
Java™ I/O, 2nd Edition

By Elliotte Rusty Harold

...

Publisher: O'Reilly

Pub Date: May 2006

Print ISBN-10: 0-596-52750-0

Print ISBN-13: 978-0-59-652750-1

Pages: 726

Table of Contents | Index

All of Java's Input/Output (I/O) facilities are based on
streams, which provide simple ways to read and write data of different
types. Java provides many different kinds of streams, each with its own
application. The universe of streams is divided into four large
categories: input streams and output streams, for reading and writing
binary data; and readers and writers, for reading and writing textual
(character) data. You're almost certainly familiar with the basic kinds
of streams--but did you know that there's a CipherInputStream for
reading encrypted data? And a ZipOutputStream for automatically
compressing data? Do you know how to use buffered streams effectively
to make your I/O operations more efficient? Java I/O,
2nd Edition has been updated for Java 5.0 APIs and tells you
all you ever need to know about streams--and probably more.

A discussion of I/O wouldn't be complete without treatment of character
sets and formatting. Java supports the UNICODE standard, which provides
definitions for the character sets of most written languages.
Consequently, Java is the first programming language that lets you do
I/O in virtually any language. Java also provides a sophisticated model
for formatting textual and numeric data. Java I/O,
2nd Edition shows you how to control number formatting, use characters aside from
the standard (but outdated) ASCII character set, and get a head start
on writing truly multilingual software.

Java I/O, 2nd Edition includes:

Coverage of all I/O classes and related classes

In-depth coverage of Java's number formatting facilities
and its support for International character sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java™ I/O, 2nd Edition

By Elliotte Rusty Harold

...

Publisher: O'Reilly

Pub Date: May 2006

Print ISBN-10: 0-596-52750-0

Print ISBN-13: 978-0-59-652750-1

Pages: 726

Table of Contents | Index

 Copyright

 Preface

 Part PART I: Basic I/O

 Chapter 1. Introducing I/O

 Section 1.1. What Is a Stream?

 Section 1.2. Numeric Data

 Section 1.3. Character Data

 Section 1.4. Readers and Writers

 Section 1.5. Buffers and Channels

 Section 1.6. The Ubiquitous IOException

 Section 1.7. The Console: System.out, System.in, and System.err

 Section 1.8. Security Checks on I/O

 Chapter 2. Output Streams

 Section 2.1. Writing Bytes to Output Streams

 Section 2.2. Writing Arrays of Bytes

 Section 2.3. Closing Output Streams

 Section 2.4. Flushing Output Streams

 Section 2.5. Subclassing OutputStream

 Section 2.6. A Graphical User Interface for Output Streams

 Chapter 3. Input Streams

 Section 3.1. The read() Method

 Section 3.2. Reading Chunks of Data from a Stream

 Section 3.3. Counting the Available Bytes

 Section 3.4. Skipping Bytes

 Section 3.5. Closing Input Streams

 Section 3.6. Marking and Resetting

 Section 3.7. Subclassing InputStream

 Section 3.8. An Efficient Stream Copier

 Part PART II: Data Sources

 Chapter 4. File Streams

 Section 4.1. Reading Files

 Section 4.2. Writing Files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 4.3. File Viewer, Part 1

 Chapter 5. Network Streams

 Section 5.1. URLs

 Section 5.2. URL Connections

 Section 5.3. Sockets

 Section 5.4. Server Sockets

 Section 5.5. URLViewer

 Part PART III: Filter Streams

 Chapter 6. Filter Streams

 Section 6.1. The Filter Stream Classes

 Section 6.2. The Filter Stream Subclasses

 Section 6.3. Buffered Streams

 Section 6.4. PushbackInputStream

 Section 6.5. ProgressMonitorInputStream

 Section 6.6. Multitarget Output Streams

 Section 6.7. File Viewer, Part 2

 Chapter 7. Print Streams

 Section 7.1. Print Versus Write

 Section 7.2. Line Breaks

 Section 7.3. Error Handling

 Section 7.4. printf()

 Section 7.5. Formatter

 Section 7.6. Formattable

 Chapter 8. Data Streams

 Section 8.1. The Data Stream Classes

 Section 8.2. Integers

 Section 8.3. Floating-Point Numbers

 Section 8.4. Booleans

 Section 8.5. Byte Arrays

 Section 8.6. Strings and chars

 Section 8.7. Little-Endian Numbers

 Section 8.8. Thread Safety

 Section 8.9. File Viewer, Part 3

 Chapter 9. Streams in Memory

 Section 9.1. Sequence Input Streams

 Section 9.2. Byte Array Streams

 Section 9.3. Communicating Between Threads Using Piped Streams

 Chapter 10. Compressing Streams

 Section 10.1. Inflaters and Deflaters

 Section 10.2. Compressing and Decompressing Streams

 Section 10.3. Zip Files

 Section 10.4. Checksums

 Section 10.5. File Viewer, Part 4

 Chapter 11. JAR Archives

 Section 11.1. Meta-Information: Manifest Files and Signatures

 Section 11.2. The jar Tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 11.3. The java.util.jar Package

 Section 11.4. JarFile

 Section 11.5. JarEntry

 Section 11.6. Attributes

 Section 11.7. Manifest

 Section 11.8. JarInputStream

 Section 11.9. JarOutputStream

 Section 11.10. JarURLConnection

 Section 11.11. Pack200

 Section 11.12. Reading Resources from JAR Files

 Chapter 12. Cryptographic Streams

 Section 12.1. Hash Functions

 Section 12.2. The MessageDigest Class

 Section 12.3. Digest Streams

 Section 12.4. Encryption Basics

 Section 12.5. The Cipher Class

 Section 12.6. Cipher Streams

 Section 12.7. File Viewer, Part 5

 Chapter 13. Object Serialization

 Section 13.1. Reading and Writing Objects

 Section 13.2. Object Streams

 Section 13.3. How Object Serialization Works

 Section 13.4. Performance

 Section 13.5. The Serializable Interface

 Section 13.6. Versioning

 Section 13.7. Customizing the Serialization Format

 Section 13.8. Resolving Classes

 Section 13.9. Resolving Objects

 Section 13.10. Validation

 Section 13.11. Sealed Objects

 Section 13.12. JavaDoc

 Part PART IV: New I/O

 Chapter 14. Buffers

 Section 14.1. Copying Files with Buffers

 Section 14.2. Creating Buffers

 Section 14.3. Buffer Layout

 Section 14.4. Bulk Put and Get

 Section 14.5. Absolute Put and Get

 Section 14.6. Mark and Reset

 Section 14.7. Compaction

 Section 14.8. Duplication

 Section 14.9. Slicing

 Section 14.10. Typed Data

 Section 14.11. Read-Only Buffers

 Section 14.12. CharBuffers

 Section 14.13. Memory-Mapped I/O

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 15. Channels

 Section 15.1. The Channel Interfaces

 Section 15.2. File Channels

 Section 15.3. Converting Between Streams and Channels

 Section 15.4. Socket Channels

 Section 15.5. Server Socket Channels

 Section 15.6. Datagram Channels

 Chapter 16. Nonblocking I/O

 Section 16.1. Nonblocking I/O

 Section 16.2. Selectable Channels

 Section 16.3. Selectors

 Section 16.4. Selection Keys

 Section 16.5. Pipe Channels

 Part PART V: The File System

 Chapter 17. Working with Files

 Section 17.1. Understanding Files

 Section 17.2. Directories and Paths

 Section 17.3. The File Class

 Section 17.4. Filename Filters

 Section 17.5. File Filters

 Section 17.6. File Descriptors

 Section 17.7. Random-Access Files

 Section 17.8. General Techniques for Cross-Platform File Access Code

 Chapter 18. File Dialogs and Choosers

 Section 18.1. File Dialogs

 Section 18.2. JFileChooser

 Section 18.3. File Viewer, Part 6

 Part PART VI: Text

 Chapter 19. Character Sets and Unicode

 Section 19.1. The Unicode Character Set

 Section 19.2. UTF-16

 Section 19.3. UTF-8

 Section 19.4. Other Encodings

 Section 19.5. Converting Between Byte Arrays and Strings

 Chapter 20. Readers and Writers

 Section 20.1. The java.io.Writer Class

 Section 20.2. The OutputStreamWriter Class

 Section 20.3. The java.io.Reader Class

 Section 20.4. The InputStreamReader Class

 Section 20.5. Encoding Heuristics

 Section 20.6. Character Array Readers and Writers

 Section 20.7. String Readers and Writers

 Section 20.8. Reading and Writing Files

 Section 20.9. Buffered Readers and Writers

 Section 20.10. Print Writers

 Section 20.11. Piped Readers and Writers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 20.12. Filtered Readers and Writers

 Section 20.13. File Viewer Finis

 Chapter 21. Formatted I/O with java.text

 Section 21.1. The Old Way

 Section 21.2. Choosing a Locale

 Section 21.3. Number Formats

 Section 21.4. Specifying Width with FieldPosition

 Section 21.5. Parsing Input

 Section 21.6. Decimal Formats

 Part PART VII: Devices

 Chapter 22. The Java Communications API

 Section 22.1. The Architecture of the Java Communications API

 Section 22.2. Identifying Ports

 Section 22.3. Communicating with a Device on a Port

 Section 22.4. Serial Ports

 Section 22.5. Parallel Ports

 Chapter 23. USB

 Section 23.1. USB Architecture

 Section 23.2. Finding Devices

 Section 23.3. Controlling Devices

 Section 23.4. Describing Devices

 Section 23.5. Pipes

 Section 23.6. IRPs

 Section 23.7. Temperature Sensor Example

 Section 23.8. Hot Plugging

 Chapter 24. The J2ME Generic Connection Framework

 Section 24.1. The Generic Connection Framework

 Section 24.2. ContentConnection

 Section 24.3. Files

 Section 24.4. HTTP

 Section 24.5. Serial I/O

 Section 24.6. Sockets

 Section 24.7. Server Sockets

 Section 24.8. Datagrams

 Chapter 25. Bluetooth

 Section 25.1. The Bluetooth Protocol

 Section 25.2. The Java Bluetooth API

 Section 25.3. The Local Device

 Section 25.4. Discovering Devices

 Section 25.5. Remote Devices

 Section 25.6. Service Records

 Section 25.7. Talking to Devices

 Part PART VIII: Appendix

 Character Sets

 About the Author

 Colophon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java™ I/O, 2nd Edition

by Elliotte Rusty Harold

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Deb Cameron

Developmental Editor: Mike Loukides

Production Editor: Philip Dangler

Copyeditor: Rachel Wheeler

Proofreader: Lydia Onofrei

Indexer: Johnna VanHoose Dinse

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano and Jessamyn Read

Printing History:

March 1999: First Edition.

May 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Java I/O, Second Edition, the image of a rabbit, and related trade dress are
trademarks of O'Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is independent of
Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-52750-0

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface

In many ways, this book is a prequel to my previous book, Java Network Programming (O'Reilly).
When writing that book, I more or less assumed that readers were familiar with basic input and
output in Java™that they knew how to use input streams and output streams, convert bytes to
characters, connect filter streams to each other, and so forth.

However, after that book was published, I began to notice that a lot of the questions I got from
readers weren't as much about network programming itself as they were about input and output (I/O
in programmer vernacular). When Java 1.1 was released with a vastly expanded java.io package
and many new I/O classes spread out across the rest of the class library, it became obvious that a
book that specifically addressed I/O was required. This is that book. More specifically, it is that book
updated and expanded to cover the even more impressive I/O capabilities introduced in Java 1.4, 5,
and 6. The I/O class libraries in Java are more powerful and interesting than ever, and this book
shows you how to take full advantage of them. Techniques you'll learn here include:

Reading and writing files

Communicating over network sockets

Filtering data

Interpreting a wide variety of formats for integer and floating-point numbers

Passing data between threads

Encrypting and decrypting content

Calculating digital signatures for streams

Compressing and decompressing data

Writing objects to streams

Copying, moving, and renaming files and directories

Choosing files from a GUI interface

Reading and writing non-English text in a variety of character sets

Talking directly to modems and other serial port devices

Controlling printers and other parallel port devices

Managing and communicating with USB devices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Transmitting data wirelessly with Bluetooth

Communicating with the outside world from small devices such as cell phones and PDAs

Java is the first language to provide a cross-platform I/O library that is powerful enough to handle all
these diverse tasks. Java is the first programming language with a modern, object-oriented approach
to input and output. Java's I/O model is more powerful and more suited to real-world tasks than any
other major language used today. Java I/O is the first and still the only book to fully expose the
power and sophistication of this library.

What's New in This Edition

The first edition of this book was inspired by the wealth of I/O functionality added in Java 1.1, and
this edition was motivated in large part by the new I/O package introduced in Java 1.4. Therefore,
this edition assumes you're working with at least Java 1.4, though most of the basic material will
work as far back as Java 1.1.

Java 1.4 introduced a huge amount of new material relevant to I/O. The most obvious additions are
the java.nio packages that provide nonblocking and memory-mapped I/O. Chapters 1416 cover
these powerful new abilities in depth. java.nio also exposes character set conversion code that's
been present in the JDK since 1.1 but hasn't had a public API before now. This is the primary subject
of Chapter 19.

Many still-relevant pre-1.4 topics have been added and expanded as well. The
ProgressMonitorInputStream is covered here for the first time. Many more details are offered about
object serialization including serialPersistentFields, writeReplace(), readResolve(), and javadoc
tags for serialization. JAR files and the java.util.jar package now get their own chapter (Chapter
11). Among other topics, I explain the Pack200 compression format and evangelize the increasingly
popular technique of hiding noncode resources like images and data files inside JAR files.

Java 5 continues to build on the basic I/O functionality of Java 1.4 and earlier. Many new classes and
methods from those versions are covered here including the Flushable and Closable interfaces. Most
shockingly, Java 5 finally brings variable-length argument lists and the printf family of functions, the
lack of which helped inspire the first edition. You'll find that these functions are even more powerful in
Java than they are in C and can handle not only numbers but also dates and several other object
types.

I/O in Java isn't finished evolving yet. Java 6 introduces some interesting new classes including
Console and IOError. You'll learn about these right up front in Chapter 1. Java 6 also introduces
several useful new methods including a much-improved filesystem API that enables you to inspect file
attributes and determine the free space on a disk. Finally, I added Swing's FileSystemView, an oft-
overlooked class that provides much information about the user's view of the filesystem.

However, since most programmers (yours truly included) are not yet developing in Java 5 on a daily
basis, I'll be careful to note which methods, classes, and packages are only available in Java 5 or 6.
In any case, when I discuss a method, class, or interface that's only available in Java 5 or 6, its
signature will be suffixed with a comment indicating that. For example, this FileDialog constructor
was introduced for the first time in Java 5:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public FileDialog(Dialog parent, String title) // Java 5

There've been many interesting developments outside the core JDK, too. Some of the most exciting
developments have occurred in the world of small devices, both peripherals such as GPS receivers
that connect to a host computer and devices such as Palm Pilots that are themselves increasingly
powerful computers. Treatment of both of these has been dramatically expanded in this edition.

For those readers working with serial and parallel port devices, I've upgraded the Java
Communications API chapter to version 3.0. However, in 2006 more and more devices use faster
USB ports instead. Consequently, Chapter 23 covers the new Java USB API in depth. For smaller
devices that can't quite run full Java but need to perform I/O nonetheless, J2ME offers the Generic
Connection Framework (GCF). Chapter 24 covers this alternative to the traditional I/O framework.
Finally, Chapter 25 uses the GCF to communicate over one of the newest I/O buses, the Bluetooth
API used for wireless communications with a variety of peripherals.

Finally, the existing content has been rewritten from page 1 to bring it up to date with the latest
thinking in Java code and style as well as to make it clearer, more compact, and more accurate. For
example, exception handling and multithreading is much improved in this edition's examples.
Streams are closed more reliably. Exceptions are thrown rather than caught where appropriate, and
synchronization is avoided throughout. I expect you'll find this edition even better than the first.

Organization of the Book

This book has 25 chapters that are divided into seven parts:

Part I: Basic I/O

Traditional I/O in Java is based on a single metaphor, the stream. Programs read data out of input
streams and write data onto output streams. For the most part, you don't need to know whether the
stream is a file, network socket, or something else, as long as you have a stream that points to it.
Our exploration of I/O in Java naturally begins with this most fundamental abstraction.

Chapter 1, Introducing I/O

Chapter 1 describes the architecture and design of the java.io package, including the
reader/stream dichotomy. It discusses some basic preliminaries about the int, byte, and char
data types and introduces the IOException thrown by many I/O methods. It introduces the
console and offers some stern warnings about its proper use. Finally, it offers a cautionary
message about how the security manager can interfere with most kinds of I/O, sometimes in
unexpected ways.

Chapter 2, Output Streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2 explores the OutputStream class you need in order to write data onto any output
stream. You'll learn about the three overloaded versions of write() as well as flush() and
close(). You'll see several examples, including a simple subclass of OutputStream that acts
like /dev/null and a text area component that gets its data from an output stream.

Chapter 3, Input Streams

The third chapter introduces the InputStream class. You'll learn about the three overloaded
variants of the read() method and when to use each. You'll see how to skip over data and
check how much data is available as well as how to place a bookmark in an input stream and
reset back to that point. You'll also learn how and why to close input streams. This is all drawn
together with a StreamCopier program that copies data read from an input stream onto an
output stream. This program is used repeatedly over the next several chapters.

Part II: Data Sources

Part II talks about the two most common targets of I/O, the filesystem and the network. While both
are accessed using input and output streams, some critical differences in setup and performance
characteristics make them worth exploring separately.

Chapter 4, File Streams

The majority of I/O involves reading or writing files. Chapter 4 introduces the FileInputStream
and FileOutputStream classes, concrete subclasses of InputStream and OutputStream that let
you read and write files. Also in this chapter, I begin developing a File Viewer program, an
example that will grow as the book progresses. This initial version prints the raw bytes in a file
in both decimal and hexadecimal format.

Chapter 5, Network Streams

From its first days, Java, more than any other common programming language, has always
had the network in mind. Java is the first programming language to provide as much support
for network I/O as it does for file I/O, perhaps even more. Chapter 5 introduces the URL,
URLConnection, Socket, and ServerSocket classes, all fertile sources of streams. Examples in
this chapter include several simple web and email clients.

Part III: Filter Streams

Some of the most interesting possibilities arise when you use streams not just for input and output
but also for processing. Streaming processing simplifies code, vastly reduces memory usage, and
dramatically increases perceived performance. A lot can happen when you don't try to read
everything into a memory structure at once. Filter streams are Java's mechanism for processing data
as you read or write rather than doing it after the fact.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6, Filter Streams

Chapter 6 introduces filter streams. Filter input streams read data from a preexisting input
stream such as a FileInputStream and work with or change the data before it is delivered to
the client program. Filter output streams write data to a preexisting output stream such as a
FileOutputStream and process the data before it is written onto the underlying stream. Multiple
filters can be chained onto a single underlying stream to combine the functionality offered by
several filters. Filter streams are used for encryption, compression, translation, buffering, and
much more. At the end of this chapter, I redesign the File Viewer program around filter
streams to make it more extensible.

Chapter 7, Print Streams

Chapter 7 introduces PrintStream. The most familiar example of a PrintStream is System.out,
which is used for the very first Hello World example. However, starting in Java 5, the familiar
PrintStream class has become a lot more powerful and interesting. Besides basic console
output, it now provides extensive capabilities for formatting numbers and dates in a
straightforward and easy fashion.

Chapter 8, Data Streams

Chapter 8 introduces data streams for writing strings, integers, floating-point numbers, and
other data that's commonly presented at a level higher than mere bytes. The DataInputStream
and DataOutputStream classes read and write the primitive Java data types (boolean, int,
double, etc.) and strings in a particular, well-defined, platform-independent format. Along the
way, you'll develop classes to read and write little-endian numbers, and you'll extend the File
Viewer program to handle big- and little-endian integers and floating-point numbers of varying
widths.

Chapter 9, Streams in Memory

Chapter 9 shows you how streams can move data from one part of a running Java program to
another. There are three main ways to do this. Sequence input streams chain several input
streams together so that they appear as a single stream. Byte array streams allow output to
be stored in byte arrays and input to be read from byte arrays. Finally, piped input and output
streams turn output from one thread into input for another thread.

Chapter 10, Compressing Streams

Chapter 10 explores the java.util.zip package that reads and writes data in zip and gzip
formats. Java uses these classes to read and write JAR archives and to display PNG images.
However, the java.util.zip classes can also be used for general-purpose compression and
decompression. In the final example, I add support for compressed files is added to the File
Viewer program.

Chapter 11, JAR Archives

Many Java programs store content in JAR archives. Among other advantages, this makes it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

easy to bundle many different files and resources into a single distributable. Chapter 11
explores the java.util.jar package used to read these archives. In this chapter, you'll learn
when to replace filesystems with unitary JAR archives, how to put content into those archives,
and how to get that content back out again.

Chapter 12, Cryptographic Streams

The core Java API contains two cryptography-related filter streams in the java.security
package, DigestInputStream and DigestOutputStream. There are two more in the javax.crypto
package, CipherInputStream and CipherOutputStream, available in the Java Cryptography
Extension™ (JCE for short). Chapter 12 shows you how to use these classes to encrypt and
decrypt data using a variety of algorithms, including DES and Blowfish. You'll also learn how to
calculate message digests for streams that can be used for digital signatures. In the final
example, I add support for encrypted files to the File Viewer program.

Chapter 13, Object Serialization

Most I/O is performed with bytes. Occasionally, larger types like ints, floats, and doubles are
converted to bytes and written as well. However, most actual programming is done with
classes and objects. Object serialization lets you read and write almost arbitrary objects onto a
stream. This chapter shows you how to read and write objects as well as how to customize the
format used for serialization.

Part IV: New I/O

Java 1.4 introduced a completely new I/O model based on channels and buffers instead of streams.
This model doesn't replace traditional stream-based I/O for many uses. However, it is significantly
faster in one important use case: servers that process many simultaneous clients.

Chapter 14, Buffers

Chapter 14 introduces the buffer classes that underlie all of the new I/O models. It
demonstrates the use of the new I/O classes to read and write files and shows how memory-
mapped I/O enables you to read and write truly huge files efficiently with limited memory.

Chapter 15, Channels

Chapter 15 moves the new I/O model onto the network with channels. You'll learn how to
combine channels through scattering and gathering, how to communicate over sockets with
channels, and how to transmit UDP packets in the new I/O model.

Chapter 16, Nonblocking I/O

The real performance gain of new I/O is in highly multiprocessing servers. This chapter
demonstrates the use of nonblocking I/O to dramatically increase the number of simultaneous
clients one program can serve. You'll learn about selectors, selection keys, attachments, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pipe channels.

Part V: The File System

When we think of I/O, the first thing that comes to mind is files. Part V discusses operations on files
themselves as distinct from the contents of those files. This includes moving, deleting, renaming, and
choosing them.

Chapter 17, Working with Files

Files can be moved, deleted, renamed, and copied. Files usually have metadata such as the
time the file was created, the icon for the file, and the permissions that determine which users
can read or write the file. Chapter 17 shows you how to do all this and elaborates the
precautions you need to take to make your file code portable across all major platforms that
support Java.

Chapter 18, File Dialogs and Choosers

Filenames are problematic, even if you don't have to worry about cross-platform idiosyncrasies.
Users forget names, mistype them, can't remember the exact path to files they need, and
more. The proper way to ask a user to choose a file is to show him a list of the files and ask
him to pick one. Most graphical user interfaces provide standard graphical widgets for selecting
a file. In Java, the platform's native file selector widget is exposed through the
java.awt.FileDialog class. Like many native peer-based classes, however, FileDialog doesn't
behave the same way or provide the same services on all platforms. Therefore, Swing provides
a pure Java implementation of a file dialog, the javax.swing.JFileChooser class. Chapter 18
shows you how to use both of these classes. The final example adds a Swing-based GUI to the
File Viewer program.

Part VI: Text

I/O is based on bytes, but much of that I/O has a larger structure as text. Part VI explores how text
is represented in Java and how it can be manipulated through special text streams called readers and
writers.

Chapter 19, Character Sets and Unicode

All Java chars and strings are given in Unicode. However, since there's also a lot of non-
Unicode legacy text in the world, in a dizzying array of encodings, Java provides the classes
you need in order to read and write text in these encodings as well. Chapter 19 introduces you
to the multitude of character sets used around the world and the java.nio.charsets package
used to make sense out of this panoply.

Chapter 20, Readers and Writers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A language that supports international text must separate the reading and writing of raw bytes
from the reading and writing of characters, since in an international system, they are no longer
the same thing. Classes that read and write characters must be able to parse a variety of
character encodings, not just ASCII, and translate them to and from the language's native
String and char types. The Reader and Writer classes perform this task. Chapter 20 shows you
how to use these classes to add support for multilingual text to the File Viewer program.

Chapter 21, Formatted I/O with java.text

Computers process numbers, not words. When outputting binary numbers as decimal strings
for humans to read, the java.text.NumberFormat class controls the width, precision, and
alignment of the resulting numeric strings. NumberFormat can also localize numbers with
different character sets, thousands separators, decimal points, and digit characters. Chapter 21
shows you how to use this class and its subclasses for traditional tasks such as lining up the
decimal points in a table of prices, and nontraditional tasks such as formatting numbers in
Egyptian Arabic.

Part VII: Devices

Not everything is a filesystem or a network. I/O also includes talking to other kinds of devices:
laboratory sensors, PDAs, and human input devices such as mice and keyboards. While common
devices such as mice and keyboards are addressed through higher-level APIs, less common devices
such as laboratory equipment are not. This section shows you how to communicate with different
kinds of peripherals and small devices that don't have traditional filesystems or network connections.

Chapter 22, The Java Communications API

Chapter 22 introduces the Java Communications API, a standard extension that allows Java
applications to send and receive data to and from the serial and parallel ports of the host
computer. The Java Communications API allows your programs to communicate with
essentially any device connected to a serial or parallel port, such as a printer, scanner, or
modem.

Chapter 23, USB

Serial and parallel ports are still found on a lot of legacy equipment, but most new devices have
moved on. USB is the next generation serial connector, and Java supports it. Chapter 23 shows
you how to talk to a variety of USB devices using the Java USB API. In particular, it
demonstrates collecting data from a USB-enabled laboratory temperature probe.

Chapter 24, The J2ME Generic Connection Framework

Some small devices are computers in their own rights: Palm Pilots, cell phones, programmable
calculators, and others. However, these devices don't always have the CPU speed, memory, or
battery life necessary to run a full-scale Java VM. Many of them run one of a variety of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

slimmed-down virtual machines that collectively go by the name J2ME. The standard java.io
and java.net packages are too heavyweight to fit in many such small devices. This chapter
introduces the smaller, simpler Generic Connection Framework (GCF) and
javax.microedition.io package that replace the standard I/O library on small devices.

Chapter 25, Bluetooth

Increasingly, small devices don't even need cables in order to connect to a host system.
Instead, they transmit data over the air using Bluetooth. Chapter 25 explores the Java API for
Bluetooth and shows you how Java programs can talk to Bluetooth devices wirelessly using the
GCF. One example shows how to read location data from a Bluetooth GPS receiver.

Chapters 1 through 6 provide the basic background you'll need to do any sort of work with I/O
in Java. After that, you should feel free to jump around wherever your interests take you.
There are, however, some interdependencies between specific chapters. Figure P-1 should help
you map out possible paths through the book.

Figure P-1. Chapter prerequisites

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A few examples in later chapters depend on material from earlier chaptersfor instance, many
examples use the FileInputStream class discussed in Chapter 4but they should not be difficult
to understand on the whole.

Who You Are

This book assumes you have a basic familiarity with Java. You should be thoroughly familiar with the
syntax of the language. You should be comfortable with object-oriented programming, including
terminology like instances, objects, and classes. You should know what a reference is and what that
means for passing arguments to and returning values from methods. You should already have written
simple applications and applets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For the most part, I try to keep the examples relatively straightforward so that they require only
minimal understanding of other parts of the class library outside the I/O classes. This may lead some
to deride these as "toy examples." However, I find that such examples are far more conducive to
understanding and learning than are full-blown, sophisticated programs that fill page after page with
graphical user interface (GUI) code just to demonstrate a two-line point about I/O. Occasionally,
however, a graphical example is simply too tempting to ignore, as in the JStreamedTextArea class in
Chapter 2 or the File Viewer application developed throughout most of the book. I will try to keep the
GUI material to a minimum, but a familiarity with the basics of the AWT and Swing will be assumed.

When you encounter a topic that requires a deeper understanding of I/O than is customaryfor
instance, the exact nature of stringsI'll cover that topic as well, at least briefly. However, this is not a
language tutorial, and the emphasis will always be on the I/O-specific features.

About the Examples

Although many of the examples are toys unlikely to be reused, a few of the classes I develop have
real value. Please feel free to reuse them or any parts of them in your own code; no special
permission is required. Such classes are placed somewhere in the com.elharo package, generally
mirroring the java package hierarchy. For instance, Chapter 2's NullOutputStream class is in the
com.elharo.io package. When working with these classes, don't forget that the compiled .class files
must reside in directories matching their package structure inside your classpath and that you'll have
to import them in your own classes before you can use them. The web page for this book, at
http://www.oreilly.com/catalog/javaio2/, includes a JAR file that can be installed in your classpath.

Conventions Used in This Book

The following formatting conventions are used in this book:

Italic

Used for emphasis and to signify the first use of a term. Italic is also used for commands,
filenames, and URLs.

Constant width

Used in all Java code and generally for anything that you would type literally when
programming, including keywords, data types, constants, method names, variables, class
names, and interface names.

Constant width italic

Used as a placeholder to indicate an item that should be replaced with an actual value in your
program.

http://www.oreilly.com/catalog/javaio2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant width bold

Used for user input on the command line.

Request for Comments

I enjoy hearing from readers, whether with general comments about how this could be a better book,
specific corrections, or other topics you would like to see covered. You can reach me by sending email
to elharo@metalab.unc.edu. Please realize, however, that I receive several hundred pieces of email a
day and cannot personally respond to each one.

I'm especially interested in hearing about mistakes. If you find one, I'll post it on my web page for
this book at http://www.cafeaulait.org/books/javaio2/ and on the O'Reilly web site at
http://www.oreilly.com/catalog/javaio2/. Before reporting errors, please check one of those pages to
see if I already know about it and have posted a fix.

Safari Enabled

 When you see the Safari® Enabled icon on the back cover of your favorite technology
book, that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information.

Try it for free at http://safari.oreilly.com.

Acknowledgments

Many people were involved in the production of this book. All these people deserve much thanks and
credit. My editor, Mike Loukides, got this book rolling and provided many helpful comments that
substantially improved it. Deb Cameron stepped up to the plate to edit this second edition.
Clairemarie Fisher O'Leary, Chris Maden, and Robert Romano deserve a special commendation for
putting in all the extra effort needed for a book that makes free use of Arabic, Cyrillic, Chinese, and
other non-Roman scripts. Tim O'Reilly and the whole crew at O'Reilly deserve special thanks for
building a publisher that's willing to give a book the time and support it needs to be a good book
rather than rushing it out the door to meet an artificial deadline.

Many people looked over portions of the manuscript and provided helpful comments. These included
Scott Bortman, Bob Eckstein, and Avner Gelb. Bruce Schneier and Jan Luehe both lent their expertise

http://www.cafeaulait.org/books/javaio2/
http://www.oreilly.com/catalog/javaio2/
http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the cryptography chapter. Ron Hitchens shone light into many of the darker areas of the new I/O
APIs. Ian Darwin was invaluable in handling the details of the Java Communications API. Jonathan
Knudsen helped out with Bluetooth and The GCF. IBM's Dan Streetman assisted with understanding
the Java USB API (as well as writing the open source reference implementation I used), and
Avetana's Moritz Gmelin was equally helpful with some tricky points of working with the Java
Bluetooth API.

Finally, I'd like to save my largest thanks for my wife, Beth, without whose support and assistance
this book would never have happened.

Elliotte Rusty Harold

Brooklyn, NY

May 2, 2006

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART I: Basic I/O
Chapter 1: Introducing I/O

Chapter 2: Output Streams

Chapter 3: Input Streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introducing I/O
Input and output, I/O for short, are fundamental to any computer operating system or programming
language. Only theorists find it interesting to write programs that don't require input or produce
output. At the same time, I/O hardly qualifies as one of the more "thrilling" topics in computer
science. It's something in the background, something you use every daybut for most developers, it's
not a topic with much sex appeal.

But in fact, there are plenty of reasons Java programmers should find I/O interesting. Java includes a
particularly rich set of I/O classes in the core API, mostly in the java.io and java.nio packages.
These packages support several different styles of I/O. One distinction is between byte-oriented I/O,
which is handled by input and output streams, and character-I/O, which is handled by readers and
writers. Another distinction is between the old-style stream-based I/O and the new-style channel-
and buffer-based I/O. These all have their place and are appropriate for different needs and use
cases. None of them should be ignored.

