
Learning JavaScript

By Shelley Powers

...............................................

Publisher: O'Reilly

Pub Date: October 01, 2006

ISBN: 0-596-52746-2

Pages: 304

 

Table of Contents  | Index

As web browsers have become more capable and standards compliant, JavaScript has grown in
prominence. JavaScript lets designers add sparkle and life to web pages, while more complex
JavaScript has led to the rise of Ajax -- the latest rage in web development that allows developers
to create powerful and more responsive applications in the browser window.

Learning JavaScript introduces this powerful scripting language to web designers and developers in
easy-to-understand terms. Using the latest examples from modern browser development practices,
this book teaches you how to integrate the language with the browser environment, and how to
practice proper coding techniques for standards-compliant web sites. By the end of the book, you'll
be able to use all of the JavaScript language and many of the object models provided by web
browsers, and you'll even be able to create a basic Ajax application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Learning JavaScript

By Shelley Powers

...............................................

Publisher: O'Reilly

Pub Date: October 01, 2006

ISBN: 0-596-52746-2

Pages: 304

 

Table of Contents  | Index

    Copyright

    Preface

    Chapter 1.  Introduction and First Looks

      Section 1.1.  Twisted History: Specs and Implementations

      Section 1.2.  Cross-Browser Incompatibility and Other Common JavaScript Myths

      Section 1.3.  What You Can Do with JavaScript

      Section 1.4.  First Look at JavaScript: "Hello World!"

      Section 1.5.  The JavaScript Sandbox

      Section 1.6.  Accessibility and JavaScript Best Practices

    Chapter 2.  JavaScript Data Types and Variables

      Section 2.1.  Identifying Variables

      Section 2.2.  Scope

      Section 2.3.  Simple Types

      Section 2.4.  Constants: Named but Not Variables

      Section 2.5.  Questions

    Chapter 3.  Operators and Statements

      Section 3.1.  Format of a JavaScript Statement

      Section 3.2.  Simple Statements

      Section 3.3.  Conditional Statements and Program Flow

      Section 3.4.  The Conditional Operators

      Section 3.5.  The Logical Operators

      Section 3.6.  Advanced Statements: The Loops

      Section 3.7.  Questions

    Chapter 4.  The JavaScript Objects

      Section 4.1.  The Object Constructor

      Section 4.2.  The Number Object

      Section 4.3.  The String Object

      Section 4.4.  Regular Expressions and RegExp

      Section 4.5.  Purposeful Objects: Date and Math

      Section 4.6.  JavaScript Arrays

      Section 4.7.  Associative Arrays: The Arrays That Aren't

      Section 4.8.  Questions

    Chapter 5.  Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir


      Section 5.1.  Defining a Function: Let Me Count the Ways

      Section 5.2.  Callback Functions

      Section 5.3.  Functions and Recursion

      Section 5.4.  Nested Functions, Function Closure, and Memory Leaks

      Section 5.5.  Function As Object

      Section 5.6.  Questions

    Chapter 6.  Catching Events

      Section 6.1.  The Event Handler at DOM Level 0

      Section 6.2.  Questions

    Chapter 7.  Forms and JiT Validation

      Section 7.1.  Accessing the Form

      Section 7.2.  Attaching Events to Forms: Different Approaches

      Section 7.3.  Selection

      Section 7.4.  Radio Buttons and Checkboxes

      Section 7.5.  Input Fields and JiT Regular Expressions

      Section 7.6.  Questions

    Chapter 8.  The Sandbox and Beyond: Cookies, Connectivity, and Piracy

      Section 8.1.  The Sandbox

      Section 8.2.  All About Cookies

      Section 8.3.  Alternative Storage Techniques

      Section 8.4.  Cross-Site Scripting (XSS)

      Section 8.5.  Questions

    Chapter 9.  The Basic Browser Objects

      Section 9.1.  BOM at a Glance

      Section 9.2.  The window Object

      Section 9.3.  Frames and Location

      Section 9.4.  history, screen, and navigator

      Section 9.5.  The all Collection, Inner/Outer HTML and Text, and Old and New Documents

      Section 9.6.  Something Old, Something New

      Section 9.7.  Questions

    Chapter 10.  DOM: The Document Object Model

      Section 10.1.  A Tale of Two Interfaces

      Section 10.2.  The DOM and Compliant Browsers

      Section 10.3.  The DOM HTML API

      Section 10.4.  Understanding the DOM: The Core API

      Section 10.5.  The DOM Core Document Object

      Section 10.6.  Element and Access in Context

      Section 10.7.  Modifying the Tree

      Section 10.8.  Questions

    Chapter 11.  Creating Custom JavaScript Objects

      Section 11.1.  The JavaScript Object and Prototyping

      Section 11.2.  Creating Your Own Custom JavaScript Objects

      Section 11.3.  Object Detection, Encapsulation, and Cross-Browser Objects

      Section 11.4.  Chaining Constructors and JS Inheritance

      Section 11.5.  One-Off Objects

      Section 11.6.  Advanced Error-Handling Techniques (try, throw, catch)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


      Section 11.7.  What's New in JavaScript

      Section 11.8.  Questions

    Chapter 12.  Building Dynamic Web Pages: Adding Style to Your Script

      Section 12.1.  DHTML: JavaScript, CSS, and DOM

      Section 12.2.  Fonts and Text

      Section 12.3.  Position and Movement

      Section 12.4.  Size and Clipping

      Section 12.5.  Display, Visibility, and Opacity

      Section 12.6.  Questions

    Chapter 13.  Moving Outside the Page with Ajax

      Section 13.1.  Ajax: It's Not Only Code

      Section 13.2.  How Ajax Works

      Section 13.3.  Hello Ajax World!

      Section 13.4.  The Ajax Object: XMLHttpRequest and IE's ActiveX Objects

      Section 13.5.  Working with XMLor Not

      Section 13.6.  Google Maps

      Section 13.7.  Questions

    Chapter 14.  Good News: Juicy Libraries! Amazing Web Services! Fun APIs!

      Section 14.1.  Before Jumping In, A Word of Caution

      Section 14.2.  Working with Prototype

      Section 14.3.  Script.aculo.us: More Than the Sum of Its Periods

      Section 14.4.  Sabre's Rico

      Section 14.5.  Dojo

      Section 14.6.  The Yahoo! UI

      Section 14.7.  MochiKit

      Section 14.8.  Questions

    Appendix 1.  Answers

      Section A.1.  Chapter 2

      Section A.2.  Chapter 3

      Section A.3.  Chapter 4

      Section A.4.  Chapter 5

      Section A.5.  Chapter 6

      Section A.6.  Chapter 7

      Section A.7.  Chapter 8

      Section A.8.  Chapter 9

      Section A.9.  Chapter 10

      Section A.10.  Chapter 11

      Section A.11.  Chapter 12

      Section A.12.  Chapter 13

      Section A.13.  Chapter 14

    Colophon

    Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Copyright © 2007 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent

Production Editor: Rachel Monaghan

Copy Editor: Mary Anne Weeks Mayo

Proofreader: Rachel Monaghan

Indexer: Johnna VanHoose Dinse

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano and Jessamyn Read

Printing History:  

October 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Learning JavaScript, the image of a baby rhino, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Preface
JavaScript was originally intended to be a scripting interface between a web page loaded in the
browser client (Netscape Navigator at the time), and the application on the server. Since its
introduction in 1995, JavaScript has become a key component of web development, and has found
uses elsewhere as well.

This book covers the JavaScript language, from its most primitive data types that have been around
since the beginnings of the language, to its most complex features, including those involved with Ajax
and DHTML. By the end of the book, you will have the basics you need to work with even the most
sophisticated libraries and web applications.

Audience

Readers of this book should be familiar with web page technology, including CSS and HTML/XHTML.
You may well have seen some JavaScript in that work. Previous programming experience isn't
required, though some sections may require extra review if you have no previous exposure to
programming.

This book should help:

Anyone who wants, or needs, to integrate JavaScript into his own personal web site or sites

Anyone who uses a content-management tool, such as a weblogging tool, and wants to better
understand the scripting components incorporated into her tool templates

Web developers who seek to integrate JavaScript and some of the DHTML/Ajax features into
their web sites

Web service developers who want to develop for a new market of clients

Teachers who use web technologies as either the focus or a component of their courses

Web page designers who wish to better understand how their designs can be enlivened with
interactive or animated effects

Anyone interested in web technologies

Assumptions and Approach

As stated earlier, this book assumes you have experience with (X)HTML and CSS, as well as a
general understanding of how web applications work. Programming experience isn't necessary, but

http://lib.ommolketab.ir
http://lib.ommolketab.ir


the book covers all aspects of JavaScript, some of which are relatively sophisticated. Though the
heavier pieces are few, you will need to understand JavaScript enough to work with the newer Ajax
libraries.

The book is broken into four sections:

Chapters 1 through 3 provide an introduction to the structure of a JavaScript application, including
the simple data types supported in the language, as well as the basic statements and control
structures. These establish a baseline of understanding of the language for the sections that follow.

Chapters 4 through 8 introduce the main JavaScript objects, including the all-important function,
script access for web-page forms, event handling, scripting security, and working with cookies.
Combined, these topics comprise the core of JavaScript, and with these chapters, you can validate
form elements, set and retrieve cookies, capture and provide functionality for events, and even
create JavaScript libraries. The functionality covered in these chapters has been basic to JavaScript
for 10 years, and will remain so for at least another 10.

Chapters 9 through 11 delve into the more sophisticated aspects of web-page development. These
chapters cover the Browser Object Model and the newer Document Object Model, and show how you
can create your own custom objects. Understanding these models is essential if you wish to create
new windows, or individually access, modify, or even dynamically create any page element. In
addition, with custom objects, you can then move beyond the capabilities that are prebuilt into either
language or browser.

Chapters 12 through 14 get into the advanced uses of JavaScript, including DHTML, Ajax, and some
of the many wonderful new libraries that support both.

Chapter 1, Introduction and First Looks

Introduces JavaScript and provides a quick first look at a small web-page application. This
chapter also covers some issues associated with the use of JavaScript, including the many tools
that are available, as well as issues of security and accessibility.

Chapter 2, JavaScript Data Types and Variables

Provides an overview of the basic data types in JavaScript, as well as an overview of language
variables, identifiers, and the structure of a JavaScript statement.

Chapter 3, Operators and Statements

Covers the basic statements of JavaScript, including assignment, conditional, and control
statements, as well as the operators necessary for all three.

Chapter 4, The JavaScript Objects

Introduces the first of the built-in JavaScript objects, including Number, String, Boolean, Date,
and Math. The chapter also introduces the RegExp object, which provides the facilities to do
regular-expression pattern matching. Regular expressions are essential when checking form
fields.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 5, Functions

Focuses on one other JavaScript built-in object, the function. The function is key to creating
custom objects, as well as packaging blocks of JavaScript into pieces that can be used, again
and again, in many different JavaScript applications. This JavaScript function is relatively
simple, but certain aspects can be complex. These include recursion and closure, both of which
are introduced in this chapter and detailed in Chapter 11.

Chapter 6, Catching Events

Focuses on event handling, including both the original form of event handling (which is still
commonly used in many applications), as well as the newer DOM-based event handling.

Chapter 7, Forms and JiT Validation

Introduces using JavaScript with forms and form fields, including how to access each field
typesuch as text input fields and drop-down listsand validate the data once retrieved. Form
validation before the form is submitted to the web server helps prevent an unnecessary round
trip to the server, and thus saves both time and resource use.

Chapter 8, The Sandbox and Beyond: Cookies, Connectivity, and Piracy

Covers script-based cookies, which store small pieces of data on the client's machine. With
cookies, you can store usernames, passwords, and other information so that users don't have
to keep reentering data. In addition, since discussion of cookies inevitably leads to discussions
of security, the section also covers some security issues associated with JavaScript.

Chapter 9, The Basic Browser Objects

Begins to look at object models accessible from JavaScript, starting with the Browser Object
Modela hierarchy of objects including the window, document, forms, history, location, and so
on. Through the BOM, JavaScript can open windows; access page elements such as forms,
links, and images; and even do some basic dynamic effects.

Chapter 10, DOM: The Document Object Model

Focuses on the Document Object Model, a straightforward, but not trivial, object model that
provides access to all document elements and attributes. You'll see documents that are based
in XML (such as XHTML) as well as HTML. Though the model is comprehensive and its coverage
is fairly straightforward, there could be some challenging moments in the chapter for new
programmers.

Chapter 11, Creating Custom JavaScript Objects

Demonstrates how to create custom objects in JavaScript and covers the entire prototype
structure that enables such structures in the language. Some programming language concepts

http://lib.ommolketab.ir
http://lib.ommolketab.ir


are discussed, such as inheritance and encapsulation, but you don't need experience with these
concepts.

Chapter 12, Building Dynamic Web Pages: Adding Style to Your Script

Provides a general introduction to some of the more commonly used Dynamic HTML effects,
including drag and drop, collapsing and expand page sections, visibility, and movement. Some
understanding of CSS is required.

Chapter 13, Moving Outside the Page with Ajax

Introduces Ajax, which, despite all the excitement it has generated, is actually not a
complicated use of JavaScript. In addition to covering the components of Ajax, the chapter also
provides one example of an application that has promoted Ajax probably more than any other:
Google Maps.

Chapter 14, Good News: Juicy Libraries! Amazing Web Services! Fun APIs!

Covers some of the more popular libraries you can download and use for free. This includes
Prototype, Sabre's Rico, Dojo, MochiKit, Yahoo! UI, and script.aculo.us. Between these libraries
and the book, you'll have all you need to create incredible, and useful, web applications.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Indicates computer code in a broad sense, including commands, arrays, elements, statements,
options, switches, variables, attributes, keys, functions, types, classes, namespaces, methods,
modules, properties, parameters, values, objects, events, event handlers, XML tags, HTML
tags, macros, the contents of files, and the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by

http://lib.ommolketab.ir
http://lib.ommolketab.ir


context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Web sites and pages are mentioned in this book to help you locate online information that might be
useful. Normally both the address (URL) and the name (title, heading) of a page are mentioned.
Some addresses are relatively complicated, but you can probably locate the pages easier using your
favorite search engine to find a page by its name, typically by writing it inside quotation marks. This
may also help if the page cannot be found by its address; it may have moved elsewhere, so the
name may still work.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Learning JavaScript by Shelley Powers. Copyright 2007 O'Reilly
Media, Inc., 978-0-596-52746-4."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


We have a web page for this book that lists errata, examples, and any additional information. You
can access this page at:

http://www.oreilly.com/catalog/learningjvscpt

You can also visit the author's web site for the book at:

http://learningjavascript.info

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

With some books, you have a terrific team behind you, and this book is one of those. I want to thank
my editor, Simon St.Laurent, for his patience, enthusiasm, and guidance as the book
metamorphosed during the writing process. In addition, I want to thank the tech and content
reviewers, Steven Champeon, Roy Owens, and Alan Herrell for their excellent suggestions, as well as
help in finding the gotchas and rough spots.

I also want to acknowledge Rachel Monaghan, production editor for this book; Mary Anne Weeks
Mayo, copyeditor; Johnna VanHoose Dinse, indexer; and Marlowe Shaeffer, production manager.

Finally, I want to send thanks to those who I have met online, in the tech community and out. You
were in mind as I wrote the book. In a way, you can say this book was written for youyou know who
you are.

http://www.oreilly.com/catalog/learningjvscpt
http://learningjavascript.info
http://www.oreilly.com
http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 1. Introduction and First Looks
JavaScript is one of the most widely used programming languages; it is also one of the most
misunderstood. Its growth has exploded in the last few years, and most web sites use it in some
form. Its component-based capabilities simplify the creation of increasingly complicated librariesmost
providing effects in web pages that previously required the installation of an external application. It
can also be tightly integrated with server-side applications that are created with a variety of
languages and interface with any number of databases. Yet for all of this, JavaScript is often
considered lightweight and unsophisticatednot like a "real" programming language.

In some ways, JavaScript is too easy to use. To its detractors, it lacks discipline; its object-oriented
capabilities aren't really OO; it exists within a simplified environment with only a subset of
functionality; it isn't secure; it's loosely typed; it doesn't compile into bytes or bits. I remember
reading in a JavaScript introduction years ago that you shouldn't let the name fool you: JavaScript
has little to do with Java. After all, Java is hard to learn.

So what's the reality? Is JavaScript a fun little scripting languagelightweight, helpful, but not to be
taken seriously? Or is it a powerful programming language you can trust with some of your site's
most important functionality? The reality of JavaScript, and hence the confusion, is that it's two
languages in one.

The first is a friendly, easy-to-use scripting language built into web browsers and other applications,
offering functions such as form validation and cool stuff like drop-down menus, color fades during
data updates, and in-place page edits. Because it's implemented within a specific environmentusually
a web browser of some formand within a protected environment, JavaScript doesn't need to have
functionality to manage files, memory, or many of the other programming language basic
components, making it leaner and simpler. You can begin programming in JS with little or no
background, training, or even prior programming experience.

The second language, however, is a mature, full-featured, carefully constrained, object-based
language, which does require more in-depth understanding. Used correctly, it can help web
applications scale (increase their number of users) with little or no change to the application on the
server. It can simplify web-site development and add a level of sophistication, making a good site
appear even better to its visitors.

Used incorrectly, JavaScript can also open security holes to your site, especially when used in
combination with other functionality, such as a web service or database form. It can also make a
page unusable, unreadable, and less accessible.

In Learning JavaScript, I'm going to introduce you to both languages just described: the fun scripting
language, as well as the powerful object-oriented programming language. More importantly, I'm
going to show you how to use JavaScript correctly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


1.1. Twisted History: Specs and Implementations

Learning a programming language doesn't require learning its historyunless you're a language like JavaScript, whose history is reflected in web pages today.

JavaScript originated with Netscape, back when it was first developing its LiveConnect server-side development. The company wanted a scripting language that
could interface with the server-side components and created one called "LiveScript." Later, after an initial partnership with Sun, owner of the Java programming
language, the Netscape engineers renamed LiveScript to JavaScript, even though there was and is no connection between either programming language. Well-
known JavaScript guru Steven Champeon wrote:

Rewind to early 1995. Netscape had just hired Brendan Eich away from MicroUnity Systems Engineering, to take charge of the design and implementation
of a new language. Tasked with making Navigator's newly added Java support more accessible to non-Java programmers, Eich eventually decided that a
loosely typed scripting language suited the environment and audience, namely the few thousand web designers and developers who needed to be able to
tie into page elements (such as forms, or frames, or images) without a bytecode compiler or knowledge of object-oriented software design.

The language he created was christened "LiveScript," to reflect its dynamic nature, but was quickly (before the end of the Navigator 2.0 beta cycle)
renamed JavaScript, a mistake driven by marketing that would plague web designers for years to come, as they confused the two incessantly on mailing
lists and on Usenet. Netscape and Sun jointly announced the new language on December 4, 1995, calling it a "complement" to both HTML and Java.

(From "JavaScript: How Did We Get Here?" O'Reilly Network, April 2001.)

Not to be out-engineered, Microsoft countered Netscape's effort with the release of Internet Explorer and its own scripting languageVBScriptderived from the
company's popular Visual Basic. Later, it also released its own version of a JavaScript-like language: JScript.

The competition between browsers and languages impacted the early adoption of JavaScript within many companies, especially as the difficult challenge of
maintaining cross-browser compatible pages increasednot to mention confusion about the name.

In an effort to cut through the compatibility issues, Netscape submitted the JavaScript specification to the European Computer Manufacturer's Association
(ECMA) International in 1996, to reissue it as a standardized work. Engineers from Sun, Microsoft, Netscape, and other companies holding a stake in the
language were invited to participate, and the result was the release of the first ECMAScript specificationECMA-262in June 1997. Since that time, most
companies that support a version of JavaScript (or JScript or ECMAScript) have agreed to, at a minimum, support ECMA-262.

You can download a PDF of ECMA-262 at http://www.ecma-international.org/publications/standards/Ecma-262.htm . It's not
exciting reading, but it does make a good companion reference.

The second version of ECMA-262 was strictly a maintenance release. The third, and current, version was released in December 1999.

However, this wouldn't be JavaScript if the confusion ended with the passing of ECMA-262. Scattered about the Web is discussion of a new version of
ECMAScript, designated ECMA-357. However, this isn't a new edition or version of ECMAScript; it's an extension known as E4X. The purpose of the extension is
to add native XML capability to ECMA-262. ECMA-357 was published in 2004, and at this time, JavaScript 1.6 has partially implemented E4X.

What's important to remember from all of this is that many of these older versions of scripting langauges are still in use, even today. It's not uncommon to find
old JScript or the earliest versions of JavaScript. To clarify all the versions of scripting languages and how they relate to one another, Table 1-1 provides an
approximate correspondence between JavaScript, JScript, and ECMAScript version, and what version of each is supported by today's most popular web
browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Table 1-1. Script support in browsers

Browser
Script

support
Documentation URL

Internet
Explorer
6.x

ECMA-262
(v3)
/JScript
5.6

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/1e9b3876-3d38-4fd8-
8596-1bbfe2330aa9.asp

Internet
Explorer
7.x
(Windows
XP)

ECMA-262
(v3)
/JScript
5.6

http://msdn.microsoft.com/ie/

Opera 8
and 8.5

ECMA-262
(v3)
/JavaScript
1.5

http://www.opera.com/docs/specs/js/ecma/

Firefox
1.5

ECMA-262
(v3) with
partial
support for
ECMA-357
(E4X)
/JavaScript
1.6

JavaScript 1.5 core reference: http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference/
JavaScript 1.6 core reference: http://developer.mozilla.org/en/docs/New_in_JavaScript_1.6

Safari 2.x
on Tiger

ECMA-262
(v3)

http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/index.html

Camino
1.0

ECMA-262
(v3)
/JavaScript
1.5

http://www.caminobrowser.org/

Netscape
8.1

ECMA-262
(v3)
/JavaScript
1.5

http://browser.netscape.com/ns8/

Various
wireless
device
browsers

Varies
Site that contains reference to several emulators and testing tools:
http://www.wirelessdevnet.com/channels/printlinks.phtml?category=4

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/1e9b3876-3d38-4fd8-
http://msdn.microsoft.com/ie/
http://www.opera.com/docs/specs/js/ecma/
http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/index.html
http://www.caminobrowser.org/
http://browser.netscape.com/ns8/
http://www.wirelessdevnet.com/channels/printlinks.phtml?category=4
http://lib.ommolketab.ir
http://lib.ommolketab.ir


When you're visiting web pages and curious as to how they implement a specific feature, you can usually tell what version of JavaScript they're using by how
they declare the script block. In addition, there are pieces of these old languages that still influence the more modern versions of JS. We'll look more closely at
the script block later in this chapter, and at the influences of older browsers throughout the book, but it's important to be aware that old versions of JavaScript
and its variations still impact today's applications.

Throughout the book, I use both JavaScript and JS interchangeably. In addition, unless otherwise noted, examples in this book are
based on EMCA-262 and JavaScript 1.5/1.6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


1.2. Cross-Browser Incompatibility and Other Common
JavaScript Myths

The JavaScript language runs in multiple environments and on many platforms. It can be used to
develop web pages (and other applications) that work in operating systems such as Mac OS X,
Windows, and Linux. It doesn't require any special download or installation, because JavaScript is
built into whatever browser you decide to use.

Most browsers implement a common subset of the language, making most code quite compatible
across browsers. This can lead to confusion: if the language implementation is similar, where do the
issues of cross-browser incompatibilities arise?

Most cross-browser incompatibilities are based on differences in the underlying Document Object
Model (DOM) exposed by the browser, rather than on the language itself. For instance, a JavaScript
language object would be Date or String; it will remain a Date or a String whether implemented in
Safari or Navigator. An instance of an object from the DOM would be the document object, which
represents that portion of the browser that holds the web page. How these DOM objects are exposed
and manipulated within the browser's respective implementation of JavaScript (or ECMAScript) is
what leads to cross-browser incompatibility.

Another area of confusion has to do with what in the web page is managed by JavaScript and what is
managed through the use of Cascading Style Sheets (CSS). The most that JavaScript can do with an
element in a page is create it, remove it, or alter its attributes. Among such attributes are those
defined through the CSS style attribute.

CSS defines the look and even some of the behavior of elements within the web page. It can hide or
show elements, change color or font, move, resize, or clip, and so on. How each browser implements
CSS can vary, and this can also lead to some issues of cross-browser incompatibility. All JavaScript
does, though, is alter an element's CSS style attributes.

ECMAScript compliance asserts that all built-in JavaScript objects be the same,
but some small variations can exist between browsers. However, for the most
part, cross-browser problems in the past have been based on DOM or CSS
differences.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


1.3. What You Can Do with JavaScript

JavaScript achieved early widespread use for simple tasks: validating form contents, or setting and
retrieving cookies (small bits of information that persist even when the browser is closed). In the late
1990s, with the introduction of Dynamic HTML (DHTML), JavaScript was also used to provide a more
dynamic user experience through drop-down menus and the like.

JavaScript's popularity has grownexploded, reallymost recently because it is a key component in Ajax
(Asynchronous JavaScript and XML), which promises to restructure the way web applications interact
with users. Over time, many cross-platform problems have been resolved, and the language has
become more sophisticatedso much so that JavaScript is no longer just a scripting language; it's a
full-featured programming language.

So what can you do with JavaScript? Well, for starters:

Validate form fields

Validate form input before submitting the contents to the server. This saves time and server
resources, and provides immediate feedback.

Set and retrieve web cookies

Persist information such as usernames, account numbers, or preferences in a controlled, safe
environmentsaving users time the next time they access a site.

Dynamically alter the appearance of a page element

Provide feedback by highlighting incorrect form entries; increase the size of a section's font
based on the reader's request.

Hide and show elements

Based on personal preference or user actions, show or hide page content, such as form
elements, expanding writing, and changing the displayed size of an image.

Move elements about the page

Create a drop-down menu, or provide an animated cursor to accent page elements.

Capture user events and adjust the page accordingly

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Based on keyboard or mouse actions, make a section of the page editable.

Scroll content

For larger images or content areas, provide a way to grab the element with a mouse or
keyboard, and scroll it right or left, up or down.

Interface with a server-side application without leaving the page

This is the basis of Ajax and is used to populate selection lists, update data, and refresh a
displayall without having to reload the page. This helps eliminate round trips to the server,
which can be costly in both time and resources.

What can you do? Perhaps the better question is what can't you do.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


1.4. First Look at JavaScript: "Hello World!"

One reason JavaScript is so popular is that it's relatively easy to add JavaScript to a web page. All
you need to do, at a minimum, is include HTML script tags in the page, provide the JavaScript
language for the type attribute, and add whatever JavaScript you want:

<script type="text/javascript">
...some JavaScript
</script>

Traditionally, script tags are added to the head element in the document (delimited by opening and
closing head tags), but they can also be included in the body elementor even in both sections.

Example 1-1 shows a complete, valid web page, including a JavaScript block that uses the built-in
alert function to open a message box containing the "Hello, World!" text.

Example 1-1. JavaScript block in the document head

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Example 1-1</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript">
   var dt = Date(  );

   // say hello to the world
   var msg = 'Hello, World! Today is ' + dt;
   alert(msg);
</script>
</head>
<body onload="hello(  );">
</body>
</html>

Copying this into a file and opening the file in any web browser should result in a box popping up as
soon as the page as loaded. If it doesn't, chances are that JavaScript is disabled in the browser, or,
something very rare these days, JavaScript isn't supported.

Though the example is simple, it does expose the basic components of most JavaScript applications
in use today. It deserves a closer look.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The examples in this book were all designed to validate as XHTML, which means
that they include DOCTYPE, document title, and content type. You can discard
these when recreating the examples. However, a better approach might be to
create a skeleton web page including the DOCTYPE, title, content type, head,
and body, and then copy it for most of the examples.

1.4.1. The script Tag

JavaScript, unlike some other languages, is almost always embedded within the context of another
language, such as HTML and XHTML (both of which are actual languages, though the moving parts
may not be as obvious). By this I mean that there are restrictions in how the script is added to the
page. You can't just plop JS into the page wherever and however you want.

Even when used in other, non-Web, contexts, JavaScript is frequently part of a
document or template.

In Example 1-1, the (X)HTML script element tag encloses the JavaScript. This lets the browser know
that when it encounters this tag, it shouldn't process the tag's contents as HTML or XHTML. At this
point, control over the contents is turned over to another built-in browser agent, the scripting engine.

Not all script embedded in web pages is JavaScript, and the tag contains an attribute defining the
type of script. In the example, this is given as a text/javascript. Other allowable values for the type
attribute are:

text/ecmascript

text/jscript

text/vbscript

text/vbs

The first is an alternative for JavaScript, the next a variation of JavaScript implemented by Microsoft
in Internet Explorer, and the next two are for VBScript.

All these type values describe the MIME type of the content. MIME, or Multipurpose Internet Mail
Extension, is a way to identify how the content is encoded (i.e., text), and what specific format it is
(javascript). The concept arose with email, but spread to other Internet uses, such as designating
the type of script in a script block.

By providing a MIME type, those browsers capable of processing the type do so, while other browsers
skip over the section. This ensures that the script is accessed only by applications that can process it.

Earlier versions of the script tag took a language attribute, and this was used to designate the
version of the language, as well as the type: javascript as compared to javascript 1.2. However,

http://lib.ommolketab.ir
http://lib.ommolketab.ir


the use of language was deprecated in HTML 4.01, though it still shows in many JavaScript examples.
And therein lies one of the earliest cross-browser techniques.

Years ago, when working with cross-browser compatibility issues, it wasn't uncommon to create a
specific script for each browser in a separate section or file and then use the language attribute to
ensure only a compatible browser could access the code. Looking through some of my old DHTML
examples (circa 1997), I found the following:

<script src="ns4_obj.js" language="javascript1.2">
</script>

<script src="ie4_obj.js" language="jscript">
</script>

The philosophy of this approach was that only a browser capable of processing JavaScript 1.2 would
pick up the one block (Netscape Navigator 4.x, primarily, at that time) and only a browser capable of
processing JScript would pick up that file (Internet Explorer 4). Kludgey? Sure, but it also worked
through the early years of trying to deal with frequently broken cross-browser DHTML.

Eventually, though, the preference shifted to an approach called object detectiona move only
encouraged when the language attribute was deprecated. We'll look at object detection more closely
in the later chapters, particularly those associated with Ajax. For now, object detection involves
testing to see if a particular object or property of an object exists, and if so, one batch of JavaScript
is processed; otherwise, a different batch is run.

Returning to the script tag, other valid attributes for this tag are src, defer, and charset. The
charset attribute defines the character encoding used with the script. Unless you need a different
character encoding than what's defined for the document, this usually isn't set.

One attribute that can be quite useful is defer. If you set defer to a value of "defer," it indicates to
the browser that the script is not going to generate any document content, and the browser can
continue processing the rest of the page's content, returning to the script when the page has been
processed and displayed:

<script type="text/javascript" defer="defer">
...no content being generated
</script>

Using this can help speed up page loading when you have a larger JavaScript block or include a larger
JS library. The last attribute, src, has to do with loading such libraries, and we'll explore it next.

1.4.2. JavaScript Code Location

In Example 1-1, the JavaScript block is embedded in the head element of the web page. The script
can also be included in the body, as a modification of the application demonstrates in Example 1-2.

Example 1-2. Embedding JavaScript into the document body

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>JavaScript Code Block Example</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var dt = Date(  );
var msg ='<h3>Hello, World! Today is ' + dt + '</h3>';
document.writeln(msg);

//]]>
</script>
</body>
</html>

Note in this example, rather than the alert function, the DOM document object is used to write
directly to the page.

There are differing viewpoints on when JS should be included in the head and when in the body, but
the following rules apply:

Place the JavaScript in the body when the JavaScript dynamically creates web page content as
the page is being loaded.

1.

JavaScript defined in functions and used for page events should be placed in the head tag, as
this is loaded before the body.

2.

A good rule of thumb with script placement is to embed the script in the body only when the script
creates web page contents as it's loaded; otherwise, put it in the head element. This way, the page
won't be cluttered with script, and the script can always be found in one location on each page.

Inserting JavaScript into the body can be avoided altogether by using the DOM
to generate new content and attach it to page elements. I'll be introducing this
approach later in the book.

1.4.3. Hiding the Script

In Example 1-2, the script block was included within a XHTML CDATA section. A CDATA section holds
text that the XHTML processor doesn't interpret.

The reason for the CDATA section is that XHTML processors interpret markup such as the header

http://lib.ommolketab.ir
http://lib.ommolketab.ir


(H3) opening and closing tags, even when they're contained within JavaScript strings. Though the
page may display correctly, if you try to validate it without the CDATA, you will get validation errors.

JavaScript that is imported into the page using the SRC attribute is assumed to be compatible with
XHTML and doesn't require the CDATA section. Inline or embedded JS, though, should be delimited
with CDATA, particularly if it's included within the BODY element.

For most browsers, you'll also need to hide the CDATA section opening and closing tags with
JavaScript comments (//), or you'll get a JavaScript error.

JavaScript Best Practice: The use of both the CDATA section and the JavaScript
comments is important enough that these form the first of many JavaScript
Best Practices that will be covered in this book.

When using an XHTML DOCTYPE, enclose inline or embedded JavaScript blocks
in CDATA sections, which are then commented out using JavaScript comments.
And always assume your web pages are XHTML, so always use CDATA.

Of course, the best way to keep your web pages uncluttered is to remove the JavaScript from the
page entirely, through the use of JavaScript files. Many of this book's examples are embedded into
the page primarily to make them easier to create. However, the Mozilla Foundation recommends that
all inline or embedded JavaScript be removed from a page and placed in separate JS files. Doing this
prevents problems with validation and incorrect interpretation of text, regardless of whether the page
is processed as HTML or XHTML.

JavaScript Best Practice: Place all blocks of JavaScript code within external
JavaScript files.

1.4.4. JavaScript Files

As JavaScript became more object-oriented and complex, developers began to create reusable JS
objects that could be incorporated into many applications created by different developers. The only
efficient way to reuse these objects was to create them in separate files and provide a link to each
file in the web page.

JavaScript files are beneficial for reasons other than facilitating reuse. For example, rather than
repeat the same code over many pages and have to update it in many places when it changes, the
code is created in a file, and any modifications are then made to only one place. Nowadays, all but
the most simple JavaScript is created in separate script files. Whatever overhead is incurred by using
multiple files is more than offset by the benefits.

To include a JavaScript library or script file in your web page, use this syntax:

<script type="text/javascript" src="somejavascript.js"></script>

The script element contains no content, but the closing tag is still required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Script files are loaded into the page by the browser in the order in which they occur in the page and
are processed in order unless defer is used. A script file should be treated as if the code is actually
included in the page; the behavior is no different between script files and embedded JavaScript
blocks.

The entire second half of the book covers creating and using custom libraries, but Chapter 11 covers
many of the basics.

1.4.5. Comments

A line that begins with the double-slash (//) is a JavaScript comment, usually an explanation of the
surrounding code. Comments in JavaScript are an extremely useful way of quickly noting what a
block of code is doing, and whatever dependencies it has. It makes the code more readable and more
maintainable.

There are two different types of comments you can use in your own applications. The first, using the
double-slash, just comments out a specific line:

// This line is commented out in the code

The second makes use of opening and closing JavaScript comment delimiters, (/*) and (*/), to mark
a block of comments that can extend one or more lines:

/* This is a multiline comment 
that extends through three lines. 
Multiline comments are particularly useful commenting on a function */

Single-line comments are relatively safe to use, but multiline comments can generate problems if the
beginning or ending bracket characters are accidentally deleted.

Typically, single-line comments are used before a block of JS performing a specific process or
creating a specific object; multiline comment blocks are used in the beginning of a JavaScript file.

JavaScript Best Practice: Begin every JavaScript block, function, or object
definition with at least one line of comments. In addition, provide a more
detailed comment block at the beginning of all JavaScript library files; include
information about author, date, and dependencies, as well as a detailed
purpose of the script.

1.4.6. Browser Objects

Examples 1-1 and 1-2, small as they were, used a powerful set of global, built-in browser objects to
communicate with the user.

The first example used the alert function to create a small pop-up window (usually called a dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir


window) with the provided message. Though not specifically included in the text, the alert dialog is a
function of the window objectthe top-most object in the Browser Object Model (BOM). The BOM is a
basic set of objects implemented in most modern browsers.

The second example also used an object from the BOMthe document objectto write the message out
to the page. The document, window, and all BOM objects are covered in Chapter 9.

The BOM is a variation of the DOM mentioned earlier, and it is sometimes
referred to as DOM Version 0.

1.4.7. JavaScript Built-in Objects

Examples 1-1 and 1-2 also use two other built-in objects, though only one is used explicitly. The
explicit object is date; it accesses today's date. The second, implicit, object is string, which is the
type of object that's returned when the date function is called. In fact, the following are all
comparable implementations of the same code:

var dt = String(Date(  ));
var dt = Date(  ).toString(  );

The JavaScript built-in objects string and date are covered in more detail in Chapter 4.

1.4.8. JavaScript User-Defined Functions

The global function and built-in object are used within the context of a user-defined function (UDF) in
Example 1-1. The typical syntax for creating a UDF is:

               function functionname(params) {
...
}

The keyword function is followed by the function name and parentheses containing zero or more
parameters (function arguments), followed by the function code contained within curly brackets. The
function may or may not return a value. A user-defined function encapsulates a block of JavaScript
for later or repeated processing.

Functions are technically another kind of a built-in JavaScript object. They look like statements, and
you don't need to worry much about the distinction until you're building lots of them. However, they
are objects, and they are complex enough and important enough to have their own chapter, Chapter
5.

1.4.9. Event Handlers

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In the opening body tag of Example 1-1, an attribute named onload is assigned the hello function.
The onload attribute is what's known as an event handler. This event handler, and others, are part of
the underlying DOM that each browser provides. They can attach a function to an event so that when
the event occurs, some code is processed.

There are several events that can be captured in various types of elements, each of which can then
be assigned code to be implemented when the event occurs.

Adding an event handler directly to the element tag is one way to attach an event handler. A second
technique occurs directly within JavaScript using a syntax such as the following:

<script type="text/javascript">
document.onload=hello(  );

function hello(  ) {
   var dt = Date(  );
   var msg = 'Hello, World! Today is ' + dt;
   alert(msg);
}
</script>

Using this approach, you don't have to add event handlers as attributes into tags, but instead can
add them into the JS itself. We'll get into more details on event handlers in Chapter 6. Though not
demonstrated, events are frequently used in conjunction with HTML forms to validate the form data
before submittal. Forms are covered in Chapter 7.

Mozilla has provided a good documentation set covering the Gecko engine (the
underlying engine that implements JavaScript within browsers such as Camino
and Firefox). The URL for the event handlers is
http://www.mozilla.org/docs/dom/domref/dom_event_ref.html.

1.4.10. The var Keyword and Scope

We've looked at the built-in objects and functions, the user-defined function, and event handlers.
Now it's time to take a brief look at the individual lines of JavaScript code.

Examples 1-1 and 1-2 use the var keyword to declare the variables dt and msg. By using var with
variables, each is then defined within a local scope, which means they're only accessible within the
function in which they're defined. If I didn't use var, the variables would have global scope, which
means the variable would then be accessible by all JavaScript anywhere in the web page (or within
any external JS libraries included in the page).

Setting the scope of a variable is important if you have both global and local variables with the same
name. Example 1-1 doesn't have global variables of any name, but it's important to develop good
JavaScript coding practices from the beginning. One such practice is to explicitly define the variable's
scope.

Here are the rules regarding scope:

http://www.mozilla.org/docs/dom/domref/dom_event_ref.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


If a variable is declared with the var keyword in a function, its use is local to that function.

If a variable is declared without the var keyword in a function, and a global variable of the same
name exists, it's assumed to be that global variable.

If a variable is declared locally with a var keyword but not initialized (i.e., assigned a value), it
is accessible but not defined.

If a variable is declared locally without the var keyword, or explicitly declared globally, but not
initialized, it is accessible globally but not defined.

By using var within a function, you can prevent problems when using global and local variables of the
same name. This is especially critical when using external JavaScript libraries. (See Chapter 2 for
more details on JS variables and simple data types.)

1.4.11. The Property Operator

There are several operators in JavaScript: those for arithmetic (+,), those for conditional expressions
(<, >), and others detailed more fully later in the book. Example 1-2 introduces your first operator:
the dot (.), which is also known as the property operator.

In the following line from Example 1-2, the property operator accesses a specific property of the
document object:

document.writeln(msg);

Data elements, event handlers, and object methods are all considered properties of objects within
JavaScript, and all are accessed via the property operator.

1.4.12. Statements

The examples demonstrated a basic type of JavaScript statement: the assignment. There are several
different types of JS statements that assign values, print out messages, look through data until a
condition is met, and so on. The last component of our quick first look at JavaScript is the concept of
a JS statement, including its terminator: the semicolon (;).

The statement lines in Example 1-1 end with a semicolon. This isn't an absolute requirement in
JavaScript unless you want to type many statements on the same line. If you do, you'll have to insert
a semicolon to separate the individual statements.

When typing a complete statement on one line without a semicolon, a line break terminates the
statement. However, just as with the use of var, it's a good practice that helps avoid some kinds of
mistakes. I use the semicolon for all of my JS development.

The use of the semicolon, other operators, and statements are covered in Chapter 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


1.4.13. What You Didn't See

Ten years ago when most browsers were in their first or second version, JavaScript support was
sketchy, with each browser implementing a different version. When browsers, such as the text-based
Lynx, encountered the script tag, they usually just printed the output to the page.

To prevent this, the script contents were enclosed in HTML comments: <!-- and -->. When HTML
comments were used, non-JS enabled browsers ignored the commented-out script, but newer
browsers knew to execute the script.

It was a kludge, but it was a very widespread kludge. Most web pages with JavaScript nowadays
feature the added HTML comments because the script is copied more often than not. Unfortunately,
today, some new browsers may process XHTML as strictly XML, which means the commented code is
discarded. In these situations, the JavaScript is ignored. As a consequence, HTML comments have
fallen out of favor and aren't used in any examples in this book.

JavaScript Best Practice: Do not use HTML commenting to "hide" JavaScript.
Browsers that don't understand JS are long gone, and their use conflicts with
pages created as XHTML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


1.5. The JavaScript Sandbox

When JavaScript was first released, there was understandable concern about opening a web page
that would execute a bit of code directly in your machine. What if the JavaScript included something
harmful, such as code to delete all Word documents or worse, copy them for the script originator?

To prevent such occurrences and to reassure browser users, JavaScript was built to operate in a
sandbox: a protected environment in which the script can't access the resources of the browser's
computer.

In addition, browsers implement security conditions above and beyond those established as a
minimum for the JavaScript language. These are defined in a browser-specific security policy, which
determines what the script can and cannot do. One such security policy dictates that a script may not
communicate with pages other than those from the same domain where the script originated. Most
browsers provide the means to customize this policy even further, making the environment in which
the script operates more, or less, restrictive.

Unfortunately, even with the JavaScript sandbox and browser security policies, JavaScript has had a
rough time, and hackers have discovered and exploited several JavaScript errorssome browser-
dependent, some not. One of the more serious is known as cross-site scripting (XSS). This is actually
a class of security breaks (some coming through JavaScript, others through holes in the browsers,
and still others through the server) that can lead to cookie theft and exposure of client or site data
and a host of other serious problems.

We'll look at this later in much more detail, as well as how to prevent XSS, along with other security
problems and preventions, and that infamous little goodie, the cookie, in Chapter 8.

The CERT site is the most authoritative on security issues, and the page
discussing XSS can be found at http://www.cert.org/advisories/CA-2000-
02.html. The CGISecurity.com site has an in-depth FAQ on XSS and can be
found at http://www.cgisecurity.com/articles/xss-faq.shtml.

It's important to be aware that JavaScript can be vulnerable, even with the best of intentions on the
part of browser vendors. However, this shouldn't dissuade you from using JavaScript; most problems
can be prevented by understanding their nature and following steps recommended by security
experts.

http://www.cert.org/advisories/CA-2000-
http://www.cgisecurity.com/articles/xss-faq.shtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir


1.6. Accessibility and JavaScript Best Practices

In an ideal world, everyone who visits your web site would use the same type of operating system
and browser, and have JavaScript enabled. Your site would never be accessed via mobile phone or
other odd-sized device; blind people wouldn't need screen readers, and the paralyzed wouldn't need
voice-enabled navigation.

This isn't an ideal world, but too many JS developers code as if it is. We get so caught up in the
wonders of what we can create that we forget that not everyone can share them.

There are many best practices associated with JavaScript, but if there's one to take away from this
book, it's the following: whatever JavaScript functionality you create, it must not come between your
site and your site's visitors.

What do I mean by "come between your site and your site's visitors"? Avoid using JavaScript in such
a way that those who cannot, or will not, enable JavaScript are prevented from accessing essential
site resources using a nonscript-enabled browser. If you create a drop-down menu using JS, you also
need to provide navigation for people not using a JS-enabled device. If your visitors are blind, JS
must not interfere with audio browsers; if your visitors use a cellphone with a black and white screen,
or they are color blind, your page shouldn't depend on color to provide feedback.

Many developers don't follow these practices because they assume the practices require extra work,
and for the most part, they do. However, the work doesn't have to be a burdennot when the results
can increase the accessibility of your site. In addition, many companies now require that their web
sites meet a certain level of accessibility. It's better to get into the habit of creating accessible pages
in the beginning than to try to fix the pages, or your habits, later.

1.6.1. Accessibility Guidelines

The WebAIM site (http://www.webaim.org ) has a wonderful tutorial on creating accessible JavaScript
(available at http://www.webaim.org/techniques/javascript/ ). It covers the ways you shouldn't use
JavaScript, such as using JS for menus and other navigation. However, the site also provides ways
you can use JS to make a site more accessible.

One suggestion is to base feedback on events that can be triggered whether or not you use a mouse.
For instance, rather than capture mouse click, capture events that are triggered if you use a
keyboard or a mouse, such as onfocus and onblur . If you have a drop-down menu, add a link to a
separate page, and then provide a static menu on the second page.

After reviewing the tutorial at WebAIM, you might want to spend some time at the W3C's Web
Accessibility Initiative (at http://www.w3.org/WAI/ ). From there you can also access the U.S.
Government's Section 508 web site, which discusses what is known as "508 compliance." Sites that
comply with Section 508 are accessible regardless of physical constraints. At the web site, you can
access various tools that evaluate your site for accessibility, such as Cynthia Says (at
http://www.cynthiasays.com/ ); convert your nonaccessible Word or Adobe PDF documents into
HTML, such as the Illinois Accessible Web Publishing Wizard (at
http://cita.rehab.uiuc.edu/software/office/ ); and help you develop accessible content from the

http://www.cynthiasays.com/
http://cita.rehab.uiuc.edu/software/office/
http://lib.ommolketab.ir
http://lib.ommolketab.ir


beginning, such as the Web Accessibility Toolbar (at http://cita.rehab.uiuc.edu/software/office/ ).

Whether your site is located within the United States or not, you want it to be accessible; therefore a
visit to Section 508 is useful regardless of your locale.

Of course, not all accessibility issues are related to those browsers in which JavaScript is limited or
disabled by default, such as with screen readers. Many people don't trust JavaScript, or don't care for
it and choose to disable it. For both groups of peoplethose who prefer not to use JavaScript, and
those who have no choiceit's important to provide alternatives when no script is present. One
alternative is noscript .

1.6.2. noscript

Some browsers or other applications are not equipped to process JavaScript, or are limited in their
interpretation. If the JavaScript is not essential to navigation or interaction, and the browser ignores
the script, no harm. However, if the JavaScript is essential to access the site's resources and you
don't provide alternatives, you're basically telling these folks to go away.

Years ago when JavaScript was fairly new, one popular approach was to provide a plain or text-only
page accessible through a link, usually placed at the top of the page. However, the amount of work to
maintain the two sites could be prohibitive, not to mention the constant worry about keeping the
sites synchronized.

A better technique is to provide static alternatives to the dynamic, script-generated content. When
you use JavaScript to create a drop-down menu, also provide a standard hierarchical linked menu;
when you use script to expose form elements for editing based on user interaction, provide the
more traditional links to a second page to do the same.

The tag that enables all of this is noscript . Wherever you need static content, add a noscript
element with the content contained within the opening and closing tags. Then, if a browser or other
application can't process the script (because JavaScript is not enabled for some reason), the noscript
content is processed; otherwise, it's ignored.

Example 1-3 shows our original example with the addition of noscript . Accessing the page with a
JavaScript-enabled browser should display it with the link labeled "First Example." If, however, you
disable JavaScript in your browser's preferences, the page should display with the link labeled
"Original Example."

Example 1-3. The use of noscript for non-JavaScript-enabled browsers

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Example 1-3</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
var dt = Date(  );
var msg ='<a href="js1.htm">First Example</a>';
document.writeln(msg);
</script>
<noscript>
<a href="js1.htm">Original Example</a>
</noscript>
</body>
</html> 

The example is just a simplified use of noscript ; you'll see more sophisticated uses later in the book.

As useful as noscript is, in a more complicated page, it can become tedious working with embedded
noscript elements scattered about. The next section introduces an alternative approach.

A second instance in which noscript content is processed is when a browser or
other application has scripting enabled but can't work with the MIME type of the
scripting block. This is also a time when the script can't be executed, and the
noscript content should be processed. However, many popular browsers such
as Firefox and Safari don't process the noscript content in these
circumstances. This is an error, and one you should be aware of if you depend
on noscript .

1.6.3. An Alternative to noscript

The more you add to a web page, the harder it becomes to maintain. If you use JavaScript to provide
a great deal of functionality and then use noscript to provide alternatives, your pages could get large
and complicated.

Another approach, one I recommend when you're hiding and showing web content based on user
interaction, is to design the page with static elements, and then use script to either hide these
elements and provide the alternative dynamic content, or actually leave the static elements in and
then provide the dynamic as an additional option.

The popular photo site Flickr (http://flickr.com ) uses this technique. If you access an individual photo
page as the photo owner, whether or not you have JavaScript enabled, you'll see a link to click to edit
the photo title, tags, and description. When you have JavaScript enabled, clicking on the title or the
description area opens up a space to edit both; clicking a separate "Add a tag" link opens a space for
adding a new tag, as shown in Figure 1-1 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Figure 1-1. DHTML and Ajax in use at Flickr

When JavaScript is disabled, clicking on the title and description doesn't cause any change in the
page, and the link to add the tags doesn't show. Because the CSS attribute display isn't dependent
on JavaScript, the items are hidden regardless of whether or not script is enabled.

When script is enabled, by associating event handlers with page elements such as the title and
description, you can use JavaScript to display the previously hidden objects when the web-page
reader clicks the items.

Where I disagree with Flickr is in its message to users to the effect that if only they had a JavaScript-
enabled browser, they could see such-and-such functionality, as shown in Figure 1-2 . The issue is
that some people may not be able to use JavaScript. Those that can but choose to disable JavaScript
usually do so for a good reason, one that they're not likely to change because of one web siteno
matter how much they like that site. Adding an "if only" message to a page is similar to the old "You
need to use Internet Explorer to view these pages" that became very popular at the end of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir


1990s. It was a bad idea then to tell web-page readers what they should and should not use; it's a
bad idea now.

Figure 1-2. Flickr page with JavaScript disabled, and the "if only"
message

You might as well put up a "Wow, you're really an annoyance" sign because that's basically what
you're saying.

1.6.4. Using Your Browser and Other Developer Tools

When JavaScript was first implemented, acceptance was slow because there were no script
debuggers or development tools for the language. Now, though, most browsers have built-in
JavaScript consoles or other tools to simplify the JavaScript development and debugging process.

Firefox has a JavaScript console listing errors and warnings, accessible by clicking a symbol (either a
stop sign for an error, a warning triangle, or a conversation bubble with a small i ) in the toolbar or
by clicking JavaScript Console in the Tools menu. This console provides debugging information for the
JavaScript for each page, and persists this information until you specifically clear the Console
contents, as shown in Figure 1-3 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Figure 1-3. JavaScript console in Firefox

Firefox also provides what it calls the DOM Inspector. These very helpful utilities allow you to inspect
the DOM objects within the page, including the following very useful information (the computed style
is shown in Figure 1-4 ):

DOM Node

Node name, type, class, namespace URI, and value

Box Model

Position, x and y values

Computed style

The default styles for the object

http://lib.ommolketab.ir
http://lib.ommolketab.ir


XBL Binding

The Extensible Binding Language (not covered in this book)

CSS Style Rules

The CSS style rules that apply by default for an element and are given in the stylesheet

Figure 1-4. Computed style as shown in Firefox DOM Inspector

The JavaScript object, shown in Figure 1-5 , is of particular importance because it provides a listing of
events, properties, attributes, and functions accessible on the object from JavaScript.

Figure 1-5. JavaScript object from the DOM Inspector

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In addition, there are any number of tools nowstandalone or embeddedthat can work with JavaScript.
Rather than attempt to touch on a selection in one chapter, I include sidebars in several chapters
that provide a brief overview of handy gadgets, libraries, and tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 2. JavaScript Data Types and
Variables
The best part of JavaScript is that it's forgiving, especially in regards to data typing. If you start out
with a string and then want to use it as a number, that's perfectly fine with the language. (Well, as
long as the string actually contains a number and not something like an email address.) If you later
want to treat it as a string again, that's fine, too.

One could also say that the forgiving nature of JavaScript is one of the worst aspects of the language.
If you try to add two numbers together, but the JavaScript engine interprets the variable holding one
of them as a string data type, you end up with an odd string, rather than the sum you were
expecting.

Context is everything when it comes to JavaScript data typing, and also when it comes to working
with the most basic of JavaScript elements: the variable.

This chapter covers the the three basic JavaScript data types: string, boolean, and number. Along the
way, we'll explore escape sequences in strings and take a brief look at Unicode. The chapter also
delves into the topic of variables, including variable scope and what makes valid and meaningful
variable identifiers. We'll also look at the influences on identifiers that originate from the newest
generation of JavaScript applications based on Ajax.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


2.1. Identifying Variables

JavaScript variables have an identifier, scope, and a specific data type. Because the language is
loosely typed, the rest, as they say, is subject to change without notice.

Variables in JavaScript are much like those in any other language; they're used to hold values in such
a way that the value can be explicitly accessed in different places in the code. Each has an identifier
unique to the scope of use (more on this later), consisting of any combination of letters, digits,
underscores, and dollar signs. There is no required format for an identifier, other than that it must
begin with a character, dollar sign, or underscore:

_variableidentifier
variableIdentifier
$variable_identifier
var-ident

Starting with JavaScript 1.5, you can also use Unicode letters (such as &#252;) and digits, as well as
escape sequences (such as \u0009) in variable identifiers. The following are also valid variable
identifiers for JS:

_&#252;valid
T\u0009

JavaScript is case-sensitive, treating upper- and lowercase characters as different characters. The
following two variable identifiers are seen as separate variables in JS:

strngVariable
strngvariable

In addition, a variable identifier can't be a JavaScript keyword, a list of which is illustrated in Table 2-
1. Other keywords will be added over time, as new versions of JavaScript (well, technically
ECMAScript) are released.

Table 2-1. JavaScript keywords

http://lib.ommolketab.ir
http://lib.ommolketab.ir


break else new var

case finally return void

catch for switch while

continue function this with

default if throw
 

delete in try
 

do instanceof typeof
 

Due to proposed extensions to the ECMA 262 specification, the words in Table 2-2 are also
considered reserved.

Table 2-2. ECMA 262 specification reserved words

abstract enum int short

boolean export interface static

byte extends long super

char final native synchronized

class float package throws

const goto private transient

debugger implements protected volatile

double import public public

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In addition to the ECMAScript reserved words, there are JavaScript-specific words implemented in
most browsers that are considered reserved by implementation. Many are based in the Browser
Object Modelobjects such as document and window. Though not a definitive list, Table 2-3 includes the
more common words.

Table 2-3. Typical reserved words in browsers

alert eval location open

array focus math outerHeight

blur function name parent

boolean history navigator parseFloat

date image number regExp

document isNaN object status

escape length onLoad string

2.1.1. Naming Guidelines

Any name can be used for variables and functions within code, but there are several naming
practicesmany inherited from Java and other programming languages that can make the code easier
to follow and maintain.

First, use meaningful words rather than something that's thrown together quickly:

var interestRate = .75;

versus:

var iRt = .75;

You can also provide a data type clue as part of the name, using something such as the following:

var strName = "Shelley";

http://lib.ommolketab.ir
http://lib.ommolketab.ir


This type of naming convention is known as the Hungarian notation and is especially popular in
Windows development. As such, you'll most likely see it used within the older JScript applications
created for Internet Explorer but less often in more modern JS development.

Use a plural for collections of items:

var customerNames = new Array(  );

Typically, objects are capitalized:

var firstName = String("Shelley");

Functions and variables start with lowercase letters:

Function validateName(firstName,lastName) ...

Many times, variables and functions have one or more words concatenated into a unique identifier,
following a format popularized in other languages, and frequently referred to as CamelCase:

validateName
firstName

This approach makes the variable much more readable, though dashes or underscores between the
variable "words" work as well:

validate-name
first_name

The newer JavaScript libraries invariably use CamelCase.

The term CamelCase is based on the popularity of mixed upper- and lowercase
letters in Perl, and of the camel featured on the cover of the bestselling book,
Programming Perl, by Larry Wall et al. (O'Reilly). Wikipedia has a fascinating
and dynamic article on this and other naming notations at
http://en.wikipedia.org/wiki/CamelCase. Another variation, somewhat tongue-
in-cheek and also covered at Wikipedia, is StudlyCaps, at
http://en.wikipedia.org/wiki/Studlycaps.

Though you can use the $, number, or underscore to begin a variable, your best bet is to start with a
letter. Unnecessary use of unexpected characters in variable names can make the code harder to
read and follow, especially for newer JavaScript developers.

However, if you've looked at some of the newer JavaScript libraries and examples, you might notice
several new conventions for naming variables. The Prototype JavaScript library is a strong influence
in this regardso much so that I think of the rise of new naming conventions as the "Prototype effect."

http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/Studlycaps
http://lib.ommolketab.ir
http://lib.ommolketab.ir


2.1.2. The Prototype Effect and the Newer Naming Conventions

Many new or relatively newer naming conventions introduced into JavaScript are based less on
making the language more readable and more on making JavaScript look and act like other
programming languages, such as Java, Python, or Ruby.

As an example, JavaScript has several object-oriented-like capabilities, including the ability to create
private members for an object. These are properties/methods that are accessible only within another
function of the object, not directly by applications using the objects.

There is nothing inherent in JavaScript that marks an object as being private, as opposed to public.
However, an increasing number of JavaScript developers are following both Java and Python naming
conventions and are using the underscore (_) to mark a variable as private:

var _break    = new Object(  );
var _continue = new Object(  );

The Prototype library also introduced the use of the $ to designate shortcut methodsways to access
references to objects without having to write out the specifics:

$(  );
$A(  );

Class objects start with an uppercase character, functions and variables start with lowercase, and all
use CamelCase, discussed earlier. Abbreviations are reformatted into this notation (i.e., XmlName, as
compared to XMLName), and the only exceptions are constants (variables treated as unchanging static
values), which are typically written out all uppercase: MONTH as compared to month or Month.

In names for functions, a verb should be used; nouns are used for variables:

var currentMonth;
function returnCurrentMonth...

If included in an isolated block of JavaScript meant for distribution (typically referred to as a
JavaScript library or package), identifiers for functions and global variables should have a package
reference to prevent name collision (conflict between names):

dojo_someValue;
otherlibrary_someValue;

Iterator variables (used in for loops and other looping mechanisms) should be simple, and consist of
i, j, k, and so on, down the alphabet (a holdover from long, long ago when programming languages
such as FORTRAN required that all integers begin with the letters i, j, etc.).

There are other conventions established with the newer JavaScript development, most of which are
detailed quite nicely in a document put out by the Dojo organization, JavaScript Programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Conventions (available at http://dojotoolkit.org/js_style_guide.html at the time of this writing).

I agree with, and adhere to, many of the conventions covered in this section and the last. The one
convention I do take exception to is the use of the dollar sign in the Prototype library. It adds an
unnecessary element of obfuscation to the language that makes it difficult for newer developers to
understand what's going on.

Regardless of personal preferences, there is nothing mandatory or magical about the naming
conventions I've outlined, other than the few requirements enforced by the JavaScript engine. They
are a convenience.

We'll cover the Prototype library in detail in Chapter 14, but for now, when you
see these naming conventions used in sample code at sites as you start to
explore, you'll know that I haven't left great chunks of JavaScript functionality
out of the book.

http://dojotoolkit.org/js_style_guide.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


2.2. Scope

The next critical characteristic of a variable is its scope : whether it's local to a specific function or
global to the entire JavaScript application. A variable with local scope is one that's defined, initialized,
and used within a function; when the function terminates, the variable ceases to exist. A global
variable, on the other hand, can be accessed anywhere within any JavaScript contained within a web
pagewhether the JS is embedded directly in the page or imported through a JavaScript library.

In Chapter 1 , I mentioned that there is no special syntax necessary to specifically define a variable. A
variable can be both created and instantiated in the same line of code, and it need not look any
different from a typical assignment statement:

num_value = 3.5;

This is a better approach:

var num_value = 3.5;

The difference between the two is the use of the var keyword.

Though not required, explicitly defining a variable using the var keyword is strongly recommended;
doing so with local variables helps prevent collision between local and global variables of the same
name. If a variable is explicitly defined in a function, its scope is restricted to the function, and any
reference to that variable within the function is understood by both developer and JavaScript engine to
be that local variable. With the growing popularity of larger, more complex JS libraries, using var
prevents the unexpected side effects created by using what you think is a local variable, only to find
out it's global in scope.

To illustrate this type of side effect and the importance of explicitly declaring variables, Example 2-1
demonstrates a web page with separate blocks of JavaScript, each accessing the same variable,
message . The page includes two external JavaScript files, both of which also set the same variable:
one, globally, outside the function that uses it; the other, locally, within the function. None of the
examples use the var keyword to expressly define the variable.

Example 2-1. The dangers of global variables and not declaring local
variables explicitly

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Scope</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript" src="global.js" >
</script>
<script type="text/javascript" src="global2.js">
</script>
<script type="text/javascript">

message = "I'm in the page";

function testScope(  ) {
  message += " called in testScope(  )";
  alert(message);
}

</script>
</head>
<body onload="testScope();global2Print(  );globalPrint(  )">
<script type="text/javascript">

message += " embedded in page";
document.writeln(message);
</script>
</body>
</html>

When the page initially loads, the JS in the head element is processed first, and the message variable
is set to a string with the words, I'm in the page . The variable is then output to a dialog window from
a function, testScope , which is called when the page finishes loading. Before printing the message,
though, the function also concatenates (adds to the end) the string, called in testScope( ) to the
original text. Later in the web page, another block of JavaScript also accesses message and
concatenates its own text to the message string: embedded in page . The modified string is then printed
out to the web page.

The page also imports two JavaScript external files. The first, global.js , concatenates its own string,
globally in globalPrint , to the message. The source file also has a function, globalPrint , which opens
a dialog and publishes the message:

message += " globally in globalPrint";

function globalPrint(  ) {
  alert(message);
}

The last component of this application, the JavaScript source file global2.js , has a function,

http://lib.ommolketab.ir
http://lib.ommolketab.ir


global2Print , and also modifies message , this time by adding "also accessed in global2Print":

function global2Print(  ) {
message += " also accessed in global2Print";
alert(message);
}

When the web page is first opened, message is initially set in the first script block, and then modified
and printed out in the second script block as the page loads. The message at this point is:

I'm in the page embedded in the page

Nothing too surprising here. Via the onload event in the body tag, testScope is called as soon as the
page is loaded. This function modifies the message string, and pops up a window with:

I'm in the page embedded in the page called in testScope(  )

Clicking the OK button closes the window, and the next function listed in onload is called: global2Print
in global2.js . This function adds "Hi, you were here", resulting in a dialog with the following:

I'm in a page embedded in page called in testScope(  ) also accessed in global2Print

The message is getting long and has been modified in multiple JS blocks across two files, but it's not
finished yet. The last function called from the onload event is globalPrint in global.js . The JavaScript
in this file modifies the string message, and globalPrint outputs it via an alert. The resulting text is:

I'm in a page embedded in a page called in testScope(  ) also accessed in global2Print

Now, this is when what's happening with message may begin to get confusing. As you can see, the
message didn't change between calling the function in global2.js and calling the function in global.js ,
but JavaScript in both files modified the string.

The discrepancy in the result is that global2.js modified the string directly within the function before
printing, treating it as a local variable, while global.js modified it outside the function, treating it as if it
were global. When the JavaScript source file is loaded, the JavaScript is processed as the page is
loaded, and the message set globally is lost as soon as the JavaScript in the head element of the web
page body is processed. This script block treats message as a local variable and sets, rather than
modifies, the message variable's contentsoverwriting the value set in the global variable of the same
name.

After a few more directs and redirects, and mixing global and local access of a variable with nothing to
differentiate the two, you'll be surprised at the result at some point no matter how carefully you follow
the variable. Guaranteed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Though not demonstrated, a variable declared within a code block (delimited with
curly braces) has scope beyond the block. It's accessible by the code for the
entire function, or a script if the block is not within a function. JavaScript 1.7
adds block-level scoping, but this language version is not universally
implemented in browsers at this time.

What's the moral of all of this, then? Well, there are two, really.

