
VISUAL QUICKPRO GUIDE

ADOBE AIR
(ADOBE INTEGRATED RUNTIME)

WITH AJAX

Larry Ullman

 Peachpit Press

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Visual QuickPro Guide

Adobe AIR (Adobe Integrated Runtime) with Ajax
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2008 by Larry Ullman

Editor: Rebecca Gulick
Copy Editor: Anne Marie Walker
Production Coordinator: Myrna Vladic
Compositor: Debbie Roberti
Indexer: Rebecca Plunkett
Cover Production: Louisa Adair
Technical Reviewer: Prayank Swaroop

Notice of rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson Education.
Adobe AIR and Adobe Integrated Runtime are registered trademarks of Adobe Systems, Inc., in the
United States and in other countries. Macintosh and Mac OS X are registered trademarks of Apple
Computer, Inc. Microsoft and Windows are registered trademarks of Microsoft Corp. Other product
names used in this book may be trademarks of their own respective owners. Images of Web sites in this
book are copyrighted by the original holders and are used with their kind permission.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark
claim, the designations appear as requested by the owner of the trademark. All other product names
and services identified throughout this book are used in editorial fashion only and for the benefit of
such companies with no intention of infringement of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-52461-4
ISBN-10: 0-321-52461-6

9  8  7  6  5  4  3  2  1

Printed and bound in the United States of America

http://lib.ommolketab.ir
http//lib.ommolketab.ir

�

		 Introduction	v iii

Chapter 1:		 Running AIR Applications	 1
Installing the Runtime . 2
Installing an Application. 4
Running an Application. 7

Chapter 2:		 Creating an Application	 9
Installing the SDK. 10
Updating Your Path on Windows. 11
Updating Your Path on Mac OS X. 13
Creating the Project’s Structure. 16
Creating the HTML File. 18
Creating the XML File. 19
Testing the Application . 23
Creating a Certificate. 25
Building the Application . 27

Chapter 3:		 AIR Development Tools	 29
Using Aptana Studio. 30
Using Dreamweaver. 37
Creating Digital Signatures. 40

Chapter 4:		 Basic Concepts and Code	 45
Technological Background . 46
Using AIRAliases.js. 49
JavaScript Frameworks. 51
ActionScript Libraries. 54
Handling Events. 56
The XMLHttpRequest Object. 59

Chapter 5:		 Debugging	 65
Using JavaScript Dialogs. 66
Using Trace. 68
Using the AIR Introspector. 70
Other Debugging Techniques. 72

Table o
f Co

n
ten

ts

Table of Contents

http://lib.ommolketab.ir
http//lib.ommolketab.ir

vi

Chapter 6:		 Making Windows	 75
Creating a New Window. 76
Creating a New Native Window. 80
Customizing Windows. 83
Accessing a New Native Window. 86
Creating Full-screen Windows. 90
Handling Window Events. 93
Creating a New Look. 96
Moving and Resizing Windows. 100

Chapter 7:		 Creating Menus	 103
Menu Terminology. 104
Creating a Menu. 106
Handling Menu Events. 111
OS-specific Menus. 115
Adding Keyboard Equivalents 118
Changing a Menu Item’s State. 123

Chapter 8:		 Importing and Exporting Data	 127
Copying. 128
Cutting. 133
Pasting. 137
Working with Different Formats. 141
Drag and Drop In . 146
Drag and Drop Out. 151

Chapter 9:		 Files and Directories	 155
Fundamentals. 156
File and Directory Browsing. 159
Accessing File Information. 164
Reading Directories. 168
Deleting Files and Directories. 172
Copying and Moving. 177

Chapter 10:		 Working with File Content	 183
Reading from Files. 184
Writing to Files. 189
An Asynchronous Example. 195
Using Binary Data. 201

Chapter 11:		 Working with Databases	 205
Connecting to a Database . 206
Creating a Database. 209
Inserting Records. 213
Handling Errors. 218
Selecting Records. 221
Updating and Deleting Records. 227

Contents

Ta
bl

e
o

f
Co

n
te

n
ts

http://lib.ommolketab.ir
http//lib.ommolketab.ir

vii

Chapter 12:		 Database Techniques	 235
Distributing Databases. 236
Using Prepared Statements. 240
Fetching Records in Groups 245
Performing Transactions. 249
Improving Performance. 260
Debugging Techniques. 261

Chapter 13:		 Networking	 263
The URLRequest Class. 264
Receiving Data. 268
Parsing Data. 271
Transmitting Data. 275
Downloading Files. 280
Downloading Large Files . 283
Uploading Files. 287

Chapter 14:		 Using Other Media	 291
Playing Sounds. 292
Playing Long Sounds. 294
Playing Streaming Sounds. 298
Controlling Sounds. 303
Displaying PDFs. 308
Handling XML Data. 312

Chapter 15:		 Security Techniques	 319
The AIR Security Model. 320
Using Non-Application Sandbox Content. 325
Using the Sandbox Bridge. 328
Storing Encrypted Data . 339
Validating Data. 343
Best Security Practices . 344

Chapter 16:		 Deploying Applications	 345
More Application Descriptor File Options. 346
Using Custom Icons. 349
Seamless Installations. 351
More Application Ideas. 354
Updating an Application. 358

		 Index	 366

Table o
f Co

n
ten

ts

Contents

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii

In
tr

o
du

ct
io

n

Introduction
i

Adobe AIR (Adobe Integrated Runtime)
is a fantastic new technology that greatly
expands the ways in which you can cre-
ate desktop applications. Traditionally,
programs like Microsoft Word, the Firefox
Web browser, and Adobe Reader have been
written in a programming language like C or
C++. Learning such technologies, while not
hard, takes some effort, and making graphi-
cal applications, let alone cross-platform
apps, using them is an even larger hurdle.
Now, with Adobe AIR you can use whatever
Web development know-how you have—
be it Adobe Flash, Adobe Flex, or standard
Ajax (HTML and JavaScript)—to create fully
functional desktop applications that will
run equally well on Windows, Mac OS X,
and Linux.

This book, which focuses solely on the Ajax
(HTML and JavaScript) approach, covers
everything you need to know to begin creat-
ing useful Adobe AIR applications today.
With a minimum of technical jargon and lots
of practical examples, this easy-to-follow text
is the perfect introduction for how you can
apply your Web development skills in new
ways. Whether you’re creating programs for
your own use, developing company software,
or repurposing a Web site to broaden its
reach, Adobe AIR is the right tool for the job.

With so many ways to create desktop appli-
cations, the natural question is: Why should
I use Adobe AIR? The first and most compel-
ling reason is that using Adobe AIR is easy. In
all likelihood you’ll just apply the knowledge
you already have. In the worst-case scenario,
if you have limited to no experience with
HTML and JavaScript, rest assured that few
technologies are as approachable as these.
The learning curve for using Adobe AIR is
therefore short but the upside is huge.

A second but very strong reason to use Adobe
AIR is that it automatically generates cross-
platform applications. The programs you cre-
ate will run equally well on Windows, Mac OS
X, and Linux regardless of the operating sys-
tem on which they were written. Adobe AIR
was designed specifically with this in mind,
and there are but few areas in which operating
system-specific steps need to be taken.

A third consideration to note is that with
Adobe AIR you’re creating graphical appli-
cations: programs that are visible, that run
outside of any console window or terminal
application, and that can take full advantage
of the user’s mouse and keyboard. This may
not sound revelatory to you, but when using
other technologies (like C or C++) to make an
application, creating a graphical application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction

ix

Introduction

ix

u	 HTML and JavaScript are understood by
a larger audience.

u	 Far more applications can be used to
generate HTML and JavaScript code.

There are 16 chapters in all, and they can
pretty much be read in any order you like.
I would, however, highly recommend that
you initially read the first four chapters in
order. They cover the most basic informa-
tion, knowledge that the other chapters will
assume you already have.

In keeping with the approach I take to any
subject, I hope you’ll find that the content in
this book, while accurate and appropriate,
is never too complicated or overloaded with
technical jargon. Also, a real emphasis has
been placed on using practical, real-world
examples. With few exceptions, most of the
demonstrations portray actions that desktop
applications would actually perform.

Because there are limits to what a book can
discuss, not everything that’s possible in AIR
is covered here. As stated earlier, the book
does not discuss how to write AIR applica-
tions using Flash or Flex (I don’t think a
good book could actually cover multiple
AIR development methods). Beyond that, a
small subset of topics has been omitted, for
example, taking command-line arguments
or using digital rights management (DRM)
for media files. Rest assured that I only made
such omissions for subjects that the vast
majority of readers will not need to know
and that are also adequately covered in the
online documentation (a fact that can’t be
said for every topic).

What You’ll Need
Fortunately, the requirements for developing
Adobe AIR applications with Ajax are quite
manageable. In fact, you don’t even need to
spend any money! To run an AIR application,

as opposed to a command-line utility isn’t
that simple.

The Adobe AIR applications you develop can

u	 Access files and directories on the user’s
computer

u	 Integrate a client-side database

u	 Securely store data in an encrypted format

u	 Contain custom windows and menus

u	 Interact with network resources, like
Web sites and servers

u	 Tap into the computer’s clipboard, sup-
porting cut, copy, paste, plus drag in and
out functionality

u	 Play sounds and videos

u	 Display PDFs

In short, an application written in AIR can
do pretty much anything you can think of!

If you still need convincing, consider that
the tools required for creating and running
AIR applications are free and supported by
an excellent company, Adobe. If the way
in which Adobe handled the invention,
promotion, and distribution of the Portable
Document Format (PDF) is any gauge, the
future looks bright for Adobe AIR.

About This Book
This book covers everything you need to
know to develop desktop applications using
Adobe AIR. Although there are three primary
technologies that you can use with AIR—
Ajax, Flash, and Flex—this book focuses
solely on just the Ajax (which is to say HTML
and JavaScript) method. I’ve chosen to only
use Ajax code because:

u	 HTML and JavaScript are easier to learn
than Flash and Flex (in my opinion).

W
h

at Yo
u

’ll N
eed

http://lib.ommolketab.ir
http//lib.ommolketab.ir

G
et

ti
n

g
 H

el
p

Introduction

�

you’ll need to download and install the Adobe
AIR runtime, which Chapter 1, “Running AIR
Applications,” covers. The runtime works on
Microsoft Windows 2000, XP, or Vista and on
Mac OS X version 10.4.9 or later. At the time
of this writing (April 2008), an alpha version
of the runtime for Linux was just released.

To create an AIR application, you’ll need
to download and install the Software
Development Kit (SDK). Chapter 2, “Creating
an Application,” walks you through those
steps. The SDK does require that you have
either the Java Runtime Environment (JRE)
or the Java Development Kit (JDK) installed
on your computer. Both are freely available
from http://java.sun.com (as part of what
is called the Java Standard Edition, Java SE).

To develop an Adobe AIR application—to
create the HTML and JavaScript code
involved, you’ll need a text editor or an
Integrated Development Environment (IDE).
If you already have a text editor that you like,
that’s perfect. Chapter 2 leads you through
the steps you would take when using a text
editor. If you prefer an IDE, like Aptana
Studio or Adobe Dreamweaver, that’s fine,
too. Chapter 3, “AIR Development Tools,”
shows you how to use both of these pro-
grams to create AIR applications.

Other than the software requirements, this
book does assume that you are comfortable
with HTML. If not, there are many fine books
available on the subject, including Elizabeth
Castro’s most excellent HTML, XHTML, and
CSS, Sixth Edition: Visual QuickStart Guide
(Peachpit Press, 2006). Some familiarity with
JavaScript (or any programming language,
really) will help make the code easier to follow.

Getting Help
Should you have problems with Adobe AIR
in general or the contents of this book in
particular, there are many resources to which

you can turn. The first, naturally, is Adobe’s
supporting Web site for AIR: www.adobe.com/
go/air/. At that site you can download the
AIR runtime and the SDK, as well as many
sample programs and code. From there you
can also find Adobe’s Developer Center pages
for AIR (www.adobe.com/devnet/air/ajax/),
which contain articles and tutorials.

I would also highly recommend that you
bookmark two areas of Adobe’s site. The first
is the online documentation provided by
Adobe for developing AIR applications using
Ajax at www.adobe.com/go/learn_air_html.
These pages discuss and demonstrate how
to tackle different tasks.

The second link you’ll frequently use is
the JavaScript Language Reference at
www.adobe.com/go/learn_air_html_jslr.
This is a more technical set of pages but
provides a detailed reference for all the
JavaScript functionality you’ll use in your
AIR applications. In short, if you forget
what features a certain widget has, these
pages will quickly provide that information.

A simple search will also turn up plenty of
third-party Web sites that discuss Adobe
AIR. When using these sites, just pay atten-
tion as to whether the site’s content specifi-
cally addresses AIR applications written
using Ajax, Flash, or Flex. Many of these sites
have support forums that are quite useful for
getting quick answers to questions (there’s
one on Adobe’s site, too).

Of course, you can (and probably should)
also use the supporting Web site I created
especially for this book. You’ll find it at
www.DMCInsights.com/air/. There you’ll
be able to download all of this book’s code,
access a supporting forum where you can
ask questions, find corrections for any
errors that may be present in the book,
and contact me directly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Running AIR Applications

�

Running AIR
Applications

1
Rather than starting to develop your own Adobe AIR (Adobe Integrated Runtime)
application right out of the box, this first chapter instead covers how to run any AIR
application. This knowledge, and some of the initial setup, are required when it’s time
to test your own work. More important, these are the steps that any potential user of
your program needs to take to see the magic you’ve created.

To begin, I cover how to install the Adobe Integrated Runtime on both Windows and
Mac OS X (Linux support for AIR will be added in later versions of the technology).
After the runtime has been successfully installed, you’ll see how easy it is to install any
AIR application. Finally, you’ll run that application on your computer. Some of the
choices you make when developing your own AIR applications will affect the installa-
tion and running of it, so pay attention to the details discussed herein.

R
u

n
n

in
g

 A
IR

 A
pplicatio

n
s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

�

Installing the Runtime
You can install AIR on the following platforms:

u	 Windows XP with Service Pack 2

u	 Windows Vista Ultimate

u	 Mac OS X 10.4.8 or later (PowerPC)

u	 Mac OS X 10.4.8 or later (Intel)

This is true as of the beta version of AIR, with
Linux support expected sometime after the
first official release.

I’ll run through the installation process using
Windows XP Pro with all the latest patches
and services packs, as well as Mac OS X
10.4.9 (Intel). The figures you’ll see are a mix
of the two operating systems, but the steps
are the same regardless.

To install the runtime:

1.	 Download the AIR installer from Adobe.

Head to www.adobe.com/go/air/
(Figure 1.1). Click Download Adobe
AIR Now, which takes you to the proper
download area (Figure 1.2).

2.	 Run the downloaded installer (Figure 1.3).

On Windows, the name of the file is
AdobeAIRInstaller.exe. Double-click
that to run the installer.

On Mac OS X, the name of the down-
loaded file is AdobeAIR.dmg. Double-click
that to mount the disk image (if it doesn’t
mount automatically), and then double-
click the installer found within the disk
image (Figure 1.3).

In
st

al
li

n
g

 t
h

e
R

u
n

ti
m

e

Figure 1.1 The home page for Adobe AIR.

Figure 1.3 The Adobe AIR
runtime installer.

Figure 1.2 The Adobe AIR download page, which also
provides links to sample AIR applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Running AIR Applications

�

3.	 Read and agree to the license (Figure 1.4).

The license is a legally binding document,
so you should read it, have your lawyer
look it over, see if it conflicts with any
other agreement you’ve entered into, and
so on. Or, you can just click I Agree. It’s
really up to you.

4.	 When the installation is complete
(Figure 1.5), click Finish.

	Tips

	 As updated versions of the AIR runtime
are released, you can install them (to
update the version of the runtime on your
computer) using these same steps.

	 Since one of the biggest benefits of AIR
applications is their ability to run on mul-
tiple operating systems without change,
expect Adobe’s support for various oper-
ating systems to grow over time.

	 The AIR runtime gets installed and exists
behind the scenes. It’s not a program that
is run on its own. You can confirm the
successful installation of the AIR runtime
by installing an AIR application.

Uninstalling the Runtime

Most people shouldn’t need to unin-
stall the runtime, but doing so is simple
enough. To uninstall the runtime on
Windows, use the Add or Remove
Programs control panel. To uninstall the
runtime on Mac OS X, double-click the
Adobe AIR Uninstaller program, which
should be in your Applications directory.

In
stallin

g
 th

e R
u

n
tim

e

Figure 1.4 To install the runtime, you first have to
agree to the license.

Figure 1.5 Hooray! You can now install AIR applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

�

Installing an Application
The AIR runtime needs to be installed only
once on your computer for you to be able
to install any number of AIR applications.
Throughout the course of this book you’ll cre-
ate several AIR apps (which is the point of the
book, after all), but many apps are available
and can be downloaded from the Internet as
well. Along with any number of third-party
AIR applications, Adobe provides some of its
own, one of which I’ll use in these steps.

To install an AIR application:

1.	 Download an application from the Internet.

You can find a handful of applications on
Adobe’s Web site (see www.adobe.com/
devnet/air/flex/samples.html) and
find more by searching the Web. For this
example, I’ll install a playful application
from Adobe called ScreenBoard. Note
that the app file you’ll download is gener-
ally not operating-system-specific.

2.	 Double-click the downloaded file (Figure
1.6) to begin the installation process.

AIR applications use a .air extension
and display a simple icon (it looks like a
cardboard box).

When you install the very first AIR
application, you’ll get a security warning
about opening the Adobe AIR Application
Installer for the first time (Figure 1.7).
Click Open to proceed with the installa-
tion, and you won’t see this message again.

In
st

al
li

n
g

 a
n

 A
pp

li
ca

ti
o

n

Figure 1.7 AIR applications are installed using the
Adobe AIR Application Installer. On most systems,
you’ll need to approve this application running the
first time it is requested.

Figure 1.6 The ScreenBoard
application, with its .air
extension that indicates it uses
the Adobe Integrated Runtime.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Running AIR Applications

�

3.	 Read and pay attention to everything
on the initial screen (Figure 1.8). Then
click Install if you still want to install
the application.

This installation screen is very important
and worth looking at (more so than for
most applications you might install).
For starters, you’ll see the application’s
publisher (the company or person who
created it) and the name of the applica-
tion. In the next chapter you’ll learn how
to set these values when making your
own program.

The installer also indicates what system
access the program will have. It’s very
important that AIR application creators,
and the people who use the programs,
are aware of the associated security
issues. Adobe AIR allows Web devel-
opers to create desktop applications,
which means that an AIR application
can do damage to the user’s computer,
something that could never happen with
a standard Web site (with a few excep-
tions). The security issues are topics that
are repeatedly addressed throughout
this book and in Chapter 15, “Security
Techniques,” in particular.

4.	 On the next screen (Figure 1.9) decide
where the application should be installed
and whether it should automatically be
started after installation. Click Continue.

On Windows, the default is to install the
application within the Program Files
directory, just like any other application.
Windows users are also given the option
of creating a desktop shortcut to the
application (Figure 1.10).

continues on next page

In
stallin

g
 an

 A
pplicatio

n

Figure 1.8 The installation process begins with
detailed information about the application, its
creator, and the security implications.

Figure 1.9 The installer allows the user to specify
where the program should be located.

Figure 1.10 The Windows installer provides the option
of adding a desktop shortcut for the new application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

�

On Mac OS X, the default is to install AIR
programs within the Applications folder,
just like any other application.

Some programs will also indicate where
they think they should be installed. With
the ScreenBoard example, its default
option is to store it within a special AIR
Examples folder (within the Applications
or Program Files directories).

Ta-da! That’s it. No big deal. If you
checked the corresponding box in the
previous step (Figures 1.9 and 1.10),
the application will start when the
installation finishes.

	Tip

n	 If you attempt to install an AIR applica-
tion that has already been installed, you
will be alerted to the existing installa-
tion (Figure 1.11). If you install a newer
version, you will be given the option of
replacing the original installation with
the update.

In
st

al
li

n
g

 a
n

 A
pp

li
ca

ti
o

n

Figure 1.11 Running the installer for the same version
of an application already installed gives this result.

Uninstalling an Application

On Windows you can uninstall an AIR
application as you would any other
application by using the Add or Remove
Programs control panel. On Mac OS X,
you can quickly uninstall an application by
trashing its file (found in Applications, by
default). Alternatively, on both platforms,
if you attempt to reinstall that same appli-
cation, you are provided with an uninstall
option (see Figure 1.11).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Running AIR Applications

�

Running an Application
After you’ve successfully installed an AIR
application, you’ll have myriad ways to run
it. You could probably figure out all these on
your own, but the point is that once you’ve
installed the runtime and the application,
you’ll see that AIR applications behave just
like any other program on your computer.

To run an application:

u	 Check the Start application after instal-
lation box during the installation process
(Figures 1.9 and 1.10).

u	 On Windows, use the desktop shortcut
if one was created (Figure 1.12).

u	 On Windows, use the Start menu
(Figure 1.13).

u	 On Mac OS X, double-click the appli-
cation’s icon (most applications will be
installed in the Applications folder by
default) (Figure 1.14).

u	 On Mac OS X, add the application to
your Dock so it can be launched from
there (Figure 1.15).

R
u

n
n

in
g

 an
 A

pplicatio
n

Figure 1.13 AIR applications are listed among All
Programs on the Windows Start menu.

Figure 1.12 The shortcut to the
ScreenBoard application, as
found on the Windows desktop.

Figure 1.14 The ScreenBoard
application on Mac OS X.

Figure 1.15
The ScreenBoard
application is placed
on the Dock.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

�

	Tips

n	 In each of the images, the ScreenBoard
icon happens to be the default AIR
application icon. You can create custom
icons for your AIR applications to be used
instead.

n	 The ScreenBoard application lets you
draw on your screen, on top of every
other program (Figure 1.16). This isn’t
the most important use of the AIR tech-
nology, but it does allow for some legal,
nondestructive graffiti.

R
u

n
n

in
g

 a
n

 A
pp

li
ca

ti
o

n

Figure 1.16 The actual ScreenBoard program in action (on Mac OS X).

n	 If you have created or modified a file
called mms.cfg, which is used by the
Flash Player, it can cause problems when
running AIR applications. Temporarily
remove it from its primary location (e.g.,
C:\winnt\system32\macromedia\flash\
mms.cfg on Windows XP or /Library/
Application Support/Macromedia/mms.
cfg on Mac OS X) to fix the conflict.
This shouldn’t be a problem for most
users, however.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

�

Creating an
Application

2
When creating an Adobe AIR application, you have your choice of technologies and
development tools. The three technology options are Ajax (HTML and JavaScript),
Adobe Flex, and Adobe Flash. In this book I focus solely on programs based on Ajax.
The list of development tools you could use is practically limitless. In this chapter I go
through the steps for creating an AIR application using any text editor and Adobe’s
AIR SDK (Software Development Kit). In the next chapter I show you how to use
the Dreamweaver CS3 and Aptana Studio Integrated Development Environments
(IDEs) instead.

Creating an AIR application starts with laying out a project folder. Next, you’ll create
two text files: an HTML file and an XML file. The final step is to use the Adobe AIR
SDK tools to test and build the application from the two files. Because you’ll need
these AIR utilities, the first couple of sections of this chapter cover the installation of
the SDK and any configuration of your operating system that is required. These initial
steps are only necessary once.

Creatin
g

 an
 A

pplicatio
n

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

10

Installing the SDK
The Adobe AIR SDK is a separate entity
from the AIR runtime you need to install
to run your applications. The SDK contains
lots of goodies:

u	 Two command-line tools for testing and
packaging applications

u	 Frameworks (libraries of useful code)

u	 Samples (like application icons)

u	 An XML file template

The SDK requires you to install either the
Java Runtime Environment (JRE) or the Java
Development Kit (JDK) on your computer.
Both are freely available from http://java.
sun.com (as part of what is called the Java
Standard Edition, Java SE). After you’ve
installed either program (the JRE is likely
already installed if you have a Mac; you may
need to install it if you’re running Windows),
you can follow these next steps.

To install the SDK:

1.	 Download the SDK for your operating
system from Adobe (Figure 2.1).

The SDK is available at http://www.
adobe.com/products/air/tools/sdk/.
As of this writing, the SDK is available
for both Windows and Mac OS X.

In
st

al
li

n
g

 t
h

e
S

D
K

Figure 2.1 Download the SDK for your operating sys-
tem (you’ll need to agree to the license as well).

Figure 2.2 The contents of the Adobe AIR SDK.

2.	 Open and expand the downloaded file
(Figure 2.2).

Windows users need to expand the ZIP
archive. Mac users need to mount the
.dmg (disc image) file.

3.	 Copy the entire contents of the down-
loaded file to another location on your
computer.

Where you place the SDK folder is up to
you. You might want it on your desktop
or within a folder in your home directory.
Whichever location you choose, you’ll
need to remember it for subsequent steps.

4.	 Update your system path so that it
includes the SDK bin directory.

What this means and how you accom-
plish it are both discussed in the next
two sections of the chapter.

	Tips

n	 JRE and JDK are requirements of only the
AIR SDK. End users only need to install
the Adobe AIR runtime (see Chapter 1,
“Running AIR Applications”).

n	 Along with the SDK, you can also down-
load lots of AIR development documen-
tation, sample applications, and source
code from Adobe’s site.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

11

Updating Your Path
on Windows
The two tools installed by the SDK—the
AIR Development Tool (adt) and the AIR
Debug Launcher (adl)—are used from the
command line. This means you’ll run them,
on Windows, through a console prompt, not
in a graphical interface. The command line
syntax is really easy to use, but there is one
catch: Both programs must be “known” by
your computer. To accomplish this, you need
to add the SDK folder’s bin directory (see
Figure 2.2) to your system’s path.

The path is simply a listing of where the
computer can find programs that might be
invoked. You probably don’t normally deal
with a path because you don’t normally run
applications from the command line. But fol-
low these simple steps and you’ll be fine.

To modify your system’s path:

1.	 Close any open console windows.

The path change you’re about to make
takes effect for any console windows (aka
DOS prompts) opened after making the
change. To avoid confusing problems
later, close any open console windows
prior to changing the path.

2.	 Bring up the System Properties dialog
by right-clicking on My Computer and
selecting Properties (Figure 2.3).

3.	 Within the System Properties dialog,
click the Advanced tab (Figure 2.4).

4.	 Click Environment Variables.

You can see this button at the bottom of
Figure 2.4.

continues on next page

U
pdatin

g
 Yo

u
r Path

 o
n

 W
in

do
w

s

Figure 2.3
Accessing
the System
Properties.

Figure 2.4 The system path is editable via the
Environment Variables button on the Advanced tab.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

12

5.	 In the Environment Variables dialog,
click Path in the System variables listing
to select it (Figure 2.5).

6.	 Click Edit to bring up the Edit System
Variable dialog.

7.	 At the end of Variable value, add a semi-
colon plus the full path to the SDK bin
directory (Figure 2.6).

It’s very important that you add the SDK
path to the existing value; you should not
replace the existing value with just the
SDK path.

To confirm the correct full path, you can
open the SDK folder in an Explorer window
(Figure 2.7) and copy the address. Make
sure that what you’re adding to the Variable
value includes the final \bin, because that’s
the most important part here.

8.	 Click OK in all three dialogs to close them.

	Tip

n	 You don’t technically need to modify the
path to use the command-line tools. But
if you don’t, when it comes time to invoke
them, you’ll need to type something like
C:\”Documents and Settings”\”Larry
Ullman”\Desktop\SDK\bin\adt instead
of just adt. Changing the path is a worth-
while shortcut.

U
pd

at
in

g
 Y

o
u

r
Pa

th
 o

n
 W

in
do

w
s

Figure 2.5 The list of editable system variables
is found in the bottom half of the Environment
Variables window.

Figure 2.6 For the Path variable, the value lists all
of the directories where the computer might find
programs to execute. Each directory is separated
by a semicolon.

Figure 2.7 The SDK
folder, located on my
desktop, with its path
(or address) viewable
in an Explorer window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

13

Updating Your Path
on Mac OS X
The two tools installed by the SDK—the AIR
Development Tool (adt) and the AIR Debug
Launcher (adl)—are used from the com-
mand line. This means you’ll run them, on
Mac OS X, through the Terminal application,
not in a graphical interface. The command-
line syntax is really easy to use, but there is
one catch: Both programs must be “known”
by your computer. To accomplish this, you
need to add the SDK folder’s bin directory to
your system’s path.

The path is simply a listing of where the
computer can find programs that might be
invoked. You probably don’t normally deal
with a path because you don’t normally run
applications from the command line. But fol-
low these simple steps and you’ll be fine.

To modify your system’s path:

1.	 Close any open Terminal windows.

The path change you’re about to make
takes effect for any Terminal windows
opened after making the change. To
avoid confusing problems later, close any
open Terminal windows before changing
the path.

2.	 Confirm which shell you are using by
selecting Terminal > Window Settings
to bring up the Terminal Inspector
(Figure 2.8).

continues on next page

U
pdatin

g
 Yo

u
r Path

 o
n

 M
ac O

S
 X

Figure 2.8 On Unix systems, including
Mac OS X, you need to know which shell
you’re using to successfully change the
path. The current shell can be found in
the Terminal Inspector.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

14

How you change the path depends on
which shell you’re using (if you’re really
curious about what shells are, search the
Web for “unix shell”). The Shell page of the
Terminal Inspector names the shell in use.
The most common shells are called (the
program’s actual name is in parentheses):
s	 Bourne (sh)
s	 Bourne Again Shell (bash, and I’m not

making that up).
s	 C shell (csh)
s	 T shell or T C shell (tsch)
s	 Korn shell (ksh)

The most recent versions of Mac OS X are
preset to use the bash shell (as in Figure
2.8). For these instructions, I’ll assume
you are using the bash shell. If your
Terminal Inspector says otherwise, you’ll
need to do an online search for how to
change that particular shell’s path.

U
pd

at
in

g
 Y

o
u

r
Pa

th
 o

n
 M

ac
 O

S
 X

Figure 2.9 A new Terminal window.

Figure 2.10 The complete list of files in my home directory.

3.	 Open a Terminal window (File > New
Shell or Command + N), if one is not
already open (Figure 2.9).

4.	 Move to your home directory by typing cd
and pressing Return.

This shouldn’t be necessary since you’re
likely in your home directory when you
create a new Terminal window, but
follow this step just to be safe. The cd
command is used to change the directory.
Invoking it without any following values
(like naming a directory) will move you
into your home directory.

5.	 List all the current files by typing ls -a
and pressing Return (Figure 2.10).

The ls command lists the contents of
a directory; the -a option indicates that
all the files should be listed, including
hidden ones.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

15

the first Tip that follows). Each directory
in the path is separated by a colon.

If your .bash_profile document
already has an export PATH… line, just
add the colon plus the full path to the
current value.

  9.	 Save and close the file.

10.	 Close the Terminal window.

The change to the path will take effect the
next time a Terminal window is opened.

	Tips

n	 In most Mac OS X programs you can
insert into a file the full path to a folder
by dragging that folder onto the file.
For example, if you grab the SDK bin
folder in the Finder and drag it into the
.bash_profile file in BBEdit, the full path
to bin will be inserted into .bash_profile
wherever you release the mouse button.

n	 You don’t technically need to modify the
path to use the command-line tools. But
if you don’t, when it comes time to invoke
them, you’ll need to type something like
/Users/larryullman/Desktop/AIR/SDK/
bin/adt instead of just adt. Changing the
path is a worthwhile shortcut.

U
pdatin

g
 Yo

u
r Path

 o
n

 M
ac O

S
 X

Figure 2.11 The bbedit .bash_profile command opens .bash_profile in BBEdit.

6.	 If there is not a file called .bash_profile
in the directory listing (Figure 2.10), cre-
ate one by typing touch .bash_profile.

Files that begin with a period are nor-
mally special, hidden files. This particular
file, .bash_profile, is used to affect how
the bash shell behaves. If the file does not
already exist, the touch command will
create it.

7.	 Open the .bash_profile file in any text
editor (Figure 2.11).

I use the popular (and most excellent)
BBEdit text editor, so I can open the
file by typing bbedit .bash_profile
from the command line. You can also
use Bare Bones’ free TextWrangler
(www.barebones.com) for this purpose or
one of the many command-line editors:
vi, vim, emacs, pico, and so on.

8.	 In the .bash_profile file, add this line:

export PATH=”$PATH:/path/to/AIR/
 SDK/bin/”

The export PATH command changes
the path for the bash shell. The value of
the path should be the current path (rep-
resented by $PATH) plus the full path to
the SDK bin directory (you’ll need to use
the actual path in place of /path/to/, see

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

16

Creating the Project’s
Structure
Although it’s not mandatory to create some
sort of exact directory structure to make AIR
applications, I think doing so is for the best.
Just like any seasoned Web developers will
logically organize their sites’ files and assets,
so will smart programmers. Not every project
mandates the same structure and you might
prefer to use different naming schemes, but
the principles put forth in these steps are
well worth heeding.

Note that in the following steps I go through
some best practices for any project you cre-
ate. The specific example you’ll make in this
chapter won’t need, for example, folders for
CSS and JavaScript files, but I mention them
here just to be thorough.

To create an application’s structure:

1.	 Create a new folder somewhere on
your computer for your AIR application
development.

Cr
ea

ti
n

g
 t

h
e

Pr
o

je
ct

’s
 S

tr
u

ct
u

re

Figure 2.12 The HelloWorld folder will contain the first sample application’s files.

You absolutely know how to do this, I’m
certain (right-click and then choose New >
Folder on Windows; Command + Shift + N
or choose File > New Folder on Mac OS X).
For example, you might, within your docu-
ments directory or on your desktop, create
a folder called AIR Development. It’s impor-
tant that all of your AIR work be stored in
the same area, so it’ll be easier and faster to
begin developing and building apps.

2.	 Within the folder you created in step 1,
create a new folder for each new project.

Create a new folder for each new appli-
cation but put all of these folders within
the same parent folder (the AIR
Development folder)

3.	 Give the new folder the same name as the
application (Figure 2.12).

For this first sample application, I’ll cre-
ate a good old-fashioned Hello, World!
program (it’s a mainstay of any program-
ming text). So I’ll create a folder called
HelloWorld into which all my files will go.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

17

4.	 Within the application folder named
in step 3, create a folder for Cascading
Style Sheets.

I’ll call this new folder css, for obvious
reasons. It’ll store any CSS files used
by the application. Keep in mind that
because HTML is the basis for the AIR
application, you could logically organize
your AIR program folder as you would a
Web site.

5.	 Within the application folder, create
a folder for JavaScript.

Not surprisingly, I’ll call this folder js.
Any JavaScript files will be stored here.

6.	 Within the application folder, create a
folder for images.

This one will be called (…drumroll…)
images. You might also call it assets or
imgs. It doesn’t really matter, but the
graphics used by the program will go here.

7.	 Within the application folder, create a
folder for icons (Figure 2.13).

On a whim, I’ve decided to call this
folder icons. As you’ll see in Chapter 16,
“Deploying Applications,” you can create
icons unique to your program. These are
different than the images and graphics
used within the program.

	Tip

n	 Other folders you might have in your
application directory include audio
(for storing sounds used by the pro-
gram); docs (for any documentation); or
resources (for other assets). Again, these
names and folders aren’t obligatory, just
prudent suggestions.

Creatin
g

 th
e Pro

ject’s Stru
ctu

re

Figure 2.13 A basic application folder layout.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

18

Creating the HTML File
The first file in the application that I’ll create
will be the base HTML file (aka the “top-
level” page). When creating Adobe AIR appli-
cations using HTML and JavaScript, this
HTML file will essentially be the application.

One of the great advantages of AIR is that you
can leverage your existing Web development
knowledge to create desktop applications.
This means that you can use the same skills
and technologies you have for creating a Web
page’s look to create an application’s look.
Also, you can run the application’s HTML file
in a Web browser, and it will look exactly like
the application when it’s run on its own.

For this demonstration example, I’ll go with
the classic (i.e., done to death) Hello, World!
page. The resulting application won’t do any-
thing useful, but these steps of developing,
packaging, and running your own AIR appli-
cations will apply to the rest of the book.

To create an HTML file:

1.	 Begin a new HTML document in your
text editor or IDE (Script 2.1).

<html>

<head>

	 <title>Hello, World!</title>

</head>

Because you’re not actually making a
Web site, you can eliminate some of the
extra HTML stuff, like the DOCTYPE, the
META tags, and so on.

2.	 Add the HTML body.

<body>

	 <h1>Hello, World!</h1>

</body>

Cr
ea

ti
n

g
 t

h
e

H
TM

L
Fi

le

As mentioned earlier, this won’t be the
most impressive app you’ve ever done,
but you can take solace in seeing how
simple it’ll be to create your own cross-
platform desktop applications.

3.	 Complete the HTML.

</html>

4.	 Save the file as HelloWorld.html in your
application folder.

The file should be saved in the root
of the application folder, not within
any subdirectories.

	Tips

n	 The HTML rendering engine—the thing
that interprets HTML code to create a
graphical appearance—used by AIR is
called WebKit (www.webkit.org). This
same engine is at the heart of Apple’s
Safari Web browser, so Safari will display
the best imitation of how the actual
program will look and function. Safari is
available for both Macs and Windows as
of version 3.

n	 AIR applications can be based on Ajax,
Flash, or Flex. Ajax AIR programs have a
base .html file. Flash and Flex AIR appli-
cations have a base SWF (Shockwave
format) file instead.

Script 2.1 This HTML file is the basis of the sample
AIR application.

1	 <html>

2	 <head>

3		 <title>Hello, World!</title>

4	 </head>

5	 <body>

6		 <h1>Hello, World!</h1>

7	 </body>

8	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

19

Creating the XML File
Along with an HTML file, your AIR applica-
tions must also have an XML file, which is
referred to as the application descriptor file.
This file provides all of the metadata (infor-
mation about the program) for the applica-
tion. This includes:

u	 Name

u	 Version

u	 Creator

u	 Description

u	 Copyright

u	 Icons

u	 Default installation folder

u	 Window appearance and behavior

u	 And more

Much of this information is reflected in an
application’s About menu (Figure 2.14) and
also appears during the installation process
(Figure 2.15).

If you’ve never worked with XML before,
don’t worry: It’s not that much different than
an HTML file. I’ll go through everything you
need to know in these steps. I do focus here
on the required XML data. In other chapters,
you’ll see what other settings you might set
here, and in Chapter 16 a few more of the
optional elements are covered.

Figure 2.14 The application’s About window, which
shows the program’s name, copyright, and creator.

Figure 2.15 Some of the information in the applica-
tion descriptor file is used on the installation screen.

Creatin
g

 th
e X

M
L File

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

20

To create the XML file:

1.	 Begin a new XML document in your text
editor or IDE (Script 2.2).

<?xml version=”1.0” encoding=
 ”utf-8” ?>

XML files are just plain-text documents
that can be created in most applications.
XML files start with the XML declara-
tion (this line), which indicates the XML
version being used (1.0 is fine) and the
encoding (see the first Tip that follows).

2.	 Add the root application tag.

<application>

</application>

All XML files have one base tag (just like
HTML files have the base html tag). For
the AIR application descriptor file, this
should always be application. The rest of
the XML data goes between the opening
and closing application tags.

3.	 Add the xmlns attribute to the opening
application tag.

<application xmlns=”http://ns.adobe.
 com/air/application/1.0”>

This attribute stands for XML
namespace. Namespaces are an advanced
programming concept that you don’t
need to know. What you do need to know
is that the value of the attribute indicates
the earliest version of the AIR runtime
that the application supports. The value
here refers to the first official release of
AIR. Programs written using that name-
space should be able to run on any ver-
sion of the AIR runtime that comes later.

Cr
ea

ti
n

g
 t

h
e

X
M

L
Fi

le

Script 2.2 The XML file is the application descriptor
file, and is required by every AIR program.

1	 <?xml version=”1.0” encoding=”utf-8” ?>

2	 <application xmlns=”http://ns.adobe.com/

	 air/application/1.0”>

3	

4		 <id>com.dmci.air.HelloWorld</id>

5	

6		 <filename>Hello World</filename>

7	

8		 <version>1.0</version>

9	

10		 <initialWindow>

11		

12			 <content>HelloWorld.html</content>

13	

14			 <visible>true</visible>

15	

16		 </initialWindow>

17	

18	 </application>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

21

6.	 Between the opening and closing
application tags, add a version element.

<version>1.0</version>

This refers to the version of this applica-
tion. It’s a made-up value but should be
meaningful. Beta versions of applications
are normally given a number less than 1.
As a convention, from version 1 on, major
updates get the next logical value (from
1 to 2, 2 to 3, etc.) and minor updates are
normally assigned as a decimal (a minor
update to version 1.1 would be 1.2). The
most important thing is that updated
versions of an application are given
higher version numbers so that it’s clear
to the end user when a version consti-
tutes an upgrade.

As you can see in Script 2.2, every other
element (or tag pair) is placed between
the opening and closing application tags.
It does not matter the order in which
they’re written.

7.	 Between the opening and closing
application tags, add an initialWindow
element.

<initialWindow>

</initialWindow>

The initialWindow element will contain
values dictating the content and appear-
ance of the application’s primary window.

continues on next page

Creatin
g

 th
e X

M
L File

Figure 2.16 The shortcut to the
installed application, which uses
the application’s filename from
the XML file.

4.	 Between the opening and closing
application tags, add an id element.

<id>com.dmci.air.HelloWorld</id>

The id value is the unique AIR reference
for a program. The recommendation is to
use a syntax like com.company.applica-
tion. This can (and will) be a made-up
value, but you should use something
unique and meaningful. For example,
an Adobe AIR application would have
an id of com.adobe.air.something. For
this application created by my company
(DMC Insights, Inc.), I’ll use com.dmci.air.
HelloWorld. You should change this to
something applicable to you.

You are limited to using the letters A–Z,
the numbers 0–9, the period, and the
dash. You cannot use spaces. The maxi-
mum length of the id is 255 characters.

5.	 Between the opening and closing
application tags, add a filename
element.

<filename>Hello World</filename>

This is the name of the application as the
users will know and see it. The application
name appears in its About menu (Figure
2.14), in shortcuts (Figure 2.16), in the
Start menu (on Windows), and so forth.

Conversely, the appID value is a behind-
the-scenes reference to the program,
which the end user will likely never see.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

22

8.	 Between the opening and closing
initialWindow tags, add a content
element.

<content>HelloWorld.html</content>

The value of the content element is
the exact name of the base HTML file
(Script 2.1). It’s really best to store both
the HTML and XML files in the same
folder, so just the HTML file’s name
would be the value. If you choose not
to put both files in the same place,
you’ll need to make this a relative path
to the HTML file from this XML file
(for example, ../HelloWorld.html or
content/HelloWorld.html).

9.	 Between the opening and closing
initialWindow tags, add a visible
element.

<visible>true</visible>

In these steps I want to focus on the
required elements of the application
descriptor file. The visible element,
part of initialWindow, is not required
but, for some very strange reason, its
default value is false. What this means
is that, by default, the application you
write, test, and build, will run but won’t
be visible! Assuming that you actually
want the user to be able to see your pro-
gram when it’s running, add this line.

Cr
ea

ti
n

g
 t

h
e

X
M

L
Fi

le

10.	 Save the file as application.xml in the
same directory as HelloWorld.html.

You can give this file any name (with a
.xml extension), but application.xml
is conventional. You could also call it
HelloWorld.xml or HelloWorld-app.xml
(indicating it’s a descriptor file for the
Hello World application).

	Tips

n	 Encoding refers to the types of characters
that the file will support. UTF-8 is per-
haps the most popular encoding choice
and should be safe for your XML files.

n	 One nice feature of some AIR IDEs (like
Dreamweaver with the AIR Extension
or Aptana) is that they’ll help create the
XML file for you. See Chapter 3, “AIR
Development Tools,” for more.

n	 If you created two AIR applications with
the same id, they would be considered
the same program by the runtime and
both could not be installed. Two appli-
cations can have the same filename,
although that would be confusing to the
end user.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

23

Testing the Application
Once the entire application has been created
(in this case, that’s just one HTML file and
one XML file), it can be tested and then built
(building is the final step, where you make
the installable file). To test an application,
you can use the command-line AIR Debug
Launcher (adl), which is installed as part of
the SDK. The syntax is simply:

adl ApplicationXMLFile.xml

Being able to test applications as you’re
developing them is an important feature.
The alternative is to build the entire applica-
tion, install it, and then see how it runs. But
by following the steps in this section, you
can cut to the chase, and then only build the
application once you’ve finalized it.

To test an AIR application:

1.	 Access your computer via a command-
line interface.

On Windows, select the Run option in
the Start menu, and then enter cmd in
the prompt (Figure 2.17). Figure 2.18
shows the result.

Mac OS X users just need to open the
Terminal application (Applications >
Utilities). If a window doesn’t open auto-
matically, select File > New Shell or press
Command + N.

2.	 Move to the project directory by typing
cd path/to/HelloWorld and pressing
Enter/Return (Figure 2.19).

You’ll need to change the exact command
(the part after the cd) so that it matches
your computer and location of the appli-
cation folder. As a trick, you can type cd,
followed by a space, and then drag the
HelloWorld folder into this window to
automatically enter its full path.

continues on next page

Testin
g

 th
e A

pplicatio
n

Figure 2.17 Use the Run command to get to the con-
sole window on Windows.

Figure 2.18 A DOS prompt or console window on
Windows (although yours will likely have white text
on a black background).

Figure 2.19 Moving into the HelloWorld application
folder within a Terminal window on Mac OS X.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

24

3.	 Type the following and press Enter/
Return (Figure 2.20).

adl application.xml

This should launch the application in a
separate window (Figure 2.21). Because
the XML file contains the name of the
root document (the HTML file), this
simple command is all you need to type
to test the application.

If you see a message about Java not being
a recognized command (Figure 2.22),
that means you haven’t yet installed the
JRE, so you’ll need to do that and then
return to this step. If you see a message
about adl not being a recognized com-
mand, that means the adl utility is not in
your system path (see the steps for updat-
ing your path earlier in the chapter).

4.	 Quit the adl utility to close the applica-
tion and return to the command line.

Te
st

in
g

 t
h

e
A

pp
li

ca
ti

o
n

Testing in a Web Browser

Because the AIR applications being built
in this book are based on Ajax (aka HTML
and JavaScript), they can often be tested
in a Web browser as well. AIR uses the
same rendering engine as Apple’s Safari,
so that browser will provide the most
accurate results (and it’s available on
both Mac OS X and Windows, as of ver-
sion 3). Firefox, which also runs on both
platforms, should also work well. Firefox
has an additional benefit—its excellent
JavaScript debugging tools.

Although you could, theoretically, test your
applications in Internet Explorer, I would
advise against doing so for two reasons.
First, the JavaScript may not behave the
same in IE as it will in your AIR apps (this
is a common Ajax problem). Second, IE is a
notoriously tricky browser that makes even
Web development and testing much harder
than it should be (in my opinion, at least).

Figure 2.20 Invoking the AIR Debug Launcher on Windows.

Figure 2.22 If the adl program cannot find the Java Runtime Environment (JRE), you’ll see an error like this.

Figure 2.21 Running
the sample application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

25

To create a certificate:

1.	 Access your computer via a command-
line interface.

I go through the specific operating-system
steps for both Windows and Mac OS X in
the preceding section of the chapter.

2.	 Move to your AIR development directory
by typing cd path/to/AIR Development
and pressing Enter/Return.

It’d be best to create the certificate in
your AIR development directory (assum-
ing you created one per the recommenda-
tions earlier in the chapter). You’ll need
to change the exact command (the part
after the cd) so that it matches your com-
puter and location of that folder.

If you’d rather create the certificate
somewhere else (like on your desktop),
that’s fine, but still use the cd command
to make sure that you’re in that directory
before proceeding.

3.	 Type the following and press Enter/
Return (Figure 2.23).

adt –certificate -cn
 CertificateCommonName 1024-RSA
 certName.pfx somePassword

continues on next page

Creatin
g

 a Certifi
cate

Creating a Certificate
Once you’ve successfully tested (and
debugged) your AIR application, you can
build it, which turns it into a distributable
format for end users to install. However, as
a security measure, every AIR application
requires a digital signature certificate. This is
intended to prove the authenticity of a pro-
gram, thereby reassuring the end user that
it’s safe to install the application.

There are two kinds of certificates you can
use. The first is purchased from an accred-
ited company like Thawte or VeriSign. These
certificates imply the highest level of security
because those companies will verify your cre-
dentials. The second option is a self-signed
certificate, something you create that allows
you to build installable AIR applications but
offers no real assurance to the application’s
end users. This option is free but essentially
means that you’re the one telling end users
that you are legitimate. If they don’t know
you, that’s not worth much. But for testing
purposes, creating a self-signed signature
makes sense. In these next steps, I’ll show
you how to do so using the command-line
ADT (AIR Development Tool) utility.

Figure 2.23 Creating a new self-signed certificate called certName.pfx.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

26

This line creates a self-signed certificate
using only the required options (and
I’ve italicized values you’ll likely want to
change). The CertificateCommonName
string should be replaced with a “com-
mon name” you provide for the certifi-
cate. This might be your company’s name
or something else useful and indicative
of you, the creator of the application that
will use this certificate.

The certName.pfx is the name of the
generated certificate file. Again, give this a
meaningful name (like MySelfSignedCert)
but you must use a .pfx extension. Finally,
the somePassword text will be the pass-
word associated with this certificate. You’ll
need to provide this when building the
application (in the next series of steps).

The 1024-RSA text indicates the type
of key used for this certificate (which
impacts how tough, security-wise, it is).
A tougher alternative is to use 2048-RSA.

4.	 Check the folder’s contents for the newly
created certificate.

	Tips

n	 For a full list of certificate-generation
options, type adt --help or see the
Adobe AIR official documentation for
all the details.

n	 Each certificate created by ADT will be
unique, even if you duplicate the steps
taken to make them. When creating
updated versions of an application, be
certain to use the same certificate as was
originally associated with that program.

n	 The self-signed certificate will be valid for
five years from the time it was created.
This also means, per the first tip, that any
application created using a self-signed cer-
tificate can be updated for five years. After
that you’ll need to release the program as
a new entity, using a new certificate.

Cr
ea

ti
n

g
 a

 C
er

ti
fi

ca
te

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an Application

27

To include directories in the build, which
you’ll need to do if those directories contain
CSS files, JavaScript, images, and so forth,
you would use

adt -package -storetype pkcs12 -
 keystore certName.pfx AIRFileName.air
 ApplicationXMLFile.xml
 MainHTMLFile.html css icons images js …

Let’s use this information to package the
Hello, World! test program.

To build an application:

1.	 Access your computer via a command-
line interface.

I go through the specific operating-system
steps for both Windows and Mac OS X
earlier in the chapter.

2.	 Move to the project directory by typing
cd path/to/HelloWorld and pressing
Enter/Return.

Again, you’ll need to change the exact
command (the part after the cd) so that
it matches your computer and location
of the application folder.

3.	 Type the following and press Enter/
Return (Figure 2.24).

adt -package -storetype pkcs12
 -keystore /path/to/certName.pfx
 HelloWorld.air application.xml
 HelloWorld.html

continues on next page

B
u

ildin
g

 th
e A

pplicatio
n

Building the Application
When your application is completed,
debugged, and working as it should, you
can build, or package, the application. This
step is where you’ll create the .air file that
can be distributed and installed.

The syntax for using adt to build an applica-
tion is:

adt -package -storetype pkcs12
 -keystore certName.pfx AIRFileName.air
 ApplicationXMLFile.xml
 MainHTMLFile.html …

The -package argument specifies that you
want to build a packaged application. The
-storetype pkcs12 -keystore certName.
pfx identifies the certificate to use for this
application (as created using the previous
steps). The next argument is the name of the
.air file that should be generated. You then
list the XML file, the base HTML file, and
every other asset that needs to be packaged
together. To be clear, every file, folder, or
resource that an application uses needs to be
mentioned on the adt line.

Figure 2.24 The adt program creates the .air file by packaging together
all of the named elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

28

You’ll need to change the /path/to/
certName.pfx part of this command to
correspond to the actual location of your
self-signed certificate, relative to this
folder. For example, when I executed this
command (Figure 2.24), I was within the
HelloWorld folder, which itself is within
the AIR Development directory. Also
within AIR Development is certName.pfx,
the certificate created in the previous
series of steps. So the actual command
I used was ../certName.pfx, which
means go up one directory and you’ll
find certName.pfx there. The only other
caveat is that this entire command needs
to be entered on one line (i.e., you can’t
hit Enter or Return midway through).

After typing in all this and pressing Enter
or Return, you’ll be prompted for the
certificate’s password.

B
u

il
di

n
g

 t
h

e
A

pp
li

ca
ti

o
n

Figure 2.25 The newly generated HelloWorld.air file is the distributable and
installable version of the application.

4.	 Confirm the success of the operation by
looking for the new HelloWorld.air file
in the application’s folder (Figure 2.25).

5.	 Install and run HelloWorld.air using the
steps outlined in Chapter 1.

	Tip

n	 At a minimum, you could get away with
calling the adt using just

adt -package -package -storetype
 pkcs12 -keystore certName.pfx
 AIRFileName.air
 ApplicationXMLFile.xml .

The period represents everything in the
current directory, so that line will pack-
age the HTML file and all directories
together. This is functional, but heavy
handed. It’s best to be specific as illus-
trated in the previous steps.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

29

AIR
Development
Tools

3
Chapter 2, “Creating an Application,” walks you through developing AIR applications
using HTML and JavaScript. Doing so requires the installation of the SDK (Software
Development Kit), which includes the AIR Debug Launcher (ADL) and the Air Devel-
opment Tool (ADT). Along with these tools, that chapter shows how to use any text
editor to write the application’s HTML and JavaScript. If you’re the kind of person who
prefers a simple text editor, continuing to follow those steps for developing and build-
ing AIR applications is fine. Some people, however, prefer to use more sophisticated
development tools—two of which are covered here.

This chapter demonstrates how to write, test, and build AIR applications using two
different IDEs (Integrated Development Environments). The first is Aptana Studio, a
free product written in Java that runs on most operating systems. The second IDE is
Adobe’s own Dreamweaver, a commercial application. Along with instructions for cre-
ating AIR applications in Aptana Studio and Dreamweaver, the chapter also teaches
you how to create a digital signature using these programs (a digital signature is neces-
sary to build installable AIR applications).

A
IR

 D
evelo

pm
en

t To
o

ls

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

30

Using Aptana Studio
Aptana Studio, available at www.aptana.
com, is an open-source IDE written in Java.
Because it’s a Java application, it runs on
pretty much every operating system, as
long as the Java runtime has already been
installed (keep in mind that you also need
the Java runtime to use the ADL and ADT
development tools). Aptana Studio is avail-
able in two versions, a free Community
Edition and a Professional Edition (listed
at $199 US at the time of this writing). The
commercial version supports a few more fea-
tures than the free version and comes with
better support. Naturally, you can install
the Community Edition and upgrade later,
should you have the need.

Aptana Studio is a wonderful IDE with
many potential uses. It’s perfect for basic
Web development, because it has HTML,
JavaScript, and CSS support. But it can also
be used for programming in PHP, using
Ruby on Rails, or even developing software
for the iPhone. Most important, in terms of
this book, Aptana Studio makes developing
Adobe AIR applications a snap. Although I
normally use a text editor and command-line
tools for pretty much everything I do, I’ve
found Aptana Studio to be a much easier,
faster, and more foolproof way to create AIR
applications. Being able to write, debug, and
build an application without changing appli-
cations is such a convenience.

U
si

n
g

 A
pt

an
a

St
u

di
o

In the following steps, I’ll show you how to
create, test, and build an AIR application
using Aptana Studio. But first, make sure
you’ve installed the Java runtime and Aptana
Studio, and have configured Aptana Studio
for AIR development. I’ll start by running
through those steps, which you should only
need to ever follow once. (Note that through-
out the book the images will come from both
Windows and Mac OS X, although the steps
are the same.)

To install Aptana Studio:

1.	 Install the Java runtime, if you have
not previously.

Mac OS X comes with Java installed, as
do some versions of Windows. If you
don’t know if the Java runtime has been
installed, type java -version at a com-
mand prompt (a DOS/console window
on Windows, the Terminal application
on Mac OS X). That command will result
in either an error or a reporting of the
version of Java installed (Figure 3.1).

The Java runtime is available free of
charge at http://java.sun.com. You’ll
want to install the Java Runtime
Environment (JRE) for the Java SE
(Standard Edition).

2.	 Download Aptana Studio.

Again, it’s up to you whether you down-
load the Community Edition or the
Professional Edition (which requires
the purchase of a license).

Figure 3.1 This command
confirms that Java is
installed (specifically
version 1.6).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

31

3.	 Install Aptana Studio.

The installer works much like every other
installer you’ve used, so there shouldn’t
be any surprises and there’s nothing for
me to add here.

4.	 Start Aptana Studio.

How you do this depends on your
operating system and the choices you
made in step 3, but I’ll assume you can
figure out this part. The first time you
load the program, you’ll be prompted to
select the location of your workspace—
the default location for the projects
you create (Figure 3.2). You may also
be notified of updates to be installed. If
(on Windows) you are notified that the
Java SE is being blocked by the firewall
(Figure 3.3), click Unblock.

5.	 Choose Help > Software Updates > Find
and Install (Figure 3.4).

After installing and starting Aptana
Studio, the next step is to install the
necessary plug-in for developing AIR
applications using the program. To start,
use the Software Updates option on the
Help menu.

continues on next page

U
sin

g
 A

ptan
a Stu

dio

Figure 3.2 Tell Aptana Studio where all of your project
files should be stored.

Figure 3.4 Add the AIR plug-in via the Software
Updates option on the Help menu.

Figure 3.3 Windows’ built-in firewall will block some
activity made by the Java Runtime Engine. Click
Unblock to avoid future problems.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

32

6.	 Choose “Search for new features to
install” and click Next (Figure 3.5).

Use the other option when you want
to check for updates for everything
already installed.

7.	 Select Aptana: Support for Adobe AIR
and click Finish (Figure 3.6).

8.	 In the Search Results window, select
Aptana: Support for Adobe AIR and click
Next (Figure 3.7).

The preceding steps essentially search
for the plug-in. Now that it’s been found,
click Next to actually install it.

U
si

n
g

 A
pt

an
a

St
u

di
o

Figure 3.5 Select which of the two updates you want
to perform: update installed software or install new.
To add the AIR plug-in for the first time, go with the
second choice.

Figure 3.6 Support for AIR is one of many plug-ins
that you can install in Aptana Studio.

Figure 3.7 Click Next to begin the installation process.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

33

  9.	 Complete the installation by accepting
(and maybe even reading) the license
agreement and confirming the installa-
tion location (Figure 3.8).

10.	 Restart Aptana Studio.

11.	 Select Window > Preferences > AIR
SDKs (Figure 3.9).

You’ll need to tell Aptana where the
AIR SDK is located. This is done in the
Preferences window, which is accessed
from the Window menu.

12.	 Click Add.

Aptana Studio allows you to build
Adobe AIR applications using different
versions of the SDK. To start, you’ll need
to add at least one.

13.	 In the resulting window (Figure 3.10),
find the location of the SDK on your
computer and give the SDK a meaning-
ful name.

Instructions for installing the SDK are
in Chapter 2.

14.	 Click OK in the Add Adobe AIR SDK
(Figure 3.10) and Preferences (Figure
3.9) windows.

U
sin

g
 A

ptan
a Stu

dio

Figure 3.8 The final step for installing the AIR plug-in
is to click Finish here.

Figure 3.10 Use this window to identify the AIR SDK to use for developing
applications.

Figure 3.9 An area within the Preferences window
is where you identify the AIR SDK to use for your
development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

34

To create an AIR application:

1.	 Launch Aptana Studio, if it is not
already open.

2.	 Choose File > New > Project (Figure 3.11).

Each AIR application should be its
own project.

3.	 In the New Project window, select AIR
Project and click Next (Figure 3.12).

4.	 In the Create an Adobe AIR project
window, give the project a name
(Figure 3.13).

Other options here include changing
the location of the project, if you don’t
want to use the default, and changing the
name of the application’s main HTML file
(which is ProjectName.html by default).

U
si

n
g

 A
pt

an
a

St
u

di
o

Figure 3.12 After installing support for Adobe AIR,
AIR Project will be one of the possible project types.

Figure 3.13 Personalize the project by choosing its
name, location on your computer, and root HTML file
using this window.

Figure 3.11 Start developing an AIR application by
creating a new project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

35

5.	 If desired, enter the application’s ID,
Name, Description, and Copyright, and
then click Finish (Figure 3.14).

The ID is the appID value that goes in
the application descriptor XML file (see
Chapter 2). This should be a unique refer-
ence, like com.dmci.air.HelloWorld. The
Name is the name of the application as
it’ll appear in the user’s operating system
(in shortcuts, in the Start menu on
Windows, and so forth). The Description
appears in the application’s installer
and About or application menu, as does
the Copyright value. Discussion of the
icons appears in Chapter 16, “Deploying
Applications.”

After you click Finish, Aptana Studio
should create the main HTML file
(Figure 3.15). This file should have some
HTML and JavaScript already in it (based
on an AIR application template).

continues on next page

U
sin

g
 A

ptan
a Stu

dio

Figure 3.14 These values correspond to those dis-
cussed in Chapter 2, which are written into the XML
descriptor file.

Figure 3.15 The resulting file after creating a new AIR project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

36

6.	 To run an application, click the Run but-
ton (green circle with the right-pointing
white triangle) (Figure 3.16).

This will run the AIR application using
the ADL. Of course, there are other ways
to run the program—using keyboard
commands, the Run menu, or right-
clicking in the proper places—but this
is the easiest way. To close the running
application and return to Aptana Studio,
quit the ADL.

7.	 To build the application, click the Export
Adobe AIR Package icon (Figure 3.17).

In the resulting window, you can tweak
some of the parameters and indicate
which files need to be included in the
package (Figure 3.18). This window
serves the same purpose as the com-
mand-line ADT tool (see Chapter 2).

As for the digital signature option, you
can use the default certificate that comes
with Aptana Studio or create your own,
as covered later in this chapter.

	Tips

n	 Applications written in Java are notorious
for being memory hogs and often running
slowly. Although I have no problems
using Aptana Studio on my computer
(Mac PowerBook Pro with Intel Core Duo
2.16 GHz chip and 2 GB RAM), you may
find that Aptana Studio performs poorly
on your system.

n	 By choosing the Run option on the Run
menu, you’ll be prompted to adjust how
the application is executed. This is useful
if you want to try running a program
using a different application descrip-
tor XML file or a different SDK, or while
providing command-line arguments.

Figure 3.16 Click once on the Run button to
test an application you’re developing.

Figure 3.17 When you’ve completed
developing a program, click this icon
to create its .air file, which can then
be installed on users’ computers.

Figure 3.18 This window mimics the step taken using
the ADT on the command-line to create the package.

U
si

n
g

 A
pt

an
a

St
u

di
o

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

37

Using Dreamweaver
Dreamweaver is perhaps the most popular
IDE available for Web developers. Because
AIR and Dreamweaver are Adobe prod-
ucts (Dreamweaver became so after Adobe
purchased Macromedia), it’s no surprise
that you can use Dreamweaver to create
AIR applications. Unlike Aptana Studio,
Dreamweaver is a commercial application
only, but you can download a 30-day trial
version at www.adobe.com.

To develop AIR applications in Dreamweaver,
you must install the AIR Extension, which
is simple enough, so there’s no need to walk
you through it. Just download the extension
at http://labs.adobe.com/wiki/index.php/
AIR:Dreamweaver_CS3_Extension. It works
with Dreamweaver CS3 on Windows (XP or
Vista) and Mac OS X (10.4 or later), and can
be installed using Dreamweaver’s Extension
Manager. Once you have the extension
installed (remember to restart Dreamweaver
afterwards), follow these steps to write,
debug, and build an AIR application.

To create an AIR application:

1.	 Open Dreamweaver.

2.	 Create a new site for your AIR application
(Figure 3.19).

You’ll likely want to create a new site for
each AIR application you develop. If you
don’t already know how to do so, it’s sim-
ply a matter of choosing Site > New Site to
bring up the window (Figure 3.19), filling
out the prompts, and then clicking OK.

3.	 Create a new HTML page (Figure 3.20).

continues on next page

U
sin

g
 D

ream
w

eaver

Figure 3.19 To start developing an AIR application
using Dreamweaver, create a new site for the project.

Figure 3.20 A bare-bones HTML page, which will also
serve as the test AIR application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

38

Again, if you don’t know how to do this,
start by selecting File > New. In the
resulting window (Figure 3.21), choose
HTML for the Page Type, <none> for the
Layout, and None for the DocType (if
you want to create something prettier,
use a different layout). Then create the
look you want in the resulting HTML
page (Figure 3.20). Later in the book you’ll
learn how to add functionality to your
pages so they actually do something.

4.	 Save the HTML page as HelloWorld.html.

Make sure you save this file in the site’s
main directory.

5.	 To preview the application, click the
Preview/Debug in Browser button
and choose Preview in Adobe AIR
(Figure 3.22).

This opens the application using the
ADL, providing you with the exact
same look and experience as the end
user will have.

6.	 To build the application, select Site >
AIR Application Settings to bring up the
AIR Application and Installer Settings
window (Figure 3.23).

Much of the information entered into
this window goes into the application
descriptor XML file, which Dreamweaver
makes for you. This includes the pro-
gram’s name and ID, its window style,
and icons. You’ll see that some of the
information will be generated auto-
matically; other details, including those
required, need to be filled in.

U
si

n
g

 D
re

am
w

ea
ve

r

Figure 3.22 After installing the AIR Extension,
Dreamweaver creates a Preview in Adobe AIR option.

Figure 3.23 The initial settings when opening the AIR
Application and Installer Settings window for a project.

Figure 3.21 Dreamweaver’s New Document window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

39

7.	 Choose the application’s root content.

One of the required pieces of information
is the root content, which is the primary
HTML file for the application. In this
example it would be HelloWorld.html.
Click Browse and navigate to that file.

8.	 Click Set to bring up the window
for identifying the digital signature
(Figure 3.24).

Digital signatures are discussed in
Chapter 2, where you also learned how to
create your own self-signed certificate. If
you followed those steps, you can use the
certificate you created then. Otherwise,
see the next section in this chapter
to create your own certificate using
Dreamweaver.

9.	 When you’ve finished configuring every-
thing in the AIR Application and Installer
Settings window (Figure 3.25), click
Create AIR File.

Unless you changed the destination, the
AIR package will be created in the site’s
directory.

	Tip

n	 The Installer settings section in the AIR
Application and Installer Settings win-
dow (Figures 3.23 and 3.25) replicate the
choices you would make when using the
command-line ADT to create an .air file.

U
sin

g
 D

ream
w

eaver

Figure 3.24 To build the program, a digital signature
must be chosen. Select an existing one using this
prompt.

Figure 3.25 The final settings to create the .air
program file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

40

Creating Digital
Signatures
Added to the second beta version of AIR is
the ability to associate a digital signature—
a certificate of authenticity—to an applica-
tion. This is part of AIR’s security model and
is meant to be a reassurance to end users. In
fact, you can’t even create a .air file without
associating it with a certificate.

There are two kinds of certificates you can
use. The first is purchased from an accred-
ited company like Thawte or VeriSign. These
certificates imply the highest level of security
because those companies will verify your cre-
dentials. The second option is a self-signed
certificate: something you create that allows
you to build installable AIR applications but
offers no real assurance to the application’s
end users. This option is free but essentially
means that you’re the one telling end users
that you are legitimate. If they don’t know
you, that’s not worth much.

Cr
ea

ti
n

g
 D

ig
it

al
 S

ig
n

at
u

re
s

But for testing purposes, creating a self-
signed signature makes sense. Both Aptana
Studio and Dreamweaver include tools for
doing so, which is discussed in the follow-
ing steps (Chapter 2 shows how to create a
certificate using the command-line ADT).

Creating a certificate using
Aptana Studio
Another reason I like using Aptana Studio
for AIR development is that it comes with
its own self-signed certificate. Thus, you
can build AIR applications without going
through the extra effort of creating a new
certificate. But if you want a more personal-
ized program, follow these steps.

To create a certificate in Aptana Studio:

1.	 Open Aptana Studio, if it is not already
open.

2.	 Click the Export Adobe AIR Package icon.

You do not need to have an AIR file open
to follow these steps.

3.	 In the resulting window, click Configure
Certificates (Figure 3.26).

Figure 3.26
The Adobe AIR Package
Contents window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

41

8.	 For the Publisher Name, enter your name
or your company’s name.

This value is important and will be
displayed to the end user. It should be
obviously related to the name used as
the creator of the application (i.e., if the
application is created by Widgets, Inc., but
the certificate is signed by Jane Doe, the
installing user may be suspicious). You
can also fill out the Organization Unit and
Organization Name, if necessary (e.g., to
represent a subset of a larger company).

9.	 Enter your country.

This is optional but is a good idea.

continues on next page

Creatin
g

 D
ig

ital S
ig

n
atu

res

4.	 In the resulting window (Figure 3.27)
click Add.

5.	 Give the certificate a name (Figure 3.28).

The name here is a reference to this certifi-
cate for Aptana Studio’s purposes. It won’t
appear in the final, installed application.

6.	 Select the Create new certificate option.

7.	 For the Certificate Location, enter
somename.pfx.

The certificate should use a .pfx exten-
sion and be given a meaningful name
(replace somename with an actual value
you choose). It’s a little confusing, but you
don’t want to use the Browse button to
enter the location unless you’re overwrit-
ing an existing certificate.

Figure 3.27 This win-
dow lists all the cer-
tificates you’ve made
available to Aptana
Studio (allowing you
to choose from among
them for each project).

Figure 3.28 The Add
Certificate window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

42

10.	 Enter a secure password, twice.

As with any password, it should not
be chosen cavalierly. Come up with
something secure containing several
characters using both uppercase and
lowercase letters as well as numbers
and punctuation.

11.	 Choose a Type (Figure 3.29).

The options are 1024-RSA and 2048-
RSA, which represent two different
encryption algorithms. The latter is
more secure.

12.	 Click OK to generate the certificate.

13.	 Back in the Preferences window, select
the check box next to the new certificate
to use it (Figure 3.30).

14.	 Click OK to exit the Preferences window.

	Tip

n	 When creating an AIR application that
uses your certificate, be sure to enter
the certificate’s password in the export
window (Figure 3.26 shows the window
without the password filled in).

Cr
ea

ti
n

g
 D

ig
it

al
 S

ig
n

at
u

re
s

Figure 3.30 The newly created certificate is now listed and has been selected as the default (compare with Figure 3.27).

Figure 3.29 As of AIR version 1, you
have a choice of two encryptions for the
certificate.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AIR Development Tools

43

Creating a certificate using
Dreamweaver
Unlike Aptana Studio, Dreamweaver does
not provide a certificate you can use, so you
have to create (or buy) your own. You can
use the steps in Chapter 2 to do so or create
one using Dreamweaver.

To create a certificate in Dreamweaver:

1.	 Open Dreamweaver, if it is not already
open.

2.	 Select Site > AIR Application Settings.

You do not need to have an AIR file open
to follow these steps.

3.	 In the resulting window, click the Set but-
ton after Digital signature (Figure 3.31).

4.	 In the Digital Signature window, click
Create (Figure 3.32).

5.	 Enter your name or your company’s name
as the Publisher name (Figure 3.33).

This value is important and will be
displayed to the end user. It should be
obviously related to the name used as
the creator of the application (i.e., if the
application is created by Widgets, Inc.,
but the certificate is signed by Jane Doe,
the installing user may be suspicious).
You can also fill out the Organization
Unit and Organization Name, if neces-
sary (e.g., to represent a subset of a larger
company).

6.	 Use the pull-down menu to select your
country.

United States is the default.

continues on next page

Creatin
g

 D
ig

ital S
ig

n
atu

res

Figure 3.31 New certificates are generated by first
accessing the AIR Application and Installer Settings
window.

Figure 3.32 The Digital Signature window is where
you select, or create, a certificate to associate with
a program.

Figure 3.33 The window for creating your own self-
signed certificate.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

44

  7.	 Enter a secure password, twice.

As with any password, it should not be
chosen cavalierly. Come up with some-
thing secure containing several charac-
ters using both uppercase and lowercase
as well as numbers and punctuation.

  8.	 For the Save as value, enter somename.pfx.

The certificate should use a .pfx
extension and be given a meaningful
name (replace somename with an actual
value you choose). You can also use
the Browse button to choose the desti-
nation folder, and then in that prompt
type somename.pfx as the name
(Figure 3.34).

  9.	 Choose a Type (Figure 3.35).

The options are 1024-RSA and 2048-
RSA, which represent two different
encryption algorithms. The latter is
more secure.

10.	 Click OK to generate the certificate.

11.	 Back in the Digital Signature window,
use the pull-down menu to choose the
certificate to use (Figure 3.36).

When creating an AIR application that
uses your certificate, be sure to enter
the certificate’s password in the export
prompt (Figure 3.36 shows the prompt
without the password filled in).

12.	 Click OK to exit the Digital Signature
window.

Cr
ea

ti
n

g
 D

ig
it

al
 S

ig
n

at
u

re
s

Figure 3.35 As of AIR version 1, you have a choice of
two encryptions for the certificate.

Figure 3.34 Click the Browse button on the Self-
Signed Digital Certificate window (see Figure 3.33) to
decide where you’d like the certificate saved. You’ll
also need to name the file.

Figure 3.36 The
newly created
certificate is now
listed and has been
selected as the
default (compare
with Figure 3.32).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

45

Basic
Concepts
and Code

4
As the simple test case in Chapter 2, “Creating an Application,” shows, with Adobe
AIR you can make an executable desktop application using just HTML. The problem
is that with HTML alone your program won’t do anything useful. To make a functional
application, you’ll need to use additional technologies, starting with JavaScript.

Although JavaScript can produce some nice results, there’s no reason to stop there.
It’s easy enough to use ActionScript and Flash, even if you’re not terribly familiar
with either. An introduction to these programs plus how to tie them into an HTML
application is what you’ll find in this chapter. You’ll also learn the fundamentals of
the XMLHttpRequest object, a standard JavaScript tool for communicating between
any two pages. Before getting to all of that, this chapter provides some general techni-
cal knowledge and background. Taken all together, the material in this chapter goes
through every basic concept and code snippet that you’ll want to use in your Adobe
AIR applications. B

asic Co
n

cepts an
d Co

de

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

46

Technological Background
Adobe AIR provides the power to create
desktop applications using just HTML, CSS,
and JavaScript, but there are several other
technologies and concepts involved. Because
this book assumes very little about what you
might already know, I’ll briefly introduce each.

WebKit
The first technology involved is WebKit
(www.webkit.org). AIR uses WebKit as its
HTML rendering engine, which is to say
that WebKit translates HTML code into the
result you see in a Web browser (for example,
turning word into word). WebKit
also handles the JavaScript, Document
Object Model (DOM), and Cascading Style
Sheets (CSS).

The use of a single rendering engine is
one of Adobe AIR’s best features. Every
Web browser uses one rendering engine or
another, but not often the same one. This
is why different browsers give slightly or
even drastically different results with the
same HTML, CSS, or JavaScript. If you’re
a seasoned Web developer, you’ve prob-
ably become used to adding extra bits of
code, formatting, or hacks to make your site
behave properly in all browsers. Thankfully,
the AIR applications you write should look
and function essentially the same on differ-
ent computers (thanks to WebKit).

WebKit is also the engine of choice for
Apple’s Safari Web browser (in fact, for
Apple’s operating system as a whole). An
HTML page that looks and functions like
you want it to in Safari will reliably look and
function the same as an AIR application.
(Even though Safari is made by Apple, it also
now runs on Windows.)

Te
ch

n
o

lo
g

ic
al

 B
ac

kg
ro

u
n

d

JavaScript
The second technology involved in mak-
ing AIR applications is JavaScript. Certainly
you’ve heard of and have, I hope, dabbled
with JavaScript already. HTML, by definition,
dictates the appearance of a Web page or
AIR application. JavaScript adds the func-
tionality (so-called client-side functionality,
which takes place within the browser or
application; server-side functionality uses
PHP, ASP.NET, and other technologies).

This book does assume that you have some
comfort with JavaScript. You don’t need to
be able to program JavaScript like a pro, but
understanding how to write and call func-
tions, declare and use variables, and so forth
will make this book’s instructions more acces-
sible. I’m conversant with several languages
and can honestly say that JavaScript is really
easy to work with, particularly once you’ve
done away with the browser-specific issues.

Object-oriented programming
Object-oriented programming (OOP) is a seri-
ous subject that requires years of experience
and learning to master. This book doesn’t
teach OOP, but that’s not a problem, because
you can easily use OOP without any mastery
at all. The premise of OOP is as follows.

You first define a class, which is a blueprint
that maps out the variables and functions
required to work with a certain thing. For
example, a blueprint of a rectangle would
have variables that store its length and width.
It would also have functions that calculate
its perimeter and its area. Confusing matters
just a little bit, the variables in a class are nor-
mally called attributes or properties, and the
functions are normally called methods.

To use a class, you can create a variable of
that class type using the new keyword:

var r = new Rectangle();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

47

as you start to work with JavaScript code
(the Document Object Model also uses
objects, as its name implies).

APIs
An API is an application programming inter-
face, which is to say it’s an easy way for one
technology to interact with another technol-
ogy. For example, Google provides several
different APIs for interacting with its many
services. With respect to AIR applications,
two important tools are the AIR API and the
Flash API. Both provide access to features
not normally associated with browser-based
JavaScript. The most important of these are

u	 File system access

u	 Working with sounds and images

u	 Support for native windows (which are
different than standard JavaScript-
created windows)

u	 Working with the computer’s clipboard

u	 Interacting with databases

The AIR and Flash APIs are accessible in
JavaScript through window.runtime (by com-
parison, lots of standard JavaScript starts
with document, as in the previous code). For
example, to access the computer’s file sys-
tem, you would start by creating a new object
of the File type:

var fp = new window.runtime.flash.
 filesystem.File();

That line represents a JavaScript call to Flash
functionality.

In your Adobe AIR applications you’ll fre-
quently go back and forth between conven-
tional JavaScript and using the AIR and Flash
APIs. Often, you won’t need to think about
the distinction at all, but there will be times
that understanding that you’re using the AIR
or Flash API will be relevant.

Tech
n

o
lo

g
ical B

ackg
ro

u
n

d

Now the r variable is an object of type
Rectangle (r is called an instance of
Rectangle). To access the object’s attributes
and methods, use the dot syntax:

r.length = 20;
var a = r.getArea(); // Call the method.

That’s the basics of creating and using
objects! Defining the classes is really the
hard part, and in this book that’ll always
already be done for you (creating your own
JavaScript classes is something you can
do, it just won’t be necessary for any of the
examples in this book). But there will be
some exceptions to how you use objects.

First, you won’t always create an object ini-
tially. Some class functions can be used with-
out creating an object, and some objects are
created automatically for you. For example, a
Web browser, or AIR HTML page, starts with
a document object.

Second, the dot syntax can often be chained
together, saving you steps by making the
code a bit more complicated. For example,
take this line of JavaScript that changes an
item’s CSS class:

document.getElementById(‘thing’).
 className = ‘newClassName’;

This code starts by calling the getElement-
ById() method of the document object. That
method returns an element in the page that
matches the given ID (thing in this example).
Then the className attribute of the thing
element is assigned a new value (of newClass-
Name). This is just a shortcut way of writing:

var thing = document.
 getElementById(‘thing’);
thing.className = ‘newClassName’;

I introduce all of this because JavaScript,
among others, is an object-oriented lan-
guage. Familiarity with these terms and
the syntax will help minimize confusion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

48

Security model
Of the many new concepts you’ll need to learn
to fully adapt your existing Web development
knowledge to creating desktop applications,
none is more important than security. The
Web browser has its own security model: Web
pages are quite limited in what they can do
with respect to the user’s computer. Since AIR
applications behave like standard programs,
the rules are significantly different.

The AIR security model uses the concept of
sandboxes: the realm in which an application
can “play,” which is to say where it can read
data from or write data to. AIR builds on
the Flash security model, which defines two
sandboxes: one for the local filesystem (i.e.,
the user’s computer) and another for remote
computers (i.e., the Internet, other networked
computers, etc.). AIR adds to these a third
sandbox—application—which refers to the
files and content that reside in the applica-
tion’s folder.

For example, the user installs an AIR applica-
tion. When that program runs, it loads the
main HTML page. This is the application
sandbox. If that program retrieves content
from the user’s computer (i.e., from another
directory), that’s the local sandbox. If the
program loads content from a Web site,
that’s the remote sandbox. The distinctions
are important because they affect what a
program can do with the content, as well as
what security measures need to be taken.
This topic is thoroughly covered in Chapter
15, “Security Techniques.”

Universal Resource Identifiers
One of the most basic terms any Web devel-
oper knows is URL, which stands for Uniform
Resource Locator (it used to mean Universal
Resource Locator). If you want someone to
access your site, you provide them with a

Te
ch

n
o

lo
g

ic
al

 B
ac

kg
ro

u
n

d

URL, such as http://www.example.com. The
http:// part of the URL is the protocol; com-
mon alternatives are https:// and ftp://. The
www.example.com is the address; although,
an IP address can also be used.

Naturally, your Adobe AIR applications will
use URLs, but not every resource in an AIR
application will be found online. Along with
http://, https://, and ftp://, AIR supports:

u	 file://

u	 app:/

u	 app-storage:/

(There’s also a plan to support feed:// and
mailto:// in future versions of AIR.) Taken
together, these are all Universal Resource
Identifiers (URIs).

As you may already know, file:// is supported
by the Web browser, too, as a way to open
local or networked documents. But the other
two listed URIs are new to Adobe AIR. The
first, app:/ (notice there’s only one slash),
always refers to the directory where the AIR
application is installed: the application’s
root. If you create an application whose
main file is called index.html, no matter what
operating system that application is installed
on or where the user chose to install it,
app:/index.html points to that main page.
The second new URI, app-storage:/ (again,
one slash), refers to the application’s storage
directory, which will be a folder on the user’s
computer, different than the application’s
root directory.

From a security perspective, content within
app:/ has full privileges. In other words, this
content can do the most harm to the user’s
computer! Any content an application loads
from app-storage:/, http://, and the others, is
more limited as to what it can do.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

49

To use AIRAliases.js:

1.	 Begin a new AIR project in your text
editor or IDE.

The exact steps for doing so are
outlined in Chapter 2 and Chapter 3,
“AIR Development Tools.” In those two
chapters I explain how you’d use a text
editor, Aptana Studio, or Dreamweaver
for this purpose.

2.	 Copy the AIRAliases.js file to the
project folder created in step 1.

You’ll find AIRAliases.js in the
frameworks folder within the SDK
folder (created when you installed
the SDK following the instructions
in Chapter 2).

If you’re using Aptana Studio, the
AIRAliases.js file is automatically part
of the project. You can see it in the proj-
ect tab on the left side of the application
(Figure 4.1).

Ordinarily I would recommend creating
a separate folder in which your JavaScript
files, like AIRAliases.js, would be stored.
But for this simple example, I won’t
spend the time doing so.

3.	 Add the following to the head of the main
HTML document:

<script src=”AIRAliases.js”
 type=”text/javascript”></script>

If you do place the file in a special
JavaScript folder, you’ll need to change
this code accordingly.

Aptana Studio automatically creates a
reference to AIRAliases.js in the main
HTML file, so you can skip this step, or
just update the code to reflect the loca-
tion of the file in a subdirectory if you
chose to go that route.

continues on next page

U
sin

g
 A

IR
A

liases.js

Using AIRAliases.js
As mentioned earlier, your AIR applications
will make frequent and extensive use of the
AIR and Flash APIs, resulting in lines like

var fp = new window.runtime.flash.
 filesystem.File();

To make code easier to type, read, and debug,
Adobe has created the AIRAliases.js file.
This is a JavaScript document that creates
shortcuts to the most commonly used AIR
and Flash APIs. You’ll find this file in the
SDK’s frameworks folder.

By using the aliases file, instead of the line as
written above, you can just type

var fp = new air.File();

To use AIRAliases.js in any application,
you must do two things:

	 Include it in your HTML page, as you
would any other JavaScript file.

	 Include it when you build the application
for distribution.

I’ll walk you through this in more detail in
the next sequence of steps.

Figure 4.1 The project tab in Aptana Studio shows
what files and folders are part of the project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

50

4.	 When you build the final application, be
sure to include AIRAliases.js.

If you’re building the application using the
command-line tools (as demonstrated in
Chapter 2), the requisite instruction would
be something like (Figure 4.2)

adt -package -storetype pkcs12
 -keystore ~/Desktop/AIR/
 MyCert.pfx AIRAliases.air
 application.xml index.html
 AIRAliases.js

Aptana Studio automatically includes
the file as long as it’s listed in the proj-
ect tab (see Figure 4.1). If you’re using

U
si

n
g

 A
IR

A
li

as
es

.j
s

Dreamweaver, make sure the file is
included in the AIR Application and
Installer Settings window (Figure 4.3).