Java's I/O libraries are designed in an abstract way that enables you to read from external data
sources and write to external targets, regardless of the kind of thing you're writing to or reading
from. You use the same methods to read from a file that you do to read from the console or from a
network connection. You use the same methods to write to a file that you do to write to a byte array
or a serial port device.

Reading and writing without caring where your data is coming from or where it's going is a very
powerful abstraction. Among other things, this enables you to define I/O streams that automatically
compress, encrypt, and filter from one data format to another. Once you have these tools, programs
can send encrypted data or write zip files with almost no knowledge of what they're doing.
Cryptography or compression can be isolated in a few lines of code that say, "Oh yes, make this a
compressed, encrypted output stream."

In this book, I'll take a thorough look at all parts of Java's I/O facilities. This includes all the different
kinds of streams you can use and the channels and buffers that offer high-performance, high-
throughput, nonblocking operations on servers. We're also going to investigate Java's support for
Unicode. We'll look at Java's powerful facilities for formatting I/O. Finally, we'll look at the various
APIs Java provides for low-level I/O through various devices including serial ports, parallel ports,
USB, Bluetooth, and other hardware you'll find in devices that don't necessarily look like a traditional
desktop computer or server.

I won't go so far as to say, "If you've always found I/O boring, this is the book for you!" I will say
that if you do find I/O uninteresting, you probably don't know as much about it as you should. I/O is
the means for communication between software and the outside world. Java provides a powerful and
flexible set of tools for doing this crucial part of the job. Having said that, let's start with the basics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. What Is a Stream?

A stream is an ordered sequence of bytes of indeterminate length. Input streams move bytes of data
into a Java program from some generally external source. Output streams move bytes of data from
Java to some generally external target. (In special cases, streams can also move bytes from one part
of a Java program to another.)

The word stream is derived from an analogy between a sequence and a stream of water. An input
stream is like a siphon that sucks up water; an output stream is like a hose that sprays out water.
Siphons can be connected to hoses to move water from one place to another. Sometimes a siphon
may run out of water if it's drawing from a finite source like a bucket. On the other hand, if the
siphon is drawing water from a river, it may well operate indefinitely. So, too, an input stream may
read from a finite source of bytes such as a file or an unlimited source of bytes such as System.in .
Similarly, an output stream may have a definite number of bytes to output or an indefinite number of
bytes.

Input to a Java program can come from many sources. Output can go to many different kinds of
destinations. The power of the stream metaphor is that the differences between these sources and
destinations are abstracted away. All input and output operations are simply treated as streams using
the same classes and the same methods. You don't need to learn a new API for every different kind
of device. The same API that reads files can read network sockets, serial ports, Bluetooth
transmissions, and more.

1.1.1. Where Do Streams Come From?

The first source of input most programmers encounter is System.in. This is the same thing as stdin
in Cgenerally some sort of console window, probably the one in which the Java program was
launched. If input is redirected so the program reads from a file, then System.in is changed as well.
For instance, on Unix, the following command redirects stdin so that when the MessageServer
program reads from System.in, the actual data comes from the file data.txt instead of from the
console:

% java MessageServer < data.txt

The console is also available for output through the static field out in the java.lang.System class, that
is, System.out . This is equivalent to stdout in C parlance and may be redirected in a similar fashion.
Finally, stderr is available as System.err . This is most commonly used for debugging and printing
error messages from inside catch clauses. For example:

try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //... do something that might throw an exception
}
catch (Exception ex) {
 System.err.println(ex);
 }

Both System.out and System.err are print streamsthat is, instances of java.io.PrintStream. These
will be discussed in detail in Chapter 7.

Files are another common source of input and destination for output. File input streams provide a
stream of data that starts with the first byte in a file and finishes with the last byte in that file. File
output streams write data into a file, either by erasing the file's contents and starting from the
beginning or by appending data to the file. These will be introduced in Chapter 4.

Network connections provide streams too. When you connect to a web server, FTP server, or some
other kind of server, you read the data it sends from an input stream connected from that server and
write data onto an output stream connected to that server. These streams will be introduced in
Chapter 5.

Java programs themselves produce streams. Byte array input streams, byte array output streams,
piped input streams, and piped output streams all move data from one part of a Java program to
another. Most of these are introduced in Chapter 9.

Perhaps a little surprisingly, GUI components like TextArea and JTextArea do not produce streams.
The issue here is ordering. A group of bytes provided as data for a stream must have a fixed order.
However, users can change the contents of a text area or a text field at any point, not just at the
end. Furthermore, they can delete text from the middle of a stream while a different thread is
reading that data. Hence, streams aren't a good metaphor for reading data from GUI components.
You can, however, use the strings they do produce to create a byte array input stream or a string
reader.

1.1.2. The Stream Classes

Most of the classes that work directly with streams are part of the java.io package. The two main
classes are java.io.InputStream and java.io.OutputStream . These are abstract base classes for
many different subclasses with more specialized abilities.

The subclasses include:

BufferedInputStream

BufferedOutputStream

ByteArrayInputStream

ByteArrayOutputStream

DataInputStream

DataOutputStream

FileInputStream

FileOutputStream

FilterInputStream

FilterOutputStream

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ObjectInputStream

ObjectOutputStream

PipedInputStream

PipedOutputStream

PrintStream

PushbackInputStream

SequenceInputStream

The java.util.zip package contains four input stream classes that read data in compressed format
and return it in uncompressed format and four output stream classes that read data in uncompressed
format and write in compressed format. These will be discussed in Chapter 10.

CheckedInputStream

CheckedOutputStream

DeflaterOutputStream

GZIPInputStream

GZIPOutputStream

InflaterInputStream

ZipInputStream

ZipOutputStream

The java.util.jar package includes two stream classes for reading files from JAR archives. These
will be discussed in Chapter 11.

JarInputStream

JarOutputStream

The java.security package includes a couple of stream classes used for calculating message digests:

DigestInputStream

DigestOutputStream

The Java Cryptography Extension (JCE) adds two classes for encryption and decryption:

CipherInputStream

CipherOutputStream

These four streams will be discussed in Chapter 12.

Finally, a few random stream classes are hiding inside the sun packagesfor example,
sun.net.TelnetInputStream and sun.net.TelnetOutputStream. However, these are deliberately
hidden from you and are generally presented as instances of java.io.InputStream or
java.io.OutputStream only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Numeric Data

Input streams read bytes and output streams write bytes. Readers read characters and writers write
characters. Therefore, to understand input and output, you first need a solid understanding of how
Java deals with bytes, integers, characters, and other primitive data types, and when and why one is
converted into another. In many cases Java's behavior is not obvious.

1.2.1. Integer Data

The fundamental integer data type in Java is the int, a 4-byte, big-endian, two's complement
integer. An int can take on all values between -2,147,483,648 and 2,147,483,647. When you type a
literal integer such as 7, -8345, or 3000000000 in Java source code, the compiler treats that literal
as an int. In the case of 3000000000 or similar numbers too large to fit in an int, the compiler
emits an error message citing "Numeric overflow."

long s are 8-byte, big-endian, two's complement integers that range all the way from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. long literals are indicated by suffixing
the number with a lower- or uppercase L. An uppercase L is preferred because the lowercase l is too
easily confused with the numeral 1 in most fonts. For example, 7L, -8345L, and 3000000000L are all
64-bit long literals.

Two more integer data types are available in Java, the short and the byte. shorts are 2-byte, big-
endian, two's complement integers with ranges from -32,768 to 32,767. They're rarely used in Java
and are included mainly for compatibility with C.

bytes, however, are very much used in Java. In particular, they're used in I/O. A byte is an 8-bit,
two's complement integer that ranges from -128 to 127. Note that like all numeric data types in
Java, a byte is signed. The maximum byte value is 127. 128, 129, and so on through 255 are not
legal values for bytes.

Java has no short or byte literals. When you write the literal 42 or 24000, the compiler always reads
it as an int, never as a byte or a short, even when used in the right-hand side of an assignment
statement to a byte or short, like this:

byte b = 42;
short s = 24000;

However, in these lines, a special assignment conversion is performed by the compiler, effectively
casting the int literals to the narrower types. Because the int literals are constants known at
compile time, this is permitted. However, assignments from int variables to shorts and bytes are
notat least not without an explicit cast. For example, consider these lines:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

int i = 42;
byte b = i;

Compiling these lines produces the following errors:

Error: Incompatible type for declaration.
Explicit cast needed to convert int to short.
ByteTest.java line 6

This occurs even though the compiler is theoretically capable of determining that the assignment
does not lose information. To correct this, you must use explicit casts, like this:

int i = 42;
byte b = (byte) i;

Even the addition of two byte variables produces an integer result and thus cannot be assigned to a
byte variable without a cast. The following code produces the same error:

byte b1 = 22;
byte b2 = 23;
byte b3 = b1 + b2;

For these reasons, working directly with byte variables is inconvenient at best. Many of the methods
in the stream classes are documented as reading or writing bytes. However, what they really return
or accept as arguments are ints in the range of an unsigned byte (0255). This does not match any
Java primitive data type. These ints are then converted into bytes internally.

For instance, according to the Java class library documentation, the read() method of
java.io.InputStream returns "the next byte of data, or -1 if the end of the stream is reached." Upon
reflection, this sounds suspicious. How is a -1 that appears as part of the stream data to be
distinguished from a -1 indicating end of stream? In point of fact, the read() method does not
return a byte; its signature shows that it returns an int:

public abstract int read() throws IOException

This int is not a Java byte with a value between -128 and 127 but a more general unsigned byte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with a value between 0 and 255. Hence, -1 can easily be distinguished from valid data values read
from the stream.

The write() method in the java.io.OutputStream class is similarly problematic. It returns void but
takes an int as an argument:

public abstract void write(int b) throws IOException

This int is intended to be an unsigned byte value between 0 and 255. However, there's nothing to
stop a careless programmer from passing in an int value outside that range. In this case, the 8 low-
order bits are written and the top 24 high-order bits are ignored:

b = b & 0x000000FF;

Although this is the behavior described in the Java Language Specification,
since the write() method is abstract, actual implementation of this scheme is
left to the subclasses, and a careless programmer could do something different.

On the other hand, real Java bytes are used in methods that read or write arrays of bytes. For
example, consider these two read() methods from java.io.InputStream:

public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

While the difference between an 8-bit byte and a 32-bit int is insignificant for a single number, it can
be very significant when several thousand to several million numbers are read. In fact, a single byte
still takes up four bytes of space inside the Java virtual machine, but a byte array occupies only the
amount of space it actually needs. The virtual machine includes special instructions for operating on
byte arrays but does not include any instructions for operating on single bytes. They're just promoted
to ints.

Although data is stored in the array as signed Java bytes with values between -128 and 127, there's
a simple one-to-one correspondence between these signed values and the unsigned bytes normally
used in I/O. This correspondence is given by the following formula:

int unsignedByte = signedByte >= 0 ? signedByte : 256 + signedByte;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2.2. Conversions and Casts

Since bytes have such a small range, they're often converted to ints in calculations and method
invocations. Often, they need to be converted back, generally through a cast. Therefore, it's useful to
have a good grasp of exactly how the conversion occurs.

Casting from an int to a bytefor that matter, casting from any wider integer type to a narrower
typetakes place through truncation of the high-order bytes. This means that as long as the value of
the wider type can be expressed in the narrower type, the value is not changed. The int 127 cast to
a byte still retains the value 127.

On the other hand, if the int value is too large for a byte, strange things happen. The int 128 cast
to a byte is not 127, the nearest byte value. Instead, it is -128. This occurs through the wonders of
two's complement arithmetic. Written in hexadecimal, 128 is 0x00000080. When that int is cast to a
byte, the leading zeros are truncated, leaving 0x80. In binary, this can be written as 10000000. If
this were an unsigned number, 10000000 would be 128 and all would be fine, but this isn't an
unsigned number. Instead, the leading bit is a sign bit, and that 1 does not indicate 27 but a minus
sign. The absolute value of a negative number is found by taking the complement (changing all the 1
bits to 0 bits and vice versa) and adding 1. The complement of 10000000 is 01111111. Adding 1,
you have 01111111 + 1 = 10000000 = 128 (decimal). Therefore, the byte 0x80 actually represents
-128. Similar calculations show that the int 129 is cast to the byte -127, the int 130 is cast to the
byte -126, the int 131 is cast to the byte -125, and so on. This continues through the int 255,
which is cast to the byte -1.

In this book, as in Java source code, all numbers preceded by 0x are read as
hexadecimal.

When 256 is reached, the low-order bytes of the int are filled with zeros. In other words, 256 is
0x00000100. Thus, casting it to a byte produces 0, and the cycle starts over. This behavior can be
reproduced algorithmically with this formula, though a cast is obviously simpler:

int byteValue;
int temp = intValue % 256;
if (intValue < 0) {
 byteValue = temp < -128 ? 256 + temp : temp;
}
else {
 byteValue = temp > 127 ? temp - 256 : temp;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Character Data

Numbers are only part of the data a typical Java program needs in order to read and write. Many
programs also handle text, which is composed of characters. Since computers only really understand
numbers, characters are encoded by assigning each character in a given script a number. For
example, in the common ASCII encoding, the character A is mapped to the number 65; the character
B is mapped to the number 66; the character C is mapped to the number 67; and so on. Different
encodings may encode different scripts or may encode the same or similar scripts in different ways.

Java understands several dozen different character sets for a variety of languages, ranging from
ASCII to the Shift Japanese Input System (SJIS) to Unicode. Internally, Java uses the Unicode
character set. Unicode is a superset of the 1-byte Latin-1 character set, which in turn is an 8-bit
superset of the 7-bit ASCII character set.

1.3.1. ASCII

ASCII, the American Standard Code for Information Interchange, is a 7-bit character set. Thus it
defines 27, or 128, different characters whose numeric values range from 0 to 127. These characters
are sufficient for handling most of American English. It's an often-used lowest common denominator
format for different computers. If you were to read a byte value between 0 and 127 from a stream,
then cast it to a char, the result would be the corresponding ASCII character.

ASCII characters 031 and character 127 are nonprinting control characters. Characters 3247 are
various punctuation and space characters. Characters 4857 are the digits 09. Characters 5864 are
another group of punctuation characters. Characters 6590 are the capital letters AZ. Characters 9196
are a few more punctuation marks. Characters 97122 are the lowercase letters az. Finally, characters
123126 are a few remaining punctuation symbols. The complete ASCII character set is shown in
Table A-1 in the Appendix.

1.3.2. Latin-1

ISO 8859-1, Latin-1, is an 8-bit character set that's a strict superset of ASCII. It defines 28, or 256,
different characters whose numeric values range from 0 to 255. The first 128 charactersthat is, those
numbers with the high-order bit equal to 0correspond exactly to the ASCII character set. Thus 65 is
ASCII A and Latin-1 A; 66 is ASCII B and Latin-1 B; and so on. Where Latin-1 and ASCII diverge is in
the characters between 128 and 255 (characters with the high-order bit equal to 1). ASCII does not
define these characters. Latin-1 uses them for various accented letters such as ü needed for non-
English languages written in a Roman script, additional punctuation marks and symbols such as ©,
and additional control characters. The upper, non-ASCII half of the Latin-1 character set is shown in
Table A-2 in the Appendix. If you were to read an unsigned byte value from a stream, then cast it to
a char, the result would be the corresponding Latin-1 character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3.3. Unicode

Latin-1 suffices for most Western European languages (with the notable exception of Greek), but it
doesn't have anywhere near the number of characters required to represent Cyrillic, Greek, Arabic,
Hebrew, or Devanagari, not to mention pictographic languages like Chinese and Japanese. Chinese
alone has over 80,000 different characters. To handle these scripts and many others, the Unicode
character set was invented. Unicode has space for over one million different possible characters. Only
about 100,000 are used in practice, the rest being reserved for future expansion. Unicode can handle
most of the world's living languages and a number of dead ones as well.

The first 256 characters of Unicode are identical to the characters of the Latin-1 character set. Thus
65 is ASCII A and Unicode A; 66 is ASCII B and Unicode B, and so on.

Unicode is only a character set. It is not a character encoding. That is, although Unicode specifies
that the letter A has character code 65, it doesn't say whether the number 65 is written using one
byte, two bytes, or four bytes, or whether the bytes used are written in big- or little-endian order.
However, there are certain standard encodings of Unicode into bytes, the most common of which are
UTF-8, UTF-16, and UTF-32.

UTF-32 is the most naïve encoding. It simply represents each character as a single 4-byte (32-bit)
int.

UTF-16 represents most characters as a 2-byte, unsigned short. However, certain less common
Chinese characters, musical and mathematical symbols, and characters from dead languages such as
Linear B are represented in four bytes each. The Java virtual machine uses UTF-16 internally. In fact,
a Java char is not really a Unicode character. Rather it is a UTF-16 code point, and sometimes two
Java chars are required to make up one Unicode character.

Finally, UTF-8 is a relatively efficient encoding (especially when most of your text is ASCII) that uses
one byte for each of the ASCII characters, two bytes for each character in many other alphabets, and
three-to-four bytes for characters from Asian languages. Java's .class files use UTF-8 internally to
store string literals.

1.3.4. Other Encodings

ASCII, Latin-1, and Unicode are hardly the only character sets in common use, though they are the
ones handled most directly by Java. There are many other character sets, both that encode different
scripts and that encode the same scripts in different ways. For example, IBM mainframes have long
used a non-ASCII character set called EBCDIC. EBCDIC has most of the same characters as ASCII
but assigns them to different numbers. Macintoshes commonly use an 8-bit encoding called
MacRoman that matches ASCII in the lower 128 places and has most of the same characters as
Latin-1 in the upper 128 characters, though in different positions. DOS (including the DOS shell in
Windows) uses character sets such as Cp850 that include box drawing characters such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 and . Big-5 and
SJIS are encodings of Chinese and Japanese, respectively, that include most of the numerous
characters used in those scripts.

The exact details of each encoding are fairly involved and should really be handled by experts.
Fortunately, the Java class library includes a set of reader and writer classes written by such experts.
Readers and writers convert to and from bytes in particular encodings to Java chars without any
extra effort. For similar reasons, you should use a writer rather than an output stream to write text,
as discussed in Chapter 20.

1.3.5. The char Data Type

Text in Java is primarily composed of the char primitive data type, char arrays, and Strings, which
are stored as arrays of chars internally. Just as you need to understand bytes to really grasp how
input and output streams work, so too do you need to understand chars to understand how readers
and writers work.

In Java, a char is a 2-byte, unsigned integerthe only unsigned type in Java. Thus, possible char
values range from 0 to 65,535. Each char represents a particular character in the Unicode character
set. chars may be assigned to by using int literals in this range; for example:

char copyright = 169;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chars may also be assigned to by using char literalsthat is, the character itself enclosed in single
quotes:

char copyright = '©';

Sun's javac compiler can translate many different encodings to Unicode by using the -encoding
command-line flag to specify the encoding in which the file is written. For example, if you know a file
is written in ISO 8859-1, you might compile it as follows:

% javac -encoding 8859_1 CharTest.java

The list of available encodings is given in Table A-4.

With the exception of Unicode itself, most character sets understood by Java do not have equivalents
for all the Unicode characters. To encode characters that do not exist in the character set you're
programming with, you can use Unicode escapes. A Unicode escape sequence is an unescaped
backslash, followed by any number of u characters, followed by four hexadecimal digits specifying the
character to be used. For example:

char copyright = '\u00A9';

Unicode escapes may be used not just in char literals, but also in strings, identifiers, comments, and
even in keywords, separators, operators, and numeric literals. The compiler translates Unicode
escapes to actual Unicode characters before it does anything else with a source code file.

Unicode escapes are a relic of times when most text editors could not handle
Unicode. Fortunately, this hasn't been the case for years. Today, Java source
code should be written in Unicode (preferably UTF-8) and any non-ASCII
characters typed directly. In 2006, Unicode escapes serve only to obfuscate
code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. Readers and Writers

Streams are primarily intended for data that can be read as pure bytesbasically, byte data and
numeric data encoded as binary numbers of one sort or another. Streams are specifically not
intended for reading and writing text, including both ASCII text, such as "Hello World," and numbers
formatted as text, such as "3.1415929". For these purposes, you should use readers and writers.

Input and output streams are fundamentally byte-based. Readers and writers are based on
characters, which can have varying widths depending on the character set. For example, ASCII and
Latin-1 use 1-byte characters. UTF-32 uses 4-byte characters. UTF-8 uses characters of varying
width (between one and four bytes). Since characters are ultimately composed of bytes, readers take
their input from streams. However, they convert those bytes into chars according to a specified
encoding format before passing them along. Similarly, writers convert chars to bytes according to a
specified encoding before writing them onto some underlying stream.

The java.io.Reader and java.io.Writer classes are abstract superclasses for classes that read and
write character-based data. The subclasses are notable for handling the conversion between different
character sets. The core Java API includes nine reader and eight writer classes, all in the java.io
package:

BufferedReader

BufferedWriter

CharArrayReader

CharArrayWriter

FileReader

FileWriter

FilterReader

FilterWriter

InputStreamReader

LineNumberReader

OutputStreamWriter

PipedReader

PipedWriter

PrintWriter

PushbackReader

StringReader

StringWriter

For the most part, these classes have methods that are extremely similar to the equivalent stream
classes. Often the only difference is that a byte in the signature of a stream method becomes a char
in the signature of the matching reader or writer method. For example, the java.io.OutputStream
class declares these three write() methods:

public abstract void write(int i) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The java.io.Writer class, therefore, declares these three write() methods:

public void write(int i) throws IOException
public void write(char[] data) throws IOException
public abstract void write(char[] data, int offset, int length) throws IOException

As you can see, the signatures match except that in the latter two methods the byte array data has
changed to a char array. There's also a less obvious difference not reflected in the signature. While
the int passed to the OutputStream write() method is reduced modulo 256 before being output,
the int passed to the Writer write() method is reduced modulo 65,536. This reflects the different
ranges of chars and bytes.

java.io.Writer also has two more write() methods that take their data from a string:

public void write(String s) throws IOException
public void write(String s, int offset, int length) throws IOException

Because streams don't know how to deal with character-based data, there are no corresponding
methods in the java.io.OutputStream class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. Buffers and Channels

Streams are reasonably fast as long as an application has to read from or write to only one at a time.
In fact, the bottleneck is more likely to be the disk or network you're reading from or writing to than
the Java program itself. The situation is a little dicier when a program needs to read from or write to
many different streams simultaneously. This is a common situation in web servers, for example,
where a single process may be communicating with hundreds or even thousands of different clients
simultaneously.

At any given time, a stream may block. That is, it may simply stop accepting further requests
temporarily while it waits for the actual hardware it's writing to or reading from to catch up. This can
happen on disks, and it's a major issue on network connections. Clearly, you don't want to stop
sending data to 999 clients just because one of them is experiencing network congestion. The
traditional solution to this problem prior to Java 1.4 was to put each connection in a separate thread.
Five hundred clients requires 500 threads. Each thread can run independently of the others so that
one slow connection doesn't slow down everyone.

However, threads are not without overhead of their own. Creating and managing threads takes a lot
of work, and few virtual machines can handle more than a thousand or so threads without serious
performance degradation. Spawning several thousand threads can crash even the toughest virtual
machine. Nonetheless, big servers need to be able to communicate with thousands of clients
simultaneously.

The solution invented in Java 1.4 was nonblocking I/O. In nonblocking I/O, streams are relegated
mostly to a supporting role while the real work is done by channels and buffers. Input buffers are
filled with data from the channel and then drained of data by the application. Output buffers work in
reverse: the application fills them with data that is subsequently drained out by the target. The
design is such that the writer and reader don't always have to operate in lockstep with each other.
Most importantly, the client application can queue reads and writes to each channel. It does not have
to stop processing simply because the other end of the channel isn't quite ready. This enables one
thread to service many different channels simultaneously, dramatically reducing the load on the
virtual machine.

Channels and buffers are also used to enable memory-mapped I/O. In memory-mapped I/O, files are
treated as large blocks of memory, essentially as big byte arrays. Particular parts of a mapped file
can be read with statements such as int x = file.getInt(1067) and written with statements such
as file.putInt(x, 1067). The data is stored directly to disk at the right location without having to
read or write all the data that precedes or follows the section of interest.

Channels and buffers are a little more complex than streams and bytes. However, for certain kinds of
I/O-bound applications, the performance gains are dramatic and worth the added complexity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6. The Ubiquitous IOException

As far as computer operations go, input and output are unreliable. They are subject to problems
completely outside the programmer's control. Disks can develop bad sectors while a file is being read.
Construction workers drop their backhoes through the cables that connect your WAN. Users
unexpectedly cancel their input. Telephone repair crews shut off your modem line while trying to
repair someone else's. (This last one actually happened to me while writing this chapter. My modem
kept dropping the connection and then not getting a dial tone; I had to hunt down the Verizon
"repairman" in my building's basement and explain to him that he was working on the wrong line.)

Because of these potential problems and many more, almost every method that performs input or
output is declared to throw an IOException. IOException is a checked exception, so you must either
declare that your methods throw it or enclose the call that can throw it in a try/catch block. The only
real exceptions to this rule are the PrintStream and PrintWriter classes. Because it would be
inconvenient to wrap a try/catch block around each call to System.out.println(), Sun decided to
have PrintStream (and later PrintWriter) catch and eat any exceptions thrown inside a print() or
println() method. If you do want to check for exceptions inside a print() or println() method,
you can call checkError():

public boolean checkError()

The checkError() method returns TRue if an exception has occurred on this print stream, false if
one hasn't. It tells you only that an error occurred. It does not tell you what sort of error occurred. If
you need to know more about the error, you'll have to use a different output stream or writer class.

IOException has many subclasses15 in java.io aloneand methods often throw a more specific
exception that subclasses IOException; for instance, EOFException on an unexpected end of file or
UnsupportedEncodingException when you try read text in an unknown character set. However,
methods usually declare only that they throw an IOException.

The java.io.IOException class declares no public methods or fields of significancejust the usual two
constructors you find in most exception classes:

public IOException()
public IOException(String message)

The first constructor creates an IOException with an empty message. The second provides more
details about what went wrong. Of course, IOException has the usual methods inherited by all
exception classes such as toString() and printStackTrace().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java 6 also adds an IOError class that is "Thrown when a serious I/O error has
occurred." Xueming Shen snuck this class in the backdoor solely to avoid
declaring that methods in the new Console class throw IOException like they
should. I am not sure if this wart will remain in the final version of Java 6 or
not. At the time of this writing, I am lobbying strenuously to get this removed,
or at least replaced by a runtime exception instead of an error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.7. The Console: System.out, System.in, and System.err

The console is the default destination for output written to System.out or System.err and the default
source of input for System.in. On most platforms the console is the command-line environment from
which the Java program was initially launched, perhaps an xterm or a DOS prompt as shown in
Figure 1-1. The word console is something of a misnomer, since on Unix systems the console refers
to a very specific command-line shell rather than to command-line shells overall.

Figure 1-1. A DOS console on Windows

Many common misconceptions about I/O occur because most programmers' first exposure to I/O is
through the console. The console is convenient for quick hacks and toy examples commonly found in
textbooks, and I will use it for that in this book, but it's really a very unusual source of input and
destination for output, and good Java programs avoid it. It behaves almost, but not completely,
unlike anything else you'd want to read from or write to. While consoles make convenient examples
in programming texts like this one, they're a horrible user interface and really have little place in
modern programs. Users are more comfortable with a well-designed GUI. Furthermore, the console is
unreliable across platforms. Many smaller devices such as Palm Pilots and cell phones have no
console. Web browsers running applets sometimes provide a console that can be used for output.
However, this is hidden by default, normally cannot be used for input, and is not available in all
browsers on all platforms.

1.7.1. System.out

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.out is the first instance of the OutputStream class most programmers encounter. In fact, it's
often encountered before students know what a class or an output stream is. Specifically, System.out
is the static out field of the java.lang.System class. It's an instance of java.io.PrintStream, a
subclass of java.io.OutputStream.

System.out corresponds to stdout in Unix or C. Normally, output sent to System.out appears on the
console. As a general rule, the console converts the numeric byte data System.out sends to it into
ASCII or Latin-1 text. Thus, the following lines write the string "Hello World!" on the console:

byte[] hello = {72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10,
 13};
System.out.write(hello);

1.7.2. System.err

Unix and C programmers are familiar with stderr, which is commonly used for error messages.
stderr is a separate file pointer from stdout, but often means the same thing. Generally, stderr and
stdout both send data to the console, whatever that is. However, stdout and stderr can be
redirected to different places. For instance, output can be redirected to a file while error messages
still appear on the console.

System.err is Java's version of stderr. Like System.out, System.err is an instance of
java.io.PrintStream, a subclass of java.io.OutputStream. System.err is most commonly used inside
the catch clause of a TRy/catch block, as shown here:

try {
 // Do something that may throw an exception.
}
catch (Exception ex) {
 System.err.println(ex);
}

Finished programs shouldn't have much need for System.err, but it is useful while you're debugging.

Libraries should never print anything on System.err. In general, libraries should
not talk to the user at all, unless that is their specific purpose. Instead, libraries
should inform the client application of any problems they encounter by throwing
an exception or invoking a callback method in some sort of error-handler
object. Yes, Xerces, I'm talking to you. (The Xerces XML parser, now built into
Java 5 has a really annoying habit of reporting even nonfatal errors by printing
them on System.err.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.7.3. System.in

System.in is the input stream connected to the console, much as System.out is the output stream
connected to the console. In Unix or C terms, System.in is stdin and can be redirected from a shell in
the same fashion. System.in is the static in field of the java.lang.System class. It's an instance of
java.io.InputStream, at least as far as is documented.

Past what's documented, System.in is really a java.io.BufferedInputStream. BufferedInputStream
doesn't declare any new methods; it just overrides the ones already declared in
java.io.InputStream. Buffered input streams read data in large chunks into a buffer, then parcel it
out in requested sizes. This can be more efficient than reading one character at a time. Otherwise,
the data is completely transparent to the programmer.

The main significance of this is that bytes are not available to the program at the moment the user
types them on System.in. Instead, input enters the program one line at a time. This allows a user
typing into the console to backspace over and correct mistakes. Java does not allow you to put the
console into "raw mode," wherein each character becomes available as soon as it's typed, including
characters such as backspace and delete.

The user types into the console using the platform's default character set, typically ASCII or some
superset thereof. The data is converted into numeric bytes when read. For example, if the user types
"Hello World!" and hits the Enter key, the following bytes are read from System.in in this order:

72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10, 13

Many programs that run from the command line and read input from System.in require you to enter
the "end of stream" character, also known as the "end of file" or EOF character, to terminate a
program normally. How this is entered is platform-dependent. On Unix and the Mac, Ctrl-D generally
indicates end of stream. On Windows, Ctrl-Z does. In some cases it may be necessary to type this
character alone on a line. That is, you may need to hit Enter/Ctrl-Z or Enter/Ctrl-D before Java will
recognize the end of stream.

1.7.4. Redirecting System.out, System.in, and System.err

In a shell, you often redirect stdout, stdin, or stderr. For example, to specify that output from the
Java program OptimumBattingOrder goes into the file yankees06.out and that input for that program
is read from the file yankees06.tab, you might type:

% java OptimumBattingOrder < yankees06.tab > yankees06.out

Redirection in a DOS shell is the same.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's sometimes convenient to be able to redirect System.out, System.in, and System.err from inside
the running program. The following three static methods in the java.lang.System class do exactly
that:

public static void setIn(InputStream in)
public static void setOut(PrintStream out)
public static void setErr(PrintStream err)

For example, to specify that data written on System.out is sent to the file yankees99.out and that
data read from System.in comes from yankees99.tab, you could write:

System.setIn(new FileInputStream("yankees99.tab"));
System.setOut(new PrintStream(new FileOutputStream("yankees99.out")));

1.7.5. The Console Class // Java 6

While working on Java 6, Sun finally got tired of all the sniping from the Python and Ruby
communities about how hard it was to just read a line of input from the console. This is a one liner in
most scripting languages, but traditionally it's been a little involved in Java.

The reason reading a line of input from the console is relatively involved in Java
compared to some other languages is because in 2006 no one needs to do this
outside of a CS 101 course. Real programs use GUIs or the network for user
interfaces, not the console, and Java has always been focused on getting real
work done rather than enabling toy examples.

Java 6 adds a new java.lang.Console class that provides a few convenience methods for input and
output. This class is a singleton. There's never more than one instance of it, and it always applies to
the same shell that System.in, System.out, and System.err point to. You retrieve the single instance
of this class using the static System.console() method like so:

Console theConsole = System.console();

This method returns null if you're running in an environment such as a cell phone or a web browser
that does not have a console.

There are several ways you might use this class. Most importantly, it has a simple readLine()
method that returns a single string of text from the console, not including the line-break characters:

public String readLine() throws IOError

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method returns null on end of stream. It throws an IOError if any I/O problem is encountered.
(Again, this is a design bug, and I am trying to convince Sun to fix this before final release. This
method should throw an IOException like any normal method if there's a problem.)