The first is to be especially careful when using global variables. Some would say that with JavaScript's
ability to create objects and attach properties, as well as pass values as function parameters, you
shouldn't use global variables. However, global variables can be very handy: they can keep running
counts or hold timers, or any value necessary to more than one function.

Still, if you use large JavaScript libraries, no matter how careful you are, a global variable of the same
name as the one you're using in your library can happen. When it does, you're going to get unexpected
side effects.

An additional reason to avoid global variables is that they add to the overall
memory burden of a JS application. Memory management for JavaScript is
managed for us, but we can help the process. Unlike local variables, which are
freed when the function ends, global variables hang around until the web page,
and JS application, are no longer loaded in the browser.

If using extreme caution with global variables is one of the morals learned in this section, what's the
second? It's this: always explicitly define a local variable using the var keyword. If you don't, it's
treated as a global variablepure and simple.

JavaScript Best Practice: Use the var keyword to define any variable regardless
of scope: global or local. As the old saying goes, begin as you mean to continue.
This is particularly true when you are learning JavaScript.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Widgets for JavaScript

After a long hard day of working with variable scope, I like to spend a little time playing
around with what I call "geegaws"fun utilities, toys, what have you, that can be installed
quickly and are intuitively simple and easy to use.

I have both a Mac and a Windows notebook computer, and I like both, though I prefer my
Mac. One of the items I especially like about my Mac is the number of widgets I can install
into my Dashboardthe widget space that can overlay your contents. It's a wonderful spot
for geegaws, including JavaScript geegaws.

Among the geegaws I have currently installed on my Mac are: HTML Test 2, which can be
used to test JavaScript; ExecScript 2.0, which can run JS typed into a window; Regex, the
regular expression survival kit; and Rob Rohan, a JavaScript shell.

Most JavaScript widgets can be found in the Developer category of the widget download
site: http://www.apple.com/downloads/dashboard/developer/. Each is installable with just
one click of a button, with a minimum of footprint (resource use).

http://lib.ommolketab.ir
http://lib.ommolketab.ir


2.3. Simple Types

JavaScript is a trim language, with just enough functionality to do the jobno more, no less. However, as I've said before, it is a confusing language
in some respects.

For instance, there are just three simple data types: string , numeric , and boolean . Each is specifically differentiated by the literal it contains:
string, numeric, and boolean. However, there are also built-in objects known as number , string , and boolean . These would seem to be the same
thing, but aren't: the first three are classifications of primitive values, while the latter three are complex constructions with a type of their own:
object .

Rather than mix type and object, in the next three sections, we'll look at each of the simple data types, how they're created, and how values of one
type can be converted to others. In Chapter 4 , we'll look at these and other built-in JS objects, and the methods and properties accessible with
each.

2.3.1. The String Data Type

A string variable was demonstrated in Example 2-1 . Since JavaScript is a loosely typed language, there isn't anything to differentiate it from a
variable that's a number or a boolean, other than the literal value assigned it when it's initialized and the context of the use.

A string literal is a sequence of characters delimited by single or double quotes:

"This is a string"
'But this is also a string'

There is no rule as to which type of quote you use, except that the ending quote character must be the same as the beginning one. Any variation of
characters can be included in the string:

"This is 1 string."
"This is--another string."

Not all characters are treated equally within a string in JavaScript. A string can also contain an escape sequence , such as \\n for end-of-line
terminator.

An escape sequence is a set of characters in which certain characters are encoded in order to include them within the string. The following snippet
of code assigns a string literal containing a line-terminator escape sequence to a variable. When the string is used in a dialog window, the escape
sequence, \\n , is interpreted literally, and a new line is published:

var string_value = "This is the first line\nThis is the second line";

This results in:

This is the first line
This is the second line

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The two different types of quotes, single and double, can be used interchangeably if you need to include a quote within the quoted string:

var string_value = "This is a 'string' with a quote."

or:

var string_value = 'This is a "string" with a quote.'

You can also use the backslash to denote that the quote in the string is meant to be taken as a literal character, not an end-of-string terminator:

var string_value = "This is a \"string\" with a quote."

To include a backslash in the string, use two backslashes in a row:

var string_value = "This is a \\string\\ with a backslash."

The result of this line of code is a string with two backslashes, one on either side of the word string .

There is also a JavaScript function, escape , that encodes an entire string, converting ASCII to URL Encoding (ISO Latin-1 [ISO 8859-1]), which can
be used in HTML processing. This is particularly important if you're processing data for web applications. Example 2-2 demonstrates how escape
works with a couple of different strings.

Example 2-2. Using the escape function to escape strings

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Convert Object to String</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var sOne = escape("http://oreilly.com");
document.writeln("<p>" + sOne + "</p>");

var sTwo = escape("http://burningbird.net/index.php?pagename=$1&page=$2");
document.writeln("<p>" + sTwo + "</p>");

//]]>
</script>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The result of the program is the following two escaped strings:

http%3A//oreilly.com

http%3A//burningbird%2Cnet/index.php%3Fpagename%3D%241%26page%3D%242

Characters that are escaped are spaces, colons, slashes, and other characters meaningful in an HTML context. To return the string to the original,
use the unescape function on the modified string.

Though handy enough, the problem with escape is that it doesn't work with non-ASCII characters. There are, however, two functionsencodeURI and
decodeURI that provide encoding beyond just the ASCII character set. The encoding that's followed is shown in Table 2-4 , replicated from the
Mozilla Core JavaScript 1.5 Reference.

Table 2-4. Characters subject to URI encoding

Type Includes

Reserved characters ; , / ? : @ & = + $

Unescaped characters Alphabetic, decimal digits, - _ . ! ~ * ' ( )

Score #

If the body of the JavaScript block in Example 2-1 is replaced with the following:

var sURL = "http://oreilly.com/this_is_a_value&some-value='some value'";
sURL = encodeURI(sURL);
document.writeln("<p>" + sURL + "</p>");

Here's the resulting string printed to the page:

http://oreilly.com/this_is_a_value&some-value='some%20value'

The function decodeURI can then be used to retrieve the original, nonescaped string.

There are two other functions for URI encodingencodeURIComponent and decodeURIComponent that are used in Ajax operations because they also
encode &, +, and =, but we'll look at those in Chapter 13 .

You can also include Unicode characters in a string by preceding the four-digit hexadecimal value of the character with \\u . For instance, the
following outputs the Chinese (simplified) ideogram for "love":

document.writeln("\u7231");

http://oreilly.com/this_is_a_value&some-value='some%20value'
http://lib.ommolketab.ir
http://lib.ommolketab.ir


What displays is somewhat browser-dependent; however, most of the more commonly used browsers now have adequate Unicode support.

Learn more about Unicode and access relevant charts at http://www.unicode.org/ .

The empty string is a special case; it's commonly used to initialize a string variable when it's defined. Following are examples of empty strings:

var string_value = '';
var string_value = "";

Which quote character you use makes no difference to the JavaScript engine. What's more important is to use one or the
other consistently.

These are all demonstrations of how to explicitly create a string variable, and variations of string literals that incorporate special characters. The
values within a specific variable can also be converted from other data types, depending on the context.

If a numeric or Boolean variable is passed to a function that expects a string, the value is implicitly converted to a string first, before the value is
processed:

var num_value = 35.00;
alert(num_value);

In addition, when variables are added, depending on the context, nonstring values are also converted to strings. You've seen this in action when
nonstring values are added (concatenated) to a string to be published in a dialog window:

var num_value = 35.00;
var string_value = "This is a number:" + num_value;

You can also explicitly convert a variable to a string using string (toString in ECMAScript). If the value being converted is a boolean, the resulting
string is a text representation of the Boolean value: "true" for true; "false" for false. For numbers, the string is, again, a string representation of
the number, such as "123.06" for 123.06, depending on the number of digits and the precision (placement of the decimal point). A value of NaN
(Not a Number, discussed later) returns "NaN" .

Table 2-5 shows the results of using String on different data types.

Table 2-5. toString conversion table

Input Result

Undefined "undefined"

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Input Result

Null "null"

Boolean If true, then "true" ; if false, then "false"

Number See chapter text

String No conversion

Object A string representation of the default representation of the object

The last item in Table 2-5 discusses how a string conversion works with an object. Within the ECMAScript specification, the conversion routines first
call the toPrimitive function, before the type conversion. The toPrimitive function calls the DefaultValue object method, if any, and returns the
result. For instance, using toString on the String object itself returns a value of the following in some browsers:

[object Window]

This can be useful if you wish to drill into the value held in a variable for debugging purposes.

2.3.2. The Boolean Data Type

The boolean data type has two values: true and false . They are not surrounded by quotes; in other words, "false" is not the same as false.

The function Boolean (ToBoolean in ECMAScript) can convert another value to boolean true or false , according to Table 2-6 .

Table 2-6. ToBoolean conversion table

Input Result

Undefined false

Null false

Boolean Value of value

Number Value of false if number is 0 or NaN; otherwise, TRue

String Value of false if string is empty; otherwise, true

Object TRue

2.3.3. The Number Data Type

Numbers in JavaScript are floating-point numbers, but they may or may not have a fractional component. If they don't have a decimal point or
fractional component, they're treated as integersbase-10 whole numbers in a range of 253 to 253 . Following are valid integers:

Null "null"

Boolean If true, then "true" ; if false, then "false"

Number See chapter text

String No conversion

Object A string representation of the default representation of the object

The last item in Table 2-5 discusses how a string conversion works with an object. Within the ECMAScript specification, the conversion routines first
call the toPrimitive function, before the type conversion. The toPrimitive function calls the DefaultValue object method, if any, and returns the
result. For instance, using toString on the String object itself returns a value of the following in some browsers:

[object Window]

This can be useful if you wish to drill into the value held in a variable for debugging purposes.

2.3.2. The Boolean Data Type

The boolean data type has two values: true and false . They are not surrounded by quotes; in other words, "false" is not the same as false.

The function Boolean (ToBoolean in ECMAScript) can convert another value to boolean true or false , according to Table 2-6 .

Table 2-6. ToBoolean conversion table

Input Result

Undefined false

Null false

Boolean Value of value

Number Value of false if number is 0 or NaN; otherwise, TRue

String Value of false if string is empty; otherwise, true

Object TRue

2.3.3. The Number Data Type

Numbers in JavaScript are floating-point numbers, but they may or may not have a fractional component. If they don't have a decimal point or
fractional component, they're treated as integersbase-10 whole numbers in a range of 253 to 253 . Following are valid integers:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


-1000
0
2534

The floating-point representation has a decimal, with a decimal component to the right. It could also be represented as an exponent, using either a
superscript or exponential notation. All of the following are valid floating-point numbers:

0.3555
144.006
-2.3
442

19.5e-2 (which is equivalent to 19.5-2)

Though larger numbers are supported, some functions can work only with numbers in a range of 2e31 to 2e31 (2,147,483,648 to 2,147,483,648);
as such, you should limit your number use to this range.

There are two special numbers: positive and negative infinity. In JavaScript, they are represented by Infinity and -Infinity . A positive infinity is
returned whenever a math overflow occurs in a JS application.

In addition to base-10 representation, octal and hexadecimal notation can be used, though octal is newer and may be confused for hexadecimal
with older browsers. A hexadecimal number begins with a zero, followed by an x :

-0xCCFF

Octal values begin with zeros, and there is no leading x :

0526

You can convert strings or booleans to numbers; two functions, parseInt and parseFloat , manage the conversion depending on the type of
number you want returned.

The parseInt function returns the integer portion of a number in a string, whether the string is formatted as an integer or floating point. The
parseFloat function returns the floating-point value until a nonnumeric character is reached. In Example 2-3 , three strings containing numeric
values are passed to either parseInt or parseFloat , and the values are written to the page.

Example 2-3. Converting strings to numbers using different global functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Convert String to Number</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<p>
<script type="text/javascript">
//<![CDATA[

var sNum = "1.23e-2";
document.writeln(parseFloat(sNum));

var fValue = parseFloat("1.45inch");
document.writeln("<p>" + fValue + "</p>");

var iValue = parseInt("33.00");
document.writeln("<p>" + iValue + "</p>");

//]]>
</script>
</p>
</body>
</html> 

Using Firefox as a browser, the values printed out are:

0.0123
1.45
33

Notice with the first value, the number is printed out in decimal notation rather than the exponential notation of the original string value. Also note
that parseInt truncates the fractional component of the number.

The parseInt function can convert an octal or hexadecimal number back to base-10 representation. There is a second parameter to the function,
base , which is 10 or base 10, by default. If any other base is specified, in a range from 2 to 36, the string is interpreted accordingly. If you replace
the document output JavaScript in Example 2-3 with the following:

var iValue = parseInt("0266",8);
document.writeln("<p>" + iValue + "</p>");

var iValue = parseInt("0x5F",16);
document.writeln("<p>" + iValue + "</p>");

These octal and hexidecimal values are printed out to the page:

182

http://lib.ommolketab.ir
http://lib.ommolketab.ir


95

In addition to parseInt and parseFloat , the Number function also converts numbers. The type returned after conversion is dependent on the
representation: floating-point strings return floating-point numbers; integer strings, integers. Conversion to numbers from each type is shown in
Table 2-7 .

Table 2-7. Conversion from other data types to numbers

Input Result

Undefined NaN

Null 0

Boolean If true , the result is 1 ; otherwise 0

Number Straight value

String See chapter text

Object Numeric representation of the default representation of the object

In addition to converting strings to numbers, you can also test the value of a variable to see if it's infinity through the IsFinite function. If the
value is infinity or NaN, the function returns false ; otherwise, it returns true .

There are other functions that work on numbers, but they're associated with the Number object, discussed in Chapter 4 . For now, we'll continue to
look at the primitive types with two special JavaScript types: null and undefined.

2.3.4. Null and Undefined

The division between literals, simple data types, and objects is blurred in JavaScript, nowhere more so then when looking at two that represent
nonexistence or incomplete existence: null and undefined.

A null variable is one that has been defined, but hasn't been assigned a value. The following is an example of a null variable:

alert(sValue); // results in JavaScript error because sValue is not declared first

In this example, the variable sValue has not not been declared either through the use of the var keyword or by being passed as a parameter to a
function. If the variable has been declared but not initialized, it is considered undefined.

var sValue;
alert(sValue); // no error, and a window with the word 'undefined' is opened

A variable is not null and not undefined when it is both declared and given an initial value:

var sValue = "";

http://lib.ommolketab.ir
http://lib.ommolketab.ir


When using several JS libraries and fairly complex code, it's not unusual for a variable to not get set, and trying to use it in an expression can have
adverse effectsusually a JavaScript error. One approach to test variables if you're unsure of their state is to use the variable in a conditional test,
such as the following:

if (sValue) ... // if not null and initialized, expression is true; otherwise false

We'll look at conditional statements in the next chapter, but the expression consisting of just the variable sValue evaluates to TRue if sValue has
been declared and initialized; otherwise, the result of the expression is false :

if (sValue) // not true, as variable has not been declared, and is therefore null

var sValue;
if (sValue) // variable is not null, but it's still not true, as variable has not been defined (initialized with a value)

var sValue = 1;
if (sValue) // true now, as variable has been set, which automatically declares it

Using the null keyword, you can specifically test to see whether a value is null:

if (sValue == null)

In JavaScript, a variable is undefined, even if declared, until it is initialized. It differs from null in that using a null value as a parameter to a
function results in an error, while using an undefined variable usually does not:

alert(sValue); // JS error results, "Error: sValue is not defined"
var sValue; // no JS error and the window reads, "undefined" which is the value of the object

A variable can be undeclared but initialized, in which case it is not null and not undefined. However, in this instance, it's considered a global
variable, and as discussed earlier, not specifically declaring variables with var causes problems more often than not.

Though not related to existence, there is a third unique value related to the type of a variable: NaN , or Not A Number. If a string or Boolean
variable cannot be coerced into a number, it's considered NaN and treated accordingly:

var nValue = 1.0;
if (nValue == 'one' ) // false, the second operand is NaN

You can specifically test whether a variable is NaN with the isNaN function:

if (isNaN(sValue)) // if string cannot be implicitly converted into number, return true

By its very nature, a null value is NaN , so it is undefined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Author and respected technologist Simon Willison gave an excellent talk at O'Reilly's 2006 ETech conference titled, "A
(Re)-Introduction to JavaScript." You can view his slides at his web site,
http://simon.incutio.com/slides/2006/etech/javascript/js-tutorial.001.html . The whole presentation is a very worthwhile
read, but my favorite is the following line:

0, "", NaN, null, and undefined are falsy. Everything else is truthy.

In other words, zero, null, NaN, and the empty string are inherently false ; everything else is inherently true .

For the most part, JavaScript developers create code in such a way that we know a variable is going to be defined ahead of time and/or given a
value. In most instances, we don't explicitly test to see whether a variable is set, and if so, whether it's assigned a value.

However, when using large and complex JS libraries, and applications that can incorporate web service responses, it becomes increasingly
important to test variables that originate and/or are set outside of our controlnot to mention to be aware of how null and undefined variables
behave when accessed in the application.

http://simon.incutio.com/slides/2006/etech/javascript/js-tutorial.001.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


2.4. Constants: Named but Not Variables

There are times when you'll want to define a value once, and then have it treated as a read-only
value from that time forward. The keyword const is used to create a JavaScript const:

const CURRENT_MONTH = 3.5;

The constant can be of any value, and since it can't be assigned or reassigned a value at a later time,
it's initialized to its constant value when defined.

Just as with variables, a JavaScript constant has global and local scope. I use constants at a global
level, primarily because they contain a value I want to be accessible (and unchanged) by a JavaScript
block.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


2.5. Questions

Of the following identifiers, which are valid, which are not, and why?1.
$someVariable
_someVariable
1Variable
some_variable
som&#232;variable
function
.someVariable
some*variable

2.

Convert the following identifiers using the conventions outlined in the first section of the chapter:3.
var some_month;
function theMonth // function to return current month
current-month // a constant
var summer_month; // an array of summer months
MyLibrary-afunction // a function from a JavaScript package 

4.

Is the following string literal valid? If not, how would you fix it?5.
var someString = 'Who once said, "Only two things are infinite, the universe and human stupidity, and I'm not sure about the former."'6.

Given a number, 432.54, what JavaScript returns the integer component of the number, and then finds the hexidecimal and octal conversion?7.

You create a JavaScript function in a library that can be used by other applications. A parameter, someMonth , is passed to the function. How would you
determine whether it's null or undefined?

8.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 3. Operators and Statements
The examples in the book so far have performed mostly simple tasks: a variable has been defined
and its value set; a value is printed out in the page or in an alert window; a variable is modified
through addition or multiplication or some other means. These all use JavaScript statements and
operators.

There are a number of different types of statements in JavaScript: assignment, function call,
conditional, and loops. Each is fairly intuitive, simple to use, and quick to learn. A snap, really. As
with with most programming languages, in JavaScript the statements are easy to learn; the tricky
part is lining them up, one after the other, so they do something useful.

This chapter takes a closer look at statements and operators, what they share, and how they differ.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.1. Format of a JavaScript Statement

JavaScript statements terminate with a semicolon, though not all statements need the terminator
expressly given. If the JavaScript engine determines that a statement is complete (whatever that is
for each type of statement), and the line ends with a new line character, the semicolon can be
omitted:

var bValue = true
var sValue = "this is also true"

If multiple statements are on the same line, though, the semicolon must be used to terminate each:

var bValue = true; var sValue = "this is also true"

However, not explicitly terminating each JavaScript statement is a bad habit to get into, and one that
can result in unexpected consequences. As such, the use of the semicolon to terminate JavaScript
statements is a JavaScript best practice.

JavaScript Best Practice: Explicitly terminate JavaScript statements with the
semicolon, whether or not it's required.

The use of whitespace in JS has little impact on the code. For instance, the following two lines of code
are interpreted exactly the same:

var firstName = 'Shelley'     ;
var firstName = 'Shelley';

Other than to delimit words within quotes or to terminate statements, extra whitespacesuch as tabs,
spaces, and new linesis disregarded. In the following code, the variable assignment completes
successfully, even though there is a line terminator separating the statement:

var firstName 
= 'Shelley';
alert(firstName);

The engine didn't interpret the end-of-line character as a statement terminator in this instance
because it evaluated the code and determined that it was incomplete. The JavaScript engine
continues to process what it finds until either the semicolon is reached or until a statement is
completed. In the case of the assignment statement, this state is reached when the right-side
expression of the statement is provided.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Deciding whether to interpret an end-of-line terminator as a statement terminator is all a part of
JavaScript's forgiving nature: JavaScript works on the side of successfully processing the code and
does whatever is needed to facilitate this. Well, unless doing so introduces confusion. In the following
code:

var firstName = 
var lastName = 'Powers';

The JavaScript engine returns an error because the second line doesn't evaluate to a correct right-
side assignment.

Returning to the discussion of whitespace, indentation is used throughout the book to make the
examples more readable, but there's no programmatic reason to indent a line with a tab or spaces.
The same holds true for whitespace surrounding operators such as assignment (=) or one of the
math operators (such as +). Whitespace isn't necessary. Whitespace and comments, as well as
meaningful identifiers, are there to make the code easier to maintain.

JavaScript "Compression"

The reasons to add whitespace make sense: readability, separation of key language
elements, line termination, and so on. But what about removing such space?

JavaScript compressors take all noncode-specific whitespace out of a JavaScript
application. The concept behind such tools is the more whitespace you put into
JavaScript, the slower the download and the more client resources you consume. There
are tools and sites that provide compressed JS, such as Packer, at
http://dean.edwards.name/packer/ (shown in Figure 3-1 ) and a host of others listed at
Web Tools by Radok, at http://www.radok.com/javascript-compression.html .

Are these necessary? With small scripts, no, of course not. For larger JavaScript files?
Hard to say: even the most complex JS library isn't more than a few hundred lines.
Usually, I should add, because some of the newer Ajax libraries can be quite large.

Still, web pages today have 200K photos embedded in them and links to resource
material served from half a dozen sites. Does the size of a JS library have as much of an
impact as it once did? Again, it depends on the page, and what you know of your client's
expectations and environments.

There are reasons not to use compression. If an error is introduced into the code, the
compression makes it difficult to debug. The code is also unreadable, which inhibits
sharing, a hallmark of the scripting community.

Of course, sometimes you want to limit sharing. The very nature of
compressionobfuscationmay be one reason to use compressors. As Figure 3-1
demonstrates, Packer doesn't just compress the code, it also obfuscates it, making it
difficult (if not impossible) to copy. There are several encryption and obfuscation tools
that can make JS completely unreadable, though most (unlike Packer) are commercial
products.

http://dean.edwards.name/packer/ 
http://lib.ommolketab.ir
http://lib.ommolketab.ir


Figure 3-1. Packer, a JavaScript compression service

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.2. Simple Statements

Some JavaScript statements extend beyond a line, such as those for loops, which have a beginning
and end. Others, though, stand all on their own: one statement, one line. Among these simple
statements are those for assignment.

3.2.1. The Assignment Statement

The most common statement is the assignment statement. It's an expression consisting of a variable
on the left side, an assignment operator (=), and whatever is being assigned on the right.

The expression on the right can be a literal value:

nValue = 35.00;

Or, a combination of variables and literals combined with any number of operators:

nValue = nValue + 35.00;

And it can be a function call:

nValue = someFunction(  );

More than one assignment can be included on a line. For instance, the following assigns the value of
an empty string to multiple variables, on one line:

var firstName = lastName = middleName = "";

Following the assignment statement, the second most common type of statement is the arithmetic
expression that involves the arithmetic operators, discussed next.

3.2.2. Arithmetic Statements

In the last section, the second example was a demonstration of a binary arithmetic expression: two
operands are separated by an arithmetic operator, leading to a new result. When paired with an
assignment, the result is then assigned to the variable on the left:

nValue = vValue + 35.00;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


More complex examples can use any number of arithmetic operators, with any combination of literal
values and variables:

nValue = nValue + 30.00 /  2 - nValue2 * 3;

The operators used in the expression come from this set of binary operators:

+

For addition

-

For subtraction

*

For multiplication

/

For division

%

To return the remainder after division

These are considered binary operators because they require two operands, one on either side of the
operator. Any number can be combined into one statement and assigned to one variable:

var bigCalc = varA * 6.0 + 3.45 - varB / .05;

This code shows the binary operators working with numbers. How about if the values are strings?

In some of the previous examples, I concatenated (joined) strings together using the addition sign
(+), just as if I were adding two numbers together:

var newString = "This is an old " + oldString;

When the plus sign (+) is used with numbers, it's the addition operator. However, when used with
strings, it's the concatenation operator. With other binary operators, you can use a string as an
operand, but the string has to contain a number. In cases such as this, the value is converted to a
number before the expression is evaluated:

var newValue = 3.5 * 2.0; // result is 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir


var newValue = 3.5 * "2.0"; // result is still 7
var newValue = "3.5" * "2.0"; // still 7

On the other hand (and it's important to be aware of the distinction), if you add a number literal or
variable and a string, the number is the value that's converted from number to string.

In the following example, you might expect to get a value of 5.5 but instead get a new string,
"3.52.0":

var newValue = 3.5 + "2.0"; // result is a string, "3.52.0"

This one can trip you up quite frequently. Be very, very careful when mixing types with implicit
conversion; a simple accident in any of the values could lead to surprising results. When you think
the data type of one variable is treated as a string by the JavaScript engine, a better approach is to
use parseInt, parseFloat, or Number to explicitly convert the value:

var aVar = parseFloat(bVar) + 2.0;

3.2.3. The Unary Operators

In addition to the binary arithmetical operators just covered, there are also three unary operators.
These differ from the earlier batch in that they apply to only one operand:

++

Increments a value

--

Decrements a value

-

Represents a negative value

Here's an example of a unary operator:

someValue = 34;
var iValue = -someValue;
iValue++;
document.writeln(iValue);

In the second line, the number is converted to a negative value through the use of the negative
unary operator. The value is incremented by one using ++, which is a shorthand version of:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


iValue=iValue + 1;

The end result is 33.

The increment and decrement operators have another interesting aspect to them. In an expression, if
the operator is listed first, the value is adjusted before the result is assigned. However, if the
operator is listed after the variable, the initial value in the variable is assigned, and the value is
adjusted:

var iValue = 3.0;
var iValue2 = ++iValue; //iValue2 is set to 4.0, iValue has a value now of 4.0
var iValue3 = iValue++; //iValue3 is set to 4.0; iValue now has a value of 5.0
var iValue4 = iValue;   //both iValue4 and iValue have a value of 5.0

3.2.4. Precedence of Operators

There is a level of precedence to operators in JavaScript. In statements, expressions are evaluated
left to right when all operators have the same precedence. If more than one type operator with more
than one precedence is used in a statement, the rule is that the operator with higher precedence is
evaluated first, then the rest of the expression is evaluated left to right.

Let's consider the following code:

newValue = nValue + 30.00 /  2 - nValue2 * 3;

If the value of nValue is 3 and the value of nValue2 is 6, the result is 0.

In detail, the division of 30.00 by 2 is evaluated first because it has higher precedence than the
addition, resulting in a value of 15. The multiplication operator has the same precedence as that of
division, but it occurs after the division. Because expressions are evaluated left to right when
precedence is the same, the division is done first, then the multiplication. In the latter, the value in
variable nValue2 is multiplied by 3, resulting in a value of 18. From that point on, the expression
consists solely of addition and subtraction (equal precedence), and is evaluated left to right as:

newValue = nValue + 15  18; 

The assignment operator has the lowest precedence, and once the arithmetic expression is evaluated
completely, the result is assigned to newValue.

To control the impact of precedence, use parentheses around expressions you want evaluated first.
Returning to the example, the use of parentheses can lead to widely different results:

newValue = ((nValue + 30.00) / (2 - nValue2)) * 3;

Now, addition and subtraction are evaluated first, before division and multiplication. The result of this
expression is 24.75.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


You all knew this from your basic math classes. However, it doesn't hurt to get a little reaffirmation:
although it's in JavaScript, the rules are the same.

Note that in JavaScript, unlike in other languages, the division results in a
floating-point result, not a truncated whole number. The following results in a
value of 1.5 rather than a rounded value of 1:

iValue = 3 / 2;

In the examples so far, we're typed out the full expression when using binary operators. There is a
shortcut method to these expressions, which we'll look at next.

3.2.5. Handy Shortcut: Assignment with Operation

Assignment and an arithmetic operation can be combined into one simple statement if the same
variable appears on both sides of the operator, such as in the following:

nValue = nValue + 30;

The simplified statement is:

nValue += 3.0;

All of the binary arithmetic operators can be used in this type of shorthand technique, known as an
assignment with operation:

nValue %= 3;
nValue -= 3;
nValue *= 4;
nvalue += 5;

This type of operation can also be used in combination with the four bitwise operators.

3.2.6. Bitwise Operators

This section covers JavaScript bitwise operators, and assumes you have some
experience with Boolean algebra. It's not a functionality that's used extensively
in JavaScript and can be safely skipped during this first introduction to the
language. If you're not familiar with Boolean algebra and want to continue with
this section, there is excellent Boolean algebra reference, put together by the
BBC (British Broadcasting Corporation), at
http://www.bbc.co.uk/dna/h2g2/A412642.

http://www.bbc.co.uk/dna/h2g2/A412642
http://lib.ommolketab.ir
http://lib.ommolketab.ir


Bitwise operators treat the operands as 32-bit values made up of a sequence of zeros and ones. The
operators then perform, literally, a bitwise manipulation of the result; the type of manipulation
depends on the type of operator:

&

Bitwise AND operation, in which the resulting bit is 1 if, and only if, both values are 1.

|

Bitwise OR operation on bits, in which the result is 1 only if one of the operand bits is 1.

^

Bitwise XOR operation on bits, in which the the combination of the two operand bits equals 1 if,
and only if, both values are different. If the value of both is 1 or 0, the result is 0; otherwise,
the result is 1.

~

Bitwise NOT operation on a bit, which returns the inverted value (complement) of the bit (i.e.,
1 results in 0; 0 results in 1).

It might seem as if the bitwise operators don't have much use in JavaScript, except that they're a
handy way of creating binary flags within a program. Binary flags are similar to variables except that
they use much less memory (by a factor of 32). The Mozilla Core JavaScript 1.5 reference provides
an example that uses binary flags:
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Operators:Bitwise_Operators.
In the example, four flags are represented by the following variable:

var flags = 0x5; 

This is equivalent to the binary value of 0101 (disregarding leading zeros):

flag A: false
flag B: true
flag C: false
flag D: true

Each bitmask flag is then represented as:

var flag_A = 0x1;
var flag_B = 0x2;
var flag_C = 0x3;

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Operators:Bitwise_Operators
http://lib.ommolketab.ir
http://lib.ommolketab.ir


var flag_D = 0x4;

To test if flag_C is set in our flags variable, use the bitwise AND operator:

if (flags & flag_C) {
    do stuff
}

In Example 3-1, a binary flag and bitmasks are used to emulate the result of an imaginary form
submission. In the example, we'll assume five fields are submitted, but only three have values: fields
A, C, and E. If both A and C are filled in, a message to this effect is output in a dialog window.

Example 3-1. Use of binary flags and bitmask to create memory-friendly
flags

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Using Binary Flags</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var FIELD_A = 0x1; // 00001 
var FIELD_B = 0x2; // 00010 
var FIELD_C = 0x4; // 00100 
var FIELD_D = 0x8; // 01000 
var FIELD_E = 0x10; // 10000

// assume fields A, C, and E are filled in
var fieldsSet = FIELD_A | FIELD_C | FIELD_E; // 00001 | 00100 | 10000 => 10101

if ((fieldsSet & FIELD_A) && (fieldsSet & FIELD_C)) {
   alert("Fields A and C are set");
}

//]]>
</script>
</head>
</body>
<p>Imagine a form with five fields and a button here...</p>
</html>

This is a way of conserving space in your application, as you can work with binary values within the
space required for Boolean variables. However, this does compromise the code's readability.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Another operator, the logical AND (designated by &&) is also introduced in
Example 3-1. This is covered in detail later in the section "The Logical
Operators."

There is more in the Mozilla reference regarding the use of bitwise operators as a test of input; it's an
interesting technique and an affirmation that though memory management is handled behind the
scenes with JavaScript, there are tricks and techniques you can use to get an edge when you need
one.

There are three other bitwise operators: shift left (<<), shift right with sign
(>>), and shift right with zero fill (>>>). These move the bits of the operand
to the right or left by the number of places designated by the second operand
(a value between 0 and 31):

newValue = oldValue >>> 3;

This last example also introduces the concept of a different type of statement and set of operators:
conditional statements, and relational and equality operators. We'll look at both in the next few
sections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.3. Conditional Statements and Program Flow

Normally in JavaScript, the program flow is linear: each statement is processed in turn, one right
after another. It takes deliberate action to change this. You can put the code in a function that is only
called based on some action or event, or you can perform some form of conditional test and run a
block of code only if the test evaluates to TRue.

One of the more common approaches to changing the program flow in JavaScript is through a
conditional statement. As seen in the last few sections, the typical conditional statement has the
following format:

if (value) {
statements processed
}

The term conditional comes from the fact that a condition has to be met before the block associated
with the statement is processed. The example equates to: if some value (whether a result of an
expression, a variable, or or a literal) evaluates to true, then do the following code; otherwise, jump
to the end of the block, and continue processing at the very next line.

The use of the if keyword signals the beginning of the conditional test, and the parenthetical
expression encapsulates the test. In the following code, the binary flag is tested against two bitmasks
to see if either is matched. If so, and only then, the code contained in curly braces following the
conditional expression is processed:

if ((fieldsSet & FIELD_A) && (fieldsSet & FIELD_C)) {
   alert("Fields A and C are set");
}

The use of curly braces isn't necessary in this example because only one line of JavaScript is
processed if the condition evaluates to TRue. If more than one JS statement needs to be processed,
all the code must be contained within curly braces. These are commonly referred to as JavaScript
blocks or blocks of code, and the curly braces let the script engine know that all of the JavaScript
contained in the block is processed if the condition evaluates to true.

Since it's not unheard of that additional code is added at a later time, it's good practice to use curly
braces around a statement processed through some flow-of-control event (such as a conditional
statement).

JavaScript Best Practice: Use curly braces ({,}) around control
blocksstatement(s) processed as a result of some flow-of-control action, such
as a conditional statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


To make the JavaScript more readable, it's also considered good form to indent the code that's
contained within the curly braces. If the contained code has another conditional statement, the
statements associated with it are indented the same amount, but from the original position and so
on. Example 3-2 demonstrates three nested conditional statementseach with a block of code, each of
which is indented. Change the variable's initial value to test the different conditional expressions.

Example 3-2. Three nested conditional statements, indented for easier
reading

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Nested Indented Conditional statements</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var prefChoice = 1;
var stateChoice = 'OR';
var genderChoice = 'F';

if (prefChoice == 1) {
   alert("You've picked option 1. Here is what will happen...");
   
   if (stateChoice == 'OR') {
      alert ("You've picked 1 and you're from Oregon.");

      if (genderChoice == 'M') {
         alert("You've picked 1 and you're from Oregon and you're a man.");

      } // innermost block

   } // middle block

} // outerblock

//]]>
</script>
</head>
<body>
<p>Imagine a form with five fields and a button here...</p>
</body>
</html>

Typically, code is indented three spaces with each block, and curly braces are lined up with the
conditional statement. There's no fast rule on this; it doesn't impact the validity of the code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In addition, the closing curly brace on each block is annotated with a comment. If the code is fairly
long, complex, and full of nested blocks, such as those in Example 3-2, using comments to document
the ending curly brace makes the code easier to read and maintain.

JavaScript Best Practice: In longer or more complex blocks of script, comment
the ending brace to make it easier to identify exactly which block is being
closed.

3.3.1. if...else

In many instances, a conditional test is performed, a block of one or more statements is processed,
and the flow of the program continues at the end. However, not all logic can be expressed with just
one test. Even within a spoken language, such as English, we have the concept of if...then...else to
accommodate listing of various options:

If the sun is out, we'll go to the park; otherwise, we'll go to the movies.

In JavaScript, the use of the keyword else performs the same functionality: it provides for processing
an alternative set of statements if the condition being tested evaluates to false:

if (expression) {
   ...
} else {
   ...
}

In the following code snippet, if the value in stateCode is "MA" for Massachusetts, the tax value is set
to 3.5; otherwise, the tax is set to 4.5:

if (stateCode == "MA") {
   taxPercentage = 3.5;
} else {
   taxPercentage = 4.5;
}

Either the state code is "MA" or it's not; the tax percentage is set regardless.

However, not all conditions are either/or. In some instances, there might be more than one possible
conditional outcome of interest, and you'll need to capture a sequence of tests: if then...else if
then...else if then... and so on. This is managed in JavaScript through the addition of a conditional
expression immediately following the else clause:

if (conditional expression) {
   block of code
} else if (other conditional expression) {
   block of code
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


These can be chained, one after the other, until all conditions have been tested.

In Example 3-3, the variable holding the state code is set in the code (purely for testing
purposesnormally you don't know what the variable is). The three state codes are tested, and a
different tax percentage is assigned if any of the three matches.

Example 3-3. Testing a value with multiple conditional statements

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>if...then...else...if</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var stateCode = 'MO';

if (stateCode == 'OR') {
   taxPercentage = 3.5;
} else if (stateCode == 'CA') {
   taxPercentage = 5.0;
} else if (stateCode == 'MO') {
   taxPercentage = 1.0;
} else {
   taxPercentage = 2.0;
}

alert(taxPercentage);

//]]>
</script>

</head>
<body>
<p>Imagine a form with options to pick state code</p>
</body>
</html>

The program evaluates each expression in turn until it finds an expression that evaluates to true. At
that point, the contained statements are processed, and the program continues on the first line after
the complete conditional statement. If none of the expressions evaluates to TRue, the block of code
following the else without a condition is processed, and the tax percentage is set accordingly.

You can continue adding additional else if statements testing the same variable, but after a time,
the format is clumsy, hard to read, and inefficient. A better approach is to use the switch statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.3.2. The switch Conditional Statement

The JavaScript switch statement is used when there are several possible outcomes resulting from a
conditional expression. The JavaScript engine processes the expression and based on the result, one
or more alternative options are processed:

switch (expression) {
   case firstlabel: 
      statements;
       [break;]
   case secondlabel:
      statements;
       [break;]
   ...
   case lastlabel:
      statements;
      [break;]
   default:
      statements;

From the top, an expression that returns a value is given in the switch statement. case statements
are then evaluated, in sequence from top to bottom, to see if any match. If a matching case is found,
the statements contained within the particular case statement code block are processed. At this
point, the program flow either continues processing each case statement, or the control of the
program can be transferred to the first line following the end of the switch statement using the
optional break.

If none of the cases match, the JavaScript engine looks for an optional default statement; if one is
found, its code block is processed, and the program continues with the first line following the switch.

In the case where the same set of statements is processed for two or more case labels, the labels
can be listed, with just the statements underneath:

case labelone:
case labeltwo:
case labelthree:
   statements;
   break;

With this technique, the statements are processed if any one of the three labelslabelone, labeltwo,
or labelthreeare matched.

The switch statement is best explained with a demonstration. In Example 3-4, our state code is
tested and if the value is OR, MA, or WI, the tax percentage is set to 3.5, and the state percentage to
0.5; if the code tested is MO, the tax percentage is set to 1.0, and the state percentage to 1.5; if the
code tests out to CA, NY, and VT, the percentage is set to 4.5, and the state percentage to 2.6; if the
code tests out to TX, the percentage is set to 3.0, with the state percentage left at 0.0; otherwise,
the tax percentage is set to 2.0, with state set to 2.3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Example 3-4. Using a switch statement to test expression against
multiple values

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>switch statement</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var stateCode = 'NY';
var statePercentage = 0.0;
var taxPercentage = 0.0;

switch (stateCode) {
   case 'OR','MA','WI' :
     statePercentage = 0.5;
     taxPercentage = 3.5;
     break;
   case 'MO' :
     taxPercentage = 1.0;
     statePercentage = 1.5;
     break;
   case 'CA' :
   case 'NY' :
   case 'VT' :
     statePercentage = 2.6;
     taxPercentage = 4.5;
     break;
   case 'TX' :
     taxPercentage = 3.0;
     break;
   default :
     taxPercentage = 2.0;
     statePercentage = 2.3;
}

alert("tax is " + taxPercentage + " and state is " + statePercentage);

//]]>
</script>
</head>
<body>
<p>Imagine a form with options to pick state code</p>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


From the top, the expression given in the switch statement is just the state code variable, stateCode.
It can be any expression using any of the relational and logical operators (discussed in the next
section). The case statements are then evaluated for a match. In the first, if the state code is OR,
MA, or WI, the tax percentages are set to the same values. In this instance, the case values
associated with the block are separated from the others by commas, which means any one of the
three can match.

If the state code is TX or MO, the individual case blocks processed, but if the state code is CA, NY, or
VT, the statements in the block associated with the last case, VT, are the ones processed. The other
two state code cases have no statements of their own; neither do they have a break statement. This
means, then, that if the state code is one of these, the program continues processing statements
until the end of the switch statement, or until a break is reached. This is another approach that
attaches the same statement block to more than one case value. It's identical in behavior to listing
out the options, separated by a comma.

Finally if none of the cases match, the default is processed, and the program continues on the first
statement after the switch.

Notice in the example that the only use of curly braces is around the switch control block itself.
That's because with switch, program flow is controlled with the break statement, not curly braces.
However, indentation still applies, thought it's not uncommon for the processed statements to be
placed on the same line as the case condition:

case 'OR' : taxPercentage = 3.5; statePercentage = 2.0; break;

Most of the expressions being tested in the conditional control statements have been fairly simple
equality tests. More complex conditional expressions, and even multiple expressions, can be used
with conditional operators, discussed next.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.4. The Conditional Operators

The conditional operators are a way of testing for specific conditions: equality, identity, relational,
and logical. Though the processes may differ, and they range from simple to complex, the result of
using such operators is one of two values: TRue or false.

3.4.1. The Equality and the Identity (String Equality) Operators

One of the most common operators used in a conditional expression is the equality operator, ==. It
is used when a variable is compared with another variable or literal value, and based on the result,
an action or set of actions is triggered:

// at some point  in application, assign 3 to variable nValue
var nValue = 3;
...
if (nValue == 3) ...

In this example, if the variable nValue is equal to 3, what follows (represented by the ellipses in the
text) is processed. Otherwise, the flow of the program skips over the code block and goes to the first
statement following.

Be careful not to leave off the second equals sign (=). If you do, the expression
becomes one of assignment, not conditional testing. The variable nValue is
assigned the value of 3. Since the assignment was successful, it returns TRue.
It always returns TRue. A JavaScript error doesn't occur, and as such, it may be
hard to spot this error in debugging.

As with the addition operator, the equality operator converts the variable's data type to facilitate the
evaluation of the expression. If one value is numeric and the other is string, comparing both is
successful if the value is "typographically" the same:

var nValue = 3.0;
var sValue = "3.0";
If (nValue == sValue) ...

This can lead to some interesting and unexpected side effects. In particular, the equality operator is
implicitly used in the switch statement, which means that both of the following cases are applicable if
the switch expression evaluates to "3.0":

case 3.0: ...
case "3.0": ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Starting with JavaScript 1.3, a new operatorthe identity, or strict equality operatorwas added
specifically to test on both value and type. Unlike standard equality, the strict equality operator won't
return success unless both operands are the same and have the same data type:

if (nValue === sValue) ...

In addition to testing for both equality and identity, you can also test for not equals and strict not
equals. The not equals operator is !=:

if (sName != "Smith") ...

The strict not equals operator is !==:

if (sName !== "Smith")...s

Here is where the difference between the two operators is most apparent. In Example 3-5, a numeric
value is tested against a string with equality and strict equality, and a string value is tested against a
numeric with not equals and strict not equals.

Example 3-5. Testing for precision between equals and strict equals

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Identity and Equality</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var sValue = "3.0";
var nValue = 3.0;

if (nValue == "3.0") alert("According to equality, value is 3.0");

if (nValue === "3.0") alert("According to identity, value is 3.0");

if (sValue != 3.0) alert ("According to equality, value is not 3.0");

if (sValue !== 3.0) alert ("According to identity, value is not 3.0");

//]]>
</script>
</head>
<body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<p>Some page content</p>
</body>
</html>

In the first case, the numeric 3.0 is tested against the string-based "3.0" with the equality operator.
The result is true, and the dialog window opens. However, this comparison fails with strict equality,
and the second dialog window is not opened.

In the third case, the string 3.0 is tested against the numeric 3.0. The not equals test fails, because
to this operator, both values are the same. However, with the strict not equals operator, this
comparison does evaluate to true, and the alert window opens.

Example 3-5 also introduces a shortcut method of processing one statement
associated with a conditional statement. In this case, curly braces aren't
necessary because the association is quite readable, and there is only one
statement being processed.

As you can see in Example 3-5, the strict equality operator is much more precise. If this is so, you
might wonder why it's not more widely used.

The equality operator and its converse, not equals, have been around since the beginning of
JavaScript and are supported by all JS engines. The strict equals/identity operator and its converse
were added late in the game, with JavaScript 1.2. In addition, with the first release of the ECMA 262
specification, the strict equals operator was dropped, and only added back in with ECMA 262, Version
3.0. As such, support for strict equals isn't guaranteed in all browsers and by all JS engines.

Unless you can control which browser accesses your script, you need to assume that the identity or
strict equals operator isn't supported. In a few years, as some of the older browsers finally die out,
the strict equals operator will, most likely, become more widely used.

Testing for equality is helpful, but sometimes you need to test a range of values, not just for a
specific value. Enter greater than and less than.

3.4.2. Other Relational Operators

A relational operator is one in which one operand is compared to another and depending on the
result, one or more lines of code are processed. The equality and strict equality operators are
relational operators, except sometimes we want relational operators to also match when a value is
either greater than or less than anothernot just equals.

The greater than operator (>) returns true if the right operand is of less value than the operand on
the left. The greater than or equals operator (>=) returns true if the right operand is of less or equal
value to the operand on the left:

var nValue = 1.0;
if (nValue > 3.0)  // false
...
if (nValue >= 1.0) // true

http://lib.ommolketab.ir
http://lib.ommolketab.ir


...
if (nValue >= 0.5) // true
...

The less than operator (<) returns true if the right operand is of greater value than the operand on
the left. The less than or equals operator (<=) returns true if the right operand is greater than or
equal to the value of the operand on the left, as demonstrated in the following test variations:

var nValue = 1.0

if (nValue < 3.0) // true
...
if (nValue <= 1.0) // true
...
if (nValue <= 0.5) // false
...

Like equality, type conversion occurs implicitly between numeric and string values with the less
than/greater than operators. So the following evaluates to true:

sValue = "1.0";
if (sValue >= 2.0) // true

String conversion only occurs when the format is right. For instance, JavaScript does not convert
"one" to "1" or "1.0" when doing implicit conversion.

Testing to see if a value is greater than or less than another is useful, but so is testing to see if a
variable or expression result is within a range of values. In Example 3-6, a variable is tested to see if
it falls within a given range, 0 to 100 inclusive, which means that the value could also be 0 or 100.
It's also tested in the range between 0 and 100, excluding the values of 0 and 100. Final tests check
whether the value is over 100, or less than zero (0). An appropriate message is displayed based on
the result.

Example 3-6. Testing within a range of numbers

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Testing value in range</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var nValue = 0;

if (nValue >= 0 && nValue <= 100) {
   alert("value between 0 and 100, inclusive");
} else if (nValue > 0 && nValue < 100) {
   alert("value between 0 and 100 exclusive");
} else if (nValue > 100) {
  alert ("value over 100");
} else if (nValue < 0) {    
  alert ("value is negative");
}

//]]>
</script>
</head>
<body>
<p>Some page content</p>
</body>
</html>

The first two comparisons rely on additional operators to establish the range: the logical operators.
One such, &&, was introduced in the bitwise operator section. We'll look at these in more detail later,
but first, let's check out JavaScript's one and only ternary operator.

3.4.3. The One and Only JavaScript Ternary Operator

The operators we've looked at in this chapter have been unary (one operand), or binary (two
operands). There is one ternary operator in JavaScript, the conditional operator, which works with
three operands. Following is an example of its use:

var nValue = 1.0;
var sResult = (nValue > 0.5) ? "value over 0.5" : "value not over 0.5";

In this example, sResult is set to "value over 0.5" because the condition evaluates to true, resulting
in the second operand being returned. Here's the format of the conditional operator:

condition ? value if true; value if false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The conditional operator becomes, in effect, a shortcut method for the fairly common, "if
(expression), do this; otherwise, do that," such as in the following code:

var stateCode = 'OR';
var taxPercentage = 0.0;
if (stateCode == 'OR') {
   taxPercentage = 3.5;
} else {
   taxPercentage = 4.5;
}

Converting for use in a conditional operator, the code becomes:

var taxPercentage = (stateCode == 'OR') ? 3.5 : 4.5;

It's both a handy shortcut, as well as a readable one, so its use is fairly common. There's more on
this operator later in the book when it's used to resolve browser differences.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.5. The Logical Operators

Most of the examples so far in the book show a conditional expression that consists usually of one operator and two operands, such as
the following:

if (sValue == 'test')

However, many times a conditional expression is dependent on several different conditions being met, each represented by an
expression and combined through the use of one of JavaScript's logical operators.

There are three logical operatorstwo binary and one unary. The first is the logical AND, represented by two ampersand characters, &&.
When used in a conditional statement, the AND operator requires that expressions on both sides of the operator evaluate to true for
the entire expression to evaluate to TRue :

var nValue = 10;
if ((nValue > 10) && (nValue <=100)) // true if nValue is greater than 10 and nValue is less than or equal to 100

The result of using this expression joined by the AND operator is false because the variable, nValue , is equal to 10, which means the
first expression is false . If the first expression evaluates to false , the JavaScript engine won't process the second expression because
the entire statement is going to fail regardless.

The second operator is the logical OR operator, represented by two vertical lines, ||. When used in a conditional statement, the OR
operator requires one or the other of its expressions on either side to be true in order for the entire expression to evaluate to true :

var nValue = 10;
if ((nValue > 10) || (nValue <= 100)) // true if nValue is either greater than 10 or less than or equal to 100

The result of this code is that the conditional statement is TRue because the variable is less than 100. Both sides of the logical OR
operator must be evaluated because the operator requires only a true expression on one side to return TRue .

The final logical operator is the logical NOT. This operator returns the logical negation of the expression. If the expression is TRue , it
returns false ; if false , it returns true :

var nValue = 10;
if (!(nValue > 10)) // returns true if nValue if less than or equal to 10; otherwise it returns false

With both logical operators, the JavaScript engine does what is known as a short-circuit evaluation of the expression first. If the logical
operator is AND (&& ), and the first expression evaluates to false , the second isn't evaluated because the entire expression must
evaluate to false .

If using the logical OR operator, if the first expression evaluates to true , the second is not evaluated. An OR operator evaluates to true
when one of its operands is true .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


By understanding how short-circuit evaluation works, you can use first expressions that are less CPU- or other resource-intensive,
thereby adding a little efficiency to your application.

JavaScript Best Practice: Take advantage of short-circuit evaluation by placing the key expression or the less
resource-intensive expression first when using logical AND/OR operators.

Also note that though the examples in this section use parentheses around the expressions, the use of parentheses isn't required; the
relational operators have a higher precedence than do the logical operators and therefore are evaluated first. In Example 3-6 , I didn't
use the parentheses with the AND operator.

However, I've found they can make the entire expression more readable, as well as being a good visual double-check on it.

JavaScript Best Practice: Surround the expressions on either side of the logical operator (&& or || ) with
parentheses.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.6. Advanced Statements: The Loops

Before finishing up the remaining two built-in JavaScript objects, we'll take some time to look at the
advanced JS statements: the loops. The looping statements are ones that have a conditional test, just like
the conditional if...else... statements covered earlier. However, when the expression evaluates to TRue
, the processor returns to the same condition again at the end of each loop.

3.6.1. The while Loop

The simplest JavaScript loop tests a condition at the start of each loop and continues if the expression
evaluates to TRue . Something in the JavaScript contained in the loop changes at some point, forcing the
expression to evaluate to false and the loop to terminate. The keyword while is used to designate this
type of loop.

In Example 3-7 , one of the test expression variables is incremented with each loop until its value exceeds
10. At that point, the loop terminates.

Example 3-7. Testing a value in a condition in a while loop

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>While Loop</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var iValue = 0;
while (iValue < 10) {
   iValue++;
   document.writeln("iValue is " + iValue + "<br />");
}

//]]>
</script>
</body>
</html>

Normally, you do more with a while loop than just increment a value, which you'll see in more detail
throughout the rest of the book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.6.2. The do...while Loop

In the previous section, the while loop showed how a conditional expression is tested before the loop is
executed. If the condition fails immediately, the contained code is never processed. There are times,
though, when you might want the code to be processed at least once, regardless of the condition and its
success or failure. Enter the do...while loop.

Unlike the while loop, the do...while loop doesn't evaluate the conditional expression until after the end
of the code block. As such, the block is always processed at least once. The loop in Example 3-7 can be
modified as follows if the code in the contained block is to be processed at least once:

do {
   iValue++;
   document.writeln("iValue is " + iValue + "<br />");
} while (iValue < 10)

With both the while loop and the do...while loop, the conditional operation determines whether the loop
is processed. Any condition can workincluding complicated ones, such as the following:

while (iValue < 10 && iValue >= 3) ...

There is another loopthe for loopwhere you set the number of times the loop contents are processed.

3.6.3. The for Loops

Rather than use a condition, use a for loop to traverse the code contained within a loop a set number of
times. There are two different types of for loops, though not all are implemented in all browsers.

The most common for loop, and one implemented in all browsers, has three stages: a variable is set to a
starting value; it is updated with each loop; and when the value satisfies a specific condition, the loop is
finished:

For (initial value; condition; update) {
...
}

The following code traverses a loop 10 times, printing out "hello" each time:

for (var i = 0; i < 10; i++) {
   document.writeln("hello<br />");
}

A variable, i , is set to zero. With each iteration of the loop, the value is tested to see if the condition is
met (value still under 10); if not, the loop code block is processed, and the conditional variable is
incremented. The condition can be set by a user variable or by traversing the elements of an array.
(Arrays are explored in Chapter 4 .)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The second version of the for loop is a for...in loop, which accesses each element of the array as a
separate item. The syntax for this handy statement is:

for (variable in object) {
...
}

Before demonstrating the for...in loop, I want to digress for a moment and talk about objects as
associative arrays. We'll get into arrays in Chapter 5 and objects starting in Chapter 9 , but the for...in is
especially useful for a construct known as an associative array .

An associative array is a hash, where each element can be accessed by a key value a string associated
with the value. Objects, such as the document object in JavaScript, are instances of associative arrays. The
document object used in previous examples has one item, the writeln function, which is one member of its
array of properties. There are actually many such document object properties. Rather than access these by
some numeric index, as with most arrays, you use the property name.

Returning to the for...in loop, this control statement can be used to not only traverse an object's
properties, but also each property's value. In Example 3-8 , this approach is used to print out not only the
properties of the object, but their valueusing eval to evaluate the string as if it were a direct statement.
The JavaScript for...in statement is used with the window object to find out what properties are
available. Many of these will seem very unfamiliar because they're part of DOM Level 2, covered in
Chapter 11 .

Example 3-8. Using for in to expose an object's properties

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Expose the Objects</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<h1>Expose Me</h1>
<p>Going undercover to expose the document object's dirty little secrets..</p>

<script type="text/javascript">
//<![CDATA[

for (docprop in document) {
   document.writeln(docprop + "=");
   eval ("document.writeln(document.." + docprop + ")");
   document.writeln("<br />");
}

//]]>
</script>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Try this out with various browsers and various objects, and you'll get some interesting results. Though the
object implementation is very similar across browsers, it isn't identical. Modifying the code to use different
objects (JavaScript, Browser Object or Document Object models), you might also find, as I did, a bugin
this case, a bug in Firefox: an unhandled exception based on a nonimplemented property, domConfig .

A third for loop is foreach , implemented in JavaScript 1.6 in Gecko-based browsers. This loop
makes use of a callback function in the first parameter, and an object to act as primary
reference within that callback function. Since foreach is not standard across browsers, and
makes use of functionality we haven't discussed yet, I won't cover it other than to point you to
the Mozilla organization documentation on the statement,
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Objects:Array:forEach.

The use of in also works with conditional tests. For instance, to check whether a key (property) exists in
an associative array (object), you can use:

if ("URL" in document) {
   alert(document.URL);
}

This syntax is not used frequently, and we'll get more into associative arrays in the next chapter and later
in the book. However, if you see code of this nature in the future, you'll recognize it for what it is.

Now that we have much of the functionality of JavaScript behind us, it's time to take a closer look at the
built-in JavaScript objects, covered in Chapter 4 .

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Objects:Array:forEach.
http://lib.ommolketab.ir
http://lib.ommolketab.ir


3.7. Questions

In the following, add parentheses to the expression so that it evaluates to 8:1.
var valA = 37;
var valB = 3;
var valC = 18;
var resultOfComp = valA - valB % 3 / 2 * 4 + valC - 3;

2.

Using a switch statement, test an expression for a value of one, two, or three, and set a
variable to OK if the expression is one or two; OK2 if the expression is three; and NONE if it
doesn't match any.

3.

You have three variables, varOne, varTwo, and varThree. How would you test all three such that
a block of code is processed only if varOne is 33, varTwo is less than or equal to 100, but
varThree is greater than 0?

4.

Execute a loop and print out every number between 10 and 20.5.

Now do the same counting backward.6.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 4. The JavaScript Objects
It might seem when looking at JavaScript examples that there are a great number of JavaScript
objects. However, what you're really seeing are objects from four different domains:

Those built into JavaScript

Those from the Browser Object Model

Those from the Document Object Model

Custom objects from the developer

The JavaScript objects are those that are built into JavaScript as language-specific components
regardless of the agent that implements the language engine. As such, they'll always be available,
whether JavaScript is implemented in a traditional web browser or in a cell-phone interface.

Among these basic JavaScript objects are those that parallel our data types, discussed in Chapter 2:
String for strings, Boolean for booleans, and, of course, Number for numbers. Each of these objects
encapsulates our basic types; they manage conversion tasks, as well as provide additional
functionality.

There are also several special-purpose objects, such as Math, Date, and RegExp. That last object
provides regular-expression functionality to JavaScript. Regular expressions are powerful, though
extremely cryptic, patterning capabilities that enable you to add very precise string matching to
applications.

JavaScript also has one built-in aggregator object, the Array. All objects in JavaScript are inherently
arrays, though they may not look as such when you work with them. All of these basic JavaScript
objects are covered in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.1. The Object Constructor

Each JavaScript object is based on one object known as, appropriately enough, Object. Object is
covered in Chapter 11, which goes into creating custom objects and libraries. JavaScript's approach
to extensibility is a bit unusual. Though current versions of JS are not truly object-oriented,
JavaScript does support the concept of a constructor and the ability to create instances of objects
through the use of the new method.

All but one of the built-in objects have unique and useful methods and properties associated with the
object type, some of which are accessible with object instances. Others are static, which means
they're only accessible directly on the shared object.

The one object that doesn't have any unique properties or methods is the Boolean object. The only
methods and properties it has are those associated with Object itself. I'll use it to demonstrate
creating new instances of an object, and then move on to covering the other more complex objects.

To create a new instance of the Boolean object, use the new keyword and the following syntax:

var holdAnswer = new Boolean(true);

Once a Boolean is instantiated, you can access the primitive value it encapsulates (encloses) using
another Object method, toValue:

if (holdAnwer.toValue) ...

You can also access it directly, as if it were a primitive data type:

if (holdAnswer) ...

If the Boolean object lacks new and exciting functionality, the other objects compensate for it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.2. The Number Object

The Number object's unique methods have to do with conversionto string, to locale-specific string, to a
given precision- or fixed-point representation, and to exponential notation. The object also has four
constant numeric properties, directly accessible from the Number object.

Rather than list each Number object's methods and properties, Example 4-1 demonstrates how they
work by calling each and printing out their results and/or values.

Example 4-1. The Number object methods

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>The Number Object</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

// Number properties
document.writeln(Number.MAX_VALUE + "<br />");
document.writeln(Number.MIN_VALUE + "<br />");
document.writeln(Number.NEGATIVE_INFINITY + "<br />");
document.writeln(Number.POSITIVE_INFINITY + "<br />");

// Number specific methods
var newValue = new Number("34.8896");

document.writeln(newValue.toExponential(3) + "<br />");
document.writeln(newValue.toPrecision(3) + "<br />");
document.writeln(newValue.toFixed(6) + "<br />");

//]]>
</script>
</body>
</html>

Figure 4-1 shows the results of running this JavaScript application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Figure 4-1. The Number object methods

In Example 4-1 , two numeric constantsMAX_VALUE and MIN_VALUE reflect the maximum and minimum
numbers that can be represented in JavaScript. The other two infinity values represent specialized
negative and positive infinity, returned when a math overflow happens or the minimum or maximum
numbers are exceeded. In Chapter 2 , we looked at the Infinity global constant in the section "The
Number Data Type "; POSITIVE_INFINITY is equivalent to this value.

After printing out the numeric constants, the program creates an instance of a Number object. Either a
string or a number can be used for the literal value, as long as the format is a proper number. If a
string is used without a proper number, the value of the object is NaN .

The first method invoked is toExponential , which passes in the number of digits appearing after the
decimal pointin this case, 3. The second method is toPrecision , which passes in a value of 3 also,
representing the number of significant digits to include in the string transformation. The last method
called, toFixed , is the number of digits to print out after the decimalrounded if applicable. A method
not included in the demonstration is toLocaleString , which prints out the number formatted for a
given locale.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.3. The String Object

The String object is probably the most used of the built-in JavaScript objects. A new String object can be explicitly created using
the new String constructor, passing the literal string as a parameter:

var sObject = new String("Sample string"); 

The String object has several methods, some associated with working with HTML, and several not. One of the non-HTML-specific
methods, concat , takes two strings and returns a result with the second string concatenated onto the first. Example 4-2
demonstrates how to create a String object and use the concat method.

Example 4-2. Creating a String object and calling the concat method

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Exploring String</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var sObj = new String(  );
var sTxt = sObj.concat("This is a ", "new string");

document.writeln(sTxt);

//]]>
</script>
</body>
</html>

There is no known limit to the number of strings you can concatenate with the String concat method. However, I rarely use this
myself; I prefer the String operators, such as the string concatenation operator (+).

The properties and methods available with the String object are listed in Table 4-1 .

Table 4-1. String Object methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Method Description Arguments

valueOf
Returns the string literal the String
object is wrapping

None

length Property, not method, with the length of
the string literal

Use without parentheses

anchor Creates HTML anchor String with anchor title

big , blink , bold , italics ,
small , strike , sub , sup

Formats and returns String object's
literal value as HTML

None

charAt , charCodeAt
Returns either character (charAt ) or
character code (charCodeAt ) at given
position

Integer representing position,
starting at position zero (0)

indexOf
Returns starting position of first
occurrence of substring

Search substring

lastIndexOf Returns starting position of last
occurrence of substring

Search substring

link Returns HTML for link URL for HRef attribute

concat Concatenates strings together
Strings to concatenate onto
the String 's literal string

split Splits string into tokens based on some
separator

Separator and maximum
number of splits

slice Returns a slice from the string
Beginning and ending position
of slice

substring , substr Returns a substring
Beginning and ending location
of string

match , replace , search Regular expression match, replace, and
search

String with regular expression

toLowerCase , toUpperCase Converts case None

The HTML formatting methodsanchor , link , big , blink , bold , italics , sub , sup , small , strike generate strings that
enclose the String 's literal value within HTML element tags. Example 4-3 demonstrates this using one specific string and various
String methods.

Example 4-3. Working with the String object's formatting functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>String formatting methods</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var someString = new String("This is the test string");

document.writeln(someString.big(  ));
document.writeln(someString.blink(  ));
document.writeln(someString.sup(  ));
document.writeln(someString.strike(  ));
document.writeln(someString.bold(  ));
document.writeln(someString.italics(  ));
document.writeln(someString.small(  ));

document.writeln(someString.link('http://www.oreilly.com'));
//]]>
</script>
</body>
</html>

One of the elements, blink , is deprecated HTML, and not supported at all in XHTML. However, if used with document.writeln ,
the results will validate because what the XHTML validators see is the proper use of JavaScript, not the generated results. If you
copy the generated results into a new document and run these with any XHTML validator, you'll receive an error for the use of
blink .

Even if you don't receive an error directly, the use of the HTML format methods (other than anchor and
link ) should be avoided as much as possible, primarily because they don't use the more modern CSS
styling. And whatever you do, avoid blink : it's an obnoxious holdover from the days when web
designers believed the more animations in the page, the better. Nowadays, nothing will drive away a
web-site reader faster than using blink .

The best way to try out the other String methods for yourself is to create a simple web page, such as that in Example 4-3 , and
then replace the working code with the code snippets associated with each method in the rest of this section.

The charAt and charCodeAt methods return the character and the Unicode character code, respectively, at a given location. The
methods take one parameteran index of the character to be returned:

var sObj = new String("This is a test string");
var sTxt = sObj.charAt(3);
document.writeln(sTxt);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The index values begin at zero; to return the character at the fourth position, pass in the value 3.

The substr and substring methods, as well as slice , return a substring given a starting location and length of string:

var sTxt = "This is a test string";
var ssTxt = sTxt.substr(0,4);

document.writeln(ssTxt);

As this example demonstrates, the String methods can be used with a string literal, as well as a String object. The JavaScript
engine converts the variable to an object, calls the method, and then reconverts the object back to a primitive variable.