	Tips

n	 You can see the full list of AIR aliases by
opening the JavaScript file in any text
editor or IDE.

n	 If you appreciate the convenience of
aliases, you can add your own to the
AIRAliases.js file. Or better yet create a
new MyAIRAliases.js file that won’t have
the potential of being overwritten by new
releases of the AIR SDK.

Figure 4.3 In Dreamweaver’s AIR
Application and Installer Settings window,
you can choose which files and folders
should be included in the build.

Figure 4.2 When building an AIR
application using the command-
line tool, be sure to include all of
the program’s required files, like
AIRAliases.js.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

51

To use a framework:

1.	 Determine which framework you’d like to
use and download it.

To make that decision, start by looking
at the framework’s features: Does it do
what you need it to do in your program?
As part of this question, make sure the
framework functions perfectly in Apple’s
Safari Web browser. Because Safari uses
the same HTML and JavaScript rendering
engine as Adobe AIR, if the framework
is good for Safari, it’s good for your AIR
application.

A second but still important consid-
eration is the quantity and quality of
documentation available for the frame-
work (including tutorials or articles put
together by third parties). The point of a
framework is to save you time; spending
hours figuring out how to use a frame-
work defeats that purpose.

For these next steps, let’s use the Yahoo!
User Interface (YUI) Library, which was
at version 2.4.1 at the time of this writing.

2.	 Begin a new AIR project in your text edi-
tor or IDE.

3.	 Copy any required files to your project’s
directory.

This may be the hardest step because
it requires a thorough understanding
of how the framework will be used. For
example, to use the YUI calendar widget
(Figure 4.4), you need to copy three
files from the downloaded code into the
project folder (all are within the build
directory found in the YUI download):
s	 yahoo-dom-event/yahoo-dom-event.js

s	 calendar/calendar-min.js

s	 calendar/assets/skins/sam/
calendar.css

continues on next page

JavaScript Frameworks
A framework is an established library of code
designed to perform common tasks. Instead
of having to write, test, and debug the code
necessary to do a particular thing, you can
save yourself a lot of time and hassle by using
a framework.

A ton of JavaScript frameworks are avail-
able, each with their own strengths and
weaknesses. Frameworks you might want to
consider include (in no particular order):

u	 Yahoo! User Interface (YUI) Library
(http://developer.yahoo.com/yui/)

u	 Dojo (www.dojotoolkit.org)

u	 Rico (www.openrico.org)

u	 qooxdoo (www.qooxdoo.org)

u	 Ext JS (www.extjs.com)

u	 mootools (www.mootools.net)

u	 script.aculo.us (http://script.aculo.us)

Most are free of charge (others require
licenses for some uses). Which you use on any
project is up to you. How you use each specific
framework is far too complicated to discuss
here, but I will demonstrate the basics of
incorporating one into your AIR applications.

Figure 4.4
The YUI calen-
dar widget cre-
ates a calendar
you can use in
your AIR appli-
cations (or Web
pages, natu-
rally). It’s scrol-
lable by month
and allows the
user to select
any date.

JavaS
cript Fram

ew
o

rk
s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

52

I put the two JavaScript files into a folder
called js, the CSS file into a folder called
css, and some images into an assets
folder (Figure 4.5).

4.	 Include the framework files in your
HTML page (Script 4.1):

<html><!-- Script 4.1 -->

	 <head>

		 <script type=”text/javascript”
		  src=”js/AIRAliases.js”>
		  </script>

		 <link rel=”stylesheet”
		  type=”text/css” href=”css/
		  calendar.css”>

		 <script type=”text/javascript”
		  src=”js/yahoo-dom-event.js”>
		  </script>

		 <script type=”text/javascript”
		  src=”js/calendar-min.js”>
		  </script>

	 </head>

Script 4.1 By including and using the Yahoo! User Interface framework, a few lines of code can create a complete
calendar (see Figure 4.4).

1	 <html><!-- Script 4.1 -->

2		 <head>

3			 <script type=”text/javascript” src=”js/AIRAliases.js”></script>

4			 <link rel=”stylesheet” type=”text/css” href=”css/calendar.css”>

5			 <script type=”text/javascript” src=”js/yahoo-dom-event.js”></script>

6			 <script type=”text/javascript” src=”js/calendar-min.js”></script>

7		 </head>

8		 <body class=”yui-skin-sam”>

9			 <div id=”calendarDIV”></div>

10			 <script type=”text/javascript”>

11			 var c = new YAHOO.widget.Calendar(“calendarDIV”);

12			 c.render();

13			 </script>

14		 </body>

15	 </html>

Figure 4.5 All of the files and folders
in this project, as shown in Aptana
Studio’s project window.

Ja
va

S
cr

ip
t

Fr
am

ew
o

rk
s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

53

6.	 Be sure to include the framework files
when building the application!

How you do this depends on what you’re
using to build the application. With
Aptana Studio, all files listed in the project
window (see Figure 4.5) will automatically
be included. With Dreamweaver, you just
need to make sure you add all the files in
the AIR Application and Installer Settings
window (see Figure 4.3 for the previous
example). If you’re using the command-
line adt, all of the files and directories
must be listed in the command (see
Figure 4.2 for the previous example).

	Tips

n	 When creating Web pages, factor in the
file size of the framework when selecting
one to use. Forcing a user to download
300 KB of JavaScript to use a 4 KB HTML
file is absurd. However, with an AIR
application, that same 300 KB is perfectly
reasonable to include.

n	 If you’d rather make sure the applica-
tion works before you finesse it, copy the
entire framework into the project folder
and remove files you think are unneces-
sary after you’re certain it works.

JavaS
cript Fram

ew
o

rk
s

As with any JavaScript file you use,
you must include it in your HTML page
to be able to use its functionality. Here
the three files from YUI (mentioned
in step 3) are included, along with the
AIRAliases.js file.

5.	 Use the framework in your HTML page
as needed:

	 <body class=”yui-skin-sam”>

		 <div id=”calendarDIV”></div>

		 <script type=”text/javascript”>

		 var c = new YAHOO.widget.
		  Calendar(“calendarDIV”);

		 c.render();

		 </script>

	 </body>

</html>

These lines are all that’s necessary to
make the AIR application shown in
Figure 4.4. Whenever you use a frame-
work, most of the code in the HTML page
will be derived from the framework’s
documentation, modified to suit your
application. For this YUI calendar widget,
a DIV is created, and then a new YAHOO.
widget.Calendar object is created.
Finally, the object’s render() method is
called to actually generate the calendar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

54

ActionScript Libraries
Along with the AIR and Flash APIs, and
existing JavaScript frameworks, another way
to add functionality to your applications is to
tie into an ActionScript library. ActionScript,
in case you’re not familiar with it, is a script-
ing language commonly used in Flash. But as
of version ActionScript 3, it can now be used
with Adobe AIR.

ActionScript libraries are compiled as .swf
files (Shockwave Format). These can be used
in an AIR application after including them as
you would any JavaScript file:

<script src=”somefile.swf” type=
 ”application/x-shockwave-flash”>
 </script>

Note that you should explicitly use the
type attribute with a value of application/
x-shockwave-flash.

If you’re comfortable with JavaScript, learn-
ing ActionScript isn’t too much of a leap. But

A
ct

io
n

S
cr

ip
t

Li
br

ar
ie

s

Figure 4.6 The new folder—as—will store the ActionScript library.

even if you never write your own code, you’ll
likely still use some ActionScript in your AIR
applications thanks to servicemonitor.swf.
The AIR SDK comes with this one pre-
compiled library and is found in the same
SDK frameworks directory as AIRAliases.
js. It defines the functionality for detecting
network connectivity (which can be used,
for example, to see if the user is currently
connected to the Internet or not—a valuable
piece of information).

To use ActionScript libraries:

1.	 Begin a new AIR project in your text
editor or IDE.

The exact steps for doing so are outlined
in Chapter 2 and Chapter 3.

2.	 Add a new folder named as to your
project’s directory (Figure 4.6).

As in the steps for using frameworks,
I recommend creating a separate folder
in which your ActionScript files will
be stored.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

55

6.	 When you build the final application,
be sure to include the as folder and the
.swf file.

If you’re building the application using
the command-line tools (as demon-
strated in Chapter 2), the requisite
instruction would be something like
(Figure 4.7)

adt -package -storetype pkcs12
 -keystore C:\Documents and
Settings\Larry Ullman\My Documents/
 MyCert.pfx ActionScript.air
 application.xml index.html
 AIRAliases.js as

Aptana Studio automatically includes the
file as long as it’s listed in the project (see
Figure 4.5 for an earlier example). With
Dreamweaver, make sure you add all the
files and folders in the AIR Application
and Installer Settings window (see Figure
4.3 for an earlier example).

A
ctio

n
S

cript Libraries

3.	 Copy the servicemonitor.swf file to the
folder created in step 2.

You’ll find servicemonitor.swf in the
frameworks folder within the SDK folder
(created when you installed the SDK fol-
lowing the instructions in Chapter 2).

4.	 Add the following to the head of the main
HTML document:

<script src=”as/servicemonitor.swf”
 type=”application/x-shockwave-
 flash”></script>

If you used a different name for the
ActionScript folder (created in step 2), you’ll
need to change this code accordingly.

5.	 Use the ActionScript code as needed in
your program.

You’ll see examples of this in Chapter 13,
“Networking.”

Figure 4.7 Building the application on Windows using the command-line adt.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

56

Handling Events
Another basic idea you’ll need to grasp
to create many AIR applications is how
to handle an event. If you’ve worked with
JavaScript even a little, you probably already
have a sense of this. In the Web browser, an
event might be when the cursor moves over
an item (like an image or a link) or when a
form is submitted. In AIR, you can still use
JavaScript events, like calling a function
when a button is clicked:

<input type=”button” value=”Click This!”
 onclick=”callThisFunction();”>

Continuing to use this kind of event handling
is fine for basic JavaScript stuff. Unfortunately,
this method won’t work for Flash and AIR API
events (things that happen within window.
runtime as opposed to document).

Handling so-called runtime events is a two-
step process:

u	 Create a function that will handle
the event

u	 Indicate for what event the function
should be called

For the first step, define a function that
does whatever should be done. The particu-
lars will vary according to the event being
handled: If the event is a window closing, the
function would do X; if it’s the user going
offline, the function would do Y. In every
case, you’ll want to write this function so
that it takes one argument, which will be an
event object:

function someFunction(event) {
	 // Code.
}

H
an

dl
in

g
 E

ve
n

ts

For the second step, you’ll use the
addEventListener() method applied to a
corresponding object. Its first argument is
the type of event that should be monitored.
The event type will be a constant: a static
value associated with a name (normally
written in all capital letters) that has special
meaning. The addEventListener() method
takes a second argument, the name of the
function to be called when that event occurs

As a concrete example of this, say you write
a program that should do something special
when it’s activated. “Activated” means that
the application is already open, the user
switches to another application, and then
returns to—activates—this one. That par-
ticular event is represented by the constant
air.Event.ACTIVATE (or written without the
AIRAliases.js alias, window.runtime.flash.
events.Event.ACTIVATE).

Along with knowing the event to watch for,
the function to be called must be defined:

function nowActive(event) {
	 alert(‘This is now the active
	  program.’);
}

Finally, you need to call the addEvent-
Listener() for the proper object. In this
example, the object is the application itself,
accessed via air.NativeApplication.
nativeApplication. The final code
is therefore:

air.NativeApplication.nativeApplication.
 addEventListener(air.Event.ACTIVATE,
 nowActive);

In this code, note that the second argument
is the name of the function to be called with-
out parentheses or quotation marks.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

57

To hammer this point home, let’s run through
another example. In it, an event listener will be
created that reports what file a user selected
(Figure 4.8). This uses some code you haven’t
seen before (which will be covered in more
detail in Chapter 9, “Files and Directories”)
but will still be easy enough to follow.

To create an event handler:

1.	 Begin a new AIR project in your text
editor or IDE.

Make sure that you include the
AIRAliases.js file (described earlier in this
chapter), because shortcuts defined in it
will be used by this program.

2.	 Within a JavaScript block, define an
object of File type (Script 4.2):

var file = new air.File();

The File class defines all the functional-
ity necessary for dealing with files on the
user’s computer. To start, create an object
of this type using the new keyword and
the AIR alias.

3.	 Add an event listener to the file selection
event:

file.addEventListener(air.Event.
 SELECT, fileWasSelected);

This line adds an event listener to the file
object. The specific event being watched
for is air.Event.SELECT, which occurs
when a user selects a file in a Open dialog
window. When such an event occurs,
the fileWasSelected() function will be
called. It’ll be written in step 5.

continues on next page

H
an

dlin
g

 Even
ts

Figure 4.8 This AIR application simply reports back to
the user which file the user selected.

1	 <html><!-- Script 4.2 -->

2		 <head>

3			 <script type=”text/javascript”
			 src=”AIRAliases.js”></script>

4			 <script type=”text/javascript”>

5	

6				 // Create an object of File type:

7				 var file = new air.File();

8				

9				 // Add the event listener:

10				 file.addEventListener(air.Event.
				 SELECT, fileWasSelected);

11				

12				 // Create the Open prompt:

13				 file.browseForOpen(‘Choose a file:’);

14				

15				 // Define a function that will be
				 called when

16				 // the event occurs:

17				 function fileWasSelected(event) {

18					

19					 // Use an alert to print the
					 selected file’s name.

20					 alert (‘You selected: ‘ +
					 file.nativePath);

21					

22				 } // End of fileWasSelected()
				 function.

23				

24			 </script>

25		 </head>

26		 <body>

27			 <h1>Handling Events</h1>

28		 </body>

29	 </html>

Script 4.2 In this Adobe AIR program, the File class
(part of the Flash API) is used to create a prompt for
the user (see Figure 4.9) in which the user can select
a file on the computer. The selected file’s name and
location is then repeated in a JavaScript dialog.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

58

4.	 Create the browse prompt:

file.browseForOpen(‘Choose a file:’);

Again, you haven’t seen any of this file-
related code before, but it shouldn’t be
too confusing. This line generates the
dialog in which the user can select a file
(Figure 4.9).

5.	 Define the fileWasSelected() function:

function fileWasSelected(event) {

	 alert (‘You selected: ‘ +
	  file.nativePath);

}

This function states the full path to the
file that was selected by the user (see
Figure 4.8). It does so by referring to the
nativePath() method of the file object.

6.	 Save, test, debug, and run the application.

Notice that the application does away
with normal niceties and immediately
prompts the user to select a file. Later in
the book you’ll see examples for doing
this same thing more professionally.

Figure 4.9 The Open dialog window allows the user to select a file on the computer.

H
an

dl
in

g
 E

ve
n

ts

	Tips

n	 Some application events are common and
will therefore be automatically handled by
Adobe AIR (for example, closing the appli-
cation’s main window). You never need to
write event handlers for such events, but
you can if you’d like to overrule the default
behavior. Not all default event behavior
can be altered, though.

n	 The removeEventListener() method
gets rid of event handlers created by
addEventListener().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

59

would, unbeknownst to the user, actually
perform the search and return the results to
the original page. The JavaScript in that page
would then update the application window,
showing the results of the search.

There are many ways this kind of functional-
ity can be added to an application by using
the AIR API. But it’s worth knowing how
to make an XMLHttpRequest using plain old
JavaScript, so let’s work through an example.

To use XMLHttpRequest, start by creating an
object of type XMLHttpRequest:

var xhr = new XMLHttpRequest();

Next, provide to the open() method the
type of request to make—normally GET or
POST—and the file to be communicated with:

xhr.open(‘get’, ‘filename.ext’);

This line opens a connection to filename.
ext, to which it will make a GET request. If
you’re not familiar with what GET and POST
mean, search the Web for (probably too
detailed) answers. Or, for the time being,
simply understand that you’ll generally use
GET, because it’s the standard method for
requesting information from a page, whereas
POST is used to send information to a page.

The XMLHttpRequest
Object
The XMLHttpRequest object, which is part
of JavaScript, has been around for years but
has really gained popularity recently thanks
to the rise of Ajax. XMLHttpRequest is a class
that defines the functionality for HTTP
(HyperText Transfer Protocol) interac-
tions. Even if that sounds like gibberish to
you, you’re actually quite familiar with the
concept: When you load a Web page in your
browser, you’re making an HTTP request
(normally). Using XMLHttpRequest, JavaScript
in one page can make that same kind of
transaction behind the scenes (i.e., without
the browser leaving the current page). The
JavaScript can use the response from the
second page as needed, most likely to update
the first page’s content in some way.

As an example of how you might use this,
say you wanted to create an iTunes-like
application with a search feature. The user
enters some text—a song or album title, or
an artist’s name—in a box, and then clicks
an icon or presses Enter. This would queue
the JavaScript, which would use Ajax to send
the search term to another page. That page Th

e X
M

LH
ttpR

eq
u

est O
bject

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

60

The next step is to name the function to be
called when filename.ext returns its results.
The onreadystatechange property takes this
value. This property is one of five important
XMLHttpRequest object properties listed in
Table 4.1 (remember that in object-oriented
programming a property or attribute is a
variable defined in a class). Assign to this
property the name of the function without
any parentheses or quotation marks:

xhr.onreadystatechange =
 callThisFunction;

So the JavaScript will send the request to
filename.ext, that page will send back a
reply, and at that time the callThisFunc-
tion() function will be called. This function,
defined shortly, will take the returned data
and update the page content accordingly.

The last step in this sequence is to send the
request. For GET requests, you should provide
the value null as the send() method’s only
argument:

xhr.send(null);

That wraps up the “making the request”
JavaScript; next is the handling of the
returned results (what filename.ext sends
back). Remember that this will be done
within the callThisFunction() function.
But you’ll first want to confirm that the
request was successful. To do so, check that
the readyState is equal to 4 (see Table 4.2
for the list of readyState values):

function callThisFunction () {
	 if (xhr.readyState == 4) {
		 // Handle the returned data.

The readyState attribute indicates the status
of the request process. At first the ready-
State value is uninitialized (which equals 0,
see Table 4.2). When the request is made, the
server page starts to load, making the ready-
State value 1. Then the server page finishes

Th
e

X
M

LH
tt

pR
eq

u
es

t
O

bj
ec

t

V a l u e 	 M e a n i n g

0	 uninitialized
1	 loading
2	 loaded
3	 interactive
4	 complete

XMLHttpRequest readyState Values

Table 4.2 Of the five readyState values listed here,
the last one is the most important for knowing when
to handle the returned data.

P r o p e r t y 	 C o n t a i n s t h e …

onreadystatechange	� Name of the function to be
called when the readyState
property changes

readyState	� Current state of the request
(see Table 4.2)

responseText	 Returned data as a string

responseXML	 Returned data as XML

status	 HTTP status code returned

XMLHttpRequest Properties

Table 4.1 Performing XMLHttpRequests relies upon
the XMLHttpRequest properties listed here.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

61

Th
e X

M
LH

ttpR
eq

u
est O

bject

Script 4.3 This bit of a text (a quote from Homer
Simpson, naturally) will be retrieved using an
XMLHttpRequest.

1	 They have the Internet on computers now.

loading, making readyState 2. Some interac-
tion will occur between the two pages, mak-
ing readyState 3, and eventually the request
is completed, giving readyState a value of 4.
Often, these states will change very quickly,
but in terms of handling the response, getting
a readyState of 4 is most important.

Having created the XMLHttpRequest object,
performed the transaction, and confirmed
the results, the final step is to use the
returned data to alter the page content. The
easiest way to access that data is to refer to
the responseText property. This attribute
stores the result of the request, which is what
the requested page would display if loaded
directly in a Web browser. If the result of the
request is XML data, you would use respon-
seXML instead.

Once you have the page’s response, you can
use it however the application dictates. You
might write the response content to the
page, use it to change some existing values,
and so on. To help demonstrate this con-
cept and to provide you with some usable
code, let’s run through a basic example of
an XMLHttpRequest.

To use XMLHttpRequest:

1.	 Begin a new AIR project in your text edi-
tor or IDE.

For this particular program, it’s not nec-
essary to include the AIRAliases.js file,
although it’s not a big deal if you do.

2.	 Create a plain text file named message.
txt that contains some text (Script 4.3).

The contents of this file will be read in by
the XMLHttpRequest object and printed in
the main application page.

continues on next page

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

62

3.	 Within the body of the main HTML file,
add the following (Script 4.4):

<h1 id=”response” style=”color:
 red;”></h1>

Script 4.4 This is the primary HTML file for the XMLHttpRequest AIR application. It performs the actual request,
updating the body of the page using the results.

1	 <html><!-- Script 4.4 -->

2		 <head>

3			 <script type=”text/javascript”>

4	

5				 // Create an XMLHttpRequest object:

6				 var xhr = new XMLHttpRequest();

7	

8				 // This function is called when the user clicks the button:

9				 function getMessage() {

10	

11					 // Open the connection:

12					 xhr.open(‘get’, ‘message.txt’);

13	

14					 // Identify the function to handle the ready state change:

15					 xhr.onreadystatechange = printMessage;

16	

17					 // Send the request:

18					 xhr.send(null);

19	

20				 } // End of getMessage() function.

21	

22				 // This function updats the page after the request is made:

23				 function printMessage() {

24	

25					 // Only do something when the readyState is complete:

26					 if (xhr.readyState == 4) {

27						 document.getElementById(‘response’).innerText = xhr.responseText;

28					 }

29	

30				 } // End of printMessage() function.

31	

32			 </script>

33		 </head>

34		 <body>

35			 <h1 id=”response” style=”color: red;”></h1>

36			 <button id=”do” onclick=”getMessage()”>Get the message!</button>

37		 </body>

38	 </html>

Th
e

X
M

LH
tt

pR
eq

u
es

t
O

bj
ec

t

<button id=”do” onclick=
 ”getMessage()”>Get the message!
 </button>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Basic Concepts and Code

63

The body of this application is just a
button (Figure 4.10) that, when clicked,
invokes the XMLHttpRequest function-
ality. That JavaScript will update this
empty H1 with the response from the text
file (Figure 4.11).

4.	 Within the head of the main HTML file,
begin a section of JavaScript and create
an XMLHttpRequest object:

<script type=”text/javascript”>

var xhr = new XMLHttpRequest();

5.	 Define the getMessage() function:

function getMessage() {

	 xhr.open(‘get’, ‘message.txt’);

	 xhr.onreadystatechange =
	  printMessage;

	 xhr.send(null);

}

This function will be called when the
user clicks the button (see the code in
step 3). The first step within the func-
tion is to invoke the open() method of
xhr (that variable is accessible within
the function because it was defined
outside of the function, per JavaScript
scope behavior). The first argument is the
HTTP method to use and the second is
the name of the file to request, which in
this case is message.txt, created earlier.

Next, assign to the onreadystatechange
attribute the name of the function to
be called when the readyState value
changes. Finally, make the request by
calling send().

continues on next page

Figure 4.10 The application as it appears when it
first opens.

Figure 4.11 The result after clicking the button.

Th
e X

M
LH

ttpR
eq

u
est O

bject

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

64

6.	 Define the printMessage() function:

function printMessage() {

	 if (xhr.readyState == 4) {

		 document.getElementById(
		  ‘response’).innerText =
		  xhr.responseText;

		 }

}

This function will be called whenever the
readyState value changes (it will actu-
ally change several times). The code in
this function will not do anything until
readyState has a value of 4. At that time,
the innerText—the value between the
tags—of the H1 with an ID of response
will be assigned the value of the textual
response of message.txt. This will literally
be the contents of that file (see step 2).

7.	 Complete the JavaScript section:

</script>

8.	 Save, test, debug, run, and build
the application.

Make sure that the message.txt file
is in the same directory as index.html
and that it’s included when you build
the application.

	Tip

n	 XMLHttpRequests in Adobe AIR also
differ from those in a Web browser
in that they can be performed across
domains. For security purposes, in a Web
browser you cannot use XMLHttpRequest
to access www.example2.com/page.html
from www.example1.com/page.html.
In Adobe AIR, allowing this behavior
means that a program on your com-
puter can use XMLHttpRequest to access
www.example1.com/page.html.Th

e
X

M
LH

tt
pR

eq
u

es
t

O
bj

ec
t

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging

65

Debugging
5

One of the most important aspects of learning any new programming language or
technology is knowing how to debug a problem when it occurs. No matter how skilled
or smart you are, problems will occur, bugs will creep into your code, and something
just won’t work the way it should. In this chapter, you’ll learn about some specific tech-
niques and actual code you can use to help solve the problems you encounter as you
develop your own AIR applications.

Because this book addresses AIR development using HTML and JavaScript, the bulk
of the debugging information herein pertains just to JavaScript. This includes using
simple alert dialogs or the JavaScript tools included in the excellent Firefox Web
browser. The AIR API (see the previous chapter) has its own utility that aids in the
debugging process, so you’ll see how to use it, too. There are even steps you can take
when using adl (AIR Debugging Launcher) that can make testing your code or project
a little easier. The chapter concludes with some other recommendations and consider-
ations to keep in mind as you continue working your way through this book.

D
ebu

g
g

in
g

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

66

Using JavaScript Dialogs
Simply put, debugging is always a two-
step process:

1.	 Figure out where the problem is.

2.	 Figure out what the solution is to
that problem.

Put like that, debugging seems easy, but it
rarely is. Sometimes it takes forever to deter-
mine what’s causing the problem, and other
times you might discover what’s causing the
problem but still not know what the fix is.
But you have to get through step 1 to even
attempt step 2, and that’s where JavaScript
dialogs come in handy.

The best way to identify the problem is
to confirm what an application (or, more
specifically, the JavaScript code) is or is not
doing and what values your variables have.
To achieve both, use an alert dialog:

alert (‘This is the text.’);
alert (‘name: ‘ + name);

There are many ways you might use an alert
dialog as a debugging tool.

To use JavaScript dialogs:

u	 To print the value of a variable, use
(Figure 5.1):

alert(‘myVar = ‘ + myVar);

This simple line of code is one of the most
useful debugging techniques available.

u	 To print the value of an object, use
(Figure 5.2):

var stuff = ‘’;

for (var i in myVar) {

	 stuff += myVar[i] + “\n”;

}

alert(‘myVar = ‘ + stuff);

U
si

n
g

 Ja
va

S
cr

ip
t

D
ia

lo
g

s

Figure 5.1 The name and value of a variable can be
easily confirmed using an alert dialog.

Figure 5.2 This is a partial printing of the attributes
and methods found within the xhr object, created in
Chapter 4, “Basic Concepts and Code.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging

67

Because the structure of object vari-
ables is more complex than other vari-
ables, they cannot be printed using just
alert(myVar). Instead, you can use a loop
to access every element in an object. As
you can see in the figure, this includes the
values of all attributes and the names of
all methods.

u	 To indicate that a function is being called,
use (Figure 5.3):

function someFunction() {

	 alert(‘Now in the someFunction()
	  function.’);

}

Sometimes the most useful piece of
debugging information is confirmation
as to what sections of code are or are not
being executed.

	Tips

n	 The preceding listings represent just
three ways you might use an alert dialog.
There are other options, but the impor-
tant point is that you use the JavaScript
to help you in the debugging process.

n	 An alternative to alert() is confirm(). It
also creates a window, but one that gives
the user an option of clicking Cancel or
OK (Figure 5.4). For debugging purposes,
a confirmation dialog could give you
the choice of continuing to execute the
JavaScript or stopping. For example, to
terminate the execution of a function, use:

if (!confirm(‘Continue executing?’))
 return false;

U
sin

g
 JavaS

cript D
ialo

g
s

Figure 5.3 By using an alert such as this, you can be
certain that a function is being executed.

Figure 5.4 A confirmation dialog adds a Cancel
option, which an alert dialog does not have.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

68

Using Trace
JavaScript dialogs are an easy and effective
way to identify the values of variables, what
code is being executed, and so forth. But if
you use them a lot, particularly in the same
bit of code, dealing with all those dialogs
can be tiresome. An alternative is to use the
trace() method that’s part of the AIR API.
This method takes a string that will be writ-
ten to the console:

window.runtime.trace(‘Print this
 message.’);

If you include the AIRAliases.js file (see
Chapter 4, “Basic Concepts and Code”), you
can abbreviate this to just

air.trace(‘Print this message.’);

You might not be familiar with what the
console is, and the fact is that the answer
depends on how you’re testing and running
the application. If you use the command-
line adl utility, the console is the program in
which you invoked adl. This would be a DOS
prompt or console window on Windows
(Figure 5.5) or the Terminal window on
Mac OS X (Figure 5.6). If you are using
Aptana Studio, the console is part of that
application (Figure 5.7).

The trace() method is best used exactly as I
suggest for alert() in the previous section of
this chapter.

U
si

n
g

 T
ra

ce

Figure 5.5 When using adl on Windows, trace()
writes messages to the DOS prompt.

Figure 5.6 When using adl on Mac OS X, trace()
writes messages to the Terminal window.

Figure 5.7 Aptana Studio has a console window
built into the application. That’s where you’ll see
any trace() messages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging

69

To use trace:

u	 To print the value of a variable, use (see
Figure 5.5):

air.trace(‘myVar = ‘ + myVar);

u	 To print the value of an object, use (see
Figure 5.6):

var stuff = ‘’;

for (var i in myVar) {

	 stuff += myVar[i] + “\n”;

}

air.trace(‘myVar = ‘ + stuff);

u	 To indicate that a function is being called,
use (see Figure 5.7):

function someFunction() {

	 air.trace(‘Now in the
	  someFunction() function.’);

}

u	 Add spacing to your trace messages by
printing a newline character (\n):

air.trace(‘Print this message.\n’);

Or to make your debugging messages eas-
ier to read, you can add even more spacing
and extra characters (Figure 5.8):

air.trace(‘\n-----\nPrint this
 message. \n-----\n ‘);

	Tip

n	 Although I focus on using trace() as a
debugging tool, it can also be used in live,
running applications. However, most
users don’t access console windows with
any frequency, so it would be a somewhat
special application that would make use
of this feature.

U
sin

g
 Trace

Figure 5.8 Improve the legibility of your trace mes-
sages by adding newlines and other characters.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

70

Using the AIR Introspector
Included with the AIR SDK (Software
Development Kit) is a JavaScript file called
AIRIntrospector.js (found within the
frameworks folder). If you include this file
in an AIR application, you can launch an
extremely useful debugging tool while the
program is running. It will pop up in a sepa-
rate window and allow you to:

u	 See the code associated with program
elements (Figure 5.9)

u	 Use a console to interact with the
JavaScript

u	 See the underlying HTML (Figure 5.10)

U
si

n
g

 t
h

e
A

IR
 In

tr
o

sp
ec

to
r

Figure 5.10 The utility’s HTML tab shows the window’s HTML source code, including alterations
made by DOM scripting.

Figure 5.9 When the AIR Introspector is enabled,
moving the cursor over the program’s interface will
show the HTML associated with its various parts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging

71

3.	 Run the application using the AIR Debug
Launcher (adl).

Logically, you’ll want to use the AIR
Introspector while developing and debug-
ging a project, so you’ll probably only ever
use it when testing a program.

4.	 To launch the AIR Introspector, press F12
while the program is running.

5.	 For specific information on using the AIR
Introspector, see the Adobe AIR online
documentation.

	Tips

n	 The AIR Introspector should only be
included in a project while you’re devel-
oping it. It should never be included
and enabled in a program distributed
to end users.

n	 Also found in the SDK’s frameworks
directory is a file called AIRSourceViewer.
js. If you include this file in a project, you
can allow a user to view the application’s
source code. See the AIR online docu-
mentation for details.

U
sin

g
 th

e A
IR

 In
tro

specto
r

u	 Navigate and manipulate the page’s
Document Object Model

u	 List a program’s assets (included files,
images, etc.)

u	 View the entire source code for the pro-
gram (including JavaScript)

u	 Inspect the values of XMLHttpRequest
objects (Figure 5.11)

The following steps walk you through what
you need to do to use this utility.

To use AIRIntrospector.js:

1.	 Copy the AIRIntrospector.js file from
the SDK frameworks directory to your
project’s folder.

2.	 Add the file to an application using
this line:

<script type=”text/javascript”
 src=”AIRIntrospector.js”></script>

If you place the file within a subdirectory,
you’ll need to change the src value.

Figure 5.11 The values of an XMLHttpRequest object’s properties are also revealed by
the AIR Introspector (this is, again, the example from Chapter 4).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

72

Other Debugging
Techniques
In this chapter, I suggest a number of
techniques—both specific and more
general—you can use to help debug your
AIR applications. The bulk of these centers
around the JavaScript code: the heart of the
AIR applications discussed in this book.

Over the course of the rest of the book, dif-
ferent topics will imply their own particular
debugging steps. At those times, you’ll see
tips and recommendations toward that
end. For example, when the book covers
network-related tasks, there’ll be hints as to
the common problems that might occur and
how you would go about solving them. Still, I
want to place a few thoughts together here to
get you in a good “debugging mindset” as you
continue on through the book.

The most important debugging technique
I’ve come up with in my years of program-
ming and Web development is this: Step
away from the computer and take a break!
I’ve solved many computer problems by
taking showers, going for a walk, or watching
really bad television.

If that’s what you should do, in general,
here’s what you shouldn’t do: Take wild
guesses to solve a problem. As a writer
I’ve see far too many readers compound
relatively simple issues by taking stabs at
possible fixes. Taking steps you don’t fully
understand almost never fixes a problem,
and more often than not creates new errors
that muddle things even more.

Debugging with Firefox

Naturally this chapter focuses on debug-
ging techniques you would take within
an AIR application. But to expand your
debugging toolbox, turn to the Firefox
Web browser (www.mozilla.com). When
it comes to debugging JavaScript, Firefox
offers tools and add-ons that can’t be
beat. There is one rather significant
caveat: Not everything you can do in an
AIR application will work in Firefox. Any
basic JavaScript that you write should run
just fine, but any use of the Flash and AIR
APIs will fail because they are part of AIR,
not part of JavaScript. In simpler terms,
any code that starts with air or window.
runtime won’t work in a browser.

To use Firefox for debugging purposes,
here are the highlights of what you’d
want to do:

u	 Use the Error Console (found under
the Tools menu).

u	 Open the DOM Inspector (also
under Tools).

u	 Install the Web Developer widget
(www.chrispederick.com/work/
web-developer/).

u	 Install Firebug (www.getfirebug.com).

u	 Install JavaScript Debugger
(https://addons.mozilla.org/
en-US/firefox/addon/216).

u	 Enable strict JavaScript in Firefox’s
configuration.

O
th

er
 D

eb
u

g
g

in
g

 T
ec

h
n

iq
u

es

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging

73

To debug AIR applications:

u	 Use multiline comments to deactivate
problematic sections of code.

If you wrap the multiline comment
markers—/* and */—around a block
of code, that code will no longer be
operational. This can be a good way to
deactivate blocks of code that may be
causing a problem. Just be sure not to
create syntax errors when using this
technique (e.g., by starting a multiline
comment inside of a function but
closing it outside of the function).

If you’re using a JavaScript debugging
tool, you can also use breakpoints to
execute only part of the JavaScript code.

u	 When working with XML or JSON data,
independently confirm that the data is
well-formed.

XML (Extensible Markup Language)
and JSON (JavaScript Object Notation)
are two common formats that data can
be stored in. If your AIR application is
reading data in these formats, problems
will occur if the data is not well-formed
(which is to say written in exactly the
proper syntax). In such cases, examine
the data independent of the AIR appli-
cation to confirm that it’s correct. You
can also validate the format of XML and
JSON data using online tools.

u	 Test database queries independently.

When working with databases, problems
can occur in several places. The most
common problems are incorrect queries;
correct queries but unexpected results;
and correct queries with expected results
but incorrect handling of the results. To
narrow the field just among these three,
you should confirm what your query is,
and then run it using a separate interface
to confirm the results.

More adl Options

Chapter 2, “Creating an Application,”
went through the steps involved in mak-
ing an AIR program using a text editor
and the command-line tools that come
with the AIR SDK (Software Development
Kit). Of these two tools, the AIR Debug
Launcher (adl) is the one used for testing
an application without having to build
and formally install it. Although this
program probably won’t be the first line of
defense in debugging your applications, it
can be useful in the right circumstances.

The program is used quite simply by
providing it with the name of the applica-
tion descriptor XML file associated with
the project:

adl ApplicationXMLFile.xml

The application descriptor file has the
most important settings for how an
application runs, for example, the vis-
ibility, size, and other properties of the
primary window, the version of Adobe
AIR it requires, and the types of files that
the program might control. One way
you might use adl is to create different
descriptor files for your program, and
then test it using each.

O
th

er D
ebu

g
g

in
g

 Tech
n

iq
u

es

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

74

u	 Test external pages independently.

This is much the same as the previous
two suggestions, and it comes down to
this: Don’t assume that your program
is receiving what you think it should.
Instead, confirm this for yourself. For
example, if the program interacts with
Google Maps, try that interaction outside
of the AIR application so you know that
it works.

u	 Be sure to use unique variable and func-
tion names in your JavaScript.

Avoid using reserved words for either
variables or classes, because doing so
will lead to annoying bugs. Also, watch
what variables and functions you use in
included files, so as to avoid conflicts.

u	 Watch out for variable scope.

A common cause of bugs in any language
but in JavaScript in particular is vari-
able scope. Scope is the realm in which a
variable exists. Variables declared outside
of a function have global scope, meaning
they are available everywhere. Variables
declared within a function without using
the var keyword are also global, once
that function is called. Variables declared
within a function using the var keyword
are local to that function. Scope pertains
to debugging because you could inadver-
tently be using or changing a global vari-
able when you thought you were working
with a local one.

u	 Pay attention to the versions of the
Adobe AIR runtime and SDK being used.

The different versions of AIR will support
different features, so don’t ignore this
vital bit of information. If an application
used to work but no longer does, see if it’s
not due to an update in AIR.

O
th

er
 D

eb
u

g
g

in
g

 T
ec

h
n

iq
u

es

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

75

Making
Windows

6
The window is the heart of any graphical application and is where all of the action
takes place, or at the very least, starts. And most applications use more than one win-
dow: Along with the primary application window, secondary windows might be used
for adjusting the program’s preferences, taking some sort of user input (like a search
box), or whatever. In this chapter you’ll learn everything you need to know about mak-
ing and customizing windows.

Adobe AIR applications written using HTML and JavaScript can create and manipu-
late two types of windows: standard HTML windows, the same as those in a Web
browser, and native windows. Native windows require more code but are more custom-
izable and may fit in better with the operating system as a whole. The chapter begins
with a quick discussion of standard HTML windows, but most of the content focuses
on the relevant information regarding native windows.

M
akin

g
 W

in
do

w
s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

76

Creating a New Window
The first way that you can create a new AIR
application window is exactly the same as it
is in a Web browser:

window.open(“pagename.html”, “title”,
 properties);

The properties argument is where you would
specify the window’s dimensions and other
attributes, which are listed in Table 6.1.

The benefit of creating a window in this way
is that it’s simple to do and requires little
code. The downside is that the amount of
control that the primary window has over
the new window is limited, and the new
window will not look and behave like stan-
dard application windows. The alternative,
creating a new native window (discussed
throughout the rest of this chapter), has the
opposite strengths and weaknesses.

To make a new window:

1.	 In your project’s primary HTML file, begin
a new JavaScript function (Script 6.1):

<script type=”text/javascript”>

function createWindow() {

}

</script>

The function is called createWindow. It
takes no arguments.

2.	 Within the createWindow() function, add
the code that opens a new window:

window.open(“new.html”, “NewWindow”,
 “height=300,width=300”);

This line opens a new window with a title
of NewWindow and a size of 300 pixels by
300 pixels. The contents of the window
will be the HTML file new.html.

Cr
ea

ti
n

g
 a

 N
ew

 W
in

do
w

N a m e 	 M e a n i n g 	 V a l u e s

width	 width in pixels	 any integer
height	 height in pixels	 any integer
resizable	 is resizable	 yes/no
status	 has a status bar	 yes/no
toolbar	 has a toolbar	 yes/no
scrollbars	 has vertical scrollbars	 yes/no
menubar	 has a menu bar	 yes/no
location	 has an address bar	 yes/no

Window Properties

Table 6.1 These window properties can all be used
with HTML windows to adjust their look and behavior.
The default value is no for any yes/no option.

Script 6.1 This application creates a new HTML
window when the user clicks a button.

1	 <html><!-- Script 6.1 -->

2		 <head>

3			 <script src=”AIRAliases.js”

			 type=”text/javascript”></script>

4			 <script type=”text/javascript”>

5			 function createWindow() {

6				 window.open(“new.html”,

				 “NewWindow”,

				 “height=300,width=300”);

7			 }

8	

9			 </script>

10			 <title>HTML Window</title>

11		 </head>

12		 <body>

13			 <button onclick=”createWindow();”>

			 Open a New HTML Window</button>

14		 </body>

15	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

77

3.	 Within the HTML page, create an ele-
ment that will call the createWindow()
function:

<button onclick=”createWindow();”>
 Open a New HTML Window</button>

The application needs some impetus
for creating the new window. In gen-
eral, the new window should open as
a response to a user action (it’s pretty
annoying to just have windows pop up
randomly). Clicking this button invokes
the JavaScript createWindow() function,
thereby creating the new window. You
could also use a link, an image, or what
have you.

4.	 Create a second HTML page called new.
html (Script 6.2):

<html><!-- Script 6.2 -->

	 <head>

		 <title>New Window</title>

	 </head>

	 <body>

		 <h1>Wow! It’s a new window.</h1>

	 </body>

</html>

In other examples in this book, you’ll see
how to do something useful with the new
window, but for demonstration purposes,
this content will suffice.

continues on next page

Creatin
g

 a N
ew

 W
in

do
w

Creating Your Own Projects

For all of the steps in this chapter, you’ll
just see the relevant code and instructions
demonstrating the new technique. For
the most part, you won’t be told to create
a new project folder, make the applica-
tion descriptor XML file, and start a basic
HTML file. Those steps are covered in
the chapters leading up to this point, and
the assumption here is that you already
know how to do all that. In addition, if
you’re using Dreamweaver with the AIR
Extension or Aptana Studio, most of this
is already done for you. This does mean
that most of the scripts will include code
that wasn’t explicitly mentioned in the
steps, but none of it should come as a
surprise. Also note that these examples
will assume inclusion of the AIRAliases.js
file, which is discussed in Chapter 4, “Basic
Concepts and Code.”

Script 6.2 This script will be the content of the new
HTML window.

1	 <html><!-- Script 6.2 -->

2		 <head>

3			 <title>New Window</title>

4		 </head>

5		 <body>

6			 <h1>Wow! It’s a new window.</h1>

7		 </body>

8	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

78

5.	 Save, test, debug, and run the completed
application (Figures 6.1 and 6.2).

Click the link to create the new window.

	Tips

n	 If you need to be able to refer to a new
window from the first window, you’ll
want to assign the result of calling
window.open() to a variable:

var window2 = window.open(“pagename.
 html”, “title”, properties);

n	 The newly created window can use all of
the JavaScript window object’s methods,
such as close(), moveTo(), moveBy(), and
so forth.

n	 A window’s content can be established
when the window is created (the first
argument in window.open()), set using
window.location, or tweaked using the
Document Object Model (DOM).

n	 New windows created using window.
open() cannot initially use the Flash
and AIR APIs. To add that functionality,
execute this line of JavaScript within the
new window:

window.runtime = window.opener.
 runtime;

The new window will also need to include
the AIRAliases.js file if it’s to use any of
those aliases.

Cr
ea

ti
n

g
 a

 N
ew

 W
in

do
w

Figure 6.1 The main page of the application.

Figure 6.2 The new HTML window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

79

Creatin
g

 a N
ew

 W
in

do
w

Using Dialog Boxes

Short of a whole new window but also useful is the ability to make dialog boxes. JavaScript has
several kinds: alert, confirm, prompt, and file browser. Unfortunately, the last two are not sup-
ported in the early versions of AIR.

Creating an alert is simple:

alert(‘whatever message here’);

Whereas an alert just needs to be acknowledged by the end user (by clicking OK), a confirm
dialog box gives the user the options Cancel and OK. So the confirm dialog box is normally
invoked as part of a conditional that reacts to the response:

if (confirm(‘message’)) {
	 // User clicked OK.
} else {
	 // User clicked Cancel.
}

There are a couple of details to note with these types of dialog boxes. First, they use plain
text for the message, not HTML. Therefore, you cannot create spacing using paragraph or
break tags. Instead, use the newline character (\n) to start the next part of a message on the
following line.

Second, dialog boxes by themselves cannot really do much (in comparison, a new window
could load the application’s Preferences page or create a box for editing text). Dialog boxes
can only be used for communicating messages, and with a confirmation dialog box, fetch
a simple response from the user.

In Web pages, these dialog boxes can be irksome, interrupting the user experience. In desktop
applications, the user expectations are different, but you should still only use these judiciously.
That being said, I use alerts frequently in this book, as they provide a quick and easy way to
indicate that an action has occurred.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

80

Creating a New Native
Window
The second way to create a new application
window (besides using window.open()) is
to create a native window. A native window
looks and behaves like the primary applica-
tion window so it’ll better fit into the operat-
ing system. Native windows can also be more
controlled and customized (see “Creating a
New Look” later in the chapter).

To make a new native window,
start by creating an object of type
NativeWindowInitOptions:

var options = new air.
 NativeWindowInitOptions();

This object will be used to establish the
window’s attributes. Once you have this
object, the easiest way to create the window
is to use the createRootWindow() method of
the HTMLLoader object:

var popup = air.HTMLLoader.
 createRootWindow(true, options,
 false, rect);

The first argument is a Boolean indicating
whether the window should be visible or not.
The second is the NativeWindowInitOptions
object. The third is a Boolean indicating
whether the window should have scrollbars
or not. And the fourth argument should be
an object of type Rectangle. You can create
one of those using

var rect = new air.Rectangle(x, y, w, h);

The first two arguments are the location
on the screen where the rectangle should
start (where its upper-left corner is located).
The third argument is the window’s width
in pixels; the last is its height in pixels
(Figure 6.3).

var rect = new air.Rectangle(60, 45,
 150, 90);

Cr
ea

ti
n

g
 a

 N
ew

 N
at

iv
e

W
in

do
w

Figure 6.3 The larger rectangle represents the screen,
where the origin is the upper-left corner. The smaller
rectangle represents a new window with an x value of
60, a y of 45, a width of 150, and a height of 90.

The final step is to load the page’s content.
To do so, invoke the HTMLLoader object’s
load() method:

popup.load(content);

Of course, there’s some effort in indicating
the content to be used (did I mention that
native windows require a bit more code?).
The argument to the load() method needs
to be in the form of a URLRequest object. To
get to that point, start by identifying the file
that will be used for the content:

var page = air.File.
 applicationDirectory.
 resolvePath(‘page.html’);

You’ll learn more about referring to files
on the computer in Chapter 9, “Files and
Directories.” For now, understand that this
line returns a File object associated with
page.html. The applicationDirectory.
resolvePath part indicates that the page.html
should be in the application directory: The
place where the application’s main files are
installed. This means that page.html should
be in the same folder as the application’s
main HTML page, and that it also needs to
be included when building the application.

But you can’t just use the page variable in
popup.load(), because it’s a File object.
Instead, create a new URLRequest() object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

81

The URLRequest() constructor (the method
automatically called when you create an
object of that type) takes one argument,
which is a URL to be loaded. You can get this
from page by referring to page.url.

So, finally, this line provides the URLRequest
to the load() method:

popup.load(new air.URLRequest(page.url));

In the end, creating a new native window
requires at least five objects and a few lines
of code, but as you’ll see in this chapter, it’s
almost always worth that extra effort. And
before long, these steps, to be reinforced in
this next example, will be all too familiar.

To make a new native window:

1.	 In your project’s primary HTML file, begin
a new JavaScript function (Script 6.3): 	

<script type=”text/javascript”>

function makeNativeWindow() {

}

</script>

This function is called makeNativeWindow.
It takes no arguments.

2.	 Within the makeNativeWindow()
function, create an object of
NativeWindowInitOptions type:
var options = new
 air.NativeWindowInitOptions();

Although this script won’t tweak
the window options at all, a
NativeWindowInitOptions object
will still be necessary.

3.	 On the next line, create a new
Rectangle object:
var rect = new air.Rectangle(50,
 50, 200, 200);

The rectangle starts at 50, 50 (50 pixels in
from the left side of the screen, 50 pixels
down from the top) and is 200 pixels wide
and 200 pixels high.

continues on next page

Creatin
g

 a N
ew

 N
ative W

in
do

w

Script 6.3 In this application, a new native window
is created.

1	 <html><!-- Script 6.3 -->

2		 <head>

3			 <script src=”AIRAliases.js”

			 type=”text/javascript”></script>

4			 <script type=”text/javascript”>

5	

6			 // Function for making new native

			 windows.

7			 // Takes no arguments.

8			 function makeNativeWindow() {

9	

10				 // For window options:

11				 var options = new air.

				 NativeWindowInitOptions();

12	

13				 // Window size and location:

14				 var rect = new air.Rectangle(50,

				 50, 200, 200);

15	

16				 // Create the window:

17				 var popup = air.HTMLLoader.

				 createRootWindow(true, options,

				 false, rect);

18	

19				 // Load the content:

20				 var page = air.File.

				 applicationDirectory.

				 resolvePath(‘new.html’);	

21				 popup.load(new air.

				 URLRequest(page.url));

22	

23			 } // End of makeNativeWindow()

			 function.

24			 </script>

25			 <title>New Native Window</title>

26		 </head>

27		 <body>

28			 <button onclick=

			 ”makeNativeWindow();”>Make a new

			 native window.</button>

29		 </body>

30	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

82

4.	 On the next line, create the window:

var popup = air.HTMLLoader.
 createRootWindow(true, options,
 false, rect);

This window, assigned to the variable
popup, will be visible, uses the options
object for its settings, will not have scroll-
bars, and uses the rect object for its size
and location on the screen.

5.	 Next, load the actual content:

var page = air.File.
 applicationDirectory.
 resolvePath(‘new.html’);

popup.load(new air.URLRequest
 (page.url));

The page variable will represent the
content to be used in the window. It will
be a File object referencing the docu-
ment new.html found in the application
directory. This object’s url attribute
(page.url) is then used as an argument in
the creation of a new URLRequest object,
which is what popup.load() needs.

6.	 In the body of the page, create a button
that calls the JavaScript function:

<button onclick=
 ”makeNativeWindow();”>
 Make a new native window.</button>

In other examples in this book, you’ll see
how to do something useful with the new
window, but for demonstration purposes,
this content will suffice.

7.	 Copy new.html (Script 6.2) to this
project’s directory.

Cr
ea

ti
n

g
 a

 N
ew

 N
at

iv
e

W
in

do
w

8.	 Save, test, debug, and run the completed
application (Figures 6.4 and 6.5).

Remember to include new.html when
you actually build the application. To
test the running program, click the but-
ton in the main window to create the
second window.

	Tips

n	 Although the native window created here
(Figure 6.5) looks the same as the HTML
window created earlier (see Figure 6.2),
what can be done with native windows is
the distinguishing trait. Keep reading to
learn more!

n	 The value of page.url will be app:/new.
html. The app:/ part of that is the scheme
(see Chapter 4) and refers to the appli-
cation’s directory where the applica-
tion was installed, like C:\Programs
and Files\ThisAIRApp (Windows) or
/Applications/ThisAIRApp (Mac OS X).

n	 As mentioned in Chapter 4, where con-
tent comes from dictates the security
rules and concerns involved. If a new
native window loads content from the
application directory, it runs with the
same powers as the primary applica-
tion window. If the content comes from
elsewhere, its powers will be more lim-
ited. Chapter 15, “Security Techniques,”
explains this concept in detail.

Figure 6.4 The main page of the application.

Figure 6.5
The new native
window, whose
content is the
same as the
HTML window
created earlier
in the chapter
(see Figure 6.2).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

83

Customizing Windows
The previous section showed how to create a
new native window without any modifications.
Once you have that working, you can start
using the NativeWindowInitOptions object to
tweak some of the window’s behavior.

Table 6.2 lists all of the possible settings.
The defaults—which the previous example
implicitly demonstrated—are used to create
a normal window using the standard system
chrome (see the “What Is the Chrome?”
sidebar) with no transparency and to create
a window that is resizable, maximizable,
and minimizable.

The most interesting of these settings is
the window type, of which there are three
possibilities: normal, lightweight, and utility.
Figure 6.6 shows all three on Windows;
Figure 6.7 shows them on Mac OS X.

Cu
sto

m
izin

g
 W

in
do

w
s

A t t r i b u t e 	 V a l u e s

maximizable 	 true/false
minimizable 	 true/false
resizable 	 true/false
systemChrome	 “none”/“standard”
transparent 	 true/false
type	 “normal”/“lightweight”/“utility”

NativeWindowInitOptions Attributes

Table 6.2 These six attributes are used to adjust the
appearance and behavior of a native window. All are
found within the NativeWindowInitOptions object.

What Is the Chrome?

Several places in this chapter use the terms
chrome and system chrome. The chrome
refers to the frame that windows have,
including the coloring of the frame, the
icons used for minimizing, maximizing,
and closing the window, and so forth. Put
another way, the content goes within a win-
dow; the chrome goes around that content.

AIR application windows that use the
system chrome will look like other stan-
dard windows on the host computer (i.e.,
they will look like standard Windows
windows on Windows and like standard
Mac OS X windows on Mac OS X). For a
more dramatic effect, you can forgo the
system chrome and create your own. By
doing so, you can use unique buttons,
make a window transparent, and even
create nonrectangular shapes. This will be
discussed toward the end of the chapter.

Figure 6.6
From bottom to top,
a normal, lightweight,
and utility window on
Windows. The light-
weight window has
no visible frame (i.e.,
no chrome).

Figure 6.7
From bottom to top,
a normal, lightweight,
and utility window on
Mac OS X. The light-
weight window has
no visible frame (i.e.,
no chrome).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

84

A normal window is the default; it looks
and behaves like any standard window
for the operating system. The lightweight
window has a minimal amount of chrome
or none at all (see Figures 6.6 and 6.7). Note
that the lightweight window type must have
a systemChrome of none.

The utility type of window has a minimal
amount of chrome and a shorter title bar
than the standard window. With both the
lightweight and utility window types, the
windows will not appear in the Microsoft
Windows taskbar or the OS X Window menu
(some applications in OS X have a menu
called Windows, which lists the program’s
windows by name).

Other settings, like the window’s title, will
come from the HTML file (when using
HTMLLoader().createRootWindow()). The
window’s location on the screen, its size,
its visibility, and the presence of scrollbars
are set when the window is created (again,
in the invocation of createRootWindow()).
Still, more tweaks can be made by using
a NativeWindow object. This will be dem-
onstrated later in the chapter. But to start
learning how to customize a window, let’s
take the previous example and change the
window’s type.

To customize a native window:

1.	 Open Script 6.3 in your text editor or IDE,
if it is not already. 	

2.	 After creating the options variable, add
this line (Script 6.4):

options.type = air.NativeWindowType.
 UTILITY;

Cu
st

o
m

iz
in

g
 W

in
do

w
s

Script 6.4 By adding one line of code, the script has
been updated to create a new window of type utility.

1	 <html><!-- Script 6.4 -->

2		 <head>

3			 <script src=”AIRAliases.js”

			 type=”text/javascript”></script>

4			 <script type=”text/javascript”>

5	

6			 // Function for making new native

			 windows.

7			 // Takes no arguments.

8			 function makeNativeWindow() {

9	

10				 // For window options:

11				 var options = new

				 air.NativeWindowInitOptions();

12				

13				 // Change the type:

14				 options.type =
				 air.NativeWindowType.UTILITY;

15	

16				 // Window size and location:

17				 var rect = new air.Rectangle(50,

				 50, 200, 200);

18	

19				 // Create the window:

20				 var popup = air.HTMLLoader.

				 createRootWindow(true, options,

				 false, rect);

21	

22				 // Load the content:

23				 var page = air.File.

				 applicationDirectory.

				 resolvePath(‘new.html’);	

24				 popup.load(new air.

				 URLRequest(page.url));

25				

26			 } // End of makeNativeWindow()

			 function.

27			 </script>

28			 <title>New Native Window</title>

29		 </head>

30		 <body>

31			 <button onclick=

			 ”makeNativeWindow();”>Make a new

			 native window.</button>

32		 </body>

33	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

85

To set a window’s type, you can assign
it a literal string such as utility, but
it’s best if you use an AIR constant.
The other two constants are air.
NativeWindowType.LIGHTWEIGHT and
air.NativeWindowType.NORMAL.

3.	 Save, test, debug, and run the completed
application (Figure 6.8).

	Tips

n	 If minimizable and maximizable are set
to false, those buttons will not be active
(depending on the operating system and
the window type).

n	 For Mac OS X, both resizable and
maximizable must be set to false to
make a window a fixed size (i.e., to
disallow resizing).

n	 While you can dictate the window type
for a newly created window, the appli-
cation’s primary window will always be
of type normal (you cannot change this
in the application descriptor XML file).
However, you can create a unique look
for the primary window by customizing
the chrome.

n	 Adjusting the chrome and using some of
the other techniques covered later in the
chapter will also be necessary to make a
lightweight window more useful.

n	 Being able to change a window’s type is
a big advantage that the native window
has over the standard HTML window.
The latter, created using window.open(),
will always be a normal window with the
system chrome.

Cu
sto

m
izin

g
 W

in
do

w
s

Figure 6.8 After clicking the but-
ton in the main content window,
the new utility window appears in
the upper-left corner of the screen.
Compare it with the same content
in a normal window in Figure 6.5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

86

Accessing a New
Native Window
As mentioned in the previous section, some
window settings can be adjusted by referring
to a NativeWindow object (Table 6.3). For
example, you can alternatively create a new
native window by using this code:

var popup = new
 air.NativeWindow(options);

Then you can set the window’s title, for
example, using:

popup.title = ‘New Title’;

This is not possible using the window cre-
ation technique outlined in this chapter—

var popup = air.HTMLLoader.
 createRootWindow(true, options,
 false, rect);

—because the popup variable is an object of
type HTMLLoader, not NativeWindow. But there
are several ways to access the NativeWindow
object, one of which is to refer to window.
nativeWindow. This line of code will work if
executed within a new native window:

window.nativeWindow.title = ‘New Title’;

But obviously that line can’t be used to
change the title of a different window,
because window.nativeWindow always points
to the current window (i.e., the window
executing that code). But you can access all
the windows open in an application this way:

var allWindows = air.NativeApplication.
 nativeApplication.openedWindows;

The openedWindows property is an array of
NativeWindow objects, one for each window
currently open in the application. Because
arrays begin indexing at 0, the second native
window open would be at 1. So to change a

A
cc

es
si

n
g

 a
 N

ew
 N

at
iv

e
W

in
do

w

alwaysInFront	 true/false

bounds	 Rectangle object
height	 integer (in pixels)

maxSize	 Point object

menu	 NativeMenu object

minSize	 Point object
title	 string
visible	 true/false
width	 integer (in pixels)
x	 integer (in pixels)
y	 integer (in pixels

NativeWindow Attributes

Table 6.3 These ten properties also affect the look
and behavior of a native window, but these are
accessed directly through a NativeWindow object.

second window’s title from within the first
window, you would use

allWindows[1].title = ‘New Title’;

To further demonstrate this, let’s create an
application that allows the user to adjust the
new native window’s size from within the
application’s primary window.

To access a native window:

1.	 In your project’s primary HTML file, cre-
ate an anonymous function (Script 6.5): 	

<script type=”text/javascript”>

window.onload = function() {

}

</script>

Instead of defining a function that cre-
ates the window, the window will be
created within an anonymous function
that is automatically run when the page
is loaded. By using this technique, the
JavaScript for creating the native win-
dow is only executed after the page has
completely loaded, as opposed to being
executed while the page is loading, which
would be the case if no function was used.

continues on page 88

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

87

A
ccessin

g
 a N

ew
 N

ative W
in

do
w

Script 6.5 In this AIR application, a new native window is automatically created. The user can then change its
dimensions using text inputs in the application’s primary window.

1	 <html><!-- Script 6.5 -->

2		 <head>

3			 <script src=”AIRAliases.js” type=”text/javascript”></script>

4			 <script type=”text/javascript”>

5			

6			 // Create the new native window:

7			 window.onload = function() {

8	

9				 var options = new air.NativeWindowInitOptions();

10				 var rect = new air.Rectangle(50, 50, 200, 200);

11				 var popup = air.HTMLLoader.createRootWindow(true, options, false, rect);

12				 var page = air.File.applicationDirectory.resolvePath(‘new.html’);	

13				 popup.load(new air.URLRequest(page.url));

14			

15			 } // End of anonymous function.

16			

17			 // Function for changing the window’s size:

18			 // Function takes two arguments:

19			 // - which dimension to change

20			 // - its new size in pixels

21			 function changeSize(which, size) {

22			

23				 // Get a reference to the new window:

24				 var thatWindow = air.NativeApplication.nativeApplication.openedWindows[1];

25				

26				 // Adjust the size based upon the value

27				 // of the first argument:

28				 if (which == ‘width’) {

29					 thatWindow.width = size;

30				 } else if (which == ‘height’) {

31					 thatWindow.height = size;

32				 }

33				

34			 } // End of changeSize() function.

35	

36			 </script>

37			 <title>Accessing Native Windows</title>

38		 </head>

39		 <body>

40			 <p>Window width: <input type=”text” name=”width” size=”4” value=”200”

			 onchange=”changeSize(‘width’, this.value);”></p>

41			 <p>Window height: <input type=”text” name=”height” size=”4” value=”200”

			 onchange=”changeSize(‘height’, this.value);”></p>

42		 </body>

43	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

88

2.	 Within the anonymous function, create
the new native window:

var options = new
 air.NativeWindowInitOptions();

var rect = new air.Rectangle(50,
 50, 200, 200);

var popup = air.HTMLLoader.
 createRootWindow(true, options,
 false, rect);

var page = air.File.
 applicationDirectory.
 resolvePath(‘new.html’);

popup.load(new air.URLRequest
 (page.url));

All of this code, down to which page is
used for the window’s content, has already
been explained in this chapter. Feel free
to change any of the particulars—like the
window’s size or type, if you like.

3.	 Create a function that resizes the window:

function changeSize(which, size) {

}

This function takes two arguments:
which dimension—width or height—is
being resized and the new size.

4.	 Within the changeSize() function,
create an object reference to the new
native window:

var thatWindow =
 air.NativeApplication.
 nativeApplication.openedWindows[1];

As already explained, air.
NativeApplication.nativeApplication.
openedWindows is an array of objects
representing every open window in the

A
cc

es
si

n
g

 a
 N

ew
 N

at
iv

e
W

in
do

w

application. The second window in the
application will be indexed at 1. So this
line assigns to the thatWindow variable
a NativeWindow object that refers to the
new native window.

5.	 Within the changeSize() function, com-
plete the code that resizes the window:

if (which == ‘width’) {

	 thatWindow.width = size;

} else if (which == ‘height’) {

	 thatWindow.height = size;

}

Based on the value of which, this con-
ditional will change the corresponding
dimension of the window. As an extra
precaution, you could include code
here that makes sure the size value is a
positive integer and that the value is not
larger than the screen’s width or height
(see the Tips).

6.	 Within the HTML, create inputs for
adjusting the window’s size:

<p>Window width: <input type=”text”
 name=”width” size=”4” value=”200”
 onchange=”changeSize(‘width’,
 this.value);”></p>

<p>Window height: <input type=”text”
 name=”height” size=”4” value=”200”
 onchange=”changeSize(‘height’,
 this.value);”></p>

Both inputs, when changed, invoke
the changeSize() function. The func-
tion will be passed the dimension being
changed—width or height—and the value
entered into the text box (represented by
this.value).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

89

7.	 Save, test, debug, and run the completed
application (Figures 6.9 and 6.10).

	Tips

n	 The screen size is available in air.
Capabilities.screenResolutionX and
air.Capabilties.screenResolutionY.

n	 The maximum window size that
the operating system supports is
available through air.NativeWindow.
systemMaxSize. The smallest pos-
sible window size can be found in
air.NativeWindow.systemMinSize.

A
ccessin

g
 a N

ew
 N

ative W
in

do
wFigure 6.9 The primary window and the custom new native window when

the application is first started.

Figure 6.10 After changing the numbers in the primary window, the
native window is resized.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

90

Creating Full-screen
Windows
If you’ve gone through this chapter exer-
cise by exercise, you might be thinking that
everything about native windows is compli-
cated. Rest assured that there’s one easy task
when it comes to native windows: creating a
full-screen window.

You’ve probably seen full-screen windows
at some point. They, as the name implies,
take up the entire screen and also eliminate
most, if not all, menus and utility windows
in the process. The purpose of full-screen
windows is to provide the maximum amount
of workspace possible. Microsoft Word has a
full-screen mode, as does Internet Explorer 7,
among other applications.

To put a window in full-screen mode, change
its stage.displayState value:

window.nativeWindow.stage.displayState =
 runtime.flash.display.
 StageDisplayState.FULL_SCREEN;

As an operating system convention, the user
can press the Escape key to exit full-screen
mode. The next example will also demon-
strate how JavaScript can be used to change
the full-screen mode.

To create a full-screen window:

1.	 In your project’s HTML file, begin a new
JavaScript function (Script 6.6):

<script type=”text/javascript”>

function makeFullScreen() {

} // End of makeFullScreen ()
 function.

</script>

This function takes no arguments.

2.	 Within the makeFullScreen() function,
change the stage.displayState property:

window.nativeWindow.stage.
 displayState = runtime.flash.
 display.StageDisplayState.
 FULL_SCREEN;

This rather verbose line is all you need to
enable full-screen mode.

3.	 Within the makeFullScreen() function,
change the HTML button:

document.getElementById(‘btn’).
 onclick = makeNormalScreen;

document.getElementById(‘btn’).
 innerHTML = ‘Normal (or press
 Escape)’;

The HTML page will have a button that
the user clicks to enter full-screen mode
(Figure 6.11). After clicking this button,
there’s no need to have it around with the
same text and purpose, so both will be
changed, giving the user a visual instruc-
tion and mouse option for returning to
normal screen size (Figure 6.12).

continues on page 92

Figure 6.11 The window when first running
the program.

Cr
ea

ti
n

g
 F

u
ll

-s
cr

ee
n

 W
in

do
w

s

Figure 6.12 After the user clicks the
button in the application window
(Figure 6.11), the window changes to
full-screen mode (not shown in this
figure), and the button’s label and
functionality are changed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

91

Script 6.6 An HTML button in the application’s main window will trigger JavaScript functions that both enable and
disable full-screen mode.

1	 <html><!-- Script 6.6 -->

2		 <head>

3			 <script src=”AIRAliases.js” type=”text/javascript”></script>

4			 <script type=”text/javascript”>

5			

6			 // Function for enabling full-screen mode:

7			 function makeFullScreen() {

8			

9				 // Change the window:

10				 window.nativeWindow.stage.displayState = runtime.flash.display.StageDisplayState.

				 FULL_SCREEN;

11				

12				 // Change the button:

13				 document.getElementById(‘btn’).onclick = makeNormalScreen;

14				 document.getElementById(‘btn’).innerHTML = ‘Normal (or press Escape)’;

15				

16			 } // End of makeFullScreen () function.

17	

18			 // Function for disabling full-screen mode:

19			 function makeNormalScreen() {

20			

21				 // Change the window:

22				 window.nativeWindow.stage.displayState = runtime.flash.display.StageDisplayState.NORMAL;

23				

24				 // Change the button:

25				 document.getElementById(‘btn’).onclick = makeFullScreen;

26				 document.getElementById(‘btn’).innerHTML = ‘Full Screen’;

27				

28			 } // End of makeNormalScreen() function.

29			

30			 </script>

31			 <title>Full-Screen Window</title>

32		 </head>

33		 <body>

34			 <button onclick=”makeFullScreen();” id=”btn”>Full Screen</button>

35		 </body>

36	 </html>

Creatin
g

 Fu
ll-screen

 W
in

do
w

s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

92

4.	 Make a second function that does
the opposite of the makeFullScreen()
function:

function makeNormalScreen() {

	 window.nativeWindow.stage.
	  displayState = runtime.flash.
	  display.StageDisplayState.
	  NORMAL;

	 document.getElementById(‘btn’).
	  onclick = makeFullScreen;

	 document.getElementById(‘btn’).
	  innerHTML = ‘Full Screen’;

}

This function undoes the actions of the
makeFullScreen() function. So when the
user clicks the original button and enters
full-screen mode, the button’s label and
onclick behavior is modified. Clicking
the modified button returns the screen
to normal mode and reestablishes the
button’s behavior.

5.	 Within the HTML page, create a button
with an id of btn:

<button onclick=”makeFullScreen();”
 id=”btn”>Full Screen</button>

6.	 Save, test, debug, and run the completed
application (see Figures 6.11 and 6.12).

	Tip

n	 You may notice that if the user (i.e., you)
presses the Esc key instead of clicking
the HTML button, the window exits
full-screen mode but the button’s label
and onclick functionality is not changed.
This is because pressing the Esc key
doesn’t trigger the JavaScript function.
To fix this, an event listener can be added
that calls the makeNormalScreen() func-
tion when Esc is pressed. A tip at the end
of the next section shows that code.

Cr
ea

ti
n

g
 F

u
ll

-s
cr

ee
n

 W
in

do
w

s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

93

can even, if desired, cancel the event. Table
6.4 lists the window-related event types.

As an example, the last series of steps
demonstrates how to change a window
to full-screen mode. That change involves
two events: DISPLAY_STATE_CHANGING and
DISPLAY_STATE_CHANGE. To do something
when the state has changed, you would use:

window.nativeWindow.addEventListener
 (air.NativeWindowDisplayStateEvents.
 DISPLAY_STATE_CHANGE, functionName);

(In that line I used window.nativeWindow
instead of windowName because there was no
variable associated with the primary applica-
tion window.)

In this next example, the AIR application
will confirm that the user wants to close the
window (which may also mean quitting the
application). To do so, the application needs to
watch for a CLOSING event. The application can
stop an event from happening by calling the
preventDefault() method of the Event object.
This method cancels an event’s default behav-
ior (if it can; not all events can be canceled).

H
an

dlin
g

 W
in

do
w

 Even
ts

Table 6.4 These 12 items are the common window-related events. You’ll need to know the class in which an event is
defined to properly add a listener for it.

E v e n t 	 C l a s s

ACTIVATE	 Event

CLOSE 	 Event

CLOSING 	 Event

DEACTIVATE 	 Event

FOCUS_IN 	 Event

FOCUS_OUT 	 Event

MOVE	 NativeWindowBoundsEvents

MOVING 	 NativeWindowBoundsEvents

RESIZE 	 NativeWindowBoundsEvents

RESIZING 	 NativeWindowBoundsEvents

DISPLAY_STATE_CHANGE 	 NativeWindowDisplayStateEvents

DISPLAY_STATE_CHANGING 	 NativeWindowDisplayStateEvents

Window-related Events

Handling Window Events
With native windows, many things that the
user might do with the window—maximize,
minimize, resize, move, and close—count as
events. Handling events in general is dis-
cussed in Chapter 4, but you’ll need to know
how to handle specific types of window
events to do some of the exercises that follow
in this chapter.

As a quick recap, the process for handling
any event is

u	 Create a function to be called when an
event occurs.

u	 Tell the window to associate that event
with that function.

You accomplish this second task by adding an
event listener. With window events, you add
the event listener to the NativeWindow object:

windowName.addEventListener(type,
 someFunction);

The function will be called when the event
happens and can do whatever is necessary. It

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

94

To handle window events:

1.	 In your project’s HTML file, begin a new
JavaScript function (Script 6.7):

<script type=”text/javascript”>

function confirmClose(e) {	

}

The function named confirmClose()
will be called when a window closing
event occurs. When this function is
invoked, it will automatically be passed
the event as an argument to be assigned
to the variable e. This value will be used
later in the function.

H
an

dl
in

g
 W

in
do

w
 E

ve
n

ts

Script 6.7 This application uses an event listener to call a function when the user closes the window. The function
will confirm the closing.

1	 <html><!-- Script 6.7 -->

2		 <head>

3			 <script src=”AIRAliases.js” type=”text/javascript”></script>

4			 <script type=”text/javascript”>

5			

6			 // Function confirms the window closing.

7			 // Takes one argument: the Event object.

8			 function confirmClose(e) {

9			

10				 // Prompt the user:

11				 if (!confirm(‘Are you sure you want to close this window?’)) {

12					 e.preventDefault(); // Stop the event.

13				 }

14				

15			 } // End of confirmClose() function.

16			

17			 // Add the event listener:

18			 window.nativeWindow.addEventListener(air.Event.CLOSING, confirmClose);

19			

20			 </script>

21			 <title>Handling Events</title>

22		 </head>

23		 <body>

24			 <p>Try to close this window, I dare you!</p>

25		 </body>

26	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

95

name of the function to call when that
event happens.

4.	 If you want, add some text to the
HTML page:

<p>Try to close this window, I dare
 you!</p>

5.	 Save, test, debug, and run the completed
application (Figure 6.14).

	Tips

n	 Many actions a user might take will
send two events. For example, the act of
closing a window first triggers an Event.
CLOSING event, which indicates that a
request has been made to close the win-
dow. If that request is not interrupted,
the window will be closed, which triggers
an Event.CLOSE event.

n	 To fix the button issue mentioned in
the Tip in the “Creating Full-screen
Windows” section, add this code:

window.nativeWindow.addEventListener
 (air.NativeWindowBoundsEvent.
 RESIZE, fixButton);

function fixButton() {

	 document.getElementById(‘btn’).
	  onclick = makeFullScreen;

	 document.getElementById(‘btn’).
	  innerHTML = ‘Full Screen’;

}

H
an

dlin
g

 W
in

do
w

 Even
ts

Figure 6.13 The confirmation dialog box forces the
user to click OK before the window is actually closed
(a little annoying, yes, but it demonstrates the con-
cept well).

Figure 6.14 The application’s main window,
whose closing event is being listened for.

2.	 Within the confirmClose() function,
cancel the closing event if the user clicks
Cancel:

if (!confirm(‘Are you sure you want
 to close this window?’)) {

	 e.preventDefault();

}

The confirmation prompt (Figure 6.13)
makes the user take one more step
before the window is closed. If the user
clicks OK, the closing event will go on
without interruption. If the user clicks
Cancel, this conditional will be true,
and the event will be canceled by calling
e.preventDefault().

3.	 Outside of the function, add the event
listener to this window:

window.nativeWindow.addEventListener
 (air.Event.CLOSING, confirmClose);

This process is very simple once you
understand the right syntax. To add the
event listener to the window, you call the
addEventListener() method that’s part
of (technically, inherited by) the window.
nativeWindow object. The first argument
should be the event to be watched, which
is represented by a constant. As shown in
Table 6.4, the CLOSING event is part of the
Event class, so the constant is air.Event.
CLOSING. The second argument is the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

96

Creating a New Look
When you create any window, including the
primary application window, you have an
option as to what chrome to use. If you use
the system chrome, the window will look and
behave like any application window on that
operating system (you’ve seen many exam-
ples of this in the book already). With AIR
you can create a new chrome to give your
application a unique appearance.

Custom chrome windows are much more
customizable than the standard chrome
windows. They can be transparent (see the
“Transparent Windows” sidebar) and of any
shape. Conversely, system chrome windows
cannot be transparent and are always rectan-
gular. Of course, there’s one little snag.

The system chrome handles not just the look
of a window but also the functionality, offer-
ing close, minimize, and maximize buttons.
Your custom chrome must create these but-
tons plus include the JavaScript that handles
the corresponding events (when the user
clicks one of the buttons). Fortunately, for
each of these buttons there is a correspond-
ing method in the NativeWindow object:

windowName.close();

windowName.minimize();

windowName.maximize();

In this next example, let’s get rid of the sys-
tem chrome and see how that works!

Cr
ea

ti
n

g
 a

 N
ew

 L
o

o
k Transparent Windows

If you are not using the system chrome,
you have the option of creating a trans-
parent window. One reason you might
want to use a transparent window is to
create a nonrectangular window.

To create a transparent window, set
the NativeWindowInitOptions object’s
systemChrome attribute to none and its
transparent attribute to true:

var options = new
 air.NativeWindowInitOptions();
options.systemChrome = “none”;
options.transparent = true;

This has to be done before the window is
created; an existing window’s transpar-
ency cannot be altered.

A couple of words of caution: First,
transparent windows do not have a
default background, so you must create
one. Second, rendering and dealing with
transparent windows demands more of
a computer’s resources, so your applica-
tion’s performance will likely degrade if
you use this option.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

97

To create your own chrome:

1.	 In the application descriptor XML file,
set the systemChrome attribute to none
(Script 6.8):

<?xml version=”1.0” encoding=
 ”utf-8” ?>

<application xmlns=”http://ns.adobe.
 com/air/application/1.0”>

	 <!-- Script 6.8 -->

	 <id>NewChrome</id>

	 <filename>NewChrome</filename>

	 <version>1.0</version>

	 <initialWindow>

	 <content>script_06_09.html
	  </content>

	 <systemChrome>none</systemChrome>

	 <visible>true</visible>

	 </initialWindow>

</application>

For this descriptor file, I’ve just defined
the minimum of required settings.

2.	 In the project’s main HTML file,
assign the current window to a
variable (Script 6.9):

<script type=”text/javascript”>

var win = window.nativeWindow;

</script>

To be able to easily call this window’s
methods, a variable is assigned the value
of this NativeWindow object.

continues on next page

Creatin
g

 a N
ew

 Lo
o

k

Script 6.8 To use your own chrome in an application’s
primary window, the application descriptor file must
set the systemChrome value to none.

1	 <?xml version=”1.0” encoding=”utf-8” ?>

2	 <application xmlns=”http://ns.adobe.com/

	 air/application/1.0”>

3	

4		 <!-- Script 6.8 -->

5	

6		 <id>NewChrome</id>

7		 <filename>NewChrome</filename>

8		 <version>1.0</version>

9		 <initialWindow>

10			 <content>script_06_09.html</content>

11			 <systemChrome>none</systemChrome>

12			 <visible>true</visible>

13		 </initialWindow>

14	

15	 </application>

Script 6.9 This application will use not use the sys-
tem chrome but will instead rely on CSS for the look.
HTML buttons and JavaScript will replicate the clos-
ing, minimizing, and maximizing functionality that’s
expected of most application windows.

1	 <html><!-- Script 6.9 -->

2		 <head>

3			 <script src=”AIRAliases.js”

			 type=”text/javascript”></script>

4			 <script type=”text/javascript”>

5	

6			 // This window:

7			 var win = window.nativeWindow;

8	

9			 </script>

10			

11			 <style type=”text/css”>

12			

13			 body {

14				 background: #FC0;

15				 color: #666

16			 }

17			

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

98

3.	 Add the CSS for the page:

<style type=”text/css”>

body {

	 background: #FC0;

	 color: #666

}

</style>

To give the application a modicum of
styling, CSS will be used. (Keep in mind
that without the system chrome you lose
almost all of the default styling.)

4.	 Add CSS to format the buttons:

.button {

	 position: absolute;

	 top: 5px;

	 font-family: monospace;

	 color: #900;

	 font-size: 12px;

}

#close {

	 width: 50px;

	 right: 5px;

}

#min {

	 width: 40px;

	 right: 55px;

}

#max {

	 width: 40px;

	 right: 95px;

}

Cr
ea

ti
n

g
 a

 N
ew

 L
o

o
k

Script 6.9 continued

18			 .button {

19				 position: absolute;

20				 top: 5px;

21				 font-family: monospace;

22				 color: #900;

23				 font-size: 12px;

24			 }

25			

26			 #close {

27				 width: 50px;

28				 right: 5px;

29			 }

30			

31			 #min {

32				 width: 40px;

33				 right: 55px;

34			 }

35					

36			 #max {

37				 width: 40px;

38				 right: 95px;

39			 }

40			

41			 </style>

42	

43			 <title>Custom Chrome</title>

44	

45		 </head>

46		 <body>

47			 <p>Spam Spam Spam Spam Spam</p>

48			 <p>Spam Spam Spam Spam Spam</p>

49			 <p>Spam Spam Spam Spam Spam</p>

50			 <button id=”close” class=”button”

			 onclick=”win.close();”>CLOSE

			 </button>

51			 <button id=”min” class=”button”

			 onclick=”win.minimize();”>MIN

			 </button>

52			 <button id=”max” class=”button”

			 onclick=”win.maximize();”>MAX

			 </button>

53		 </body>

54	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

99

6.	 Save, test, debug, and run the completed
application.

Most important, the three buttons should
work as expected.

	Tips

n	 If you’re more graphically skilled than I
am (which includes pretty much every-
one), you could just as easily use images
for the window background and for the
three buttons.

n	 The AIR application, even when using
your chrome, will still create scrollbars as
necessary (Figure 6.16).

n	 The close() method does not necessarily
quit the application. If multiple windows
are open, close() only applies to the one
window. Once the last window is closed,
the application will terminate.

n	 A window closed using the close()
method cannot be reopened. If your
application has a window that might be
closed and then reopened, you should
just change its visibility instead (to hide
and then reveal it).

Creatin
g

 a N
ew

 Lo
o

k

Figure 6.16 Regardless of the chrome being used,
scrollbars are still automatically added when the
page’s content will not fit within the window.

Figure 6.15 The application’s main window without
the system chrome but with custom close, minimize,
and maximize buttons.

For this example, I’ll just be using HTML
buttons (Figure 6.15). I want them to be
formatted somewhat so they stand out.
They should also be absolutely posi-
tioned, so the user reliably knows where
to find them (conventionally, such but-
tons are at the top of the window).

5.	 Within the HTML block, add the
three buttons:

<button id=”close” class=”button”
 onclick=”win.close();”>CLOSE
 </button>

<button id=”min” class=”button”
 onclick=”win.minimize();”>MIN
 </button>		

<button id=”max” class=”button”
 onclick=”win.maximize();”>MAX
 </button>

For each, a simple HTML button is used
with a class of button and an id value
matching those used in the CSS. When
the CLOSE button is clicked, the win.
close() function is invoked; when MAX
is clicked, win.maximize() is invoked; and
when MIN is clicked, win.minimize() is
called. And that’s all there is to it!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

100

Moving and Resizing
Windows
If you played around with the previous exam-
ple, you may have noticed that there are two
items still missing. Not only does the system
chrome provide you with a way to close,
minimize, and maximize a window, but it
also makes it possible to move and resize it.
Without the system chrome, you also need
to provide for this functionality.

Supporting movement is simple: Just create
an area where the user would click to “grab”
the window and invoke the startMove()
method when the user clicks (and holds) on
that grab area. To allow for dynamic resiz-
ing of the window, again an area or button
must exist where the user would click and
drag from. At that time, the startResize()
method should be called. The difference here
is that this function takes one argument: the
location where the resizing starts.

The location is represented by a constant.
For example, if the resizing is done by
clicking and dragging on the top-right
corner, the where value would be air.
NativeWindowResize.TOP_RIGHT. To resize
using the left side of the window (so the
window is widened but not made taller),
use air.NativeWindowResize.LEFT. There
are nine values in all: TOP, BOTTOM, LEFT,
RIGHT, TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT,
BOTTOM_RIGHT, and NONE (which is equivalent
to BOTTOM_RIGHT).

Let’s quickly update the previous example to
add this functionality.

M
o

vi
n

g
 a

n
d

R
es

iz
in

g
 W

in
do

w
s

Script 6.10 The ability to move and resize the window
has been added in this version of the application,
thanks to two text labels and the requisite JavaScript.