You can optionally provide a formatted prompt before reading the line:

public String readLine(String prompt, Object... formatting)

The prompt string is interpreted like any printf() string and filled with arguments to its right. All
this does is format the prompt. This is not a scanf() equivalent. The return value is the same as for
the no-args readLine() method.

Console also has two readPassword() methods:

public char[] readPassword()
public char[] readPassword(String prompt, Object... formatting)

Unlike readLine(), these do not echo the characters typed back to the screen. Also note that they
return an array of chars rather than a String. When you're finished with the password, you can
overwrite the characters in the array with zeros so that the password is not held in memory for
longer than it needs to be. This limits the possibility of the password being exposed to memory
scanners or stored on the disk due to virtual memory.

For output, Console has two methods, printf() and format():

public Console format(String format, Object... arguments)
public Console printf(String format, Object... arguments)

There is no difference between these two methods. They are synonyms. For example, this code
fragment prints a three-column table of the angles between 0 and 360 degrees in degrees, radians,
and grads on the console using only printf(). Each number is exactly five characters wide with one
digit after the decimal point.

 Console console = System.console();
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;
 console.printf("%5.1f %5.1f %5.1f\n", degrees, radians, grads);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the start of the output:

 0.0 0.0 0.0
 1.0 0.0 1.1
 2.0 0.0 2.2
 3.0 0.1 3.3
...

Chapter 7 explores printf() and its formatting arguments in greater detail.

The console normally buffers all output until a line break is seen. You can force data to be written to
the screen even before a line break by invoking the flush() method:

formatter.flush();
formatter.close();

Finally, if these methods aren't enough for you, you can work directly with the console's associated
PrintWriter and Reader:

public PrintWriter writer()
public Reader reader()

Chapter 20 explores these two classes.

Example 1-1 is a simple program that uses the Console class to answer a typical homework
assignment: ask the user to enter an integer and print the squares of the numbers from 1 to that
integer. In keeping with the nature of such programs, I've deliberately left at least three typical
student bugs in the code. Identifying and correcting them is left as homework for the reader.

Example 1-1. CS 101 Homework

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
class Homework {
 public static void main(String[] args) {
 Console console = System.console();
 String input = console.readLine(
 "Please enter a number between 1 and 10: ");
 int max = Integer.parseInt(input);
 for (int i = 1; i < max; i++) {
 console.printf("%d\n", i*i);
 }
 }
}

Here's what the program looks like when it runs:

C:\>java Homework
Please enter a number between 1 and 10: 4
1
4
9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.8. Security Checks on I/O

One of the original fears about downloading executable content like applets from the Internet was
that a hostile applet could erase your hard disk or read your Quicken files. Nothing has happened to
change that since Java was introduced. This is why Java applets run under the control of a security
manager that checks each operation an applet performs to prevent potentially hostile acts.

The security manager is particularly careful about I/O operations. For the most part, the checks are
related to these questions:

Can the program read a particular file?

Can the program write a particular file?

Can the program delete a particular file?

Can the program determine whether a particular file exists?

Can the program make a network connection to a particular host?

Can the program accept an incoming connection from a particular host?

The short answer to all these questions when the program is an applet is "No, it cannot." A slightly
more elaborate answer would specify a few exceptions. Applets can make network connections to the
host they came from; applets can read a few very specific files that contain information about the
Java environment; and trusted applets may sometimes run without these restrictions. But for almost
all practical purposes, the answer is almost always no.

Because of these security issues, you need to be careful when using code fragments and examples
from this book in an applet. Everything shown here works when run in an application, but when run
in an applet, it may fail with a SecurityException. It's not always obvious whether a particular
method or class will cause problems. The write() method of BufferedOutputStream, for instance, is
completely safe when the ultimate destination is a byte array. However, that same write() method
will throw an exception when the destination is a file. An attempt to open a connection to a web
server may succeed or fail depending on whether or not the web server you're connecting to is the
same one the applet came from.

Consequently, this book focuses very much on applications. There is very little I/O that can be done
from an applet without running afoul of the security manager. The problem may not always be
obviousnot all web browsers properly report security exceptionsbut it is there. If you can make an
applet work when it's run as a standalone application and you cannot get it to work inside a web
browser, the problem is likely a conflict with the browser's security manager.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Output Streams
The java.io.OutputStream class declares the three basic methods you need to write bytes of data
onto a stream. It also has methods for closing and flushing streams:

public abstract void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

OutputStream is an abstract class. Subclasses provide implementations of the abstract write(int b)
method. They may also override the four nonabstract methods. For example, the FileOutputStream
class overrides all five methods with methods that call native code to write files. Although
OutputStream is abstract, often you only need to know that the object you have is an OutputStream;
the more specific subclass of OutputStream is hidden from you. For example, the getOutputStream()
method of java.net.URLConnection has this signature:

public OutputStream getOutputStream() throws IOException

Depending on the type of URL associated with this URLConnection object, the actual class of the
output stream that's returned may be a sun.net.TelnetOutputStream, a
sun.net.smtp.SmtpPrintStream, a sun.net.www.http.KeepAliveStream, or something else completely.
All you know as a programmer, and all you need to know, is that the object returned is some kind of
OutputStream.

Furthermore, even when working with subclasses whose types you know, you still need to be able to
use the methods inherited from OutputStream. And since methods that are inherited are not included
in the API documentation, it's important to remember that they're there. For example, the
java.io.DataOutputStream class does not declare a close() method, but you can still call the
method it inherits from its superclass.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Writing Bytes to Output Streams

The fundamental method of the OutputStream class is write() :

public abstract void write(int b) throws IOException

This method writes a single unsigned byte of data whose value should be between 0 and 255. If you
pass a number larger than 255 or smaller than 0, it's reduced modulo 256 before being written.

Example 2-1, AsciiChart, is a simple program that writes the printable ASCII characters (32 to 126)
on the console. The console interprets the numeric values as ASCII characters, not as numbers. This
is a feature of the console, not of the OutputStream class or the specific subclass of which System.out
is an instance. The write() method merely sends a particular bit pattern to a particular output
stream. How that bit pattern is interpreted depends on what's connected to the other end of the
stream.

Example 2-1. The AsciiChart program

import java.io.*;
public class AsciiChart {
 public static void main(String[] args) {
 for (int i = 32; i < 127; i++) {
 System.out.write(i);
 // break line after every eight characters.
 if (i % 8 == 7) System.out.write('\n');
 else System.out.write('\t');
 }
 System.out.write('\n');
 }
}

Notice the use of the char literals '\t' and '\n'. The compiler converts these to the numbers 9 and
10, respectively. When these numbers are written on the console, the console interprets them as a
tab and a linefeed, respectively. The same effect could have been achieved by writing the if clause
like this:

if (i % 8 == 7) System.out.write(10);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

else System.out.write(9);

Here's the output:

% java AsciiChart
! " # $ % & '
() * + , - . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
@ A B C D E F G
H I J K L M N O
P Q R S T U V W
X Y Z [\] ^ _
` a b c d e f g
h i j k l m n o
p q r s t u v w
x y z { | } ~

The write() method can throw an IOException, so you'll need to wrap most calls to this method in a
try/catch block, or declare that your own method throws IOException. For example:

try {
 for (int i = 32; i <= 127; i++) out.write(i);
}
catch (IOException ex) {
 System.err.println(ex);
}

Observant readers will have noticed that Example 2-1 did not actually catch any IOExceptions. The
PrintStream class, of which System.out is an instance, overrides write() with a variant that does
not throw IOException. This is very unusual, and PrintStream is almost the only class that does this.
I'll have more to say about PrintStream, including this very unsafe behavior, in Chapter 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Writing Arrays of Bytes

It's often faster to write data in large chunks than it is to write it byte by byte. Two overloaded
variants of the write() method do this:

public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

The first variant writes the entire byte array data. The second writes only the subarray of data
starting at offset and continuing for length bytes. For example, the following code fragment blasts
the bytes in a string onto System.out:

String s = "How are streams treating you?";
byte[] data = s.getBytes();
System.out.write(data);

Conversely, you may run into performance problems if you attempt to write too much data at a time.
The exact turnaround point depends on the eventual destination of the data. Files are often best
written in small multiples of the block size of the disk, typically 1024, 2048, or 4096 bytes. Network
connections often require smaller buffer sizes128 or 256 bytes. The optimal buffer size depends on
too many system-specific details for anything to be guaranteed, but I often use 128 bytes for
network connections and 1024 bytes for files.

Example 2-2 is a simple program that constructs a byte array filled with an ASCII chart, then blasts it
onto the console in one call to write().

Example 2-2. The AsciiArray program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
public class AsciiArray {
 public static void main(String[] args) {
 byte[] b = new byte[(127-31)*2];
 int index = 0;
 for (int i = 32; i < 127; i++) {
 b[index++] = (byte) i;
 // Break line after every eight characters.
 if (i % 8 == 7) b[index++] = (byte) '\n';
 else b[index++] = (byte) '\t';
 }
 b[index++] = (byte) '\n';
 try {
 System.out.write(b);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

The output is the same as in Example 2-1. Because of the nature of the console, this particular
program probably isn't a lot faster than Example 2-1, but it certainly could be if you were writing data
into a file rather than onto the console. The difference in performance between writing a byte array in
a single call to write() and writing the same array by invoking write() once for each component of
the array can easily be a factor of a hundred or more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Closing Output Streams

When you're through with a stream, you should close it. This allows the operating system to free any
resources associated with the stream. Exactly what these resources are depends on your platform
and varies with the type of stream. However, many systems have finite resources. For example, on
some personal computer operating systems, no more than several hundred files can be open at once.
Multiuser operating systems have larger limits, but limits nonetheless.

To close a stream, invoke its close() method:

public void close() throws IOException

For example, again assuming out is an OutputStream, calling out.close() closes the stream and
frees any underlying resources such as file handles or network ports associated with the stream.

Once you have closed an output stream, you probably can't write anything else onto that stream.
Attempting to do so normally throws an IOException, though there are a few classes where this
doesn't happen.

Again, System.out is a partial exception because, as a PrintStream, all
exceptions it throws are eaten. Once you close System.out, you can't write to it.
Trying to do so won't throw any exceptions; however, your output will not
appear on the console.

Not all streams need to be closedbyte array output streams do not need to be closed, for example.
However, streams associated with files and network connections should always be closed when you're
done with them. For example, if you open a file for writing and neglect to close it when you're
through, then other processes may be blocked from reading or writing to that file. Often, files are
closed like this:

try {
 OutputStream out = new FileOutputStream("numbers.dat");
 // Write to the stream...
 out.close();
}
catch (IOException ex) {
 System.err.println(ex);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, this code fragment has a potential leak. If an IOException is thrown while writing, the
stream won't be closed. It's more reliable to close the stream in a finally block so that it's closed
whether or not an exception is thrown. To do this you need to declare the OutputStream variable
outside the try block. For example:

// Initialize this to null to keep the compiler from complaining
// about uninitialized variables
OutputStream out = null;
try {
 out = new FileOutputStream("numbers.dat");
 // Write to the stream...
}
catch (IOException ex) {
 System.err.println(ex);
}
finally {
 if (out != null) {
 try {
 out.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Variable scope and nested try-catch-finally blocks make this a little uglier, yet it's quite a bit safer.
The code can be a little cleaner if you have the option of propagating any IOExceptions thrown rather
than catching them; that is, if the method that contains this code is declared to throw IOException.
In that case, a typical call to close() works like this:

// Initialize this to null to keep the compiler from complaining
// about uninitialized variables
OutputStream out == null;
try {
 out = new FileOutputStream("numbers.dat");
 // Write to the stream...
}
finally {
 if (out != null) out.close();
}

2.3.1. The Closeable Interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java 5 added a Closeable interface that the OutputStream class implements:

package java.io;
public interface Closeable {
 void close() throws IOException;
}

InputStream, Channel, Formatter, and various other things that can be closed also implement this
interface. Personally I've never figured out the use case that justifies this extra interface, but it's
there if for some reason you want to write a method that accepts only arguments that can be closed,
or some such.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Flushing Output Streams

Many output streams buffer writes to improve performance. Rather than sending each byte to its
destination as it's written, the bytes are accumulated in a memory buffer ranging in size from several
bytes to several thousand bytes. When the buffer fills up, all the data is sent at once. The flush()
method forces the data to be written whether or not the buffer is full:

public void flush() throws IOException

This is not the same as any buffering performed by the operating system or the hardware. These
buffers will not be emptied by a call to flush(). (Then sync() method in the FileDescriptor class,
discussed in Chapter 17, can sometimes empty these buffers.)

If you use a stream for only a short time, you don't need to flush it explicitly. It should flush
automatically when the stream is closed. This should happen when the program exits or when the
close() method is invoked. You flush an output stream explicitly only if you want to make sure data
is sent before you're through with the stream. For example, a program that sends bursts of data
across the network periodically should flush after each burst of data is written to the stream.

Flushing is often important when you're trying to debug a crashing program. All streams flush
automatically when their buffers fill up, and all streams should be flushed when a program terminates
normally. If a program terminates abnormally, however, buffers may not get flushed. In this case,
unless there is an explicit call to flush() after each write, you can't be sure the data that appears in
the output indicates the point at which the program crashed. In fact, the program may have
continued to run for some time past that point before it crashed.

System.out, System.err, and some (but not all) other print streams automatically flush after each call
to println() and after each time a new line character ('\n') appears in the string being written.
You can enable or disable auto-flushing in the PrintStream constructor.

2.4.1. The Flushable Interface

Java 5 added a Flushable interface that the OutputStream class implements:

package java.io;
public interface Flushable {
 void flush() throws IOException;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Formatter and various other things that can be flushed also implement this interface. I've never
figured out the use case that justifies this extra interface either, but it's there if for some reason you
want to write a method that accepts only objects that can be flushed as arguments, or some such.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Subclassing OutputStream

OutputStream is an abstract class that mainly describes the operations available with any
OutputStream object. Specific subclasses know how to write bytes to particular destinations. For
instance, a FileOutputStream uses native code to write data in files. A ByteArrayOutputStream uses
pure Java to write its output in an expanding byte array.

Recall that there are three overloaded variants of the write() method in OutputStream, one
abstract, two concrete:

public abstract void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException

Subclasses must implement the abstract write(int b) method. They often also override the third
variant, write(byte[], data int offset, int length), to improve performance. The implementation
of the three-argument version of the write() method in OutputStream simply invokes write(int b)
repeatedlythat is:

public void write(byte[] data, int offset, int length) throws IOException {
 for (int i = offset; i < offset+length; i++) write(data[i]);
}

Most subclasses can provide a more efficient implementation of this method. The one-argument
variant of write() merely invokes write(data, 0, data.length); if the three-argument variant has
been overridden, this method will perform reasonably well. However, a few subclasses may override
it anyway.

Example 2-3 is a simple program called NullOutputStream that mimics the behavior of /dev/null on
Unix operating systems. Data written into a null output stream is lost.

Example 2-3. The NullOutputStream class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io;
import java.io.*;
public class NullOutputStream extends OutputStream {
 private boolean closed = false;
 public void write(int b) throws IOException {
 if (closed) throw new IOException("Write to closed stream");
 }
 public void write(byte[] data, int offset, int length)
 throws IOException {
 if (data == null) throw new NullPointerException("data is null");
 if (closed) throw new IOException("Write to closed stream");
 }
 public void close() {
 closed = true;
 }
}

The no-op flush() method inherited from the superclass is good enough here since this stream
really doesn't need flushing. However, note that this class does need to check whether the stream is
closed before writing anything, and check whether the array passed in to write() is null. Most
subclasses will need to make similar checks.

By redirecting System.out and System.err to a null output stream in the shipping version of your
program, you can disable any debugging messages that might have slipped through quality
assurance. For example:

OutputStream out = new NullOutputStream();
PrintStream ps = new PrintStream(out);
System.setOut(ps);
System.setErr(ps);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. A Graphical User Interface for Output Streams

As an example, I'm going to show a subclass of javax.swing.JTextArea that can be connected to an
output stream. As data is written onto the stream, it is appended to the text area in the default
character set. (This isn't ideal. Since text areas contain text, a writer would be a better source for
this data. In later chapters, I'll expand on this class to use a writer instead. For now, this makes a
neat example.) This subclass is shown in Example 2-4.

The actual output stream is contained in an inner class inside the JStreamedTextArea class. Each
JStreamedTextArea component contains a TextAreaOutputStream object in its theOutput field. Client
programmers access this object via the getOutputStream() method. The JStreamedTextArea class
has four overloaded constructors that imitate the four constructors in the javax.swing.JTextArea
class, each taking a different combination of text, rows, and columns. The first three constructors
merely pass their arguments and suitable defaults to the most general fourth constructor using this(
). The fourth constructor calls the most general superclass constructor, then calls
setEditable(false) to ensure that the user doesn't change the text while output is streaming into it.

Example 2-4. The JStreamedTextArea component

package com.elharo.io.ui;
import javax.swing.*;
import java.io.*;
public class JStreamedTextArea extends JTextArea {
 private OutputStream theOutput = new TextAreaOutputStream();
 public JStreamedTextArea() {
 this("", 0, 0);
 }
 public JStreamedTextArea(String text) {
 this(text, 0, 0);
 }
 public JStreamedTextArea(int rows, int columns) {
 this("", rows, columns);
 }
 public JStreamedTextArea(String text, int rows, int columns) {
 super(text, rows, columns);
 setEditable(false);
 }
 public OutputStream getOutputStream() {
 return theOutput;
 }
 private class TextAreaOutputStream extends OutputStream {
 private boolean closed = false;
 public void write(int b) throws IOException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 checkOpen();
 // recall that the int should really just be a byte
 b &= 0x000000FF;
 // must convert byte to a char in order to append it
 char c = (char) b;
 append(String.valueOf(c));
 }
 private void checkOpen() throws IOException {
 if (closed) throw new IOException("Write to closed stream");
 }
 public void write(byte[] data, int offset, int length)
 throws IOException {
 checkOpen();
 append(new String(data, offset, length));
 }
 public void close() {
 this.closed = true;
 }
 }
}

The TextAreaOutputStream inner class is quite simple. It extends OutputStream and thus must
implement the abstract method write(). It also overrides the primary array write() method to
provide a more efficient implementation. Finally, it overrides close() to make sure that no writes
take place after the stream is closed.

To use this class, simply add an instance of it to a container such as an applet or a window, much as
you'd add a regular text area. Next, invoke its getOutputStream() method to get a reference to the
output stream for the area, then use the usual write() methods to write into the text area. Often,
these steps will take place at different times in different methods.

Figure 2-1 shows a program using a JStreamedTextArea to display data downloaded from
http://www.oreilly.com/. The application in this picture will be developed in Chapter 5.

Figure 2-1. The JStreamedTextArea component

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

I'll revisit and improve this class in future chapters using techniques I haven't discussed yet. In
particular, I'll pay much more attention to the issue of character sets and encodings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Input Streams
java.io.InputStream is the abstract superclass for all input streams. It declares the three basic
methods needed to read bytes of data from a stream. It also has methods for closing streams,
checking how many bytes of data are available to be read, skipping over input, marking a position in
a stream and resetting back to that position, and determining whether marking and resetting are
supported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. The read() Method

The fundamental method of the InputStream class is read(). This method reads a single unsigned
byte of data and returns the integer value of the unsigned byte. This is a number between 0 and
255:

public abstract int read() throws IOException

read() is declared abstract; therefore, InputStream is abstract. Hence, you can never instantiate an
InputStream directly; you always work with one of its concrete subclasses.

The following code reads 10 bytes from the System.in input stream and stores them in the int array
data:

int[] data = new int[10];
for (int i = 0; i < data.length; i++) {
 data[i] = System.in.read();
}

Notice that although read() is reading a byte, it returns an int. If you want to store the raw bytes
instead, you can cast the int to a byte. For example:

byte[] b = new byte[10];
for (int i = 0; i < b.length; i++) {
 b[i] = (byte) System.in.read();
}

Of course, this produces a signed byte instead of the unsigned byte returned by the read() method
(that is, a byte in the range -128 to 127 instead of 0 to 255). As long as you're clear in your mind
and in your code about whether you're working with signed or unsigned data, you won't have any
trouble. Signed bytes can be converted back to ints in the range of 0 to 255 like this:

int i = (b >= 0) ? b : 256 + b;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you call read(), you also have to catch the IOException that it might throw, or declare that
your methods throw it. However, there's no IOException if read() encounters the end of the input
stream; in this case, it returns -1. You use this as a flag to watch for the end of stream. The following
code fragment shows how to catch the IOException and test for the end of the stream:

try {
 InputStream in = new FileInputStream("file.txt");
 int[] data = new int[10];
 for (int i = 0; i < data.length; i++) {
 int datum = in.read();
 if (datum == -1) break;
 data[i] = datum;
 }
}
catch (IOException ex) {
 System.err.println(ex.getMessage());
}

The read() method normally waits as long as it needs to in order to get a byte of data. Most input
streams do not time out. (A few network streams are exceptions.) Input can be slow, so if your
program is doing anything else of importance, try to put I/O in its own thread.

Example 3-1 is a program that reads data from System.in and prints the numeric value of each byte
read on the console using System.out.println().

Example 3-1. The StreamPrinter class

import java.io.*;
public class StreamPrinter {
 public static void main(String[] args) {
 try {
 while (true) {
 int datum = System.in.read();
 if (datum == -1) break;
 System.out.println(datum);
 }
 }
 catch (IOException ex) {
 System.err.println("Couldn't read from System.in!");
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Reading Chunks of Data from a Stream

Input and output are often the performance bottlenecks in a program. Reading from or writing to disk
can be hundreds of times slower than reading from or writing to memory; network connections and
user input are even slower. While disk capacities and speeds have increased over time, they have
never kept pace with CPU speeds. Therefore, it's important to minimize the number of reads and
writes a program actually performs.

All input streams have overloaded read() methods that read chunks of contiguous data into a byte
array. The first variant tries to read enough data to fill the array. The second variant tries to read
length bytes of data starting at position offset into the array. Neither of these methods is
guaranteed to read as many bytes as you want. Both methods return the number of bytes actually
read, or -1 on end of stream.

public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

The default implementation of these methods in the java.io.InputStream class merely calls the basic
read() method enough times to fill the requested array or subarray. Thus, reading 10 bytes of data
takes 10 times as long as reading 1 byte of data. However, most subclasses of InputStream override
these methods with more efficient methods, perhaps native, that read the data from the underlying
source as a block.

For example, to attempt to read 10 bytes from System.in, you could write the following code:

try {
 byte[] b = new byte[10];
 System.in.read(b);
}
catch (IOException ex) {
 System.err.println("Couldn't read from System.in!");
}

Reads don't always succeed in getting as many bytes as you want. Conversely, there's nothing to
stop you from trying to read more data into the array than will fit. If you do this, read() tHRows an
ArrayIndexOutOfBoundsException. For example, the following code loops repeatedly until it either fills
the array or sees the end of stream:

try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 byte[] b = new byte[100];
 int offset = 0;
 while (offset < b.length) {
 int bytesRead = System.in.read(b, offset, b.length - offset);
 if (bytesRead == -1) break; // end of stream
 offset += bytesRead;
 }
}
catch (IOException ex) {
 System.err.println("Couldn't read from System.in!");
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Counting the Available Bytes

It's sometimes convenient to know how many bytes can be read before you attempt to read them.
The InputStream class's available() method tells you how many bytes you can read without
blocking. It returns 0 if there's no data available to be read.

public int available()
 throws IOException

For example:

try {
 byte[] b = new byte[100];
 int offset = 0;
 while (offset < b.length) {
 int a = System.in.available();
 int bytesRead = System.in.read(b, offset, a);
 if (bytesRead == -1) break; // end of stream
 offset += bytesRead;
}
catch (IOException ex) {
 System.err.println("Couldn't read from System.in!");
}

There's a potential bug in this code. There may be more bytes available than there's space in the
array to hold them. One common idiom is to size the array according to the number available()
returns, like this:

try {
 byte[] b = new byte[System.in.available()];
 System.in.read(b);
}
catch (IOException ex) {
 System.err.println("Couldn't read from System.in!");
}

This works well if you're going to perform a single read. For multiple reads, however, the overhead of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

creating multiple arrays is excessive. You should probably reuse the array and create a new array
only if more bytes are available than will fit in the array.

The available() method in java.io.InputStream always returns 0. Subclasses are supposed to
override it, but I've seen a few that don't. You may be able to read more bytes from the underlying
stream without blocking than available() suggests; you just can't guarantee that you can. If this is
a concern, place input in a separate thread so that blocked input doesn't block the rest of the
program.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Skipping Bytes

The skip() method jumps over a certain number of bytes in the input:

public long skip(long bytesToSkip) throws IOException

The argument to skip() is the number of bytes to skip. The return value is the number of bytes
actually skipped, which may be less than bytesToSkip. -1 is returned if the end of stream is
encountered. Both the argument and return value are longs, allowing skip() to handle extremely
long input streams. Skipping is often faster than reading and discarding the data you don't want. For
example, when an input stream is attached to a file, skipping bytes just requires that the position in
the file be changed, whereas reading involves copying bytes from the disk into memory. For example,
to skip the next 80 bytes of the input stream in:

try {
 long bytesSkipped = 0;
 long bytesToSkip = 80;
 while (bytesSkipped < bytesToSkip) {
 long n = in.skip(bytesToSkip - bytesSkipped);
 if (n == -1) break;
 bytesSkipped += n;
 }
}
catch (IOException ex) {
 System.err.println(ex);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Closing Input Streams

As with output streams, input streams should be closed when you're through with them to release
any native resources such as file handles or network ports that the stream is holding onto. To close a
stream, invoke its close() method:

public void close() throws IOException

Once you have closed an input stream, you should no longer read from it. Most attempts to do so will
throw an IOException (though there are a few exceptions).

Not all streams need to be closedSystem.in generally does not need to be closed, for example.
However, streams associated with files and network connections should always be closed when you're
done with them. As with output streams, it's best to do this in a finally block to guarantee that the
stream is closed, even if an exception is thrown while the stream is open. For example:

// Initialize this to null to keep the compiler from complaining
// about uninitialized variables
InputStream in = null;
try {
 URL u = new URL("http://www.msf.org/");
 in = u.openStream();
 // Read from the stream...
}
catch (IOException ex) {
 System.err.println(ex);
}
finally {
 if (in != null) {
 try {
 in.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

If you can propagate any exceptions that are thrown, this strategy can be a little shorter and simpler.
For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Initialize this to null to keep the compiler from complaining
// about uninitialized variables
InputStream in = null;
try {
 URL u = new URL("http://www.msf.org/");
 in = u.openStream();
 // Read from the stream...
}
finally {
 if (in != null) in.close();
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Marking and Resetting

It's often useful to be able to read a few bytes and then back up and reread them. For example, in a
Java compiler, you don't know for sure whether you're reading the token <, <<, or <<= until you've
read one too many characters. It would be useful to be able to back up and reread the token once
you know which token you've read.

Some (but not all) input streams allow you to mark a particular position in the stream and then
return to it. Three methods in the java.io.InputStream class handle marking and resetting:

public void mark(int readLimit)
public void reset()
 throws IOException
public boolean markSupported()

The markSupported() method returns true if this stream supports marking and false if it doesn't. If
marking is not supported, reset() throws an IOException and mark() does nothing. Assuming the
stream does support marking, the mark() method places a bookmark at the current position in the
stream. You can rewind the stream to this position later with reset() as long as you haven't read
more than readLimit bytes. There can be only one mark in the stream at any given time. Marking a
second location erases the first mark.

The only two input stream classes in java.io that always support marking are BufferedInputStream
(of which System.in is an instance) and ByteArrayInputStream.

However, other input streams such as DataInputStream may support marking if they're chained to a
buffered input stream first.

This is a truly bizarre design. It's almost always a bad idea to put methods in a
superclass that aren't applicable to all subclasses. The proper solution to this
problem would be to define a Resettable interface that declares these three
methods and then have subclasses implement that interface or not as they
choose. You could then tell whether marking and resetting were supported with
a simple instanceof Resettable test. All I can offer by way of explanation here
is that this design was invented ten years ago in Java 1.0, when not all the
people working on Java were fully adept at object-oriented design.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7. Subclassing InputStream

Immediate subclasses of InputStream must provide an implementation of the abstract read()
method. They may also override some of the nonabstract methods. For example, the default
markSupported() method returns false, mark() does nothing, and reset() tHRows an IOException.
Any class that allows marking and resetting must override these three methods. Subclasses should
also override available() to return something other than 0. Furthermore, they may override skip(
) and the other two read() methods to provide more efficient implementations.

Example 3-2 is a simple class called RandomInputStream that "reads" random bytes of data. This
provides a useful source of unlimited data you can use in testing. A java.util.Random object provides
the data.

Example 3-2. The RandomInputStream class

package com.elharo.io;
import java.util.*;
import java.io.*;
public class RandomInputStream extends InputStream {
 private Random generator = new Random();
 private boolean closed = false;
 public int read() throws IOException {
 checkOpen();
 int result = generator.nextInt() % 256;
 if (result < 0) result = -result;
 return result;
 }
 public int read(byte[] data, int offset, int length) throws IOException {
 checkOpen();
 byte[] temp = new byte[length];
 generator.nextBytes(temp);
 System.arraycopy(temp, 0, data, offset, length);
 return length;
 }
 public int read(byte[] data) throws IOException {
 checkOpen();
 generator.nextBytes(data);
 return data.length;
 }
 public long skip(long bytesToSkip) throws IOException {
 checkOpen();
 // It's all random so skipping has no effect.
 return bytesToSkip;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public void close() {
 this.closed = true;
 }
 private void checkOpen() throws IOException {
 if (closed) throw new IOException("Input stream closed");
 }
 public int available() {
 // Limited only by available memory and the size of an array.
 return Integer.MAX_VALUE;
 }
}

The no-argument read() method returns a random int in the range of an unsigned byte (0 to 255).
The other two read() methods fill a specified part of an array with random bytes. They return the
number of bytes read (in this case the number of bytes created).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8. An Efficient Stream Copier

As a useful example of both input and output streams, in Example 3-3, I'll present a StreamCopier
class that copies data between two streams as quickly as possible. (I'll reuse this class in later
chapters.) This method reads from the input stream and writes onto the output stream until the input
stream is exhausted. A 1K buffer is used to try to make the reads efficient. A main() method
provides a simple test for this class by reading from System.in and copying to System.out.

Example 3-3. The StreamCopier class

package com.elharo.io;
import java.io.*;
public class StreamCopier {
 public static void main(String[] args) {
 try {
 copy(System.in, System.out);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
 public static void copy(InputStream in, OutputStream out)
 throws IOException {
 byte[] buffer = new byte[1024];
 while (true) {
 int bytesRead = in.read(buffer);
 if (bytesRead == -1) break;
 out.write(buffer, 0, bytesRead);
 }
 }
}

Here's a simple test run:

D:\JAVA\ioexamples\03> java com.elharo.io.StreamCopier
this is a test
this is a test
0987654321
0987654321
^Z

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Input was not fed from the console (DOS prompt) to the StreamCopier program until the end of each
line. Since I ran this on Windows, the end-of-stream character is Ctrl-Z. On Unix, it would have been
Ctrl-D.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART II: Data Sources
Chapter 4: File Streams

Chapter 5: Network Streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. File Streams
Until now, most of the examples in this book have used the streams System.in and System.out.
These are convenient for examples, but in real life, you'll more commonly attach streams to data
sources like files and network connections. The java.io.FileInputStream and
java.io.FileOutputStream classes, which are concrete subclasses of java.io.InputStream and
java.io.OutputStream, provide methods for reading and writing data in files. What they don't provide
is file management, like finding out whether a file is readable or writable or moving a file from one
directory to another. For that, you may want to flip forward to Chapter 17, which talks about the
File class itself and the way Java works with files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Reading Files

java.io.FileInputStream is a concrete subclass of java.io.InputStream. It provides an input stream
connected to a particular file. FileInputStream has all the usual methods of input streams, such as
read(), available(), skip(), and close(), which are used exactly as they are for any other input
stream. FileInputStream() has three constructors, which differ only in how the file to be read is
specified:

public FileInputStream(String fileName) throws IOException
public FileInputStream(File file) throws FileNotFoundException
public FileInputStream(FileDescriptor fdObj)

The first constructor uses a string containing the name of the file. The second constructor uses a
java.io.File object. The third constructor uses a java.io.FileDescriptor object.