The indexOf and lastIndexOf methods return the index of a search string, with the former returning the first occurrence, and the
latter returning the last:

var sTxt = "This is a test string";
var iVal = sTxt.indexOf("t");

document.writeln(iVal);

Example 4-2 demonstrated concatenating strings together. If you want the reverseto split a string apartuse the split method.
This method has two parameters. The first is the character that marks each break; you can also pass in the number of splits to
perform in the second parameter. Example 4-4 takes a string and splits it on the comma (,)performing a break only on the first
three commas. The resulting values are then split on the equals sign (=).

Example 4-4. Using the String split function to break a string into tokens

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>The Split Method</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var inputString = 'firstName=Shelley,lastName=Powers,state=Missouri,statement="This is a test, of split"';
var arrayTokens = inputString.split(',',3);
for (var i in arrayTokens) {
   document.writeln(arrayTokens[i] + "<br />");
   var newTokens = arrayTokens[i].split('=');
   document.writeln(newTokens[1] + "<br />");
}
//]]>
</script>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The result of running this JS application is the following output to the web page:

firstName=Shelley
Shelley
lastName=Powers
Powers
state=Missouri
Missouri

In addition to demonstrating the split method, Example 4-4 also demonstrates an interesting aspect of JavaScript and how it
automatically manages conversion between variable to literal to object and back. The input string is created as a variable and
assigned a literal value. Yet the split method is called on the variable, just as if it were created as a String object:

var arrayTokens = inputString.split(',',3);

The JavaScript engine processes this code by first converting the literal variable to a String object, and then executing the
function call. So technically, you never have to explicitly create a String object if you think you might be wanting to use String
methods later in your project. You don't even have to create a variable; you can call String methods directly off of a string
literal:

var tokens = 'firstname=Shelley'.split('=');
document.writeln(tokens[1]);

The same applies to all primitive types, and will be demonstrated later in the chapter with RegExp . These are perfectly legitimate
uses of JavaScript but I don't recommend you use them often, because they can make a JS program difficult to read.

The arrays used in Example 4-4 are covered later in this chapter.

Returning to the String object methods, toUpperCase and toLowerCase convert the string to all upper- or lowercase characters,
respectively, and return the string:

var someString = new String("Mix of upper and lower");
var newString = someString.toUpperCase(  ); // uppercases all of the letters

This is a particularly useful function if case is going to be an issue, because you can convert the string to all upper- or lowercase
before processing. There is also a static method on String : fromCharCode . A static method is called directly on the object, rather
than an instance of an object. Here's an example that uses this method:

var s = String.fromCharCode(345,99,99,76);
document.writeln(s);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The fromCharCode method takes Unicode values separated by commas and returns a string. However, as discussed in Chapter 2 ,
you can also embed Unicode characters directly in a string.

The last String methods are dependent on a concept known as regular expressions. There is also a JS object associated with
regular expressions, RegExp . Because these are associated, we'll examine all of them in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.4. Regular Expressions and RegExp

Regular expressions are arrangements of characters that form a pattern that can then be used
against strings to find matches, make replacements, or locate specific substrings. Most programming
languages support some form of regular expressions, and JavaScript is no exception.

Regular expressions can be created explicitly using the RegExp object, although you can also create
one using a literal, as was demonstrated with the string literal in the last section. The following using
the explicit option:

var searchPattern = new RegExp('+s');

While the next line of code demonstrates the literal RegExp option:

var searchPattern = /+s/;

In both cases, the plus sign(+) in the search pattern matches anything with one or more consecutive
s's in a string. The forward slashes with the literal, (/+s/), mark that the object being created is a
regular expression and not some other type of object.

4.4.1. The RegExp Methods: test and exec

The RegExp object has only two unique methods of interest: test and exec. The test method
determines whether a string passed in as a parameter matches with the regular expression. In the
following example, the pattern /JavaScript rules/ is tested against the string to see whether a
match is found:

var re = /JavaScript rules/;
var str = "JavaScript rules";
if (re.test(str)) document.writeln("I guess it does rule") ;

Matches are case-sensitive: if the pattern is instead /Javascript rules/, the result is false. To
instruct the pattern-matching functions to ignore case, follow the second forward slash of the regular
expression with the letter i:

var re =/Javascript rules/i;

The other flags are g for a global match and m to match over many lines. If using RegExp to generate
the regular expression, pass these to the constructor as a second parameter:

var searchPattern = new RegExp('+s', 'g');

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In the following snippet of code, the RegExp method, exec, searches for a specific pattern, /JS*/,
across the entire string (g), ignoring case (i):

var re = /JS*/ig;
var str = "cfdsJS *(&YJSjs 888JS";
var resultArray = re.exec(str);
while (resultArray) {
   document.writeln(resultArray[0]);
   resultArray = re.exec(str);
}

The pattern described in the regular expression is the letter J, followed by any number of S's. Since
the i flag is used, case is ignored, so the js substring is found. As the g flag is given, the last index is
set to the location where the last pattern was found on each successive call, so each call to exec finds
the next pattern. In all, the four items found are printed out, and when no others are found, a null
value is assigned to the array. This ends the loop.

These code samples have demonstrated a couple of the special regular-expression characters. There
are several regular-expression characters, such as the plus sign and asterisk in the previous
example.

Typically, books and articles throw all such characters into a table, and then provide a couple of
examples where several are used together in a long and complicated pattern, and that's the extent of
the coverage. Because of this, there are many people who have a lot of trouble putting together
regular expressions and, as a consequence, their applications don't work as they originally
anticipated. I think that regular expressions are important enough to at least provide several
examples, from simple to complex. If you have worked with regular expressions before, you might
want to skip this sectionunless you need the review.

Though the RegExp methods are used in applications, regular expressions and the RegExp object are
used primarily with the String object's regex methods: replace, match, and search. The rest of the
examples in this section demonstrate regular expressions using these methods.

4.4.2. Working with Regular Expressions

The first character is the backslash (\), usually called the escape character, because it's used to
escape whatever character follows. In JavaScript regular expressions, this results in two behaviors. If
the character is usually treated literally, such as the letter s, it's treated as a special character
following the escape characterin this case, a whitespace (space, tab, form feed, line feed). If the
backslash is used with a special character, such as the plus sign earlier, the character is treated as a
literal.

Example 4-5 searches for instances of a space that's followed by an asterisk, and replaces them with
a dash. Normally, the asterisk is used to match zero or more of the preceding characters in a regular
expression, but in this case, we want to treat it as a literal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Example 4-5. Escape character in regular expressions

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>The Backslash in RegExp</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var regExp = /\s\*/g;
var str = "This *is *a *test *string";
var resultString = str.replace(regExp,'-');
document.writeln(resultString);
//]]>
</script>
</body>
</html>

The result of applying the regular expression against the string is the following line:

This-is-a-test-string

This is a very handy expression to keep in mind. If you want to replace all occurrences of spaces in a
string with dashes, regardless of what's following the spaces, use the following pattern: /\\s/g in the
replace method, passing in the hyphen as the replacement character.

Four of the regular-expression characters are used to match specific occurrences of characters: the
asterisk (*) matches the character preceding it zero or more times, the plus/addition sign (+)
matches the character preceding it one or more times, and the question mark (?) matches zero or
one of the preceding characters. The dot (.) matches exactly one character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Two patterns of interest are the greedy match (.*) and the lazy star (.*?). In
the first, since a period can represent any character, the asterisk matches until
the last occurrence of a pattern, rather than the first. If you're looking for
anything within quotes, you might think of using /".*"/. If you use this with a
string, such as:

test="one" or this is also a "test"

The match begins with the first double-quote and continues until the last one,
not the second:

"one" or this is also a "test"

The lazy star forces the match to end on the second occurrence of the double
quote, rather than the last:

"one" 

In Example 4-6, the String search method looks for a date in the format of month name followed by
space, day of month, and then year. The date begins after a colon.

Example 4-6. Patterns of repeating characters

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Find Date</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var regExp = /:\D*\s\d+\s\d+/;
var str = "This is a date: March 12 2005";
var resultString = str.match(regExp);
document.writeln("Date" + resultString);
//]]>
</script>
</body>
</html>

Looking more closely at the regular expression, the first character in the pattern is the colon, followed

http://lib.ommolketab.ir
http://lib.ommolketab.ir


by the backslash with a capital letter D: \\D. This sequence is one way of looking for any nondigit
character; the asterisk following means that any number of nondigit characters will match. The next
part in the regular expression is a whitespace character \\s, followed by another new pattern: \\d.
Unlike the earlier sequence, \\D, the lowercase letter means to match numbers only. The plus sign
following it means one or more numbers. Another space follows \\s in the pattern and then another
sequence of numbers \\d+.

When matched against the string using the String match method, the date preceded by the colon is
found, returned, and printed out:

Date: March 12 2005

In the example, \D matches any nonnumber character. Another way to create this particular match is
to use the square brackets with a number range, preceded by the caret character (^). If you want to
match any character but numbers, use the following:

[^0-9]

The same holds true for \d, except now you want numbers, so leave off the caret:

[0-9]

If you wish to match on more than one character type, you can list each range of characters within
the brackets. The following matches on any upper- or lowercase letters:

[A-Za-z]

Using these, the regular expression in Example 4-6 could also be given as:

var regExp = /:[^0-9]*\s[0-9]+\s[0-9]+/;

The caret is used in another pattern: it and the dollar sign are used to capture specific patterns
relative to the beginning and end of a line. The caret, outside of brackets, matches any sequence
beginning a line; the dollar sign matches any ending a line.

In the following code snippet, the match is not successful because the character searched did not
occur at the beginning of the line:

var regExp = /^The/i;
var str = "This is the JavaScript example";

However, the following would be successful:

var regExp = /^The/i;
var str = "The example";

http://lib.ommolketab.ir
http://lib.ommolketab.ir


If the multiple line flag is given (m), the caret matches on the first character after the line break:

var regExp = /^The/im;
var str = "This is\nthe end";

The same positional pattern matching holds true for the end-of-line character. The following doesn't
match:

var regExp = /end$/;
var str = "The end is near";

But this does:

var regExp = /end$/;
var str = "The end";

If the multiple line flag is used, it matches at the end of the string and just before the line break:

var regExp = /The$/im;
var str = "This is really the\nend";

The use of parentheses is significant in regular-expression pattern matching. Parentheses match and
then remember the match. The remembered values are stored in the result array:

var rgExp = /(^\D*[0-9])/
var str = "This is fun 01 stuff";
var resultArray = str.match(rgExp);
document.writeln(resultArray);

With this example, the array prints out This is fun 0 twice, separated by a comma indicating two
array entries. The first result is the match; the second, the stored value from the parentheses. If,
instead of surrounding the entire pattern, you surround only a portion, such as /(^\\D*)[0-9]/, this
results:

This is fun 0,This is fun

Only the surrounded matched string is stored.

Parentheses can also help switch material around in a string. RegExp has special characters, labeled
$1, $2, and so on to $9, that store substrings discovered through the use of the capturing
parentheses. Example 4-7 finds pairs of strings separated by one or more dashes and switches the
order of the strings.

Example 4-7. Swapping Strings using regular expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Regular Expression Switch</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var rgExp = /(\w*)-*(\w*)/
var str = "Java--Script";
var resultStrng = str.replace(rgExp,"$2-$1");
document.writeln(resultStrng);
//]]>
</script>
</body>
</html>

Here's the end result of this JavaScript:

Script-Java

Notice that the number of dashes is also stripped down to just one dash. This example also
introduces another very popular pattern matching character sequence, \\w. This sequence matches
any alphanumeric character, including the underscore (underline). It's equivalent to [A-Za-z0-9_]. Its
converse is \\W, which is equivalent to any nonword character.

The last regular expression characters we'll examine in detail are the vertical bar (|) and curly
braces. The vertical bar indicates optional matches. For instance, the following matches to either the
letter a or the letter b:

a|b

You can use more than one character with vertical bars to provide more options:

a|b|c

The curly braces indicate repetition of the preceding character a set number of times. In the
following, the pattern searched is two s characters together:

s{2}

Regular expressions are extremely useful when validating form contents, as demonstrated in Chapter
7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Getting Regular with Expressions

I barely touched on regular-expression use in this chapterjust enough to introduce some
key elements and several of the characters. If you're working with forms or other web
page-reader input data, or with Ajax, I recommend the book, Mastering Regular
Expressions by Jeffrey E.F. Friedl (O'Reilly).

There are numerous tools for working with regular expressions, and if you want to use
regular expressions, I suggest taking some time to check out at least a few. If you work
in Unix or Mac OS X, the utility grep is popular for finding strings within a file. Luckily,
there's a Windows-based version of the tool, PowerGrep.

There are also tools that help you test regular expressions. Since I do most of my work
on a Mac, I use CocoaRegex, a free and downloadable utility (shown in Figure 4-2).
There are also several for Linux and Windows (search for "javascript regular expression
tools"). Searching for "javascript regular expression" or just plain "regular expression"
returns several sites devoted to regular expressionsincluding popular patterns and
tutorials.

Figure 4-2. The regular expression tool CocoaRegex

http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.5. Purposeful Objects: Date and Math

The JavaScript Date and Math objects provide access to the type of functionality you might not think
aboutuntil the moment you need it and say to yourself, "I wonder how to...". They are created for
specific purposesto work with dates or math. No more, no less.

4.5.1. The Date

The Date object can create a date and then access any aspect of ityear, day, second, and so on.
Creating a date without passing in any parameters produces a date based on the client machine's
date and time:

var dtNow = new Date(  );

Right at the moment I'm reading this, in St. Louis, Missouri, at 9 p.m. on a Friday (authors have no
lives), equals out to:

Fri Apr 07 2006 21:09:14 GMT-0500 (CDT)

You can also pass in parameters to create a specific date. You can enter the number of milliseconds
since January 1, 1970 at 12:00:00:

var dtMilliseconds = new Date(5999000920);
document.writeln(dtMilliseconds.toUTCString(  ));

This results in the following date written to the page:

Wed, 11 Mar 1970 10:23:20 GMT 

You can also use a string to create a date, if you use the proper format:

var nowDt = new Date("March 12, 1980 12:20:25");

You can forgo the time and just get a date with times set to zeros. You can also pass in each value of
the date as integers, in order of year, month (as 0 to 11), day, hour, minutes, seconds, and
milliseconds:

var newDt = new Date(1977,12,23);
var newDt = new Date(1977,11,24,19,30,30,30);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Once you have a date, there are several methods you can access, including a few static methods and
several that allow you to manipulate every last bit of the date.

Static methods are accessed directly off of the shared Date object, rather than an instance. Date.now
returns the current date and time; Date.parse returns the number of milliseconds since January 1,
1970; and Date.UTC also returns the number of milliseconds given the longest form of the
constructor, described earlier:

var numMs = Date.UTC(1977,16,24,30,30,30);

The Date object methods get and set specific components of the date, and there are several. Each of
the following get specific values from the date according to local times:

getFullYear

getHours

getMilliseconds

getMinutes

getMonth

getSeconds

getYear

The UTC equivalents are:

getUTCFullYear

getUTCHours

getUTCMilliseconds

getUTCMinutes

getUTCMonth

getUTCSeconds

Most of the get methods have equivalent set methods that set a component's value within a Date. An
example would be setYear to set the year, or setUTCMonth to set a UTC month.

Of those methods that might not be quite as obvious, the geTDate method returns the numeric day of
the month for a date, while the getday returns the day of week, starting with zero (0) for Sunday:

var dtNow = new Date(  );
alert(dtNow.getDay(  ));

The getTimezoneOffset returns the number of minutes (+ or -) of the offset of the local computer

http://lib.ommolketab.ir
http://lib.ommolketab.ir


from UTC. Because I'm writing this in St. Louis, which is UTC-5, I would get a value of 300 when
calling this method against a local time date.

Six methods convert the date to a formatted string:

toString

Outputs the string in local time

toGMTString

Formats the string using GMT standards

toLocaleDateString and toLocaleTimeString

Output the date and the time, respectively, using the locale

toLocaleString

Converts the string using current locale

toUTCString

Formats the string using UTC standards

Example 4-8 demonstrates these, as well as some of the other date methods already discussed.

Example 4-8. Several string setting and formatting Date methods

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>A Dated Example</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head></body>
<script type="text/javascript">
//<![CDATA[

var dtNow = new Date(  );

// set day, month, year
dtNow.setDate(18);
dtNow.setMonth(10);
dtNow.setYear(1954);
dtNow.setHours(7);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


dtNow.setMinutes(2);

// output formatted 
document.writeln(dtNow.toString(  ) + "<br />");
document.writeln(dtNow.toLocaleString(  ) + "<br />");
document.writeln(dtNow.toLocaleDateString(  ) + "<br />");
document.writeln(dtNow.toLocaleTimeString(  ) + "<br />");
document.writeln(dtNow.toGMTString(  ) + "<br />");
document.writeln(dtNow.toUTCString(  ));
  
//]]>
</script>
</body>
</html>

Given so many date options, it might be puzzling to figure out which specific locale to use in an
application. I've found a good rule of thumb is to reference everything in the web-page reader's local
time if her actions are isolatedsuch as when placing an order at an online store. However, if the
person's actions are in relation to others, especially within an international audience (such as a
weblog for comments), I would recommend setting times to UTC in order to maintain a consistent
framework for all of your readers.

The Date object is managed the same between the major browsers except for
one method: getYear. This method was not Y2K-compliant, and would return
the year minus 1900 rather than the full year. The ECMA specification created a
new method, getFullYear, that is Y2K-compliant, and Firefox and other
ECMAScript Version 3 browsers support this. IE 6.x, though, has redefined
getYear to be Y2K, making it functionally equivalent to getFullYear.

4.5.2. Math

Arithmetic isn't math, at least in JavaScript, where the operators for basic arithmetic described in
Chapter 2 are not associated with the Math object. The Math object provides mathematical properties
and methods, such as LN10, which is the logarithm of 10, and log(x), which returns the natural
logarithm of x. It doesn't participate in simple arithmetic, such as addition and subtraction.

I'll provide examples of the properties and functions for the Math objectyou'll
need to supply the math skills.

Unlike the other JavaScript objects, all of Math's properties and methods are static. What this means
is that you don't create a new instance of Math to get access to the functionality; you access the
methods and properties directly on the shared object itself:

var newValue = Math.SQRT1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


As with other object properties, Math's properties are accessed by attaching the property to the
object, using the period operator:

Math.property

The following are the Math properties, as numbers and listed in the order they're found in ECMA-262:

E

Value of e, the base of the natural logarithms

LN10

The natural logarithm of 10

LN2

The natural logarithm of 2

LOG2E

The approximate reciprocal of LN2the base-2 logarithm of e

LOG10E

The approximate reciprocal of LN10the base-10 logarithm of e

PI

The value of PI

SQRT1_2

The square root of 1/2

SQRT2

The square root of 2

Math in programming is somewhat dependent on the underlying architecture, and this includes how
some of the math functions are implemented by each browser that provides a JavaScript engine, as
well as the operating system, machine, and so on. As such, there may be minor variations in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir


results of the trigonometric functions, but hopefully not so many as to make the functions unusable
within this context.

4.5.3. The Math Methods

The Math methods are relatively straightforward. Regardless of variable type, all arguments passed to
the Math functions are converted to numbers first. You don't have to do any conversion in your code.

The abs function takes an argument representing a numeric value and returns the absolute value of
that number. If the number is negative, the positive value is returned. The following two lines of code
return a value of 3.45:

var nVal = -3.45;
var pVal = Math.abs(nVal);

There are several trigonometric methods available through Math: sin, cos, tan, acos, asin, atan, and
atan2. These provide, respectively, the sine, cosine, tangent, arc cosine, arc sine, arc tangent, and
the computation of the angle between an x-point and the origin. Each takes a specific type of numeric
argument and returns a result meaningful to the method:

Math.sin(x)

A specific angle, in radians

Math.cos(x)

A specific angle, in radians

Math.tan(x)

An angle, in radians

Math.acos(x)

A number between 1 and 1

Math.asin(x)

A number between 1 and 1

Math.atan(x)

Any number

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Math.atan2(py,px)

The y- and x-coordinates of a point

The Math.ceil method rounds a number to the next highest whole number. The following two lines of
JavaScript return a value of 4.00:

var nVal = 3.45;
var pVal = Math.ceil(nVal);

The following lines of JavaScript result in a value of 3:

var nVal = -3.45;
var pVal = Math.ceil(nVal);

The Math.floor method, on the other hand, rounds a number downreturning the next lowest whole
number. The following JavaScript generates a value of 3:

var nVal = 3.45;
var pVal = Math.floor(nVal);

The following lines of JS results in a value of 4:

var nVal = -3.45;
var pVal = Math.floor(nVal); 

The Math.round method rounds to the nearest integer; whether this is higher or lower depends on the
value. A value of 3.45 rounds to 3, while a value of 3.85 rounds to 4. The result is the nearest integer
regardless of whether the value is negative or positive.

Math.exp(x) calculates a number equivalent to e, the base of natural logarithms, raised to the value
of the argument passed to the method:

var nVal = Math.exp(4) // equivalent to e4

            

Math.pow raises any number to a given power:

var nVal = Math.pow(3,2) // 32 or 9

Math.min and Math.max compare two or more numbers and return either the minimum or the
maximum:

var nVal = 1.45;
var nVal2 = 4.5;
var nVal3 = -3.33;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


var nResult = Math.min(nVal, nVal2, nVal3) // returns -3.33
var nResult2 = Math.max(nVal, nVal2, nVal3) // returns 4.5

The last method, Math.random, generates a number between 0 (inclusive) and 1 (exclusive):

var nValue = Math.random(  );

The limitations on the method could discourage you from using Math.random. However, you can
multiply this value by 10 or 100, or any value, to generate random numbers beyond a value of 1.
Unfortunately, you can't set limits to generate a random number within a range of values. You can
emulate this behavior, though, using a loop, as demonstrated in Example 4-9.

Example 4-9. A quirky but accurate random-number generator

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Random Quote</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var quoteArray = new Array(5);
quoteArray[0] = "Quote one";
quoteArray[1] = "Quote two";
quoteArray[2] = "Quote three";
quoteArray[3] = "Quote four";
quoteArray[4] = "Quote five";

function getQuote(  ) {
   do {
     iValue = Math.random(  ); // random number between 0 and 1
     alert(iValue);
     iValue *= 10; // multiply by 10 to move the decimal
     alert(iValue);
     iValue = Math.floor(iValue); // round to nearest integer
     alert(iValue);
     }
   while (iValue > 4) 
   alert(quoteArray[iValue]);
}

//]]>
</script>
</head>
<body onload="getQuote(  );">
</body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</html>

An array is created with five quotes. A function is called when the page loads, which uses a loop and
several Number and Math functions to generate an application number (between 0 and 4, inclusive).
Once found, the number is used to access an array element, which is then printed out (as are the
interim steps in the random-number generator, as demonstrated).

This isn't the prettiest approach to random-number generation (or the most efficient), but it is
accurate and does the job. Sometimes that's enoughat least until you have time to explore other
options.

Developing with JavaScript is a trade-off between finding the absolute best possible solution, and
having to get the job finished within a specific period of time.

JavaScript Best Practice: There are no perfect solutions in JavaScript, only the
most accurate and best implementations that can be managed within a given
time frameallowing time for documentation, of course.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.6. JavaScript Arrays

There's an interesting little fact about JavaScript: if there's an object, there's also a literal. As shown in the last few chapters, there's a
String object and string literals; the same is true of Boolean and boolean, and Number and numbers. We also used this with regular
expressions, and rarely referenced the RegExp object directly in the examples. This same object/literal relationship holds true with arrays.

4.6.1. Constructing Arrays

A JavaScript array is an object, just like String or Math . As such, it's created with a constructor:

var newArray = new Array('one','two');

An array is also a literal value, which doesn't require the explicit use of the Array object:

var newArray = ['one','two'];

In this latter case, the JS engine converts the literal to an object of type Array , assigning the result to the variable. Once created, array
elements can be accessed by their index valuethe number representing their location in the array:

alert(newArray[0]); // outputs one

Array indexes start at 0 and go up to the number of elements, minus 1. So an array of five elements would have indexes from 0 to 4.

Arrays don't have to be one-dimensional. It's not uncommon to have an array in which each element has multiple dimensions, and the
way to manage this in JS is to create an array where each element is an array itself. In the following code snippet, an array of three-
dimensional values is created:

var threedPoints = new Array(  );
threedPoints[0] = new Array(1.2,3.33,2.0);
threedPoints[1] = new Array(5.3,5.5,5.5);
threedPoints[2] = new Array(6.4,2.2,1.9);

If the inner array contains the x-, y-, and z-coordinates in order, then accessing the z-coordinate of the third point can be managed with
the following code:

var newZPoint = threedPoints[2][2]; // remember, arrays start with 0

To add array dimensions, continue creating arrays in elements:

threedPoints[2][2] = new Array(4.4,4.6,44) // and so on
var newthreedZPoint = threedPoints[2][2][1];

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The number of elements for an array doesn't have to be known ahead of time. As the examples demonstrate, you can create an array
with so many elements in the array declaration, or just add elements as you go along. You can also set the size of an array by adding its
n th or last element, first:

var testArray = new Array(  );
testArray[99] = 'some value'; // testArray is now an array with 100 elements

To find the length of an array (number of elements), use the Array property called length :

alert(testArray.length); // prints out 100

If you access the length of a multiple-dimension array, you'll get only the number of elements for a particular dimension:

alert(threedPoints[2][2].length); // prints out 3 
alert(threedPoints[2].length); // prints out 3
alert(threedPoints.legnth); // prints out 3

In addition to length, there are a few other properties of interest and several methods on the Array object. One such is splice , which
allows you to insert and/or remove from an arraya rather handy method to have. In the following code snippet, splice adds two
elements and removes two, starting at index 2 (the third element):

var fruitArray = new Array('apple','peach','orange','lemon','lime','cherry');
var removed = fruitArray.splice(2,2,'melon,banana');
document.writeln(removed + "<br />");
document.writeln(fruitArray);

This code generates the following two lines:

orange,lemon
apple,peach,melon,banana,lime,cherry

The removed elements are returned as an array from the splice method call.

The slice method slices an array and returns the result:

fruitArray.slice(2,4); // returns an array of 3 elements: melon, banana, and lime

The concat concatenates one array onto the end of the other:

var newFruit = fruitArray.concat(removed) // returns an array of apple,peach,melon,banana,lime,cherry,orange,lemon

Neither concat nor slice alter the original array. Instead, they return an array containing the results of the operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In the examples, I've been printing out the arrays directly. What the JavaScript engine does is convert the arrays to a string, using a
default separator of a comma (,). If you want to designate a different separator, use the join method to generate a string:

var strng = fruitArray.join(  )

You can also reverse the order of the elements in an Array using the reverse method:

fruitArray.reverse(  );

In many cases, the exact order of the elements in an array is unimportant. There are times, though, when you want to have the order
preserved, such as when the array serves as a queue. There are also several methods useful for maintaining arrays as queues or lists,
which we'll look at next.

4.6.2. FIFO Queues

Arrays can be used to track a queue of items, where each is added FIFO (first in first out). There are four handy Array methods that can
maintain queues, lists, and the like: push , pop , shift , and unshift .

The push method adds elements to the end of an array, while the unshift method adds elements to the beginning of the array. Both
return the new length of the array.

The pop method removes the last element of the array, while the shift returns the first element. Both return the element retrieved from
the array.

All four methods modify the arrayeither adding or removing elements, permanently, from the array. Example 4-10 demonstrates how a
FIFO queue can be maintained in JavaScript.

Example 4-10. FIFO queue using Array methods

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>FIFO</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[
//create FIFO queue and add items using push
var fifoArray = new Array(  );
fifoArray.push("Apple");
fifoArray.push("Banana");
var ln = fifoArray.push("Cherry");

// print out length and array
document.writeln("length is " + ln + " and array is " + fifoArray + "<br />");

// use pop to pop the items off the array

http://lib.ommolketab.ir
http://lib.ommolketab.ir


for (var i = 0; i < ln; i++) {
   document.writeln(fifoArray.shift(  ) + "<br />");
}

// print out length
document.writeln("length now is " + fifoArray.length + "<br /><br />");

// now, same with shift and unshift
var fifoNewArray = new Array(  );

fifoNewArray.unshift("Learning");
fifoNewArray.unshift("Java");
ln = fifoNewArray.unshift("Script");

document.writeln("length is " + ln + " and array is " + fifoNewArray + "<br />");

// unshift
for (i = 0; i < ln; i++) {
  document.writeln(fifoNewArray.pop(  ) + "<br />");
}
document.writeln("new length is " + fifoNewArray.length );i
//]]>
</script>
</body>
</html>

The first thing to notice in this example is that I've paired shift and push , and unshift and pop . The reason for this is the order in
which these methods work. The push method adds an element to the end of an array, and as each new element is added, it pushes the
first elements to the front of the array. The pop method removes the items from the end of the array first, creating a LIFO list (last in
first out)a perfectly legitimate queue, but not what we're after with the program. We want the first element added to be the first element
retrieved. The shift method removes elements from the top of the array, which does suit our needs.

The same applies to unshift and pop . The unshift method adds items to the top of an array, each new item pushing the older ones
further down the list, while pop removes them from the bottom of the queue first. This again maintains the order of items, and this is
what we're afternot the order of the array elements themselves, but the order in which they're added.

The result of running this JavaScript is:

length is 3 and array is Apple,Banana,Cherry
Apple
Banana
Cherry
length now is 0

length is 3 and array is Script,Java,Learning
Learning
Java
Script
new length is 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Example 4-10 also demonstrates how for loops can traverse an array. Rather than have to individually write out each shift or pop
method call, I iterated through the same call the same number of times as elements in the array. This example is small, but you can
imagine how much of a timesaver this can be with a larger array.

Typically when traversing an array with a for loop, the variable that's adjusted with each loop is incremented (or decremented when
counting down) and used as an array index:

for (var i = 0; i < someArray.length; i++) {
    alert(someArray[i]);
}

However, there's no requirement that you must use the index; it's there if you need it. And as implied, you count down with a for loop
as well as count up:

for (var i = someArray.length; i >= 0; i--) ...

As an alternative, you can use the for...in loop to access each array element:

var programLanguages = new Array ('C++','Pascal','FORTRAN','BASIC','C#','Java','Perl','JavaScript');
for (var itemIndex in programLanguages) {
   document.writeln(programLanguages[itemIndex] + "<br />");
}

There are other methods associated with the array that require the use of a callback function, which will be covered in Chapter 5 . First
though, let's look at associative arrays.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.7. Associative Arrays: The Arrays That Aren't

I introduced associative arrays in Chapter 3. Unlike those just described, an associate array doesn't
have a numeric index, so you can't access associative array elements using the following syntax:

assocArray[1]

Associative arrays can be created using the Array constructor, but this is considered bad
formprimarily because you can't access the array using numeric indexes. Instead, Object is normally
used, and the array is automatically extended as new members are added:

var assocArray = new Object(  );
assocArray["one"] = "one";
assocArray["two"] = "two";

Unlike the traditional numeric arrays, associative array members can also be accessed directly on the
object, as seen in many of the examples with the document, Math or Date objects, and so on:

document.writeln...
Math.ceil...

Associative arrays are used in the last few chapters, so I won't get much further into the concept in
this chapter. However, it is important to remember that when referencing a JavaScript Array, we
usually mean the array that supports numeric indexing. Otherwise, we'll usually use object or
associative array to reference the object type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


4.8. Questions

Comma-separated strings are a common data format. How would you create an array of
elements when given one?

1.

The \\b special character can define a word boundary, and \\B matches on a nonword
boundary. Define a regular expression that will find all occurrences of the word "fun" in the
string and replace them with "power":

2.

"The fun of functions is that they are functional."

Create code to get today's date, modify it by a week, and print out the new date.4.

Given a number of 34.44, how would you round the number down? Round it up?5.

Given a string like the following, use pattern match and replace to turn all punctuation into
commas, and then load as an array and print out each value:

6.

var str = "apple.orange-strawberry,lemon-.lime";7.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 5. Functions
JavaScript functions are a key part of the language, but they're not quite what they seem. They look
like they would belong in the family of statements, but in actuality, they're objects just like all the
others we've covered in the last chapter. You can define a function, create a new one, even print one
out.

Thanks to this functionality, you can assign a function to a variable, an array element, or even pass
one as an argument to another function call. This makes using functions a very handy and flexible
beastie, but also a confusing one.

It's easy to get lost in discussions of anonymous functions as compared to function statements,
function expressions, and references to literal functions. Add in concerns about function closure and
memory leaks, as well as properties inherited by all functions, and you can see they are not a trivial
JavaScript construct.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


5.1. Defining a Function: Let Me Count the Ways

There are three primary approaches to creating functions in JavaScript: declarative/static,
dynamic/anonymous, and literal. It's important to understand the impact of each type of declaration
before using it.

Many programming tasks can be accomplished with the simple
declarative/static approach. You may not want to use anonymous or literal
functions while getting started, but it's useful to know what they are if you have
to read someone else's code. (And eventually, of course, you'll probably want
to use them!)

5.1.1. Declarative Functions

The most common type of function uses the declarative/static format. This approach begins with the
function keyword, followed by function name, parentheses containing zero or more arguments, and
then the function body:

function functionname (param1, param2, ..., paramn) {
   function statements
}

Unless I'm creating a new library with new objects, or defining functions on the fly based on events,
this tends to be the syntax I use the most.

The declarative/static function is parsed once, when the page is loaded, and the parsed result is used
each time the function is called. It's easy to spot in the code, simple to read and understand, and has
no negative consequences (usually), such as memory leaks. It's also more familiar to developers who
have worked with other programming languages.

This type of function has been demonstrated extensively in the previous chapters, so I won't provide
a full example of its use here. The following snippet of code creates a function that uses this function
format, which is called immediately after it's declared:

function sayHi(toWhom) {
   alert("Hi " + toWhom);
}
sayHi("World!");

In this code, calling the function results in a dialog window with "Hi World!". Barring JavaScript
errors, no matter what string is passed to the function or how many times it's called, the same
function object is used, and the same result happens: a dialog window opens with a message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


5.1.1.1. A reminder on function naming conventions

Functions do actions. As such, you'll want to incorporate a verb summarizing the activity of the
function as much as possible. If you have a hard time naming the function because it's doing more
than one task, you may want to consider splitting the function into smaller units, which tends to also
encourage reusability.

In fact, the rule should be to keep functions small, specific to a task, and as general as possible. This
makes up this chapter's best practice.

JavaScript Best Practice: Keep your functions small, specific to a task, and try
to generalize the contained code so that the function can be as reusable as
possible.

5.1.2. Function Returns and Arguments

Functions communicate with the calling program through the arguments passed to it and the values
returned from it.

Variables based on primitives, such as a string, boolean, or number are passed to a function by
value. This means that if you change the actual argument in the function, the change is not reflected
in the calling program.

Objects passed to a function, on the other hand, are passed by reference. Changes in the function to
the object are reflected in the calling program.

In Example 5-1, two arguments are passed to a function: one is a string variable, the other an array.
Both are modified in the function, and then their contents output in the calling program. The string is
unchanged, but the array object now has a new value among its members.

Example 5-1. Function arguments, passed as value and by reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Pass Me</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

function alterArgs(strLiteral, aryObject) {
   
   // overwrite original string
   strLiteral = "Override";
   aryObject[aryObject.length] = "three";
}

var str = "Original Literal";
var ary = new Array("one","two");

alterArgs(str,ary);

document.writeln("string literal is " + str + "<br /> ");
document.writeln("Array object is " + ary);

//]]>
</script>
</body>
</html> 

Communication to and from the function is simple: data is passed to a function through one or more
arguments; a return statement returns a value from a function to the calling program.

A function may or may not return a value. If it does, the return statement can occur anywhere in the
function code, and there could even be more than one return statement. When it encounters a
return statement, the JS engine stops processing the function code at that point and returns control
to the calling statement.

One reason you might have more than one return statement is if you want to terminate and exit the
function when a condition is met. In the following snippet of code, if a condition isn't met in the
function, it's terminated immediately; otherwise, processing continues:

function testValues(numValue) {
if (isNan(numValue) {
    return "error -- not a number";
}
...
return ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Functions don't require return values, though they may be useful in error handlingreturning a value
of false if the function isn't successful. (More sophisticated methods of error handling are covered in
Chapter 11.)

Opposite in behavior to the declarative function is the dynamic/anonymous function, discussed next.

5.1.3. Anonymous Functions

Functions are objects. As such, they can be createdjust like a String or other typeby using a
constructor and assigning the function to a variable. In the following code, a new function is created
using the function constructor, function body, and argument passed in as arguments:

var sayHi = new Function("toWhom","alert('Hi ' + toWhom);");
sayHi("World!");

This type of function is often referred to as an anonymous function because the function itself isn't
directly declared or named. I know, they are strange-lookingbut that's understandable if you
remember that a JavaScript function is an object, and any object can be created dynamically at
runtime.

Unlike the declarative function, the JavaScript engine creates the anonymous function dynamically,
and each time it's invoked, the function is dynamically reconstructed. If the function is used in a loop,
this means it's created with each iteration; a declarative/static function is only created once. As such,
you might think anonymous functions aren't too useful. However, a dynamic function is a great way
to define the functionality necessary to meet a need that's only determined at runtime.

Here's the syntax of an anonymous function using a constructor:

var variable = new Function ("param1", "param2", ... , "paramn", "function body");

The first parameters are the arguments to the function as they would be defined in a declarative
function. The last parameter is the function body. The whole is assigned to a variable:

var func = new Function("x", "y", "return x * y")

This is equivalent to the following using a declarative/static function:

function func (x, y) {
   return x * y;
}

Example 5-2 takes the dynamic nature of an anonymous function to its extreme. The function body
and the value of the two parameters defined for the function are provided by the user via a prompt
dialog window. The whole is invoked, and the result is printed out to the page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Example 5-2. A dynamic/anonymous function

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Build a Function</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

// prompt for function and args
var func = prompt("Enter function body:");
var x = prompt("Enter value of x:");
var y = prompt("Enter value of y:");

// invoke anonymous function
var op = new Function("x", "y", func);
var theAnswer = op(x, y);

// print out results
document.writeln("Function is: " + func + "<br />");
document.writeln( "x is: " + x +
                 " y is: " + y + "<br />");
document.writeln("The answer is: " + theAnswer);

//]]>
</script>
</body>
</html>

Because JavaScript is loosely typed, the function can work with number values:

Function is: return x * y
x is: 33 y is: 11
The answer is: 363

It can also work with strings:

Function is: return x + y
x is: This is y is: the string
The answer is: This is the string

The only requirement is that the operation has to be meaningful for the data type. Even then, a
JavaScript error won't happen because the browser doesn't see the error; it happens at runtime.
What you'll end up with is something like the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Function is: return x * y
x is: this is y is: the answers
The answer is: NaN

Needless to say, this functionality must be used with caution. I don't recommend allowing your web-
page readers to define the functions used within your pages. However, dynamic functions can be an
interesting way of dealing with user input, as long as you strip out anything in that input that can
cause problems: embedded links, messing around with cookies, calling server-side functionality,
creating new functions, etc.

There is another hybrid approach to creating functions that combines the static capabilities of the
declarative function with some of the anonymity of the anonymous functions: the function literal,
discussed next.

5.1.4. Function Literals

Before introducing the nextand potentially confusingtype of function, a little refresher on objects and
literals might be helpful. As demonstrated in earlier chapters, JavaScript objects can have a literal
form. Rather than have to use a constructor and the object, you can use a representation. A string
can be constructed using the String constructor, and the String methods accessed:

var str = new String("Learning Java");
document.writeln(str.replace(/Java/,"JavaScript"));

You can also use a variable based on the primitive string type and still access the String object's
methods; the JavaScript engine implicitly wraps the literal in an object:

var str2 = "Learning Java";
document.writeln(str2.replace(/Java/,"JavaScript"));

In fact, you don't even need a variable:

document.writeln("Learning Java".replace(/Java/,"JavaScript"));

What works for strings also works for functions, which means that you don't have to use a function
constructor to create a function and assign it to a variable; it literally becomes a function literal:

var func = (params) {
statements;
}

Function literals are also known as function expressions because the function is created as part of an
expression, rather than as a distinct statement type. They resemble anonymous functions in that
they don't have a specific function name. However, unlike anonymous functions, function literals are
parsed only once. In fact, other than the fact that the function is assigned to a variable, function

http://lib.ommolketab.ir
http://lib.ommolketab.ir


literals resemble declarative functions:

var func = function (x, y) {
   return x * y;
}
alert(func(3,3));

Their uniqueness stands out when you extend the concept to do something such as passing a
function as a parameter to a function. In Example 5-3, a function, funcObject, is defined, and passes
the first two arguments to the third, which is, itself, a function.

Example 5-3. Passing a function to a function

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Pass Me</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

// invoking third argument as function
function funcObject(x,y,z) {
   alert(z(x,y));
}

// third parameter is function
funcObject(1,2,function(x,y) { return x * y});

//]]>
</script>
</body>
</html>

If a function is used within an expression in another statement, it's an example of a function literalno
matter what the expression is.

A second form of the function literal isn't anonymous, in that the function is given a name:

var func = function multiply(x,y) {
   return x * y;
}

However, the name is accessible only from within the function itself. This isn't all that handy, unless

http://lib.ommolketab.ir
http://lib.ommolketab.ir


you're implementing a recursive function (covered in a later section).

5.1.5. Function Type Summary

To summarize, there are three different function types:

Declarative function

A function in a statement of its own, beginning with the keyword function. Declarative functions
are parsed once, static, and given a name for access.

Anonymous function

A function created using a constructor. It's parsed each time it's accessed and is not given a
name specifically.

Function literal or function expression

A function created within another statement as part of an expression. It is parsed once, is
static, and may or may not be given a specific name. If it is named, the name is accessible only
from within the function itself.

Declarative functions are available in all forms of JavaScript, in all browsers. Anonymous functions
based on the function constructors are dynamic, memory-intensive, and based on later versions of
JS; as such, they may not be available with older browsers. Function literals are later innovations,
based in JavaScript 1.5. Only the most modern browsers support these, though the most
commonsuch as Mozilla, Firefox, IE, Safari, and othersdo. However, how each of these work with
function literals can lead to interesting complications in memory usage, as is examined later in the
section on closure.

Function literals also form the basis for most advanced Ajax libraries, as you'll see when we take a
closer look at Prototype, Dojo, and other libraries in the last chapters of the book. In addition,
function literals, as just demonstrated, are what's used with object event handlers that require
callback functions, such as those associated with the Array object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Windows Freebies

I do most of my web development from my Mac, but from time to time, I develop on my
Windows box. One of the advantages to working in Windows is that there seem to be
many more JavaScript tools in this environment.

One such is Alban's Script Editor (Version 1.0), formerly known as the Developer's
JavaScript Editor. It's described in more detail, including screenshots, at
http://www.albantech.com/software/albanxx/. It's an uncomplicated tool that acts as a
Notepad replacement and provides syntax highlighting.

Once you're finished writing your web page, you can then compress and obfuscate it with
Strong JS, a simple-to-use tool that does both (available at
http://www.stronghtml.com/tools/js/index.html). Not only does it compress whitespace,
it can also replace variable names with short namesto get that little extra when you
really need it.

Firefox isn't the only browser with neat toolbar extensions. Microsoft offers the Internet
Explorer Developer Toolbar, which provides most of what you need if you want to peek
into a page's inner workings. Because Microsoft changes its URLs frequently, your best
bet to find the download site for the Toolbar is to run a search on the term "Internet
Explorer Developer Toolbar."

The Toolbar allows you to drill down into the DOM elements on a web page and view the
CSS and element attributes, provides a design ruler, and more. You can also test out
page resizing, manipulate images, and generally, do most of what you can accomplish
with the Firefox Web Developer's toolbar extension.

It's a must for JavaScript developers.

http://www.albantech.com/software/albanxx/
http://www.stronghtml.com/tools/js/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


5.2. Callback Functions

In Chapter 4 's section on the Array object, I wrote that there are some methods dependent on functions that are invoked automatically based on
some event. The Array methods are filter , forEach , every , map , and some , and the functions used are function literals, though when used in
this manner, they're usually referred to as callback functions .

Returning to the Array methods, the filter method ensures that elements are not added to any element unless they pass certain criteria. Rather
than have to test a value and then add to an array, you can just toss everything at the array and let filter take care of the work for you. The
forEach method takes a function that's then processed against each element. Unlike filter , the array is not impacted by the function.

The every method runs the callback function against every element in the array until one returns a false value. The map method runs the callback
function against all the array elements and creates a new array from the results. Finally, the some method is the opposite of every , in that it runs
the callback function against every element until one returns a true value.

Each callback function has three parameters: element , index , and array . Some return a value, others don't. None impact the original array.

Example 5-4 demonstrates how to use a callback function with an Array . In this example, the original array contains elements that are themselves
an array containing color values in a range of 0255. After the array is built, one function is attached, checkColor , which checks each array element
for proper range. A second then checks to make sure all three RGB values are present.

Example 5-4. Using callback functions with Array filter method

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Array filter and callback functions</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

// check color range callback function
function checkColor(element,index,array) {
  return (element >= 0 && element < 256);
}

// check to ensure you have three RGB colors
function checkCount(element,index,array) {
  return (element.length == 3);
}

// color array
var colors = new Array(  );
colors[0] = [0,262,255];
colors[1] = [255,255,255];

http://lib.ommolketab.ir
http://lib.ommolketab.ir


colors[2] = [255,0,0];
colors[3] = [0,255,0];
colors[4] = [0,0,255];
colors[5] = [-5,999,255];

// filter on color range
var testedColors = new Array(  );
for (var i in colors) {
       testedColors[i] = colors[i].filter(checkColor);
}

// filter on three values
var newTested = testedColors.filter(checkCount);
for (i in newTested) {
   document.writeln(newTested[i] + "<br />");
}
//]]>
</script>
</body>
</html>

In the end, only four of the color points survive both checksthe middle four.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


5.3. Functions and Recursion

Recursion is not a commonly occurring functionality in most JavaScript
applications. It's also a fairly advanced form of programming. As such, you may
want to skip this section for now and return to it after you've finished the rest
of the book.

A function that calls itself is known as a recursive function. Typically, it's used when a process must
be performed more than once, with each new iteration of the process performed on the previously
processed result. The use of recursion isn't common in JavaScript, but it can be useful when dealing
with data that's in a tree-line structure, such as the Document Object Model. However, it can also be
memory- and resource-intensive, as well as complicated to implement and maintain. As such, use
recursion sparingly.

Previously in the chapter I wrote about named function literals, in which the function is given a name
but only the function itself can access that name. This is an ideal setup for recursion.

In Example 5-5, a recursive function is used to traverse a numeric array, add the numbers in the
array, and add the numbers to a string.

Example 5-5. JavaScript function recursion

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Recursion</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var addNumbers = function sumNumbers(numArray,indexVal,resultArray) {
   
   // recursion test
   if (indexVal == numArray.length) 
      return resultArray;

   // perform numeric addition
   resultArray[0] += Number(numArray[indexVal]);

   // perform string addition

http://lib.ommolketab.ir
http://lib.ommolketab.ir


   if (resultArray[1].length > 0) 
     resultArray[1] += " and ";
   resultArray[1] += numArray[indexVal].toString(  );
   
   // increment index
   indexVal++;

   // call function again, return results
   return sumNumbers(numArray,indexVal,resultArray);
}

// create numeric array, and the result array
var numArray = ['1','35.4','-14','44','0.5'];
var resultArray = new Array(0,''); // necessary for the initial case

// call function
var result = addNumbers(numArray,0, resultArray);

// output
document.writeln(result[0] + "<br />");
document.writeln(result[1]);
//]]>
</script>
</body>
</html>

In this application, the function calls itself using its internal name repeatedly until the array index is
equivalent to the length of the numeric array. The result is then returned and passed up via each
recursive call until it's returned to the statement that first invokes the function. Think of each
iteration of the function call as pushing the string and numeric sum onto a stack, and when the
numeric array has been traversed, the string and number have to be popped up through the stack to
the top.

Of course, with this example, a while loop could be used to create the same results. However, as I
mentioned earlier, when we're working with tree-structured data such as the DOM, recursion is
extremely valuable, as is the function literal used to implement this process. However, not all uses of
function literals in all browsers are without potential negative side effects. One area of risk is with
nested functions, and possible memory leaks from an item called closure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


5.4. Nested Functions, Function Closure, and Memory
Leaks

Again, this is fairly advanced JavaScript programming, but because it occurs
quite frequently in Ajax programming, I felt it best to include in the book.
However, as with recursion, you may want to finish the book and then return to
this section.

Another interesting aspect of function literals in JavaScript is their use as nested functions. Consider
the following:

function outer (args) {
   function inner (args) {
      inner statements;
   }
}

With a nested function, the inner function operates within the scope of the outer function, including
having access to the outer function's variables and arguments. The outer function, though, does not
have access to the inner function's variables, nor does the calling application have access to the inner
function. (Well, not unless it's created as a function literal and returned to the calling application,
which then adds its own complication.)

Example 5-6 demonstrates creating a nested, inner-function literal, which is then returned to the
calling application. The inner function uses the outer function's one argument, as well as its one
variable. When the inner function is returned to the calling application and invoked directly, it
concatenates the string passed as a parameter to the original outer-function call to the string passed
to it directly as an argument. The inner function concatenates this string with that created as the
local variable in the outer function, and then returns the result. Changing the argument to the inner
function changes the string, as does calling the outer function again, to get another instance of the
inner function.

Example 5-6. Nested functions and closure

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Getting Closure</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

// outer function
function outerFunc(base) {

   var punc = "!";

   // inner function
   function returnString(ext) {
     return base + ext + punc;
   }
   
   return returnString;
}

// create access to inner function
var baseString = outerFunc("Hello ");

// inner function still has access to outer function argument
var newString = baseString("World");
document.writeln(newString);

// and still
var notherString = baseString("Reader");
document.writeln(notherString);

// create another instance of inner function
var anotherBase = outerFunc("Hiya, Hey ");

// another local string
var lastString = anotherBase("you");
document.writeln(lastString);

//]]>
</script>
</body>
</html>

The result is this line in the web page:

Hello World! Hello Reader! Hiya, Hey you!

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Pretty nifty stuff. The only question is, how does this work? Isn't this in violation of scoping rules,
which state that when a function terminates, all of the memory for its local variables gets released
via automatic garbage collection?

Not quite.

Each time a new scope is created in a JavaScript application, an associated scoping bubble, if you
will, is created to enclose it. This applies to functions, which operate in their own scope.

Normally, when the function terminates, the scope is released because it's no longer necessary.
However, in the case of an inner function that's returned to the outer application and assigned to an
external variable, the scope of the inner function is attached to the outer, which is in turn attached to
the calling applicationjust enough to maintain the integrity of the function literal and the outer-
function argument and variable. Returning a function literal created as an internal object within
another function, and assigning it to a variable in the calling application, is known as closure in
JavaScript. And it is the scope chaining that ensures that the data necessary for this to work is in
place.

This is very neat stuff, and you can see intriguing uses of closure in creating new objects or
extending existing ones. We'll explore these further later in the book; however, there's another
problem associated with closure.

Closures can be created accidentally or used unintentionally. In Example 5-6, if a new reference to
the inner function is created for each string created, rather than reusing the variable referencing the
inner function, there will be a lot of instances of that object over time.

Accidental closure can also occur when a circular reference is created, such as the following from the
Mozilla documentation site:

function leakMemory(  ) {
    var el = document.getElementById('el');
    var o = { 'el': el };
    el.o = o;
} 

We'll get into the Document Object Model in Chapter 10, but in this case, the DOM is accessed to get
an element identified by el. This is used to create a new object reference using a very abbreviated
form of a function literal. That object creates an unnamed object that assigns the retrieved DOM
object to a property identified by a property name of el.

Then comes the kicker: we assign this to the variable referencing the original object, which literally
means we've assigned the object as a property of itself. This is not something I want to encourage,
but most browsers can manage to terminate the closure and reclaim the memoryexcept Internet
Explorer.

IE provides its own memory management for DOM objects, in addition to memory management for
JavaScript objects. In the case of accidental closures caused from such circular references as this and
the crossover between JS and DOM objects, the memory is allocated and never freednot even when
the page is closed. In fact, the only time the memory is freed is when the browser is closed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The memory leak that results is usually small, unless you put all of this into a loop, in which case the
memory loss could quickly build. This explains why you should use the power of closure with caution.

For an excellent overview of closures, see the paper by Jim Ley on the topic at
http://jibbering.com/faq/faq_notes/closures.html.

http://jibbering.com/faq/faq_notes/closures.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


5.5. Function As Object

Whatever can be created using a constructor has properties and methods above and beyond the
obvious, and functions are no exception.

The Function object seems to be the JavaScript object that's had the most changes over time.
Originally, the arity property provided the number of arguments. This has been replaced by calling
the length method off of the function nameor by accessing length on the arguments array. This,
itself, used to be accessible via the function name, but now is accessible just as "arguments" within
the function call. Example 5-7 demonstrates accessing both Function object properties.

Example 5-7. Examining Function object properties of length and
arguments

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Function Object</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

// invoking third argument as function
function funcObject(x,y,z) {

   for (var i = 0; i < funcObject.length; i++) {
     document.writeln("argument " + i + ": " + arguments[i] + "<br />");
   }
}

funcObject(1,2,3);

//]]>
</script>
</body>
</html>

In addition, as you'll see in Chapter 11, when building custom objects, it's the function's ability to
reference its own scope through the keyword this that's important for building classes of new
objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In 1997, I started a set of class objects to manage cross-browser differences. Eventually, I managed
these differences by creating objects for the primary browser types at that time: one for IE, one for
Netscape, and one for the ongoing efforts with the DOM at the W3Can approach that the Mozilla
foundation and eventually most other browsers (including Netscape and IE) would adopt. Using this, I
then attached methods to these objects. These objects were then used to wrap every DIV object in
the page, which gave me a set of page components with which I could do most things. Remarkably
enough, these objects survived various new generations of browsers for several years and still work
today, though I am updating them to be more efficient and take advantage of some of the newer
specifications.

These objects worked by defining a model-specific object, such as the following abbreviated example
from the DOM (Mozilla/W3C) object function:

function dom_object(obj) {
        this.css1 = obj;
        this.name = obj.id;
        this.objResizeBy = domResizeBy;
        this.objHide = ieobjHide;
        this.objShow = ieobjShow;
        this.objGetLeft = domGetLeft;
        this.objGetTop = domGetTop;
        this.objSetTop = domSetTop;
        this.objSetLeft = domSetLeft;
...
}

The same properties can be added to each model implementation, which allows you to hide the
browser differences, because each custom object method is assigned a different browser or model-
specific function. Handy thing, this. Almost as handy as a JavaScript function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


5.6. Questions

What are the three main types of functions and when would you use each type?1.

How can a function modify variables outside its scope?2.

How can you dynamically alter the number of arguments to a function?3.

What property allows a function to access its own scope?4.

Create a function that takes a data object and a function as parameters and invokes the
function using the data object.

5.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 6. Catching Events
Events let you know when a user is doing something or when a page has loaded. Catching and
handling events lets your code do the right thing at the right time, serving the users of your
programs.

Regardless of why they happen or how they're implemented, events in JavaScript are associated with
objects and are not intrinsic to the language itself. Typically, when working with browsers, events are
related to the DOM implemented in each browser.

There is a default behavior associated with each event, but events can be used to modify
functionality or add additional functionality. Extending the event behavior can be managed within the
(X)HTML tag for the object, or in a separate JavaScript code block or file.

The events themselves are fairly intuitive. The W3C (World Wide Web Consortium) categorizes events
into three distinct areas: user interface (mouse, keyboard), logical (result of a process), and
mutation (action that modifies a document). The basic events, affected objects, and descriptions are
listed in Table 6-1.

Table 6-1. Events and affected objects

Event Description Object(s)

abort When image is prevented
from loading

An image element

blur, focus When object loses or
receives focus

Applicable to window and form
elements

change When selection changes
Applicable to form elements
where value changes and after
element loses focus

click,
doubleclick

(dblclick)

Clicking or double clicking
(two clicks in rapid
succession) with mouse

Most page elements

contextmenu
Clicking with the right mouse
button (bringing up context
menu)

Web-page document

error When page or image can't
load

Web-page document and image

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Event Description Object(s)

keydown, keyup,
keypress

Pressing key or releasing,
and act of doing both

Web-page document and
certain form elements

load, unload
When image or page is
finished loading, or page
loses focus

Web-page document and image
(load only)

mousedown,
mouseup

Pressing down on mouse
button, releasing

Most page elements

mouseover,
mouseout

Moving mouse over element,
moving mouse away from
element

Most page elements

mousemove Mouse moves Most page elements

reset Form is reset Form

resize Resize of window or frame Window or frame

select Selecting text Form text area or input

scroll When object is scrolled
Window, frame, or element
with overflow set to auto
(presence of scrollbar)

submit Form is submitted Form

There are some proprietary events that aren't listed; they'll be covered in the text. Also, up to this
point, most of the examples and material we've covered have been cross-browser-safe. By this I
mean that most modern browsers (Netscape and IE 4.x and up, or 2002 and later) support what's
been covered, and the examples work as detailed in this book. Events are the first topic we'll cover
that differs between browsers and browser generations. Not just differdiffer with a vengeance.

Event handling in JavaScript has gone through more than one generation, as well as undergoing
proprietary extensions. Many older iterations are still supported for reasons of backward
compatibility, and many of the newer event models are not universally implemented across all
popular browsers.

In this section, we'll start by looking at event systems from oldest to newest. At the end of each,
browser compatibilities and quirky behaviors are listed.

keydown, keyup,
keypress

Pressing key or releasing,
and act of doing both

Web-page document and
certain form elements

load, unload
When image or page is
finished loading, or page
loses focus

Web-page document and image
(load only)

mousedown,
mouseup

Pressing down on mouse
button, releasing

Most page elements

mouseover,
mouseout

Moving mouse over element,
moving mouse away from
element

Most page elements

mousemove Mouse moves Most page elements

reset Form is reset Form

resize Resize of window or frame Window or frame

select Selecting text Form text area or input

scroll When object is scrolled
Window, frame, or element
with overflow set to auto
(presence of scrollbar)

submit Form is submitted Form

There are some proprietary events that aren't listed; they'll be covered in the text. Also, up to this
point, most of the examples and material we've covered have been cross-browser-safe. By this I
mean that most modern browsers (Netscape and IE 4.x and up, or 2002 and later) support what's
been covered, and the examples work as detailed in this book. Events are the first topic we'll cover
that differs between browsers and browser generations. Not just differdiffer with a vengeance.

Event handling in JavaScript has gone through more than one generation, as well as undergoing
proprietary extensions. Many older iterations are still supported for reasons of backward
compatibility, and many of the newer event models are not universally implemented across all
popular browsers.

In this section, we'll start by looking at event systems from oldest to newest. At the end of each,
browser compatibilities and quirky behaviors are listed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


6.1. The Event Handler at DOM Level 0

The earliest event system is often labeled Events or DOM Level 0. This earliest, and still most common, approach
to assigning new or modified functionality to an object event is through an event handler.

An event handler is a property of an object that has the syntax of:

onevent

Where the event handler starts with "on-", and the event can be load, click, etc.

The syntax for adding a JavaScript event handler directly to an object is to attach the event handler name as an
attribute of the object tag and assign the code to run when the event occurs. The code can be implemented
directly in the handler:

<body onload="var i = 23; i *= 3; alert(i);"> 

More frequently, though, a function is called:

<body onload="calcNumber(  );">

Adding events as an attribute to an HTML element is sometimes known as an inline model or inline registration
model.

Unlike most functions in JavaScript, event handlers are all lowercase, though if your web page is defined with an
HTML DOCTYPE, your browser may accept a Hungarian/Camel notation (mixed upper- and lowercase). However,
the mixed-case approach works if, and only if, you invoke the event handler as an attribute on an HTML element:

<body onload="calcNumber(  );">
<body onLoad="calcNumber(  );">

XHTML demands that all attributes be lowercase. As such, you'll want to use the lowercase notation for all of your
JavaScript applications.

Event handlers can also be accessed directly, as a property, on each object. The following assigns a function to
the onload event property of the window object:

window.onload=calcNumber;

To remove the function, assign the event handler to null . This approach of assigning a function to an event
handler that is an object property is sometimes called the traditional model or traditional registration model.

Example 6-1 demonstrates both the traditional and inline event models, based on the page load onload event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


These are the same events, and you would expect the pop-up window with the message to open twice.

Example 6-1. Both traditional and inline event handlers are used to capture load
event

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Traditional and Inline DOM 0 Event Registration</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

// handle keyboard events
//if (navigator.appName != "Microsoft Internet Explorer") {
//   document.captureEvents(Event.KEYDOWN);
//   }

function helloMsg(  ) {
var helloString = "hello there";
alert(helloString);
}

function helloTwice(  ) {
var helloString = "hi again";
alert(helloString);
}

window.onload=helloTwice;

//]]>
</script>

</head>
<body onload="helloMsg(  );">
</body>
</html> 

The pop-up message of "hello there" displays for the first method but not for the second message. The reason
only one pop-up window opened is that only one event handler is allowed for any given event and object. The
function assignments are not cumulative. If you want more than one function to be processed based on an event
for a specific object, you need to list them in the event-handler codeeither inline or called from one function using
the traditional method:

<body onload="helloMsg(  ); helloTwice(  )">

Or from within the code:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


function helloMsg(  ) {
var helloString = "hello there";
alert(helloString);
helloTwice(  );
}

The inline events work with all browsers; however, you should restrict their use. The reason is that if you add
events to HTML elements, and you change the function name that's called or want to change the behavior of the
JavaScript in a bunch of pages, you then have to go into each and manually make the changes. For anything but
the simplest sites, this is prohibitive. A better approach would be to use the traditional method, which works with
all modern browsers. The best approach is to use the newer event-handling procedures, for reasons detailed later
in the chapter.

JavaScript Best Practice: Limit use of inline event registration, which embeds JavaScript
into HTML elements rather than within a JS code block. A better approach is to use the
traditional event registration. The best approach is to use the newer event-management
techniques.

With some events, such as submit , that are based on the results of running the JavaScript code, you may not
want the event to continue its default process. In such cases, you can return a value of false from the event-
handler function:

function doSomething(  ) {
   // does some code
   return false;
}

This signals the browser to terminate the event at that point. You'll see this in action later in the chapter when we
move into form processing.

For many events, knowing that an event happened is enough, but for others, such as click or mousedown and so
on, you might want additional information about the event, such as page location. So the question is, how is this
information accessed? That's the next bit of cross-browser event irregularityalbeit fixablewe'll look at next.

6.1.1. The Event Object

DOM Level 0 events can be split into two camps: the old Netscape camp, which is now subsumed by
Mozilla/Firefox, and Internet Explorer. For the most part, getting an interactive page to work with both can be
done, but you might have to use a few tricks. One trick is how to get access to the Event object.

The Event object is associated with all events. It has properties that provide information about the event, such as
location of a mouse click and so on. The Event object actually looks quite similar to both Internet Explorer and
Mozilla; a couple of methods differ. However, getting access to the object is drastically different.

IE attaches Event as a property of the window object. When accessed as part of event processing, the data it
contains is populated accordingly. In Example 6-2 , the IE Event object is accessed from Windows when the
mouse button is depressed, and the screen X and Y location are printed out in a pop-up window.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Example 6-2. Accessing IE Event object

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>X/Y Marks the Spot</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function mouseDown(  ) {
  var locString = "X = " + window.event.screenX + " Y = " + window.event.screenY;
  alert(locString);
}

document.onmousedown=mouseDown;
//]]>
</script>

</head>
<body>
</body>
</html>

This method of capturing the Event object persists into Internet Explorer 7, as well as the older versions. The
Netscape-based browserssuch as Netscape, Firefox, Mozilla, Opera, and Caminoobtain the Event object
differently: it's passed as part of the function. In this case, the function to work with a browser such as Firefox
looks like:

function mouseDown (theEvent) {
  var locString = "X = " + theEvent.screenX + " Y = " + theEvent.screenY;
  alert(locString);
}

A way to handle these cross-browser differences is to test whether an object passed into the function is
instantiated. If it is, assign this to a local variable; otherwise, assume the window.event is the event, and assign it
to the variable. Example 6-3 shows a cross-browser-compatible version of Example 6-2 .

Example 6-3. Cross-browser-compatible version of Event object

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>X/Y Marks the Spot</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function mouseDown(nsEvent) {
  var theEvent = nsEvent ? nsEvent : window.event;
  var locString = "X = " + theEvent.screenX + " Y = " + theEvent.screenY;
  alert(locString);
}

document.onmousedown=mouseDown;
//]]>
</script>

</head>
<body>
</body>
</html>

(Remember a few chapters back how I wrote that the ternary operator is handy for dealing with cross-browser
differences? Well, Example 6-3 just demonstrated its usefulness.)

The following Event properties are compatible across browsers:

altKey

Boolean if the Alt key is pressed at time of event

clientX

The client X-coordinate of the event

clientY

The client Y-coordinate of the event

ctrlKey

Boolean if the Ctrl key is pressed at time of event

http://lib.ommolketab.ir
http://lib.ommolketab.ir


keyCode

The code (number) of the key pressed

screenX

The screen X-coordinate of the event

screenY

The screen Y-coordinate of the event

shiftKey

Boolean if the Shift key is pressed at time of event

type

Type of event

I'll cover the client and screen system in more detail later in the book when we start creating dynamic pages.
Testing the control keys is a good way to determine if a certain sequence of keys are pressedeach perhaps
leading to a different set of actions. In addition, the key number is handy if you're creating something like a slide
show, where you might want to intercept N or P for next or previous slide.