1	 <html><!-- Script 6.10 -->

2		 <head>

3			 <script src=”AIRAliases.js” type=

			 ”text/javascript”></script>

4			 <script type=”text/javascript”>

5	

6			 var win = window.nativeWindow;

7	

8			 </script>

9			 <style type=”text/css”>

10			 body {

11				 background: #FC0;

12				 color: #666

13			 }

14			

15			 .button {

16				 position: absolute;

17				 top: 5px;

18				 font-family: monospace;

19				 color: #900;

20				 font-size: 12px;

21			 }

22			

23			 #close {

24				 width: 50px;

25				 right: 5px;

26			 }

27			

28			 #min {

29				 width: 40px;

30				 right: 55px;

31			 }

32			

33			 #max {

34				 width: 40px;

35				 right: 95px;

36			 }

37			

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Windows

101

To move and resize windows:

1.	 Open Script 6.9 in your text editor or IDE,
if it is not already.

2.	 In the CSS section, add some new defini-
tions (Script 6.10):

.label {

	 position: absolute;

	 bottom: 5px;

	 font-family: monospace;

	 background-color:#CCC;

	 border: 1px dashed #666;

	 color: #000;

	 font-size: 12px;

	 padding:2px;

}

#move {

	 right: 60px;

}

#resize {

	 right: 7px;

}

continues on next page

M
o

vin
g

 an
d R

esizin
g

 W
in

do
w

s

38			 .label {

39				 position: absolute;

40				 bottom: 5px;

41				 font-family: monospace;

42				 background-color:#CCC;

43				 border: 1px dashed #666;

44				 color: #000;

45				 font-size: 12px;

46				 padding:2px;

47			 }

48			

49			 #move {

50				 right: 60px;

51			 }

52			

53			 #resize {

54				 right: 7px;

55			 }

56			

57			 </style>

58			 <title>Custom Chrome</title>

59		 </head>

60		 <body>

61			 <p>Spam Spam Spam Spam Spam</p>

62			 <p>Spam Spam Spam Spam Spam</p>

63			 <p>Spam Spam Spam Spam Spam</p>

64			 <button id=”close” class=”button”

			 onclick=”win.close();”>CLOSE

			 </button>

65			 <button id=”min” class=”button”

			 onclick=”win.minimize();”>MIN

			 </button>

66			 <button id=”max” class=”button”

			 onclick=”win.maximize();”>MAX

			 </button>

67			 <span id=”move” class=”label”

			 onmousedown=”win.startMove();”>

			 MOVE

68			 <span id=”resize” class=”label”

			 onmousedown=”win.startResize(air.

			 NativeWindowResize.BOTTOM_RIGHT);”>

			 RESIZE

69			

70		 </body>

71	 </html>

Script 6.10 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

102

Similar to what I did with the buttons, I’ll
specially format and position the move
and resize widgets (Figure 6.17). Both
will appear in the lower-right corner.

3.	 Within the HTML block, add text repre-
senting these two new features:

<span id=”move” class=”label”
 onmousedown=”win.startMove();”>
 MOVE

<span id=”resize” class=”label”
 onmousedown=”win.startResize
 (air.NativeWindowResize.
 BOTTOM_RIGHT);”>RESIZE

Instead of using buttons, these two new
items will be simple text blocks. Each
is placed within its own span with a
class and id value to match the CSS
definitions. For the MOVE text, when
the mouse is clicked on it, the win.
startMove() method is called. For the
RESIZE text, when the mouse is clicked
on it, the win.startResize() method
is called, sending it the value air.
NativeWindowResize.BOTTOM_RIGHT.

4.	 Save, test, debug, and run the completed
application.

M
o

vi
n

g
 a

n
d

R
es

iz
in

g
 W

in
do

w
s

Figure 6.17 In the lower-right corner of the window,
two more pieces of common functionality are added.

Working with Multiple Screens

One last window-related topic to dis-
cuss in this chapter is screens. If a user’s
computer has more than one screen
connected, your application can take
advantage of the screens available. All of
the information about the screens in use
can be accessed through the Screen class.

The two most important attributes of
Screen are Screen.screens and Screen.
mainScreen. The former returns an array
of Screen objects: one object for each
screen in use. The latter returns an object
representing the primary screen.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

103

Creating
Menus

7
Menus are a common feature in almost every application. They provide access to
application functionality without cluttering the main program window (although it is
possible, and sometimes normal, to duplicate some functionality in menus and util-
ity windows). Creating all sorts of menus in your AIR application is straightforward
enough, and you’ll learn everything you need to know in this chapter.

The chapter begins with a discussion of the basic terminology, which is mostly a mat-
ter of the types of menus that exist. You’ll learn how to create menus, and then how
to tie events to the menu items (so that selecting an option does something). Part of
the point of AIR is to generate cross-platform applications, so you’ll also find the code
you need to make appropriate menus for both Windows and Mac OS X. The chapter
concludes with secondary topics, like creating keyboard equivalents to menu items,
adding mnemonics, and changing other menu item properties.

Creatin
g

 M
en

u
s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

104

Menu Terminology
Before getting into the actual code, it’s best
to go through some of the terms used with
menus. To start, there are several types of
menus that a graphical program can contain.

Application menus exist on Mac OS X and
appear at the top of the screen (Figure 7.1).
A basic application menu is automatically
created by the operating system, but you can
replace it with your own.

Windows menus are a Windows operating
system convention. These menus are associ-
ated with an individual window (Figure 7.2).
Note that the application window must use
the system chrome (see Chapter 6, “Making
Windows”) in order to have a windows menu.

Contextual menus only appear when the
user right-clicks, Command-clicks, or Ctrl-
clicks, depending on the operating system
and its configuration (Figure 7.3). Pop-up
menus are like contextual menus but can be
invoked anywhere within a window (whereas
contextual menus are applied to selected
text, an image, etc.).

M
en

u
 T

er
m

in
o

lo
gy

Figure 7.2 Programs on Windows, like
Firefox here, have a windows menu that
appears at the top of an open window.

Figure 7.3 The contextual menu that
appears after right-clicking on high-
lighted text in Word (on Mac OS X).

Figure 7.1 Part of the application menu for the
Microsoft Word program running on Mac OS X.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

105

Dock and system tray menus appear when a
user clicks on a representation of a program.
On Mac OS X, all active and some inac-
tive programs are represented in the Dock
(Figure 7.4). As with the application menus,
Dock menus start with some standard
options, to which you can add options; how-
ever, unlike application menus, which can be
completely overridden, you cannot remove
the standard options from Dock menus. On
Windows, some programs are represented in
the system tray (Figure 7.5).

To create menus, you’ll use two Adobe AIR
classes: NativeMenu and NativeMenuItem. The
first creates the actual menu; the second cre-
ates the items within the menu.

	Tips

n	 You can also create custom menus
using ActionScript, MXML (an XML-
based markup language associated with
ActionScript), or JavaScript. But doing so
is beyond the scope of this chapter, which
instead focuses on native menus.

n	 You can create contextual menus
using standard JavaScript or the AIR
NativeMenu class. Again, the focus here
is on native menus.

n	 One key distinction between Mac OS X
and Windows is in applications versus
windows. On Windows, each window is
essentially an instance of the application.
If you close the window, you close that
instance of the application. On Mac OS X,
an application can be open without any
windows being open, and multiple win-
dows can be open within the same (the
only) instance of the application. This is
why Macs have application menus but
Windows uses window menus.

M
en

u
 Term

in
o

lo
gy

Figure 7.4 Firefox’s Dock menu for Mac
OS X. The options in the menu change
depending on whether the application is
currently open or not.

Figure 7.5 The system tray menu for
a program on Windows.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

106

Creating a Menu
The first class you’ll use for creating menus
is, appropriately enough, NativeMenu. To
start, you’ll always want to create the root,
or base, menu. The code to use is

var rootMenu = new air.NativeMenu();

For contextual and pop-up menus, the root
menu may contain any combination of sub-
menus, individual menu items, and separator
lines. If you want to create the more com-
mon application or windows menu, you can
only place submenus within this root menu.

To add a submenu, start by creating another
NativeMenu object:

var fileMenu = new air.NativeMenu();

Next, create items to be added to the submenu:

var open = new
 air.NativeMenuItem(‘Open’);
var close = new
 air.NativeMenuItem(‘Close’);

The argument to this method is the label
the item will have (i.e., the text that will
appear in the running application). To add
an item to a menu, use the menu object’s
addItem() method:

fileMenu.addItem(open);
fileMenu.addItem(close);

Cr
ea

ti
n

g
 a

 M
en

u

The items will appear in the menu in the
order in which they are added.

To create a separator line, use NativeMenuItem,
providing it with any label (which won’t be
shown) or none at all, but also add a second
argument with a value of true:

var sep = new
 air.NativeMenuItem(‘’, true);
fileMenu.addItem(sep);

When the submenu is done, you can add it to
the root menu:

rootMenu.addSubmenu(fileMenu, ‘File’);

The first argument is the NativeMenu
object; the second is the label the submenu
should have.

If you execute the lines of code to this point,
rootMenu will be a menu containing one
submenu whose label is File. That submenu
will have three items: the first with a label of
Open, the second with a label of Close, and
the third being a separator line. Separators
don’t do anything, they just visually break
up a menu (as the last item in this menu, the
separator doesn’t even do that, but that’s
irrelevant for now).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

107

After you’ve completely defined the menu,
you’ll need to set its type. To create a new
window menu for Windows, use (Figure 7.6):

window.nativeWindow.menu = rootMenu;

To create a system tray icon menu for
Windows, use:

air.NativeApplication.nativeApplication.
 icon.menu = rootMenu;

To create an application menu for Mac OS X,
use (Figure 7.7):

air.NativeApplication.nativeApplication.
 menu = rootMenu;

As a reminder, setting a new application
menu will replace the standard menu created
by the operating system.

To create a Dock icon menu for Mac OS X, use:

air.NativeApplication.nativeApplication.
 icon.menu = rootMenu;

As with the application menu, Mac OS X will
provide a default set of menu options for the
Dock menu. Unlike the application menu, by
defining a new Dock menu, your menu items
will be added to the existing Dock menu
(Figure 7.8). You cannot modify the operat-
ing system-provided Dock menu items.

Creatin
g

 a M
en

u

Figure 7.6 The window menu created by
the instructional code.

Figure 7.7 The same menu as
in Figure 7.6 but is now being
used as an application menu
on Mac OS X.

Figure 7.8 The same menu as in Figures 7.6
and 7.7 but is now added to the application’s
Dock menu.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

108

To create a menu:

1.	 In your project’s primary HTML file, cre-
ate a new native menu (Script 7.1):

var rootMenu = new air.NativeMenu();

This object will be the root menu. Every
submenu will be added to it.

If you’d rather, you have the option of
putting this and all the subsequent code
within a function that’s called once the
page has loaded. I’m choosing not to, just
to keep things simple.

2.	 Add a submenu:

var fileMenu = new air.NativeMenu();

This application’s main menu (Figures
7.9 and 7.10) will have two submenus:
File and Help. The code for the file menu
will be written first.

Cr
ea

ti
n

g
 a

 M
en

u

Figure 7.10 The Help menu with its four
menu items (plus a separator) as part of
the window menu on Windows.

Figure 7.9 The File menu, with
its one menu item, as part of the
application menu on Mac OS X.

Script 7.1 In this application, a menu with two submenus is created. You’ll need to remove the backslashes (//)
before one of the two last lines of JavaScript to create the menus for your operating system.

1	 <html><!-- Script 7.1 -->

2		 <head>

3			 <title>New Menu</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript”>

6				

7			 // Root menu:

8			 var rootMenu = new air.NativeMenu();

9			

10			 // Add a submenu:

11			 var fileMenu = new air.NativeMenu();

12			

13			 // Add an item to the submenu:

14			 var exit = new air.NativeMenuItem(‘Exit’);

15			 fileMenu.addItem(exit);

16			

17			 // Add another submenu:

18			 var helpMenu = new air.NativeMenu();

19			

20			 // Add items to the submenu:

21			 var showTips = new air.NativeMenuItem(‘Show Tips’);

22			 helpMenu.addItem(showTips);

23			 var helpPages = new air.NativeMenuItem(‘Help Pages’);

24			 helpMenu.addItem(helpPages);

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

109

helpMenu.addItem(showTips);

var helpPages = new
 air.NativeMenuItem(‘Help Pages’);

helpMenu.addItem(helpPages);

var separator = new
 air.NativeMenuItem(‘’, true);

helpMenu.addItem(separator);

var checkForUpdates = new air.
 NativeMenuItem(‘Check for Updates’);

helpMenu.addItem(checkForUpdates);

var visitWebSite = new air.
 NativeMenuItem(‘Visit Web Site’);

helpMenu.addItem(visitWebSite);

These lines duplicate the same processes
as found in steps 2 and 3. This second
menu will contain two items, a separator,
and then two more items (see Figure 7.10).

continues on next page

Creatin
g

 a M
en

u

3.	 Add an Exit option to the File menu:

var exit = new
 air.NativeMenuItem(‘Exit’);

fileMenu.addItem(exit);

To add an item to a menu, first create a
new NativeMenuItem and provide that
constructor the label value to use. Then
call the parent menu’s addItem() method.

(As a reminder, a constructor is the default
method automatically called when a new
object of that type is created).

4.	 Add another submenu:

var helpMenu = new air.NativeMenu();

var showTips = new
 air.NativeMenuItem(‘Show Tips’);

Script 7.1 continued

25			 var separator = new air.NativeMenuItem(‘’, true);

26			 helpMenu.addItem(separator);

27			 var checkForUpdates = new air.NativeMenuItem(‘Check for Updates’);

28			 helpMenu.addItem(checkForUpdates);

29			 var visitWebSite = new air.NativeMenuItem(‘Visit Web Site’);

30			 helpMenu.addItem(visitWebSite);

31			

32			 // Add the submenus to the root menu:

33			 rootMenu.addSubmenu(fileMenu, ‘File’);

34			 rootMenu.addSubmenu(helpMenu, ‘Help’);

35			

36			 // Add the menu to the program...

37			

38			 // Un-comment to run on Windows:

39	 //		 window.nativeWindow.menu = rootMenu;

40	

41			 // Un-comment to run on Mac OS X:

42	 //		 air.NativeApplication.nativeApplication.menu = rootMenu;

43	

44			 </script>

45		 </head>

46	

47		 <body>

48			 <p>Page Content</p>

49		 </body>

50	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

110

5.	 Add the submenus to the root menu:

rootMenu.addSubmenu(fileMenu,
 ‘File’);

rootMenu.addSubmenu(helpMenu,
 ‘Help’);

The order in which the submenus are
added dictates their order in the final
menu.

6.	 Add the menu to the program.

If you’re testing and running this on
Windows, add this line:

window.nativeWindow.menu = rootMenu;

If you’re testing and running this on Mac
OS X, add:

air.NativeApplication.
 nativeApplication.menu = rootMenu;

Script 7.1 shows both of these lines, but
they are commented out (i.e., rendered
inert). In the next section of this chapter
you’ll learn how to do this dynamically.

7.	 Save, test, debug, and run the completed
application.

One thing you’ll likely notice is that none
of the menus items actually do anything.

Cr
ea

ti
n

g
 a

 M
en

u

In fact, there’s no common way to exit
the application because the Exit (or Quit,
on Mac OS X) functionality provided by
the operating system has been replaced.
Keep reading for the solution. But in
the meantime, just close the window to
terminate the application.

	Tips

n	 In terms of debugging, if any of the menu
creation syntax is wrong, the end result
will almost always be a running applica-
tion with the default menus or none at all.
In such cases, check the console for any
errors that might have occurred.

n	 Instead of creating menu items in the
order in which you’d like them to appear,
you can specify their index (order in the
listing) using the addItemAt() method.
Its first argument is the item being added,
the second is its desired indexed position
(starting at 0):

var sep = new air.NativeMenuItem(‘’,
 true);

fileMenu.addItemAt(sep, 2);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

111

This code tells the program that when the
select event is triggered on the fullScreen
menu item, the makeFullScreen() function
(which would need to be defined) should
be called. For more information on event
listeners, see Chapter 4, “Basic Concepts and
Code.” To practice this, let’s add a couple of
event listeners to the menus already created.

To handle menu events:

1.	 Open Script 7.1 in your text editor or IDE,
if it is not already.

Throughout this entire chapter you’ll con-
tinue to build on this one example until it’s
fully functional (or reasonably so).

2.	 Anywhere within the JavaScript, define a
function that should be called when the
user selects File > Exit (Script 7.2):

function doExit(e) {

	 air.NativeApplication.
 nativeApplication.exit();

}

continues on page 113

H
an

dlin
g

 M
en

u
 Even

ts

Handling Menu Events
One crucial step is missing in the previous
example: The menu items don’t actually
do anything. As with most functionality in
Adobe AIR applications, creating an object is
only half the process; the other half is tying the
object to an action. This means using events.

Two events are pertinent to menus: display-
ing and select. A displaying event is triggered
just before a menu appears (in the nano-
second between the time a user clicks on it
and when it’s displayed). The most obvious
example of when you might use this event
would be to update a list of recently opened
files each time that menu is viewed.

A select event occurs when a user selects
a menu item (except for a submenu or a
separator, neither of which can be selected).
To perform an action when a menu item is
selected, add an event listener:

var fullScreen = new
 air.NativeMenuItem(‘Full Screen’);
fullScreen.addEventListener(air.Event.
 SELECT, makeFullScreen);
viewMenu.addItem(fullScreen);

Script 7.2 Two event handlers are added to the application so that selection of File > Exit or Help > Help Pages
causes something to happen (namely, termination of the program and the display of an alert box, respectively).

1	 <html><!-- Script 7.2 -->
2		 <head>
3			 <title>Menu Events</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6			
7			 // Function for handling the Exit menu item selection:
8			 function doExit(e) {
9				 air.NativeApplication.nativeApplication.exit();
10			 }
11			
12			 // Function for handling the Help Pages menu item selection:
13			 function showHelp(e) {
14				 alert(‘This is when the Help window would appear.’);
15			 }
16				

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

112

H
an

dl
in

g
 M

en
u

 E
ve

n
ts

Script 7.2 continued

17			 // Root menu:

18			 var rootMenu = new air.NativeMenu();

19			

20			 // Add a submenu:

21			 var fileMenu = new air.NativeMenu();

22			

23			 // Add an item to the submenu:

24			 var exit = new air.NativeMenuItem(‘Exit’);

25			 exit.addEventListener(air.Event.SELECT, doExit);

26			 fileMenu.addItem(exit);

27			

28			 // Add another submenu:

29			 var helpMenu = new air.NativeMenu();

30			

31			 // Add items to the submenu:

32			 var showTips = new air.NativeMenuItem(‘Show Tips’);

33			 helpMenu.addItem(showTips);

34			 var helpPages = new air.NativeMenuItem(‘Help Pages’);

35			

36			 // Add the helpPages event listener:

37			 helpPages.addEventListener(air.Event.SELECT, showHelp);

38			

39			 // Continue adding items:

40			 helpMenu.addItem(helpPages);

41			 var separator = new air.NativeMenuItem(‘’, true);

42			 helpMenu.addItem(separator);

43			 var checkForUpdates = new air.NativeMenuItem(‘Check for Updates’);

44			 helpMenu.addItem(checkForUpdates);

45			 var visitWebSite = new air.NativeMenuItem(‘Visit Web Site’);

46			 helpMenu.addItem(visitWebSite);

47			

48			 // Add the submenus to the root menu:

49			 rootMenu.addSubmenu(fileMenu, ‘File’);

50			 rootMenu.addSubmenu(helpMenu, ‘Help’);

51			

52			 // Add the menu to the program:

53	 //		 window.nativeWindow.menu = rootMenu;

54	 //		 air.NativeApplication.nativeApplication.menu = rootMenu;

55	

56			 </script>

57		 </head>

58	

59		 <body>

60			 <p>Page Content</p>

61		 </body>

62	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

113

The event listener is added to the exit
object, which is a menu item. The event
being watched is air.Event.SELECT.
When that event occurs, the doExit()
function will be called (defined in step 2).
You can place this code anywhere within
the JavaScript after the exit object is
created and before the rootMenu is turned
into an application or windows menu.

5.	 After creating the helpPages object, add
an event listener to it:

helpPages.addEventListener(air.
 Event.SELECT, showHelp);

Most of this code is the same as the code
in step 4; even the same event is being
listened for. For this menu item, the func-
tion to be called is showHelp(), defined in
step 3.

6.	 Save, test, debug, and run the completed
application.

There’s no cosmetic difference in the
program, but now selecting Help > Help
Pages creates the alert box (Figure 7.11)
and selecting File > Exit terminates the
application, as it should.

H
an

dlin
g

 M
en

u
 Even

ts

This function takes one argument, which
will be an Event object. Although it won’t
be used within the function, it’s still a
good idea to accept that parameter. As for
the function itself, it terminates the run-
ning application by invoking the exit()
method of the NativeApplication object.

It really doesn’t matter where within the
JavaScript block you define this function,
but I’ll add mine to the top to keep it
separate from the rest of the menu code.

3.	 Add another function to handle the selec-
tion of the Help > Help Pages menu item:

function showHelp(e) {

	 alert(‘This is when the Help
	  window would appear.’);

}

Logically, when users select this particu-
lar menu item, they should be shown the
Help files for this application. You can
easily use some of the code from Chapter
6 to have a new window pop up with that
information. But since there is no Help
documentation as of yet, an alert dialog
will be created instead (Figure 7.11).

4.	 After creating the exit object, add an
event listener to it:

exit.addEventListener(air.Event.
 SELECT, doExit);

Figure 7.11 The stand-in for the Help Pages window. This appears
when the user selects Help > Help Pages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

114

Event Bubbling

Menu events “bubble” up to the top, which is to say that if you have a Help menu with a Show
Tips item in it, selection of that item triggers events for both Show Tips and Help. This knowl-
edge is useful when you have a menu with a list of possible options of which the user would
select one. For example, say you have a menu called Window Size whose items are possible
values: 200x200, 300x300, 400x400, and so on.

In this case, the easiest way to handle the selection is to add an event listener to the parent
menu instead of adding one to each item:

windowSize.addEventListener(air.Event.SELECT, changeWindowSize);

(As already mentioned, the submenu cannot be selected, so it will never actually trigger the
select event. But it can listen to events triggered by its menu items.)

The handling function should be written so that it accepts the event as an argument:

function changeWindowSize(e) {…

Now, within that function, e.target refers to the specific menu item that was selected.
Its label attribute is the label of the selected item. Continuing this function, you might
use a conditional to compare the label of the selected item against possible values and
react accordingly:

var which = e.target;
if (which.label == ‘200x200’) {
	 // Resize to 200 x 200.
} else if (which.label == ‘300x300’) {
	 // Resize to 300 x 300.
}…

Instead of using a long if-else-if conditional, you might want to use a switch. In any case,
if you find you are creating a menu where all the menu items perform subtle variations of the
same behavior, that’s probably a good opportunity to take advantage of how menu events
bubble up to the surface.

H
an

dl
in

g
 M

en
u

 E
ve

n
ts

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

115

To confirm that the program is running on
Mac OS X, prior to adding such a menu, use:

if (air.NativeApplication.supportsMenu) {

(Technically, these conditionals aren’t
confirming that the program is running on
Windows or Mac OS X but just that the asso-
ciated menu type is supported.) Let’s update
the application with this in mind.

To create platform-specific menus:

1.	 Open Script 7.2 in your text editor or IDE,
if it is not already.

2.	 Replace the line where the menu is added
to the program with (Script 7.3):

if (air.NativeWindow.supportsMenu) {

	 window.nativeWindow.menu =
	  rootMenu;

} else if (air.NativeApplication.
 supportsMenu) {

	 air.NativeApplication.
	  nativeApplication.menu =
	  rootMenu;

}

These two conditions were explained
earlier. Here, they’ve just been put into
an if-else if conditional.

continues on page 117

Script 7.3 By using a conditional to check what kinds of menus the current operating system supports, this applica-
tion can automatically create operating system-specific menus. For Mac OS X, it also changes the label for the File >
Exit menu item to Quit.

1	 <html><!-- Script 7.3 -->
2		 <head>
3			 <title>OS-Specific Menus</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6			
7			 // Function for handling the Exit menu item selection:
8			 function doExit(e) {
9				 air.NativeApplication.nativeApplication.exit();
10			 }
11			

(script continues on next page)

OS-specific Menus
In the example that I’ve been developing
throughout this chapter, I instructed you to
use this line:

window.nativeWindow.menu = rootMenu;

to create a windows menu for Windows and
this version:

air.NativeApplication.nativeApplication.
 menu = rootMenu;

to create that same menu as an application
menu on Mac OS X. But AIR applications
are supposed to be cross-platform in nature.
Although you could build and distribute two
different versions of each program, you really
don’t have to. Instead, you can programmati-
cally check if a menu type is supported and
only create those that are.

A windows menu in Windows is added
through a native window object. To confirm
that the program is running on Windows,
prior to adding such a menu, use:

if (air.NativeWindow.supportsMenu) {…

Conversely, an application menu on Mac OS
X is added through a native application object.

O
S

-specifi
c M

en
u

s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

116

O
S

-s
pe

ci
fi

c
M

en
u

s

Script 7.3 continued

12			 // Function for handling the Help Pages menu item selection:
13			 function showHelp(e) {
14				 alert(‘This is when the Help window would appear.’);
15			 }
16				
17			 // Root menu:
18			 var rootMenu = new air.NativeMenu();
19			
20			 // Add a submenu:
21			 var fileMenu = new air.NativeMenu();
22			
23			 // Add an item to the submenu:
24			 var exit = new air.NativeMenuItem(‘Exit’);
25			 exit.addEventListener(air.Event.SELECT, doExit);
26			 fileMenu.addItem(exit);
27			
28			 // Add another submenu:
29			 var helpMenu = new air.NativeMenu();
30			
31			 // Add items to the submenu:
32			 var showTips = new air.NativeMenuItem(‘Show Tips’);
33			 helpMenu.addItem(showTips);
34			 var helpPages = new air.NativeMenuItem(‘Help Pages’);
35			
36			 // Add the helpPages event listener:
37			 helpPages.addEventListener(air.Event.SELECT, showHelp);
38			
39			 // Continue adding items:
40			 helpMenu.addItem(helpPages);
41			 var separator = new air.NativeMenuItem(‘’, true);
42			 helpMenu.addItem(separator);
43			 var checkForUpdates = new air.NativeMenuItem(‘Check for Updates’);
44			 helpMenu.addItem(checkForUpdates);
45			 var visitWebSite = new air.NativeMenuItem(‘Visit Web Site’);
46			 helpMenu.addItem(visitWebSite);
47			
48			 // Add the submenus to the root menu:
49			 rootMenu.addSubmenu(fileMenu, ‘File’);
50			 rootMenu.addSubmenu(helpMenu, ‘Help’);
51			
52			 // Add the menu to the program:
53			 if (air.NativeWindow.supportsMenu) { // Windows
54				 window.nativeWindow.menu = rootMenu;
55			 } else if (air.NativeApplication.supportsMenu) { // Mac
56				 exit.label = ‘Quit’;
57				 air.NativeApplication.nativeApplication.menu = rootMenu;
58			 }
59	
60			 </script>
61		 </head>
62	
63		 <body>
64			 <p>Page Content</p>
65		 </body>
66	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

117

3.	 Before the line that creates the Mac menu,
change the label for the exit menu item:

exit.label = ‘Quit’;

As a convention, Macs use the word Quit
instead of Exit. So to make this program
even more operating system savvy, let’s
change that value. You can do so by
assigning the label attribute of the menu
item a new value. All the other function-
ality (namely, calling the doExit() func-
tion when selected) will remain the same.

4.	 Save, test, debug, and run the completed
application.

The only apparent difference will be the
change in the name of the item in the File
menu when running the program on Mac
OS X (Figure 7.12). But more important,
you can now distribute and run this same
program on both operating systems with-
out further modification.

	Tips

n	 Because window menus on Windows can
only be created within windows that use
the system chrome, you can check that
condition, too:

if (air.NativeWindow.supportsMenu
 && (air.nativeWindow.systemChrome
 != air.NativeWindowSystemChrome.
 NONE)) {…

That being said, you, as the program’s
developer, should know whether you’ve
created a window with the system
chrome or not, so this check shouldn’t
be necessary.

n	 Applications on Mac OS X normally have
a menu whose name is the same as the
application. You can create this by simply
using:

rootMenu.addSubmenu(appMenu,
 ‘Application Name’);

Obviously, you’d need to fill in the actual
application’s name.

O
S

-specifi
c M

en
u

s

Figure 7.12 On Mac OS X, the
File menu’s one item is now
labeled Quit instead of Exit (to
better match Mac conventions).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

118

Adding Keyboard
Equivalents
Often, items in a menu have a keyboard
equivalent, also called a keyboard shortcut or
an accelerator. Keyboard equivalents consist
of the key and the modifier or modifier keys.
Of course, you’re already familiar with this
concept: Ctrl+C (Windows) or Command+C
(Mac OS X) copies the currently selected
item to the clipboard.

To add a keyboard equivalent to your AIR
application, you start with the menu item:

var print = new
 air.NativeMenuItem(‘Print’);

Then set the item’s keyEquivalent property
to the primary key:

print.keyEquivalent = ‘p’;

Note that you should use a lowercase letter,
because an uppercase letter assumes the use
of the Shift key, which is one of the modifiers.
Speaking of which, you also need to list the
modifier or modifiers that go with the key.
Obviously, you don’t want to just use a single
key because, using this example, every time I
type the word plié, I’ll trigger the menu item,
and that would be maddening. Modifiers are
set in an item’s keyEquivalentModifiers
property. It always takes an array of values,
even if only one modifier is being set:

item.keyEquivalentModifiers = [modifiers];

The modifier values are AIR constants and
are defined within the Keyboard class. Most
are what you’d expect them to be (Table 7.1). C o n s t a n t 	 K e y

ALTERNATE	 Alt/Option

BACKSPACE	 Backspace

DOWN	 Down arrow

F13	 F13

NUMBER_7	 7

PAGE_UP	 Page Up

SPACE	 Spacebar

Keyboard Constants

Table 7.1 Each key on the keyboard is represented
in AIR by a constant, which is found within the
Keyboard class. Here is a sampling.

When defining keyboard equivalents, keep a
few details in mind. Every keyboard equiva-
lent must be unique for the application. In
addition, you should try to make them consis-
tent with the operating system: On Windows,
Ctrl+O is used to open a file from within an
application, so your program should use that
shortcut too (if it has that functionality).

Also, understand that if you replace the
application or windows menu, you’ll lose
all the standard operating system keyboard
equivalents because you’ve eliminated those
menus. So the program you create will not
recognize Ctrl+P or Command+P for Print
unless you make that explicit. Further, take
into account that the different operating
systems do not have the same modifier keys
(Windows uses Shift, Ctrl, and Alt; Mac OS X
uses Shift, Control, Option, and Command).

All that being said, one advantage of using
keyboard equivalents is that when the user
invokes that combination, a select event will
be triggered on the corresponding menu item.
No extra steps need to be taken in that regard.

Let’s apply this knowledge to the running
example by adding some keyboard equiva-
lents: one for the Help Pages menu item and
another for Exit/Quit.

A
dd

in
g

 K
ey

bo
ar

d
Eq

u
iv

al
en

ts

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

119

conditional that essentially determines
if the program is running on Windows or
Mac, the keyboard shortcuts can easily
be defined in a platform-conscience way.
To start, a shortcut for Help Pages will be
added. Although not universally sup-
ported, the first function key is frequently
used for application or Windows help. It’s
used without a modifier.

Note, again, that you should use the low-
ercase version of the letter: f1, not F1.

continues on page 121

A
ddin

g
 K

eybo
ard Eq

u
ivalen

ts

To assign keyboard equivalents:

1.	 Open Script 7.3 in your text editor or IDE,
if it is not already.

2.	 Within the Windows section of the con-
ditional, add an equivalent for the Help
Pages menu item (Script 7.4):

helpPages.keyEquivalent = ‘f1’;

Sometimes you’ll be able to create uni-
versal keyboard shortcuts (i.e., ones that
are correct for any operating system), but
not always. Since this file already has a

Script 7.4 The application has been updated by adding keyboard equivalents to two menu items (one in each sub-
menu). These keyboard shortcuts are also operating system-specific.

1	 <html><!-- Script 7.4 -->
2		 <head>
3			 <title>Menu Keyboard Equivalents</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6			
7			 // Function for handling the Exit menu item selection:
8			 function doExit(e) {
9				 air.NativeApplication.nativeApplication.exit();
10			 }
11			
12			 // Function for handling the Help Pages menu item selection:
13			 function showHelp(e) {
14				 alert(‘This is when the Help window would appear.’);
15			 }
16				
17			 // Root menu:
18			 var rootMenu = new air.NativeMenu();
19			
20			 // Add a submenu:
21			 var fileMenu = new air.NativeMenu();
22			
23			 // Add an item to the submenu:
24			 var exit = new air.NativeMenuItem(‘Exit’);
25			 exit.addEventListener(air.Event.SELECT, doExit);
26			 fileMenu.addItem(exit);
27			
28			 // Add another submenu:
29			 var helpMenu = new air.NativeMenu();
30			
31			 // Add items to the submenu:
32			 var showTips = new air.NativeMenuItem(‘Show Tips’);

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

120

A
dd

in
g

 K
ey

bo
ar

d
Eq

u
iv

al
en

ts

Script 7.4 continued

33			 helpMenu.addItem(showTips);
34			 var helpPages = new air.NativeMenuItem(‘Help Pages’);
35			
36			 // Add the helpPages event listener:
37			 helpPages.addEventListener(air.Event.SELECT, showHelp);
38			
39			 // Continue adding items:
40			 helpMenu.addItem(helpPages);
41			 var separator = new air.NativeMenuItem(‘’, true);
42			 helpMenu.addItem(separator);
43			 var checkForUpdates = new air.NativeMenuItem(‘Check for Updates’);
44			 helpMenu.addItem(checkForUpdates);
45			 var visitWebSite = new air.NativeMenuItem(‘Visit Web Site’);
46			 helpMenu.addItem(visitWebSite);
47			
48			 // Add the submenus to the root menu:
49			 rootMenu.addSubmenu(fileMenu, ‘File’);
50			 rootMenu.addSubmenu(helpMenu, ‘Help’);
51			
52			 // Add the menu to the program:
53			 if (air.NativeWindow.supportsMenu) { // Windows
54	
55				 // Add keyboard equivalents:
56				 helpPages.keyEquivalent = ‘f1’;
57			
58				 exit.keyEquivalent = ‘f4’;
59				 exit.keyEquivalentModifiers = [air.Keyboard.ALTERNATE];
60				
61				 window.nativeWindow.menu = rootMenu;
62				
63			 } else if (air.NativeApplication.supportsMenu) { // Mac
64	
65				 // Add keyboard equivalents:
66				 helpPages.keyEquivalent = ‘?’;
67				 helpPages.keyEquivalentModifiers = [air.Keyboard.COMMAND];
68				
69				 exit.keyEquivalent = ‘q’;
70				 exit.keyEquivalentModifiers = [air.Keyboard.COMMAND];
71	
72				 exit.label = ‘Quit’;
73	
74				 air.NativeApplication.nativeApplication.menu = rootMenu;
75				
76			 }
77	
78			 </script>
79		 </head>
80	
81		 <body>
82			 <p>Page Content</p>
83		 </body>
84	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

121

3.	 Within the same conditional, add a
Windows keyboard equivalent for Exit:

exit.keyEquivalent = ‘f4’;

exit.keyEquivalentModifiers =
 [air.Keyboard.ALTERNATE];

The combination of Alt+F4 is used to
close most applications on Windows.

4.	 Within the Mac section of the condi-
tional, define the Help Pages and Quit
keyboard equivalents:

helpPages.keyEquivalent = ‘?’;

helpPages.keyEquivalentModifiers =
 [air.Keyboard.COMMAND];

exit.keyEquivalent = ‘q’;

exit.keyEquivalentModifiers =
 [air.Keyboard.COMMAND];

Macs use Command+? for Help and
Command+Q to quit in every application.

5.	 Save, test, debug, and run the completed
application (Figures 7.13 and 7.14).

As you can see in the figures, the key-
board equivalents are automatically listed
next to the menu items.

Unfortunately, at the time of this writ-
ing, some of the keyboard equivalents
are not implemented successfully in
the 1.0 release of AIR. For example, the
proper Help shortcut on Mac OS X is
Command+?, but an equivalent defined
as such doesn’t work. You can instead
define the shortcut using:

helpPages.keyEquivalent = ‘/’;

helpPages.keyEquivalentModifiers =
 [air.Keyboard.COMMAND,
 air.Keyboard.SHIFT];

continues on next page

A
ddin

g
 K

eybo
ard Eq

u
ivalen

ts

Figure 7.14 The Help menu on Mac
OS X reveals Command+? to be the
keyboard equivalent for the Help
Pages item.

Figure 7.13 The File menu on Windows
now shows that ALT + F4 is the keyboard
equivalent for Exit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

122

In terms of the keys the user presses,
this is the same as Command+?, and
this combination will work; however,
the menu item lists the shortcut as
Command+Shift+/. It’s a minor distinc-
tion, but one that other programs are able
to get right.

Similarly, I have found using the func-
tion keys on Windows to be unreliable.
Presumably these things will be worked
out in future versions of AIR.

	Tips

n	 To use multiple modifier keys, separate
them by commas:

item.KeyEquivalentModifiers =
 [air.Keyboard.SHIFT,
 air.Keyboard.OPTION];

It does not matter in what order you list
the keys.

n	 You can add a key equivalent to a menu
item in any type of menu, but they’ll only
work for application and window menus.
They’ll still appear in contextual menus,
but they won’t function.

n	 Instead of the F1 key, you can set the
keyboard equivalent for the Help Pages
menu item to the Help key, which exists
on many keyboards:

helpPages.keyboardEquivalent =
 air.Keyboard.KEYNAME_HELP;A

dd
in

g
 K

ey
bo

ar
d

Eq
u

iv
al

en
ts

Establishing Mnemonics

Whereas keyboard equivalents are key
combinations (used outside of any menu)
that trigger menu events, mnemonics are
meaningful keys used within menus. For
example, on Windows, menu items often
include a single underlined letter. Pressing
that key (with the menu open) is the same
as selecting that item and pressing Enter.
On Windows and Mac OS X, by default
the first character in a menu item’s label
is automatically a mnemonic (but not
marked), but you can override this in AIR.

To add a mnemonic to a menu item, set
its mnemonicIndex property. The assigned
value should be the indexed position of
the target character in the menu label.
For example, in this code the letter G will
be used as the mnemonic (uppercase or
lowercase, it makes no difference):

var item = new
 air.NativeMenuItem(“Find Again”);

item.mnemonicIndex = 6;

As with most lists in most programming
languages, indexing begins at 0, so the
first item has an index of 0, the second has
an index of 1, and so on. In this example,
G is the seventh item, so it’s indexed at 6.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

123

The second state a menu item might have is
checked. Some menu items, when selected,
place a checkmark next to them, indicat-
ing their status (Figure 7.16). Again, this
property takes a Boolean value, but unlike
the enabled property, subsequent selections
of the same menu item should toggle its
checked value (from checked to unchecked
or from unchecked to checked). The code in
this next example demonstrates this.

To adjust the menu states:

1.	 Open Script 7.4 in your text editor or IDE,
if it is not already.

2.	 After the existing two functions, add a
third (Script 7.5):

function showHideTips(e) {

	 if (showTips.checked == false) {

		 showTips.checked = true;

	 } else {

		 showTips.checked = false;

	 }	

}

continues on page 126

Ch
an

g
in

g
 a M

en
u

 Item
’s State

Figure 7.16 The Status
Bar item in Firefox’s
View menu has a
checked state.

Changing a Menu
Item’s State
Along with keyboard equivalents and mne-
monics, any item in a menu can have two
states, which you can think of as just extra
attributes. Commonly, some menu items are
only usable when an action within the appli-
cation has occurred. For example, you can
only invoke Copy after you’ve made a selec-
tion. To add this quality to a menu item, set
its enabled property. It takes a Boolean value:

var copy = new
 air.NativeMenuItem(‘Copy’);
copy.enabled = false;
if (/* something has been selected */) {
	 copy.enabled = true;
}

Any menu item whose enabled property is
false will be disabled and shown as grayed-
out in the menu list (Figure 7.15).

Figure 7.15
Several items in
this Edit menu
are disabled
and therefore
not selectable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

124

Ch
an

g
in

g
 a

 M
en

u
 It

em
’s

 S
ta

te

Script 7.5 To round out the functionality of the menus, the Show Tips item gets an event handler that calls a func-
tion that toggles its checked state. Secondarily, another menu item is disabled.

1	 <html><!-- Script 7.5 -->
2		 <head>
3			 <title>Menu States</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6			
7			 // Function for handling the Exit menu item selection:
8			 function doExit(e) {
9				 air.NativeApplication.nativeApplication.exit();
10			 }
11			
12			 // Function for handling the Help Pages menu item selection:
13			 function showHelp(e) {
14				 alert(‘This is when the Help window would appear.’);
15			 }
16			
17			 // Function for handling the Show Tips menu item selection:
18			 function showHideTips(e) {
19			
20				 // Toggle the value of showTips.checked:
21				 if (showTips.checked == false) {
22					 showTips.checked = true;
23				 } else {
24					 showTips.checked = false;
25				 }
26				
27			 } // End of the showHideTips() function.
28				
29			 // Root menu:
30			 var rootMenu = new air.NativeMenu();
31			
32			 // Add a submenu:
33			 var fileMenu = new air.NativeMenu();
34			
35			 // Add an item to the submenu:
36			 var exit = new air.NativeMenuItem(‘Exit’);
37			 exit.addEventListener(air.Event.SELECT, doExit);
38			 fileMenu.addItem(exit);
39			
40			 // Add another submenu:
41			 var helpMenu = new air.NativeMenu();
42			
43			 // Add items to the submenu:
44			 var showTips = new air.NativeMenuItem(‘Show Tips’);
45			
46			 // Add the showTips event listener:
47			 showTips.addEventListener(air.Event.SELECT, showHideTips);
48			 helpMenu.addItem(showTips);
49			
50			 var helpPages = new air.NativeMenuItem(‘Help Pages’);
51			

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Menus

125

Ch
an

g
in

g
 a M

en
u

 Item
’s State

Script 7.5 continued

52			 // Add the helpPages event listener:
53			 helpPages.addEventListener(air.Event.SELECT, showHelp);
54			
55			 // Continue adding items:
56			 helpMenu.addItem(helpPages);
57			 var separator = new air.NativeMenuItem(‘’, true);
58			 helpMenu.addItem(separator);
59			 var checkForUpdates = new air.NativeMenuItem(‘Check for Updates’);
60			
61			 // Disable the ‘Check for Updates’ option:
62			 checkForUpdates.enabled = false;
63			
64			 helpMenu.addItem(checkForUpdates);
65			 var visitWebSite = new air.NativeMenuItem(‘Visit Web Site’);
66			 helpMenu.addItem(visitWebSite);
67			
68			 // Add the submenus to the root menu:
69			 rootMenu.addSubmenu(fileMenu, ‘File’);
70			 rootMenu.addSubmenu(helpMenu, ‘Help’);
71			
72			 // Add the menu to the program:
73			 if (air.NativeWindow.supportsMenu) { // Windows
74	
75				 // Add keyboard equivalents:
76				 helpPages.keyboardEquivalent = ‘f1’;
77			
78				 exit.keyEquivalent = ‘f4’;
79				 exit.keyEquivalentModifiers = [air.Keyboard.ALTERNATE];
80				
81				 window.nativeWindow.menu = rootMenu;
82				
83			 } else if (air.NativeApplication.supportsMenu) { // Mac
84	
85				 // Add keyboard equivalents:
86				 helpPages.keyEquivalent = ‘?’;
87				 helpPages.keyEquivalentModifiers = [air.Keyboard.COMMAND];
88				
89				 exit.keyEquivalent = ‘q’;
90				 exit.keyEquivalentModifiers = [air.Keyboard.COMMAND];
91	
92				 exit.label = ‘Quit’;
93	
94				 air.NativeApplication.nativeApplication.menu = rootMenu;
95				
96			 }
97	
98			 </script>
99		 </head>
100	
101		 <body>
102			 <p>Page Content</p>
103		 </body>
104	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

126

This function will be called whenever
the Show Tips menu option is selected.
Within the function, a conditional
checks if the current value of showTips.
checked is false (you can refer to showTips
within this function because it’s a global
variable). If that value is false, it’ll be set
to true. Otherwise, the value is true and
should be set to false.

In a complete program you’d also include
the code here that turns on and turns off
the actual show tips feature.

3.	 After defining the showTips object (a few
lines down in the script), add an event
listener to it:

showTips.addEventListener(air.Event.
 SELECT, showHideTips);

If you don’t include this step, the selec-
tion of the menu item will never invoke
the showHideTips() function.

4.	 Disable the Check for Updates menu item.

checkForUpdates.enabled = false;

Arbitrarily, I’ll disable this just to dem-
onstrate how that works. Again, in a
standard program, there would be some
condition that dictates when an object’s
enabled state would be set to true or false.

5.	 Save, test, debug, and run the completed
application (Figures 7.17 and 7.18).

Ch
an

g
in

g
 a

 M
en

u
 It

em
’s

 S
ta

te

Figure 7.17 The updated
Help menu with the dis-
abled Check for Updates
item. By selecting the
Show Tips item, …

Figure 7.18 …it will then
be marked as checked.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

127

Importing
and Exporting Data

8
A key feature of many desktop applications is the ability to use the computer’s clip-
board. This means that a user should be able to select data in a program and place it on
the clipboard (by either copying or cutting). The program should also be able to insert
into a document data that is already in the clipboard (aka, pasting). Related to the use
of the clipboard is support for dragging and dropping. The premise is the same as using
the clipboard, but this process is mouse driven: The user selects something in one pro-
gram and drags it to another window or program, or vice versa.

All this functionality is supported in any HTML-based AIR application by default,
thanks to the WebKit rendering engine. In other words, without taking any extra steps,
users will be able to copy application content or drag it out of the program. Also, in
editable elements like text inputs and textareas, a user can cut content, paste new con-
tent in, and drag new content in. The purpose of this chapter is to demonstrate how
you can use Adobe AIR to discreetly control how and where the user edits or copies an
application’s content. As an application’s developer, this is part of the power you have
(but don’t let it go to your head).

Im
po

rtin
g

 an
d Expo

rtin
g

 D
ata

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

128

Copying
As mentioned in the introduction to this
chapter, the WebKit rendering engine pro-
vides all the functionality required to handle
copying and other clipboard-related user
activity. But you do have the option of over-
riding the default behavior. The first step in
that process is to identify the function to be
called when the user invokes the Copy com-
mand (either through an Edit menu, a mouse
gesture, or a keyboard shortcut). This is done
within the body tag:

<body oncopy=”doCopy(event);”>

That line specifies that when content—
images, text, and so on—within the applica-
tion’s body is copied, the doCopy() function
should be called, passing it the event that
occurred.

The next step is to define the JavaScript func-
tion that will be called. It starts by accepting
one argument, which will be the event:

function doCopy(e) {
}

Because the function will be replacing the
default copy behavior, that default behavior
needs to be prevented:

e.preventDefault();

The preventDefault() method can be used
to prevent the default application action
from being taken on any given event. For this
copying example, it prevents the application
from copying the data to the clipboard.

The next step that a copy function should
always do is clear out all of the clipboard’s
existing content. The clipboard is accessible
through the event’s clipboardData property.
To wipe it clean, call its clearData() method:

e.clipboardData.clearData();

Co
py

in
g

This is recommended because the data to
be copied there may not entirely overwrite
its existing data (because the clipboard
can store the same piece of data in many
formats; see the “How the Clipboard Works”
sidebar). Executing this one line will help to
prevent bugs.

Assuming that the intent is to still allow
the copy to work, the function will need to
copy the selected content to the clipboard.
The first step in doing so is to retrieve the
selected content:

var data = window.getSelection();

Second, call the event’s clipboardData.
setData() method to place the selection
onto the clipboard. Its first argument is a
MIME type indicating the kind of data being
copied there. MIME types are listed in Table
8.1. The second argument is the actual data.
So to copy just plain text to the clipboard,
you would write:

e.clipboardData.setData(‘text/plain’,
 data);

M I M E T y p e 	 M e a n i n g

image/x-vnd.adobe.air.bitmap	� BitmapData
Object

application/x-vnd.adobe.air.file-list	� an array of File
objects

text/html	� HTML-formatted
text

text/plain	 plain text
text/uri-list	 a URL

Clipboard Data Formats

Table 8.1 These MIME types are used to identify
the format of data to be stored in, or retrieved from,
the clipboard.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

129

Because the clipboard can store the same
piece of data in multiple formats, the
doCopy() function can make that happen.
Say, for example, the user selects a URL in
the application. The doCopy() function can
copy that to the clipboard as plain text, as
HTML, and as a URL:

function doCopy(e) {
	 var data = window.getSelection();
	 var html = ‘<a href=”’ + data
	  + ‘”>’ + data + ‘’;
	 e.clipboardData.setData(‘text/
	  plain’, data);
	 e.clipboardData.setData(‘text/html’,
	  html);
	 e.clipboardData.setData(‘text/
	  uri-list’, data);
}

To practice this and the other ideas in this
chapter, let’s create an application that has
some text and a horizontal rule (Figure 8.1).
The text at the top of the window can be
copied, and later in the chapter, pasted into
the bottom of the window. To keep things
tidy, I’ll break up the code into separate files.

How the Clipboard Works

It’s important to understand that the
clipboard doesn’t just store one piece of
information. The clipboard can actually
store the same piece of information in
multiple formats. For example, a chunk of
formatted text copied from a Word docu-
ment can be stored as the formatted text
and as a plain text version (so that pasting
that text into a plain text editor works
without a problem).

It’s important that you keep this multilay-
ered clipboard structure in mind. When
copying data to the clipboard, your AIR
application needs to provide not just the
data to be copied, but the application
also needs to indicate the data’s format. If
they don’t match (e.g., an image stored as
plain text), the copy won’t work. Similarly,
when you retrieve data from the clip-
board, the application indicates the for-
mat of the data it wants and will receive
whatever data is stored in that format.

Co
pyin

g

Figure 8.1 This very simple application will be used
to demonstrate copying, cutting, pasting, dragging,
and dropping.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

130

To copy data to the clipboard:

1.	 In your project’s primary HTML file,
include one separate JavaScript file
(Script 8.1):

<script type=”text/javascript”
 src=”editFunctions.js”></script>

Along with AIRAliases.js, which you’ll
want to include in pretty much every AIR
project you create, this application will
use one other separate JavaScript file.
That script will define the functions that
handle copying, cutting, and pasting.

2.	 In the body tag, associate an oncopy event
with a function called doCopy:

<body style=”margin:10px”
 oncopy=”doCopy(event);”>

Co
py

in
g

I’m also adding a bit of CSS styling to pad
the page (so that text and such aren’t
butting up against the edges of the appli-
cation window).

3.	 Add some text and a horizontal rule to
the page:

<p>This is some text.</p>

<p>Completely different text.</p>

<hr />

The two text blocks will give the user two
different items that can be copied. The
horizontal rule will divide the page so that
new content—pasted or dragged in—will
appear below the provided content.

4.	 Save the file as index.html.

Script 8.1 The application’s primary HTML file starts with just two blocks of text and a horizontal rule. It includes
one new JavaScript file that defines all of the important functionality.

1	 <html><!-- Script 8.1 -->

2		 <head>

3			 <title>Clipboard and Dragging</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript” src=”editFunctions.js”></script>

6		 </head>

7	

8	 <body style=”margin:10px” oncopy=”doCopy(event);”>

9	

10		 <p>This is some text.</p>

11	

12		 <p>Completely different text.</p>

13	

14		 <hr />

15	

16	 </body>

17	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

131

5.	 In a new JavaScript file, define the
doCopy() function (Script 8.2):

function doCopy(e) {

	 e.preventDefault();

	 e.clipboardData.clearData();

	 var data = window.getSelection();

	 e.clipboardData.setData(‘text/
	  plain’, data);

} // End of doCopy() function.

Thanks to the body’s oncopy event
listener, this function will be called when
the user selects Edit > Copy or invokes
the keyboard equivalent. This func-
tion receives one argument—the event.
Within the function, you first need to
prevent the default behavior and clear
the current contents of the clipboard.

Next, identify the data the user
selected. To find that value, refer to
window.getSelection(). The selected
text is then added to the clipboard. To
accomplish that, the first argument in the
setData() method should be the MIME
type that represents plain text. The sec-
ond argument is the data to be stored.

6.	 Save the file as editFunctions.js.

You’ll need to save it in the project’s
directory, along with index.html (Script
8.1). If you want to place the JavaScript
files within a subdirectory, you’ll need to
change the code in step 1 to match.

continues on next page

Co
pyin

g

Script 8.2 The editFunctions.js script defines the
function called when the user copies selected content.

1	 /* Script 8.2 - editFunctions.js

2	 * This script defines the JavaScript

	 function used to Copy.

3	 */

4	

5	 // Function for copying data to the

	 clipboard.

6	 // Takes one argument: an event.

7	 function doCopy(e) {

8	

9		 // Prevent the default behavior:

10		 e.preventDefault();

11	

12		 // Clear the clipboard:

13		 e.clipboardData.clearData();

14	

15		 // Get the selection:

16		 var data = window.getSelection();

17	

18		 // Add the text to the clipboard:

19		 e.clipboardData.setData(‘text/plain’,

		 data);

20	

21	 } // End of doCopy() function.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

132

7.	 Save, test, debug, and run the completed
application.

When you go to test and build the
program, make sure you include the
JavaScript files (AIRAliases.js and
editFunctions.js). In the running pro-
gram, select any portion of text, and then
choose Edit > Copy or press the keyboard
equivalent. You can confirm that the
copy worked by pasting the clipboard’s
content into another application’s
document (like a Word, Notepad, or
TextEdit file).

Windows also provides the ClipBook
Viewer (Figure 8.2), whereas Mac OS
X has an Edit > Show Clipboard option
in the Finder (Figure 8.3) for viewing
what’s stored in the clipboard.

	Tips

n	 Whether the user invokes the copy
command through a keyboard shortcut,
a mouse event, or the Edit menu, the
code in this example will work. If you
define your own Edit menu, however (see
Chapter 7, “Creating Menus”), you’ll need
to tie the selection of the Copy menu
item to the doCopy() function using an
event listener:

copy.addEventListener(air.Event.
 SELECT, doCopy);

n	 The Adobe Integrated Runtime provides
an alternative way to use the clipboard
for copying and pasting. However, the
HTML-based techniques taught in this
chapter are easier to use and don’t have
the same security restrictions. On the
other hand, the AIR API methods for
using the clipboard can support different
data formats, like files and objects, and
has other extra features.

Co
py

in
g

Figure 8.2 The ClipBook Viewer program on Windows
shows the current contents of the clipboard. (If you
don’t know how to find the ClipBook Viewer, search
the Web for instructions.)

Figure 8.3 Within the Mac Finder, the Edit > Show
Clipboard option brings up this window, which shows
the clipboard’s current contents. It also shows the
data format at the bottom of the window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

133

should begin with the first element that the
user selected.)

Once you have the Range object, removing
the selection is simply a matter of calling its
deleteContents() method:

r.deleteContents();

Before applying this code to the existing
example, there’s one more concept to men-
tion. The WebKit rendering engine adds
several of its own CSS style attributes. For
the purposes of this chapter, I’ll highlight
-webkit-user-select. This attribute dictates
what a user can select. Its default value of
auto means the user can select anything. If
given a value of none, the associated content
cannot be selected:

<p style=”-webkit-user-select: none”>
 The user cannot select this text!</p>

The third possible value is text, which means
that the user can only select the text part of a
given element:

<p style=”-webkit-user-select: text”>
 The user cannot select the image.
 </p>

I mention this now because controlling what
the user can select in an application is one
way of controlling what the user can copy,
cut, or drag out.

With this in mind, let’s update the example
to handle the cutting of page content.

Cu
ttin

g

Cutting
Now that you’ve seen how to implement
copy functionality in an AIR application,
the next logical action to address is cutting.
Cutting is simply copying the selected con-
tent and removing it.

Start by getting a reference to the selection:

var data = window.getSelection();

Then you’ll want to make sure that the selec-
tion has been copied to the clipboard before
you remove it:

e.preventDefault();
e.clipboardData.clearData();
e.clipboardData.setData(‘text/plain’,
 data);

Just to be clear, all this code would be placed
within the function that’s called when an
HTML oncut event occurs, just as doCopy()
is called when an oncopy event occurs.

In HTML there are a few different ways you
can remove content from the page. The one
I’ll use here involves using a JavaScript Range
object. A Range is a reference to any part
of the HTML page. This next line creates a
Range object called r, which represents the
user selection:

var r = data.getRangeAt(0);

(You’ll always want to call the getRangeAt()
function like this, but in case you’re curious,
the 0 value specifies that the returned range

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

134

To cut application content:

1.	 Open Script 8.1 in your text editor or IDE,
if it is not already.

2.	 Add code to the body tag so that the
doCut() function is called when the user
invokes Edit > Cut (Script 8.3):

<body style=”margin:10px”
 oncopy=”doCopy(event);”
 oncut=”doCut(event);”>

The added code specifies that when a
cut event happens, the doCut() function
should be called.

3.	 Add some text that cannot be selected:

<p style=”-webkit-user-select:
 none”>The user cannot select
 this text!</p>

So you can see this in action, a new block
of text that the user cannot select, copy,
or cut is added to the page.

Cu
tt

in
g

Script 8.3 The main HTML page is updated so that the doCut() function is called when the user attempts to cut any
content. Another block of text, which the user cannot select, is also added to the page.

1	 <html><!-- Script 8.3 (update of Script 8.1) -->

2		 <head>

3			 <title>Clipboard and Dragging</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript” src=”editFunctions.js”></script>

6		 </head>

7	

8	 <body style=”margin:10px” oncopy=”doCopy(event);” oncut=”doCut(event);”>

9	

10		 <p>This is some text.</p>

11	

12		 <p>Completely different text.</p>

13	

14		 <p style=”-webkit-user-select: none”>The user cannot select this text!</p>

15	

16		 <hr />

17	

18	 </body>

19	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

135

4.	 Save the updated file.

5.	 Open editFunctions.js (Script 8.2) in
your text editor or IDE, if it is not already.

6.	 Begin defining the doCut() function
(Script 8.4):

function doCut(e){

	 doCopy(e);

As with doCopy(), this function takes
one argument: the event. The first thing
this function needs to do is replicate the
functionality of the doCopy() function.
Instead of doing that here, the doCopy()
function will just be called, passing it the
event object.

7.	 Remove the content from the page and
complete the function:

	 var data = window.getSelection();

	 var r = data.getRangeAt(0);

	 r.deleteContents();

} // End of doCut() function.

This code is explained in the introduction
to these steps. Although the doCopy()
function also created a reference to the
user selection, this function still needs
to take that step because it doesn’t have
access to the data variable defined in
doCopy().

continues on next page

Cu
ttin

g

Script 8.4 The revised version of editFunctions.js
(see Script 8.2) now defines a doCut() function. It
calls doCopy(), and then removes the user selection
from the page. (I also removed some comments and
blank lines in the existing content to save space.)

1	 /* Script 8.4 - editFunctions.js (updated)

2	 * This script defines the JavaScript

	 functions used to Copy and Cut.

3	 */

4	

5	 // Function for copying data to the

	 clipboard.

6	 // Takes one argument: an event.

7	 function doCopy(e) {

8		 e.preventDefault();

9		 e.clipboardData.clearData();

10		 var data = window.getSelection();

11		 e.clipboardData.setData(‘text/plain’,

		 data);

12	 } // End of doCopy() function.

13	

14	 // Function for cutting data.

15	 // Takes one argument: an event.

16	 function doCut(e){

17	

18		 doCopy(e);

19	

20		 // Remove the content from the page:

21		 var data = window.getSelection();

22		 var r = data.getRangeAt(0);

23		 r.deleteContents();

24	

25	 } // End of doCut() function.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

136

8.	 Save, test, debug, and run the completed
application (Figures 8.4, 8.5, and 8.6).

You can now copy or cut text from the
top half of the window and then paste it
into other applications.

	Tip

n	 The -webkit-user-select style attribute
is not foolproof. Even though the new
block of text has a value of none, it’s still
possible for the user to copy that text, but
it just won’t appear as selected.

Cu
tt

in
g

Figure 8.4 The application as it looks when it first runs.

Figure 8.5 The second sentence (see Figure 8.4) has
been cut from the application.

Figure 8.6 The word some in the first sentence has
been cut from the application (compare with Figures
8.4 and 8.5).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

137

The format value should again be a MIME
type, matching what’s stored in the clip-
board. This also means your application can
select the format of the data being pasted if
multiple formats are available. For example,
if content was added to the clipboard using

e.clipboardData.setData(‘text/plain’,
 data);
e.clipboardData.setData(‘text/html’,
 html);
e.clipboardData.setData(‘text/uri-list’,
 data);

then the pasting function can access the data
stored in any of those formats.

To confirm that the clipboard contains data
in a given format, prior to retrieving it, call
the hasFormat() method:

if(e.clipboardData.hasFormat(‘text/
 html’)){ …

To use this new information, let’s update the
example so that new pasted text is added
to the window within a new DIV (Figure
8.7). This change will involve defining the
doPaste() function and adding another one.

Pastin
g

Pasting
The third clipboard-related HTML event
that an application can override is pasting.
As with copying and cutting, start by telling
the application to use a different function to
handle such events:

<body onpaste=”doPaste(event);”>

The defined function then needs to accept
an event as its lone argument:

function doPaste(e) {
	 // Handle the pasting.
}

The specifics of what this function does will
depend on the application, but the basic idea is
that it will retrieve the data stored in the clip-
board and add it to the application window.

Just as data is added to the clipboard by
invoking the setData() method, data is
retrieved using getData(). This method
takes one argument, the format of the data
to be retrieved:

var text = e.clipboardData.
 getData(‘text/plain’);

Figure 8.7 Text pasted within this application gets
added below the horizontal rule as a new DIV.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

138

To copy data to the clipboard:

1.	 Open Script 8.3 in your text editor or IDE,
if it is not already.

2.	 Add a clause to the body tag so that the
doPaste() function is called when the
user invokes Edit > Paste (Script 8.5):

<body style=”margin:10px”
 oncopy=”doCopy(event);”
 oncut=”doCut(event);”
 onpaste=”doPaste(event);”>

The added code specifies that when a
paste event happens, the doPaste()
function should be called.

3.	 Save the updated file.

4.	 Open editFunctions.js (Script 8.4) in
your text editor or IDE, if it is not already.

Pa
st

in
g

Script 8.5 The main HTML page is updated so that a user-defined doPaste() function is called when a paste
event happens.

1	 <html><!-- Script 8.5 (update of Script 8.3) -->

2		 <head>

3			 <title>Clipboard and Dragging</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript” src=”editFunctions.js”></script>

6		 </head>

7	

8	 <body style=”margin:10px” oncopy=”doCopy(event);” oncut=”doCut(event);” onpaste=”doPaste(event);”>

9	

10		 <p>This is some text.</p>

11	

12		 <p>Completely different text.</p>

13	

14		 <p style=”-webkit-user-select: none”>The user cannot select this text!</p>

15		

16		 <hr />

17	

18	 </body>

19	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

139

5.	 Define the doPaste() function
(Script 8.6):

function doPaste(e) {

	 if (e.clipboardData.getData(‘text/
	  plain’)) {

		 addDiv(e.clipboardData.
		  getData(‘text/plain’));

	 } else {

		 alert(‘Data type not yet
		  supported!’);	

	 }

} // End of doPaste() function.

The first conditional checks to see if the
clipboard contains plain text. If it does,
then that text should be added to the
application as a new DIV. This will be
accomplished using another function
called addDiv() that takes the clipboard’s
contents as an argument. To access those
contents, refer to e.clipboardData.
getData(‘text/plain’).

continues on next page

Pastin
g

Script 8.6 Two new functions are added to the
editFunctions.js file. One provides the paste
functionality, the other adds new DIVs to the page.

1	 /* Script 8.6 - editFunctions.js (updated)

2	 * This script defines the JavaScript
	 functions used to Copy, Cut, and Paste.

3	 */

4	

5	 // Function for copying data to the
	 clipboard.

6	 // Takes one argument: an event.

7	 function doCopy(e) {

8		 e.preventDefault();

9		 e.clipboardData.clearData();

10		 var data = window.getSelection();

11		 e.clipboardData.setData(‘text/plain’,
		 data);

12	 } // End of doCopy() function.

13	

14	 // Function for cutting data.

15	 // Takes one argument: an event.

16	 function doCut(e){

17		 doCopy(e);

18		 var data = window.getSelection();

19		 var r = data.getRangeAt(0);

20		 r.deleteContents();

21	 } // End of doCut() function.

22	

23	 // Function for pasting data from the
	 clipboard.

24	 // Takes one argument: an event.

25	 function doPaste(e) {

26	

27		 // Paste text as a new DIV:

28		 if (e.clipboardData.getData(‘text/
		 plain’)) {

29	

30			 addDiv(e.clipboardData.
			 getData(‘text/plain’));

31	

32		 } else {

33	

34			 alert(‘Data type not yet supported!’);

35	

36		 }

37	

38	 } // End of doPaste() function.

39	

(script continues)

40	 // Function for adding new content in a DIV.

41	 // Takes one argument: the content to be

	 added.

42	 function addDiv(content) {

43	

44		 // Create a new DIV:

45		 var d = document.createElement(‘div’);

46	

47		 // Add the content to the DIV:

48		 d.innerText = content;

49	

50		 // Add the DIV to the page:

51		 document.body.appendChild(d);

52	

53		 // Add a break:

54		 document.body.appendChild(document.
		 createElement(‘br’));

55	

56	 } // End of addDiv() function.

Script 8.6 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

140

If the first conditional isn’t true, the user
is trying to paste nontext into the appli-
cation. For now, the program will just
cough up an alert (Figure 8.8).

6.	 Define a function that creates new
DIV elements:

function addDiv(content) {

	 var d = document.
	  createElement(‘div’);

	 d.innerText = content;

	 document.body.appendChild(d);

	 document.body.appendChild(document.
	  createElement(‘br’));

}

This function takes one argument: the con-
tent to be added to the page. Then, within
the function, a new element of type DIV is
created. Its innerText attribute—the text
that goes between the opening and clos-
ing DIV tags—is assigned the value of the
content. Then the DIV is added to the page,
along with a break tag (for extra spacing).

7.	 Save, test, debug, and run the completed
application (Figures 8.9 and 8.10).

You can copy text from the top half of the
window and then paste it (Figure 8.9) or
copy text from another application and
paste it into this one (Figure 8.10).

	Tips

n	 You can see what formats are currently
stored in the clipboard by referring to
e.clipboardData.types. This will be
a string of values like text/html,text/
plain,image/x-vnd.adobe.air.bitmap.

n	 For security reasons, the clipboardData.
getData() function can only be called
within a function that handles paste
events.

Pa
st

in
g

Figure 8.8 If the user attempts to paste data that isn’t
text, this alert will appear.

Figure 8.9 The same text has been pasted twice.

Figure 8.10 The bottom string of text was copied from
another program and pasted into this one.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

141

application. For example, you can store
an array of files in the clipboard, but you
wouldn’t place an array of files in an applica-
tion’s window (the list of file names, yes, or
links to those files, but not the actual files).

To demonstrate how you might handle other
data types in an AIR application, let’s update
the program so that it allows the user to select
an image that can be copied to the clipboard
(Figure 8.11). When the user pastes that clip-
board content, or any other image, back into
this application, it will be added to the lower
section of the window (Figure 8.12).

W
o

rkin
g

 w
ith

 D
ifferen

t Fo
rm

ats

Working with
Different Formats
The first three examples in this chapter
show how relatively easy it is to copy text to
the clipboard and to paste text back into an
application. But AIR applications support
many data formats:

u	 Text

u	 URLs

u	 Bitmaps (images)

u	 Files

u	 Objects

When working with any of these formats,
the first change you’d make to your code is
which MIME type (from Table 8.1) you’d use
in your setData() and getData() calls. The
second, and more important change, is what
data you’d actually place in the clipboard or
how you’d place the clipboard data in your

Figure 8.11 The application content now includes one
JPEG image.

Figure 8.12 The application now supports the ability
to paste both text and images into it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

142

To use files with the clipboard:

1.	 Open index.html (Script 8.5) in your text
editor or IDE, if it is not already. 	

2.	 Add an image to the body of the page
(Script 8.7):

<p><img src=”kids.jpg” width=”200”
 height=”173” /></p>

To add another element (besides the
text) that the user can cut or copy, an
image is added. You can download this
image from the book’s corresponding
Web site—www.DMCInsights.com/air/,
see the Extras page—or provide your
own, changing the code accordingly. The
image will need to be placed within the
project’s directory and be included in
the build, too.

3.	 Save the updated file.

W
o

rk
in

g
 w

it
h

 D
if

fe
re

n
t

Fo
rm

at
s

Script 8.7 The application’s main page is updated to include an image that can be copied, cut, and pasted back.

1	 <html><!-- Script 8.7 (update of Script 8.5) -->

2		 <head>

3			 <title>Clipboard and Dragging</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript” src=”editFunctions.js”></script>

6		 </head>

7	

8	 <body style=”margin:10px” oncopy=”doCopy(event);” oncut=”doCut(event);” onpaste=”doPaste(event);”>

9	

10		 <p>This is some text.</p>

11	

12		 <p>Completely different text.</p>

13	

14		 <p style=”-webkit-user-select: none”>The user cannot select this text!</p>

15		

16		 <p></p>

17	

18		 <hr />

19	

20	 </body>

21	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

143

which MIME type to use, the script has to
find out if the selection is text or an image,
which is what this conditional does.

The e.target property is a reference
to the user selection. It returns an
object. If the user selected the image to
copy (or cut), the object will be of type
HTMLImageElement. If the user selected
text, e.target will be an object of type
HTMLParagraphElement. So this con-
ditional checks to see if e.target is
an object of type (i.e., an instance of)
HTMLImageElement.

continues on page 145

W
o

rkin
g

 w
ith

 D
ifferen

t Fo
rm

ats

4.	 In the editFunctions.js page (Script 8.6),
after clearing the clipboard within the
doCopy() function, check if the selection
being copied is an image (Script 8.8):

if (e.target instanceof
 HTMLImageElement) {

This may seem a bit like voodoo, so I’ll
explain this line in detail. The applica-
tion contains both text and an image.
When either is copied or cut, the doCopy()
function will need to call the setData()
method and provide it either text/plain
or image/x-vnd.adobe.air.bitmap as the
MIME type of the content. To know

Script 8.8 To support both text and image data types, the doCopy() and doPaste() functions are updated to handle
different MIME types.

1	 /* Script 8.8 - editFunctions.js (updated)

2	 * This script defines the JavaScript functions used to Copy, Cut, and Paste.

3	 */

4	

5	 // Function for copying data to the clipboard.

6	 // Takes one argument: an event.

7	 function doCopy(e) {

8		 e.preventDefault();

9		 e.clipboardData.clearData();

10	

11		 // Is the selection an image?

12		 if (e.target instanceof HTMLImageElement) {

13	

14			 // Add the image to the clipboard:

15			 e.clipboardData.setData(‘image/x-vnd.adobe.air.bitmap’, e.target);

16	

17		 } else { // Text!

18	

19			 // Get the selection:

20			 var data = window.getSelection();

21	

22			 // Add the text to the clipboard:

23			 e.clipboardData.setData(‘text/plain’, data);

24	

25		 }

26	

27	 } // End of doCopy() function.

28	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

144

W
o

rk
in

g
 w

it
h

 D
if

fe
re

n
t

Fo
rm

at
s

29	 // Function for cutting data.

30	 // Takes one argument: an event.

31	 function doCut(e){

32		 doCopy(e);

33		 var data = window.getSelection();

34		 var r = data.getRangeAt(0);

35		 r.deleteContents();

36	 } // End of doCut() function.

37	

38	 // Function for pasting data from the clipboard.

39	 // Takes one argument: an event.

40	 function doPaste(e) {

41	

42		 // Paste text as a new DIV:

43		 if (e.clipboardData.getData(‘text/plain’)) {

44	

45			 addDiv(e.clipboardData.getData(‘text/plain’));

46	

47		 } else if (e.clipboardData.getData(‘image/x-vnd.adobe.air.bitmap’)) { // Image!

48	

49			 var image = e.clipboardData.getData(‘image/x-vnd.adobe.air.bitmap’);

50	

51			 // Create a new DIV:

52			 var d = document.createElement(‘div’);

53	

54			 document.body.appendChild(image);

55			 // Add the DIV to the page:

56			 document.body.appendChild(d);

57	

58			 // Add a break:

59			 document.body.appendChild(document.createElement(‘br’));

60	

61		 } else {

62	

63			 alert(‘Data type not yet supported!’);

64	

65		 }

66	

67	 } // End of doPaste() function.

68	

69	 // Function for adding new content in a DIV.

70	 // Takes one argument: the content to be added.

71	 function addDiv(content) {

72		 var d = document.createElement(‘div’);

73		 d.innerText = content;

74		 document.body.appendChild(d);

75		 document.body.appendChild(document.createElement(‘br’));

76	 } // End of addDiv() function.

Script 8.8 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

145

	 var d = document.
	  createElement(‘div’);

	 document.body.appendChild(image);

	 document.body.appendChild(d);

	 document.body.appendChild(document.
	  createElement(‘br’));

The original conditional in the doPaste()
function was a simple if else. Now it
has a second condition that checks if the
clipboard contains data in the image/x-
vnd.adobe.air.bitmap format. If so, the
clipboard contents are assigned to the
image variable. Then a new DIV is created,
the image is appended to it, and the
DIV, plus a break, is added to the page.
Unfortunately the addDiv() function
can’t be used here because it expects
a string of text as an argument, not an
image or other element.

8.	 Save, test, debug, and run the completed
application (Figure 8.13).

	Tips

n	 Because of the way the clipboard works,
you might be surprised at how difficult
it is to paste content into this applica-
tion that’s not allowed. On Mac OS X, if I
copied a file and pasted it, the file’s name
would be added as text; if I copied a video
and pasted it, a still image from the video
would be added. Windows wasn’t quite as
forgiving but was still pretty generous.

n	 You can define and use your own clip-
board formats. By doing so, you won’t
be limited to storing data using just the
formats listed in Table 8.1. But if the data
is being pasted into another applica-
tion that doesn’t recognize the provided
format type, the pasting won’t work.

W
o

rkin
g

 w
ith

 D
ifferen

t Fo
rm

ats

5.	 Copy the image to the clipboard:

e.clipboardData.setData(‘image/
 x-vnd.adobe.air.bitmap’, e.target);

If the conditional in step 4 is true, the
selection is an image and it needs to be
placed on the clipboard. To do so, call the
setData() method using image/x-vnd.
adobe.air.bitmap as the MIME type and
e.target as the data (remember that
e.target is a reference to the selected
element so using it as the data value
will work).

6.	 Complete the conditional begun in step 4:

} else {

	 var data = window.getSelection();

	 e.clipboardData.setData(‘text/
	  plain’, data);

}

If the selection isn’t an image (if
e.target is not an instance of the
HTMLImageElement class), the standard
method for copying text to the clipboard
is used. These middle two lines of code
were already in the doCopy() function,
and now they’re within an else clause.

7.	 Add an else if clause to the conditional
in the doPaste() function.

} else if (e.clipboardData.
 getData(‘image/x-vnd.adobe.air.
 bitmap’)) {

	 var image = e.clipboardData.
	  getData(‘image/x-vnd.adobe.air.
	  bitmap’);	

Figure 8.13 Attempting to paste an
unsupported data type into the appli-
cation results in this error message.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

146

Drag and Drop In
Dragging and dropping is a mouse-driven
process that emulates clipboard functional-
ity without ever using the clipboard. The pro-
cess starts by selecting something—text, an
image, a file—in one application, clicking on
it, and dragging that item into another loca-
tion within the same application or even into
another program. This is a feature provided
by the operating system and supported by
most programs. Naturally, your AIR applica-
tions can support dragging and dropping,
too. Let’s start by looking at the process of
dragging something into an AIR application.

As with the copy, cut, and paste functional-
ity, handling a drag and drop action is a mat-
ter of watching for events. Table 8.2 lists the
seven events related to dragging and drop-
ping. When an application is receiving data
being dragged into it, the most important
events are ondragover and ondrop. You’ll
want the application to call a function when
these events occur, so add code like this to
the body of your HTML page:

<body ondragover=”onDragFunction(event);”
 ondrop=”onDropFunction(event);”>

Next, define the two associated functions.
Each should be written to accept an event
as an argument. The function called while
something is being dragged into the applica-
tion has a simple role: to prevent the default
event behavior:

function onDragFunction(e) {
	 e.preventDefault();
}

As with the copy example earlier in the
chapter, it’s sometimes best to have the
application dictate what happens when the
user drags content in. By default, content
can only be dragged into editable areas, like
text inputs and textareas. In this chapter’s

D
ra

g
 a

n
d

D
ro

p
In

example, the user will be able to drag content
into the application window.

The onDropFunction() needs to place the
introduced data onto the page. To access
that data, refer to the event’s dataTransfer
object. Its getData() method returns the
data being transferred in:

eventName.dataTransfer.getData(format);

The data formats that can be dragged
and dropped are the same MIME types
as used for copying and pasting. So the
onDropFunction(), which is called when
the user releases the mouse button after
dragging something into the application,
would start like this:

function onDropFunction(e) {
	 var data = e.dataTransfer.
	  getData(‘text/plain’);

	 // Do whatever with data.	
}

In the next series of steps, the ongoing
example will be updated to support the
dragging in of text or images.

E v e n t 	 S e n t B y

ondragstart	 originator
ondrag 	 originator
ondragend 	 originator
ondragenter	 target
ondragover 	 target
ondragleave 	 target
ondrop 	 target

Drag Events

Table 8.2 These seven HTML events come into play
when dragging content into or out of an application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

147

3.	 Create a new section for JavaScript:

<script type=”text/javascript”>

</script>

I’ll add the JavaScript code for handling
drag and drop events to the main HTML
page rather than use a separate file as I
did with the edit-related functions.

4.	 Define the doDragOver() function:

function doDragOver(e) {

	 e.preventDefault();	

}

This function just needs to ignore
the default event behavior, as already
explained.

5.	 Begin defining the doDrop() function:

function doDrop(e) {

This function takes one argument—the
event assigned to the variable e.

continues on page 149

D
rag

 an
d D

ro
p In

To support drag and drop in:

1.	 Open index.html (Script 8.7) in your text
editor or IDE, if it is not already. 	

2.	 Within the body tag, identify the func-
tions to be called for two drag events
(Script 8.9):

<body style=”margin:10px” oncopy=
 ”doCopy(event);” oncut=
 ”doCut(event);” onpaste=
 ”doPaste(event);” ondragover=
 ”doDragOver(event);” ondrop=
 ”doDrop(event);”>

Very similar to the code already dis-
cussed, this indicates to the program
that when something is dragged into the
application window, the doDragOver()
function should be called. When some-
thing is dropped onto the application
window, the doDrop() function should be
called. Both are passed the actual event.

Script 8.9 In this updated version of the application, the user can now drag in text or images from other applica-
tions. New content will be added to the DOM.

1	 <html><!-- Script 8.9 (update of Script 8.7) -->

2		 <head>

3			 <title>Clipboard and Dragging</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript” src=”editFunctions.js”></script>

6			 <script type=”text/javascript”>

7			 // Drag and drop functions are defined here!

8	

9			 // Function that’s called while the user is dragging

10			 // something into this application.

11			 function doDragOver(e) {

12	

13				 // Prevent the default behavior:

14				 e.preventDefault();

15	

16			 } // End of doDragOver() function.

17	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

148

D
ra

g
 a

n
d

D
ro

p
In

18			 // Function that’s called when the user drops

19			 // whatever they’ve been dragging (onto the application).

20			 function doDrop(e) {

21	

22				 // Handle the different types of data:

23				 if (e.dataTransfer.getData(‘text/plain’)) { // Text

24	

25					 // Add the text as a new DIV:

26					 addDiv(e.dataTransfer.getData(‘text/plain’));

27	

28				 } else if (e.dataTransfer.getData(‘image/x-vnd.adobe.air.bitmap’)) { // Image

29	

30					 var image = e.dataTransfer.getData(‘image/x-vnd.adobe.air.bitmap’);

31	

32					 // Create a new DIV:

33					 var d = document.createElement(‘div’);

34	

35					 document.body.appendChild(image);

36					 // Add the DIV to the page:

37					 document.body.appendChild(d);

38	

39					 // Add a break:

40					 document.body.appendChild(document.createElement(‘br’));

41	

42				 } else { // Other type of data

43					 alert(‘Data type not yet supported!’);

44				 }

45	

46			 } // End of doDrop() function.

47			 </script>

48		 </head>

49	

50	 <body style=”margin:10px” oncopy=”doCopy(event);” oncut=”doCut(event);” onpaste=”doPaste(event);”
	 ondragover=”doDragOver(event);” ondrop=”doDrop(event);”>

51	

52		 <p>This is some text.</p>

53	

54		 <p>Completely different text.</p>

55	

56		 <p style=”-webkit-user-select: none”>The user cannot select this text!</p>

57	

58		 <p></p>

59	

60		 <hr />

61	

62	 </body>

63	 </html>

Script 8.9 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

149

6.	 If the data is in plain text format, add it to
the page as a new DIV:

if (e.dataTransfer.getData(‘text/
 plain’)) {

	 addDiv(e.dataTransfer.
	  getData(‘text/plain’));

The conditional will be true if there’s
plain text data being transferred in. If so,
that data will be added as a new DIV in
the page (Figure 8.14) using the same
function created earlier for pasting text.
In fact, most of this function will be like
the doPaste() function except this one
will refer to e.dataTransfer.getData()
instead of e.clipboardData.getData().

7.	 If the data is in bitmap format, add it to
the page as is:

} else if (e.dataTransfer.getData
 (‘image/x-vnd.adobe.air.bitmap’)) {

	 var image = e.dataTransfer.
	 getData(‘image/x-vnd.adobe.air.
	  bitmap’);	

	 var d = document.
	  createElement(‘div’);

	 document.body.appendChild(image);

	 document.body.appendChild(d);

	 document.body.appendChild(document.
	  createElement(‘br’));

Using the MIME type associated with bit-
map images, the condition first checks if
such data exists. Then the data is fetched
and assigned to the image variable. This
object is then appended to the page
within a DIV followed by a break
(Figure 8.15).

continues on next page

D
rag

 an
d D

ro
p In

Figure 8.14 When text is dragged into and dropped
on the application window, it’ll be added to the bot-
tom section of the page as a new DIV.

Figure 8.15 When an image is dragged into and
dropped on the application window, it’ll also be
added to the bottom of the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

150

8.	 Complete the function:

	 } else {

		 alert(‘Data type not yet
		  supported!’);

	 }

} // End of doDrop() function.

This application will only support the
drag and drop in of two data types: plain
text and images. Anything else, like trying
to drop a document into the application,
merits an alert (Figure 8.16).

9.	 Save, test, debug, and run the completed
application.

To test the application, drag any kind of
data from any other application into this
one. You’ll see one of the three results
(Figures 8.14, 8.15, and 8.16).

	Tip

n	 It’s kind of tricky in any application to
drag text, because clicking on it also
starts the selection process. To pull this
off, select some text, and then click and
hold on it without moving the mouse.
After a second or two you should then be
able to move the mouse (while still hold-
ing down the button) to successfully drag
the selected text.

D
ra

g
 a

n
d

D
ro

p
In

Figure 8.16 If the user attempts to drag into the appli-
cation content that’s not either plain text or an image,
the user will see this message.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

151

Drag and Drop Out
Along with support for dragging content into
an application’s window, you can also choose
to support a user’s ability to drag application
content into other programs. The net effect
is the same as being able to copy or cut con-
tent within the application, and then paste
it elsewhere.

Looking back at Table 8.2, the event to be
watched for here is ondragstart. That event
occurs when the user selects something,
clicks on it, and then starts moving the cur-
sor. The nice thing is that no special steps
need to be taken to allow dragging content
out of the application. However, if you’d like
to prevent the user from doing this, you can
cancel the drag using:

function cancelDrag(e) {
	 e.cancelDefault();
}
<body ondragstart=”cancelDrag(event);”>

Alternatively, you can limit what the user
can and cannot do with the data being
dragged by assigning a value to the event’s
dataTransfer.effectAllowed property.
Table 8.3 lists the possible values.

As an example, if you want to let a user copy
or link to something in your application, you
would use this code:

function cancelDrag(e) {
	 e.dataTransfer.effectAllowed =
	  ‘copyLink’;
}
<body ondragstart=”cancelDrag(event);”>

To use this information, let’s regulate drag
out functionality in the example program.

D
rag

 an
d D

ro
p O

u
t

V a l u e 	 M e a n i n g

none	 No dragging allowed.
copy	 The data should be copied.
link	� The data should be linked to this

application.
move	� The data should be moved from

this application.
copyLink	 The data can be copied or linked.
copyMove	 The data can be copied or moved.
linkMove	 The data can be linked or moved.
all	� Anything—copying, linking,

or moving—can be done with
the data.

Drag Effects Allowed

Table 8.3 An application can dictate what the user
can do with content being dragged out of it by speci-
fying the allowed drag effect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

152

To support drag and drop in:

1.	 Open index.html (Script 8.9) in your text
editor or IDE, if it is not already. 	

2.	 Within the body tag, identify the func-
tion to be called on when dragging begins
(Script 8.10):

<body style=”margin:10px” oncopy=
 ”doCopy(event);” oncut=
 ”doCut(event);” onpaste=
 ”doPaste(event);” ondragover=
 ”doDragOver(event);”
 ondrop=”doDrop(event);”
 ondragstart=”doDrag(event);”>

Added is the association of the doDrag()
function with the beginning of a dragging
action.