To read a file, just pass the name of the file into the FileInputStream() constructor. Then use the
read() method as normal. For example, the following code fragment reads the file README.TXT,
then prints it on System.out:

try {
 FileInputStream fis = new FileInputStream("README.TXT");
 for (int n = fis.read(); n != -1; n = fis.read()) {
 System.out.write(n);
 }
}
catch (IOException ex) {
 System.err.println(ex);
}
System.out.println();

Java looks for files in the current working directory . Generally, this is the directory you were in when
you typed javaprogram_name to start running the program. You can open a file in a different
directory by passing a full or relative path to the file from the current working directory. For example,
to read the file /etc/hosts no matter which directory is current, you can do this:

FileInputStream fis = new FileInputStream("/etc/hosts");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Filenames are platform-dependent, so hardcoded filenames should be avoided wherever possible.
This example depends on a Unix-style pathname. It is not guaranteed to work on other platforms
such as Windows or Mac OS 9, though it might. Using a filename to create a FileInputStream violates
Sun's rules for "100% Pure Java." Some runtime environments such as Apple's Macintosh Runtime
for Java include extra code to translate from Unix-style filenames to the native style. However, for
maximum cross-platform awareness, you should use File objects instead. These can be created
directly from filenames as described in Chapter 17, supplied by the user through a GUI such as a
Swing JFileChooser, or returned by various methods scattered throughout the API and class libraries.
Much of the time, code that uses a File object adapts more easily to unexpected filesystem
conventions. One particularly important trick is to create multisegment paths by successively
appending new File objects for each directory like so:

File root = new File("/");
File dir = new File(root, "etc");
File child = new File(dir, "hosts");
FileInputStream fis = new FileInputStream(child);

However, this still assumes that the root of the filesystem is named "/", which isn't likely to be a true
on a non-Unix system. It's better to use the File.listRoots() method:

File[] roots = File.listRoots()
File dir = new File(roots[0], "etc");
File child = new File(dir, "hosts");
FileInputStream fis = new FileInputStream(child);

However, although this code is more platform independent, it still assumes a particular file layout
structure. This can vary not just from platform to platform, but from one PC to the next, even those
running the same operating system. For more robustness, you'll want to get at least a directory, if
not a complete file, by invoking a method that adapts to the local system. Possibilities include:

Ask the user to choose a file with a Swing JFileChooser.

Ask the user to choose a file with an AWT FileDialog.

Ask a third-party library such as MRJ Adapter's SpecialFolder for a known location such as the
preferences folder or the desktop folder.

Create a temporary file with the File.createTempFile() method.

Find the user's home directory with System.getProperty("user.home").

Find the current working directory with System.getProperty("user.dir").

This list is not exhaustive; there are other approaches. Which one is appropriate depends on the use
case. Details of these approaches are addressed in future chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the file you're trying to read does not exist when the FileInputStream object is constructed, the
constructor throws a FileNotFoundException (a subclass of java.io.IOException). If for some other
reason a file cannot be readfor example, the current process does not have read permission for the
filesome other kind of IOException is thrown.

Example 4-1reads a filename from the command line, then copies the named file to System.out. The
StreamCopier.copy() method from Example 3-3 in the previous chapter does the actual reading and
writing. Notice that that method does not care whether the input is coming from a file or going to the
console. It works regardless of the type of the input and output streams it's copying. It will work
equally well for other streams still to be introduced, including ones that did not even exist when
StreamCopier was created.

Example 4-1. The FileDumper program

import java.io.*;
import com.elharo.io.*;
public class FileTyper {
 public static void main(String[] args) throws IOException {
 if (args.length != 1) {
 System.err.println("Usage: java FileTyper filename");
 return;
 }
 typeFile(args[0]);
 }
 public static void typeFile(String filename) throws IOException {
 FileInputStream fin = new FileInputStream(filename);
 try {
 StreamCopier.copy(fin, System.out);
 }
 finally {
 fin.close();
 }
 }
}

Untrusted code is not usually allowed to read or write files. If an applet tries to create a
FileInputStream, the constructor will throw a SecurityException.

The FileInputStream class has one method that's not declared in the InputStream superclass: getFD(
).

public final FileDescriptor getFD() throws IOException

This method returns the java.io.FileDescriptor object associated with this stream. FileDescriptor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objects are discussed inChapter 17. For now, all you can do with this object is use it to create
another file stream.

It is possible to open multiple input streams to the same file at the same time, though it's rarely
necessary to do so. Each stream maintains a separate pointer that points to the current position in
the file. Reading from the file does not change the file in any way. Writing to the file is a different
story, as you'll see in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Writing Files

The java.io.FileOutputStream class is a concrete subclass of java.io.OutputStream that provides
output streams connected to files. This class has all the usual methods of output streams, such as
write(), flush(), and close(), which are used exactly as they are for any other output stream.

FileOutputStream() has three main constructors, differing primarily in how the file is specified:

public FileOutputStream(String filename) throws IOException
public FileOutputStream(File file) throws IOException
public FileOutputStream(FileDescriptor fd)

The first constructor uses a string containing the name of the file; the second constructor uses a
java.io.File object; the third constructor uses a java.io.FileDescriptor object. To write data to a
file, just pass the name of the file to the FileOutputStream() constructor, then use the write()
methods as usual. If the file does not exist, all three constructors will create it. If the file does exist,
any data inside it will be overwritten.

A fourth constructor also lets you specify whether the file's contents should be erased before data is
written into it (append == false) or whether data is to be tacked onto the end of the file (append ==
true):

public FileOutputStream(String name, boolean append) throws IOException

Output streams created by the other three constructors simply overwrite the file; they do not provide
an option to append data to the file.

Java looks for files in the current working directory. You can write to a file in a different directory by
passing a full or relative path to the file from the current working directory. For example, to append
data to the \Windows\java\javalog.txt file no matter which directory is current, you would do this:

FileOutputStream fout =
new FileOutputStream("/Windows/java/javalog.txt", true);

Although Windows uses a backslash as the directory separator, Java still expects you to use a
forward slash as in Unix. Hardcoded pathnames are dangerously platform-dependent. Using this
constructor automatically classifies your program as impure Java. As with input streams, a slightly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

less dangerous alternative builds a File object a piece at a time like so:

File[] roots = File.listRoots()
File windows = new File(roots[0], "Windows");
File java = new File(windows, "java");
File javalog = new File(java, "javalog.txt");
FileInputStream fis = new FileInputStream(javalog);

Untrusted code is normally not allowed to write files either. If an applet tries to create a
FileOutputStream, the constructor throws a SecurityException.

The FileOutputStream class has one method that's not declared in java.io.OutputStream: getFD().

public final FileDescriptor getFD() throws IOException

This method returns the java.io.FileDescriptor object associated with this stream.

Example 4-2 reads two filenames from the command line, then copies the first file into the second
file. The StreamCopier class from Example 3-3 in the previous chapter does the actual reading and
writing.

Example 4-2. The FileDumper program

import java.io.*;
import com.elharo.io.*;
public class FileCopier {
 public static void main(String[] args) {
 if (args.length != 2) {
 System.err.println("Usage: java FileCopier infile outfile");
 }
 try {
 copy(args[0], args[1]);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
 public static void copy(String inFile, String outFile)
 throws IOException {

 FileInputStream fin = null;
 FileOutputStream fout = null;
 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fin = new FileInputStream(inFile);
 fout = new FileOutputStream(outFile);
 StreamCopier.copy(fin, fout);
 }
 finally {
 try {
 if (fin != null) fin.close();
 }
 catch (IOException ex) {
 }
 try {
 if (fout != null) fout.close();
 }
 catch (IOException ex) { }
 }
 }
}

Since we're no longer writing to System.out and reading from System.in, it's important to make sure
the streams are closed when we're done. This is a good use for a finally clause, as we need to make
sure the files are closed whether the reads and writes succeed or not.

Java is better about closing files than most languages. As long as the VM doesn't terminate
abnormally, the files will be closed when the program exits. Still, if this class is used inside a long-
running program like a web server, waiting until the program exits isn't a good idea; other threads
and processes may need access to the files.

Example 4-2 has one bug: the program does not behave well if the input and output files are the
same. While it would be straightforward to compare the two filenames before copying, this is not safe
enough. Once aliases, shortcuts, symbolic links, and other factors are taken into account, a single file
may have multiple names. The full solution to this problem will have to wait until Chapter 17, where I
discuss canonical paths and temporary files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. File Viewer, Part 1

I often find it useful to be able to open an arbitrary file and interpret it in an arbitrary fashion. Most
commonly, I want to view a file as text, but occasionally it's useful to interpret it as hexadecimal
integers, IEEE 754 floating-point data, or something else. In this book, I'm going to develop a
program that lets you open any file and view its contents in a variety of different ways. In each
chapter, I'll add a piece to the program until it's fully functional. Since this is only the beginning of the
program, it's important to keep the code as general and adaptable as possible.

Example 4-3 reads a series of filenames from the command line in the main() method. Each
filename is passed to a method that opens the file. The file's data is read and printed on System.out.
Exactly how the data is printed on System.out is determined by a command-line switch. If the user
selects text format (-a), the data will be assumed to be Latin-1 text and will be printed as chars. If
the user selects decimal dump (-d), then each byte should be printed as unsigned decimal numbers
between 0 and 255, 16 to a line. For example:

000 234 127 034 234 234 000 000 000 002 004 070 000 234 127 098

Leading zeros maintain a constant width for the printed byte values and for each line. For hex dump
format (-h), each byte should be printed as two hexadecimal digits. For example:

CA FE BA BE 07 89 9A 65 45 65 43 6F F6 7F 8F EE E5 67 63 26 98 9E 9C

Hexadecimal encoding is easier, because each byte is always exactly two hex digits. The static
Integer.toHexString() method converts each byte read into two hexadecimal digits.

Text format is the default and is the simplest to implement. This conversion can be accomplished
merely by copying the input data to the console.

Example 4-3. The FileDumper program

import java.io.*;
import com.elharo.io.*;
public class FileDumper {
 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println("Usage: java FileDumper [-ahd] file1 file2...");
 return;
 }
 int firstArg = 0;
 int mode = ASC;
 if (args[0].startsWith("-")) {
 firstArg = 1;
 if (args[0].equals("-h")) mode = HEX;
 else if (args[0].equals("-d")) mode = DEC;
 }
 for (int i = firstArg; i < args.length; i++) {
 try {
 if (mode == ASC) dumpAscii(args[i]);
 else if (mode == HEX) dumpHex(args[i]);
 else if (mode == DEC) dumpDecimal(args[i]);
 }
 catch (IOException ex) {
 System.err.println("Error reading from " + args[i] + ": "
 + ex.getMessage());
 }
 if (i < args.length-1) { // more files to dump
 System.out.println("\r\n--------------------------------------\r\n");
 }
 }
 }
 public static void dumpAscii(String filename) throws IOException {
 FileInputStream fin = null;
 try {
 fin = new FileInputStream(filename);
 StreamCopier.copy(fin, System.out);
 }
 finally {
 if (fin != null) fin.close();
 }
 }
 public static void dumpDecimal(String filename) throws IOException {
 FileInputStream fin = null;
 byte[] buffer = new byte[16];
 boolean end = false;
 try {
 fin = new FileInputStream(filename);
 while (!end) {
 int bytesRead = 0;
 while (bytesRead < buffer.length) {
 int r = fin.read(buffer, bytesRead, buffer.length - bytesRead);
 if (r == -1) {
 end = true;
 break;
 }
 bytesRead += r;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 for (int i = 0; i < bytesRead; i++) {
 int dec = buffer[i];
 if (dec < 0) dec = 256 + dec;
 if (dec < 10) System.out.print("00" + dec + " ");
 else if (dec < 100) System.out.print("0" + dec + " ");
 else System.out.print(dec + " ");
 }
 System.out.println();
 }
 }
 finally {
 if (fin != null) fin.close();
 }
 }
 public static void dumpHex(String filename) throws IOException {
 FileInputStream fin = null;
 byte[] buffer = new byte[24];
 boolean end = false;
 try {
 fin = new FileInputStream(filename);
 while (!end) {
 int bytesRead = 0;
 while (bytesRead < buffer.length) {
 int r = fin.read(buffer, bytesRead, buffer.length - bytesRead);
 if (r == -1) {
 end = true;
 break;
 }
 bytesRead += r;
 }
 for (int i = 0; i < bytesRead; i++) {
 int hex = buffer[i];
 if (hex < 0) hex = 256 + hex;
 if (hex >= 16) System.out.print(Integer.toHexString(hex) + " ");
 else System.out.print("0" + Integer.toHexString(hex) + " ");
 }
 System.out.println();
 }
 }
 finally {
 if (fin != null) fin.close();
 }
 }
}

When FileDumper is used to dump its own .class file in hexadecimal format, it produces the following
output:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D:\JAVA\ioexamples\04> java FileDumper -h FileDumper.class
ca fe ba be 00 00 00 2e 00 78 0a 00 22 00 37 09 00 38 00 39 08 00 3a 0a
00 3b 00 3c 08 00 3d 0a 00 3e 00 3f 08 00 40 0a 00 3e 00 41 08 00 42 0a
00 21 00 43 0a 00 21 00 44 0a 00 21 00 45 09 00 38 00 46 08 00 47 07 00
48 0a 00 0f 00 49 0a 00 4a 00 4b 07 00 4c 0a 00 3b 00 4d 0a 00 0f 00 4e
...

In later chapters, I'll add a graphical user interface and many more possible interpretations of the
data in the file, including floating-point, big- and little-endian integer, and various text encodings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Network Streams
From its first days, Java, more than any other common programming language, has had the network
in mind. Java is the first programming language to provide as much support for network I/O as it
does for file I/O, perhaps even more (Java's URL, URLConnection, Socket, and ServerSocket classes
are all fertile sources of streams). The exact type of the stream used by a network connection is
typically hidden inside the undocumented sun classes. Thus, network I/O relies primarily on the basic
InputStream and OutputStream methods, which you can wrap with any higher-level stream that suits
your needs: buffering, cryptography, compression, or whatever your application requires.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. URLs

The java.net.URL class represents a Uniform Resource Locator such as
http://www.cafeaulait.org/books/javaio2/. Each URL unambiguously identifies the location of a
resource on the Internet. The URL class has six constructors. All are declared to throw
MalformedURLException, a subclass of IOException.

public URL(String url) throws MalformedURLException
public URL(String protocol, String host, String file)
 throws MalformedURLException
public URL(String protocol, String host, int port, String file)
 throws MalformedURLException
public URL(String protocol, String host, int port, String file,
 URLStreamHandler handler) throws MalformedURLException
public URL(URL context, String url) throws MalformedURLException
public URL(URL context, String url, URLStreamHandler handler)
 throws MalformedURLException

Each constructor throws a MalformedURLException if its arguments do not specify a valid URL. Often,
this means a particular Java implementation does not have the right protocol handler installed. Thus,
given a complete absolute URL such as http://www.poly.edu/schedule/fall2006/bgrad.html#cs, you
construct a URL object like so:

URL u = null;
try {
 u = new URL("http://www.poly.edu/schedule/fall2006/bgrad.html#cs");
}
catch (MalformedURLException ex) {
 // this shouldn't happen for a syntactically correct http URL
}

You can also construct the URL object by passing its pieces to the constructor:

URL u = new URL("http", "www.poly.edu", "/schedule/ fall2006/bgrad.html#cs");

You don't normally need to specify a port for a URL. Most protocols have default ports. For instance,
the HTTP port is 80. Sometimes the port used does change, and in that case you can use this

http://www.cafeaulait.org/books/javaio2/
http://www.poly.edu/schedule/fall2006/bgrad.html#cs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

constructor:

URL u = new URL("http", "www.poly.edu", 80, "/schedule/ fall2006/bgrad.html#cs ");

Finally, many HTML files contain relative URLs. The last two constructors create URLs relative to a
given URL and are particularly useful when parsing HTML. For example, the following code creates a
URL pointing to the file 08.html, taking the rest of the URL from u1:

URL u1 = new URL("http://www.cafeaualit.org/course/week12/07.html");
URL u2 = new URL(u1, "08.html");

Once a URL object has been constructed, you can retrieve its data in two ways. The openStream()
method returns a raw stream of bytes from the source. The getContent() method returns a Java
object that represents the data. When you call getContent(), Java looks for a content handler that
matches the MIME type of the data. It is the openStream() method that is of concern in this book.

The openStream() method makes a socket connection to the server and port specified in the URL. It
returns an input stream from which you can read the data at that URL. Any headers that come before
the actual data or file requested are stripped off before the stream is opened. You only get the raw
data.

public InputStream openStream() throws IOException

Example 5-1 shows you how to connect to a URL entered on the command line, download its data,
and copy that to System.out.

Example 5-1. The URLTyper program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.net.*;
import java.io.*;
public class URLTyper {
 public static void main(String[] args) throws IOException {
 if (args.length != 1) {
 System.err.println("Usage: java URLTyper url");
 return;
 }
 InputStream in = null;
 try {
 URL u = new URL(args[0]);
 in = u.openStream();
 for (int c = in.read(); c != -1; c = in.read()) {
 System.out.write(c);
 }
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a URL Java understands.");
 }
 finally {
 if (in != null) in.close();
 }
 }
}

For example, here are the first few lines you see when you connect to http://www.oreilly.com/:

$ java URLTyper http://www.oreilly.com/
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>
<title>oreilly.com -- Welcome to O'Reilly Media, Inc. -- computer books, softwar
e conferences, online publishing</title>
<meta name="keywords" content="O'Reilly, oreilly, computer books,
technical books, UNIX, unix, Perl, Java, Linux, Internet, Web, C, C++, Windows,
Windows NT, Security, Sys Admin, System Administration, Oracle, PL/SQL, online b
ooks, books online, computer book online, e-books, ebooks, Perl Conference, Open
 Source Conference, Java Conference, open source, free software, XML, Mac OS X,
.Net, dot net, C#, PHP, CGI, VB, VB Script, Java Script, javascript, Windows 200
0, XP, bioinformatics, web services, p2p" />
...

Most network connections, even on LANs, are slower and less reliable sources of data than files.
Connections across the Internet are even slower and less reliable, and connections through a modem
are slower and less reliable still. One way to enhance performance under these conditions is to buffer

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the data: to read as much data as you can into a temporary storage array inside the class, then
parcel it out as needed. In the next chapter, you'll learn about the BufferedInputStream class that
does exactly this.

Untrusted code running under the control of a security managere.g., applets that run inside a web
browserare normally allowed to connect only to the host they were downloaded from. This host can
be determined from the URL returned by the getCodeBase() method of the Applet class. Attempts to
connect to other hosts throw security exceptions. You can create URLs that point to other hosts, but
you may not download data from them using openStream() or any other method. (This security
restriction for applets applies to any network connection, regardless of how you get it.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. URL Connections

URL connections are closely related to URLs, as their name implies. Indeed, you get a reference to a
URLConnection by using the openConnection() method of a URL object; in many ways, the URL class
is only a wrapper around the URLConnection class. URL connections provide more control over the
communication between the client and the server. In particular, URL connections provide not just
input streams by which the client can read data from the server, but also output streams to send
data from the client to the server.

The java.net.URLConnection class is an abstract class that handles communication with different
kinds of servers, such as FTP servers and web servers. Protocol-specific subclasses of URLConnection,
which are hidden inside the sun packages, handle different kinds of servers.

5.2.1. Reading Data from URL Connections

URL connections take place in five steps:

The URL object is constructed.1.

The openConnection() method of the URL object creates the URLConnection object.2.

The parameters for the connection and the request properties that the client sends to
the server are set up.

3.

The connect() method makes the connection to the server, perhaps using a socket

for a network connection or a file input stream for a local connection. The response
header information is read from the server.

4.

Data is read from the connection using the input stream returned by getInputStream()
or a content handler returned by getContent(). Data can be sent to the server using
the output stream provided by getOutputStream().

5.

This scheme is very much based on the HTTP protocol. It does not fit other schemes that have a
more interactive "request, response, request, response, request, response" pattern instead of
HTTP/1.0's "single request, single response, close connection" pattern. In particular, FTP doesn't
really fit this pattern.

URLConnection objects are not constructed directly in your own programs. Instead, you create a URL
for the particular resource and call that URL's openConnection() method. This gives you a
URLConnection. Then the getInputStream() method returns an input stream that reads data from
the URL. (The openStream() method of the URL class is just a thin veneer over the getInputStream(
) method of the URLConnection class.) If the connection cannot be opened, for example because the
remote host is unreachable, connect() throws an IOException. For example, this code repeats the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

main body of Example 5-1 using a URLConnection to open the stream:

 URL u = new URL(args[0]);
 URLConnection connection = u.openConnection();
 in = connection.getInputStream();
 for (int c = in.read(); c != -1; c = in.read()) {
 System.out.write(c);
 }

5.2.2. Writing Data on URL Connections

Writing data to a URLConnection is similar to reading data. However, you must first inform the
URLConnection that you plan to use it for output. Then, instead of getting the connection's input
stream and reading from it, you get the connection's output stream and write to it. This is commonly
used for HTTP POST and PUT. Here are the steps for writing data on a URLConnection:

Construct the URL object.1.

Call the openConnection() method of the URL object to create the URLConnection object.2.

Pass true to setDoOutput() to indicate that this URLConnection will be used for output.3.

If you also want to read input from the stream, invoke setDoInput(true) to indicate
that this URLConnection will be used for input.

4.

Create the data you want to send, preferably as a byte array.5.

Call getOutputStream() to get an output stream object. Write the byte array calculated

in step 5 onto the stream.

6.

Close the output stream.7.

Call getInputStream() to get an input stream object. Read and write it as usual.8.

Example 5-2 uses these steps to implement a simple mail client. It forms a mailto URL from an email
address entered on the command line. Input for the message is copied from System.in onto the
output stream of the URLConnection using a StreamCopier. The end-of-stream character signals the
end of the message.

Example 5-2. The MailClient class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.net.*;
import java.io.*;
public class MailClient {
 public static void main(String[] args) {
 if (args.length == 0) {
 System.err.println("Usage: java MailClient username@host.com");
 return;
 }
 try {
 URL u = new URL("mailto:" + args[0]);
 URLConnection uc = u.openConnection();
 uc.setDoOutput(true);
 uc.connect();
 OutputStream out = uc.getOutputStream();
 for (int c = System.in.read(); c != -1; c = System.in.read()) {
 out.write(c);
 }
 out.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

For example, to send email to the author of this book:

$ java MailClient elharo@metalab.unc.edu
hi there!
^D

MailClient suffers from a few restrictions. The proper way to detect the end of the message is to
look for a period on a line by itself. Proper or not, that style of user interface is really antiquated, so I
didn't bother to implement it. To do so properly, you'll need to use a Reader or a Writer; they're
discussed in Chapter 20. Furthermore, it works only in Java environments that support the mailto
protocol; thus, it works under Sun's JDK but may not work in other VMs. It also requires that the
local host be running an SMTP server, or that the system property mail.host must contain the name
of an accessible SMTP server, or that a machine in the local domain named mailhost be running an
SMTP server. Finally, the security manager must permit network connections to that server, although
this is not normally a problem in an application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Sockets

Before data is sent across the Internet from one host to another, it is split into packets of varying but
finite size called datagrams . Datagrams range in size from a few dozen bytes to about 60,000 bytes.
Anything larger, and often things smaller, must be split into smaller packets before it's transmitted.
The advantage of this scheme is that if one packet is lost, it can be retransmitted without requiring
redelivery of all other packets. Furthermore, if packets arrive out of order, they can be reordered at
the receiving end of the connection.

Fortunately, packets are invisible to the Java programmer. The host's native networking software
splits data into packets on the sending end and reassembles packets on the receiving end. Instead,
the Java programmer is presented with a higher-level abstraction called a socket. The socket
provides a reliable connection for the transmission of data between two hosts. It isolates you from
the details of packet encodings, lost and retransmitted packets, and packets that arrive out of order.
A socket performs four fundamental operations:

Connects to a remote machine

Sends data

Receives data

Closes the connection

A socket may not connect to more than one remote host. However, a socket may both send data to
and receive data from the remote host it's connected to.

The java.net.Socket class is Java's interface to a network socket and allows you to perform all four
fundamental socket operations. It provides raw, uninterpreted communication between two hosts.
You can connect to remote machines; you can send data; you can receive data; you can close the
connection. No part of the protocol is abstracted out, as is the case with URL and URLConnection. The
programmer is completely responsible for the interaction between the client and the server.

To open a connection, call one of the Socket constructors, specifying the host to which you want to
connect. Each Socket object is associated with exactly one remote host. To connect to a different
host, you must create a new Socket object:

public Socket(String host, int port

 throws UnknownHostException, IOException
public Socket(InetAddress address, int port) throws IOException
public Socket(String host, int port, InetAddress localAddress,
 int localPort)

 throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public Socket(InetAddress address, int port, InetAddress localAddress,
 int localPort) throws IOException

The host argument is a string like "www.oreilly.com" or "duke.poly.edu" that specifies the particular
host to connect to. It may even be a numeric, dotted quad string such as "199.1.32.90". This
argument may also be passed as a java.net.InetAddress object.

The port argument is the port on the remote host to connect to. A computer's network interface is
logically subdivided into 65,536 different ports. As data traverses the Internet in packets, each
packet carries both the address of the host it's going to and a port number on that host. A host reads
the port number from each packet it receives to decide which program should receive that chunk of
data. Many services run on well-known ports. For example, HTTP servers generally listen on port 80.

The optional localAddress and localPort arguments specify which address and port on the local host
the socket connects from, assuming more than one is available. Most hosts have many available
ports but only one address. These two arguments are optional. If they're left out, the constructor will
choose reasonable values.

Data is sent across the socket via streams. These are the methods to get both streams for the
socket:

public InputStream getInputStream() throws IOException
public OutputStream getOutputStream() throws IOException

There's also a method to close the socket:

public void close() throws IOException

This closes the socket's input and output streams as well. Any attempt to read from or write to them
after the socket is closed throws an IOException.

Example 5-3 is yet another program that connects to a web server and downloads a specified URL.
However, since this one uses raw sockets, it needs to both send the HTTP request and read the
headers in the response. These are not parsed away as they are by the URL and URLConnection
classes; you use an output stream to send the request explicitly and an input stream to read the
dataincluding HTTP headersback. Only HTTP URLs are supported.

Example 5-3. The SocketTyper program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.net.*;
import java.io.*;
public class SocketTyper {
 public static void main(String[] args) throws IOException {
 if (args.length != 1) {
 System.err.println("Usage: java SocketTyper url1");
 return;
 }
 URL u = new URL(args[0]);
 if (!u.getProtocol().equalsIgnoreCase("http")) {
 System.err.println("Sorry, " + u.getProtocol()
 + " is not supported");
 return;
 }
 String host = u.getHost();
 int port = u.getPort();
 String file = u.getFile();
 if (file == null) file = "/";
 // default port
 if (port <= 0) port = 80;
 Socket s = null;
 try {
 s = new Socket(host, port);
 String request = "GET " + file + " HTTP/1.1\r\n"
 + "User-Agent: SocketTyper\r\n"
 + "Accept: text/*\r\n"
 + "Host: " + host + "\r\n"
 + "\r\n";
 byte[] b = request.getBytes("US-ASCII");
 OutputStream out = s.getOutputStream();
 InputStream in = s.getInputStream();
 out.write(b);
 out.flush();
 for (int c = in.read(); c != -1; c = in.read()) {
 System.out.write(c);
 }
 }
 finally {
 if (s != null && s.isConnected()) s.close();
 }
 }
}

For example, when SocketTyper connects to http://www.oreilly.com/, here is what you see:

$ java SocketTyper http://www.oreilly.com/
HTTP/1.1 200 OK

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Date: Mon, 23 May 2005 14:03:17 GMT
Server: Apache/1.3.33 (Unix) PHP/4.3.10 mod_perl/1.29
P3P: policyref="http://www.oreillynet.com/w3c/p3p.xml",CP="CAO DSP COR CURa ADMa
 DEVa TAIa PSAa PSDa IVAa IVDa CONo OUR DELa PUBi OTRa IND PHY ONL UNI PUR COM N
AV INT DEM CNT STA PRE"
Last-Modified: Mon, 23 May 2005 08:20:30 GMT
ETag: "20653-db8c-4291924e"
Accept-Ranges: bytes
Content-Length: 56204
Content-Type: text/html
X-Cache: MISS from www.oreilly.com
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>
...

Notice the header lines here, which you didn't see in Example 5-1. When you use the URL class to
download a web page, the associated protocol handler consumes the HTTP header before you get a
stream.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Server Sockets

Each connection has two ends: the client, which initiates the connection, and the server, which
responds to the connection. So far, I've only discussed the client side and assumed that a server
existed out there for the client to talk to. To implement a server, you need to write a program that
waits for other hosts to connect to it. A server socket binds to a particular port on the local machine
(the server). Then it listens for incoming connection attempts from remote machines (the clients).
When the server detects a connection attempt, it accepts the connection. This creates a socket
between the two machines over which the client and the server communicate.

Multiple clients can connect to a server simultaneously. Incoming data is distinguished by the port to
which it is addressed and the client host and port from which it came. The server can tell which
service (such as HTTP or FTP) the data is intended for by checking the port at which it arrives. It
knows where to send any response by looking at the client address and port stored with the data.

No more than one server socket can listen to a particular port at one time. Therefore, since a server
may need to handle many connections at once, server programs tend to be multithreaded.
(Alternately, they can use nonblocking I/O. We'll explore this starting in Chapter 16.) Generally, the
server socket listening on the port only accepts the connections. It passes off the actual processing of
each connection to a separate thread. Incoming connections are stored in a queue until the server
can accept them. On most systems, the default queue length is between 5 and 50. Once the queue
fills up, further incoming connections are refused until space in the queue opens up.

The java.net.ServerSocket class represents a server socket. The constructors receive the port to
bind to, the queue length for incoming connections, and the IP address:

public ServerSocket(int port) throws IOException
public ServerSocket(int port, int backlog) throws IOException
public ServerSocket(int port, int backlog, InetAddress bindAddr)
 throws IOException

Normally, you only specify the port you want to listen on:

ServerSocket ss = new ServerSocket(80);

When you create a ServerSocket object, it attempts to bind to the port given by the port argument.
If another server socket is already listening to the port, the constructor throws an IOExceptionmore
specifically, a java.net.BindException. Only one server socket can listen to a particular port at a
time. This includes server sockets opened by non-Java programs. For example, if there's already an
HTTP server running on port 80, you won't be able to bind to port 80.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On Unix systems, including Mac OS X but not Windows, the program must be
running as root to bind to a port between 1 and 1023. Otherwise, accept()
tHRows a BindException.

0 is a special port number. It tells Java to pick an available port. You can then find out which port it
has picked with the getLocalPort() method:

public int getLocalPort()

This is useful if the client and the server have already established a separate channel of
communication over which the chosen port number can be communicated. For example, the FTP
protocol uses two sockets. The client makes the initial connection to the server on a socket it will use
to send commands. The client also opens a server socket on a random port on the local host. One of
the commands it sends tells the server the port number on which the client is listening. The server
then opens a socket to the client's server port, which it uses to send files. Because commands and
data are sent over two different sockets, a long file doesn't tie up the command channel.

Once you have a ServerSocket, you wait for incoming connections by calling the accept() method.
This method blocks until a connection attempt occurs and then returns a Socket that you can use to
communicate with the client.

public Socket accept() throws IOException

The close() method terminates the ServerSocket:

public void close() throws IOException

That's pretty much all there is to the ServerSocket, except for a few methods dealing with socket
options and some other details. In particular, there aren't methods for getting input and output
streams. Instead, accept() returns a client Socket object: this Socket's getInputStream() or
getOutputStream() methods return the streams used to communicate. For example:

ServerSocket ss = new ServerSocket(2345);
Socket s = ss.accept();
OutputStream out = s.getOutputStream();
// send data to the client...
s.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice in this example, I closed the Socket s, not the ServerSocket ss. ss is still bound to port 2345.
You get a new socket for each connection and reuse the server socket. For example, the next code
fragment repeatedly accepts connections:

ServerSocket ss = new ServerSocket(2345);
while (true) {
 Socket s = ss.accept();
 OutputStream out = s.getOutputStream();
 // send data to the client...
 s.close();
}

The program in Example 5-4 listens for incoming connections on port 2345. When it detects one, it
answers with the client's address and port and its own. Then it closes the connection.

Example 5-4. The HelloServer program

import java.net.*;
import java.io.*;
public class HelloServer {

 public static void main(String[] args) throws IOException {
 int port = 2345;
 ServerSocket ss = new ServerSocket(port);
 while (true) {
 try {
 Socket s = ss.accept();
 String response = "Hello " + s.getInetAddress() + " on port "
 + s.getPort() + "\r\n";
 response += "This is " + s.getLocalAddress() + " on port "
 + s.getLocalPort() + "\r\n";
 OutputStream out = s.getOutputStream();
 out.write(response.getBytes("US-ASCII"));
 out.flush();
 s.close();
 }
 catch (IOException ex) {
 // This is an error on one connection. Maybe the client crashed.
 // Maybe it broke the connection prematurely. Whatever happened,
 // it's not worth shutting down the server for.
 }
 } // end while
 } // end main
} // end HelloServer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's some output from this server. The server is running on utopia.poly.edu. The client is
connecting from titan.oit.unc.edu. Note how the port from which the connection comes changes each
time; like most client programs, the telnet program picks an arbitrary local port for outgoing
connections:

$ telnet utopia.poly.edu
Trying 128.238.3.21...
Connected to utopia.poly.edu.
Escape character is '^]'.
Hello titan.oit.unc.edu/152.2.22.14 on port 50361
This is utopia.poly.edu/128.238.3.21 on port 2345
Connection closed by foreign host.
% telnet utopia.poly.edu
Trying 128.238.3.21...
Connected to utopia.poly.edu.
Escape character is '^]'.
Hello titan.oit.unc.edu/152.2.22.14 on port 50362
This is utopia.poly.edu/128.238.3.21 on port 2345
Connection closed by foreign host.