Among the properties that aren't compatible across browsers are fromElement , which is IE, and relatedTarget ,
which is equivalent for Netscape. These properties capture the object the mouse moved away from with mouse
events. Comparable properties are toElement and currentTarget (IE and Netscape, respectively)noting the
element to which the mouse moved. These sets of properties are useful when doing drag and drop.

The srcElement and target are properties that represent the object receiving the event. One way to grab this
information is to use the same cross-browser trick shown in Example 6-3 :

var theSrc = theEvent.target ? theEvent.target : theEvent.srcElement;
alert(theSrc);

Another pair of properties that aren't cross-browser compatible are cancelBubble and stopPropagation . These
have to do with event bubbling, which is covered next.

6.1.2. Event Bubbling

When you click a web page, you're not just clicking the document, you're also clicking on a link, or perhaps a DIV
element, and so on. In most cases, you don't have to worry about it because you've most likely set an event
handler for only one element. What happens, though, if you set the same event handler for multiple elements? In
what order do they fire, and how do you keep the event from triggering the event handler if you want only one
element to be impacted at a time?

In Example 6-4 , the web page has two DIV elements, one inside the other. They and the document object are all

http://lib.ommolketab.ir
http://lib.ommolketab.ir


assigned event-handler functionality for the mousedown event.

Example 6-4. Bubble-up behavior with multiple elements

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Event Bubbling\Q</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function mouseDown(nsEvent) {
  var theEvent = nsEvent ? nsEvent : window.event;
  var locString = "X = " + theEvent.screenX + " Y = " + theEvent.screenY;
  var theSrc = theEvent.target ? theEvent.target : theEvent.srcElement;
  alert(locString + " " + theSrc);
}

document.onmousedown=function (evnt) {
   var theEvnt = evnt? evnt : window.event;
   alert(theEvnt.type);
}

window.onload=setupEvents;

function setupEvents(  ) {

   document.getElementById("first").onmousedown=mouseDown;
   document.getElementById("second").onmousedown=function (  ) {
      alert("Second event handler");
   }
}
//]]>
</script>

</head>
<body>
<div id="first" style="padding: 20px; background-color: #ff0; width: 150px">
<div id="second" style="background-color: #f00; width: 100px; height: 100px">
</div>
</div>
</body>
</html>

Figure 6-1 demonstrates what can happen with a stack of elementspage objects who share the same location in
the page, differing in their order from top to bottom. In the figure, the top DIV element is clicked by the mouse,
but the DIV element it's contained in, as well as the document object, also receive the event, and the event

http://lib.ommolketab.ir
http://lib.ommolketab.ir


handler's triggered.

Figure 6-1. Event bubbling

With Firefox, the event handlers for the elements fire from top to bottom; in IE, it's the reverse. Even in this,
we're dealing with differences.

The concept of events and their propagation between elements in a stack is usually known as event bubbling ,
though Netscape once designed around the concept of event capturing .

Back in bad olden times, Netscape and IE had a worlds-apart view of events and objects and their relationship to
one another. Netscape designed Navigator 4.x so that events moved down the stack of elements from top to
bottom. The event would fire with each element, unless you captured the event to prevent it from continuing.
Netscape provided a function, captureEvent , just for this purpose.

Microsoft, though, designed IE to follow a bubble-up model. This means that an event fell through the stack of
elements to the bottom-most element that had a handler, and then would bubble up from there.

Of course, you may not want an event to trigger other event handlers if a certain condition is met. You can then
cancel the event propagation, whether it's on its way down, or on its way bubbling up. Unfortunately, canceling
an event in this older event model is also cross-browser dependent.

To cancel an event within IE, use the IE event's cancelBubble property ; for the Netscape/Mozilla model, you use
the event's stopPropagation method . The way to determine which to use is to test for the existence of the
stopPropagation method and, based on the result, use one or the other. In Example 6-4 , you can add a
stopEvent function to manage this, passing the cross-browser-compatible event object:

function stopEvent(evnt) {
   if (evnt.stopPropagation) {  
     evnt.stopPropagation(  );
   } else {
     evnt.cancelBubble = true;
   }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Calling this function at the end of the mouseDown event prevents document.onmousedown from being triggered in the
Netscape/Mozilla path and within the Microsoft event model. Note that I test whether the stopPropagation
function exists rather than cancelBubble because cancelBubble will return false if the value is false or if the
property doesn't exist.

We've been accessing the event object, but what about the target of the eventhow can we access this
consistently? The object of interest here is this .

6.1.3. Event Handlers and this

Within an event-handler function or method on an object, one way to get code to access the properties of the
containing element is to use this . For instance, in the following event handler function for the window onload
event, this is used to access the function's object's property status:

window.onload=setupEvents;

function setupEvents(  ) {
   alert(this.status);
} 

The approach is a good shortcut to test form values, without having to follow the path of document to form
name, to field name, and so on. In Example 6-5 , the blur event for a form element is assigned to an onblur
event handler, which then uses this to access the form element's value property.

Example 6-5. Use of this with event handlers

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Event Handlers and this</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

window.onload=setObjects;

function setObjects(  ) {
   document.personData.firstName.onblur=testValue;
}

function testValue(  ) {
   alert("Hi " + this.value); // form field value
}

//]]>
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</head>
<body>
<form name="personData">
First Name: <input type="text" name="firstName" /><br /><br />
Second Name: <input type="text" name="secondName" />
</form>
</body>
</html>

When the input field is clicked, a pop-up window opens and displays its value. Chapter 7 provides more
demonstrations of this element/event integrations.

This older event model described is still supported, more or less, with modern browsers. Though I don't cover the
older Navigator 4.x or IE 4.x and 5.x browsers in the book, their legacy lives on in inline event handlers.

I've been splitting the two event models into Netscape/Mozilla and Microsoft/IE, but the actuality is that the
Netscape/Mozilla path is also the one of open specification, which makes it the W3C path. Referring to the path as
"Netscape" disregards that this event model is supported in browsers such as Apple's Safari and Opera.

As regards events, the W3C eventually came out more or less on the side of Microsoft and event bubbling, with a
nod to event capturing. Within the W3C specifications and most modern browsers, the event proceeds down the
stack of elements, each captured in turn. It then bubbles back up, firing the event handlers as it goes. This new
event model is covered in the next section.

OK, Java Can Play, Too

PHP is one of the more popular programming languages for server applications in use today. This
follows from our old friend, Perl, which has widespread use. However, there's also a strong
association between the programming language Ruby and newer JavaScript applications, such as
Ajax.

Old friends, though, are not forgotten. Sun provides a handy all-in-one developer's web site,
providing tools, tutorials, and more for working with Java and Ajax. The site even includes tools for
integrating Ajax and J2EE, such as Java Pet Store 2.0, and the BluePrints Ajax components. The
entry point for all of these Java goodies is at http://developers.sun.com/ajax/index.jsp .

A major difference between the DOM 2 Event model and the earlier versions is that it isn't dependent on a specific
event-handler property, which means you can register multiple event-handler functions for any one event on any
one object. Instead of the event-handler property, each object has three methods: addEventListener ,
removeEventListener , and dispatchEvent . The first is to add an event listener, the second to remove an existing
listener, and the third to dispatch a new event.

The syntax of the addEventListener is:

object.addEventListener('event',eventFunction,boolean);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The event, such as click or load , is the first parameter; the handler function is the second; and whether the
event is treated as a cascade-down or bubble-up event is the third. If the third parameter is false , the event
listener is treated as bubble up; otherwise, true turns the event listener into a cascade-down listener.

In Example 6-6 , a form with one element, a submit button, is added to the page, and the click event is
captured for both, as well as document . Handlers are attached to the event for both the cascade-down (writeY )
and bubble-up (writeX ) propagation. In the handler functions, the event object is accessed, and two properties,
target and currentTarget , are printed out. We'll get to the new event properties in a moment.

Example 6-6. Trapping events with DOM Level 2 event handlers

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Capture/Bubble</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function writeX(evnt) {
   alert("Capturing: " + evnt.target + " " + evnt.currentTarget);
   return true;
}

function writeY(evnt) {
   alert("Bubbling: " + evnt.target + " " + evnt.currentTarget);
   return true;
}

window.onload=setup;

function setup(evnt) {

   // capturing
   document.addEventListener('click',writeX,true);
   document.forms[0].addEventListener('click',writeX,true);
   document.forms[0].elements[0].addEventListener('click',writeX,true);

   // bubble up events
   document.addEventListener("click",writeY,false);
   document.forms[0].addEventListener("click",writeY,false);
   document.forms[0].elements[0].addEventListener("click",writeY,false);
}

//]]>
</script>
<body>
<form style="background-color: #f00; width: 100px; height: 100px; padding: 10px">
         <input type="submit" value="Submit" /><br>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</form>
</body>
</html>

Clicking the button causes six pop-up windows. In Firefox, these are the values that print, in order:

Capturing [object HTMLInputElement] [object HTMLDocument]
Capturing [object HTMLInputElement] [object HTMLFormElement]
Capturing [object HTMLInputElement] [object HTMLInputElement]
Bubbling: [object HTMLInputElement] [object HTMLInputElement]
Bubbling: [object HTMLInputElement] [object HTMLFormElement]
Bubbling: [object HTMLInputElement] [object HTMLDocument]

What's happened is that the capturing event is processed first, and the handlers for the document, the form, and
then the element itself are processed in order. This makes sense, when you consider that cascade means that the
lowest element in the stack of elements is processed first, then the next highest, and so on until the target
element is reached. This sequence is reflected in the currentTarget property. However, the original element that
received the event is always maintained in the target property.

Next, the bubbling phase occurs, and the order of process this time is from form element, to form, to
documentbottom up. Again, the event's currentTarget reflects the event propagation, while the target reflects
the actual element that received the event.

What happens if you want to stop the propagation? Use the removeEventListener . Example 6-6 is modified to
add the following function:

function stopNow(  ) {
   document.removeEventListener('click',writeX,true);
   document.forms[0].removeEventListener('click',writeY,true);
   document.forms[0].elements[0].removeEventListener('click',writeY,true);
}

For the sake of demonstration, the following hypertext link is added with an inline event handler below the form:

<p><a href="" onclick="stopNow(  ); return false">Stop Now</a></p>

When you click this link, along with triggering the document's event handler, the capturing event handlers
assigned to the click event for the form, form input, and document are all removed. When you click the button
now, only the bubble-up event handlers are processed.

The concept and execution of addEventListener and removeEventListener are terrific, except for one thing:
Microsoft supports only its own event-handler model. Even within the new IE7, the company supports only what it
has created itself. At the Microsoft IE weblog, IEBlog , author Dave Massy wrote the following about
AddEventListener :

We are unlikely to get support for AddEventListener in IE7. It's definitely something we'll look into for a
future release though.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Since it took several years for Microsoft to release IE7, it's unlikely that a Microsoft product will support the W3C
event model any time soon, so we'll need to look at a workaround.

The comparable IE methods for addEventListener and removeEventListener are attachEvent and detachEvent ,
respectively. The syntax for attachEvent is:

object.attachEvent("eventhandler", function);

The syntax for detachEvent is the same as for attachEvent : the first parameter is the event handler, the second
the function.

Though the ways to attach the events differ, it's relatively easy to compensate for this difference. Example 6-7
provides an example of a cross-browser web page that handles the click event for a specific document element.

Example 6-7. Cross-browser event handling

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Capture/Bubble</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[
function clickMe(evnt) {
  alert(evnt.target + " " + evnt.type);
  alert("Can be canceled? " + evnt.cancelable);
  alert("Bubbling? " + evnt.bubbles);
  alert(evnt.timeStamp);
}

window.onload=setup;
window.onunload=cleanup;

function setup(evnt) {
   var evtObject = document.getElementById("clickme");

   // test for object model
   if (evtObject.addEventListener) {
      document.addEventListener("click",clickMe,false);
   } else if (evtObject.attachEvent) {
      evtObject.attachEvent("onclick", clickMe);
   } else if (evtObject.onclick) {
      evtObject.onclick=clickMe;
   }
}

// cleanup
function cleanup(  ) {
   var evtObject = document.getElementById("clickme");

http://lib.ommolketab.ir
http://lib.ommolketab.ir


   if (evtObject.detachEvent) {
       evtObject.detachEvent("onclick",clickMe);
   }
}
//]]>
</script>
<body>
<div id="clickme" style="background-color: #ff0; width: 200px; height: 200px; padding: 20px">
Click Me
</div>
</body>
</html>

The code tests to see if addEventListener is supported. If it is, it's used to attach the event. If it isn't,
attachEvent is used.

Contrary to the event handlers in the traditional model, an event object does get passed with the attachEvent as
it does with addEventListener . Unfortunately, though, the contextual object, this , is associated with the window
object regardless of object and event. With the W3C model, this is associated with the object that received the
event. Again, though, testing for window.this , as compared to this , and assigning whichever is found to a
variable should manage this difference.

Another concern with the Microsoft model is that memory is set aside for each event handler, and if you reload
the page, additional memory continues to be set aside for each successive page loadingleading to significant
memory usage after a while. To avoid excessive memory use, you can trap the window unload event and detach
each event with detachEvent . This kick-starts the memory management system to unload that memory when the
page is unloaded. In Example 6-7 , the cleanup function is assigned to the window.onunload event handler and
manages this activity.

As for the event object that gets passed, this isn't the same among event model implementations, either.
Differences also exist in properties on the event object and the events supported.

The following is a list of properties on the event; whether they are set or not depends on the type of event. Not
all browsers support all event properties; where a property is not supported, an undefined value is returned when
the property is accessed:

altKey

State of Alt key (pressed or not)

bubbles

If the event bubbles through the document object model

button

Mouse key

http://lib.ommolketab.ir
http://lib.ommolketab.ir


cancelBubble

Whether bubbling has been canceled

cancelable

Whether the event can be canceled

charCode

Unicode value of the character key pressed

clientX

Horizontal position of event

clientY

Vertical position of event

ctrlKey

State of Ctrl key (pressed or not)

currentTarget

Reference to currently registered target

detail

Detail about the event

eventPhase

Which phase event is being evaluated

isChar

Whether an event produces a character

keyCode

Unicode value of noncharacter key pressed

http://lib.ommolketab.ir
http://lib.ommolketab.ir


layerX

The x-position relative to current layer (element) if element is absolutely positioned

layerY

The y-position relative to current layer (element) if element is absolutely positioned

metaKey

Whether meta key was pressed

pageX

The x-position relative to page

pageY

The y-position relative to page

screenX

The x-position relative to screen

screenY

The y-position relative to screen

shiftKey

State of Shift key

target

Original object to receive the event

timeStamp

Time when event was created

view

AbstractView from which event was generated (the window object, based on an effort to standardize the
window object across implementations; discussed with DOM in Chapter 10 )

http://lib.ommolketab.ir
http://lib.ommolketab.ir


which

Unicode value of key pressed, regardless of whether it was a character

As mentioned, not all browsers support all properties. In particular, Internet Explorer does not support many of
these properties. If you try to access those it doesn't support, you'll get an undefined value. For example,
accessing currentTarget returns an undefined value.

The events discussed earlier in this section are supported in the newer event system, as are additional ones
relative to the DOM. These include keypress , click , the mouse events, window loading, and events specific to
working with forms and form elements.

For more on the event models and all things JavaScript, a great resource is QuirksMode,
maintained by Peter-Paul Koch and located at http://www.quirksmode.org/ .

6.1.4. Generating Events

Events usually start when someone accesses the page. Either he pushes a button, clicks a link, makes a selection,
etc. There are times, though, when you might want to trigger an event.

To trigger an event on a web page or page element, it has to be an event that's associated with the type of
element. For instance, you can trigger a click on a form button, but not a form text-input field. In this case, the
event is click , and the method called on the object is click :

<input type="button" name="someButton" value="Some Button" />
...
document.formname.someButton.click(  );

One reason for directly invoking an event is to use the focus event on an input field in order to move the cursor
to the field. In Example 6-8 , when the page is loaded, the focus is set to the last-name field, rather than the first
name, which is the first field.

Example 6-8. Using focus to move the cursor to a field

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Focus</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

window.onload=setObjects;

function setObjects(  ) {
   document.personData.lastName.focus(  );
}

//]]>
</script>
</head>
<body>
<form name="personData">
First Name: <input type="text" name="firstName" /><br /><br />
Last Name: <input type="text" name="lastName" />
</form>
</body>
</html>

In Chapter 12 , we'll use focus and a few other tricks to create a dynamic forms validationmoving the cursor to a
field that's invalid and highlighting the errors directly in the page.

Two other methods based on events, reset and submit , are used with forms. You can use reset( ) to reset the
form contents back to their initial values (as specified with the value attribute). You can also use submit( ) to
submit the form for processing. In fact, this is probably one of these most common reasons for triggering an
event directly:

document.formname.submit(  );

Using submit( ) is equivalent to pushing a submit button on the form. More on forms, form elements, and Just-
in-Time (JiT) validation using events in Chapter 7 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


6.2. Questions

List three ways you can attach an event-handler function to a specific event.1.

Given an onclick event handler on the document object, how can you find the screen location
for the click?

2.

Using the DOM Level 2 event system, how would you stop an event from bubbling to other
elements?

3.

Convert the following DOM Level 0 event handler to a cross-browser DOM Level 2 approach:4.
<body onload="functionCall(  );">5.

Write JavaScript to capture the keydown event on the document and print out the key pressed
using a document.writeln function call.

6.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 7. Forms and JiT Validation
The JiT in this chapter's title stands for Just-in-Time, an old manufacturing term that, in JavaScript
lingo, represents timely forms validation that is triggered as the web-page reader makes her way
through form fields. One of the most popular and useful JavaScript applications, JiT verifies form data
before submitting it to the server, saving a round trip from page to server and back if the data is
invalid or incomplete.

The hypertext link was the fuel, but forms were the matches that set the Web on fire. Web pages
were, more or less, a curiositya way of putting information onlinebut the page interaction was one
way: from the server to the reader. With the advent of forms and server-side processing, the whole
concept of online shopping took off, and that's all she wrote.

I remember when Amazon was a new site and a relatively new concept. It was a really ugly site, but
it could take your order online and send what you wanted, and it didn't need anything then except
HTML and a little server-side processing. You still don't need JavaScript to create or process forms;
you only need it when you want to create and process forms well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


7.1. Accessing the Form

In JavaScript, forms are accessed through the DOM via the document object using a couple of
different approaches. The first is to access the form using the forms property on document. Forms are
just one of the many page elements collected in arrays. If the page only has one form, access it at
the array index zero (0):

var theForm = document.forms[0];

The forms are added to the collection in the order in which they appear in the web page. As you can
imagine, if you modify the page, you may end up knocking your JavaScript out of whack. A better
approach would be to name the form and access it from the document object by name:

<form name="someform" ...>
...
var theForm = document.someform;

As discussed in earlier chapters, there are also a couple of ways to intercept a form before submitting
it to the server. The event you're going for is submit on the form. However, you can trap the submit
event using an inline event handler, a traditional handler, or the addEventListener/attachEvent
option. The key is that once you've validated the form contents, you need to be able to cancel the
event if the contents fail. In the next section, we'll look at how to attach an event handler and cancel
a form submittal, based on the different event-handling approaches.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


7.2. Attaching Events to Forms: Different Approaches

The primary event associated with a form is submit, and the event handler is onsubmit. Attaching the
event handler to the form using the traditional method takes the following form:

document.formname.onsubmit=formHandler;

When you attach an event handler to the form, incorporate it into a return statement:

<form name="someForm" onsubmit="return formHandler(  );">

To cancel the submission, just return false from the event-handler function; then return TRue or no
explicit return value, and the form is submitted. In the code snippet, if the formHandler function
returned false, the submittal is canceled; if TRue, the form contents are processed as usual.

For the newer event systems, which use either the attachMethod or addEventListener to assign a
function to an event, within the submit event-handler function, you'll want to either set cancelBubble
to true (for Microsoft), or use the preventDefault method call on the event object passed into the
event handler to stop the form submission:

document.formname.addEventListener("submit",formFunction.false);
...
function formFunction(evnt) {
...
if (evnt.cancelable)
   evnt.preventDefault(  );
}

A typical validation procedure is to capture the submit event, access the individual form elements and
check the data, and then provide a message to the web-page reader about what's missing or invalid.
If the form is rather large, though, this means that several fields could have bad data, and listing all
of them isn't a friendly response.

There are better or different approaches, especially with larger forms. For instance, you can validate
each field as the person enters the data or makes a selection. Each of the following sections covers
the different form input elements, how to get data from each, and what other tweaks you can
perform using JavaScript.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


7.3. Selection

The select element and its associated options provide a way to choose one or more items from a list.
It's defined using the following syntax:

<select name="theSelection" multiple>
<option value="Opt1">Option 1</option>
<option value="Opt2">Option 2</option>
...
<option value="Optn">Option n</option>
</select>

The select element has the following properties that are accessible from JavaScript:

disabled

Whether the element is disabled

form

The containing form

length

Number of options in options array

options

Array of options

selectedIndex

For single select, number of item selected; for multiple, first item selected

type

Type of element

The select options are included in the options array. Each of these are objects, themselves with
several properties. However, for forms validation, the properties of interest are selected, value, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir


text. The selected property is set to true if the option is selected; the option value is given in value,
and the text that's visible to the web-page reader is given in text.

There are two ways to get the selected options from a selection, depending on whether multiple
options can be selected or only one. If only one option can be selected at a time, using the select
property of selectedIndex on the options array returns the selected object:

var slIdx= document.formname.theSelection.selectedIndex;
var opt = document.formname.theSelection.options[slIdx];

If multiple options can be selected, the code needs to iterate through the entire options array and
check which options are selected. In Example 7-1, a multiple selection list is created with three
options. When the form is submitted, the option text and value for each selected option is printed
out in the pop-up window.

Example 7-1. Processing the results of a multiple-selection list

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Input form</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

if (window.addEventListener) {
      window.addEventListener("load",setupEvents,false);
   } else if (window.attachEvent) {
      window.attachEvent("onload", setupEvents);
   } else {
      window.onload=setupEvents;
}

function setupEvents(evnt) {
   document.someForm.onsubmit=checkForm; 
}

function checkForm(evnt) {

   var opts = document.someForm.selectOpts.options;

   for (var i = 0; i < opts.length; i++) {
      if (opts[i].selected) {
         alert(opts[i].text + " " + opts[i].value);
      }
   }
   // no server side processing, cancel submit event
   return false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


}
//]]>
</script>
</head>
<body>
<form name="someForm">
<select name="selectOpts" multiple>
<option value="Opt1">Option One</option>
<option value="Opt2">Option Two</option>
<option value="Opt3">Option Three</option>
</select>
<input type="submit" value="Submit" />
</form>
</body>
</html> 

Selection lists are normally used when you have a larger number of optionssuch as a list of states in
the U.S. or cities in China. As such, you'll most likely want to limit your selection to one entry so that
you can specifically access the option using selectedIndex, rather than have to iterate over a larger
array. Still, the time to run through an array is short; the number of options picked is up to you.

You can also dynamically build a selection list based on real-time events.

In Example 7-1, DOM Level 2 event handling is used for the window load event,
but traditional DOM Level 0 is used for the form submittal. Most of the
examples in the rest of the book use the older event model because it's easier
to implement, requires less code, and allows us to focus on those aspects of
JavaScript currently being demonstrated. Example 7-3 provides a
demonstration of DOM Level 2 for all functions.

For the most part, though, you'll want to use the newer event handling as
much as possibleespecially if you're using external libraries, as discussed in
Chapter 14.

7.3.1. Dynamically Modifying the Selection

Using JavaScript, you can create and remove selection list items on the fly, perhaps based on some
other user input. To add a new option in the code shown in Example 4-9, create a new Option
element and add it to the options array:

   opts[opts.length] = new Option("Option Four", "Opt 4");

Since arrays are zero-based, adding a new array element at the end can always be accomplished by
using the array's length property as the index.

To remove an option, just set the option enTRy in the array to null. This resets the array so there is
no gap in the numbering:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


opts[2] = null; 

To remove all options, set the array length to zero (0):

opts.length = 0;  

It's not unusual to modify a selection list based on the answers given in other form
elementsespecially if you're using a drop-down listbox, in which the options don't show until the user
clicks the arrow to open the list. Note, though, that the box may resize horizontally depending on the
length of each option.

7.3.2. Selection and JiT Validation

In addition to processing the array elements during a form submit, you can capture when a change is
made to the selection and perform instant or JiT validation. This is accomplished by capturing a
change event for the form field, testing the value of the field, and then providing immediate
feedback. This can be a lot less frustrating to the people filling out the forms; they won't have to wait
until all the fields are filled in to validate the whole form.

I modified the code in Example 7-1 to create an example of JiT validation. In Example 7-2, two
options are nested with two others so that if you select the parent option, you'll automatically get the
nested option; however, the converse is not trueselecting the nested option does not give you the
parent.

Example 7-2. Using JiT with a selection

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Input form</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

if (window.addEventListener) {
      window.addEventListener("load",setupEventsl,false);
   } else if (window.attachEvent) {
      window.attachEvent("onload", setupEvents);
   } else {
      window.onload=setupEvents;
}

function setupEvents(evnt) {
   document.someForm.selectOpts.onchange = checkSelect;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


function checkSelect(evnt) {
   
   var opts = document.someForm.selectOpts.options;
   for (var i = 0; i < opts.length; i++) {
      if (opts[i].selected) {
          switch(opts[i].value) {
            case "Opt1" : opts[i + 1].selected = true;
                          break;
            case "Opt3" : opts[i + 1].selected = true;
                          break;
            case "Opt4" : opts[i + 1].selected = true;
                          break;
          }
      }
   }

   // no server side processing, cancel submit event
   return false;
}
//]]>
</script>
</head>
<body>
<form name="someForm">
<select name="selectOpts" multiple>
<option value="Opt1">Option One</option>
<option value="Opt1a"> -- Option OneA</option>
<option value="Opt2">Option Two</option>
<option value="Opt3">Option Three</option>
<option value="Opt3a"> -- Option ThreeA</option>
<option value="Opt4">Option Four</option>
<option value="Opt4a"> -- Option FourA</option>
<option value="Opt5">Option Five</option>
</select>
<input type="submit" value="Submit" />
</form>
</body>
</html>

Having some options automatically selected can ensure the accuracy of the data. It's also rather
impressive-looking without requiring a lot of effort.

How often you use JiT validation depends on the complexity of your form and the purpose for the
form. Using JiT for every form element could irritate rather than help, but waiting to validate and
providing a long list of needed changes could overwhelm. As always, the code can only do so much;
you'll need to use your own judgment as to how and when to use it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


7.4. Radio Buttons and Checkboxes

Both radio buttons and checkboxes provide one-click option choosing, usually among a smaller
number of options than a selection. They differ in that radio buttons allow one, and only one, choice;
you can check as many checkboxes as you like.

Both types of form-input elements are grouped by name. Here's the syntax for a radio button:

<form name="someForm">
<input type="radio" value="Opt 1" name="radiogroup" />Option 1<br />
<input type="radio" value="Opt 2" name="radiogroup" />Option 2<br />
</form>

Notice that the name is the same for both options; that's how the buttons are grouped. The checkbox
syntax is exactly the same, except the type is set to checkbox rather than radio.

To access the selected items, use the same functionality as selection, except that you check to see if
the item is checked rather than selected:

   var buttons = document.someForm.radiogroup;

   for (var i = 0; i < buttons.length; i++) {
      if (buttons[i].checked) {
         alert(buttons[i].value);
      }
   }

The only difference in processing between the two types is that the radio buttons have only one
checked item.

It's hard to screw up with radio or checkboxes, so JiT validation makes little sense. You could match
the behavior of the buttons with other form options, but if you need to restrict one or more radio
buttons or checkboxes, a better option would be to disable the option, rather than validate it post-
event.

You can disable the option using the following JavaScript:

document.someForm.radiogroup[1].disabled=true;

You can trap the click event for the group if you want to modify other form elements based on a
radio button or checkbox selection. To attach an event handler, you attach it to the group:

document.someForm.radiogroup.onclick=handleClick;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Unlike selection, you don't dynamically add or delete options from a radio group or set of checkboxes.
You can use dynamic HTML (DHTML) to hide options, but you're better off using the disabled
property to manage the dynamic nature of the control.

7.4.1. The textarea, text, hidden, and password Input Elements

The text, textarea, and password fields are probably the most used, as well as the input elements
most likely to need validation. The hidden field usually doesn't have a problem with validation, but it
is a text-based field, so I've thrown it in with the group to keep like controls together.

The single-row text-based input elements are defined in XHTML as:

<input type="text|hidden|password" name="fieldName" value="Some value" />

Setting the type attribute defines the type of field. The text field is regular text, the hidden isn't
visible to the person filling in the form, and the password field hides the text with asterisksjust in case
someone is looking over your shoulder.

The textarea field is similar except that unlike the other input fields, it has an opening and closing
tag, and you can set both column and row widths:

<textarea name="fieldName" rows=10 cols=10>Initial text</textarea>

In JavaScript, the values of the fields for all text input types are accessible via the form element
value property. In Example 7-3, a form with all four types is defined, and when the form is
submitted, JavaScript is used to access all four and build a string, which is then added back to the
textarea input element.

Example 7-3. Accessing text-based input fields from JavaScript

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Input form</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

if (window.addEventListener) {
      window.addEventListener("load",setupEvents,false);
   } else if (window.attachEvent) {
      window.attachEvent("onload", setupEvents);
   } else {
      window.onload=setupEvents;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


function setupEvents(evnt) {
   if (document.someForm.addEventListener) {
        document.someForm.addEventListener("submit",validateForm,false);
    } else if (document.someForm..attachEvent) {
        document.someForm.attachEvent("submit", validateForm);
    } else {
        document.someForm.onsubmit=validateForm;;
   }
}

function validateForm(evnt) {

   var strResults = "";
   for (var i = 0; i < document.someForm.elements.length - 1; i++) {
      strResults += document.someForm.elements[i].value;
   }
   document.someForm.elements[3].value = strResults;

   if (evnt.preventDefault) {
      evnt.preventDefault(  );
   } else if (evnt.cancelBubble != null) {
      evnt.cancelBubble = true;
   }      
  return false;
}

//]]>
</script>
</head>
<body>
<form name="someForm">
<input type="text" name="text1" /><br />
<input type="password" name="text2" /><br />
<input type="hidden" name="text3" value="hidden value" />
<textarea name="text4" cols="50" rows="10">The text area</textarea>
<input type="submit" value="Submit" />
</form>
</body>
</html>

In the example, the code accesses only the first four form elements because the fifth is the submit
button. It does have a value, just not one we're interested in. Also notice in the code that the form
submission is canceled. If we didn't cancel the submittal, the form fields would be reset, and we'd
lose the string just created.

Also in the example, DOM Level event handling is used for all of the functionality, including canceling
the form submission using defaultPrevent or cancelBubble in the form's validation code.

7.4.2. JiT Does Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Text fields are the form elements most likely to have bad data resulting from a misunderstanding of
what's required or typographical errors. As such, it is these fields you'll most likely want to implement
with JiT validation.

The events of interest for JiT with text-input elements are change, focus, and blur. When the cursor
moves into a text-input field, a focus event is fired; when the cursor leaves, the blur event is
triggered. A change event happens when the cursor moves out of the field, and whatever contents
were in the field are changed. Both are important because a user could click or tab into a field but not
make any change, in which case the change event wouldn't fire. In these cases, you want to use the
blur event to make sure the field has some valueif it's a required field, of course.

Modifying the application in Example 7-3, the blur event is trapped for the password field, and the
value checked to make sure some entry is made in the new application in Example 7-4. In addition,
when the first field is changed, the value is validated against a regular-expression pattern for a Social
Security number with a pattern of: nnn-nn-nnnn.

Example 7-4. Applying Just-in-Time validation with text-based input
fields

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>JiT RegEx</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

if (window.addEventListener) {
      window.addEventListener("load",setupEvents,false);
   } else if (window.attachEvent) {
      window.attachEvent("onload", setupEvents);
   } else {
      window.onload=setupEvents;
}

function setupEvents(evnt) {
   document.someForm.text2.onblur=checkRequired;
   document.someForm.text1.onchange = validateField;
}

function checkRequired (evnt) {
  var theEvent = evnt ? evnt : window.event;
  var target = evnt.target ? evnt.target : evnt.srcElement;

  var txtInput = target.value;
  if (txtInput == null || txtInput == "") {
     alert("value is required in field");
  }

http://lib.ommolketab.ir
http://lib.ommolketab.ir


}

function validateField(evnt) {
  var theEvent = evnt ? evnt : window.event;
  var target = evnt.target ? evnt.target : evnt.srcElement;
  var rgEx = /^\d{3}[-]?\d{2}[-]?\d{4}$/g;
  
  var OK = rgEx.exec(target.value);
  if (!OK) {
     alert("not an ssn");
  }

}
//]]>
</script>
</head>
<body>
<form name="someForm">
<input type="text" name="text1" /><br />
<input type="password" name="text2" /><br />
<input type="hidden" name="text3" value="hidden value" />
<textarea name="text4" cols=50 rows=10>The text area</textarea>
<input type="submit" value="Submit" />
</form>
</body>
</html>

Now, if the SSN doesn't have the proper format, you'll get notified as soon as you leave the field. In
addition, if a password isn't provided, another pop up opens. Of course, pop ups get irritating over
time, and later in the book we'll look at better ways of providing feedback.

This example also demonstrates how important regular expressions are with any form of user input.
The last section of this chapter looks at applying regular expressions to text input.

Use extreme care if you decide to enforce a required field using the focus method to return the
cursor to the fieldespecially in combination with a pop-up window giving an error. In some browsers,
such as Opera, this can trigger a neverending loop. It can also irritate your users considerably.
Bottom line, I would advise against enforcing a required field through the use of focus.

JavaScript Best Practice: Don't enforce a required field using focus to force the
person back to the field. It's better to provide a more passive approach.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


7.5. Input Fields and JiT Regular Expressions

Most form fields just require some text without giving any concern to the format. However, certain
types of fields may require a specific format. Rather than send the data across to the server to see if
the data is valid, we'll use regular expressions to validate the format of the data, at a minimum, first.

Using regular expressions, as defined in Chapter 3, some of the more common validations are with
the following fields:

Warranty or purchase certificates

Email addresses

Phone numbers

Social Security numbers or other forms of identification

Dates

State abbreviations

Credit card numbers

Web page URLs or other forms of URI (uniform resource identifiers)

Rather than try out various regular expressions directly in code, Example 7-5 contains a little
application, the JiT RegEx Machine, that takes a regular expression typed in one field, a string in
another, and then does a pattern match when the form is submitted. The results are output to a third
field.

Example 7-5. The JiT RegEx Machine application

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>The JiT RegEx Machine</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

if (window.addEventListener) {
      window.addEventListener("load",setupEvents,false);
   } else if (window.attachEvent) {
      window.attachEvent("onload", setupEvents);
   } else {
      window.onload=setupEvents;
}

function setupEvents(evnt) {
   document.someForm.onsubmit=validateField;
}

function validateField(evnt) {
  
  var rgEx = new RegExp(document.someForm.text1.value);
  var OK = rgEx.exec(document.someForm.text2.value);

  // result and print out
  if (!OK) {
     document.someForm.text3.value = "Not a match";
  } else {
     document.someForm.text3.value = "The Pattern matched!";
  }

  return false;

}
//]]>
</script>
</head>
<body>
<form name="someForm" style="padding: 10px">
Regular Expression: <input type="text" name="text1" /><br /><br />
<textarea name="text2" cols=50 rows=10></textarea><br />
Result: <input type="text" name="text3" /><br /><br />
<input type="submit" value="Check RegExp" />
</form>
</body>
</html> 

Certificates of purchase and warranty numbers may have a pattern that requires certain letters

http://lib.ommolketab.ir
http://lib.ommolketab.ir


and/or numbers to appear in certain positions. As an example, if you have a certificate identifier that
is 13 characters long, with the characters BUS in the sixth through eighth position, and alphanumeric
characters in the remaining spots, you might try the following regular expression:

^\w{5}BUS\w{5}

If you're validating an email address, which requires an amphora (at symbol), some form of domain,
and little other restriction, the following should work:

^.+@[^\.].*\.[a-z]{2,}$

As for date, the following could work if you want a date in the format mm/dd/yyyy:

^\d{2}\/+\d{2}\/+\d{4}

Examples too simple so far? Well, check out the following for Social Security numbers:

^(?!000)([0-6]\d{2}|7([0-6]\d|7[012]))([ -]?)(?!00)\d\d\3(?!0000)\d{4}$

I'm so whizzy at regular expressions!

Well, actually, I'm not very good at regular expressions. When I need to have one that's more
complicated than dates or perhaps email addresses, I go shopping online by searching for "regular
expression" with whatever it is I'm trying to match against. In Example 7-4, the format validated
against was my own (well, I devised; others have probably used the same pattern), and was a simple
regular expression that ensures only that the appropriate number of digits are given, that the
characters are only digits, and that each grouping is of the right sizeall separated by dashes. Which,
if you think about it, covers quite a bit.

Compare that, though, with the regular expression I just provided, created by Michael Ash and
courtesy of the Regular Expression Library (an invaluable resource at http://regexlib.com/). This not
only validates against the format, it also validates against what is known about Social Security
numbersthe number groupings and so on. There are others at least as complex that can differentiate
between a Visa credit card and a MasterCard.

If you want to become expert at regular expressions, spend some time at the
Regular Expression Library, or you can also buy a copy of Friedl's Mastering
Regular Expressions. This is the definitive guide on regular expressions.

On the other hand, do you need to differentiate between Visa and MasterCard? The important point
to remember about regular expressions is that you can get carried away trying to find the perfect
validation pattern, spending more time than the validation is worth. You have to weigh your time
against how important it is to validate the entry before submitting it to the server.

Speaking of which, that's just about enough time on events, forms, and JiT validation. Time to move
on to Chapter 8: JavaScript's roots, cookies, and evil things that go bump in the browser.

http://regexlib.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir


Forms Generation

I hate creating web-page forms; it's the most tedious part of web development. Luckily,
there's plenty of web form-generation tools that are hosted online or that you can install
on your site. They will not only generate your forms, they'll also start your server-side
development for you. Though this technically isn't a JavaScript utility, it is a time-saving
device, so I'm including it.

The one I've used the most is phpFormGenerator (http://phpformgen.sourceforge.net/).
If your ISP provides cPanel for you to manage your account, it should be available as one
of the many Fantastico-managed software applications.

This, and most other form generators, provide a way to specify the number and type of
fields, give a name, and even associate a database field. Once the form is generated, you
can add a script block to validate the entries once the form is submitted.

There's also an Eclipse plug-in that generates a form from XML. This tool is part of the
Emerging Technologies Toolkit, a toolkit from IBM worth exploration even without the
forms generator. Among the tools is the XForm Designer for forms generation and an
Ajax Framework. Access the Toolkit at http://www.alphaworks.ibm.com/ettk.

http://phpformgen.sourceforge.net/
http://www.alphaworks.ibm.com/ettk
http://lib.ommolketab.ir
http://lib.ommolketab.ir


7.6. Questions

How do you stop a form submittal if the form data is incomplete or invalid?1.

What event(s) do you want to capture on text-input fields to do JiT validation?2.

Given a selection list, how would you add options based on user input?3.

How do you ensure a name field has only characters and whitespace?4.

Create the JavaScript that captures an event when a radio button is checked and then disables
a text-input field if one button is clicked, and enables it if another is clicked.

5.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 8. The Sandbox and Beyond:
Cookies, Connectivity, and Piracy
JavaScript achieved its early popularity in part because of the assurances of the language's safety.
After all, JavaScript in browsers operates within a sandboxa protective environment that stringently
restricts access to the client's machine. There are no mechanisms to open or create files; the
language operates within a temporary environment, which is discarded as soon as the browser
terminates or a web page is exited; if data is transmitted, the user is informed; and so on.

We learned over time that there is no way to completely protect the client machines, not when there
are determined hackers ready to exploit even the smallest openings in browser or language. The only
way to prevent this type of access is to completely close off the client machine from browser access,
which makes the browser less than useful. After all, some of the more popular features of browsers
are bookmarks, plug-ins and extensions, and remembering URLs and form-field entries. All of these
require putting something on the client's machine; many require the use of cookies.

Cookies: hate them, love them. Cookies are bits of data storage on the client based on key
information, provided by the server, that allows JavaScript developers to persist information either
during a session (until a browser is closed), or between sessions (web accesses). The original concept
was that only those requests to get or write cookies associated with the web page's domain would be
given access, and therefore the information would be secure. Based on this premise, JavaScript was
used to persist anything from a person's login name and password to shopping-cart contents. There's
rarely a commercial site you can visit on the Web nowadays that doesn't have some form of cookie
implementedwhether you want it or not.

Over time, breaks in the security of cookies, as well as concerns about privacy, have tarnished the
JavaScript cookies' reputation. Concerns about privacy in particular have led to more people turning
off cookie support in their browsers. Still, cookies are very popular and, if not abused, very helpful.

This chapter explores the JavaScript sandbox and the restrictions built into the language to prevent
malicious activity. We'll also look at how cookies work within this environment, and some alternative
cookie implementations using plug-ins and browser extensions.

Finally, we'll look at cross-site scripting (XSS) attackswhere modern-day pirates sail the Internet
rather than the oceans, stealing sensitive data rather than gold and jewels. Arggh.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


8.1. The Sandbox

Some security measures are browser-dependent or require deliberate action. One such uses digital
signatures to sign a script. A signed script is allowed to bypass many of the sandbox security policies
associated with JS, including the same-domain policy (depending on browser and access). For
instance, this is an approach Ajax developers sometimes use to communicate with server applications
located on domains different from the web page initiating the request.

The limitation with signed scripts is the lack of universal support for the concept. Mozilla/Firefox
support signing the script, but Internet Explorer does not; IE supports only signing of controls. Other
browsers don't support either. This limitation is enough to make the concept impractical for most
Internet use.

Most JavaScript developers depend instead on the security policies inherent to all uses of JavaScript,
rather than those specific to a particular browser. Among the key elements of the language, and
unlike many other languages, JavaScript has no file-access functionality: there is no ability to open,
create, or delete a file from the operating system. There are only low-level networking capabilities,
such as loading a web page; none allow the language to initiate a connection to another site and
transmit data silently.

8.1.1. Same-Origin Security Policy

Restricting the functionality of the language is only the start. As JavaScript has evolved over timeand
through painful experienceother policies and procedures have been incorporated into the JavaScript
engines to increase language security. One such policy is the same-origin security policy.

Since Netscape 2.0, JavaScript has operated under a policy called the same-origin policy. This policy,
which is universally supported in browsers, ensures that there is no communication via script
between pages that have different domains, protocols, or ports. The same-origin policy applies to
communication between separate pages, or from a parent window to an embedded window, such as
frames or iframes.

Why is this restriction so important? If a web site pops open a small window that ends up behind your
main page, and you continue on to other sites, such as your bank, JavaScript in that pop-up window
could listen in on your activities in that separate page. The same-origin policy prevents this type of
snooping by preventing JavaScript in a page opened in one domain from having any access to a page
opened in another.

As an example of same origin, if a page opened from a domain such as http://somecompany.com
tries to access information from a page accessed from any of the following domains, the JavaScript
used would fail:

http://othercompany.com

http://somecompany.com
http://othercompany.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir


This would fail because the domain is different: somecompany.com is not the same as
othercompany.com.

https://somecompany.com

This would fail because the protocol is different: http is not the same protocol as https.

http://somecompany.com:8080

This would fail because the port is different: the original request did not specify any port in the
URL (falling back on the default port, usually 80).

http://other.somecompany.com

This would fail because the host is different; the use of the other hostname (subdomain)
changes the host.

8.1.2. Using document.domain

Unfortunately, same origin can work against a site developer's efforts. The use of alternative
hostnames with the same domain, known as subdomains, such as about.somecompany.com and
help.somecompany.com, is becoming increasingly popular and the last same-origin restriction can
become prohibitive. To work around this restriction, there's a property on the document object,
domain, which when set, allows subdomain pages to communicate with each otherbut only subdomain
pages, and only if the document property and the original host domain match.

If the page containing the JavaScript is accessed through the URL http://admin.somecompany.com,
then document.domain can be set to the somecompany.com, which is the domain of the original
access. It cannot be set to othercompany.com, which is a different domain.

The following will work:

document.domain = "somecompany.com";

This will not:

document.domain = "othercompany.com";

When set, JavaScript in a page at admin.somecompany.com could then communicate with a page
opened at help.somecompany.com.

Luckily, the same origin policy does not apply when linking scripts in from other domains. Scripts can
be linked from anywhere, and then are treated as if the JavaScript originates within the pageincluding
the same domain for all further communication. Without this ability to link scripts in from other
domains, functionality such as Google Maps (covered in Chapter 13) couldn't be implemented.

The policy of same origin does apply, however, to the implementation of cookies.

https://somecompany.com
http://somecompany.com:8080
http://other.somecompany.com
http://admin.somecompany.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


8.2. All About Cookies

Why cookie? The original name for a cookie came from the term "magic cookie"a token passed between two programs.
Though accessible from JavaScript, cookies aren't really script-based: they're a mechanism of the HTTP server. As such,
they're accessible by both the client and the server.

Whatever the name, cookies are small key-value pairs associated with an expiration date and with a domain/path, both of
which are meant to ensure that the right cookies are read by the right servers. The information they contain is transmitted
as part of the web-page request, and thus the data is available to the server and to the browser.

8.2.1. Storing and Reading Cookies

Cookies are accessible, like most other browser elements, through the document object. To create a cookie, you'll need to
provide a cookie name, or key, an associated value, a date when it expires, and a path associated with the cookie. To access
it, you'll access the document cookie and then have to parse the cookie out.

Luckily there's a plethora of cookie functions out and about. To get a better idea of how they work, I'll provide a variation of
functions for setting, getting, and erasing a cookie and explain what happens with each step in the process.

To create a cookie, just assign the document cookie value a string with the following format:

cookieName=cookieValue; expirationdate; path

The cookie name and value are whatever you want and need, as long as the value is a simple value. I've used cookie names
starting with a dollar sign ($cookieName), with an underscore (_cookieName), and other characters. Regardless of what a
browser will accept, you won't want to use the equals sign (=) or semicolon (;), or your cookie functions most likely won't
work.

I've also experimented with different cookie values, and depending on the browser, what gets attached to the cookie name
is the string conversion of whatever the object isnumber, array, or object. However, this varies significantly between
browsers. Figure 8-1 displays the document.cookie as printed out in Safari, Figure 8-2 , as it's printed out in Firefox, and
Figure 8-3 in Internet Explorerall from the same Mac computer, run one right after another, and all setting the same cookie
values.

Figure 8-1. document.cookie string in Safari

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Figure 8-2. document.cookie string in Firefox

Figure 8-3. document.cookie string in Internet Explorer

To ensure consistent results, I would recommend that you use primitive types (string , boolean , and number ), converted to
string only.

JavaScript Best Practice: Use simple types for cookie values.

As for the rest of the document cookie-setting string, the expiration date must be in a specific GMT (UTC) format. Creating a
date object and then using the toGMTString is sufficient to ensure the date works. If no date is provided, the cookie is
eliminated as soon as the browser closes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The cookie path is especially important. The domain and path are compared with the page request, and if they don't sync
up, the cookie can't be accessed or set. This prevents other sites from accessing any and all cookies set on your browser,
though as you can see, this has been circumvented in the past.

A path setting of path=/ sets the cookie's allowable path to the top-level directory at your domain. If you access the page at
http://somedomain.com , this means that the cookie is accessible by any subdirectory off of http://somedomain.com . If
you specify a subdirectory, such as path=/images , the cookie is accessible only from web pages in this subdirectory.
Conversely, if you have many subdomains at your web site, such as sub1.somedomain.com , sub2.somedomain.com , and
so on, you can make a cookie accessible at all of them by specifically giving the higher-level domain: path=somedomain.com
.

It's important to be selective about where your cookies are accessible. Be restrictive by setting your
path to the topmost level essential for your application.

The following code snippet shows an example of a JavaScript function that sets a cookie to a specific key and value, but uses
the same date (in 2010) and sets the path to the top-level subdirectory:

function setCookie(key,value) {
   var cookieDate = new Date(2010,11,10,19,30,30);
   document.cookie=key + "=" + escape(value) + "; expires=" + cookieDate.toGMTString(  ) + "; path=/";
}

The escape function is used to escape any special characters that might be part of the cookie value. This makes your cookie
more secure, as we'll discuss later in the chapter.

Other approaches to coding a cookie function adjust the date and the path, as well as the key and value. Note that there is
one space, following the semicolons in the string.

A fourth parameter for a cookie is a flag on whether the cookie is secure or not. A secure cookie can
be requested only using SSL (HTTPS rather than HTTP).

Getting the cookie is not as easy because all cookies get concatenated into one string, separated by semicolons(;) on the
cookie object. Following is an example of a cookie string:

var1=somevalue; var2=3.55; var3=true

I've seen several approaches used to get the keys. One uses the String split method to split on the semicolon; others use a
variety of searches on substrings. The example function I've created uses a mix of both techniques:

function readCookie(key) {
  var cookie = document.cookie;

  var first = cookie.indexOf(key+"=");

http://somedomain.com
http://somedomain.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir


  // cookie exists
  if (first >= 0) {
    var str = cookie.substring(first,cookie.length);
    var last = str.indexOf(";");

    // if last cookie
    if (last < 0) last = str.length;

    // get cookie value
    str = str.substring(0,last).split("=");
    return unescape(str[1]);
  } else {
    return null;
  }
}

In the code, the key is concatenated to the equals sign (=), and the whole is searched in the string. When found, its first
position gets a substring of the rest of the string. Within this new string, then, the semicolon is searched and if found, the
string is either shortened to the semicolon or accessed as a whole (key is last item). Finally, the string is split on the equals
sign to get the key and the value, separately. The return value is unescaped to return the original value.

To erase the cookie, eliminate its value (set to nothing), set the date to a past date, or both, as the following JS function
demonstrates:

function eraseCookie (key) {

   var cookieDate = new Date(2000,11,10,19,30,30);
   document.cookie=key + "=; expires=" + cookieDate.toGMTString(  ) + "; path=/";
}

When the document cookie string is accessed next, the cookie will no longer exist.

Before any cookie functionality is used, it's best to first test to make sure cookies are implemented and enabled for the
browser. It's not unusual for people to turn cookies off, and you'll want to account for this in your code. To check if cookies
are enabled, use another built-in browser object, navigator , and the cookieEnabled property:

if (navigator.cookieEnabled) ...

Note that not all browsers return the correct value when testing the cookieEnabled property. For instance, IE 6.x does not
set this property correctly. In these cases, there's little you can do other than set the cookie and see if you can find it.

Taking all of this together, Example 8-1 demonstrates an application that sets a value as a cookie that's accessed and
incremented each time the page is loaded. When the value gets to 10, the cookie gets erased, and in the next iteration
(page load), the cookie gets recreated.

Example 8-1. Setting, reading, and erasing cookies

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

http://lib.ommolketab.ir
http://lib.ommolketab.ir


"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Cookies</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

// if cookie enabled
if (navigator.cookieEnabled) {

   var tst = new Array(  );
   tst[0] = "hello"; tst[1]="there";
   setCookie("doc",document);
   alert(document.cookie);
   var sum = readCookie("sum");
   var iSum = 0;
   if (sum) {
      iSum = parseInt(sum) + 1;
      alert(iSum);
      if (iSum > 10) {
         eraseCookie("sum");
      } else {
         setCookie("sum",iSum);
      }
   } else {
      setCookie("sum", 0);
   }

}

// set cookie expiration date in year 2010
function setCookie(key,value) {

   var cookieDate = new Date(2010,11,10,19,30,30);
   document.cookie=key + "=" + escape(value) + "; expires=" + cookieDate.toGMTString(  ) + "; path=/";
}
// each cookie separated by semicolon;
function readCookie(key) {
  var cookie = document.cookie;

  var first = cookie.indexOf(key+"=");

  // cookie exists
  if (first >= 0) {
    var str = cookie.substring(first,cookie.length);
    var last = str.indexOf(";");

    // if last cookie
    if (last < 0) last = str.length;

    // get cookie value

http://lib.ommolketab.ir
http://lib.ommolketab.ir


    str = str.substring(0,last).split("=");
    return unescape(str[1]);
  } else {
    return null;
  }
}

// set cookie date to the past to erase
function eraseCookie (key) {

   var cookieDate = new Date(2000,11,10,19,30,30);
   document.cookie=key + "= ; expires="+cookieDate.toGMTString(  )+"; path=/";
}

//]]>
</script>
</head>
<body>
</body>
</html>

Cookies are handy little buggers, but one of their limitations is that a domain can store only 20 cookies, up to 4 KB in total
size. For most cases, this is more than satisfactory; in fact, you should use even this smaller client-side storage sparingly.
Still, there might be times when you want to store larger amounts of data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


8.3. Alternative Storage Techniques

To store larger cookies or more complex objects, previous applications have used a variety of hacks,
including a LiveConnect interface between JavaScript and Java applets, or ActiveX controls. Another
approach is to use hidden elements in forms to persist the data from form submission to submission.
An approach gaining increasing popularity, especially with the advent of Ajax technologies, has been
to use the Flash built-in persistent mechanism.

8.3.1. Communicating Outside the Box

Learning JavaScript never ends. Just when you think you've worked with all aspects of the language,
something else comes along. It might be fun, it might not be fun, but there is more to this little
lightweight language than first meets the eye.

As I mentioned in Chapter 1 , JavaScript was originally intended to be one half of a one-two punch
put out by Netscape: functionality created on both the server and the client browser, with
communication between the two through an integration plug-in known as LiveConnect. Through
LiveConnect, developers working with the newfangled programming language Java could interface
directly to JavaScript on the browser.

Nowadays, most server-client interaction happens through Ajax, which is described in Chapter 13 .
But in those early times of technological exploration, LiveConnect was one sexy concept.

Much of the Flash/JavaScript early integration was based on this LiveConnect interface, though
Macromedia eventually created its own scripting language, ActionScript, for its side of the equation.
You can still manipulate Flash functionality through JavaScript, and web-page objects and JS through
Flash. There's even a Flash-to-JavaScript integration kit, though it looks rather cobwebby and
untouched.

The Flash JavaScript Integration Kit can be downloaded at
http://osflash.org/doku.php?id=flashjs . Note, though, that the kit hasn't been
touched in some time, and it's unknown how many browsers support it.

Through this open door between JavaScript and Flash, a new storage medium was discovered when
those creating more sophisticated client applications needed something more in the way of persistent
storage on the client. This new form of Flash-enabled cookie, or super cookie as it's sometimes
called, can be up to 100 KB and can take any form of JS object, not just primitives. The storage is
managed through a specific object: the Flash Shared Object.

8.3.2. The Flash SO and Dojo Storage

Shared Objects (SO) in Flash operate in a manner similar to HTTP cookies. They're stored and
accessible based on a domain, and pages served from one domain cannot access shared objects

http://osflash.org/doku.php?id=flashjs
http://lib.ommolketab.ir
http://lib.ommolketab.ir


created from another domain. This sandbox protection was incorporated as part of the design of
Shared Objects from Flash Version 7 and up.

Unlike the HTTP cookie, with its 4 KB limit, SO storage is unlimitedbut only silently up to the first 100
KB. What this means is that if a web page or web application from one domain tries to set a SO
greater than 100 KB, a message box opens asking for permission to use this space. The client then
has to provide explicit permission for the SO to be set.

Of course, a drawback to using the Flash SO is having to work with Flash in addition to JavaScript.
However, others have been down this path and have kindly provided open source implementations of
this technology. One such is Brad Neuberg's Dojo.Storage (described, demonstrated, and linked in
this weblog post: http://codinginparadise.org/weblog/2006/04/now-in-browser-near-you-offline-
access.html ). Dojo is an increasingly popular Ajax tookit, which I describe in Chapter 14 . The
Storage library is an interface to multiple storage techniques, including using XPCOM (for Firefox),
and ActiveX (for IE), as well as Flash for cross-browser support.

Over time, other approaches that enable client-side storage beyond the limits of cookies will be
developed. The question then becomes: should we use them?

8.3.3. Could You, Should You?

Could you, should you, though? Before getting into the mechanisms that allow you to load down the
client, should you? And if you do, should you let the client know?

If you are providing a functionality that your client wants, by all means, load down the client
machine. However, you should give upfront notice that this is going to happen, rather than sneaking
the data in through a back door.

All the whizzy frontend functionality won't compensate for taking a significant amount of client space,
leaving your client wondering what's going on. A good rule of thumb is never use so much client
space that your clients will notice it, unless you give them a heads up first. Any other practice would
be just plain rude.

Beyond taking client space, there are privacy concerns. Browser cookies are very visible. After all,
they are just small text files locally stored on the client. You can see these cookies through your
browser, as shown in Figure 8-4 . You might not recognize all of them, but at least you can see
what's there, and (depending on your browser) individually remove each.

Figure 8-4. Peering into the browser cookies

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Other approaches may not give this option. As it is, several online ad companies have been exploring
the use of Flash to track a person's movement through various sites. Additionally, wherever there's
an opening, the bad folks will exploit it. Enough so that many people are turning off Flash, even as
they contemplate turning JavaScript back on.

Eclipse: The All-Purpose Development Tool

Here's something safe! It can't protect your web site, but it can help you create your
pages. Eclipse is a tool long used in the Java community for development, but its use
extends beyond any one language. Eclipse has been gaining popularity for development
in other languages, including JavaScript. You'll need a Java runtime environment to use
Eclipse, but installing Eclipse can also install this environment if it's not already there.

Eclipse is an open source project that can be downloaded, along with many plug-ins,
from the Eclipse web site at Eclipse.org . I've used the tool in Windows and Mac OS X,
and there are also installations available for Linux and most flavors of Unix.

The installation is simple: primarily, you double-click and answer a few questions. During
the installation, you'll be asked where to locate a workspace environment; accepting the

http://lib.ommolketab.ir
http://lib.ommolketab.ir


default doesn't permanently commit you to one spot.

There are several JS plug-ins, and even some Dojo-based Ajax plug-ins. Some of these
are for sale; others are free. One of the more popular is the Web Tools Plugin
environment, which is free and sets up your Eclipse to develop almost anything web-
related.

To install the Web Tools plug-in, click the Help menu item, then Software Updates
Find and Install. From the window that opens, click the "Search for New Features to
Install" option, and then click Next.

In the page that opens, there's a box that lists what remote sites to explore for new and
updated software. Click New Remote Site, and in the dialog box that opens, add in:

 Name: Web Tools
 URL: http://download.eclipse.org/webtools/updates/ 
               

Click Finish, and when given a new dialog with a list of features to install, check the box
next to the Web Tools option, and then click the Next button. Following a request to
agree to the license terms, Eclipse not only downloads the tools, it also downloads all the
prerequisites needed for the tools to operate. That's it: when it's finished, it asks to
reboot, and when that's done, you're ready to use the new functionality.

To test, create a new project by selecting File New Project Other. From the list
that opens, select Simple, and then give the project a name: test . Based on whatever

project type is picked, Eclipse adds any supportive libraries and generated files, listed
underneath the project name in the left pane.

Create a new JavaScript file by again selecting File New Other. From the dialog
that opens, click Web, and then select JavaScript. Name the JS file: test.js .

At this point, the new test.js file shows in the left pane, and the open file, ready for edits,
is shown in the center panel. Type in whatever JavaScript you want. As new program
objects such as variables, are added, they show in the outline panel on the right. If using
a built-in object, such as Math or document , after typing the period to access an object
property or method, you'll see a pop-up window that lists available options and even the
browser icon associated with the option.

When ready to preview the page, click the Preview tab at the bottom of the center edit
pane. Figure 8-5 illustrates Eclipse within a Mac environment.

Figure 8-5. Editing JavaScript using the Eclipse IDE

http://download.eclipse.org/webtools/updates/ 
http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


8.4. Cross-Site Scripting (XSS)

As popular and helpful as cookies are, it's becoming increasingly popular for people to turn off any
cookie support. The reason is understandable: we store anything, from usernames and passwords to
credit cards and other sensitive information, in stores of text that aren't all that difficult to access.
(Well, depending on how vulnerableor nota web site is.) The reason, though, is also not necessarily
well founded. One of the greatest areas of vulnerability associated with a web site is known as a
cross-site scripting (XSS) attack.

Here's how an attack happens: you receive an email, or there's a link in a web site comment or
suchanything that allows anonymous or semianonymous content. The link is to a legitimate site that
takes cookies. Attached to the link is a set of characters, perhaps in hexadecimal format. We're used
to long and unreadable URLs, so we don't make much of it. However, attached to that URL is a script
that can trick the browser into bringing up whatever cookies are set between the person and the site.
These, then, can be attached to the end of a document.location redirect, which basically sends this
information to the new site.

This site then uses this information to emulate the site you're expecting to access. You'll continue to
input valuable information, all the while the server site is gathering up your password, bank account,
credit card information, etc.

This is what happens, more or less, with the email-phishing (pronounced "fishing") attacks you get
that command you to log in or your account will be suspended. Even if the hacker doesn't steal the
cookie, she can poison it by changing its value or corrupting it in some way. But vulnerabilities don't
just exist with cookies: any opening into a web site is a potential doorway for bad people to do bad
things.

8.4.1. The Injectors

XSS attacks are part of a group of attacks that take advantage of too many vulnerabilities in our
software. Each uses some form of injection to insert malicious material. Among these are:

Cross-site scripting, or JavaScript/script injection

Embeds user information in a URL and inserts JavaScript to access this information for theft or
malicious modification. A common variation uses the information it gathers to recreate what
looks like a legitimate page where you do transactions (such as your bank account) but with
added functionality to steal your information.

SQL injection

Potentially one of the most serious injection attacks. Many forms that take user input add the
information the person provides directly to the database query. It's a simple matter to add SQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir


to emulate the end of one query and the beginning of anothergetting information such as
credit-card numbers in the database, or passwords in plain text. When this was discovered,
many popular PHP-based applications were found vulnerable. Unfortunately, more SQL
injection vulnerabilities are found weekly.

HTML embedding or bad-tag injection

Embeds dangerous or malicious tags into data that's eventually going to be used to
dynamically generate pages. One susceptible form involved weblog comments where hypertext
links were allowed, and links to offensive pages could be added. The only skill required for this
one was the ability to type and form a hypertext link.

Of course, add in holes in browsers and email programs, as well as web and email servers, and it can
make you think fondly of days of log cabins, where you could see the bad guys coming from miles
away.

8.4.2. What You Can Do

Things are not as bad as they seemif you stay aware of the vulnerabilities of your site as you're
creating your pages. If you have a form, especially one that is nonsecure and for general use, any
field in that form is a potential vulnerability.

If you have a server-side application that processes parameters passed in a URL, then all of your web
site URLs are also a point of vulnerability.

If you store cookies, they're points of vulnerability.

In particular, if you post content that is created by anonymous or semianonymous people, you're
creating the potential for nefarious doings.

Other than taking the log-cabin approach, the simplest technique to ensure the safety of your site is
to scrub all incoming data: remove all harmful or potentially harmful material. No web site URL or
form needs to have the term javascript: embedded in it; this can open the door to malicious script
injection. You'll also want to consider stripping all HTML from user inputespecially images and
hypertext links, and definitely script tags.

All HTML tags that are not allowed should be escaped, i.e., angle brackets converted to &lt; and
&gt;, which prints them to the output but does not treat them as opening and closing brackets for
HTML tags. As shown in earlier chapters, there are even encoding and escaping functions built into
the JavaScript objects themselves that can aid this.

Here are some helpful sites regarding this issue:

CERT's Understanding Malicious Content Mitigation for Web Developers:
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

Wikipedia entry on cross-site scripting at http://en.wikipedia.org/wiki/XSS

If you dare, go into the lion's den: ha.ckers XSS Cheat Sheet for filter evasion
at http://ha.ckers.org/xss.html.

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://en.wikipedia.org/wiki/XSS
http://ha.ckers.org/xss.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


There are many server-side approaches to securing a site using PHP or other language, and API
functions such as htmlspecialchars, which escapes all HTML. However, you can make JavaScript the
first line of defense in an attack by cleaning the incoming data before it's sent rather than cleaning up
the mess after.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


8.5. Questions

Name some ways to store material on the client machine.1.

What are the components of a script cookie?2.

How should a cookie be defined to be destroyed when the browser closes?3.

What type of data should be scrubbed on user input?4.

Think of a web site you have created or might create in the future. Now think of five different
uses for script cookies. In all of these uses, could you see needing more space than is provided
for cookies?

5.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 9. The Basic Browser Objects
The Browser Object Model (BOM) is a set of objects inherited from the browser context in which most
JavaScript applications function. It's sometimes referred to as the Document Object Model Level 0, or
even as the DOM, but it's a finite set of common web objects that have been accessible via JavaScript
since earlier versions of Netscape Navigator and Microsoft's Internet Explorer.

We've worked with some of the objectswindow, document, navigator, and formin earlier chapters. This
chapter looks at these in more detail, as well as the other objects that complete the set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


9.1. BOM at a Glance

The BOM forms a hierarchy of objects, with each object at each level accessible via a parent object
above it. All of the elements of the BOM are accessible via the window, which is the topmost element.
The next level below features document, which we've used extensively. The level also contains the
navigator, frames, location, history, and screen objects. From the document, several collections of
objects are accessible: forms, anchors, links, and images. As demonstrated in Chapter 3, the form
itself has elements, but we'll stop at just the top three levels in this chapter.

