams begin executing. The contained
state diagrams are interrupted if a trigger on the composite state occurs. In Figure 14-18, the
substates will be halted when a trigger on the composite statesee opponentoccurs.

If substates have behavior that can run to completion, then the composite state is complete when
every region's state diagram is complete.

14.7. Advanced Pseudostates

You've already seen initial pseudostates, which mark the start of a state diagram. There are
additional pseudostates that are useful for directing the flow of traffic between states.

A choice pseudostate is used to emphasize that a Boolean condition determines which transition is
followed. A choice has guards on each of its outgoing transitions, and the transition that is followed
depends on the guard. In Figure 14-19, the CD player will go back to the Playing state if another
disc is available or will go to the Stopped state if there are no more discs. Notice that this is an
alternate, and cleaner, way to model the transition choice in Figure 14-11.

Figure 14-19. The path followed after a choice depends on the guard

At least one of the guards following a choice must evaluate to true for your
model to be well-formed. If more than one guard following a choice evaluates
to true, then one of them is selected arbitrarily. If this situation doesn't make
sense for your model, then it's a sign that you need to redefine your guards so
that exactly one guard at a time evaluates to true.

Fork and join pseudostates show branching into concurrent states and then rejoining. For example,
in Figure 14-20, the fork breaks the incoming transition into two transitions, allowing Searching
and Pacing to happen simultaneously. The join then merges its two incoming transitions into one
outgoing transition.

Figure 14-20 is an alternate way to model Figure 14-18. In Figure 14-18, forking and joining are
implied by showing the initial pseudostates and final states.

Figure 14-20. Forks and joins show concurrent states

14.8. Signals

You can use special icons for transitions to draw attention to transitions and transition behavior.
This is called a transition-oriented view.

In this view, a trigger is represented with a receive signal icon and transition behavior is
represented with a send signal icon. Figure 14-21 shows how Figure 14-6 can be drawn in this
alternate notation. It additionally uses the choice pseudostate introduced previously in "Advanced
Pseudostates."

Figure 14-21. The bottom diagram draws transitions and transition
behavior as receive and send signals

The main purpose of this notation is to visually emphasize sending and receiving signals. Although
both diagrams say the same thing, the version with the signal icons focuses on the transitions and,
in this case, makes the diagram more readable.

14.9. Protocol State Machines

Protocol state machines are a special kind of state machine focusing on how a protocol, such as a
communication protocol (e.g., TCP), works. The main difference between protocol state machines
and behavioral state machines, which we've focused on previously, is that protocol state machines
don't show behavior along transitions or inside states. Instead, they focus on showing a legal
sequence of events and resulting states. Protocol state machines are drawn in a tabbed rectangle
with the name of the state machine in the tab followed by {protocol}, as shown in Figure 14-22.

Figure 14-22. Protocol state machine modeling the receiver side of a
simplified communication protocol called My Communication Protocol

(MCP)

Because protocol state machines don't show behavior, you can't model what the system is doing in
responsefor example, if it's sending acknowledgements back. But it can be useful for showing how
to work with an object or system, such as specifying a communication protocol or an expected call
sequence for an object's operations.

14.10. What's Next?

State diagrams show the states of an object and triggers causing a change of state. If you're
interested in modeling object state changes in the context of a workflow, see activity diagrams,
covered in Chapter 3.

If you want to show timing associated with state changes, then it's also worth checking out timing
diagrams, covered in Chapter 9.

Chapter 15. Modeling Your Deployed
System: Deployment Diagrams
If you've been applying the UML techniques shown in earlier chapters of this book, then you've seen
all but one view of your system. That missing piece is the physical view. The physical view is
concerned with the physical elements of your system, such as executable software files and the
hardware they run on.

UML deployment diagrams show the physical view of your system, bringing your software into the
real world by showing how software gets assigned to hardware and how the pieces communicate
(see Figure 15-1).

Figure 15-1. Deployment diagrams focus on the Physical View of your
system

The word system can mean different things to different people; in the context
of deployment diagrams, it means the software you create and the hardware
and software that allow your software to run.

15.1. Deploying a Simple System

Let's start by showing a deployment diagram of a very simple system. In this simplest of cases,
your software will be delivered as a single executable file that will reside on one computer.

To show computer hardware, you use a node, as shown in Figure 15-2.

Figure 15-2. Use nodes to represent hardware in your system

This system contains a single piece of hardwarea Desktop PC. It's labeled with the stereotype
<<device>> to specify that this is a hardware node.

One More Time...Model Levels

It must be about time to bring up modeling at the right level again. In Figure 15-2, the
hardware node is specified as a Desktop PC. It's entirely up to you how much detail you
want to give node names. You could be very precise with a name such as "64-bit
Processor Intel Workstation," or very general with a name such as "Generic PC."

If you have specific hardware requirements for your system, you're likely to give your
nodes very precise names. If your hardware requirements are undefined or
insignificant, you might have vague node names. As with all other aspects of UML, it is
important to make sure that you are modeling at the right level for your system.

Now, you need to model the software that runs on the hardware. Figure 15-3 shows a simple
software artifact (see "Deployed Software: Artifacts," next), which in this case is just a JAR file
named 3dpacman.jar, containing a 3D-Pacman application.

Figure 15-3. A physical software file such as a jar file is modeled with an
artifact

Finally, you need to put these two pieces together to complete the deployment diagram of your
system. Draw the artifact inside the node to show that a software artifact is deployed to a hardware
node. Figure 15-4 shows that 3dpacman.jar runs on a Desktop PC.

Figure 15-4. Drawing an artifact inside a node shows that the artifact is
deployed to the node

But is it really complete? Don't you need to model the Java Virtual Machine (JVM) because without
it, your code wouldn't execute? What about the operating system; isn't that important? The answer,
unfortunately, is possibly.

Your deployment diagrams should contain details about your system that are important to your
audience. If it is important to show the hardware, firmware, operating system, runtime
environments, or even device drivers of your system, then you should include these in your
deployment diagram. As the rest of this chapter will show, deployment diagram notation can be
used to model all of these types of things. If there's a feature of your system that's not important,
then it's not worth adding it to your diagram since it could easily clutter up or distract from those
features of your design that are important.

15.2. Deployed Software: Artifacts

The previous section showed a sneak preview of some of the notation that can be used to show the
software and hardware in a deployed system. The 3dpacman.jar software was deployed to a single
hardware node. In UML, that JAR file is called an artifact.

Artifacts are physical files that execute or are used by your software. Common artifacts you'll
encounter include:

Executable files, such as .exe or .jar files

Library files, such as .dlls (or support .jar files)

Source files, such as .java or .cpp files

Configuration files that are used by your software at runtime, commonly in formats such as
.xml, .properties, or .txt

An artifact is shown as a rectangle with the stereotype <<artifact>>, or the document icon in the
upper right hand corner, or both, as shown in Figure 15-5. For the rest of the book, an artifact will
be shown with both the stereotype <<artifact>> and the document icon.

Figure 15-5. Equivalent representations of a 3dpacman.jar artifact

15.2.1. Deploying an Artifact to a Node

An artifact is deployed to a node, which means that the artifact resides on (or is installed on) the
node. Figure 15-6 shows the 3dpacman.jar artifact from the previous example deployed to a
Desktop PC hardware node by drawing the artifact symbol inside the node.

Figure 15-6. The 3dpacman.jar artifact deployed to a Desktop PC node

You can model that an artifact is deployed to a node in two other ways. You can also draw a
dependency arrow from the artifact to the target node with the stereotype <<deploy>>, as shown in
Figure 15-7.

Figure 15-7. An alternate way to model the relationship deployment

When you're pressed for space, you might want to represent the deployment by simply listing the
artifact's name inside the target node, as shown in Figure 15-8.

Figure 15-8. A compact way to show deployment is to write the name of
the artifact inside the node

All of these methods show the same deployment relationship, so here are some guidelines for
picking a notation.

Listing the artifacts (without the artifact symbol) can really save space if you have a lot of artifacts,
as in Figure 15-9. Imagine how big the diagram would get if you drew the artifact symbol for each
artifact.

But be careful; by listing your artifacts, you cannot show dependencies between artifacts. If you
want to show that an artifact uses another artifact, you have to draw the artifact symbols and a
dependency arrow connecting the artifacts, as shown in Figure 15-10.

15.2.2. Tying Software to Artifacts

When designing software, you break it up into cohesive groups of functionality, such as components
or packages, which eventually get compiled into one or more filesor artifacts. In UML-speak, if an
artifact is the physical actualization of a component, then the artifact manifests that component. An
artifact can manifest not just components but any packageable element, such as packages and
classes.

Figure 15-9. Listing artifact names inside a node saves a lot of space
compared to drawing an artifact symbol for each artifact

Figure 15-10. A deployment notation that uses artifact symbols (instead
of listing artifact names) allows you to show artifact dependencies

The manifest relationship is shown with a dependency arrow from the artifact to the component
with the stereotype <<manifest>>, as shown in Figure 15-11.

Figure 15-11. The artifact mycomponent.jar manifests the component
MyComponent

Since artifacts can then be assigned to nodes, the manifest relationship provides the missing link in
modeling how your software components are mapped to hardware. However, linking a component
to an artifact to a node can result in a cluttered diagram, so it's common to show the manifest
relationships separate from the deployment relationships, even if they're on the same deployment
diagram.