D
ra

g
 a

n
d

D
ro

p
O

u
t

Script 8.10 In this final version of the application, a JavaScript function dictates what can be done with content
being dragged out of the program.

1	 <html><!-- Script 8.10 (update of Script 8.9) -->

2		 <head>

3			 <title>Clipboard and Dragging</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript” src=”editFunctions.js”></script>

6			 <script type=”text/javascript”>

7			 // Drag and drop functions are defined here!

8	

9			 // Function that’s called while the user is dragging

10			 // something into this application.

11			 function doDragOver(e) {

12				 e.preventDefault();

13			 }

14	

15			 // Function that’s called when the user drops

16			 // whatever they’ve been dragging (onto the application).

17			 function doDrop(e) {

18				 if (e.dataTransfer.getData(‘text/plain’)) { // Text

19					 addDiv(e.dataTransfer.getData(‘text/plain’));

20				 } else if (e.dataTransfer.getData(‘image/x-vnd.adobe.air.bitmap’)) { // Image

21					 var image = e.dataTransfer.getData(‘image/x-vnd.adobe.air.bitmap’);

22					 var d = document.createElement(‘div’);

23					 document.body.appendChild(image);

24					 document.body.appendChild(d);

25					 document.body.appendChild(document.createElement(‘br’));

(script continues on next page

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing and Exporting Data

153

3.	 In the JavaScript section, define the
doDrag() function:

function doDrag(e) {

	 e.dataTransfer.effectAllowed =
	  ‘copy’;

}

That’s all this function needs to do.
It specifies that any content being
dragged out can be copied (but nothing
else is allowed).

continues on next page

D
rag

 an
d D

ro
p O

u
t

26				 } else { // Other type of data

27					 alert(‘Data type not yet supported!’);

28				 }

29			 } // End of doDrop() function.

30	

31			 // Function for dragging content

32			 // out of the application.

33			 function doDrag(e) {

34	

35				 // Establish what’s allowed:

36				 e.dataTransfer.effectAllowed = ‘copy’;

37	

38			 } // End of doDrag() function.

39	

40			 </script>

41		 </head>

42	

43	 <body style=”margin:10px” oncopy=”doCopy(event);” oncut=”doCut(event);” onpaste=”doPaste(event);”
	 ondragover=”doDragOver(event);” ondrop=”doDrop(event);” ondragstart=”doDrag(event);”>

44	

45		 <p>This is some text.</p>

46	

47		 <p>Completely different text.</p>

48	

49		 <p style=”-webkit-user-select: none”>The user cannot select this text!</p>

50	

51		 <p></p>

52	

53		 <hr />

54	

55	 </body>

56	 </html>

Script 8.10 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

154

4.	 Save, test, debug, and run the completed
application (Figures 8.17 and 8.18).

You can test this application by selecting
some text and dragging it either to the bot-
tom section of the window (Figure 8.17) or
to another application. Likewise, you can
do the same with the image (Figure 8.18).

	Tips

n	 Content being dragged from one editable
region to another (for example, between
textareas) will be performed as a move by
default. You can override this behavior
using your own ondrag handler.

n	 Using the same values from Table 8.3,
functions that handle the drag and drop
in-related events can set the eventName.

D
ra

g
 a

n
d

D
ro

p
O

u
t

Figure 8.17 Text selected in the top of the application
window was dragged into the bottom part, thereby
adding it to the page’s content.

Figure 8.18 Dragging the same image from within the
application to itself, results in a copy of the image
being added to the page.

dataTransfer.dropEffect property to
dictate what kind of effect—copy, move,
link—transpires.

n	 The drag out function—doDrag() in
this example—can use the eventName.
dataTransfer.setData() method to
make the content being dragged available
in different formats.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

155

Files and
Directories

9
An application’s ability to work with the files and directories on a user’s computer is a
basic necessity. Fortunately, doing so in an AIR application is generally one of the easiest
things you’ll ever implement. AIR provides three simple to use classes that offer all the
file and directory-related functionality you’ll ever need. In fact, there’s so much informa-
tion to be covered in this area that I’ve broken it down into two separate chapters.

In this chapter you’ll learn about the fundamentals of working with files and directo-
ries. This includes allowing users to select a file or directory on their computer, access-
ing basic file information (its name, size, creation date, and so forth), and listing the
contents of a directory. Examples will also demonstrate how to create, copy, move,
delete, and trash directories and files. In Chapter 10, “Working with File Content,”
you’ll learn how to write to and read from a file in different ways. Files an

d D
irecto

ries

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

156

Fundamentals
As I’ve done in some other chapters, I’ll begin
by covering some of the basic information
you’ll need before working with files and
directories. You should read these three top-
ics before moving on to the actual examples.

AIR classes involved
When it comes to working with files and
directories, there are three defined classes
of note:

u	 File

u	 FileStream

u	 FileMode

Of these, File is by far the most important.
You’ll use a File object to refer to a file or a
directory on the user’s computer. Once you
have a File object, you can create new files
and directories, move them, delete them,
copy them, list their contents (for directo-
ries), and so forth. Everything is done with at
least one File object.

To create a File object, you would write

var file = new air.File();

But File objects will sometimes be created
without the new keyword, depending on the
circumstance. You’ll see examples like this:

var file = air.File.desktopDirectory;

The next topic discusses what this particular
line of code means, but for now just under-
stand that when it comes to creating a File
object, you use new when referring to just
air.File() and you omit new when referring
to air.File.something.

The FileStream object is used to read from or
write to a file. The FileMode object contains
definitions for four constants that will be
used with the FileStream object. Both of these
classes will be demonstrated in Chapter 10.

Fu
n

da
m

en
ta

ls

Paths and directories
You can reference files and directories on
a user’s computer in two ways. The first is
through its native path, which is an operat-
ing-system specific absolute reference. A
valid native path value on Windows might
be C:\Documents and Settings\username\
Desktop\filename. On Mac, it might be /
Users/username /Desktop/filename (replac-
ing username with an actual username for
that computer).

So if you want to explicitly state where a file
is when creating a File object, you would
do this:

var file = new air.File();
file.nativePath = ‘/path/to/file’;

That code is the same as using this:

var file = new air.File(‘/path/to/file’);

In both cases, /path/to/file would be
replaced with the actual path: for example,
C:\Documents and Settings… or /Users/
username …. Still, the fact is you won’t often
use this method of identifying a file because
/path/to/file will inevitably be operating-
system-specific, thereby making your appli-
cation less universal. A better way of refer-
ring to a file is to use an associated shortcut
and the resolvePath() method.

When using native paths, there are five
associated shortcuts for common locations
that an application often references. The first
three are user-related:

u	 userDirectory (C:\Documents and
Settings\username on Windows;
/Users/username on Mac OS X)

u	 documentsDirectory (C:\Documents and
Settings\username\My Documents on
Windows; /Users/username/Documents
on Mac OS X)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

157

That line of code will be the same as assign-
ing C:\Documents and Settings\username\
Desktop\file.txt to file.nativePath on
Windows and assigning /Users/username/
Desktop/file.txt to file.nativePath on
Mac OS X. But by using the shortcut and
the resolvePath() method, your application
will work on both operating systems without
any tweaks.

As already stated, referring to an item’s
native path is the first—and probably pre-
ferred—way to refer to a file or directory.
The second way is to use a URL. Chapter 4
discusses the important URL schemes.
For files and directories, there are three
important schemes: file, app-storage, and
app. The URL app-storage:/prefs.xml
provides the same reference as air.File.
applicationStorageDirectory.resolve
Path(‘prefs.xml’); similarly app:/data.xml
equates to air.File.applicationDirectory.
resolvePath(‘data.xml’).

The file.txt document on the user’s
desktop could also be found using
file:///Documents and Settings/
username/Desktop/file.txt and file:///
Users/username/Desktop/file.txt. (The
three slashes after file: are actually two
slashes—file://—followed by an implied
host value of localhost, followed by the next
slash; this is the same as file://localhost/
Documents and Settings.)

Keep in mind that because of the differ-
ences among the various operating sys-
tems, a file reference will only be valid on
a single platform (e.g., file:///Documents
and Settings/username/... only works for
Windows). Conversely, app and app-storage
will work on all operating systems.

Fu
n

dam
en

tals

u	 desktopDirectory (C:\Documents
and Settings\username\Desktop on
Windows; /Users/username/Desktop
on Mac OS X)

Each AIR application also has two associated
shortcuts. The first is applicationStorage-
Directory, which points to the application’s
storage directory (naturally). Where, exactly,
this is on the computer depends on many
conditions, but it would likely be within the
C:\Documents and Settings\username\
Application Data directory on Windows
and within /Users/username/Library/
Preferences on Mac OS X.

The second application-related reference is to
the directory where the program is installed:
applicationDirectory. Note that while you
might read data from the application direc-
tory (i.e., data and files that were installed
with the program), you likely don’t want to
write new data there. That’s what the applica-
tion storage directory is for, after all.

As an example of this information, to create
a File object that points to where the appli-
cation was installed, use

var file = air.File.applicationDirectory;

To create a File object that points to the
user’s home directory regardless of operating
system, use

var file = air.File.userDirectory;

To refer to a file located within one of these
locations, use the resolvePath() method.
Provide it with the name of a file or directory
that is the final destination, and it will return
the full, absolute path to it. For example,
to point to file.txt, which is on the user’s
desktop, you would use

var file = air.File.desktopDirectory.
 resolvePath(‘file.txt’);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

158

For the most part, you’ll use a File object
and its native path value when working
with files and directories. You will find the
occasional situation in which some other
function expects to receive a URL value for
a file or directory, in which case you’ll make
use of its URL scheme value.

	Tips

n	 It’s not a problem to have spaces in your
file and path names. AIR will convert
those to the URL-encoded equivalent—
%20—as needed.

n	 Having a File object represent a file or
directory that does not yet exist won’t
generate errors. In fact, this is a common
thing to do for applications that create
files and directories. You will, however,
see errors if an application attempts to
read from, move, or delete files or directo-
ries that don’t exist.

n	 Windows uses the backslash (\) to sepa-
rate folders in a path, whereas Mac OS X
uses the forward slash (/). You can refer
to air.File.separator in an application
to fetch the current operating system’s
correct slash.

n	 Since the backslash character has a spe-
cial role in JavaScript (it’s used to escape
characters to create other meanings, like
\n which equates to a newline), you must
use two backslashes to define a path on
Windows:

var file = air.File.
 applicationDirectory.
 resolvePath(‘resources\\data.xml’);

n	 The getRelativePath() method of the
File object will return the relative path
between two files.

Fu
n

da
m

en
ta

ls

Synchronicity
The third concept that you must compre-
hend for working with files and directories is
synchronicity. Transactions, like the writing
of data to a file, can be done in either synchro-
nous or asynchronous modes. In synchronous
mode, the application performs the transac-
tion all in one burst, meaning that other tasks
the application may do have to wait until the
transaction is complete. In asynchronous
mode, the transaction goes on behind the
scenes, and the program or the user can con-
tinue to do other tasks. As an example, most
Ajax processes in Web pages (or AIR applica-
tions) are asynchronous: The user can con-
tinue to scroll through the page, enter text
into a form, and so on while the JavaScript is
making a behind the scenes request.

In your AIR programming, you’ll need to
choose between these two modes. Doing so
normally involves using a different method
for a task. For example, the moveToTrash()
method sends the referenced file to the user’s
trash. That’s the synchronous version of
the method; there’s also the asynchronous
moveToTrashAsync(). The most important
distinction between these two modes from
a programming standpoint is that the
asynchronous methods require the use of
event listeners that do whatever needs to
be done when the transaction is occurring
or completed.

So, in short, synchronous transactions are
easier to program for and are perfectly fine for
tasks that will take but a moment (like read-
ing a small amount of text in from a text file).
Asynchronous transactions require more pro-
gramming but will result in a more polished
experience for the end user when it comes to
more intensive tasks. To most easily demon-
strate these concepts, this chapter primarily
uses the synchronous methods. Asynchronous
alternatives will be discussed here and there,
and in more detail in the next chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

159

To create the browse for directory prompt,
call that method:

file.browseForDirectory(‘Prompt text’);

In both cases the argument provided is the
text that appears in title bar of the dialog
window (see Figures 9.1 and 9.2).

Both of these methods are asynchronous
(there are no synchronous alternatives). This
means that event handlers must be assigned
to them prior to calling browseForFile()
or browseForDirectory(). The event to be
watched for is SELECT:

file.addEventListener(air.Event.SELECT,
 selectFunction);
function selectFunction(e) {
	 // Do whatever.
}

To practice using these methods, let’s create
an application that starts by letting users
select a file or a directory, and then reiterates
to them what they selected.

File an
d D

irecto
ry B

ro
w

sin
g

Figure 9.1 The browse for file dialog on Windows. Figure 9.2 The browse for directory dialog on Mac OS X.

File and Directory
Browsing
Commonplace in most applications is the
ability for users to select a file or directory
from their computer. For example, users
might choose a file to edit or select a direc-
tory where a file should be saved. Creating
a browse for file (Figure 9.1) or browse for
directory (Figure 9.2) prompt in AIR is easy.
Start by creating an object of File type (in
either case):

var selection = new air.File();

If you want to start the user off in a given
location, use the appropriate shortcut refer-
ence without the new keyword:

var selection = air.File.userDirectory;

To create the browse for file prompt, call
that method:

file.browseForFile(‘Prompt text’);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

160

To allow a user to select a file
or directory:

1.	 In your project’s primary HTML file, cre-
ate a new File object (Script 9.1):

var file = new air.File();

That’s all there is to it unless you’d rather
start the user off in a set directory, in
which case you might use

var file = air.File.userDirectory;

or

var file = air.File.
 documentsDirectory;

or

var file = air.File.desktopDirectory;

Just to be clear, this example is being
created from scratch. My assumption
is that you already know how to create
the application.xml file and the pri-
mary HTML page (if not, see Chapter 2,
“Creating an HTML Application,” and
Chapter 3, “AIR Development Tools”).

continues on page 162

Fi
le

 a
n

d
D

ir
ec

to
ry

 B
ro

w
si

n
g

Using Filters

The File object’s browseForOpen() and browseForOpenMultiple() methods take an optional
second argument, which is an array of file filters. You can use this to restrict the kinds of files
the user can select. To start, create a new FileFilter object. The first argument is descriptive
text, and the second is a list of allowed extensions:

var filter = new air.FileFilter(‘Images’, ‘*.jpg;*.jpeg;*.gif;*.png’);

Note that each extension starts with the wildcard character (*, which means that any file
name is allowed) followed by the extension. Each item is separated by a semicolon.

This filter object can only be provided to browseForOpen() as an array. You must therefore
use this code in your browseForOpen() call:

file.browseForOpen(‘Prompt’, new window.runtime.Array(filter));

Alternatively, you can formally create an array, and then add the filter as an element, but I like
the simplicity of the one-step approach. In the next chapter, you’ll see an example of how a
filter is used to allow the user to only open plain text files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

161

File an
d D

irecto
ry B

ro
w

sin
g

Script 9.1 This simple program reports back to users what file or directory they selected.

1	 <html><!-- Script 9.1 -->

2		 <head>

3			 <title>User Browsing</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript”>

6	

7			 // Create an object of File type:

8			 var file = new air.File();

9	

10			 // Add the event listener:

11			 file.addEventListener(air.Event.SELECT, itemWasSelected);

12	

13			 // Function that will be called

14			 // when the event occurs.

15			 function itemWasSelected(e) {

16	

17				 // Use an alert to print the selected item’s name:

18				 alert (‘You selected: ‘ + file.nativePath);

19	

20			 } // End of itemWasSelected() function.

21	

22			 // Function called when the user clicks the

23			 // ‘Select a File’ button.

24			 function selectFile() {

25	

26				 // Create the Open prompt:

27				 file.browseForOpen(‘Choose a file:’);

28	

29			 }

30	

31			 // Function called when the user clicks the

32			 // ‘Select a Directory’ button.

33			 function selectDirectory() {

34	

35				 // Create the Open prompt:

36				 file.browseForDirectory(‘Choose a directory:’);

37	

38			 }

39	

40			 </script>

41		 </head>

42	

43	 <body>

44	

45		 <button onclick=”selectFile();”>Select a File</button>

46	

47		 <button onclick=”selectDirectory();”>Select a Directory</button>

48	

49	 </body>

50	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

162

2.	 Add the event listener.

file.addEventListener(air.Event.
 SELECT, itemWasSelected);

The event to be listened for is air.Event.
SELECT. When that event occurs for this
object, the itemWasSelected() function
will be called.

3.	 Define the itemWasSelected() function:

function itemWasSelected(e) {

	 alert (‘You selected: ‘ +
	  file.nativePath);

}

This function will use an alert to report
the selected item’s native path value.

4.	 Define a function that prompts the user
to select a file:

function selectFile() {

	 file.browseForOpen(‘Choose a
	  file:’);

}

The application will have just two
buttons (Figure 9.3). Clicking the
Select a File button will call this
function, which in turn calls the
browseForOpen() method.

5.	 Define a function that prompts the user
to select a directory:

function selectDirectory() {

	 file.browseForDirectory(‘Choose
	  a directory:’);

}

The other application button
calls this function, which calls the
browseForDirectory() method,
using a different prompt as well
(Figure 9.4). Other than that, allowing
the user to select a file or a directory
is the same process.

Fi
le

 a
n

d
D

ir
ec

to
ry

 B
ro

w
si

n
g

Figure 9.3 The barebones application with two but-
tons. One will prompt the user to select a file, the
other to select a directory.

Figure 9.4 The prompt for selecting a directory.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

163

6.	 Create the two buttons:

<button onclick=”selectFile();”>
 Select a File</button>

<button onclick=”selectDirectory();”>
 Select a Directory</button>

In a real program, you’d likely call the
selectFile() function using a File >
Open command, but for this example,
a simple button is fine.

7.	 Save, test, debug, and run the completed
application (Figure 9.5).

	Tips

n	 The browseForOpenMultiple() method
allows the user to select multiple files.
The event to be listened for when using
this method is air.FileListEvent.
SELECT_MULTIPLE. In the event handling
function, the file variable (or whatever
you name it) would actually be an array of
File objects.

n	 The canonicalize() method of the File
object formats the nativePath value
using the correct case. For example,
you can likely get away with referring
to the file C:\Documents and Settings\
Username\FileName as C:\documents and
settings\username\FILENAME, but this
method will correct the reference. It also
expands shortened names on Windows
to their full length.

Figure 9.5 The native path value of the selected direc-
tory is printed using an alert.

File an
d D

irecto
ry B

ro
w

sin
g

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

164

Accessing File Information
The File object has more than two dozen
properties, some of which are listed in Table
9.1. Each property provides information
about the referenced file or directory. For
example, as Script 9.1 shows, you can get a
file’s native path (i.e., absolute path) using
file.nativePath. Let’s use the informa-
tion in Table 9.1 to update the last example
so that it tells a little bit more about the
selected item.

To use a file’s information:

1.	 Open Script 9.1 in your text editor or IDE,
if it is not already.

2.	 Remove the alert() line from the
itemWasSelected() function (Script 9.2).

continues on page 166

A
cc

es
si

n
g

 F
il

e
In

fo
rm

at
io

n

Table 9.1 These file and directory attributes provide
common information about the item. Note that pack-
ages only exist on Mac OS X (but can be treated
like directories), symbolic links are not the same
as aliases or shortcuts (they’re primarily used on
Unix, Linux, and Mac OS X), and the parent attribute
returns a File object representing the parent folder.

creationDate	 When it was created

exists	 If it exists

extension	 What a file’s extension is

isDirectory	 If it is a directory

isHidden	 If it is hidden

isPackage	 If it is a package (Mac OS X)

isSymbolicLink	 If it is a symbolic link

modificationDate	 When it was last modified

name	 Its name

nativePath	 Its full name and path

parent	 Its parent folder

size	 Its size in bytes

url	 Its URL scheme value

File Object Properties

Script 9.2 Some of the selected file or directory’s information will be printed by this updated version of Script 9.1.

1	 <html><!-- Script 9.2 -->

2		 <head>

3			 <title>File Information</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript”>

6			

7			 // Create an object of File type:	

8			 var file = new air.File();

9			

10			 // Add the event listener:

11			 file.addEventListener(air.Event.SELECT, itemWasSelected);

12			

13			 // Function that will be called

14			 // when the event occurs.

15			 function itemWasSelected(e) {

16		

17				 // Add the information to a variable:

18				 var message = ‘You selected ‘ + file.name;

19				 message += ‘, located within the ‘ + file.parent.name + ‘ folder. ‘;

20				 message += ‘It was created on ‘ + file.creationDate;

21				 message += ‘. It was last modified on ‘ + file.modificationDate + ‘.’;

22				

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

165

A
ccessin

g
 File In

fo
rm

atio
n

Script 9.2 continued

23				 // If it’s not a directory, add the file’s size:

24				 if (!file.isDirectory) {

25					 message += ‘ It is ‘ + Math.ceil(file.size/1024) + ‘KB in size.’;

26				 }

27				

28				 // Place the message on the page:

29				 var p = document.createElement(‘p’);

30				 p.innerText = message;

31				 document.body.appendChild(p);

32				

33			 } // End of itemWasSelected() function.

34	

35			 // Function called when the user clicks the

36			 // ‘Select a File’ button.

37			 function selectFile() {

38	

39				 // Create the Open prompt:

40				 file.browseForOpen(‘Choose a file:’);

41			

42			 }

43			

44			 // Function called when the user clicks the

45			 // ‘Select a Directory’ button.

46			 function selectDirectory() {

47	

48				 // Create the Open prompt:

49				 file.browseForDirectory(‘Choose a directory:’);

50			

51			 }

52			

53			 </script>

54		 </head>

55	

56	 <body>

57	

58		 <button onclick=”selectFile();”>Select a File</button>

59	

60		 <button onclick=”selectDirectory();”>Select a Directory</button>

61	

62	 </body>

63	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

166

Instead of using an alert dialog, this
version of the application will print out
a bunch of information by adding a para-
graph to the Document Object Model
(Figure 9.6).

3.	 Create a message variable, starting with
the item’s name:

var message = ‘You selected ‘ +
 file.name;

Unlike the nativePath property, which
stores the absolute path to a file, the name
property contains just the file or directory
name. It’ll be assigned to a string variable,
along with some literal text, that will later
be added to the DOM.

4.	 Add the item’s parent folder, creation date,
and modification date to the message:

message += ‘, located within the ‘ +
 file.parent.name + ‘ folder. ‘;

message += ‘It was created on ‘ +
 file.creationDate;

message += ‘. It was last modified
 on ‘ + file.modificationDate + ‘.’;

Three more strings—combinations of lit-
eral text and file attributes—are concat-
enated to the message variable. Because
the parent property returns a File object
that points to the parent directory, its
name attribute is what should be added to
the string (if you add just file.parent to
the message string, the value object File
will be displayed).

A
cc

es
si

n
g

 F
il

e
In

fo
rm

at
io

n

Figure 9.6 The program now prints out the name,
dates, and other information about the selected file
or directory.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

167

First a new element of type p is created.
Next, its innerText value is assigned the
message variable (innerText is what goes
between the opening and closing tags).
Then this paragraph is appended to the
document body.

7.	 Save, test, debug, and run the completed
application (Figure 9.7).

	Tips

n	 If a file or folder is in the root directory,
its parent attribute will be that root direc-
tory. The name of that parent folder will
therefore be / on Mac OS X and C: (or
whatever drive) on Windows.

n	 If the user selects his or her root direc-
tory, file.parent.name will not have a
value. To account for this possibility, you
could use a conditional that prints the
parent folder’s name only if it is not null.

A
ccessin

g
 File In

fo
rm

atio
n

Figure 9.7 The information for a file and a directory. Because a
selected item’s information is displayed by adding a paragraph
to the DOM, the page will continue to list every selected file
or directory.

5.	 Add the file’s size to the message:

if (!file.isDirectory) {

	 message += ‘ It is ‘ + Math.ceil
	  (file.size/1024) + ‘KB in size.’;

}

The size attribute only has a value for
nondirectories (getting a directory’s size
requires adding up all of its file sizes). For
this reason, a conditional first checks that
the file isn’t a directory. If that is true, the
file’s size in kilobytes is determined by
dividing its size value (which is in bytes)
by 1024, and then rounding this up to the
next highest integer (so that a file smaller
than one kilobyte doesn’t appear as being
0KB in size).

6.	 Add the message to a paragraph on
the page:

var p = document.createElement(‘p’);

p.innerText = message;

document.body.appendChild(p);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

168

Reading Directories
Although you can provide your AIR applica-
tion with a specific directory or filename to
use, or you can allow the user to select one,
sometimes it’s necessary for an application
to find a file on its own. For example, iTunes
has the ability to look for music files on your
computer.

The File object’s getDirectoryListing()
and getDirectoryListingAsync() meth-
ods can be used to retrieve every file and
folder within a given directory. This func-
tion returns an array of File objects, one for
each item in the directory. To use it, start by
creating a File object and provide it with the
directory to read. You could use

var dir = new air.File(‘/path/to/dir’);

Or, more likely, start with a common
reference:

var dir = air.File.userDirectory;

Of course, you can also use code as in the
previous example that allows the user to
select a directory.

Next, call the getDirectoryListing() (or
getDirectoryListingAsync()) method and
assign the result to another variable:

var stuff = dir.getDirectoryListing();

Now stuff is an array; you can iterate
through it as you would any other array:

for (i = 0; i < stuff.length; i++) {
	 // Do whatever with stuff[i].
}

For this next example, the contents of a
directory will be displayed in an unordered
list (Figure 9.8).

Figure 9.8 This application shows the files
and folders that exist on the user’s desktop.
This image was taken while the program was
running on Windows.

R
ea

di
n

g
 D

ir
ec

to
ri

es

To read a directory:

1.	 In your project’s primary HTML
file, begin a new JavaScript function
(Script 9.3): 	

window.onload = function() {

}

I’ll start by creating a new project with
its own root HTML page. Within it an
anonymous function will be defined that
is automatically called once the window
has loaded. This is necessary because the
page will add elements to the DOM, and
the document’s body will only exist after
the page has loaded.

2.	 Within the anonymous function, get the
contents of a directory:

var dir = air.File.desktopDirectory;

var contents =
 dir.getDirectoryListing();

These two lines, already explained, are
all that’s required. For this example, the
target directory will be the user’s desktop.
Now the contents variable is an array of
File objects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

169

4.	 Add all visible items to the list:

for (i = 0; i < contents.length; i++) {

	 if (!contents[i].isHidden) {

		 li[i] = document.
		  createElement(‘li’);

		 li[i].innerText =
		  contents[i].name;

		 ul.appendChild(li[i]);	

	 } // End of isHidden IF.	

} // End of FOR loop.

continues on next page

R
eadin

g
 D

irecto
ries

3.	 If the directory isn’t empty, create an
unordered list:

if (contents.length > 0) {

	 var ul = document.
createElement(‘ul’);

	 var li = Array();

This conditional checks that there is at
least one item in the array (i.e., in the
directory). If so, a new element of type ul
is created, along with an array called li.
This array will be used to add each item
in the directory to the unordered list.

Script 9.3 This program lists the visible files and folders found on the user’s desktop.

1	 <html><!-- Script 9.3 -->
2		 <head>
3		 <title>Directory Listing</title>
4		 <script type=”text/javascript” src=”AIRAliases.js”></script>
5		 <script type=”text/javascript”>
6		
7		 // Create an object of File type,
8		 // pointing to the user’s desktop.
9		 var dir = air.File.desktopDirectory;
10	
11		 // Once the page has loaded, call this function:
12		 window.onload = makeList;
13		
14		 // Function for creating the directory listing.
15		 function makeList() {
16	
17			 // Get the directory’s contents:
18			 var contents = dir.getDirectoryListing();
19	
20			 // Check that it’s not empty:
21			 if (contents.length > 0) {
22	
23				 // Make an unordered list:
24				 var ul = document.createElement(‘ul’);
25				 var li = Array();
26	
27				 // Loop through the contents:
28				 for (i = 0; i < contents.length; i++) {
29	
30					 // Print only visible items:
31					 if (!contents[i].isHidden) {
32	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

170

This basic for loop construct will
access every element within the
contents array. Within the loop, a con-
ditional checks that the current item—
accessed via contents[i]—isn’t hidden.
This is an optional step, but because the
getDirectoryListing() method returns
hidden files, showing them here could be
confusing to the viewer.

To add the item to the list, a new element
of type li is added to the li array. Its
innerText value will be the name of the
file. This element is then appended to the
unordered list. Using an array to create
and add list items is necessary because

R
ea

di
n

g
 D

ir
ec

to
ri

es

33						 // Create a list item:
34						 li[i] = document.createElement(‘li’);
35						 li[i].innerText = contents[i].name;
36						 ul.appendChild(li[i]);
37	
38					 } // End of isHidden IF.
39	
40				 } // End of FOR loop.
41	
42				 // Add the UL to the page:
43				 document.body.appendChild(ul);
44	
45			 } else { // Nothing there!
46	
47				 // Make a paragraph:
48				 var p = document.createElement(‘p’);
49				 p.innerHTML = ‘The directory is empty.’;
50				 document.body.appendChild(p);
51	
52			 }
53	
54		 } // End of makeList() function.
55	
56		 </script>
57		 </head>
58	
59		 <body>
60		
61		 <h3>What’s on your Desktop?</h3>
62		
63		 </body>
64	 </html>

Script 9.3 continued

reusing the same li element over and
over won’t work.

5.	 Add the list to the page:

document.body.appendChild(ul);

6.	 Complete the main conditional:

} else {

	 var p = document.
	  createElement(‘p’);

	 p.innerHTML = ‘The directory
	  is empty.’;

	 document.body.appendChild(p);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

171

If the conditional in step 3 is false, the
directory is empty. In that case, a para-
graph is added to the page saying as much.

7.	 If you want, create a heading within the
page’s body:

<h3>What’s on your Desktop?</h3>

8.	 Save, test, debug, and run the completed
application.

If you’d like, change the directory (to
documentsDirectory or something else)
and rerun the program (Figure 9.9).

	Tips

n	 One way you could expand this example
would be to add a check box indicating
whether or not hidden files should be
revealed. Then the conditional in the loop
would read something like

if (!contents[i].isHidden &&
 (document.getElementById
 (‘showHidden’).checked == false)) {

You would also need to add a function
that removes the unordered list and
redraws it when the box is checked or
unchecked. The next example shows how
to recreate a list of items.

n	 To use the asynchronous version of the
getDirectoryListing() method, you’ll
need to add an event listener to the
File object. The event to be watched
is FileListEvent.DIRECTORY_LISTING.
Sample code for this would be:

var dir = air.File.userDirectory;

dir.getDirectoryListingAsync();

dir.addEventListener(air.
 FileListEvent.DIRECTORY_LISTING,
 doList);

function doList(e) {

	 var contents = e.files;

	 // FOR loop…

}

R
eadin

g
 D

irecto
ries

Figure 9.9 The listing of my documents directory (on
Mac OS X). The heading has also been changed to
match the directory in use.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

172

Deleting Files and
Directories
Files and directories can be deleted using
the deleteFile() and deleteDirectory()
methods (or the deleteFileAsync() and
deleteDirectoryAsync() versions).

var file = air.File.documentsDirectory.
 resolvePath(‘somefile’);
file.deleteFile();
var dir = air.File.userDirectory.
 resolvePath(‘Some Dir’);
dir.deleteDirectory();

By default, the delete directory methods will
only get rid of empty directories. To delete a
directory that may have some files or subdi-
rectories in it, pass the method an argument
with the value true:

dir.deleteDirectory(true);

If you’d rather take less drastic steps, you can
move the file or directory to the trash. That
way the item won’t be officially removed
until the user empties the trash (or Recycle
Bin on Windows). The moveToTrash() and
moveToTrashAsync() functions do this:

var file = air.File.documentsDirectory.
 resolvePath(‘somefile’);
file.moveToTrash();
var dir = air.File.userDirectory.
 resolvePath(‘Some Dir’);
dir.moveToTrash();

To test this new knowledge, let’s add links
to the previous application that give the user
the option of deleting a file or folder.

D
el

et
in

g
 F

il
es

 a
n

d
D

ir
ec

to
ri

es

To delete a file or directory:

1.	 Open Script 9.3 in your text editor or IDE,
if it is not already.

2.	 Within the makeList() function, after
creating the ul object, add an id attribute
to it (Script 9.4):

ul.setAttribute(‘id’, ‘contents’);

To have the application reflect any
changes, the program will need to be able
to remove and re-create the unordered
list. One way of removing a document ele-
ment is to refer to its ID, so one is being
added to the list here.

3.	 Within the for loop, after creating the
li element, add an onclick event handler
to it:

li[i].setAttribute(‘onclick’,
 ‘deleteItem(“’ + contents[i].
 nativePath + ‘”);’);

The user will be able to delete an item
simple by clicking on its name. To add
that functionality, onclick event han-
dlers are added to each list item. When
the item is clicked on, the deleteItem()
function will be called. This function will
be passed the nativePath value of the
item to be deleted (so that the function
knows what to get rid of).

4.	 Begin a new function called deleteItem:

function deleteItem(which) {

This is the function that will be called
when the user clicks on an item. It’s
passed the item’s nativePath value,
which is an absolute reference to the item
on the user’s computer.

continues on page 175

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

173

D
eletin

g
 Files an

d D
irecto

ries

Script 9.4 This update of Script 9.3 adds onclick event handlers to the list of items so that clicking on one will move
it to the trash.

1	 <html><!-- Script 9.4 -->

2		 <head>

3		 <title>Directory Listing</title>

4		 <script type=”text/javascript” src=”AIRAliases.js”></script>

5		 <script type=”text/javascript”>

6	

7		 // Create an object of File type,

8		 // pointing to the user’s desktop.

9		 var dir = air.File.desktopDirectory;

10	

11		 // Once the page has loaded, call this function:

12		 window.onload = makeList;

13	

14		 // Function for creating the directory listing.

15		 function makeList() {

16	

17			 // Get the directory’s contents:

18			 var contents = dir.getDirectoryListing();

19	

20			 // Check that it’s not empty:

21			 if (contents.length > 0) {

22	

23				 // Make an unordered list:

24				 var ul = document.createElement(‘ul’);

25	

26				 // Give the ul an ID:

27				 ul.setAttribute(‘id’, ‘contents’);
28	

29				 var li = Array();

30	

31				 // Loop through the contents:

32				 for (i = 0; i < contents.length; i++) {

33	

34					 // Print only visible items:

35					 if (!contents[i].isHidden) {

36	

37						 // Create a list item:

38						 li[i] = document.createElement(‘li’);

39						 li[i].innerText = contents[i].name;

40	

41						 // Add an onclick event handler:

42						 li[i].setAttribute(‘onclick’, ‘deleteItem(“’ + contents[i].nativePath + ‘”);’);
43	

44						 ul.appendChild(li[i]);

45	

46					 } // End of isHidden IF.

47	

48				 } // End of FOR loop.

49	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

174

D
el

et
in

g
 F

il
es

 a
n

d
D

ir
ec

to
ri

es

50				 // Add the UL to the page:

51				 document.body.appendChild(ul);

52	

53			 } else { // Nothing there!

54	

55				 // Make a paragraph:

56				 var p = document.createElement(‘p’);

57				 p.innerHTML = ‘The directory is empty.’;

58				 document.body.appendChild(p);

59	

60			 }

61	

62		 } // End of makeList() function.

63	

64	

65		 // Function for deleting an item.

66		 // Takes one argument: the native path of the item.

67		 function deleteItem(which) {

68	

69			 // Confirm with the user prior to deleting:

70			 if (confirm(‘Delete ‘ + which + ‘?’)) {

71	

72				 // Get a reference to the item:

73				 var trash = new air.File();

74				 trash.nativePath = which;

75	

76				 // Delete it:

77				 trash.moveToTrash();

78	

79				 // Remake the list:

80				 document.body.removeChild(document.getElementById(‘contents’));

81				 makeList();

82	

83			 } // End of confirm IF.

84	

85		 } // End of deleteItem() function.

86	

87		 </script>

88		 </head>

89	

90		 <body>

91	

92		 <h3>What’s on your Desktop?</h3>

93		 <p>Click on an item’s name to delete it.</p>

94	

95		 </body>

96	 </html>

Script 9.4 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

175

5.	 If the user definitely wants to delete the
file, get rid of it:

if (confirm(‘Delete ‘ + which + ‘?’)) {

	 var trash = new air.File();

	 trash.nativePath = which;

	 trash.moveToTrash();

Rather than just immediately deleting
the item, the user must click OK in a
confirmation dialog (Figure 9.10). If the
user clicks OK, a reference to the item is
created by declaring a new File object
and assigning it the provided nativePath
value. Finally, the item is moved to the
trash. Although I’ve been saying this script
demonstrates deleting items, I’m playing it
safe and just trashing each item.

continues on next page

D
eletin

g
 Files an

d D
irecto

ries

Figure 9.10 This confirmation dialog makes it clear to
the user what has been selected for removal and pro-
vides one last opportunity to prevent the deletion.

Creating Directories and Files

To create a directory, use the aptly named createDirectory() method of the File object.
Provide it with the name and location of the directory you’d like to create:

var file = air.File.documentsDirectory(‘My App’);

That line creates a File object that references a directory called My App, which is found within
the user’s documents directory. Presumably, at this point, that directory does not exist.

Next, call the createDirectory() method:

file.createDirectory();

This function will create the named directory if it can and do nothing if it cannot.

If you only need to create a temporary directory, use createTempDirectory(). It will create
a new, unique directory. You should delete the directory when exiting the program if it is no
longer needed (it will not be automatically deleted).

The createTempFile() function creates a temporary file on the user’s computer. It could be
used, for example, to store data that only needs to exist for the life of the running program. If
necessary, it can be made permanent by moving it elsewhere on the computer.

Creating files is done differently than creating directories because they need content, which
must be written to the file. See the next chapter for details.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

176

In a real application, I might be inclined
to add a check that the item exists, prior
to attempting to delete it:

if (trash.exists) {…	

6.	 Re-create the unordered list:

document.body.removeChild(document.
 getElementById(‘contents’));

makeList();

If you don’t re-create the unordered list, it
will continue to show the removed items.
To rebuild it, start by deleting the existing
list, which is accomplished by using the
removeChild() method, and then passing
it the element to be removed, which is
returned by getElementById(). Then call
the makeList() function.

7.	 Complete the deleteItem() function:

	 } // End of confirm IF.

} // End of deleteItem() function.

8.	 Add instructions for the user to the body
of the page:

<p>Click on an item’s name to
 delete it.</p>

9.	 Save, test, debug, and run the completed
application (Figures 9.11 and 9.12).

D
el

et
in

g
 F

il
es

 a
n

d
D

ir
ec

to
ri

es

	Tips

n	 If you’d rather not play it safe by mov-
ing an item to the trash, you can use this
code instead:

if (trash.isDirectory) {

	 trash.deleteDirectory(true);

} else {

	 trash.deleteFile();

}

n	 If you’re using the asynchronous
versions of the delete functions—
deleteDirectoryAsync() and
deleteFileAsync()—the event to be
watched for is air.Event.COMPLETE.
If you add an event listener for that
event, when the directory has been
completely deleted, your handling
function will be called.

Figure 9.11 The original list.
Figure 9.12 The redrawn list after delet-
ing an item (testing.txt).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

177

have the same source and dest objects from
above, this line will replace an existing file.
txt on the user’s desktop:

source.copyTo(dest, true);

Moving a file is exactly the same as copy-
ing—requiring two objects with different
native paths—but involves the moveTo()
method:

var source = air.File.
 userDirectory(‘file.txt’);
var dest = air.File.
 desktopDirectory(‘file.txt’);
source.moveTo(dest);

That code moves file.txt from the user’s
home directory to the user’s desktop. The
moveTo() method also takes an optional
second argument. If provided with a value of
true, it will overwrite any existing item with
the same name.

As a demonstration of this, the next example
allows the user to select a file, select a direc-
tory, and then either copy or move the file to
that directory (Figure 9.13).

Co
pyin

g
 an

d M
o

vin
g

Copying and Moving
Directories and files can be copied on the
user’s computer or moved from one loca-
tion to another. Copying uses the copyTo()
method and two valid File objects: One
represents the original name and location,
the second is the destination name and
location. Even if you want to create a copy
of a file or directory in the same directory as
the original, you’ll still need two File objects
(and the second will need a new name, or
else you won’t get a copy).

var source = air.File.
 userDirectory(‘file.txt’);
var dest = air.File.
 desktopDirectory(‘file.txt’);
source.copyTo(dest);

The above code will copy file.txt, located
in the user’s home directory, to the user’s
desktop (keeping the name file.txt).

The copyTo() method takes an optional sec-
ond argument, indicating whether or not an
overwrite should be allowed. Assuming you

Figure 9.13 The application when the user
first loads it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

178

To copy or move a file:

1.	 In your project’s primary HTML file, cre-
ate two File objects (Script 9.5).

var file = new air.File();

var dir = new air.File();

Again, I’m starting from scratch with a
new project.

2.	 Create two flag variables:

var fileSelected = false;

var dirSelected = false;

To ensure that the copying or moving
isn’t attempted until both a file and a
directory have been selected, these two
flag variables will track their statuses.

3.	 Add event listeners to the two File
objects:

file.addEventListener(air.Event.
 SELECT, fileWasSelected);

dir.addEventListener(air.Event.
 SELECT, dirWasSelected);

For both objects, the event to be watched
for is air.Event.SELECT. Each object has
its own associated function to be called
when that event happens.

Co
py

in
g

 a
n

d
M

o
vi

n
g

4.	 Define the fileWasSelected() function:

function fileWasSelected(e) {

	 document.getElementById
	  (‘fileName’).innerText =
	  file.nativePath;

	 fileSelected = true;	

}

This function will be called when the user
selects a file from the hard drive. It then
shows the selected file next to the cor-
responding button on the page (Figure
9.14). The associated flag variable is also
set to true.

5.	 Define the dirWasSelected() function:

function dirWasSelected(e) {

	 document.getElementById
	  (‘dirName’).innerText =
	  dir.nativePath;

	 dirSelected = true;

}

This is just a slight variation on the
dirWasSelected() function. The direc-
tory’s native path value will be displayed
next to that button, and the matching
flag variable gets set to true.

continues on page 181

Figure 9.14 After selecting the file, the file’s native path value is displayed next to the button.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

179

Co
pyin

g
 an

d M
o

vin
g

Script 9.5 This application will move or copy a selected file to a new directory.

1	 <html><!-- Script 9.5 -->

2		 <head>

3			 <title>Copying and Moving</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript”>

6	

7			 // Create two File objects:	

8			 var file = new air.File();

9			 var dir = new air.File();

10	

11			 // Flag variables:

12			 var fileSelected = false;

13			 var dirSelected = false;

14	

15			 // Add the event listeners:

16			 file.addEventListener(air.Event.SELECT, fileWasSelected);

17			 dir.addEventListener(air.Event.SELECT, dirWasSelected);

18	

19			 // Function called when the file is selected.

20			 function fileWasSelected(e) {

21	

22				 document.getElementById(‘fileName’).innerText = file.nativePath;

23				 fileSelected = true;

24	

25			 } // End of fileWasSelected() function.

26	

27			 // Function called when the directory is selected.

28			 function dirWasSelected(e) {

29	

30				 document.getElementById(‘dirName’).innerText = dir.nativePath;

31				 dirSelected = true;

32	

33			 } // End of dirWasSelected() function.

34	

35			 // Function called when the user clicks the

36			 // ‘Select a File’ button.

37			 function selectFile() {

38	

39				 // Create the Open prompt:

40				 file.browseForOpen(‘Choose a file:’);

41	

42			 }

43	

44			 // Function called when the user clicks the

45			 // ‘Select a Directory’ button.

46			 function selectDirectory() {

47	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

180

48				 // Create the Open prompt:

49				 dir.browseForDirectory(‘Choose a directory:’);

50	

51			 }

52	

53			 // Function called when the user clicks Go!

54			 function doCopyMove() {

55	

56				 // Make sure that both items have been selected:

57				 if (fileSelected && dirSelected) {

58	

59					 // Determine the destination:

60					 var dest = new air.File();

61					 dest.nativePath = dir.nativePath + air.File.separator + file.name;

62	

63					 // Copy or move:

64					 if (document.getElementById(‘copyMove’).value == ‘copy’) {

65						 file.copyTo(dest);

66						 alert(‘The file has been copied!’);

67					 } else {			

68						 file.moveTo(dest);

69						 alert(‘The file has been moved!’);

70						 fileSelected = false;

71					 }

72	

73				 } else { // Missing something!

74					 alert(‘You must select a file and a directory first!’);

75				 }

76	

77			 } // End of doCopyMove() function.

78	

79			 </script>

80		 </head>

81	

82	 <body>

83	

84		 <h3>Copy or Move a File</h3>

85	

86		 <p><button onclick=”selectFile();”>Select a File</button> </p>

87	

88		 <p><button onclick=”selectDirectory();”>Select a Directory</button>
		 </p>	

89	

90		 <p><select id=”copyMove”><option value=”copy”>Copy</option><option value=”move”>Move
		 </option></select><button onclick=”doCopyMove();”>Go!</button></p>

91	

92	 </body>

93	 </html>

Script 9.5 continued

Co
py

in
g

 a
n

d
M

o
vi

n
g

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Files and Directories

181

  9.	 Identify the destination for the file:

var dest = new air.File();

dest.nativePath = dir.nativePath +
air.File.separator + file.name;

One more File object is necessary to
identify the destination. That native
path value will be the nativePath of the
selected directory, plus the operating-
system-specific separator (a forward
or backward slash), plus the selected
file’s name.

10.	 If appropriate, copy the file:

if (document.getElementById
 (‘copyMove’).value == ‘copy’) {

	 file.copyTo(dest);

	 alert(‘The file has been copied!’);

The user can indicate the action to
be performed—copy or move—using
the select menu. If the user chooses
copy (the default option), the copyTo()
method is called and an alert informs
the user of the action (Figure 9.15).

11.	 Otherwise, move the file:

} else {

	 file.moveTo(dest);

	 alert(‘The file has been moved!’);

	 fileSelected = false;

}

continues on next page

Co
pyin

g
 an

d M
o

vin
g

6.	 Define a function for selecting a file:

function selectFile() {

	 file.browseForOpen(‘Choose a
 file:’);

}

This function will be called when the user
clicks the Select a File button. It generates
the browse for open dialog (see Figure 9.1).

7.	 Define a function for selecting a directory:

function selectDirectory() {

	 dir.browseForDirectory(‘Choose a
	  directory:’);

}

This function will be called when the user
clicks this Select a Directory button. It
generates the browse for directory dialog
(as in Figure 9.2).

8.	 Begin the doCopyMove() function:

function doCopyMove() {

	 if (fileSelected && dirSelected) {

This is the most important function,
because it performs the actual copying or
moving. The function will be called when
the user clicks the Go! button (see Figures
9.13 and 9.14). Within the function, a con-
ditional confirms that both the file and
directory have been selected (by referring
to the flag variables).

Figure 9.15 The result after copying
the file to the destination.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9

182

Besides using the moveTo() function,
instead of copyTo(), the other significant
alteration here is the resetting of the
fileSelected variable’s value to false.
This is necessary because the file no
longer exists in the same location after
a move, so its reference is inaccurate. By
setting fileSelected to false, the user
will need to select a new file (even if that
means the same file in its new location)
prior to copying or moving again.

12.	 Complete the doCopyMove() function:

	 } else { // Missing something!

		 alert(‘You must select a file
		  and a directory first!’);

	 }

} // End of doCopyMove() function.

If the user clicks Go! before selecting
both a file and a directory, the use will
see this alert (Figure 9.16).

13.	 Within the body of the page, create the
necessary buttons:

<p><button onclick=”selectFile();”>
 Select a File</button> <span
 id=”fileName”></p>

<p><button onclick=
 ”selectDirectory();”>Select a
 Directory</button> <span
 id=”dirName”></p>

The first button invokes the
selectFile() function; the second,
the selectDirectory() function.

Co
py

in
g

 a
n

d
M

o
vi

n
g

14.	 Add the select menu and the Go! button:

<p><select id=”copyMove”><option
 value=”copy”>Copy</option><option
 value=”move”>Move</option>
 </select><button onclick=
 ”doCopyMove();”>Go!</button></p>

15.	 Save, test, debug, and run the completed
application.

	Tips

n	 Note that this application will not
perform the move if a file with the same
name already exists in that destination.
To account for that possibility, you could
add an event listener that watches for
an IOError or call the moveTo() method
within a try…catch block.

n	 The clone() method duplicates the exist-
ing File object, giving you two references
to the same file:

var file = air.File.
 userDirectory(‘file.txt’);

var file2 = file.clone();

n	 To rename a file, use the moveTo()
method, but leave the directory the same
and change the name value:

var source = air.File.
 userDirectory(‘file.txt’);

var dest = air.File.
 userDirectory(‘newname.txt’);

source.moveTo(dest);

Figure 9.16 This alert is shown if the user tries to
copy or move a file without having selected both
a file and a directory.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

183

Working
with File Content

10
Chapter 9, “Files and Directories,” covers the basics of working with files and directo-
ries in Adobe AIR. This chapter extends that information and discusses reading from
and writing to files. Both are important techniques to use in an application and neither
is hard to accomplish, but you must keep two details in mind: whether the transac-
tions will be synchronous or asynchronous and the format of the file to be read from or
written to.

The topic of synchronicity was introduced in the first section of the previous chapter.
When reading in and writing out small amounts of data, using synchronous transac-
tions will work well, so I’ll start by showing you how to perform synchronous reads and
writes. With more data, you’ll want to take the asynchronous route, so you’ll see an
example of that, too.

As for the format, a distinction needs to be made between working with plain text
and binary data. To start, you’ll learn how to handle plain text files; there’ll be a binary
example at the end.

I’ll also add that while the code here will be somewhat simple, some of the concepts
can be confusing, particularly if you’ve never done anything like this before. You’ll see
terms like encoding, character set, and Unicode and have to understand that a char-
acter is not the same as a byte (you’ll read and write bytes of data, even to a plain text
file; one character may require more than one byte). If this section’s references to these
terms and related concepts aren’t sufficient for you, search the Web for some basic
tutorials on Unicode, character encodings, and so forth.

W
o

rkin
g

 w
ith

 File Co
n

ten
t

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

184

Reading from Files
Reading from and writing to files requires a
File object and a FileStream object. As always,
the File object is a reference to a file on the
user’s computer (existing or to be created):

var file = air.File.applicationDirectory.
 resolvePath(‘data.txt’);

That line associates file with data.txt,
which is found in the directory where the
application was installed.

Next, create an object of type FileStream:

var stream = new air.FileStream();

Then open the file for reading and/or writ-
ing, using the stream.open() method. It
takes two arguments. The first is the File
object and the second is the mode:

stream.open(file, mode).

The mode is represented by a constant
(Table 10.1) and dictates what can be done
with the file. So to simply read from a file,
you would use

stream.open(file, air.FileMode.READ);

How you read in the actual data depends
on the format it’s in. UTF-encoded text,
which is text in a Unicode format, can be
read using readUTFBytes(). This function
takes one argument—the number of bytes
to read in—and returns a string. To indicate
how many bytes to read, you can refer to
stream.bytesAvailable.

var data = stream.readUTFBytes(stream.
 bytesAvailable);

In synchronous mode, that line will read in
an entire file and assign the results to the
data variable.

When you’re done using the file, be certain to
close the stream:

stream.close();

R
ea

di
n

g
 f

ro
m

 F
il

es

Table 10.1 These four constants, all defined within
the FileMode class, are used as the second argument
to the FileStream class’s open() method.

C o n s t a n t 	 O p e n s t h e f i l e f o r …

READ	 Reading only

WRITE	� Writing, creating the file if it
doesn’t exist, erasing any
existing data if it does.

APPEND	� Writing, creating the file if it
doesn’t exist, appending new data
to the existing data if it does.

UPDATE	� Reading and writing, creating the
file if it doesn’t exist, keeping
existing data.

FileMode Constants

Reading via Ajax

A second way an application can read text
data from a file is to use Ajax. Chapter 4,
“Basic Concepts and Code,” has an exam-
ple of this. Performing an XMLHttpRequest
on a text file is the same as reading its
contents (because the contents of the
file will be the “response” of the request).
If the data to be read in is fairly short,
you may want to consider taking the
Ajax route instead of using File and
FileStream objects.

If the file being read contains just XML
data (which itself is merely marked-up
plain text), it’d be much better to perform
a simple XMLHttpRequest on that file,
reading in the responseXML. That way
you’ll end up with usable XML. If you use
the File and FileStream combination on
an XML file, turning the file contents into
usable XML data will require extra steps.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

185

To read from a text file:

1.	 In the JavaScript section of the main
HTML file, create the required objects
(Script 10.1):

var file = new air.File();

var stream = new air.FileStream();

continues on next page

R
eadin

g
 fro

m
 Files

Doing so makes the file available to
other applications.

To practice reading from (and next, writing
to) text files, let’s create a simple text editor
that allows the user to open any plain text
file and edit its contents. In the next section
of the chapter, you’ll expand this application
so that you can also create a new text file
from scratch.

Script 10.1 This application displays the contents of a selected text file.

1	 <html><!-- Script 10.1 -->
2	 <head>
3	 <title>Text Editor</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var file = new air.File();
9	 var stream = new air.FileStream();
10	
11	 // Need an event listener for selecting the file:
12	 file.addEventListener(air.Event.SELECT, fileWasSelected);
13	
14	 // Define a function that will be called
15	 // when the selection event occurs:
16	 function fileWasSelected(e) {
17	
18		 // Open the file for reading:
19		 stream.open(file, air.FileMode.READ);
20	
21		 // Get the contents:
22		 var data = stream.readUTFBytes(stream.bytesAvailable);
23	
24		 // Close the file:
25		 stream.close();
26	
27		 // Place the contents on the page:
28		 document.getElementById(‘theText’).value = data;
29	
30	 } // End of fileWasSelected() function.
31	
32	 // Function called to browse for the file:
33	 function doOpen() {
34	
35		 // Limit what kinds of files can be opened:
36		 var filter = new air.FileFilter(‘Text’, ‘*.txt;*.html;*.css;*.js’);
37	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

186

2.	 Add an event listener to the File object:

file.addEventListener(air.Event.
 SELECT, fileWasSelected);

This application starts with nothing but
an Open button (Figure 10.1). When the
user clicks the button, a prompt appears
to select a file from the computer. After
a file is selected, the SELECT event is trig-
gered and the fileWasSelected() func-
tion is called. It reads in the text file.

3.	 Begin defining the fileWasSelected()
function:

function fileWasSelected(e) {

Like functions associated with an event,
this one takes a single argument: the event.

4.	 Read in the file’s contents:

stream.open(file, air.FileMode.READ);

var data = stream.readUTFBytes(stream.
 bytesAvailable);

stream.close();

The first line opens the file for reading.
The second reads in its contents, assign-
ing the contents to data. The third line
closes the file. And that’s it.

R
ea

di
n

g
 f

ro
m

 F
il

es

38		 // Create the dialog:
39		 file.browseForOpen(‘Choose a file:’, [filter]);
40	
41	 } // End of doOpen() function.
42	
43	 </script>
44	
45	 <style>
46		 textarea { border: none;}
47	 </style>
48	
49	 </head>
50	 <body>
51	
52	 <button id=”btnOpen” onclick=”doOpen();”>Open</button><hr />
53	 <textarea cols=”60” rows=”40” id=”theText”></textarea>
54	
55	 </body>
56	 </html>

Script 10.1 continued

Figure 10.1 The program when first started.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

187

This function will be called when the
user clicks the Open button. Because the
application will only expect plain text
files, the dialog will use a filter to limit
what kinds of files—by extension—can
be selected. This concept is covered in
the “Using Filters” sidebar in Chapter 9.
Obviously, you could expand the list of
acceptable extensions.

On Windows, files that don’t match
the filter won’t be revealed in the browse
for open dialog. On Mac OS X, files that
don’t match the filter will be visible but
not selectable.

7.	 If you want, add some CSS to make the
textarea less apparent:

<style>textarea {

border: none;

}</style>

I’ll get rid of the textarea’s traditional bor-
der so that the place where the user edits
text looks more like a Word document or
other application (Figure 10.3).

continues on next page

R
eadin

g
 fro

m
 Files

Figure 10.2 The dialog in which the user can select a
plain text file for viewing or editing.

5.	 Display the contents on the page and
complete the function:

	 document.getElementById(‘theText’)
	  .value = data;

} // End of fileWasSelected()
 function.

To display the file’s contents with the
intent of being able to edit them (that
functionality will be added in the next
example), they’ll be placed within an
HTML textarea whose ID value is theText.
Note that you need to assign data to
the textarea’s value attribute; using
innerText will cause problems.

6.	 Define a function that creates the browse
for open dialog (Figure 10.2):

function doOpen() {

	 var filter = new air.
	  FileFilter(‘Text’, ‘*.txt;
	  *.html;*.css;*.js’);

	 file.browseForOpen(‘Choose a
	  file:’, [filter]);		

}

Figure 10.3 A file’s contents are displayed on the
page seamlessly (i.e., without the standard textarea
border).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

188

8.	 Within the body, add a button and
a textarea:

<button id=”btnOpen” onclick=
 ”doOpen();”>Open</button><hr />

<textarea cols=”60” rows=”40”
 id=”theText”></textarea>

The button needs to call doOpen() when
the user clicks it. The textarea needs to
have an ID value of theText.

9.	 Save, test, debug, and run the completed
application.

You should be able to open any file with
a .txt, .html, .css, or .js extension.
Click Open again to view a different file
(Figure 10.4).

R
ea

di
n

g
 f

ro
m

 F
il

es

	Tips

n	 One nice addition to this program
would be to indicate the document
being viewed. You could display it in
the title bar by setting document.title
to file.name.

n	 This program doesn’t have overt “close”
functionality because the opening of
any text file replaces the previously
viewed contents of a different file. To
add “close” functionality, just clear out
the contents of the textarea when the
user clicks a button:

function doClose() {

	 document.getElementById(‘theText’)
	  .innerText = ‘’;

}

<button id=”btnClose” onclick=
 ”doClose();”>Close</button>

Figure 10.4 The contents of another text file, viewed within the application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

189

And that’s all there is to writing plain text to
a file! However, adding this functionality to
the existing text editor (Script 10.1) is a little
complicated because the application will
need to respond differently to the two pos-
sible triggers of a SELECT event.

u	 When the user selects a file to open, the
file’s data needs to be read in and dis-
played. When the user selects a file to be
saved, the application needs to write the
current text data to that file. Both user
selections trigger the same AIR event, but
the application responses are opposite.

u	 Adding slightly to the complication, if
the user clicks Save when no file has been
opened, the user needs to be prompted as
to where the file should be saved (Figure
10.5). If the user clicks Save after a file
has been selected, the application should
just write the data to that file.

The solution to these issues is to rewrite the
logic a bit and use a couple of extra variables
to track what’s going on.

W
ritin

g
 to

 Files

Figure 10.5 This dialog asks the user to indicate where a file should be
saved, including what its name should be.

Writing to Files
The previous example showed how to read in
plain text data. Now let’s expand on that and
write plain text data to a file. You still need to
create File and FileStream objects:

var file = air.File.
 applicationStorageDirectory.
 resolvePath(‘data.txt’);
var stream = new air.FileStream();

Then open the file using one of the three
modes that allow for writing (see Table 10.1):

stream.open(file, air.FileMode.WRITE);

To write plain text to the file, use
writeUTFBytes():

stream.writeUTFBytes(‘text to be
 written’);

After all the data has been written, close
the file:

stream.close();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

190

To write to a file:

1.	 Open Script 10.1 in your text editor or
IDE, if it is not already.

2.	 Add two variables (Script 10.2).

var filename = null;

var mode = null;

The first variable will store the name of
the file. This could be the file just opened
or the file to which the user wants to
write the data. By using this variable, the
program will know if the user is editing
an existing document or creating a new
one (in which case, the program should
prompt the user for where to save data).

The second variable will track what
mode—open or save—the program
is in. This is necessary so that the
program knows how to respond to
the selection event.

3.	 Change the name of the fileWasSelected()
function to readData().

The fileWasSelected() function is called
when the user selects a file. Originally,
that function read in the data from that
file. Now the fileWasSelected() func-
tion will need to read in the data if the
user just opened a file but write out the
data if the user just selected where the file
should be saved. For simplicity sake, I’ll
just rename the old fileWasSelected()
function—because it contains the entire
readData() code—and create a new
fileWasSelected().

4.	 Within the doOpen() function, assign a
value to mode:

mode = ‘open’;

Step 2 discusses the point of the mode
variable. The doOpen() function was
defined in Script 10.1 and is invoked
when the user clicks the Open button.

W
ri

ti
n

g
 t

o
 F

il
es

The function still creates the browse for
open dialog, but now it also records the
fact that the application is in open mode.

5.	 Begin the writeData() function:

function writeData() {

	 var data = document.getElementById
	  (‘theText’).value;

	 data = data.replace(/\n/g, air.File.
	  lineEnding);

This function will contain the code
already explained for writing text data to
a file. The text to be written is the value of
the theText textarea, so that needs to be
retrieved first.

The third line here is necessary because
of a little catch involving line endings.
When a user presses Enter/Return within
a textarea, a newline (\n) is added to the
text. Mac OS X uses the same character
to terminate a line in a file, so on that
platform, data from a textarea directly
written to a file will maintain the same
line breaks. However, Windows uses a
combination of the carriage return (\r)
and the newline to mark line breaks. So
to make this application more universal,
this last line takes the data string and
calls the replace() function on it, replac-
ing every instance of \n (the /\n/g is a
quick way of doing a global replace) with
the system-used line endings. That value
can be found in air.File.lineEnding.

6.	 Complete the writeData() function:

	 stream.open(file, air.FileMode.
	  WRITE);

	 stream.writeUTFBytes(data);

	 stream.close();

} // End of writeData() function.

Finally, the file is opened for writing, the
data is written there, and the file is closed.

continues on page 193

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

191

W
ritin

g
 to

 Files

Script 10.2 The text editing application is updated so it allows the user to save new or edited text to a file. The func-
tionality is rather simple, but the logic takes a little work.

1	 <html><!-- Script 10.2 -->
2	 <head>
3	 <title>Text Editor</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Flag variables:
8	 var filename = null;
9	 var mode = null;
10	
11	 // Create the objects:
12	 var file = new air.File();
13	 var stream = new air.FileStream();
14	
15	 // Need an event listener for selecting the file:
16	 file.addEventListener(air.Event.SELECT, fileWasSelected);
17	
18	 // Function that reads in the data.
19	 function readData() {
20	
21		 stream.open(file, air.FileMode.READ);
22		 var data = stream.readUTFBytes(stream.bytesAvailable);
23		 stream.close();
24		 document.getElementById(‘theText’).value = data;
25	
26	 } // End of readData() function.
27	
28	 // Function called to browse for the file:
29	 function doOpen() {
30	
31		 // Update the mode:
32		 mode = ‘open’;
33	
34		 // Limit what kinds of files can be opened:
35		 var filter = new air.FileFilter(‘Text’, ‘*.txt;*.html;*.css;*.js’);
36	
37		 // Create the dialog:
38		 file.browseForOpen(‘Choose a file:’, [filter]);
39	
40	 } // End of doOpen() function.
41	
42	 // Function that writes the data to the file.
43	 function writeData() {
44	
45		 // Get the text and convert line endings:
46		 var data = document.getElementById(‘theText’).value;
47		 data = data.replace(/\n/g, air.File.lineEnding);
48	
49		 // Open the file for writing:
50		 stream.open(file, air.FileMode.WRITE);
51	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

192

W
ri

ti
n

g
 t

o
 F

il
es

52		 // Write the data:
53		 stream.writeUTFBytes(data);
54	
55		 // Close the file:
56		 stream.close();
57	
58	 } // End of writeData() function.
59	
60	 // Define a function that will be called
61	 // when the selection event occurs:
62	 function fileWasSelected(e) {
63	
64		 // Assign the selection to filename:
65		 filename = file.nativePath;
66	
67		 // Call the right function depending upon the mode:
68		 if (mode == ‘open’) {
69			 readData();
70		 } else if (mode == ‘save’) {
71			 writeData();
72		 }
73	
74	 } // End of fileWasSelected() function.
75	
76	 // Function to be called when the user clicks Save:
77	 function doSave() {
78	
79		 // Set the mode:
80		 mode = ‘save’;
81	
82		 // Either write the data or prompt the user first:
83		 if (filename) {
84			 writeData();
85		 } else {
86			 file.browseForSave(‘Save’);
87		 }
88	
89	 } // End of doSave() function.
90	
91	 </script>
92	
93	 <style>
94		 textarea { border: none;}
95	 </style>
96	
97	 </head>
98	 <body>
99	
100	 <button id=”btnOpen” onclick=”doOpen();”>Open</button> <button id=”btnSave”
	 onclick=”doSave();”>Save</button><hr />
101	 <textarea cols=”60” rows=”40” id=”theText”></textarea>
102	
103	 </body>
104	 </html>

Script 10.2 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

193

The mode variable is necessary because
there’s no other way of knowing in this
function if the event that just occurred
is the selection of the file for reading or
for writing. But the function that starts
either process—doOpen() and doSave()—
will assign the right value to mode to make
that distinction. All that’s left to do is call
the corresponding function that does the
actual work: readData() or writeData().

  9.	 Complete the fileWasSelected()
function.

} // End of fileWasSelected()
 function.

10.	 Begin the doSave() function.

function doSave() {

	 mode = ‘save’;

This function is called when the user
clicks the Save button. It first assigns
a value to the mode variable.

continues on next page

W
ritin

g
 to

 Files

Random Access
This chapter’s examples perform sequential actions: reading or writing from the beginning of
a file straight through to the end. But AIR applications have the option of randomly accessing
files, both for reading or writing.

The FileStream object has a property called position. This attribute stores the current location
in the file where the next read or write will begin. This value is an integer, representing bytes.

For any read operation, position is initially 0. The same is true when a file is opened for writ-
ing. From there on, unless explicitly changed, position will be updated to reflect the latest read
or write. So if you open a new file and read in 200 bytes, position will then be 200 (because
200 bytes starting at 0 were read). When a file is opened for appending new data, the position
value is irrelevant: New data will always be added at the end of the file.

The stream’s position attribute is most important when using the UPDATE mode or perform-
ing asynchronous transactions.

To change a file’s position, assign it a new value:

stream.position = 234;

You can do this after a stream has been opened using either open() or openAsync(). The next
read or write call after the assignment will begin at that position.

7.	 Begin a new fileWasSelected() function:

function fileWasSelected(e) {

	 filename = file.nativePath;

This new version of the function will
still be called when the user selects a file
(because the event listener specifies that’s
what should happen). But, as I men-
tion in step 3, this version does things a
bit differently. To start, it assigns to the
filename variable the nativePath value
of the selected file. This will be used later
in the script, but it is necessary to have
two different references to the file (one in
filename and one in file).

8.	 Call the appropriate function, depending
on the mode:

if (mode == ‘open’) {

	 readData();

} else if (mode == ‘save’) {

	 writeData();

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

194

11.	 Add an if-else conditional:

if (filename) {

	 writeData();

} else {

	 file.browseForSave(‘Save’);	

}		

The user could click Save under two cir-
cumstances: to save the edits just made
to an existing file or to save the data
as a new file. In the first case, the only
thing that needs to happen is a call to
the writeData() function. In the second
case, the user needs to select where the
data should be saved (i.e., the file’s name
and location). Figure 10.6 illustrates
the application’s complete logic.

12.	 Complete the doSave() function:

} // End of doSave() function.

13.	 Add a Save button to the page:

<button id=”btnSave” onclick=
 ”doSave();”>Save</button>

This button needs to call the doSave()
function when clicked.

14.	 Save, test, debug, and run the completed
application.

W
ri

ti
n

g
 t

o
 F

il
es

If you start by opening a file for reading,
clicking Save updates that file with any
changes. If you start by typing text in a
blank textarea, clicking Save prompts you
to choose where to save the file and what it
should be called (Figure 10.5). Subsequent
clicks on Save write all the data to the file
without reprompting the user.

	Tips

n	 The open and save functionality would
normally be invoked using menu items
and/or keyboard equivalents. To save
space, I’ve omitted this information here,
but see Chapter 7, “Creating Menus,”
for instructions.

n	 If you open a text file in any application
and all of the text is bunched together,
this is likely because the line breaks are
not being handled properly.

n	 The UPDATE mode can be used to ran-
domly read from or write to a file. If you
write 100 bytes of data to the middle
of the file, it will replace the 100 bytes
already there without affecting any data
before or after.

Figure 10.6 This diagram
shows how the Save but-
ton can have two different
outcomes, depending on
whether a file is currently
open or not. Also, a file
selection can be followed
by two different actions
(reading from it or writing
to it).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

195

performing asynchronous reads. I’ll explain
why: If you have a file that’s, say, 1 KB in size,
the synchronous read grabs all 1,024 bytes at
once. With an asynchronous read, 75 bytes
might be read, then the next 224, then the
next 103, and so forth until all the data has
been fetched. Some characters that will
be read from the text file will require more
than one byte to represent them. If you use
readUTFBytes(), it’s possible that a read will
only grab part of a character’s bytes, and
the read function will then interpret this as
a different character. The solution is to use
the readMultiByte() method. This function
takes the number of bytes to read as its first
argument and the character set as its second.
You can name a character set as a string
(like iso-8859-1 in quotes) or assume that
the file uses the operating system’s default
character set. That value is represented by
air.File.systemCharset.

A similar concern involves what to do with
the data as it’s being read in. With a synchro-
nous read, the entire file will be read in at
once and can be assigned to a variable, put
on the page, whatever. With an asynchro-
nous read, the file will be read incrementally.
Instead of just assigning the read data to a
variable, you’ll want to append it so the exist-
ing data is not replaced by the next read.

With these two considerations in mind, this
next bit of code performs the asynchronous
reading of a file, storing all the contents in
the data variable:

var data = ‘’;
function readInProgress(e) {
	 data += stream.readMultiByte(stream.
	  bytesAvailable, air.File.
	  systemCharset);
}

A
n

 A
syn

ch
ro

n
o

u
s Exam

ple

An Asynchronous Example
The text editor example developed thus far
(Scripts 10.1 and 10.2) performs synchronous
transactions. This means that after a request
to read from or write to a file, nothing else
happens until that reading or writing is com-
pleted. When dealing with small amounts of
data, this isn’t a problem. With more data,
the wait may be apparent to the end user,
which is never a good thing.

Performing asynchronous transactions isn’t
hard, but it does require more code. You’ll
need to create event listeners for relevant
events (because the program continues to do
other tasks while the transaction goes on).

For performing an asynchronous read, the
events to be watched are ProgressEvent.
PROGRESS and Event.COMPLETE. While a read
is taking place, PROGRESS events will repeat-
edly be triggered. After the entire file has
been read in, the COMPLETE event happens.
You’ll want to identify these event listeners
before the stream is opened:

var file = air.File.applicationDirectory.
 resolvePath(‘data.txt’);
var stream = new air.FileStream();
stream.addEventListener(air.Event.
 COMPLETE, readComplete);
stream.addEventListener(air.
 ProgressEvent.PROGRESS,
 readInProgress);
stream.openAsync(file, air.FileMode.
 READ);

Notice, as well, that the openAsync() func-
tion is used to open the stream instead of
just open().

With synchronous reads, the readUTFBytes()
method is used, but you shouldn’t use it for

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

196

Note that you don’t have to do anything
to start the read. As soon as the stream is
opened some amount of data will be read
into the buffer (a section of memory that
stores input and output). That will trigger
the PROGRESS event, which will call the
readInProgress() function, which will call
readMultiByte(). That function actually
retrieves the data from the buffer, not the file.
After it’s done that, the buffer is cleared of its
existing data and more data is read from the
text file and stored in the buffer. This triggers
the PROGRESS event, and the process contin-
ues until the entire file has been read.

Finally, the readComplete() function should
do something with the read in data and close
the file.

function readComplete(e) {
	 // Do something with data.
	 stream.close();
}

To perform asynchronous writing, you’ll still
call the openAsync() method, but you don’t
actually need to use event listeners. The writ-
ing may take some time (relatively speaking),
but it will happen behind the scenes. Think
of it like playing fetch with your dog: There’s
nothing you have to watch for or do while

A
n

 A
sy

n
ch

ro
n

o
u

s
Ex

am
pl

e

you’re waiting for the dog to go get the stick
or ball.

To perform asynchronous writing, you don’t
want to use writeUTFBytes(), instead use
writeMultiByte(). It takes the data to be
written as its first argument and the charac-
ter set of the data as its second. The com-
plete asynchronous code for writing data is
therefore just:

var file = air.File.applicationDirectory.
 resolvePath(‘data.txt’);
var stream = new air.FileStream();
stream.openAsync(file, air.FileMode.
 WRITE);
stream.writeMultiByte(‘text’,
 air.File.systemCharset);
stream.close();

And in case it crossed your mind, rest
assured that the file won’t be closed until the
data is completely is written. Although asyn-
chronous transactions allow for multiple
tasks to happen at once, it doesn’t mean that
sequentially dependent code will be executed
improperly.

To apply this new knowledge, let’s update
the text editor to perform both asynchro-
nous reads and writes.

Handling Errors

When performing asynchronous reads and writes, you have the option of watching for error
events, specifically an IOErrorEvent.IO_ERROR. If you add to the FileStream object a listener
for that event, the associated function will be called should an input or output error occur.

stream.addEventListener(air.IOErrorEvent.IO_ERROR, errorHandler);
function errorHandler(e) {
	 alert(e.text);
}

The text attribute of the triggered event will represent the error message.

The most common errors would be attempting to access a file that doesn’t exist, issues related
to permissions, and attempts to overwrite files and directories that already exist.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

197

3.	 Add two event listeners:

stream.addEventListener(air.
 ProgressEvent.PROGRESS,
 readInProgress);

stream.addEventListener(air.Event.
 COMPLETE, readComplete);

The first event listener specifies that the
readInProgress() function should be
called when the PROGRESS event (defined
in the ProgressEvent class) happens. The
second line adds an event listener to the
COMPLETE event, calling the readComplete()
at that time. Both event listeners are
added to the FileStream object.

continues on page 199

A
n

 A
syn

ch
ro

n
o

u
s Exam

ple

To perform asynchronous
transactions:

1.	 Open Script 10.2 in your text editor or
IDE, if it is not already.

2.	 At the top of the JavaScript code, create a
new global variable (Script 10.3):

var data = ‘’;

This variable will store the data being
read in from a file. Because it’ll be used
inside of two functions, I’m creating it as
a global variable here.

Script 10.3 This third and final version of the text editor performs asynchronous reading and writing, which should
result in a better experience for the user when handling large text files.

1	 <html><!-- Script 10.3 -->
2	 <head>
3	 <title>Text Editor</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // For the data to be read in:
8	 var data = ‘’;
9	
10	 // Flag variables:
11	 var filename = null;
12	 var mode = null;
13	
14	 // Create the objects:
15	 var file = new air.File();
16	 var stream = new air.FileStream();
17	
18	 // Need an event listener for selecting the file:
19	 file.addEventListener(air.Event.SELECT, fileWasSelected);
20	
21	 // Add asynchronous event listeners:
22	 stream.addEventListener(air.ProgressEvent.PROGRESS, readInProgress);
23	 stream.addEventListener(air.Event.COMPLETE, readComplete);
24	
25	 // Function that reads in the data.
26	 function readData() {
27	
28		 // Open the file for reading:
29		 stream.openAsync(file, air.FileMode.READ);
30	
31	 } // End of readData() function.
32	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

198

A
n

 A
sy

n
ch

ro
n

o
u

s
Ex

am
pl

e

33	 // Function called to browse for the file:
34	 function doOpen() {
35		 mode = ‘open’;
36		 var filter = new air.FileFilter(‘Text’, ‘*.txt;*.html;*.css;*.js’);
37		 file.browseForOpen(‘Choose a file:’, [filter]);
38	 } // End of doOpen() function.
39	
40	 // Function that writes the data to the file.
41	 function writeData() {
42	
43		 // Get the text and convert line endings:
44		 var data = document.getElementById(‘theText’).value;
45		 data = data.replace(/\n/g, air.File.lineEnding);
46	
47		 // Open the file for writing:
48		 stream.openAsync(file, air.FileMode.WRITE);
49	
50		 // Write the data:
51		 stream.writeMultiByte(data, air.File.systemCharset);
52	
53		 // Close the file:
54		 stream.close();
55	
56	 } // End of writeData() function.
57	
58	 // Define a function that will be called
59	 // when the selection event occurs:
60	 function fileWasSelected(e) {
61		 filename = file.nativePath;
62		 if (mode == ‘open’) {
63			 readData();
64		 } else if (mode == ‘save’) {
65			 writeData();
66		 }
67	 } // End of fileWasSelected() function.
68	
69	 // Function to be called when the user clicks Save:
70	 function doSave() {
71		 mode = ‘save’;
72		 if (filename) {
73			 writeData();
74		 } else {
75			 file.browseForSave(‘Save’);
76		 }
77	 } // End of doSave() function.
78	
79	 // Function for asynchronous read progress.
80	 function readInProgress(e) {
81	
82		 // Append the data to the variable:
83		 data += stream.readMultiByte(stream.bytesAvailable, air.File.systemCharset);
84	
85	 } // End of readInProgress() function.
86	

(script continues on next page)

Script 10.3 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

199

This function reads in the available bytes
and appends them to data using the con-
catenation assignment operator (+ =).

6.	 Define the readComplete() function:

function readComplete(e) {

	 document.getElementById(‘theText’)
	  .value = data;

	 stream.close();

	 data = ‘’;

}

This function will be called when all
the data has been read in. It does three
things. First, it places the read in data
on the page by assigning it to the value
attribute of the textarea (as the synchro-
nous example had). Second, it closes the

continues on next page

A
n

 A
syn

ch
ro

n
o

u
s Exam

ple

87	 // Function for when reading is done.
88	 function readComplete(e) {
89	
90		 // Place the contents on the page:
91		 document.getElementById(‘theText’).value = data;
92	
93		 // Close the file:
94		 stream.close();
95	
96		 // Clear the contents of data:
97		 data = ‘’;
98	
99	 } // End of readComplete() function.
100	
101	 </script>
102	
103	 <style>
104		 textarea { border: none;}
105	 </style>
106	
107	 </head>
108	 <body>
109	
110	 <button id=”btnOpen” onclick=”doOpen();”>Open</button> <button id=”btnSave”
	 onclick=”doSave();”>Save</button><hr />
111	 <textarea cols=”60” rows=”40” id=”theText”></textarea>
112	
113	 </body>
114	 </html>

Script 10.3 continued

4.	 Change the readData() function so that
it only calls the openAsync() method:

stream.openAsync(file,
 air.FileMode.READ);

The previous version of this text editor
used asynchronous reading, so the open-
ing, reading, and closing of a file can take
place all within this one function. Now this
function just begins the reading process.
The readInProgress() and readComplete()
functions will finish the job.

5.	 Define the readInProgress() function:

function readInProgress(e) {

	 data += stream.readMultiByte
	  (stream.bytesAvailable,
	  air.File.systemCharset);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

200

file. Third, it clears out the value of data
by assigning to it an empty string. This is
necessary in case the user opens a second
file during the same session.

7.	 Change the writeData() function to be
asynchronous.

To do so, change the first two of the three
lines within the function to

stream.openAsync(file,
 air.FileMode.WRITE);

stream.writeMultiByte(data,
 air.File.systemCharset);

The first change is to use openAsync()
instead of open(). The second is to

A
n

 A
sy

n
ch

ro
n

o
u

s
Ex

am
pl

e

use writeMultiByte() instead of
writeUTFBytes().

8.	 Save, test, debug, and run the completed
application (Figures 10.7 and 10.8).

	Tips

n	 Although you don’t normally need
to attend to them, when it comes
to asynchronous write events, the
important ones to watch for are
OutputProgressEvent.OUTPUT_PROGRESS
and Event.COMPLETE.

n	 The bytesAvailable property refers to the
number of bytes available in the buffer.

Figure 10.7 To test the asynchronous version of the
text editor, I pasted in (as plain text), and saved as a
new file, the 5,500 words in this chapter.

Figure 10.8 To test the reading of a large text file, I
opened the new document just created (this is the
end of the text begun in Figure 10.7).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

201

between the current position and its length
by referring to its bytesAvailable.

This code writes some text to a ByteArray,
and then reads it back in:

ba.writeUTFBytes(‘text string’);
ba.position = 0;
var data = ba.readUTFBytes(ba.
 bytesAvailable);

You can write any type of data to a byte
array (using the same FileStream func-
tions), read any type of data from it, ran-
domly access its contents, and you don’t
even need to open and close the ByteArray.
More important, you can write a ByteArray
to a file, thereby creating a binary file. To do
so, use the stream’s writeBytes() function,
passing it the ByteArray as its first argument:

var file = air.File.documentsDirectory
 (‘data’);
var stream = new air.FileStream();
stream.open(file, air.FileMode.WRITE);
stream.writeBytes(ba);
stream.close();

continues on next page

U
sin

g
 B

in
ary D

ata

Using Binary Data
The first three examples all involve plain
text files. A plain text file normally has an
extension like .txt, .html, .css, .js, .php,
and so forth. You’ll also hear these referred
to as ASCII files. In them you’ll only find
characters that you can type (or insert) and
no formatting or graphics. Pretty much
everything else on a computer is a binary file:
images, MP3s, Word documents, RTF (Rich
Text Format) files, and so on.

To work with binary data, you’ll use the
ByteArray class defined in Adobe AIR:

var ba = new air.ByteArray();

Now, ba is an object of type ByteArray that
can store binary data. Interestingly, you can
treat a ByteArray just like a file stream. You
can write data to and read data from it. You
can see how long it is (in bytes) by referring
to its length. You can navigate through it
randomly by referencing its position attri-
bute. You can see how much data there is

Big Endian, Little Endian

Binary data is trickier than plain text because of the “big endian, little endian” problem. Some
text characters and all numbers require multiple bytes to be represented. On some com-
puter systems, the important byte is stored first, followed by the less important bytes (this is
big endian ordering). On other computer systems, the important bytes are left to last (little
endian). If data is stored using big endian but read as if it was in little endian (or vice versa),
the result will be a mess.

You can specify the endian order using constants in the Endian class. The appropriate values
are air.Endian.BIG_ENDIAN and air.Endian.LITTLE_ENDIAN. To establish the endian setting,
you can refer to the FileStream’s endian property (for files) or the ByteArray’s endian property
(for ByteArray objects).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

202

The ByteArray class is used when work-
ing with the encrypted local store option,
which is a way to securely store data on
the user’s computer. This is discussed in
Chapter 15, “Security Techniques.” You’ll
also use it when working with various types
of media—images, sound files, PDFs, and the
like—or when sending data to, or download-
ing data from, networked computers. In this
next example, just to keep things clear and
simple, some session data will be written to
a binary file using a ByteArray. It will then be
retrieved back into a ByteArray.

To work with binary data:

1.	 In your project’s primary HTML file, cre-
ate the required objects (Script 10.4):

var file = air.File.createTempFile();

var stream = new air.FileStream();

This program will store some session data
(the kind of data that an application might
track while the user is running it) in a tem-
porary file. The createTempFile() method
takes care of identifying and creating a
file for this purpose.

2.	 Begin a function that will write some data
to a file:

function doWrite() {

	 var input = new air.ByteArray();

The application has just two buttons
(Figure 10.9). When the Write button
is clicked, this function will be called. Its
role is to store some binary data in a file.
It begins by creating a new ByteArray
object.

3.	 Create some imaginary session data:

var session = new Object();

session.firstName = ‘Larry’;

session.lastName = ‘Ullman’;

session.age = 12;

U
si

n
g

 B
in

ar
y

D
at

a

Script 10.4 In this application, a ByteArray is used
to help store session data—created as an object—
in a file.

1	 <html><!-- Script 10.4 -->

2	 <head>

3	 <title>ByteArray</title>

4	 <script type=”text/javascript”
	 src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Create the objects:

8	 var file = air.File.createTempFile();

9	 var stream = new air.FileStream();

10	

11	 // Function that writes the data to a file.

12	 function doWrite() {

13	

14		 // Create a ByteArray object:

15		 var input = new air.ByteArray();

16		

17		 // Store some data in an object:

18		 var session = new Object();

19		 session.firstName = ‘Larry’;

20		 session.lastName = ‘Ullman’;

21		 session.age = 12;

22	

23		 // Write the object to the ByteArray:

24		 input.writeObject(session);

25		

26		 // Write the data to the file:

27		 stream.open(file, air.FileMode.WRITE);

28		 stream.writeBytes(input);

29		 stream.close();

30		

31		 // Tell the user what happened:

32		 alert(‘The data has been written.’);

33		

34	 } // End of doWrite() function.