Figure 9-1 shows the BOM at a glance, and how all of these elements relate to each other.

Figure 9-1. Hierarchy of the Browser Object Model

As can be quickly seen, window is the top dog in this bunch. We'll look at it first.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


9.2. The window Object

The browser window encompasses the entire browser environment, including parts of the window "chrome" (the part of the
browser that surrounds the document), the actual web page, and even the user's experiences.

The window object is global and always present even if its presence is implicitly, rather than explicitly, stated. In previous chapters
we've used functions such as alert and eval , and these functions may seem "independent" of any object model. However,
they're implicitly a part of the window objectas is the document and other second-level objects, global variables, and other objects
not associated with any other object within an object model.

The window has interest beyond being just a parent to all other elements. Through it you can manually set the status in the status
bar of the browser, open a new window, resize one that's already open, and then close it again. This is handy if you're providing
separate windows for help or additional information, though with the growing popularity of DHTML and Ajax, much of this now
occurs within a document rather than a separate window.

The window object methods and properties fall into four categories: creating and managing new windows, manipulating the
behavior of existing windows, serving as timers, and being the parent of the other objects in the BOM.

For the first category, creating new windows, three methods provide quick pop-up windows (each for a specific purpose), while a
fourth can create a window with as much, or as little, window infrastructure included as you wish.

9.2.1. The Dialogs: Alert, Confirm, and Prompt

The three simple, pop-up window object methods create a window with minimal window chrome; each serves a specific purpose.
These are usually referred to as the dialog windows .

We're familiar with the alert dialog, and it's a quick way to provide a message to the person accessing the page. The only
parameter it takes is a message string, and it returns no value:

alert("This is the message");

The confirm method creates a dialog with a question and two buttons: Cancel and OK. The message is passed as a parameter,
and depending on which button is pressed, either a TRue value is returned (OK) or a false (Cancel):

var result = confirm("Do you want fries with that?");

The prompt opens a window with a field for entering text, as well as the Cancel and OK buttons. It takes two parameters: a
message providing the prompt for the response, and a default string, which is used to fill in the text field:

var response = prompt("What's your name?", "Wouldn't you like to know...");

Note that none of these methods are preceded by a reference to the window object; that object is global, and its presence is
assumed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


I refer to these types of windows as pop ups because that's basically what they do: pop up. However, this phrase has normally
been reserved for those windows that seem to take over your desktop every time you visit a web page. Yes, you know the type:
the ones you instruct your browser to prevent.

However, not all windows that open are full of moving bunnies with an invitation to shoot one and win a Big Prize. Opening a
separate window can be an effective way to provide additional information, without taking the person away from the current page.

9.2.2. Creating Custom Windows

There are many reasons to create a new window: accessing a help system, providing additional information, reviewing a shopping
cart or other information, and yes, even displaying animated bunnies with roving bullseyes.

To open a window and control its contents, size, position, and so on, use the open method. This method takes several parameters,
all of which are optional. The first parameter is the URL of the document to open, if any. The second is the name given to the
window. This can be used for communication between the parent and child windows, or between siblings if many windows are
opened.

The third parameter is a set of window options, all contained in one string and separated by commas. In the following lines of
code, a window is created and named "test." It contains a link to the main O'Reilly web site, is 600x400 pixels, and doesn't have a
location or toolbar:

window.open("http://oreilly.com","test","width=600,height=400,toolbar=no,location=no");

Not all options can be set in all circumstances. Those that impact certain components of the window frame and layering position of
the window can be modified from the default only if the script has a UniversalBrowserWrite privilege, usually granted with script
signing. Since the support for this isn't universal, it's best to avoid any dependency on these options.

The common options supported by the majority of browsers, their default values, and their purpose are given in Table 9-1 .

Table 9-1. Cross-browser compatible window.open options

Option Purpose Default value

alwaysLowered
Referred to as "pop under" window. Puts
window under parent window unless
parent window is minimized

Default is no ; defined to work only with
UniversalBrowserWrite

alwaysRaised
Opens window on top of parent window

Default is no ; defined to work only with
UniversalBrowserWrite

dependent
Opens a window dependent on parent
window. When parent closes, all
dependent windows close

Default is no

directories Displays personal bookmarks or links bar
in browser, depending on browser type

Default is yes; can be overridden by user in
some browsers

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Option Purpose Default value

height
Height of content area in pixels Minimum of 100 pixels

width
Width of content area in pixels Minimum of 100 pixels

outerHeight
Height of entire browser window, in pixels Minimum of 100 pixels

outerWidth
Width of entire browser window, in pixels Minimum of 100 pixels

top Position of topmost edge of browser
window

Must be positioned onscreen

left Position of leftmost edge of browser
window

Must be positioned onscreen

menubar
If yes , renders the menubar Can be overridden by user in some browsers

toolbar
If yes , renders the toolbar Can be overridden by user in some browsers

location
If yes , renders location or address bar IE7 forces the location to always display

status If yes , renders the status bar at bottom of
browser window

Defaults to yes for some browsers

resizable
If yes , the window is resizable Can be overridden by user in some browsers

scrollbars If yes , the window has scrollbars (if the
loaded document doesn't fit)

Can be overridden by user in some browsers

modal Opens a window that must be closed
before returning to the main window

Dialog windows are modal window; in some
browsers, requires UniversalBrowserWrite

dialog Opens a dialog window similar in
appearance and behavior to alert window  

minimizable Only when dialog is set to yes ; inserts
buttons to minimize window

 

titlebar
Renders or removes titlebar

On by default; requires UniversalBrowserWrite
; may be overridden by users in some
browsers

close
Renders or removes close button (icon)

On by default; requires UniversalBrowserWrite
; may be overridden by users in some
browsers

height
Height of content area in pixels Minimum of 100 pixels

width
Width of content area in pixels Minimum of 100 pixels

outerHeight
Height of entire browser window, in pixels Minimum of 100 pixels

outerWidth
Width of entire browser window, in pixels Minimum of 100 pixels

top Position of topmost edge of browser
window

Must be positioned onscreen

left Position of leftmost edge of browser
window

Must be positioned onscreen

menubar
If yes , renders the menubar Can be overridden by user in some browsers

toolbar
If yes , renders the toolbar Can be overridden by user in some browsers

location
If yes , renders location or address bar IE7 forces the location to always display

status If yes , renders the status bar at bottom of
browser window

Defaults to yes for some browsers

resizable
If yes , the window is resizable Can be overridden by user in some browsers

scrollbars If yes , the window has scrollbars (if the
loaded document doesn't fit)

Can be overridden by user in some browsers

modal Opens a window that must be closed
before returning to the main window

Dialog windows are modal window; in some
browsers, requires UniversalBrowserWrite

dialog Opens a dialog window similar in
appearance and behavior to alert window  

minimizable Only when dialog is set to yes ; inserts
buttons to minimize window

 

titlebar
Renders or removes titlebar

On by default; requires UniversalBrowserWrite
; may be overridden by users in some
browsers

close
Renders or removes close button (icon)

On by default; requires UniversalBrowserWrite
; may be overridden by users in some
browsers

http://lib.ommolketab.ir
http://lib.ommolketab.ir


As you can see, security is a real concern when it comes to pop-up windows. When I first started using JavaScript, anything went;
back then, sites would use hidden windows to try out their deviltry, or size other windows and force them to the front so you
couldn't work around them. Then there were the windows without a visible ability to close. It was an ugly time in JavaScript.
Luckily, most of this is behind us.

Example 9-1 is an application that uses a prompt dialog to get a string to open a new window. Try out variations of the option
string, and see the differences. Note that you'll be prompted to allow pop ups when you test the page.

Example 9-1. Using a prompt dialog to get window open options

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Windows</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

var optionString = prompt("Enter your option string");
optionString = optionString ? optionString : "";

document.writeln("Options are: " + optionString);
window.open("http://oreilly.com","test",optionString);

//]]>
</script>

</body>
</html>

If no option string is specified, the newly opened browser will, most likely, resemble the parent window. If some options are
specified, otherssuch as toolbar , location , and menubar may be off by default and dependent on the browser you're using.

JavaScript Best Practice: Specify a value for all options when opening a window; avoid using any option
that makes the window less accessible or that demonstrates a different behavior across browsers.

There are other options when opening a window, but many violate accessibility standards, and most are implemented only in older
browsers, or one or two modern browsers. An example of this is fullscreen . This opens a browser to fill the screen, which is
intimidating to users and a vile option. Mozilla/Firefox do not implement this. Other browsers might, but think carefully before
trying it with your JavaScript applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Once you have a window object, you can adjust it from the parent window or have a window adjust itself. The methods to manage
this are covered next.

An excellent page covering the different options, the security associated with each, and which browsers
they're implemented in, can be found at http://developer.mozilla.org/en/docs/DOM:window.open .

9.2.3. Cross-Window Communication

Once you have a window, you can have a little bit of fun. Among the methods that can manipulate a window are those that affect
its size, focus, and position. This is true not just of windows that open, either. If you want to manipulate the window that contains
the script containing the manipulating code, you can use self to refer to the window.

In the following code, the window containing the JavaScript being run is moved to a position of 0,0 for top and left:

self.moveTo(0,0);

If, instead, you want to reference a window you open from code, you'll need to capture the window reference, returned from the
window.open call:

var newWindow = window.open("http://somecompany.com","NewWindow", "...options...");
newWindow.moveTo(0,0);

The opening window can reference any of those it opens using a reference to the window. This new window can also reference the
window that opened it using the opener keyword:

opener.moveTo(0,0);

Each window can invoke the other window's methods, including getting access to the window objects, document, frames, location,
and so on. There are few limitations to this cross-window communication, other than that most browsers do not let the opened
window close the original window. Rightfully so, because closing the original window could lose the user's back-button history,
opened tabs, half-filled fields, and so on. Those that do support this behavior provide a note to the user getting permission to close
the window.

Once you have a reference to a window (either through an open window reference, through self , or through opener ), each can
be dynamically manipulated, as discussed in the next section.

9.2.4. Modifying the Window

Once you create a pop-up window, you can set the focus to that window, or reset it back to the opening window through the focus
method. Using blur , you can also reset the focus to whatever next window would normally get the focus:

newWindow.focus(  );
...
newWindow.blur(  );

http://lib.ommolketab.ir
http://lib.ommolketab.ir


You can get an interesting effect by opening a window that's smaller than the opener and then resetting focus back to the opener.
This effectively hides the pop-up window.

You can also resize a window using either the resizeBy or resizeTo methods. The resizeBy method works on the current window
dimension, adjusting the current values by those specified as the parameters. The first is how much to adjust the width of the
window; the second, the height:

newWindow.resizeBy(50,50);

The resizeTo method resizes the window to a specific width and height:

opener.resizeTo(100,100);

One of the more helpful methods is moveTo , which moves a window's upper-left corner to a given x-y dimension:

self.moveTo(x,y);

You can use this approach to open context-sensitive help windows that are positioned exactly where an event occurs. In Example
9-2 , a page with a single form element is opened; a red-colored block underneath has the words "Push for Help." In script , an
event listener is attached to this block to capture the click event. When the page opens, the focus is set to the form element in
order for a person to type in his name. Of course there's no submit button, so it's not surprising that the user would then click the
"Push for Help" button to get help.

Example 9-2. Opening a help window

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Cross-Window Communication</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

window.onload=setObjects;

function setObjects(  ) {
   document.forms[0].elements[0].focus(  );

   var evtObject = document.getElementById("panicbutton");

   // test for object model
   if (evtObject.addEventListener) {
      evtObject.addEventListener("click",openHelp,false);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


   } else if (evtObject.attachEvent) {
      evtObject.attachEvent("onclick", openHelp);
   } else if (evtObject.onclick) {
      evtObject.onclick=openHelp;
   }
}

function openHelp(x) {

   var optionString = "width=200,height=100,menubar=no,toolbar=no,scrollbars=no,location=no,resizeable=no";
   var helpWindow = window.open("help.htm","test",optionString);
   helpWindow.focus(  );
   helpWindow.moveTo(x.screenX,x.screenY);
   return false;
}

//]]>
</script>

<form name="currentForm">
Your name: <input type="text" size="50">
</form>
<div id="panicbutton" style="width:100px;height:20px;background-color:#f00; padding: 5px;margin:10px auto">
Push for Help
</div>
</body>
</html>

A small window opens with minimum chrome, located just below and to the right of where the click has happened. The reason it's
positioned based on the click event is that when the window is opened, it's moved to the screen location of the click event. Once
opened, the focus is set to this window.

Example 9-3 contains the contents of the window that opens. It actually accesses the opener window, finds the form element, and
copies whatever value it has. This provides a message in the window, which also has a link to close the window.

Example 9-3. Opened window

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<p>Helpful Information.</p>
<script type="text/javascript">
//<![CDATA[

var nmStr = opener.document.forms[0].elements[0].value;
document.writeln("Hello " +  nmStr + "!");

//]]>
</script>

<p><a href="javascript:self.close(  );opener.resizeTo('100','100')">close window</a></p>
</body>
</html>

This is an obnoxious little help window. When the window close link is clicked, an embedded script will close the window, yes, but it
will also resize the opener to the minimum most browsers will allow within the JavaScript sandbox. A surprising number of
browsers allow this behavior, including Firefox and Safari, though Opera is well behaved in this regard.

Of course, resizing the opener window to an unusable size isn't something I recommend. However, opening a help window,
positioning it to where an event occurs, and communicating information between the windows can be very helpful. Later, when we
get into Dynamic HTML, we'll create the same effect with hidden page elements, but for now, you have a way to provide context-
sensitive help.

Another critical property associated with the window object is the JavaScript timer, covered next.

9.2.5. Timers

Timers are a way to add a dynamic aspect to your web pages. When we start working with DHTML, you'll see that timers are used
to create any number of page animations. Even without DHTML, timers can open or close windows, pop up a message to the user,
and even destroy a cookie for security purposes.

There are two types of timers: one that's set once, and one that reoccurs over an interval. Both can be canceled, though the one-
time timer method fires just once.

To create a nonrepeating timer, use the setTimeout method. It takes a minimum of two parameters: the function literal or function
name to run when the timer delay ends, and the length of the timer delay in milliseconds. If there are any parameters to send to
the function, they are listed at the end of the call, separated by commas. The method returns the identifier of the timeout:

var tmOut = setTimeout(func, 5000,"param1",param2,...,paramn);

To clear the time out, use the clearTimeout method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


clearTimeout(tmOut);

If you want the timer delay to repeat over an interval, use the setInterval . This takes two parameters, the function name and
the timer interval. As with setTimeout , it return an identifier:

Var tmOut = setInterval("functionName", 5000);

Again, to stop or cancel the interval timer, use the clearInterval method. If you want to have a repeating delay but still use a
function literal or pass in parameters, you can use setTimeout and reset the timer when the previously set timer expires.

In Example 9-4 , a timer is used to reset a document image at the end of each timer delay. We'll get into the document-images
collection later, but for now, an image object in the page can be reset to another image, just by setting the image source. The
images are from an old animation and game I created using the first versions of DHTML years ago. Changing the images forms a
slow, crude animation.

Example 9-4. Using timer to change page image

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Timers</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var ct = 0;
var imgs = new Array("impatient.gif","doomed.gif","upright.gif");
setTimeout("progress(  )",3000);

function progress(  ) {

   if (ct < 3) {
      document.images[0].src=imgs[ct];
      ct++;
      setTimeout("progress(  )",3000);
   }
}
//]]>
</script>
</head>
<body>
<img src="mad.gif" />
</body>
</html>

Note that in the function, if all of the images haven't been displayed, the timer is reset to run again, using the function name.
Another approach would be to use setInterval and then clear it once the last image has displayed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


You want to avoid any type of timer operation that could generate a document.write or other method that
alters the makeup of the document object. This leaves the page in an unstable state. Instead, modify
components of the document rather than the entire document itself.

Up to this point, we've been working with one window and one document. However, with the use of frames, we can segment the
page and give each segment a different URL and purpose. Frames are one of the several objects accessible through the main
window object, and the first we'll cover.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


9.3. Frames and Location

I must admit up front that I'm not fond of frames. Yes, they are extremely useful, and still a terrific way to manage
applications in which an action in the left window (or top window) can trigger a change in the right (or bottom). Each can
then scroll separately, without any effort on our part.

However, too many companies had (or still have) a habit of opening up other web sites into frames, which basically
wrapped the other site's content in their own environment. Most of us didn't care for this. Luckily, thanks to JavaScript, we
can defeat this technique using a second window object, location .

The location object stores information about the current location and provides a small set of routines to load a new
document or replace whichever document is currently loaded.

The frame object has a few properties and methods, and is primarily a subset of the window object. This makes sense
considering that each is a window, in miniature. Among the objects supported are frames , name , length , parent , and
self . The methods supported are blur , focus , setInterval , clearInterval , setTimeout , and clearTimeout . Of these,
the ones new to this example are parent , which would be the parent frameset, length for length of frame, and name ,
which is the frame name.

The name and parent are particularly important for cross-frame communication. A parent frameset can access each child
frame through its name (or through the frames array using the number of the object as an index); each frame can access
the frameset tHRough the generic term, parent . Siblings can access each other by accessing parent and then the name of
the sibling.

In Example 9-5 , a frameset with two frames is loaded. The two frames are known as framea and frameb .

Example 9-5. Frameset loading two frames

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Frames</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<frameset cols="300,*">
<frame name="framea" src="framea.htm" />
<frame name="frameb" src="frameb.htm" />
</frameset>
</html>

Into framea , a document, framea.htm , is loaded. It has one link that, when pressed, accesses its sibling through its parent
and changes the frame location to itself. The page for this is shown in Example 9-6 . The second frame document,
frameb.htm , has the exact same page, except it steals framea 's spot for itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Example 9-6. Each frame loading itself

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<h1>Frame A</h1>
<p><a href="" onclick="parent.frameb.location.replace"
('http://learningjavascript.info/framea.htm')">Change sibling</a></p>
</body>
</html>

The individual frame pages load themselves using the location's replace method.

9.3.1. More On Location

The location object's properties are all related to the page location. You've seen one of its functions, replace , used to
replace the page for one of the frames. Another is reload , which instructs the browser to refresh the document. It also has
properties associated with the page location, including the domain, port, and protocol, that are used with location ; these
are given in Table 9-2 .

Table 9-2. Location object properties

Property Purpose

hash For URLS of the format http://some.com/somepage#somehash , this property contains
"somehash"the value after the hash mark

host
Hostname (domain) and port of URL

hostname
The hostname (domain) only

href
The entire URL (read and write)

pathname
The pathname that follows the domain

port
The URL port

protocol
The protocol used with the URL, such as "http"

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Property Purpose

search The query string, if one exists, that derives the page. This includes anything following
the first question mark of the URL

target
If given, the URL's target name

Accessing a URL such as the following:

http://learningjavascript.info/ch09-01.htm?a=1

results in the following property values:

host/hostname: learningjavascript.info
protocol: http:
search: ?a=1
href: http://learningjavascript.info/ch09-01.htm?a=1

Returning to the initial issue about frames, and your pages being loaded into them without your permission, use the
location objectin conjunction with a few other odds and endsto defeat this technique.

Example 9-7 shows another frameset; this one loads frames named frameone and frametwo .

Example 9-7. Loading two frames

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Frames</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<frameset cols="300,*">
<frame name="frameone" src="frame1.htm" />
<frame name="frametwo" src="frame2.htm" />
</frameset>
</html>

Neither frame1.htm nor frame2.htm is of much interest. The frametwo page has a link to another page, called noway.htm ,
which has the interesting bits, repeated in Example 9-8 .

Example 9-8. Preventing opening in frameset

search The query string, if one exists, that derives the page. This includes anything following
the first question mark of the URL

target
If given, the URL's target name

Accessing a URL such as the following:

http://learningjavascript.info/ch09-01.htm?a=1

results in the following property values:

host/hostname: learningjavascript.info
protocol: http:
search: ?a=1
href: http://learningjavascript.info/ch09-01.htm?a=1

Returning to the initial issue about frames, and your pages being loaded into them without your permission, use the
location objectin conjunction with a few other odds and endsto defeat this technique.

Example 9-7 shows another frameset; this one loads frames named frameone and frametwo .

Example 9-7. Loading two frames

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Frames</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<frameset cols="300,*">
<frame name="frameone" src="frame1.htm" />
<frame name="frametwo" src="frame2.htm" />
</frameset>
</html>

Neither frame1.htm nor frame2.htm is of much interest. The frametwo page has a link to another page, called noway.htm ,
which has the interesting bits, repeated in Example 9-8 .

Example 9-8. Preventing opening in frameset

http://learningjavascript.info/ch09-01.htm?a=1
http://learningjavascript.info/ch09-01.htm?a=1
http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

if (self != top) {
if (window.location.href.replace)
        top.location.replace(self.location.href);
    else
        top.location.href=self.document.href;
}

//]]>
</script>

</head>
<body>
<h1>No Way</h1>
</body>
</html>

In the newly opened page, which normally opens into the frame, there's a script block that tests whether it is, itself, the
top window. In framed windows, the frameset is the top window. In the code, if the window is not the top window (is
loaded into a frame), it sets the top-window location href property to itselfeffectively bumping the frameset out of the way.

Simple and clean. However, you'll find few pages that frame-protect themselves nowadays. Frames just aren't as popular
as they once were, and most people don't want to add anything unnecessarily to their pages.

Not all frames require a frameset parent. The iframe can be embedded in a page, rather than a frameset .

9.3.2. Remote Scripting with the iframe

Ajax achieved almost instant fame through its promotion of in-page client/server interaction. This is a process in which data
can be submitted to a server and a page updated without having to reload the page. This was all shiny new, though the
technology had been around for a few years.

Even before Ajax and its MS precursor, there were ways to implement remote-server functionality. One popular method
was to use the HTML element, the iframe , and a concept of remote scripting .

The concept of using the iframe for remote scripting was introduced at the Apple Developer
Network in an article written by Eric Costello; it is available at
http://developer.apple.com/internet/webcontent/iframe.html .

Unlike regular frames, an iframe is actually embedded within a page. It can be given both height and width to be displayed,

http://developer.apple.com/internet/webcontent/iframe.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


or it can be hidden by setting both to zero. It considers the page it's embedded in as its parent, and that's how it
communicates with the higher-level page. Normally, it can be accessed by using the document's getElementById ; you can
also load content into it using the target attribute in a link.

In Example 9-9 , an iframe is embedded in the page, with text about making a choice between the red pill or the blue.
Each of these is a link, which will load the choice page into the iframe .

Example 9-9. Communicating with an embedded iFrame

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>iFrame</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

function handleResponse(choice) {
  var pick = frames["MyFrame"];
  pick.document.writeln(choice);
}

//]]>
</script>

<iframe id="MyFrame"
  name="MyFrame"
  style="width:100px; height:100px; border: 0px"
  src="blank.htm"></iframe>

<p>
<a href="" onclick="parent.MyFrame.location.replace('choice1.htm'); return false">Red Pill</a><br />
<a href="" onclick="parent.MyFrame.location.replace('choice2.htm'); return false">Blue Pill</a><br />
</p>
</body>
</html>

Note in the onclick event handlers that the last statement in the JavaScript is a return statement returning a value of
false . This prevents the default behavior of the linkwhich is to load the pagefrom being initiated.

The page also includes a script block that writes the string passed as a parameter to the iframe page. This, in turn, is
passed in from either of the choice pages, the first of which is shown in Example 9-10 .

Example 9-10. One of the pages loaded into the iframe

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body style="background-color: #f00">
<script type="text/javascript">
//<![CDATA[

  window.parent.handleResponse("You picked the red pill");

//]]>
</script>

</body>
</html>

Note that the page and the embedded page share the same parent.

One of the advantages to using the iframe for server communication is that it doesn't require any expertise with more
esoteric communication mechanisms such as XML-RPC. The limitation is that there is no formalized API method for invoking
services. All functionality is based more on pages loaded, and JS script processes.

Also, unlike other remote-scripting options, the history of options is maintained. In other words, the browser maintains
state between choices.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


9.4. history, screen, and navigator

The remaining three objects that are direct children to the window object are history , screen , and the navigator . Between these three, you'll have a good idea of what kind of browser is accessing the page, and how much space you have in which to work. You'll also be able to send your web-page readers
on their way using the history object.

As these objects are fairly simple in functionality and single-purposed, I'll review each, in turn, and then provide one example for all three at the end of this section.

9.4.1. history

The history object is just as it sounds: it maintains a history of pages loaded into the browser. As such, its methods and properties have to do with navigation through these pages, including going forward and back.

You can traverse through history using relational properties, such as next and previous , or using the methods back and forward . You can find the current page with current , and get the length of history (number of pages stored in the history cache). You can also go to a specific page using the go method
and passing in a page numbernegative to go backward that many pages:

history.go(-3);

And positive to go forward:

history.go(3);

history , as they say, takes care of itself; you as page developer don't have to worry overmuch about it. About the only time when history becomes a concern is when using in-page techniques such as DHTML and Ajax, which work outside the normal patterns of page loading. However, we'll get into these
issues later in the book. Returning to the BOM, the next object of interest accessible via the page hierarchy is the screen .

9.4.2. screen

The screen object contains information about the display screen, including width and height (both actual and available), as well as the color or pixel depth. Though not used very often, it is a good reference for any functionality that might change the size of the browser window or create colorful objects
requiring a certain palette.

The exact properties supported can change from browser to browser, and version to version. At a minimum, most of the following are supported:

availTop ( or top )

The topmost pixel position where a window can be positioned

availLeft ( or left )

The leftmost pixel position where a window can be positioned

availWidth ( or width )

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Width of screen in pixels

availHeight ( or height )

Height of screen in pixels

colorDepth

Color depth of the screen

pixelDepth

Bit depth of screen

The reason for the discrepancy between actual and available height and/or width is to accommodate the toolbar residing at the top, bottom, or side of many display screens.

In earlier DHTML implementations, developers would test the color depth of the screen and change to lower resolution images more appropriate to the configuration. However, even the more inexpensive monitors now support color depths greater than the older eight pixels, and most support true color. As
such, the extra overhead to process the screen and return the images no longer has the payback it once had. Still, the color depth could alter your use of colors with style settings, so it's helpful informationas is the available width and height if you're working with a page layout.

9.4.3. navigator

Last, but not least, the navigator object provides information about the browser or other agent that accesses the page. This includes being able to check the operating system, the browser or browser family, security policy, language, and whether cookies are enabled. Some browsers also provide an array of
installed plug-ins and other properties applicable to the specific user agent.

The navigator object usually supports the following:

appCodeName

The name of the browser code base

appName

The name of the browser

appMinorVersion

The minor version number (such as 52 for Version 1.52) of the browser

appVersion

The major version number (the 1.00 in 1.52) of the browser

cookieEnabled

Whether cookies are enabled

http://lib.ommolketab.ir
http://lib.ommolketab.ir


mimeTypes

An array of MIME types supported

onLine

Whether the user is online

platform

The platform on which the browser is operating

plugins

Array of plug-ins supported in browser

userAgent

Full agent description for browser (or other user agent)

userLanguage

Language supported in browser

The mimeTypes collection consists of mimeType objects, which have properties of description , type , and plugin . The plugins collection consists of plug-in objects with properties of a mimeType array of its own: description, filename, length of mimeType array, and plug-in name.

There are also a small number of methods that are supported among several browsers: javaEnabled , to test for Java enabling in the browser; preference to get and set browser preferences; and taintEnabled to check if data taint checking (a security feature) is enabled.

9.4.4. One Page, Three Objects

Example 9-11 is a page that runs through all three of the objects just coveredhistory , screen , and navigator printing out property values and providing a couple of options for testing history. Try it out in various browsers, in as many operating systems as you can, to see what's supported and what's not.

Example 9-11. Exploring the history, navigator, and screen objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>History,Screen,Navigator</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<h1>history object</h1>
<a href="" onclick="history.back(  );return false">history.back(  )</a><br />
<a href="" onclick="history.go(-2);return false">history.go(-2)</a><br /><br />
<a href="" onclick="history.forward(  );return false">history.forward(  )</a><br />

<h1>screen object</h1>
<script type="text/javascript">
//<![CDATA[

document.writeln("screen.availTop: " + screen.availTop + "<br />");
document.writeln("screen.availLeft: " + screen.availLeft + "<br />");
document.writeln("screen.availWidth: " + screen.availWidth + "<br />");
document.writeln("screen.availHeight: " + screen.availHeight + "<br />");
document.writeln("screen.colorDepth: " + screen.colorDepth + "<br />");
document.writeln("screen.pixelDepth: " + screen.pixelDepth + "<br />");

document.writeln("<h1>navigator object</h1>");

document.writeln("navigator.userAgent: " + navigator.userAgent + "<br />");
document.writeln("navigator.appName: " + navigator.appName + "<br />");
document.writeln("navigator.appCodeName: " + navigator.appCodeName + "<br />");
document.writeln("navigator.appVersion: " + navigator.appVersion + "<br />");
document.writeln("navigator.appMinorVersion: " + navigator.appMinorVersion + "<br />");
document.writeln("navigator.platform: " + navigator.platform + "<br />");
document.writeln("navigator.cookieEnabled: " + navigator.cookieEnabled + "<br />");
document.writeln("navigator.onLine: " + navigator.onLine + "<br />");
document.writeln("navigator.userLanguage: " + navigator.userLanguage + "<br />");
document.writeln("navigator.mimeTypes[1].description: " + navigator.mimeTypes[1].description + "<br />");
document.writeln("navigator.mimeTypes[1].type: " + navigator.mimeTypes[1].type + "<br />");
document.writeln("navigator.plugins[3].description: " + navigator.plugins[3].description + "<br />");
//]]>
</script>
</body>
</html>

You might be surprised at what shows up in some of the collections, such as the plugins . I know I was surprised to see one that provided digital-rights management, when I don't remember having installed a plug-in of this nature.

As for the mimeType object, some browsers also support a suffix property on the object, such as *.html and so on.

These three objects just demonstrated are the last of the objects directly accessible via the window object, save one. The last object covered in this chapter is an old friend by now: the document . In a way, most of the rest of the book focuses on the document object. However, we'll take a little time to look at
it from a BOM perspective before moving into covering its role in DOM, DHTML, and Ajax.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The Cross-Browser MouseOver DOM Inspector

In earlier chapters I mentioned Firefox's DOM Inspector, which allows you to discover information about each element in the browser. There is a cross-browser-compatible version of this functionality, the MouseOver DOM Inspector (MODI) by slayeroffice.com, that works with
Firefox, Mozilla, Netscape, Opera, and IE 6.x. It's a bookmark-based application; you can access it at http://slayeroffice.com/tools/modi/v2.0/modi_help.html .

Once bookmarked, when you're at a page and want to investigate the properties of all the page elements, just click the bookmark. A little in-page box opens that provides information about whatever element currently has cursor focus. When you want to stop inspecting the
elements, just click the Esc key.

It is listed as beta software, but I found it worked nicely in all my browsers except Safari and the newer IE 7.x. Figure 9-2 shows it in use with Opera on the Mac at the O'Reilly web site.

Figure 9-2. Slayeroffice.com's MouseOver DOM Inspector

9.4.5. document

Returning to Figure 9-1 at the beginning of the chapter, you can see that the document object is what provides access to any element contained within the browser page. This includes forms and form elements, as well as cookies, all covered earlier. This also includes the collection of page images, links,
embedded objects; in fact, all elements contained within the page boundaries have document as parent. Older variations of document had another collection, called layers , and the newer browser versions all share a style property, but the figure gives you an idea of how important the document is to dynamic
page development.

The previous chapters have covered the document object methods of getElementById , as well as writeln ; the next chapter on the DOM provides information on accessing all page elements using generic methods. For now, I want to pull back to the older method of accessing page elements through the
various document collections, focusing on links, images, and the all-purpose all collection.

9.4.6. Links

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The difference between a link and an anchor is the type of anchor attributes used. Both are based on the anchor tag (<a></a> ). However, if an href attribute is provided, it's a link to another site; if just the name attribute is provided, it acts just as an anchor, which can set focus to a specific point in the
page.

The links collection off of the document object consists of all hypertext links in the page, accessible as an array, starting with the first link in the page and moving down and to the right. However, you can also add an identifier for each hypertext link and access it in the array through this identifier.

Each item in the collection is a link object, which has properties of its own. Some properties are similar to those found with location : host , protocol , port , search , and hash , each of which returns that specific piece of the hypertext link. You can also access the complete link through the href property,
and the associated linked object (text ), tHRough text . This can be handy if you're pulling links from a document in a web page into a handy sidebar reference. Just make sure that you don't write the links out to the same page as the document , because you'll confuse the browser by adding new links at the
same time as you're trying to process existing links.

In Example 9-12 , the page contains text with three links. The links collection is accessed through the document object, and the links and associated text are extracted and printed just below the paragraphs.

Example 9-12. Pulling links from page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Reference</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<p>The <a href="http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/link.asp">links</a> collection off of the document <a href="http://www.w3.org/TR/html4/struct/objects.html">object</a> consists of all hypertext links in the page, accessible as an array, starting with the first link in the page and moving down and to the right. However, you can also add an identifier for each hypertext link and access it in the array through this identifier.</p><p>Each item in the collection is a <a href="http://www.devguru.com/Technologies/ecmascript/quickref/link.html">link</a> object, which has properties of its own. Among these are those similar to what we found with location: host, protocol, port, search, and hash, each of which returns that specific piece of the hypertext link. You can also access the complete link through the href property, and the associated linked object (text) through text. This can be handy if you're pulling links from a document in a web page, into a handy sidebar reference or other functionality such as this.
</p>
<h5>References</h5>
<p>
<script type="text/javascript">
//<![CDATA[

for (var i = 0; i < document.links.length; i++) {
  var link = document.links[i];
  document.writeln(link.text + " : " +  link.href + "<br />");
}
//]]>
</script>
</p>
</body>
</html>

A better approach might be to provide alternative text in the link, using the title attribute, and then printing this out:

<a href="http://somelink.com" title="A better description of link">than this</a>
...
document.writeln(link.title + " : " + link.href + "<br />");

However, this approach is sneaking into the higher-level DOMs where all attributes are accessible off an object. Still, regardless of level, most browsers support both.

9.4.7. Images

http://lib.ommolketab.ir
http://lib.ommolketab.ir


One of the earliest dynamic page-development techniques was to alter images within the document. This is still a popular technique for simple photo-slideshow types of applications, enabled through the document images collection.

As with links, images are objects in their own right, and you can set their attributessuch as src , the source URL for the imagedirectly. You can also create new instances of the images using the new constructor.

In Example 9-13 , a slideshow is created of the first five images from Chapter 1 , and a simple mechanism is put in place to traverse the list, replacing the current document image with the next one in the list. An array of images preloads the images when the page loads so that the transition happens more
quickly.

Example 9-13. Creating a slideshow using the images collection

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Slideshow</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var currentPhoto = 0;
var pics = new Array(  );
for (var i = 0; i < 5; i++) {
  pics[i] = new Image(  );
}
pics[0].src = "fig01-1.jpg";
pics[1].src = "fig01-2.jpg";
pics[2].src = "fig01-3.jpg";
pics[3].src = "fig01-4.jpg";
pics[4].src = "fig01-5.jpg";

function changePhoto(photo) {
   document.images[0].src = pics[photo].src;
}

function nextPic(  ) {
  currentPhoto++;
  if (currentPhoto < pics.length) {
    changePhoto(currentPhoto);
  } else {
    alert("at the end of the photo list");
  }
}

function prevPic(  ) {
  if (currentPhoto > 0) {
    currentPhoto--;
    changePhoto(currentPhoto);
  } else {
    alert("at the beginning of the photo list");
  }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


//]]>
</script>
<img src="fig01-1.jpg" />
<p>
<a href="" onclick="nextPic(  );return false">Next picture</a> <a href="" onclick="prevPic(  ); return false">Previous picture</a>
<p>
</head>
</body>
</html>

Again, like the previous example with links, this example tends to blur the line between DOM levels. However, it also works in all of the most popular web browsers, which is what's important for our purposes.

Also notice in Example 9-13 that, along with the images, the src attribute can be changed. This differs from Example 9-12 , which just outputs the link attributes. The image source is an attribute that can be read or written, while the link attributes can only be read. There are ways, though, to adjust all
page elements, and we'll look at them in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


9.5. The all Collection, Inner/Outer HTML and Text, and
Old and New Documents

The all collection on the document object contains references to all elements in the document page.
It was a concept created by Microsoft as a way to collect all page elements into one array, before the
W3C started work on standardizing the object hierarchy.

The document.all collection was one of the earlier methods that accessed individual elements;
however, the actual collection itself is no longer supported in many modern browsers, such as
Mozilla/Firefox. Still, the concept of being able to access any element in the document still remains;
it's just the approach that has changed. Now, you can use document.getElementById, passing in the
element's identifier to access the individual object.

In Chapter 10, you'll see how other methods get all elements of a certain tag
or, given a specific name, via the document object.

You'll see examples of document.all in many older scripts, when it was used to differentiate object
support in cross-browser DHTML applications. It's not uncommon to see code like the following:

if (document.all)  
   elem = document.all['elemid'];
else 
   elem = document.getElementById['elemid'];

This actually works in most browsers. However, Internet Explorer is about the only browser that
supports document.all now, so recognize it for what it was, but don't use it for modern applications.
IE 6.x (5.x really) supports getElementById, just like other browsers.

Another interesting item you'll see in both older and newer dynamic JavaScript applications is the use
of the following properties: innerText, outerText, innerHTML, and outerHTML.

These properties provided ways to change the content of the element, or both the content and the
element. The inner- and outerText properties replace whatever is contained in the element, or the
element itself, with text. The inner- and outerHTML properties replace the element's HTML or the
element with HTML.

As noted in the last section, through the BOM, not all attributes of an element can be modified after
the document is loaded. Using the inner/outer properties, this limitation could be worked around by
actually replacing the contents of an element instead of changing its attributes. This approach
achieved a high level of success in its day because it provided a way to actually modify the page
contents after the page was loadednot just an attribute here or there. That was pretty heady stuff in
its time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Today, with the sophisticated DOM API, the only property still supported with the Mozilla line of
browsers is innerHTML. In Example 9-14, the web page contains three DIV elements, each of which
contains further markup. The first DIV contains a paragraph; the second, an unordered list; and the
third, a hypertext link. When the page loads, these are accessed using the getElementsById
document method, and their content is changed via innerHTML.

Example 9-14. Accessing named elements and changing their inner HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Modifying Elements after Page loads</title>
<script type="text/javascript">
//<![CDATA[

function changeDiv(  ) {

   // get all elements idd 'elem1'
   var elem1 = document.getElementById("elem1");
   elem1.innerHTML = "<h1>Hello World</h1>";

   var elem2  = document.getElementById("elem2");
   elem2.innerHTML = "<ol><li>Option 1</li><li>Option 2</li></ol>";

   var elem3 = document.getElementById("elem3");
   elem3.innerHTML = "<img src='dotty.gif' alt='dotty' />";
}

//]]>
</script>

<body onload="changeDiv(  );">
<div id="elem1">
<p>Paragraph text.</p>
</div>
<div>
<ul id="elem2">
<li>option 1</li>
<li>option 2</li>
</ul>
</div>
<div>
<a href="ch09-12.htm" id="elem3">Example 9-12</a>
</div>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The innerHTML property is all of the HTML that's contained within the identified element. It's a
read/write property, which means it can be accessed, modified, or completely replaced, as shown in
Figure 9-3. What's fascinating, though, is that this isn't reflected in the document source. If you look
at view source, the HTML elements reflect the web page before the dynamic modification.

Figure 9-3. Dynamically altered content with innerHTML

All the major browsers support innerHTML, though each may have its own minor quirks in
implementation (which is why you need to test your effects before putting them into production). The
W3C has deprecated its use, but most browsers support it a) because of its widespread use, and b)
because it's so easy to use compared to the DOM methods that accomplish the same task.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


9.6. Something Old, Something New

The title of this section is from that old wedding rhyme about what a Western bride carries on her
wedding day:

Something old, something new; something borrowed, something blue

Old, new, borrowed, and blue are all adjectives that can be used to describe the experience of
creating applications that move between the different levels of the DOM, or from the BOM to the
newer DOM.

Many of the existing JavaScript libraries or sample scripts still use technologies that worked with the
old 4.x browsers popular in the late 1990s. With IE 4.x and Navigator 4.x, JavaScript and DHTML
really took off, so it's not surprising that much of these older scripts are still easily available.
Particularly since many of them still work.

Today, modern browsers such as IE, Firefox, Mozilla, Navigator, Opera, Safari, Camino, and others
adhere to the W3C as much as possible. I emphasize the last phrase because it has a great deal of
meaning in cross-browser and cross-version web-page development. The possibilities are limited by
how widespread the use of some technologies are. For instance, Microsoft's newer IE 7 supports the
newer DOM, up to the point where support would mean breaking older web pages. The company isn't
necessarily ready to break backward compatibility, and though not doing so is a pain for web
developers, it's also somewhat understandable.

So modern browsers borrow some of the older implementations, as well as support the newer.
Developers use a variety of tests to see if one element or another is supported to provide
functionality that works with as many browsers as possible. This tends to make the developers feel a
little "blue"if that's the right wordbecause the work can be rather extensive and difficult at times.

This demonstrates one of the major challenges with cross-browser JavaScript: having to, at times,
compromise on what objects, properties, and methods you'll use to create content that works for all
of your target browsers. For all of the criticism associated with Internet Explorer, Microsoft was the
leader of the pack when it came to providing more features for dynamically changing a web page. As
such, its unique properties and methods, though they may not be a part of any W3C specification,
have had widespread use and continue to be used today.

The question then becomes: should you use them? I can't answer this for you. The more you use
older objects, the quicker your pages will become obsolete. In addition, the more older browsers you
support, the more work and the more limited the effects you can create. All I can do is point out
some of the options, the older technologies as well as the newer, and how they can be compatibleor
not.

The only people who can answer this question are your web-page readers. Know your audience and
what tools they use, and adjust accordingly. No worries, though, that you'll be thrust out into the wild
kingdom of the Web with only a stone axe and bearskin bikini. In the next several chapters, I'll show
you how to use the old BOM with the new DOM and when to borrow between the models.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


9.7. Questions

What kind of dialogue do you open if you want a text response?1.

Define a timer that invokes a function, callFunction, every 3,000 milliseconds passing in two
parameters: paramA and paramB.

2.

What object is used to change the web page in the browser?3.

What object and properties give you information about the browser?4.

Create a new window that is sized to 200x200 pixels, has no toolbar or status bar, and opens
up the help.htm file.

5.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 10. DOM: The Document Object
Model
One of the most significant changes associated with JavaScript was the W3C's work in conjunction
with all browser vendors (including Netscape and Microsoft) to create a consistent underlying object
model. All major browsers agreed to support this model, eliminating most, if not all, cross-browser
compatibility issues. Though the default Browser Object Model discussed in the last chapter provided
a great deal of functionality, much of the implementation of the model was based on influence of one
browser, or browser company, over another. Over time, this led to a great deal of cross-browser
incompatibility, hampering advanced uses of JavaScript until the last few years.

This changed with the release of the W3C's recommended Document Object Model (DOM). From the
W3C comes this description:

The Document Object Model is a platform- and language-neutral interface that will allow
programs and scripts to dynamically access and update the content, structure, and style of
documents. The document can be further processed, and the results of that processing can be
incorporated back into the presented page.

The first release of the DOM was DOM Level 1, issued as a recommendation in 1998. This release
helped define the infrastructure for the DOMthe schema and Application Programming Interface (API)
that future versions of the DOM could use as a base of functionality. It also helped establish a core
component of each recommendation that is required for a DOM-compliant user agent (such as a
browser); all other specifications are issued as separate, but related, optional modules. This approach
helped encourage early adoption, and maintain consistency with critical elements.

DOM Level 2 followed in 2000 and expanded on the earlier Level 1 release, while still maintaining
consistency with the earlier release. You've already been exposed to one aspect of this release with
the Level 2 event handling in Chapter 3. The DOM Level 2 added increased support for Cascading
Style Sheets, improved access for document elements, and namespace support in the XML
recommendation.

The DOM Level 3 was released in 2004 and at the time this book was written, had very little support
in most major browsers. In addition to extensions and improvements to the previous releases, this
version adds modules to extend support for web services, as well as increased support for XML. The
DOM Level 3 is the last of the W3C levelsat least, the last planned W3C level release.

This chapter doesn't provide a complete reference for all of the objects in the DOM APIs. These are
listed quite nicely at the W3C web site in a URL which should persist as long as the specification.
Instead, I've focused on representative objects, how they interact with one another, and their impact
within the browser page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The W3C DOM Level 1 Recommendation can be seen at
http://www.w3.org/TR/REC-DOM-Level-1/; DOM Level 2 recommendation at
http://www.w3.org/TR/DOM-Level-2-HTML/; and the Level 3 Xpath
Specification at http://www.w3.org/TR/DOM-Level-3-XPath/.

Of more interest is the ECMAScript binding (the implementation of the APIs
you'll use with JavaScript) for each specification version. The Level 1 script
binding for both HTML and Core is at http://www.w3.org/TR/REC-DOM-Level-
1/ecma-script-language-binding.html. The Level 2 script binding for the Core
API is at http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html,
and the Level 2 script binding for the separate HTML module is at
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/ecma-script-
binding.html. The ECMAScript binding for the third, and final, DOM Core API is
at http://www.w3.org/TR/DOM-Level-3-Core/ecma-script-binding.html.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-HTML/
http://www.w3.org/TR/DOM-Level-3-XPath/
http://www.w3.org/TR/REC-DOM-Level-
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/ecma-script-
http://www.w3.org/TR/DOM-Level-3-Core/ecma-script-binding.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.1. A Tale of Two Interfaces

When the W3C released the first version of the DOM, the organization also released two different
APIs: the Core and the HTML API.

The DOM Core is a language- and model-neutral API that can be implemented in any language, not
just JavaScript, and for any XML-based model, not just XHTML. As such, it literally is the core of the
DOM.

Prior to the release of the DOM specification, though, browsers had already implemented the Browser
Object Model in various forms, some proprietary and some not. To maintain a level of compatibility
with previous work, the W3C also released a custom subset of the DOM API: The DOM HTML API.

The DOM HTML API is an object-oriented, hierarchical view of the web page, with objects mapped to
HTML elements: HTMLDocumentElement for the document, HTMLBodyElement for the body, and so on.
Using it is very similar to how we used the BOM in the last chapter. The primary difference between
the twoBOM API and DOM HTML APIis that the W3C's is an attempt to formalize an approach that
works with all browsers. The W3C also extended the API to make it more compatible with the
underlying Core API.

The Core API is a generic API that, as I just mentioned, can work with any form of standard XML. It
consists of objects such as Node and nodeLists, Attr, Element, and the all-important Document. The
Core API also provides a basic set of data types and expected behaviors that agents such as
browsers must support, though much of this support is not obvious when working with JavaScript.

The HTML API shows only in the first two W3C releases. The reason is that the additions and
modifications documented in the W3C DOM Level 3 are specific to the Core API; the HTML API wasn't
directly impacted. However, the HTML API is as valid as the Core. As such, you can use either the
Core, HTML, or both as needed.

A good source for an overview of the different DOM specifications is the OASIS
Cover Pages article, at http://xml.coverpages.org/dom.html.

http://xml.coverpages.org/dom.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.2. The DOM and Compliant Browsers

There is no such thing as complete cross-browser compatibility. I doubt there ever will be, even though the differences between browsers become smaller every year. The W3C DOM is responsible for much of this compatibility, and most browsers have implemented
support for both the Core and HTML APIs. This includes Mozilla/Firefox, Netscape Navigator (6.0 and above), Internet Explorer (6.0 and above), Safari, Opera (7.0 and above), Camino, and others.

However, not all aspects of the DOM are implemented equally among all the browsers; as discussed in Chapter 6 , Internet Explorer (neither 6.x nor 7+) does not support the DOM Level 2 event model. There are also individual differences in support for CSS, as well
as object methods and properties that differ between the browsers.

Most of the compliance issues are subtle, with minor variations in support. They are enough, however, to require testing of any effect using the DOM APIs to ensure it looks good or works as expected with all of your target browsers.

As to the variations, one variation could be providing too much support, such as Firefox providing DOM-level access to the name attribute on all HTML elements, not just those for which it's valid. This is just as much an error, or lack of compliance, as no support for
the event modelparticularly if you develop in Firefox and build in an expectation for name to be JavaScript-accessible on all elements.

Another variation is more of a minor annoyance than anything. There are a set of constants built into the DOM so that you don't have to code in numeric references for something such as nodeType , which provides information about the type of DOM node you're
working with when you access the page document as a whole. However, as shown later in the section discussing the Core model, and thanks to JavaScript's prototype nature (covered in the next chapter), you can work around this limitation by adding these
constants where they don't exist.

Regardless of all the browser quirks, there are few noncompliance issues that can't be worked around. The only decisions that remain are how much time you want to spend on such effort, and how many browsers, browser versions, and operating systems you want
to support. One key element of this is reviewing your web logfiles to see how your pages are accessed. Many ISPs provide access to your raw logfiles in some form or another, and each consists of lines that might look similar to the following (from one of my site's
logfiles):

70.242.159.166 - - [30/May/2006:07:24:18 -0400] "GET / HTTP/1.1" 200 67510 "http://weblog.burningbird.net/admin/edit.php" "Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.8.0.3) Gecko/20060426 Firefox/1.5.0.3"

From left to right, the first field is usually the IP address of the person (or web bot) accessing the page; the fields represented by the dashes are the identity lookup and authenticated usernames that are found (if any); then follows the date, the page requested, the
referrer, and finally information at the end that represents the operating system and user agent. With this example, the OS is Mac OS X, the language is English, and the user agent is Firefox 1.5.03. The order of fields may vary, but the user agents and operating
system are usually fairly obvious:

"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7"
"Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/418 (KHTML, like Gecko) Safari/417.9.2"
"Opera/9.00 (Windows NT 5.1; U; en)"

Note that browsers may claim to be Mozilla 5.0; the actual browser is a secondary piece of information.

As long as your pages degrade gracefully (i.e., don't force a certain type of browser on your web-page readers and ensure that it still works for nonsupported types), you don't have to support all browsers or browser versions for your DOM-specific effects.

JavaScript Best Practice: Ensure your pages degrade gracefully when accessed by all browsers, including ones that don't have JavaScript enabled or that don't support specific DOM functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.3. The DOM HTML API

The core API works with any valid XML, including XHTML; the HTML API is specific to valid XHTML and
HTML only. It consists of a set of HTML objects, each associated with a valid HTML element tag; all
have properties and methods appropriate to the object.

Though a separate set of objects, the two modelscore and HTMLoverlap, with the HTML API objects
incorporating methods and properties from both models. As such, HTML API objects inherit properties
and methods of a basic HTML Element, as well as the core Node object (discussed in the next section).

10.3.1. The HTML Objects and Their Properties

The HTML API is a set of interfaces rather than actual classes. These interfaces can access existing or
newly created page objects, and each is associated with a specific type of page object.

I've introduced a new term, interface. For our purposes, an interface is an
object representing the specific page element. It differs from a class in that
there is no constructor; objects are created through other functions rather than
directly.

Most HTML interface objects inherit the properties and methods of the Element and Node objectsboth
of which are part of the core model, and discussed later in the chapter. Most also inherit from
HTMLElement, which has the following properties (based on the set of attributes of the same name
allowed for all HTML elements): id, title, lang, dir, and className.

Each interface object takes its name from the HTML formal element name, not necessarily the
element tag. As such, HTMLFormElement is the HTML form element's interface object, but
HTMLParagraphElement is the object for the paragraph (P) tag. The objects provide access to all valid
attributes for the elements, such as align for HTMLDivElement, and src for HTMLImageElement.

Most of these properties are read and write, which means they can be altered as well as accessed
from JavaScript. To demonstrate, in Example 10-1, an image is accessed using the document images
collection. The image attributes are concatenated to a string which is then output via an alert.
Following the message, the image attributes are modified.

Example 10-1. Reading and modifying image element's properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Accessing/Modifying HTML Elements</title>
<script type="text/javascript">
//<![CDATA[

function procImage(  ) {

   var img = document.images[0];
  
   // get existing image attributes
   var imgAttr = img.align + " " + img.alt + " " + img.src
                 + " " + img.width + " " + img.height;
   alert(imgAttr);

   // modify
   img.src="upright.gif";
   img.width="100";
   img.height="100";
   img.alt="Alternative";
   img.align="left";
   img.title="Upright";
   document.close(  );
}
//]]>
</script>
<body onload="procImage(  );">
<img src="dotty.gif" alt="Dotty" />
</body>
</html>

Several of the DOM HTML interface objects also provide methods to create, remove, or otherwise
modify the associated page elements. The table elements, in particular, have a set of such methods
and associated objects. However, the process is somewhat code-intensive, made more so because of
the fact (as mentioned in a note earlier) that the API objects have no constructor. To create new
objects, you'll need to use one of the factory methods, as demonstrated in Example 10-2.

If you've not been exposed to programming languages that support interfaces,
think of them as code wrappers that isolate the mechanics of the underlying
objects. When working with an interface, the API provides methods, usually
referred to as factory methods, that can create and return the objects they
wrap.

In Example 10-2, an image and an empty HTML table are added to the document. When the
document loads, a function is called that accesses the table and image using getElementById on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir


document object.

To add to the table, you call the insertRow method on the table element, passing in a value of 1,
which appends the row to the end of the table. This method returns an object that implements the
HTMLElement interface. Thanks to JavaScript's loose typing, this object also implements the
HTMLTableRowElement interface.

Example 10-2. Outputting image properties to table using DOM HTML
interfaces

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Build-o-Table</title>
<script type="text/javascript">
//<![CDATA[

function procImage(  ) {

   // get table and image
   var tbl = document.getElementById('table1');
   tbl.border="5px";
   tbl.cellPadding="5px";

   var img = document.getElementById("img1");
   img.vspace="10";
   
   // for each attribute, add table row
   var row1 = tbl.insertRow(-1);

   // create two table cells
   var cell1 = row1.insertCell(0);
   var cell2 = row1.insertCell(1);

   // create text values
   var txtAttr1 = document.createTextNode("src");
   var txtAttr1Val = document.createTextNode(img.src);

   // append to text values to cells
   cell1.appendChild(txtAttr1);
   cell2.appendChild(txtAttr1Val);

}
//]]>
</script>
<body onload="procImage(  );">
<img id="img1" src="dotty.gif" />
<table id="table1">

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</table>
</body>
</html> 

There's a method on the HTMLTableRowElement interface, insertCell, which in turn creates another
HTMLElement representing a specific table-row cell. Two such cells are created through insertCell:
one for each TD (table data) element in the table.

To add text, the createTextNode factory object creates a text object consisting of a string passed to
the method. The text object is appended to the table cell object using appendChild. (If you want to
remove the row, use removeRow, passing in the row number.)

As you can see, adding and removing objects in the web page using the DOM HTML API isn't
complicated, but it can be tedious.

There are other DOM HTML interfaces that don't directly represent specific HTML elements. The
collections of objects that can be accessed through the document object are represented by the
HTMLCollection interface. It has one property, length, and two methods: item, which takes a number
index, and namedItem, which takes a string. Both return objects in the collection.

The HTMLOptionsCollections represents the list of options for a select element, itself represented by
HTMLSelectElement. Accessing the options property on this later interface returns the
HTMLOptionsCollections object with options. As with HTMLCollections, access the individual items
with item and namedItem.

The last interface object I'll cover is HTMLDocumentElement. It inherits functionality from the Core
model document object, and if you explored document in Chapter 9, you won't be surprised at the
provided methods and properties. Images, applets, links, forms, and anchors are included as
properties returning a collection. Other properties include cookie, title, referrer, domain, URL, and
body (for the body object).

The methods HTMLDocumentElement exposes, again, will seem very familiar: open, close, write, and
writeln. However, one that hasn't been demonstrated is getElementsByName, and we'll look at that
next.

This page (http://www.w3.org/TR/DOM-Level-2-HTML/ecma-script-
binding.html) at the W3C provides a look at the ECMAScript binding (JavaScript
implementation) of the Level 2 HTML API.

10.3.2. Accessing HTML Objects and Browser Differences

There are different techniques you can use to access the DOM HTML representation of a page
element. The first gives it a specific identifier (id) and then uses the document's getElementById
method:

<div id="div1">
...
var div1 = document.getElementById("div1");

http://www.w3.org/TR/DOM-Level-2-HTML/ecma-script-
http://lib.ommolketab.ir
http://lib.ommolketab.ir


You can also access the elements using their relationship with one another. For instance, in the
following HTML:

<form>
<input type="text" />
</form>

Access the form field through the forms collection on the document object:

document.forms[0].fields[0];

We've looked at both approaches in previous examples. A third way to access an individual element is
by using the document object's getElementsByName, and then passing in the element's name. This
method returns a nodeList containing a collection of nodes of the same name. All browsers support
document.getElementsByName, but not all browsers return the same nodeList.

Example 10-3 uses getElementsByName to access all elements with given names within the web page.
There are several different types of HTML elements, each given a unique name: a DIV element, a
link, an unordered list and one of its items, a form and a form field, and a paragraph. Once the
named list is returned, the element's typefound in the tagName property of each nodeis concatenated
to a string and output via a dialog window at the end of the application.

Example 10-3. Finding elements by name and printing out their
associated class name

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Modifying Named Elements</title>
<script type="text/javascript">
//<![CDATA[

function findName(  ) {

   // get all elements named 'elem' + number
   for (var i = 1; i <= 7; i++) {
      var nmStr = "elem" + i;
      var nmList = document.getElementsByName(nmStr);

      // create string of types
      var typeStr =  "";
      for (var j = 0; j < nmList.length; j++) {
         typeStr += nmList[j].tagName + " ";
      }

http://lib.ommolketab.ir
http://lib.ommolketab.ir


      // output string
      alert(typeStr);
   }
}

//]]>
</script>
</head>
<body onload="findName(  );">
<div name="elem1">
<ul name="elem2">
<li>option 1</li>
<li name="elem3">option 2</li>
</ul>
</div>
<a href="ch10-02.htm" name="elem4">Example 1</a>
<p name="elem5">Paragraph</p>
<form name="elem6">
<input type="text" name="elem7" />
</form>
</body>
</html>

As expected, this application works in Safari, Firefox, Netscape Navigator, Opera, and Internet
Explorer, but the string returned differs.

Firefox, Safari, and Netscape Navigator return a string of:

DIV UL LI A P FORM INPUT

Opera and Internet Explorer return:

A FORM INPUT

Why the discrepancy? Well, in this case, Opera and Internet Explorer have it right. Running the page
through the W3C validator, it doesn't validate as transitional XHTML (the current doctype), or when
an override to HTML 4.01 is in effect. The reason is that the name attribute is not supported on DIV,
UL, LI, and P tagsexactly the ones that IE and Opera did not list.

Another odd thing: valid HTML does not support multiple elements with the same name, though
several browsers do. If I had given all the elements the same name, the example would still work
with Firefox, Safari, and Navigator. This is a good example of how browser-specific JavaScript may
forgive more than it should.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Internet Explorer has received a great deal of criticism in the last few years for
its noncompliance to more universal norms. Much of it is deserved, as the
industry struggled with cross-browser issues related to an old and outdated
Internet Explorer 6.x. Many of the noncompliance issues still are not resolved
with Internet Explorer 7+, though there is much improvement.

However, not all acts of noncompliance rest completely on IE. As this section
demonstrated, sometimes a loose interpretation of a specification can be just
as erroneous as a missing one.

One way around such browser differences is to avoid using the DOM HTML interfaces, code your web
pages in compliant XHTML instead of HTML, and then use the Core API as much as possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.4. Understanding the DOM: The Core API

The DOM HTML API was created specifically to bring in the many implementations of BOM that existed across browsers. However, over the last several years, there's been a move away from using HTML (with all the proprietary extensions) and toward the XML-based XHTML. The DOM HTML API is still valid
for XHTML, but another set of interfacesthe DOM Core APIhas gained popularity among current JavaScript developers.

The W3C specifications for the DOM describe a document's elements as a collection of nodes, connected in a hierarchical tree-like structure. If you use Firefox as a browser, and you've opened up the DOM Inspector to look at the page objects, you'll probably have noticed that the page contents strongly
resemble a tree. A web page with a head and body tags, the body with a header (H1), as well as DIV elements containing paragraphs, would have a structure somewhat like this:

document -> HTML -> HEAD
                 -> BODY -> H1
                              -> DIV -> P
                                     -> P

The DOM provides a specification that allows you to access the nodes of this content tree by looking for all of the tags of a certain type or traversing the different levelsliterally walking the tree and exploring each node at each level. Not only can you read the nodes in the tree, but you can also create new
nodes.

10.4.1. The DOM Tree

To better understand the document tree, consider a web page that has a head and body section, a page title, and a DIV element that itself contains an H1 header and two paragraphs. One of the paragraphs contains italicized text; the other has an imagenot an uncommon web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Document In</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<div id="div1">
<h1>Header</h1>
<!-- paragraph one -->
<p>To better understand the document tree, consider a web page that has a head and body section, has a page title, and contains a DIV element that itself contains an H1 header and two paragraphs. One of the paragraphs contains <i>italicized text</i>; the other has an image--not an uncommon web page.</p>
<!-- paragraph two -->
<p>Second paragraph with image. <img src="dotty.gif" alt="dotty" /></p>
</div>
</body>
</html>

An element contained within another is considered a child node, other contained elements are siblings, and the containing element is the parent. Figure 10-1 provides a hierarchical description of this page, demonstrating the parent, child, and sibling relationships.

Figure 10-1. Hierarchy of elements in a web page

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Information, such as the relationship each node has with the others, is accessible via each node's shared properties and methods, covered next.

10.4.2. Node Properties and Methods

Regardless of its type, each node in the document tree has one thing in common with all the others: each has all of the basic set of properties and methods of the Node object. The Node object's properties record the relationships associated with the DOM content tree, including those of sibling elements, child,
and the parent. It also has properties that provide other information about the node, including type, name, and if applicable, value. The following list gives this object's properties.

nodeName

The object name, such as HEAD for the HEAD element

nodeValue

If not an element, the value of the object

nodeType

Numeric type of node

parentNode

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Node that is the parent to the current node

childNodes

NodeList of children nodes, if any

firstChild

First node in NodeList children

lastChild

Last node in NodeList children

previousSibling

If a node is a child in NodeList , it's the previous node in the list

nextSibling

If a node is a child in NodeList , it's the next node in the list

attributes

A NamedNodeMap , which is a list of key-value pairs of attributes of the element (not applicable to other objects)

ownerDocument

The owning document object

namespaceURI

The namespace URI, if any, for the node

prefix

The namespace prefix, if any, for the node

localName

The local name for the node if namespace URI is present

You can see the XML influence in the Node properties, especially with regard to namespaces. However, when accessing XHTML elements as nodes within a browser, the namespace properties are typically null . Also note that some properties are valid for node objects that are considered elements, such as
those wrapping page elements like HTML and DIV; some are valid only for Node objects that are not, such as those of text objects associated with paragraphs or whatever element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


To better get a feel for this element/not element dichotomy, Example 10-4 is an application that accesses each Node object within a web page and pops up a dialog listing the node properties. The nodeType property provides the type of node as a numeric, and the nodeName is the actual object name currently
being processed. If the node is not an element, its value is printed out with nodeValue ; otherwise, this is null.

In addition, if the Node object is an element, it will have a style property (inherited as part of the element, and covered in much more detail in Chapter 12 ). This sets the background color of the object currently being processed (using a random-color generator), so that you can get visual feedback as the
page processing progresses. (It also outputs this background color information to the message, as a secondary feedback method.)

Example 10-4. Accessing Node properties

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-tran sitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>The Node</title>
<script type="text/javascript">
//<![CDATA[

// random color generator
function randomColor(  ) {
        r=Math.floor(Math.random(  ) * 255).toString(16);
        g=Math.floor(Math.random(  ) * 255).toString(16);
        b=Math.floor(Math.random(  ) * 255).toString(16);
       return "#"+r+g+b;
}

// output some node properties
function outputNodeProps(nd) {

   var strNode = "Node Type: " + nd.nodeType;
   strNode += "\nNode Name: " + nd.nodeName;
   strNode += "\nNode Value: " + nd.nodeValue;

   // if style set (property of Element)
   if (nd.style) {
      var clr = randomColor(  );
      nd.style.backgroundColor=clr;
      strNode += "\nbackgroundColor: " + clr;
   }

   // print out the node's properties
   alert(strNode);

   // now process node's children
   var children = nd.childNodes;
   for(var i=0; i < children.length; i++) {
      outputNodeProps(children[i]);
   }
}

//]]>
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<body onload="outputNodeProps(document)">
<div id="div1">
<h1>Header</h1>
<!-- paragraph one -->
<p>To better understand the document tree, consider a web page that has a head and body section, has a page title, and contains a DIV element that itself contains an H1 header and two paragraphs. One of the paragraphs contains <i>italicized text</i>; the other has an image--not an uncommon web page.</p>
<!-- paragraph two -->
<p>Second paragraph with image following.</p>
<img src="dotty.gif" alt="dotty" />
</div>
</body>
</html>

In the application, when the nodeValue property is not null, the style property is seteven for nonvisual elements such as those associated with the META tag. However, when the nodeValue property has a value (even if it's only a blank), the style property is not set.