You can also show the manifest relationship in component diagrams by listing
the artifacts manifesting a component within the component symbol, as
discussed in Chapter 12.

If you're familiar with earlier versions of UML, you may be tempted to model a component running
on hardware by drawing the component symbol inside the node. As of UML 2.0, artifacts have
nudged components toward a more conceptual interpretation, and now artifacts represent physical
files.

However, many UML tools aren't fully up to date with the UML 2.0 standard, so your tool may still
use the earlier notation.

15.3. What Is a Node?

You've already seen that you can use nodes to show hardware in your deployment diagram, but
nodes don't have to be hardware. Certain types of softwaresoftware that provides an environment
within which other software components can be executedare nodes as well.

A node is a hardware or software resource that can host software or related files. You can think of a
software node as an application context; generally not part of the software you developed, but a
third-party environment that provides services to your software.

The following items are reasonably common examples of hardware nodes:

Server

Desktop PC

Disk drives

The following items are examples of execution environment nodes:

Operating system

J2EE container

Web server

Application server

Software items such as library files, property files, and executable files that
cannot host software are not nodesthey are artifacts (see "Deployed
Software: Artifacts," earlier in the chapter).

15.4. Hardware and Execution Environment Nodes

A node is drawn as a cube with its type written inside, as shown in Figure 15-12. The stereotype
<<device>> emphasizes that it's a hardware node.

Figure 15-13 shows an Application Server node. Those familiar with enterprise software
development will recognize this as a type of execution environment since it's a software
environment that provides services to your application. The stereotype <<executionEnvironment>>
emphasizes that this node is an execution environment.

Figure 15-12. A Sun Blade Server hardware node marked with the
stereotype <<device>>

Figure 15-13. An Application Server node marked with the stereotype
<<executionEnvironment>>

Execution environments do not exist on their ownthey run on hardware. For example, an operating
system needs computer hardware to run on. You show that an execution environment resides on a
particular device by placing the nodes inside one another, nesting them as shown in Figure 15-14.

Figure 15-14. An Application Server node is shown nested in a Sun
Server node, meaning that the Application Server runs on Sun Server

hardware.

It's not strictly necessary in UML 2.0 to distinguish device nodes from execution environment
nodes, but it's a good habit to get into because it can clarify your model.

Want more variety? If you're using a profile (discussed in Appendix B), you
can apply node stereotypes that are more relevant to your domain, such as
<<J2EE Container>>. These new node types can be specified in your profile as
a special kind of execution environment.

15.4.1. Showing Node Instances

There are times when your diagram includes two nodes of the same type, but you want to draw
attention to the fact that they are actually different instances. You can show an instance of a node
by using the name : type notation as shown in Figure 15-15.

Figure 15-15. Showing the name and type of a node; an instance of a Sun
Blade Server named svr1

Figure 15-16 shows how two nodes of the same type can be modeled. The nodes in this example,
svr1 and svr2, are assigned different types of traffic from a load balancer (a common situation in
enterprise systems).

Figure 15-16. One node gets read traffic and the other gets write traffic

15.5. Communication Between Nodes

To get its job done, a node may need to communicate with other nodes. For example, a client
application running on a desktop PC may retrieve data from a server using TCP/IP.

Communication paths are used to show that nodes communicate with each other at runtime. A
communication path is drawn as a solid line connecting two nodes. The type of communication is
shown by adding a stereotype to the path. Figure 15-17 shows two nodesa desktop PC and a
serverthat communicate using TCP/IP.

Figure 15-17. A Desktop PC and Server communicate via TCP/IP

You can also show communication paths between execution environment nodes. For example, you
could model a web server communicating with an EJB container through RMI, as shown in Figure
15-18. This is more precise than showing an RMI communication path at the device node level
because the execution environment nodes "speak" RMI. However, some modelers draw the
communication paths at the outermost node level because it can make the diagram less cluttered.

Figure 15-18. You can also show communication paths between
execution environment nodes

Assigning a stereotype to a communication path can sometimes be tricky. RMI is layered using a
TCP/IP transport layer. So, should you assign an <<RMI>> or a <<TCP/IP>> stereotype? As a rule of
thumb, your communication stereotype should be as high-level as possible because it
communicates more about your system. In this case, <<RMI>> is the right choice; it is higher level,
and it tells the reader that you're using a Java implementation. However, as with all UML modeling,
you should tailor the diagram to your audience.

Communication paths show that the nodes are capable of communicating with
each other and are not intended to show individual messages, such as
messages in a sequence diagram.

As of UML 2.0, stereotypes are supposed to be specified in a profile, so in theory, you should use
only the stereotypes that your profile provides. However, even if you're not using a profile, your
UML tool may allow you to make up any stereotype. Since stereotypes are a good way to show the
types of communication in a system, feel free to make your own if necessary and if your tool
allows. But if you do, try to keep them consistent. For example, don't create two stereotypes
<<RMI>> and <<Remote Method Invocation>>, which are the same type of communication.

15.6. Deployment Specifications

Installing software is rarely as easy as dropping a file on a machine; often you have to specify
configuration parameters before your software can execute. A deployment specification is a special
artifact specifying how another artifact is deployed to a node. It provides information that allows
another artifact to run successfully in its environment.

Deployment specifications are drawn as a rectangle with the stereotype <<deployment spec>>.
There are two ways to tie a deployment specification to the deployment it describes:

Draw a dependency arrow from the deployment specification to the artifact, nesting both of
these in the target node.

Attach the deployment specification to the deployment arrow, as shown in Figure 15-19.

The deploy.wsdd file, shown in Figure 15-19, is the standard deployment descriptor file that
specifies how a web service is deployed to the Axis web service engine. This file states which class
executes the web service and which methods on the class can be called. You can list these
properties in the deployment specification using the name : type notation. Figure 15-20 shows the
deploy.wsdd deployment specification with the properties className and allowedMethods.

Figure 15-19. Equivalent ways of tying a deployment specification to the
deployment it describes

Figure 15-20. Showing the properties of a deployment specification: the
notation on the right shows an instance populated with values

The symbol on the right shows an instance of a deployment specification populated with values. Use
this notation if you want to show the actual property values instead of just the types.

This chapter has only briefly mentioned instances of elements in deployment
diagrams, but you can model instances of nodes, artifacts, and deployment
specifications. In deployment diagrams, many modelers don't bother to
specify that an element is an instance if the intent is clear. However, if you
want to specify property values of a deployment specification (as on the right
side of Figure 15-20), then this is a rare situation where a UML tool may force
you to use the instance notation.

Currently, many UML tools don't support the deployment specification symbol.
If yours is one of them, you can attach a note containing similar information.

You don't need to list every property in a deployment specificationonly properties you consider
important to the deployment. For example, deploy.wsdd may contain other properties such as
allowed roles, but if you're not using that property or it's insignificant (i.e., it's the same for all your
web services), then leave it out.

15.7. When to Use a Deployment Diagram

Deployment diagrams are useful at all stages of the design process. When you begin designing a
system, you probably know only basic information about the physical layout. For example, if you're
building a web application, you may not have decided which hardware to use and probably don't
know what your software artifacts are called. But you want to communicate important
characteristics of your system, such as the following:

Your architecture includes a web server, application server, and database.

Clients can access your application through a browser or through a richer GUI interface.

The web server is protected with a firewall.

Even at this early stage you can use deployment diagrams to model these characteristics. Figure
15-21 shows a rough sketch of your system. The node names don't have to be precise, and you
don't have to specify the communication protocols.

Figure 15-21. A rough sketch of your web application

Deployment diagrams are also useful in later stages of software development. Figure 15-22 shows
a detailed deployment diagram specifying a J2EE implementation of the system.

Figure 15-22 is more specific about the hardware types, the communication protocols, and the
allocation of software artifacts to nodes. A detailed deployment diagram, such as Figure 15-22,
could be used be used as a blueprint for how to install your system.

You can revisit your deployment diagrams throughout the design of your system to refine the rough

initial sketches, adding detail as you decide which technologies, communication protocols, and
software artifacts will be used. These refined deployment diagrams allow you to express the current
view of the physical system layout with the system's stakeholders.

Figure 15-22. You can provide any amount of detail about the physical
design of your system

15.8. What's Next?

You've finished learning the fundamental UML concepts, but read on to the appendixes for an
overview of some advanced modeling techniques. The appendices introduce you to the Object
Constraint Language (OCL), which is a rigorous way to show constraints in your diagrams, and
Profiles, which allow you to define and use a custom UML vocabulary. It's helpful to review these
appendices to get a feel for extra precision you can add to your model and extra capabilities that
result from that precision. The Object Constraint Language is covered in Appendix A; UML profiles
are described in Appendix B.

Appendix A. Object Constraint Language
Chapter 5 introduced writing constraints in your class diagrams using OCL. You don't have to use
OCL to express constraintsyou can use your favorite programming language syntax or even natural
language. This appendix discusses the advantages of OCL and provides more details about how to
more use OCL.

Recall from Chapter 5 that a constraint is written in curly braces after the element it constrains or
displayed in an attached note. Figure A-1 shows different ways of specifying that the attribute
rating has to be non-negative.