35	

36	 // Function that reads the data from the
	 file.

37	 function doRead() {

38	

39		 // Create a ByteArray object:

40		 var output = new air.ByteArray();

41		

42		 // Read the data from the file:

43		 stream.open(file, air.FileMode.READ);

44		 stream.readBytes(output);

45		 stream.close();

46	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with File Content

203

Applications, like Web sites, that store
session data normally do so as a series
of name=value pairs. In JavaScript, this
can be accomplished by creating a new
object, where the object’s attributes are
the names and their values are (obvi-
ously) the values. Here, three pieces of
data are represented.

4.	 Store the object in the ByteArray:

input.writeObject(session);

The writeObject() method takes an
object as its first argument and writes
that to the ByteArray. Now the session
data is stored in a binary data variable
that can be written to a file.

5.	 Write the ByteArray to the file:

stream.open(file, air.FileMode.
 WRITE);

stream.writeBytes(input);

stream.close();

The writeBytes() method will do the
trick here. Now the file contains binary
data, which represents the session object.

In truth, you can write an object directly
to a file by using the writeObject()
method of the stream. However, I wanted
to play with the ByteArray class a little, so
that it’s familiar to you in later chapters
when you’ll use it more legitimately.

6.	 Complete the doWrite() function:

	 alert(‘The data has been
	  written.’);

} // End of doWrite() function.

The alert provides a simple way of indi-
cating to the user that something has
happened.

continues on next page

U
sin

g
 B

in
ary D

ata

Script 10.4 continued

47		 // Assign the object to a variable:
48		 var info = output.readObject();
49		
50		 // Confirm that it worked:
51		 alert(‘info.firstName: ‘ + info.
		 firstName);
52	
53	 } // End of doRead() function.
54	
55	 </script>
56	 </head>
57	
58	 <body>
59	
60	 <button id=”btnWrite” onclick=”doWrite();”>
	 Write</button> <button id=”btnRead”
	 onclick=”doRead();”>Read</button>
61	
62	 </body>
63	 </html>

Figure 10.9 The very simple inter-
face for this application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10

204

  7.	 Begin a function for reading in the data:

function doRead() {

	 var output = new air.ByteArray();

This function will be called when the
Read button is clicked (see Figure 10.9).
It starts by creating a new ByteArray
object.

  8.	 Read the file data into the ByteArray:

stream.open(file, air.FileMode.READ);

stream.readBytes(output);

stream.close();

The readBytes() method reads in raw
bytes of data, assigning them to the
ByteArray object provided as the first
argument to the function.

  9.	 Access and report on the stored data:

var info = output.readObject();

alert(‘info.firstName: ‘ + info.
 firstName);

The output object contains binary
data (specifically, an object in a serial-
ized format). To get the data to a usable
format again, the readObject() method
is called, assigning the results to the
info variable. Then one piece of the
session data is reported using an alert
(Figure 10.10).

10.	 Complete the doWrite() function.

} // End of doWrite() function.

U
si

n
g

 B
in

ar
y

D
at

a

11.	 Add two buttons to the page:

<button id=”btnWrite” onclick=”do
 Write();”>Write</button> <button
 id=”btnRead” onclick=”doRead();”>
 Read</button>

Each button calls the corresponding
function.

12.	 Save, test, debug, and run the completed
application.

	Tips

n	 Windows makes a distinction between
plain text and binary files. On Mac OS X
and Unix, there is no difference between
them: A plain text file can also be treated
as a binary file.

n	 Binary files often contain a Byte Order
Mark (BOM) that indicates whether the
big endian or little endian ordering was
used.

n	 Another benefit of using a ByteArray is
the ability to compress and decompress
the data. There are two compression
algorithms that you can use: deflate and
zlib, represented by the constants air.
CompressionAlgorithm.DEFLATE and air.
CompressionAlgorithm.ZLIB. These are
used as arguments to the functions that
do the actual compression/decompres-
sion: compress() and uncompress().

Figure 10.10 This alert con-
firms that the data was suc-
cessfully written and retrieved.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

205

Working
with Databases

11
The Adobe AIR software comes with the open source (and most excellent) SQLite
database application built in. This is a lightweight tool that’s easy to use and has more
than enough features for most programs. Thanks to the inclusion of SQLite, your AIR
applications have a smart and simple way to store and retrieve data.

In this chapter you’ll learn the basics of working with an SQLite database from an AIR
application. Although the chapter doesn’t assume experience with SQLite specifically,
it will help if you’re familiar with using relational databases in general and have already
utilized SQL (Structured Query Language, which is used to communicate with pretty
much every database application). For more information on SQLite, see www.sqlite.org.
For more on SQL, see my book MySQL, 2nd Edition: Visual QuickStart Guide (Peachpit
Press, 2006) or any other reference you have available.

The fundamentals of using a database will be demonstrated in this chapter by creating
a task-management application. In the next chapter you’ll learn some best practices
and other techniques for incorporating a database into an AIR program. Before getting
into the code, let me add that, like working with files and directories, you can use both
synchronous and asynchronous functions. The first two examples are done synchro-
nously, whereas the rest take the asynchronous route, which is generally better. Finally,
note that some database-related debugging tips are at the end of the next chapter. If
you have any problems with this chapter’s code, see the debugging tips for help in solv-
ing those problems.

W
o

rkin
g

 w
ith

 D
atabases

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

206

Connecting to a Database
Interacting with an SQLite database starts
with the SQLConnection class. However, an
SQLite database is just a file on the com-
puter, so you’ll need a File object as well
(see Chapter 9, “Files and Directories,” for
the basics on working with files).

var conn = new air.SQLConnection();
var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘something.db’);

This second line creates a new object of File
type. This object represents the file called
something.db, which is located within the
AIR application’s storage directory. This
is a logical place for an application’s data-
base (see Chapter 9 and Chapter 4, “Basic
Concepts and Code,” for more on this
directory). Note that it doesn’t matter what
extension you use, if any, for the database
file, although .db is a logical choice.

Co
n

n
ec

ti
n

g
 t

o
 a

 D
at

ab
as

e

To work with a database synchronously, you
can just call the open() method, passing it
the File object as the first argument:

conn.open(db);

If you’d like the referenced file to be created
if it doesn’t exist (e.g., when you go to create
the database for the first time), pass this
function a second argument with the value
air.SQLMode.CREATE.

conn.open(db, air.SQLMode.CREATE);

At this point you’re ready to run queries on
the database: to create tables, to populate
them (insert records), to update tables, to
retrieve data, and so forth. The rest of the
chapter explains those steps. When the
application is done doing whatever needs to
be done, close the database connection:

conn.close();

There’s not much in terms of functionality in
the information provided thus far, but let’s
run it in an application anyway, just to make
sure it works before making the code more
useful and more complicated.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

207

To connect to a database:

1.	 In your project’s primary HTML file,
create two new objects (Script 11.1).

var conn = new air.SQLConnection();

var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘ch11.db’);

The first line creates the object of type
SQLConnection. The second line creates
a File object that refers to a file named
ch11.db, which is found within this
application’s storage directory.

2.	 Open the database connection:

conn.open(db, air.SQLMode.CREATE);

The database should now be open and will
be created if the file doesn’t already exist.

3.	 Notify the user:

alert(‘A connection should be
 open to the database. Check the
 filesystem for the file or check
 the console for errors, just to
 be certain.’);

So that the application does something,
this alert is used.

4.	 Close the database connection:

conn.close();

As with files, you should close the con-
nection to a database when the applica-
tion is done using it.

5.	 Save, test, debug, and run the completed
application (Figure 11.1).

Note that if any errors occur, they should
be displayed in the console.

continues on next page

Co
n

n
ectin

g
 to

 a D
atabase

Figure 11.1 The result of running the first application.

Script 11.1 This first simple script just tests the
basics of connecting to an SQLite database.

1	 <html><!-- Script 11.1 -->

2	 <head>

3	 <title>Databases</title>

4	 <script type=”text/javascript”
	 src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Create the objects:

8	 var conn = new air.SQLConnection();

9	 var db = air.File.
	 applicationStorageDirectory.
	 resolvePath(‘ch11.db’);

10	

11	 // Open the database:

12	 conn.open(db, air.SQLMode.CREATE);

13	

14	 // Alert the user:

15	 alert(‘A connection should be open to
	 the database. Check the filesystem for the
	 file or check the console for errors, just
	 to be certain.’);

16	

17	 // Close the database:

18	 conn.close();

19	

20	 </script>

21	 </head>

22	 <body>

23	 </body>

24	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

208

6.	 Check your application’s storage direc-
tory for the creation of the database file
(Figure 11.2).

The application storage directory is
another folder on the computer—besides
the folder where the application exists—
dedicated to this program. On Mac OS X,
this will be /Users/username/Library/
Preferences/appID.publisherID/Local
Store. On Windows, this will be some-
thing like C:\Documents and Settings\
username\Application Data\appID.
publisherID\Local Store. Note that, in
both cases, username would be replaced
with your actual username for the
computer and appID would be replaced
with the id value from the application’s
XML descriptor file. The .publisherID
value comes from the signing certificate
used when building the application. It’ll
be a string of random-looking characters
that uniquely identifies the application’s
associated creator. When running the
application using the adl (i.e., without
formally installing it), there will be no
.publisherID value.

On my Mac my username is Larry and
the application.xml file for this program
contains this line—

<id>ToDoList</id>

Co
n

n
ec

ti
n

g
 t

o
 a

 D
at

ab
as

e

—so I can find the created database in
/Users/Larry/Library/Preferences/
ToDoList/Local Store during the testing
process (when there is no publisherID
value).

	Tips

n	 If you don’t provide a File object when
calling open() (or for asynchronous
transactions, openAysnc()), SQLite will
create the database in memory:

conn.open(null, air.SQLMode.CREATE);

n	 Since an SQLite database is just a file on
the computer, it—and its contents—are
accessible by other applications. SQLite,
while great, doesn’t have the same secu-
rity protections that other database appli-
cations possess. If the data being stored
should not be accessible by other appli-
cations, use an EncryptedLocalStore
instead (see Chapter 15, “Security
Techniques.”

n	 An application’s use of its storage direc-
tory is just one reason you need to give
your AIR applications a unique id value.
If two programs have the same applica-
tion ID and publisher ID, they’ll both read
and write data from the same directory.

Figure 11.2 The database file, newly created by the application, is found in its storage directory.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

209

To run the query on the database, it must
first be assigned to the SQLStatement object’s
text property. The following command cre-
ates a table with two columns:

sql.text = ‘CREATE TABLE testing (id
 INTEGER PRIMARY KEY AUTOINCREMENT,
 something TEXT)’;

Finally, execute the SQL command:

sql.execute();

Note that these instructions are particular
to synchronous procedures. When interfac-
ing with SQLite asynchronously (discussed
throughout the rest of the chapter), you’ll
need to establish and use event listeners.
Those instructions are in the next section of
the chapter.

As mentioned in the introduction, there’s
not enough room in the book to cover SQL
in detail, but the language is pretty easy to
follow. If you’ve never used SQLite before,
Table 11.1 lists the available types you
can use for table columns and the “Intro to
SQLite” sidebar provides a brief introduction
to the software as a whole.

Creatin
g

 a D
atabase

Creating a Database
Any application should only need to create a
database (which is to say create the tables in
a database) once. In the next chapter you’ll
learn how to distribute an application with
the database already made, but here you’ll
learn how to have the application create it
from scratch.

Creating a table in a database is a mat-
ter of running the proper SQL command:
CREATE TABLE tablename… To run any
SQL command on SQLite, start with your
SQLConnection object, which points to the
database file:

var conn = new air.SQLConnection();
var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘something.db’);
conn.open(db, air.SQLMode.CREATE);

Next, you’ll need an object of type
SQLStatement:

var sql = new air.SQLStatement();

Assign the SQLConnection object to its
sqlConnection property:

sql.sqlConnection = conn;

Table 11.1 These are the four data types supported
by SQLite. Although there is no formal date or time
type, such values can be stored in a text column.

N a m e 	 S t o r e s

INTEGER	 A signed (plus/minus) integer
REAL	 A floating-point number
TEXT	 Any string
BLOB	 Binary data

SQLite Data Types

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

210

To create a database:

1.	 Open Script 11.1 in your text editor or
IDE, if it is not already.

2.	 Create an SQLStatement object
(Script 11.2).

var sql = new air.SQLStatement();

Cr
ea

ti
n

g
 a

 D
at

ab
as

e

3.	 After opening the database connection
but before closing it, link the connection
object to the statement object:

sql.sqlConnection = conn;

This tells the statement object through
which connection the queries should be
executed.

Script 11.2 This application actually creates a table in an SQLite database. The table made here is used in the rest
of the chapter’s examples.

1	 <html><!-- Script 11.2 -->

2	 <head>

3	 <title>Databases</title>

4	 <script type=”text/javascript” src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Create the objects:

8	 var conn = new air.SQLConnection();

9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch11.db’);

10	 var sql = new air.SQLStatement();

11	

12	 // Open the database:

13	 conn.open(db, air.SQLMode.CREATE);

14	

15	 // Associate the statement with the connection:

16	 sql.sqlConnection = conn;

17	

18	 // Define the query:

19	 sql.text = ‘CREATE TABLE todo (id INTEGER PRIMARY KEY AUTOINCREMENT, item TEXT NOT NULL, added
	 TEXT DEFAULT CURRENT_TIMESTAMP, completed TEXT DEFAULT NULL)’;

20	

21	 // Execute the query:

22	 sql.execute();

23	

24	 // Alert the user:

25	 alert(‘The table has been created.’);

26	

27	 // Close the database:

28	 conn.close();

29	

30	 </script>

31	 </head>

32	 <body>

33	 </body>

34	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

211

4.	 Define the CREATE TABLE query:

sql.text = ‘CREATE TABLE todo (id
INTEGER PRIMARY KEY AUTOINCREMENT,
 item TEXT NOT NULL, added TEXT
 DEFAULT CURRENT_TIMESTAMP,
 completed TEXT DEFAULT NULL)’;

This command will create a table
containing four columns. The first is
named id and will be an automatically
incremented primary key. Basically the
id column will be a unique way to refer
to every record in the column (if you’re
not familiar with primary keys, search the
Web or see one of my books about SQL).
As an automatically incremented integer,
the first record inserted will have an id
value of 1, the next 2, and so on.

The second column, item, will be the
actual task in the user’s to-do list. It must
always have a value (it cannot be null).
The third and fourth columns will store
textual representations of a point in
time. The first will reflect when the item
was added. Its default value will be the
current timestamp (i.e., the moment the
record is added to the table). The other
column will be updated when a task is
completed. If a task has no completed
value, that means it still needs to be done.
When it has been completed, this column
will register the time that the task was
marked as completed. Doing it this way is
better than just deleting completed tasks,
because the user would then have no
record as to what has been accomplished.

5.	 Execute the query:

sql.execute();

6.	 Change the alert to reflect the updates to
the script:

alert(‘The table has been created.’);

7.	 Save, test, debug, and run the completed
application (Figure 11.3).

continues on next page

Creatin
g

 a D
atabase

Figure 11.3 The alert generated when this application
runs.

Intro to SQLite

SQLite is an extremely popular database
that many people may not even know
they’ve used before. It’s present in Mac OS
X (used by many applications), the Firefox
Web browser, the PHP scripting language,
and in literally millions of portable devices.
Its widespread use is due to its very small
size and open-source license. It also dis-
penses with many advanced and adminis-
trative features, making it easy to use.

From a technical standpoint, SQLite differs
from the best known database applications
(Oracle, MySQL, SQL Server, etc.) in many
ways. One big difference is that SQLite
only supports four data types: It has no
date or time type, and it doesn’t constrain
data by type (meaning that it’ll let you
store a string in a column defined as a real
number). SQLite also has no system for
managing users and permissions: A data-
base is a file on the computer and all the
data is readable and writable by any user
or application (depending on the operating
system’s permissions on that file).

SQLite mostly adheres to the SQL92 stan-
dard and has a minimum of built-in func-
tions. You can do pretty much whatever
you normally do in other database appli-
cations with a few exceptions: support for
triggers, ALTER TABLE commands, views,
and joins are incomplete. There are also
no foreign key constraints. But for most
database needs, SQLite will do just fine.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

212

	Tips

n	 The SQLConnection object has two prop-
erties that affect the size and behavior of
a database that is created: autoCompact
and pageSize. If you don’t know what
these properties mean or how they are
used, you can search online for details.
These values can only be adjusted prior to
creating a database.

n	 Your table names cannot begin with
sqlite_, because that prefix is reserved
for SQLite’s use.

Cr
ea

ti
n

g
 a

 D
at

ab
as

e

Figure 11.4 Using Sqliteman on Windows, I can see the tables in an SQLite database and view the records in it.

n	 You can confirm the creation of the
table by opening the database file in any
application that can read SQLite data-
bases (Figure 11.4). Search the Web for
a program that will run on your operat-
ing system (one of the best seems to be
Sqliteman at www.sqliteman.com).

n	 The data types supported by SQLite are
tricky. So it’s a subject that I’m glossing over
here. If you’ll be using SQLite a lot, I recom-
mend you read its simple manual, but with
respect to data types, check out the pages
on column affinity for more information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

213

What the corresponding handling func-
tion—doOpen() in this case—does depends
on the application. If the application retrieves
some information from the database when
launched, the code that does that would be
called after opening the connection.

The next steps would be to create the
SQLStatement object and assign to it the
connection:

var sql = new air.SQLStatement();
sql.sqlConnection = conn;

To this statement object you’ll want to add
an event listener, watching for SQLEvent.
RESULT. Such an event is triggered when a
positive result is returned by the database:

sql.addEventListener(air.SQLEvent.
 RESULT, sqlResult);

Now you can assign the query to the SQL
statement and execute it:

sql.text = ‘INSERT INTO testing
 (something) VALUES (“This is some
 text.”)’;
sql.execute();

In the next example, I’ll start building a to-do
list management application (Figure 11.5).
By the end of the chapter, the application
will allow the user to add new list items,
mark them as completed, and delete them.
This example will be started from scratch
here with the assumption that the database
has already been created using the previous
application. Because the database should
already exist, the openAsync() method will
use a second argument of air.SQLMode.
UPDATE instead of air.SQLMode.CREATE. This
value indicates that the database should be
opened for reading or writing but should not
be created if it doesn’t exist.

Inserting Records
When you have a complete and work-
ing database, you can start doing what’s
important: storing data in it. This is accom-
plished using an INSERT query. The process
of running an INSERT query is the same as
that used to run a CREATE query: create the
SQLConnection, File, and SQLStatement
objects, open the connection, associate the
connection with the statement, assign the
SQL command to the SQLStatement’s text
property, and then execute the statement. I
could walk you through this, but it’s time to
start performing asynchronous communica-
tions instead of the synchronous ones used
thus far. When a program does activities that
take more time to complete (like inserting,
selecting, updating, and deleting records),
using asynchronous communications will
result in a more professional application.

You start by opening the database using
openAsync(), but you’ll need to set up event
listeners before doing so. The first event to
watch for is air.SQLEvent.OPEN:

var conn = new air.SQLConnection();
var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘something.db’);
conn.addEventListener(air.SQLEvent.OPEN,
 dbOpen);
conn.openAsync(db, air.SQLMode.CREATE);

In
sertin

g
 R

eco
rds

Figure 11.5 The complete to-do list application, to be
written over the course of this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

214

Before running through these steps, there’s
one other important item to note. For sim-
plicity sake, the value a user enters into a text
input will be used as-is in the SQL INSERT
command. This is a potential security hole
that allows the user to break the database.
In the next chapter you’ll see a preferred but
slightly more complicated way to integrate
user-supplied values into a query.

In
se

rt
in

g
 R

ec
o

rd
s

To insert records:

1.	 In your project’s primary HTML file, cre-
ate the necessary objects (Script 11.3):

var conn = new air.SQLConnection();

var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘ch11.db’);

var insert = new air.SQLStatement();

Script 11.3 To start creating a to-do list manager, this program offers the user a way to add items to the database.

1	 <html><!-- Script 11.3 -->
2	 <head>
3	 <title>To-Do List</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var conn = new air.SQLConnection();
9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch11.db’);
10	 var insert = new air.SQLStatement();
11	
12	 // Do the prep work after the application has loaded:
13	 window.onload = function() {
14	
15		 // Disable the Add Item button until we’re ready for it:
16		 document.getElementById(‘btnAddItem’).disabled = true;
17	
18		 // Add the event handlers:
19		 conn.addEventListener(air.SQLEvent.OPEN, dbOpen);
20		 insert.addEventListener(air.SQLEvent.RESULT, insertResult);
21	
22		 // Open the database:
23		 conn.openAsync(db, air.SQLMode.UPDATE);
24	
25	 } // End of anonymous function.
26	
27	 // When the application has closed, close the database connection:
28	 window.onbeforeunload = function() {
29		 conn.close();
30	 }
31	
32	 // Function called when the database is opened.
33	 function dbOpen() {
34	
35		 // Associate the connection with the SQLStatement:
36		 insert.sqlConnection = conn;
37	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

215

There’s nothing new here, but I’ll point
out two details. First, I’m calling the
SQLStatement object insert, because
it’ll be used to insert records into the
database. Second, although the name of
this database is still ch11.db (as in the
previous two examples), the program will
only work if it uses the same application
ID and publisher ID values as the previ-
ous example. If that’s not the case, the
applicationStorageDirectory location
will be different, and this program won’t
have a database to use!

2.	 Define a function to be called after the
application loads:

window.onload = function() {

	 document.getElementById
	  (‘btnAddItem’).disabled = true;

} // End of anonymous function.

This anonymous function will be auto-
matically called once the application (or
window, technically) has loaded. It starts
by disabling the Add Item button, so that
the user can’t even attempt to add any
items until this program knows that the
database connection is open.

3.	 Add the event listeners and open
the connection:

conn.addEventListener(air.SQLEvent.
 OPEN, dbOpen);

insert.addEventListener(air.
 SQLEvent.RESULT, insertResult);

conn.openAsync(db, air.SQLMode.
 UPDATE);

continues on next page

In
sertin

g
 R

eco
rds

Script 11.3 continued

38		 // Enable the ‘Add Item’ button:
39		 document.getElementById(‘btnAddItem’).
		 disabled = false;
40	
41	 } // End of dbOpen() function.
42	
43	 // Function called when the user clicks
	 ‘Add Item’.
44	 function addItem() {
45	
46		 // Get the value:
47		 var item = document.
		 getElementById(‘item’).value;
48	
49		 if (item.length > 0) { // Make sure
		 there’s something there!
50	
51			 // Escape any apostrophes:
52			 item = item.replace(/’/g, “’’”);
53	
54			 // Insert the item:
55			 insert.text = “INSERT INTO todo
			 (item) VALUES (‘” + item + “’)”;
56			 insert.execute();
57	
58		 } // End of item.length IF.
59	
60	 } // End of addItem() function.
61	
62	 // Function called when an INSERT works.
63	 function insertResult() {
64		 alert (‘The item has been added.’);
65		 document.getElementById(‘item’).value =
		 null;
66	 }
67	
68	 </script>
69	
70	 <style>
71	 body {margin:10px;}
72	 p {font-size: 16px;}
73	 </style>
74	
75	 </head>
76	
77	 <body>
78	
79	 <h3>To-Do List</h3>
80	
81	 <input type=”text” id=”item” /> <button
	 id=”btnAddItem” onclick=”addItem()”>Add
	 Item</button><hr />
82	
83	 </body>
84	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

216

The first event listener watches for an
OPEN event on the connection object.
When that happens, the dbOpen() func-
tion will be called. The second event
listener watches for a RESULT event on the
statement object. When the statement
query successfully runs on the database,
this event will occur, thereby calling the
insertResult() function.

Notice that when opening the database,
the second argument is air.SQLMode.
UPDATE, which means that the database
must already exist and it’s now being
opened for just reading and writing.

4.	 Create a function that closes the database
connection:

window.onbeforeunload = function() {

	 conn.close();

}

The database connection needs to
remain open while the program is run-
ning (because the user may continue
to add items to it). But it also should be
closed before the application quits. To
accomplish that, an anonymous function
will be called right before the window
unloads (i.e., closes). Within the anony-
mous function, the connection’s close()
method is called.

5.	 Define the dbOpen() function:

function dbOpen() {

	 insert.sqlConnection = conn;

	 document.getElementById
	  (‘btnAddItem’).disabled = false;

} // End of dbOpen() function.

This function is called after the connec-
tion has been made to the database. It
needs to do two things: associate the
connection with the insert statement and
enable the Add Item button so the user
can begin adding tasks.

In
se

rt
in

g
 R

ec
o

rd
s

6.	 Begin defining the addItem() function:

function addItem() {

	 var item = document.
	  getElementById(‘item’).value;

	 if (item.length > 0) {

This function will be called when the user
clicks the Add Item button (see Figure
11.5). The function starts by retriev-
ing what the user entered into the text
input, whose id value is item. Next, a
conditional confirms that something
was entered into the input. This prevents
insertions from being made before the
user has even typed anything.

7.	 Escape any apostrophes in the item’s
value:

item = item.replace(/’/g, “’’”);

The to-do item’s value will be part of a
query that looks like this:

INSERT INTO todo (item) VALUE (‘The
 actual item value here.’)

Because the value is wrapped within
single quotation marks, any apostrophes
within the value will break the query. To
prevent that, the replace() method is
applied to the value, globally replacing
any occurrence of a single apostrophe
with two apostrophes. This is how you
escape the apostrophe to make it usable
in a query.

If you haven’t used regular expressions
before, this code might not mean much
to you. The slashes mark the beginning
and end of the pattern being matched.
The pattern here is just a single apostro-
phe. The g after the second slash means
that a global replace should be made (i.e.,
every apostrophe should be replaced, not
just the first one encountered).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

217

11.	 Within the body of the page, add a text
input and a button:

<input type=”text” id=”item” />
 <button id=”btnAddItem”
 onclick=”addItem()”>Add Item
 </button><hr />

The text input needs to have an id of
item, matching the code in addItem().
The button can have any name but
needs to call the addItem() function
when clicked.

I’ve also add a small section of CSS
(see the script), just to make things
a bit neater.

12.	 Save, test, debug, and run the completed
application (Figures 11.6 and 11.7).

	Tips

n	 To retrieve the value of the automatically
incremented primary key, you would do
this in this example’s insertResult()
function:

var result = insert.getResult();

var pk = result.lastInsertRowID;

n	 SQLite does not support the syntax
for inserting multiple records using
one query:

INSERT INTO todo (item) VALUES
 (‘Something’), (‘Something Else’),
 (‘A 3rd Thing’)

This is possible within the popular
MySQL database but is not part of the
SQL standard.

In
sertin

g
 R

eco
rds

Figure 11.6 To add an item to the to-do list, enter
the text in the box, and then click the button.

Figure 11.7 The application reports
on the results.

  8.	 Define and run the INSERT query:

insert.text = “INSERT INTO todo
 (item) VALUES (‘” + item + “’)”;

insert.execute();

Step 7 shows the composed query with
the value in place. With respect to the
table, the id column doesn’t need to be
provided with a value, because it will be
automatically assigned. The same goes
for added, which will automatically be
assigned the current timestamp. The
fourth column also doesn’t need a value
because it will be null until the task is
actually done.

  9.	 Complete the addItem() function:

	 } // End of item.length IF.

} // End of addItem() function.

10.	 Define the insertResult() function:

function insertResult() {

	 alert (‘The item has been added.’);

	 document.getElementById(‘item’).
	 value = null;

}

This function will be called if the insert
statement successfully runs on the data-
base. It should notify the user that the
item was added and clear the current
value from the text input.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

218

Handling Errors
A key difference between average and profes-
sional applications is how errors are handled.
In a poorly written program, no consideration
is made for errors, so it seems as if the expec-
tation is they’ll never occur. A complete pro-
gram addresses every possible error, no matter
how much extra code it takes. When interact-
ing with databases, errors are rather common
(particularly during the development stage),
so you should account for them.

To properly handle errors that occur, add an
event listener to every SQL-related object:

var conn = new air.SQLConnection();
conn.addEventListener(air.SQLErrorEvent.
 ERROR, dbError);
var sql = new air.SQLStatement();
sql.addEventListener(air.SQLErrorEvent.
 ERROR, dbError);

The error to be watched for is
SQLErrorEvent.ERROR. Whether the error
occurred during the connection pro-
cess or while executing a command, an
SQLErrorEvent.Error will be raised. (This is
true when performing asynchronous com-
munications; synchronous errors are found
within SQLError not SQLErrorEvent). Notice
that you’ll need to add event listeners to
both the SQLConnection and SQLStatement
objects, but it’s acceptable if they both
invoke the same function.

The error handling function should take an
event as its argument. Within the function,
the error message can be found in the event’s
errorName.error.message property. More
details will be in its errorName.error.details
property. An associated error ID will be in
errorName.error.errorID. The errorName.
error.operation property reflects what was

H
an

dl
in

g
 E

rr
o

rs

happening when the error occurred. With
this in mind, to simply report when an error
occurred, you would use:

function dbError(e) {
	 alert(‘The following error occurred: ‘
	  + e.error.message);
}

Let’s apply this to the application so that
any errors that occur will be handled in
some way. As a reminder, Chapter 12,
“Database Techniques,” has a section
devoted to debugging applications that
interact with an SQLite database.

To handle errors:

1.	 Open Script 11.3 in your text editor or
IDE, if it is not already.

2.	 Within the first anonymous function, add
two more event listeners (Script 11.4):

conn.addEventListener(air.
 SQLErrorEvent.ERROR, dbError);

insert.addEventListener(air.
 SQLErrorEvent.ERROR, dbError);

3.	 Define the dbError() function:

function dbError(e) {

	 alert(“The following error
	  occurred: “ + e.error.message +
	  “\nDetails: “ + e.error.details
	  + “\nOperation: “ + e.error.
	  operation);

}

This function will report the error mes-
sage in some detail to the end user. To
do so, some literal text plus the values
of e.error.message, e.error.details,
and e.error.operation will be alerted.
Newlines (\n) are added so that the mes-
sage is printed over several lines.

continues page 220

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

219

H
an

dlin
g

 Erro
rs

Script 11.4 For a more professional result, the application has been updated to handle (at least, acknowledge) any
errors that might occur. (I’ve also cleaned out some comments and blank lines in the existing code, just to tighten
up the length of the script.)

1	 <html><!-- Script 11.4 -->
2	 <head>
3	 <title>To-Do List</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var conn = new air.SQLConnection();
9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch11.db’);
10	 var insert = new air.SQLStatement();
11	
12	 // Do the prep work after the application has loaded:
13	 window.onload = function() {
14		 document.getElementById(‘btnAddItem’).disabled = true;
15	
16		 // Add the event handlers:
17		 conn.addEventListener(air.SQLEvent.OPEN, dbOpen);
18		 conn.addEventListener(air.SQLErrorEvent.ERROR, dbError);
19		 insert.addEventListener(air.SQLEvent.RESULT, insertResult);
20		 insert.addEventListener(air.SQLErrorEvent.ERROR, dbError);
21	
22		 conn.openAsync(db, air.SQLMode.UPDATE);
23	 } // End of anonymous function.
24	
25	 // When the application has closed, close the database connection:
26	 window.onbeforeunload = function() {
27		 conn.close();
28	 }
29	
30	 // Function called when the database is opened.
31	 function dbOpen() {
32		 insert.sqlConnection = conn;
33		 document.getElementById(‘btnAddItem’).disabled = false;
34	 } // End of dbOpen() function.
35	
36	 // Function for reporting errors.
37	 function dbError(e) {
38		 alert(“The following error occurred: “ + e.error.message + “\nDetails: “ + e.error.details +
		 “\nOperation: “ + e.error.operation);
39	 }
40	
41	 // Function called when the user clicks ‘Add Item’.
42	 function addItem() {
43		 var item = document.getElementById(‘item’).value;
44		 if (item.length > 0) {
45			 item = item.replace(/’/g, “’’”);
46			 insert.text = “INSERT INTO todo (item) VALUES (‘” + item + “’)”;
47			 insert.execute();
48		 } // End of item.length IF.
49	 } // End of addItem() function.
50	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

220

You wouldn’t want to do this with a real
application (with few exceptions, show-
ing end users detailed and complex error
messages isn’t appropriate), but it will be
useful debugging information for you as
you write and test the application.

4.	 Save, test, debug, and run the completed
application.

To see the effect of this updated
example, you’ll need to already have
a problem, or introduce one here
(Figures 11.8 and 11.9).

	Tips

n	 Another very useful piece of informa-
tion for debugging purposes is the value
of the exact query being executed. You
can display this value by referring to
the SQLStatement’s text attribute (e.g.,
insert.text).

n	 To handle the errors that occur while
performing synchronous communica-
tions, use a try…catch or try…catch…
finally structure.

H
an

dl
in

g
 E

rr
o

rs

Figure 11.8 The application spits out this error mes-
sage if there is a problem connecting to the database.
(I removed the database file to make this error happen.)

Figure 11.9 If the application didn’t safeguard against
using apostrophes in values, the task Buy O’Malley
Wedding Gift would create this error.

Script 11.4 continued

51	 // Function called when an INSERT works.
52	 function insertResult() {
53		 alert (‘The item has been added.’);
54		 document.getElementById(‘item’).value =
		 null;
55	 }
56	
57	 </script>
58	
59	 <style>
60	 body {margin:10px;}
61	 p {font-size: 16px;}
62	 </style>
63	
64	 </head>
65	
66	 <body>
67	
68	 <h3>To-Do List</h3>
69	
70	 <input type=”text” id=”item” />
	 <button id=”btnAddItem” onclick=”addItem()”>
	 Add Item</button><hr />
71	
72	 </body>
73	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

221

You should then confirm that the results
aren’t empty (which would be the case if
the SELECT query ran successfully but didn’t
return any matches):

if (results.data != null) {

Assuming that the result set isn’t empty, you
can access every returned row using a loop:

for (var i = 0; i < results.data.length;
 i++) {
	 // Do something with results.data[i].
}

In this loop, results.data is an array, where
each element of that array represents one
returned row. Within each element or row
(results.data[i]), you have another array:
the columns selected. Using the testing
table example, where the table has two
columns—id and something, you would
therefore refer to results.data[i].id and
results.data[i].something.

To apply this knowledge to the to-do list
application, the list of existing events will
be pulled from the database and displayed
(Figure 11.10).

S
electin

g
 R

eco
rds

Selecting Records
The next logical step when working with a
database is to retrieve stored data from it.
This is accomplished using a SELECT query,
and it begins just like the CREATE and INSERT
queries. Assuming you’ve already created the
SQLConnection and File objects (conn and
db, respectively), then added the event listen-
ers and opened the database, the next steps
would be:

var sql = new air.SQLStatement();
sql.sqlConnection = conn;
sql.addEventListener(air.SQLErrorEvent.
 ERROR, dbError);
sql.addEventListener(air.SQLEvent.
 RESULT, sqlResult);
sql.text = ‘SELECT * FROM testing’;
sql.execute();

Select queries differ from INSERT (and
CREATE, UPDATE, and DELETE) queries in that
they return a result set—the stored data that
matched the query—that must be handled.
That process would be accomplished within
the function that handles the air.SQLEvent.
RESULT event. To start, fetch the results:

var results = sql.getResult();

Figure 11.10 The list of to-do items is dis-
played in the bottom section of the applica-
tion window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

222

To select records:

1.	 Open Script 11.4 in your text editor or
IDE, if it is not already.

2.	 Create a second SQLStatement object
(Script 11.5):

var select = new air.SQLStatement();

Although you could reuse the insert
SQLStatement object for the SELECT
query, it’s actually better if you don’t
(see the debugging tips at the end of the
next chapter). So a new SQLStatement is
declared and is called select.

S
el

ec
ti

n
g

 R
ec

o
rd

s

3.	 Add two new event listeners:

select.addEventListener(air.
 SQLEvent.RESULT, listItems);

select.addEventListener(air.
 SQLErrorEvent.ERROR, dbError);

The select object will use the same
error handling function as the other two
objects but have its own SQLEvent.RESULT
function called listItems.

4.	 Within the dbOpen() function, associate
the new SQLStatement object with conn,
and then call the showItems() function:

select.sqlConnection = conn;

showItems();

continues on page 225

Script 11.5 Now the application will display the current to-do list by selecting those records from the database.

1	 <html><!-- Script 11.5 -->
2	 <head>
3	 <title>To-Do List</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var conn = new air.SQLConnection();
9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch11.db’);
10	 var insert = new air.SQLStatement();
11	 var select = new air.SQLStatement();
12	
13	 // Do the prep work after the application has loaded:
14	 window.onload = function() {
15		 document.getElementById(‘btnAddItem’).disabled = true;
16	
17		 // Add the event handlers:
18		 conn.addEventListener(air.SQLEvent.OPEN, dbOpen);
19		 conn.addEventListener(air.SQLErrorEvent.ERROR, dbError);
20		 insert.addEventListener(air.SQLEvent.RESULT, insertResult);
21		 insert.addEventListener(air.SQLErrorEvent.ERROR, dbError);
22	
23		 select.addEventListener(air.SQLEvent.RESULT, listItems);
24		 select.addEventListener(air.SQLErrorEvent.ERROR, dbError);
25	
26		 conn.openAsync(db, air.SQLMode.UPDATE);
27	 } // End of anonymous function.
28	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

223

S
electin

g
 R

eco
rds

29	 // When the application has closed, close the database connection:
30	 window.onbeforeunload = function() {
31		 conn.close();
32	 }
33	
34	 // Function called when the database is opened.
35	 function dbOpen() {
36	
37		 // Associate the connection with the SQLStatements:
38		 insert.sqlConnection = conn;
39		 select.sqlConnection = conn;
40	
41		 // Show the current list of items:
42		 showItems();
43	
44		 document.getElementById(‘btnAddItem’).disabled = false;
45	 } // End of dbOpen() function.
46	
47	 // Function for reporting errors.
48	 function dbError(e) {
49		 alert(“The following error occurred: “ + e.error.message + “\nDetails: “ + e.error.details +
		 “\nOperation: “ + e.error.operation);
50	 }
51	
52	 // Function called when the user clicks ‘Add Item’.
53	 function addItem() {
54		 var item = document.getElementById(‘item’).value;
55		 if (item.length > 0) {
56			 item = item.replace(/’/g, “’’”);
57			 insert.text = “INSERT INTO todo (item) VALUES (‘” + item + “’)”;
58			 insert.execute();
59		 } // End of item.length IF.
60	 } // End of addItem() function.
61	
62	 // Function called when an INSERT works.
63	 function insertResult() {
64		 alert (‘The item has been added.’);
65		 document.getElementById(‘item’).value = null;
66	
67		 // Update the list:
68		 showItems();
69	
70	 } // End of insertResult() function.
71	
72	 // Function that selects all the items.
73	 function showItems() {
74		 select.text = ‘SELECT id, item FROM todo ORDER BY added ASC’;
75		 select.execute();
76	 } // End of showItems() function.
77	
78	 // Function that adds the items to the page.
79	 function listItems() {
80	

(script continues on next page)

Script 11.5 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

224

S
el

ec
ti

n
g

 R
ec

o
rd

s

81		 // If the list already exists, remove it:
82		 if (document.getElementById(‘list’)) {
83			 document.body.removeChild(document.getElementById(‘list’));
84		 }
85	
86		 // Create a DIV:
87		 var div = document.createElement(‘div’);
88		 div.setAttribute(‘id’, ‘list’);
89	
90		 // Variable used to add elements:
91		 var p = null;
92	
93		 // Get the results of the query:
94		 var results = select.getResult();
95		 if (results.data != null) { // Some records returned!
96	
97			 // Loop through the results:
98			 for (var i = 0; i < results.data.length; i++) {
99	
100				 p = document.createElement(‘p’);
101	
102				 // Show the item:
103				 p.innerText = results.data[i].item;
104	
105				 // Add to the DIV:
106				 div.appendChild(p);
107	
108			 } // End of FOR loop.
109	
110		 } else { // No records returned!
111			 div.innerText = ‘There are currently no to-do items.’;
112		 }
113	
114		 // Add the DIV to the page:
115		 document.body.appendChild(div);
116	
117	 } // End of listItems() function.
118	
119	 </script>
120	
121	 <style>
122	 body {margin:10px;}
123	 p {font-size: 16px;}
124	 </style>
125	
126	 </head>
127	
128	 <body>
129	
130	 <h3>To-Do List</h3>
131	
132	 <input type=”text” id=”item” /> <button id=”btnAddItem” onclick=”addItem()”>Add Item</button><hr />
133	
134	 </body>
135	 </html>

Script 11.5 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

225

result. Its role is to fetch those results and
display them. Doing that requires adding
elements to the Document Object Model
(DOM). Every item will be placed within
a paragraph that’s part of a DIV whose id
attribute will have a value of list.

This function starts by checking if such
an element already exists. If so, it should
be removed. This would be the case after
a user has added another item, at which
time the list needs to be updated (i.e.,
removed and re-created). This function
then starts the process of creating the
necessary elements and variables.

7.	 Fetch and validate the query results:

var results = select.getResult();

if (results.data != null) {

	 for (var i = 0; i < results.data.
	  length; i++) {

First, the results are fetched by calling the
getResult() method of the SQLStatement
object. Second, a check ensures that the
results aren’t empty, meaning that some
records were returned. Third, a for loop
is defined that will be used to access every
returned record.

8.	 Within the for loop, add the item to
the page:

p = document.createElement(‘p’);

p.innerText = results.data[i].item;

div.appendChild(p);

First, a new item of type paragraph is cre-
ated. Then its innerText attribute—the
value between the opening and closing
tags—is set to the value of the item col-
umn in the current row.

Finally, the paragraph is added to the DIV.

continues on next page

When using asynchronous functions and
event listeners, the logic of an application
can become muddled. In step 3 it was
established that the listItems() func-
tion will be called when the SELECT query
returns a positive result. But the query still
needs to be defined and executed. That
will take place within the showItems()
function. Essentially, it starts the process
of showing the list of to-do items, so it’s
called within the doOpen() function.

5.	 Define the showItems() function:

function showItems() {

	 select.text = ‘SELECT id, item
	  FROM todo ORDER BY added ASC’;

	 select.execute();

}

This function does two things: It defines
the query to be run and then calls the
execute() method. The function selects
two values from each row in the todo
table in the order in which they were
added.

6.	 Begin defining the listItems() function:

function listItems() {

	 if (document.
	  getElementById(‘list’)) {

		 document.body.
		  removeChild(document.
		  getElementById(‘list’));

	 }

	 var div = document.
	  createElement(‘div’);

	 div.setAttribute(‘id’, ‘list’);

	 var p = null;

As stated, this function will be called
once the SELECT query has returned a

S
electin

g
 R

eco
rds

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

226

  9.	 Complete the for loop and the if
conditional:

	 } // End of FOR loop.	

} else { // No records returned!

	 div.innerText = ‘There are
	 currently no to-do items.’;

}

If the user doesn’t have any current
to-do items, a message is added to the
DIV instead of a series of paragraphs
(Figure 11.11).

10.	 Complete the listItems() function:

	 document.body.appendChild(div);

} // End of listItems() function.

The function just needs to add the DIV
to the page.

11.	 Call the showItems() function within
the insertResult() function:

showItems();

The showItems() function, which starts
the process of displaying the to-do list, is
called by the anonymous function that
runs after the page has loaded. But it

S
el

ec
ti

n
g

 R
ec

o
rd

s

Figure 11.11 If the user doesn’t have any
tasks to be done (which is to say that the todo
table is empty), the user will see a message at
the bottom of the window.

needs to be called again here after a user
has added a new item. If that step wasn’t
taken, the just-added task wouldn’t
show in the list until the user reran the
application (and that just won’t do).

12.	 Save, test, debug, and run the completed
application.

	Tips

n	 If you have an application that only needs
to select records from a database and will
never alter its contents (via updates or
deletions), you can open the database in
air.SQLMode.READ mode.

n	 There is a series of SQL classes and func-
tionality defined in Adobe AIR for access-
ing a database’s schema. The schema
represents information about a database:
what tables it contains, what columns are
in those tables, and so forth. One possible
use for this information would be if you
wanted to create an Adobe AIR applica-
tion for managing SQLite databases. See
the AIR documentation for details on
these classes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

227

Updating and Deleting
Records
Thus far you’ve learned how to execute
CREATE, INSERT, and SELECT queries. These
are the most important three, but two more
still need to be covered: UPDATE and DELETE.
Both are executed just like every other query
but handling the results is much more like
an INSERT than a SELECT, because no records
will be returned by them.

Code that both updates and deletes records
in a table would look like this (without error
handling and creating the requisite user-
defined functions):

var conn = new air.SQLConnection();
var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘something.db’);
conn.addEventListener(air.SQLEvent.OPEN,
 dbOpen);
conn.openAsync(db, air.SQLMode.UPDATE);
var update = new air.SQLStatement();
update.sqlConnection = conn;
var delete = new air.SQLStatement();
delete.sqlConnection = conn;
update.addEventListener(air.SQLEvent.
 RESULT, updateResult);
delete.addEventListener(air.SQLEvent.
 RESULT, deleteResult);
update.text = ‘UPDATE testing SET
 something=”new value” WHERE id=23’;
update.execute();
delete.text = ‘DELETE FROM testing WHERE
 id=7482’;
delete.execute();

With this in mind, the application will be
expanded one last time, providing the user a
check box to indicate if a task is completed
or not and the ability to delete a task by
clicking on its name (Figure 11.12).

U
pdatin

g
 an

d D
eletin

g
 R

eco
rds

Figure 11.12 Another look at the complete application
(similar to what’s shown on Mac OS X in Figure 11.5).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

228

To update and delete records:

1.	 Open Script 11.5 in your text editor or
IDE, if it is not already.

2.	 Add two more SQLStatement objects
(Script 11.6).

var update = new air.SQLStatement();

var del = new air.SQLStatement();

It may seem like overkill for this
application to contain four different
SQLStatement objects (one for each query
type), but it really is best to do it this way.
The result will be better performance and
a less likelihood of bugs.

3.	 Within the first anonymous function, add
event listeners for the new objects:

update.addEventListener(air.
 SQLErrorEvent.ERROR, dbError);

del.addEventListener(air.SQLEvent.
 RESULT, deleteResult);

del.addEventListener(air.
 SQLErrorEvent.ERROR, dbError);

Both objects will have error event listen-
ers but only the delete object gets a
result event listener. That’s because the
update will be triggered by the user click-
ing the check box (see Figure 11.12), so
an effect of the user’s action (i.e., the box
being marked checked or unchecked) will
already be apparent to the user.

4.	 Within the dbOpen() method, associate
the new objects with the connection:

update.sqlConnection = conn;

del.sqlConnection = conn;

5.	 Within the showItems() function, change
the SELECT query so that it also retrieves
the completed value from the database:

select.text = ‘SELECT id, item,
 completed FROM todo ORDER BY
 added ASC’;

U
pd

at
in

g
 a

n
d

D
el

et
in

g
 R

ec
o

rd
s

The check box next to each item (see
Figure 11.12) will indicate if a task has
been completed or not. To know this, the
completed value for each item also must
be fetched from the database.

6.	 Within the listItems() function, declare
two more variables:

var p, c, span = null;

This function will need a bit more work.
Originally, it created a new paragraph for
each item, and then added the paragraph
to the DIV. Now each item needs to have
the item text and a check box as separate
components within the paragraph, so
more elements are needed. The desired
end result is that each item will be added
to the DOM in a format like this:

<p><span id=”#” onclick=
 ”deleteItem();”>Item text.
 <input type=”checkbox”
 id=”#” onclick=”updateItem()”></p>

That’s the target HTML to create, replac-
ing both instances of # with the item’s
actual ID value from the database.

7.	 Remove the existing three lines from the
for loop (see Script 11.5) and start by
adding these lines:

p = document.createElement(‘p’);

span = document.createElement(‘span’);

c = document.createElement(‘input’);

c.setAttribute(‘type’, ‘checkbox’);

Rather than trying to tell you what
changes to make to the existing list-
Items() code, just remove the existing
three lines and start writing the for loop’s
body from scratch. It begins by creating
three elements, making the input ele-
ment a type of checkbox.

continues on page 232

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

229

U
pdatin

g
 an

d D
eletin

g
 R

eco
rds

Script 11.6 By adding check boxes, the user can mark a to-do list item as completed or not. Another addition to the
to-do list management application is the ability to permanently delete any item by clicking its name.

1	 <html><!-- Script 11.6 -->
2	 <head>
3	 <title>To-Do List</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var conn = new air.SQLConnection();
9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch11.db’);
10	 var insert = new air.SQLStatement();
11	 var select = new air.SQLStatement();
12	 var update = new air.SQLStatement();
13	 var del = new air.SQLStatement();
14	
15	 // Do the prep work after the application has loaded:
16	 window.onload = function() {
17		 document.getElementById(‘btnAddItem’).disabled = true;
18	
19		 // Add the event handlers:
20		 conn.addEventListener(air.SQLEvent.OPEN, dbOpen);
21		 conn.addEventListener(air.SQLErrorEvent.ERROR, dbError);
22		 insert.addEventListener(air.SQLEvent.RESULT, insertResult);
23		 insert.addEventListener(air.SQLErrorEvent.ERROR, dbError);
24		 select.addEventListener(air.SQLEvent.RESULT, listItems);
25		 select.addEventListener(air.SQLErrorEvent.ERROR, dbError);
26	
27		 update.addEventListener(air.SQLErrorEvent.ERROR, dbError);
28	
29		 del.addEventListener(air.SQLEvent.RESULT, deleteResult);
30		 del.addEventListener(air.SQLErrorEvent.ERROR, dbError);
31	
32		 conn.openAsync(db, air.SQLMode.UPDATE);
33	 } // End of anonymous function.
34	
35	 // When the application has closed, close the database connection:
36	 window.onbeforeunload = function() {
37		 conn.close();
38	 }
39	
40	 // Function called when the database is opened.
41	 function dbOpen() {
42	
43		 // Associate the connection with the SQLStatements:
44		 insert.sqlConnection = conn;
45		 select.sqlConnection = conn;
46		 update.sqlConnection = conn;
47		 del.sqlConnection = conn;
48	
49		 showItems();
50		 document.getElementById(‘btnAddItem’).disabled = false;
51	 } // End of dbOpen() function.
52	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

230

U
pd

at
in

g
 a

n
d

D
el

et
in

g
 R

ec
o

rd
s

53	 // Function for reporting errors.
54	 function dbError(e) {
55		 alert(“The following error occurred: “ + e.error.message + “\nDetails: “ + e.error.details +
		 “\nOperation: “ + e.error.operation);
56	 }
57	
58	 // Function called when the user clicks ‘Add Item’.
59	 function addItem() {
60		 var item = document.getElementById(‘item’).value;
61		 if (item.length > 0) {
62			 item = item.replace(/’/g, “’’”);
63			 insert.text = “INSERT INTO todo (item) VALUES (‘” + item + “’)”;
64			 insert.execute();
65			 showItems();
66		 } // End of item.length IF.
67	 } // End of addItem() function.
68	
69	 // Function called when an INSERT works.
70	 function insertResult() {
71		 alert (‘The item has been added.’);
72		 document.getElementById(‘item’).value = null;
73		 showItems();
74	 } // End of insertResult() function.
75	
76	 // Function that selects all the items.
77	 function showItems() {
78		 select.text = ‘SELECT id, item, completed FROM todo ORDER BY added ASC’;
79		 select.execute();
80	 } // End of showItems() function.
81	
82	 // Function that adds the items to the page.
83	 function listItems() {
84	
85		 // If the list already exists, remove it:
86		 if (document.getElementById(‘list’)) {
87			 document.body.removeChild(document.getElementById(‘list’));
88		 }
89	
90		 // Create a DIV:
91		 var div = document.createElement(‘div’);
92		 div.setAttribute(‘id’, ‘list’);
93	
94		 // Variables used to add elements:
95		 var p, c, span = null;
96	
97		 // Get the results of the query:
98		 var results = select.getResult();
99		 if (results.data != null) { // Some records returned!
100			 // Loop through the results:
101			 for (var i = 0; i < results.data.length; i++) {
102	
103				 // Create the elements:
104				 p = document.createElement(‘p’);
105				 span = document.createElement(‘span’);
106				 c = document.createElement(‘input’);
107				 c.setAttribute(‘type’, ‘checkbox’);
108	

(script continues on next page)

Script 11.6 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

231

U
pdatin

g
 an

d D
eletin

g
 R

eco
rds

109				 // Mark completed items as checked:
110				 if (results.data[i].completed != null) {
111					 c.setAttribute(‘checked’, ‘checked’);
112				 }
113	
114				 // Each ID attribute is its database ID:
115				 c.setAttribute(‘id’, results.data[i].id);
116				 span.setAttribute(‘id’, results.data[i].id);
117	
118				 // Show the item:
119				 span.innerText = results.data[i].item;
120	
121				 // Add event listeners:
122				 c.addEventListener(‘click’, updateItem, false);
123				 span.addEventListener(‘click’, deleteItem, false);
124	
125				 // Add to the DIV:
126				 p.appendChild(span);
127				 p.appendChild(c);
128				 div.appendChild(p);
129	
130			 } // End of FOR loop.
131		 } else { // No records returned!
132			 div.innerText = ‘There are currently no to-do items.’;
133		 }
134		 // Add the DIV to the page:
135		 document.body.appendChild(div);
136	 } // End of listItems() function.
137	
138	 // Function called when a DELETE works.
139	 function deleteResult() {
140		 alert (‘The item has been deleted.’);
141		 showItems();
142	 } // End of deleteResult() function.
143	
144	 // Function for deleting items.
145	 function deleteItem(which) {
146	
147		 // Get the item’s info:
148		 var id = which.target.id;
149		 var item = which.target.innerText;
150	
151		 // Confirm with the user prior to deleting:
152		 if (confirm(‘Delete “’ + item + ‘”?’)) {
153	
154			 del.text = ‘DELETE FROM todo WHERE id=’+ id;
155			 del.execute();
156	
157		 } // End of confirm IF.
158	
159	 } // End of deleteItem() function.
160	
161	 // Function for marking items as completed.
162	 function updateItem(which) {
163	

(script continues on next page)

Script 11.6 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

232

  8.	 If the item is complete, check the box:

if (results.data[i].completed
 != null) {

	 c.setAttribute(‘checked’,
	 ‘checked’);

}

The results.data[i].completed vari-
able refers to the returned completed
value from the database for the currently
accessed item. This column will either
contain a date/time value or null. If
it’s not null, the box should be checked,
indicating that the user had previously
marked the task as completed.

  9.	 Add id attributes to the span and
check box, and then add the item
text to the span.

c.setAttribute(‘id’, results.
 data[i].id);

span.setAttribute(‘id’, results.
 data[i].id);

span.innerText = results.data[i].
 item;

The span and the check box will be the
elements that the user clicks on to make
something happen: delete the item and
mark it as completed, respectively. For
this reason, each of these elements on
the page needs to have an id attribute
whose value matches the item’s database
ID. That’s what the first two lines do.

10.	 Add event listeners to the span and the
check box:

c.addEventListener(‘click’,
 updateItem, false);

span.addEventListener(‘click’,
 deleteItem, false);

Script 11.6 continued

164		 // Get the item’s ID:
165		 var id = which.target.id;
166	
167		 // Make the query:
168		 update.text = ‘UPDATE todo SET
		 completed=’;
169		 if (which.target.checked) {
170			 update.text += ‘CURRENT_TIMESTAMP’;
171		 } else {
172			 update.text += ‘NULL’;
173		 }
174		 update.text += ‘ WHERE id=’+ id;
175	
176		 update.execute();
177	
178	 } // End of updateItem() function.
179	
180	 </script>
181	
182	 <style>
183	 body {margin:10px;}
184	 p {font-size: 16px;}
185	 </style>
186	
187	 </head>
188	
189	 <body>
190	
191	 <h3>To-Do List</h3>
192	
193	 <input type=”text” id=”item” />
	 <button id=”btnAddItem” onclick=”addItem()”>
	 Add Item</button><hr />
194	 <p>Check the box to mark an item as
	 completed. Click the item’s name to
	 delete it permanently.</p>
195	
196	 </body>
197	 </html>

U
pd

at
in

g
 a

n
d

D
el

et
in

g
 R

ec
o

rd
s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with Databases

233

This function will be called when the
user clicks on a task’s name in the list.
At that time, this function will be passed
an event, which I’m assigning to a vari-
able called which.

The function needs to run a DELETE
query on the table using the task’s
primary key in a WHERE clause. To get
that value for the clicked on item, refer
to which.target.id. The which.target
part refers to the object that was the
recipient of the action (the clicking).
Its id attribute represents the associ-
ated database ID. The delete alert will
confirm, by name, that the user wants
to delete the task (Figure 11.13). To do
that, the item’s innerText value, which
is the actual task, is needed.

14.	 Complete the deleteItem() function:

	 if (confirm(‘Delete “’ + item
	 + ‘”?’)) {

		 del.text = ‘DELETE FROM todo
		  WHERE id=’+ id;

		 del.execute();

	 } // End of confirm IF.

} // End of deleteItem() function.

The confirmation prompt (see Figure
11.13) is a nice little safety check. Then
the query is defined and executed.

15.	 Begin the updateItem() function:

function updateItem(which) {

	 var id = which.target.id;

	 update.text = ‘UPDATE todo SET
	 completed=’;

This function is very similar to
deleteItem(). It first determines
the id value of the item that was
checked, and then it defines and
runs an UPDATE query on the database.

continues on next page

U
pdatin

g
 an

d D
eletin

g
 R

eco
rds

If this application performed synchro-
nous communications with SQLite, I
would simply add onclick attributes to
both items, like so:

c.setAttribute(‘onclick’,
 ‘updateItem(‘ + results.data[i].
 id + ‘);’);

However, because the program performs
asynchronous communication, I must
formally add JavaScript event listeners
to the objects using this code.

11.	 Add the items to the DIV:

p.appendChild(span);

p.appendChild(c);

div.appendChild(p);

12.	 Create the deleteResult() function:

function deleteResult() {

	 alert (‘The item has been
	 deleted.’);

	 showItems();

}

This function will be called when the
delete object returns a positive result. It
should alert the user that the item was
deleted, and then refresh the list by call-
ing showItems().

13.	 Begin the deleteItem() function:

function deleteItem(which) {

	 var id = which.target.id;

	 var item = which.target.innerText;

Figure 11.13 The act of deleting
a task is confirmed before being
executed on the database.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11

234

16.	 Complete the updateItem() function:

	 if (which.target.checked) {

		 update.text +=
		  ‘CURRENT_TIMESTAMP’;

	 } else {

		 update.text += ‘NULL’;

	 }

	 update.text += ‘ WHERE id=’+ id;

	 update.execute();

} // End of updateItem() function.

This function could be called under
two conditions. In the first, the user
checked a box, meaning that the item
should be marked as completed by set-
ting its completed value in the table to
the current date and time. In the second
condition, the user unchecks a previ-
ously checked box, in which case the
completed value in the table should be
set back to null. The query is therefore
defined based on the current value of
which.target.checked.

U
pd

at
in

g
 a

n
d

D
el

et
in

g
 R

ec
o

rd
s

17.	 Within the body, add some instructions
for the user.

<p>Check the box to mark an item as
 completed. Click the item’s name
 to delete it permanently.</p>

18.	 Save, test, debug, and run the completed
application (Figures 11.14 and 11.15).

	Tips

n	 Technically, the value of the id attribute
in HTML can’t begin with a number. But
that kind of restriction is more applicable
to HTML run in a Web browser that may
be formally validated. But if this choice
bothers you, you could change each value
to item# (where # represents the database
ID value), and then chop off the item part
in the functions to get to the ID.

n	 Clicking on an item’s name to delete
it really isn’t the best or most logical
interface, but I wanted to do something
simple in that regard. Alternatively, you
could create a delete button or image that
when clicked passes the item’s ID to the
deleteItem() function.

Figure 11.14 The result after clicking OK in the confir-
mation prompt (see Figure 11.13 for the prompt and
compare the list with that in Figure 11.12).

Figure 11.15 The house became messy again, so I
unchecked the Clean the House task.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

235

Database
Techniques

12
Chapter 11, “Working with Databases,” covers all the basics for using an SQLite data-
base in your Adobe AIR applications. Every interaction with a database that you’ll
ever perform will use that information. But there are some other concepts and general
techniques that you should also be aware of, and that’s the focus here.

This chapter teaches some new, more advanced ideas, as well as demonstrates a
handful of best practices. To start, you’ll learn how to distribute a database with an
application rather than having the application create it from scratch. The next three
topics—prepared statements, fetching SELECT results in groups, and using transac-
tions—can be used to improve the efficiency and security of your programs. The
chapter concludes with more recommendations for improving performance, as well
as a bunch of tips to aid you in debugging the inevitable database-related glitch.

D
atabase Tech

n
iq

u
es

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

236

Distributing Databases
The second example in the previous chapter
includes the code for creating a new data-
base. Your applications are obviously capable
of doing that, but it actually doesn’t make
much sense to include all that functionality
in an application when the database only
ever needs to be created once. A better solu-
tion is to create the database when you write
the application, package the database with it,
and then have the application copy the data-
base to its final destination when the user
runs the program for the first time. This is
possible with SQLite databases, because the
same database file can be transferred from
one operating system to the next without
complication (another reason for SQLite’s
popularity).

In the next sequence of steps, you’ll learn
how you can distribute databases with the
programs you create. The specific database
to be created will be for banking-like trans-
actions and will be used in the rest of the
examples in this chapter. Before getting into
the steps, I should explain one fact: comput-
ers are tricky when it comes to working with
numbers. As an example, if I stored the value
23.50 in an SQLite column defined as REAL,
and then added 1 to this value, the result
may end up as 24.4999999. Often these little
quirks aren’t a problem, but when dealing
with money, you can’t be too careful. The
solution in this example will be to represent
all dollar amounts (or whatever currency you
want to work worth) in cents. So 23.50 will be
stored as 2350.

To distribute databases:

1.	 Define the SQL commands necessary to
create the database.

Database design is a big but very impor-
tant topic, and I cover it in some of my
other books (you can also find some

D
is

tr
ib

u
ti

n
g

 D
at

ab
as

es

tutorials online by searching for database
design and database normalization).
The following SQL commands are what
I devised for creating the database to be
used throughout the rest of the chapter:

CREATE TABLE accounts (id INTEGER
 PRIMARY KEY AUTOINCREMENT, name
 TEXT NOT NULL, balance INTEGER
 NOT NULL CHECK((typeof(balance) =
 ‘integer’) AND (balance > 0)))

and

CREATE TABLE transfers (id INTEGER
 PRIMARY KEY AUTOINCREMENT, from_id
 INTEGER NOT NULL, to_id INTEGER
 NOT NULL, amount INTEGER
 CHECK((typeof(amount) =
 ‘integer’) AND (amount > 0)))

The first table is the most important: It
contains an ID column (the primary key),
a column to store a person’s name, and
a column to store the person’s account
balance. In a real application, the person’s
name would be divided into two (or
three) columns, but I’m simplifying this a
bit here.

The second table will record the history
of all transactions. For this chapter’s
examples, this means the transfers
between accounts. The accounts table
will always be updated to reflect current
balances, but it’s good to have another
record of what has occurred. This second
table has one column for the transfer ID,
one for the person from whom the money
is coming, and another for the person
to whom the money is going. A fourth
column reflects the amount being trans-
ferred. Fully fleshed out, I would likely
also add a column that stores the date
and time of each transaction.

Note as well that in these two tables I
use constraints for added data integrity.
This topic is discussed in the “Adding
Constraints” sidebar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

237

If you don’t want to go through the steps
of creating the database yourself, you
can download it from this book’s corre-
sponding Web site at www.DMCInsights.
com/air/ (see the Downloads page).

3.	 Copy the database file to the project’s
directory.

For the purposes of this chapter, the
name of the database created in step 2
is ch12.db.

4.	 In your project’s primary HTML file,
begin a new JavaScript function
(Script 12.1):

window.onload = function() {

}

continues on next page

D
istribu

tin
g

 D
atabases

2.	 Create the application’s database on your
own computer.

You can create an SQL database by writ-
ing an AIR application that does it for
you (use Script 11.2 as an example, but
you’ll need to assign each CREATE TABLE
command to an SQLStatement object, and
then execute each). You can also create
the database using the command-line
sqlite3 client that comes with the soft-
ware (if you’ve formally installed SQLite
on your computer). A third option is to
download and use one of the many third-
party applications that exist for creating
and managing SQLite databases.

Script 12.1 This script simply demonstrates the code that you would use to distribute a database with an application.

1	 <html><!-- Script 12.1 -->

2	 <head>

3	 <title>Chapter 12</title>

4	 <script type=”text/javascript” src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Function to be called when the application loads.

8	 window.onload = function() {

9	

10		 // Database file:

11		 var db = air.File.applicationStorageDirectory.resolvePath(‘ch12.db’);

12	

13		 // Copy the database file to the storage

14		 // directory if it’s not already there.

15		 if (!db.exists) {

16			 var original = air.File.applicationDirectory.resolvePath(‘ch12.db’);

17			 original.copyTo(db);

18		 }

19		

20	 }

21	

22	 </script>

23	 </head>

24	 <body>

25	 </body>

26	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

238

The premise of the steps for distribut-
ing databases is that the database file
will be bundled with the application,
so it doesn’t need to be created on the
user’s machine. After the program has
been installed, the database will be in
the application’s directory. That’s not
where you want the database to be when
the application starts writing data to it.
Instead, the database needs to be moved
to the application’s storage directory.
That’s what will happen within this
anonymous function.

5.	 Create a reference to the database file:

var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘ch12.db’);

D
is

tr
ib

u
ti

n
g

 D
at

ab
as

es

Adding Constraints

As explained in Chapter 11, SQLite is very lenient when it comes to working with data types.
Only four types are supported by the database, but you can actually store data of one type, like
a string, in a column of another type, like a real number (with very few exceptions). SQLite
allows you to define columns using more specific data types, like CHAR(10) instead of TEXT, but
SQLite won’t enforce the implied restrictions.

One thing you can do is add constraints to columns when creating the table. Constraints are just
part of a column’s definition that restrict what values can be stored in that column. Although
they’ve been present in SQLite for a while, they haven’t been enforced until version 3.3.0.

One constraint is UNIQUE, which means that no two rows can have the exact same value for
that column or combination of columns. You can also define a column as NOT NULL, meaning
that every row must contain a value for that column. Columns can also be given a DEFAULT value,
which will be used when no value is provided for that column. Finally, as in this chapter’s
example, you can add a CHECK constraint. To do so, follow the column’s type with CHECK,
followed by an expression in parentheses. In this chapter’s two tables, CHECK constraints
ensure that the account balances and transaction amounts are positive integers. To do so,
two clauses are part of the expression, joined by an AND. The first clause—typeof(col) =
‘integer’—specifies that the type of the value being inserted must be an integer. The second
clause—col > 0—simply specifies that the value must be greater than 0. These two checks
will help protect the integrity of the data being stored.

In all cases, if the values used in an INSERT or UPDATE query fail to pass a constraint, the query
won’t take effect and an error will be raised (which will need to be handled by your program).

Every application that uses a database
also needs a File object that refers to it.
As mentioned in step 3, the database that
the running application uses needs to be
in the application’s storage directory and,
in this case, called ch12.db.

6.	 If the file doesn’t exist, copy it from the
application’s directory to the applica-
tion’s storage directory:

if (!db.exists) {

	 var original = air.File.
	  applicationDirectory.
	  resolvePath(‘ch12.db’);

	 original.copyTo(db);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

239

	Tips

n	 Using this method of distributing a data-
base with an application has an added
benefit: If the program has a “reinstall”
or “clear database” functionality, all that
would be necessary would be to replace
the current database (in the application
storage directory) with the distributed
one (from the application directory).

n	 You can create backups of an appli-
cation’s data (if stored in a database)
by simply copying the database file to
another location.

D
istribu

tin
g

 D
atabases

To end up with the database in the
application’s storage directory, when the
program runs, it should check for the
presence of the database file in its final
destination. If the database isn’t found
there, the original should be copied from
the application’s directory.

That’s all there is to it. The rest of the
application can use the database normally.

7.	 Be certain to include the database file
when you package the final application
(Figure 12.1).

Figure 12.1 To distrib-
ute a database with an
application, place it in
your project’s directory,
and then include that file
when building the actual
.air file. Here, using
Dreamweaver CS3 with
the Adobe AIR Extension,
you can see the database
listed in the included files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

240

Using Prepared
Statements
In the INSERT example in the previous chap-
ter, it was noted that an admitted security
hole was present. Namely, the user’s input
was being added to the query without tak-
ing extra precautions. This allows for SQL
injection attacks, where the user purposefully
enters malicious text in an attempt to break,
damage, or simply learn something about the
database. With some database applications,
SQL injection attacks can be prevented by
using an escaping function that sanctifies
the submitted text. That’s not an option with
SQLite, but there is another solution.

Most database applications support pre-
pared statements, and SQLite is no excep-
tion. The premise behind a prepared
statement is that the query to be executed is
defined using placeholders for specific data:

var sql = new air.SQLStatement();
sql.sqlConnection = conn;
sql.text = ‘INSERT INTO testing
 (something) VALUES (?)’;

The question mark represents the actual
value to be used in the query. Note that even
though the value to be used in this particular
case will be a text string, no quotation marks
are placed around the question mark.

The next step is to associate values with the
placeholders. When using question marks,
which is to say unnamed placeholders, assign
values to them by using the SQLStatement’s
parameters attribute. It’s an indexed array,
beginning at 0:

sql.parameters[0] = ‘text to be
 inserted’;

Then execute the query:
sql.execute();

The end result of these steps is the same as lit-
erally executing INSERT INTO testing (some-
thing) VALUES (‘text to be inserted’).

U
si

n
g

 P
re

pa
re

d
St

at
em

en
ts

Instead of using question marks for place-
holders, you can name the parameters,
starting with either a colon or @, followed by
a simple identifier:

sql.text = ‘INSERT INTO users (username,
 email, password) VALUES (@un, @e, @p)’;
sql.parameters[‘@un’] = ‘troutster’;
sql.parameters[‘@e’] = ‘d@example.com’;
sql.parameters[‘@p’] = ‘somepass’;
sql.execute();

Whether you use named or unnamed param-
eters is really up to you. For simple queries, I
prefer to go the unnamed route.

There are two benefits to using prepared
statements. The first is the improved secu-
rity: Data used in a query is separated from
the actual query and aren’t vulnerable to
SQL injection attacks. The second benefit
is performance: The query is sent to the
database and parsed (checked for syntax
and validity) only once. Multiple executions
of the same query with different values will
go more quickly than repeatedly executing
literal queries.

To practice this, let’s create an application
for adding accounts to the database cre-
ated in the previous section of the chapter
(Figure 12.2).

Figure 12.2 This program provides a way to
add new accounts. The data entered here will
be inserted into the database using prepared
statements (see Script 12.2).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

241

2.	 Create an anonymous function that does
the prep work:

window.onload = function() {

	 conn.addEventListener(air.
	  SQLEvent.OPEN, dbOpen);

	 conn.addEventListener(air.
	  SQLErrorEvent.ERROR, dbError);

	 insert.addEventListener(air.
	  SQLEvent.RESULT, insertResult);

	 insert.addEventListener(air.
	  SQLErrorEvent.ERROR, dbError);

	 conn.openAsync(db, air.SQLMode.
	  UPDATE);	

}

After the application has loaded, this
function will be called, performing the
necessary setup (see the previous chapter
for explanations on these lines).

continues on page 243

U
sin

g
 Prepared Statem

en
ts

To use prepared statements:

1.	 In your project’s primary HTML file, cre-
ate the required objects (Script 12.2):

var conn = new air.SQLConnection();

var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘ch12.db’);

var insert = new air.SQLStatement();

This application will use three objects.
The first is of type SQLConnection, which
is required to connect to a database.
The second is of type File, representing
the actual database file. The third is a
SQLStatement object, which will represent
the query to be executed.

Script 12.2 This program uses prepared statements with its INSERT query for improved security and performance.

1	 <html><!-- Script 12.2 -->
2	 <head>
3	 <title>Add an Account</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var conn = new air.SQLConnection();
9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch12.db’);
10	 var insert = new air.SQLStatement();
11	
12	 // Do the prep work after the application has loaded:
13	 window.onload = function() {
14	
15		 // Add the event handlers:
16		 conn.addEventListener(air.SQLEvent.OPEN, dbOpen);
17		 conn.addEventListener(air.SQLErrorEvent.ERROR, dbError);
18		 insert.addEventListener(air.SQLEvent.RESULT, insertResult);
19		 insert.addEventListener(air.SQLErrorEvent.ERROR, dbError);
20	
21		 // Open the database:
22		 conn.openAsync(db, air.SQLMode.UPDATE);
23		
24	 } // End of anonymous function.
25	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

242

U
si

n
g

 P
re

pa
re

d
St

at
em

en
ts

26	 // When the application has closed, close the database connection:
27	 window.onbeforeunload = function() {
28		 conn.close();
29	 }
30	
31	 // Function for reporting errors.
32	 function dbError(e) {
33		 alert(‘An error occurred.’);
34	 }
35	
36	 // Function called when the database is opened.
37	 function dbOpen() {
38		 insert.sqlConnection = conn;			
39	 }
40	
41	 // Function called when the user clicks ‘Add Item’.
42	 function addAccount() {
43	
44		 // Insert the item:
45		 insert.text = ‘INSERT INTO accounts (name, balance) VALUES (?, ?)’;
46		 insert.parameters[0] = document.getElementById(‘name’).value;
47		 insert.parameters[1] = +(document.getElementById(‘dollars’).value + document.
		 getElementById(‘cents’).value);
48		 insert.execute();
49						
50	 } // End of addItem() function.
51	
52	 // Function called when an INSERT works.
53	 function insertResult() {
54	
55		 // Notify the user:
56		 alert (‘The account has been added.’);
57		
58		 // Reset the inputs:
59		 document.getElementById(‘name’).value = null;
60		 document.getElementById(‘dollars’).value = null;
61		 document.getElementById(‘cents’).value = ‘00’;
62		
63	 } // End of the insertResult() function.	
64	
65	 </script>
66	
67	 </head>
68	
69	 <body style=”margin:10px;”>
70	
71	 <h3>Add an Account</h3>
72	
73	 Name: <input type=”text” id=”name”>
Opening Balance: <input type=”text” id=”dollars”
	 size=”6”>.<input type=”text” id=”cents” value=”00” size=”2” maxlength=”2”>
<button onclick=
	 ”addAccount()”>Add Account</button>
74	
75	 </body>
76	 </html>

Script 12.2 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

243

	 insert.parameters[0] = document.
	  getElementById(‘name’).value;

	 insert.parameters[1] = +(document.
	  getElementById(‘dollars’).value
	  + document.getElementById
	  (‘cents’).value);

	 insert.execute();

}

The application contains three text
inputs and a button. When the user clicks
the button, this function will be called. It
defines and executes the query.

The query is first defined as a simple
INSERT, populating two of the three
columns in the accounts table (the id
column will be automatically assigned a
value). Placeholders are used in the query
to represent the values to be used. Then
the values are assigned to the insert.
parameters attribute. Finally, the com-
mand is executed.

For the account balance, the value to be
used will be the cents amount concat-
enated to the dollars amount (so 4390
and 35 become 439035; see the explana-
tion before the “Distributing Databases”
set of steps as to why this is necessary).
Unfortunately, if you were to assign just
that as the parameter value, the query
would fail the constraint check because
the value type would be a string, not an
integer. The solution is to forcibly cast
the value to a number by applying the
unary plus operator to it. This is just a
little trick that guarantees the value will
be a number (alternatively, you could add
0 to the value to achieve the same result,
although that wouldn’t have the sec-
ondary benefit of guaranteeing that the
number is positive).

continues on next page

U
sin

g
 Prepared Statem

en
ts

3.	 Create a second anonymous function:

window.onbeforeunload = function() {

	 conn.close();

}

This anonymous function will be called
right before the application quits. Its sole
purpose is to close the database connec-
tion.

4.	 Create an error handling function:

function dbError(e) {

	 alert(‘An error occurred.’);

}

Per the event listeners added in step 2,
this function will be called when a con-
nection or query error happens. In this
example, not much is done, but see code
in the “Handling Errors” section of the
previous chapter for suggestions as to
what information you could include in
the alert (or see the debugging section at
the end of this chapter).

5.	 Create the dbOpen() function.

function dbOpen() {

	 insert.sqlConnection = conn;

}

Once the database connection is made,
this function will be called. It associates
the connection with the SQLStatement
object. If you want, you could do what
the example in the previous chapter did:
disable the Add Account button in the
anonymous function, and then reenable
it here after the database connection has
been established.

6.	 Define the addAccount() function:

function addAccount() {

	 insert.text = ‘INSERT INTO
	  accounts (name, balance) VALUES
	  (?, ?)’;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

244

To shorten the example, I omitted code
that checks that all three form values
aren’t empty, but you should do that in a
real application. You could also include
JavaScript code that confirms that the
entered balance is a positive integer (which
the database will also check) instead of
forcing it to be, and you could check that
the cents input is two characters long.

7.	 Create the insertResult() function:

function insertResult() {

	 alert (‘The account has been
	  added.’);

	 document.getElementById(‘name’).
	  value = null;

	 document.getElementById(‘dollars’)
	  .value = null;

	 document.getElementById(‘cents’).
	  value = ‘00’;

}

This function will be called when the
INSERT query returns a positive result
(thanks to the event listener created in
step 2). It alerts the user that the account
was added (Figure 12.3), and then resets
the values in the form (Figure 12.4). As
you can also see in Figures 12.2 and 12.4,
the cents input will be given a default
value of 00.

8.	 Within the body of the page, add three
text inputs and a button:

Name: <input type=”text”
 id=”name”>
Opening Balance:
 <input type=”text” id=”dollars”
 size=”6”>.<input type=”text”
 id=”cents” value=”00” size=”2”
 maxlength=”2”>
<button
 onclick=”addAccount()”>Add
 Account</button>

9.	 Save, test, debug, and run the completed
application (Figure 12.5).

U
si

n
g

 P
re

pa
re

d
St

at
em

en
ts

Figure 12.3 If the INSERT query works, the user will
see this alert.

Figure 12.4 After an INSERT query works, the
form is reset (the cents input has a default
value of 00).

Figure 12.5 Attempts to add an account
without a positive balance (which would
also happen if a nonnumber was entered,
as in this figure) will result in an error
because the INSERT query will be rejected
by the constraints on the balance column.

	Tip

n	 The prepared statements discussed here
are also known as inbound parameters:
Placeholders are used to represent values
going into a database. SQLite does not
support outbound named parameters (the
association of values returned by a SELECT
query with variables) like Oracle does.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

245

That command would return the first ten
records matched by the SELECT query. Then
the function associated with the air.Event.
SQLResult event would be called. Within it
you should make sure that some results were
returned and handle those. This process is
the same as using execute() normally:

function selectResult() {
	 var results = sql.getResult();
	 if (results.data != null) {
		 // Handle the results.
	 }

To fetch more of the records matched by
the query, you then call the next() method,
providing it with the maximum number
of records to return. Before doing this, you
should make sure that the application hasn’t
already fetched every returned record. With
both these ideas in mind, the rest of the
selectResult() function would look like this:

	 if (!result.complete) {
		 sql.next(10);
	 }
} // End of selectResult() function.

If there are more records to fetch, the next
ten will be requested, resulting in this func-
tion being called again. Those ten records
will be handled, and then, if the result set
hasn’t been completely fetched, the next ten.
This process will be repeated until all the
records have been returned.

To demonstrate this, let’s create an applica-
tion that retrieves and displays every account
entered into the ch12.db database (Figure
12.6). This will be written as a separate pro-
gram from Script 12.2, but you could easily
apply the knowledge and code demonstrated
in Chapter 11 to put the INSERT and SELECT
functionality within the same application.

Fetch
in

g
 R

eco
rds in

 G
ro

u
ps

Fetching Records
in Groups
In Chapter 11, the SELECT query used
retrieved and displayed every returned
record in one series of actions. If your query
returns a lot of records, that methodology
can lead to some application delays and
choppiness, even when performing asyn-
chronous database communications. As an
alternative, you can fetch the results of a
SELECT query in groups.

The execute() method of the SQLStatement
object takes an optional first argument,
which is the number of records to fetch:

sql.execute(10);

Figure 12.6 The list of every account
stored in the database.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

246

To fetch results in groups:

1.	 In your project’s primary HTML file, cre-
ate the required objects (Script 12.3).

var conn = new air.SQLConnection();

var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘ch12.db’);

var select = new air.SQLStatement();

Fe
tc

h
in

g
 R

ec
o

rd
s

in
 G

ro
u

ps

This program uses the same database
populated by Script 12.2. Keep in mind
that for this to work, both scripts must
have the same application ID value (in
the XML descriptor file) and publisher
ID value (which comes from the certifi-
cate used to sign the .air file; this is not
applicable if you are running the exam-
ples using the adl utility).

Script 12.3 By changing the way the execute() method is called, this application fetches the results of the SELECT
statement in smaller groups.

1	 <html><!-- Script 12.3 -->
2	 <head>
3	 <title>View All Accounts</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var conn = new air.SQLConnection();
9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch12.db’);
10	 var select = new air.SQLStatement();
11	
12	 // Do the prep work after the application has loaded:
13	 window.onload = function() {
14	
15		 // Add the event handlers:
16		 conn.addEventListener(air.SQLEvent.OPEN, dbOpen);
17		 conn.addEventListener(air.SQLErrorEvent.ERROR, dbError);
18		 select.addEventListener(air.SQLEvent.RESULT, listAccounts);
19		 select.addEventListener(air.SQLErrorEvent.ERROR, dbError);
20	
21		 // Open the database:
22		 conn.openAsync(db, air.SQLMode.READ);
23	
24	 } // End of anonymous function.
25	
26	 // When the application has closed, close the database connection:
27	 window.onbeforeunload = function() {
28		 conn.close();
29	 }
30	
31	 // Function for reporting errors.
32	 function dbError(e) {
33		 alert(‘An error occurred.’);
34	 }
35	
36	 // Function called when the database is opened.
37	 function dbOpen() {
38	
39		 // Associate the connection with the SQLStatement:
40		 select.sqlConnection = conn;
41	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

247

Fetch
in

g
 R

eco
rds in

 G
ro

u
ps

Script 12.3 continued

42		 // Get all the accounts:
43		 select.text = ‘SELECT name, balance FROM
		 accounts ORDER BY name ASC’;
44		 select.execute(3);
45	
46	 } // End of dbOpen() function.
47	
48	 // Function that adds the items to the page.
49	 function listAccounts() {
50	
51		 // Variables used to add elements:
52		 var div = document.getElementById(‘list’);
53		 var p, acct = null;
54		
55		 // Get the results of the query:
56		 var results = select.getResult();
57	
58		 if (results.data != null) { // Some
		 records returned!
59		
60			 // Loop through the results:
61			 for (var i = 0; i < results.data.
			 length; i++) {
62			
63				 // Create what should be displayed:
64				 acct = results.data[i].name + ‘ $’
				 + (results.data[i].balance/100);
65			
66				 // Create the elements:
67				 p = document.createElement(‘p’);
68				 p.innerText = acct;
69				
70				 // Add to the DIV:
71				 div.appendChild(p);
72	
73			 } // End of FOR loop.
74			
75			 // Get more if more exist:
76			 if (!results.complete) {
77					 select.next(3);
78			 }
79			
80		 } // End of results.data != null IF.
81	
82	 } // End of listAccounts() function.
83	
84	 </script>
85	
86	 </head>
87	
88	 <body style=”margin:10px;”>
89	
90	 <h3>List of Accounts</h3>
91	
92	 <div id=”list”></div>
93	
94	 </body>
95	 </html>

2.	 Create an anonymous function that does
the prep work:

window.onload = function() {

	 conn.addEventListener(air.
	  SQLEvent.OPEN, dbOpen);

	 conn.addEventListener(air.
	  SQLErrorEvent.ERROR, dbError);

	 select.addEventListener(air.
	  SQLEvent.RESULT, listAccounts);

	 select.addEventListener(air.
	  SQLErrorEvent.ERROR, dbError);

	 conn.openAsync(db, air.SQLMode.
	  READ);

}

This code should be pretty familiar to you
by now. When the SELECT query returns a
positive result, the listAccounts() func-
tion will be called. I’ll also point out that
the database is opened in just read mode,
because that’s all this program will do.

3.	 Create a second anonymous function and
the error handling function:

window.onbeforeunload = function() {

	 conn.close();

}

function dbError(e) {

	 alert(‘An error occurred.’);

}

4.	 Create the dbOpen() function:

function dbOpen() {

	 select.sqlConnection = conn;

	 select.text = ‘SELECT name,
	  balance FROM accounts ORDER BY
	  name ASC’;

	 select.execute(3);

}

continues on next page

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

248

When the database connection is made,
this function will be called. It associates
the connection with the SQLStatement
object, then defines the SELECT query,
and executes it. Notice that I’m having
the execute statement only return a fairly
small number of records (three). This is
because there aren’t that many records in
the database. When you have a more pop-
ulated database, you’ll want to change
this value to 10 or 20 or 30.