Also note that elements containing text, such as a paragraph, actually contain a reference to a text node, which is what contains the text. In fact, you might be surprised at how many components go into this rather simple page.

Safari processes the onload event before the page finishes loading, so you'll lose the interactive effect of watching the objects change color as the application runs.

There is another aspect of this application that might surprise you, and that's the difference in what is printed out per browser. Firefox prints out the CDATA contents of the script tag, while Opera does not. Internet Explorer does not create text objects for whitespace outside of a tag, while other browsers
do. IE also prints out the doctype definition while other browsers do not. Navigator doesn't color the entire page when processing the HTML element, but it does print out CDATA section for the script, and so on.

This one example demonstratesprobably more effectively than any other in the bookthe fact that subtle differences in implementing even the exact same specification can cause behavioral and visual variations among the different browsers.

JavaScript Best Practice: Always test any CSS change or new JavaScript application with all supported browsers and within as many test environments as possible. Yes, it's obvious, but it can never be repeated too many times.

One property of node , nodeType , is a numeric. Rather than search for a specific node type using values of 3 or 8, the DOM specifies a group of constants you can access on the node prototype representing each type. These constants are:

ELEMENT_NODE : value of 1

ATTRIBUTE_NODE : value of 2

TEXT_NODE : value of 3

CDATA_SECTION_NODE : value of 4

ENTITY_REFERENCE_NODE : value of 5

ENTITY_NODE : value of 6

PROCESSING_INSTRUCTION_CODE : value of 7

COMMENT_NODE : value of 8

DOCUMENT_NODE : value of 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir


DOCUMENT_TYPE_NODE : value of 10

DOCUMENT_FRAGMENT_NODE : value of 11

NOTATION_NODE : value of 12

These constants are helpful in maintaining more readable code, not to mention not having to memorize the individual values. Unfortunately, their implementation is not universal. Internet Explorer and Opera, at a minimum, don't implement these constants. Luckily, you can extend the Node object using the
JavaScript prototype, covered in detail in Chapter 11 . One of the examples is adding these constants to Node .

10.4.3. Traversing the Tree with the Node

The Node can be used to traverse a document's content, through its various parent, child, and sibling methods. Example 10-4 demonstrated this capability. The application uses the childNodes list to access a page element's children, and then uses recursion to traverse each child, in turn. The parent/child
relationship isn't the only one that can be used to travel throughout a model; other properties can be used, including the sibling relationship.

The following three examples illustrate a frameset (Example 10-5 ), an input HTML page (Example 10-6 ), and a page with JavaScript to walk through the document in the first frame (Example 10-7 ). The script prints out the objects found, at what level, and if they have any children themselves. By level, I
mean how deeply nested the HTML element is within the page.

Example 10-5 is the frameset page. I'm not using a frameset as a form of penance for not being fond of a perfectly good HTML construct. No, I'm using frames because I'll be printing to the document as I traverse it, and if I create new objects as I'm writing them out, I'll end up in a recursive loop that will
never end.

Example 10-5. Frameset page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Goin' for a walk</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<frameset cols="40%,*">
<frame name="docin" src="docin.htm" />
<frame name="docout" src="docout.htm" />
</frameset>
</html>

Example 10-6 is the source page for the traversal. The frameset can be modified to use any page for the frame, and the JS will attempt to walk the tree. However, note that the function to process the tree is based on an onload event in the script page. If it loads before the source page, the results will not be
as you expect.

Example 10-6. Source page

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Document In</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<div id="div1">
<h1>Header</h1>
<!-- paragraph one -->
<p>To better understand the document tree, consider a web page that has a head and body section, has a page title, and contains a DIV element that itself contains an H1 header and two paragraphs. One of the paragraphs contains <i>italicized text</i>; the other has an image--not an uncommon web page.</p>
<!-- paragraph two -->
<p>Second paragraph with image. <img src="dotty.gif" alt="dotty" /></p>
</div>
</body>
</html>

Example 10-7 is the web page with the script. Like Example 10-4 , it uses recursion, but before it digs deeper into the page nesting, the children nodes of the HTML element currently in the queue are accessed and printed out using the Node 's relationship properties. Each child node is then processed in turn.

Example 10-7. Script page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

printTags(0,top.docin.document);

function printTags(domLevel,n) {
   document.writeln("<br /><br />Level " + domLevel + ":<br />");
   document.writeln(n.nodeName + " ");
   if (n.nodeType == 3) {
      document.writeln(n.nodeValue);
   }
   if (n.hasChildNodes(  )) {
      var child = n.firstChild;
      document.writeln(" { ");
      do {
         document.writeln(child.nodeName + " ");
         child = child.nextSibling;
      } while(child);
      document.writeln(" } ");
      var children = n.childNodes;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


      for(var i=0; i < children.length; i++) {
         printTags(domLevel+1,children[i]);
      }
   }
}
//]]>
</script>
</body>
</html>

This example is a fairly simple approach to walking the tree. A variation could be to store each level in an array and then print each level out, in turn. You could also traverse each tree branch in turn and print out the parent-child trail before going on to each sibling element.

A better approach to traversing a document tree would be to use the W3C's optional Level 2 Traversal and Range Specification at http://www.w3.org/TR/DOM-Level-2-Traversal-Range/ . This specification provides an API for objects that allow more sophisticated tree
traversal, as well as the capability to deal with ranges of objects.

Other than its self-identification and navigation capabilities, the Node also has several methods that can be used to replace nodes or insert new nodes. These are used in association with document object methods that are used to create new elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.5. The DOM Core Document Object

As you'd expect, the document object is the Core interface to the web-page document. It provides
methods to create and remove page elements, as well as control where they occur in the page. It
also provides two popular methods for accessing page elements: getElementById and
getElementsByTagName .

The getElementsByTagName method returns a list of nodes (NodeList ) representing all page elements
of a specific tag:

var list = document.getElementsByTagName("div");

The list can then be traversed, and each node processed for whatever reason.

If the document has a DOCTYPE of HTML 4.01, all element references are in
uppercase. If the document is XHTML 1.0 and up, the element tags are in
lowercase. I've found that most browsers accept uppercase element tags
regardless of doctype.

I've used getElementsByTagName to manage most of my DHTML effects, by encapsulating all
dynamically accessible content within DIV tags and then loading all of these elements into a library of
customized objects after the page loads.

To demonstrate getElementsByTagName , Example 10-8 also uses a frameset to load a source
document in one pane and the script document in another.

Example 10-8. Frameset opening sample page and active page with
script

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Highlighting</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<frameset cols="80%,*">
<frame name="docin" src="docin.htm" />
<frame name="docout" src="findelem.htm" />
</frameset>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In this example, the findelem.htm page, shown in Example 10-9 , has three page buttons that, when
clicked, open prompts for three values: highlight color, source window to open, and element tag for
which to search.

Example 10-9. Script page opening another document in a frame and
highlighting all elements of a given type

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
div {
    border: 1px solid #000;
    padding: 5px;
}
</style>
<script type="text/javascript">
//<![CDATA[

var highlightColor = "#ffff00";
function changeColor(  ) {
  highlightColor=prompt("Enter highlight color (hexidecimal format)");
}

function loadPage(  ) {
   var pageURL = prompt("Enter page in this domain");
   top.docin.location.href=pageURL;
}

function highlightElements(  ) {
   var elemTag = prompt("Enter tag element name to highlight:");
   var nodes = top.docin.document.getElementsByTagName(elemTag);

   // highlight each
   for (var i = 0; i < nodes.length; i++) {
        nodes[i].style.backgroundColor=highlightColor;
   }
}
//]]>
</script>
</head>
<body>
<div onclick="changeColor(  )">
<p>Click to change highlight color</p>
</div>
<div onclick="loadPage(  )">
<p>Click to load source page</p>
</div>
<div onclick="highlightElements(  )">

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<p>Click to search for, and highlight, a specific tag</p>
</div>
</body>
</html>

The application opens the source document into the first pane and then finds all elements of a type
and highlights them with the given colorin this case, the list item elements (LI), which are highlighted
in gray, as shown in Figure 10-2 .

Figure 10-2. Highlighting same-tagged elements

I can't load just any document with Example 10-9 , though. The JavaScript
sandbox prevents me from calling getElementsByTagName for a document that's
outside the domain of the application page making this call. In other words, the
application works with any page from the same domain as the script page, but
no other.

The script can also work within the same document, which makes it effective if you want to highlight
all like elements in a page based on some event, e.g., all text-input form elements or thumbnail
images.

In addition to getElementsByTagName , the document object has several methods that can create new

http://lib.ommolketab.ir
http://lib.ommolketab.ir


objects. These are demonstrated in the later section "Modifying the Tree ." First, though, we'll look at
the Element object and the concept of elements in context.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.6. Element and Access in Context

Another important element in the DOM Core is, appropriately enough, Element. All objects within a
document inherit a basic set of functionality and properties from the Element. The majority of the
functionality has to do with getting and setting the attributes, or checking for the existence of
attributes:

getAttribute( name )

setAttribute( name,value )

removeAttribute( name )

getAttributeNode( name )

setAttributeNode( attr )

removeAttributeNode( attr )

hasAttribute( name )

There are other methods, most having to do with the namespaces associated with the attributes, but
these aren't methods you'll typically use with a web page.

Attributes are not always properties. Attributes change by element, with some elements having
attributes such as width and align, while others don't. Properties are a component of the object
class, rather than instances of the class. So properties would be associated with the document object,
Element, Node, or even the HTML elements such as HTMLDocumentElement. But if you want to work with
an element's attributes, and they're not exposed as a property on the object class, you'll need to use
these Element methods.

Here's an image embedded in a web page:

<img src="dotty.gif" width="100" alt="an image" align="left" />

The following code accesses the image's attributes, concatenating them into a string, which is then
printed in an alert:

  var img = document.images[0];
  var imgStr = img.getAttribute("src") + " " + 
               img.getAttribute("width") + " " +
               img.getAttribute("alt") + " " +
               img.getAttribute("align");
  alert(imgStr);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The following changes the value for the width and the alt:

  img.setAttribute("width","200");
  img.setAttribute("alt","This was an image");

Element also shares a method with the document, getElementsByTagName. Rather than work on all
elements within the document, it operates on elements within context.

All the examples so far in the book have operated, more or less, within the context of the document
object. For the most part, this is sufficient. However, there will be times when you'll want to work
only with those elements nested within another element. Through the functionality inherited by the
DOM Core, especially the Node and Element objects, any object in the page that can be accessed
through a discrete access method such as getElementById can form a new context for working with
content.

In the following HTML, two DIV blocks contain paragraphs: the first contains two; the second, one:

<div id='div1'>
<p>one</p>
<p>two</p>
</div>
<div id='div2'>
<p>three</p>
</div>

The paragraphs don't have identifiers to access each individually using getElementById. You can,
instead, use getElementsByTagName by passing in the paragraph tag:

var ps = document.getElementsByTagName("p");

However, doing so, you'll get all paragraphs in the document. This might be what you want, but what
if you want just the paragraphs within the first DIV block?

To access the paragraphs within this new context, you'll access the DIV element using
getElementById (or whatever approach you wish):

var div = document.getElementById("div1");

Then, via inheritance from the Element object, you can use getElementsByTagName to get all
paragraphs:

var ps = div.getElementsByTagName("p");

The only paragraphs in the node list returned are those nested within the first DIV block, identified by
div1.

As more web pages are designed using CSS that are built in layers with elements nested within other
layers, working with elements in context is a way to maintain some level of control over which

http://lib.ommolketab.ir
http://lib.ommolketab.ir


components of the page are impacted by the JavaScript application. This is never more noticeable
than when you use this approach to modify the document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.7. Modifying the Tree

The document is the owner/parent of all page elements. Because of this, most factory methods to create instances of new elements are methods on the Core document object. The Node , though, maintains the navigation within the Core API. This supports the hierarchical structure of the document tree, in
which each node has a relationship to other nodes, and navigation follows this natural structure: parent/child, sibling/sibling. Finally, the Element provides a way to access elements within context in order to apply changes to nested elements. All three are essential objects when it comes to modifying the
document tree.

The document factory methods, and the type of Core objects they create, are listed in Table 10-1 . This also provides a brief introduction to several of the Core objects.

Table 10-1. Factory methods of the Document object

Method Object created Description

createElement(tagname) Element
Creates an element that is cast to the specific tag

createDocumentFragment DocumentFragment
The DocumentFragment is a lightweight document, used when extracting a section of the document tree

createTextNode(data) Text
Holds any text in the page

createComment(data) Comment
XML comment

createCDATASection(data) CDATASection
CDATA section

createProcessingInstructions(target,data) ProcessingInstruction
XML processing instruction

createAttribute(name) Attr
Element attribute

createEntityReference(name) EntityReference
Placeholder for an element to be placed later

createElementNS (namespaceURI,qualifiedName) Element
Namespace for Element

createAttributeNS (namespaceURI,qualifiedName) Attr
Namespace for Element attribute

It's simple to create a new node. Call the appropriate factory method on the document, and the node is returned:

var txtNode = document.createTextNode("This is a new text node");

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The new operator is not used, as interfaces aren't classes; they have no constructors.

Once you have a new node, you can manipulate it as you would manipulate an existing page element of the same type. For instance, to add HTML to the object, you can use the innerHTML property:

var newDiv = document.createElement("div");
newDiv.innerHTML = "<p>New paragraph</p>";

Use the Node modification methods to add the new node once it's ready:

insertBefore(newChild,refChild)

Inserts new node before existing

replaceChild(newChild,oldChild)

Replaces existing node

removeChild(oldChild)

Removes existing child

appendChild(newChild)

Appends child node to document

Remember, though, that these methods have to be used within context to be effective. In other words, they have to operate on the element that contains the nodes that are being replaced or removed (or where the new node is being placed).

If the web page has a DIV element with a nested H1 header, and it's the header being replaced, you'll need to access the DIV element in order to modify its structure:

var div = document.getElementById("div1");
var hdr = document.getElementById("hdr1");
div.removeChild(hdr);
...
<div id="div1">
<h1 id="hdr1">Header</h1>
</div>

Demonstrating this more comprehensively, Example 10-10 is a variation of the static page that's used in previous examples in the chapter. It contains paragraphs, DIV blocks, an image, and a header. The script consists of a function, changeDoc , that's accessed when the page is clicked.

Example 10-10. Modifying a document

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Modifying Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

document.onclick=changeDoc;

function changeDoc(  ) {

   // first, remove header
   var hdr = document.getElementById("hdr1");
   var div = document.getElementById("div1");
   div.removeChild(hdr);

   // replace the image with text
   var img = document.getElementById("img1");
   var p = document.getElementById("p2");
   var txt = document.createTextNode("New text node");
   p.replaceChild(txt,img);

   // add new element
   var div2= document.createElement("div");
   div2.innerHTML="<h1>The End</h1>";
   document.body.appendChild(div2);
}
//]]>
</script>

</head>
<body>
<div id="div1">
<h1 id="hdr1">Header</h1>
<!-- paragraph one -->
<p id="p1">To better understand the document tree, consider a web page that has a head and body section, has a page title, and contains a DIV element that itself contains an H1 header and two paragraphs. One of the paragraphs contains <i>italicized text</i>; the other has an image--not an uncommon web page.</p>
</div>
<!-- paragraph two -->
<p id="p2">Second paragraph with image. <img id="img1" src="dotty.gif" alt="dotty" /></p>
</body>
</html>    

The first modification to the document is to remove the header from the DIV block. To do this, the DIV is accessed using getElementById . The header element is also accessed using this method, and once accessed, it's passed to the removeChild method on the DIV block. This removes the element from the
pagecompletely.

The next modification replaces the image contained in the last paragraph with text created using a text node. First, the image and paragraph are both loaded into JavaScript variables using geTDocumentById (any method will do, as long as it's precise and returns the elements as nodes). A new text node is
then created. It, and the image node, are passed to the replaceChild method on the paragraph node.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The last modification inserts a new DIV element, using innerHTML (discussed in Chapter 9 ) to create a new paragraph. This is appended to the body element, which results in a new header printed out at the end of the document that reads, "The End."

And it is the endof this chapter, that is. There's plenty more still to come.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


10.8. Questions

What attributes are supported for all HTML elements?1.

Using the HTML DOM when given a named element, how would you find its element type?2.

Given a node in the CORE DOM, how would you find the element types of each of its children?3.

How would you find out the IDs (identifiers) given all DIV elements in a page?4.

Rather than use innerHTML, how would you go about replacing the header element with a
paragraph in the following DIV:

5.

<div id="elem1">
<h1>This is a header</h1>
</div>

6.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 11. Creating Custom JavaScript
Objects
JavaScript is a wonderfully chaotic language. Some would say this is a good thing; others would say
it's the biggest detriment to its useso much so that there's a move to a new version of JavaScript,
JavaScript 2.0, in order to tighten up some of the language's looser aspects. Proponents of a newer
version say it's important to do so if JavaScript is to scale and be able to meet increasing demands.

After working with the previous examples, you might be scratching your head over the concept of
JavaScript scaling. After all, the script tag is one of the most common found in web pages, and most
sites use some form of JS. Any site that offers a shopping cart or other interactive element most
likely uses JavaScript. Considering all of this, what could possibly be driving the concern about
JavaScript and scaling?

The answer to that questioncreating libraries of custom objectsis the core of this chapter. The new
interest in Ajax and a renewed interest in Dynamic HTML has led to a growing number of fairly large
JS libraries and even larger web-based applications, so it appears that scaling really has become an
issue of concern.

Or does it? After all, most of us aren't going to be creating Ajax-based replacements for Microsoft
Word or Adobe Photoshop. Most of what we need are smaller libraries of objects that manage some
of the more esoteric elements of Ajaxian server-side access or DHTML's more complex effects.

It is an ongoing debate, and one that is taking place at the same time as efforts for JS 2.0 are
progressing. At the heart of the debate are concerns about packaging, versioning, scope, collection
generation and iteration, extensions, and most specifically, how objects are defined in JavaScript. For
all that makes JavaScript an object-oriented language, it lacks one thing common to most OO
implementations: it doesn't use classes.

I must admit to being one of those who appreciates how simple and
straightforward JavaScript is to use despite its chaotic reputation. However, I
can also understand the concerns of scaling. A bigger concern I have is whether
this move to a newer, better JavaScript will lead to another decade of
proprietary extensions and cross-browser differences. That's the type of chaos I
could do without.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.1. The JavaScript Object and Prototyping

An object in JavaScript is a complex construct usually consisting of a constructor as well as zero or
more methods and/or properties. Additionally, all objects in JavaScript derive functionality from the
standard JavaScript Object.

The Object itself is not particularly interesting. Originally it had several methods that have gradually
been pulled out as global functionssuch as eval, used earlier in this bookrather than Object methods.

What Object does provide is the framework for creating new objects; however, it doesn't do so via
traditional object-oriented inheritance and the concept of classes. Instead, JavaScript derives its OO
functionality from a concept called prototyping.

11.1.1. Prototyping

In a language such as Java or C++, to create a class as an extension of another, you define it in such
a way that it inherits from the higher-level object. You then add your own functionality in addition to
overriding any inherited functionality.

JavaScript, on the other hand, provides for a constructor, via Object, that allows developers to
construct new objects. It is the Object constructor that then allocates the memory for the object,
including all of its properties. The Object also provides a prototype property, which enables you to
extend any object, including the built-in ones such as String and Number. It is this prototype that's
used to derive new object methods and propertiesnot class inheritance.

This concept of extending objects via prototyping is best explained with an example. Example 11-1
demonstrates how to extend the built-in String object using the underlying Object prototype
property, and then create an instance using the String constructor. The extension trim method trims
leading and trailing whitespace from the string.

Example 11-1. First looks at JavaScript object creation and prototyping

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Adding trim function to String</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
</head>
<body>
<script type="text/javascript">
//<![CDATA[

String.prototype.trim = function(  ) {
return (this.replace(/^[\s\xA0]+/, "").replace(/[\s\xA0]+$/, ""));
}

var sObj = new String("  This is the string   ");
sTxt = sObj.trim(  );

document.writeln("--" + sTxt + "--");

//]]>
</script>
</body>
</html>

Though browsers strip repeating spaces when a page is rendered, at least one space should have
remained if all of them hadn't been trimmed.

With the prototype property, any use of String within the page or pages using this library now has
access to this new trim function in addition to the older String object's methods and properties. We
haven't created a new object class that's inherited from another, so much as we've taken an existing
object and extended its functionality. That's the basic difference between a class-based OO system
and one that uses prototyping.

Instead of using prototype, I could have added the trim function directly to a string instance
(variable):

var str = " this is a string ";
str.trim = function(  ) ...

However, only the instance would have access to the function, and I want to extend the actual String
object itself; hence, the use of prototype. Every object in JavaScript, including those you create
yourself, has a prototype property that allows the object to be extended.

How does the prototype work when the method is accessed? When the method is invoked on the
object, the JavaScript engine first looks among those associated with the initial object
implementation. If not found, it then looks within the prototype collection to see if the
property/method exists. Only if the property or method is not found in the global object as part of
the basic object or via the prototype collection, does the engine search for it locally, attached to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir


variable.

Of course, extending an existing object is only so helpful. Eventually, as you create increasingly
sophisticated JavaScript applications, you're going to want to package your code into reusable
components. The next section covers creating your own custom JavaScript objects and building
reusable libraries.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.2. Creating Your Own Custom JavaScript Objects

In the last few chapters of the book, which cover Ajax and the various code libraries you can
download, you'll see how much improvisation was used to create objects using JavaScript. At times,
these libraries look almost as if they're built in a language other than JS. In fact, many were built
specifically to overlay the JavaScript language with other language characteristics, which has both
advantages and disadvantages.

An advantage is that the library provides shortcuts for some of the more tedious operations, such as
accessing page elements. Laying another language's flavor over JS may also make it easier if you use
this language as the server-side component in an Ajax application.

The disadvantage is that this effort obfuscates the underlying JavaScript, making the library hard to
read, hard to use, and confusing if you're not necessarily up on all the latest language advances.

One of the best essays I've seen written on the ambivalence associated with some of the clever and
powerful, but obscuring, component libraries is "Painless JavaScript Using Prototype" by Dan Webb at
Sitepoint (at http://www.sitepoint.com/article/painless-javascript-prototype).

JavaScript-library developers just can't seem to keep from trying to make
JavaScript act like another language. The Mochikit guys want JavaScript to be
Python, countless programmers have tried to make JavaScript like Java, and
Prototype tries to make it like Ruby. Prototype makes extensions to the core of
JavaScript that can (if you choose to use them) have a dramatic effect on your
approach to coding JavaScript. Depending on your background and the way
your brain works, this may or may not be helpful.

We'll get into the "make JavaScript be something else" approach to components and development
later, but in this chapter, I'm focusing on how to make JavaScript work like JavaScript, but in a nice
way.

Returning to the topic of creating objects, we find an old friendthe functionat the heart of the
capability. It is the JavaScript function that's at the core when creating new objects.

11.2.1. Enter the Function

For close to a decade, when you created a custom object in JavaScript, you used functions. There
have been some changes in how the functions are written, how private and public properties are
defined, and even how those properties are packaged, but fundamentally if you want to create a new
custom object in JavaScript, you start with the function.

In Example 11-2, JavaScript creates a very simple object, Tune, which takes one parameter, a song
title. This is assigned to an object property, title. The object also incorporates an array of
performers, which can be manipulated via two methods: addPerformer (which takes a string), and

http://www.sitepoint.com/article/painless-javascript-prototype
http://lib.ommolketab.ir
http://lib.ommolketab.ir


listPerformers, which takes no parameters.

Example 11-2. Creating a custom object

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>First Object</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

var Tune = function(title) {
   this.title = title;
   var performedBy = new Array(  );
   this.addPerformer = function (performer) {
      var i = performedBy.length;
      performedBy[i] = performer;
   }
   this.listPerformers = function(  ) {
      var singers = "";
      for (var i = 0; i < performedBy.length; i++ ) {
         singers += performedBy[i] + " ";
      }
      alert(singers);
   }
}

var song = new Tune("Hello");
song.addPerformer("Me");
song.addPerformer("You");
song.addPerformer("Us");
song.listPerformers(  );
alert(song.title);
//]]>
</script>

</head>
<body>
</body>
</html>

In the page, an instance of Tune is created using the Object constructor, passing in a song title,
"Hello." The addPerformer method is called three times, passing in three performers: Me, You, and Us.
The listPerformers method is then called to print out the performers and then the song title.

Going into greater detail, in the script I first create a function with the same name as the object,
Tune. Remember from past chapters that all functions in JavaScript are also objects, so by creating

http://lib.ommolketab.ir
http://lib.ommolketab.ir


this function we are, in effect, creating our custom object.

Within the function there are two properties and two methods. In this example, the code blocks to
implement both methods are included as part of the object declaration. However, it doesn't have to
be done this way. A set of objects I've used for years to manage my cross-browser DHTML efforts
sets each object's properties to a method, which is then implemented outside the object constructor
function:

function someObject(  ) {
   this.method1 = objMethod1;
   ...
}
function objMethod1(  ) {
...
}

A good reason for using this approach is to make the code easier to read. You could also attach the
same method to different objects, though a better approach might be to use a form of JavaScript
inheritance called chaining constructors (discussed later in the chapter).

Another approach to creating a custom object is to create an instance of the object, and then use the
object's prototype to assign both properties and methods. Example 11-3 demonstrates this with a
variation on the Tune object, but this time I'm using a prototype to assign a function to an object
method.

Example 11-3. Using a prototype to assign properties and/or methods

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Second Object</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function Tune (title) {
   this.title = title;
}
function printTitle(  ) {
   alert(this.title);
}
var someTune = new Tune("Title");
Tune.prototype.print = printTitle;

var anotherTune = new Tune("Another Title");
anotherTune.print(  );

//]]>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</script>

</head>
<body>
</body>
</html>

The object has to be instantiated at least once in order for the JavaScript engine to generate the
prototype on the new object. Once instantiated, though, it's just as usable, and in the same manner
(as was demonstrated with the String object).

Though perfectly acceptable, I'm not fond of using prototypes when I control
how a custom object is derived. To me, it unnecessarily adds to the complexity
of the object, as well as decreases its readability. They are, however, very
handy as a way to extend objects defined elsewhereincluding JavaScript's own
basic set of objects.

The use of this associated with the title was demonstrated in both examples. It was also used with
the methods in the first example, but not with the song array. The use of this signals a difference
between a public and a private member within a JavaScript object, discussed next.

11.2.2. Public and Private Properties and Where this Enters the Picture

In Example 11-2, the this keyword is used to assign the value to the property of the object. It acts
as a reference to the parent object, which is an instance of the new object we're creating. What this
does (literally) is create a public property that is accessible outside the object, as was demonstrated
when we printed the song title:

alert(song.title);

The use of this is also associated with the two methods. The array, though, is not assigned to the
object using this; instead, it's created using the variable keyword var. This fact makes the property
a private oneaccessible internally to the object (including to its methods) but not outside of the
object. Why have private rather than public variables? Primarily for data hidingprotecting data from
direct application access.

There are times when you don't want application developers to directly access object data. They may
end up making the object unusable or inadvertently cause an unwanted side effect. Usually you'll
provide methods to get and set this data, rather than have it accessible as a property. To hide such
data in JavaScript, you create it as a private member, with var, rather than a public member, with
this.

The examples so far have passed basic JavaScript objects (Strings) as parameters. You can also use
custom objects to wrap existing page elements in a form of encapsulationan effective way to deal
with browser differences. The next section covers this JavaScript object encapsulation, as well as
cross-browser objects. We'll also look at how to detect when a certain functionality is supported or

http://lib.ommolketab.ir
http://lib.ommolketab.ir


not.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.3. Object Detection, Encapsulation, and Cross-Browser
Objects

With the release of CSS and Netscape's Navigator 4.x, as well as Microsoft's Internet Explorer 4.x,
web-page developers could finally create sophisticated page effects such as animated page contents,
collapsing menus, and in-page notifications. The only problem was that not all of the browsers used
the same object model when providing this capability.

One way around this cross-browser incompatibility was to access the agent string to determine what
browser was accessing the page, and change the JavaScript accordingly. However, this approach,
commonly called browser sniffing , was abandoned fairly quickly in favor of another approach: object
detection .

11.3.1. Object Detection

With object detection, the JavaScript accesses the object being detected in a conditional statement. If
the object doesn't exist, the condition evaluates to false . In Chapter 9 , I mentioned one object
that's commonly used in older scripts: document.all . Checking for document.all can detect a browser
that supports the IE 4.x model. Another common object detection is to check for document.layers ,
which was supported by Netscape's Navigator 4.x:

if (document.layers) ...

Luckily, all modern browsers support a fairly consistent model. All support the
document.getElementById , which is critical for accessing specific elements. All support the style
property (covered in the next chapter), which allows you to change the CSS style properties of an
element.

Still, even now, there are differences. Though I'll cover JavaScript manipulation of CSS properties in
Chapter 12 , we'll look at one specific property that differs between Internet Explorer and other
browsers: opacity .

An element's transparency is determined by the percentage of its opacity. Microsoft was the first to
provide a way to change an element's opacity dynamically, through a proprietary filter called the
alpha filter . Later, the Mozilla group created a variation of the filter, called the moz-opacity . At about
the same time, the KHTML effort (represented by the Safari browser and Konquerer on Linux) derived
a property called khtml-opacity . With the release of CSS 3.0, a universal property was defined for
opacity, simply named opacity .

The Mozilla line of browsers has moved to the new CSS3 standard, as has Safari. Oddly enough,
Microsoft has decided not to support this property and still persists in using the alpha filter, even with
the new IE 7. Object detection is necessary, then, to create an effect that works with IE as well as the
other browsers that support the CSS3 opacity property.

In Example 11-4 , object detection is used to determine which approach to usethe alpha filter or

http://lib.ommolketab.ir
http://lib.ommolketab.ir


setting the CSS opacity . The target is an image embedded in the page. Its opacity is decreased 10
percent each time the page is clicked. Because the Microsoft alpha filter uses a percentage rather
than a digital value, the variable used to hold the current opacity is multiplied by 100 when used with
IE.

Example 11-4. Using object detection to determine how to adjust the
opacity style

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Object Detection</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript">
//<![CDATA[

var opacity = 1.0;
document.onclick=adjustOpacity;

function adjustOpacity(  ) {
    opacity= opacity - 0.1;
    var img = document.getElementById("img1");
    if (img.style.filter) {
       opacity = opacity * 100;
       img.style.filter = "alpha(opacity:"+opacity+")";
    } else if (img.style.opacity) {
      img.style.opacity = opacity;
    } else {
      alert("Opacity not supported");
    }
}
//]]>
</script>

</head>
<body>
<img id="img1" src="fig01-1.jpg" style="opacity: 1.0; filter: alpha(opacity=100)"/>
</body>
</html>

In Mozilla, Navigator, Camino, Firefox, Safari, and IE, the image loses opacity with each click, fading
away until it's completely transparent. With Opera, which doesn't support opacity , the message is
given instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In Example 11-4 , the initial opacity is set using an inline style setting. Without
this initial setting, the opacity style setting returns null for any browser. The
reason for this is that stylesheets and default settings aren't usually reflected
with the style object when accessed by JavaScript. Stylesheets can be accessed
as an array off the document object, and their individual rules accessed, using
document.stylesheets[0].cssRules[0] (for W3C-complaint browsers), or
document.stylesheets[0].rules[0] (for IE). You can also swap out an existing
stylesheet using the stylesheets array.

This is an effective technique to work around cross-browser differences, but you might be asking
yourself, what does this have to do with creating custom objects?

11.3.2. Encapsulating Objects

Earlier I touched on being able to pass page objects in as a parameter when constructing a new
object. The custom object then wraps, or encapsulates, the page object, allowing you to create a set
of functionality that hides most of the implementation details. When using a library that has this
capability, instead of having to provide all of the JS yourself to change an object's opacity, you can
just call a method that changes it for you.

If the underlying implementation changes because of what the browser supports, object
encapsulation can hide all of the details for managing this alteration. The applications don't have to
change because the underlying implementations have. This makes sophisticated interactive and
dynamic applications so much easier to develop. If the browser's implementation is modified, you no
longer have to worry about changing multiple applications.

Additionally, you no longer have to run a continuous set of operations that check whether the browser
supports this functionality. Your code, or the JS library you're using, checks it up front when the
objects are created (usually when the page loads).

Example 11-5 shows a self-contained application that demonstrates how object encapsulation can
work in JavaScript, and how to manage cross-browser differences. The application includes a tiny
object library that manages opacity. The page has two DIV elements, each of which contains an
image. Both elements are positioned absolutely in the page: one is opaque, the other transparent.
When the page loads, a function is called that creates an instance of the custom object, passing in
each DIV element in turn. The first element's opacity is set to 1.0 (visible); the second to 0
(completely transparent). Clicking on the page decreases the opacity of the visible object and
increases the opacity of the originally invisible object, creating a transformation effect between the
two objects.

Example 11-5. Object encapsulation

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Object Detection</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<style type="text/css">
div {
        position: absolute;
        top: 30px;
        left: 50px;
    }
</style>

<script type="text/javascript">
//<![CDATA[

var theobjs = new Array(  );

function alphaOpacity(value) {
   var opacity = value * 100;
   this.style.filter = "alpha(opacity:"+opacity+")";
}

function cssOpacity(value) {
   this.obj.style.opacity = value;
}

function getOpacity(  ) {
   if (this.obj.style.filter) {
       return this.obj.style.filter.alpha;
   } else {
       return this.obj.style.opacity;
   }
}
function changeOpacity(  ) {

   // div1
   var currentOpacity = parseFloat(theobjs["div1"].objGetOpacity(  ));
   currentOpacity-=0.1;
   theobjs["div1"].objSetOpacity(currentOpacity);

   // div2
   currentOpacity = parseFloat(theobjs["div2"].objGetOpacity(  ));
   currentOpacity+=0.1;
   theobjs["div2"].objSetOpacity(currentOpacity);
}

function DivObj(obj) {
   this.obj = obj;
   this.objGetOpacity = getOpacity;
   this.objSetOpacity = obj.style.filter ? alphaOpacity : cssOpacity ;
}

function setup(  ) {
  theelements = document.getElementsByTagName("DIV");
  for (i = 0; i < theelements.length; i++) {
      var obj = theelements[i];

http://lib.ommolketab.ir
http://lib.ommolketab.ir


      if (obj.id) {
         theobjs[obj.id] = new DivObj(obj);
      }
  }

  // set initial opacity
  theobjs["div1"].objSetOpacity(1.0);
  theobjs["div2"].objSetOpacity(0.0);

  // event handlers
  document.onclick=changeOpacity;
}

//]]>
</script>
</head>
<body onload="setup(  )">
<div id="div1">
<img src="fig01-1.jpg" />
</div>
<div id="div2" style="opacity: 0.0; filter: alpha(opacity=0)">
<img src="fig01-3.jpg" />
</div>
</body>
</html>

In the example, rather than implementing the methods directly in the object, they're implemented
outside as separate functions. You can use this approach if you're creating cross-browser objects
where all versions of the objects can use some of the methods, such as the getOpacity function
(which uses object detection each time it's called), but some methods are specific to types of support
(such as the two methods for changing the opacity of the object, set by object detection when the
object is created). It also, in my opinion, can make the code a little easier to read as you document
each function, and you don't have an excessive amount of nesting.

The example also used parseFloat to ensure that the numbers are accessed as
numbers, not strings. Later, in the section on exception handling, I'll
demonstrate what happens when you don't use this function.

The use of object detection, custom objects, and encapsulation is not as important today as it was in
the past when browser DHTML support varied rather significantly. However, it's still a great way to
hide browser differences, not to mention enforce the old "code once, use many times" philosophy of
application development.

Note the DOM Level 2 functionality of getElementsByTagName to access all DIV elements, which are
then passed to the custom-object constructor to be wrapped in all that cross-browser goodness. For
allover page effects, wrapping the page elements in DIV elements and then encapsulating each as a
custom object is an approach that simplifies the development of more sophisticated functionality.
We'll look at this in more detail in the next two chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.4. Chaining Constructors and JS Inheritance

JavaScript is not a typical OO language, and shouldn't be pushed, pummeled, or constrained into
one. It has its own strengths, which should be used to advantage. Still, there are pieces of traditional
object-oriented design that would be nice to use in applications. In the last section we saw one type
of OO-based design: encapsulation. This section covers another: inheritance.

Inheritance incorporates, or inherits, another object's methods and properties in a new object. It's
the fundamental power of class-oriented development because one class can inherit from another
class, choosing to override whatever functions that have a new behavior in the new class. Something
similar can be used in JS to emulate this behavior, starting with JavaScript 1.3the function methods
of apply and call.

Returning to previous examples, when a function defining a new object is written, it becomes the
object constructor and is invoked when the new keyword is used with the function:

theobj = new DivObj(params);

Both the function apply and call methods allow you to apply or invoke a method within the context
of another object. If used with an object constructor, it chains the constructors in such a way that all
properties and methods of the one object are inherited by the containing object. The only difference
between the two is the parameters passed; the behavior is the same. The call method takes the
containing object as the first parameter, identified using this, and each of the arguments you want
to pass to the constructor of the contained object:

obj.call(this,arg1,arg2,..., argn);

The apply method takes a reference to the containing object and the arguments array of the
container. If the contained object has two parameters, and the container three, only the first two
arguments of the arguments array are passed to the contained object:

obj.apply(this,arguments);

If you're sharing a set of arguments, use apply. Otherwise, use call.

Example 11-6 uses apply and chained constructors to demonstrate inheritance. The first object
created, tune, stores information about a song's title and type. It also has a method that returns a
string containing both. The second object, artist_tune, also contains a property for the artist, as well
as a function to create a string of all properties. The apply method is called directly off of the tune
function/object. In addition, once both objects are defined, the artist_tune prototype is assigned the
tune constructor.

Example 11-6. Chained constructors and inheritance through the function

http://lib.ommolketab.ir
http://lib.ommolketab.ir


method apply

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Inheritance</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function tune(title,type) {
   this.title = title;
   this.type = type;
   this.getTitle=function(  ) {
     return "Song: " + this.title + " Type: " + this.type;
   }
}

function artist_tune(title,type,artist) {
   this.artist = artist;
   this.toString("Artist is " + artist);
   tune.apply(this,arguments);
   this.toString = function (  ) {
     return "Artist: " + this.artist + " " + this.getTitle(  );
   }
}

artist_tune.prototype = new tune(  );

var song = new artist_tune("I want to hold your hand", "rock", "Beatles");
alert(song.toString(  ));
//]]>
</script>

</head>
<body>
</body>
</html>

Handy little methods, call and apply. Sometimes, though, you don't need inheritance, or even a
class, when creating custom objects. Sometimes all you need is one object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


This is all going to be a bit much if you've never worked with a programming
language prior to this book. Or even if you have, because JavaScript has some
pretty unusual concepts. Some of the functionality described in this chapter,
such as chained constructors, is pretty rare, so don't worry if you find your
eyes glazing over on that one. However, creating custom objects and the use of
prototype are common, so you may want to go over the other sections a couple
of times until you feel more comfortable. Experiment with the examples, and
try out some of your own.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.5. One-Off Objects

In most cases, the power of OO-based development is being able to create instances of an object for
various purposes. However, sometimes all you need is one object. The Prototype Ajax library uses
these one-off objects quite a bit.

One way to create a one-off object is to create an associative array of properties and methods and
assign the lot to a variable. Any of the following create the same object, with the same behavior;
each just uses a different syntax:

var oneOff = { 
   variablea : "valuea",
   variableb : "valueb".
   method : function (  ) {
       return this["variablea"] + " " + this["variableb"];
   }
}

All objects are functions, and all functions are objects in JavaScript. In this case, the object is an
associative array with two properties and a method. Because the method is a function and an object,
it can be added to the array just like any other static item. To access the members, the method uses
named-array notation, but outside the object, it uses standard property access:

alert(oneOff.variablea);
alert(oneOff.method(  ));

Another approach is the following:

var oneOff = new Object(  );
oneOff.variablea = "valuea";
oneOff.variableb = "valueb";
oneOff.method = function (  ) {
                             return this.variablea + " " + this.variableb;
                             };

You can construct a new object from the actual Object, and then add properties and methods to the
object instance. You don't use prototype, because you're not adding new properties or methods to an
underlying object. You're adding them to an object instance directly. The method accesses the parent
object's other properties using this and just provides a named property.

Here's how to access the properties:

alert(oneOff2.variableb);
alert(oneOff2.method(  ));

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The last approach we'll investigate uses our old function to create an object, but this time, we're
assigning it directly to a variable and using it as a one-off:

var oneOff = new function(  ) {
              this.variablea = "variablea";
              this.variableb = "variableb";
              this.method = function (  ) {
                                  return this.variablea + " " + this.variableb;
                              }
              }

Again, there's no difference in how the object properties are accessed.

You can use a one-off object when you need to encapsulate a group of methods and properties into
one object, and then reuse this object throughout your entire application. You don't need many
instances of the objectjust one.

Object Libraries: Packaging Your Objects for Reuse

Most of the examples in the book are contained within one file, and this includes the
JavaScript, the CSS, and so on. The reason is to make the examples as easy to replicate
as possible, and also to make the functionality currently being demonstrated easier to
see.

For your applications, though, you're going to want to put your JavaScript into a
separate file or files, each with a .js extension. You'll also put your CSS into a stylesheet
with a .css extension, as well as restrict any script or event handlers attached directly to
objects within the page.

Using this approach, it's a lot easier to make code changes, and to see what's happening
in the code (as well as the CSS, because they are, for the most part, connected).

The next question then is: how many JavaScript files do you want to create? After all,
each adds to the overhead of the page.

A good rule of thumb to follow when packaging your JavaScript is to isolate your objects
into different layers of access, processes, or business methods. As an example, I have a
set of cross-browser DHTML objects that are then used for a set of animation objects I
created. The DHTML objects are in one file, the animation objects in another. With this, if
you're not interested in an animation, you can just include the DHTML objects.

You can break the objects into separate files even further, but the benefits are lost if you
have too many small files, each of which have to be included.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.6. Advanced Error-Handling Techniques (try, throw,
catch)

Calling functions and testing return values is acceptable in an application, but it isn't optimal. A better
approach is to make function calls and use objects without continuously testing for results, and then
include exception handling at the end of the script to catch whatever errors happen.

Beginning with JavaScript 1.5, the use of TRy...catch...finally was incorporated into the
JavaScript language. The try statement delimits a block of code that's enclosed in the exception-
handling mechanism. The catch statement is at the end of the block; it catches any exception and
allows you to process the exception however you feel is appropriate.

The use of finally isn't required, but it is necessary if there's some operation that must be
performed whether an exception occurs or not. It follows the catch statement, and, combined with
the exception-handling mechanism, has the following format:

try {
...
} 
catch (e) {
...
}
finally {
...
}

There are six error types implemented in JavaScript 1.5 engines:

EvalError

Raised by eval when used incorrectly

RangeError

Numeric value exceeds its range

ReferenceError

Invalid reference is used

SyntaxError

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Used with invalid syntax

TypeError

Raised when variable is not the type expected

URIError

Raised when encodeURI( ) or decodeURI( ) are used incorrectly

Using instanceOf when catching the error lets you know if the error is one of these built-in types. In
the following code, a TypeError is deliberately invoked, and then captured. The exception that's
thrown has a message property that can be printed out to get information about the exception:

try {
  var somearray = null;
  alert(somearray[18]);
} catch (e) {
   if (e instanceof TypeError) {
      alert("Type error: " + e.message);
   }
}

You can also use multiple tests for the type of error, log the error, and even call a special exception
handlerall within the catch block. If you have any functionality that needs to be processed regardless
of success or failure, you can include this in the finally:

try {
  var somearray = null;
  alert(somearray[18]);
} catch (e) {
   if (e instanceof TypeError) {
      alert("Type error: " + e.message);
   }
}
finally {
   somearray = null;
}

This more sophisticated form of exception handling fits in with object construction because your
object methods can throw exceptions using the associated tHRow statement, rather than having to
fuss around with returning null or some other failed value. You can throw any number of exception
types and then process them accordingly in the code that is working with the object.

In Example 11-7, the small object library and related example from Example 11-5 is modified so that
it doesn't use the parseFloat function, which ensures that the opacity settings are treated as
numbers before modifying the value. In addition, the two methods that set the opacity now test to
see if the value is a number, and throw an exception if not. The calling function catches this exception

http://lib.ommolketab.ir
http://lib.ommolketab.ir


and prints out the message.

Example 11-7. Testing opacity settings

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Exceptions</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript">
//<![CDATA[

var div1;

function alphaOpacity(value) {
   if (typeof value == "number") {
      var opacity = value * 100;
      this.style.filter = "alpha(opacity:"+opacity+")";
   } else {
      throw "NotANumber";
   }
}

function cssOpacity(value) {
   if (typeof value == "number") {
      this.obj.style.opacity = value;
   } else {
     throw "NotANumber";
   }
}

function getOpacity(  ) {
   if (this.obj.style.filter) {
       return this.obj.style.filter.alpha;
   } else {
       return this.obj.style.opacity;
   }
}function changeOpacity(  ) {

   try {
      // div1
      var currentOpacity = div1.objGetOpacity(  );
      currentOpacity+=0.1;
      div1.objSetOpacity(currentOpacity);
   } catch (e) {
      alert(e);
   }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


function DivObj(obj) {
   this.obj = obj;
   this.objGetOpacity = getOpacity;
   this.objSetOpacity = obj.style.filter ? alphaOpacity : cssOpacity ;
}

function setup(  ) {
  div = document.getElementById("div1");
  div1 = new DivObj(div);

  // set initial opacity
  div1.objSetOpacity(0.0);

  // event handlers
  document.onclick=changeOpacity;
}

//]]>
</script>

</head>
<body onload="setup(  )">
<div id="div1">
<img src="fig01-1.jpg" />
</div>
</body>
</html>

The methods that set the opacity for the object don't normally return a value; doing so just for error
handling is not the way to go. Instead, by throwing the exception, the calling program doesn't have
to test the status of the method return, and the methods can trigger the error handling. Of course,
without having any kind of exception handling, throwing the exception and not catching it triggers a
JavaScript error. Even though that is appropriate, why have exception handling only to disregard its
use?

As stated at the beginning of this section, exception handling in JS is relatively new. It's a product of
the ongoing effort to improve the object-oriented qualities of a language that some people call
chaotic and unruly. There's a move to put some controls on this wild child of the programming
languages by issuing a new major revision of JavaScript: JavaScript 2.0. This effort is discussed in
this last section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.7. What's New in JavaScript

Though the ECMA working group hasn't issued a new specification release, work on JavaScript
continues. JavaScript 1.6 introduced new array methods such as indexOf and lastIndexOf, as well as
iterators (methods to help one move through, or iterate through, a collection such as an array):
every, filter, forEach, map, and some.

JavaScript 1.7, which is part of the Firefox 2.0 release, continues working with arrays, and includes
additional iterators and generators for initializing them. It also expands scoping rules to include
block-level scoping. Right now, there is function-level (local) and global scoping, and that's it.

At issue with these changes, though, is that they are browser-specific. At a minimum, they have no
ECMA backing and again, push us off into a potential cross-browser dichotomyjust at a time when
we're beginning to expect consistent behavior among the major browsers. Most of JavaScript 1.6 is
covered by ECMA-262 revision 3, but there's no parallel ECMA specification for JavaScript 1.7.

More, there's no guarantee that Microsoft will concur with the steps that the Mozilla organization is
taking with the language enhancements. However, unlike the issues with different interpretations of
the DOM, which was the primary cause of cross-browser difficulties in past JS lives, we're now faced
with a growing separation in the basic programming language itself.

I include a discussion of the future of JavaScript in this particular chapter because many of the
proposed changes for JavaScript 2.0 (also known as ECMAScript Edition 4, or ECMA4) have to do with
converting JavaScript to a true class-based language. This includes the ability to provide packaging
and versioning, as well as true public and private keywords, and static typing through the use of
const and final.

A second interest with JavaScript 2.0 is to improve its ability to communicate with other
programming languages for multilanguage application development. This means types for object
interfaces, as well as machine-level data types such as int.

The creator of the original JavaScript, Brendan Eich, formerly of Netscape and now a part of the
Mozilla corporation, gave a presentation at XTech in May 2006 about JavaScript 2.0 and the future of
the Web. The presentation is at http://developer.mozilla.org/presentations/xtech2006/javascript/.
Unfortunately, there's no audio of the presentation, nor any document fleshing out the bullets. But
going through the slides, you can draw several inferences about the whys and wherefores of this
rather significant move in JavaScripting.

11.7.1. Change Just Enough

The original JavaScript 2.0 proposal was intimidating due to the extent the language would have to
change. According to Scott McCoy's article on JS 2.0 (at
http://www.blisted.org/wiki/papers/opinions/JavaScript2.0), we don't need to change the language
much. McCoy provided a sound argument as to why classes aren't needed, and the current
prototype-based system was very effective. What's needed instead is a better extension mechanism.

http://developer.mozilla.org/presentations/xtech2006/javascript/
http://www.blisted.org/wiki/papers/opinions/JavaScript2.0
http://lib.ommolketab.ir
http://lib.ommolketab.ir


However, Eich's presentation lists some of the arguments for just minimal JavaScript changes and
details why he feels these won't work in the long run. One of these reasons involves closures for data
hiding, which I wrote about in an earlier chapter. As I noted then, closures can add to the memory
burden, increasing it almost three times according to Eich.

Another argument for minimal changes to JavaScript is that we're finally at a point where browsers
interoperate. Now is not the time to rock the boat. To this, Eich responds that browsers don't
interoperate at the frontiers, which we must assume means at-the-edge cases (most likely Ajax-
based). He also stresses that using namespaces for extensions requires cooperation. As for the
current system of type checking, Eich argues that specific type checking is tedious, and frameworks
must be shared and distributed.

Ultimately, Eich states that minimal changes don't scale.

11.7.2. Scaling and the Next 10 Years

There is a fork in the road for JavaScript usage. One path leads to the typical JS use we've seen for
the last several years: form validation, setting and getting cookies, providing an interactive web page
for the user, etc. We've added many more bells and whistles, but the underlying concept is that we're
working with web pages.

Another path is one that sees the browser and the Internet as the new desktop of the future. Rather
than view the document in which we work just as a web page, it's a whole new environment that
requires a great deal more interactivity (storage, interfacing with a server, and so on) than we've had
in the past.

When Eich talks about scaling, I'm assuming he means the latter and not the former. At Eich's
roadmap weblog (http://weblogs.mozillazine.org/roadmap/), he begins to discuss some of the
proposed changes, though most of the discussion is based on programming-language semantics,
rather than what JS will look like for you and me in the end. In one comment, Eich talks about the
scaling issue:

There are at least 134 "Ajax" libraries, with line-counts in the 10KSLOC to 100KSLOC and
beyond. These libraries are used by equally large apps. This is large scale programmingthe
horse is out of the barn.

We'll look at some of these libraries in the last two chapters, but the larger ones are focused on
emulating desktop applications within browsers. Does the tail (in this case, Ajax and the desktop
style of applications) then wag the dog (the entire community of web developers)? Eich seems
confident that this is so, and believes JavaScript 2.0 will roll out in general-browser use by 2010.

When pondering the fact that Microsoft is just now coming out with IE 7, and it doesn't implement all
of the DOM Level 2 functionality, which has been a released spec for years, I'm not so sanguine that
we'll all be developing in JS 2.0 in four years. However, stranger things have been known to happen.

http://weblogs.mozillazine.org/roadmap/
http://lib.ommolketab.ir
http://lib.ommolketab.ir


If you want a taste of the new JavaScript now, Adobe's ActionScript 3.0 (at
http://labs.adobe.com/technologies/actionscript3/) is supposedly a close
enough implementation of the changes that are to be incorporated into
JavaScript 2.0. Brendan Eich, as convener of the ECMA TG1, which is working
through the issues of ECMA4, has stated that he meets with the ActionScript
folks monthly, sometimes weekly.

There's also work on a JS 2-to-JS translator that will allow you to write in
JavaScript 2.0 and will then translate your writing to JavaScript 1.x syntax for
use in current browsers. There's an online site that provides translation at
http://olav.dk/js2/.

You can keep up with these and other changes in JavaScript at the Learning
JavaScript web site (http://learningjavascript.info).

http://labs.adobe.com/technologies/actionscript3/
http://olav.dk/js2/
http://learningjavascript.info
http://lib.ommolketab.ir
http://lib.ommolketab.ir


11.8. Questions

Let's say you want to create a new Number method, TRiple, which triples the current Number
object's value. You also want this method available for all numbers. What are the steps you'd
take?

1.

How do you hide a data member with a new object? Why would you want to?2.

Create a function that wants a number argument and returns an error if the argument is the
incorrect type. How would you implement this without having to use the return statement?

3.

We've seen object detection used previously with events:4.
 var theEvent = nsEvent ? nsEvent : window.event;5.

Why can't we use the same type of functionality when dealing with the opacity differences?6.

Create a custom object with three public methodschangeState, getColor, and getStateand two
private data members, background and state. Set the data members to on for state, and set a
color of #fff for background color. The changeState method will test to see if the state is on,
and if it is, change it to off, and the color to #000. The getColor method returns the color, and
the getState returns the state.

7.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 12. Building Dynamic Web Pages:
Adding Style to Your Script
Back in 1996, I was invited to a confidential author introduction for a new technology that Microsoft
planned to roll out within the year. I traveled up from Portland, Oregon to Microsoft's Seattle campus
and joined with several other authors and editors from various book companies in a rather nice
conference room (with a kicker buffet in the back).

One of the Microsoft managers appeared in front of a projected image of a web page, which wasn't
anything to write home about. That is, until he clicked on a header in the page, and the material
below the header was pushed down as a previously hidden paragraph. A small thing, and no big thing
now, but back then, I was blown away.

This was my first introduction to the concept that became known as Dynamic HTML or DHTML. I
eventually went on to write a book on DHTML, as well as several articles dealing with cross-browser
DHTML. The key element to the concept was the introduction of a new W3C specification, Cascading
Style Sheets, in addition to the concept of Document Object Model, though there was no universal
model at the time.

It's through CSS that we can define the appearance of page elements without having to rely on
external applications, plug-ins, or excessive use of images. It's also through CSS and stylesheets that
we can separate the presentation of page elements from their organization.

However, it was through the DOM that we could access stylesheet properties from JavaScript,
changing individual element properties even after the page had finished loading. Combined with CSS,
it was a powerful means to make a web page far more interactive than it had been.

The only problem was that each company that then had a major browserNetscape Navigator and
Microsoft's Internet Explorer being the most popularimplemented a different DOM, and this made
DHTML quite difficult. Although the Version 4 browsers were capable of some amazing effects, they
came at a cost. The page had to include code to create the effect that would work in each browser
and that would also work with older browsers that didn't have DHTML capability. Primarily due to this
difficulty, DHTML languished without extensive use until the more modern browsers such as those
that tested the examples in this book. Now, DHTML has awakened new interest, aided and abetted by
the amazing popularity of Ajax (covered in Chapters 13 and 14).

As mentioned in Chapter 11, I've had a set of cross-browser DHTML objects
and animation objects built on them in one form or another since 1998. A
modern variation can be downloaded, as well as several examples of their use,
at my Learning JavaScript web site, http://learningjavascript.info.

http://learningjavascript.info
http://lib.ommolketab.ir
http://lib.ommolketab.ir


12.1. DHTML: JavaScript, CSS, and DOM

Cascading Style Sheets (CSS) had a rough start. The idea of putting the presentation of page elements into a separate specification was around
before the beginnings of the Web, but was pushed aside by earliest browser developers. It wasn't until 1996with the first release of CSS, followed
by the first releases of the 4.x browsersthat CSS finally became a reality. None too soon, because web-page developers were getting quite
frustrated with web-page limitations.

In those early days, most pages were laid out using HTML tables, which originally were not intended for page layout, but data organization.
Problems associated with page layout included the entire page not displaying until all images were loaded, not to mention all of the cruft that was
creeping into page development through the different browsers. If you worked with web pages then, you're familiar with font and, worse, blink .

CSS provided a clean alternative; with it, you could initialize and manipulate different categories of presentation properties. These include an
element's background, font, colors, borders, and box size, margins, and padding, if applicable. These were a very nice addition to a web-application
developer's toolbox, but there was something missing: the ability to position elements and control their layout, as well as their visibility and display.
It wasn't until Netscape and Microsoft collaborated on an early release of positional CSS, called CSS-P, that these style properties were released.
Eventually, they were rolled into a new release of CSS: CSS2.

This chapter assumes you're familiar with CSS and how to add stylesheets to a web page. If you're unfamiliar with CSS,
you may want to read a good tutorial or book on CSS first before reading the rest of this chapter. I recommend Eric A.
Meyer's Cascading Style Sheets: The Definitive Guide (O'Reilly). There are also numerous tutorials online if you do a
search on "CSS" and "tutorial." One popular site is W3 Schools at http://www.w3schools.com/css/default.asp .

12.1.1. The style Property

CSS style properties are typically retrieved and set via the style object. The concept of style as property originated with Microsoft, but was
adopted by the W3C and included in the DOM Level 2 CSS module. Through the W3C DOM, any node has an associated style object as a property,
which means any page element can have its style properties changed with JavaScript.

To change any style setting using JavaScript, you must first use one of the DOM-access methods outlined in Chapters 9 and 10 to get a handle on
the individual element (or elements). To change the style attribute, use straight assignment:

element.style.color="#fff";

This works with any valid CSS2 attribute and on any valid XHTML object. Example 12-1 shows how to modify several CSS attributes, using our by
now very familiar getElementById to access a DIV element, and the style object to set various CSS properties.

Example 12-1. Applying several style property changes to a DIV element

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Changing Styles</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function changeElement(  ) {
  var div = document.getElementById("div1");
  div.style.backgroundColor="#f00";
  div.style.width="500px";
  div.style.color="#fff";
  div.style.height="200px";
  div.style.paddingLeft="50px";
  div.style.paddingTop="50px";
  div.style.fontFamily="Verdana";
  div.style.borderColor="#000";
}

//]]>
</script>

</head>
<body onload="changeElement(  );">
<div id="div1">
This is a DIV element.
</div>
</body>
</html>

Notice in the example the naming convention used with the CSS properties? If the property has a hyphen, such as border-color , the hyphen is
removed and the first letter of the second term is capitalized: border-color in CSS becomes borderColor in JavaScript. Other than that, the names
of the CSS properties used in JavaScript are the same as the names of the properties in a stylesheet. Figure 12-1 demonstrates how the DIV
element and its contents look after the style changes have been made.

Figure 12-1. Applying several style changes

http://lib.ommolketab.ir
http://lib.ommolketab.ir


If modifying the style attribute is simple, reading it is less so. If the style property is not set through JavaScript or using the style attribute inline
in the element, even if the value is set with a stylesheet, the property value will either be blank or undefined. This is important to remember
because it will trip you up more than anything else when you're working with DHTML. The style settings used to render the object initially are
internal to the browser and based on a combination of stylesheet settings, as well as element inheritance.

To repeat: unless the style property is set via JavaScript or directly in-line using the style attribute on the element, the
value is blank or undefined when you access it via script, even if you set the value through a stylesheet.

To access the style, you need to use other properties, each specific to different types of browsers. Microsoft and Opera support a currentStyle
property on the element, while Firefox, Mozilla, and Navigator support window.getComputedStyle . Unfortunately, these don't work consistently
across browsers.

For the getComputedStyle method, you must pass in the CSS attribute using the same syntax you use when setting the style in the stylesheet.
However, for the currentStyle method, you use the JavaScript notation. (It doesn't matter either way what you use with Safari, because it doesn't
support any method.)

Example 12-2 demonstrates a variation of a function that gets the style settings for an object and a specific CSS property. It tests, first, whether
window.getComputedStyle is supported, and if not, tests for getComputedStyle . If neither are supported, it just returns null . The style property is
also accessed and printed out, both before and after it's set.

Example 12-2. Attempting to get CSS style information

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Shy Style</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

#div1 { background-color: #ff0 }
</style>
<script type="text/javascript">
//<![CDATA[

document.onclick=changeElement;

function getStyle(obj,jsprop,cssprop) {
   if (obj.currentStyle) {
       return obj.currentStyle[jsprop];
   } else if (window.getComputedStyle) {
      return document.defaultView.getComputedStyle(obj,null).getPropertyValue(cssprop);
   } else {
     return null;
   }
}

function changeElement(  ) {
    var obj = document.getElementById("div1");
    alert(obj.style.backgroundColor);
    alert(getStyle(obj,"backgroundColor","background-color"));
    obj.style.backgroundColor="#ff0000";
    alert(getStyle(obj,"backgroundColor","background-color"));
    alert(obj.style.backgroundColor);
}

//]]>
</script>
</head>
<body>
<div id="div1">
<p>This is a DIV element</p>
</div>
</body>
</html>

Notice in the script that the syntax to get the computed value is document.defaultView.getComputedStyle rather than window.getComputedStyle .
The reason is that document.defaultView returns the DOM AbstractView object, which is the base interface from which all views derive. This may
be set to the window object, but there's no guarantee, and it could change from browser to browser, or version to version. As such, you'll want to
use document.defaultView.getComputedStyle to get the style property.

Even when the style property is accessible, what exactly is returned also varies from browser to browser; for instance color, simple color. Opera

http://lib.ommolketab.ir
http://lib.ommolketab.ir


returns the hexadecimal format for the color:

#ff0000

While Firefox returns the RGB setting:

RGB(255,0,0)

You then need to convert between the two formats if you want a consistent result.

Retrieving style settings from the page is fraught with interesting challenges. Perhaps more so than is fun, entertaining, or even useful. A good rule
of thumb when working with DHTML is try to avoid retrieving information directly from the page style settings. Instead, whenever possible, use
program variables to hold values and only use style to set attributes.

The CSS style properties tend to fall into families of like properties: fonts, borders, the container for elements, positioning, display, and so on. In
the rest of the chapter, I'll cover several attributes, demonstrating how to work with each using JavaScript. Definitely take some time along the
way to stop and improvise on all of the examples.

Getting style information through the document's stylesheet collection is not covered here. This is a newer collection and
not part of the original BOM. Using this approach works around some of the compatibility and attribute-setting difficulties
discussed in this chapter. To see an example and discussion on this approach, see "Modifying Styles" by Steven
Champeon at http://developer.apple.com/internet/webcontent/styles.html .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


12.2. Fonts and Text

One of the first presentation-specific HTML elements was font , and it's also one of the older HTML elements you still find, all too frequently, in web pages. It's not surprising that font and text properties were of such interest in building web pages. Few changes you can make to an element's style attributes
can have such an effect as changing the text or font properties.

Notice I say text or font properties. The font has to do with the characters themselves: their family, size, type, and other elements of the characters' appearance. The text attributes, though, have more to do with decoration attached to the text and include text decoration, alignment, and so on.

12.2.1. Font Style Properties

There are several style attributes for fonts. Their CSS name and the associated JavaScript-accessible style attribute are given in the following list:

font-family

Access it as fontFamily in JavaScript. This adjusts the font family (such as Serif, Arial, Verdana) for the font. When specifying a multiword font family, type the family name exactly; this includes spaces.

font-size

Access it as fontSize in JavaScript. This sets the size of the font. You can use different units when setting the font size. If you use em or pt with the size (such as 12pt or 2.5em ), the font is resized according to the web-page reader's personal settings. If you use px (pixel), the font is maintained at that
size regardless of user settings. Specify some unit when setting font-size with JavaScript or use one of the predefined font sizes of xx-small , x-small , small , medium , large , x-large , and xx-large . You can also use relative sizing, smaller or larger, in addition to using a percentage based on the
parent element.

font-size-adjust

Access it as fontSizeAdjust . This is the ratio between the height of the letter x , and the height specified in font-size . This setting preserves this ratio, though it's rarely given.

font-stretch

Access it as fontStretch . Expands or contracts the font. You can use one of the following: normal , wider , narrower , ultra-condensed , extra-condensed , condensed , semi-condensed , semi-expanded , expanded , ultra-expanded , or extra-expanded .

font-style

Access it as fontStyle . You can use normal (default), italic , or oblique .

font-variant

Access it as fontVariant . Use small-caps as a value if you want to use the small-cap variant of the font.

font-weight

Access it as fontWeight . Set the font's weight (boldness). Use normal, bold , bolder , lighter , or a numeric of 100 , 200 , 300 , 400 , 500 , 600 , 700 , 800 , or 900 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


As Example 12-1 demonstrated, changing the font of an element changes the font for all text contained within that element unless overridden by the style settings of a contained elementthe cascade part of Cascading Style Sheets. This is inherent to the behavior of CSS; using JavaScript to change the font
dynamically has no impact on this effect.

You can change many of the font attributes all at once using just font itself. In the following code:

div.style.font="italic small-caps 400 14px verdana";

The font attribute is used without any subproperty to set the style , variant , weight , size , and font-family . Many of the CSS properties have shortcut methods such as this. They're assigned in JavaScript just as they would be in CSS. In CSS, all the settings are to the right of the colon. In JS, everything
that's to the right of the colon is included in the quotes on the right side of the assignment statement.