Figure A-1. Different ways of attaching and expressing a constraint

Figure A-1 shows that the words expressing a constraint can vary. Constraints can be written in
natural language, such as:

rating is greater than or equal to zero

Constraints can also look like a programming language expression, such as:

rating >= 0

Because natural language can be ambiguous (and long-winded!), many modelers use syntax
similar to their preferred programming language: notice that rating >= 0 looks like a Java or C
expression.

Constraints can get more complicated; for example, they can specify that a value isn't null. This
means you have a lot of options for expressing constraints, so how do you decide which notion to
use? Such an expression may look different in different programming languages. If constraints are
expressed in a standard and predictable way, not only can you easily understand the constraint,
but also automated tools can understand the constraint. This allows automatic checking of

constraints in your diagrams and in the code generated from the diagrams.

Because of this, the Object Management Group (OMG, the group behind UML) was convinced that a
single formal constraint language was needed, but the language had specific requirements. The
language had to allow values to be checked but not changedin other words, it had to be an
expression language. The language had to be general enough that you could use it to express
constraints in your UML diagrams regardless of your target implementation language. And finally,
the language had to be simple enough that people would actually use it, which is not true of many
formal languages.

OCL, developed at IBM for business modeling, had all of these features, and so it was a perfect
match. So, OCL was chosen to work alongside UML to provide a formal yet easy-to-understand
language for specifying constraints.

You don't have to use OCL. In general, modelers decide to use OCL depending on a combination of
factors, including how extensively they model and how important they consider design by contract
(discussed later). If these factors apply to you, OCL is worth considering because automated
constraint checking allows greater integrity of your model.

In UML diagrams, OCL is primarily used to write constraints in class diagrams and guard conditions
in state and activity diagrams.

A.1. Building OCL Expressions

Figure A-2 shows a class diagram with a few OCL expressions, including:

Simple number comparison

baseCost >= 0.0

More complicated number comparison

totalCost = baseCost * (1+getTaxRate())

String comparison

status <> 'Unpaid'

Figure A-2. Example OCL constraints of varying complexity

Unlike many languages, such as Java, in OCL the = operator is used to check
whether two items are equal, not to assign a value.

OCL expressions consist of model elements, constants, and operators. Model elements include class
attributes, operations, and members though association. The OCL expressions in Figure A-2 use the
model elements baseCost, totalCost, and getTaxRate(). (Later sections contain OCL expressions
with members through association.)

Constants are unchanging values of one of the predefined OCL types. In Figure A-2, constants
include 0.0 of type Real and 'Unpaid' of type String. Operators combine model elements and

constants to form an expression. In Figure A-2, operators include <>, +, and =.

The following sections discuss the basics of OCL types and operators and then show how to
combine these into expressions you can use in your UML models.

A.2. Types

OCL has four built-in types: Boolean, Integer, Real, and String. Table A-1 shows examples of these
four types. These examples are typical constants you could encounter in OCL expressions.

Table A-1. Built-in OCL types

Type Examples

Boolean true; false

Integer 1; 6,664; -200

Real 2.7181828; 10.5

String "Hello, World."

A.3. Operators

OCL has the basic arithmetic, logic, and comparison operators. OCL also has more advanced
functions such as returning the maximum of two values and concatenating Strings. OCL is a typed
language, so the operator has to make sense for its values. For example, you can't take the sum of
an Integer and a Boolean. Table A-2 shows commonly used operators in OCL expressions.

Table A-2. Commonly used operators in OCL expressions

Group Operators
Used with
types

Example OCL
expression

Arithmetic +, -, *, / Integer, Real baseCost + tax

Additional
Arithmetic

abs(), max(), min() Integer, Real
score1.max(score2)

Comparison <, <=, >, >= Integer, Real rate > .75

Equality =, <> All
age = 65

title <> 'CEO'

Boolean and, or, xor, not Boolean isMale and (age >= 65)

String
concat(), size(), substring(),
toInteger(), toReal()

String title.substring(1,3)

Operators in the groups Comparison, Equality, and Boolean all return results of type Boolean. For
example, age = 65 evaluates to true or false. The other operators in Table A-2 return the same
type with which they're used. For example, if baseCost and tax are Real, then baseCost + tax will
also be Real.

Figure A-2 shows that getTaxRate() returns a double (this model was written with Java types),
but the table in Table A-2 mentions that the operator + is defined on Reals and Integers. That's
perfectly fine; when building an OCL expression, you can match your types to the closest OCL type.

OCL can also express operations on collections, such as unions of sets. For a
more complete list of OCL expressions, see UML 2.0 in a Nutshell (O'Reilly).

A.4. Pulling It Together

So far you've seen the building blocks of OCL expressions. Now let's combine them to build a
sample OCL expression.

totalCost = baseCost * (1+getTaxRate())

This OCL expression is taken from Figure A-2. It contains the following building blocks of an OCL
expression:

Model elements

totalCost, baseCost, and getTaxRate()

Constant

1

Operators

=, *, and +

The above expression actually consists of several OCL expressions, which are in turn combined by
operators. For example, 1+getTaxRate() evaluates to a Real, which is then multiplied with
baseCost. That resulting value is checked for equality with totalCost using the = operator. You can
combine model elements, constants, and expressions according to their type, but the combined
expression must be type Boolean. This is because we're focusing on using OCL to express
constraints and guards, which must evaluate to true or false.

Another commonly used constraint is to specify that an object isn't null. To specify that an object
isn't null, you have to use the OCL's notation for sets and operations on sets. Figure A-3 shows how
to check that Author's member through association fee isn't null using the expression:

self.fee->notEmpty()

Figure A-3. Constraining that a member isn't null

Notice the reference to self in the OCL expression in Figure A-3. Because it is attached to Author,
self refers to objects of type Author. The self keyword is commonly used when you set a context
in an OCL expression, as shown in the following section.

A.5. Context

Figure A-2 defined OCL expressions on the elements they constrain, while Figure A-3 defined an
OCL expression on the containing class. You can write an OCL expression at different areas in your
diagram. How you write the OCL expression depends on the context, or where you are in the
diagram.

Figure A-4 shows how to check that baseCost of AccountFee is greater than or equal to 0 at
different reference points in the diagram. The first diagram shows this constraint in the context of
baseCost, the second shows this constraint at AccountFee, and the third shows this constraint at
Author.

Figure A-4. The way you write a constraint depends on your reference
point in the diagram

If your reference point is baseCost, e.g., by writing a constraint in curly braces after baseCost, then
you write:

baseCost >= 0.0

If you're referring to the AccountFee class, e.g., by attaching a note to the AccountFee class, then
you write:

self.baseCost >= 0.0

Finally, if you're referring to the Author class, e.g., by attaching a note to the Author class, then
you write:

self.fee.baseCost >= 0.0

You can also write OCL constraints that aren't physically attached to model elements. For example,
your UML tool may provide a text editor for entering constraints. If you do this, write the context
explicitly. If the context is the AccountFee class, then you write:

Context AccountFee
inv: self.baseCost >= 0.0

The inv keyword indicates that the constraint is an invariant, or a condition that must always be
true. When specifying the context, you also specify the type of constraint it is. Constraint types are
discussed in "Types of Constraints," next.

A.6. Types of Constraints

There are three types of constraints:

Invariants

An invariant is a constraint that must always be trueotherwise the system is in an invalid
state. Invariants are defined on class attributes. For example, in Figure A-4, the baseCost
attribute of AccountFee must always be greater than or equal to zero.

Preconditions

A precondition is a constraint that is defined on a method and is checked before the method
executes. Preconditions are frequently used to validate input parameters to a method.

Postconditions

A postcondition is also defined on a method and is checked after the method executes.
Postconditions are frequently used to describe how values were changed by a method.

Previous examples in this chapter focused on invariants, but all three constraint types can be
expressed in your UML diagrams or related documentation. The following examples will show how
to provide preconditions and postconditions for the method incrementRating. The reference class
diagram is shown in Figure A-5.

Figure A-5. We'll provide preconditions and postconditions for the
incrementRating method

Suppose incrementRating will increment the value rating by the value amount. We want to first
specify a precondition that amount is less than a maximum legal amount, say 100, and a
postcondition ensuring that rating has been incremented by amount. To write these preconditions
and postconditions, you first specify the context and then the constraints.

context BlogEntry::incrementRating(amount: int) : void
pre: amount <= 100
post: rating = rating@pre + amount

Notice the @pre directive: rating@pre is the value of rating before the method executes. You can
use the @pre notation on methods too:

context BlogEntry::incrementRating(amount: int) : void
pre: amount <= 100
post: getRating() = getRating@pre() + amount

Invariants, preconditions, and postconditions are part of an approach known as "Design by
Contract," developed by Bertrand Meyer. "Design by Contract" attempts to make more reliable code
by establishing a contract between a class and its clients. A class's contract tells its clients that if
they call its methods with valid values, then they will receive a valid value in response. A contract
also establishes invariants on a class, meaning that the class's attributes will never violate certain
constraints.

If you're wondering why you haven't encountered invariants, preconditions, and postconditions in
your code, note that support for Design by Contract differs per programming language. "Design by
Contract" is built into the Eiffel programming language, which was also developed by Bertrand
Meyer. Eiffel has keywords for invariants, preconditions, and postconditions, and an exception is
thrown if any of these constraints are violated. With other languages, you have to either implement
constraint handing yourself or use a package such as iContract for Java. iContract is a preprocessor
with doc-style tags to specify invariants, preconditions, and postconditions. iContract also throws
an exception if a constraint is violated.