If you aren't able to make a connection to this server, check your firewall rules.
For security, most modern networks install firewalls in either the router, the
local host, or both that prevent all connections to unrecognized services and
ports. You may need to configure your firewall(s) to allow connections to port
2345 to run this program.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. URLViewer

Example 5-5 is the URLViewer program foreshadowed in Chapter 2. URLViewer is a simple application
that provides a window in which you can view the contents of a URL. It assumes that those contents
are more or less ASCII text. (In future chapters, I'll remove that restriction.) The application has a
text field in which the user can type a URL, a Load button that the user presses to load the specified
URL, and a JStreamedTextArea component from Chapter 2 that displays the text from the URL. Each
of these corresponds to a field in the URLViewer class.

Example 5-5. The URLViewer program

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import java.net.*;
import com.elharo.io.ui.*;
public class URLViewer extends JFrame
 implements ActionListener {
 private JTextField theURL = new JTextField();
 private JButton loadButton = new JButton("Load");
 private JStreamedTextArea theDisplay = new JStreamedTextArea(60, 72);
 public URLViewer() {
 super("URL Viewer");
 this.getContentPane().add(BorderLayout.NORTH, theURL);
 JScrollPane pane = new JScrollPane(theDisplay);
 this.getContentPane().add(BorderLayout.CENTER, pane);
 Panel south = new Panel();
 south.add(loadButton);
 this.getContentPane().add(BorderLayout.SOUTH, south);
 theURL.addActionListener(this);
 loadButton.addActionListener(this);
 this.setLocation(50, 50);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.pack();
 }
 public void actionPerformed(ActionEvent event) {
 try {
 URL u = new URL(theURL.getText());
 InputStream in = u.openStream();
 OutputStream out = theDisplay.getOutputStream();
 theDisplay.setText("");
 for (int c = in.read(); c != -1; c = in.read()) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.write(c);
 }
 in.close();
 }
 catch (IOException ex) {
 theDisplay.setText("Invalid URL: " + ex.getMessage());
 }
 }
 public static void main(String args[]) {
 final URLViewer me = new URLViewer();
 // To avoid deadlock don't show frames on the main thread
 SwingUtilities.invokeLater(
 new Runnable() {
 public void run() {
 me.show();
 }
 }
);
 }
}

The URLViewer class itself extends JFrame. The constructor builds the interface, which consists of a
JTextField to type the URL into, a JStreamedTextArea component from Chapter 2 that is placed inside
a JScrollPane, and a Load button that can be pressed to download the content of the URL.

The streamed text area is filled when the user clicks the Load button or presses Enter inside the URL
text field. The URLViewer object listens to both of these components. The URLViewer's
actionPerformed() method constructs a URL from the text in the text field, then opens an input
stream from the URL in the text field. Data from the URL's input stream pours into the text area's
output stream. When that's finished, the input stream is closed. The output stream, however, is left
open so the user can view new URLs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART III: Filter Streams
Chapter 6: Filter Streams

Chapter 7: Print Streams

Chapter 8: Data Streams

Chapter 9: Streams in Memory

Chapter 10: Compressing Streams

Chapter 11: JAR Archives

Chapter 12: Cryptographic Streams

Chapter 13: Object Serialization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Filter Streams
Filter input streams read data from a preexisting input stream such as a FileInputStream and have
an opportunity to work with or change the data before it is delivered to the client program. Filter
output streams write data to a preexisting output stream such as a FileOutputStream and have an
opportunity to work with or change the data before it is written onto the underlying stream. Multiple
filters can be chained onto a single underlying stream. Filter streams are used for encryption,
compression, translation, buffering, and much more.

The word filter is derived by analogy with a water filter. A water filter sits between the pipe and
faucet, filtering out impurities. A stream filter sits between the source of the data and its eventual
destination and applies a specific algorithm to the data. As drops of water are passed through the
water filter and modified, so too are bytes of data passed through the stream filter. Of course, there
are some big differencesmost notably, a stream filter, in addition to removing things you don't want,
can add data or some other kind of annotation to the stream; it may even produce a stream that is
completely different than its original input (for example, by compressing the original data).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. The Filter Stream Classes

java.io.FilterInputStream and java.io.FilterOutputStream are concrete superclasses for input
and output stream subclasses that somehow modify or manipulate data of an underlying stream:

public class FilterInputStream extends InputStream
public class FilterOutputStream extends OutputStream

Each of these classes has a single protected constructor that specifies the underlying stream from
which the filter stream reads or writes data:

protected FilterInputStream(InputStream in)
protected FilterOutputStream(OutputStream out)

These constructors set protected InputStream and OutputStream fields, called in and out, inside the
FilterInputStream and FilterOutputStream classes, respectively:

protected InputStream in
protected OutputStream out

Since the constructors are protected, only subclasses can create filter streams. Each subclass
implements a particular filtering operation. Most of the time, references to a filter stream are either
references to a more specific subclass such as BufferedInputStream or they're polymorphic
references to InputStream or OutputStream with no hint of the filter remaining. In other words, it's
rare to declare a variable with the explicit type FilterInputStream or FilterOutputStream.

Beyond the constructors, both FilterInputStream and FilterOutputStream declare exactly the
methods of their respective superclasses. For FilterInputStream, these are:

public int read() throws IOException
public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void close() throws IOException
public void mark(int readlimit)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void reset() throws IOException
public boolean markSupported()

For FilterOutputStream, these are:

public void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length) throws IOException
public void flush() throws IOException
public void close() throws IOException

Each of these methods merely passes its arguments to the corresponding method in the underlying
stream. For example, the skip() method in FilterInputStream behaves like this:

public long skip(long n) throws IOException {
 in.skip(n);
}

The close() method in FilterOutputStream behaves like this:

public void close() throws IOException {
 out.close();
}

Thus, closing a filter stream closes the underlying stream. You cannot close one filter stream and
then open up another on the same underlying stream, nor can you close one filter stream in a chain
but still read from the underlying stream or other streams in the chain. Attempting to do so throws
an IOException. Once a stream is closedno matter which filter stream it's chained toit's closed for
good.

Since the constructors are protected, you don't use these classes directly. Instead, you create
subclasses and use those. Since FilterOutputStream does not have a no-argument constructor, it's
essential to give all subclasses explicit constructors and use super() to invoke the
FilterOutputStream constructor. Your subclass will probably also want to override the write(int b)
and write(byte[] data, int offset, int length) methods to perform its filtering. The write(byte[]
data) method merely invokes write(data, 0, data.length), so if you've overridden the three-
argument write() method, you probably don't need to override write(byte[] data) as well.
Depending on circumstances, you may or may not need to override some of the other methods.

The PrintableOutputStream class shown in Example 6-1 is a subclass of FilterOutputStream that
truncates all data to the range of printable ASCII characters: byte values 32-126, plus 9, 10, and 13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(tab, linefeed, and carriage return). Every time a byte in that range is passed to write(), it is
written onto the underlying output stream, out. Every time a byte outside that range is passed to
write(), a question mark is written onto the underlying output stream, out. Among other things,
this class provides a quick and dirty way to read ASCII string literals embedded in a .class or .exe
file.

Example 6-1. The PrintableOutputStream class

package com.elharo.io;
import java.io.*;
public class PrintableOutputStream extends FilterOutputStream {
 public PrintableOutputStream(OutputStream out) {
 super(out);
 }
 public void write(int b) throws IOException {
 // carriage return, linefeed, and tab
 if (b == '\n' || b == '\r' || b == '\t') out.write(b);
 // non-printing characters
 else if (b < 32 || b > 126) out.write('?');
 // printing, ASCII characters
 else out.write(b);
 }
 public void write(byte[] data, int offset, int length) throws IOException {
 for (int i = offset; i < offset+length; i++) {
 this.write(data[i]);
 }
 }
}

To use this class, or any other filter output stream, you must chain it to another stream that actually
writes the bytes to their eventual target. For example, to chain a PrintableOutputStream to
System.out, you would write:

PrintableOutputStream pos = new PrintableOutputStream(System.out);

If the filter stream subclass only overrides methods from the superclass and does not add any, it's
common to just declare the variable as type OutputStream or InputStream. For example, the previous
statement can be rewritten like this:

OutputStream out = new PrintableOutputStream(System.out);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sometimes the underlying stream is created directly inside the constructor:

OutputStream out =
 new PrintableOutputStream(new FileOutputStream("data.txt"));

However, the sheer length of the stream class names tends to make this style of coding inconvenient.

Multiple streams can be chained together in sequence to get the benefits of each. For example, to
create a buffered, printable file output stream, you would chain a file output stream to a buffered
output stream, which you'd then chain to a printable output stream. For example:

FileOutputStream fout = new FileOutputStream("data.txt");
BufferedOutputStream bout = new BufferedOutputStream(fout);
PrintableOutputStream pout = new PrintableOutputStream(bout);

Sometimes this is done using only a single OutputStream variable:

OutputStream out = new FileOutputStream("data.txt");
out = new BufferedOutputStream(out);
out = new PrintableOutputStream(out);

This keeps you from accidentally writing onto or reading from anything but the last stream in the
chain. There are reasons you might sometimes need to read from or write to a stream deeper in the
chain, but such reasons are unusual, and you shouldn't do it by accident.

Example 6-2 uses the PrintableOutputStream class to extract ASCII strings from a file. First it chains
either System.out or a file output stream to a printable output stream, then it opens a file input
stream from a file named on the command line and copies it into the printable output stream,
thereby converting it to printable ASCII characters.

Example 6-2. The StringExtractor class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import com.elharo.io.*;
import java.io.*;
public class StringExtractor {
 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println("Usage: java StringExtractor inFile");
 return;
 }
 try {
 InputStream in = new FileInputStream(args[0]);
 OutputStream out;
 if (args.length >= 2) {
 out = new FileOutputStream(args[1]);
 }
 else out = System.out;
 // Here's where the output stream is chained
 // to the ASCII output stream.
 PrintableOutputStream pout = new PrintableOutputStream(out);
 for (int c = in.read(); c != -1; c = in.read()) {
 pout.write(c);
 }
 out.close();
 }
 catch (FileNotFoundException e) {
 System.out.println("Usage: java StringExtractor inFile outFile");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Here's the output produced by running StringExtractor on its own .class file:

$ java StringExtractor StringExtractor.class
???????.?D
???? ??????
?!?"??#
???$??%
???$??&
? ?'
?(?)
? ?*
?+?,??-??.??/ ???0
?!?1??2??3???<init>???()V???Code???LineNumberTable???main???
([Ljava/lang/String;)V??SourceFile???StringExtractor.java
???????4??5?6??"Usage: java StringExtractor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inFile??7??8?9???java/io/FileInputStream????9???
java/io/FileOutputStream??#com/elharo/io/PrintableOutputStream????:??;??
<?=??>????@??A?????java/io/FileNotFoundException??
*Usage: java StringExtractor inFile
outFile???java/io/IOException??B?6??8?C???StringExtractor???java/lang/Object???
java/lang/System???out???Ljava/io/PrintStream;???java/io/PrintStream???println???
(Ljava/lang/String;)V???(Ljava/io/OutputStream;)V???java/io/InputStream???read???
()I???write???(I)V???java/io/OutputStream???close???err???(Ljava/lang/Object;)V
?!????????????????????????????????*?????????????????????
???????????????????r*?????????????????Y*?2???L*????????Y*?2???M??????M?? Y,??
???L???????????L???+?????????Z?]?????Z?i?????????N????????? ???

Although a lot of information is clearly lost in this translation, a surprising amount is retainedyou
have every string literal in the file and the names of all the classes and methods referenced by this
class.

Filter input streams are created similarly. Since FilterInputStream does not have a no-argument
constructor, all subclasses require explicit constructors and must use super() to invoke the
FilterInputStream constructor. The subclass overrides the read() and read(byte[] data, int
offset, int length) methods in order to do the actual filtering. The read(byte[] data) method
merely invokes read(data, 0, data.length), so if you've overridden the three-argument read()
method, you probably don't need to override read(byte[] data) as well. Depending on
circumstances, you may or may not need to override some of the other methods. For example, the
PrintableInputStream class shown in Example 6-3 truncates all data read to the range of printable
ASCII characters. As with PrintableOutputStream, any character not in that range is replaced by a
question mark.

Example 6-3. The PrintableInputStream class

package com.elharo.io;
import java.io.*;
public class PrintableInputStream extends FilterInputStream {
 public PrintableInputStream(InputStream in) {
 super(in);
 }
 public int read() throws IOException {
 int b = in.read();
 // printing, ASCII characters
 if (b >= 32 && b <= 126) return b;
 else if (b == '\n' || b == '\r' || b == '\t') return b;
 // nonprinting characters
 else return '?';
 }
 public int read(byte[] data, int offset, int length) throws IOException {
 int result = in.read(data, offset, length);
 for (int i = offset; i < offset+result; i++) {
 // Do nothing with the printing characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (data[i] == '\n'|| data[i] == '\r' || data[i] == '\t' || data[i] == -1) ;
 // nonprinting characters
 else if (data[i] < 32 || data[i] > 126) data[i] = (byte) '?';
 }
 return result;
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. The Filter Stream Subclasses

The java.io package contains many useful filter stream classes. The BufferedInputStream and
BufferedOutputStream classes buffer reads and writes by first putting data into a buffer (an internal
array of bytes). Thus, an application can read or write bytes to the stream without necessarily calling
the underlying native methods. The data is read from or written into the buffer in blocks; subsequent
accesses go straight to the buffer. This improves performance in many situations. Buffered input
streams also allow the reader to back up and reread data.

The java.io.PrintStream class allows very simple printing of primitive values, objects, and string
literals. It uses the platform's default character encoding to convert characters into bytes. This class
traps all IOExceptions and is primarily intended for debugging. System.out and System.err are the
most popular examples of the PrintStream class, but you can connect a PrintStream filter to other
output streams as well. For example, you can chain a PrintStream to a FileOutputStream to write
formatted strings into a file. These classes will be discussed in the next chapter.

The PushbackInputStream class has a 1-byte pushback buffer so a program can "unread" the last
character read. The next time data is read from the stream, the unread character is reread.

The ProgressMonitorInputStream class shows the user a running tally of how much data has been
read and how much remains to be read.

The DataInputStream and DataOutputStream classes read and write primitive Java data types and
strings in a machine-independent way. (Big-endian for integer types, IEEE-754 for floats and
doubles, a variant of UTF-8 for strings.) These classes will be discussed in Chapter 8. The
ObjectInputStream and ObjectOutputStream classes extend DataInputStream and DataOutputStream
with methods to read and write arbitrary Java objects as well as primitive data types. These will be
taken up in Chapter 13.

The java.util.zip package also includes several filter stream classes. The filter input streams in this
package decompress compressed data; the filter output streams compress raw data. Because
compressed files are particularly vulnerable to corruption, this package also provides filters that
maintain a running checksum of the data in a file. These will be discussed in Chapter 10.

The java.util.security package contains the DigestInputStream and DigestOutputStream filter
streams; these calculate message digests of the data that passes through them. The Java
Cryptography Extension (JCE) adds two more filter streams to this package, CipherInputStream and
CipherOutputStream, which can encrypt or decrypt data using a variety of algorithms. These filter
streams will be discussed in Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Buffered Streams

Buffered input streams read more data than they initially need into a buffer (an internal array of
bytes). When one of the stream's read() methods is invoked, data is removed from the buffer
rather than from the underlying stream. When the buffer runs out of data, the buffered stream refills
its buffer from the underlying stream. Likewise, buffered output streams store data in an internal
byte array until the buffer is full or the stream is flushed; then the data is written out to the
underlying output stream in one swoop. In situations where it's almost as fast to read or write
several hundred bytes from the underlying stream as it is to read or write a single byte, a buffered
stream can provide a significant performance boost.

There are two BufferedInputStream constructors and two BufferedOutputStream constructors:

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int size)
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int size)

The first argument is the underlying stream from which data will be read or to which data will be
written. The size argument is the number of bytes in the buffer. If a size isn't specified, a 2048-byte
buffer is used. The best size for the buffer depends on the platform and is generally related to the
block size of the disk (at least for file streams). Less than 512 bytes is probably too small and more
than 8,192 bytes is probably too large. Ideally, you want an integral multiple of the block size of the
disk. However, you might want to use smaller buffer sizes for unreliable network connections. For
example:

URL u = new URL("http://java.sun.com");
BufferedInputStream bis = new BufferedInputStream(u.openStream(), 256);

Example 6-4 copies files named on the command line to System.out with buffered reads and writes.

Example 6-4. A BufferedStreamCopier

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io;
import java.io.*;
public class BufferedStreamCopier {
 public static void main(String[] args) {
 try {
 copy(System.in, System.out);
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }

 public static void copy(InputStream in, OutputStream out)
 throws IOException {
 BufferedInputStream
 bin = new BufferedInputStream(in);
 BufferedOutputStream bout = new BufferedOutputStream(out);
 while (true) {
 int datum = bin.read();
 if (datum == -1) break;
 bout.write(datum);
 }
 bout.flush();
 }
}

This copy() method copies byte by byte, which is normally not very efficient. However, almost all
the copies take place in memory, because the input stream and the output stream are buffered.
Therefore, this is reasonably quick.

The output stream is deliberately flushed. The data reaches its eventual destination in the underlying
stream out only when the stream is flushed or the buffer fills up. Therefore, it's important to call
flush() explicitly before the method returns.

6.3.1. BufferedInputStream Details

BufferedInputStream only overrides and inherits methods from InputStream. It does not declare any
new methods of its own. Marking and resetting are supported.

In Java 1.2 and later, the two multibyte read() methods try to fill the specified array or subarray
completely by reading repeatedly from the underlying input stream. They return only when the
requested number of bytes have been read, the end of stream is reached, or the underlying stream
would block. Most other input streams attempt only one read from the underlying stream or data
source before returning.

The buffer and the current state of the buffer are stored in protected fields. The buffer itself is a byte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

array called buf; the number of bytes in the buffer is an int named count; the index of the next byte
that will be returned by read() is an int called pos; the mark, if any, is an int called markpos; the
read-ahead limit before the mark is invalidated is an int called marklimit. Subclasses of
BufferedInputStream can directly access all these fields, which can be important for performance.

protected byte[] buf
protected int count
protected int pos
protected int markpos
protected int marklimit

6.3.2. BufferedOutputStream Details

BufferedOutputStream stores the buffered data in a protected byte array named buf and the index of
the next place in the array where a byte will be stored in an int field named pos.
BufferedOutputStream does not expose the number of bytes in the buffer.

protected byte buf[]
protected int pos

Otherwise, BufferedOutputStream has the same write(), flush(), and close() methods every
OutputStream has. These methods are invoked exactly as they would be for any output stream. The
only difference is that writes place data in the buffer rather than directly on the underlying output
stream. BufferedOutputStream does not declare any new methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. PushbackInputStream

The java.io.PushbackInputStream class provides a pushback buffer so a program can "unread" bytes.
In other words, it can add bytes to the stream and then read them. These may be bytes the program
has read from the underlying InputStream or they may be completely different bytes. In effect,
PushbackInputStream allows programs to add data to a stream while they're reading it. The next time
data is read from the stream, the unread bytes are reread.

public void unread(int b) throws IOException
public void unread(byte[] data, int offset, int length) throws IOException
public void unread(byte[] data) throws IOException

By default, the buffer is only 1 byte long, and trying to unread more than 1 byte throws an
IOException. However, you can change the default buffer size with the second constructor:

public PushbackInputStream(InputStream in)
public PushbackInputStream(InputStream in, int size)

Unread data is pushed onto a stack. In other words, the last byte you unread is the first byte you
read. This code fragment prints 2, 1, 0; not 0, 1, 2:

PushbackInputStream in = new PushbackInputStream(System.in, 5);
in.unread(0);
in.unread(1);
in.unread(2);
System.out.println(in.read());
System.out.println(in.read());
System.out.println(in.read());

One common use for PushbackInputStream is tokenizing source code. For example, suppose a
compiler is reading the Java statement int count=7;. Because Java variable names can have any
length, the compiler doesn't know that the last character is t until it has read the equals sign (=).
However, by the time it knows this, it has already read the equals sign. A PushbackInputStream allows
the compiler to unread the equals sign and continue, this time treating the sign as an operator rather
than as a piece of an identifier. Other times, the program may want to add something to the stream
that wasn't there before and then read it in the usual way. For instance, to convert a Mac text file to
a Windows text file, a program could unread a linefeed after it reads a carriage return.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although both PushbackInputStream and BufferedInputStream use buffers, only a
PushbackInputStream allows unreading, and only a BufferedInputStream allows marking and
resetting. In a PushbackInputStream, markSupported() returns false.

The read() and available() methods are invoked exactly as they are with normal input streams.
However, they first attempt to read from the pushback buffer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. ProgressMonitorInputStream

I/O operations can be slow, especially when reading data from the network. User-centric programs
should always give the user feedback, even if the feedback is no more significant than "No, I haven't
frozen; I'm still running." For simple operations, an animated cursor like the Macintosh's spinning
beach ball may be sufficient. For longer operations, you should display a progress bar that indicates
how much of the operation has been accomplished and how much remains to be done, such as the
one shown in Figure 6-1. ProgressMonitorInputStream is a unique filter stream hiding in the
javax.swing package that displays progress bars that indicate how much of a stream has been read
and how much remains to be read.

Figure 6-1. A Swing progress bar

ProgressMonitorInputStream is a FilterInputStream that you can chain to any other input stream in
the usual way. If the data is read in less time than it normally takes for the user to notice a delay (as
for a small file read from a disk), no dialog is shown. However, if the input begins to take a noticeable
amount of time, Java pops up a progress bar that includes a cancel button. If the user presses that
button, the current read() method throws an InterruptedIOException. Otherwise, input continues,
and the progress bar is updated until the end of the stream is reached.

The primary method you need to be aware of in ProgressMonitorInputStream is the constructor:

public ProgressMonitorInputStream(Component parent,
 Object message, InputStream in)

The parent argument specifies the parent component of the progress monitor, though it may be null

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if no such component is available. The message argument is normally a String containing the
message shown in the dialog. If some other type is used, its toString() method is invoked to
provide the message. Finally, in is the underlying InputStream this stream is chained to. For example,
this code fragment will use a progress monitor to keep the user updated about how far along it is
while it's reading the file lotsofdata.txt:

File f = new File("lotsofdata.txt");
InputStream in = new FileInputStream(fin);
ProgressMonitorInputStream pin = new ProgressMonitorInputStream(
 null, f.getName(), in);

The only other new method you need to know about in this class is getProgressMonitor():

public ProgressMonitor getProgressMonitor()

This returns a reference to the actual progress monitor so that you can adjust its behavior with the
methods of the javax.swing.ProgressMonitor class. For instance, you can change the default time
before the progress monitor is shown or the maximum and minimum values used for the monitor.
You also use this object to tell the ProgressMonitor how much data is expected through the
setMaximum() method. For instance, when reading a file, the length() method in the File class
reveals how many bytes you expect to read. That would be the maximum for the progress bar. For
example:

ProgressMonitor pm = pin.getProgressMonitor();
pm.setMaximum(f.length());

Aside from getProgressMonitor(), ProgressMonitorInputStream has the usual methods of any
InputStream class: read(), close(), markSupported(), etc. Progress monitor input streams support
marking and resetting only if the underlying stream does.

You read from the stream just as you read from any other stream. If the process takes more than
about half a second, and it looks like it will take more than two seconds, Java will pop up a
ProgressMonitor showing the user just how much is done and how much remains to be done. You
can adjust these times using the methods of the ProgressMonitor class, but the defaults for
everything except the maximum value are generally reasonable.

Programs that read data from the network take even longer than programs that read from files.
Example 6-5 is a complete program that reads data from a URL given on the command line and
copies it to System.out. It uses a ProgressMonitor to keep the user alerted as to its progress. It uses
the content-length HTTP header to determine how much data will be sent in order to set the
maximum value for the progress bar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-5. MonitoredSourceViewer

import java.net.*;
import java.io.*;
import javax.swing.*;
public class MonitoredSourceViewer {
 public static void main (String[] args) {
 if (args.length > 0) {
 try {
 // Open the URLConnection for reading
 URL u = new URL(args[0]);
 URLConnection uc = u.openConnection();
 InputStream in = uc.getInputStream();
 // Chain a ProgressMonitorInputStream to the
 // URLConnection's InputStream
 ProgressMonitorInputStream pin
 = new ProgressMonitorInputStream(null, u.toString(), in);
 // Set the maximum value of the ProgressMonitor
 ProgressMonitor pm = pin.getProgressMonitor();
 pm.setMaximum(uc.getContentLength());
 // Read the data
 for (int c = pin.read(); c != -1; c = pin.read()) {
 System.out.print((char) c);
 }
 pin.close();
 }
 catch (MalformedURLException ex) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (InterruptedIOException ex) {
 // User cancelled. Do nothing.
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 } // end if
 // Since we brought up a GUI, we have to explicitly exit here
 // rather than simply returning from the main() method.
 System.exit(0);
 } // end main
} // end MonitoredSourceViewer

Figure 6-1 is the screenshot of a progress monitor taken from this program.
ProgressMonitorInputStream is a simple class that's very easy to program with and that will make
users' experiences much more pleasant.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. Multitarget Output Streams

As a final example, I present two slightly unusual filter output streams that direct their data to
multiple underlying streams. The TeeOutputStream class in Example 6-6 has not one but two
underlying streams. It does not modify the data that's written in any way; it merely writes that data
on both of its underlying streams.

Example 6-6. The TeeOutputStream class

package com.elharo.io;
import java.io.*;
public class TeeOutputStream extends FilterOutputStream {
 private OutputStream out1;
 private OutputStream out2;
 public TeeOutputStream(OutputStream stream1, OutputStream stream2) {
 super(stream1);
 out1 = stream1;
 out2 = stream2;
 }
 public void write(int b) throws IOException {
 out1.write(b);
 out2.write(b);
 }
 public void write(byte[] data, int offset, int length)
 throws IOException {
 out1.write(data, offset, length);
 out2.write(data, offset, length);
 }
 public void flush() throws IOException {
 out1.flush();
 out2.flush();
 }
 public void close() throws IOException {
 out1.close();
 out2.close();
 }
}

It would be possible to store one of the output streams in FilterOutputStream's protected out field
and the other in a field in this class. However, it's simpler and cleaner to maintain the parallelism

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between the two streams by storing them both in the TeeOutputStream class.

Example 6-7 demonstrates how one might use this class to write a TeeCopier program that copies a
file into two separate, new files.

Example 6-7. The TeeCopier program

import java.io.*;
import com.elharo.io.*;
public class TeeCopier {
 public static void main(String[] args) throws IOException {
 if (args.length != 3) {
 System.out.println("Usage: java TeeCopier infile outfile1 outfile2");
 return;
 }
 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout1 = new FileOutputStream(args[1]);
 FileOutputStream fout2 = new FileOutputStream(args[2]);
 TeeOutputStream tout = new TeeOutputStream(fout1, fout2);
 BufferedStreamCopier.copy(fin, tout);
 fin.close();
 tout.close();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7. File Viewer, Part 2

One of many things Fred Brooks is famous for saying is, "plan to throw one away; you will
anyhow.[*] Now that we've got filter streams in hand, I'm ready to throw out the monolithic design
for the FileDumper program used in Chapter 4. I'm going to rewrite it using a more flexible, object-
oriented approach that relies on multiple chained filters. This allows us to extend the system to
handle new formats without rewriting all the old classes. (It also makes some of the examples in
subsequent chapters smaller, since I won't have to repeat all of the code each time.) The basic idea
is to make each interpretation of the data a filter input stream. Bytes from the underlying stream
move into the filter; the filter converts the bytes into strings. Since more bytes generally come out of
the filter than go into it (for instance, the single byte 32 is replaced by the four bytes "0", "3", "2",
and " " in decimal dump format), the filter streams buffer the data as necessary.

[*] Frederick P. Brooks, The Mythical Man-Month, 20th Anniversary Edition (Reading: Addison-Wesley), 115.

The architecture revolves around the abstract DumpFilter class shown in Example 6-8. The public
interface of this class is identical to that of FilterInputStream. Internally, a buffer holds the string
interpretation of each byte as an array of bytes. The read() method returns bytes from this array as
long as possible. An index field tracks the next available byte. When index reaches the length of the
array, the abstract fill() method is invoked to read from the underlying stream and place data in
the buffer.

By changing how the fill() method translates the bytes it reads into the bytes in the buffer, you
can change how the data is interpreted.

Example 6-8. DumpFilter

package com.elharo.io;
import java.io.*;
public abstract class DumpFilter extends FilterInputStream {
 // This is really an array of unsigned bytes.
 private int[] buf = new int[0];
 private int index = 0;
 public DumpFilter(InputStream in) {
 super(in);
 }
 public int read() throws IOException {
 int result;
 if (index < buf.length) {
 result = buf[index];
 index++;
 } // end if
 else {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 this.fill();
 // fill is required to put at least one byte
 // in the buffer or throw an EOF or IOException.
 result = buf[0];
 index = 1;
 }
 catch (EOFException ex) {
 result = -1;
 }
 } // end else
 return result;
 }
 protected abstract void fill() throws IOException;
 public int read(byte[] data, int offset, int length) throws IOException {
 if (data == null) {
 throw new NullPointerException();
 }
 else if ((offset < 0) || (offset > data.length) || (length < 0)
 || ((offset + length) > data.length) || ((offset + length) < 0)) {
 throw new ArrayIndexOutOfBoundsException();
 }
 else if (length == 0) {
 return 0;
 }

 // Check for end of stream.
 int datum = this.read();
 if (datum == -1) {
 return -1;
 }
 data[offset] = (byte) datum;
 int bytesRead = 1;
 try {
 for (; bytesRead < length ; bytesRead++) {
 datum = this.read();
 // In case of end of stream, return as much as we've got,
 // then wait for the next call to read to return -1.
 if (datum == -1) break;
 data[offset + bytesRead] = (byte) datum;
 }
 }
 catch (IOException ex) {
 // Return what's already in the data array.
 }
 return bytesRead;
 }
 public int available() throws IOException {
 return buf.length - index;
 }
 public long skip(long bytesToSkip) throws IOException {
 long bytesSkipped = 0;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (; bytesSkipped < bytesToSkip; bytesSkipped++) {
 int c = this.read();
 if (c == -1) break;
 }
 return bytesSkipped;
 }
 public void mark(int readlimit) {}
 public void reset() throws IOException {
 throw new IOException("marking not supported");
 }
 public boolean markSupported() {
 return false;
 }
}

The FilterInputStream class tacitly assumes that the number of bytes of input read from the
underlying stream is the same as the number of bytes read from the filter stream. Somtimes this
isn't true, as is the case here. For instance, the HexFilter will provide three bytes of data for every
byte read from the underlying stream. The DecimalFilter will provide four. Therefore, we also have
to override skip() and available(). The skip() method reads as many bytes as possible, then
returns. The available() method returns the number of bytes remaining in the buffer. For the uses
we're putting these classes to, these methods aren't all that important, so I haven't bothered to
provide optimal implementations. You can do better in subclasses, if you like.

The same problem applies to the mark() and reset() methods. These will mark and reset the
underlying stream, but what we really desire is to mark and reset this stream. The easiest solution
here is to deliberately not support marking and resetting. If marking and resetting is necessary, it's
easy to chain this stream to a buffered stream as long as the buffered stream follows the dump filter
in the chain rather than preceding it.

Concrete subclasses need to implement only a constructor or two and the fill() method. Example
6-9 shows the DecimalFilter class. Example 6-10 shows the HexFilter class. These two classes are
very similar; each implements fill() and overrides available() (the latter mainly because it's
straightforward to do). The algorithms used by the fill() methods for converting bytes to decimal
and hexadecimal strings are essentially the same as those used by the dumpDecimal() and dumpHex(
) methods back in Chapter 4's FileDumper program.