12.2.2. The Text Properties

For this chapter, I decided to group several attributes that affect the appearance of text, though unlike font , they're not part of the same family. The CSS text attributes I most often set are:

color

Access it as color . Color for the text.

line-height

Access it in JavaScript as lineHeight . The space from the top of one line to the bottom of another. Specify a value in a manner similar to specifying the font size, or use normal .

text-decoration

Access it as texTDecoration . Use none , underline , overline , or line-through . Please don't use blink .

text-indent

Access it as textIndent . How much to indent the first line of text.

text-transform

Access it as texttransform . Use none , capitalize (to capitalize every word), uppercase , or lowercase .

white-space

Access it as whiteSpace . Use normal , pre , or nowrap .

direction

Access it as direction . Use ltr (left to right) or rtl (right to left).

text-align

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Access it as textAlign . How the text contents are aligned. Use left , right , center , or justify .

word-spacing

Access it as wordSpacing . Amount of spacing between words. Use normal , or specify a length.

What are typical uses for modifying font and/or text properties? You can expand a block of text to make it more legible, or highlight the data for some reason. In Example 12-3 , clicking on one of two links will either make a text block very large, as well as justified, or will return it to what it was previously.

Example 12-3. Modifying a text block

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Read THIS</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function makeMore(  ) {
  var div = document.getElementById("div1");
  div.style.fontSize="larger";
  div.style.letterSpacing="10px";
  div.style.textAlign="justify";
  div.style.textTransform="uppercase";
  div.style.fontSize="xx-large";
  div.style.fontWeight="900";
  div.style.lineHeight="40px";
}

function makeLess(  ) {
   var div = document.getElementById("div1");
   div.style.fontSize="smaller";
   div.style.letterSpacing="normal";
   div.style.textAlign="left";
   div.style.textTransform="none";
   div.style.fontSize="medium";
   div.style.fontWeight="normal";
   div.style.lineHeight="normal";
}
//]]>
</script>

</head>
<body>
<p>
<a href="" onclick="makeMore(  ); return false;">Make it more</a> <a href="" onclick="makeLess(  ); return false;">Make it less</a>
</p>
<div id="div1">

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<p>
One of the first presentation-specific HTML elements was font, and it's also one of the older HTML elements you still find, all too frequently, in web pages. It's not surprising that font and text properties were of such interest in building web pages. Few changes you can make to an element's style attributes can have such an effect as changing the text or font properties. </p><p>Notice I say text or font properties. The font has to do with the characters themselves: their family, size, type, and other elements of the characters' appearance. The text attributes, though, have more to do with decoration attached to the text and include text decoration, alignment, and so on.</p>
</div>
</body>
</html>

Chances are you wouldn't increase the text as large as this example, but it does show what kind of transformation you can create using JavaScript and CSS. Another typical use is to change the font color of a text field associated with a form element or block of text to show it doesn't apply; to literally "gray"
out the font.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


12.3. Position and Movement

Before CSS, if you wanted to control the layout of the page with any consistency, you had to use an
HTML table. As for any form of animation, you either had to use something such as an animated GIF
or a plug-in such as Flash.

Netscape and Microsoft together helped bring an end to all of this with the co-introduction of a
specification called the CSS-P, or CSS Positioning. Consider the page as a graph, with both x- and y-
coordinates. With CSS-P, you can set an element's position within this coordinate system. Add
JavaScript, and you can move elements about the page.

The proposed CSS-P attributes were eventually incorporated into the CSS2 specification. The
positioning properties in CSS2 include the following:

position

The position property takes one of five values: relative , absolute , static , inherit , or
fixed . static positioning is the default setting for most elements. This means they're part of
the page flow, and other elements in the page impact the element's position, and it impacts all
elements that follow. relative positioning is similar except that the element is offset from its
normal position. A position set to absolute takes the element out of the page flow, allowing you
to set its position absolutely in the page. This also allows you to layer elements, one on top of
another, just by positioning them in the same location. A fixed position is similar to absolute
positioning, except the element is positioned relative to some viewport. For most DHTML
efforts, you'll mainly use absolute or relative positioning.

top

In the web-page coordinate system, the value of x starts at the top and is zero. It increases as
you travel down the container, whether that container is the page or another element. Setting
an element's top property sets its position relative to the top of the container.

left

In the web-page coordinate system, the value of y starts at the left and is zero. It increases as
you travel across the container to the right. Setting an element's left property sets its position
relative to the left side of the container.

bottom

The bottom property has as its zero value the bottom of the page. Higher values move the
element up the page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


right

The right property has as its zero value the right side of the page. Higher values move the
element towards the left.

z-index

You may want to add the z-index . If you draw a line perpendicular to the page, this is the z-
index. As mentioned earlier, with absolute positioning, elements can be layered on one
another. Their position within the stack is controlled by one of two things: the first is its
position in the page. Elements defined later in the web page are located higher in the stack;
earlier elements, lower in the stack. This can be overridden using z-index . Both negative and
positive integers can be used, with a value of 0 being the normal rendering layer (relative
positioning), negative pushing an element lower than this, and positive , higher.

The display attribute also influences both positioning and layout, but it's covered later in the section
"Display, Visibility, and Opacity ." The attribute float is also involved in positioning, but it doesn't
play well with DHTML so I won't cover it.

The top , right , bottom , and left properties, as well as z-index , work only if position is set to
absolute . Elements can be set outside the page by setting any of the properties to a negative value.
Elements can also be moved based on events, such as mouse clicks.

One DHTML effect is a fly-in , where elements seem to literally "fly in" from the sides of the
document. This is a good approach for tutorials or other efforts in which you want to introduce one
topic after another, based on a mouse click or keyboard entry from the web-page reader.

Example 12-4 demonstrates a fly-in with three elements coming from the top left. A timer is used to
create the movement and reset each round until the x , the top value, is greater than a value (200 +
a value x the number of the element, to create an overlap). The elements are hidden when they are
originally positioned off the page, to the left and top, because setting elements beyond the page to
the right or bottom results in a scrollbar being added to the page.

Example 12-4. Element positioning and movement with fly-ins

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Fly-Ins</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

div { padding: 10px; }

#div1 { background-color: #00f;
        color: #fff;
        font-size: larger;
        position: absolute;
        width: 400px;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


        height: 200px;
        left: -410px;
        top: -400px;
        }
#div2 { background-color: #ff0;
        color: #;
        font-size: larger;
        position: absolute;
        width: 400px;
        height: 200px;
        left: -410px;
        top: -400px;
        }
#div3 { background-color: #f00;
        color: #fff;
        font-size: larger;
        position: absolute;
        width: 400px;
        height: 200px;
        left: -410px;
        top: -400px;
        }
</style>
<script type="text/javascript">
//<![CDATA[

var element = ["div1","div2","div3"];

function next(  ) {
   setTimeout("moveBlock(  )",1000);
}

var x = 0;
var y = 0;
var elem = 0;
function moveBlock(  ) {
   x+=20;
   y+=20;
   var obj = document.getElementById(element[elem]);
   obj.style.top = x + "px";
   obj.style.left = y + "px";
   if (x < (100 + elem * 60)) {
       setTimeout("moveBlock(  )", 100);
   } else {
      elem++;
      x = 0; y = 0;
   }
}
//]]>
</script>

</head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<body>
<p>
<a href="javascript:next(  );">Next slide</a>
</p>
<div id="div1">
Now is the time for all good wo-men to come to the aid of their country.
</div>
<div id="div2">
99 bottles of beer on the wall, 99 bottles of beer.<br />
Take one down, pass it around, 98 bottles of beer one...
</div>
<div id="div3">
web 2.0 WEB 2.0 WeB 2222....0000<br />
I'm so cool,
<h2>Learning JavaScript!</h2>
</div>
</body>
</html>

The text in the examples is a bit of nonsense, but with a little design polish and more appropriate
writing, it's an effective presentation technique. Figure 12-2 shows a screen capture of the page,
opened in Safari.

Figure 12-2. Fly-in page

http://lib.ommolketab.ir
http://lib.ommolketab.ir


To make the page more accessible, the link can be changed to open up pages with the fly-in
information. Alternatively, all three information blocks could be positioned in the page, and script
used to hide them only if JavaScript is enabled.

Another common use of DHTML associated with movement has as much to do with tracking the
movement of the web-page reader as it does elements in the page. The technique is called drag and
drop , and it's discussed next.

12.3.1. Drag and Drop

One DHTML item that generated much interest when it was first introduced was drag and drop.
Shopping-cart examples popped up all over, including a few variations of my own. I even created a
drag-and-drop game.

Over time, though, we saw that much of the interest in drag and drop did not manifest itself in
applications. I rarely see a drag-and-drop application in effect, and when I do see one, I tend to be
irritated. Why? It's not always that easy to do drag and drop; especially if you're using a trackpad or
a text-to-speech browser.

What reawakened the interest in drag and drop was Google Maps' use of the technique to allow you
to move a map around within a constrained space. It was the first time I'd seen a really effective use
of drag and drop. We'll take a look at Google Maps and its associated API in Chapter 13 , but for now,
let's look at implementing our own, very tiny emulation of drag-and-drop technology.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


What makes the Google Maps approach really exciting is that as you scroll
through a map, the application actually pulls up the next pieces from the server
and integrates them into the page using a caching mechanism. With this, you
seem to never reach the end of the map. It's really well done.

In Example 12-5 , a DIV element is created, and a screenshot from the book is embedded within the
element. In addition to drag and drop, it also uses the overflow attribute. You'll see more on overflow
later, but for now the DIV element is set to hide or clip the overflow from the element's contents.
This prevents any overlap of the image outside the defined space.

Example 12-5. The GoogleMap effect: drag and drop of object in a
container

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>GoogleMapEffect</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
#div1 {
      overflow: hidden;
      position: absolute;
      top: 100px;
      left: 100px;
      border: 5px solid #000;
      width: 400px;
      height: 200px;
}
img {
     border: 1px solid #000;
    }
</style>

<script type="text/javascript">
//<![CDATA[

// global variables
var dragObject  = null;
var mouseOffset = null;

// capture mouse events
document.onmousemove = mouseMove;
document.onmouseup   = mouseUp;

// create a mouse point
function mousePoint(x,y) {
   this.x = x;
   this.y = y;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


}

// find mouse position
function mousePosition(evnt){
  var x = parseInt(evnt.clientX);   
  var y = parseInt(evnt.clientY);   
  return new mousePoint(x,y);
}

// get element's offset position within page
function getMouseOffset(target, evnt){
   evnt = evnt || window.event;
   var mousePos  = mousePosition(evnt);

   var x = mousePos.x - target.offsetLeft;
   var y = mousePos.y - target.offsetTop;
   return new mousePoint(x,y);
}

// turn off dragging
function mouseUp(evnt){
   dragObject = null;
}

// capture mouse move, only if dragging
function mouseMove(evnt){
   if (!dragObject) return;
   evnt = evnt || window.event;
   var mousePos = mousePosition(evnt);

   // if draggable, set new absolute position
   if(dragObject){
      dragObject.style.position = 'absolute';

      dragObject.style.top      = mousePos.y - mouseOffset.y + "px";
      dragObject.style.left     = mousePos.x - mouseOffset.x + "px";
      return false;
    }
}

// make object draggable
function makeDraggable(item){
   if (item) {
      item = document.getElementById(item);
      item.onmousedown = function(evnt) {
                         dragObject  = this;
                         mouseOffset = getMouseOffset(this, evnt);
                         return false; };
   }
}

//]]>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</script>
</head>
<body onload="makeDraggable('img1');">
<div id="div1" >
<img id="img1" src="fig01-1.jpg" />
</div>
</body>
</html>

This is the most complex example we've had so far in the book, so let's take the JavaScript from the
top:

Two global objects are created: dragObject and mouseOffset . The former is the object being
dragged; the latter is the object's offset value. The offset is the object's position relative to a
container, in this instance, the page. We also capture the mousemove and mouseup events for the
document and assign them to event handlers, mouseMove and mouseUp .

The next is an object, mousePoint . This just wraps the two mouse coordinates: x and y .
Creating an object makes it easier to pass around both values.

The next function is mousePosition . This function accesses the target object's clientX and
clientY values and returns a mousePoint object representing the object's x and y location
relative to the client area of the window, excluding all the chrome. The parseInt function
ensures the values are returned as numerics.

Following is getMouseOffset , which takes as parameters an object target and an event . Once
the event object has been normalized past the cross-browser differences, the mouse position of
the event is set to the function just discussed, mousePoint . This is then modified against the
object's offsetLeft and offsetTop properties. If we didn't do this bit of computation, the object
would move with the mouse, but there would most likely be an odd jerking motion, and the
object would seem to float above, below, or to the side of the mouse. Once normalized, it's used
to create a normalized mousePoint , which is returned from the object.

The next function is mouseUp , and all it does is turn off dragging by setting dragObject to null .
Following is the mouseMove function, where most of the dragging computation occurs. In this
function, if the dragging object isn't set, the function is exited. Otherwise, the normalized mouse
position is found, the object is set to absolute positioning, and its left and top properties are set
(after again being adjusted for offset).

The last function is makeDraggable , which just makes the object passed to the function into a
draggable one. This means adding a function for the object's mousedown event, which sets the
drag object to the object, and gets the object's offset value.

Seems like a lot of code, but it's actually much simpler than it used to be with the older browsers
because most modern browsers share the same properties when it comes to positioning. Rah for
that, because drag and drop is hard enough without the extra challenge. Again, Google Maps adds an
extra element of sophistication by using Ajax to continuously refresh the map, so you never run out.
That's a little bit beyond this book, though. Consider it a future personal challenge.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


12.4. Size and Clipping

An element's size is controlled through a set of six CSS attributes. The first two, width and height , are the most common and are used to set the absolute width and height of the element. The other fourmin-height , min-width , max-height , max-width are handy CSS attributes (particularly when working
with images), but not commonly used in dynamic effects.

Actually, an element's width and height are factors of several attributes, including the element's border , margin , padding , and content . All combined, these provide a CSS "box model" associated with block elementselements that force a line break before and after.
Read more on the box model at the W3C page, "Box model," at http://www.w3.org/TR/REC-CSS2/box.htm .

If the element's contents are too large for the element, the overflow is managed through the CSS overflow attribute, which can be set to visible (render all of the content and overflow the element boundaries); hidden (clip the content); scroll (clip the content, and scrollbars are provided); and auto (clip
and provide scrollbars only if some of the content is hidden).

Why even set the element's height? After all, if the height is not defined, and the overflow not set to clip , the element automatically resizes to fit the content.

If you have content in two columns, laid out side by side, you might want to set the heights of the columns so that one isn't excessively longer than the other.

12.4.1. Overflow and Dynamic Content

When an element's contents are replaced dynamically, either through an Ajax call or some other event, the fit of the content within the element could change dramatically. One approach to ensure that the content is always accessible is to set the overflow to auto . If the content is too large, scrollbars are
then provided. In Example 12-6 , two blocks are given: one with a lot of text, one with little. The dimensions of both elements are set to safely hold their content when the page is loaded. However, there's a link that switches the content: small to large, large to small. In the CSS, the overflow for the second
element is set to auto .

Example 12-6. Changing content and the impact of the overflow setting

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Overflow</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
#div1 { width: 700px; height: 150px }
#div2 { width: 600px; height: 100px; overflow: auto }
</style>

<script type="text/javascript">
//<![CDATA[

function switchContent(  ) {
    var div1 = document.getElementById("div1").innerHTML;
    var div2 = document.getElementById("div2").innerHTML;
    document.getElementById("div1").innerHTML = div2;
    document.getElementById("div2").innerHTML = div1;
}

//]]>
</script>

</head>
<body>
<p>
<a href="javascript:switchContent(  );">Switch</a>
</p>
<div id="div1">
<p>
One of the first presentation-specific HTML elements was font, and it's also one of the older HTML elements you still find, all too frequently, in web pages. It's not surprising that font and text properties were of such interest in building web pages. Few changes you can make to an element's style attributes can have such an effect as changing the text or font properties. </p>
<p>
Notice I say text or font properties. The font has to do with the characters themselves: their family, size, type, and other elements of the characters'  appearance. The text attributes, though, have more to do with decoration attached to the text and include text decoration, alignment, and so on.</p>
</div>
<div id="div2">
<p>Smaller item.</p>
</div>
</body>
</html>

When the content is switched, the first block contains little text and a large whitespace around it. The only way to alter this is to change the dimensions of the box. Unfortunately, in a real-world example, you may not be able to easily determine the appropriate fit for the new content.

The second box, though, suddenly has a scrollbar to the right, which allows you to scroll through the content. Rather than trying to resize the box by guesswork, setting the overflow to auto and triggering a scrollbar is a better approach. This way, the box is relatively stable in the page, other elements aren't
continuously being pushed about, large blocks with whitespace don't result, and the content is still accessible.

Another approach to dealing with changing content is to resize the block using the read-only properties offsetWidth and offsetHeight to determine the actual size of the content. There is a cross-browser difference, though, when using these properties. Internet Explorer includes any border and padding in
the block size, while Mozilla/Firefox provides just the size necessary for the content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


You can also access the computed width and height of an element using the getStyle method defined earlier, using width and height instead of backgroundColor .

Though width and height control the size of the element, they don't always control what's visible of the element. That can also be controlled by the clipping rectangle associated with the element.

12.4.2. The Clipping Rectangle

According to the W3C, a clipping region:

...defines what portion of an element's rendered content is visible. By default, the clipping region has the same size and shape as the element's box(es). However, the clipping region may be modified by the clip property. (From the W3C's "Visual Effects" at http://www.w3.org/TR/REC-CSS2/visufx.html

.)

The CSS clip property specifies a shape and the dimensions of that shape. At this time, the only shape supported is a rectangle, designated with rect and defined by four dimensions: top, right, bottom, and left.

clip: rect(topval, rightval, bottomval, leftval);

The clipping region constrains how much of the actual element content is displayed. It also requires that the position attribute be set to absolute .

If an element is 200 pixels wide and 300 pixels long, a clipping region of rect(0px,200px,300px,0px) doesn't clip any of the blockdepending, of course, on whether the element has a border or other setting that can alter the effective height and width. A clipping region of rect(10px,190px,290px,10px) clips 10
pixels off each side. Note that incrementing the value for the top and left sides, but decrementing the value for bottom and right, results in clipping.

From a DHTML perspective, clipping can be used to create any form of scrolling effect, whether paired with element movement or not. It can also create the new "accordion effect" that's become so popular (demonstrated in Chapter 14 ).

Example 12-7 demonstrates a simple use of clipping to create a drop-down animated item. Clicking on the header for the item either expands or collapses the item, depending on its current state. A timer is used to animate the effect; you can also set the full display or hide with each click, and skip the timer.

Example 12-7. Drop-down animation created using a timer and clipping

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Simple Clip Scroll</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

#data1     {
           position: absolute;
           top: 100px; left: 100px;
           padding: 0;
           width: 200px;
           height: 200px;
           background-color: #ff0;
           clip: rect(0px,200px,200px,0px);
           }

#data1 h3 {
          margin: 0; padding: 5px;

http://lib.ommolketab.ir
http://lib.ommolketab.ir


          font-size: smaller;
          background-color: #006;
          color: #fff;
          }

#contained {
           margin: 10px
           }

</style>

<script type="text/javascript">
//<![CDATA[

var bottom = 200;
var hidden = false;
var obj = null;
function clipItem(  ) {
  obj = document.getElementById("data1");
  if (hidden) {
       showItem(  );
   } else {
       hideItem(  );
   }
}

function hideItem(  ) {
   bottom-=20;
   var clip = "rect(0px,200px," + bottom + "px,0px)";
   obj.style.clip = clip;
   if (bottom == 20) {
      hidden=true;
   } else {
      setTimeout("hideItem(  )",100);
   }
}

function showItem(  ) {
   bottom+=20;
   var clip = "rect(0px,200px," + bottom + "px,0px)";
   obj.style.clip=clip;
   if (bottom == 200) {
      hidden=false;
   } else {
      setTimeout("showItem(  )",100);
   }
}

//]]>
</script>
</head>
<body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<div id="data1">
<h3 onclick="clipItem(  );">Click to expand or collapse</h3>
<div id="contained">
This is the text contained within the div block.
</div>
</div>
</body>
</html>

Notice that rather than get the clipping value directly from the style property to test state, I use a global variable. You'll want to do this as much as possible with your animated DHTML effects; a variable get is cheaper than an object get , especially one that must work across browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


12.5. Display, Visibility, and Opacity

An interesting thing about web-page elements: they can be completely transparent and invisible, but still affect
the layout of the page. The reason is that invisibility/transparency and display/lack of display are not the same
thing in CSS.

An element can be hidden by setting visibility to hidden , or shown by setting visibility to visible . The
property can also be set to inherit , and the element inherits its visible property setting from the containing
element.

As demonstrated in Chapter 11 , an element's opacity can also be altered until it is completely transparent,
making it invisible. However, just as with the visibility property, the element still maintains its position within
the page flow.

If an element's display property is set to none , it's also hidden; however, any effect the element has on the page
layout is also removed. To make it visible, you have a couple of options. You can make it visible and have it act
as a block-level element (line breaks before and after the element) by setting display to block . If you don't want
block behavior, you can set display to inline , and it's displayed in-place and not as a block.

In addition, you can display the element using the default display characteristics of several HTML elements, which
include inline-block , table , table-cell , list-item , compact , run-in , etc. It's a rather powerful attribute,
and one worth playing around with until you're comfortable with its modifying results.

12.5.1. Right Tool for Right Effect

Given all these various ways to hide and display elements, which method should be used for what effect?

If you're absolutely positioning an element and then hiding and showing it based on an event such as a mouse
click or form submission, use the visibility property. It's simple and easy to use, and an absolutely positioned
element is removed from the page flow regardless. Use visibility , then, for just-in-time help.

If the content that's hidden should push down the page elements that follow when it's displayed, such as clicking
a collapsed option list when filling out a form, then use display , switching between a display value of none and a
display value of block . Use display to hide and show form fields to get user input.

If you're creating a fade effect or want to de-emphasize a page element, use the opacity property. You may
eventually adjust it so that it's completely transparent, but usually only after an animated fade of whatever
duration. Use opacity to emphasize and provide visual information. opacity can also be used to signal a
transition, as demonstrated with the photo slideshow in Chapter 11 .

A note on using visual effects for information purposes: these effects should also include
some textual element, so that people using non-visual browsers or ones with limited visual
capability also receive the same level of notification. Never rely completely on a visual
effect to provide feedback.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Time, then, for a little live action.

12.5.2. Just-in-Time Information

Some of the best sites I've visited provide some form of help any time information is requested from the web-
page reader. Even if you're asking a person's name, you want to provide an explanation of the privacy controls in
place and how that data is used.

You can provide a tooltip type of help by setting the title attribute of a link surrounding the field label, but this
usually constrains how much information you can include. You can also pop up a dialog with information, and this
is especially helpful if the information is long and detailed, with a description of options. But for those in-between
cases where you have more than a little information, but less than a lot, it would be nice to include this
information directly in the page.

For the most part, though, forms take up most of the space, and a lot of text can make the page seem cluttered.
One approach then is to put the information in the page, but have it show up based on some event.

This is one of the more useful DHTML effects you can create, and also one of the easiest. Example 12-8 shows
the page, including two form elements, each of which has a hidden help block. In the script, when the label for
the element is clicked, if any item's help is already showing, the visible help is hidden and the new help block is
shown.

Example 12-8. Using hidden help fields

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>In-Place Help</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

.help { position: absolute;
        left: 300px;
        top: 20px;
        visibility: hidden;
        width: 100px;
        padding: 10px; 
        border: 1px solid #f00;
      }

form { margin: 20px; background-color: #DFE1CB; 
       padding: 20px; width: 200px }
form a {color: #060; text-decoration: none }
form a:hover {cursor : help}
</style>

<script type="text/javascript">
//<![CDATA[

http://lib.ommolketab.ir
http://lib.ommolketab.ir


var item = null;

function showHelp(newItem) {
   if (item) {
       item.style.visibility='hidden';
   }
   item = document.getElementById(newItem);
   item.style.visibility='visible';
}

//]]>
</script>
</head>
<body>
<form>
<label><a href="javascript:showHelp('item1')" alt="get help">Item One</a></label>
<input type="text"><br /><br />
<label><a href="javascript:showHelp('item2')" alt="get help">Item Two</a></label>
<input type="text">
</form>
<div id="item1" class="help">
This is the help for the first item. It only shows when you click on the label for the item.
</div>
<div id="item2" class="help">
This is the help for the second item. It only shows when you click on the label for the item.
</div>
</body>
</html>

I also added a little CSS sugar to make the page taste better. The form is set with a color background, a help
block is outlined in red, and when the mouse cursor is over the input label for each item, the cursor icon is set to
the help icon. This typically looks like an arrow with a little question mark, or just the question mark itself. This is
also a very inexpensive way to provide a hint to the web-page readeras is the alt tag that says "get help." Figure
12-3 demonstrates this hidden help system.

Figure 12-3. In-place help using the visibility property

http://lib.ommolketab.ir
http://lib.ommolketab.ir


12.5.3. Collapsing Forms

Having to split forms functionality across many pages is a pain, but a page with too many form elements
displayed at once can be unreadable.

In addition, in-place editing of data has been growing in popularity; titles for data sections are activated for the
person who owns the data, and clicking on these titles opens up a form or input fields in which that section of the
data can be changed.

Both situations are rich with potential for using collapsible forms . These are forms or form sections that are
hidden in the page; they display only when something is activated. And not just display: they push other data out
of the way, occupying the same room the form would normally occupy if displayed.

Google, Flickr, and a host of companies use this type of collapsible content. Considering that it's also one of the
easiest to make accessible, it's not surprising. If JavaScript is not enabled, the event handling associated with the
titles that would normally display the content is not active, and the forms don't open. Menu items can be added to
open a separate page for the form, or perhaps even displayed with the noscript tag.

The last example of this chapter, Example 12-9 , demonstrates a collapsible form. In this case, it's a stacked set
of form-element blocks. Clicking on the label for each either hides it if it's currently displayed, or shows it if not.
For non-JavaScript-enabled browsers, the titles of both blocks are surrounded by hypertext links; clicking on the
link, ostensibly, takes you to a separate static form. For pages with JavaScript, a return value of false as an
onclick event for the links cancels its default behavior. You can actually see this when you disable JavaScript:
clicking the link alters the page URL to reflect the URI fragment (#name or #address ). However, when scripting
is enabled, you won't see this, but you will see the form display.

Example 12-9. Implementing a collapsable form

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Collapsing Forms</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

http://lib.ommolketab.ir
http://lib.ommolketab.ir


.label { background-color: #003; width: 400px; border-right: 1px solid #fff;
         padding: 10px; margin: 0 20px; color: #fff; text-align: center;
         border-bottom: 1px solid #fff;}
.label a { color: #fff }
.elements { background-color: #CCD9FF; margin: 0 20px; padding: 10px;
            width: 400px; display: none}
</style>

<script type="text/javascript">
//<![CDATA[

window.onload=setup;

function setup(  ) {
   document.getElementById('one').style.display='none';
   document.getElementById('two').style.display='none';
}

function show(newItem) {
   var item = document.getElementById(newItem);
   if (item.style.display=='none') {
       item.style.display='block';
   } else {
       item.style.display='none';
   }
}

//]]>
</script>
</head>
<body>
<form action="GET">
<div class="label" onclick="show('one')">
<a href="#name" onclick="return false">Name</a>
</div>
<div class="elements" id="one">
<label>First Name:</label><br /><input type="text" name="firstname" /><br /><br />
<label>Last Name:</label><br /><input type="text" name="lastname" /><br /><br />
</div>
<div class="label" onclick="show('two')">
<a href="#address" onclick="return false">Address</a>
</div>
<div class="elements" id="two">
<label>Street Address:</label><br /><input type="text" name="street" /><br /><br />
<label>City:</label><br /><input type="text" name="city" /><br /><br />
<label>State:</label><br /><input type="text" name="state" /><br /><br />
</div>
</form>

<p>Other data or information.</p>
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Again, this is the type of functionality you want to add to your web pages. It's simple, impressive-looking, and
relatively easy to convert into non-JavaScript alternatives if scripting is turned off.

I've barely scratched the surface on what you can do with JavaScript and CSS. Hopefully, though, this provides
you with a good starting point. Chapter 13 introduces you to the basics of Ajax; following, we'll look at combining
Ajax and DHTML effects for powerful applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


12.6. Questions

You access the text color of an element in JavaScript using obj.style.color, but no value is
returned. You know it's been set in a stylesheet. Why is there no returned value, and how would
you change the application to get a value?

1.

Given text in a DIV block, how would you change it to display in a 14pt font, with a red color
and a line height of 16pt?

2.

If the above change didn't work, what could be causing the effect to fail?3.

What are two ways to cause a block to disappear?4.

If drag and drop isn't an effective shopping-cart technique, what DHTML effect would be handy
for this type of service?

5.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 13. Moving Outside the Page with
Ajax
Some consider it the next best Web; others consider it hype. Whatever the opinion, Ajax, or AJAX
(Asynchronous JavaScript And XML), as some prefer, has led to a greater interest in JavaScript in
general and dynamic JavaScript functionality specifically.

For all the shiny newness of the interest, none of the technologies associated with Ajax are new. It's
dependent on JavaScript, which has been around since the mid-90s. It's also dependent on the
Document Object Model; standard web technologies such as CSS, XHTML, and XML; and the
XMLHttpRequest object, all of which were introduced years before the term Ajax was coined.

What is new is the fact that a concept was introduced for a type of development, coinciding with
newer browsers, all of which enable the necessary functionality. In other words, the time was ready
for the technology; all that was needed was someone to notice, package it, and promote its use. That
someone was Jesse James Garrett in his publication, "Ajax: A New Approach to Web Applications" (at
http://www.adaptivepath.com/publications/essays/archives/000385.php).

Where the Ajax examples in this chapter differ from examples in previous chapters is that Ajax does
require a server component. Ruby is a popular choice of programming language for Ajax
development, but any server-side language that can process the specialized Ajax requests will work.
The examples in this chapter use PHP, primarily because of all the languages, it's most similar to
JavaScript, as well as being one of the most common server-side scripting languages in use. In
Chapter 14, we'll take a look at Ruby and Ajax libraries.

AJAX? Or Ajax? When Garrett introduced the concept, he used Ajax. If Ajax is
an acronym, it should then be AJAX. Or perhaps, more accurately, AJaX.
However, Garrett introduced the term as a nickname, not an acronym, and the
acronym appeared later as people tried to figure out what led to the name.

There is no right or wrong choicethey're all just termsand since the popular use
is Ajax, I'll use this for the rest of the book. Besides, it's easier than having to
hold down the Shift key every time I type the word.

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.1. Ajax: It's Not Only Code

Ajax provides a huge bang for the buck, especially when you really need the functionality. The first
time your web-page form is validated in place, you'll see what I mean. When you can click on a
button and collapse a huge form, clearing up the clutter on the page, you'll be convinced Ajax is the
One True Way.

Well, yes and no. Ajax, like other JavaScript-enabled applications, has its pluses and minuses.

13.1.1. PermaWhat?

If you wanted to, you could create an entire web site in one page, using Ajax and other JavaScript-
enabled and replace functionality based on your web-page reader's actions. However, the problem
with this is that it becomes increasingly difficult to recreate a specific view of the content.

Ajax, like all DHTML functionality, does not create permanent page effects. They have to be recreated
each time a page is loaded, or each time a person makes a sequence of movements. They may not
be accessible via source or printable.

There will be no permalink to individual pieces, nor will your web-page readers have a history of their
actions.

Most of all, when your web-page reader hits the Back key, rather than being taken in a reverse
direction within the Ajax/DHTML display stack, chances are she will be taken completely out of the
page.

There are entire frameworks that have taken on these issues, with solutions such as resolving an
anchor-tag release into a sequence of Ajax calls and/or DHTML. However, for the most part, before
you look into these, you should ask whether having this capability is essential to your work. Again, if
Ajax and DHTML are complementary approaches available to help other more traditional work, then
chances are you have what you need with existing technology; you won't have to add what could be
large libraries. For instance, if Ajax and DHTML are used to dynamically validate a form as it's being
completed, a bookmark to the form page should be sufficient.

One of the first and most common uses of JavaScript was to build menus. This
is both sad and funny because one aspect of your site that should be
completely accessibleno matter by whom or by what browseris site navigation.
JavaScript navigation breaks most accessibility tools.

One of the best pages on Ajax and accessibility is the WebAIM (Web
Accessibility in Mind) page on the topic at
http://www.webaim.org/techniques/ajax/. In addition to covering the issues, it
also links to other sites that provide additional information.

http://www.webaim.org/techniques/ajax/.
http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.1.2. Security and Workarounds

One of the reasons Ajax achieved such quick popularity is because it is relatively safe to useas safe
as most web applications (and requiring many of the same safeguards). The reason for its safety is
the JavaScript sandbox and how it impacts on XMLHttpRequest.

In the examples, the server page is on the same server and domain as the page that made the
request to the server. If I tried to put that server on another domain, I'd get an error. Why? Because
Ajax operates under the JavaScript same source/same domain rule: you can only invoke services on
the same server (domain) as the web page.

Internet Explorer has a setting that allows requests to other domains, but other browsers don't.
Firefox supports digitally signed script and cross-domain work, but again, other browsers do not. This
means you'll have to either restrict page accesses to one specific domain or find a workaround.

One approach is to work through a proxy. If a proxy is installed on the web server, all calls to the
service can be made through the proxy, and the proxy then distributes them accordingly.

Other web services, such as Google and Yahoo!, encode the web-service requests within the script
tag rather than use the XMLHttpRequest. In addition, you can have your web server rewrite a web
request and redirect the calls to a different location. This requires mod_rewrite with Apache and other
services with other web servers, but most sites support this capability.

13.1.3. Ajax Best Practices

Aside from the usual practices outlined for DHTML and sanitizing data coming into the applications,
there really is only one specific best practice for Ajax: use it when it makes sense.

I am really fond of Ajax because I think it's a great way to validate form input in-page, and it quickly
populates lists and drop-downs. However, I don't use it for all of my applications; accessibility issues,
lack of permalinks, and history are all good reasons why I don't. More than that, there are many
other application components that are currently in use; they are stable, simple to implement, and
should continue to be used.

For instance, I wouldn't recommend using Ajax to get a number of rows from a database and build a
table of the values. Why? Because using the server application to generate a table of data (either by
outputting the values or through a template system) is easier and faster; the page can, typically, be
bookmarked; and the query can be stored in history and, possibly, in the bookmark.

Other than the whizbang factor, Ajax doesn't add much to this type of functionality. However, Ajax is
terrific when it comes to validating a login or other form content because you don't lose what you've
already typed in.

As for using Ajax to create applications to replace word editors, I already have a terrific editor:
NeoOffice, the Mac frontend to OpenOffice. I don't need a browser-based alternative; the huge
majority of people don't. However, when I use my online weblog-editing tool, I like some of the Ajax
features; for example, I can pull up categories only when I click a toolbar, and thus select a category
other than the default.

In other words, Ajax is a tool. It is not a mindset, philosophy, or badge of coolness. Definitely use it,
but only when it makes sense. As Star Trek's Scotty would say, "How many times do I have to say it?

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Use the right tool for the job."

Beam me up, Scotty.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.2. How Ajax Works

Ajax is not as complicated as it may seem at first. A request needs to be sent to the server, a service
invoked, and data returned. However, instead of submitting a form and loading a new page with the
response, Ajax handles all of this activity within the context of the same page.

A special object, either Microsoft's ActiveXObject or the more general XMLHttpRequest, manages the
asynchronous communication between the server and the client. Asynchronous means that the
request is sent, but the client doesn't have to stop, hold, and wait for the process to finish; there is
no twirly icon to signal working while you twiddle your thumbs. Instead, the client provides a function
to be called when the state of the request changes. In this function, this state is checked; then,
based on its value, as well as the status of the request, the data returned from the service is
processed and usually output to the page in some form.

To the web-page reader, all of this activity looks as if the processing is happening within the page,
rather than through client/server interaction. The only indicator that server access is happening is if
this information is specifically provided.

Now that we've had the 10,000-foot view, let's look first at an Ajax application, and then go through
the individual pieces in the rest of the chapter.

Ajax does require a server-side component. I'm using PHP for this book
because PHP is probably one of the most common scripting languages used
today. Also, in my opinion, of all the server-side scripting languages
availablePerl, Python, Ruby, and PHPI consider PHP to be the most JavaScript-
like.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.3. Hello Ajax World!

You can use Ajax to populate a drop-down box based on a selection in another box. It's an on-demand solution that limits
how often a database is accessed. It's also a very simple Ajax effect to create.

Example 13-1 contains the web page, including the script used to make the Ajax server call. The page also contains a
form with two select elements: one populated with two states, the other empty.

Example 13-1. First Ajax application

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Hello Ajax World</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style type="text/css">
div.elem { margin: 20px; }
</style>

<script type="text/javascript">
//<![CDATA[

var xmlhttp = false;
if (window.XMLHttpRequest) {
   xmlhttp = new XMLHttpRequest(  );
   xmlhttp.overrideMimeType('text/xml');
} else if (window.ActiveXObject) {
   xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

function populateList(  ) {
   var state = document.forms[0].elements[0].value;
   var url = 'ajax.php?state=' + state;
   xmlhttp.open('GET', url, true);
   xmlhttp.onreadystatechange = getCities;
   xmlhttp.send(null);

}

function getCities(  ) {
   if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
      document.getElementById('cities').innerHTML = "<select>" + xmlhttp.responseText + "</select>";
   } else {
      document.getElementById('cities').innerHTML = 'Error: preSearch Failed!';

http://lib.ommolketab.ir
http://lib.ommolketab.ir


   }
}
//]]>
</script>

</head>
<body>

<h3>Select State:</h3>
<form action="ajax.php" method="get">
<div class="elem">
<select onchange="populateList(  )">
<option value="CA">California</option>
<option value="MO">Missouri</option>
<option value="WA">Washington</option>
<option value="ID">Idaho</option>
</select>
</div>
<h3>Cities:</h3>
<div class="elem" id="cities">
<select>
</select>
</div>
</form>

</body>
</html>

In the code, the second select is surrounded by a DIV identified by cities. When the results are returned, this element's
innerHTML is replaced with the new contents: either a select with the options returned by the web service, or an error
message. Figure 13-1 shows the page before the Ajax call.

Figure 13-1. Web page before Ajax call

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The server component of the application is listed in Example 13-2 . Typically, this is a database request to look up cities,
with more than two states listed. However, in the interest of keeping the example as self-contained as possible, the
"cities" are created as a static string, based on the state selected.

Example 13-2. Server component of Ajax application in PHP

<?php

//If no search string is passed, then we can't search
if(empty($_GET['state'])) {
    echo "No State Sent";
} else {
    //Remove whitespace from beginning & end of passed search.
    $search = trim($_GET['state']);
    switch($search) {
      case "MO" :
         $result = "<option value='St. Louis'>St. Louis</option>" .
                   "<option value='Kansas City'>Kansas City</option>";
         break;
      case "WA" :
         $result = "<option value='Seattle'>Seattle</option>" .
                   "<option value='Spokane'>Spokane</option>" .
                   "<option value='Olympia'>Olympia</option>";
         break;
      case "CA" :
         $result = "<option value='San Francisco'>San Francisco</option>" .
                   "<option value='Los Angeles'>Los Angeles</option>" .
                   "<option value='Web 2.0 City'>Web 2.0 City</option>" .
                   "<option value='barcamp'>BarCamp</option>";
         break;
      case "ID" :
         $result = "<option value='Boise'>Boise</option>";
         break;
      default :
         $result = "No Cities Found";
         break;
      }
    echo $result;
}
?>

Figure 13-2 shows the page after a state is selected.

Figure 13-2. Web page after Ajax call

http://lib.ommolketab.ir
http://lib.ommolketab.ir


In the next several sections, I'll go over each component of the page in detail, providing alternatives where appropriate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.4. The Ajax Object: XMLHttpRequest and IE's ActiveX
Objects

Microsoft was the first company to implement XMLHttpRequest as an ActiveX object. Mozilla followed
with a direct implementation of XMLHttpRequest, and other companies have responded with their own
browsers: Apple and Safari, Netscape and Navigator, and Opera. Though the constructor for the
objects differs between the two formats, each shares the same functionality and methods. Once the
initial object is created and assigned a variable, the one cross-browser issue is resolved. But taking
care of this issue isn't as simple as it first looks.

13.4.1. Object, Object, Who Has the Object?

Example 13-1 demonstrates one way to create an XMLHttpRequest object: using a conditional
statement and testing for its existence. If it doesn't exist, the object is created as an ActiveXObject;
it passes in the progID (program ID) of the ActiveX objectin this case, Microsoft.XMLHTTP. However,
a possible problem with this is that the object used in the ActiveXObject method call may differ from
machine to machine. Among the various versions of the object could be MSXML2.XMLHttp,
MSXML2.XMLHttp.3.0, MSXML2.XMLHttp.4.0, etc.

You can try to resolve every version of the XMLHttp object, but most Ajax libraries and applications
focus on just two: the older Microsoft.XMLHttp, and the base version of the newer MSXML2.XMLHttp.
In addition, since Microsoft throws errors if it attempts to create an ActiveX object that doesn't exist,
developers use this to implement the correct version:

try
{
    http_request = new ActiveXObject("Msxml2.XMLHTTP");
}
catch (e)
{
    try
    {
        http_request = new ActiveXObject("Microsoft.XMLHTTP");
    }
    catch (e)
    {
        http_request = false;
    }
}

If the first object creation doesn't work, the next is tried.

The code is now more robust but a lot longer. It begs to be enclosed in a function, with the global

http://lib.ommolketab.ir
http://lib.ommolketab.ir


value set to XMLHttpRequest or false to signal that it couldn't be created. In the end, our code is
modified to include the following function:

function getXmlHttpRequest(  ) {

   if (window.XMLHttpRequest) {
      xmlhttp = new XMLHttpRequest(  );
      xmlhttp.overrideMimeType('text/xml');
   } else {
      try
        {
            xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");
        }
        catch (e)
        {
            try
            {
                xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
            }
            catch (e)
            {
                xmlhttp = false;
            }
        }
   }
}

Of course, any cross-browser problems will soon be over because IE 7 supports XMLHttpRequest
directly. In a few years, you can trim your code accordingly.

One other function call on the XMLHttpRequest object is to overrideMimeType. This is set to text/xml.
Some browsers may require that the MIME type of the return be set to text/xml, and will fail if it
isn't. You can either set the MIME type in the server application, or set the override value. Note that
this is not a universally supported method.

Now that we have an XMLHttpRequest object, we'll cover the object in more detail next.

13.4.2. The XMLHttpRequest Methods

XMLHttpRequest is a rather simple object, with only a few methods and properties. However, it
doesn't need to be complicated to provide a rather amazing amount of functionality.

Here are the methods, in the order most likely encountered in an application:

open

The syntax for open is open(method,url[,async,username,password]). The open method opens
a connection to a given URL, using a specified method (GET or POST). Optional parameters are

http://lib.ommolketab.ir
http://lib.ommolketab.ir


async, which sets the requests to be asynchronous (true, and default), or synchronous
(false); and a username and password if the server process requires these.

setRequestHeader

The syntax for setRequestHeader is setRequestHeader(label,value). This method adds a
label/value pair to the header in the request.

send

The syntax for send is send(content). This is the heart and soul of XMLHttpRequest. This is
where the request is sent with associated data.

getAllResponseHeaders

The syntax for getAllResponseHeaders is getAllResponseHeaders( ). Returns all HTTP response
headers as a string. Among the information included is the Keep-Alive timeout value, content-
type, information about the server, and the date.

getResponseHeader

The syntax for geTResponseHeader is getresponseHeader(label). Returns the specific HTTP
response header.

abort

The syntax for abort is abort( ). Aborts the current request.

Some of the mystique associated with XmlHttpRequest may be removed if you consider that the
functionality used to process a form using a traditional form submission is the same technology used
with Ajax and XMLHttpRequest, except that the page remains during and after the process.

In the example, the request is a GET, so the web-page URL has the associated parameters added as
part of the URL. If the request had been a POST, the send method would be the following:

function populateList(  ) {
   var state = document.forms[0].elements[0].value;
   var qry = "state=" + state;
   var url = 'ajax.php';
   xmlhttp.open('POST', url, true);
   xmlhttp.onreadystatechange = getCities;
   xmlhttp.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
   xmlhttp.send(qry);
}

The content-type header is adjusted to urlencoded form, and a query is created and sent in the send
operation. Other than these changes, the method is just the same as the Ajax call with GET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


When do you use POST as opposed to GET? POST has cleaner URLs than GET,
which doesn't matter as much with Ajax. POST also is more secure; GET can be
called directly on the web service. POST is also typically used for posting data,
as compared to GET, which is used for queries.

In addition to the six methods, there are also six properties associated with XMLHttpRequest, which
are given in Table 13-1.

Table 13-1. XMLHttpRequest properties

Property Purpose

Onreadystatechange This property holds a handle to the function called when the
ready state of the request changes.

readyState

Has one of five values: 0 for uninitialized request, 1 for an
open request, 2 for a request that has been sent, 3 for when
a response is being received, and 4 for when the response is
finished loading. For the most part, we're interested in a
readyState of 4.

responseText
Response as text.

responseXML
Response as XML, which can then be processed as valid XML.

status Returns server status, such as 404, 500, and, hopefully, 200
for all is well.

statusText
Text associated with status.

Again, there isn't anything complicated or complex about Ajax. Probably the only area in which
additional complexity enters the equation is how the data is returned. This is covered in the next
section.

If you try to run a Ajax application on your local system, you will most likely
run into security restrictions. Browsers such as Firefox do not allow
XMLHttpRequests on the local filesystem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.5. Working with XMLor Not

In Example 13-1 , the response was returned as a text string, with contents formatted as HTML. When it
was added to the page, the entire select element was replaced because Microsoft does not support
innerHTML for select directly. A better approach would have been to take the response and generate
options, which are then added to the page. However, returning the string as already formatted options
isn't optimal for processing.

Rather than format the options, you can return a string with the options concatenated with commas in
between, such as the following:

return "Seattle,Olympia";

However, this isn't very effective if the data is more complex. For instance, in our example, the value of
the option item is different from the string that's printed out. When you start returning text more
complex than simple strings, the response gets more complicated.

For more complicated data, or data that you don't want formatted as HTML, there are two other options:
XML or JSON (JavaScript Object Notation). Let's look at each of these approaches in turn.

13.5.1. Yes to XML

One advantage to returning a response formatted as XML is that the data can be much more complex
than simple strings, or preformatted in HTML. In addition, there are several DOM methods that can
process the data. After all, a web page is typically valid X(HTML) (we hope), and these methods can work
on web pages.

Of course, using XML adds its own burdens. For instance, it's important that the server-side application
return the property MIME type of text/xml for the content, or it won't end up in the responseXML
container. In addition, the XML has to be valid XML, which means it has a root element that contains all
of the other data. Example 13-3 shows the server-side application, ajaxxml.php , after it's written to
return XML. Note that there are two elements for each city: value and title . The value is what's
included within the option, and the title is what's printed out to the page.

Example 13-3. PHP Ajax application now returning XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<?php

//If no search string is passed, then we can't search
if(empty($_GET['state'])) {
    echo "<city>No State Sent</city>";
} else {
    //Remove whitespace from beginning & end of passed search.
    $search = trim($_GET['state']);
    switch($search) {
      case "MO" :
         $result = "<city><value>stlou</value><title>St. Louis</title></city>" .
                   "<city><value>kc</value><title>Kansas City</title></city>";
         break;
      case "WA" :
         $result = "<city><value>seattle</value><title>Seattle</title></city>" .
                   "<city><value>spokane</value><title>Spokane</title></city>" .
                   "<city><value>olympia</value><title>Olympia</title></city>";
         break;
      case "CA" :
         $result = "<city><value>sanfran</value><title>San Francisco</title></city>" .
                   "<city><value>la</value><title>Los Angeles</title></city>" .
                   "<city><value>web2</value><title>Web 2.0 City</title></city>" .
                   "<city><value>barcamp></value><title>BarCamp</title></city>";
         break;
      case "ID" :
         $result = "<city><value>boise</value><title>Boise</title></city>";
         break;
      default :
         $result = "<city><value></value><title>No Cities Found</title></city>";
         break;
      }
     $result ='<?xml version="1.0" encoding="UTF-8" ?>' .
              "<cities>" . $result . "</cities>";

   header("Content-Type: text/xml; charset=utf-8");

    echo $result;
}
?>

Once the server application is finished, the client-side application built into JavaScript must be changed.
Example 13-4 shows the modified web page.

Example 13-4. Client application modified to work with an XML response

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<title>Hello Ajax World, Too</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style type="text/css">
div.elem { margin: 20px; }
</style>

<script type="text/javascript">
//<![CDATA[

var xmlhttp = false;
if (window.XMLHttpRequest) {
   xmlhttp = new XMLHttpRequest(  );
   xmlhttp.overrideMimeType('text/xml');
} else if (window.ActiveXObject) {
   xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

function populateList(  ) {
   var state = document.forms[0].elements[0].value;
   var url = 'ajaxxml.php?state=' + state;
   xmlhttp.open('GET', url, true);
   xmlhttp.onreadystatechange = getCities;
   xmlhttp.send(null);
}
function getCities(  ) {
   if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
     try {
        var citynodes = xmlhttp.responseXML.getElementsByTagName('city');
        for (var i = 0; i < citynodes.length; i++) {
           var name = value = null;
           for (var j = 0; j < citynodes[i].childNodes.length; j++) {
              var elem = citynodes[i].childNodes[j].nodeName;
              var nodevalue = citynodes[i].childNodes[j].firstChild.nodeValue;
              if (elem == 'value') {
                  value = nodevalue;
              } else {
                  name = nodevalue;
              }
           }
           document.forms[0].elements[1].options[i] = new Option(name,value);
         }
      } catch (e) {
            alert(e.message);
      }
   } else {
      document.getElementById('cities').innerHTML = 'Error: No Cities';
   }
}
//]]>
</script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</head>
<body>

<h3>Select State:</h3>
<form action="ajaxxml.php" method="get">
<div class="elem">
<select onchange="populateList(  )">
<option value="CA">California</option>
<option value="MO">Missouri</option>
<option value="WA">Washington</option>
<option value="ID">Idaho</option>
</select>
</div>
<h3>Cities:</h3>
<div class="elem">
<select id="cities">
</select>
</div>
</form>
</body>
</html>

Let's walk through the code to process the return.

First, the DOM function getElementsByTagName is called on the XML returned through the request's
responseXML property. This gives us a set of child nodes for each city in the XML. Each child node, in turn,
has two of its own: one for value , and one for the title element.

Instead of assuming that the XML that's returned to the web page is positionally dependent (value is
always first, then title ), the application traverses the nodeList for childNode s and gets the nodeName
for each. This is compared to value and if a match occurs, its nodeValue is assigned to value . If not, the
nodeValue is assigned to title (though this value could be tested first to ensure it is title ). Once the
city childNode s are traversed, the value and title are used to create a new option, and the next city
processed.

All of this code is enclosed in exception handling because the DOM functions throw errors that aren't
processed as such by the browser. It's a good habit to get into when you work with Ajax.

With the approach just demonstrated, no matter how deep the XML nesting, this same process can be
used to access the nodes. After a while, though, you can see that the code could become cumbersome
and hard to read or modify. It is this issue that generated interest in a new formatJSON.

If what you're after is an attribute and not a node, you can use the DOM
getAttribute method to retrieve the value from the XML document. This is also
part of the DOM Level 2 Core, as discussed in Chapter 10 .

13.5.2. JavaScript Object Notation

http://lib.ommolketab.ir
http://lib.ommolketab.ir


As the web site that supports it claims, JSON, or JavaScript Object Notation, is "a lightweight data-
interchange format." Rather than attempt to chain references as comma-delimited strings or have to deal
with the complexity (and overhead) of XML, JSON provides a format that converts a server-side structure
into a JavaScript object that can be used practically right out of the box.

JSON actually uses JavaScript syntax to define the objects. For an object, the syntax is curly braces
surrounding members:

object{ } or object { string : value...}

For an array, it's elements and square brackets:

array[] or array[value,value,...,value]

The values specified follow the same rules for variables and associated values (strings or numbers) as
defined for JavaScript in ECMA-262, Third Edition.

JSON, just as with the XML and HTML examples, can be manually encoded, because it is just another text
string. However, there's growing support for JSON APIs in different programming languages used with
web services, and most have encoders that encode or decode JSON transmitted data.

For our purposes, though, we'll manually create the data structure. Example 13-5 contains a new server
application, ajaxjson.php , which now converts the data to JSON format. The structure used is an array
of objects, each with a value and a title property.

Example 13-5. Working with simple JSON in PHP

<?php

//If no search string is passed, then we can't search
if(empty($_GET['state'])) {
    echo "<city>No State Sent</city>";
} else {
    //Remove whitespace from beginning & end of passed search.
    $search = trim($_GET['state']);
    switch($search) {
      case "MO" :
         $result = "[ { 'value' : 'stlou', 'title' : 'St. Louis' }, " . 
                   "{ 'value' : 'kc', 'title' :' Kansas City' } ]";
         break;
      case "WA" :
         $result = "[ { 'value' : 'seattle', 'title' : 'Seattle' }, " .
                   "  { 'value' : 'spokane', 'title' : 'Spokane' }, " .
                   "  { 'value' : 'olympia', 'title' : 'Olympia' } ]";
         break;
      case "CA" :
         $result = "[ { 'value' : 'sanfran', 'title' : 'San Francisco' }, " .
                   "  { 'value' : 'la',      'title' : 'Los Angeles'   }, " .
                   "  { 'value' : 'web2',    'title' : 'Web 2.0 City'  }, " .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


                   "  { 'value' : 'barcamp', 'title' : 'BarCamp'       } ]";
         break;
      case "ID" :
         $result = "[ { 'value' : 'boise', 'title' : 'Boise' } ]";
         break;
      default :
         $result = "[ { 'value' : '', 'title' : 'No Cities Found' } ]";
         break;
    }

    echo $result;
}
?>

To use the data structure in the web page, access the JSON-formatted data from the responseText
property, and then pass it to the eval function to evaluate the structure and assign it to a local program
variable. Example 13-6 is our web page now adjusted for a JSON data structure.

Example 13-6. Using JSON-structured data between server and client

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Hello Ajax World, Too</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style type="text/css">
div.elem { margin: 20px; }
</style>

<script type="text/javascript">
//<![CDATA[

var xmlhttp = false;
if (window.XMLHttpRequest) {
   xmlhttp = new XMLHttpRequest(  );
   xmlhttp.overrideMimeType('text/xml');
} else if (window.ActiveXObject) {
   xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

function populateList(  ) {
   var state = document.forms[0].elements[0].value;
   var url = 'ajaxjson.php?state=' + state;
   xmlhttp.open('GET', url, true);
   xmlhttp.onreadystatechange = getCities;
   xmlhttp.send(null);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


function getCities(  ) {
   if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
     try {
         eval("var response = ("+xmlhttp.responseText+")");
         var sel = document.getElementById("cities");
         var name = value = null;
         for (var i = 0; i < response.length; i++) {
            name = response[i].title;
            value = response[i].value;
            document.forms[0].elements[1].options[i] = new Option(name,value);
         }
      } catch (e) {
            alert(e.message);
      }
   } else {
      document.getElementById('cities').innerHTML = 'Error: No Cities';
   }
}

//]]>
</script>

</head>
<body>

<h3>Select State:</h3>
<form action="ajaxjson.php" method="get">
<div class="elem">
<select onchange="populateList(  )">
<option value="CA">California</option>
<option value="MO">Missouri</option>
<option value="WA">Washington</option>
<option value="ID">Idaho</option>
</select>
</div>
<h3>Cities:</h3>
<div class="elem">
<select id="cities">
</select>
</div>
</form>
</body>
</html>

As you can see, the JSON method is simpler than the XML method, though perhaps not as simple as the
straight HTML approach. However, don't let that make your decision for you. You may have no choice in
how the data is sent, and have to process the results regardless of the format. In addition, when dealing
with increasingly complex objects, using XML with XSLT to transform the XML into viewable material can
end up being less work in the end.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


If you're working directly with a data structure, such as a relational database or Resource Description
Framework (RDF), chances are you'll either be dealing with comma-delimited data or XML in the first
case, or XML in the latterand a specialized XML at that.

One other thing to consider is using XML that uses namespaces. This can annotate
an element name to prevent a conflict in vocabularies; use something like
content:name . There is a DOM function called getElementsByTagNameNS that takes a
namespace as one of the parameters, but not all browsers support this, including
Internet Explorer.

The point is, and I hope it has been demonstrated in these examples, that Ajax is extremely easy and
simple to use, and you have options with how your data is transmitted between the server application
and the client page.

Now, time for a little fun: Google Maps.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.6. Google Maps

One of the most famous Ajax/DHTML/JavaScript applications is Google Maps. It became even more popular when the company released an API that enabled people to quickly and easily add
sophisticated mapping to their web pages. This one application, more so than probably any other, is what fires the imagination regarding Ajax and the ability to mix and mash technologies.

It's not unusual for people to record the longitude and latitude of a photograph's location into that photo (a process known as geocoding ), which is then parsed out and passed to a Google
Maps API call. A map is then created to show exactly where the photo was taken.

Geocachers , that group of passionate global positioning satellite (GPS) users, utilize Google Maps to mark geocaches (hidden objects of little or no value used as a way to mark the spot).
Others use Google Maps to provide driving directions, to mark landmarks, or even play games. It's a rich and easy-to-use API.

To use Google Maps, you first need a free API key, which you can get at the Google Maps API web site (http://www.google.com/apis/maps/ ). This is used as part of the URL given in the src
attribute of the script tag. For instance, the following shows how I use my key for learningjavascript.info :

<script src="http://maps.google.com/maps?file=api&amp;v=2&amp;
key=ABQIAAAAprpnCG3LM_SOd5dAqo4g7RThwcj_1x2ShM2_WlFws98yyiZZxRQyUhBJw9Ty1j6jpEUo_v6PFZfJdQ"  type="text/javascript"></script> 

That key has to match the exact domain and subdirectory location where you plan on putting your Google map pages. It's very picky.

There's an extensive set of examples and documentation at Google, and I won't take the time to cover what the company covers so well. When the key is generated, Google even gives you a
small application you can use to start your development. That's what I'll use.

Google's small example just gives a map in a box, with no controls. I'll add on some functionality to create an application that puts markers on the page when the reader clicks the map, and
displays an information window with the longitude and latitude. I'll also direct the map to the location of one of my favorite objects, the St. Louis Arch. It looks very impressive in the satellite
view.

In Example 13-7 , a new Google Maps object is created, passing in the DIV element in the page where the map will be located. Once created, two controls are added: one to zoom in or out in
the map and one to switch between map, satellite, and hybrid views. Given the latitude and longitude, the map is then centered in St. Louis.

Once centered, an event listener is added for the click event on the map element. An anonymous function (all this should look familiar to you, because we've covered everything used so far)
is attached to the event listener to test that the point where the click occurred already has a marker. If it does, it's removed. If not, one is placed, and an information window is opened above
it, with the latitude and longitude of the point.

Example 13-7. Working with Google Maps

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
    <title>Google Maps JavaScript API Example</title>
    <script src="http://maps.google.com/maps?file=api&amp;v=2&amp;key=ABQIAAAAprpnCG3LM_SOd5dAqo4g7RThwcj_1x2ShM2_WlFws98yyiZZxRQyUhBJw9Ty1j6jpEUo_v6PFZfJdQ"
      type="text/javascript"></script>
    <script type="text/javascript">

    //<![CDATA[

    function load(  ) {
      if (GBrowserIsCompatible(  )) {
        var map = new GMap2(document.getElementById("map"));
        map.addControl(new GSmallMapControl(  ));
        map.addControl(new GMapTypeControl(  ));
        map.setCenter(new GLatLng(38.624464, -90.18496), 15);

        GEvent.addListener(map, "click", function(marker, point) {
                if (marker) {
                        map.removeOverlay(marker);
                } else {
                  marker = new GMarker(point);
                  map.addOverlay(marker);
                  marker.openInfoWindowHtml(point.lat(  ) + " " + point.lng(  ));
                }
                });
      }
    }

    //]]>
    </script>
  </head>
  <body onload="load(  )" onunload="GUnload(  )">
    <div id="map" style="width: 500px; height: 300px"></div>
  </body>
</html>

Google Maps supports Ajax XMLHttpRequests , including the various formats discussed in this chapter.

Finally, Google Maps uses function closures. To prevent memory leaks, replace the body opening script tag with the following:

<body onunload="GUnload(  )">

This removes the circular references that can lead to leaks. Do take some time to enjoy Google Maps, and also make sure you click the satellite view with this examplethe Arch is impressive.

Now that you're sold on web services, DHTML, and Ajax, we'll look in the final chapter at what others have been doing with JavaScript and how you can incorporate what they've created into
your own applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


13.7. Questions

Though it seems to defy the concept of Ajax, an XMLHttpRequest can be synchronous (wait for
response). How would you open such a request?

1.

Once a request receives a response, it needs to be processed. How do you attach a function to
call when the service responds?

2.

What are the two states for a successful, and completed, request?3.

What are the three data formats you can use with a response, and what are the advantages of
each?

4.

Modify the Google Maps application in Example 13-6 to include a custom icon stored in a file
called myicon.png.

5.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Chapter 14. Good News: Juicy Libraries!
Amazing Web Services! Fun APIs!
It's the lime effect.

Much of the new interest in JavaScript seems to run parallel with specific styles and page designs.
Page elements have rounded corners; content is page-centered; and, for some reason, the color lime
seems to predominate (followed by orange, yellow, and variations of sky or aqua blue). It's an oddly
modern/retro feel.

Regardless of colors and corners, this new interest in JavaScript has generated a wealth of new
scripting tools and toysmany of which are far more sophisticated than earlier efforts because the
browsers themselves can support more sophisticated effects. And because the Web is an amazingly
generous place, chances are if you need some functionality for your site, someone else has already
created it or something similar, and put it on the Web for general use.

In this chapter, we'll look at several of these freely available libraries and frameworks. I'll explain how
to access and install the library, as well as provide an overview and demonstration of some of the
capabilities of the library or framework. Additionally, I'll cover the ramifications of using each library.
As these become larger and more complex, there's an increasing likelihood of conflicts between your
code, and even conflicts between using the library and using the built-in JavaScript objects and
Document Object Model.

By the end of the chapter, you should have a good idea of what you can find on the Internet, when
you should use a library, or when to just code the functionality yourself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.1. Before Jumping In, A Word of Caution

Many of the libraries covered in this chaptermany of the Ajax libraries, periodplace some limitations
on what you can and cannot do in JavaScript if you plan on incorporating them into your applications.
It's important to be aware of how much of an impact they can have.

The Prototype library, the first we'll cover, is an excellent example of how much a library can affect
even basic JavaScript development. At one time, it made a modification to the Array object, using
that object's prototype property, that actually broke how associative arrays are manipulated when
they are created using the Array object. Many Ajax developers believe that you should never create
an associative array using the Array object, but instead should use the Object itself. Still, to break a
built-in object such as this raised a hue and cry, and in the next version release of Prototype, this
"enhancement" was removed.

However, Prototype still modifies basic JavaScript objects. After all, this is a feature of JS; expect that
library developers will use it. This means you have to be aware of exactly what modifications have
been made, and because many of the Ajax libraries have really poor documentation, discovering the
gotchas could be a real challenge.

Another issue is event handling. Many of the libraries, such as Dojo, load functionality using the
window load event. If you don't use DOM Level 2 event handling, you'll overwrite what Dojo creates
and break the effects. When using an Ajax library, the best way to add a windows onload event
handler is with code similar to the following:

   // test for object model
   if (window.addEventListener) {
      window.addEventListener("load",finish,false);
   } else if (window.attachEvent) {
      window.attachEvent("onload", finish);
   }

In general, when working with Ajax libraries, expect to use DOM Level 2 event handling for most or
all of your own efforts.

Finally, there's a feeling among many of the Ajax developers that standards and accessibility are not
big issues. More than one developer has disdained the need to provide effects that validate as
XHTML, even XHTML transitional, which I used in the examples in this book. However, a page that
doesn't validate as XHTML also won't be accessible, and there's no way I can condone disregarding
the needs for accessibility just to add some pretties. There are always valid and accessible
workarounds to any worthwhile effectif you take the time to look for them, that is. In the Q & A
sections at the end of the chapter, I cover one such, and once you accept that valid markup and
accessible effects are achievable (and important), you'll find your own workarounds.

OK, enough of the caveatson with the show.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.2. Working with Prototype

No other library, toolset, or invention has led to the explosive growth of Ajax more than Prototype, the freely available
Ajax/JavaScript library created by Sam Stephenson and available at http://prototype.conio.net/ . It's become so popular, it's
integrated as part of the Ruby on Rails (RoR) development environments. Several other libraries reviewed in this chapter and in
previous chapters are based on Prototype.

What Prototype offers is a way to emulate a classlike behavior based on the JavaScript prototype; it provides a set of functions
that hide much of the underlying JavaScript behavior. This is good because JS can be cumbersome when you're trying to access
several elements in a page and have to get each one using something like getElementById . However, as has been noted
frequently, Prototype also hides many of the underlying mechanisms, which can make reading any code that uses the library
confusingespecially for newer JavaScript developers or those unfamiliar with Prototype. Luckily, this won't include you after the
following brief peek.

14.2.1. Download, Install, Use

One aspect of Prototype I really appreciate is that it's one library, included in one JavaScript file, and easily integrated into a
page. Just include a link to the downloaded Prototype library in your application:

<script type="text/javascript" src="prototype.js">
</script>

That's it (assuming you put the prototype.js file on your server). You're now ready to use Prototype functions in your own
applications.

The Ruby on Rails framework provides code support for Prototype, as well as Script.aculo.us. If you're a
Ruby developer, find out how to include Prototype in your application at
http://api.rubyonrails.com/classes/ActionView/Helpers/JavaScriptHelper.html .