A.7. OCL Automation

The real power of OCL comes from tools that can use the OCL constraints from your UML model to
perform constraint checking for you. While at the moment there is wide variation in tool maturity
and level of integration, the ultimate goal is to enhance integration of your UML model with the
runtime behavior of your system. This has the benefit of allowing you to catch errors early and
saving on debugging time.

Some UML tools focus on placing the OCL constraints from your diagrams into generated code so
that the constraints can be checked at runtime (although at the moment, these may only be
proposed or partial implementations). Example approaches include generating assert statements
directly in your code to allow constraint checking, or embellishing your code with Java annotations
or doc-style tags containing OCL constraints, which can then be used by standard OCL tools that
can check constraints at runtime. For example, the open source UML tool ArgoUML inserts OCL
constraints into generated Java code as doc-style tags. With doc or annotations in your code, you
can take advantage of OCL tools (such as ocl4java or the Dresden OCL Toolkit) that perform code
enhancement to provide you runtime feedback about constraint violations in your executed code.

Stay on the lookout for developments in this area; as MDA and Executable UML (introduced in
Chapter 1) become increasingly central to UML, you can expect even more of these capabilities to
be integrated with modeling tools.

Appendix B. Adapting UML: Profiles
This book has used Java code examples to demonstrate UML concepts, but the UML model elements
shown apply to almost any object-oriented system, regardless of the language (e.g., Java, C++, or
Smalltalk), platform you're targeting (e.g., J2EE or .NET), or domain you're working with (e.g.,
medical or aerospace).

Object-oriented systems share many common characteristics structurally and behaviorally: they
have classes, interactions among classes, and so on. But when it comes to platforms and domains,
object-oriented systems often have many differences in terminology. For example, the J2EE
platform has EJBs, JARs, and JSPs, whereas the .NET platform has ADOs, assemblies, and ASPs.

When you create your UML model, it is helpful if you label your model elements with the
terminology specific to the environment or platform you've chosen. In other words, wouldn't it be
great to be able to specify that a component is in fact going to be an EJB, instead of just calling it a
component?

Trying to make UML target every possible platform or domain would be a losing battle and not
really in the spirit of a general purpose modeling language. The group behind UML, the Object
Management Group (OMG), realized this and built a mechanism by which UML can be adapted and
tailored to meet your own specific needs. That mechanism was the profile.

B.1. What Is a Profile?

Profiles are a lightweight way to adapt UML to a particular platformJ2EE, .NET, etc.or
domainmedical, financial, aerospace, etc. Profiles are made up of stereotypes, tagged values, and a
set of constraints. They capture a vocabulary commonly used across a domain or platform and
allow that vocabulary to be applied to your model's elements to make them more meaningful.

Even better, code generation tools can use profiles to generate artifacts specific to a platform or
environment. A component labeled with an EJB stereotype could be converted to the classes and
interfaces it takes to implement an EJB.

In earlier versions of UML, you could make up stereotypes on the fly. This led to confusion about
when to use stereotypes and modelers were left to informally standardize and reuse a common set
of stereotypes. UML 2.0 fixed this problem by declaring that stereotypes and tagged values (see
"Tagged Values" later in this chapter) should be created in a profile.

B.2. Stereotypes

Stereotypes signify that an element has a special use or intent. Stereotypes are most often shown
by specifying the name of the stereotype between two guillemots, as in <<stereotype_name>>; you
can substitute angle brackets if you don't have guillemots available on your system, as shown in
Figure B-1.

Figure B-1. An artifact with a JAR stereotype applied to it; this is an
example of a stereotype you might see in a J2EE profile

If a stereotype has an icon associated with it, you may also display the element with its icon. UML
tools generally allow you to switch between these display options. Figure B-2 shows the standard
JAR stereotype display notation as well as an example JAR icon.

Figure B-2. Using the <<JAR>> Stereotype and a JAR icon

There is no limit to the number of stereotypes that can be applied to a particular element, as shown
in Figure B-3.

Figure B-3. The bookstore.jar has both the JAR and file stereotype
applied to it

B.3. Tagged Values

Stereotypes may have one or more associated tagged values. Tagged values provide extra
information that is associated with the stereotype.

A tagged value is shown in a note that is attached to the stereotyped element, as shown in Figure
B-4.

Figure B-4. This tagged value, attached in a note, specifies whether a
manifest should be created for the JAR file

If multiple stereotypes have been applied to the same element then you split any tagged values for
those stereotypes in their corresponding note, shown in Figure B-5.

Figure B-5. Applying multiple stereotypes, each with their own set of
tagged values

B.4. Constraints

Unlike stereotypes and tagged values, constraints don't correspond to symbols that you use in your
UML models. Constraints are also specified in the profile definition, but they impose rules or
restrictions on model elements. An example of a constraint is shown in "Creating a Profile."

An introduction to constraints outside the context of profiles can be found in
Chapter 5.

B.5. Creating a Profile

Usually you will simply use an existing profile that is built into your UML tool or one provided by a
standard source such as the OMG. However, if you find that there simply is no standard profile
available, then many UML tools will allow you to create your own.

Be careful when creating your own profiles. The real power of profiles only
comes when they are standardized and in common use, discussed in "Why
Bother with Profiles?" later on in this chapter.

Your UML tool may allow you to create a profile using a simple text entry dialog; for example, it
may ask you for the name of the stereotype and ask you to choose what type of element it can be
applied to. However, the behind-the-scenes graphical model of a profile looks like the one shown in
Figure B-6.

Stereotypes defined in the profile are themselves given the standard stereotype <<stereotype>>.
Two new stereotypes are declared in Figure B-6: WebService and Exposed.

To show that the WebService stereotype can be applied to classes an extension arrow points from
WebService to Class. The extension arrow has a solid arrowhead and it connects the new stereotype
to the element type that it can be applied to. The extension arrow is also used to show that the
Exposed stereotype can be applied to operations.

If the stereotype has tagged values, they are listed in a compartment below the stereotype name.
The WebService stereotype has two tagged values: service and encoding. The possible values of
these tagged values are shown in the enumerations ServiceStyle and EncodingStyle.

Finally, any applicable constraints on the use of the WebService and Exposed stereotypes are
specified in notes. The Exposed stereotype has a constraint, in curly braces, that specifies that it can
be applied only to operations of classes that are themselves stereotyped as a WebService.

Figure B-6. Creating a new profile that contains two stereotypes,
Exposed and WebService, and some associated tagged values and

constraints

B.6. Working with the Meta-Model

At this point, you may be thinking that the model in Figure B-6 looks similar to the other UML
models you've seen in this book. However, it contains some striking differences: the WebService
stereotype is related to the element Class for one, and the extension arrow is different from the
previous relationships you've seen for another. Normally, you would never explicitly refer to Class
in your UML models because it is a UML meta-model element.

The term meta-model was introduced in Chapter 1.Meta-models define rules about how the UML
elements work, e.g., a class can have a subclass or a class can be associated with any number of
other classes. When you are modeling a profile you are working with the meta-model, customizing
the regular UML's rules for a particular context.

This customization of UML for your particular context may sound dangerous at
first, almost like you are making up your own language! This is actually not
the case, profiles are a safe and controlled way of customizing UML, but
should be used only when you really need them (see "Why Bother with
Profiles?"). They can be a powerful way of making your model mean much
more than it would do with standard UML alone.

B.7. Using a Profile

The model in Figure B-6 shows how to create the Web Service profile. To actually use the profile,
you apply the profile to the package that will use it.

To apply a profile to a package, draw a dashed arrow from the package that will use the profile to
the profile, with the <<apply>> stereotype along the arrow as shown in Figure B-7.

Figure B-7. Applying the Web Service profile to the CMS package allows
you to use the Web Service profile in your CMS model

Not all UML tools use this method for applying a profile to your model. For
example, it may let you specify which profile to apply to a package using a
dialog box.

Now that you've applied the profile, you may use the profile in your CMS model, as shown in Figure
B-8.

Figure B-8. Applying elements of the Web Service profile to the
BlogFeedService class in the CMS package

In Figure B-8, the BlogFeedService is marked with the WebService stereotype. Its single method is
marked with the Exposed stereotype, allowing it to be exposed through the web service. The tagged
values for the WebService stereotype are attached in a note, populated with values from the
enumerations.

The constraint from the Web Service profile isn't explicitly seen in this model, but it is used because
the Exposed stereotype on the getFeed() operation is contained in a class that uses the WebService
stereotype.

B.8. Why Bother with Profiles?

The real power of a profile comes when it is used by many people interested in that platform or
domain. Not only does it introduce a common vocabulary, but also it allows you to leverage tools
that generate source code and other artifacts based on the profile. For example, a tool could
convert a model that uses our Web Service profile into a deployable web service. Such a tool could
generate the implementation class and populate a deployment descriptor file with the service type
and encoding values, keeping the model and code in sync. As another example, the Omondo
Eclipse IDE plugin provides a J2EE profile which, when applied to your model, allows automatic
generation of the medley of classes required to implement an EJB (prior to EJB 3.0) and even
deploys them to the application server.

The OMG maintains some common profiles, such as profiles for CORBA and testing. The testing
profile, for example, describes mappings to JUnita widely-used Java unit testing framework.