5.	 Begin the listAccounts() function:

function listAccounts() {

	 var div = document.
	  getElementById(‘list’);

	 var p, acct = null;

	 var results = select.getResult();

	 if (results.data != null) {

The function begins by getting an asso-
ciation for the place on the page where all
of the accounts will be listed. This will be
within a DIV whose id value is list. To this
DIV, one paragraph will be added for each
record (you could also list the accounts
within a table if you’d rather). Then the
results are fetched and a conditional
makes sure the results are not empty.
That conditional would be false if the
query didn’t return any records.

6.	 Add each account to the page:

for (var i = 0; i < results.data.
 length; i++) {

	 acct = results.data[i].name + ‘ $’
	  + (results.data[i].balance/100);

	 p = document.createElement(‘p’);

	 p.innerText = acct;

	 div.appendChild(p);

}

Fe
tc

h
in

g
 R

ec
o

rd
s

in
 G

ro
u

ps

The loop goes through each fetched
record. Within the loop, the acct vari-
able is assigned the value of the account
holder’s name, plus a space, plus a dollar
sign, plus their balance (divided by 100 to
turn the integer cents value into a deci-
mal dollar value: e.g., 117 to 1.17). Then a
new paragraph element is created, given
the acct value, and appended to the DIV.

7.	 Complete the listAccounts() function:

		 if (!results.complete) {

			 select.next(3);

		 }

	 } // End of results.data != null IF.

} // End of listAccounts() function.

After the for loop, a check needs to be
made to see if there are more results to be
fetched. This can be done by checking the
value of results.complete. If results.
complete is not true, there are more
records to be returned, so select.next()
is called and fetches three more records.

8.	 Within the body of the page, add a DIV
with an id of list:

<div id=”list”></div>

9.	 Save, test, debug, and run the completed
application.

	Tip

n	 One modification you could make to
this and the next example would be to
format the account balances as currency.
This would mean separating thousands
by commas and ensuring that there are
always exactly two numbers after the
decimal point. If you search online using
JavaScript format currency, you’ll find
sample code that does all this.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

249

The other option would be to undo all the
queries by calling the rollback() method:

conn.rollback();

From a programming perspective, using
these functions is really straightforward.
The trick is being able to determine when
it’s appropriate to commit a transaction
and when it should be rolled back. This next
application, which allows a user to transfer
funds from one account to another (Figure
12.7), will demonstrate the logic underlying
transactions. In this particular case, keep in
mind that the transfer involves three steps:

1.	 Updating the “from” account to subtract
the amount being transferred from the
balance.

2.	 Updating the “to” account to add the
amount being transferred to the balance.

3.	 Recording the transaction in the
transfers table.

If any one of these three steps fail, the entire
transaction should be undone.

P
erfo

rm
in

g
 Tran

sactio
n

s

Performing Transactions
Transactions are a different way of executing
database queries. With the standard method
used in this and the previous chapter, a
query is run as soon as its execute() method
is called. More important, its effects are
permanent: There is no way of undoing an
executed query. An alternative method is to
run queries within a transaction. By doing
so, you can create checks that guarantee
everything worked as expected. Then you
can either make the queries permanent or
undo their collective effects, depending on
the overall result.

To use transactions in your Adobe AIR
application, you use three SQLConnection
methods. To start a transaction, call begin():

conn.begin();

From that point onward, every query will
only have a temporary impact until the
commit() method is called:

conn.commit();

Figure 12.7 To transfer funds from one account to another, the accounts are selected
using the pull-down menus, and the transfer amount is entered into the text boxes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

250

To perform transactions:

1.	 In your project’s primary HTML file, cre-
ate the necessary objects (Script 12.4):

var conn = new air.SQLConnection();

var db = air.File.
 applicationStorageDirectory.
 resolvePath(‘ch12.db’);

var select = new air.SQLStatement();

var update = new air.SQLStatement();

var insert = new air.SQLStatement();

P
er

fo
rm

in
g

 T
ra

n
sa

ct
io

n
s

Transferring funds from one account to
another will require one SELECT query
(to get all the account information), one
UPDATE query (to update the balances),
and one INSERT query (to record the
transaction). One SQLStatement object
for each of these is created, plus the
SQLConnection and File objects.

continues on page 253

Script 12.4 This program uses transactions to guarantee that a series of queries works completely. If not, all the
potential effects are undone.

1	 <html><!-- Script 12.4 -->
2	 <head>
3	 <title>Transfer Funds</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var conn = new air.SQLConnection();
9	 var db = air.File.applicationStorageDirectory.resolvePath(‘ch12.db’);
10	 var select = new air.SQLStatement();
11	 var update = new air.SQLStatement();
12	 var insert = new air.SQLStatement();
13	
14	 // Needed global variables:		
15	 var count, amount, to, from = 0;
16	
17	 // Do the prep work after the application has loaded:
18	 window.onload = function() {
19		 conn.addEventListener(air.SQLEvent.OPEN, dbOpen);
20		 conn.addEventListener(air.SQLErrorEvent.ERROR, dbError);
21		 select.addEventListener(air.SQLEvent.RESULT, listAccounts);
22		 select.addEventListener(air.SQLErrorEvent.ERROR, dbError);
23		 update.addEventListener(air.SQLEvent.RESULT, updateResult);
24		 update.addEventListener(air.SQLErrorEvent.ERROR, transactionError);
25		 insert.addEventListener(air.SQLEvent.RESULT, insertResult);
26		 insert.addEventListener(air.SQLErrorEvent.ERROR, transactionError);
27	
28		 conn.openAsync(db, air.SQLMode.UPDATE);
29	 } // End of anonymous function.
30	
31	 // When the application has closed, close the database connection:
32	 window.onbeforeunload = function() {
33		 conn.close();
34	 }
35	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

251

P
erfo

rm
in

g
 Tran

sactio
n

s

36	 // Function for reporting regular errors.
37	 function dbError(e) {
38		 alert(‘An error occurred.’);
39	 }
40	
41	 // Function for reporting transaction errors.
42	 function transactionError(e) {
43	
44		 // Alert the user:
45		 alert(‘The transfer could not be made because an error occurred.’);
46		
47		 // Undo the effects:
48		 conn.rollback();
49		
50		 // Cancel any outstanding queries:
51		 conn.cancel();
52		
53	 } // End of transactionError() function.
54	
55	 // Function called when the database is opened.
56	 function dbOpen() {
57		 select.sqlConnection = conn;
58		 update.sqlConnection = conn;
59		 insert.sqlConnection = conn;
60		 getAccounts();			
61	 } // End of dbOpen() function.
62	
63	 // Function that runs the SELECT query.
64	 function getAccounts() {
65		 select.text = ‘SELECT id, name, balance FROM accounts ORDER BY name ASC’;
66		 select.execute();
67	 }
68	
69	 // Function that adds the items to the page.
70	 function listAccounts() {
71	
72		 // Clear existing values:
73		 removeChildren(‘fromMenu’);
74		 removeChildren(‘toMenu’);
75		
76		 var o, acct = null;
77		 var results = select.getResult();
78		 for (var i = 0; i < results.data.length; i++) {
79			 acct = results.data[i].name + ‘ $’ + (results.data[i].balance/100);
80		
81			 // Create the elements:
82			 o = document.createElement(‘option’);
83			 o.setAttribute(‘value’, results.data[i].id);
84			 o.innerText = acct;
85			 document.getElementById(‘fromMenu’).appendChild(o);
86			 document.getElementById(‘toMenu’).appendChild(o.cloneNode(true));
87			
88		 } // End of FOR loop.
89	 } // End of listAccounts() function.
90	

(script continues on next page)

Script 12.4 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

252

P
er

fo
rm

in
g

 T
ra

n
sa

ct
io

n
s

91	 // Function for clearing nodes.
92	 function removeChildren(which) {
93		 var parent = document.getElementById(which);
94		 while (parent.hasChildNodes()) {
95			 parent.removeChild(parent.lastChild);
96		 }
97	 }
98	
99	 // Function that starts the transfer process.
100	 function transfer() {
101	
102		 // Reset the counter:
103		 count = 0;
104		
105		 // Get the form data:
106		 amount = +(document.getElementById(‘dollars’).value + document.getElementById(‘cents’).value);
107		 to = document.getElementById(‘toMenu’).value;
108		 from = document.getElementById(‘fromMenu’).value;
109		
110		 // Start a transaction:
111		 conn.begin();
112		
113		 // Update the “from” account:
114		 update.text = ‘UPDATE accounts SET balance = balance + ? WHERE id = ?’;
115		 update.parameters[0] = -amount;
116		 update.parameters[1] = from;
117		 update.execute();
118					
119	 } // End of transfer() function.
120	
121	 // Function called when an UPDATE returns a positive result.
122	 function updateResult() {
123	
124		 // Increment the counter:
125		 count++;
126		
127		 // See what stage we’re at:
128		 if (count == 1) { // Run the second update:
129			
130			 update.parameters[0] = amount;
131			 update.parameters[1] = to;
132			 update.execute();
133			
134		 } else if (count == 2) { // Run the insert.
135		
136			 insert.text = ‘INSERT INTO transfers (from_id, to_id, amount) VALUES (?, ?, ?)’;
137			 insert.parameters[0] = from;
138			 insert.parameters[1] = to;
139			 insert.parameters[2] = amount;
140			 insert.execute();
141			
142		 } else { // Problem!
143		

(script continues on next page)

Script 12.4 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

253

2.	 Create the necessary global objects:

var count, amount, to, from = 0;

Because this program will go in and out
of several functions, some global variables
will be necessary. One, count, will be used
to track the success of the transaction.
The other three all represent values used
in the transaction. All four variables are
initially given a value of 0.

3.	 Create an onload anonymous function:

window.onload = function() {

	 conn.addEventListener(air.
	  SQLEvent.OPEN, dbOpen);

	 conn.addEventListener(air.
	  SQLErrorEvent.ERROR, dbError);

	 select.addEventListener(air.
	  SQLEvent.RESULT, listAccounts);

	 select.addEventListener(air.
	  SQLErrorEvent.ERROR, dbError);

	 update.addEventListener(air.
	  SQLEvent.RESULT, updateResult);

	 update.addEventListener(air.
	  SQLErrorEvent.ERROR,
	  transactionError);

	 insert.addEventListener(air.
	  SQLEvent.RESULT, insertResult);

	 insert.addEventListener(air.
	  SQLErrorEvent.ERROR,
	  transactionError);

	 conn.openAsync(db, air.SQLMode.
	  UPDATE);

}

continues on next page

P
erfo

rm
in

g
 Tran

sactio
n

s

Script 12.4 continued

144			 alert(‘The transfer could not be
			 made because an error occurred.’);
145			 conn.rollback();
146			 conn.cancel();
147	
148		 } // End of if-else if.
149		
150	 } // End of updateResult() function.
151			
152	 // Function called when an INSERT works.
153	 function insertResult() {
154	
155		 // Check the count to verify success:
156		 if (count == 2) { // Good!
157			 alert(‘Transfer made!’);
158			 conn.commit();
159			 getAccounts();
160		 } else { // Bad!
161			 alert(‘The transfer could not be
			 made because an error occurred.’);
162			 conn.rollback();
163			 conn.cancel();
164		 }
165	
166	 } // End of insertResult() function.
167	
168	 </script>
169	
170	 </head>
171	
172	 <body style=”margin:10px;”>
173	
174	 <h3>Transfer Funds</h3>
175	
176	 From: <select id=”fromMenu”><option>
	 From Account</option></select> To:
	 <select id=”toMenu”><option>To Account
	 </option></select>
Amount: <input
	 type=”text” id=”dollars” size=”6”>.<input
	 type=”text” id=”cents” value=”00” size=”2”
	 maxlength=”2”>
<button onclick=
	 ”transfer()”>Transfer</button>
177	
178	 </body>
179	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

254

For the most part, this should all be
familiar territory. However, this code uses
two different functions for handling the
errors that might occur. The connection
and SELECT object errors will be handled
by dbError(). The UPDATE and INSERT
objects, both of which will be used in the
transaction, have their errors handled by
transactionError(). That function will
take some extra steps that dbError()
will not.

4.	 Define the onbeforeunload and
dbError() functions:

window.onbeforeunload = function() {

	 conn.close();

}

function dbError(e) {

	 alert(‘An error occurred.’);

}

This second function is the generic error
handling function and is associated with
the conn and select objects.

5.	 Define the transactionError() function:

function transactionError(e) {

	 alert(‘The transfer could not be
	  made because an error occurred.’);

	 conn.rollback();

	 conn.cancel();

}

P
er

fo
rm

in
g

 T
ra

n
sa

ct
io

n
s

If an error occurs during the transaction,
this function will be called. Its duty is to
report the problem to the user (Figure
12.8), and then rollback any changes
made. A call to the cancel() method
cancels any other queries that might be
queued for execution on the database.

6.	 Define the dbOpen() method:

function dbOpen() {

	 select.sqlConnection = conn;

	 update.sqlConnection = conn;

	 insert.sqlConnection = conn;

	 getAccounts();

}

Along with associating the statements
with the connection object, this function
calls getAccounts(), which executes the
SELECT query that populates the pull-
down menus.

7.	 Define the getAccounts() function:

function getAccounts() {

	 select.text = ‘SELECT id, name,
	  balance FROM accounts ORDER BY
	  name ASC’;

	 select.execute();

}

This function defines and executes the
SELECT query. It returns every record in
the accounts table.

Figure 12.8 When an error occurs during the funds transfer transac-
tion, the user will see this error and no permanent account changes
will be made.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

255

Two variables will be needed to create
the pull-down menu options. Those
are declared first. Then the results are
fetched and a loop is written to access
them all (to save space, I’ve omitted the
check to see that results.data is not
equal to null). Within the loop, the acct
variable is assigned a value of the person’s
name, followed by a space, followed by
a dollar sign, followed by the balance
divided by 100. The same thing was done
with the query results in Script 12.3.

10.	 Add each record as a pull-down
menu option:

o = document.
 createElement(‘option’);

o.setAttribute(‘value’, results.
 data[i].id);

o.innerText = acct;

document.getElementById
 (‘fromMenu’).appendChild(o);

document.getElementById(‘toMenu’).
 appendChild(o.cloneNode(true));

Still within the for loop, a new element
of type option is created. It’s assigned
an attribute called value with a value of
the record’s ID. The innerText attribute
of this option will be the acct variable,
which is assigned a value in step 9. The
end result will be this HTML code for
each record in the table:

<option value=”1”>John Doe $23590
 </option>

The element is first added to the “from”
account menu, and then added to the
“to” account menu by appending to that
element a clone of the original object
(Figure 12.9).

continues on next page

P
erfo

rm
in

g
 Tran

sactio
n

s

8.	 Begin defining the listAccounts() table:

function listAccounts() {

	 removeChildren(‘fromMenu’);

	 removeChildren(‘toMenu’);

This function’s purpose is to populate the
two pull-down menus (see Figure 12.7).
That will occur when the program first
loads and after each transfer (so that the
menus reflect the changes). In this sec-
ond situation, the function needs to start
by getting rid of the current options in
both menus. To do so, another function
named removeChildren is called, passing
that function the id value of the element
to be cleared of subelements (this will be
explained more in step 12).

9.	 Retrieve the query results:

var o, acct = null;

var results = select.getResult();

for (var i = 0; i < results.data.
 length; i++) {

	 acct = results.data[i].name + ‘ $’
	  + (results.data[i].balance/100);

Figure 12.9 The dynamically generated
pull-down menu of accounts. Both
menus (see Figure 12.7) will contain
the same options in the same order.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

256

11.	 Complete the listAccounts() function:

	 } // End of FOR loop.

} // End of listAccounts() function.

12.	 Define the removeChildren() function:

function removeChildren(which) {

	 var parent = document.
 getElementById(which);

	 while (parent.hasChildNodes()) {

		 parent.removeChild(parent.
		  lastChild);

	 }

}

This function is called—twice—by
listAccounts(). It’s needed to get rid
of all the existing options in each pull-
down menu. That will be necessary prior
to repopulating the pull-down menus
with the updated values after a transfer.
To clear out the existing options, the
function removes every existing node
(i.e., child) of a given element.

This function is passed the id value of
the element to be cleared of children.
This will be either toMenu or fromMenu.
The function then gets a reference for
the parent element. Then a loop gets rid
of each node, one at a time, for as long as
the parent element has nodes.

13.	 Begin defining the transfer() function:

function transfer() {

	 count = 0;

	 amount = +(document.getElementById
	 (‘dollars’).value + document.
	 getElementById(‘cents’).value);

	 to = document.getElementById
	 (‘toMenu’).value;

	 from = document.getElementById
	 (‘fromMenu’).value;

P
er

fo
rm

in
g

 T
ra

n
sa

ct
io

n
s

The other functions to this point handle
the prep work and error handling; this
one starts the application’s primary
purpose. It will be called when the user
clicks the Transfer button (see Figure
12.7). Within this function, the global
count variable is assigned a value of 0.
This variable will be used to track the
success of the transaction. Then the
three pertinent values—the amount
being transferred, the ID of the user
from whom that amount is coming,
and the ID of the user to whom that
amount is going—are assigned to global
variables. To guarantee that the amount
value is an integer, the unary plus sign
operator is applied to its value (this little
trick is briefly discussed in step 6 of
“Using Prepared Statements”).

14.	 Complete the transfer() function:

	 conn.begin();

	 update.text = ‘UPDATE accounts
	 SET balance = balance + ?
	 WHERE id = ?’;

	 update.parameters[0] = -amount;

	 update.parameters[1] = from;

	 update.execute();

} // End of transfer() function.

As I said, this function begins the trans-
fer process, which means it needs to
begin the transaction by calling begin().
Then the query is defined using pre-
pared statements. Ordinarily, the two
update queries used in this situation
would be:

UPDATE accounts SET balance =
 balance - amount WHERE id = fromID

and

UPDATE accounts SET balance =
 balance + amount WHERE id = toID

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

257

16.	 Add an else if clause to the
updateResult() function:

} else if (count == 2) {

	 insert.text = ‘INSERT INTO
	 transfers (from_id, to_id,
	 amount) VALUES (?, ?, ?)’;

	 insert.parameters[0] = from;

	 insert.parameters[1] = to;

	 insert.parameters[2] = amount;

	 insert.execute();

If count has a value of 2, then both UPDATE
queries worked and it’s time to record the
transaction in the transfers table. This
query also uses prepared statements.

17.	 Complete the updateResult() function:

	 } else { // Problem!

		 alert(‘The transfer could
		  not be made because an error
		  occurred.’);

		 conn.rollback();

		 conn.cancel();

	 } // End of if-else if.

} // End of updateResult() function.

The else clause will only ever be applied
if this function is called but count does
not have a value of 1 or 2. That should
never happen, but just to be safe, if it
does, the transaction is rolled back and
any other queries waiting to be executed
are cancelled (the same as if a database
error occurred during the transaction).

continues on next page

P
erfo

rm
in

g
 Tran

sactio
n

s

However, the performance of the
application will be improved if the query
is the same for both. To make that
possible, the “from” account will have
the negation of the transfer amount
added to that person’s balance (which is
equivalent to just subtracting it).

15.	 Begin defining the updateResult()
function:

function updateResult() {

	 count++;

	 if (count == 1) {

		 update.parameters[0] = amount;

		 update.parameters[1] = to;

		 update.execute();

Per the code in step 3, this function will
be called when an UPDATE query runs
successfully. That should be the case
twice: when the query executed in the
transfer() function works and when
the second update query (executed here)
works. To know which specific update
event just happened, the count variable
will be used in a conditional, so the first
thing this function does is increment
the value of count. After the first UPDATE
query runs, count will have a value of 1,
and this function will know to execute
the second UPDATE query. To do that, the
parameters are assigned new values using
the global variables (you don’t need to
reassign a query to update.text, because
it already has the right value), and then
the execute() method is called.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

258

18.	 Define the insertResult() function:

function insertResult() {

	 if (count == 2) {

		 alert(‘Transfer made!’);

		 conn.commit();

		 getAccounts();

	 } else {

		 alert(‘The transfer could
		  not be made because an error
		  occurred.’);

		 conn.rollback();

		 conn.cancel();

	 }

}

P
er

fo
rm

in
g

 T
ra

n
sa

ct
io

n
s

Figure 12.10 This flowchart shows
how the success or failure of each
query is handled by the application.

Per the code in step 3, this function will
be called when the INSERT query returns
a positive result. If you follow the logic
of this application (Figure 12.10),
this should only be the case after both
UPDATE queries worked, meaning that
count has a value of 2. If that’s the case,
the user will be alerted (Figure 12.11),
the transaction committed, and the
pull-down menus updated (by calling
the getAccounts() function). If you
want, you could also reset the form ele-
ments at this point.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

259

If, for some reason, count does not equal
2, the user will be notified, the transac-
tion rolled back, and any remaining
queries canceled (again, as if a database
error had occurred).

19.	 Within the page body, add the
necessary inputs:

From: <select id=”fromMenu”>
 <option>From Account</option>
 </select> To:<select id=”toMenu”>
 <option>To Account</option>
 </select>
Amount: <input
 type=”text” id=”dollars”
 size=”6”>.<input type=”text”
 id=”cents” value=”00” size=”2”
 maxlength=”2”>
<button
 onclick=”transfer()”>Transfer
 </button>

20.	 Save, test, debug, and run the completed
application.

To see what would happen when a
transfer fails, attempt to transfer out of
one person’s account more money than
is available.

	Tips

n	 You can only perform one transaction
(aka group of queries) at a time.

n	 You can control how the database lock-
ing is handled during a transaction by
passing an argument to the begin()
method. Database locking refers to what
other activities can and cannot be per-
formed while a transaction is in progress.
The various options are defined in the
SQLTransactionLockType class.

P
erfo

rm
in

g
 Tran

sactio
n

s

Figure 12.11 If everything works, the user will see
this result, and the values in the pull-down menus
will be updated.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

260

Improving Performance
In the two chapters in which working with
SQLite is discussed—Chapter 11 and this one,
most of the examples focus on the rudimen-
tary steps: how to execute an INSERT query,
how to retrieve SELECT query results, how to
use prepared statements, and so on. You’ll
also find occasional mention for improving
your application’s performance when it comes
to working with databases, but I’ll go ahead
and list all the best practices I can offer here.

To improve an application’s
performance:

u	 Select only what’s necessary from
a database.

It’s easy and common to use SELECT que-
ries that retrieve every column or poten-
tially every row of a table, even if all that
information will never be used. Always
limit which columns and rows you select.
Doing so thereby restricts how much data
is being transferred back and forth, as
well as how much logic your application
may need to handle it all.

u	 Have the database do as much work
as possible.

If you know that you’ll need to alter the
selected data in any way, have your SQL
query address that if it can, making the
database do the heavy lifting. For example,
in this chapter all dollar amounts have
been stored in integer format, and then
divided by 100 in the program to convert
the values to dollars and cents. It would be
best to have the query perform this math.

u	 Use prepared statements.

Prepared statements won’t always be
more efficient than standard queries, but
if an application will run the same query
multiple times (with variations on some of
the data used in the query), then prepared
statements are clearly the way to go.

Im
pr

o
vi

n
g

 P
er

fo
rm

an
ce

u	 Only connect to a database if and
when necessary.

This goes back to a mistake commonly
made by Web developers: connecting
to a database on every page in a site,
even if there are pages that don’t use
the database. Obviously, having a pro-
gram take steps that aren’t necessary,
like connecting to a database, will
always hinder performance.

u	 Create the database connection before
it’s needed.

If an application will use a database,
make sure it exists and establish the con-
nection (i.e., open it) before it’s time to
execute queries on it. In the examples in
this chapter, the database is opened after
the window has loaded but before the
user clicks any button that triggers some
database actions.

u	 Use the asynchronous methods.

Besides providing for a smoother user
experience, asynchronous database
communications perform better than
synchronous ones.

u	 Use transactions for related groups
of queries.

Along with improving the database’s
integrity, transactions can improve the
performance of an application when
there are lots of queries being run
together.

u	 Use separate SQLStatement objects for
each query.

I’ve made a habit of abiding by this rule in
these two chapters and for good rea-
son. Your AIR application will optimize
how queries are handled, making them
execute as efficiently as possible. Reusing
the same SQLStatement object for dif-
ferent queries will prevent such possible
optimizations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Database Techniques

261

it in released applications (where a user
could see it, although by that time the
program should be error free).

u	 Validate all user-supplied input.

The examples in this chapter and Chapter
11 don’t do a good job of this, but for
what it’s worth I do point out that short-
fall. Chapter 15, “Security Techniques,”
has some specific recommendations as to
how you can validate user-supplied input.

u	 Avoid making assumptions.

This is related to the previous bullet but
also includes tasks like checking that a
SELECT query returned some results prior
to attempting to retrieve the results:

if (results.data != null) {…

Another check you might want to per-
form includes confirming that a database
file exists prior to connecting to it.

u	 Pay attention to where the database file
is located.

This is particularly important when stor-
ing the database file in the application’s
storage directory (which should often
be the case). Where exactly on the user’s
computer that location is found depends
in part on the application’s ID and pub-
lisher ID. Be aware of these values when
debugging problems (for example, if the
database doesn’t seem to have the right
tables or data in it, your application may
be looking at the wrong database).

u	 Run queries on, and confirm the struc-
ture and contents of, a database using a
third-party application.

continues on next page

D
ebu

g
g

in
g

 Tech
n

iq
u

es

Debugging Techniques
Any time you have two technologies
working together, the potential for errors
increases exponentially. When using SQLite
with an Adobe AIR application, problems
could occur within your HTML page, your
JavaScript code, the SQL syntax, or the
SQLite database. Debugging such problems
is first of all a matter of trying to hunt down
where the true fault lies. The following list of
tips cover everything you need to know and
do to solve any database-related problem.

To debug database applications:

u	 Use alerts to confirm the values of vari-
ables, queries, results, and so on.

This is also a general debugging tip, but
when a SQL query depends on data com-
ing from a variable—and most will, take
extra steps to confirm what the values of
those variables and queries are.

u	 Use alerts to confirm which functions are
called and when.

In more complicated programs, like
Script 12.4, the execution will go in and
out of lots of functions. To be certain
which functions are called and when, use
a simple alert like:

alert(‘Inside the selectResult()
 function.’);

u	 While developing a program, display as
detailed an error message as possible.

Chapter 11 provides some code for dis-
playing all the available error messages
associated with a database problem. Use
that to debug a problem, but don’t use

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12

262

One of the absolute best debugging tips
for any application (desktop or Web-
based) that interacts with a database is
to print out the query being run, and then
run that query using another interface. By
doing so, you’ll be able to see the syntax of
the query, see the results it produces, and
even immediately see any errors that may
be caused without the middleman, which
is JavaScript and your AIR application.
Taking these steps will most likely clarify
whether the problem is with the query,
the query results, or how those results are
being handled by the application.

u	 Use prepared statements.

As stated in the corresponding section
earlier in the chapter, prepared state-
ments will make your application much
more secure and less prone to bugs
(because potentially problematic data
won’t cause SQL syntax errors).

u	 Use constraints in the database tables.

Constraints are added checks that the
data being entered into a database is
appropriate. Extra precautions are always
a good idea.

D
eb

u
g

g
in

g
 T

ec
h

n
iq

u
es

u	 Normalize the database.

Database normalization is a huge topic
but one you should become familiar with
if you use databases frequently. A prop-
erly designed database will be more reli-
able than one hastily put together. And
when it comes to databases, the reliability
of the data is paramount.

u	 Explicitly name the columns to be popu-
lated in INSERT queries.

There are two syntaxes for an INSERT
query:

INSERT INTO tablename VALUES (…)

and

INSERT INTO tablename (col1, col2,…)
 VALUES (…)

The second format, although more
wordy, is less likely to cause errors. Or, in
a worst-case scenario, the errors that do
arise will be more evident.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

263

Networking
13

Most of this book’s content focuses on interactions between an application and the
operating system as a whole. This includes making windows, creating menus for com-
mon tasks, interacting with the clipboard, and working with files, directories, and data-
bases. Naturally, much of what an application does involves these tasks. But there’s a
whole different realm of interactions that can take place between an application and
other computers: networking activities.

This chapter is dedicated to client-server communications, where the AIR application
running on the user’s computer is the client and another computer is the server. One
of this chapter’s examples will simply show how to confirm that a server is available for
communications. Two examples will demonstrate how to send data to the server, and
three will use server-provided content in the application.

N
etw

o
rkin

g

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

264

The URLRequest Class
Of the various networking-related classes
you’ll use in an AIR application, URLRequest
will be used the most. A URLRequest object
only provides a reference to the resource to
which your application should connect, so
it doesn’t do much but will be needed by the
classes that do.

When you create a URLRequest object, you
can provide it with the URL the application
will use:

var url = new air.URLRequest
 (‘http://www.example.com’);

A URLRequest object can use many differ-
ent URL schemes: http, https, file, app, and
app-storage. The last two, which point to
items found within the application and
application storage directories, can only be
used in code running within the application
security sandbox (see Chapter 15, “Security
Techniques,” if you don’t understand what
application security sandbox means). And
although this chapter will use URLRequest
objects to interact with other computers,
they can be used in conjunction with File,
Sound, and other object types.

Th
e

U
R

LR
eq

u
es

t
Cl

as
s

As I said, the actual URLRequest object
doesn’t do much, so as an example of how
it can be used, I’ll turn to the URLMonitor
class. It is defined in the servicemonitor.
swf file that comes with the AIR SDK. The
URLMonitor class can be used to literally
monitor a URL— to see if this application on
this computer can access a Web site.

When you create a URLMonitor object, you
provide it with a URLRequest instance:

var monitor = new air.URLMonitor(url);

To the monitor you want to add an event
listener that watches for status changes:

monitor.addEventListener(air.
 StatusEvent.STATUS, statusChange);

Finally, start the monitor:

monitor.start();

You can find the status of the resource
being monitored by referring to the monitor
object’s available property:

function statusChange(e) {
	 alert(monitor.available);
}

If monitor.available has a value of true, the
application can access that URL.

Let’s run through all this again in a simple,
sample application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

265

2.	 In a JavaScript block, create the two objects:

var url = new air.URLRequest
 (‘http://www.example.com’);

var monitor = new air.URLMonitor(url);

This code is pretty much the same as
the code explained earlier. The URL
http://www.example.com will work (it
does actually exist), or you can use any
other address here.

continues on next page

Th
e U

R
LR

eq
u

est Class

Script 13.1 This first example confirms the application’s ability to access a particular Web site.

1	 <html><!-- Script 13.1 -->
2	 <head>
3	 <title>URLRequest and URLMonitor</title>
4	 <script src=”servicemonitor.swf” type=”application/x-shockwave-flash”></script>
5	 <script type=”text/javascript” src=”AIRAliases.js”></script>
6	 <script type=”text/javascript”>
7	
8	 // Create the two objects:
9	 var url = new air.URLRequest(‘http://www.example.com’);
10	 var monitor = new air.URLMonitor(url);
11	
12	 // Add the event listener:
13	 monitor.addEventListener(air.StatusEvent.STATUS, statusChange);
14	
15	 // Start the monitor:
16	 monitor.start();
17	
18	 // Function called whenever the monitor status changes.
19	 function statusChange(e) {
20	
21		 // Find the document element:
22		 var status = document.getElementById(‘status’);
23	
24		 // Set the value based upon availability:
25		 if (monitor.available) {
26			 status.innerText = ‘available’;
27		 } else {
28			 status.innerText = ‘not available’;
29		 }
30	
31	 } // End of statusChange() function.
32	
33	 </script>
34	 </head>
35	 <body>
36	
37	 <div>The resource is <strong id=”status”>.</div>
38	
39	 </body>
40	 </html>

To monitor a URL:

1.	 In your project’s primary HTML file,
include the Shockwave file (Script 13.1):

<script src=”servicemonitor.swf”
 type=”application/x-shockwave-
 flash”></script>

To use the URLMonitor class, an applica-
tion must include this file. For the type
attribute, make sure you specify its value
as application/x-shockwave-flash.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

266

3.	 Add an event listener to the
URLMonitor object:

monitor.addEventListener(air.
 StatusEvent.STATUS, statusChange);

When the URLMonitor object’s status
changes—from available/connected to
unavailable/unconnected or vice versa,
the statusChange() function will be called.

4.	 Start the monitor:

monitor.start();

If you don’t include this line, the applica-
tion won’t actually do anything.

5.	 Begin the statusChange() function:

function statusChange(e) {

	 var status = document.getElementBy
	  Id(‘status’);

The role of this function is to add some
text to the application indicating whether
the given resource is available or not. The
specific document element that will be
updated is called status, and a reference
to that is created here.

Th
e

U
R

LR
eq

u
es

t
Cl

as
s

Figure 13.1 If the application can access the URL, this
will be the result.

Figure 13.2 When the application cannot access the
URL, either because the user’s computer or the URL’s
server is not online, this will be the result.

6.	 Complete the statusChange() function:

	 if (monitor.available) {

		 status.innerText = ‘available’;

	 } else {

		 status.innerText = ‘not
		  available’;

	 }

} // End of statusChange() function.

If the available property of the moni-
tor object has a value of true, the status
element will be assigned an innerText
value of available. Otherwise it’s assigned
a value of not available.

7.	 Within the body of the page, create an
area with an id of status:

<div>The resource is <strong
id=”status”>.</div>

Thanks to the conditional in the status-
Change() function, this sentence will end
up reading either The resource is avail-
able. (Figure 13.1) or The resource is not
available. (Figure 13.2).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

267

8.	 Copy the servicemonitor.swf to the
project directory.

You’ll find it in the AIR SDK’s frameworks
folder.

9.	 Save, test, debug, and run the completed
application.

Remember to include the Shockwave file
when you build the actual .air file.

As a quick way to test the application,
while it’s running, temporarily disable or
enable your Internet connection.

	Tips

n	 There are several other properties of the
URLRequest class that I don’t cover in
this book. Most of them are only used for
more advanced purposes, and some are
only usable within application security
sandbox content.

n	 The URLRequestDefaults class is where
you can set new default values for all
URLRequest objects used by an applica-
tion. It also has a setLoginCredentials-
ForHost() method, which is used to set
the hostname/username/password com-
bination used to access restricted areas.

Th
e U

R
LR

eq
u

est Class

Opening a URL with a Browser

An AIR application can also open a URL using the computer’s default Web browser. To do so,
create a URLRequest object for the resource, and then call the air.navigateToURL() function:

var url = new air.URLRequest(‘http://www.example.com’);
air.navigateToURL(url);

(Note that this function is not associated with any object you have to create.)

For security reasons, there are restrictions as to what resources can be requested from where.
Content in the application sandbox can request http, https, file, app, and app-storage content
(plus mailto, which will invoke the computer’s default email application). Content loaded
from the remote sandbox can only request http, https, and mailto resources. Content in the
local sandbox will also only allow a subset of the URL schemes to be used, depending on the
privileges and context.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

268

Receiving Data
The first example in this chapter shows how
easy it is to connect to a URL. That code can
also confirm two things: that the user has a
live network connection and that the named
Web site is available. But you’ll almost always
want your applications to do more than just
this; normally, they should either retrieve
data from that URL or send data to it.

To retrieve data, start by creating the
URLRequest object:

var url = new air.URLRequest
 (‘http://www.example.com/page.txt’);

From there, instead of using a URLMonitor
object, which can only monitor the status of
a URL, create an object of type URLLoader

var loader = new air.URLLoader();

This class is used to handle the data returned
by a resource. The data the server sends back
will not be available until all of it has been
received, so the URLLoader needs an event
listener for the load completion:

loader.addEventListener(air.Event.
 COMPLETE, loadComplete);

R
ec

ei
vi

n
g

 D
at

a

Finally, start the loading by invoking
the load() method, passing it the
URLRequest object:

loader.load(url);

The function that handles the COMPLETE
event should be written to accept an
event argument:

function loadComplete(e) {
}

Within the function, you can access the
retrieved data by either referring to the
event’s target attribute or the original
loader variable, if it’s global. For either,
refer to the data property:

alert(e.target.data);

or

alert(loader.data);

To see how this works in a real example,
this next application will fetch a stock quote
stored in an online text file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

269

You can use this URL or change it to a
page of your own creation.

2.	 Add an event listener to the
URLLoader object:

loader.addEventListener(air.Event.
 COMPLETE, loadComplete);

loader.load(url);

When the object has completely down-
loaded the entire response, the load-
Complete() function will be called. The
second line begins the loading process.

continues on next page

Script 13.2 This application reads in the data from a text file found online, and then places that content within the
HTML page.

1	 <html><!-- Script 13.2 -->

2	 <head>

3	 <title>Retrieving Data</title>

4	 <script type=”text/javascript” src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Create the two objects:

8	 var url = new air.URLRequest(‘http://www.dmcinsights.com/air/ch13data.txt’);

9	 var loader = new air.URLLoader();

10	

11	 // Add the event listener:

12	 loader.addEventListener(air.Event.COMPLETE, loadComplete);

13	

14	 // Load the resource:

15	 loader.load(url);

16	

17	 // Function that handles the complete loading of the resource.

18	 function loadComplete(e) {

19	

20		 // Update the page:

21		 document.getElementById(‘data’).innerText = loader.data;

22	

23	 } // End of loadComplete() function.

24	

25	 </script>

26	 </head>

27	 <body>

28	 <div>According to the remote server, the Adobe Systems Inc. (ADBE) stock price is $<span
	 id=”data”>.</div>

29	 </body>

30	 </html>

R
eceivin

g
 D

ata

To receive remote data:

1.	 In your project’s primary HTML
file, create the two required objects
(Script 13.2):

var url = new air.URLRequest
 (‘http://www.dmcinsights.com/
 air/ch13data.txt’);

var loader = new air.URLLoader();

The resource being requested—www.
dmcinsights.com/air/ch13data.txt—is a
plain text file that just contains a number.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

270

3.	 Define the loadComplete() function:

function loadComplete(e) {

	 document.getElementById(‘data’).
	  innerText = loader.data;

}

As with the previous example, this func-
tion will update an element on the page.
This time the value retrieved from the
resource, accessible in loader.data, is
assigned to the span element with an
id of data.

4.	 Within the body of the page, create the
text and the span element:

<div>According to the remote server,
 the Adobe Systems Inc. (ADBE)
 stock price is $
 .</div>

The stock price, which is stored in the
text file on the server, will be inserted into
this sentence.

5.	 Save, test, debug, and run the completed
application (Figure 13.3).

	Tips

n	 Script 13.2 may seem like a trivial
example, but if you had a server page
that dynamically retrieved and printed a
stock price, that could be invoked by this
application, thereby providing a desktop
application with up-to-date stock quotes.

n	 For security reasons, you want to be espe-
cially careful with how external data—like
that coming from an online server—is
used by an application. It’s much safer to
use that data for an element’s innerText
and value attributes than for its innerHTML
or outerHTML attributes. See Chapter 15 for
more on security.

n	 One AIR application can communicate
with another AIR application running
on the same computer by using the
LocalConnection class.

Figure 13.3 The contents of the online text file are
inserted into the text of this application.

R
ec

ei
vi

n
g

 D
at

a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

271

URLs in your Web browser; search the Web
for more information.)

Once you have data in this format, you can
tell the URLLoader object to expect it. By
default, a URLLoader expects to receive plain
text. It can also treat the received response
as either binary data or as a URLVariables
object. You don’t actually need to know any-
thing else about this object right now, except
to understand that it will automatically parse
the names and values out of the text string,
making them easier to refer to.

To tell the URLLoader object what to expect,
assign the appropriate constant to its data
attribute:

var loader = new air.URLLoader();
loader.dataFormat = air.
 URLLoaderDataFormat.VARIABLES;

The other two constants are air.
URLLoaderDataFormat.TEXT (the default)
and air.URLLoaderDataFormat.BINARY.

In the function that’s called when the load is
complete, loader.data, will now be an object
of type URLVariables. Assuming the example
line of name=value pairs, the function could
refer to loader.data.name, loader.data.
symbol, loader.data.price, and so on.

To test this out, let’s create a new application,
similar to the previous example, that retrieves
more information from a different resource.

Parsin
g

 D
ata

Parsing Data
The previous example quickly demonstrated
how simple it can be to retrieve content from
an online resource and use it in a desktop
application. Such functionality will often be
at the heart of an Adobe AIR application, but
the same concept can be used to better ends.
In that example, one string of text was being
read in; what if you wanted to retrieve more
discrete bits of data? For example, what if
instead of containing just a single stock price,
the online file has the stock name, symbol,
price, number of traded shares, and so forth?

One solution would be to store the informa-
tion in XML format. That data could then be
retrieved using a standard XMLHttpRequest.
You could also still retrieve the content using
the previous method, in which case, after
retrieving the text string, you’d need to cre-
ate a DOMParser object to turn the text into
usable XML.

A simpler alternative to using XML is to
represent the data as a series of name=value
pairs like so: name=Adobe%20Systems%20In
c.&symbol=ADBE&price=34.45…

Each name=value pair is separated by an
ampersand. The only trick to this format is
that it needs to be properly URL-encoded:
Spaces must be represented by %20 (as in the
above), ampersands by %26, the equals sign
by %3D, and so forth. (You’ll often see this in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

272

To parse remote data:

1.	 In your project’s primary HTML file, create
the two required objects (Script 13.3):

var url = new air.URLRequest
 (‘http://www.dmcinsights.com/air/
 ch13vars.txt’);

var loader = new air.URLLoader();

Again, you can use this URL or create
your own. This particular file contains
just one line of text:

close=34.45&change=0.32&date=3/20/2008

Pa
rs

in
g

 D
at

a

2.	 Change the expected data format:

loader.dataFormat = air.
 URLLoaderDataFormat.VARIABLES;

Instead of just receiving some plain text,
this line indicates that the data will be a
string of name=value pairs to be parsed
by a URLVariables object.

3.	 Add the event listener and load the URL:

loader.addEventListener(air.Event.
 COMPLETE, loadComplete);

loader.load(url);

Script 13.3 By using the URLVariables class behind the scenes, the data read from the server can be easily
parsed into individual variables.

1	 <html><!-- Script 13.3 -->
2	 <head>
3	 <title>Parsing Data</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the two objects:
8	 var url = new air.URLRequest(‘http://www.dmcinsights.com/air/ch13vars.txt’);
9	 var loader = new air.URLLoader();
10	
11	 // Indicate the data format:
12	 loader.dataFormat = air.URLLoaderDataFormat.VARIABLES;
13	
14	 // Add the event listener:
15	 loader.addEventListener(air.Event.COMPLETE, loadComplete);
16	
17	 // Load the resource:
18	 loader.load(url);
19	
20	 // Function that handles the complete loading of the resource.
21	 function loadComplete(e) {
22	
23		 // Assign the closing price:
24		 document.getElementById(‘close’).innerText = loader.data.close;
25	
26		 // Retrieve the price change:
27		 var change = loader.data.change;
28	
29		 // Update the element’s class:
30		 var changeElement = document.getElementById(‘change’);
31		 if (change < 0) {
32			 changeElement.className = ‘negative’;
33		 } else if (change > 0) {
34			 changeElement.className = ‘positive’;
35		 }
36	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

273

 4.	 Begin defining the loadComplete() function:

function loadComplete(e) {

	 document.getElementById(‘close’).
	  innerText = loader.data.close;

The three pieces of information retrieved
from the online file will be placed within
some context in the HTML page (Figure
13.4). To start, the element with an id
value of close will be provided with the
close value from the text file.

5.	 Handle the price change:

var change = loader.data.change;

var changeElement = document.
 getElementById(‘change’);

if (change < 0) {

	 changeElement.className =
	  ‘negative’;

} else if (change > 0) {

	 changeElement.className =
	  ‘positive’;

}

changeElement.innerText =
 Math.abs(change);

To make output a little more interesting,
the price change (the difference between
the most recent closing price and the
previous closing price) will be formatted
in the application page differently if it’s
positive or negative. To accomplish that,
this first line grabs the change value from
the retrieved data. Then a conditional
checks if that value is less than or greater
than 0. If it’s negative, the associated
element will be assigned a CSS class value
of negative, meaning it’ll be displayed in
red font. If the change is positive, it’ll be
displayed in green, thanks to the positive
CSS class definition. Finally, the absolute
value of the change is added to the page
(the negation symbol representing a price
drop will no longer be necessary because
the CSS indicates the downturn).

continues on next page

Parsin
g

 D
ata

Figure 13.4 In this application, three separate pieces
of information are read in from a file and placed in
their proper places within the main page.

Script 13.3 continued

37		 // Place the change on the page:
38		 changeElement.innerText =
		 Math.abs(change);
39	
40		 // Place the date on the page:
41		 document.getElementById(‘date’).
		 innerText = loader.data.date;
42	
43	 } // End of loadComplete() function.
44	
45	 </script>
46	
47	 <style>
48	 .negative { color: #C03; }
49	 .positive { color: #060; }
50	 </style>
51	
52	 </head>
53	 <body>
54	
55	 <h3>Adobe Systems Inc. (ADBE) Stock
	 Price</h3>
56	 <div>Last Closing Price: $<span
	 id=”close”></div>
57	 <div>Price Change from Previous Close:
	 $</div>
58	 <div>Closing Date:
	 </div>
59	
60	 </body>
61	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

274

6.	 Complete the function:

	 document.getElementById(‘date’).
	  innerText = loader.data.date;

} // End of loadComplete() function.

Finally, the date value retrieved from the
server is added to the page.

7.	 Define two CSS classes:

<style>

.negative { color: #C03; }

.positive { color: #060; }

</style>

As stated in step 5, these two classes will
be used to format the change value, mak-
ing its font color either red or green.

8.	 Within the body of the page, add the
requisite content and elements:

<h3>Adobe Systems Inc. (ADBE) Stock
 Price</h3>

<div>Last Closing Price: $<span
 id=”close”></div>

<div>Price Change from Previous
 Close: $
 </div>

<div>Closing Date:
 </div>

9.	 Save, test, debug, and run the completed
application.

	Tips

n	 For many of these examples, you could
take the code from Script 13.1 to test
for a connection to the resource prior to
attempting to interact with it.

n	 Instead of directly telling the URLLoader
class to receive a URLVariables object, you
could have it receive the response as text,
and then do this in the handling function:

var vars = new air.
 URLVariables(loader.data);

Then you would refer to vars.close, vars.
change, and vars.date. I think it’s easier to
take the route demonstrated in Script 13.3.

Pa
rs

in
g

 D
at

a

Working with Sockets

Many computer users aren’t familiar with
the concept of a socket, even though they
end up using them all the time. A socket
is a way in which one computer can com-
municate with another. An important
distinction of a socket is that it provides
for persistent (i.e., open until closed)
connections. (By comparison, a standard
HTTP request involves the opening of a
connection, the transfer of data, and then
the quick closing of that connection.)

You could connect to a server through a
socket for any number of reasons:

u	 To interact with an email service

u	 To communicate with a database

u	 To upload or download files over FTP

u	 To use IRC or a chat application like
Jabber

In Adobe AIR applications you can
monitor a socket connection using
SocketMonitor, just as you use
URLMonitor to monitor a URL. The
SocketMonitor class is also defined in the
servicemonitor.swf file.

To interact with a server via sockets, use
the Socket or XMLSocket classes. The for-
mer works with binary data and the latter
uses XML data. The online AIR documen-
tation has examples for using both.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

275

The second attribute of the URLRequest
object that you’ll use is data. To this property
you can assign a string of text, a ByteArray,
or a URLVariables object. To use this last
option, create a URLVariables object:

var appData = new air.URLVariables();

Then add name=value pairs to the object
by treating the name as an attribute of
the object:

appData.make = ‘Toyota’;
appData.model = ‘Sienna’;
appData.year = 2004;

Those lines add three name=value pairs to
the appData object.

The final step in sending data to a server is
to associate the data with the URLRequest
object, and then load the resource:

url.data = data;
loader.load(url);

The data will be sent to the server when
the request is performed through the
URLLoader object.

To help you conceptualize this process using
the above code, think of it as being similar
to having a form on a Web site with inputs
named make, model, and year. When the
form is submitted, it would send the user-
entered values—Toyota, Sienna, and 2004—
to www.example.com/page.jsp, which would
handle the form data. This brings me to the
last step in the process: The server resource
needs to be written to accept data submis-
sion and respond in some way. You can do
this using PHP, JSP (Java Server Pages), Ruby
on Rails, ASP.NET, ColdFusion, and many
other technologies.

Tran
sm

ittin
g

 D
ata

Transmitting Data
The previous two examples show how you
can read data from a network resource into
an Adobe AIR application, but data transfers
can work the other way, too. AIR applica-
tions with access to a network connection
can transmit data from the client to the
server. An application might need to do this
to request to update an online database, to
submit user feedback, or to fetch more spe-
cific results from the server (for example, to
indicate for which stock the price and other
information should be returned).

To send data to a server, two URLRequest
attributes are involved. The first is method.
This property indicates the method used
to request the URL page. The two most
common methods are GET and POST,
which are represented by the constants
air.URLRequestMethod.GET and air.
URLRequestMethod.POST (GET is the default
value). If you’re not familiar with these terms,
you may be best served by doing a quick
search online (e.g., the Wikipedia entry is
helpful). In simplest terms, a GET request is
the most common type made: When you load
a bookmarked URL in your Web browser
or click on a link in a page, that’s GET. Such
requests are normally used just to retrieve
information from a server. POST requests are
commonly used to provide information to a
server, for example, when you submit a form.

To change the request type, do this:

var url = new air.URLRequest

 (‘http://www.example.com/page.jsp’);
url.method = air.URLRequestMethod.POST;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

276

For a real-world example of this concept, the
next application will handle the entering of
the application’s license code. This process
normally works as follows:

1.	 The user purchases an online a license for
an application.

2.	 The application asks for the license infor-
mation to unlock it. The user enters the
values returned by step 1.

3.	 The application submits the user-sup-
plied information to the server.

4.	 If the submitted license information is
correct, the application is updated to
reflect that it’s been properly registered.

The following application will focus on
steps 2 and 3 of this process.

To transmit data:

1.	 In your project’s primary HTML file, cre-
ate the form (Script 13.4):

<h3>Enter your license information:
 </h3>

<p>Registered To: <input type=”text”
 id=”name”></p>

<p>License Code: <input type=”text”
 id=”license”></p>

<p><input type=”submit” value=”Submit”
 onclick=”checkLicense();”></p>

Tr
an

sm
it

ti
n

g
 D

at
a

Figure 13.5 The form where a user enters the already
purchased license information.

So that you can follow the logic more eas-
ily, I’ll start by creating the form (Figure
13.5). It contains two text inputs and
a button that calls the checkLicense()
function when clicked.

2.	 Within the JavaScript code, create the
three necessary objects:

var url = new air.URLRequest
 (‘http://www.dmcinsights.com/air/
 ch13license.php’);

var loader = new air.URLLoader();

var data = new air.URLVariables();

This application needs URLRequest and
URLLoader objects, like the previous two
examples, plus a URLVariables object.

As for the page being used by this example,
it’s a PHP script that expects to receive a
name and a license value sent to it via the
POST method. The script contains just:

<?php

if (isset($_POST[‘name’],
 $_POST[‘license’]) &&

	 ($_POST[‘name’] == ‘J. Doe’) &&

	 ($_POST[‘license’] == ‘XYZ123’)) {

	 echo ‘Valid License Entered!’	

} else {

	 echo ‘Invalid License Entered!’;

}

?>

continues on page 278

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

277

Tran
sm

ittin
g

 D
ata

Script 13.4 This application simulates the process of authenticating a program’s license by submitting user-entered
values to a server.

1	 <html><!-- Script 13.4 -->
2	 <head>
3	 <title>Transmitting Data</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Create the objects:
8	 var url = new air.URLRequest(‘http://www.dmcinsights.com/air/ch13license.php’);
9	 var loader = new air.URLLoader();
10	 var data = new air.URLVariables();
11	
12	 // Change the method:
13	 url.method = air.URLRequestMethod.POST;
14	
15	 // Add the event listener:
16	 loader.addEventListener(air.Event.COMPLETE, loadComplete);
17	
18	 // Function that handles the complete loading of the resource.
19	 function loadComplete(e) {
20	
21		 alert(loader.data);
22	
23	 } // End of loadComplete() function.
24	
25	 // Function called when the user clicks the Submit button.
26	 function checkLicense() {
27	
28		 // Assign the data to the URLVariables object:
29		 data.name = document.getElementById(‘name’).value;
30		 data.license = document.getElementById(‘license’).value;
31	
32		 // Assign the URLVariables object to the URLRequest object:
33		 url.data = data;
34	
35		 // Load the resource:
36		 loader.load(url);
37	
38	 } // End of checkLicense() function.
39	
40	 </script>
41	
42	 </head>
43	 <body>
44	
45	 <h3>Enter your license information:</h3>
46	 <p>Registered To: <input type=”text” id=”name”></p>
47	 <p>License Code: <input type=”text” id=”license”></p>
48	 <p><input type=”submit” value=”Submit” onclick=”checkLicense();”></p>
49	
50	 </body>
51	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

278

In case you’re unfamiliar with PHP, I’ll
explain what this means. The conditional
checks if the script receives name and
license values (both posted to this page).
It also confirms that name has a value of
J. Doe and license has a value of XYZ123.
If those three conditions are all true, the
text Valid License Entered! is printed by
this PHP script. If any of those conditions
is false, Invalid License Entered! is printed.
In an actual program, the PHP script
should match the information against
that provided when the user bought the
license (likely stored in a database), but
for testing purposes, this code will suffice.

3.	 Change the request method:

url.method = air.URLRequestMethod.
 POST;

POST is the logical method type to use in
situations like this, where data is being
sent to a page for validation purposes.

Tr
an

sm
it

ti
n

g
 D

at
a

 4.	 Add an event listener to the URLLoader
object:

loader.addEventListener(air.Event.
 COMPLETE, loadComplete);

There will be two aspects to this applica-
tion: the sending of the data to the server
and the reading of the response back
from the server. The loadComplete()
function will handle the second part.

5.	 Define the loadComplete() function:

function loadComplete(e) {

	 alert(loader.data);

} // End of loadComplete() function.

This function, which is called when the
response from the server is completely
loaded, will just print out the returned text
using an alert dialog. The response of the
server should be one of the two messages
printed by the PHP page (see step 2). Note
that for this reason, the PHP page doesn’t
include the basic HTML tags.

Working Offline

Although always-on Internet connections are prominent these days, applications cannot
assume that users are always online. If they’re not, applications that send data to or retrieve
data from a networked resource will need to make adjustments. But fortunately, handling
such contingencies is rather simple.

You’ll first need to establish a monitor that detects the application’s ability to connect to the
resource. If it can’t connect, most likely meaning either the user or the server is offline, the
application would take alternate steps. For example, if the application downloads content, it
might just indicate to the user that the feature can only run while the user is online.

If an application provides content to a server, there are two ways being offline might be han-
dled. With the license example (Script 13.4), the program might again indicate that an Internet
connection is required to perform that task. But take, for example, an application where a user
enters transactions (like, say, purchase orders) that are then transmitted to an online server. In
such a case, the data could be stored in a client-side text file or database, and then automati-
cally transmitted when the user is online again. By writing an application this way, it will be
usable at all times, with only some of the functionality dependent on an Internet connection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

279

6.	 Begin defining the checkLicense()
function:

function checkLicense() {

	 data.name = document.
getElementById(‘name’).value;

	 data.license = document.
	  getElementById(‘license’).value;

This function needs to send the user-sub-
mitted data (from the form) to the server.
It starts by adding name=value pairs to
the URLVariables object.

7.	 Complete the checkLicense() function:

	 url.data = data;

	 loader.load(url);

} // End of checkLicense() function.

The final two steps are to associate the
URLVariables object with the URLRequest
object and to call the URLLoader’s load()
method to actually send the request and
read in the response.

8.	 Save, test, debug, and run the completed
application (Figures 13.6 and 13.7).

	Tips

n	 The air.sendToUrl() function will make
a request of a URL without acknowledg-
ing the server’s response.

n	 Most large Web sites like Google,
Amazon, Flickr, YouTube, and eBay pro-
vide an API (Application Programming
Interface) through which an applica-
tion—desktop or online—can interact
with their site. Normally, you create an
account with the site, and then provide
that information along with certain
parameters—search terms, specific
product ID, and so on—in an application
request. Using these APIs along with the
code in Script 13.4, you can incorporate
the content those sites provide in your
applications.

Tran
sm

ittin
g

 D
ata

Figure 13.6 The result if incorrect license information
is submitted, including none at all.

Figure 13.7 If the correct information (case sensitive)
is entered into the form, the user is notified that a
valid license was submitted.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

280

Downloading Files
Another way that a desktop application
might interact with a server (besides access-
ing pages and reading in the response) is to
download a file from it. The concept is the
same, but the amount of data and what the
application does with that data is different.

Start, of course, with a URLRequest object:

var url = new air.URLRequest
 (‘http://www.example.com/somefile’);

From there, you could use the URLLoader
class to download the file data, reading in
the response as binary data. However, if you
know you’ll be handling binary data, the
URLStream class provides a more basic tool
for the job:

var urlStream = new air.URLStream();

To download small files, add an event lis-
tener that will be called when the download
(aka, the server response) is complete:

urlStream.addEventListener(air.Event.
 COMPLETE, saveFile);

(The next section discusses alternative code
for downloading large files.)

To begin the download, call the load()
method of the URLStream object:

urlStream.load(url);

When all of the file data has been down-
loaded, it’s stored in the urlStream object.

D
o

w
n

lo
ad

in
g

 F
il

es

To turn that into a file on the user’s com-
puter, you’ll need to read it into a ByteArray
object (see Chapter 10, “Working with File
Content”), and then write the ByteArray
object to a file:

var data = new air.ByteArray();
urlStream.readBytes(data, 0,
 urlStream.bytesAvailable);
var file = air.File.desktopDirectory.
 resolvePath(‘somefile’);
var fileStream = new air.FileStream();
fileStream.open(file, air.FileMode.WRITE);
fileStream.writeBytes(data, 0,
 data.length);
fileStream.close();

This next script will implement all of this
code, downloading a file from a server (after
the user clicks a button, Figure 13.8) and
saving that file on the user’s desktop.

To download a file:

1.	 In your project’s primary HTML file,
create the first two necessary objects
(Script 13.5):

var url = new air.URLRequest
 (‘http://www.dmcinsights.com/air/
 ch13code.zip’);

var urlStream = new air.URLStream();

For this example, the item to be down-
loaded will be the code for this chapter’s
examples. It’s called ch13code.zip and is
located at this book’s corresponding Web
site (www.DMCInsights.com/air/).

continues on page 282

Figure 13.8 When the user clicks this button, a
file from a server will be downloaded.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

281

D
o

w
n

lo
adin

g
 Files

Script 13.5 To download a file from a server to the user’s computer, this script reads the server response into a
URLStream, then reads that data into a ByteArray, and finally writes the ByteArray to a file.

1	 <html><!-- Script 13.5 -->

2	 <head>

3	 <title>Downloading Files</title>

4	 <script type=”text/javascript” src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Create the objects:

8	 var url = new air.URLRequest(‘http://www.dmcinsights.com/air/ch13code.zip’);

9	 var urlStream = new air.URLStream();

10	

11	 // Add the event listener:

12	 urlStream.addEventListener(air.Event.COMPLETE, saveFile);

13	

14	 // Function called when the user clicks the button.

15	 function downloadFile() {

16	

17		 // Start the download:

18		 urlStream.load(url);

19	

20	 } // End of downloadFile() function.

21	

22	 // Function called when all of

23	 // the data has been downloaded.

24	 function saveFile(e) {

25	

26		 // Read the downloaded data into a ByteArray:

27		 var data = new air.ByteArray();

28		 urlStream.readBytes(data, 0, urlStream.bytesAvailable);

29	

30		 // Write the data to a file:

31		 var file = air.File.desktopDirectory.resolvePath(‘ch13code.zip’);

32		 var fileStream = new air.FileStream();

33		 fileStream.open(file, air.FileMode.WRITE);

34		 fileStream.writeBytes(data, 0, data.length);

35		 fileStream.close();

36	

37		 // Notify the user:

38		 alert(‘The file has been downloaded!’);

39	

40	 } // End of saveFile() function.

41	

42	 </script>

43	 </head>

44	 <body>

45	

46	 <button onclick=”downloadFile();”>Download the File</button>

47	

48	 </body>

49	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

282

2.	 Add an event listener to the URLStream
object:

urlStream.addEventListener(air.
 Event.COMPLETE, saveFile);

This line states that when the entire
server response has been downloaded,
the saveFile() function should be called.

3.	 Define the downloadFile() function:

function downloadFile() {

	 urlStream.load(url);

}

This function will be called when the user
clicks the button. It begins the download-
ing process by calling the load() method.

4.	 Begin defining the saveFile() function:

function saveFile(e) {

This function will be called when the file
download is complete. It takes an event
as an argument, although it won’t be used.

5.	 Read the downloaded data into a
ByteArray object:

var data = new air.ByteArray();

urlStream.readBytes(data, 0,
 urlStream.bytesAvailable);

The urlStream object contains all the
downloaded data. To access that data,
it’ll need to be assigned to a ByteArray
object, so one is created first. Then the
readBytes() method reads all of the data

D
o

w
n

lo
ad

in
g

 F
il

es

(from 0 to urlStream.bytesAvailable)
into the ByteArray object. See Chapter
10 for more information on working with
ByteArray objects.

6.	 Write the data to a file:

var file = air.File.desktopDirectory.
resolvePath(‘ch13code.zip’);

var fileStream = new air.FileStream();

fileStream.open(file, air.FileMode.
 WRITE);

fileStream.writeBytes(data, 0,
 data.length);

fileStream.close();

A File object is created first and points
to a file called ch13code.zip, which is
located on the user’s desktop. Then the
file is opened for writing, the data is writ-
ten there, and the file is closed.

7.	 Alert the user and complete the function:

	 alert(‘The file has been
	 downloaded!’);

} // End of saveFile() function.

8.	 Within the body of the page, create a but-
ton that will start the process:

<button onclick=”downloadFile();”>
 Download the File</button>

9.	 Save, test, debug, and run the completed
application (Figures 13.9 and 13.10).

Figure 13.9 After the file has been written
to the desktop, the user will see this alert.

Figure 13.10 The file on my
desktop, as downloaded from
a server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

283

Here’s how the writeToFile() function
will work differently than the saveFile()
function in Script 13.4: When the download-
ing begins, some of the online file’s data will
be placed into the URLStream object, and
then the writeToFile() function will be
called because progress has been made. The
function will write all the data that’s been
downloaded thus far to the File object. Then
that data will be automatically removed from
the urlStream object and more will be down-
loaded into it, thus calling the writeToFile()
function again. This loop will continue until
all the data has been downloaded.

Let’s modify the previous example to handle
the download in this manner.

To download a large file:

1.	 Place a relatively large file on a server.

Rather than overwhelming my server by
having X number of readers all repeatedly
download a large file, I’ll leave it to you to
find your own resource for this example.
This can be any file of, say, 100 KB in size
or greater that you place or find on a Web
site. Make note of the file’s URL.

2.	 Open Script 13.5 in your text editor or
IDE, if it is not already.

continues on next page

D
o

w
n

lo
adin

g
 Larg

e Files

Downloading Large Files
One of the benefits of using URLStream
instead of URLLoader to download files is that
the URLStream object can access the returned
data incrementally (a URLLoader object can
only use the full response). When download-
ing large files, you’ll want to take advantage
of this feature so as not to max out the com-
puter’s RAM (because the downloaded data
is stored in the application’s memory until
its written to a file). To handle the download
incrementally, add an event listener that
responds to the download progress:

urlStream.addEventListener(air.
 ProgressEvent.PROGRESS, writeToFile);

Downloading a file incrementally really
means writing the downloaded data to the
file on the user’s computer incrementally.
So, start by opening the file outside of the
writeToFile() function (because the file
should only be opened once and the write-
ToFile() function will be called repeatedly):

var file = air.File.desktopDirectory.
 resolvePath(‘largeFile’);
var fileStream = new air.FileStream();
fileStream.open(file, air.FileMode.WRITE);

The writeToFile() function will still read
the downloaded data into a ByteArray, and
then write that ByteArray to the file:

var data = new air.ByteArray();
urlStream.readBytes(data, 0,
 urlStream.bytesAvailable);
fileStream.writeBytes(data, 0,
 data.length);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

284

3.	 Change the URLResource object’s value
to use the target file created (or found) in
step 1 (Script 13.6):

var url = new air.URLRequest
 (‘http://www.example.com/
 largeFile.pdf’);

You’ll need to replace the sample value
here with the complete address of your
target. For my own purposes, I’ll down-
load a large PDF file.

D
o

w
n

lo
ad

in
g

 L
ar

g
e

Fi
le

s

4.	 Move the lines that create the File
and FileStream objects out of the
saveFile() function so they come
after the URLStream object that is created:

var file = air.File.desktopDirectory.
 resolvePath(‘largeFile.pdf’);

var fileStream = new air.FileStream();

Because these objects will be needed
by multiple functions, they should be
defined outside of any function to make
them global in scope.

Script 13.6 This updated version of Script 13.5 writes the downloaded data to a file in increments instead of all at once.

1	 <html><!-- Script 13.6 -->

2	 <head>

3	 <title>Downloading Large Files</title>

4	 <script type=”text/javascript” src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Create the objects:

8	 var url = new air.URLRequest(‘http://www.example.com/largeFile.pdf’);

9	 var urlStream = new air.URLStream();

10	 var file = air.File.desktopDirectory.resolvePath(‘largeFile.pdf’);

11	 var fileStream = new air.FileStream();

12	

13	 // Add the event listeners:

14	 urlStream.addEventListener(air.ProgressEvent.PROGRESS, writeToFile);

15	 urlStream.addEventListener(air.Event.COMPLETE, saveFile);

16	

17	 // Function called when the user clicks the button.

18	 function downloadFile() {

19	

20		 // Open the file:

21		 fileStream.open(file, air.FileMode.WRITE);

22	

23		 // Start the download:

24		 urlStream.load(url);

25	

26	 } // End of downloadFile() function.

27	

28	 // Function called when some of

29	 // the data has been downloaded.

30	 function writeToFile(e) {

31	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

285

5.	 Add a progress event listener to the
URLStream object:

urlStream.addEventListener(air.
 ProgressEvent.PROGRESS,
 writeToFile);

When the download is complete, the
saveFile() function will still be called,
but other download progress will be
handled by the writeToFile() function.

6.	 Move the opening of the file to within the
downloadFile() function:

fileStream.open(file, air.FileMode.
 WRITE);

Since the file needs to be opened
outside of the writeToFile() function,
this can logically be done within the
downloadFile() function, which starts
the download process.

7.	 Define the writeToFile() function:

function writeToFile(e) {

	 if (urlStream.bytesAvailable >
	  51200) {

		 var data = new air.ByteArray();

		 urlStream.readBytes(data, 0,
		  urlStream.bytesAvailable);

		 fileStream.writeBytes(data, 0,
		  data.length);

	 }

}

This function needs to write the down-
loaded data to the file. However, it will
be called repeatedly as the download
progresses, and it shouldn’t write the data
every time it’s called. If it did that, the
application might just end up writing a
couple of bytes at a time, which isn’t very
efficient. Instead, a conditional is used to
dictate that the data should be written
only after 50 KB has been downloaded.

continues on next page

D
o

w
n

lo
adin

g
 Larg

e Files

Script 13.6 continued

32		 // Only write every 50KB or more:

33		 if (urlStream.bytesAvailable > 51200) {

34			 var data = new air.ByteArray();

35			 urlStream.readBytes(data, 0,
			 urlStream.bytesAvailable);

36			 fileStream.writeBytes(data, 0,
			 data.length);

37		 }

38	

39	 } // End of writeToFile() function.

40	

41	 // Function called when all of

42	 // the data has been downloaded.

43	 function saveFile(e) {

44	

45		 // Write the remaining data to the file:

46		 var data = new air.ByteArray();

47		 urlStream.readBytes(data, 0,
		 urlStream.bytesAvailable);

48		 fileStream.writeBytes(data, 0,
		 data.length);

49	

50		 // Close the file:

51		 fileStream.close();

52		

53		 // Notify the user:

54		 alert(‘The file has been downloaded!’);

55		

56	 } // End of downloadComplete() function.

57	

58	 </script>

59	 </head>

60	 <body>

61	

62	 <button onclick=”downloadFile();”>Download
	 the File</button>

63	

64	 </body>

65	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

286

8.	 Update the saveFile() function so it
writes the last bit of data to the file, and
then closes it:

function saveFile(e) {

	 var data = new air.ByteArray();

	 urlStream.readBytes(data, 0,
	  urlStream.bytesAvailable);

	 fileStream.writeBytes(data, 0,
	  data.length);

	 fileStream.close();

	 alert(‘The file has been
	  downloaded!’);	

}

This function will be called when the
download is complete. By that point, most
of the file’s data should have been written
to the file. However, there’s likely to be
some data left in the URLStream because
only every 50 KB or so is written to the file
in writeToFile(). For example, if only the
last 12 KB of the file is downloaded after

D
o

w
n

lo
ad

in
g

 L
ar

g
e

Fi
le

s

the previous call to writeToFile(), that
data will still be in urlStream. This func-
tion therefore writes the remaining data to
the file prior to closing it.

9.	 Save, test, debug, and run the completed
application (Figures 13.11 and 13.12).

	Tips

n	 If a file download fails because not all the
file’s content is properly written to the
desktop file, the likely result will either be
an inability to open the file or some of the
file’s content will be missing.

n	 Another way of understanding what
happens in this example is to consider
that a URLStream object works exactly like
a FileStream object. Script 10.3, which
shows how a FileStream is incremen-
tally read, demonstrates the same basic
concept being used here: incrementally
accessing data.

Figure 13.11 This version of the application
looks essentially the same as its predecessor
(Figure 13.8).

Figure 13.12 The 572 KB
PDF file downloaded by
the application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

287

file.addEventListener(air.ProgressEvent.
 PROGRESS, uploadProgress);
file.addEventListener(air.Event.COMPLETE,
 uploadComplete).

The complete event is triggered once the file
has been completely uploaded. The prog-
ress event is frequently triggered while the
upload is happening. Within that handling
function, you can refer to the event’s bytes-
Loaded attribute to see how much of the file
has been uploaded. The event’s bytesTotal
attribute reflects the total file size (as does
the File object’s size attribute).

To call the upload() method, you need to
provide it with a URLRequest object. That
object should refer to the URL to which the
file should be sent:

var url = new air.URLRequest
 (‘http://www.example.com/upload.php’);
file.upload(url, ‘aFile’);

The second argument in this method is the
name associated with the uploaded file. This
isn’t the file’s actual name from the user’s
computer, but rather like the name given
to a file input in an HTML form. This value
provides the handling script with a reference
to the uploaded file.

Handling file uploads using a server-side
script is beyond the scope of this book, but
this next example will demonstrate the AIR
application code involved.

U
plo

adin
g

 Files

Uploading Files
The last topic to be covered in this chapter
is how to upload a file to a server. There are
a few different ways you could do this. One
option would be to use the Socket class to
FTP the document to a server. This is an
excellent way to go, provided you know how
to set up and use an FTP server.

A second method would be to read the
file into a ByteArray, assign that to the
URLRequest object’s data attribute, and then
use a URLLoader to request a page on the
server, thereby sending it the file as well. This
is similar to Script 13.4 but uses a ByteArray
instead of a URLVariables object.

The third option, and the one I’ll use here,
is based upon the File class. The File class
defines a method called upload(). This
method performs an upload of the file to a
server, as if the user had selected the file in
a standard HTML form and then submit-
ted that form. What’s nice about using this
method is that the file upload is performed
asynchronously, meaning that the upload
will happen in the background while the user
can continue to perform other tasks within
the application.

Assuming you have a File object that
already refers to a file on the user’s com-
puter (for example, one the user has
selected), the next steps would be to add
event listeners to that object. The pertinent
events are air.ProgressEvent.PROGRESS
and air.Event.COMPLETE:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

288

To upload a file:

1.	 In your project’s primary HTML file,
create two objects (Script 13.7):

var file = new air.File();

var url = new air.URLRequest
 (‘http://www.dmcinsights.com/air/
 ch13upload.php’);

The URL referenced here is a dummy
page on my site that won’t do anything
with the uploaded file but is still quite
usable for demonstrating this technique.

2.	 Add event listeners to the File object:

file.addEventListener(air.Event.
 SELECT, fileWasSelected);

file.addEventListener(air.Event.
 COMPLETE, uploadComplete);

Two separate events need to be attended
to. The first is a SELECT event, which is
triggered when the user has selected a
file from the computer. The second is a
COMPLETE event, which is triggered when
the file has been uploaded.

Figure 13.13 After the user selects a file from the
computer, its full path is displayed in an alert.

Figure 13.14 The result after the file upload is finished.

3.	 Define the fileWasSelected() function:

function fileWasSelected(e) {

	 alert (‘You selected: ‘ +
	  file.nativePath);

	 file.upload(url, ‘theFile’);

}

This function does two things. First, it
reports back to the user the file that the
user selected (Figure 13.13). Second, it
starts the file upload by calling the File
object’s upload() method.

4.	 Define the uploadComplete() function:

function uploadComplete(e) {

	 alert(‘The file has been
	  uploaded.’);

}

This function lets the user know that the
file was completely uploaded to the server
(Figure 13.14). Because the upload
happens asynchronously, the user can do
other things in the application (if there
were other things to do) while that file is
being uploaded.

continues on page 290

U
pl

o
ad

in
g

 F
il

es

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Networking

289

Script 13.7 This application uploads to a server a file that the user has selected.

1	 <html><!-- Script 13.7 -->

2	 <head>

3	 <title>Uploading Files</title>

4	 <script type=”text/javascript” src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Create the objects:

8	 var file = new air.File();

9	 var url = new air.URLRequest(‘http://www.dmcinsights.com/air/ch13upload.php’);

10	

11	 // Add the event listeners:

12	 file.addEventListener(air.Event.SELECT, fileWasSelected);

13	 file.addEventListener(air.Event.COMPLETE, uploadComplete);

14	

15	 // Function that will be called

16	 // when the File has been selected.

17	 function fileWasSelected(e) {

18	

19		 // Use an alert to print the selected item’s name:

20		 alert (‘You selected: ‘ + file.nativePath);

21	

22		 // Upload the file:

23		 file.upload(url, ‘theFile’);

24	

25	 } // End of fileWasSelected() function.

26	

27	 // Function called when the upload is complete.

28	 function uploadComplete(e) {

29		 alert(‘The file has been uploaded.’);

30	 }

31	

32	 // Function called when the user clicks the

33	 // ‘Select a File’ button.

34	 function selectFile() {

35	

36		 // Create the Open prompt:

37		 file.browseForOpen(‘Choose a file:’);

38	

39	 }

40	

41	 </script>

42	 </head>

43	 <body>

44	

45	 <button onclick=”selectFile();”>Select a File to Upload</button>

46	

47	 </body>

48	 </html>

U
plo

adin
g

 Files

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13

290

5.	 Define the selectFile() function:

function selectFile() {

	 file.browseForOpen(‘Choose a
	  file:’);

}

This function is called when the user
clicks the Select a File button (Figure
13.15). It generates the browse for open
prompt (Figure 13.16).

6.	 Within the body of the page, create
the button.

<button onclick=”selectFile();”>
 Select a File to Upload</button>

7.	 Save, test, debug, and run the completed
application.

Figure 13.16 The prompt in which the user selects the file to be uploaded.

Figure 13.15 The simple application.

U
pl

o
ad

in
g

 F
il

es

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

291

Using Other Media
14

Desktop applications, like Web pages, rely on more than just text for their content. In
this chapter you’ll learn how to use three specific kinds of media in an AIR application:
sounds, PDFs, and XML data.

The bulk of the chapter focuses on sounds, specifically MP3s. Using sounds in an AIR
application isn’t complicated, but there’s lots that can be done with them, so you’ll
see four examples that illustrate the available options. Conversely, PDFs can be easily
displayed but there’s not much more to them than that, so one simple program will
cover pretty much everything you need to know with respect to PDFs. XML data is a
different kind of resource but one that hasn’t been discussed in detail elsewhere and
deserves some attention. The XML example that wraps up the chapter can be used by
any AIR application you create.

U
sin

g
 O

th
er M

edia

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

292

Playing Sounds
AIR applications have the capability of
playing MP3 files using the Sound class (AIR
does not directly support playing other
sound file types.) To start, you’ll need to
create a URLRequest object, which will be a
reference to the sound file (the URLRequest
class is discussed in more detail in Chapter
13, “Networking”). To create a URLRequest
object, you provide its constructor (the
method called when an object of that type is
created) with a URL value. For a file on the
user’s computer, the URL would begin with
app-resource, app, or file. For example, to
reference a sound that was installed along
with the application, you would use

var url = new air.URLRequest(‘app:/
 sound.mp3’);

As you might infer, because the Sound class
uses a URLRequest object, it means your appli-
cation can also play sounds found online:

var url = new air.URLRequest
 (‘http://www.example.com/sound.mp3’);

Along with the URLRequest object, you’ll need
an object of class Sound:

var sound = new air.Sound();

Note that each Sound object can only refer-
ence one sound file. If an application needs
to access multiple sound files, you’ll need
multiple Sound objects.

The final two steps are to load and play
the MP3:

sound.load(url);
sound.play();

As an example of this information, the
next script shows how an AIR application
can play a sound as an effect after the user
does something.

Script 14.1 This program plays a sound when the user
clicks the button.

1	 <html><!-- Script 14.1 -->
2		 <head>
3			 <title>Playing Sounds</title>
4			 <script type=”text/javascript”
			 src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6			
7			 // Create the objects:
8			 var url = new air.URLRequest
			 (‘app:/sounds/bell.mp3’);
9			 var sound = new air.Sound();
10	
11			 // Load the sound after the
			 application has loaded:
12			 window.onload = function() {
13	
14				 // Load the sound:
15				 sound.load(url);
16	
17			 } // End of anonymous function.
18	
19			 // Function called when the user
			 clicks the button.
20			 function playSound() {
21				 sound.play();
22			 }
23	
24			 </script>
25		 </head>
26		 <body>
27		 <button onclick=”playSound();”>Play the
		 Sound</button>
28		 </body>
29	 </html>

P
la

yi
n

g
 S

o
u

n
ds

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

293

4.	 Within the body, create a button that
invokes the playSound() function:

<button onclick=”playSound();”>Play
 the Sound</button>

5.	 Place the bell.mp3 file in your project’s
sounds directory.

You can download this file from
the book’s supporting Web site
(www.DMCInsights.com/air/, see the
Downloads page). Alternatively, you
can use your own sound file. Just make
sure that it’s relatively short—not an
entire song, for example—and change the
code in the script to match that
file’s name.

6.	 Save, test, debug, and run the completed
application (Figure 14.2).

	Tips

n	 The ability to work with sounds found
within a SWF file is defined in the
SoundMixer class.

n	 AIR applications can also access sound
through a computer’s microphone via the
Microphone class. See the online docu-
mentation for more information.

Figure 14.1 This
image of Aptana
Studio’s project
directory shows the
sound file required
by the program.

Figure 14.2 The application, which
is more impressive aurally than it
is visually.

P
layin

g
 S

o
u

n
ds

To play sounds:

1.	 In your project’s primary HTML file, cre-
ate the necessary objects (Script 14.1):

var url = new air.URLRequest(‘app:/
 sounds/bell.mp3’);

var sound = new air.Sound();

The two requisite objects are defined
here. The first is of type URLRequest and
points to the bell.mp3 sound found
within the application’s sounds directory
(Figure 14.1).

2.	 Create an anonymous function that loads
the sound:

window.onload = function() {

	 sound.load(url);

}

After the application (technically, the win-
dow) has loaded, this anonymous function
will be called. It loads the sound file so that
it’s ready to play when appropriate.

3.	 Create a function that plays the sound:

function playSound() {

	 sound.play();

}

Invoking the Sound object’s play()
method is all that’s required.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

294

Playing Long Sounds
For very short sounds, like interface effects
associated with user actions, the code out-
lined in the previous section of the chapter
will work just fine. For longer sounds, like
songs, or sounds being played over the
Internet, a different approach is necessary. In
such cases, the sound file will take longer to
load and attempts to play it before it’s fully
loaded could cause problems.

The most foolproof approach to playing long
sounds successfully is to make sure a sound
has completely loaded before playing it. This
is accomplished by adding an event listener
for the COMPLETE event:

sound.addEventListener(air.Event.
 COMPLETE, loadComplete);
function loadComplete(e) {
	 sound.play();
}

Another type of event that ought to be
listened for is air.IOErrorEvent.IO_ERROR.
Such an event will occur if the sound file
can’t be found or fully loaded:

sound.addEventListener(air.
 IOErrorEvent.IO_ERROR, soundError);
function soundError(e) {
	 // Do whatever.
}

To apply this new knowledge, the next exam-
ple allows the user to select an MP3 from the
user’s computer, and then play it.

P
la

yi
n

g
 L

o
n

g
 S

o
u

n
ds

To play long sounds:

1.	 In your project’s primary HTML file, cre-
ate the necessary objects (Script 14.2):

var url = null;

var sound = new air.Sound();

var file = new air.File();

This application uses three kinds of
objects: URLRequest, Sound, and File. The
last two are created here; the URLRequest
object will be created later in the script
(after the user selects the file), but
because that object needs to be a global
variable, it’s declared here.

2.	 Add the necessary event listeners:

file.addEventListener(air.Event.
 SELECT, fileWasSelected);

sound.addEventListener(air.Event.
 COMPLETE, loadComplete);

sound.addEventListener(air.
 IOErrorEvent.IO_ERROR, soundError);

The File object needs to listen for a
SELECT event, which is triggered when
the user selects a file. The Sound object
needs to listen to both a COMPLETE event
(for when the sound has completely
loaded) and an IO_ERROR event (in case of
problems).

3.	 Create a function for selecting a file:

window.onload = function() {

	 var filter = new air.
	  FileFilter(‘MP3’, ‘*.mp3’);

	 file.browseForOpen(‘Choose an
	  MP3:’, [filter]);

}

continues on page 296

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

295

P
layin

g
 Lo

n
g

 S
o

u
n

ds

Script 14.2 In this application, the user is first prompted to select an MP3 file from the computer. Then, once the
sound has fully loaded, the user can play the selected sound.

1	 <html><!-- Script 14.2 -->
2		 <head>
3			 <title>Playing Sounds</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6	
7			 // Create the objects:
8			 var url = null;
9			 var sound = new air.Sound();
10			 var file = new air.File();
11	
12			 // Add the event listeners:
13			 file.addEventListener(air.Event.SELECT, fileWasSelected);
14			 sound.addEventListener(air.Event.COMPLETE, loadComplete);
15			 sound.addEventListener(air.IOErrorEvent.IO_ERROR, soundError);
16	
17			 window.onload = function() {
18	
19				 // Limit what kinds of files can be opened:
20				 var filter = new air.FileFilter(‘MP3’, ‘*.mp3’);
21	
22				 // Create the Open prompt:
23				 file.browseForOpen(‘Choose an MP3:’, [filter]);
24	
25			 } // End of anonymous function.
26	
27			 // Function that will be called
28			 // when the file has been selected.
29			 function fileWasSelected(e) {
30	
31				 // Associate the file with the URLRequest:
32				 url = new air.URLRequest(file.url);
33	
34				 // Load the sound:
35				 sound.load(url);
36	
37			 } // End of fileWasSelected() function.
38	
39			 // Function called when the sound has been loaded.
40			 function loadComplete(e) {
41				 document.getElementById(‘play’).disabled = false;
42			 }
43	
44			 // Function called when the user clicks the ‘Play’ button.
45			 function playSound() {
46				 sound.play();
47			 }
48	
49			 // Function for handling sound errors.
50			 function soundError(e) {
51				 alert(‘An error occurred. The MP3 cannot be played’);
52			 }
53	
54			 </script>
55		 </head>
56		 <body>
57		 <button id=”play” onclick=”playSound();” disabled>Play</button>
58		 </body>
59	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

296

This anonymous function will be called as
soon as the application opens. Its purpose
is to get the user to select an MP3 file to
play. It first creates a filter, limiting the
type of file that the user can select to just
those with an .mp3 extension. Then it cre-
ates the prompt in which the user selects
the file (Figure 14.3). See Chapter 9, “Files
and Directories,” for more on this code.

4.	 Define the fileWasSelected() function:

function fileWasSelected(e) {

	 url = new air.URLRequest(file.url)

	 sound.load(url);

}

P
la

yi
n

g
 L

o
n

g
 S

o
u

n
ds

This function will automatically be called
after the user has selected a file from the
computer. This function’s purpose is to
load the sound file (in the previous exam-
ple, that happened in an anonymous
onload function). First, the url variable
is declared an object of type URLRequest.
For the object’s value, use file.url. This
will be something like file:///Users/larry/
Music/artist/album/songname.mp3.
Second, the sound file is loaded.