Example 6-9. DecimalFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io;
import java.io.*;
public class DecimalFilter extends DumpFilter {
 private int numRead = 0;
 private int breakAfter = 15;
 private int ratio = 4; // number of bytes of output per byte of input
 public DecimalFilter(InputStream in) {
 super(in);
 }
 protected void fill() throws IOException {
 buf = new int[ratio];
 int datum = in.read();
 this.numRead++;
 if (datum == -1) {
 // Let read() handle end of stream.
 throw new EOFException();
 }

 String dec = Integer.toString(datum);
 if (datum < 10) { // Add two leading zeros.
 dec = "00" + dec;
 }
 else if (datum < 100) { // Add leading zero.
 dec = '0' + dec;
 }
 for (int i = 0; i < dec.length(); i++) {
 buf[i] = dec.charAt(i);
 }
 if (numRead < breakAfter) {
 buf[buf.length - 1] = ' ';
 }
 else {
 buf[buf.length - 1] = '\n';
 numRead = 0;
 }
 }
 public int available() throws IOException {
 return (buf.length - index) + ratio * in.available();
 }
}

Example 6-10. HexFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io;
import java.io.*;
public class HexFilter extends DumpFilter {
 private int numRead = 0;
 private int breakAfter = 24;
 private int ratio = 3; // Number of bytes of output per byte of input.
 public HexFilter(InputStream in) {
 super(in);
 }
 protected void fill() throws IOException {
 buf = new int[ratio];
 int datum = in.read();
 this.numRead++;
 if (datum == -1) {
 // Let read() handle end of stream.
 throw new EOFException();
 }
 String hex = Integer.toHexString(datum);
 if (datum < 16) { // Add a leading zero.
 hex = '0' + hex;
 }
 for (int i = 0; i < hex.length(); i++) {
 buf[i] = hex.charAt(i);
 }
 if (numRead < breakAfter) {
 buf[buf.length - 1] = ' ';
 }
 else {
 buf[buf.length - 1] = '\n';
 numRead = 0;
 }
 }
 public int available() throws IOException {
 return (buf.length - index) + ratio * in.available();
 }
}

The main() method and class in Example 6-11 are similar to what we've seen before. However,
rather than selecting a method to dump the file, we select a dump filter to use. This allows multiple
filters to be used in sequencea feature that will be important when we want to decompress, decrypt,
or perform other transformations on the data, in addition to interpreting it. The program is also
easier to read and understand when split across the three classes.

Example 6-11. FileDumper2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import com.elharo.io.*;
public class FileDumper2 {
 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println("Usage: java FileDumper2 [-ahd] file1 file2...");
 return;
 }
 int firstArg = 0;
 int mode = ASC;
 if (args[0].startsWith("-")) {
 firstArg = 1;
 if (args[0].equals("-h")) mode = HEX;
 else if (args[0].equals("-d")) mode = DEC;
 }

 for (int i = firstArg; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode);
 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
 }
 public static void dump(InputStream in, OutputStream out, int mode)
 throws IOException {
 // The reference variable in may point to several different objects
 // within the space of the next few lines. We can attach
 // more filters here to do decompression, decryption, and more.
 if (mode == ASC) ; // no filter needed, just copy raw bytes
 else if (mode == HEX) in = new HexFilter(in);
 else if (mode == DEC) in = new DecimalFilter(in);
 BufferedStreamCopier.copy(in, out);
 in.close();
 }
}

The main() method is responsible for choosing the file and format to be dumped. The dump()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method translates an input stream onto an output stream using a particular filter. This allows the
dump() method to be used by other classes as a more general translation service for streams. An
alternative pattern would pass the filter as an argument to dump() rather than as an integer mode.
This might make the program more flexible but would not allow us to easily chain several filters
together, as we'll do in upcoming chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Print Streams
System.out is the first output stream most Java programmers encounter. System.err is probably the
second. Both are instances of the java.io.PrintStream class. PrintStream is a subclass of
FilterOutputStream that converts numbers and objects to text. System.out is primarily used for
simple, character-mode applications and for debugging. Its raison d'étre is convenience, not
robustness; print streams ignore many issues involved in internationalization and error checking. This
makes System.out easy to use in quick-and-dirty hacks and simple examples, while simultaneously
making it unsuitable for production code, which should use the java.io.PrintWriter class (discussed
in Chapter 20) instead.

PrintStream is not limited to the console. PrintStream is a filter stream and thus can be connected to
any other output stream: a FileOutputStream, a ByteArrayOutputStream, a TelnetOutputStream, or
anything else you write to. Three constructors can be used to chain a PrintStream to an underlying
stream:

public PrintStream(OutputStream out)
public PrintStream(OutputStream out, boolean autoFlush)
public PrintStream(OutputStream out, boolean autoFlush, String encoding)
 throws UnsupportedEncodingException

The out argument is just the underlying output stream. The autoFlush argument is a boolean. If it's
true, the stream is flushed every time a linefeed character (\n) or byte is written, a println()
method is invoked, or a byte array is written. The encoding argument names the character encoding
used to convert strings to bytes. The last option is available only in Java 1.4 and later. Print streams
in Java 1.3 and earlier (and all print streams created with the first two constructors) use the local
system's default encoding, whatever that may be. Often this is not the encoding you need, so you
should specify the encoding explicitly if possible.

Java 5 added four more constructors, though these are mostly just conveniences. They allow you to
create a PrintStream that will write data in a file. The file to be written is specified with either a
java.io.File object (which will be discussed in Chapter 17) or a String containing the filename. You
can also specify the character encoding used to write the file:

public PrintStream(String fileName) throws FileNotFoundException
public PrintStream(String fileName, String encoding)
 throws FileNotFoundException, UnsupportedEncodingException
public PrintStream(File file) throws FileNotFoundException
public PrintStream(File file, String encoding)
 throws FileNotFoundException, UnsupportedEncodingException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These constructors don't accomplish anything that chaining a PrintStream to a FileOutputStream
won't do.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. Print Versus Write

The reason you might choose a PrintStream instead of a raw OutputStream is for its print() and
println() methods. These methods each convert their argument to a String and then convert the
String to bytes in a specific encoding before writing it to the underlying output stream. For example,
consider this PrintStream connected to a file named numbers.dat:

PrintStream out = new PrintStream(new FileOutputStream("numbers.dat"));

Suppose we use a simple for loop to write the numbers from 0 to 127 in that file:

for (int i = 0; i <= 127; i++) out.write(i);

When we're done, the file contains 128 bytes: the first byte is 0, the second is 1, the third is 2, and
so on. It's pure binary data. If you try to open it up in a text editor you'll see goop, as shown in
Figure 7-1. Some of those binary numbers happen to be interpretable as ASCII text, but that's an
accident. They're really just bytes. Many of them aren't printable.

Figure 7-1. A binary file in a text editor

Now suppose instead of using the write() method we use the print() method:

for (int i = 0; i <= 127; i++) out.print(i);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This time the PrintStream does not write raw binary data in the file. Instead, it converts each number
into its ASCII string equivalent and writes that string. For instance, instead of writing the byte 20, it
writes the character 2 followed by the character 0. If you open the file in a text editor now, you'll see
something like the screenshot shown in Figure 7-2.

Figure 7-2. A text file in a text editor

It's not absolutely guaranteed that the string will be written in ASCII. On a few
IBM mainframes, EBCDIC might be used instead. However, given the range of
characters used here, it's pretty likely that the resulting file will make sense
when interpreted as ASCII. More on this point shortly.

The println() method prints a platform-specific line terminator after printing its argument. Suppose
instead of using the print() method we use the println() method:

for (int i = 0; i <= 127; i++) out.println(i);

Then the output is even neater, as shown in Figure 7-3.

Figure 7-3. A text file with line breaks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These examples used ints, but the PrintStream class has print() and println() methods for every
Java data type. The method signatures are:

public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] s)
public void print(String s)
public void print(Object o)
public void println(boolean b)
public void println(char c)
public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] s)
public void println(String s)
public void println(Object o)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can pass anything at all to a print() method. Whatever argument you supply is guaranteed to
match at least one of these methods. Object types are converted to strings by invoking their
toString() methods. Primitive types are converted with the appropriate String.valueOf()
methods.

One aspect of making System.out simple for quick jobs is not in the PrintStream class at all, but in
the compiler. Because Java overloads the + operator to signify concatenation of strings, primitive
data types, and objects, you can pass multiple variables to the print() and println() methods,
which are then converted to strings and concatenated. For example, consider the line:

System.out.println("As of " + (new Date()) + " there have been over "
 + hits + " hits on the web site.");

The compiler rewrites this complicated expression as:

StringBuffer sb = new StringBuffer();
sb.append("As of ");
Date d = new Date();
sb.append(d);
sb.append(" there have been over ");
sb.append(hits);
sb.append(" hits on the web site.")
String s = sb.toString();
System.out.println(s);

The StringBuffer append() method is overloaded in much the same way that the print() and
println() methods are; as a result, it can handle any Java data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Line Breaks

As previously mentioned, the println() method always adds a line break at the end of each line it
prints. You can even call println() with no arguments to print just a line break:

public void println()

The line break character varies from platform to platform. In particular:

On Unix (including Mac OS X), it's a linefeed, \n, ASCII 10.

On Mac OS 9, it's a carriage return, \r, ASCII 13.

On Windows, it's a carriage return linefeed pair, \r\n, ASCII 13 followed by ASCII 10.

This is almost never what you actually want!

Most file formats and most network protocols care a great deal about which line break character is
written.[*] For instance, if you're writing a web client or server, the HTTP specification requires that
header lines end with carriage return linefeed pairs. It doesn't matter whether the client or server is a
Mac, a PC, a Unix workstation, or a Palm Pilot. It must use \r\n as the line break. You can specify
this by explicitly passing the line break you want to the print() method rather than calling println(
). For example:

[*] XML is a notable exception here. It treats linefeeds, carriage returns, and carriage return linefeed pairs equally.

for (int i = 0; i <= 127; i++) {
 out.print(i);
 out.print("\r\n");
}

In practice, most HTTP servers and clients accept requests that use the wrong
line breaks. However, some aren't so forgiving, and you really shouldn't count
on this behavior.

If for some reason you want to know which line break character will be used, the line.separator
system property will tell you:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String lineBreak = System.getProperty("line.separator");

Not all line breaks are created equal. If the PrintStream is set to autoFlushthat is, if the second
argument to the constructor is trueafter every call to println() and after every linefeed that's
printed, the underlying stream will be flushed. Thus, out.println() and out.print("\n") both flush
the stream. So does out.print("\r\n"), because it contains a linefeed. However, out.print("\r")
does not cause an automatic flush.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Error Handling

You may have noticed something a little funny with the code fragments in this chapter: I haven't put
any try-catch blocks around them. That's not an oversight. PrintStream methods never throw
IOExceptions. Each method in the class catches IOException. When an exception occurs, an internal
flag is set to TRue. You can test this flag using the checkError() method:

public boolean checkError()

This method returns true if this print stream has ever encountered an error during its lifetime. Most
of the time, you just ignore this, since print streams are only used in situations where exhaustive
error checking is unnecessary.

There's also a protected setError() method you can use to signal an error from a subclass:

protected void setError()

Once an error has been set, there's no way to unset it. Generally, once a PrintStream has
encountered an error, all further writes to it silently fail. It's not the failure but the silence that makes
PrintStream unsuitable for most applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. printf()

I was inspired to write the first edition of this book by the numerous questions I received about why
there was no printf() function in Java. Part of the goal of that edition was to explain to readers
why they didn't actually need it. Thus, I was a little perturbed when Java 5 added printf().
Personally, I still don't think Java needs printf(), but it's here now, so let's talk about it.

The printf() method makes heavy use of Java 5's new varargs feature. That is, a single method
definition can support any number of arguments. In this case, the signature is:

public PrintStream printf(String format, Object... args)

A typical invocation looks like this:

System.out.printf("There are %f centimeters in %f inches.", 2.54*inches, inches);

If you're an old C hack, this is like coming home. The first argument is a format string containing
both literal text and tags beginning with percent signs (%). To form the output, each tag is replaced
by the corresponding argument that follows the format string. If the format string is the zeroth
argument, the first tag is replaced by the first argument, the second tag by the second argument,
and so forth. If there are more tags than arguments, printf() tHRows a
java.util.MissingFormatArgumentException. This is a subclass of IllegalFormatException, which is a
runtime exception, so you don't have to catch it. If there are more arguments than tags, the extra
arguments are silently ignored.

The letter(s) after the percent sign in the format tag specify how the number is interpreted. For
instance, %f means that the number is formatted as a floating-point number with a decimal sign. %d
formats the argument as a decimal integer. %x formats the number as a hexadecimal integer. %X also
formats the number as a hexadecimal integer but uses the uppercase letters A-F instead of the
lowercase letters a-f to represent 10-15.

Most of the time, changing a lowercase conversion specifier to uppercase
changes the formatted string from lowercase to uppercase. However, there are
a few exceptions to this rule.

There are a couple of dozen tags for different kinds of data. Not all data is compatible. For instance, if
you use %x to format a double as a hexadecimal integer, printf() throws a
java.util.IllegalFormatConversionException. Again, this is a runtime exception and a subclass of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IllegalFormatException.

So far, this isn't anything that can't be done easily with println() and string concatenation. What
makes printf() more convenient for some uses is that the tags can also contain width and precision
specifiers. For example, suppose we wrote the previous statement like this instead:

System.out.printf("There are %.3f centimeters in %.2f feet.", 2.54*feet, feet);

%.3f means that the centimeters will be formatted as a decimal number with exactly three digits after
the decimal point. %.2f means that the number will be rounded to only two decimal places. This gives
more legible output, like "There are 21.691 centimeters in 8.54 feet" instead of "There are
21.690925 centimeters in 8.539734 feet."

A number before the decimal point in the format tag specifies the minimum width of the formatted
string. For instance, %7.3f formats a decimal number exactly seven characters wide with exactly
three digits after the decimal point. Those seven characters include the decimal point, so there will be
exactly three digits to the left of the decimal point. If the number is smaller than 100, it will be
padded on the left with spaces to make seven characters. Zeros will be added to the right of the
decimal point if necessary to pad it to three decimal places.

Consider this Java 1.4 code fragment that prints a three-column table of the angles between 0 and
360 degrees in degrees, radians, and grads, using only println():

for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;
 System.out.println(degrees + " " + radians + " " + grads);
}

Its output looks like this (not very pretty):

0.0 0.0 0.0
1.0 0.017453292519943295 1.1111111111111112
2.0 0.03490658503988659 2.2222222222222223
3.0 0.05235987755982988 3.3333333333333335
...

In Java 5, printf() can easily format each number exactly five characters wide with one digit after
the decimal point:

for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.printf("%5.1f %5.1f %5.1f\n", degrees , radians, grads);
}

Here's the start of the output:

0.0 0.0 0.0
1.0 0.0 1.1
2.0 0.0 2.2
3.0 0.1 3.3
...

Notice how nicely everything lines up in a monospaced font? This is incredibly useful for the two
dozen programmers using Java to generate reports for VT-100 terminals and letter-quality printouts
on green-and-white barred computer paper. (Those readers who haven't written any software like
that since 1984, and certainly those readers who weren't even born in 1984, should now see why I'm
less than thrilled with the addition of this 1970s technology to a 21st-century language.)

Of course, programmers printing text in proportional-width fonts, GUI table components, HTML
reports, XML documents styled with XSL stylesheets, and any other output format produced since
1992 may be less enamored of this style of programming. Anyway, Java has it now. You don't have
to use it (or read the rest of this chapter) if you don't need it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Formatter

In fact, printf() is a little more general than System.out (though that's its primary justification).
Besides printf() , the PrintStream class also has a format() method:

public PrintStream format(String format, Object... args)

This does exactly the same thing as printf() . That is, the previous example could be rewritten like
this and produce identical output:

for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;
 System.out.format("%5.1f %5.1f %5.1f\n", degrees , radians, grads);
}

Why two methods, then? The format() method is used not just by PrintStream but also by the
java.util.Formatter class:

public class Formatter implements Flushable, Closeable

printf() is there solely to make C programmers feel nostalgic.

Formatter is the object-oriented equivalent of sprintf() and fprintf() in C. Rather than writing its
output onto the console, it writes it into a string, a file, or an output stream. Pass the object you want
to write into to the Formatter constructor. For example, this code fragment creates a Formatter that
writes data into a file named angles.txt :

Formatter formatter = new Formatter("angles.txt");

Once you've created a Formatter object, you can write to it using the format() method just as you
would with System.out.format() , except that the output goes into the file rather than onto the
console:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;
 formatter.format("%5.1f %5.1f %5.1f\n", degrees , radians, grads);
}

Formatters are not output streams, but they can and should be flushed and closed just the same:

formatter.flush();
formatter.close();

7.5.1. Constructors

Exactly where the output from a Formatter ends up depends on what argument you pass to the
constructor. You've already seen the constructor that takes a filename:

public Formatter(String fileName) throws FileNotFoundException

If the named file does not exist in the current working directory, this constructor attempts to create
it. If that fails for any reason other than a security violation, the constructor throws a
FileNotFoundException . Security problems are reported with a SecurityException instead. If the file
does exist, its contents are overwritten.

Instead of a filename, you can pass in a File object:

public Formatter(File file) throws FileNotFoundException

You can also use a Formatter to write onto a PrintStream or another kind of OutputStream :

public Formatter(PrintStream out)
public Formatter(OutputStream out)

or onto any Appendable object:

public Formatter(Appendable out)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Appendable interface is a new Java 5 interface for anything onto which char s can be appended.
This includes StringBuffer s and StringBuilder s. It also includes a number of classes we'll talk
about later, such as CharBuffer and Writer .

Finally, the no-args constructor creates a Formatter with no specified destination for output:

public Formatter()

In this case, the Formatter writes everything onto a new StringBuilder object. You can retrieve this
object using the out() method at any time before the Formatter is closed:

public Appendable out() throws FormatterClosedException

You might need to use this method if you want to write unformatted output onto the same
StringBuilder , but more commonly you'll just use the toString() method to get the final result.
For example:

Formatter formatter = new Formatter();
for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;
 formatter.format("%5.1f %5.1f %5.1f\n", degrees , radians, grads);
}
String table = formatter.toString();

7.5.2. Character Sets

So far, I haven't paid a lot of attention to character set issues. As long as you stick to the ASCII
character set, a single computer, and System.out , character sets aren't likely to be a problem.
However, as data begins to move between different systems, it becomes important to consider what
happens when the other systems use different character sets. For example, suppose I use a
Formatter or a PrintStream on a typical U.S. or Western European PC to write the sentence "Au cours
des dernières années, XML a été adapte dans des domaines aussi diverse que l'aéronautique, le
multimédia, la gestion de hôpitaux, les télécommunications, la théologie, la vente au détail, et la
littérature médiévale" in a file. Say I then send this file to a Macintosh user, who opens it up and sees
"Au cours des derniËres annÈes, XML a ÈtÈ adapte dans des domaines aussi diverse que
l'aÈronautique, le multimÈdia, la gestion de hÙpitaux, les tÈlÈcommunications, la thÈologie, la vente
au dÈtail, et la littÈrature mÈdiÈvale." This is not the same thing at all! The confusion is even worse if
you go in the other direction.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you're writing to the console (i.e., System.out), you don't really need to worry about character set
issues. The default character set Java writes in is usually the same one the console uses.

Actually, you may need to worry a little. On Windows, the console encoding is
usually not the same as the system encoding found in the file.encoding
system property. In particular, the console uses a DOS character set such as
Cp850 that includes box drawing characters such as

 and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

, while the rest of the system
uses an encoding such as Cp1252 that maps these same code points to
alphabetic characters like È and Î. To be honest, the console is reliable enough
for ASCII, but anything beyond that requires a GUI.

However, there's more than one character set, and when transmitting files between systems and
programs, it pays to be specific. In the previous example, if we knew the file was going to be read on
a Macintosh, we might have specified that it be written with the MacRoman encoding:

Formatter formatter = new Formatter("data.txt", "MacRoman");

More likely, we'd just agree on both the sending and receiving ends to use some neutral format such
as ISO-8859-1 or UTF-8. In some cases, encoding details can be embedded in the file you write
(HTML, XML) or sent as out-of-band metadata (HTTP, SMTP). However, you do need some way of
specifying and communicating the character set in which any given document is written. When you're
writing to anything other than the console or a string, you should almost always specify an encoding
explicitly. Three of the Formatter constructors take character set names as their second argument:

public Formatter(String fileName, String characterSet)
 throws FileNotFoundException
public Formatter(File file , String characterSet)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws FileNotFoundException
public Formatter(OutputStream out, String characterSet)

I'll have more to say about character sets in Chapter 19 .

7.5.3. Locales

Character sets are not the only localization issue in the Formatter class. For instance, in France, a
decimal comma is used instead of a decimal point. Thus, a French user running the earlier degree
table example would want to see this:

0,0 0,0 0,0
1,0 0,0 1,1
2,0 0,0 2,2
3,0 0,1 3,3
4,0 0,1 4,4
...

Sometimes Java adapts the format to the local conventions automatically, and sometimes it doesn't.
For instance, if you want decimal commas, you have to write %,5.1f instead of %5.1f . The comma
after the percent sign is a flag that tells the formatter to use the local conventions. (It does not
actually say to use commas.) Java will now use commas only if the local conventions say to use
commas. On a typical U.S. English system, the local convention is a decimal point, and that's what
you'll get even if you format numbers as %,5.1f .

Of course, sometimes you don't want a program to adapt to the local conventions. For instance,
many companies use PCs adapted to local languages and customs but still need to produce English
documents that use American formats. Thus, as an optional third argument to the constructor, you
can pass a java.util.Locale object:

public Formatter(String fileName, String characterSet, Locale locale)
 throws FileNotFoundException
public Formatter(File file, String characterSet, Locale locale)
 throws FileNotFoundException
public Formatter(OutputStream out, String characterSet, Locale locale)

For example, to force the use of American conventions regardless of where a program is run, you'd
construct a Formatter like this:

Formatter formatter = new Formatter("data.txt", "ISO-8859-1", Locale.US);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also specify a locale when writing to an Appendable object or a StringBuilder :

public Formatter(Appendable out, Locale locale)
public Formatter(Locale locale)

Character encodings don't matter for these two cases because both Appendable and StringBuilder
are defined in terms of characters rather than bytesthere's no conversion to be done. However,
locales can change formatting even when the character set stays the same.

On occasion, you might wish to change the locale for one string you write but not for other strings (in
a mixed English/French document, perhaps). In that case, you can pass a locale as the first argument
to the format() method before the format string:

public Formatter format(Locale locale, String format, Object... args)

You can do the same thing with the printf() and format() methods in the PrintStream class:

public PrintStream printf(Locale locale, String format, Object... args)

Finally, I'll note that there's a getter method that returns the Formatter 's current locale:

public Locale locale()

7.5.4. Error Handling

The Formatter class handles errors in much the same way PrintStream does. That is, it sweeps them
under the rug and pretends they didn't happen. Notice how none of the methods mentioned so far
threw IOException ?

To find out if the Formatter has encountered an error, invoke its ioException() method:

public IOException ioException()

This returns the last IOException thrown by the underlying output stream. If there was more than
one, only the last one is available.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is marginally better than PrintStream 's boolean checkError() method. At least Formatter will
tell you what the problem was. However, it still won't tell you unless you ask. For simple cases in
which you don't have to write a lot of data before closing the Formatter and checking for any errors,
this may be adequate. However, programs that need to write for an extended period of time should
probably create strings using a Formatter but write them using a regular OutputStream . That way, if
an I/O error does happen, you'll find out soon enough to do something about it.

7.5.5. Format Specifiers

The Formatter class and the printf() method in PrintStream that depends on it support several
dozen format specifiers. In addition to integer and floating-point numbers, Formatter offers a wide
range of date and time formats. It also has a few general formatters that can display absolutely any
object or primitive data type.

All format specifiers begin with percent signs. The minimum format specifier is a percent sign followed
by an alphabetic conversion code. This code identifies what the corresponding argument is to be
formatted as. For instance, %f formats a number with a decimal point, %d formats it as a decimal
(base-10) integer, %o formats it as an octal integer, and %x formats it as a hexadecimal integer. None
of these specifiers changes what the number actually is; they're just different ways of creating a
string that represents the number.

To use a literal percent character in a format string, just double escape it. That is, %% is formatted as
% in the output.

To get the platform default line separator, use %n . (\n is always a linefeed
regardless of platform. %n may be a carriage return, a linefeed, or a carriage
return linefeed pair, depending on the platform.)

7.5.5.1. Integer conversions

Integer conversions can be applied to all integral types (specifically, byte , short , int , and long , as
well as the type-wrapper classes Byte , Short , Integer , Long , and also the java.math.BigInteger
class). These conversions are:

%d

A regular base-10 integer, such as 987

%o

A base-8 octal integer, such as 1733

%x

A base-16 lowercase hexadecimal integer, such as 3db

http://lib.ommolketab.ir
http://lib.ommolketab.ir

%X

A base-16 uppercase hexadecimal integer, such as 3DB

Example 7-1 prints the number 1023 in all four formats.

Example 7-1. Integer format specifiers

public class IntegerFormatExample {
 public static void main(String[] args) {
 int n = 1023;
 System.out.printf("Decimal: %d\n", n);
 System.out.printf("Octal: %o\n", n);
 System.out.printf("Lowercase hexadecimal: %x\n", n);
 System.out.printf("Uppercase hexadecimal: %X\n", n);
 }
}

Here's the output:

Decimal: 1023
Octal: 1777
Lowercase hexadecimal: 3ff
Uppercase hexadecimal: 3FF

7.5.5.2. Floating-point conversions

Floating-point conversions can be applied to all floating-point types: float and double , the type-
wrapper classes Float and Double , and java.math.BigDecimal . These conversions are:

%f

A regular base-10 decimal number, such as 3.141593

%e

A decimal number in scientific notation with a lowercase e, such as 3.141593e+00

%E

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A decimal number in scientific notation with an uppercase E, such as 3.141593E+00

%g

A decimal number formatted in either regular or scientific notation, depending on its size and
precision, with a lowercase e if scientific notation is used

%G

A decimal number formatted in either regular or scientific notation, depending on its size and
precision, with an uppercase E if scientific notation is used

%a

A lowercase hexadecimal floating-point number, such as 0x1.921fb54442d18p1

%A

An uppercase hexadecimal floating-point number, such as 0X1.921FB54442D18P1

Surprisingly, you cannot use these conversions on integer types such as int or
BigDecimal . Java will not automatically promote the integer type to a floating-
point type when formatting. If you try to use them, it throws an
IllegalFormatConversionException .

Example 7-2 prints in all of these formats.

Example 7-2. Floating-point format specifiers

public class FloatingPointFormatExample {
 public static void main(String[] args) {
 System.out.printf("Decimal: %f\n", Math.PI);
 System.out.printf("Scientific notation: %e\n", Math.PI);
 System.out.printf("Scientific notation: %E\n", Math.PI);
 System.out.printf("Decimal/Scientific: %g\n", Math.PI);
 System.out.printf("Decimal/Scientific: %G\n", Math.PI);
 System.out.printf("Lowercase Hexadecimal: %a\n", Math.PI);
 System.out.printf("Uppercase Hexadecimal: %A\n", Math.PI);
 }
}

Here's the output:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal: 3.141593
Scientific notation: 3.141593e+00
Scientific notation: 3.141593E+00
Decimal/Scientific: 3.14159
Decimal/Scientific: 3.14159
Lowercase Hexadecimal: 0x1.921fb54442d18p1
Uppercase Hexadecimal: 0X1.921FB54442D18P1

7.5.5.3. Date and time conversions

Date and time conversions can be applied to java.util.Calendar and java.util.Date objects. They
can also be applied to long and Long values, in which case the value is assumed to be the number of
milliseconds since midnight, January 1, 1970. All date and time conversions begin with a t for
lowercase or a T for uppercase. These conversions are:

%tH /% TH

Two-digit hour using a 24-hour clock, ranging from 00 to 23

%tI / % TI

Two-digit hour using a 12-hour clock, ranging from 01 to 12

%tk / %Tk

One- or two-digit hour using a 24-hour clock, ranging from 0 to 23

%tl / %Tl

One- or two-digit hour using a 12-hour clock, ranging from 1 to 12

%tM / %TM

Two-digit minutes, ranging from 00 to 59

%tS / %TS

Two-digit seconds, ranging from 00 to 60 (60 is used for leap seconds)

%tL / %TL

Three-digit milliseconds, ranging from 000 to 999

http://lib.ommolketab.ir
http://lib.ommolketab.ir

%tN / %TN

Nine-digit nanoseconds, ranging from 000000000 to 999999999

%tp / %Tp

Locale-specific morning/afternoon indicator, such as am or PM

%tz / %Tz

RFC 822 numeric time zone indicator as an offset from UMT (for instance, Eastern Standard
Time is -0500)

%tZ / %TZ

An abbreviation for the time zone, such as edt or EST

%ts / %Ts

Seconds elapsed since midnight, January 1, 1970, Greenwich Mean Time

%TQ

Milliseconds elapsed since midnight, January 1, 1970, Greenwich Mean Time

%tB / %TB

Localized month, such as "January" or "JANVIER"

%tb / %Tb

Localized, abbreviated month, such as "Jan" or "JAN"

%th / %Th

Localized, abbreviated month, such as "Jan" or "JAN" (yes, %tb and %th are synonyms; I have
no idea why)

%tA / %TA

Localized day name, such as "Tuesday" or "MARDI"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

%ta / %Ta

Localized, abbreviated day, such as "Tue" or "TUE"

%tC / %TC

Two-digit century, ranging from 00 to 99

%tY / %TY

Year with at least four digits, ranging from 0001 to the indefinite future

%ty / %Ty

Two-digit year, ranging from 00 to 99

%tj / %Tj

Three-digit day of the year, ranging from 001 to 366

%tm / %Tm

Two-digit month, ranging from 01 to 13 (13 is used in some non-Gregorian lunar calendars)

%td / %Td

Two-digit day of the month, ranging from 01 to 31

%te / %Te

One- or two-digit day of the month, ranging from 1 to 31

%tR / %TR

Hours and minutes on a 24-hour clock, such as 03:23 or 14:07

%tT / %TT

Hours, minutes, and seconds on a 24-hour clock, such as 03:23:17 or 14:07:00

%tr / %Tr

Hours, minutes, and seconds on a 12-hour clock, such as 03:23:17 am or 02:07:00 PM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

%tD / %TD

Date in the form month/day/year, such as 05/12/06

%tF / %TF

ISO 8601 standard date in the form year-month-day, such as 2006-05-12

%tc / %Tc

Date and time formatted like so: "Fri May 12 12:27:30 EDT 2006"

Example 7-3 prints the current date and time in all of these formats.