Appendix C. A History of UML
UML has not always been the de facto modeling language that it is today. In fact, not so long ago,
everyone involved in complex system modeling was using a plethora of different modeling
languagessome formal, some informaland each had its own associated development approach.

Nowhere was the problem more apparent than in software modeling. Object orientation had just
become a fully recognized technique for developing software, and it did not take long for new
modeling methods to start incorporating this revolutionary technique into their practices.

Unfortunately, even though object-oriented software modeling was seen as a good thing, the mess
of different and conflicting approaches to modeling cancelled out a lot of the advantages that
modeling promised. If you were designing using one modeling language and another member of
your group was using another modeling language, the advantages of communicating designs to
each other were completely lost. Software and system groups were forced to pick a modeling
language, knowing that their choice was potentially a dangerous decision that could exclude other
groups from easily joining the design effort.

This time of confusion and chaos in the software modeling world is now rather dramatically referred
to as the "method wars." Three of the primary protagonists in these method wars were Grady
Booch, Ivar Jacobson, and James Rumbaugh. Each of these innovators had their own software
development methods and a modeling language with their own distinct notation. More importantly,
they also headed up their own community of users that evangelized their approach to software
modeling. It was these three approaches to software development and their associated languages
and notation that were to form the basis of UML.

C.1. Take One Part OOAD...

Grady Booch's approach was named Object-Oriented Analysis and Design (OOAD), or less formally,
the Booch method. These grand titles encompassed a method that included a modeling language
constructed of diagrams to show classes, state, state transitions, interactions, modules, and
processes.

This formidable collection of diagrams was probably best known for its class notations, which were
depicted as clouds and a selection of arrows with simple names such as has a that could be used to
specify different types of inter-class relationships, as shown in Figure C-1.

Figure C-1. A cloud OOAD notation describes classes and the
relationships between them

The cloud notational style and the simple naming of Booch's inter-class relationship arrows worked
themselves into the hearts of adopters to such a degree that even to this day, they reminisce about
the clouds. In fact the use of either the cloud notation or the rectangle notation for classes
prompted some of the most vehement, and useless, arguments during the inception of UML.

C.2. ...with a Sprinkling of OOSE...

Ivar Jacobson and his Object-Oriented Software Engineering (OOSE) approach is probably best
known for the revolutionary technique of mapping requirements to object-oriented software
designs, called use cases. There was a definite focus in OOSE to accurately capture and model the
problem domain, and use cases were a key technique in achieving this as part of a requirements
model.

OOSE was not just about requirements, though; it also had corresponding models for analysis and
design. The analysis model in OOSE was one in which object relationships could be modeled. It
drew distinctions between entity objects that contain data, control objects that control other
objects, and interface objects that interact with users or other external systems. UML has inherited
these types of objects, and they are particularly popular on sequence diagrams (see Chapter 7).

The design model allowed you to describe how the system behaves using state transition and
interaction diagrams, whichalthough the notation has changedare still present to some extent in
UML today. Communication diagrams are covered in Chapter 8; state machine diagrams are
covered in Chapter 14.

To complete the picture, the OOSE also specified implementation and test models. An
implementation model captured how use cases were mapped to the underlying system
implementation and the test model closed the loop by showing how use cases could drive the
development of a system's tests.

Despite all of these various models, use cases are the thing that OOSE will be most noted for; see
Figure C-2 for an example. UML has gone through various iterations over the years, but of all the
UML constructs, use cases is the one technique that's remained unchanged.

Figure C-2. The OOSE use case notation describes three use cases within
a system and the two outside influencesactorsthat interact with those

use cases

C.3. ...Add a Dash of OMT...

If Booch's OOAD brought class modeling and Jacobson's OOSE gave us use cases, state transitions,
and interaction modeling, then James Rumbaugh added his object modeling technique (OMT).
Although Booch's class and object diagrams were well loved by his adopters (those clouds again), it
was the class and object diagram notation from OMT that most influenced what was to come. The
OMT's notation for its object view was arguably simpler to draw, even if its interclass relationships
were not as intuitive as Booch's (see Figure C-3).

Figure C-3. This diagram is easy to read, even for a novice developer

That is not to say that object and class diagram notation was all that OMT added to the mix. The
OMT also had notation for diagrams showing the dynamic qualities of software, namely sequence
diagrams.

C.4. ...and Bake for 10 to 15 Years

It is not an understatement to say that the modeling world was in a mess (it was a war, after all!).
The mere suggestion of a unified approach to modeling was likely to bring passionate objections as
modeling practitioners protected their skills, tools, andmost importantlyapproaches.

But it was time for a change. In early 1996, Ivar Jacobson gave Richard Mark Soley a call at home,
late at night as always, and confirmed that the time was ripe to standardize on a modeling
language and bring an end to the modeling method wars. At this point, the modeling tools market
was worth about $30 million worldwide total, split among several vendors. The largest vendor was
Rational Software Corporation, but even at this point Rational was only a $25 million companysmall
fish compared to software behemoths such as Microsoft and IBM.

As a first step, Soley and Jacobson made a list all of the major methodologists and invited them to
come to an Object Management Group (OMG) meeting to explore the possibility of developing a
standard. Little did they know just how important and successful that meeting would be. The OMG
was traditionally a standards body that specifically targeted distributed systems; however, in an act
of excellent foresight, the group organized its first meeting targeted at creating a standard
modeling language Hosted by Tandem Computer in San Jose, California, almost every major
methodologist or representative of every major methodologist made it to that meeting. According
to legend, the organizers were very careful to leave all the windows open so that the room would
not explode with the number of egosit was a very impressive assembly. Early on, it was realized
that the most difficult facet of the meeting probably would be finding the right person to chair it.
They needed somebody who would be recognized as a methodologist, who was also sufficiently
impartial and focused, and who could actually guide the meeting towards a useful conclusion.

Mary Loomis was that person. Back then, Mary was a research director at Hewlett-Packard, and she
was on the team at General Electric that had developed the OMT methodology. Mary was the
perfect person to keep all those egos in check. Very quickly, Mary managed to get all the gurus in
the room to actually make progress toward an agreement. The goal was not a technical discussion
about which technologies to use, or whether to draw a class as a box or a cloud, but to determine
how to develop a Unified Modeling Language.

This is what the OMG brought into the mix. The OMG excelled at getting direct competitors to agree
on issues, which was the most important aspect of getting to a Unified Modeling Language.
Participants agreed that:

It was time for a standard.

They would attempt to use the OMG standards process to develop that standard.

These two simple goals were really an amazing achievement. At that point in time, the OMG had
used only its standards process to develop specific distributed object computing standards, such as
CORBA and its services. The OMG had never created anything like development standards, which is
what a UML specification would have to be. Without a doubt, managing a community as passionate
as the methodologists and, on top of that, building a successful standard that everyone could sign

up for was new and hazardous territory for the OMG.

But the OMG was in the middle of a transition. During part of that transition, it recognized that one
of the group's biggest strengths was its standards process itself and not any specific technology.
Following its process, the OMG developed and sent a requirements document to the industry that
described precisely what was needed of a standard modeling language. It was then up to industry
to send in their own ideas for how they could meet those requirements.

By the middle of 1997, the OMG had received what was to be an acceptable single joint proposal
for a standard modeling language. Written by 21 different companies, this joint proposal was the
product of a merger between each of those company's own proposals. The whole process came to
an end in September 1997 when the OMG published a specification for a standard modeling
language, but there was a slight problem with its preferred name. The OMG had decided to name
the standard modeling language the Unified Modeling Language, but UML as a name was already
owned by one of the companies that had agreed to the original joint proposalRational Software
Corporation.

Rational Software employed Jacobson, Booch, and Rumbaughcollectively known as the three
amigosand had already given a huge amount of input into the development of the OMG's standard,
as well as continuing on with research toward their own joint specification for a modeling language.
The Rational modeling language brought together the three amigos' considerably popular
methodologies and toolsets, but unfortunately it too had also been called the Unified Modeling
Language.

It was crunch time; would the industry slip back into confusion with both the OMG and Rational's
UML, or would the OMG have to find a new name entirely and thereby lose any name recognition
that the UML brand had already gained? As it happens, there was a particularly happy ending to
this story. To solve the naming nightmare, the OMG achieved something that was nothing short of
a coup.

The OMG were able to convince Rational, even though there was already some considerable
marketing value to the UML brand, to donate at no charge both the UML name and the cube logo
(see Figure C-4). This way, the OMG could go ahead with a truly open standard modeling
language, which could officially be named UML.

Figure C-4. The UML cube logo

For a couple of years afterward, people thought that only Rational was involved in the development
of the UML specification, largely because the UML name and logo originated with Rational, and
Rational Rose was the most popular modeling tool at the time. In fact, some companies did not
want the standard modeling language to be called UML because they believed the public would
continue to associate the UML name with Rational. Those fears have proved largely unfounded over
time, and now more than 90 percent of practitioners recognize that UML is a standard owned and

managed by the OMG.

UML has undergone several revisions as it evolves to accommodate various new industry advances
and best-practice techniques. The original input from Jacobson, Booch, and Rumbaugh, although
still very important, now happily works alongside the other full set of possible UML 2.0 diagrams,
as shown in Figure C-5.