5.	 Define the loadComplete() function:

function loadComplete(e) {

	 document.getElementById(‘play’).
	  disabled = false;

}

Figure 14.3 The prompt in which a user can select an MP3 file located on their computer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

297

Per the event listener added to the sound
object in step 2, this function will be
called once the sound file has completely
loaded. It enables the Play button so
that the user can play the selected song
(Figure 14.4).

6.	 Create a function that plays the sound:

function playSound() {

	 sound.play();

}

This function will be called when the user
clicks the Play button.

7.	 Define the soundError() function:

function soundError(e) {

	 alert(‘An error occurred. The MP3
	  cannot be played’);

}

8.	 Within the body of the page, create the
Play button:

<button id=”play” onclick=
 ”playSound()” disabled>Play
 </button>

The button is initially disabled. It will
be enabled—so that the user can play
the selected sound—after the sound has
completely loaded.

9.	 Save, test, debug, and run the completed
application.

	Tips

n	 To know when a sound has finished play-
ing, add an event listener that watches for
the air.Event.SOUND_COMPLETE event.

n	 To start the browse for open prompt in
a specific directory, change the way you
create the File object. This line tells the
prompt to begin looking in the user’s
home directory:

var file = new air.File.
 userDirectory;

P
layin

g
 Lo

n
g

 S
o

u
n

ds

Figure 14.4 After the selected
MP3 file has been loaded, the
application’s Play button will
be enabled.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

298

Playing Streaming Sounds
Sounds (and videos) played over the Internet
are normally streamed—played simultane-
ously as the data is being loaded. When the
“playhead” catches up to the data that has
been loaded, the playing pauses until more
data is loaded, at which point playback
resumes. Certainly you’ve seen examples of
this many times over.

AIR applications can handle streaming
sounds, too, but the code and logic is a
little different than that used to handle
nonstreaming sounds. Start with your
URLRequest and Sound objects:

var url = new air.URLRequest
 (‘http://www.example.com/song.mp3’);
var sound = new air.Sound();

Next, create an object of type
SoundLoaderContext. Its constructor takes
two arguments:

var slc = new air.SoundLoaderContext
 (buffer, check);

P
la

yi
n

g
 S

tr
ea

m
in

g
 S

o
u

n
ds

The first argument is the number of millisec-
onds of content that should be loaded before
the sound starts playing. The default value
is 1,000 milliseconds (or one second). The
second argument is more complicated. This is
a Boolean value that indicates whether or not
the application should look for a “cross-domain
policy file” from the server when it loads the
sound file. For this example, using a value of
false is fine, but the sidebar “The AIR Security
Model” goes into more detail as to how the AIR
security model applies to sound files.

In this next example, the user will enter the
URL for a sound file to be played. The sound
will then play as it’s loading. At the same
time, a counter will indicate how many bytes
have been loaded (Figure 14.5). To accom-
plish that, an event listener will be added
to the Sound object that watches for air.
ProgressEvent.PROGRESS. In the function
called as that event is repeatedly triggered,
you can see how much of the file has been
loaded by referring to the event’s bytes-
Loaded property. The event’s bytesTotal
property stores the file’s complete size.

Figure 14.5 The application shows how the loading of the
streaming file is progressing as it plays the sound.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

299

P
layin

g
 Stream

in
g

 S
o

u
n

ds

To stream sounds:

1.	 In your project’s primary HTML file, cre-
ate the necessary objects (Script 14.3):

var url = null;

var sound = new air.Sound();

var slc = new air.SoundLoaderContext
 (10000, false);

This example uses three objects: one of
type URLRequest, one of type Sound, and
another of type SoundLoaderContent.
Because the specific URL associated with

the URLRequest object won’t be known
until the user enters that value into the
form (see Figure 14.5), that variable is
declared as null for now.

2.	 Create a counter:

var count = 0;

The program will show the progress as
the sound loads. This variable will repre-
sent that progress and is initially set at 0
(because no progress has been made).

continues on next page

Script 14.3 This script demonstrates three new ideas. First, it allows the user to enter a URL of a sound to be played
over the Internet. Second, it streams the sound (plays it while it’s loading). Third, the program shows the loading
progress as it’s happening.

1	 <html><!-- Script 14.3 -->
2		 <head>
3			 <title>Playing Sounds</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6	
7			 // Create the objects:
8			 var url = null;
9			 var sound = new air.Sound();
10			 var slc = new air.SoundLoaderContext(10000, false);
11	
12			 // Add the event listeners:
13			 sound.addEventListener(air.ProgressEvent.PROGRESS, loadProgress);
14			 sound.addEventListener(air.IOErrorEvent.IO_ERROR, soundError);
15	
16			 // To count the load progress:
17			 var count = 0;
18	
19			 // Function called when the user clicks ‘Play’.
20			 // It creates the URLRequest object and attempts to load the sound.
21			 function getSound() {
22	
23				 // Get and test the input:
24				 var input = document.getElementById(‘url’).value;
25				 if (input.length > 0) {
26	
27					 document.getElementById(‘play’).disabled = true;
28	
29					 // Create the URLRequest object:
30					 url = new air.URLRequest(input);
31	
32					 // Load the sound:
33					 sound.load(url, slc);
34					 sound.play();
35	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

300

3.	 Begin defining the getSound() function:

function getSound() {

	 var input = document.
	  getElementById(‘url’).value;

	 if (input.length > 0) {

		 document.getElementById(‘play’)
		  .disabled = true;

This function will be called when the user
clicks the Play button. It starts by per-
forming minimal validation—that some-
thing was entered into the text input.
Then it disables the Play button, so the
user doesn’t mess things up by clicking
Play again while the sound is streaming.

P
la

yi
n

g
 S

tr
ea

m
in

g
 S

o
u

n
ds

4.	 Load and play the sound:

url = new air.URLRequest(input);

sound.load(url, slc);

sound.play();

Unlike the previous two examples, this
time the load() method is provided with
a second argument, which is an object of
type SoundLoaderContext.

5.	 Complete the getSound() function:

	 } else {

		 alert(‘Please enter a valid URL
		  for an MP3 file.’);

	 }

} // End of getSound() function.

36				 } else {
37					 alert(‘Please enter a valid URL for an MP3 file.’);
38				 }
39	
40			 } // End of getSound() function.
41	
42			 // Function that gets called as the load progresses.
43			 function loadProgress(e) {
44	
45				 // Update the counter every 100000+ bytes:
46				 if (e.bytesLoaded > (count + 100000)) {
47					 document.getElementById(‘report’).innerText = e.bytesLoaded + ‘ of ‘ + e.bytesTotal
					 + ‘ bytes loaded’;
48					 count = e.bytesLoaded;
49				 } // End of IF.
50	
51			 } // End of loadProgress() function.
52	
53			 // Function for handling sound errors.
54			 function soundError(e) {
55				 alert(‘An error occurred. The MP3 cannot be played.’);
56			 }
57	
58			 </script>
59		 </head>
60		 <body>
61		 URL: <input type=”text” id=”url”> <button id=”play” onclick=”getSound();”>Play</button>
62		 <div id=”report”></div>
63		 </body>
64	 </html>

Script 14.3 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

301

is found in e.bytesLoaded. The second
value will be the total number of bytes in
the file, which is found in e.bytesTotal.
Finally, the count variable is assigned
the current e.bytesLoaded value so that
the conditional created in step 6 will work.

  8.	 Complete the loadProgress() function:

	 } // End of IF.

} // End of loadProgress() function.

  9.	 Define the soundError() function:

function soundError(e) {

	 alert(‘An error occurred. The MP3
	  cannot be played.’);

}

This function will be called should an
IO_ERROR occur, for example, if the
sound can’t be loaded (Figure 14.7).

10.	 Within the body of the page, add a text
input, a button, and a DIV:

URL: <input type=”text” id=”url”>
 <button id=”play” onclick=
 ”getSound();”>Play</button>

<div id=”report”></div>

The user will type the URL in the text
input, and then click the button, which
in turn calls the getSound() function.
The DIV will be used by the JavaScript to
display the load progress message (see
step 7).

continues on next page

P
layin

g
 Stream

in
g

 S
o

u
n

ds

Figure 14.6 Thanks to a little bit of validation, this
alert appears if the user clicked the Play button with-
out having entered a URL for the sound to be played.

Figure 14.7 This alert will be generated if the pro-
vided URL does not point to a sound file that the
application can stream.

If the user didn’t enter anything in the
text box prior to clicking Play, the user
sees this alert (Figure 14.6).

6.	 Begin defining the loadProgress()
function:

function loadProgress(e) {

	 if (e.bytesLoaded > (count +
	  100000)) {

This function will be called repeatedly as
the data is continually loaded. It will dis-
play the progress of the load (see Figure
14.6). Rather than updating the display
every time the function is called, it’ll
only do so after every additional 100,000
bytes. To check that status, the condi-
tional confirms that the current value
of e.bytesLoaded is more than 100,000
greater than count (the count variable will
store the previous bytesLoaded value).

7.	 Display the current number of
bytes loaded:

document.getElementById(‘report’).
 innerText = e.bytesLoaded + ‘ of ‘
 + e.bytesTotal + ‘ bytes loaded’;

count = e.bytesLoaded;

To show in the application the number of
bytes loaded, the innerText attribute of
the report DIV will be repeatedly assigned
a new value. The content itself will be in
the syntax X of Y bytes loaded. The first
value will be the number loaded, which

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

302

11.	 Save, test, debug, and run the completed
application (Figure 14.8).

	Tips

n	 You may notice that the total number of
bytes loaded sometimes differs from the
stated number of total bytes. This can
happen if the file doesn’t communicate
the correct total number of bytes it con-
tains (and is not necessarily a problem).

n	 To improve the security and reliability of
this application, you could ensure that
the user-submitted URL begins with
http://, https://, or ftp:// and that it ends
with .mp3. The JavaScript substring()
function can be used for these purposes.

n	 You could also use the information from
Chapter 13 to confirm that the applica-
tion can access the provided URL prior to
attempting to load the sound.

P
la

yi
n

g
 S

tr
ea

m
in

g
 S

o
u

n
ds

Figure 14.8 The application after the file has com-
pletely loaded (also see the first Tip).

The AIR Security Model
The AIR security model is based on sandboxes: the realms in which various elements “play.”
The sandbox that an HTML page, a Shockwave file, and so on are in dictates what they can
and cannot do, as well as what they’ll need the user’s permission to do.

To start, there is the application sandbox, which is the content that is installed with the appli-
cation (content found within the application’s directory). Content in the application sand-
box—for example, the application’s primary HTML document—is the least restricted in terms
of what it can do. Any content not found in the application’s directory will either be part of
the local (i.e., the user’s computer) or remote (i.e., not the user’s computer) sandbox. Both are
more restricted because something found on the Internet shouldn’t have the same power as
an application the user installed on his or her computer.

With respect to sound files, content in the network sandbox can’t load or play sounds found
locally. Content in the local sandbox cannot load or play remote sounds without the user’s
permission. In cases where sounds can be loaded and played, if the sound file and the page
attempting to access it are in different domains, the sound’s other data is not accessible unless
a “cross-domain policy file” is used. In other words, in some cases an AIR application cannot
access a sound’s ID3 information or use some of the SoundMixer and SoundTransform methods
without checking the validity of the request.

All that being said, application sandbox content, like the examples in this chapter, don’t have
these restrictions, so you can provide a value of false for the second argument when creating a
SoundLoaderContext object. Chapter 15, “Security Techniques,” discusses application security
in much greater detail.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

303

Note that you call the SoundChannel object’s
stop() method to terminate playback (the
Sound object doesn’t have a stop() method).

To start the sound playing again at the point
it was paused, you just need to provide the
play() method with that marker value:

function play() {
	 sound.play(marker);
}

A sound’s volume and panning (how much
sound is going to the left channel and how
much is going to the right) are managed by
the SoundTransform class. You can create an
object of this type using

var st = new air.SoundTransform(vol,
 pan);

The first attribute, representing the volume,
is a number between 0 (muted) and 1 (full
volume). The second attribute, representing
the panning, is a number between -1 (entirely
left channel) and 1 (entirely right channel),
with 0 meaning the channels receive equal
weight. To associate the object with the play-
ing sound, add it as the third argument when
calling the play() method:

sound.play(marker, 0, st);

The second argument, which I haven’t
mentioned before, is the number of times the
sound should be looped. If you don’t want to
loop the sound, use the value 0.

Note that the volume and panning apply just
to the associated sound. These values don’t
affect the volume or panning of the operat-
ing system as a whole or of other sounds that
this same program may use. That functional-
ity is handled by the SoundMixer class.

You can also adjust the volume and panning
by assigning new values to the SoundTransform
object’s volume and pan attributes:

st.volume = 1; // Full volume

Co
n

tro
llin

g
 S

o
u

n
ds

Controlling Sounds
The examples thus far simply play selected
songs. But AIR applications allow sound
playback to be controlled in other ways,
including:

u	 Pausing sounds

u	 Resuming playback of a paused sound

u	 Tracking the playback

u	 Adjusting the sound volume

u	 Adjusting the panning (left-right levels)

To perform these tasks, you’ll need to use
some new classes.

You first need to know that the play()
method of the Sound object takes an optional
first argument, which is the point, in mil-
liseconds, at which the playing should begin.
With that knowledge, you could easily start
playing a sound at any random spot:

sound.play(60000); // Start 1 minute in.

This is good to know, because to pause a
playing sound, you actually have to stop
it and start it playing again at that same
spot (there is no actual pause feature). To
know where the playing was stopped, use a
SoundChannel object. One is returned by the
play() method:

var sc = sound.play();

The current playback position is available
in the SoundChannel’s position attribute. So
you might have a pause button that calls this
function:

var marker = 0;
function pause() {
	 marker = sc.position;
	 sc.stop();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

304

To make such changes take effect while
a sound is playing, reassociate the
SoundTransform object (with its updated
values) with the SoundChannel object:

sc.soundTransform = st;

Let’s take all this information and update
Script 14.2 to add pause and volume control
buttons to the application (Figure 14.9).

To control sounds:

1.	 Open Script 14.2 in your text editor or IDE.

2.	 After creating the initial three objects,
create three new variables and one more
object (Script 14.4):

var sc = null;

var marker = 0;

var vol = 0.5;

var st = new air.SoundTransform(vol,
 0);

continues on page 306

Co
n

tr
o

ll
in

g
 S

o
u

n
ds

Figure 14.9 After selecting an MP3 file to play, the
user can now play and pause the sound, as well as
increase or decrease the sound’s volume.

Script 14.4 This is an update of Script 14.2, which played a sound the user selected from the user’s computer. This
version allows the user to pause the sound, plus adds control over the sound’s volume.

1	 <html><!-- Script 14.4 -->
2		 <head>
3			 <title>Playing Sounds</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6	
7			 // Create the objects:
8			 var url = null;
9			 var sound = new air.Sound();
10			 var file = new air.File();
11			 var sc = null;
12			 var marker = 0;
13			 var vol = 0.5;
14			 var st = new air.SoundTransform(vol, 0);
15	
16			 // Add the event listeners:
17			 file.addEventListener(air.Event.SELECT, fileWasSelected);
18			 sound.addEventListener(air.Event.COMPLETE, loadComplete);
19			 sound.addEventListener(air.IOErrorEvent.IO_ERROR, soundError);
20	
21			 window.onload = function() {
22				 var filter = new air.FileFilter(‘MP3’, ‘*.mp3’);
23				 file.browseForOpen(‘Choose an MP3:’, [filter]);
24			 }
25	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

305

Co
n

tro
llin

g
 S

o
u

n
ds

26			 // Function that will be called
27			 // when the file has been selected.
28			 function fileWasSelected(e) {
29				 url = new air.URLRequest(file.url);
30				 sound.load(url);
31			 }
32	
33			 // Function called when the sound has been loaded.
34			 function loadComplete(e) {
35				 document.getElementById(‘play’).disabled = false;
36				 document.getElementById(‘pause’).disabled = false;
37			 }
38	
39			 // Function called when the user clicks the ‘Play’ button.
40			 function playSound() {
41				 sc = sound.play(marker, 0, st);
42			 }
43	
44			 // Function called when the user clicks the ‘Pause’ button.
45			 function pauseSound() {
46	
47				 // Get the current position:
48				 marker = sc.position;
49	
50				 // Stop the playing:
51				 sc.stop();
52	
53			 } // End of pauseSound() function.
54	
55			 // Function for adjusting the volume.
56			 function adjustVolume(how) {
57	
58				 // Increasing or decreasing the volume?
59				 if (how == ‘up’) {
60					 if (vol < 1.0) vol += 0.1;
61				 } else if (how == ‘down’) {
62					 if (vol > 0.1) vol -= 0.1;
63				 }
64	
65				 // Enact the changes:
66				 st.volume = vol;
67				 sc.soundTransform = st;
68	
69			 } // End of adjustVolume() function.
70	
71			 // Function for handling sound errors.
72			 function soundError(e) {
73				 alert(‘An error occurred. The MP3 cannot be played’);
74			 }
75	
76			 </script>
77	
78		 </head>
79		 <body>
80		 <button id=”play” onclick=”playSound()” disabled>Play</button>
81		 <button id=”pause” onclick=”pauseSound()” disabled>Pause</button>
82		 <button id=”volUp” onclick=”adjustVolume(‘up’)”>+</button>
83		 <button id=”volDown” onclick=”adjustVolume(‘down’)”>-</button>
84		 </body>
85	 </html>

Script 14.4 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

306

The sc variable will later be of
SoundChannel type, which is used to
control the playing of the sound. It needs
to be a global variable, so is declared here.
The marker global variable will be used for
tracking where in the sound the virtual
playhead currently is. The next two vari-
ables will be used to control the volume.
First, vol is set as 0.5, which is to say half
volume. Then a SoundTransform object
is created, using this volume value and
unadjusted panning.

3.	 In the loadComplete() function, enable
the Pause button:

document.getElementById(‘pause’).
 disabled = false;

This function already enabled the Play
button after the sound was loaded, now
it will also enable the to-be-added Pause
button. If you want to be extra precise,
you could only enable Pause when the
song is playing and only enable Play when
the song is not playing.

4.	 Within the playSound() function, update
the call of the play() method:

sc = sound.play(marker, 0, st);

The play() method will now use three
arguments: marker (where to start
playing), the loop value (0), and the
SoundTransform object. The SoundChannel
object returned by this method call will
be assigned to the sc variable.

When the user first clicks play, marker
will have a value of 0, so playback will
begin at the start of the song.

5.	 Define the pauseSound() function:

function pauseSound() {

	 marker = sc.position;

	 sc.stop();	

}

Co
n

tr
o

ll
in

g
 S

o
u

n
ds

This function will be called when the user
clicks the Pause button. It first gets the
current playhead position, assigning that
to the marker variable. Then it stops the
playback. When the user clicks Play again,
this new value for marker will be used to
restart the sound at this same spot.

6.	 Begin defining the adjustVolume()
function:

function adjustVolume(how) {

This function will be called when the user
clicks on one of two volume-adjusting
buttons. Each passes to this function a
value, either up or down.

7.	 Use a conditional to appropriately adjust
the value of the vol variable:

if (how == ‘up’) {

	 if (vol < 1.0) vol += 0.1;

} else if (how == ‘down’) {

	 if (vol > 0.1) vol -= 0.1;

}

If the user clicked the + button (see
Figure 14.9), the volume should be
increased by ten percent, as long as it’s
not already at the highest possible value
of 1. Conversely, if the user clicked the
- (minus) button, the volume should be
decreased by ten percent, as long as it’s not
already at the lowest possible value of 0.

8.	 Complete the adjustVolume() function:

	 st.volume = vol;

	 sc.soundTransform = st;

} // End of adjustVolume() function.

To make the volume changes take effect
on the playing sound, the new vol-
ume value needs to be assigned to the
SoundTransform object’s volume attribute.
Then the updated SoundTransform object
needs to be assigned to the SoundChannel
object’s soundTransform attribute.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

307

	Tip

n	 If you call the stop() method of the
SoundChannel object on a sound that’s
currently being streamed (i.e., is still
being loaded), the sound won’t stop
playing. Instead, the sound will stop
playing at that point, and then immedi-
ately restart at the beginning (because
the sound is still streaming). The Sound
object’s close() method will stop the
playing of a streaming sound and prevent
it from continuing to load.

Co
n

tro
llin

g
 S

o
u

n
ds

Viewing ID3 Information

The MP3 format uses ID3 metadata to store information about the sound file. Your AIR appli-
cations can read this data to find out the song’s name, the artist, and so forth. Because not all
MP3 files will necessarily contain the ID3 information, your application should only attempt
to read in this data after an air.Event.ID3 event has occurred:

sound.addEventListener(air.Event.ID3, displayID3);

Within the handling function (here, displayID3()), the ID3 info is available within the Sound
object’s id3 attribute. For example, the song name is stored in s.id3.songName and the artist in
s.id3.artist. There’s also s.id3.album, s.id3.genre, s.id3.track, and s.id3.year (all of these
assume that s is an object of Sound type). If you look up the formal description of the Sound
class’s id3 attribute, you’ll see tables of other properties, like the sound’s total time (s.id3.
TIME), the recording date (s.id3.TRDA), and so forth.

The only thing to note is that the availability of the ID3 data (if it is present in the file) also
depends on the security settings. If the application accessing the sound file and the sound file
itself are in the same security sandbox, or if the sound file is in the application security sand-
box, getting the ID3 data won’t be a problem. Otherwise, getting the data depends on the use
of the SoundLoaderContext object. See the “Playing Streaming Sounds” section of this chapter
for more on this object.

  9.	 Within the body of the page, add three
more buttons:

<button id=”pause” onclick=
 ”pauseSound()” disabled>Pause
 </button>

<button id=”volUp” onclick=
 ”adjustVolume(‘up’)”>+</button>

<button id=”volDown” onclick=”adjust
 Volume(‘down’)”>-</button>

The new Pause button calls the
pauseSound() function. Both volume
buttons call the adjustVolume() func-
tion, passing it different values.

10.	 Save, test, debug, and run the completed
application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

308

Displaying PDFs
As you might expect, since both technologies
come from Adobe, AIR applications support
the viewing of PDF (Portable Document
Format) files. To do so, the AIR application
uses the Adobe Reader plug-in, as long as
the user has version 8.1 or higher of that
already installed. Your application can check
the user’s support for PDFs by referring to
air.HTMLLoader.PDFCapability. Its value
will be one of four constants: STATUS_OK,
ERROR_INSTALLED_READER_NOT_FOUND,
ERROR_INSTALLED_READER_TOO_OLD, and
ERROR_PREFERRED_READER_TOO_OLD. The first
constant is the value to watch for; the last
three are frighteningly long but clear in their
meanings (the final constant indicates that
an acceptable version is installed but not set
as the default).

PDFs can be displayed in an application
using the same methods you’d use in an
HTML page, primarily this means in objects
or iframes. As a quick example of this, the
next application will allow the user to view
a PDF on the computer, provided that PDF
support is enabled.

D
is

pl
ay

in
g

 P
D

Fs

To display PDF content:

1.	 In your project’s primary HTML file, cre-
ate the necessary object (Script 14.5):

var file = new air.File();

file.addEventListener(air.Event.
 SELECT, fileWasSelected);

This application only requires one object,
of type File. This object will be associ-
ated with the selected PDF. One event
listener is added to the object and listens
for a SELECT event. That will be triggered
once the user has selected the file.

2.	 Create an anonymous function that
checks for PDF support:

window.onload = function() {

	 if (air.HTMLLoader.pdfCapability
	  == air.HTMLPDFCapability.
	  STATUS_OK) {

After the application (technically, the
window) has loaded, this anonymous
function will be called. It first checks
to see if the user’s computer will allow
for displaying of PDFs within this AIR
application.

continues on page 310

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

309

D
isplayin

g
 P

D
Fs

Script 14.5 This simple application displays a PDF that the user has selected, assuming that the user’s computer
supports PDFs in AIR applications.

1	 <html><!-- Script 14.5 -->

2		 <head>

3			 <title>Displaying PDFs</title>

4			 <script type=”text/javascript” src=”AIRAliases.js”></script>

5			 <script type=”text/javascript”>

6	

7			 // Create the object:

8			 var file = new air.File();

9			 file.addEventListener(air.Event.SELECT, fileWasSelected);

10	

11			 // Function called when the window loads.

12			 window.onload = function() {

13	

14				 // Check for support:

15				 if (air.HTMLLoader.pdfCapability == air.HTMLPDFCapability.STATUS_OK) {

16	

17					 // Limit what kinds of files can be opened:

18					 var filter = new air.FileFilter(‘PDF’, ‘*.pdf’);

19	

20					 // Create the Open prompt:

21					 file.browseForOpen(‘Choose a PDF:’, [filter]);

22	

23				 } else { // No support!

24					 alert(‘Your computer does not support the display of PDFs in this application.
					 Please upgrade to the latest version of Adobe Reader.’);

25				 }

26	

27			 } // End of anonymous function.

28	

29			 // Function that will be called

30			 // when the file has been selected.

31			 function fileWasSelected(e) {

32	

33				 // Add the file to the page as an object:

34				 var o = document.createElement(‘object’);

35				 o.setAttribute(‘width’, ‘100%’);

36				 o.setAttribute(‘height’, ‘100%’);

37				 o.setAttribute(‘data’, file.url);

38				 o.setAttribute(‘type’, ‘application/pdf’);

39				 document.body.appendChild(o);

40	

41			 } // End of fileWasSelected() function.

42	

43			 </script>

44		 </head>

45		 <body>

46	

47		 </body>

48	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

310

3.	 Prompt the user to select a PDF:

var filter = new air.
 FileFilter(‘PDF’, ‘*.pdf’);

file.browseForOpen(‘Choose a PDF:’,
 [filter]);

Similar to the code in the first example
of this chapter, a filter is established that
only allows the user to select files with a
.pdf extension. Then the browse for open
prompt is created (Figure 14.10).

4.	 Complete the anonymous function:

	 } else {

		 alert(‘Your computer does not
		  support the display of PDFs in
		  this application. Please
		  upgrade to the latest version
		  of Adobe Reader.’);

	 }

} // End of anonymous function.

D
is

pl
ay

in
g

 P
D

Fs

Figure 14.11 If the user does not have at least version 8.1 of Adobe Reader installed and enabled on the computer,
this message appears when the user tries to run the application.

If the conditional begun in step 2 is false,
this application can’t display PDFs and
the user is told as much (Figure 14.11).

5.	 Create the fileWasSelected() function:

function fileWasSelected(e) {

	 var o = document.
	  createElement(‘object’);

	 o.setAttribute(‘width’, ‘100%’);

	 o.setAttribute(‘height’, ‘100%’);

	 o.setAttribute(‘data’, file.url);

	 o.setAttribute(‘type’,
	  ‘application/pdf’);

	 document.body.appendChild(o);

}

This is the function that is called after
the user has selected the PDF file from
the computer. Within the function, a new
object element will be created and added to

Figure 14.10
The prompt in
which the user
selects a PDF file
to view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

311

the page. The result of this code will be the
addition to the page’s body of a line like

<object width=”100%” height=”100%”
	  data=”file:///path/to/something.
	  pdf” type=”application/pdf”>

6.	 Save, test, debug, and run the completed
application (Figure 14.12).

Just like viewing a PDF in a Web browser,
it will take a few seconds for the Reader
plug-in to load the PDF file.

	Tips

n	 You cannot display PDFs in a transparent
or fullscreen window.

n	 Because PDFs can contain JavaScript,
you can use JavaScript to communicate
between an Adobe AIR application and a
PDF. See Adobe’s online documentation
for details.

D
isplayin

g
 P

D
Fs

Figure 14.12 A PDF version of this chapter displayed
in an AIR application.

Working with Other Media

This chapter demonstrates how to work
with three specific mediums in an AIR
application: sounds, PDFs, and XML data.
I focus on these three because Adobe AIR’s
support and interactions with them is dif-
ferent than with other media, and they’re
commonly used in many programs.

AIR applications can use other media, too,
like videos and images. There’s nothing
special as to how you’d use either: Use the
same techniques as you would to place
videos and images on an HTML page.
AIR applications can also make extensive
use of Flash content, naturally, either in
HTML pages or by creating AIR applica-
tions with Flash as the foundation (a
topic outside the scope of this book).

Adobe AIR also supports Digital Rights
Management (DRM) for files. This can
be used to control access to FLV (Flash
video) and MP4 files (e.g., to paying cus-
tomers). This feature is well covered
in the online documentation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

312

Handling XML Data
Taking a slightly different approach, the last
type of media I’ll discuss in this chapter is
XML data. While XML data is in fact just
properly formatted plain text (like HTML),
it needs to be handled differently than you
would other plain text because the meaning
is in the formatting.

The topic of XML is expansive and far
beyond what I could discuss in this book,
but I will provide some context for the next
example. XML data has one root element
(a made-up value) with one or more subele-
ments within it:

<library>
<book></book>
<book></book>
</library>

Any element can have attributes:

<book isbn=”0-321-52461-6”></book>

Element values go between the opening and
closing tags:

<author>Larry Ullman</author>

Any element can also have subelements:

<book isbn=”0-321-52461-6”>
<title>Adobe AIR (Adobe Integrated
 Runtime) with Ajax: Visual QuickPro
 Guide</title>
<author>Larry Ullman</author>
</book>

H
an

dl
in

g
 X

M
L

D
at

a

XML is a popular format because it repre-
sents both the data being stored and the
information about that data. With little or no
other context, multiple applications can use
the same XML data effectively.

A program can use XML data for any num-
ber of purposes. For example, iTunes stores
information about the songs in your music
library using an XML file. Another com-
mon use, which will be the basis of this next
example (Figure 14.13), is to store a user’s
application preferences in XML format.

As mentioned earlier, the trick to using XML
data is that although it is in fact plain text, it
needs special treatment to be usable. Start by
reading in the data as you would text stored
in any file:

var file = air.File.
 applicationStorageDirectory.
 resolvePath(‘file.xml’);
var stream = new air.FileStream();
stream.open(file, air.FileMode.READ);
var data = stream.readUTFBytes(stream.
 bytesAvailable);
stream.close();

At this point, data is a string of text that hap-
pens to contain XML data. Next, you create
a new object of type DOMParser (this is part of
JavaScript, not something new to Adobe AIR):

var dp = new DOMParser();

Figure 14.13 The choices
the user makes for this
application’s (fake) prefer-
ences will be permanently
stored in an XML file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

313

Then use the DOMParser object to turn the
string into XML:

var xml = dp.parseFromString(data,
 ‘text/xml’);

From there it’s a matter of using rather
verbose code to get the different element
values. I’ll explain more in the next sequence
of steps.

To use XML data:

1.	 Create a new text document containing
the following (Script 14.6):

<?xml version=”1.0” encoding=”UTF-8”
 ?>

<preferences>

	 <showTips>false</showTips>

	 <checkSpelling>false</
	  checkSpelling>

	 <panic>false</panic>	

</preferences>

This is the initial XML preferences file.
For this example, three preferences will
be stored in it. Each preference will be a
Boolean value, indicating that the user
does (true) or does not (false) want to
enable that setting. But in terms of the
XML file, the preferences could just as
easily store strings or numbers:

<defaultLang>Eng</defaultLang>

<historyCount>10</historyCount>

Also note that XML files begin with the
declaration: the opening and closing
XML tags (<?xml and ?>) with attributes
indicating the version (1.0 is fine) and the
encoding.

2.	 Save the file as prefs.xml.

Save the file in the project’s directory and
be sure to include that file when you build
the actual AIR application.

continues on next page

H
an

dlin
g

 X
M

L D
ata

Script 14.6 The default XML preferences file that would
ship with the application. It will be updated when the
user changes their preferences (using Script 14.7).

1	 <?xml version=”1.0” encoding=”UTF-8”?>

2	 <preferences>

3		 <showTips>false</showTips>

4		 <checkSpelling>false</checkSpelling>

5		 <panic>false</panic>	

6	 </preferences>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

314

3.	 In your project’s primary HTML file,
create the necessary global variables
(Script 14.7):

var file = air.File.
 applicationStorageDirectory.
 resolvePath(‘prefs.xml’);

var stream = new air.FileStream();

var prefs = new Array(‘showTips’,
 ‘checkSpelling’, ‘panic’);

The application will use three global vari-
ables. The first two are for reading from

and writing to the file (see Chapter 10,
“Working with File Content,” for details).
The preferences file will be stored in the
application’s storage directory (which is
the most logical place for it).

The third variable is an array of prefer-
ence names. These names will be used
in both the XML file and in the HTML.
By storing them in an array, it makes it
easier to quickly access them all.

continues on page 316

H
an

dl
in

g
 X

M
L

D
at

a

Script 14.7 This application reads in a user’s preferences from an XML file. The user’s current preferences are dis-
played in a window so they can be changed. When the user clicks the Save button, the updated preferences will be
written to the XML file.

1	 <html><!-- Script 14.7 -->
2		 <head>
3			 <title>XML Data</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6	
7			 // Create the objects:
8			 var file = air.File.applicationStorageDirectory.resolvePath(‘prefs.xml’);
9			 var stream = new air.FileStream();
10	
11			 // List of preferences as an array:
12			 var prefs = new Array(‘showTips’, ‘checkSpelling’, ‘panic’);
13	
14			 // Function called when the application loads.
15			 // This function retrieves the user’s preferences.
16			 window.onload = function() {
17	
18				 // Copy the preferences file to the storage
19				 // directory if it’s not already there.
20				 if (!file.exists) {
21					 var original = air.File.applicationDirectory.resolvePath(‘prefs.xml’);
22					 original.copyTo(file);
23				 }
24	
25				 // Read the data from the file:
26				 stream.open(file, air.FileMode.READ);
27				 var data = stream.readUTFBytes(stream.bytesAvailable);
28				 stream.close();
29	
30				 // Turn the file data into an XML object:
31				 var dp = new DOMParser();
32				 var xml = dp.parseFromString(data, ‘text/xml’);
33	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

315

H
an

dlin
g

 X
M

L D
ata

34				 // Set the preferences in the window:
35				 // Loop through each, adding its value to the data:
36				 for (var i = 0; i < prefs.length; i++) {
37	
38					 var item = xml.getElementsByTagName(prefs[i])[0].firstChild;
39	
40					 // If its value is ‘true’, check the box:
41					 if (item.nodeValue == ‘true’) document.getElementById(prefs[i]).checked = true;
42	
43				 } // End of for loop.
44	
45			 } // End of anonymous function.
46	
47			 // Function for writing the preferences to the file:
48			 function writePreferences() {
49	
50				 // Establish the OS-specific line ending:
51				 var CR = air.File.lineEnding;
52	
53				 // Start defining the data to be written:
54				 var data = ‘<?xml version=”1.0” encoding=”utf-8”?>’ + CR;
55				 data += ‘<preferences>’ + CR;
56	
57				 // Loop through each, adding its value to the data:
58				 for (var i = 0; i < prefs.length; i++) {
59					 data += ‘<’ + prefs[i] + ‘>’;
60					 data += (document.getElementById(prefs[i]).checked) ? ‘true’ : ‘false’;
61					 data += ‘</’ + prefs[i] + ‘>’ + CR;
62				 }
63	
64				 // Close the root element:
65				 data += ‘</preferences>’;
66	
67				 // Write the data to the file:
68				 stream.open(file, air.FileMode.WRITE);
69				 stream.writeUTFBytes(data);
70				 stream.close();
71	
72				 alert(‘Preferences saved!’);
73	
74			 } // End of writePreferences() function.
75	
76			 </script>
77		 </head>
78		 <body>
79		 <h3>Application Preferences</h3>
80		 Show Tips <input type=”checkbox” id=”showTips”>

81		 Check Spelling As You Type <input type=”checkbox” id=”checkSpelling”>

82		 Panic <input type=”checkbox” id=”panic”>

83		 <button onclick=”writePreferences();”>Save</button>
84		 </body>
85	 </html>

Script 14.7 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

316

4.	 Begin defining an anonymous onload
function:

window.onload = function() {

	 if (!file.exists) {

		 var original = air.File.
		  applicationDirectory.
		  resolvePath(‘prefs.xml’);

		 original.copyTo(file);

	 }

The first thing this anonymous function,
which is called after the window has
loaded, does is check for the existence
of the preferences file. If it doesn’t exist,
which will be the case the first time the
application is run, the original (found
in the application’s directory) should be
copied to the storage directory.

5.	 Read the data in from the file:

stream.open(file, air.FileMode.READ);

var data = stream.readUTFBytes
 (stream.bytesAvailable);

stream.close();

At this point in the application, data
contains a string of text. See Chapter 10
for more on reading from a file.

6.	 Create a DOMParser object and convert
the data to XML:

var dp = new DOMParser();

var xml = dp.parseFromString(data,
 ‘text/xml’);

Now the xml variable stores the data from
the file as usable XML.

7.	 Access each preference in a loop:

for (var i = 0; i < prefs.length;
 i++) {

	 var item = xml.getElementsByTagName
	  (prefs[i])[0].firstChild;

This part involves a bit of code but is
actually simple in theory. To start, the for

H
an

dl
in

g
 X

M
L

D
at

a

loop will loop through the preferences
array, accessing each item with each
iteration. Within the loop a reference is
made to the corresponding element in
the XML data. So the first time the loop
is run, prefs[i] will have a value of show-
Tips. The first line of code inside the loop
is therefore equivalent to

var item = xml.getElementsByTagName
 (‘showTips’)[0].firstChild;

The getElementsByTagName() method
returns an array of elements with a given
tag name (in the first iteration of the loop,
that’s showTips). This method always
returns an array, even if there’s only one
element with that name, as in this case.
So to refer to just that one element, [0] is
added, indicating the first element in the
array. The code up to that point would
refer to the <showTips>false</showTips>
part of the XML data.

Unfortunately, getting the value out of
the element (i.e., false) takes a bit more
effort. That value is actually a text node
(i.e., a subelement or child) of the parent
element showTips. Thus, the firstChild
attribute will refer to this text node.

8.	 Check the corresponding check box, if
appropriate.

	 if (item.nodeValue == ‘true’)
	  document.getElementById
	  (prefs[i]).checked = true;

} // End of for loop.

The first line of the for loop, in step 7,
retrieves a reference to the preference
element’s text node. To refer to that
node’s value, use .nodeValue. If this value
equals true (the string, in quotes), the
corresponding check box, which will have
the same ID value as the preferences ele-
ment, should be checked.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Other Media

317

A second for loop will be used to read in
each preference from the HTML page.
Within the loop, a line will be added to
the data variable in the format

<name>value</name>

To determine the value, the ternary
operator is used to see if the check box is
clicked or not. The third line of code is,
therefore, equivalent to

if (document.getElementById
 (prefs[i]).checked) {

	 data += ‘true’;

} else {

	 data += ‘false’;

}

13.	 Write the data to the file:

data += ‘</preferences>’;

stream.open(file, air.FileMode.
 WRITE);

stream.writeUTFBytes(data);

stream.close();

To complete the string of data to be
written to the file, the root element must
be closed. Then the file is opened for
writing, which will also erase any cur-
rent contents. The data is written there
and the file is closed.

continues on next page

H
an

dlin
g

 X
M

L D
ata

  9.	 Complete the anonymous function:

} // End of anonymous function.

10.	 Begin defining the writePreferences()
function.

function writePreferences() {

	 var CR = air.File.lineEnding;

This function will write the user’s prefer-
ences to the file. It will be called when
the user clicks Save. It starts by associat-
ing the operating-specific line ending
character with the variable CR (the air.
File.lineEnding attribute is also intro-
duced in Chapter 10).

11.	 Start defining the data to be written to
the file:

var data = ‘<?xml version=”1.0”
 encoding=”utf-8”?>’ + CR;

data += ‘<preferences>’ + CR;

Each time the user saves the prefer-
ences, the entire preferences file has
to be rewritten from scratch. This may
seem unnecessary, but it would take
even more work to update just the parts
of the file that have changed. So the
point of this function is to re-create all
the data in prefs.xml (see Script 14.6),
starting with the XML declaration and
root element.

12.	 Add each preference to the data:

for (var i = 0; i < prefs.length;
 i++) {

	 data += ‘<’ + prefs[i] + ‘>’;

	 data += (document.getElementById
	  (prefs[i]).checked) ? ‘true’ :
	  ‘false’;

	 data += ‘</’ + prefs[i] + ‘>’
	  + CR;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14

318

14.	 Complete the writePreferences()
function:

	 alert(‘Preferences saved!’);

} // End of writePreferences()
 function.

The alert just provides a visual cue to
the user that the save process worked
(Figure 14.14).

15.	 Within the body of the page, create the
check boxes and a Save button:

Show Tips <input type=”checkbox”
 id=”showTips”>

Check Spelling As You Type
 <input type=”checkbox”
 id=”checkSpelling”>

Panic <input type=”checkbox”
 id=”panic”>

<button onclick=”writePreferences();”>
 Save</button>

The id value of each element needs to
exactly match that in the prefs array as
well as the element names in the prefs.
xml file. The Save button needs to invoke
the writePreferences() function.

16.	 Save, test, debug, and run the completed
application (Figure 14.15).

	Tips

n	 As another example of an XML file
(besides prefs.xml), check out the appli-
cation descriptor file that is associated
with every Adobe AIR application.

n	 You can also read XML data (quite easily,
in fact) by performing an XMLHttpRequest
on the file. You can’t write XML data this
way, though (which is why this method
isn’t used in this example).

H
an

dl
in

g
 X

M
L

D
at

a

Figure 14.15 Restarting the application
after changing and saving the preferences
confirms that the entire process worked
(compare with Figure 14.13).

Figure 14.14 The result after
the user clicks the Save button
(assuming nothing went awry).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

319

Security
Techniques

15
The average Web developer does not have to delve too much into security issues.
HTML has few, if any, security concerns because of the limitations it has within the
Web browser. When you start working with JavaScript, let alone client-side technolo-
gies like PHP or ASP.NET, security becomes more of an issue because poor handling of
malicious input can impact a site’s visitors (and therefore your business). Because an
AIR application runs on the user’s computer with the same powers and privileges as
any other program, it’s important that Web developers making applications with the
Adobe Integrated Runtime take extra time to consider several security-related prob-
lems and solutions.

This chapter looks at application security in two ways. The first two-thirds of the chap-
ter explain and demonstrate the AIR security model. The model is simple in theory but
complex in its details. To best convey this critical information, the first two examples
are more demonstrative than practical, but the knowledge being taught leads up to
instructions on creating a real-world, and secure, AIR application.

The remaining pages outline dozens of techniques, both general and specific, for tight-
ening an application’s security. Some of these pertain to JavaScript in particular and
others are more applicable to AIR as a whole.

S
ecu

rity Tech
n

iq
u

es

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

320

The AIR Security Model
The content—HTML, JavaScript, Shockwave,
Flash, and so forth—that an application uses
runs within one of two sandboxes: restricted
areas in which the content “plays.” All con-
tent will either be within the application or
the non-application sandbox.

Only content in the application’s installa-
tion directory—which should mean content
bundled and installed with a program—can
run within the application sandbox. Content
in this sandbox can use the AIR APIs
(Application Programming Interface), but
cannot take advantage of some common but
potentially dangerous HTML and JavaScript
features (see the “Dynamic Code Execution”

Th
e

A
IR

 S
ec

u
ri

ty
 M

o
de

l

sidebar). For example, such content can
manipulate files and directories on the user’s
computer but is restricted in how it uses
the JavaScript eval() function and cannot
include a remote JavaScript file like so:

<script type=”text/javascript”
 src=”http://www.example.com/
 fileName.js”></script>

Simply put, application sandbox content is
given more power but loses some freedoms
that ordinary HTML pages have. Content
in the non-application sandbox has just the
opposite powers and privileges. For example,
non-application sandbox content can include
remote JavaScript files and use eval() to its
full extent but can’t manipulate files and

Dynamic Code Execution

One of the primary reasons AIR uses separate security sandboxes comes from the potential
for executing dynamically generated code. In the applications you create, the JavaScript will be
hard-coded (i.e., permanently defined in the content). As long as you aren’t writing this appli-
cation in order to do harm to people’s computers, such JavaScript can be trusted (because,
when it runs, it will do only what you programmed it to do). Conversely, dynamically gener-
ated code won’t be known until the program runs. Therefore, there’s no guarantee as to what
said code will actually do.

Dynamically generated code can come from several situations. One would be inclusion of a
remote script (like a JavaScript file stored online somewhere). If a hacker altered the contents
of that file, your application will be at risk. Dynamically generated code can also arise from
assigning data to an element’s innerHTML or outerHTML values. If the data assigned is some-
thing like <script type=”text/javascript”>Dangerous Code</script>, that dangerous code
will be executed. So if the data being assigned comes from a source that could be compro-
mised, this is again an area for concern. Use of the JavaScript document.write() function has
the same problem. The JavaScript eval() function also has a high risk factor, perhaps the
highest. This function executes whatever code is passed to it, no matter what the ramifica-
tions are. If that code comes from outside of the content you created, your application is at
risk for having malicious code executed.

In order to force a higher level of security on applications written using AIR, the methods that
can be used to execute dynamically generated code are not usable within application sandbox
content. And even though they are allowed within non-application sandbox content, you
should still be very careful when using them. The last two sections of the chapter cover data
validation and other security techniques to be applied in such cases.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

321

folders on the user’s computer. Generally
speaking, non-application sandbox content
behaves more like a conventional Web page:
techniques that could execute JavaScript code
dynamically are allowed, because there’s a
limit to how much damage they can do on the
user’s computers. That limit is in part because
non-application sandbox content can’t use
code that begins with air. or window.runtime.

With very few exceptions, most of the
examples in this book run in the application
sandbox. They are relatively simple scripts
that don’t attempt actions not allowed by
the security model. As this next example will
demonstrate, attempting tasks not allowed
by the security model will result in error mes-
sages or no response at all. To get a sense of
what content can do based on the sandbox
it’s in, let’s make a dummy example that
tests four different concepts (Figure 15.1).

To test the application sandbox:

1.	 In your project’s primary HTML file, create
three buttons and a link (Script 15.1):

<button onclick=”testTrace();”>Test
 trace.</button>

<button onclick=”testEval();”>Test
 the eval() function.</button>

<button onclick=”testXHR();”>Test
 XMLHttpRequest.</button>

<a href=”javascript:alert(‘testing
 javascript: URL’);”>Test
 javascript: URL.

This application will test four concepts
that an AIR application can use. The first is
a call to AIR’s trace() function. The second
is the use of the eval() function. The third
will be a cross-domain XMLHttpRequest.
The fourth will be the use of javascript: as
the href value of a link (which has the end
result of executing some JavaScript code
when the link is clicked).

continues on next page

Th
e A

IR
 S

ecu
rity M

o
del

Figure 15.1 These four elements can be clicked to
test the results of different actions within the applica-
tion sandbox.

Script 15.1 This script will first be run within the
application sandbox to see how air.trace(), eval(),
XMLHttpRequests, and using javascript: for an href
value will work.

1	 <html><!-- Script 15.1 -->

2	 <head>

3	 <title>AIR Security Model</title>

4	 <script type=”text/javascript”
	 src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Function to test use of air.trace().

8	 function testTrace() {

9		 try {

10			 air.trace(‘testing trace’);

11		 } catch (e) {

12			 alert(e);

13		 }

14	 } // End of testTrace() function.

15	

16	 // Function to test use of the eval()
	 function.

17	 function testEval() {

18		 try {

19			 eval(‘alert(“testing eval()”)’);

20		 } catch (e) {

21			 alert(e);

22		 }

23	 } // End of testEval() function.

24	

25	 // Function to test XMLHttpRequests.

26	 function testXHR() {

27		 var xhr = new XMLHttpRequest();

28		 xhr.onreadystatechange = function() {

29			 if (xhr.readyState == 4) {

30				 alert(xhr.responseText);

31			 }

32		 }

33	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

322

2.	 Within the JavaScript code block, define
the testTrace() function:

function testTrace() {

	 try {

		 air.trace(‘testing trace’);

	 } catch (e) {

		 alert(e);

	 }	

} // End of testTrace() function.

This function will simply call air.
trace(), printing the text testing trace
(Figure 15.2). To be notified of an error
should one occur, the trace() function
will be called within a try…catch block.
If an error occurs, it’ll be “caught” and
assigned to the e variable (short for error),
which is then printed in an alert. So, in
short, this function will either success-
fully invoke trace() or will print (in an
alert dialog) any error that is triggered.

Th
e

A
IR

 S
ec

u
ri

ty
 M

o
de

l Script 15.1 continued

34		 try {
35			 xhr.open(‘GET’, ‘http://www.
			 dmcinsights.com/air/ch13vars.txt’);
36			 xhr.send(null);
37		 } catch (e) {
38			 alert(e);
39		 }
40	 } // End of testXHR() function.
41	
42	 </script>
43	 </head>
44	 <body>
45	
46	 <button onclick=”testTrace();”>Test trace.</button>
47	 <button onclick=”testEval();”>Test the eval() function.</button>
48	 <button onclick=”testXHR();”>Test XMLHttpRequest.</button>
49	 Test javascript: URL.
50	
51	 </body>
52	 </html>

Figure 15.2 Calls to the air.trace() function result in
text being printed within the console.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

323

4.	 Begin defining the testXHR() function:

function testXHR() {

	 var xhr = new XMLHttpRequest();

	 xhr.onreadystatechange =
	  function() {

		 if (xhr.readyState == 4) {

			 alert(xhr.responseText);

		 }

	 }

This function makes an XMLHttpRequest.
The returned response will simply be
printed in an alert (the importance of
this example isn’t in using the response
but seeing what happens when an
XMLHttpRequest is made within different
sandboxes). See the example in Chapter 4,
“Basic Concepts and Code,” for explana-
tions on what these particular lines mean
(if you don’t already know).

continues on next page

Th
e A

IR
 S

ecu
rity M

o
del

3.	 Define the testEval() function:

function testEval() {

	 try {

		 eval(‘alert(“testing eval()”)’);

	 } catch (e) {

		 alert(e);

	 }

} // End of testEval() function.

This function calls the JavaScript
eval() function, passing it the code
alert(“testing eval()”). In other
words, the eval() function is being told
to execute code that would create an alert
dialog.

If the eval() function can be called in
the current sandbox, the text testing
eval() will be printed in the alert dialog.
If eval() cannot be called, an error will
occur and it’ll be printed in an alert
(Figure 15.3).

Figure 15.3 Content running within the application sandbox is restricted in its use of the eval() func-
tion. Attempts to use it could result in an error message like this one.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

324

5.	 Complete the testXHR() function:

	 try {

		 xhr.open(‘GET’, ‘http://www.
		  dmcinsights.com/air/
		  ch13vars.txt’);

		 xhr.send(null);

	 } catch (e) {

		 alert(e);

	 }

} // End of testXHR() function.

If an error occurs in executing an
XMLHttpRequest, it’ll happen when its
open() or send() methods are called. For
this reason, this part of the request pro-
cess is placed within a try…catch block.
The URL being requested comes from
Chapter 13, “Networking.” The ch13vars.
txt file just contains a small string of text
(Figure 15.4).

6.	 Save, test, debug, and run the completed
application.

You should see that this script, running in
the application sandbox (which it will be
when it’s the program’s primary HTML
page), can use trace() (see Figure 15.2),
cannot call eval() like it tries to (see
the error in Figure 15.3), and can make a
cross-domain XMLHttpRequest (see Figure
15.4). You’ll also find that clicking on the
link does nothing whatsoever.

Th
e

A
IR

 S
ec

u
ri

ty
 M

o
de

l

Figure 15.4 The result of the XMLHttpRequest
shows the content returned by the requested page.

	Tips

n	 All the details as to what content can do
in which sandbox are rather complicated.
For example, application sandbox con-
tent can call eval() using any argument
before the page has loaded but can only
use certain kinds of arguments after that.
See the online AIR documentation for all
the gory details.

n	 Content running in the application
sandbox will have an air.Security.
sandboxType value equal to the constant
air.Security.APPLICATION. You can use
a conditional to check for this value prior
to attempting any action that you know
to be restricted.

n	 The non-application sandbox can be
broken down into four subtypes: remote,
local-trusted, local-with-networking, and
local-with-filesystem. These four catego-
ries come from the Flash Player security
model and are more pertinent to Flash
and Shockwave content.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

325

bute is an addition to the iframe tag in Adobe
AIR. It allows you to state that the frame’s
content is coming from a different domain.
Its value must begin with file, http, or https,
even if it’s a made-up value. You can use
http://www.example.com as the domain (as
shown) or http://localhost/. For rather com-
plicated reasons that I won’t go into here, you
should add a subdirectory to the sandboxRoot
value, even if it doesn’t exist (e.g., use http://
localhost/air/, not just http://localhost/).

AIR also adds a documentRoot attribute to the
iframe tag. It’s used to find the content on the
user’s computer. Its value must begin with file,
app, or app-storage and cannot be a made-up
value (or else the content won’t be found).

Looking back at this example code, even
though the example.html file may be installed
in the same place as the file that includes it
(i.e., the file that has the iframe), the assigna-
tion of a different sandboxRoot value places
example.html within the non-application
sandbox. This is because content from differ-
ent domains cannot be in the same security
sandbox (and the parent HTML file is already
in the application sandbox).

Now, you might think that you’d always
want content to run within the application
sandbox, but there are two common reasons
you might want to have content run in the
non-application sandbox:

u	 If the content uses features not allowed
within the application sandbox. This may
be the case when a third-party framework
is being used.

u	 If the content doesn’t need the full pow-
ers allowed in the application sandbox
and you want to play it safe.

To compare and contrast the application
and non-application sandboxes, this next
script will run Script 15.1 within an iframe to
test those same features in the non-applica-
tion sandbox (Figure 15.5).

U
sin

g
 N

o
n

-A
pplicatio

n
 S

an
dbox Co

n
ten

t

Using Non-Application
Sandbox Content
The first example in this chapter dem-
onstrates some of the tasks that can and
cannot be done by content running in the
application sandbox. To contrast this, let’s
create another example that runs in the non-
application sandbox. One way that content
runs in that sandbox is if it’s loaded from
outside the application installation direc-
tory. But there is another way to run content
within the non-application sandbox—by
associating it with another domain. To do
that, include the content as an iframe with a
different sandboxRoot domain:

<iframe src=”example.html” sandboxRoot=
 ”http://www.example.com/air/”
 documentRoot=”app:/”>
</iframe>

An iframe, like the older frame tag, creates a
separate content area within a window. Its
src attribute indicates the file to be used for
the frame’s content. The sandboxRoot attri-

Figure 15.5 The top portion of the application is
content running within the application sandbox. The
bottom portion is the same content running within
a non-application sandbox (because it’s in an iframe
with a different domain value).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

326

To test the non-application sandbox:

1.	 Open Script 15.1 in your text editor or
IDE, if it is not already.

2.	 In the body of the page, add an iframe
(Script 15.2).

<iframe src=”script_15_01.html”
 sandboxRoot=”http://localhost/
 air/” documentRoot=”app:/”>

Change the src value here to whatever
name you gave Script 15.1 (for the pur-
poses of this book, I named that script,
appropriately enough, script_15_01.html).

3.	 If you want, add some headers and a
horizontal rule to clearly indicate the
two sandboxes.

Before the original set of buttons, add

<h3>Application Sandbox</h3>

Before the iframe, add

<p><hr></p><h3>Non-Application
 Sandbox</h3>

4.	 Save this file under a new name.

You can use any name as long as it’s
different than the one you gave Script

U
si

n
g

 N
o

n
-A

pp
li

ca
ti

o
n

 S
an

db
ox

 C
o

n
te

n
t

Figure 15.6 Because non-application sandbox
content cannot use AIR APIs, a call to air.trace()
results in this error.

Figure 15.7 The eval() function can be fully used
within non-application sandbox content.

Figure 15.8 Unless special steps are taken (see the
first tip), non-application sandbox content cannot
perform cross-domain XMLHttpRequests.

Figure 15.9 Non-application sandbox content also
allows for uses of javascript: in an href value.

15.1 (because that script will be used for
the iframe source). Save the file in your
project’s directory.

5.	 Test, debug, and run the completed
application (Figures 15.6, 15.7, 15.8,
and 15.9).

The application sandbox content—the
top section—still behaves the same; non-
application sandbox content—the bot-
tom section—will have different results
as shown in the figures.

	Tips

n	 As you can see in Figure 15.8, cross-
domain XMLHttpRequests are not allowed
within the non-application sandbox (this
is also true for Web pages). In Adobe AIR,
you can overrule this default setting by
adding this code to your iframe tag:

allowCrossDomainXHR=”true”

n	 If an application has two iframes, each
of which loads content from a different
domain—say, www.example.com and
localhost, those two iframes run within
separate non-application sandboxes. 	

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

327

U
sin

g
 N

o
n

-A
pplicatio

n
 S

an
dbox Co

n
ten

t

Script 15.2 This script is the same as Script 15.1, except that it also includes Script 15.1 as an iframe. That content
will run in the non-application sandbox.

1	 <html><!-- Script 15.2 -->
2	 <head>
3	 <title>AIR Security Model</title>
4	 <script type=”text/javascript” src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Function to test use of the eval() function.
8	 function testEval() {
9		 try {
10			 eval(‘alert(“testing eval()”)’);
11		 } catch (e) {
12			 alert(e);
13		 }
14	 } // End of testEval() function.
15	
16	 // Function to test use of air.trace().
17	 function testTrace() {
18		 try {
19			 air.trace(‘testing trace’);
20		 } catch (e) {
21			 alert(e);
22		 }
23	 } // End of testTrace() function.
24	
25	 // Function to test XMLHttpRequests.
26	 function testXHR() {
27		 var xhr = new XMLHttpRequest();
28		 xhr.onreadystatechange = function() {
29			 if (xhr.readyState == 4) {
30				 alert(xhr.responseText);
31			 }
32		 }
33	
34		 try {
35			 xhr.open(‘GET’, ‘http://www.dmcinsights.com/air/ch13vars.txt’);
36			 xhr.send(null);
37		 } catch (e) {
38			 alert(e);
39		 }
40	 } // End of testXHR() function.
41	
42	 </script>
43	 </head>
44	 <body>
45	
46	 <h3>Application Sandbox</h3>
47	
48	 <button onclick=”testTrace();”>Test trace.</button>
49	 <button onclick=”testEval();”>Test the eval() function.</button>
50	 <button onclick=”testXHR();”>Test XMLHttpRequest.</button>
51	 Test javascript: URL.
52	
53	 <p><hr></p><h3>Non-Application Sandbox</h3>
54	
55	 <iframe src=”script_15_01.html” sandboxRoot=”http://localhost/air/” documentRoot=”app:/”>
56	 </iframe>
57	
58	 </body>
59	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

328

Using the Sandbox Bridge
In the AIR security model, applications are
limited by a “same-origin” policy: Content
is restricted from directly interacting with
content from another source. With this
previous example, this means that content
in the application sandbox (Script 15.2) is
limited in what it can do with content in the
non-application sandbox (Script 15.1) and
vice versa. To overcome this limitation, you
can use the sandbox bridge.

Adobe AIR adds two properties to the window
object: childSandboxBridge and parent-
SandboxBridge. These properties can be used
to make objects and functions in one script
accessible to another. This concept can be
hard to visualize, so I’ll walk through some
hypotheticals before implementing a real-
world example.

Say you have a parent file, called parent.
html, which includes the child file, child.
html, in an iframe:

<iframe id=”nas” src=”child.html”
 sandboxRoot=”http://localhost/air/”
 documentRoot=”app:/”></iframe>

The iframe has an id value of nas (short for
non-application sandbox).

The parent.html file has a function called
doThis, which doesn’t do anything:

function doThis() {}

The child.html file cannot call this function
unless a bridge is made to it. To do that, par-
ent.html needs this line:

document.getElementById(‘nas’).
 contentWindow.parentSandboxBridge =
 doThis;

Now, for child.html to call this function, all
it needs to do is refer to (Figure 15.10)

window.parentSandboxBridge.doThis().

U
si

n
g

 t
h

e
S

an
db

ox
 B

ri
dg

e

Figure 15.10 The content in an iframe can call a func-
tion in the parent file, like doThis(), if the function is
made available via the parentSandboxBridge.

As an example of making child content
available in the parent, I’ll walk through a
different example. Say you want to make
both a variable and a function available to the
parent page. In the child.html page, start by
defining an object containing a function and
a variable:

var square = new Object();
square.side = 14;
square.getArea = function() {
	 return this.side * this.side;
}

The first line creates a new variable of type
generic Object. The second line creates an
attribute in this object called side with a value
of 14. The remaining code creates a method
in the object called getArea. The method
takes no arguments and returns the value of
the side attribute times itself (this in OOP
always refers to the current object, so this.
side refers to this object’s side attribute).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

329

Then, to make the object available in the par-
ent, do this:

window.childSandboxBridge = square;

Now parent.html must get a reference to
the object. To do that, it refers to the iframe
element window’s childSandboxBridge
attribute:

var obj = document.getElementById(‘nas’).
 contentWindow.childSandboxBridge;

And finally, parent.html can refer to obj.
side and obj.getArea() (Figure 15.11).

This next example should help you best
understand how the AIR security model, the
sandboxes, and the sandbox bridge would be
used into a real-world application. This pro-
gram (Figure 15.12) will be an expansion
on the text editor created in Chapter 10,

“Working with File Content.” By incorporat-
ing the Yahoo! User Interface (YUI; http://
developer.yahoo.com/yui/), the application
will work as a WYSIWYG HTML editor. The
application is complicated, from a security
perspective, because it needs the ability to
write to and read from files on the user’s
computer (i.e., AIR functionality), but it also
needs to load remote JavaScript files and use
the innerHTML property (both of which are
restricted within application sandbox con-
tent). The solution will be to place all the AIR
functionality in one file, load the YUI editor
in an iframe (that runs within the non-appli-
cation sandbox), and use a sandbox bridge to
communicate between the two.

This example will require just two scripts.
Most of the file-related logic comes from
Script 10.2, with a couple of nice additions.
The specifics for getting the YUI editor to
work come from its own documentation, but
I’ll explain the relevant code in the following
steps. Finally, with respect to the sandbox
bridge, I’ll make some of the child’s (i.e., the

U
sin

g
 th

e S
an

dbox B
ridg

e

Figure 15.11 A parent file can use an object
defined in the child file made available through
the childSandboxBridge property.

Figure 15.12 Thanks to the Yahoo! User Interface
framework, a textarea is turned into an HTML editor.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

330

frame’s) functionality available in the parent
but won’t be making any parent functional-
ity available in the child (the bridge only
needs to go one way for this to work). Let’s
start by creating the frame’s content, which
is the HTML editor.

To use a sandbox bridge:

1.	 In an HTML file, include all the necessary
YUI files (Script 15.3):

<link rel=”stylesheet” type=”text/
 css” href=”http://yui.yahooapis.
 com/2.5.1/build/assets/skins/
 sam/skin.css”>

<script type=”text/javascript”
 src=”http://yui.yahooapis.
 com/2.5.1/build/yahoo-dom-event/
 yahoo-dom-event.js”></script>

<script type=”text/javascript”
 src=”http://yui.yahooapis.com/
 2.5.1/build/element/element-beta-
 min.js”></script>

<script src=”http://yui.yahooapis.
 com/2.5.1/build/container/
 container_core-min.js”></script>

<script src=”http://yui.yahooapis.
 com/2.5.1/build/editor/
 simpleeditor-beta-min.js”>
 </script>

These lines come verbatim from the YUI
library documentation. Including these
scripts is necessary to create the “simple
editor” (Yahoo!’s term). Note that these
files are all being included from Yahoo!’s
Web site; they are not packaged with the
application and loaded from there. This
is one reason that this content can’t be
placed within the application sandbox.

2.	 In the body of the script, create a textarea
with an id value of editArea:

<textarea name=”editArea”
 id=”editArea”></textarea>

U
si

n
g

 t
h

e
S

an
db

ox
 B

ri
dg

e

This textarea will be where the user edits
all text. The id value will be used by the
code that generates the editor. This is all
that the body of the page needs to contain.

3.	 In a JavaScript block, create a function to
be called after the page has loaded:

window.onload = function() {

}

This anonymous function will do all the
setup for the text editor and the child
page as a whole.

4.	 Within the anonymous function, create
the editor:

var yuiEditor = new YAHOO.widget.
 SimpleEditor(‘editArea’, {height:
 ‘100%’, width: ‘100%’, collapse:
 true});

yuiEditor.render();

Again, these two lines of code come from
the YUI documentation. The first creates
a SimpleEditor object associated with
the editArea textarea. The second line
creates the actual editor on the page by
calling the render() method.

5.	 Create an object to be used by the sand-
box bridge:

var forParent = new Object();

This object will be made available to the
script running in the application sandbox
(i.e., the parent to this file). It will enable
the parent to access the text being edited
so that the parent can write that text to a
file (and, conversely, load the editor with
text read in from a file).

6.	 Define a function that assigns the text to
be edited:

forParent.setContents =
 function(str) {

	 yuiEditor.setEditorHTML(str);

}

continues on page 332

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

331

U
sin

g
 th

e S
an

dbox B
ridg

e

Script 15.3 A few lines of code and some files included remotely from Yahoo!’s Web site will create an HTML editor
to be run in a non-application sandbox.

1	 <html><!-- Script 15.3 -->

2	 <head>

3	 <title>Editor</title>

4	 <script type=”text/javascript” src=”AIRAliases.js”></script>

5	 <link rel=”stylesheet” type=”text/css” href=”http://yui.yahooapis.com/2.5.1/build/assets/skins/
	 sam/skin.css”>

6	 <script type=”text/javascript” src=”http://yui.yahooapis.com/2.5.1/build/yahoo-dom-event/
	 yahoo-dom-event.js”></script>

7	 <script type=”text/javascript” src=”http://yui.yahooapis.com/2.5.1/build/element/
	 element-beta-min.js”></script>

8	 <script src=”http://yui.yahooapis.com/2.5.1/build/container/container_core-min.js”></script>

9	 <script src=”http://yui.yahooapis.com/2.5.1/build/editor/simpleeditor-beta-min.js”></script>

10	 <script type=”text/javascript”>

11	

12	 // When the page loads, do the prep work:

13	 window.onload = function() {

14	

15		 // Create the editor on the page:

16		 var yuiEditor = new YAHOO.widget.SimpleEditor(‘editArea’, {height: ‘100%’, width: ‘100%’,
		 collapse: true});

17		 yuiEditor.render();

18	

19		 // Create an object for parent file access:

20		 var forParent = new Object();

21	

22		 // Function for setting the editor’s contents:

23		 forParent.setContents = function(str) {

24			 yuiEditor.setEditorHTML(str);

25		 }

26	

27		 // Function for returning the editor’s contents:

28		 forParent.getContents = function() {

29			 yuiEditor.saveHTML();

30			 return yuiEditor.get(‘element’).value;

31		 }

32	

33		 // Make the forParent object available

34		 // via the sandbox bridge:

35		 window.childSandboxBridge = forParent;

36	

37	 } // End of anonymous function.

38	

39	 </script>

40	 </head>

41	 <body class=”yui-skin-sam”>

42	 <textarea name=”editArea” id=”editArea”></textarea>

43	 </body>

44	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

332

This code adds to the forParent object
a method called setContents. This
method will take a string as an argu-
ment (assigned to the variable str). The
body of the method calls the yuiEditor.
setEditorHTML() function. That func-
tion is used to assign to the textarea the
actual text to be edited. In other words,
the forParent object’s setContents()
method, which will eventually be callable
by the parent script, acts as an alias to the
yuiEditor.setEditorHTML() method.

  7.	 Define a function that returns the text
being edited:

forParent.getContents = function() {

	 yuiEditor.saveHTML();

	 return yuiEditor.get(‘element’).
	  value;

}

These two lines also come from the
YUI documentation. To get the edited
text, call the saveHTML() method, and
then return the SimpleEditor object’s
get(‘element’).value attribute. This
code is wrapped inside a function defini-
tion and is defined as the getContents()
method of the forParent object.

  8.	 Make the forParent object available to
the parent script:

window.childSandboxBridge =
 forParent;

Now the forParent object, and its
setContents() and getContents()
methods, can be used by the parent
file (to be written next).

  9.	 Save the file as editor.html in your
project’s directory.

10.	 In your project’s primary HTML file,
create four buttons in the body of the
page (Script 15.4).

U
si

n
g

 t
h

e
S

an
db

ox
 B

ri
dg

e

<button onclick=”openFile();” id=
 ”btnOpen” disabled>Open</button>

<button onclick=”writeData();” id=
 ”btnSave” disabled>Save</button>

<button onclick=”saveFileAs();” id=
 ”btnSaveAs” disabled>Save As
 </button>

<button onclick=”closeFile();” id=
 ”btnClose” disabled>Close</button>

These four buttons will be used to pro-
vide basic functionality: opening a file
for editing, saving a file, saving a file as a
new file, and closing of a file. Each calls
an associated JavaScript function. Each is
also disabled to start. The Save and Close
buttons are disabled because there’s
nothing to save or close until the user
has opened a file. The Open and Save As
files are disabled because the application
needs to make some preparations first.

11.	 Add an iframe:

<iframe id=”nas” src=”editor.html”
 sandboxRoot=”http://localhost/
 air/” documentRoot=”app:/”
 width=”90%” height=”90%”>
 </iframe>

The iframe has an id value of nas and
its source is the editor.html file (Script
15.3). The domain for this content is
http://localhost/air/: a made-up value
that will place this content in a non-
application sandbox. The documentRoot is
app:/, meaning that the file will be found
in the application’s installation directory.

12.	 Within a JavaScript block, create three
global variables and an anonymous
function to be called once the page
has loaded:

var mode, file, editor = null;

window.onload = function() {

}

continues on page 335

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

333

U
sin

g
 th

e S
an

dbox B
ridg

e

Script 15.4 This script will run in the application sand-
box and include Script 15.3 in an iframe. This page
manages all the AIR file-related functionality and uses
a sandbox bridge to interact with the HTML editor.

1	 <html><!-- Script 15.4 -->

2	 <head>

3	 <title>Text Editor</title>

4	 <script type=”text/javascript”
	 src=”AIRAliases.js”></script>

5	 <script type=”text/javascript”>

6	

7	 // Global variables:

8	 var mode, file, editor = null;

9	

10	 // When the page loads, do the prep work:

11	 window.onload = function() {

12	

13		 // Get a reference to the child object

14		 // made available through the sandbox
		 bridge:

15		 editor = document.getElementById(‘nas’).
		 contentWindow.childSandboxBridge;

16	

17		 // Create a new File object:

18		 makeNewFileObject();

19	

20		 // Enable the Open and SaveAs buttons:

21		 document.getElementById(‘btnOpen’).
		 disabled = false;

22		 document.getElementById(‘btnSaveAs’).
		 disabled = false;

23	

24	 } // End of anonymous function.

25	

26	 // This function creates a new File object.

27	 function makeNewFileObject() {

28	

29		 // Make the object:

30		 file = air.File.documentsDirectory;

31	

32		 // Need an event listener for selecting
		 the file:

33		 file.addEventListener(air.Event.SELECT,
		 fileWasSelected);

34	

35	 } // End of makeNewFileObject() function.

36	

37	 // Function called when the selection
	 event occurs.

38	 function fileWasSelected(e) {

39	

Script 15.4 continued

40		 // Call the right function depending
		 upon the mode:

41		 if (mode == ‘open’) {

42			 readData();

43		 } else if (mode == ‘save’) {

44			 writeData();

45		 }

46	

47		 // Set the title as the file’s name:

48		 document.title = file.name

49	

50		 // Enable the Save and Close buttons:

51		 document.getElementById(‘btnSave’).
		 disabled = false;

52		 document.getElementById(‘btnClose’).
		 disabled = false;

53	

54	 } // End of fileWasSelected() function.

55	

56	 // Function called when the user clicks
	 Open.

57	 function openFile() {

58	

59		 // If a file is already open, close it
		 first:

60		 if (!file.isDirectory) closeFile();

61	

62		 // Set the mode:

63		 mode = ‘open’;

64	

65		 // Limit what kinds of files can be
		 opened:

66		 var filter = new air.FileFilter(‘Text’,
		 ‘*.txt;*.html;*.css;*.js’);

67	

68		 // Create the dialog:

69		 file.browseForOpen(‘Choose a text
		 file:’, [filter]);

70	

71	 } // End of openFile() function.

72	

73		 // Function called when the user clicks
		 Save As.

74	 function saveFileAs() {

75	

76		 // Set the mode:

77		 mode = ‘save’;

78	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

334

U
si

n
g

 t
h

e
S

an
db

ox
 B

ri
dg

e

Script 15.4 continued

79		 // Prompt to select the file’s name
		 and location:

80		 file.browseForSave(‘Save As’);

81	

82	 } // End of saveFileAs() function.

83	

84	 // Function called when the user clicks
	 Close.

85	 function closeFile() {

86	

87		 // Ask if the file should be saved:

88		 if (confirm(‘Save before closing?’)) {

89			 if (!file.isDirectory) {

90				 writeData();

91			 } else {

92				 saveFileAs();

93			 }

94		 }

95	

96		 // Reset the File object:

97		 makeNewFileObject();

98	

99		 // Disable the Save and Close buttons:

100		 document.getElementById(‘btnSave’).
		 disabled = true;

101		 document.getElementById(‘btnClose’).
		 disabled = true;

102	

103		 // Reset the page title:

104		 document.title = ‘Text Editor’;

105	

106		 // Clear the textarea:

107		 editor.setContents(‘’);

108	

109	 } // End of closeFile() function.

110	

111	 // Function that reads in the data.

112	 function readData() {

113	

114		 // Open the file for reading:

115		 var stream = new air.FileStream();

116		 stream.open(file, air.FileMode.READ);

117	

118		 // Read the contents and send them to
		 the editor:

119		 editor.setContents(stream.
		 readUTFBytes(stream.bytesAvailable));

Script 15.4 continued

120	

121		 stream.close();

122	

123	 } // End of readData() function.

124	

125	 // Function that writes the data to the

	 file.

126	 function writeData() {

127	

128		 // Get the text and convert line

		 endings:

129		 var data = editor.getContents();

130		 data = data.replace(/\n/g, air.File.

		 lineEnding);

131	

132		 // Open the file for writing:

133		 var stream = new air.FileStream();

134		 stream.open(file, air.FileMode.WRITE);

135	

136		 // Write the data:

137		 stream.writeUTFBytes(data);

138	

139		 // Close the file:

140		 stream.close();

141	

142	 } // End of writeData() function.

143	

144	 </script>

145	 </head>

146	 <body>

147	

148	 <button onclick=”openFile();” id=”btnOpen”

	 disabled>Open</button>

149	 <button onclick=”writeData();” id=”btnSave”

	 disabled>Save</button>

150	 <button onclick=”saveFileAs();”

	 id=”btnSaveAs” disabled>Save As</button>

151	 <button onclick=”closeFile();”

	 id=”btnClose” disabled>Close</button>

152	

153	 <iframe id=”nas” src=”editor.html”

	 sandboxRoot=”http://localhost/air/”

	 documentRoot=”app:/” width=”90%”

	 height=”90%”></iframe>

154	

155	 </body>

156	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

335

edit or create a new file. In other words,
when the user is editing file A and then
opens file B, all references to file A will
first be wiped clean.

Once the File object has been created
(by calling the function), it’s safe to
enable the Open and Save As buttons
(Figure 15.13).

15.	 Define the makeNewFileObject()
function:

function makeNewFileObject() {

	 file = air.File.
	  documentsDirectory;

	 file.addEventListener(air.Event.
	  SELECT, fileWasSelected);	

}

First, file is assigned the value of a new
File object, pointing to the user’s docu-
ments directory. Then the event listener
is added that states when a SELECT event
occurs, the fileWasSelected() function
should be called.

16.	 Begin defining the fileWasSelected()
function:

function fileWasSelected(e) {

	 if (mode == ‘open’) {

		 readData();

	 } else if (mode == ‘save’) {

		 writeData();

	 }

continues on next page

U
sin

g
 th

e S
an

dbox B
ridg

e

The three variables will be needed by
multiple functions, so they must be
global. The anonymous function will do
the preparatory work for the application.

13.	 Within the anonymous function, get a
reference to the forParent object found
in editor.html (Script 15.3):

editor = document.getElementById
 (‘nas’).contentWindow.
 childSandboxBridge;

This line assigns to the editor variable
the object made available by the child
page. So now the parent file’s editor
variable is the same as the child file’s
forParent object.

14.	 Still within the anonymous function, call
the makeNewFileObject() function and
enable the Open and Save As buttons:

makeNewFileObject();

document.getElementById(‘btnOpen’).
 disabled = false;

document.getElementById
 (‘btnSaveAs’).disabled = false;

This script uses a separate function for
creating the necessary File object. The
File object, of course, is used to refer to
the file being edited. The makeNewFil-
eObject() function will be called when
the application is first started or after a
file is closed. It’s a good idea to make a
new File object after closing an edited
file to avoid bugs when the user goes to

Figure 15.13 The application once
it has fully loaded but before a file
has been opened.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

336

This function will be called in two situa-
tions: when the user opens a file for edit-
ing and when the user chooses what to
save a file as. If the file has been opened,
the data should be read from it. If the
file has been selected for saving, the
data should be written to it. To know
which is the case, despite the fact that
the same event is triggered both times,
the global mode variable is used in a
conditional. This same logic is also used
in Script 10.2 (see that example if this
explanation isn’t sufficient for you).

17.	 Complete the fileWasSelected()
function:

	 document.title = file.name

	 document.getElementById
	  (‘btnSave’).disabled = false;

	 document.getElementById
	  (‘btnClose’).disabled = false;	

} // End of fileWasSelected()
 function.

After either reading in the data from
the selected file or saving the data to it,
these three lines are executed. The first
changes the title of the application to
the name of the file (compare Figures
15.12 and 15.13). This is just a nice little
feature that’s easy to implement.

Also, the Save and Close buttons are
finally enabled because now that a file
has been chosen (for reading from or
writing to), the user should be able to
perform either of those tasks.

18.	 Define the openFile() function:

function openFile() {

	 if (!file.isDirectory)
	  closeFile();

	 mode = ‘open’;

	 var filter = new air.FileFilter
	  (‘Text’, ‘*.txt;*.html;*.css;
	  *.js’);

U
si

n
g

 t
h

e
S

an
db

ox
 B

ri
dg

e

	 file.browseForOpen(‘Choose a text
	  file:’, [filter]);

}

This function needs to set the value of
the mode variable (so that the condi-
tional in the fileWasSelected() func-
tion, see step 16, will work), and then
generate the browse for open prompt
(Figure 15.14). The user is restricted to
only opening files with certain exten-
sions, thanks to the FileFilter object
(again, see Chapter 10).

The first line of the function states that
if the file object is not a directory, the
closeFile() function should be called.
I’ll explain why...

When the File object is first created,
it will refer to a directory (specifically,
the user’s documents directory). After
the user uses the Open or Save As but-
tons, the file will no longer represent a
directory, meaning that this conditional
will be true. In either of those cases, this
function is being called because the user
has clicked Open again (to open a dif-
ferent file), even though a file is already
open. Because this application can only
edit one file at a time, the closeFile()
function will be called, closing the cur-
rent file before opening the new one.

Figure 15.14 The browse for open prompt, which
starts the user off in their documents directory.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

337

while a file is already open (see step 18). It
starts by asking the user whether to save
the file before closing it (Figure 15.16).
If the user clicks OK, the existing data
needs to be written to a file.

If the user was editing a file that was
opened or previously saved, the file
object is not a directory, the second
conditional is true, and the data just
needs to be written to the file. If the user
just started the application and began
typing and now the user wants to save
what was done prior to opening a new
file, the file object is a directory and the
user needs to be prompted as to what
name the data should be saved as (see
Figure 15.15).

21.	 Still in the closeFile() function, reset
the application:

makeNewFileObject();

document.getElementById(‘btnSave’).
 disabled = true;

document.getElementById(‘btnClose’).
 disabled = true;

document.title = ‘Text Editor’;

This code takes some steps to return the
application to its original state. The first

continues on next page

U
sin

g
 th

e S
an

dbox B
ridg

e

Figure 15.15 The Save As prompt, which also starts
the user off in their documents directory.

19.	 Define the saveFileAs() function:

function saveFileAs() {

	 mode = ‘save’;

	 file.browseForSave(‘Save As’);

}

This function is called when the user
clicks the Save As button. The user would
do so under one of two circumstances:
when the user wants to save the file being
edited under a new name or when the
user is creating a new file that needs a
name in order to be saved. This function
sets the mode, and then creates a browse
for save prompt (Figure 15.15).

20.	 Begin defining the closeFile()
function:

function closeFile() {

	 if (confirm(‘Save before
	  closing?’)) {

		 if (!file.isDirectory) {

			 writeData();

		 } else {

			 saveFileAs();

		 }

	 }

This function will be called when the user
clicks Close or when the user clicks Open

Figure 15.16 Before closing the
current file, the user is asked
whether to save the file first.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

338

line regenerates the File object, so its
current values are forgotten. The next
two lines disable the Save and Close but-
tons, because there’s nothing to be saved
or closed (after closing the current file).
Finally, the title of the page is reset to its
default value.

22.	 Complete the closeFile() function:

	 editor.setContents(‘’);	

} // End of closeFile() function.

The last thing this function should do
is clear out the contents of the text
editor. To do that, it needs to call the
iframe’s forParent.setContents() func-
tion, providing it with an empty string.
Since the editor variable represents the
functionality made visible to the parent
by the child file, calling its setContents()
method has the effect of calling editor.
html’s forParent.setContents() method.

23.	 Define the readData() function:

function readData() {

	 var stream = new air.
FileStream();

	 stream.open(file, air.FileMode.
	  READ);

	 editor.setContents(stream.
	  readUTFBytes(stream.
	  bytesAvailable));

	 stream.close();

}

This function reads in the contents of
the text file and assigns the contents
to the textarea in the iframe. The code
for reading in the contents comes from
Chapter 10 (note that for simplicity
sake synchronous reading and writing is
performed). To place the file’s contents in
the textarea, the editor.setContents()
method is called. For its argument, which
is the text to be edited, the value returned
by stream.readUTFBytes() is used.

U
si

n
g

 t
h

e
S

an
db

ox
 B

ri
dg

e

24.	 Define the writeData() function:

function writeData() {

	 var data = editor.getContents();

	 data = data.replace(/\n/g,
	  air.File.lineEnding);

	 var stream = new air.FileStream();

	 stream.open(file, air.FileMode.
	  WRITE);

	 stream.writeUTFBytes(data);

	 stream.close();

}

This code is also explained in Chapter
10. To fetch the content from the
textarea, the editor.getContents()
method is called. Then the new lines
in the content are replaced with the
system-specific line ending characters.
The file is opened for writing, the data is
written there, and the file is closed.

25.	 Save, test, debug, and run the completed
application.

You should see that this very practical,
real-world application works rather well
(and, thanks to AIR, it’s cross-platform
compatible!). To flesh this out, I would
probably customize the toolbar (see
the YUI documentation for details) and
include the necessary YUI files in the
application so it can be run when the
user is offline.

	Tips

n	 Remember that the AIR model purpose-
fully separates potentially dangerous com-
binations. When using a sandbox bridge to
create an application that functions within
these confines, be careful that you don’t
undermine the AIR security model.

n	 Some frameworks take into account
the AIR security model. Check out a
framework’s Web site to see if it will work
within the AIR application sandbox.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

339

Reading from and writing to ByteArrays
is accomplished using the same methods
as reading from and writing to FileStream
objects. To write plain text to a ByteArray,
you would use:

output.writeUTFBytes(‘some text);

Once you’ve stored data in the ByteArray,
call the EncryptedLocalStore class’s
setItem() method to store it in an encrypted
format. Its first argument is a string name
you give to the data, the second argument is
the data itself:

air.EncryptedLocalStore.setItem(‘thing’,
 output);

Note that you don’t create or use an object of
type EncryptedLocalStore, you just call its
methods directly.

To retrieve data stored this way, call the
getItem() method, passing it the name of
the stored item:

var input = air.EncryptedLocalStore.
 getItem(‘thing’);

Now the input variable is a ByteArray of
the stored data. To find its string value, you
would need to read that from the ByteArray:

var data = input.readUTFBytes(input.
 length);

To delete an existing stored value, call
removeItem():

air.EncryptedLocalStore.
 removeItem(‘name’);

To remove every stored value, call reset():

air.EncryptedLocalStore.reset();

A logical use of EncryptedLocalStore is to
store a user’s access credentials (like to an
online resource). Toward that end, this next
example will take some information from
the user, store it in an encrypted format,
and then retrieve it when a button is clicked
(Figure 15.17).