Example 7-3. Date format specifiers

import java.util.Date;
public class DateFormatExample {
 public static void main(String[] args) {
 Date now = new Date();
 System.out.printf("two-digit hour on a 24-hour clock: %tH/%TH\n", now, now);
 System.out.printf("two-digit hour on a 12-hour clock: %tI/%TI\n", now, now);
 System.out.printf("one- or two-digit hour on a 24-hour clock: %tk/%Tk\n",
 now, now);
 System.out.printf("one- or two-digit hour on a 12-hour clock: %tl/%Tl\n", now,
 now);
 System.out.printf("two-digit minutes ranging from 00 to 59: %tH/%TH\n",
 now, now);
 System.out.printf("two-digit seconds ranging from 00 to 60 : %tS/%TS\n",
 now, now);
 System.out.printf("milliseconds: %tL/%TL\n", now, now);
 System.out.printf("nanoseconds: %tN/%TN\n", now, now);
 System.out.printf("locale-specific morning/afternoon indicator: %tp/%Tp\n",
 now, now);
 System.out.printf("RFC 822 numeric time zone indicator: %tz/%Tz\n", now, now);
 System.out.printf("time zone abbreviation: %tZ/%TZ\n", now, now);
 System.out.printf("seconds since the epoch: %ts/%Ts\n", now, now);
 System.out.printf("milliseconds since the epoch: %TQ\n", now);
 System.out.printf("localized month name: %tB/%TB\n", now, now);
 System.out.printf("localized, abbreviated month: %tb/%Tb\n", now, now);
 System.out.printf("localized, abbreviated month: %th/%Th\n", now, now);
 System.out.printf("localized day name: %tA/%TA\n", now, now);
 System.out.printf("localized, abbreviated day: %ta/%Ta\n", now, now);
 System.out.printf("two-digit century: %tC/%TC\n", now, now);
 System.out.printf("four-digit year: %tY/%TY\n", now, now);
 System.out.printf("two-digit year: %ty/%Ty\n", now, now);
 System.out.printf("three-digit day of the year: %tj/%Tj\n", now, now);
 System.out.printf("two-digit month: %tm/%Tm\n", now, now);
 System.out.printf("two-digit day of the month: %td/%Td\n", now, now);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.printf("one- or two-digit day of the month: %te/%Te\n", now, now);
 System.out.printf("hours and minutes on a 24-hour clock: %tR/%TR\n", now, now);
 System.out.printf("hours, minutes, and seconds on a 24-hour clock: %tT/%TT\n",
 now, now);
 System.out.printf("hours, minutes, and seconds on a 12-hour clock: %tr/%Tr\n",
 now, now);
 System.out.printf("month/day/year: %tD/%TD\n", now, now);
 System.out.printf("ISO 8601 standard date: %tF/%TF\n", now, now);
 System.out.printf("Unix date format: %tc/%Tc\n", now, now);
 }
}

Here's the output when this was run on Friday, June 24, 2005 at 6:43 PM EDT:

two-digit hour on a 24-hour clock: 18/18
two-digit hour on a 12-hour clock: 06/06
one- or two-digit hour on a 24-hour clock: 18/18
one- or two-digit hour on a 12-hour clock: 6/6
two-digit minutes ranging from 00 to 59: 18/18
two-digit seconds ranging from 00 to 60 : 50/50
milliseconds: 859/859
nanoseconds: 859000000/859000000
locale-specific morning/afternoon indicator: pm/PM
RFC 822 numeric time zone indicator: -0500/-0500
time zone abbreviation: EDT/EDT
seconds since the epoch: 1119653030/1119653030
milliseconds since the epoch: 1119653030859
localized month name: June/JUNE
localized, abbreviated month: Jun/JUN
localized, abbreviated month: Jun/JUN
localized day name: Friday/FRIDAY
localized, abbreviated day: Fri/FRI
two-digit century: 20/20
four-digit year: 2005/2005
two-digit year: 05/05
three-digit day of the year: 175/175
two-digit month: 06/06
two-digit day of the month: 24/24
one- or two-digit day of the month: 24/24
hours and minutes on a 24-hour clock: 18:43/18:43
hours, minutes, and seconds on a 24-hour clock: 18:43:50/18:43:50
hours, minutes, and seconds on a 12-hour clock: 06:43:50 PM/06:43:50 PM
month/day/year: 06/24/05/06/24/05
ISO 8601 standard date: 2005-06-24/2005-06-24
Unix date format: Fri Jun 24 18:43:50 EDT 2005/FRI JUN 24 18:43:50 EDT 2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5.5.4. Character conversions

Character conversions can be applied to char and java.lang.Character objects. They can also be
applied to byte , short , int , and the equivalent type-wrapper objects if the integer falls into the
range of Unicode code points (0 to 0x10FFFF). These conversions are:

%c

A lowercase Unicode character

%C

An uppercase Unicode character

7.5.5.5. Boolean conversions

Boolean conversions can be applied to boolean primitive values and java.lang.Boolean objects. They
can also be applied to all object types, in which case they're considered to be true if the object is
nonnull and false if it is null. All other primitive types are considered to be true, regardless of value.
These conversions are:

%b

"true" or "false"

%B

"TRUE" or "FALSE"

These conversions are not localized. Even in France, you'll see "true" and "false" instead of "vrai" and
"faux."

7.5.5.6. General conversions

There are two more conversions that can be applied to any object and also to primitive types after
autoboxing. These are:

%h/%H

The lowercase/uppercase hexadecimal form of the object's hashCode , or "null" or "NULL" if the
object is null.

%s/%S

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The result of invoking the object's formatTo() method if it implements Formattable ;
otherwise, the result of invoking its toString() method, or "null" if the object is null. With %S ,
this value is then converted to uppercase.

Example 7-4 prints a URL (which does not implement Formattable) in all of these formats.

Example 7-4. General format specifiers

import java.net.*;
public class GeneralFormatExample {
 public static void main(String[] args) throws MalformedURLException {
 URL u = new URL("http://www.example.com/Article.html");
 System.out.printf("boolean: %b\n", u);
 System.out.printf("BOOLEAN: %B\n", u);
 System.out.printf("hashcode: %h\n", u);
 System.out.printf("HASHCODE: %H\n", u);
 System.out.printf("string: %s\n", u);
 System.out.printf("STRING: %S\n", u);
 }
}

Here's the output from running this on a U.S.-localized system:

boolean: true
BOOLEAN: TRUE
hashcode: 79d2cef0
HASHCODE: 79D2CEF0
string: http://www.example.com/Article.html
STRING: HTTP://WWW.EXAMPLE.COM/ARTICLE.HTML

Be cautious about uppercasing. URL path components and many other things are case sensitive.
HTTP://WWW.EXAMPLE.ORG/ARTICLE.HTML is not the same URL as
http://www.example.org/Article.html .

7.5.6. Format Modifiers

In addition to a conversion code, the format string can also specify a width, a precision, the argument
it's replaced with, and any of several special-purpose flags. The most general format follows this
pattern:

%[argument_index$][flags][width][.precision]conversion

http://www.example.org/Article.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is a quick definition of those parameters. More detail on each will follow:

argument_index

The number of the argument with which to replace this tag

flags

Indicators of various formatting options

width

The minimum number of characters with which to format the replacement value

precision

The number of characters after the decimal point; alternately, the maximum number of
characters in the formatted string

These four options control exactly how a string is formatted as tags are replaced by values.

7.5.6.1. Argument index

The argument index is specified when the order of the arguments does not match the order of the
tags. For example:

out.printf("There are %2$f centimeters in %1$f feet.", feet, 2.54 * feet * 12);

In this case, indexes start with 1 rather than 0, which is unusual for Java. (The format string counts
as argument 0.) If you reference a nonexistent argument, printf() throws a
MissingFormatArgumentException .

The argument index is particularly useful when you want to repeat the same value more than once in
a string, perhaps formatted differently each time. For example:

System.out.printf("Hexadecimal: %1$H Decimal: %1$f", Math.PI);

You can also repeat the previous argument by specifying a less than sigh (<) rather than an integer
and a dollar sign ($). For instance, this statement is equivalent to the previous statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.out.printf("Hexadecimal: %1$H Decimal: %<f", Math.PI);

7.5.6.2. Flags

Flags indicate a variety of formatting options. Not all flags apply to all types. Using a flag to format a
type that does not apply throws a FormatFlagsConversionMismatchException , a subclass of
IllegalFormatException . However, you can combine multiple flags that do apply. Table 7-1
summarizes these flags.

Table 7-1. Format flags

Flag Signifies Applies to

- Left-justify. All

Alternate form.
General, integer,
floating point

+
Include a sign even if positive. (Normally, only negative numbers have
signs.)

Integer, floating
point

space
Add a leading space to positive numbers. (This is where the sign would
be and helps line up positive and negative numbers.)

Integer, floating
point

0 Pad with zeros instead of spaces.
Integer, floating
point

, Use the locale-specific grouping separator instead of a period.
Integer, floating
point

(Use instead of a minus sign to indicate negative numbers.
Integer, floating
point

For example, this statement prints a double formatted as a 20-character decimal padded with zeros,
using a locale-specific grouping separator and parentheses for negative numbers:

System.out.printf("%(+0,20f", -Math.PI);

The result is (00000000003.141593) .

The relative order of the flags does not matter. This statement prints the same thing:

System.out.printf("%,0+(20f", -Math.PI);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5.6.3. Width

Each of the various conversions may be preceded by an optional width. This sets the minimum
number of characters to print. For example, if you format an integer using the code %5d , it will
always be printed at least five characters wide. If the integer has fewer than five digits, extra spaces
are added on the left-hand side to make up five characters. If it has five or more digits, no extra
spaces are added.

The entire number is always printed. If the argument is larger than can fit in
five places, all of it will be printed anyway, and subsequent columns may no
longer line up properly.

For example, this statement prints five mathematical constants, each 12 places wide:

System.out.printf("%12f %12f %12f %12f %12f",
 Math.PI, Math.E, 1.0, 0.0, Math.sqrt(2));

By default, extra places are filled with space characters to right-justify the numbers. However, flags
can be used to fill extra places with zeros or to left-justify the numbers instead.

This is the output:

3.141593 2.718282 1.000000 0.000000 1.414214

Width is not limited to numeric types. You can specify a width for any format tag: date, time,
boolean, and so on.

7.5.6.4. Precision

Floating-point types (%e , %E , %f , %g , and %G) may also specify a precision in the form .3 or .5 . The
precision comes after the width but before the conversion code. This indicates how many places are
used after the decimal point. For example, this statement formats the same five constants 15 places
wide, with 3 places after the decimal point:

System.out.printf("%15.3f %15.3f %15.3f %15.3f %15.3f",
 Math.PI, Math.E, 1.0, 0.0, Math.sqrt(2));

This is the output:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.142 2.718 1.000 0.000 1.414

A precision can also be applied to strings and other nonnumeric, nondate types. In these cases, it
specifies the maximum number of characters to write to the output.

Precision cannot be set for integral types, however. Attempting to do so throws an
IllegalFormatPrecisionException . As usual, this is a subclass of IllegalFormatException and a
runtime exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6. Formattable

You can format your own custom classes by implementing the Formattable interface. In format
strings, you use %s and %S to indicate where you want your custom class instances placed. The
default formatting for objects matched to %s and %S is simply whatever is returned by toString().
However, more often than not, this is just a debugging string not really meant for display to end
users. If your class implements the java.util.Formattable interface, Java will use the return value of
the object's formatTo() method instead. That method has this signature:

public void formatTo(Formatter formatter, int flags, int width, int precision)

The four arguments are:

formatter

The Formatter that called formatTo. More importantly, this is the object onto which the output
will be written. Your method will invoke this object's format() methods to write to the
underlying stream.

flags

A bitmasked constant providing the values of various flags set for this operation: ̂ , -, #, etc.
You interpret these with the FormattableFlags class.

width

The minimum number of characters your method must return. If the returned value has fewer
characters than the specified minimum, it will be padded with spaces.

precision

The maximum number of characters your method should return.

Earlier, I complained that the uppercasing in the URL class was too naïve because, when formatted, it
changed the case of case-sensitive parts such as the path and the query string as well as case-
insensitive parts such as the scheme and the hostname. There's another problem with the naïve
uppercasing: the scheme and hostnames are defined in ASCII, but uppercasing isn't always. In
particular, uppercasing the letter i in Turkey produces the capital dotted I. rather than the usual
undotted capital I. For instance, www.microsoft.com uppercases as WWW.MI.CROSOFT.COM, which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will not resolve.

Example 7-5 demonstrates a FormattableURL class that uppercases only those parts of a URL that
can be uppercased without changing its meaning. Ideally this would be a subclass of java.net.URL,
but since URL is final, delegation is used instead. In essence, FormattableURL is a wrapper around a
URL object that just provides the formatTo() method.

Example 7-5. Implementing Formattable

import java.util.*;
import java.net.*;

public class FormattableURL implements Formattable {
 private URL delegate;
 public FormattableURL(URL url) {
 this.delegate = url;
 }
 public void formatTo(Formatter formatter, int flags, int width,
 int precision) {
 if (precision < -1) {
 throw new IllegalFormatPrecisionException(precision);
 }
 if (width < -1) {
 throw new IllegalFormatWidthException(width);
 }
 if (precision > width) {
 throw new IllegalFormatPrecisionException(precision);
 }
 // Check to see if we've been asked to use any flags we don't interpret
 int recognizedFlags
 = FormattableFlags.UPPERCASE | FormattableFlags.LEFT_JUSTIFY;
 boolean unsupportedFlags = ((~recognizedFlags) & flags) != 0;
 if (unsupportedFlags) {
 // We should really pass the flags to this constructor.
 // However, Java doesn't offer any reasonable way to get these.
 throw new IllegalFormatFlagsException("#");
 }
 boolean upperCase = (flags & FormattableFlags.UPPERCASE) != 0;
 StringBuffer sb = new StringBuffer();
 String scheme = delegate.getProtocol();
 if (upperCase && scheme != null) {
 scheme = scheme.toUpperCase(Locale.ENGLISH);
 }
 String hostname = delegate.getHost();
 if (upperCase && hostname != null) {
 hostname = hostname.toUpperCase(Locale.ENGLISH);
 }
 String userInfo = delegate.getUserInfo();
 int port = delegate.getPort();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String path = delegate.getPath();
 String query = delegate.getQuery();
 String fragment = delegate.getRef();

 if (scheme != null) {
 sb.append(scheme);
 sb.append("://");
 }
 if (userInfo != null) {
 sb.append(userInfo);
 sb.append("@");
 }
 if (hostname != null) {
 sb.append(hostname);
 }
 if (port != -1) {
 sb.append(':');
 sb.append(port);
 }
 if (path != null) {
 sb.append(path);
 }
 if (query != null) {
 sb.append('?');
 sb.append(query);
 }
 if (fragment != null) {
 sb.append('#');
 sb.append(fragment);
 }
 boolean leftJustify = (flags & FormattableFlags.LEFT_JUSTIFY) != 0;
 // Truncate on the right if necessary
 if (precision < sb.length()) {
 sb.setLength(precision);
 }
 else {// Pad with spaces if necessary
 while (sb.length() < width) {
 if (leftJustify) sb.append(' ');
 else sb.insert(0, ' ');
 }
 }
 formatter.format(sb.toString());
 }
}

The formatTo() method first checks to see if the values passed make sensethat is, that the width is
greater than or equal to the precision, and both are greater than or equal to -1. (-1 simply indicates
that these values weren't set.) Assuming these checks pass, it splits the delegate URL into its
component parts and uppercases the two case-insensitive parts (the scheme and the hostname) if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the uppercase flag is set. It then appends all the other parts without changing their cases at all.
Finally, if the precision is less than the string's length, the formatted string is truncated on the right.
If the string's length is less than the specified width, the string is padded with spaces: on the right by
default but on the left if the left-justified flag is set. If any other flags are present, an
IllegalFormatFlagsException is thrown. Thus, it becomes possible to format a URL like this:

URL url = new URL("http://www.example.org/index.html?name=value#Fred");
System.out.printf("%60.40S\n", new FormattableURL(url));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Data Streams
Data streams read and write strings, integers, floating-point numbers, and other data that's
commonly presented at a higher level than mere bytes. The java.io.DataInputStream and
java.io.DataOutputStream classes read and write the primitive Java data types (boolean, int,
double, etc.) and strings in a particular, well-defined, platform-independent format. Since
DataInputStream and DataOutputStream use the same formats, they're complementary. What a data
output stream writes, a data input stream can read and vice versa. These classes are especially
useful when you need to move data between platforms that may use different native formats for
integers or floating-point numbers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. The Data Stream Classes

The java.io.DataInputStream and java.io.DataOutputStream classes are subclasses of
FilterInputStream and FilterOutputStream, respectively.

public class DataInputStream extends FilterInputStream implements DataInput
public class DataOutputStream extends FilterOutputStream
 implements DataOutput

They have all the usual methods you expect in input and output stream classes, such as read(),
write(), flush(), available(), skip(), close(), markSupported(), and reset(). (Data input
streams support marking if, and only if, their underlying input stream supports marking.) However,
the real purpose of DataInputStream and DataOutputStream is not to read and write raw bytes using
the standard input and output stream methods. It's to read and interpret multibyte data like ints,
floats, doubles, and chars.

8.1.1. The DataInput and DataOutput Interfaces

The java.io.DataInput interface declares 15 methods that read various kinds of data:

public boolean readBoolean() throws IOException
public byte readByte() throws IOException
public int readUnsignedByte() throws IOException
public short readShort() throws IOException
public int readUnsignedShort() throws IOException
public char readChar() throws IOException
public int readInt() throws IOException
public long readLong() throws IOException
public float readFloat() throws IOException
public double readDouble() throws IOException
public String readLine() throws IOException
public String readUTF() throws IOException
public void readFully(byte[] data) throws IOException
public void readFully(byte[] data, int offset, int length) throws IOException
public int skipBytes(int n) throws IOException

These methods are all available from the DataInputStream class and any other class that implements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataInput. (In the core Java API, this includes DataInputStream, ObjectInputStream,
RandomAccessFile, and several stream classes in the Java Image I/O API.)

Likewise, the java.io.DataOutput interface declares 14 methods, mostly complementary to those in
DataInput:

public void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length)
 throws IOException
public void writeBoolean(boolean v) throws IOException
public void writeByte(int b) throws IOException
public void writeShort(int s) throws IOException
public void writeChar(int c) throws IOException
public void writeInt(int i) throws IOException
public void writeLong(long l) throws IOException
public void writeFloat(float f) throws IOException
public void writeDouble(double d) throws IOException
public void writeBytes(String s) throws IOException
public void writeChars(String s) throws IOException
public void writeUTF(String s) throws IOException

The writeBytes() and writeChars() methods are not matched by readBytes() and readChars()
methods in DataInput. writeBytes() and writeChars() only write the actual bytes and chars. They
do not write the length of the string passed as an argument to writeBytes() and writeChars(), so
the bytes and chars cannot easily be reassembled into a string.

Any class that implements these interfaces must use the binary data format summarized in Table 8-
1.

Table 8-1. Formats used by DataInput and DataOutput

Type Written by Read by Format

boolean
writeBoolean(boolean
b)

readBoolean() One byte, 0 if false, 1 if true

byte writeByte(int b) readByte() One byte, two's complement

byte

array

write(byte[] data)

write(byte[]

data, int offset, int
length)

readFully(byte[] data)

readFully(byte[] data, int
offset, int length)

The bytes in the order they appear in
the array or subarray

short writeShort(int s) readShort()
Two bytes, two's complement, big-
endian

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Written by Read by Format

char writeChar(int c) readChar() Two bytes, unsigned, big-endian

int writeInt(int i) readInt()
Four bytes, two's complement, big-
endian

long writeLong(long l) readLong()
Eight bytes, two's complement, big-
endian

float writeFloat(float f) readFloat() Four bytes, IEEE 754, big-endian

double writeDouble(double d) readDouble() Eight bytes, IEEE 754, big-endian

unsigned
byte

N/A readUnsignedByte() One unsigned byte

unsigned
short

N/A readUnsignedShort() Two bytes, big-endian, unsigned

String writeBytes(String s) N/A
The low-order byte of each char in
the string from first to last

String writeChars(String s) N/A
Both bytes of each char in the string
from first to last

String writeUTF(String s) readUTF()

A signed short giving the number of
bytes in the encoded string, followed
by a modified UTF-8 encoding of the
string

8.1.2. Constructors

The DataInputStream and DataOutputStream classes have exactly the constructors you would expect:

public DataInputStream(InputStream in)
public DataOutputStream(OutputStream out)

These constructors chain the data streams to the underlying streams passed as arguments. For
example, to read formatted data from a file called data.txt and write formatted data to output.dat,
you would create the two streams dis and dos:

DataInputStream dis = new DataInputStream(new FileInputStream("data.txt"));
DataOutputStream dos = new DataOutputStream(
 new FileOutputStream("output.dat")
);

char writeChar(int c) readChar() Two bytes, unsigned, big-endian

int writeInt(int i) readInt()
Four bytes, two's complement, big-
endian

long writeLong(long l) readLong()
Eight bytes, two's complement, big-
endian

float writeFloat(float f) readFloat() Four bytes, IEEE 754, big-endian

double writeDouble(double d) readDouble() Eight bytes, IEEE 754, big-endian

unsigned
byte

N/A readUnsignedByte() One unsigned byte

unsigned
short

N/A readUnsignedShort() Two bytes, big-endian, unsigned

String writeBytes(String s) N/A
The low-order byte of each char in
the string from first to last

String writeChars(String s) N/A
Both bytes of each char in the string
from first to last

String writeUTF(String s) readUTF()

A signed short giving the number of
bytes in the encoded string, followed
by a modified UTF-8 encoding of the
string

8.1.2. Constructors

The DataInputStream and DataOutputStream classes have exactly the constructors you would expect:

public DataInputStream(InputStream in)
public DataOutputStream(OutputStream out)

These constructors chain the data streams to the underlying streams passed as arguments. For
example, to read formatted data from a file called data.txt and write formatted data to output.dat,
you would create the two streams dis and dos:

DataInputStream dis = new DataInputStream(new FileInputStream("data.txt"));
DataOutputStream dos = new DataOutputStream(
 new FileOutputStream("output.dat")
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Integers

The DataOutputStream class has methods for writing all of Java's primitive integer data types: byte,
short, int, and long. The DataInputStream class has methods to read these types. It also has
methods for reading two integer data types not directly supported by Java or the DataOutputStream
class: the unsigned byte and the unsigned int.

8.2.1. Integer Formats

While Java's platform independence guarantees that you don't have to worry about the precise data
formats when working exclusively in Java, you frequently need to read data created by a program
written in another language. Similarly, it's not unusual to have to write data that will be read by a
program written in a different language. For example, most Java network clients talk to servers
written in other languages, and most Java network servers talk to clients written in other languages.
You cannot naïvely assume that the data format Java uses is a data format other programs will
understand; you must take care to understand and recognize the data formats being used.

Although other schemes are possible, almost all modern computers have standardized on binary
arithmetic performed on integers composed of an integral number of 8-bit bytes. Furthermore,
they've standardized on two's complement arithmetic for signed numbers. In two's complement
arithmetic, the most significant bit is 1 for a negative number and 0 for a positive number. The
absolute value of a negative number is calculated by taking the complement of the number and
adding 1. In Java terms, this means (-n == ~n + 1) is true where n is a negative int.

Regrettably, this is about all that's been standardized. One big difference between computer
architectures is the size of an int. Probably the majority of modern computers still use 4-byte
integers that can hold a value between -2,147,483,648 and 2,147,483,647. However, some systems
are moving to 64-bit architectures where the native integer ranges from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and takes 8 bytes; and many older and
smaller systems use 16-bit integers with a far narrower range (from -32,768 to 32,767). Exactly how
many bytes a C compiler uses for each int is platform-dependent, which is one of many reasons C
code isn't as portable as one might wish. The sizes of C's short and long are even less predictable
and may or may not be the same as the size of a C int. Java always uses a 2-byte short, a 4-byte
int, and an 8-byte long, and this is one of the reasons Java code is more portable than C code.
However, you must be aware of varying integer widths when your Java code needs to communicate
binary numbers with programs written in other languages.

C compilers also allow various unsigned types. For example, an unsigned byte is a binary number
between 0 and 255; an unsigned 2-byte integer is a number between 0 and 65,535; an unsigned 4-
byte integer is a number between 0 and 4,294,967,295. Java doesn't have any unsigned numeric
data types (unless you count char), but the DataInputStream class does provide two methods to read
unsigned bytes and unsigned shorts.

Perhaps worst of all, modern computers are split almost down the middle between those that use a
big-endian and those that use a little-endian ordering of the bytes in an integer. In a little-endian

http://lib.ommolketab.ir
http://lib.ommolketab.ir

design, used on X86 architectures, the most significant byte is at the highest address in memory. On
the other hand, on a big-endian system, the most significant byte is at the lowest address in
memory.

For example, consider the number 1,108,836,360. In hexadecimal, this number is written as
0x42178008. On a big-endian system, the bytes are ordered much as they are in a hex literalthat is,
42, 17, 80, 08. On the other hand, on a little-endian system, this order is reversed: 08, 80, 17, 42. If
1,108,836,360 is written into a file on a little-endian system and then read on a big-endian system
without any special treatment, it comes out as 0x08801742, or 142,612,29not the same thing at all.

Java uses big-endian integers exclusively. Data input streams read and data output streams write
big-endian integers. Most Internet protocols that rely on binary numbers, such as the time protocol,
implicitly assume "network byte order," which is a fancy way of saying "big-endian." And finally,
almost all computers manufactured today, except those based on the X86 architecture, use big-
endian byte orders, so X86 is really the odd one out. However, X86 is the 1000-pound gorilla of
computer architectures, so it's impossible to ignore it or the data formats it supports. Later in this
chapter, I'll develop a class for reading little-endian data.

8.2.2. The Char Format

Unicode characters (more specifically, the UTF-16 code points used for Java chars) are two bytes
long and are interpreted as an unsigned number between 0 and 65,535. This means they have an
"endianness" problem too. The Unicode standard specifically does not require a particular endianness
of text written in Unicode; both big- and little-endian encodings are allowed. The Unicode standard
does suggest that character 65,279 (0xFEFF in hex) be placed at the beginning of each file of Unicode
text. Thus, by reading the first character, you can determine the endianness of the file and take
appropriate action. For example, if you're reading a Unicode file containing little-endian data using
big-endian methods, the first character will appear as 0xFFFE (65,534), signaling that something is
wrong. Java's data stream classes always read and write chars and strings in big-endian order.

8.2.3. Writing Integers

The DataOutputStream class has the usual three write() methods you'll find in any output stream
class:

public void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length)
 throws IOException

These methods behave exactly as they do in the superclass, so I won't discuss them further here.

The DataOutputStream class also declares the following void methods that write signed integer types
onto its underlying output stream:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public final void writeByte(int b) throws IOException
public final void writeShort(int s) throws IOException
public final void writeInt(int i) throws IOException
public final void writeLong(long l) throws IOException

Because Java doesn't fully support the byte or short types, the writeByte() and writeShort()
methods each take an int as an argument. The excess bytes in the int are ignored before the byte
or short is written. Thus writeByte() writes only the low-order byte of its argument. writeShort()
writes only the low-order two bytes of its argument, higher-order byte firstthat is, big-endian order.
The writeInt() and writeLong() methods write all of the bytes of their arguments in big-endian
order. These methods can throw IOExceptions if the underlying stream throws an IOException.

Example 8-1 fills a file called 1000.dat with the integers between 1 and 1000. This filename is used to
construct a FileOutputStream. This stream is then chained to a DataOutputStream whose writeInt()
method writes the data into the file.

Example 8-1. One thousand ints

import java.io.*;
public class File1000 {
 public static void main(String args[]) {
 DataOutputStream dos = null;
 try {
 dos = new DataOutputStream(new FileOutputStream("1000.dat"));
 for (int i = 1; i <= 1000; i++) {
 dos.writeInt(i);
 }
 }
 catch (IOException ex) {System.err.println(ex);}
 finally {
 try { if (dos != null) dos.close(); }
 catch (IOException ex) { /* Not much else we can do */ }
 }
 }
}

Let me emphasize that the numbers written by this program or by any other data output stream are
binary numbers. They are not text strings such as 1, 2, 3, 4, 5, ...999, 1000. If you try to open
1000.dat with a text editor, you'll see a lot of gibberish or an error message. The data this program
writes is meant to be read by other programs, not by people.

8.2.4. Reading Integers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataInputStream has the usual three read() methods it inherits from its superclass; these methods
read a byte and return an int. They behave exactly as they do in the superclass, so I won't discuss
them further:

public int read() throws IOException
public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

The DataInputStream class declares the following methods that return signed integer types:

public final byte readByte() throws IOException
public final short readShort() throws IOException
public final char readChar() throws IOException
public final int readInt() throws IOException
public final long readLong() throws IOException

Each of the integer read() methods read the necessary number of bytes and convert them into the
appropriate integer type. readByte() reads a single byte and returns a signed byte between -128
and 127. readShort() reads two bytes and returns a short between -32,768 and 32,767. readInt(
) reads 4 bytes and returns an int between -2,147,483,648 and 2,147,483,647. readLong() reads
8 bytes and returns a long between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.
All numbers are read as big-endian.

-1 is a valid return value for these methods. Therefore, if the end of stream is encountered while
reading, a java.io.EOFException, which is a subclass of java.io.IOException, is thrown. An
EOFException can be thrown while more bytes of data remain in the stream. For example, readInt()
reads 4 bytes. If only two bytes are left in the stream, those two bytes are read and the
EOFException is thrown. However, at this point, those two bytes are lost. You can't go back and
reread those two bytes as a short. (If the underlying stream supports marking and resetting, you
could mark before each read and reset on an EOFException.)

The DataInputStream class also has two methods that read unsigned bytes and shorts:

public final int readUnsignedByte() throws IOException
public final int readUnsignedShort() throws IOException

Since Java has no unsigned byte or unsigned short data type, both of these methods return an int.
readUnsignedByte() returns an int between 0 and 255, and readUnsignedShort() returns an int
between 0 and 65,535. However, both methods still indicate end of stream with an EOFException
rather than by returning -1.

Example 8-2 interprets a file as 4-byte signed integers, reads them, and prints them out. You might
use this to read the output of Example 8-1. However, it is not necessarily the case that the program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or person who created the file actually intended it to contain 32-bit, two's complement integers. The
file contains bytes, and these bytes may be interpreted as ints, with the possible exception of one to
three bytes at the end of the file (if the file's length is not an even multiple of 4 bytes). Therefore, it's
important to be very careful about what you read.

Example 8-2. The IntReader program

import java.io.*;
public class IntReader {
 public static void main(String[] args) throws IOException {
 DataInputStream din = null;
 try {
 FileInputStream fin = new FileInputStream(args[0]);
 System.out.println("-----------" + args[0] + "-----------");
 din = new DataInputStream(fin);
 while (true) {
 int theNumber = din.readInt();
 System.out.println(theNumber);
 } // end while
 } // end try
 catch (EOFException ex) {
 // normal termination
 din.close();
 }
 catch (IOException ex) {
 // abnormal termination
 System.err.println(ex);
 }
 } // end main
} // end IntReader

This program opens the files named on the command line with a file input stream. The file input
stream is chained to a data input stream, which reads successive integers until an IOException
occurs. IntReader does not print an error message in the event of an EOFException since that now
indicates normal termination.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Floating-Point Numbers

Java understands two floating-point number formats, both specified by the IEEE 754 standard. Floats
are stored in 4 bytes with a 1-bit sign, a 24-bit mantissa, and an 8-bit exponent. Float values range
from 1.40129846432481707 x 10-45 to 3.40282346638528860 x 1038, either positive or negative.
Doubles take up 8 bytes with a 1-bit sign, 53-bit mantissa, and 11-bit exponent. This gives them a
range of 4.94065645841246544 x 10-324 to 1.79769313486231570 x 10308, either positive or
negative. Both floats and doubles also have representations of positive and negative zero, positive
and negative infinity, and not a number (NaN).

Astute readers will notice that the number of bits given for floats and doubles
adds up to 33 and 65 bits, respectivelyone too many for the width of the
number. The first bit of the mantissa of a nonzero number is assumed to be 1.
With this trick, it is unnecessary to include the first bit of the mantissa. Thus,
an extra bit of precision is gained for free.

These formats are supported by most modern RISC architectures and by all current X86 processors.
Nowadays the only chips that don't natively support this format are a few embedded processors.

The DataInputStream class reads and the DataOutputStream class writes floating-point numbers of
either 4 or 8 bytes in length, as specified in the IEEE 754 standard. They do not support the 10-byte
and longer long double, extended double, and double double formats supported by some
architectures and compilers. If you have to read floating-point data written in some format other
than basic IEEE 754 float and double, you'll need to write your own class to convert the format to 4-
or 8-byte IEEE 754.

8.3.1. Writing Floating-Point Numbers

Two methods in the DataOutputStream class write floating-point numbers, writeFloat() and
writeDouble() :

public final void writeFloat(float f) throws IOException
public final void writeDouble(double d) throws IOException

Both of these methods throw an IOException if something goes wrong with the underlying stream.
Otherwise, they're fairly innocuous and can convert any float or double to bytes and write it on the
underlying stream.

Example 8-3 fills a file called roots.dat with the square roots of the numbers 0 to 1000. First, a
FileOutputStream is opened to roots.dat. This stream is chained to a DataOutputStream, whose

http://lib.ommolketab.ir
http://lib.ommolketab.ir

writeDouble() method writes the data into the file.

Example 8-3. Writing doubles with a DataOutputStream

import java.io.*;
public class RootsFile {
 public static void main(String[] args) throws IOException {
 DataOutputStream dout = null;
 try {
 FileOutputStream fout = new FileOutputStream("roots.dat");
 dout = new DataOutputStream(fout);
 for (int i = 0; i <= 1000; i++) {
 dout.writeDouble(Math.sqrt(i));
 }
 dout.flush();
 dout.close();
 }
 finally {
 if (dout != null) dout.close();
 }
 }
}

8.3.2. Reading Floating-Point Numbers

The DataInputStream class has two methods that read floating-point numbers, readFloat() and
readDouble() :

public final float readFloat() throws IOException
public final double readDouble() throws IOException

The readFloat() method reads 4 bytes, converts the data into a float, and returns it. The
readDouble() method reads 8 bytes, converts the data into a double, and returns that. Both
methods throw an EOFException if they can't read enough bytes. In this case, data may be lost
without careful (and usually unnecessary) marking and resetting.

Example 8-4 reads a file specified on the command line and prints its contents interpreted as doubles.

Example 8-4. The DoubleReader program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
public class DoubleReader {
public static void main(String[] args) throws IOException {
 DataInputStream din = null;
 try {
 FileInputStream fin = new FileInputStream(args[0]);
 System.out.println("-----------" + args[0] + "-----------");
 din = new DataInputStream(fin);
 while (true) {
 int theNumber = din.readDouble();
 System.out.println(theNumber);
 } // end while
 } // end try
 catch (EOFException ex) {
 // normal termination
 din.close();
 }
 catch (IOException ex) {
 // abnormal termination
 System.err.println(ex);
 }
 } // end main
} // end DoubleReader

Here are the first few lines produced when this program is used to read the output of Example 8-4,
RootsFile. You may recognize this output as the square roots of the integers between 0 and 9.