Figure C-5. Building on the best practices of the past, UML draws on
OOSE, OOAD, and OMT as well as a plethora of other techniques to create

the best toolset for modeling systems

Systems development techniques, particularly software systems, are in a vibrant state of flux most
of the time. This means that any unified approach to modeling software must be flexible and open
to new approaches to still be of practical use; however, with UML, there is finally a common
language for expressing your models.

Special thanks to Richard Mark Soley for all the first-hand anecdotes and explanations about how
the OMG process worked and why it was ideal for standardizing UML.

About the Authors

Russ Miles is a software engineer for General Dynamics UK, where he works with Java and
Distributed Systems, although his passion at the moment is Aspect Orientation and AspectJ, in
particular. To ensure that he has as little spare time as possible, Russ contributes to various open
source projects while working on books for O'Reilly. He is currently studying at Oxford University in
England for an MSc in software engineering.

Kim Hamilton is a senior software engineer at a major aerospace corporation, where she has
designed and implemented a variety of systems, including web applications and distributed
systems. Kim has a Master's in applied math and computer science from Cornell University.

Colophon

The animal appearing on the cover of Learning UML 2.0 is a gorilla (Gorilla gorilla). Despite its
reputation for aggression, the gorilla is generally shy and inoffensive, rising to an erect position
and beating its chest only when provoked or threatened. This behavior is meant to intimidate
intruders rather than harm them. However, if the family group is attacked, male gorillas will risk
death to protect their young. Gorillas are the largest and most powerful of the apes, with females
weighing up to 200 pounds and males up to 400 pounds.

Gorillas are socially flexible, meaning their social structure is not set in stone. Troops can number
as many as 30 individuals but are more often comprised of 6 or 7, including one silverback (mature
male), a few females, and their young. In her lifetime, a female gorilla gives birth to about three
offspring, which remain in her care until they are three or four years old. Offspring stay with their
troop until they reach sexual maturityabout nine years oldat which time they generally start or join
another troop.

Populations of gorillas are decreasing due to human encroachment and hunting. Scientists estimate
that there are roughly 50,000 gorillas left in the wild in Africa, most of which are western lowland
gorillasonly about 600 are mountain gorillas. Most countries have passed laws protecting gorillas,
but enforcement is difficult in remote jungles where people survive by hunting. Tourism now
generates a great deal of money in Rwanda, Uganda, and Zaire, which helps protect gorillas as well
as other species.

The cover image is from Lydekker's Royal History. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

[] (brackets)

 guard conditions

 multiplicities on connectors

: (colon)

 in attribute name

 in operation signature

{ } (curly braces), constraints

:: (double colons), in fully-scoped class name

<< >> (guillemots), stereotypes 2nd

(hash symbol), protected visibility

- (minus symbol), private visibility 2nd

() (parentheses), annotations

+ (plus symbol)

 public visibility 2nd

~ (tilde), package visibility

4+1 view model (Krutchen) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

abstract classes 2nd

abstraction level of classes

actions

 in Activity diagram

 inputs and outputs for

 objects passed between

 parallel

 transformations of objects between

activation bars

 indicating active participant

 return messages at end of

active states

activities

 called within Activity diagram

 changing state of object

 enclosing in activity frame

 ending 2nd

 flow of

 inputs and outputs for

 interrupting

 naming

 starting 2nd

Activity diagram 2nd

 actions in

 calling other activities from

 compared to Interaction Overview diagram

 concurrent tasks in

 connectors in

 decisions in 2nd

 edges in

 ending

 ending flows in

 expansion regions in

 final node in

 guard conditions in

 in process view

 initial node in

 inputs and outputs for

 interrupting

 merges in 2nd

 objects in

 partitions in

 signals to and from external participants

 starting

 time events in

 when to create

activity final nodes

 in Activity diagram

 multiple

 object output as alternative to

activity frame 2nd

actors 2nd

 generalizations used with

 naming

 notation for

 participation with use cases, showing

 primary actor for use case

 relationships between

 system boundaries excluding

 tricky actors

aggregation between classes

agile methods of software development

Agile Software Development (Prentice Hall)

alt fragment

angle brackets (<< >>), stereotypes 2nd

annotations for partitions, Activity diagram

anonymous objects

"Architectural BlueprintsThe "4+1" View Model of Software Architecture" (Krutchen)

arrows

 arrowed lines (edges)

 connecting states (transitions)

 dependency arrows 2nd

 dotted arrow (<<include>> relationships)

 empty diamond arrowhead (aggregations)

 extension arrow in profile

 filled diamond arrowhead (compositions)

 generalization arrow

 class inheritance

 use case inheritance

 message arrows 2nd

 on communication lines

 on state-lines

artifacts

 dependencies between

 deploying to a node

 deployment specifications as

 manifesting components

 notation for

 of components

 stereotypes applied to

assembly connectors 2nd

assert fragment

association classes

associations between classes

 attributes representing 2nd

 object links requiring

 properties representing

asynchronous messages 2nd 3rd

attributes 2nd

 as collections of objects (multiplicity)

 associated with another class 2nd

 inline attributes 2nd

 naming

 private visibility for, when to use

 properties of

 public visibility for, when to use

 static

 type of

 visibility of

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

base use cases

behavioral state machines

binding templates

black-box component views

blueprint, UML used as

BPM (business process management) tools

brackets ([])

 guard conditions

 multiplicities on connectors

break fragment

business process management (BPM) tools

business processes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

call activity node

Chain of Responsibility (COR) design pattern

child classes

choice pseudostates

Class diagram 2nd

 abstract classes in

 attributes in

 class relationships in

 constraints in

 in logical view

 interfaces in

 operations in

 Package diagram modeled using

 static class elements in

 templates in

 when not to use

 when to create

class invariant

classes

 abstract classes 2nd

 abstraction level of

 aggregation between

 association classes

 associations between 2nd

 attributes of 2nd

 compared to components

 composition relationship between 2nd

 constraints for 2nd

 delegation and

 dependencies between

 encapsulation and

 generalization relationship between

 interfaces for 2nd 3rd

 internal structures of

 name of

 notation for

 operations of 2nd

 parts of

 ports for 2nd

 public interface of

 realizing components

 relationships between 2nd

 static

 stereotypes applied to

 templates for 2nd

 tightly coupled 2nd

 visibility of elements in

clock, system, as tricky actor

collaborations 2nd

colon (:)

 in attribute name

 in operation signature

colons, double (::), in fully-scoped class name

Communication diagram 2nd

 communication links in 2nd

 compared to Sequence diagram 2nd

 creating from interactions

 in logical view

 incorporated into Interaction Overview diagram

 messages in 2nd

 invoked conditionally

 invoked multiple times

 nested

 sent by pariticipant to itself

 simultaneous

 participants in 2nd

 when to create 2nd 3rd 4th

 when to use

communication lines

communication links 2nd 3rd

communication paths between nodes

Component diagram 2nd

 components in

 dependencies in

 in development view

 interfaces in

 internal structures in

 ports in

 realizing classes in

 views of components in

components

 as subsystems

 black-box view of

 compared to classes

 dependencies between

 interfaces for 2nd

 internal structure of

 notation for

 ports for

 realized by classes

 stereotypes applied to

 white-box view of

composite states

Composite Structure diagram

 classes with internal structures in

 collaborations in

 connectors in

 objects with internal structures in

 parts of classes in

 ports in

 properties in

 when to create 2nd

 when to use

composition relationship between classes 2nd

concurrent tasks, Activity diagram

connectors

 in Activity diagram

 in Component diagram 2nd

 in Composite Structure diagram

constraints

 for classes

 in Class diagram

 in Object diagram

 in profiles

 timing constraints

constructors

COR (Chain of Responsibility) design pattern

create message 2nd

critical regions

curly braces ({ }), constraints

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

decisions, Activity diagram 2nd

delegation

delegation connectors

dependencies

 between artifacts

 between classes

 between components

 between packages

Deployment diagram 2nd

 artifacts (files) in

 communication paths in

 execution environments in

 hardware in

 in physical view

 nodes in

 when to create

 when to use

deployment specifications

design patterns

 abstract classes and

 collaborations as

Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley) 2nd 3rd

destroy message

destroy method

development view 2nd

diagram notations

 arrows

 arrowed lines (edges)

 connecting states (transitions)

 dependency arrows 2nd

 dotted arrow (<<include>> relationships)

 empty diamond arrowhead (aggregations)

 extension arrow in profile

 filled arrow (messages)

 filled diamond arrowhead (compositions)

 generalization arrow (class inheritance)

 generalization arrow (use case inheritance)

 message arrows 2nd

 on communication lines

 on state-lines

 artifact symbol

 ball and socket (assembly connectors) 2nd

 ball symbol

 interfaces

 provided interfaces

 box around use cases (system boundaries)

 brackets ([])

 guard conditions

 multiplicities on connectors

 circle with enclosed character (connectors)

 circle with X (flow final nodes)

 circle, filled

 initial node

 initial pseudostates

 circles, concentric, with filled center

 final node

 final states

 colon (:)

 in attribute name

 in operation signature

 columns or rows in (partitions)

 cross

 in Sequence diagram (participant destruction)

 in Timing diagram (events)

 cube (nodes)

 curly braces ({ }), constraints

 diamond

 decisions 2nd

 merges 2nd

 double colons (::), in fully-scoped class name

 dropped title box (participant creation)