14.2.2. The Helper Functions and the JavaScript Extensions

Prototype is most known for its extensive set of utility or helper functions. I mentioned these in earlier chapters as being
responsible for adding a series of cryptic operators into JavaScript, most starting with the dollar sign.

One of the more common functions is $( ) , which can be used in place of document.getElementById , but with a kicker: if you
specify a list of elements, it returns an array of elements:

var theDivs = $('div1','div2','div3');

The $F function returns whatever value there is for a specific form field, while the $H function converts an object into an
enumerable Hash (one of Prototype's many new object types). In the following code, an object is converted to a Prototype Hash ,

http://api.rubyonrails.com/classes/ActionView/Helpers/JavaScriptHelper.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


and the values are then accessed and stored in a JavaScript array using one of the Hash functions, values :

var obj = { 
                 partA : one,
                 partB : two,
                 partC : three,
                  };
var hshObj = $H(obj);
var arr = hshObj.values(  ); 

The $R function creates one of the new Prototype objects, ObjectRange . An ObjectRange is a range of values, with given lower
and upper boundaries that exclude any specific values. The parameter objects are JavaScript Number objects, which themselves
have been extended to include a new method, succ . This method, when called, increments whatever primitive value the Number
object wraps. ObjectRange inherits behavior from the Prototype Enumerable objects that provide several enumeration functions.
These functions include each , find , findAll , entries ; they convert the object into an array, and so on. We'll look more
closely at Prototype's enumeration capabilities in a moment, but first, let's take these shortcut functions for a test drive.

In Example 14-1 , two input fields accept numbers, which are then used to create an ObjectRange . Once created, Prototype
enumeration iterates through the collection of values, creating a string. This string is then printed out using innerHTML to a DIV
element, which is accessed by the generic $ function.

Example 14-1. Trying out the Prototype helper functions

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>$</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript" src="prototype.js">
</script>
<script type="text/javascript">
//<![CDATA[

function iterate(  ) {
  var lower = new Number($F('input1'));
  var higher = new Number($F('input2'));

  var rng = $R(lower,higher,false);
  var div = $('div1');
  var strng = "";
  rng.each(function(value,index) {
             strng+=value + " ";
             });
  div.innerHTML = "<p>" + strng + "</p>";
}
//]]>
</script>

</head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<body>
<form id="form1">
lower: <input type="text" id="input1" /><br />
upper: <input type="text" id="input2" /><br />
<a href="javascript:iterate(  )">Iterate</a>
</form>
<div id="div1">
</div>
</body>
</html>

Notice how the numbers accessed via the form are wrapped in a Number constructor? Without this, you'll receive an error about
succ missing on the values. The reason you do so is because the values aren't returned from $F as Number objects, and it is the
Number object that's extended with a succ method to aid in enumeration. You can also use parseInt or some other conversion
function to ensure the values are the correct type when passed to the ObjectRange .

This example gave us a taste of some of the objects in Prototype. Let's look more closely at a few others.

14.2.3. Some Specialized Prototype Objects

Among some of the objects Prototype provides is a Class one-off object, which is used to manage the creation and initialization
of the other objects. There's also an Element , which extends the functionality of DOM nodes; it basically merges many of the
DHTML effects into method calls. The Form object extends the functionality of Form , providing methods such as getValue to get
the value of a form field.

The Prototype Ajax object encapsulates much of the Ajax behavior demonstrated in the last chapter. To see how this object
works, we'll replace the core JavaScript from examples in Chapter 13 .

Example 14-2 is a recreation of Example 13-1 , except this time we're using the Ajax object, as compared to doing the Ajax
processing ourselves. Notice two things. First, we're using a lot less code. Second, we're providing an element that serves as a
target for the Ajax results.

Example 14-2. Using Prototype Ajax object to make an Ajax request

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Hello Prototype Ajax World</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript" src="prototype.js">
</script>
<style type="text/css">
div.elem { margin: 20px; }
</style>

<script type="text/javascript">
//<![CDATA[

function populateList(  ) {
   var url = 'ajaxprototype.php';
   var params = "state=" + escape($F('state'));
   var ajx = new Ajax.Updater('cities',url,{method: 'get', parameters: params, onFailure : handleError});
}

function handleError(request,hdr) {
   alert(hdr);
}

//]]>
</script>

</head>
<body>

<h3>Select State:</h3>
<form action="ajax.php" method="get">
<div class="elem">
<select onchange="populateList(  )" id="state">
<option value="CA">California</option>
<option value="MO">Missouri</option>
<option value="WA">Washington</option>
<option value="ID">Idaho</option>
</select>
</div>
<h3>Cities:</h3>
<div id="cities" class="elem">
<select>
</select>
</div>
</form>

</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Since we're specifying a target, and Prototype will insert the response in this object, I've also adjusted the PHP script to append
the select element before and after the options list so that the whole object is replaced. In Chapter 13 , we did this directly in
the client JavaScript:

echo "<select>$result</select>";

I could have created an option in the Updater constructor, onSuccess , that passes in a function to be invoked on success, rather
than sending it through a target. The function has one parameter, XMLHttpRequest , which I could have used to process the
result exactly as processed in Chapter 13 . In addition, how the data is inserted can be modified based on the insertion
property. This represents an Insertion class object that determines how data is inserted: before , after , top , or bottom .
There is also the Ajax.Request object, which gives even finer control in how the Ajax request/response is managed.

14.2.4. A Compliment and a Caveat

I've barely scratched the surface on what Prototype can do, but hopefully I've given you a taste, at least, of some of the
functionality. There are many more objects, including objects that provide enumeration to many of our base objects. It is this
fact that also forces me to issue a caveat when you're using Prototype or any of the libraries derived from Prototype (a few of
which I'll be describing later in the chapter).

In Version 1.4 of Prototype, Stephenson made alterations to the Object.prototype that ended up breaking associative arrays.
This was fixed in Version 1.5, but the Array object still breaks on associative arrays. According to an article at the web site
Ajaxian , using the Array object conflicts with Prototype's array-management extensions. (See "JavaScript Associative Arrays
Considered Harmful," at http://ajaxian.com/archives/javascript-associative-arrays-considered-harmful ). The philosophy behind
the decision to alter the Array prototype was that arrays should be numeric, and associative arrays should occur only directly
through Object .

Regardless of whether you agree with this or not (and I'll go on record as saying I unequivocally do not agree with this), it's an
important reminder that, because of the immensely flexible nature of JavaScript and the increasingly complex, functionally
overriding nature of some of the JavaScript libraries, you may end up actually breaking any existing code just by importing
another library. Definitely explore the use of such libraries, but always do so with caution.

Like too many other Ajax libraries, Prototype is virtually free of any form of formal documentation. It's
relatively easy to read, but this doesn't help when you're trying to get a quick overview of what it can
and cannot do. Luckily, Sergio Pereira created a nice overview of the Prototype framework, in different
languages, at http://www.sergiopereira.com/articles/prototype.js.html .

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.3. Script.aculo.us: More Than the Sum of Its Periods

The script.aculo.us library is one of several that's built on top of Prototype. It extends the available
functionality and provides a higher level of interaction, as well as increasingly sophisticated effects.

You'll find documentation for script.aculo.us, which includes a usage page, at
http://wiki.script.aculo.us/scriptaculous/show/Usage. This covers where to get the library and how to
install it. The library consists of multiple JavaScript files (scriptaculous.js, builder.js, effects.js,
dragdrop.js, slider.js, and control.js), which need to be placed in your script directory, along with
prototype.js and any other JavaScript file.

14.3.1. Usage

To use script.aculo.us, you'll need to link prototype as well as the new library:

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="scriptaculous.js"></script>

The scriptaculous.js file loads in all the other JS files. If you want only certain effects, though, you
can specify this on the same line as the scriptaculous.js load, using the following syntax:

<script type="text/javascript" src="scriptaculous.js?load=effects,controls">

Once loaded, you can then use any of the libraries' specialized UI (user interface) effects.

Script.aculo.us' libraries of effects, drag and drop, and auto-completion are
integrated as a Ruby on Rails Ajax helper. This means you can automatically
manage an effect using a tag such as the following:

<%= text_field_with_auto_complete :contact, :name %>

You don't have to be developing in Ruby on Rails to use script.aculo.us, but the
documentation for doing so is sparse. Still, let's look at a couple of
script.aculous.effects.

14.3.2. A Gander at Effects

One of the script.aculu.os libraries includes several visual effects: fades, clippings, and so on. These
are extremely easy to use and quite fun to watch. In Example 14-3, I tried out several of the

http://wiki.script.aculo.us/scriptaculous/show/Usage
http://lib.ommolketab.ir
http://lib.ommolketab.ir


different effects, including ones to puff, squish, and pulsate a DIV element.

Example 14-3. Taking script.aculo.us visual effects for a run

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>I want to have fun!</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="scriptaculous.js"></script>

<style type="text/css">
div.elem { margin: 20px; padding: 10px;
           background-color: #C6B3FF;
           width: 400px; height: 200px;
          }

.elem a { text-decoration: none; font-size: larger; color: #6A38FF }
</style>

<script type="text/javascript">
//<![CDATA[

function pulsate(  ) {
   new Effect.Pulsate($('theblock'));
}
function shake(  ) {
   new Effect.Shake($('theblock'));
}

function slideup(  ) {
   new Effect.SlideUp($('theblock'));
}

function slidedown(  ) {
   new Effect.SlideDown($('theblock'));
}

function dropout(  ) {
   new Effect.DropOut($('theblock'));
}

function appear(  ) {
   new Effect.Appear($('theblock'));
}
function puff(  ) {
   new Effect.Puff($('theblock'));
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


function squish(  ) {
   new Effect.Squish($('theblock'));
}
function highlight(  ) {
   new Effect.Highlight($('theblock'));
}
//]]>
</script>

</head>
<body>

<div id="theblock" class="elem">
<p>Testing the scriptaculous effects</p>
</div>
<div class="elem">
<a href="javascript:pulsate(  )">new Effect.Pulsate(obj)</a><br />
<a href="javascript:shake(  )">new Effect.Shake(obj)</a><br />
<a href="javascript:slideup(  )">new Effect.SlideUp(obj)</a><br />
<a href="javascript:slidedown(  )">new Effect.SlideDown(obj)</a><br />
<a href="javascript:dropout(  )">new Effect.DropOut(obj)</a><br />
<a href="javascript:appear(  )">new Effect.Appear(obj)</a><br />
<a href="javascript:puff(  )">new Effect.Puff(obj)</a><br />
<a href="javascript:squish(  )">new Effect.Squish(obj)</a><br />
<a href="javascript:highlight(  )">new Effect.Highlight(obj)</a>
</div>
</body>
</html>

Notice in the code that I pass the element in using the Prototype helper function, $.

The title of the example page says it all: I want to have fun. There's nothing wrong with making your
web pages fun, but these effects go beyond just the coolness factor.

The Pulsate effect can be used to grab attention. Other means can still be used, such as an alert
dialog when scripting is turned off. However, I find something like Pulsate preferable to using an
alert to get attention.

The Shake effect can be used when a person enters a wrong value, and I've seen this used in login
pages. If there's text that also provides feedback, the use of this effect is also accessible. The
SlideDown and SlideUp provide the functionality demonstrated in Chapter 12 for creating an
accordion effect. Again, if the layers are open when scripting is not supported, the page is accessible.

The Puff and Squish effects can show and hide a note to the web-page reader. I like this rather than
using straight visibility because there's a warning that something is coming and something is going
away, rather than just having them appear and disappear. One rule of DHTML is: don't disconcert
your user too much.

The Appear function is a way to undo some of the other disappearing effects, and it also has a nice
"here I come" feel to it. As for Highlight, this is the infamous blue-to-yellow fade that people are
implementing in their applications to denote a successful form action. I'm still out on this one.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


The point is how easy these effects were to use. Other script.aculo.us effects include the
autocompletion, the sortables, and the slider. The library also implements drag and drop, though as
discussed earlier in the book, use this effect sparingly.

Script.aculo.us isn't the only library built on top of Prototype. Another is Rico, discussed next.

Take a look under the covers at how script.aculo.us creates its effects. This,
combined with looking at Prototype's code, is a good demonstration of clever
JavaScript object management.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.4. Sabre's Rico

Rico is a rather interesting Ajax library. For one thing, unlike many other Ajax libraries, which are the
inspiration of an individual or small group of individuals, Rico was created by a development team at
Sabre Airline Solution. Developed by company personnel, it was released for general use via the
Apache license.

Rico, like other libraries we'll examine, is dependent on Prototype. At the time this was written, Rico
was at Version 1.1.2 and was dependent on Prototype 1.4.0. I tried the examples with the Prototype
1.5 release candidate.

After installing Prototype, access Rico from the library's web site at
http://openrico.org/rico/home.page . Once downloaded, include both libraries in your page using the
following in the head section of your document, before any JS that uses the libraries:

<script type="text/javascript"
     src="/pathto/prototype.js">
</script>
<script type="text/javascript"
     src="/pathto/rico.js">
</script>

What I especially like about Rico is the very easy-to-use cinematic effects. Among these are
animators that position elements, fade colors, and especially, round corners, which I thought was
rather unusual, but not surprising, with an Ajax library.

We'll take a couple of these effects out for a test drive, starting with that rounded-corner library.

14.4.1. Rounded Corners

The difficulty with the Rico library is that not all of the functionality provided is documented.
However, the JavaScript library is simple to read (if you're familiar with Prototype), and the site
provides a nicely organized set of demos.

The Rico rounded-corner effects are dependent on a one-off object, the Rico.Corner.round . You
invoke it through the external interface object, Rico.Effect.Round class, passing in options to create
the different effects:

new Rico.Effect.Round(tagname,classname,options);

It's interesting to look through the code for Rico (which is very readable). When the
Rico.Effect.Round class is instantiated, the elements to modify are accessed using a function Rico
adds to the document object:

document.getElementsByTagAndClassName = function...

http://openrico.org/rico/home.page
http://lib.ommolketab.ir
http://lib.ommolketab.ir


The function takes a class and tag name and returns one or more nodes that match both constraints.
Each element is then passed to the one-off object to actually create the effect.

Returning to the demonstration, Example 14-4 is a web page that rounds the corners of three DIV
elements using the Rico API in combination with different options: ordinary rounding, rounding with
border, and rounding only the bottom corners.

Example 14-4. Working with Rico's rounded-corner effects

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>PrettyPretty</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">

.roundme { width:250px;background-color:#0f0;margin: 20px; }

.contents { padding: 10px }
</style>
<script type="text/javascript"
     src="prototype.js">
</script>
<script type="text/javascript"
     src="rico.js">
</script>
<script type="text/javascript">
//<![CDATA[

document.onclick=roundMe;
 
 rounded = false;
   function roundMe(  ) {
      if ( !rounded ) {
         Rico.Corner.round($('div'));                                     
         Rico.Corner.round($('div2'), {border: '#ff0000'});
         Rico.Corner.round($('div3'), {corners:"bottom"});
      }
      rounded = true;
   }

</script>
</head>
<body>
<div class="roundme" id="div" >
<div class="contents">
A div element with rounded corners.
</div>
</div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<div id="div2" class="roundme">
<div class="contents">
Another div element with rounded corners.
</div>
</div>
<div class="roundme" id="div3">
<div class="contents">
Another div
</div>
</div>
</body>
</html>

Clicking on the page calls the function that does the rounding. Figure 14-1 shows the page after the
Rico effect has been applied.

Figure 14-1. Three DIV elements with rounding applied by Rico library
functions

The rounding effect can be applied as soon as a page loads. To make it less obvious, hide the
elements until the page is finished loading, so that when they show, they show rounded.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.5. Dojo

I hesitated about including Dojo. In some ways, it demonstrates how far you can take JavaScript
away from the language, which makes it a good demonstration of the flexibility of the language. On
the other hand, Dojo demonstrates how far you can take JavaScript away from the language, to the
point where much of the simplicity of JavaScript is lost (not to mention some of the built-in DOM
functionality).

Dojo really is a mastery of packaging and encapsulation. Much of the functionality has to do with
keeping the amount of code loaded into a page to a minimum. Unfortunately, it also makes the code
extremely difficult to read.

What sets Dojo apart is its focus on making desktop applications in the browser. It supports a Flash-
based storage mechanism, including providing the Flash file used as a container. Two stellar demos of
the library are Mail, a simple mail application, and Moxie, a web editor with persistent storage.

Another aspect of Dojo's library and framework that makes it stand out is its concept of widgets,
which we'll get into later.

The Dojo Toolkit web site is at http://dojotoolkit.org/ . This includes the
beginnings of a very nice set of documentation by Alex Russell, at
http://dojotoolkit.org/docs/ , and a manual at
http://manual.dojotoolkit.org/index.html .

14.5.1. Installing and Setting Up Dojo

When you download and unzip Dojo, you'll end up with a group of directories and files. Just as with
previous frameworks, you'll include dojo.js in your Dojo-enabled application, but you'll also need to
load the secondary libraries based on your planned development activity. And there are a lot of
libraries. For instance, if you're working with Dojo form widgets (a packaged functionality), you could
end up needing to include the following script components:

dojo.require("dojo.widget.validate");        
dojo.require("dojo.widget.ComboBox");
dojo.require("dojo.widget.Checkbox");
dojo.require("dojo.widget.Editor");
dojo.require("dojo.widget.DatePicker");
dojo.require("dojo.widget.Button");

Dojo then loads only those components you specify.

Like most of the newer libraries, Dojo has an Ajax component and drag-and-drop support, as well as
an effects component, with slides, fades, and so on. In addition, it has three sets of widget libraries:

http://dojotoolkit.org/docs/
http://manual.dojotoolkit.org/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


ones for layout, form, and a general widget. It's actually the widget libraries that interested me most
with Dojo.

14.5.2. Dojo Widgets

Dojo widgets are HTML elements bound to custom JavaScript objects. They're not unlike the added
functionality associated with HTML elements in the BOM, except that widgets extend the base
functionality. And they do so through attachment of a CSS class, which is a nicely different approach
from the other libraries.

To demonstrate this capability, there's a rather nice fisheye component that magnifies content when
your mouse is over the object. A demo of its use is included in the Dojo download, so I picked
through the example to see what I could stea ...borrow.

Example 14-5 demonstrates how to use the fisheye widget. The key elements are the use of the class
definitions for each DIV element that encloses the toolbar image, and the attribute for the image.
Once the proper library is loaded, in this case, dojo.widget.FisheyeList , no other script needs to be
used in the page. The reason is that the underlying code uses class definitions and attributes to
decide what needs to be adjusted and when.

Example 14-5. Fisheye widget

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>FishEye on Dotty</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style type="text/css">

.container { width: 800px;
             margin: 0px auto;
             border: 1px solid #00f;
            }

.content { padding: 30px }

.dojoHtmlFisheyeListBar {
        margin: 0 auto;
        text-align: center;
}

.outerbar {
        background-color: #CCD9FF;
        text-align: center;
        left: 0px;
        top: 0px;
        width: 100%;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


</style>

<script type="text/javascript" src="dojo/dojo.js"></script>

<script type="text/javascript">
//<![CDATA[

        dojo.require("dojo.widget.FisheyeList");

//]]>
</script>
</head>
<body>
<div class="container">
<div class="outerbar">
<div class="dojo-FisheyeList"
        dojo:itemWidth="60" dojo:itemHeight="60"
        dojo:itemMaxWidth="300" dojo:itemMaxHeight="300"
        dojo:orientation="horizontal"
        dojo:effectUnits="2"
        dojo:itemPadding="10"
        dojo:attachEdge="top"
        dojo:labelEdge="bottom"
        dojo:enableCrappySvgSupport="false"
>

        <div class="dojo-FisheyeListItem" onClick="load_app(1);"
                dojo:iconsrc="dotty.gif" caption="Dotty">
        </div>

        <div class="dojo-FisheyeListItem" onClick="load_app(2);"
                dojo:iconsrc="doomed.gif" caption="Doomed">
        </div>

        <div class="dojo-FisheyeListItem" onClick="load_app(3);"
                dojo:iconsrc="falling.gif" caption="I'm falling">
        </div>

        <div class="dojo-FisheyeListItem" onClick="load_app(4);"
                dojo:iconsrc="impatient.gif" caption="Impatient">
        </div>

        <div class="dojo-FisheyeListItem" onClick="load_app(5);"
                dojo:iconsrc="upright.gif" caption="Upright">
        </div>

        <div class="dojo-FisheyeListItem" onClick="load_app(6);"
                dojo:iconsrc="mad.gif" dojo:caption="Mad" >
        </div>
</div>
</div>
<div class="content">

http://lib.ommolketab.ir
http://lib.ommolketab.ir


<p><pre>
Forgive me, I'm no good at this. I can't write back. I never read your letter.

I can't say I got your note. I haven't had the strength to open the envelope.

The mail stacks up by the door. Your hand's illegible. Your postcards were

defaced. Wash your wet hair? Any document you meant to send has yet to

reach me. The untied parcel service never delivered. I regret to say I'm

unable to reply to your unexpressed desires. I didn't get the book you sent.

By the way, my computer was stolen. Now I'm unable to process words...

Excerpt from <em>All She Wrote</em> by Harryette Mullen
</pre></p>
</div>
</div>
</body>
</html>

Figure 14-2 shows the page after the mouse is moved over the menu bar. The effect is very well
done, providing just enough of the rollover feel of a fisheye toolbar magnifier. More importantly, if
JavaScript is enabled, it's easy to include script to create the menu; if JavaScript's not enabled, it
provides an alternative menu system in a NOSCRIPT tag.

Figure 14-2. Fisheye effect through Dojo Widget

http://lib.ommolketab.ir
http://lib.ommolketab.ir


You can also create your own widgets. One of the articles in the documentation section of the Dojo
Toolkit provides detailed instructions on how to create your own widget
(http://dojotoolkit.org/docs/fast_widget_authoring.html ). Just like with Apple's Dashboard widgets,
these JavaScript widgets are a package of XHTML page elements constrained by CSS and bound to
JavaScript.

This is an idea well worth investigating further for your own libraries if you don't end up using Dojo.

If there's one other major downside to Dojo aside from the difficulty in reading
the script (outside of the use of compression), it's the fact that it doesn't load
quickly. There is a noticeable lag in loading unless you strip the modules used
down to the absolute minimum.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.6. The Yahoo! UI

In Chapter 13 , we had a chance to play with Google Maps' API, and in this chapter we'll give Yahoo! a
chance to show its Ajaxy stuff.

The Yahoo! UI Library is a complete set of files that provides numerous functionality; some are basic
DHTML effects, and others use Ajax to integrate with the Yahoo! search engine. To use the library, first
download and unzip it from the Yahoo! UI site (http://developer.yahoo.com/yui/ ). This site also
provides documentation, and there are numerous examples installed with the library.

Since there are well-documented examples and API calls included with the UI, I'm going to walk
through one of existing examples rather than create any new ones. In this case, I'm going to take a
closer look at the AutoComplete control being used with data accessed from Flickr, the photo-sharing
service.

You can find examples of the AutoComplete control use in the examples/autocomplete subdirectory,
and loading the index.html page allows you to pick whether you want to try out AutoComplete with
JSON or with in-memory array, and so on. I clicked the "Query Flickr Web Services for XML" option.

Once the page opens, a logger console that can be collapsed is shown on the right side of the page,
and a form field to enter Flickr tags is just below the application description. As you enter the tag
information, the console provides information about the program's progress, and as you type,
thumbnails of pictures that match tags with whatever letters you've typed are shown below the search
field. All in all, a lot of activity is going on, and you can easily get lost playing with the AutoComplete
control.

Looking under the covers (the bottom half of the example page shows the script) at the JavaScript, a
data-source object needs to be created first. The Flickr XML example uses the Yahoo.widget.DS_XHR
data control. This control processes XML Http requests (commonly referred to as REST requests). The
URL for the request proxy and an optional object with configuration parameters are passed to the
constructor:

oACDS = new YAHOO.widget.DS_XHR("./php/flickr_proxy.php",

    ["photo", "title", "id", "owner", "secret", "server"]);

Once the data source object is instantiated, several properties are set, including a parameter,
responseType , maxCacheEntries , and the script query:

// Instantiate data source and define schema as an array:

    //     ["ResultNodeName",

    //     "QueryKeyAttributeOrNodeName",

    //     "AdditionalParamAttributeOrNodeName1",

http://lib.ommolketab.ir
http://lib.ommolketab.ir


    //     ...

    //     "AdditionalParamAttributeOrNodeNameN"]

    oACDS = new YAHOO.widget.DS_XHR("./php/flickr_proxy.php",

        ["photo", "title", "id", "owner", "secret", "server"]);

    oACDS.scriptQueryParam = "tags";

    oACDS.responseType = YAHOO.widget.DS_XHR.prototype.TYPE_XML;

    oACDS.maxCacheEntries = 0;

    oACDS.scriptQueryAppend = "method=flickr.photos.search"; 

I then took a peek at the proxy server application in PHP. It's a simple server application that uses the
Flickr REST API to perform a query of photos based on whatever tag or set of tags is sent in the query.
It then returns the results without any modification.

The AutoComplete widget is created next, and then several of its properties are set:

// Instantiate auto complete

    oAutoComp = new YAHOO.widget.AutoComplete('flickrinput','flickrcontainer', oACDS);

    oAutoComp.autoHighlight = false;

    oAutoComp.formatResult = function(oResultItem, sQuery) {

        // This was defined by the schema array of the data source

        var sTitle = oResultItem[0];

        var sId = oResultItem[1];

        var sOwner = oResultItem[2];

        var sSecret = oResultItem[3];

        var sServer = oResultItem[4];

        var sUrl = "http://static.flickr.com/" +

            sServer +

            "/" +

            sId +

            "_" +

http://lib.ommolketab.ir
http://lib.ommolketab.ir


            sSecret +

            "_s.jpg";

        var sMarkup = "<img src='" + sUrl + "' class='yui-ac-flickrImg'> " + sTitle;

        return (sMarkup);

    };

The names of the form field and the container to hold the results are passed to the AutoComplete
constructor along with the newly created data-source object. Next, a function to format the result
assigns data fields to application variables, which are then used to build a return string suitable for
embedding in the web page.

Behind the scenes, then, we can assume that traditional Ajax calls are being made between the Yahoo!
UI library and the proxy PHP application hosted on my server, which then makes calls to the Flickr
server. In addition, this same library most likely formats the XML that returns into a format suitable for
easy access and display.

It's a lovely library, not only for the functionality provided but for the approach it demonstrates for
working with external services. Since a direct Flickr API access violates the same-domain security rule,
the server-side proxy application that manages the querying has no problem because there are no
security restrictions on server applications accessing external web services. The UI then uses
traditional JavaScript to communicate with this proxy.

In addition, the component-based nature of this library is one of the better I've seen, as well as being
one of the best documented and demonstrated of the more advanced libraries. I give the Yahoo! UI a
must-see rating for any new or experienced JavaScript developer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.7. MochiKit

As soon as you access the MochiKit web site, once you get past the ubiquitous lime color, you see the
words proudly proclaimed across the top:

MochiKit makes JavaScript suck less

In my opinion, if JavaScript sucked that much, it wouldn't be used so extensively, and we wouldn't have the
rich set of libraries and frameworks, of which I've only provided a sample in this chapter. However, be that
as it may, MochiKit has a nicely organized web site that makes it very easy to find demos, documentation,
and code. As with other libraries, MochiKit functionality is packaged into several different behavioral and UI
components, including:

MochiKit.Async : The Ajax component

MochiKit.Base : Foundation for the MochiKit framework

MochiKit.DOM : Wrapper around DOM functionality

MochiKit.DragAndDrop : The ever-present drag and drop

MochiKit.Color : CSS3 color abstraction

MochiKit.DateTime : Date and time functionality

MochiKit.Format : String formatting

MochiKit.Iter : Adds iteration capability

MochiKit.Logging : "We're all tired of alert( ) "

MochiKit.LoggingPane : Interactive logging pane

MochiKit.Signal : Universal event handling

MochiKit.Style : CSS API

MochiKit.Sortable : Sortable effects

MochiKit.Visual : The usual visual effects, such as rounding, visibility, and opacity

There are several interesting modules, all worth exploring. But the one that caught my eye was "We're all
tired of alert( ) ".

I find that alert is handy to debug, but true, it isn't the most efficient. I decided to take a closer look at
MochiKit logging.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Firebug

What a great name for a Firefox debugging tool.

The Firebug add-on was created by Joe Hewitt and provides a line-by-line debugger, as well as
a way to log messages from script . It also provides a JavaScript command-line tool and
inspector to easily look at all page elements in context.

As you go over each element, the Inspector briefly highlights it directly in the page. However,
it's the message console I found invaluable. When working with a script, I would keep Firebug
open, and then have access to all error and information messages instantly, rather than wait
for Firefox's very slow console to open. It's also a snap to keep it clean, but you have to shut it
down when web browsingthere's an amazing number of bad JavaScript out there.

Firebug is a must-have tool for JavaScript developers. Download it at
https://addons.mozilla.org/firefox/1843/ and read more about it at
http://www.joehewitt.com/software/firebug/ .

Figure 14-3 shows the application created by the Dojo fisheye effect, opened at the same time
as the Firebug console, with inspection turned on.

Figure 14-3. Dojo fisheye application opened at same time as the Firebug
debugging console

14.7.1. Logging

https://addons.mozilla.org/firefox/1843/
http://www.joehewitt.com/software/firebug/
http://lib.ommolketab.ir
http://lib.ommolketab.ir


As states in the MochiKit documentation, there is no print capability, which, in my opinion, developers have
been dependent on for debugging. As such, the alert dialog is used for most debugging efforts.

MochiKit logging works with whatever console each browser supports. According to the documentation, it
works with Opera 9, Safari, IE, and Firefox (if Firebug is installed). As an alternative, you can use the
logging pane module. To do so, disable logging to the console and have the communications go to this pop-
up window. I decided to try out the console option and also take Firebug for a test drive.

In Example 14-6 , I have a copy of Example 13-3 , which contains the Ajax example that processes XML. If
any application is going to have something go wrong, it will probably occur in an Ajax request/response,
when processing XML. When creating this small application, I had to use the alert function a lot, and it
would be nice to use something else.

Example 14-6. Ajax application with MochiKit debugging enabled

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Hello Ajax World, Too</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
div.elem { margin: 20px; }
</style>

        <script type="text/javascript" src="mochikit/lib/MochiKit/MochiKit.js"></script>
        <script type="text/javascript" src="mochikit/lib/MochiKit/Logging.js"></script>

<script type="text/javascript">
//<![CDATA[

var xmlhttp = false;
if (window.XMLHttpRequest) {
   xmlhttp = new XMLHttpRequest(  );
   xmlhttp.overrideMimeType('text/xml');
} else if (window.ActiveXObject) {
   xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

function populateList(  ) {
   var state = document.forms[0].elements[0].value;
log("INFO state is ",state);
   var url = 'ajaxxml.php?state=' + state;
log("INFO url is ",url);
   xmlhttp.open('GET', url, true);
   xmlhttp.onreadystatechange = getCities;
   xmlhttp.send(null);
}
function getCities(  ) {
   if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
     log("INFO responseXML is ",xmlhttp.responseXML);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


     var hdrs = xmlhttp.getAllResponseHeaders(  );
     log("INFO headers are ", hdrs);
     try {
        var citynodes = xmlhttp.responseXML.getElementsByTagName('city');
        for (var i = 0; i < citynodes.length; i++) {
           var name = value = null;
           for (var j = 0; j < citynodes[i].childNodes.length; j++) {
              var elem = citynodes[i].childNodes[j].nodeName;
              var nodevalue = citynodes[i].childNodes[j].firstChild.nodeValue;
              if (elem == 'value') {
                  value = nodevalue;
              } else {
                  name = nodevalue;
              }
           }
           document.forms[0].elements[1].options[i] = new Option(name,value);
         }
      } catch (e) {
         logDebug("DEBUG error message is", e.message);
      }
   } else {
      document.getElementById('cities').innerHTML = 'Error: No Cities';
   }
}

//]]>
</script>

</head>
<body>

<h3>Select State:</h3>
<form action="ajaxxml.php" method="get">
<div class="elem">
<select onchange="populateList(  )">
<option value="CA">California</option>
<option value="MO">Missouri</option>
<option value="WA">Washington</option>
<option value="ID">Idaho</option>
</select>
</div>
<h3>Cities:</h3>
<div class="elem">
<select id="cities">
</select>
</div>
</form>

</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir


I've highlighted the lines of code where I've made changes based on adding in the logging functionality.
What I find a relief with MochiKit is that, other than having to include the base functionality, most of the
MochiKit modules are just thatmodules that can be included only as needed.

Figure 14-4 shows the web-page application with Firebug opened, as well as MochiKit's logging. As you can
see, this is vastly superior to an alert dialog. And they're just in time to use for all of the JavaScript
applications you've been itching to create.

Figure 14-4. MochiKit logging in Firebug console

Have fun.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


14.8. Questions

You're using a library such as Dojo in addition to your functionality. The Dojo effect, such as the
fisheye toolbar, doesn't work. Where's the first place to look to see how there might be a
conflict between your code and Dojo's?

1.

In the Prototype library, what does the $( ) function do?2.

The fisheye application created using Dojo does not validate as XHTML. The custom attributes
on the DIV elements are accountable for much of this. What is a workaround?

3.

How does the Yahoo! UI Library work around the same-domain security policy but still allow
access to web services at other domains?

4.

So, does MochiKit make JavaScript "suck less"? Seriously, what's your view on the strengths
and weaknesses of JavaScript now that you've read a book about it?

5.

Answers are provided in the appendix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Appendix 1. Answers

Section A.1.  Chapter 2

Section A.2.  Chapter 3

Section A.3.  Chapter 4

Section A.4.  Chapter 5

Section A.5.  Chapter 6

Section A.6.  Chapter 7

Section A.7.  Chapter 8

Section A.8.  Chapter 9

Section A.9.  Chapter 10

Section A.10.  Chapter 11

Section A.11.  Chapter 12

Section A.12.  Chapter 13

Section A.13.  Chapter 14

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.1. Chapter 2

The following are valid:1.
$someVariable
_someVariable
some_variable
som&#232;variable

2.

The function variable uses a reserved JavaScript keyword, someVariable and 1Variable both start with invalid characters, and some*variable uses an invalid character, a
JavaScript operator (*), as part of the variable name. All invalid names generate JavaScript errors.

3.

The identifiers are converted as follows:4.

The variable some-month becomes someMonth , using CamelCase notation.5.

The function theMonth becomes getTheCurrentMonth , using relevant verbs and other distinguishing information.6.

The const current-month becomes CURRENT-MONTH , using constant-width uppercase letters.7.

The variable summer-month becomes summerMonths , maintaining consistency between the array of items and variable name.8.

The MyLibrary-afunction function becomes mylibraryFunctionverbFunctionname .9.

Important point to remember: conjugation is the bane of coders. Use a backslash before the inner single quote so that itâ??s interpreted literally, and not end-of-string:10.
var someString = â??Who once said, â??Only two things are infinite, the universe and human stupidity, and I\â??m not sure about the former.â? â??;11.

The following code would work:12.
var fltNumber = 432.54;
var intNumber = parseInt(fltNumber);
var octNumber = parseInt(intNumber,2);
var hexNumber = parseInt(intNumber,16);

13.

The function parseInt returns the decimal base integer of the floating-point number, which is 432. It can also take a second parameter, specifying base: 8 for octal and 16 for
hexidecimal.

14.

Ah, trick question here. Passing a variable thatâ??s not been declared to a function, user function, or JavaScript function results in a JavaScript error, so your function code will
never need to test for this.

15.

To test to see whether the value has been set, use a conditional statement:16.
function test(a) {
 if (a) {
 // some code
 }

17.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.2. Chapter 3

The solution is:1.
var resultOfComp = (valA - valB) % 3 / 2 * (4 + valC) - 3;2.

The solution is:3.
switch(val) {
   case 'one','two' : 
     result = 'OK';
     break;
   case 'three' :
     result = 'OK2';
     break;
   default :
     result = 'NONE';
} 

4.

The solution is:5.
if ((varOne == 33) && (varTwo <= 100) && (varThree > 0))... 6.

and 5. In for loops, you donâ??t have to start at 0 or 1, and you also donâ??t have to
increment the number. Hereâ??s how to count upward between 10 and 20:

7.

for (var i = 11; i < 20; i++) {
  document.writeln(i + "<br />");
}

8.

And hereâ??s how to reverse the count:9.
for (var i = 19; i > 10; i--) {
  document.writeln(i + "<br />");
}

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.3. Chapter 4

Use the String.split method, passing in a comma (,) as delimiter.1.

Word boundaries are particularly useful if you want a separate word, but being given a string
that could match within another word:

2.

var regexp = /\bfun\b/;
var str = "The fun of functions is that they are functional.";
var result = str.replace(regexp,"power");

3.

There is no Date function that manipulates weeks, but we know that a week is 7 days at 24
hours a day, for a total of 168 hours. Use the getHours method to get the current dateâ??s
hours, add this value, reset the hours, and then print out the date. Other approaches can also
be used and are left for your own exploration:

4.

var dtNow = new Date(â??â??);
var hours = dtNow.getHours(â??â??);
hours+=168;
dtNow.setHours(hours);
document.writeln(dtNow.toString(â??â??));

5.

Math.floor can be used to round the number down; Math.ceil can round the number up.6.

The answer is:7.
var str = "apple.orange-strawberry,lemon-.lime";
var regexp = /[\.|-]/g;
var result = str.replace(regexp,',');
var arrayValues = result.split(',');
for (var i = 0; i < arrayValues.length; i++) {
   document.writeln(arrayValues[i] + "<br />");
}

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.4. Chapter 5

Declarative functions are the traditional function forms, and should be used whenever possible
because theyâ??re parsed just once (more efficient) and easy to spot in a page (readable). In
addition, all browsers that support JavaScript support this type of function.

1.

Anonymous functions have no name, are assigned a variable or passed as a function parameter,
and are parsed each time theyâ??re accessed. Theyâ??re useful when some circumstance, such
as user input, determines their behavior.

2.

Literal functions are useful for defining methods for objects, or to pass as a parameter. Theyâ??
re also useful in recursion, especially because if given a name, that name is available only
internally in the code.

3.

If an object, such as an array, is passed as a function parameter, modifications to the array in
the function are reflected outside the function. A function can also return a value, and any
modifications to global variables are also reflected outside the function scope.

4.

Rather than define a parameter list, access the arguments array. With this, the number of
arguments passed into the function can be easily altered:

5.

function test(â??â??) {
for (var i = 0; i < arguments.length; i++) {
   alert(arguments[i]);
}
}
test(1,2,3);

test(1,2,3,4);

6.

The this property not only sets but accesses properties within a function.7.

An anonymous function suits these requirements:8.
function invokeFunction(dataObject,functionToCall) {

   functionToCall(dataObject);
}

var funcCall = new Function('x','alert(x)');

invokeFunction('hello', funcCall);

9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.5. Chapter 6

The three approaches are inline, using syntax such as onload on the body element; using the
traditional DOM Level 0 event capturing, such as window.onload; and using the newer DOM
Level 2 events, such as addEventListener or attachEvent.

1.

If using the DOM Level 0 event-handling system, you either access the event object on the
window object or passed in as a function. For DOM Level 2, the event object is always passed
into the function. From the event object, access the screenX or screenY properties.

2.

The IE approach differs from that supported by most browsers, and as such, you have to
support both it and the others. Test if the stopPropagation method is supported on the event
object and if so, invoke it; otherwise, set the cancelBubble property to true.

3.

The answer is:4.
if (window.addEventListener) {
      window.addEventListener("load",functionCall,false);
   } else if (window.attachEvent) {
      window.attachEvent("onload", functionCall);
   }

5.

Though we havenâ??t covered capturing keyboard events, typically you capture the keydown
event and then access the Unicode key code from the which property on the event:

6.

if (document.addEventListener) {
      document.addEventListener("keydown",getKey,true);
   } else if (document.attachEvent) {
      document.attachEvent("onkeydown", getKey);
   }

function getKey(evnt) {
   alert(evnt.which);
}

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.6. Chapter 7

If using the DOM Level 0 events, returning false from the event handler and the event-handler
script cancels the submittal. If using DOM Level 2, set cancelBubble to TRue for IE, and call the
preventDefault for other browsers, both based on the event object.

1.

The blur event is triggered when the field loses focus. This is a good time to check the text field
to make sure it has valid data.

2.

The select options are stored in an array called Options. As such, you can add new options as
you would add new array elements, making sure that the entry is a new Option object:

3.

opts[opts.length] = new Option("Option Four", "Opt 4");4.

Hereâ??s one approach:5.
var rgEx = /^[A-Za-z\s]*$/g;
var OK = rgEx.exec(document.someForm.text1.value);

6.

The code must first assign an event-handler function to each radio buttonâ??s onclick event
handler:

7.

document.someForm.radiogroup[0].onclick=handleClick;
document.someForm.radiogroup[1].onclick=handleClick;

8.

If there are several buttons, this can be managed in a for loop. In the handleClick function,
test the check status, and disable the form element accordingly. For instance, to disable the
submit button:

9.

function handleClick(â??â??) {
   if (document.someForm.radiogroup[1].checked) {
     document.someForm.submit.disabled=true;
   } else {
     document.someForm.submit.disabled=false;
  }
}

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.7. Chapter 8

There are actually several different ways to save material on a client machine:1.

Use cookies

Use a third-party plug-in such as Flash

Ask the user to right-click on an element and save it to his local directory

Attach a downloadable file to a link, where clicking on the link opens a dialog and tells the
user to save the file

Create a browser extension, which is then downloaded and installed

A cookie name, a value, an expiration date for the cookie, and a path associated with the
cookie.

3.

Do not provide an expiration date.4.

Any data that can be invoked in the browser, or can be used to snoop around a clientâ??s
cookies, or even run a server-side process. In particular, the phrase, javascript: or script tags
should be scrubbed from input.

5.

However, this isnâ??t as cleanly defined as you would think. For content-management tools, it
may be feasible for a person to enter script into a specific posting or page. But in a multiuser
environment, an individual could use script to find out information about the other users of the
system.

6.

Look at any input field with suspicion and ask yourself, who can enter data through the field,
and do I trust them 100 percent? Then scrub the data.

7.

There is no right or wrong answer for this question. Here are some uses of cookies Iâ??ve seen:8.

To maintain a personâ??s username and URL and email for a comment system

To provide live feedback on data entries

To enable a spell checker

To store login information

To maintain a shopping cart

Iâ??ve never run up against the 4 K cookie limit in any of these cases.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.8. Chapter 9

The prompt dialogue.1.

Hereâ??s the timer:2.
setTimeout(callFunction,3000,paramA,paramB);3.

The location object can be used to change whatâ??s loaded in the browser. The individual items or the HRef
property can be set to provide an entire URL.

4.

The navigator object can be accessed to get information about the browser, whether cookies are enabled, and
so on.

5.

Hereâ??s the code for the window:6.
var newWindow = window.open("http://help.htm","","width=400,height=400,toolbar=no,status=no");7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.9. Chapter 10

The attributes are: id, title, lang, dir, and className1.

Hereâ??s the element type:2.
var elems = document.getElementByName('elemName');
for (var i = 0; i < elems.length; i++) {
    alert(elems[i].tagName);
}

3.

Here are the element types:4.
var children = nd.childNodes;
for (var i = 0; i < children.length; i++) {
    alert(children[i].nodeType);
}

divs = document.getElementsByTagName('div');
 for (var i = 0; i < divs.length; i++) {
     alert(divs[i].id);
}

var elem = document.getElementById("elem1");
var children = elem.childNodes;
var child = elem.getElementsByTagName('h1')[0];
var p = document.createElement("p");
var txt = document.createTextNode("hello");
p.appendChild(txt);

elem.replaceChild(p,child);

5.

The solution is:6.
divs = document.getElementsByTagName('div');
 for (var i = 0; i < divs.length; i++) {
     alert(divs[i].id);
}

7.

The solution is:8.
var elem = document.getElementById("elem1");
var children = elem.childNodes;
var child = elem.getElementsByTagName('h1')[0];
var p = document.createElement("p");
var txt = document.createTextNode("hello");

9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


p.appendChild(txt);

elem.replaceChild(p,child);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.10. Chapter 11

Use the Numberâ??s prototype property:1.
Number.prototype.triple = function (â??â??) {
   var nm = this.valueOf(â??â??) * 3;
   return nm;
}
var num = new Number(3.0);
alert(num.triple(â??â??));

2.

Declare the data member with var instead of this. The purpose behind data hiding is to control
how the data is accessed or updated.

3.

Use the tHRow statement to trigger an error. Then implement try...catch in the calling
application:

4.

if (typeof value != "number") {
  throw "NotANumber";
}

5.

Unlike the event object, there are more than just model differences involved. Not only is the
property different, but so is the value thatâ??s assigned to the property.

6.

Hereâ??s one approach to creating the objects:7.
function Control(â??â??) {
  var state = 'on';
  var background = '#fff';

  this.changeState = function(â??â??) {
      if (state == 'on') {
          state = 'off';
          background = '#000';
      } else
          state = 'on';
          background = '#fff';
     };

  this.getState = function(â??â??) {
     return state;
  };

  this.getColor = function(â??â??) {
     return background;
  };

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


}

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.11. Chapter 12

One approach is to set the style of the element inline using the style attribute. You can also use
getComputedStyle or currentStyle, taking care to compensate for browser differences. A third
approach is to store the current settings in a global variable and access it, rather than the
actual setting.

1.

You can set font size and line height at the same time:2.
obj.style.font="14pt/16pt";
obj.style.color="#f00";

3.

If the text is in an element contained within the one whose style youâ??ve altered, and this
inner element has a different style setting, it will override your setting.

4.

One way is to resize it out of existence by setting either the width or height to zero. You can
also clip the element to the top, bottom, left, or, right. You can also hide it by setting
visibility to hidden, or turn off the display. Finally, you can make it move off the page, or
move another element in front of it.

5.

Try a mouse-click event handler attached to the image of an item, in combination with a â??Buy
meâ?  hypertext link for keyboard events; this could move the item to a shopping cart using
animation or instantaneously. This effect cuts the amount of coding, ensures the effect is
accessible, and is still pretty cool.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.12. Chapter 13

The third, and optional, parameter of XMLHttpRequest.open is a Boolean value. Setting this to
TRue, the default, the request is asynchronous; setting it to false makes the request
synchronous.

1.

After getting a reference to the XMLHttpRequest object and opening it, assign the callback
function through the onReadyStateChange property.

2.

The XMLHttpRequest objectâ??s readyState property needs to have a value of 4 for completed;
the request objectâ??s HTTP status property should be 200 for a successful service request.

3.

Here are the three formats: HTML, which can be immediately added to the page without any
formatting; XML, which can be formatted with XSLT; and JSON, which can be used in a eval
function call to create a web structure ready for processing.

4.

From the Google Maps documentation, create a new GIcon object and populate its properties.
Then use the object when creating the new GMarker object:

5.

var icon = new GIcon(â??â??);
icon.image = "http://labs.google.com/ridefinder/images/mm_20_red.png";
icon.shadow = "http://labs.google.com/ridefinder/images/mm_20_shadow.png";
icon.iconSize = new GSize(12, 20);
icon.shadowSize = new GSize(22, 20);
icon.iconAnchor = new GPoint(6, 20);
icon.infoWindowAnchor = new GPoint(5, 1);
...
marker = new Gmarker(point,icon);

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


A.13. Chapter 14

The first thing to check is to ensure youâ??re using the DOM Level 2 event handling. If you use DOM Level 0, such as:1.
window.onload=function;2.

Youâ??ll overwrite the event handlers the Dojo library has assigned to this specific event.3.

The $(â??â??) function returns whatever element has the identifier passed in as parameter to the function.4.

Dojo requires these element attributes, but they can be added using JavaScript before Dojo needs them (after the page loads). Create a function
to add the attributes, and place a call to this function in the page body just after the toolbar is loaded. In the function, set the attributes using
the DOM. Hereâ??s the code Iâ??ve used for a web page:

5.

function setMenuProps(â??â??) {
  var cont = document.getElementById("controller");
  cont.setAttribute("itemWidth","60");
  cont.setAttribute("itemHeight","100");
  cont.setAttribute("itemMaxWidth", "200");
  cont.setAttribute("itemMaxHeight", "300");
  cont.setAttribute("orientation","horizontal");
  cont.setAttribute("effectUnits","2");
  cont.setAttribute("itemPadding","10");
  cont.setAttribute("attachEdige","top");
  cont.setAttribute("labelEdge","bottom");
  cont.setAttribute("enableCrappySvgSupport","false");

  var menu1 = document.getElementById("menu1");
  menu1.setAttribute("onClick","load_page('http://scriptteaser.com/learningjavascript/')");
  menu1.setAttribute("iconsrc","/dotty/dotty.gif");
  menu1.setAttribute("caption","Learning JavaScript");

  var menu2 = document.getElementById("menu2");
  menu2.setAttribute("onClick","load_page('http://scriptteaser.com/threepsandr/')");
  menu2.setAttribute("iconsrc","/dotty/doomed.gif");
  menu2.setAttribute("caption","Three Ps and your little R, too");

  var menu3 = document.getElementById("menu3");
  menu3.setAttribute("onClick","load_page('http://scriptteaser.com/webservices/')");
  menu3.setAttribute("iconsrc","/dotty/falling.gif");
  menu3.setAttribute("caption","Web Services");

  var menu4 = document.getElementById("menu4");
  menu4.setAttribute("onClick","load_page('http://scriptteaser.com/misc/')");
  menu4.setAttribute("iconsrc","/dotty/impatient.gif");
  menu4.setAttribute("caption","Odds n Ends");

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


  var menu5 = document.getElementById("menu5");
  menu5.setAttribute("onClick","load_page('http://words.einsteinslock.com/')");
  menu5.setAttribute("iconsrc","/dotty/mad.gif");
  menu5.setAttribute("caption","Mad Tech Womon on the Loose");

  var menu6 = document.getElementById("menu6");
  menu6.setAttribute("onClick","load_page('http://scriptteaser.com/')");
  menu6.setAttribute("iconsrc","/dotty/home.png");
  menu6.setAttribute("caption","Home");
}
Now the custom attributes can be removed from the elements. Dojo is happy and XHTML validator is happy that they're gone.

Yahoo! UI creates server-side applications that provide the services for JavaScript in the pages and which make the web-service calls to the
remote service. Itâ??s actually a good workaround, though performance should be monitored.

7.

This is one I canâ??t provide a answer for. I like JavaScript, and I hope that after reading this book, you do, too.8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Colophon

The animal on the cover of Learning JavaScript is a baby black, or hook-lipped, rhinoceros (Diceros
bicornis). The black rhino is one of two African species of rhinos. Weighing up to one and a half tons,
it is smaller than its counterpart-the white, or square-lipped, rhinoceros. Black rhinos live in savanna
grasslands, open woodlands, and mountain forests in a few small areas of southwestern, south
central, and eastern Africa. They prefer to live alone and will aggressively defend their territory.

With an upper lip that tapers to a hooklike point, the black rhino is perfectly suited to pluck leaves,
twigs, and buds from trees and bushes. It is able to eat coarser vegetation than other herbivores.

Black rhinos are odd-toed ungulates, meaning they have three toes on each foot. They have thick,
gray, hairless hides. Among the most distinctive of the rhino's features is its two horns, which are
actually made of thickly matted hair rather than bone. The rhino uses its horns to defend itself
against lions, tigers, and hyenas, or to claim a female mate. The courtship ritual is often violent, and
the horns can inflict severe wounds.

After mating, the female and male rhinos have no further contact. The gestation period is 14 to 18
months, and the calves nurse for a year, though they are able to eat vegetation almost immediately
after birth. The bond between a mother and her calf can last up to four years before the calf leaves
its home.

In recent years, rhinos have been hunted to the point of near extinction. Scientists estimate that
there may have been as many as a million black rhinos in Africa 100 years ago, a number that has
dwindled to 2,400 today. All five remaining species, which include the Indian, Javan, and Sumatran
rhinos, are now endangered. Humans are considered their biggest predators.

The cover image is from Cassell's Natural History. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

$( ) function, Prototype library

$F function, Prototype library

$H function, Prototype library

$R function, Prototype library

% (modulus) operator

* (multiplication) operator

+ (addition) operator

++ (increment) operator

- (negative) operator

- (subtraction) operator

-- (decrement) operator

/ (division) operator

< (less than) operator>

= (assignment) operator

> (greather than) operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

accessibility

addEventListener 2nd

addition (+) operator

AJAX

Ajax

     best practices

     Hello World

     overview

     permalink

     security

     XMLHttpRequest

alert dialog

all collection, document object

alpha filter

anchors, links and

anonymous functions

apply method

arguments, functions

arithmethic statements

arithmetic operators

arrays

     associative

     constructing

     queues, FIFO

assignment statement

assignment with operation

associative arrays

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

backslash in strings

best practices

binary operators

bitwise operators

BOM (Browser Object Model)

boolean data type

boolean data types

Boolean function

Boolean object

bottom property

browser objects

browsers

     DOM

     supported

built-in objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

call method

callback functions

case-sensitivity

catch statement

CDATA section

chaining constructors

checkboxes

     introduction

     JiT validation

clipping region

code

     examples

     location

collapsible forms

comments

compatibility

compression

conditional operators, equality

conditional statements

     if...else

     program flow and

confirm method

const keyword

constants

constructors

     chaining

     functions

cookies

     creating

     Dojo and

     erasing

     escape function

     LiveConnect and

     path

     reading

     retrieving

     setting

     SO storage

     storing 2nd

     XSS (cross-site scripting)

Core API

http://lib.ommolketab.ir
http://lib.ommolketab.ir


cross-site scripting (XSS)

cross-window communication

CSS (Cascading Style Sheets) 2nd 3rd

     bottom property

     clipping and

     color

     direction

     element size

     fontFamily

     fontSize

     fontSizeAdjust

     fontStretch

     fontStyle

     fontVariant

     left property

     lineHeight

     position property

     right property

     text properties

     textAlign

     textDecoration

     textIndent

     textTransform

     top property

     whiteSpace

     wordSpacing

     z-index

custom objects

     functions and

     private properties

     public properties

custom windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

data types

     boolean 2nd

     number

     numeric

     string 2nd

Date object

declarative functions

declarative/static functions

decrement (--) operator

detecting objects

DHTML (Dynamic HTML) 2nd

     drag and drop

dialog windows

display property

division (/) operator

do...while loop

document object

     all collection

     DOM

document.domain

Dojo

     cookies and

     installation

     setup

     widgets

DOM (Document Object Model)

     browsers

     Core API

     document object

     DOM tree

     Element object

     event handler and

     interfaces

     methods

     node properties

     style property and

    tree

         modifying

         node and

DOM HTML API 2nd

     browser differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir


     Element object

     interfaces

     Node object

     objects

         access

DOM inspector, MouseOver

drag and drop

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Element object

encapsulation

end-of-line terminator

equality operator

error handling

escape function, cookies

escape sequences

event handlers

     case

     cross-browser

     DOM and

     this

Event object

     properties 2nd

events

     attaching to forms

     bubbling 2nd

     generating

     inline

     inline model

     introduction

     objects and

exec method, RegExp object

expressions

     function expressions

     regular expressions 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

FIFO queues, arrays

files

     including

finally statement

Firefox

     DOM inspector

     JavaScript console

floating-point numbers

fontFamily

fonts, style properties

fontSize

fontSizeAdjust

fontStretch

fontStyle 2nd 3rd

fontVariant

for loops

form fields, validation

forms

     accessing

     checkboxes

     collapsible

     events, attaching

     fields

         hidden

         JiT regular expressions

         JiT validation

         password

         textarea

     radio buttons

frame object

frames

     iframes, remote scripting in

function keyword

Function object

functions

     anonymous

     arguments

     Boolean

     callback functions

     closure

     constructors

http://lib.ommolketab.ir
http://lib.ommolketab.ir


     custom objects and

     declarative

     declarative/static

     function expressions

     funtion expressions

     introduction

     literals 2nd

     naming conventions

     nested

     Number

     parseFloat

     parseInt

     recursive

     returns

     user-defined

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

generating events

getElementById method

getElementsByTagName method

global variables

Google Maps

greater than (>) operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Hello World

hidden field

history object

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

if...else statements

iframes, remote scripting in

images

increment (++) operator

inheritance

inline events

innerHTML property

interfaces

     Core API

     DOM

     DOM HTML API 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

JavaScript

     compatibility

     history of

JiT validation

     checkboxes

     list items

     radio buttons

     regular expressions

     text fields

JSON (JavaScript Object Notation)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

keywords

     const

     function

     var

     variable identifiers

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

left property

less than (<) operator

libraries

     including

     Prototype

     Rico

     script.aculo.us

     Yahoo! UI

links, anchors and

lists

     selecting items

         JiT validation

         modifying selection

literals, functions

LiveConnect, cookies and

local variables

location object 2nd

logical operators

loops

     do...while

     for

     while

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Math object

     methods

     properties

memory leaks

methods

     apply

     call

     confirm

     DOM

     getElementById

     getElementsByTagName

     Math object

     resizeBy

     resizeTo

     setTimeout

     String object

     XMLHttpRequest

MochiKit

modulus (%) operator

multiplication (*) operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

naming conventions, functions

navigator object

negative (-) operator

nested functions

noscript

number data type

Number function

Number object

numbers, floating-point

numeric data types

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Object constructor

object detection 2nd

Object object

objects

     Boolean

     browser objects

     built-in

     custom

         functions and

         private properties 2nd

     Date

     document

     DOM HTML API

     encapsulation

     Event

     events and

     frame

     Function

     history

     introduction

     libraries

     location 2nd

     Math

         methods

         properties

     navigator

     Number

     Object

     one-off

     Prototype library

     prototyping

     RegExp

     screen

     String

     window

one-off objects

opacity 2nd

operators

     = (assignment)

     arithmetic

     assignment with operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir


     binary

     bitwise

     equality

     logical

     precedence

     property

     relational

     ternary

     unary

overflow

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

parseFloat function

parseInt function

password field

permalink, Ajax

position property

precedence of operators

private properties, custom objects

program flow, conditional statements and

properties

     bottom

     Event object

     event object

     innerHTML

     left

     Math object

     nodes, DOM

     position

     prototype

     right

     String object

     style

     top

     visiblity

property operator

Prototype library

     $( ) function

     $F function

     $H function

     $R function

     helper functions

     objects

prototype property

prototyping objects

public properties, custom objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queues, arrays, FIFO

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

radio buttons

     introduction

     JiT validation

recursive functions

RegExp object

     exec method

     text method

regular expressions 2nd

     JiT validation

relational operators

removeEventListener

reserved words

resizeBy method

resizeTo method

returns, functions

Rico library

right property

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

same origin security policy

sandbox

scope

scope, variables

screen object

script tag

     attributes

script.aculo.us library

security

     Ajax

     same origin policy

select element 2nd 3rd

setTimeout method

SO (Shared Objects), cookies and

statements

     arithmetic

     assignment

    conditional

         program flow and

     semicolons

     switch

string data type

string data types

     backslash

string literals

String object

style property

styles, fonts

subtraction (-) operator

switch statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tags, script

ternary operator

test method

     RegExp object

text

     properties

text field

textarea field

this keyword, object properties and

timers

top property

try statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

unary operators

user-defined functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

validation, form fields

var keyword

variables

     global

    identifiers

         keywords

         Unicode

     local

     naming guidelines

         prototype effect

     scope

visibility property

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

while loop

whitespace

window object

     custom windows

     dialog windows

     open method

     resizeBy method

     resizeTo method

windows

     cross-window communication

     custom

     dialog windows

     modifying

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XML

XMLHttpRequest

     existence of

     methods

XSS (cross-site scripting)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yahoo! UI Library

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

z-index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Learning JavaScript
	Table of Contents
	Copyright
	Preface

	Chapter 1.  Introduction and First Looks
	Section 1.1.  Twisted History: Specs and Implementations
	Section 1.2.  Cross-Browser Incompatibility and Other Common JavaScript Myths
	Section 1.3.  What You Can Do with JavaScript
	Section 1.4.  First Look at JavaScript: "Hello World!"
	Section 1.5.  The JavaScript Sandbox
	Section 1.6.  Accessibility and JavaScript Best Practices

	Chapter 2.  JavaScript Data Types and Variables
	Section 2.1.  Identifying Variables
	Section 2.2.  Scope
	Section 2.3.  Simple Types
	Section 2.4.  Constants: Named but Not Variables
	Section 2.5.  Questions

	Chapter 3.  Operators and Statements
	Section 3.1.  Format of a JavaScript Statement
	Section 3.2.  Simple Statements
	Section 3.3.  Conditional Statements and Program Flow
	Section 3.4.  The Conditional Operators
	Section 3.5.  The Logical Operators
	Section 3.6.  Advanced Statements: The Loops
	Section 3.7.  Questions

	Chapter 4.  The JavaScript Objects
	Section 4.1.  The Object Constructor
	Section 4.2.  The Number Object
	Section 4.3.  The String Object
	Section 4.4.  Regular Expressions and RegExp
	Section 4.5.  Purposeful Objects: Date and Math
	Section 4.6.  JavaScript Arrays
	Section 4.7.  Associative Arrays: The Arrays That Aren't
	Section 4.8.  Questions

	Chapter 5.  Functions
	Section 5.1.  Defining a Function: Let Me Count the Ways
	Section 5.2.  Callback Functions
	Section 5.3.  Functions and Recursion
	Section 5.4.  Nested Functions, Function Closure, and Memory Leaks
	Section 5.5.  Function As Object
	Section 5.6.  Questions

	Chapter 6.  Catching Events
	Section 6.1.  The Event Handler at DOM Level 0
	Section 6.2.  Questions

	Chapter 7.  Forms and JiT Validation
	Section 7.1.  Accessing the Form
	Section 7.2.  Attaching Events to Forms: Different Approaches
	Section 7.3.  Selection
	Section 7.4.  Radio Buttons and Checkboxes
	Section 7.5.  Input Fields and JiT Regular Expressions
	Section 7.6.  Questions

	Chapter 8.  The Sandbox and Beyond: Cookies, Connectivity, and Piracy
	Section 8.1.  The Sandbox
	Section 8.2.  All About Cookies
	Section 8.3.  Alternative Storage Techniques
	Section 8.4.  Cross-Site Scripting (XSS)
	Section 8.5.  Questions

	Chapter 9.  The Basic Browser Objects
	Section 9.1.  BOM at a Glance
	Section 9.2.  The window Object
	Section 9.3.  Frames and Location
	Section 9.4.  history, screen, and navigator
	Section 9.5.  The all Collection, Inner/Outer HTML and Text, and Old and New Documents
	Section 9.6.  Something Old, Something New
	Section 9.7.  Questions

	Chapter 10.  DOM: The Document Object Model
	Section 10.1.  A Tale of Two Interfaces
	Section 10.2.  The DOM and Compliant Browsers
	Section 10.3.  The DOM HTML API
	Section 10.4.  Understanding the DOM: The Core API
	Section 10.5.  The DOM Core Document Object
	Section 10.6.  Element and Access in Context
	Section 10.7.  Modifying the Tree
	Section 10.8.  Questions

	Chapter 11.  Creating Custom JavaScript Objects
	Section 11.1.  The JavaScript Object and Prototyping
	Section 11.2.  Creating Your Own Custom JavaScript Objects
	Section 11.3.  Object Detection, Encapsulation, and Cross-Browser Objects
	Section 11.4.  Chaining Constructors and JS Inheritance
	Section 11.5.  One-Off Objects
	Section 11.6.  Advanced Error-Handling Techniques (try, throw, catch)
	Section 11.7.  What's New in JavaScript
	Section 11.8.  Questions

	Chapter 12.  Building Dynamic Web Pages: Adding Style to Your Script
	Section 12.1.  DHTML: JavaScript, CSS, and DOM
	Section 12.2.  Fonts and Text
	Section 12.3.  Position and Movement
	Section 12.4.  Size and Clipping
	Section 12.5.  Display, Visibility, and Opacity
	Section 12.6.  Questions

	Chapter 13.  Moving Outside the Page with Ajax
	Section 13.1.  Ajax: It's Not Only Code
	Section 13.2.  How Ajax Works
	Section 13.3.  Hello Ajax World!
	Section 13.4.  The Ajax Object: XMLHttpRequest and IE's ActiveX Objects
	Section 13.5.  Working with XMLor Not
	Section 13.6.  Google Maps
	Section 13.7.  Questions

	Chapter 14.  Good News: Juicy Libraries! Amazing Web Services! Fun APIs!
	Section 14.1.  Before Jumping In, A Word of Caution
	Section 14.2.  Working with Prototype
	Section 14.3.  Script.aculo.us: More Than the Sum of Its Periods
	Section 14.4.  Sabre's Rico
	Section 14.5.  Dojo
	Section 14.6.  The Yahoo! UI
	Section 14.7.  MochiKit
	Section 14.8.  Questions

	Appendix 1.  Answers
	Section A.1.  Chapter 2
	Section A.2.  Chapter 3
	Section A.3.  Chapter 4
	Section A.4.  Chapter 5
	Section A.5.  Chapter 6
	Section A.6.  Chapter 7
	Section A.7.  Chapter 8
	Section A.8.  Chapter 9
	Section A.9.  Chapter 10
	Section A.10.  Chapter 11
	Section A.11.  Chapter 12
	Section A.12.  Chapter 13
	Section A.13.  Chapter 14

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