Sto
rin

g
 En

crypted D
ata

Storing Encrypted Data
Chapter 10 discusses all the information you
need to create, write to, and read from files in
an Adobe AIR application. The data writ-
ten to files using those techniques have only
limited security protections: They’re just files
on the computer and are accessible by any
user or application. The same goes for the
ideas covered in Chapters 11, “Working with
Databases,” and 12, “Database Techniques”:
Data stored in an SQLite database is acces-
sible by any user or application.

A more secure method of storing data is to
use AIR’s EncryptedLocalStore class. This
class gives an application the ability to perma-
nently store and retrieve data in a way that’s
only usable by the application that created it.
You can store up to 10 MB of data this way,
which is plenty for any application. Because
the data is still being stored in a file on the
user’s computer, it’ll continue to be available
the next time the user runs the program.

To start, you’ll need to create a ByteArray
object, because the data is stored in binary
format. The ByteArray class is introduced in
Chapter 10, but here’s how you would create
such an object:

var output = new air.ByteArray();

Figure 15.17 The application with a form for request-
ing the user’s information and buttons to both
retrieve and reset that information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

340

To use an encrypted local store:
1.	 In your project’s primary HTML file,

create the form (Script 15.5):
<p>Username: <input type=”text”
 id=”name”></p>

<p>Password: <input type=”password”
 id=”password”></p>

<p><button onclick=
 ”submitAccessInfo();”>Submit
 </button></p>

The form contains one text input, one
password input, and a button that sub-
mits the values to be stored.

2.	 After the form, create two more buttons:
<p><button onclick=”clearData();”>
 Reset Access Information</
 button></p>

<p><button onclick=
 ”getAccessInfo();”>
 Retrieve Access Information
 </button></p>

The first button, when clicked, will clear
out the stored data. The second button,
when clicked, will display the previously
stored values in an alert (Figure 15.18).

3.	 In the JavaScript section, define the
clearData() function:
function clearData() {

	 air.EncryptedLocalStore.reset();

}

To clear out the previously stored values,
this function executes the reset()
method of the EncryptedLocalStore class.

4.	 Begin defining the submitAccessInfo()
function:
function submitAccessInfo() {

	 clearData();

	 var name = document.
	  getElementById(‘name’).value;

	 var password = document.
	  getElementById(‘password’).
	  value;

St
o

ri
n

g
 E

n
cr

yp
te

d
D

at
a

Figure 15.18 For demonstrative purposes, this appli-
cation will display the stored values using an alert.

Script 15.5 This application securely stores user-
submitted data in an encrypted format.

1	 <html><!-- Script 15.5 -->
2	 <head>
3	 <title>Local Access Store</title>
4	 <script type=”text/javascript”
	 src=”AIRAliases.js”></script>
5	 <script type=”text/javascript”>
6	
7	 // Function for clearing the stored data.
8	 function clearData() {
9		 air.EncryptedLocalStore.reset();
10	 }
11	
12	 // Function that stores the form values.
13	 function submitAccessInfo() {
14	
15		 // Clear the current values, just in
		 case:
16		 clearData();
17	
18		 // Get the form data:
19		 var name = document.getElementById
		 (‘name’).value;
20		 var password = document.getElementById
		 (‘password’).value;
21	
22		 // Create a ByteArray object:
23		 var output = new air.ByteArray();
24	
25		 // Store the value:
26		 output.writeUTFBytes(name);
27		 air.EncryptedLocalStore.setItem(‘name’,
		 output);
28	
29		 // Repeat for the password:
30		 output = new air.ByteArray();
31		 output.writeUTFBytes(password);
32		 air.EncryptedLocalStore.setItem
		 (‘password’, output);
33	

(script continues on next page)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

341

This function will be called when the user
clicks the Submit button. It needs to store
the form values in an encrypted format. It
starts by calling the clearData() function.
Doing so prevents bugs from occurring.

Then the function retrieves the values
from the form.

5.	 Store the data using the
EncryptedLocalStore:

var output = new air.ByteArray();

output.writeUTFBytes(name);

air.EncryptedLocalStore.
 setItem(‘name’, output);

output = new air.ByteArray();

output.writeUTFBytes(password);

air.EncryptedLocalStore.
 setItem(‘password’, output);

A ByteArray object is created first.
Then the name value is written to the
ByteArray. Next the setItem() method
is called, providing it with a label of name
and the ByteArray, which represents the
actual data. Then this process is repeated
for the password.

6.	 Complete the submitAccessInfo()
function:

	 document.getElementById(‘name’).
	  value = null;

	 document.getElementById
	  (‘password’).value = null;

	 alert(‘The information has been
	  stored securely!’);

} // End of submitAccessInfo()
 function.

continues on next page

Sto
rin

g
 En

crypted D
ata

Script 15.5 continued

34		 // Reset the form:
35		 document.getElementById(‘name’).value =
		 null;
36		 document.getElementById(‘password’).
		 value = null;
37	
38		 // Notify the user:
39		 alert(‘The information has been stored
		 securely!’);
40	
41	 } // End of submitAccessInfo() function.
42	
43	 // Function that retrieves the form values.
44	 function getAccessInfo() {
45	
46		 // Get the stored ByteArray data:
47		 var name = air.EncryptedLocalStore.
		 getItem(‘name’);
48		 var password = air.EncryptedLocalStore.
		 getItem(‘password’);
49	
50		 // Place the values in a string:
51		 var msg = ‘Name = ‘;
52		 msg += (name != null) ? name.
		 readUTFBytes(name.length) : ‘<no value>’;
53		 msg += ‘\nPassword = ‘;
54		 msg += (password != null) ? password.
		 readUTFBytes(password.length) : ‘<no
		 value>’;
55		
56		 // Print the string:
57		 alert(msg);
58	
59	 } // End of getAccessInfo() function.
60	
61	 </script>
62	 </head>
63	 <body>
64	
65	 <h3>Enter your access information:</h3>
66	 <p>Username: <input type=”text”
	 id=”name”></p>
67	 <p>Password: <input type=”password”
	 id=”password”></p>
68	 <p><button onclick=”submitAccessInfo();”>
	 Submit</button></p>
69	 <hr>
70	 <p><button onclick=”clearData();”>Reset
	 Access Information</button></p>
71	 <p><button onclick=”getAccessInfo();”>
	 Retrieve Access Information</button></p>
72	
73	 </body>
74	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

342

After clearing out the form values, the
user is alerted that the data was stored
(Figure 15.19).

7.	 Begin defining the getAccessInfo()
function:

function getAccessInfo() {

	 var name = air.EncryptedLocal
	  Store.getItem(‘name’);

	 var password = air.EncryptedLocal
	  Store.getItem(‘password’);

This function will be called when the user
clicks the Retrieve Access Information but-
ton. It starts by fetching the encrypted data
from the local store, assigning it to the name
and password variables. At this point, both
are objects of type ByteArray, which is what
the getItem() method returns.

8.	 Create the alert message:

var msg = ‘Name = ‘;

msg += (name != null) ?
 name.readUTFBytes(name.length) :
 ‘<no value>’;

msg += ‘\nPassword = ‘;

msg += (password != null) ?
 password.readUTFBytes(password.
 length) : ‘<no value>’;

The alert message will be a string like

Name = somename

Password = somepass

You can see this in Figure 15.18. To
generate that message is fairly simple:
Just apply the readUTFBytes() function
to each ByteArray to get the stored value.
However, it is possible that this function
will be called before any values are stored, St

o
ri

n
g

 E
n

cr
yp

te
d

D
at

a

Figure 15.19 The result after the form data has been
securely placed in an EncryptedLocalStore.

Figure 15.20 If no values are stored in the encrypted
local store, the alert will look like this.

so to test for that, a condition confirms
that each ByteArray doesn’t have a null
value. Using the ternary operator makes
quick work of this conditional, but you
could also write each out like this:

if (name != null) {

	 msg += name.readUTFBytes(name.
	  length);

} else {

	 msg += ‘<no value>’;

}

Figure 15.20 shows the result if this
function is called when no values have
been stored.

  9.	 Complete the getAccessInfo() function.

	 alert(msg);

} // End of getAccessInfo() function.

10.	 Save, test, debug, and run the completed
application.

	Tips
n	 The EncryptedLocalStore uses CBC 128-

bit encryption, in case you were curious.

n	 Only content in the application security
sandbox can access EncryptedLocalStore
data.

n	 Uninstalling an application does not remove
the stored data from the user’s computer.

n	 The setItem() method takes an optional
third argument that increases the security
of stored data. If you set this value to true,
the stored data is “strongly bound” to the
application that stored it. This means
that even an updated version of the same
application can’t access that data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Security Techniques

343

This is a very useful validation technique,
particularly for numeric values. The
JavaScript parseInt() and parseFloat()
functions will force a value into a numeric
format, if they can. If a value cannot be
parsed as an integer or a float, the result
will be the special value NaN, short for
not a number.

So to validate an age value, you might
do this:

if ((parseInt(age) != NaN) &&
 (age > 0) && (age < 120)) { // OK!

u	 Test values against explicit acceptable
values.

This isn’t always possible, but, for
example, if an application uses a gender
value, you know it can only be equal to M
or F (or Male or Female).

u	 Apply regular expressions whenever
possible.

Regular expressions are an advanced
but very important topic when it comes
to security, and they are supported in
JavaScript. Note that regular expressions
can only be used when a clearly identifi-
able pattern exists: For example, you can
effectively validate an email address with
them but not a mailing address.

u	 Watch for and strip tags from strings.

If you search online you’ll find code for
stripping HTML and JavaScript code
from a string. If you apply the techniques
you find, you’ll go a long way toward
improving the security of your JavaScript
code. Even looking for the start of a tag
can help:

if (strName.search(/</)) { //
 Potential problem.

This assumes that there’s no valid reason
the less than symbol (which is the start of
any tag) would be in the value.

Validatin
g

 D
ata

Validating Data
One of the most important security tech-
niques that any application, written using
any technology, should use is validation of
external data. Use of external data with little
or no validation is the primary way malicious
users can manipulate an application or script
to wreak all sorts of havoc on a computer.
External data is anything that’s not written
into the application, including values such
as those:

u	 Submitted by an application’s user

u	 Retrieved from a database

u	 Found in an included file

u	 Read from an online resource

The fact is you cannot trust external data,
even if it’s coming from your own Web site
or a database you created!

With an AIR application built using HTML,
the validation would take place within
the JavaScript code, so I outline some best
JavaScript validation practices in this next
series of bullet points. The one overriding
rule is that how you go about validating any
piece of data is based on the data’s type, its
expected or unexpected values, and how that
data will be used. Not all techniques will be
applicable in every situation, but you should
use the most restrictive approach possible
for all external data.

To validate data:

u	 For strings, at the very least, make sure
they have a positive length to confirm
that they aren’t empty.

u	 For numbers, check that a value is in an
appropriate range.

u	 Use type casting to force a value to be of a
specific type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15

344

Best Security Practices
I’ll conclude this chapter with more recom-
mendations as to how you can improve
an application’s security. Many of these
techniques have been mentioned elsewhere
in the book and some may be common sense,
but it’s often useful to have a quick reference
for such things.

One last word on security, though: Many
people, particularly those new to the topic,
think of security as a binary state—that
something is either secure or insecure. This
is definitely not the case. The security of
a script or application ranges from more
secure to less secure. The goal of any devel-
oper, therefore, is to make an application as
secure as possible.

To improve an application’s security:

u	 Avoid using eval(), if at all possible.

u	 Avoid using javascript: in an href value.

u	 Watch uses of innerHTML and outerHTML
properties.

These first three bullets also speak
toward the kinds of actions that are not
possible in the application sandbox,
because of their potential harm.

u	 Besides validating data used in database
queries, use prepared statements (see
Chapter 12) for better database-related
security.

B
es

t
S

ec
u

ri
ty

 P
ra

ct
ic

es

u	 Never, ever have a program alter its appli-
cation directory.

Because content in the application’s
installation directory can be run in the
application sandbox (i.e., with the most
power), an application should never
manipulate the contents of this directory.
If it does, and a malicious user gets the
application to write something harmful
there, the user’s entire computer could be
compromised.

u	 Use secure connections for sensitive
network activity.

Although the examples in Chapter 13,
“Networking,” use HTTP connections,
you can also use HTTPS connections as
warranted.

u	 Be especially careful when using external
data for a file or directory’s name.

u	 Purchase and use a professional certifi-
cate for signing your applications from
an accredited company like Thawte or
VeriSign.

Most of the techniques in this chapter
speak toward improving the security of
an application from the developer’s per-
spective. The security of an application
from the perspective of the user install-
ing it rests largely on the reassurances
provided by the certificate of authentic-
ity. If you’re going to distribute applica-
tions you create, a self-signed certificate
is totally unacceptable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

345

Deploying
Applications

16
This final chapter in the book discusses the finishing touches that your complete
Adobe AIR application might include. To start, the first two sections explain the
optional application descriptor file elements. These can be used to provide more
information to the end user, customize the application’s installation, or have your
application use its own icons.

The third topic in this chapter describes how to provide a seamless installation of your
applications. This installation method—where the application will be installed after
the user clicks a link on a Web page—can be simpler for the end user, more so than
having the user formally download and run the .air file. After that discussion, the
chapter provides an example that details three more general techniques that a running
application might use. The chapter concludes with a longish but useful example to
demonstrate how to make an application update itself.

D
eployin

g
 A

pplicatio
n

s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

346

More Application
Descriptor File Options
Chapter 2, “Creating an Application,” walks
through the required application descriptor
file elements, which are

u	 id

u	 filename

u	 version

u	 initialWindow

u	 content (within initialWindow)

But the application descriptor file contains
many optional elements, all of which I’ll
introduce here. The sidebar “Associating
File Types” goes into a bit more detail on
the optional fileTypes element, and the
next section of the chapter explains how to
use the icon element. Of course, if you open
the descriptor-template.xml file, which is

M
o

re
 A

pp
li

ca
ti

o
n

 D
es

cr
ip

to
r

Fi
le

 O
pt

io
n

s

Figure 16.1 Some of the information in the application descriptor file, like name
and description, appear during the application’s installation.

found within the SDK’s templates direc-
tory, you’ll see all these elements, along with
additional descriptions of them.

To use optional application settings:

u	 Use the name, description, and copyright
elements to personalize your application.

Although it’s optional, you should almost
always provide a name value. It’s displayed
by the installer (Figure 16.1) and used to
determine where the application should
be installed (within the default installa-
tion folder). The description value also
shows up during the installation process
(see Figure 16.1). Including a copyright
value, which will appear in an About dia-
log box on Mac OS X, is a legal protection
for you, the developer.

u	 Customize the main application window
using the initialWindow element.

The initialWindow element is required,
as is its child element named content.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

347

the window to have a set size and location,
use the width, height, x, and y values.

I’ll also add that although the visible
element is optional, you’ll want to use it if
the user should be able to see your appli-
cation, because this element’s default
value is false.

u	 Set an installFolder value to affect
where the application will be installed.

This element allows you to specify a
subdirectory within the default instal-
lation directory where the application
should be installed (Figure 16.2). You
might want to do this if the program is
part of a suite, so that all the applications
are grouped together.

Similarly, the programMenuFolder element
dictates a subdirectory in which to place
the Start/Programs menu shortcut on
Windows.

continues on next page

M
o

re A
pplicatio

n
 D

escripto
r File O

ptio
n

s

But the initialWindow element can also
have these subelements:
s	 title

s	 systemChrome

s	 transparent

s	 visible

s	 minimizable

s	 maximizable

s	 resizable

s	 width

s	 height

s	 x

s	 y

s	 minSize

s	 maxSize

Many of these settings play into the
material covered in Chapter 6, “Making
Windows,” and they all apply to only the
first application window (the primary con-
tent window). For example, if you’d like

Figure 16.2 If the application descriptor file’s installFolder element is used,
the Installation Location value will be a subfolder with that name (here, AIR
Examples) within the default AIR application folder (/Applications on Mac OS X
as shown here).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

348

u	 Use the customUpdateUI element to cre-
ate your own update interface.

If a user installs a newer version of the
same application, by default, the AIR
application installer will handle that
update. If you’d rather have your pro-
gram manage the update process, set
this element’s value to true. Later in this
chapter you’ll see an example of how to
have an application update itself.

u	 Set allowBrowserInvocation if you want
this program to be startable through a
Web link.

Using a Shockwave file, a link in a Web
page can be used to start a desktop AIR
application if this element’s value is set
to true.

	Tips

n	 Your application can access all the appli-
cation descriptor file’s settings by using
this code:

var data = air.NativeApplication.
nativeApplication.
applicationDescriptor;

After that line, data is a string of text.
You’ll then need to turn it into XML
using a DOMParser object (see Chapter
14, “Using Other Media”) to access the
element values. You can see an example
of this in the “Updating an Application”
section of this chapter.

n	 The publisher ID of the current program
is available in air.NativeApplication.
nativeApplication.publisherID. This
value comes from the digital certificate
used to sign the application.

n	 The application ID of the current pro-
gram, which is defined within the appli-
cation descriptor file, is available in air.
NativeApplication.nativeApplication.
applicationID.M

o
re

 A
pp

li
ca

ti
o

n
 D

es
cr

ip
to

r
Fi

le
 O

pt
io

n
s

Associating File Types

Your application descriptor file can also
indicate what types of files should be
associated with the application. If the
named file type (or types) isn’t already
associated with another program on
that computer, the AIR application will
become the default program for files of
that type.

To associate a file type with a program,
add a fileTypes element with one
fileType subelement for each associ-
ated file type. The fileType element has
required name and extension subele-
ments, along with optional description
and icon subelements (the descriptor-
template.xml file that comes with the
AIR SDK has all this spelled out for you).
There’s also an optional contentType sub-
element, which refers to the file’s MIME
type. Although it’s optional, it’s generally
best to use this element, too.

An AIR application can also invoke the
NativeApplication.setAsDefaultAp-
plication() method to instruct the
operating system to make this program
the default for the current file type. Your
programs should never do this without
the user’s express permission.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

349

As for this last rule, ideally you would pro-
vide a version of the icon in each of the sizes.
If you don’t, the operating system will scale
the closest available icon to the size it needs.

To specify an application’s icon:

1.	 Create an icon for your application.

Use any program (I’m pretty sure Adobe
has one) to make the image that best
represents your application or just looks
cool—or, in my case, one that you put
together in five minutes because you have
limited artistic skills (Figure 16.4).

2.	 Save the icon in PNG format in four sizes:
128x128, 48,x48, 32x32, and 16x16.

It’s not required, but you should indicate
the size in the filenames—MyApp_
16.png, MyApp_32.png, MyApp_48.png,
MyApp_128.png—so they’ll be easy to ref-
erence in the application descriptor file.

3.	 Copy the icons to your project’s directory.

I recommend putting them within their
own icons folder, so they’re kept separate
from the rest of the application content.

continues on next page

U
sin

g
 Cu

sto
m

 Ico
n

s

Figure 16.3 The generic
icon used by default for
Adobe AIR applications.

Figure 16.4 My sample
application’s visual
representation (with
acknowledgments to
Piet Mondrian).

Using Custom Icons
In the previous section of this chapter,
several of the application descriptor file ele-
ments are highlighted. Here, I’ll discuss one
more element: icon. The icon element con-
tains four subelements, each representing
the name of the icon file in a particular size:

<icon>
	 <image16x16>icon16.png</image16x16>
	 <image32x32>icon32.png</image32x32>
	 <image48x48>icon48.png</image48x48>
	 <image128x128>icon128.png
	  </image128x128>
</icon>

You can use these elements to identify the
icons used to represent your application. If
you don’t take this step, the application will
use the default Adobe AIR icon (Figure 16.3).

The rules for creating your own application
icons are as follows:

u	 The icons must be of PNG type.

u	 The icons must be included in the built
application (i.e., added when you create
the .air file).

u	 You must provide at least one icon using
any of the listed sizes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

350

4.	 Edit the project’s application descrip-
tor file so that it uses the icon element
(Script 16.1).

If you placed the icons within an icons
folder, the XML to add would be

<icon>

	 <image16x16>icons/MyApp_16.png
	  </image16x16>

	 <image32x32>icons/MyApp_32.png
	  </image32x32>

	 <image48x48>icons/MyApp_48.png
	  </image48x48>

	 <image128x128>icons/MyApp_128.png
	  </image128x128>

</icon>

This can go anywhere in the application
descriptor file as long as it’s a child of
the root element (i.e., not placed within
another element like initialWindow).

5.	 Be certain to include the icons when you
go to build the application.

How you do this depends on how you
build the application. See Chapter 4,
“Basic Concepts and Code,” for demon-
strations using Aptana Studio, Adobe
Dreamweaver, or the command-line adt.

6.	 After installing the application, confirm
that it uses the custom icon (Figure 16.5).

	Tip

n	 As you’ll see later in the chapter, an
application’s icon is also used in alert
dialogs on Mac OS X.

U
si

n
g

 C
u

st
o

m
 Ic

o
n

s

Figure 16.5 The AIR appli-
cation now uses its own
custom icon instead of the
default one (Figure 16.3).

Script 16.1 By using the icon element within the
application descriptor file, an application can use
custom icons.

1	 <?xml version=”1.0” encoding=”utf-8” ?>

2	 <application xmlns=”http://ns.adobe.com/
	 air/application/1.0”>

3	

4		 <id>com.dmci.air.Ch16</id>

5		 <filename>Update Example</filename>

6		 <name>Update Example</name>

7		 <version>2.1</version>

8		 <description>This is the description
		 of this application. It’s not very
		 descriptive, admittedly.</description>

9		 <copyright>2008</copyright>

10		

11		 <initialWindow>

12			 <content>script_16_02.html</content>

13			 <visible>true</visible>

14		 </initialWindow>

15		

16		 <installFolder>AIR Examples
		 </installFolder>

17		 <programMenuFolder>AIR Examples
		 </programMenuFolder>

18		

19		 <icon>

20			 <image16x16>icons/MyApp_16.png
			 </image16x16>

21			 <image32x32>icons/MyApp_32.png
			 </image32x32>

22			 <image48x48>icons/MyApp_48.png
			 </image48x48>

23			 <image128x128>icons/MyApp_128.png
			 </image128x128>

24		 </icon>

25	

26	 </application>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

351

that have Flash Player version 9, update 3, or
later installed.

To provide a seamless install:

1.	 Create, test, debug, and build your AIR
application.

For the sake of these steps, let’s say you
end up with a file called MyApp.air.

2.	 Create an image for the seamless installer.

The seamless installer code will create a
“badge” containing an image with some
text underneath (Figure 16.6). The
image should be approximately 215 pixels
wide and 100 pixels tall.

3.	 Open a copy of default_badge.html in
your text editor or IDE.

This file, also found within the SDK’s
samples/badge folder, contains all the
code necessary for placing the seamless
install link on an HTML page. Although
you’ll eventually want to copy the proper
code out of this page and place it within
your own site’s context, it’s best to start
with this sample file to make sure it all
works properly.

continues on next page

S
eam

less In
stallatio

n
s

Seamless Installations
Chapter 1, “Running AIR Applications,” shows
how a user can install an AIR application once
the user has the .air file. Because installing
an application using that file works easily, you
can distribute your applications in the same
way you might distribute any file, via:

u	 CD-ROM

u	 Email

u	 FTP server

u	 Flash drive

You can also make the file available for
download from your Web site. However, if
that’s how you’re distributing an AIR appli-
cation, an alternative is to use the seamless
installation feature. A seamless installation
installs the application on the user’s com-
puter, including the AIR runtime, if neces-
sary, without the user formally downloading
and executing the file. In other words, it’s a
one-click-while-surfing installation.

Seamless installation uses the badge.swf
file that comes with the AIR SDK (in the
samples/badge folder). It works with browsers

Figure 16.6 The sample badge that comes with the
AIR SDK.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

352

4.	 Find the call to the AC_FL_RunContent()
function:

AC_FL_RunContent(

‘codebase’,’http://fpdownload.
 macromedia.com/pub/shockwave/
 cabs/flash/swflash.cab’,

‘width’,’217’,

‘height’,’180’,

‘id’,’badge’,

‘align’,’middle’,

‘src’,’badge’,

‘quality’,’high’,

‘bgcolor’,’#FFFFFF’,

‘name’,’badge’,

‘allowscriptaccess’,’all’,

‘pluginspage’,’http://www.
 macromedia.com/go/getflashplayer’,

‘flashvars’,’appname=
 My%20Application&appurl=
 myapp.air&airversion=
 1.0&imageurl=test.jpg’,

‘movie’,’badge’);

This function, which is defined within
the AC_RunActiveContent.js file that’s
included by this page, does all the work.
The function call in the HTML page is
several lines long, with lots of values
being sent to the function.

5.	 Within the function call found in step 4,
change the value that starts with app-
name= and ends with test.jpg to match
the values for your application.

This value, which comes after flashvars,
is a string of name=value pairs that are
used to customize the seamless installa-
tion link. To edit this, you’ll want to leave
the names, equal signs, and ampersands
intact, changing the values that come
after each equals sign.

S
ea

m
le

ss
 In

st
al

la
ti

o
n

s

Figure 16.7 The customized seamless installer badge
created for my application.

The appname value should be the col-
loquial name of the application. Note
that this needs to be encoded as it might
be in a URL (for example, the name My
Application becomes My%20Application).
For the appurl value, use an absolute URL
to the .air file on your Web site (e.g.,
http://www.example.com/MyApp.air). The
airversion value reflects the minimum ver-
sion of the Adobe AIR runtime required.

The imageurl value should be the URL
(absolute or relative) for the image file
created in step 2. It is optional. Two more
optional name=value pairs you can add
are buttoncolor and messagecolor. The
former is the color of the download but-
ton and the latter is the color of the text
message displayed if the AIR runtime is
not installed. Both take hex values.

In the end, you might edit this string
to read:

appname=My%20App&appurl=http://
www.example.com/MyApp.air&airversion
=1.0&imageurl=images/badge.png&butto
ncolor=f7f26e&messagecolor=000000

6.	 Upload default_badge.html, badge.swf,
AC_RunActiveContent.js, the image, and
the .air file to your server.

7.	 Load the Web page in your browser
(Figure 16.7).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

353

	Tips

n	 You can create your own Shockwave
file, replacing badge.swf, to further cus-
tomize the seamless installation process.
This process is covered in the online
documentation.

n	 To ensure that your server properly
delivers manually downloaded AIR files
to the end users, tell the Web serving
application (Apache, IIS, etc.) to associ-
ate the .air extension with application/
vnd.adobe.air-application-installer-
package+zip. Alternatively, you could zip
the .air file so it’s always just down-
loaded to the user’s computer.

S
eam

less In
stallatio

n
s

Figure 16.8 When the user clicks on the badge, the user will be given the
choice of opening the file (i.e., installing it immediately), saving it, or canceling
the operation.

8.	 Click the Install Now link to confirm that
the seamless install will work.

If the badge is configured properly, the user
(which is to say you, for now) should be
prompted after clicking that link (Figure
16.8). Clicking the Open option in the
prompt will begin the installation process.

9.	 If the seamless install works, take the nec-
essary code out of default_badge.html and
place it within your own Web page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

354

More Application Ideas
In this next example, I’ll discuss three more
techniques that applications can incorpo-
rate. The first is detecting whether or not
the application has been run before. This
is useful to know so that the program can
do whatever setup is required the first time
the program runs. This may include getting
information from the user, setting up a data-
base, and so forth.

The second technique is having the program
automatically start when the user logs in. To
do that, set air.NativeApplication.native-
Application.startAtLogin equal to true.
Prior to taking this step, you should always
first confirm that the user wants the applica-
tion to launch when she or he logs in.

The third technique is detecting whether
the user is actively using the computer
(i.e., using the keyboard and mouse) or is
idle. To do that, add event listeners to the
NativeApplication object. You’ll want to
listen to USER_IDLE and USER_PRESENT events.
A user is considered idle when the mouse or
keyboard hasn’t been used for longer than
the air.NativeApplication.nativeAppli-
cation.idleThreshold value (by default
this is five minutes). So, by default, after five
minutes of inactivity, a USER_IDLE event is
triggered. Whenever the user does use the
mouse or keyboard again, the USER_PRESENT
event is triggered. You might use this
information to tidy up an application’s use
of resources when the user goes idle (for
example, disconnecting from a database or
closing an open file).

To use these new techniques:

1.	 In your project’s primary HTML file, cre-
ate a File object (Script 16.2):

var file = air.File.
 applicationStorageDirectory.
 resolvePath(‘prefs.xml’);

M
o

re
 A

pp
li

ca
ti

o
n

 Id
ea

s

Most applications use a preferences file,
which is what this object is a reference
to. That file will contain XML data and
be stored in the application’s storage
directory. Chapter 14 demonstrates this
concept in a fully functional example.
You’ll also want to copy the prefs.xml file
(Script 14.6) into this project’s folder.

2.	 Begin an anonymous function to be
called after the application has loaded:

window.onload = function() {

3.	 If the preferences file doesn’t exist, copy
one from the application directory:

if (!file.exists) {

	 var original = air.File.
	  applicationDirectory.
	  resolvePath(‘prefs.xml’);

	 original.copyTo(file);

If there is no prefs.xml file in the applica-
tion storage directory, the one that comes
with the installed application needs to be
copied there, which is what the second
and third lines do.

Most important, for the sake of this
example, the conditional is a good and
simple test to see if the application is
being run for the first time. Unless some-
thing went awry, the preferences file will
not exist (in the storage directory) only
the first time the user runs this program.

4.	 If the user wants this application to auto-
matically launch, establish that:

if (confirm(‘Always start
 application when you log in?’)) {

	 air.NativeApplication.
	  nativeApplication.startAtLogin =
	  true;	

}

continues on page 356

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

355

M
o

re A
pplicatio

n
 Ideas

Script 16.2 Three new ideas are demonstrated by this program: checking if it has run before, setting it to automati-
cally open when the user logs in, and watching for user activity and inactivity.

1	 <html><!-- Script 16.2 -->
2		 <head>
3			 <title>Three New Ideas</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6	
7			 // Create the object associated with the preferences file:
8			 var file = air.File.applicationStorageDirectory.resolvePath(‘prefs.xml’);
9	
10			 // Function called when the application loads.
11			 window.onload = function() {
12	
13				 // If the preferences file doesn’t exist,
14				 // the user hasn’t run this program before.
15				 if (!file.exists) {
16	
17					 // Copy the preferences file to its final destination:
18					 var original = air.File.applicationDirectory.resolvePath(‘prefs.xml’);
19					 original.copyTo(file);
20	
21					 // See if the user wants the program to start automatically:
22					 if (confirm(‘Always start application when you log in?’)) {
23						 air.NativeApplication.nativeApplication.startAtLogin = true;
24					 }
25	
26				 } // End of !file.exists IF.
27	
28				 // Check if this program is automatically launching:
29				 if (air.NativeApplication.nativeApplication.startAtLogin) {
30					 document.getElementById(‘launch’).checked = true;
31				 }
32	
33			 } // End of anonymous function.
34	
35			 // Adjust idle time to 30 seconds:
36			 air.NativeApplication.nativeApplication.idleThreshold = 30;
37	
38			 // Add event listeners:
39			 air.NativeApplication.nativeApplication.addEventListener(air.Event.USER_IDLE, userIdle);
40			 air.NativeApplication.nativeApplication.addEventListener(air.Event.USER_PRESENT, userActive);
41	
42			 // Function called when the user goes idle:
43			 function userIdle(e) {
44				 document.getElementById(‘idle’).checked = true;
45			 }
46	
47			 // Function called when the user returns:
48			 function userActive(e) {
49				 document.getElementById(‘idle’).checked = false;
50			 }
51	
52			 </script>
53		 </head>
54		 <body>
55		 <h3>Some Application</h3>
56		 Automatically Launch: <input type=”checkbox” id=”launch”>

57		 Idle: <input type=”checkbox” id=”idle”>
58		 </body>
59	 </html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

356

For simplicity sake, a simple confirma-
tion dialog (Figure 16.9) will ask the user
if this program should automatically start
when the user logs in. If the user clicks
OK, the operating system is notified of
this request by assigning the Boolean
value true to air.NativeApplication.
nativeApplication.startAtLogin.

5.	 Check if the program is set to automati-
cally launch:

if (air.NativeApplication.
 nativeApplication.startAtLogin) {

	 document.getElementById(‘launch’).
	  checked = true;

}

A check box in the application’s window
will reflect the user’s decision (Figure
16.10). The first time the user runs this
application, if the user clicked OK in the
confirmation dialog, this conditional will
naturally be true. It will also be true every
subsequent time the application is loaded
(again, assuming the user clicked OK).

6.	 Complete the anonymous function:

} // End of anonymous function.

7.	 Set the idle time to a small value:

air.NativeApplication.
 nativeApplication.idleThreshold
 = 30;

M
o

re
 A

pp
li

ca
ti

o
n

 Id
ea

s

Figure 16.9 This prompt will appear the first time the
user runs the application.

Figure 16.10 The simple application
with the first check box reflecting the
user’s choice in the confirmation dialog
(Figure 16.9).

To demonstrate the concept of the user
(i.e., you) being idle or active, this value
will be set at 30 seconds, so you don’t
have to sit around for five minutes to see
the results.

8.	 Add two event listeners to the native
application object:

air.NativeApplication.
 nativeApplication.addEventListener
 (air.Event.USER_IDLE, userIdle);

air.NativeApplication.
 nativeApplication.addEventListener
 (air.Event.USER_PRESENT,
 userActive);

The first line specifies that when the
user is officially idle, which means that
it’s been more than 30 seconds since
the user used the mouse or keyboard,
the userIdle() function should be called.
The second line specifies that when the
user is idle and then does something
again (uses the mouse or keyboard), the
userActive() function should be called.

9.	 Define the userIdle() function:

function userIdle(e) {

	 document.getElementById(‘idle’).
	  checked = true;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

357

The first time you run this program,
the preferences file will be moved to
the application’s storage directory and
you’ll see the confirmation dialog. Click
OK, and then log out and log back in.
The application should automatically
launch, and the check box should reflect
your choice.

To test the idle/active check box, don’t
do anything for 30 seconds. It doesn’t
matter if this application is currently
active or not, it will still watch for the
idle and present events.

	Tips

n	 To stop this application from automati-
cally opening every time you log into your
computer, you’ll need to have it set air.
NativeApplication.nativeApplication.
startAtLogin to false, and then rerun
the application. Alternatively, you can
search online for operating system-spe-
cific instructions for removing a program
from the automatically start list.

n	 You can see how long it has been since
the last time the user did something by
referring to air.NativeApplication.
nativeApplication.timeSinceLast-
UserInput.

n	 To react to the user making the applica-
tion active (i.e., turning back to it after
using other applications), watch for an
ACTIVATE event:

air.NativeApplication.
 nativeApplication.addEventListener
 (air.Event.ACTIVATE, nowActive);

M
o

re A
pplicatio

n
 Ideas

Figure 16.11 After 30 seconds of inactiv-
ity, the second check box will automati-
cally be checked by the application.

This function checks a box in the appli-
cation window when the user goes idle
(Figure 16.11).

10.	 Define the userActive() function:

function userActive(e) {

	 document.getElementById(‘idle’).
	  checked = false;

}

This function unchecks the box that
indicates the user is idle.

11.	 Within the body of the page, create the
two requisite check boxes:

Automatically Launch: <input
 type=”checkbox” id=”launch”>

Idle: <input type=”checkbox”
 id=”idle”>

In a more complete application, when
the user unchecked the Automatically
Launch check box, a function would be
called that assigned a value of false to
air.NativeApplication.nativeAppli-
cation.startAtLogin.

12.	 Save, test, debug, and run the completed
application.

To fully test this, you should build and
actually install the program; don’t just
use the Adobe Debug Launcher (adl).
Make sure that you also include a prefs.
xml file in the packaged application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

358

Updating an Application
One way to update an application is to have
the user download and install the latest
version of it. When a user installs the new
version with the same application ID but a
later version number (both from the applica-
tion descriptor file) of an AIR application
they have already installed, the user will be
prompted to update it (Figure 16.12).

Another option is to have an application
check for and handle updates itself. To do so,
the application needs to check for the exis-
tence of a more current version. This means
that the application first needs to know its
own version number, which is defined in the
application descriptor file. You can get that
data by referring to air.NativeApplication.
nativeApplication.applicationDescrip-
tor. The returned string then needs to be
turned into XML and parsed to get the
version information (this next script will
demonstrate all that).

The next step is for the application to
communicate with your server to see if a
newer version is available. The easiest way
to accomplish that is to create a plain text

U
pd

at
in

g
 a

n
 A

pp
li

ca
ti

o
n

Figure 16.12 The AIR installer will ask the user whether to replace the current
version of an application with a newer version.

page on your server that stores the current
application version. Then the application
could perform an XMLHttpRequest to that
page to retrieve the value. Or the application
could use a URLLoader object to read in the
information (see Chapter 13, “Networking”).

If a new version is available, the application
should download it. That will require creating
a URLRequest object referring to the new ver-
sion on the server and loading the new ver-
sion into a URLStream. Then that data will be
written to a new file on the user’s computer.

After all that has been accomplished, the
updating process starts with an Updater
object:

var updater = new air.Updater();

You’ll also need a reference to the downloaded
file (the latest version of the application):

var file = air.File.desktopDirectory.
 resolvePath(‘MyApp.air’);

Finally, call the update() method of the
Updater() object. It takes the file object
as the first argument and the new version
number as the second:

updater.update(file, version);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

359

U
pdatin

g
 an

 A
pplicatio

n

As soon as the update() method is called,
the current invocation of the application will
terminate, the new version will be installed,
and then the new version will be opened. It’s
all very professional, and this next script will
demonstrate all the necessary code. As you
can already tell, there are many steps to this
process and the application I’ve created uses
seven user-defined functions. But it’s still all
accomplished within a little more than 50
lines of code (not including comments and
blank lines).

To use the Updater class:

1.	 In your project’s primary HTML file,
declare the necessary global variables
(Script 16.3):

var thisVersion, currentVersion,
 xhr, newAppFile, data,
 urlStream = null;

continues on page 361

1	 <html><!-- Script 16.3 -->
2		 <head>
3			 <title>Update Example</title>
4			 <script type=”text/javascript” src=”AIRAliases.js”></script>
5			 <script type=”text/javascript”>
6	
7			 // Declare the global variables:
8			 var thisVersion, currentVersion, xhr, newAppFile, data, urlStream = null;
9	
10			 // Function called when the application loads.
11			 // This function begin the updating process.
12			 // It gets the two application versions.
13			 window.onload = function() {
14			
15				 // Get the version of the running application:
16				 getThisVersion();
17	
18				 // Get the most current version:
19				 getCurrentVersion();
20	
21			 } // End of anonymous function.
22	
23			 // Function gets the version of the running
24			 // application from the application descriptor file.
25			 function getThisVersion() {
26	
27				 // Get the data:
28				 var appData = air.NativeApplication.nativeApplication.applicationDescriptor;
29	
30				 // Turn the file data into an XML object:
31				 var dp = new DOMParser();
32				 var xml = dp.parseFromString(appData, ‘text/xml’);
33	
34				 // Parse out and return the version value:
35				 var version = xml.getElementsByTagName(‘version’)[0].firstChild;
36				 thisVersion = version.nodeValue;
37	
38			 } // End of getThisVersion() function.
39	

(script continues on next page)

Script 16.3 This script has all the code required for an application to update itself.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

360

U
pd

at
in

g
 a

n
 A

pp
li

ca
ti

o
n

40			 // This function performs an XMLHttpRequest to get the
41			 // version number of the most recent release.
42			 function getCurrentVersion() {
43	
44				 // Perform the request:
45				 xhr = new XMLHttpRequest();
46				 xhr.open(‘get’, ‘http://www.example.com/air/version.txt’);
47				 xhr.onreadystatechange = askAboutUpdate;
48				 xhr.send(null);
49	
50			 } // End of getCurrentVersion() function.
51	
52			 // This function asks the user if they want to update
53			 // the application, if appropriate.
54			 function askAboutUpdate() {
55	
56				 // Check the readyState value:
57				 if (xhr.readyState == 4) {
58	
59					 // Get the current version:
60					 currentVersion = xhr.responseText;
61	
62					 // If the current version is greater, ask the user:
63					 if (currentVersion > thisVersion) {
64						 if (confirm(‘Update to the newest version?’)) {
65							 downloadNewVersion();
66						 }
67					 } else {
68						 alert(‘The current version is up to date.’);
69					 }
70	
71				 } // End of readyState IF.
72	
73			 } // End of askAboutUpdate() function.
74	
75			 // This function downloads the latest version.
76			 function downloadNewVersion() {
77	
78				 // Create the variables:
79				 var addr = ‘http://www.example.com/air/MyApp.air’;
80				 var url = new air.URLRequest(addr);
81				 urlStream = new air.URLStream();
82				 data = new air.ByteArray();
83	
84				 // Add an event listener:
85				 urlStream.addEventListener(air.Event.COMPLETE, saveNewVersion);
86	
87				 // Get the data:
88				 urlStream.load(url);
89	
90			 } // End of downloadNewVersion() function.
91	
92			 // Function that writes the downloaded data to a file:
93			 function saveNewVersion(e) {
94	

(script continues on next page)

Script 16.3 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

361

calls to the getThisVersion() and
getCurrentVersion() functions are made.

3.	 Begin the getThisVersion() function:

function getThisVersion() {

	 var appData= air.
NativeApplication.nativeApplication.
 applicationDescriptor;

	 var dp = new DOMParser();

	 var xml = dp.parseFromString
	  (appData, ‘text/xml’);

Very similar to code found in Chapter
14, this function starts by reading the
contents of the application descrip-
tor file into the appData variable. You
can do this by simply referring to air.
NativeApplication.nativeApplication.
applicationDescriptor.

continues on next page

U
pdatin

g
 an

 A
pplicatio

n

Because this script uses so many func-
tions, a number of global variables are
required (because each of these will be
referred to in more than one function).
They are each initially given a null value.

2.	 In an anonymous onload function, get
the ball rolling:

window.onload = function() {

	 getThisVersion();

	 getCurrentVersion();

}

As I said, there are seven functions
involved (a figure later in the chapter
will show the logic), beginning with
this one. The premise is that after the
application has loaded, a check would
be made to see if a newer version of the
application is available. To do that,

95				 // Read the downloaded data into the ‘data’ variable:
96				 urlStream.readBytes(data, 0, urlStream.bytesAvailable);
97	
98				 // Write the data to a file:
99				 newAppFile = air.File.desktopDirectory.resolvePath(‘MyApp.air’);
100				 var fileStream = new air.FileStream();
101				 fileStream.open(newAppFile, air.FileMode.WRITE);
102				 fileStream.writeBytes(data, 0, data.length);
103				 fileStream.close();
104	
105				 // Call the function that performs the update:
106				 updateApplication();
107	
108			 } // End of saveNewVersion() function.
109	
110			 // This function performs the actual update.
111			 function updateApplication() {
112	
113				 var updater = new air.Updater();
114				 updater.update(newAppFile, currentVersion);
115	
116			 } // End of updateApplication() function.
117	
118			 </script>
119		 </head>
120		 <body>
121			 <h3>Update Example</h3>
122		 </body>
123	 </html>

Script 16.3 continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

362

Then a new object of type DOMParser is
created, and the appData string is turned
into an XML object.

4.	 Complete the getThisVersion()
function:

	 var version = xml.getElementsByTag
	  Name(‘version’)[0].firstChild;

	 thisVersion = version.nodeValue;

} // End of getThisVersion() function.

This cumbersome code is best explained
in Chapter 14. In short, the first line
returns the first item from the XML
data whose element name is version.
There will only be one such element, but
getElementsByTagName() always returns
an array. The firstChild attribute of that
element is the value of the element, which
will be a text node. Finally, the value of
that text node, which is the value of the
element—e.g., 1.2 or 3.59—will be assigned
to the global thisVersion variable.

5.	 Define the getCurrentVersion()
function:

function getCurrentVersion() {

	 xhr = new XMLHttpRequest();

	 xhr.open(‘get’, ‘http://www.
	  example.com/air/version.txt’);

	 xhr.onreadystatechange =
	  askAboutUpdate;

	 xhr.send(null);	

} // End of getCurrentVersion()
 function.

This function finds out what the most
recent version of the application is. That
value will be stored in a text file on a
server (presumably the same Web site
where the user downloaded the program
in the first place). This code performs a
basic XMLHttpRequest for that document.
The askAboutUpdate() function will be
called when the request’s readyState
value changes.

U
pd

at
in

g
 a

n
 A

pp
li

ca
ti

o
n

6.	 Begin defining the askAboutUpdate()
function:

function askAboutUpdate() {

	 if (xhr.readyState == 4) {

		 currentVersion = xhr.
		  responseText;

This function is called as the
XMLHttpRequest object’s readyState
value changes. Once that value equals 4,
the request is complete and the response
(which is the entire contents of the ver-
sion.txt) file will be assigned to the
global currentVersion variable. This code
as written will only work if the text file
contains just a number and absolutely
nothing else.

7.	 If there’s a newer version of the applica-
tion available, ask the user whether to
install it:

if (currentVersion > thisVersion) {

	 if (confirm(‘Update to the newest
	  version?’)) {

		 downloadNewVersion();

	 }

} else {

	 alert(‘The current version is up
	  to date.’);

}

At this point in the script, the two num-
bers are stored in variables. One reflects
the most recent version of the applica-
tion available (fetched from the Web),
and the other reflects the version of the
currently running application. If the
former is greater than the latter, a new
version is available and the user can be
asked whether to update the application
(Figure 16.13).

Otherwise, the user is notified that the
version running is the most current one
available (Figure 16.14). You may not
want to do this in a real application, but
here it confirms that the process works.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

363

To perform the download, there are
two final steps. First, an event listener is
added to the URLStream object, stating
that the saveNewVersion() function
should be called when the entire file has
been downloaded. Second, the file is
loaded into the stream.

11.	 Begin defining the saveNewVersion()
function:

function saveNewVersion(e) {

	 urlStream.readBytes(data, 0,
	  urlStream.bytesAvailable);

This function will take the data read
from the server and store it as a file on
the computer (so that it can be used for
the update). To start, it takes the data
loaded into the URLStream and writes it
into the data global variable.

12.	 Write the data to a file:

newAppFile = air.File.
 desktopDirectory.resolvePath
 (‘MyApp.air’);

var fileStream = new air.
 FileStream();

fileStream.open(newAppFile,
 air.FileMode.WRITE);

fileStream.writeBytes(data, 0,
 data.length);

fileStream.close();

continues on next page

U
pdatin

g
 an

 A
pplicatio

n

Figure 16.14 If no new version of the application is
available, a simple statement says as much.

Figure 16.13 If a new version of the application is
available, the user is asked whether to perform
an update.

  8.	 Complete the askAboutUpdate() function:

	 } // End of readyState IF.

} // End of askAboutUpdate()
 function.

  9.	 Begin defining the downloadNewVersion()
function:

function downloadNewVersion() {

	 var addr = ‘http://www.example.
	  com/air/MyApp.air’;

	 var url = new air.URLRequest(addr);

	 urlStream = new air.URLStream();

	 data = new air.ByteArray();

If the user clicks OK in the confirmation
dialog (Figure 16.13), this function will
be called. It downloads the newest ver-
sion of the application from the server.
To do that, it first identifies the full URL
of the file to be downloaded. Then it cre-
ates three new objects: one URLRequest,
one URLStream, and one ByteArray. The
first two are discussed in Chapter 13 and
the third is introduced in Chapter 10,
“Working with File Content.”

10.	 Complete the downloadNewVersion()
function:

	 urlStream.addEventListener(air.
	  Event.COMPLETE, saveNewVersion);

	 urlStream.load(url);	

} // End of downloadNewVersion()
 function.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 16

364

The global newAppFile variable will be
a File object that points to the new
version of the application. By default,
this will be on the user’s desktop
and be given a name of MyApp.air. A
FileStream object is created, the file is
opened for writing, all the data is written
to the file, and the file stream is closed.

13.	 Complete the saveNewVersion()
function:

	 updateApplication();

} // End of saveNewVersion()
 function.

Now that the newest version of the
application is on the user’s computer,
the last step is to actually perform
the update. That will take place in the
updateApplication() function, called
here after the file has been saved. Figure
16.15 shows the complete logic flow of
this application.

14.	 Define the updateApplication()
function:

function updateApplication() {

	 var updater = new air.Updater();

	 updater.update(newAppFile,
	  currentVersion);

}

Ironically, the function that does the
most important part is the easiest to
write. An object of type Updater is
created, and then its update() method
is called. Its first argument is the file
that represents the new version of the
application. Its second argument is the
version number.

U
pd

at
in

g
 a

n
 A

pp
li

ca
ti

o
n

Figure 16.15 The long, but actually straightforward,
logic of this application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deploying Applications

365

21.	 Save, build, install, and run the com-
pleted application.

It’s very important that you actually
install and run the application. You can-
not test all of this using the command-
line adl.

When you run the program, you should
see a prompt like that in Figure 16.13.
Click OK: The file will be downloaded,
the application will close, be updated,
and restart, generating the alert in
Figure 16.14. Depending on the speed of
your Internet connection and your com-
puter, all of this should happen rather
quickly (because the application file is
really small).

	Tips

n	 As an alternative, the version.txt file on
the server could be called version.xml,
storing more information:

<?xml version=”1.0” encoding=
 ”UTF-8”?>

<update>

	 <majorVersion>2</majorVersion>

	 <minorVersion>3</minorVersion>

	 <minFreeUpgradeVersion>2.0
	  </minFreeUpgradeVersion>	

</update>

Then the XMLHttpRequest would refer to
the responseXML instead of responseText.

n	 Keep in mind that every AIR application
is associated with a certificate, and self-
signed certificates are only valid for five
years. This means you can only provide
updates for a self-signed application for
five years. After that you’ll need to create
a new application (with a new applica-
tion ID) associated with a new certificate.
This is another reason why professional
applications require legitimate signing
certificates.

U
pdatin

g
 an

 A
pplicatio

n

15.	 Create a file called version.txt that
stores just a version number and place it
on your server.

The version number needs to be a
simple integer or real number: 1 or 2.3 or
6.34. It cannot be v1 or 2.3.45. The num-
ber cannot be followed by any spaces,
newlines, or carriage returns.

16.	 Go back to the code explained in step
5 and change the URL to match your
server, if they don’t match already.

This whole application will not work
unless the two URLs used by it are
accurate.

17.	 Make sure the version of this appli-
cation, as defined in the application
descriptor file, matches the version
number you put in version.txt.

The update() method takes two argu-
ments: the file to be used for the update
and the version number. If the file (i.e.,
the new version of the application) does
not use the same version number as
that in the text file (and therefore, as
that used in the update() method), the
update won’t proceed.

18.	 Save and build the completed application.

This first build will represent the
“newer” version of the application.

19.	 Place the finished .air file on your
server.

Make sure that it has a name and loca-
tion that matches the URL used in step 9.

20.	 Change the version of the application, as
defined in the application descriptor file,
to be lower than that used in the already
built version.

This next build will represent the “older”
version of the application. So if you built
the previous version of this application as
version 2.3, this version needs to be 1.0 or
1.8, or 2.23—anything less than 2.3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

366

In
de

x

Index
i

Symbols
' (apostrophes), 216
@ symbol, 240
\ (backslash) character, 158
: (colon), 240
/ (forward slash) character, 158
. (period), 28
? (question marks), 240

A
Add an Account database, 240–244
adl (AIR Debug Launcher), 23–24, 73
Adobe AIR SDK

debugging with AIRInstrospector.js, 70–71
installing, 10
running tools from Windows command line, 11–12
using tools on Macintosh, 13–15

ADT (AIR Development Tool) utility, 25, 26, 27–28
.air files, 27–28, 353
AIR (Adobe Integrated Runtime). See also Adobe AIR SDK;

basic concepts and code
AIR SDK installation, 10
application installations, 4–6
benefits of, viii–ix
help resources for, x
installing, 2–3
running SDK tools from command line, 11–15
types of sandboxes in, 48
uninstalling, 3
versions and features of, 74
WebKit technology in, 18, 46

AIR Debug Launcher (adl), 23–24, 73
AIR Development Tool (ADT) utility, 25, 26, 27–28
AIRAliases.js file, 49–50
AIRInstrospector.js file, 70–71
AIRSourceViewer.js file, 71
Ajax, viii, 184
alert dialogs

confirming functions are called with, 261
JavaScript, 66–67, 79
noting invalid MP3 URL, 300–301
reporting wrong Reader version, 310
SQLite, 211
storing encrypted data, 342
using with connections, 207

APIs (application programming interfaces)
about, 47
adding window.open() function in, 78
interacting with Web site, 279
support for clipboard with HTML vs., 132

app:/ URL, 48
appending data, 195
appID value, 35
application descriptor files

elements of, 19, 345
file type associations and, 348, 353
including icons in, 349–350
optional settings for, 346–348

Application Install screen, 4, 5, 6, 346, 353
application sandboxes. See also sandboxes

about, 48, 302, 320
checking content restrictions for, 324
dynamically generated code restricted from, 320
testing, 321–324
using eval() function with, 324
using sandbox bridges with, 328–338

application storage directories, 208, 238
applicationDirectory shortcut, 157
applications. See also deploying applications; sandboxes

accessing file information, 164–167
application sandbox, 48, 302
Aptana Studio for creating, 34–36
associating file types with, 348, 353
attributes for using multiple screens with, 102
automatically starting, 354, 356
backing up, 239
browse for prompts in, 159–163
building, 27–28
confirming Web site access for, 264–267
connecting to database from, 206–208, 260
copying, cutting, and pasting in, 127
creating, 9
creating sample HTML file for, 18
cross-platform, viii
debugging database, 261–262
deploying with custom icons, 349–350
designing directory structure for, 16–17
detecting first-time run, 354, 355
detecting inactive users of, 354, 356–357
developing with AIR, viii
digital signature certificates for, 25–26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

367

In
dex

Index

displaying PDF content, 308–311
downloading files to, 280–286
drag effects allowed for content, 151
Dreamweaver for creating, 37–39
encrypting stored data with, 339–342
entering vehicle license code for, 276–279
fetching records in groups, 245–248
file and directory functions for, 155–158
Flash/Flex AIR, 9, 18
graphical, viii–ix
improving performance, 260
installing AIR, 4–6
making new windows for, 76–78
metadata found in About window, 19
opening URLs with browser, 267
pasting text and images to clipboard, 141–145
performing database transactions, 249–259
playing sounds, 292–297
prepared statements in, 240–244
random access to files, 193, 286
receiving remote data via network, 268–270
retrieving online data for use in, 271–274
running, 7–8
seamless installations, 345, 351–353
security for, 319, 344
setting up native windows in, 80–82
storing user preferences in XML format, 312–318
streaming sound from Internet to, 298–302
testing, 23–24
transmitting data, 275–279
uninstalling, 6
unique id values for, 208
updating, 358–365
uploading files to, 287–290
validating data, 343
videos and images in, 311
working offline, 278
XML file for sample, 19–22

applicationStorageDirectory shortcut, 157
app-storage:/ URL, 48
Aptana Studio

applications built in, 34–36
creating digital signature certificates in, 40–42
debugging with trace() from, 68
installing, 30–33
using as IDE, 29, 30

arguments
establishing native window, 80
filtering for browseForOpen() methods, 160

asynchronous transactions
about, 158
deleteFile() and deleteDirectory() method for,

172, 176
error handling for, 196
performance using, 260
reading and writing files as, 195–199
setting event handlers before calling methods, 159
synchronous vs., 195
using getDirectoryListing() method, 168, 171

attributes
defined, 46
Mac file and directory, 164
multiple screen, 102
NativeWindow object, 86
NativeWindowInitOptions, 83

position, 193
setting Mac window, 85
URLRequest, 275
values of id, 234
xml ns, 20

authenticating user-entered data, 277
automatic application launch, 354, 356

B
ba variable, 201
backgrounds for transparent windows, 96
backing up applications, 239
badge.swf file, 351, 353
.bash_profile command, 15
basic concepts and code, 45–64

ActionScript libraries, 54–55
APIs, 47
handling events, 56–58
JavaScript frameworks, 51–53
JavaScript technology, 46
object-oriented programming, 46–47
security model, 48
Universal Resource Identifiers, 48
using AIRAliases.js, 49–50
using XMLHttpRequest object, 59–64
WebKit technology, 46

best practices for security, 344
binary data

creating ByteArray object to store encrypted, 339
text vs. binary files, 183
writing, 201–204

BLOB data type, 209
breaks during debugging sessions, 72
browse for prompts, 159–163, 187, 297, 310
buffer, 196, 200
building applications

Aptana Studio for, 36
including ActionScript libraries when, 54–55
using ADT, 25, 26, 27–28

buttons
clicking for full-screen mode, 90–92, 95
close, 96–99
Play, 297
playing sound on click, 292–293
using CSS for window, 97–99

Byte Order Mark (BOM), 204
ByteArray class, 201, 202–204
ByteArray object

reading data with, 280, 281, 282, 283
storing encrypted data in, 339, 340, 341

bytesAvailable property, 200

C
calendar widget (YUI), 51–53
certificates. See digital signature certificates
CHECK constraint, 238
child files, 328–329
chrome windows, 83, 96–99
classes. See also specific classes

avoiding reserved words as name for, 74
file and directory, 156
using, 46–47

client-server communications. See also networking
AIR client-side technology, 46
transmitting data in, 275–279

http://lib.ommolketab.ir
http//lib.ommolketab.ir

368

In
de

x

Index

clipboard
API vs. HTML-based support for, 132
application support needed for, 127
copying and pasting text and images to, 141–145
data copying to, 130–132
defining and using custom, 145
how it works, 129
MIME types for data formats, 128
pasting data to, 137–140

close button, 96–99
close functionality for text editor, 188
CLOSING event, 93, 95
command-line tools

running Windows, 11–12
setting up path for Macintosh, 13–15
using ADT, 25, 26, 27–28

comments, 73
COMPLETE events, 195, 294
compressing/decompressing data, 204
conditionals

looped if, 169
moving item to trash using, 176
outcomes of Save with if-else, 194

confirmation dialogs, 66, 67, 79, 175
connecting

application to Web sites using APIs, 279
application with database, 206–208, 241, 260
to network with URLRequest object, 264
server through sockets, 274

constants, 56, 118, 184
constraints, 243
constructors, 109
content

cutting page, 133–136
displaying PDF, 308–311
drag effects allowed for, 151
editing in Yahoo! User Interface, 329–338
including in iframe, 325–327
loading and security of native window, 82
receiving remote data for, 269–270
restrictions for application sandbox, 324
running in sandboxes, 320–321
security restrictions on requests for, 267
test sandboxes for, 321–327

content element, 22
contextual menus, 104
copying

data to clipboard, 130–132
files and directories and moving, 177–182
text and images and pasting on clipboard, 141–145
WebKit rendering engine and, 127, 128

CREATE statements, 206
CREATE TABLE statements, 209, 211
cross-platform applications, viii
CSS (cascading style sheets)

adding to parsed data, 273
formatting and using custom window buttons, 97–99
styling textareas, 187

currency formatting, 248
cutting page content, 133–136

D
data. See also importing/exporting data; text files

binary, 201–204
cautions using external, 270
compressing/decompressing, 204

confirming well-formed XML, 73
copying, 128–132
downloading and writing to file, 282
endian settings for storage, 201, 204
incrementally downloading, 283, 284–285, 286
metadata in About window, 19
parsing remote, 271–274
pasting to clipboard, 137–140
random access to, 193, 287
receiving remote network, 268–270
retrieving online for use in application, 271–274
SQLite data types, 209, 211, 212
stored in client-side file when offline, 278
storing with EncryptedLocalStore class, 339
transmitting, 275–279
validating, 343

data variable, 195, 197
databases. See also SQLite

adding accounts to, 240–244
connecting to from application, 206–208, 260
creating, 209–212
debugging applications, 261–262
distributing, 236–240
encrypting SQLite, 208
handling errors in, 218–220
improving performance of, 260
inserting records, 213–217
listing all accounts in, 245–248
locking, 259
normalizing, 262
objects required for connecting to, 241
performing transactions, 249–259
schemas for, 226
selecting records in, 221–226
testing queries on, 73–74
updating and deleting records in, 227–234
using synchronous transactions for, 206, 209

debugging, 65–74
AIRInstrospector.js for, 70–71
alert and confirmation dialogs for, 66–67
database applications, 261–262
displaying query values for SQLStatement, 220
Firefox for, 72
tips for, 72–74
trace() method for, 68–69
wrong menu creation syntax and, 110

DEFAULT constraint, 238
default XML preferences file, 312–318
default_badge.html file, 351, 352
deleting

files and directories, 172–176
records, 227–234

deploying applications, 345–365
automatically, 354, 356
options for application descriptor files, 346–348
seamless installations, 345, 351–353
using custom icons for, 349–350

desktopDirectory shortcut, 157
dest objects, 177
destinations

file and directory, 181
moving file if it already exists at new, 182

development tools, 29–44
ADT, 25, 26, 27–28
Aptana Studio, 30–33, 34–36
certificates created with Aptana Studio, 40–42

http://lib.ommolketab.ir
http//lib.ommolketab.ir

369

In
dex

Index

changing path for SDK tools, 11–15
IDEs and, 29

dialog boxes. See also alert dialogs
confirming window close with, 95
JavaScript alert and confirmation, 66–67, 79
making and using, 79

Digital Rights Management (DRM), 311
digital signature certificates

creating in Aptana Studio, 40–42
Dreamweaver for creating, 43–44
expiry of, 365
getting .publisherID value from, 208
.pfx extensions for, 41
requirement for, 40
using, 25–26, 344

directories
allowing users to select files or, 159–163
application storage, 208, 238
best security practices working with, 344
changing path for SDK folder, 11–15
classes for, 156
copying and moving, 177–182
creating, 175
deleting, 172–176
including in application builds, 27
moving and renaming files, 182
reading, 168–171
referencing with URLs, 157
setting paths to, 156–157, 158
synchronicity and, 158
URL references to, 157
using information about selected, 164–167

displaying PDFs, 308–311
distributing databases, 236–240
Dock menus, 105, 107
doCopy function, 128, 129, 135, 143
documentsDirectory shortcut, 156
DOMParser object, 312–313, 316
doPaste() function, 137, 138, 139, 143, 145
downloading

Adobe AIR SDK, 10
AIR applications, 4–6
Aptana Studio, 30
files to applications, 280–286
incremental file, 283, 284–285
JRE, 30
new application version, 363, 364
trial version of Dreamweaver, 37

dragging and dropping, 127, 146–154
Dreamweaver

creating applications in, 37–39
digital signature certificates with, 43–44
using as IDE, 29

DRM (Digital Rights Management), 311

E
editFunctions.js script, 131, 132, 135, 139
else if clauses, 145
encoding, 22
encrypting data

for SQLite databases, 208
storing data with EncryptedLocalStore, 339–342

endian settings, 201, 204
error handling

asynchronous transaction, 196
database, 218–220

messages for unsupported data type, 145, 150
with prepared statements, 243
transfer funds, 254
when fetching records in groups, 247

errors
notification of trace() function, 322, 326
playing MP3s, 297, 301
streaming sounds, 301
testing eval() function, 323
using XMLHttpRequest in non-application sandbox, 326

eval() function, 320, 321, 323, 324, 326, 344
event listeners

adding in window events, 93
asynchronous transactions with, 197
for copying and moving files, 178
indicating load completion for extended sounds, 294,

297
load completion, 268–270, 278, 280
monitoring URLRequest object with, 264, 266
using for runtime events, 56, 57
using in Add an Account application, 242, 243
watching for completed file uploading, 288
watching for SQLEvent.RESULT events, 213, 215–216,

222, 225
while updating and deleting SQLErrorEvent objects, 228

events
asynchronous, 159, 195, 196, 200
canceling default behavior for, 93
displaying and select menu, 111
drag, 146
handling runtime, 56–58
menus, 111–114
moving items to trash as onclick, 173–174
playing sound on button click, 292–293
significant for uploading files, 287
SOUND_COMPLETE, 297
window, 93–95

F
fetching records in groups, 245–248
file:// URL, 48
File class, 156, 287
File objects

copying and, 177
creating, 156, 157, 335
databases created without, 208
filtering arguments for browseForOpen() methods, 160
properties of, 164
representing files and directories that don’t exist, 158

FileMode class, 156
FileMode constants, 184
filename element, 21, 22
files. See also downloading; PDF files; XML files; and

specific files
.air, 27–28, 353
AIRAliases.js, 49–50
AIRSourceViewer.js, 71
allowing users to select, 159–163
associating with application, 348, 353
classes for, 156
confirming move to trash, 175
copying and moving, 177–182
creating, 175
creating HTML, 18
debugging with AIRInstrospector.js, 70–71
default XML preferences, 312–318

http://lib.ommolketab.ir
http//lib.ommolketab.ir

370

In
de

x

Index

files (continued)
deleting, 172–176
downloading to applications, 280–286
extensions for text, 201
Flash/Flex AIR, 18
listing desktop, 168–171
modifying mms.cfg, 8
moving if already exists at new destination, 182
.pfx extensions for certificates, 41
random access to, 193, 286
reading from text, 184–188
referencing with URLs, 157
renaming, 182
setting paths to, 156–157, 158
structuring directory for application, 16–17
synchronous writing to, 189–194
synchronicity and, 158
uploading to applications, 287–290
URLRequest object for referencing sound, 292
using information about selected, 164–167
working with sounds within SWF, 293
writing new application version to, 363–364

FileStream class and objects, 156, 184, 193, 286
fileTypes element, 348
fileWasSelected() function

copying or moving files, 178
defining selection for sandbox bridge, 335–336
designating file from which to read, 186
selecting MP3 files with, 295, 296
selecting PDFs with, 308, 309, 310
writing data from selected file, 190

filters, 160
Flash

about Flash/Flex AIR programs, 9, 18
adding window.open() function in, 78
controlling file access with DRM, 311
non-application sandbox categories, 324
using ActionScript libraries, 54–55

folders
changing path for SDK, 11–15
listing desktop files and, 168–171
naming application, 16–17

for loops
modifying to update and delete records, 228
reading directories with, 169–170, 171
reading user preferences from HTML page with, 317
using for SELECT query validation, 225–226

forParent object, 330, 332, 335
frameworks, 51–53, 338
full-screen windows, 90–92, 95
functions. See also specific functions

calling from parent file with sandbox bridge, 328
creating native windows with anonymous, 86, 88

G
GET requests for URLRequest, 275
getThisVersion() function, 361–362, 364
global objects, 253
global variables, 197, 314

H
Hello, World! project, 16–17, 18, 27–28
Help menu, 31, 113, 121
help resources for AIR, x
HTML (Hypertext Markup Language)

creating sample file, 18

native and HTML windows, 75, 82
support for clipboard with API vs., 132

HTML editor
converting textarea to, 329, 331
using sandbox bridge for interacting with, 333–334

I
icons for AIR applications, 349–350
ID3 metadata, 307
id element, 21, 22
id values, 208, 234
IDEs (Integrated Development Environments), x, 29
if conditional in loop, 169
iframes

adding for YUI sandbox bridge, 332
calling functions from parent file using sandbox

bridge, 328
testing non-application sandbox with, 325–327

images
drag and drop in bitmap, 146–150
importing to clipboard, 141–145
working with, 311

importing/exporting data
copying data, 128–132
cutting page content, 133–136
drag and drop in, 146–150
MIME types for data formats, 128
pasting text, 137–140
working with text and images, 141–145

inactive users, 354, 356–357
inbound parameters, 244
incremental data access, 193, 283, 284–285, 286
initialWindow element, 21, 22, 346–347
INSERT command

constraining values in queries of, 238
queries using, 213, 217
query calling for added accounts, 242, 243–244
syntaxes for queries using, 262
watching for SQLEvent.RESULT events for, 213

insertResult() function, 244, 258
installing. See also deploying applications

Adobe AIR SDK, 10
AIR, 2–3
Aptana Studio, 30–33
plug-ins from Help menu, 31
seamlessly, 345, 351–353

INTEGER data type, 209
Integrated Development Environments (IDEs), x, 29
Internet. See also Web sites

connecting application to Web with APIs, 279
streaming sound from, 298–302
working offline, 278

Internet Explorer, 24

J
javascript: as href value, 321, 326
JavaScript

accessing APIs via, 47
dialogs for debugging in, 66–67, 79
enabling/disabling full-screen mode, 90–92
frameworks, 51–53
Java Development Kit, 10
Java Runtime Environment, 10, 24, 30
technology used in AIR, 46
trace() method for debugging, 68–69, 321, 322
using for PDF and AIR communications, 311

http://lib.ommolketab.ir
http//lib.ommolketab.ir

371

In
dex

Index

validating data in, 343
variable scope, 74
XMLHttpRequest objects, 59–64

JavaScript Language Reference, x
JDK (Java Development Kit), x, 10
JRE (Java Runtime Environment)

AIR’s requirement for, 10
downloading, x, 30
errors if not found by adl program, 24

JSON (JavaScript Object Notation), 73

K
keyboard equivalents on menus, 118–122

L
launching applications automatically, 354, 356
license information for vehicles, 276–279
lightweight chrome, 83
Linux, 1, 2
listAccounts() function, 247, 248, 255, 256
listItems() function, 225, 226, 228
loadComplete() function, 269, 270, 278, 280, 296–297
loading

data for URLRequest objects, 275
data from network connection, 268–270
MP3s, 292–293
showing progress for streaming sound, 299–301
using load completion event listeners, 268–270, 278,

288
loadProgress() function, 300, 301
local sandbox, 48, 267, 324
login credentials, 267
loops. See also for loops

getting elements by tag name in, 316
using if conditional in, 169
validating SELECT query results with, 225–226

M
Macintosh platform

application menus, 104, 105
chrome and system chrome for, 83
creating platform-specific OS menus, 115–117
debugging with trace() on, 68
file and directory attributes for, 164
maximum window size supported for, 89
running applications on, 7–8
setting window attributes, 85
supporting for AIR, 2
text and binary file handling on, 204

makeNativeWindow() function, 81, 82
maximize button, 96–99
menus, 103–126

adding keyboard equivalents, 118–122
changing state for items on, 123–126
creating, 106–110
event bubbling for, 114
handling events for, 111–114
Help Pages items on, 113, 121
making custom and contextual, 105
platform-specific OS, 115–117
separator lines on, 106, 108
terminology for, 104–105
Transfer Funds’ pull-down, 254–255, 256

metadata, 19
methods, 46

MIME types
adjusting for different formats, 141
for clipboard data formats, 128
updating in doPaste() and doCopy() functions,

143–144
minimize button, 96–99
mms.cfg file, 8
mnemonics for keyboard equivalents, 122
moving

files and directories, 177–182
windows, 100–102

MP3s
alerts for invalid URLs to, 300–301
errors playing, 297, 301
loading and playing, 292–293
selecting files for extended play, 294, 296
viewing ID3 metadata for, 307

MP4 files and DRM, 311

N
name=value pairs, 271, 275
naming

application folders and files, 16–17
classes and variables, 74
files and paths, 158
SQLite tables, 212

native paths, 156, 163
native windows, 75, 80–89
NativeMenu class, 106
NativeWindow objects, 86, 96
NativeWindowOptions objects, 96
networking, 263–290

monitoring URLRequest object, 264–267
parsing remote data, 271–274
receiving remote data, 268–270
working offline, 278

non-application sandboxes
about, 320–321
dynamically generated code in, 320
testing content in, 325–327
using sandbox bridges with, 328–338

normal chrome, 83, 84
NOT NULL constraint, 238

O
object-oriented programming (OOP), 46–47
objects. See also File objects; XMLHttpRequest objects;

and specific objects
attributes of NativeWindow, 86
creating and using, 46–47
creating for Transfer Funds application, 250
File, 157
global, 253
using XMLHttpRequest, 59–64

ondragover events, 146
ondragstart event, 151
ondrop events, 146
outbound named parameters, 244

P
panning, 303–304
parent files, 328–329, 332
parsing remote data, 271–274
pasting

copying, cutting, and, 127
text, 137–145

http://lib.ommolketab.ir
http//lib.ommolketab.ir

372

In
de

x

Index

paths
application storage directory, 208
changing for SDK tools, 11–15
formatting in correct case, 163
setting directory and file, 156–158
valid Windows and Mac, 156

pausing sound, 303, 304–305, 306
PDFs (Portable Document Files)

displaying content of, 308–311
limitations for displaying, 311
using in AIR applications, 291

performance
improving application, 260
memory and Aptana Studio, 36
prepared statements and, 240, 344

.pfx extensions for certificates, 41
PHP scripts, 276, 278
Play button, 297
playSound() function, 293, 297, 306
plug-in installations, 31
position of files, 193
POST requests, 275, 278
preferences

checking for existing, 316–317
displaying and saving current, 313, 314
saving, 318
writing to file, 317–318

prepared statements
advantages of, 262
improving performance of, 260
using, 240–244, 344

primary key, 217
PROGRESS events, 195
projects

creating in Aptana Studio, 34–36
including AIR Introspector during development, 71

properties
File object, 164
window, 76

.publisherID value, 208
pull-down menu of accounts, 254–255

Q
queries

constraining values of, 238
debugging, 261–262
defining CREATE TABLE, 211
displaying values for SQLStatement, 220
fetching records in groups with, 245–248
flowchart of Transfer Funds application, 258
INSERT, 213, 217
representing values with question marks, 240
running on database, 209
selecting records with, 221–226
SQLite unable to insert multiple records in, 217
testing database, 73–74
using separate SQLStatement objects for, 260
validating selection results for, 225–226
watching for selection results of, 222, 225

Quit menu item, 117

R
random file access, 193, 286
Reader, 310
reading

asynchronous transactions, 195–200

binary files, 204
directories, 168–171
files in synchronous transactions, 184–188, 195
XML data with XMLHttpRequest, 318

REAL data type, 209
receiving remote network data, 268–270
records

fetching in groups, 245–248
selecting, 221–226
updating and deleting, 227–234

remote sandbox, 48, 267, 324
removing

AIR, 3
applications, 6

renaming files, 182
resizing windows, 88–89, 100–102
running applications, 7–8
runtime events, 56

S
sandboxes

content and non-application, 320–321, 325–327
dynamically generated code and separate, 320
sandbox bridges, 328–338
security model based on, 302, 320
testing, 321–324
types of AIR, 48

saveFile() function, 282, 285, 286
saving

current user preferences, 313
downloaded files, 282, 283, 285, 286
new application version, 363–364
text files using if-else conditional, 194
user preferences, 318
XML files, 22

schemas, accessing database, 226
Screenboard application, 4–5, 7–8
scrollbars, 99
SDK. See Adobe AIR SDK
seamless installations, 345, 351–353
security, 319–344. See also digital signature certificates;

sandboxes
about sandboxes, 48, 302, 320
advantages of prepared statements for, 240, 344
best practices, 344
creating application certificates, 25–26
external data and, 270
improving for streaming sound, 302
need for, 319
origin of content for native windows and, 82
requirement for certificates, 40
restrictions on content requests, 267
sandbox bridge and, 338
validating data, 343

select events, 111
SELECT queries

fetching records in groups, 245–248
improving performance of, 260
selecting records with, 221–226

selecting
files and directories, 160–163
MP3 files for extended play, 294, 296
PDFs, 308, 309, 310
records with queries, 221–226

self-signed certificates, 25, 26, 43
separator lines on menus, 106, 108

http://lib.ommolketab.ir
http//lib.ommolketab.ir

373

In
dex

Index

servers
AIR server-side technology, 46
checking availability of, 264–267
connecting through sockets, 274
downloading files from, 280–282
possible information in version.xml files, 365
sending data to, 263
transmitting data from client to, 275–279
updating status changes for, 266
uploading files to, 287–290

servicemonitor.swf file, 264
shells for Mac, 14–15
Shockwave, 265, 324
shortcuts

associated with native paths, 156–157
filename element used for, 21

Show Tips item, 124, 126
showItems() function, 225, 226, 228
sockets, 274
Software Development Kit. See Adobe AIR SDK
soundError() function, 297
SoundLoaderContext object, 298–299, 300
SoundMixer class, 293, 302
sounds, 292–307

clicking button to play, 292–293
controlling, 303–307
extended play of, 294–297
listening for completion of, 297
playing from SWF files, 293
streaming, 298–302
using in AIR applications, 291

soundTransform object, 303, 304, 306
SQL commands. See also INSERT command; SELECT queries

distributing databases using, 236–240
fetching records in groups, 245–248
using prepared statements, 240–244

SQL injection attacks, 240
SQLConnection objects, 206, 207, 212
SQLErrorEvent.ERROR, 218
SQLEvent.RESULT events, 213, 215–216, 222, 225
SQLite

code connecting application with database, 206
data types in, 209, 211, 212
encrypting data for, 208
further reading on, 205
handling errors, 218–220
inserting database records, 213–217
naming tables, 212
selecting records, 221–226
unable to insert multiple records in queries, 217

SQLStatement objects, 220, 241, 243, 260
SQLTransactionLockType class, 259
states for menu items, 123–126
stock price application, 271–274
streaming sound, 298–302, 307
synchronous transactions

asynchronous vs., 195
reading from files in, 184–188, 195
using, 158
working with databases as, 206, 209

system chrome
examples of, 83
moving and resizing windows without, 100–102
using custom vs., 96, 97

system tray menu, 105, 107

T
tables

adding constraints to columns of, 238
creating database, 209
name restrictions for SQLite, 212
script creating SQLite, 210–211
SQL commands creating, 236

testEval() function, 323
testing

applications, 23–24
asynchronous version of text editor, 200
cross-domain use of XMLHttpRequest objects, 323–324
data against acceptable values, 343
database queries and external pages, 73–74
detecting first-time run application, 354, 355
frameworks in applications, 53
non-application content, 325–327
sandboxes, 321–327

testTrace() function, 322
testXHR() function, 323–324
text

cutting, 133–136
drag and drop in, 146–150
pasting, 137–140

TEXT data type, 209
text editor application

adding close functionality for, 188
adding title bar to, 188
asynchronous transactions for, 195–199
reading from text file with, 185–188
writing to files, 189–194

text files
binary vs., 183
reading from, 185–188
synchronous writing to, 189–194

text node, 316
to-do list management application

building and inserting records in, 213–217
illustrated, 227, 234
selecting records with queries, 221–226
updating and deleting records in, 227–234

trace() function, 68–69, 321, 324
Transfer Funds application, 249–259

creating objects for, 250
flowchart of query handling in, 258
global objects for, 253
pull-down menu of accounts, 254–255, 256
script for, 250–253
steps in, 249

transmitting data, 275–279
transparent windows, 96
trash, 173–174, 176
try...catch block with testXHR() function, 324

U
Unicode, 183
uninstalling, 3, 6
UNIQUE constraint, 238
unnamed placeholders, 240
UPDATE command, 227, 238
UPDATE mode, 194

http://lib.ommolketab.ir
http//lib.ommolketab.ir

374

In
de

x

Index

updating
AIR, 3
applications, 358–365
records, 227–234
server’s status, 266

uploading files to applications, 287–290
URIs (Universal Resource Identifiers), 48
URLLoader objects, 268, 269, 271, 275, 283
URLMonitor object, 264
URLRequest objects

attributes and methods for, 275
creating reference to sound file with, 292
making network connections with, 264
monitoring with, 264–267
PHP scripts, 276, 278
retrieving data using, 268, 269
updating applications with, 358
uploading files using, 287

URLRequestDefaults class, 267
URLs (Universal Resource Locators)

about, 48
alerts for invalid MP3, 300–301
formatting URL-encoded spaces, 271
monitoring URLRequest object, 264–267
opening with browser, 267
referencing files and directories via, 157

URLStream() objects, 280, 281, 282, 283, 285, 286
URLVariables class, 272, 274
userDirectory shortcut, 156
utility chrome, 83, 84, 85

V
validating

data, 343
results of SELECT queries, 225
user-supplied input, 261

variables
assigning result of calling window to, 78
avoiding reserved words as name for, 74
creating global, 197
scope of, 74
tracking selection status with flag, 178

version element, 21
version files, 365
versions

Adobe Integrated Runtime, 74
alert for wrong Adobe Reader, 310
getting correct update, 361–362, 364
monitoring features on AIR, 74
trial Dreamweaver, 37

videos, 311
View All Accounts application, 245–248
visible element, 22
volume adjustments, 303–304, 305, 306

W
Web browsers, 18, 24, 267
Web sites

APIs for connecting application to, 279
confirming application’s access to, 264–267
dialog boxes on, 79
framework file size and, 53
help resources for AIR, x
testing and debugging pages, 74
working offline, 278

WebKit
copying data and, 127, 128
technology used in, 18, 46

width of windows, 88, 89
window menus, 104, 105, 107
window.open() function, 76, 78
windows, 75–102

accessing new native, 86–89
assigning result of calling to variable, 78
chrome and system chrome for, 83
creating native, 80–82
customizing native, 83–85
dialog boxes, 79
full-screen, 90–92
handling events in, 93–95
HTML and native, 75, 82
making new, 76–78
moving and resizing, 100–102
properties of, 76
scrollbars in AIR, 99
transparent, 96

Windows platform
application tests in Internet Explorer, 24
chrome and system chrome for, 83
debugging with trace() on, 68
invoking AIR Debug Launcher, 24
maximum window size supported for, 89
platform-specific menus for, 115–117
running applications on, 7–8
support for AIR, 2
text vs. binary files for, 204
windows menus in, 104, 105, 107

working offline, 278
writeToFile() function, 283, 285, 286
writing

binary file text, 202–203
downloaded data to file, 282
new application version to file, 363–364
preferences to file, 317–318
synchronous text, 189–194
text asynchronously, 196–200

X
XML files. See also XMLHttpRequest objects

confirming data well-formed, 73
creating, 19–22
reading, 184
storing user preferences as, 312–318
using data in AIR applications, 291

XMLHttpRequest objects, 59–64
defining HTTP functionality with, 59
not allowed in non-application sandbox, 326
properties of, 60
reading data with, 184, 318
readyState values for, 60–61, 64
testing cross-domain use of, 323–324
updating applications with, 358
using, 61–64

XMLSocket class, 274

Y
Yahoo! User Interface (YUI), 51–53, 329–338

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Table of Contents
	Introduction
	Chapter 1: Running AIR Applications
	Installing the Runtime
	Installing an Application
	Running an Application

	Chapter 2: Creating an Application
	Installing the SDK
	Updating Your Path on Windows
	Updating Your Path on Mac OS X
	Creating the Project's Structure
	Creating the HTML File
	Creating the XML File
	Testing the Application
	Creating a Certificate
	Building the Application

	Chapter 3: AIR Development Tools
	Using Aptana Studio
	Using Dreamweaver
	Creating Digital Signatures

	Chapter 4: Basic Concepts and Code
	Technological Background
	Using AIRAliases.js
	JavaScript Frameworks
	ActionScript Libraries
	Handling Events
	The XMLHttpRequest Object

	Chapter 5: Debugging
	Using JavaScript Dialogs
	Using Trace
	Using the AIR Introspector
	Other Debugging Techniques

	Chapter 6: Making Windows
	Creating a New Window
	Creating a New Native Window
	Customizing Windows
	Accessing a New Native Window
	Creating Full-screen Windows
	Handling Window Events
	Creating a New Look
	Moving and Resizing Windows

	Chapter 7: Creating Menus
	Menu Terminology
	Creating a Menu
	Handling Menu Events
	OS-specific Menus
	Adding Keyboard Equivalents
	Changing a Menu Item's State

	Chapter 8: Importing and Exporting Data
	Copying
	Cutting
	Pasting
	Working with Different Formats
	Drag and Drop In
	Drag and Drop Out

	Chapter 9: Files and Directories
	Fundamentals
	File and Directory Browsing
	Accessing File Information
	Reading Directories
	Deleting Files and Directories
	Copying and Moving

	Chapter 10: Working with File Content
	Reading from Files
	Writing to Files
	An Asynchronous Example
	Using Binary Data

	Chapter 11: Working with Databases
	Connecting to a Database
	Creating a Database
	Inserting Records
	Handling Errors
	Selecting Records
	Updating and Deleting Records

	Chapter 12: Database Techniques
	Distributing Databases
	Using Prepared Statements
	Fetching Records in Groups
	Performing Transactions
	Improving Performance
	Debugging Techniques

	Chapter 13: Networking
	The URLRequest Class
	Receiving Data
	Parsing Data
	Transmitting Data
	Downloading Files
	Downloading Large Files
	Uploading Files

	Chapter 14: Using Other Media
	Playing Sounds
	Playing Long Sounds
	Playing Streaming Sounds
	Controlling Sounds
	Displaying PDFs
	Handling XML Data

	Chapter 15: Security Techniques
	The AIR Security Model
	Using Non-Application Sandbox Content
	Using the Sandbox Bridge
	Storing Encrypted Data
	Validating Data
	Best Security Practices

	Chapter 16: Deploying Applications
	More Application Descriptor File Options
	Using Custom Icons
	Seamless Installations
	More Application Ideas
	Updating an Application

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