 folder with tab (packages)

 forks (joins)

 fragment box (sequence fragments)

 guillemots (<< >>), stereotypes 2nd

 hash symbol (#), protected visibility

 hourglass (time events)

 italic operations (abstract classes)

 lines

 activation bars for active participants

 arrowed lines (edges)

 between actors and use cases (communication lines)

 between classes (associations)

 between nodes (communication paths)

 between objects (links)

 between participants (communication links)

 connectors with multiplicities

 lifelines for participants 2nd 3rd

 lightning bolt line (interruption regions)

 state-lines for participants

 minus symbol (-), private visibility 2nd

 nodes (hardware)

 oval (use cases)

 oval, dashed (collaborations) 2nd

 parentheses (()), annotations

 pins (action inputs and outputs)

 pitchfork, upside-down (call activity node)

 plus symbol (+)

 public visibility 2nd

 receive signal nodes

 rectangle

 objects

 participants

 rectangle split into sections (classes)

 rectangle with tab icon (components)

 rectangle with underlined name (objects)

 rectangle, dashed (properties)

 rectangle, dashed rounded

 interruption regions

 with boxes on sides (expansion regions)

 rectangle, folded

 notes

 tagged values

 rectangle, rounded

 actions

 activity frames

 states

 rectangle, tabbed (protocol state machines)

 send signal nodes

 socket symbol (required interfaces)

 stick figure

 actors

 stereotypes

 "t" in Timing diagram 2nd

 tilde (~), package visibility

diagrams

 as views of model

 complexity of

 alternate Timing diagram notation for

 hardware node naming and

 minimizing

 Package diagram

 list of

 views of

do behavior of states

documentation for UML

double colons (::), in fully-scoped class name

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

edges, Activity diagram

encapsulation

entry behavior of states

events

 in Timing diagram

 timing constraints for

exact time measurements

executable UML

execution environments

exit behavior of states

expansion regions, Activity diagram

extensions of use case

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

final node, Activity diagram

final state, State Machine diagram

flow final node, Activity diagram

fork pseudostates

forks

 flow final nodes and

 in Activity diagram

formal modeling language

Fowler, Martin (ways of using UML)

fragment box

fragment operator

fragments, in Sequence diagram

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

generalization

 multiple generalization

 of actors

 of classes

 of use cases

guard conditions

 for choice pseudostate

 in Activity diagram

 in Communication diagram

 in State Machine diagram

guillemots (<< >>), stereotypes 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

hardware

 deploying artifacts to

 nodes representing

 notation for

hash symbol (#), protected visibility

Head First Design Patterns (O'Reilly) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

icons

 associated with stereotypes

inactive states

include:: syntax

incoming edges, Activity diagram

informal languages as modeling language

initial node

 in Activity diagram 2nd

 object input as alternative to

 time event as alternative to

initial pseudostates, State Machine diagram 2nd

inline attributes 2nd

input pins

interaction diagrams

Interaction Overview diagram 2nd

 compared to Activity diagram

 creating from use case

 when to use

interactions

 breaking into participants

 creating Communication diagram from

 executing in parallel

 timing constraints for

interfaces

 for classes 2nd 3rd

 for components 2nd

 notation for 2nd

 public interface of class

internal structures, Composite Structure diagram showing

interruption regions

invariants

iterative methods of software development

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Java 5 Tiger: A Developer's Notebook (O'Reilly)

Java in a Nutshell 2nd

Java Threads (O'Reilly)

join pseudostates

joins, Activity diagram

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Krutchen's 4+1 view model

Krutchen, Philippe ("Architectural BlueprintsThe "4+1"View Model of Software Architecture")

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

life cycle of object

lifelines

 in Interaction Overview diagram

 in Sequence diagram 2nd

lines

 activation bars for active participants

 arrowed lines (edges)

 between actors and use cases (communication lines)

 between classes (associations)

 between nodes (communication paths)

 between objects (links)

 between participants (communication links)

 lifelines for participants 2nd 3rd

 lightning bolt line (interruption regions)

 state-lines for participants

links

 between objects

 communication links 2nd 3rd

lists, templates used for 2nd

logic analyzer, Timing diagram compared to

logical view

loop fragment

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Martin, Robert C. (Agile Software Development)

MDAs (Model Driven Architectures)

merges, Activity diagram 2nd

messages

 diagrams showing

 in Communication diagram 2nd

 invoked conditionally

 invoked multiple times

 nested 2nd

 sent by participant to itself

 simultaneous

 in Sequence diagram

 arrows used by

 asynchronous 2nd 3rd

 for participant creation and destruction

 nested

 return messages

 signature for

 synchronous messages

 in Timing diagram

meta-models 2nd

minus symbol (-), private visibility 2nd

Model Driven Architictures (MDAs)

modeling language

 formal languages as

 informal languages as

 software code as

models

 diagrams as views of

 sharing between machines

 views of

multiple inheritance (generalization)

multiple processes, forks representing

multiple threads, forks representing

multiplicity

 of attributes

 on connectors

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

namespaces of packages

natural language as modeling language

neg fragment

nested messages

nodes

 communication between

 instances of

 notation for

not unique property of multiplicty

notation

notes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Object diagram 2nd

 binding class templates in

 in logical view

 links in

 objects in

 when to create 2nd

objects 2nd

 anonymous objects

 as inputs and outputs for activity

 as inputs or outputs for actions

 as participants in Sequence diagram

 binding templates with

 changing state during activity

 classes' relationship to

 collaborations of

 internal structures of, modeling

 life cycle of

 links between

 notation for 2nd

 passed between actions

 transformations of

OCL (Object Constraint Language)

 expressions, building

 types of constraints

OMG (Object Management Group) 2nd 3rd

operations 2nd

 constructors

 parameters of

 return type of

 static

 visibility of 2nd

opt fragment

ordered property of multiplicity

outgoing edges, Activity diagram

output pins

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Package diagram 2nd

 in development view

 modeling using Class diagram

 size and complexity of

 when to create 2nd

package visibility

packages

 accessing another package

 dependencies between 2nd 3rd

 importing another package

 namespaces of

 nested 2nd

 notation for 2nd

 target package

 use cases in

 using in software

 visibility of elements in

 visibility of imports in

par fragment

parallel actions

parallel messages

parameters of operations

parent classes

parent use case

parentheses (()), annotations

participants

 diagrams showing

 in Communication diagram 2nd 3rd

 in Interaction Overview diagram

 in Sequence diagram

 creating from interactions

 creation and destruction of

 creation of

 cross notation for destruction of

 destruction of

 dropped title box for creation of

 lifelines of

 naming

 sending messages between

 in Timing diagram

 organizing

 state-lines for

 states of

partitions, Activity diagram

physical view 2nd

pictures as modeling language

PIMs (Platform Independent Models)

pins

Platform Independent Models (PIMs)

Platform Specific Models (PSMs)

plus symbol (+)

 public visibility 2nd

ports

 for classes 2nd

 for components

postconditions

preconditions

private import

private visibility 2nd

process view 2nd

processes, forks representing

profiles 2nd

 as meta-models

 constraints in

 creating

 reasons to use

 standard 2nd

 stereotypes in

 using

programming language, UML used as

properties

 in Composite Structure diagram

 of attributes

protected visibility

protocol state machines 2nd

provided interfaces

 of classes

 of components

pseudostates

PSMs (Platform Specific Models)

public import

public interface of class

public visibility 2nd

publications

 Agile Software Development (Prentice Hall)

 Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley) 2nd 3rd

 Head First Design Patterns (O'Reilly) 2nd

 Java 5 Tiger: A Developer's Notebook (O'Reilly)

 Java in a Nutshell 2nd

 Java Threads (O'Reilly)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

readOnly property of attributes

realization relationship

receive signals 2nd

recurring time events, Activity diagram

ref fragment 2nd

region fragment

region of states

<<include>> relationships

<<extend>> relationships

relative time indicators

required interfaces

 of classes

 of components

return messages

return type of operation

reusability

reuse

 <<include>> relationships for

 components for

 generalization for

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

scalability of UML

self-transition

send signals

Sequence diagram 2nd

 activation bars in

 compared to Communication diagram 2nd

 creating from use case

 creating Timing diagram from

 events in

 fragments in

 in logical view

 incorporating into Interaction Overview diagram

 messages (signals) in

 participants in 2nd

 time in

 when to create 2nd 3rd 4th

 when to use

sequence fragments

shall requirements

should requirements

signals

 between participants

 between transitions

 starting an activity

Singleton design pattern

sketch, UML used as

software code

 as artifact in Deployment diagram

 as modeling language

 nodes hosting

 package dependencies and

 packages used in

 reuse of

 <<include>> relationships for

 components for

 generalization for

 states in

 UML model as detailed as

software development process

 methods of

 UML as part of

source state

standard for UML

standard profiles 2nd

standard stereotypes

State Machine diagram 2nd

 final state of

 guards in

 in logical view

 initial pseudostate of

 pseudostates in 2nd

 states in

 transition-oriented view of

 transitions in

 triggers in

 when not to use

 when to use 2nd

states 2nd

 active and inactive

 composite states

 in software

 internal behavior of

 internal transitions of

 notation for

 regions of

 source state

 substates

 target state

static classes or class elements

<<utility>> stereotype

<<subsystem>> stereotype

<<source>> stereotype

<<service>> stereotype

<<library>> stereotype

<<file>> stereotype

<<executable>> stereotype

<<component>> stereotype

<<subsystem>> stereotype

<<artifact>> stereotype

<<realizations>> stereotype

<<import>> stereotype

<<access>> stereotype

<<device>> stereotype

<<artifact>> stereotype

<<manifest>> stereotype

<<deploy>> stereotype

<<device>> stereotype

<<executionEnvironment>> stereotype

<<deployment spec>> stereotype

<<apply>> stereotype

stereotypes

 creating new stereotypes

 for interfaces 2nd

 icons associated with

 in profiles

 notation for 2nd 3rd

 profiles for

 standard, list of

 tagged values for

substates

subsystems

synchronous messages

system boundaries

system clock, as tricky actor

system requirements

 associated with use case

 defining

 shall requirements

 should requirements

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

tagged values

target package

target state

templates 2nd

 binding

 for lists 2nd

threads

 asynchronous messages used for

 forks representing

tightly coupled classes 2nd

tilde (~), package visibility

time events, Activity diagram

time, in Sequence diagram

Timing diagram 2nd

 alternate notation for

 complexity of

 creating from Sequence diagram

 events in

 alternate notation for

 in logical view

 incorporated into Interaction Overview diagram

 messages in

 participants in

 organizing

 state-lines for

 states of

 states in

 alternate notation for

 time measurements in

 timing constraints in

 when to use

transformations

transition-oriented view of State Machine diagram

transitions 2nd

 internal transitions

 notation for

 self-transition

 signals between

tricky actors

triggers 2nd

tutorials for UML

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

UML (Unified Modeling Language)

 advantages of 2nd

 degrees of use of

 documentation and tutorials for

 executable

 software development process and

 version 2.0

unique property of multiplicity

Use Case diagram

 actors in

 communication lines in

 in use case view

 system boundaries in

 use case relationships in

 use cases in

Use Case Overview diagram

use case view

use cases

 base use cases

 behaviors shared between

 <<extend>> relationships

 <<include>> relationships

 inheritance

 creating Interaction Overview diagram from

 creating Sequence diagram from

 defining

 description for 2nd

 extensions of

 failed end condition for

 notation for

 number of, guidelines for

 packages of

 participation with actors, showing

 preconditions of

 primary actor for

 requirements fulfilled by

 successful end condition for

 system boundaries enclosing

 trigger for

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

visibility

 of class elements

 of elements in package

 of operations

 of package import relation

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

waterfall method of software development

web site resources

 about composite structures

 Krutchen's 4+1 view model

 Object Management Group

white-box component views

	Learning UML 2.0
	Table of Contents
	Copyright
	Preface

	Chapter 1. Introduction
	Section 1.1. What's in a Modeling Language?
	Section 1.2. Why UML 2.0?
	Section 1.3. Models and Diagrams
	Section 1.4.
	Section 1.5. UML and the Software Development Process
	Section 1.6. Views of Your Model
	Section 1.7. A First Taste of UML
	Section 1.8. Want More Information?

	Chapter 2. Modeling Requirements: Use Cases
	Section 2.1. Capturing a System Requirement
	Section 2.2. Use Case Relationships
	Section 2.3. Use Case Overview Diagrams
	Section 2.4. What's Next?

	Chapter 3. Modeling System Workflows: Activity Diagrams
	Section 3.1. Activity Diagram Essentials
	Section 3.2. Activities and Actions
	Section 3.3. Decisions and Merges
	Section 3.4. Doing Multiple Tasks at the Same Time
	Section 3.5. Time Events
	Section 3.6. Calling Other Activities
	Section 3.7. Objects
	Section 3.8. Sending and Receiving Signals
	Section 3.9. Starting an Activity
	Section 3.10. Ending Activities and Flows
	Section 3.11. Partitions (or Swimlanes)
	Section 3.12. Managing Complex Activity Diagrams
	Section 3.13. What's Next?

	Chapter 4. Modeling a System's Logical Structure: Introducing Classes and Class Diagrams
	Section 4.1. What Is a Class?
	Section 4.2. Getting Started with Classes in UML
	Section 4.3. Visibility
	Section 4.4. Class State: Attributes
	Section 4.5. Class Behavior: Operations
	Section 4.6. Static Parts of Your Classes
	Section 4.7. What's Next

	Chapter 5. Modeling a System's Logical Structure: Advanced Class Diagrams
	Section 5.1. Class Relationships
	Section 5.2. Constraints
	Section 5.3. Abstract Classes
	Section 5.4. Interfaces
	Section 5.5. Templates
	Section 5.6. What's Next

	Chapter 6. Bringing Your Classes to Life: Object Diagrams
	Section 6.1. Object Instances
	Section 6.2. Links
	Section 6.3. Binding Class Templates
	Section 6.4. What's Next?

	Chapter 7. Modeling Ordered Interactions: Sequence Diagrams
	Section 7.1. Participants in a Sequence Diagram
	Section 7.2. Time
	Section 7.3. Events, Signals, and Messages
	Section 7.4. Activation Bars
	Section 7.5. Nested Messages
	Section 7.6. Message Arrows
	Section 7.7. Bringing a Use Case to Life with a Sequence Diagram
	Section 7.8. Managing Complex Interactions with Sequence Fragments
	Section 7.9. What's Next?

	Chapter 8. Focusing on Interaction Links: Communication Diagrams
	Section 8.1. Participants, Links, and Messages
	Section 8.2. Fleshing out an Interaction with a Communication Diagram
	Section 8.3. Communication Diagrams Versus Sequence Diagrams
	Section 8.4. What's Next?

	Chapter 9. Focusing on Interaction Timing: Timing Diagrams
	Section 9.1. What Do Timing Diagrams Look Like?
	Section 9.2. Building a Timing Diagram from a Sequence Diagram
	Section 9.3. Applying Participants to a Timing Diagram
	Section 9.4. States
	Section 9.5. Time
	Section 9.6. A Participant's State-Line
	Section 9.7. Events and Messages
	Section 9.8. Timing Constraints
	Section 9.9. Organizing Participants on a Timing Diagram
	Section 9.10. An Alternate Notation
	Section 9.11. What's Next?

	Chapter 10. Completing the Interaction Picture: Interaction Overview Diagrams
	Section 10.1. The Parts of an Interaction Overview Diagram
	Section 10.2. Modeling a Use Case Using an Interaction Overview
	Section 10.3. What's Next?

	Chapter 11. Modeling a Class's Internal Structure: Composite Structures
	Section 11.1. Internal Structure
	Section 11.2. Showing How a Class Is Used
	Section 11.3. Showing Patterns with Collaborations
	Section 11.4. What's Next?

	Chapter 12. Managing and Reusing Your System's Parts: Component Diagrams
	Section 12.1. What Is a Component?
	Section 12.2. A Basic Component in UML
	Section 12.3. Provided and Required Interfaces of a Component
	Section 12.4. Showing Components Working Together
	Section 12.5. Classes That Realize a Component
	Section 12.6. Ports and Internal Structure
	Section 12.7. Black-Box and White-Box Component Views
	Section 12.8. What's Next?

	Chapter 13. Organizing Your Model: Packages
	Section 13.1. Packages
	Section 13.2. Namespaces and Classes Referring to Each Other
	Section 13.3. Element Visibility
	Section 13.4. Package Dependency
	Section 13.5. Importing and Accessing Packages
	Section 13.6. Managing Package Dependencies
	Section 13.7. Using Packages to Organize Use Cases
	Section 13.8. What's Next?

	Chapter 14. Modeling an Object's State: State Machine Diagrams
	Section 14.1. Essentials
	Section 14.2. States
	Section 14.3. Transitions
	Section 14.4. States in Software
	Section 14.5. Advanced State Behavior
	Section 14.6. Composite States
	Section 14.7. Advanced Pseudostates
	Section 14.8. Signals
	Section 14.9. Protocol State Machines
	Section 14.10. What's Next?

	Chapter 15. Modeling Your Deployed System: Deployment Diagrams
	Section 15.1. Deploying a Simple System
	Section 15.2. Deployed Software: Artifacts
	Section 15.3. What Is a Node?
	Section 15.4. Hardware and Execution Environment Nodes
	Section 15.5. Communication Between Nodes
	Section 15.6. Deployment Specifications
	Section 15.7. When to Use a Deployment Diagram
	Section 15.8. What's Next?

	Appendix A. Object Constraint Language
	Section A.1. Building OCL Expressions
	Section A.2. Types
	Section A.3. Operators
	Section A.4. Pulling It Together
	Section A.5. Context
	Section A.6. Types of Constraints
	Section A.7. OCL Automation

	Appendix B. Adapting UML: Profiles
	Section B.1. What Is a Profile?
	Section B.2. Stereotypes
	Section B.3. Tagged Values
	Section B.4. Constraints
	Section B.5. Creating a Profile
	Section B.6. Working with the Meta-Model
	Section B.7. Using a Profile
	Section B.8. Why Bother with Profiles?

	Appendix C. A History of UML
	Section C.1. Take One Part OOAD...
	Section C.2. ...with a Sprinkling of OOSE...
	Section C.3. ...Add a Dash of OMT...
	Section C.4. ...and Bake for 10 to 15 Years

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