$ java DoubleReader roots.dat
-----------roots.dat-----------
0.0
1.0
1.4142135623730951
1.7320508075688772
2.0
2.23606797749979
2.449489742783178
2.6457513110645907
2.8284271247461903
3.0
...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Booleans

The DataOutputStream class has a writeBoolean() method, and the DataInputStream class has a
corresponding readBoolean() method:

public final void writeBoolean(boolean b) throws IOException
public final boolean readBoolean() throws IOException

Although theoretically a single bit could be used to indicate the value of a boolean, in practice a whole
byte is used. This makes alignment much simpler and the extra space it uses isn't large enough to
create an issue on modern machines. The writeBoolean() method writes a 0 byte (0x00) to indicate
false or a 1 byte (0x01) to indicate true. The readBoolean() method interprets 0 as false and any
positive number as true. Negative numbers indicate end of stream and lead to an EOFException being
thrown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. Byte Arrays

As already mentioned, the DataInputStream class has the usual two methods for reading bytes into a
byte array:

public int read(byte[] data) throws IOException
public int read(byte[] data, int offset, int length) throws IOException

Neither of these methods guarantees that all of the bytes requested will be read. Instead, you're
expected to check the number of bytes actually read and then call read() again as necessary for
different parts of the array. For example, to read 1024 bytes from the InputStream in into the byte
array data:

int offset = 0;
while (true){
 int bytesRead = in.read(data, offset, data.length - offset);
 offset += bytesRead;
 if (bytesRead == -1 || offset >= data.length) break;
}

The DataInputStream class has two readFully() methods that provide this logic. Each reads
repeatedly from the underlying input stream until the array data or a specified portion thereof is
filled.

public final void readFully(byte[] data) throws IOException
public final void readFully(byte[] data, int offset, int length)
 throws IOException

If the data runs out before the array is filled and no more data is forthcoming, an IOException is
thrown.

8.5.1. Determining the Number of Bytes Written

The DataOutputStream class has a protected field called written that stores the number of bytes
written to the output stream using any of its methods since the point it was constructed. The value of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this field is returned by the public size() method:

protected int written
public final int size()

Every time you invoke writeInt(), writeBytes() , writeUTF() , or some other write method, the
written field is incremented by the number of bytes written. This might be useful if for some reason
you're trying to limit the number of bytes you write. For instance, you may prefer to open a new file
when you reach some preset size rather than continuing to write into a very large file.

8.5.2. Skipping Bytes

The DataInputStream class's skipBytes() method skips over a specified number of bytes without
reading them. Unlike the skip() method of java.io.InputStream that DataInputStream inherits,
skipBytes() either skips over all of the bytes it's asked to skip or it throws an exception:

public final int skipBytes(int n) throws IOException

skipBytes() blocks and waits for more data until n bytes have been skipped (successful execution)
or until an exception is thrown. The method returns the number of bytes skipped, which is always n
(because if it's not n, an exception is thrown and nothing is returned). On end of stream, it throws an
EOFException. It throws an IOException if the underlying stream throws an IOException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6. Strings and chars

Because of the difficulties caused by different character sets, reading and writing text is one of the
trickiest things you can do with streams. Most of the time, text should be handled with readers and
writers, a subject we'll take up in Chapter 20. However, the DataInputStream and DataOutputStream
classes do provide methods a Java program can use to read and write text that another Java
program will understand. The text format used is a modified form of Unicode's UTF-8 encoding. It's
unlikely that other, non-Java programs will understand this format.

This variant form of UTF-8 is intended for string literals embedded in compiled byte code and
serialized Java objects and for communication between two Java programs. It is not intended for
reading and writing arbitrary UTF-8 text. To read standard UTF-8, you should use an
InputStreamReader; to write it, you should use an OutputStreamWriter.

8.6.1. Writing Text

The DataOutputStream class has four methods that convert text into bytes and write them onto the
underlying stream:

public final void writeChar(int c) throwsIOException
public final void writeChars(String s) throws IOException
public final void writeBytes(String s) throws IOException
public final void writeUTF(String s) throws IOException

The writeChar() method writes a single Java char. This method does not use UTF-8. It simply
writes the two bytes of the char (i.e., a UTF-16 code point) in big-endian order. writeChars() writes
each character in the String argument to the underlying output stream as a 2-byte char. And the
writeBytes() method writes the low-order byte of each character in the String argument to the
underlying output stream. Any information in the high-order byte is lost. In other words, it assumes
the string contains only characters whose value is between 0 and 255.

The writeUTF() method, however, retains the information in the high-order byte as well as the
length of the string. First it writes the number of characters in the string onto the underlying output
stream as a 2-byte unsigned int between 0 and 65,535. Next it encodes the string in UTF-8 and
writes the bytes of the encoded string to the underlying output stream. This allows a data input
stream reading those bytes to completely reconstruct the string. However, if you pass a string longer
than 65,535 characters to writeUTF(), writeUTF() tHRows a java.io.UTFDataFormatException,
which is a subclass of IOException, and doesn't write any of the data. For large blocks of text, you
should use a Writer rather than a DataOutputStream. DataOutputStream is intended for files containing
mixed binary and text data, not for those comprised purely of text content, such as XML documents.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6.2. Reading Text

The DataInputStream class has three methods to read text data:

public final char readChar()
 throws IOException
public final String readUTF() throws IOException
public static final String readUTF(DataInput in) throws IOException

The readChar() method reads two bytes from the underlying input stream and interprets them as a
big-endian Java char. It throws an IOException if the underlying input stream's read() method
throws an IOException. It throws an EOFException if there's only one byte left in the stream and
therefore a complete char can't be read.

The no-args readUTF() method reads the length of the string and then reads and returns a string
that was written in Java's pseudo-UTF-8 encoding with a 2-byte, unsigned length prefix (in other
words, a string written by writeUTF() in DataOutputStream). This method throws an EOFException if
the stream runs out of data before providing the promised number of characters. It throws a
UTFDataFormatException if the bytes read are not valid UTF-8for example, if 4 bytes in a row begin
with the bit sequence 10. And, of course, it will propagate any IOException tHRown by the underlying
stream.

Finally, the static readUTF() method reads a UTF string from any DataInput object. It also expects
Java's pseudo-UTF-8 format and is not suitable for general purpose text reading.

8.6.3. The Deprecated readLine() Method

The DataInputStream class also has a commonly used but deprecated readLine() method:

public final String readLine() throws IOException

This method reads a single line of text from the underlying input stream and returns it as a string. A
line of text is considered to be any number of characters, followed by a carriage return, a linefeed, or
a carriage return/linefeed pair. The line terminator (possibly including both a carriage return and a
linefeed) is read; however, it is not included in the string returned by readLine(). The problem with
readLine() is that it does not properly handle non-Latin-1 character sets. BufferedReader's
readLine() method is supposed to be used instead. readLine() also has a nasty bug involving
streams that end with carriage returns that can cause a program to hang indefinitely when reading
data from a network connection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7. Little-Endian Numbers

It's likely that at some point in time you'll need to read a file full of little-endian data, especially if
you're working on Intel hardware or with data written by native code on such a platform. Java has
essentially no support for little-endian numbers. The LittleEndianOutputStream class in Example 8-5
and the LittleEndianInputStream class in Example 8-6 provide the support you need to do this.
These classes are closely modeled on the java.io.DataInputStream and java.io.DataOutputStream
classes. Some of the methods in these classes do exactly the same thing as the same methods in the
DataInputStream and DataOutputStream classes. After all, a big-endian byte is no different from a
little-endian byte. In fact, these two classes come very close to implementing the java.io.DataInput
and java.io.DataOutput interfaces. Actually doing so would have been a bad idea, however, because
client programmers expect objects implementing DataInput and DataOutput to use big-endian
numbers, and it's best not to go against such common assumptions.

Example 8-5. The LittleEndianOutputStream class

package com.elharo.io;
import java.io.*;
public class LittleEndianOutputStream extends FilterOutputStream {
 protected int written;
 public LittleEndianOutputStream(OutputStream out) {
 super(out);
 }
 public void write(int b) throws IOException {
 out.write(b);
 written++;
 }
 public void write(byte[] data, int offset, int length)
 throws IOException {
 out.write(data, offset, length);
 written += length;
 }
 public void writeBoolean(boolean b) throws IOException {
 if (b) this.write(1);
 else this.write(0);
 }

 public void writeByte(int b) throws IOException {
 out.write(b);
 written++;
 }
 public void writeShort(int s) throws IOException {
 out.write(s & 0xFF);
 out.write((s >>> 8) & 0xFF);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 written += 2;
 }
 public void writeChar(int c) throws IOException {
 out.write(c & 0xFF);
 out.write((c >>> 8) & 0xFF);
 written += 2;
 }
 public void writeInt(int i) throws IOException {
 out.write(i & 0xFF);
 out.write((i >>> 8) & 0xFF);
 out.write((i >>> 16) & 0xFF);
 out.write((i >>> 24) & 0xFF);
 written += 4;
 }
 public void writeLong(long l) throws IOException {
 out.write((int) l & 0xFF);
 out.write((int) (l >>> 8) & 0xFF);
 out.write((int) (l >>> 16) & 0xFF);
 out.write((int) (l >>> 24) & 0xFF);
 out.write((int) (l >>> 32) & 0xFF);
 out.write((int) (l >>> 40) & 0xFF);
 out.write((int) (l >>> 48) & 0xFF);
 out.write((int) (l >>> 56) & 0xFF);
 written += 8;
 }
 public final void writeFloat(float f) throws IOException {
 this.writeInt(Float.floatToIntBits(f));
 }
 public final void writeDouble(double d) throws IOException {
 this.writeLong(Double.doubleToLongBits(d));
 }
 public void writeBytes(String s) throws IOException {
 int length = s.length();
 for (int i = 0; i < length; i++) {
 out.write((byte) s.charAt(i));
 }
 written += length;
 }
 public void writeChars(String s) throws IOException {
 int length = s.length();
 for (int i = 0; i < length; i++) {
 int c = s.charAt(i);
 out.write(c & 0xFF);
 out.write((c >>> 8) & 0xFF);
 }
 written += length * 2;
 }
 public void writeUTF(String s) throws IOException {
 int numchars = s.length();
 int numbytes = 0;
 for (int i = 0 ; i < numchars ; i++) {
 int c = s.charAt(i);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if ((c >= 0x0001) && (c <= 0x007F)) numbytes++;
 else if (c > 0x07FF) numbytes += 3;
 else numbytes += 2;
 }
 if (numbytes > 65535) throw new UTFDataFormatException();
 out.write((numbytes >>> 8) & 0xFF);
 out.write(numbytes & 0xFF);
 for (int i = 0 ; i < numchars ; i++) {
 int c = s.charAt(i);
 if ((c >= 0x0001) && (c <= 0x007F)) {
 out.write(c);
 }
 else if (c > 0x07FF) {
 out.write(0xE0 | ((c >> 12) & 0x0F));
 out.write(0x80 | ((c >> 6) & 0x3F));
 out.write(0x80 | (c & 0x3F));
 written += 2;
 }
 else {
 out.write(0xC0 | ((c >> 6) & 0x1F));
 out.write(0x80 | (c & 0x3F));
 written += 1;
 }
 }
 written += numchars + 2;
 }

 public int size() {
 return this.written;
 }
}

Notice how all writing is done by passing byte values to the underlying output stream out (set in the
constructor and inherited from the superclass, FilterOutputStream). The primary purpose of these
methods is to convert the Java data type to bytes and then write them in a little-endian order. In
general, the conversions are accomplished by shifting the bits of interest into the low-order eight bits
and then masking it off. For example, consider the writeInt() method:

public void writeInt(int i) throws IOException {
 out.write(i & 0xFF);
 out.write((i >>> 8) & 0xFF);
 out.write((i >>> 16) & 0xFF);
 out.write((i >>> 24) & 0xFF);
 written += 4;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Java int is composed of four bytes in big-endian order. Thus, the low-order byte is in the last eight
bits. This byte needs to be written first in a little-endian scheme. The mask 0xFF has one bit in the
low-order eight bits and zero bits everywhere else. By bitwise ANDing 0xFF with i, we select the low-
order eight bits of i. The second-lowest order bytethat is, bits 16 to 23is selected by first shifting the
bits right without sign extension into the low-order bits. That's the purpose of (i >>> 8). Then this
byte can be retrieved with the same 0xFF mask used before. The same is done for the second-to-
lowest-order byte and the highest-order byte. Here, however, it's necessary to shift by 16 and 24
bits, respectively.

floats and doubles are written by first converting them to ints and longs using
Float.floatToIntBits() and Double.doubleTolongBits() and then invoking writeInt() or
writeLong() to write those bits in little-endian order.

Each method increments the protected field written by the number of bytes actually written. This
tracks the total number of bytes written onto the output stream at any one time.

Example 8-6 shows the corresponding LittleEndianInputStream class, based on the DataInputStream
class.

Example 8-6. The LittleEndianInputStream class

package com.elharo.io;
import java.io.*;
public class LittleEndianInputStream extends FilterInputStream {

 public LittleEndianInputStream(InputStream in) {
 super(in);
 }
 public boolean readBoolean() throws IOException {
 int bool = in.read();
 if (bool == -1) throw new EOFException();
 return (bool != 0);
 }
 public byte readByte(int b) throws IOException {
 int temp = in.read();
 if (temp == -1) throw new EOFException();
 return (byte) temp;
 }
 public int readUnsignedByte() throws IOException {
 int temp = in.read();
 if (temp == -1) throw new EOFException();
 return temp;
 }
 public short readShort() throws IOException {
 int byte1 = in.read();
 int byte2 = in.read();
 // only need to test last byte read
 // if byte1 is -1 so is byte2
 if (byte2 == -1) throw new EOFException();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return (short) (((byte2 << 24) >>> 16) + (byte1 << 24) >>> 24);
 }
 public int readUnsignedShort() throws IOException {
 int byte1 = in.read();
 int byte2 = in.read();
 if (byte2 == -1) throw new EOFException();
 return ((byte2 << 24) >> 16) + ((byte1 << 24) >> 24);
 }
 public char readChar() throws IOException {
 int byte1 = in.read();
 int byte2 = in.read();
 if (byte2 == -1) throw new EOFException();
 return (char) (((byte2 << 24) >>> 16) + ((byte1 << 24) >>> 24));
 }
 public int readInt() throws IOException {
 int byte1 = in.read();
 int byte2 = in.read();
 int byte3 = in.read();
 int byte4 = in.read();
 if (byte4 == -1) {
 throw new EOFException();
 }
 return (byte4 << 24)
 + ((byte3 << 24) >>> 8)
 + ((byte2 << 24) >>> 16)
 + ((byte1 << 24) >>> 24);
 }
 public long readLong() throws IOException {
 long byte1 = in.read();
 long byte2 = in.read();
 long byte3 = in.read();
 long byte4 = in.read();
 long byte5 = in.read();
 long byte6 = in.read();
 long byte7 = in.read();
 long byte8 = in.read();
 if (byte8 == -1) {
 throw new EOFException();
 }
 return (byte8 << 56)
 + ((byte7 << 56) >>> 8)
 + ((byte6 << 56) >>> 16)
 + ((byte5 << 56) >>> 24)
 + ((byte4 << 56) >>> 32)
 + ((byte3 << 56) >>> 40)
 + ((byte2 << 56) >>> 48)
 + ((byte1 << 56) >>> 56);
 }
 public String readUTF() throws IOException {
 int byte1 = in.read();
 int byte2 = in.read();
 if (byte2 == -1) throw new EOFException();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int numbytes = (byte1 << 8) + byte2;
 char result[] = new char[numbytes];
 int numread = 0;
 int numchars = 0;
 while (numread < numbytes) {
 int c1 = readUnsignedByte();
 // The first 4 bits of c1 determine how many bytes are in this char
 int test = c1 >> 4;
 if (test < 8) { // one byte
 numread++;
 result[numchars++] = (char) c1;
 }
 else if (test == 12 || test == 13) { // 2 bytes
 numread += 2;
 if (numread > numbytes) throw new UTFDataFormatException();
 int c2 = readUnsignedByte();
 if ((c2 & 0xC0) != 0x80) throw new UTFDataFormatException();
 result[numchars++] = (char) (((c1 & 0x1F) << 6) | (c2 & 0x3F));
 }
 else if (test == 14) { // three bytes
 numread += 3;
 if (numread > numbytes) throw new UTFDataFormatException();
 int c2 = readUnsignedByte();
 int c3 = readUnsignedByte();
 if (((c2 & 0xC0) != 0x80) || ((c3 & 0xC0) != 0x80)) {
 throw new UTFDataFormatException();
 }
 result[numchars++] = (char)
 (((c1 & 0x0F) << 12) | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
 }
 else { // malformed
 throw new UTFDataFormatException();
 }
 } // end while
 return new String(result, 0, numchars);
 }
 public final double readDouble() throws IOException {
 return Double.longBitsToDouble(this.readLong());
 }
 public final float readFloat() throws IOException {
 return Float.intBitsToFloat(this.readInt());
 }
 public final int skipBytes(int n) throws IOException {
 for (int i = 0; i < n; i += (int) skip(n - i));
 return n;
 }
}

This class is used later in this chapter to view files containing little-endian numbers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.8. Thread Safety

The LittleEndianInputStream class is not threadsafe. Consider the readInt() method:

public int readInt() throws IOException {
 int byte1 = in.read();
 int byte2 = in.read();
 int byte3 = in.read();
 int byte4 = in.read();
 if (byte4 == -1 || byte3 == -1 || byte2 == -1 || byte1 == -1) {
 throw new EOFException();
 }
 return (byte4 << 24) + (byte3 << 16) + (byte2 << 8) + byte1;
 }

If two threads are trying to read from this input stream at the same time, there is no guarantee that
bytes 1 through 4 will be read in order. The first thread might read bytes 1 and 2, and then the
second thread could preempt it and read any number of bytes. When the first thread regained
control, it would no longer be able to read bytes 3 and 4 but would read whichever bytes happened
to be next in line. It would then return an erroneous result.

A synchronized block would solve this problem neatly:

public int readInt() throws IOException {
 int byte1, byte2, byte3, byte4;
 synchronized (this) {
 byte1 = in.read();
 byte2 = in.read();
 byte3 = in.read();
 byte4 = in.read();
 }
 if (byte4 == -1 || byte3 == -1 || byte2 == -1 || byte1 == -1) {
 throw new EOFException();
 }
 return (byte4 << 24) + (byte3 << 16) + (byte2 << 8) + byte1;
}

It isn't necessary to synchronize the entire methodonly the four lines that read from the underlying
stream. However, this solution is still imperfect. It is remotely possible that another thread has a
reference to the underlying stream rather than to the little-endian input stream and could try to read

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directly from that. Therefore, you might be better off synchronizing on the underlying input stream
in.

However, this would prevent another thread from reading from the underlying input stream only if
the second thread also synchronized on the underlying input stream. In general, you can't count on
this, so it's not really a solution. In fact, Java really doesn't provide a good means to guarantee
thread safety when you have to modify objects you don't control that are passed as arguments to
your methods.

LittleEndianOutputStream has equally severe problems. Consider the writeInt() method:

public void writeInt(int i) throws IOException {
 out.write(i & 0xFF);
 out.write((i >>> 8) & 0xFF);
 out.write((i >>> 16) & 0xFF);
 // What happens if another thread preempts here?
 out.write((i >>> 24) & 0xFF);
 written += 4;
 }

Suppose a second thread preempts the running thread where indicated and writes unrelated data
onto the output stream. The entire stream can be corrupted because the bytes of the int are
separated. All the problems I've noted here are shared by DataInputStream and DataOutputStream,
and similar problems crop up in other filter stream classes. This leads to the following general
principle for threadsafe programming:

Never allow two threads to share a stream.

The principle is most obvious for filter streams, but it applies to regular streams as well. Although
writing or reading a single byte can be treated as an atomic operation, many programs will not be
happy to read and write individual bytes. They'll want to read or write a particular group of bytes and
will not react well to being interrupted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.9. File Viewer, Part 3

In Chapter 4, I introduced a FileDumper program that could print the raw bytes of a file in ASCII,
hexadecimal, or decimal. In this chapter, I'm going to expand that program so that it can interpret
the file as containing binary numbers of varying widths. In particular, I'm going to make it possible to
dump a file as shorts, unsigned shorts, ints, longs, floats, and doubles. Integer types may be
either big-endian or little-endian. The main class, FileDumper3, is shown in Example 8-7. As in
Chapter 4, this program reads a series of filenames and arguments from the command line in the
main() method. Each filename is passed to a method that opens a file input stream from the file.
Depending on the command-line arguments, a particular subclass of DumpFilter from Chapter 6 is
selected and chained to the input stream. Finally, the StreamCopier.copy() method pours data from
the input stream onto System.out.

Example 8-7. The FileDumper3 class

import java.io.*;
import com.elharo.io.*;
public class FileDumper3 {
 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;
 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;
 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println(
 "Usage: java FileDumper3 [-ahdsilfx] [-little] file1 file2...");
 }
 boolean bigEndian = true;
 int firstFile = 0;
 int mode = ASC;
 // Process command-line switches.
 for (firstFile = 0; firstFile < args.length; firstFile++) {
 if (!args[firstFile].startsWith("-")) break;
 if (args[firstFile].equals("-h")) mode = HEX;
 else if (args[firstFile].equals("-d")) mode = DEC;
 else if (args[firstFile].equals("-s")) mode = SHORT;
 else if (args[firstFile].equals("-i")) mode = INT;
 else if (args[firstFile].equals("-l")) mode = LONG;
 else if (args[firstFile].equals("-f")) mode = FLOAT;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else if (args[firstFile].equals("-x")) mode = DOUBLE;
 else if (args[firstFile].equals("-little")) bigEndian = false;
 }
 for (int i = firstFile; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode, bigEndian);
 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (Exception ex) {
 System.err.println(ex);
 }
 }
 }
 public static void dump(InputStream in, OutputStream out, int mode,
 throws IOException {
 // The reference variable in may point to several different objects
 // within the space of the next few lines. We can attach
 // more filters here to do decompression, decryption, and more.
 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new IntFilter(din);
 break;
 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:
 in = new DoubleFilter(din);
 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;
 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;
 default:
 }
 }
 StreamCopier.copy(in, out);
 in.close();
 }
}

The main() method of this class reads the command-line arguments and uses the switches to
determine the format of the input data. The dump() method reads the mode and the endianness,
selects the appropriate filter, and copies the input onto the output. Table 8-2 shows the command-
line switches. Eight of these switches select a particular format. One of them, -little, specifies the
endianness of the data. Since there's no difference between big-endian and little-endian ASCII,
decimal, and hexadecimal dumps, a total of 12 different filters are used here. Two of the switches,
the HexFilter and the DecimalFilter, were introduced in Chapter 6. They haven't changed.

Table 8-2. Command-line switches for FileDumper3

Switch Format

-a ASCII

-d decimal dump

-h hexadecimal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Format

-s short

-i int

-l long

-f float

-x double

-little little-endian

I've introduced ten new filters for big- and little-endian shorts, ints, longs, floats, and doubles. The
big-endian filters read data from a data input stream. The little-endian filters read data from a little-
endian input stream. To take advantage of code reuse, the big-endian filters are all subclasses of a
new abstract subclass of DumpFilter called DataFilter, shown in Example 8-8. The little-endian filters
are all subclasses of a new abstract subclass of DumpFilter called LEFilter, shown in Example 8-10.
The hierarchy of these filters is shown in Figure 8-1.

Figure 8-1. Class hierarchy for filters

Example 8-8. DataFilter

-s short

-i int

-l long

-f float

-x double

-little little-endian

I've introduced ten new filters for big- and little-endian shorts, ints, longs, floats, and doubles. The
big-endian filters read data from a data input stream. The little-endian filters read data from a little-
endian input stream. To take advantage of code reuse, the big-endian filters are all subclasses of a
new abstract subclass of DumpFilter called DataFilter, shown in Example 8-8. The little-endian filters
are all subclasses of a new abstract subclass of DumpFilter called LEFilter, shown in Example 8-10.
The hierarchy of these filters is shown in Figure 8-1.

Figure 8-1. Class hierarchy for filters

Example 8-8. DataFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io;
import java.io.*;
public abstract class DataFilter extends DumpFilter {
 // The use of DataInputStream here is a little forced.
 // It would be more natural (though more complicated)
 // to read the bytes and manually convert them to an int.
 private DataInputStream din;
 public DataFilter(DataInputStream din) {
 super(din);
 this.din = din;
 }
 public int available() throws IOException {
 return (buf.length - index) + in.available();
 }
}

DataFilter makes sure that a data input stream is available to subclasses to read from. It also has
enough information to provide a reasonable available() method. The actual implementation of the
fill() method is left to specific subclasses like IntFilter. LEFilter, shwon in Example 8-9, is
identical except for its use of a LittleEndianInputStream in place of a DataInputStream.

Example 8-9. LEFilter

package com.elharo.io;
import java.io.*;
public abstract class LEFilter extends DumpFilter {
 private LittleEndianInputStream lin;
 public LEFilter(LittleEndianInputStream lin) {
 super(lin);
 this.lin = lin;
 }
 public int available() throws IOException {
 return (buf.length - index) + lin.available();
 }
}

The concrete subclasses of these two classes are all very similar. Example 8-10 shows the simplest,
IntFilter.

Example 8-10. IntFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io;
import java.io.*;
public class IntFilter extends DataFilter {
 public IntFilter(DataInputStream din) {
 super(din);
 }
 protected void fill() throws IOException {
 int number = din.readInt();
 String s = Integer.toString(number)
 + System.getProperty("line.separator", "\r\n");
 byte[] b = s.getBytes("8859_1");
 buf = new int[b.length];
 for (int i = 0; i < b.length; i++) {
 buf[i] = b[i];
 }
 }
}

The fill() method reads an integer from the underlying DataInputStream din. That integer is
converted to a string using the static Integer.toString() method. The string is then converted to
bytes using the ISO 8859-1 (Latin-1) encoding.

The remaining DataFilter subclasses are very similar. For example, Example 8-11 shows the
ShortFilter. Aside from the trivial difference in the class and constructor name, the only real
difference is the use of readShort() instead of readInt() in the first line of the fill() method.

Example 8-11. ShortFilter

package com.elharo.io;
import java.io.*;
public class ShortFilter extends DataFilter {
 public ShortFilter(DataInputStream din) {
 super(din);
 }
 protected void fill() throws IOException {
 int number = din.readShort();
 String s = Integer.toString(number)
 + System.getProperty("line.separator", "\r\n");
 byte[] b = s.getBytes("8859_1");
 buf = new int[b.length];
 for (int i = 0; i < b.length; i++) {
 buf[i] = b[i];
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The LongFilter, FloatFilter, and DoubleFilter are only slightly different, so I haven't put the source
code in the book; it's available, with the rest of the examples, online. Likewise, I've omitted the
similar set of filters for little-endian data. The little-endian filters all extend LEFilter; they are
LEIntFilter, LEShortFilter, LELongFilter, LEFloatFilter, and LEDoubleFilter.

In later chapters, I'll add support for compressed and encrypted files, a graphical user interface, and
various text interpretations of the data in a file. However, none of that will require changes to any of
the filters we've developed here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Streams in Memory
In the last several chapters, you've learned how to use streams to move data between a running
Java program and external sources and data stores. Streams can also be used to move data from
one part of a Java program to another. This chapter explores three such classes. Sequence input
streams chain several input streams together so that they appear as a single stream. Byte array
streams allow output to be stored in byte arrays and input to be read from byte arrays. Finally, piped
input and output streams allow output from one thread to become input for another thread.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. Sequence Input Streams

The java.io.SequenceInputStream class connects multiple input streams together in a particular
order. A SequenceInputStream first reads all the bytes from the first stream in the sequence, then all
the bytes from the second stream in the sequence, then all the bytes from the third stream, and so
on. When the end of one stream is reached, that stream is closed; the next data comes from the
next stream. This class has two constructors:

public SequenceInputStream(Enumeration e)
public SequenceInputStream(InputStream in1, InputStream in2)

The first constructor creates a sequence out of all the elements of the Enumeration e. This assumes
all objects in the enumeration are input streams. If this isn't the case, a ClassCastException will be
thrown the first time a read is attempted from an object that is not an InputStream. The use of an
Enumeration instead of an Iterator is a little old-fashioned. However, this class goes all the way back
to Java 1.0, and Sun has never felt compelled to enhance it. In Java 5, this constructor has been
retrofitted with generics, making it a tad more typesafe:

public SequenceInputStream(Enumeration<? extends InputStream> e)

However, it does exactly the same thing.

The second constructor creates a sequence input stream that reads first from in1, then from in2.
Note that in1 or in2 may themselves be sequence input streams, so repeated applications of this
constructor allows a sequence input stream with an indefinite number of underlying streams to be
created. For example, to read the home pages of both Yahoo and Google, you might do this:

URL u1 = new URL("http://www.yahoo.com/");
URL u2 = new URL("http://www.google.com");
SequenceInputStream sin = new SequenceInputStream(
 u1.openStream(), u2.openStream());

Examples 9-1reads a series of filenames from the command line, creates a sequence input stream
from file input streams for each file named, and then copies the contents of all the files onto
System.out.

Example 9-1. The SequencePrinter program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.util.*;
public class SequencePrinter {
 public static void main(String[] args) throws IOException {
 Vector theStreams = new Vector();
 for (int i = 0; i < args.length; i++) {
 FileInputStream fin = new FileInputStream(args[i]);
 theStreams.addElement(fin);
 }
 InputStream in = new SequenceInputStream(theStreams.elements());
 for (int i = in.read(); i != -1; i = in.read()) {
 System.out.write(i);
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Byte Array Streams

It's sometimes convenient to use stream methods to manipulate data in byte arrays. For example,
you might receive an array of raw bytes that you want to interpret as double-precision, floating-point
numbers. (This is common when using UDP to transfer data across the Internet, for example.) The
quickest way to do this is to use a DataInputStream. However, before you can create a data input
stream, you first need to create a raw, byte-oriented stream. This is what the
java.io.ByteArrayInputStream class gives you. Similarly, you might want to send a group of double-
precision, floating-point numbers across the network with UDP. Before you can do this, you have to
convert the numbers into bytes. The simplest solution is to use a data output stream chained to a
java.io.ByteArrayOutputStream. By chaining the data output stream to a byte array output stream,
you can write the binary form of the floating-point numbers into a byte array, then send the entire
array in a single packet.

9.2.1. Byte Array Input Streams

The ByteArrayInputStream class reads data from a byte array using the methods of
java.io.InputStream:

public class ByteArrayInputStream extends InputStream

ByteArrayInputStream() has two constructors. Both take a byte array as an argument. This byte
array is the buffer from which data will be read. The first constructor uses the entire buffer array as
an input stream. The second constructor uses only the subarray of length bytes of buffer starting
with the byte at offset.

public ByteArrayInputStream(byte[] buffer)
public ByteArrayInputStream(byte[] buffer, int offset, int length)

Other than these two constructors, the ByteArrayInputStream class just has the usual read(),
available(), close(), mark(), and reset() methods. Byte array input streams do support
marking and resetting up to the full length of the stream. This is relatively straightforward to
implement because, at any time, a byte array contains in memory all of the data in the stream.
Unlike other kinds of streams, you don't have to worry that you'll try to reset further back than the
buffer allows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2.2. Byte Array Output Streams

The ByteArrayOutputStream class writes data into the successive components of a byte array using
the methods of java.io.OutputStream:

public class ByteArrayOutputStream extends OutputStream

This class has the following two constructors, plus the usual write(), close(), and flush()
methods:

public ByteArrayOutputStream()
public ByteArrayOutputStream(int size)

The no-argument constructor uses a buffer of 32 bytes. The second constructor uses a user-specified
buffer size. However, regardless of the initial size, the byte array output stream will expand its buffer
as necessary to accommodate additional data.

To return the byte array that contains the written data, use the toByteArray() method:

public byte[] toByteArray()

There are also toString() methods that convert the bytes into a string. The no-argument version
uses the platform's default encoding. The second method allows you to specify the encoding to be
used:

public String toString()
public String toString(String encoding) throws UnsupportedEncodingException

Another common use of ByteArrayOutputStream is to accumulate data into an internal buffer and then
quickly write the entire buffer onto another stream.

The writeTo() performs this task:

public void writeTo(OutputStream out) throws IOException

Examples 9-2 uses a byte array output stream to implement a simple form of buffering. An array is
created to hold the first n Fibonacci numbers in binary form, where n is specified on the command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

line. (The Fibonacci numbers are the sequence 1, 1, 2, 3, 5, 8, 13, and so on, where each number is
calculated by adding the previous two numbers in the sequence.) The array is filled using the
methods of java.io.DataOutputStream. Once the array is created, a file is opened and the data in the
array is written into the file. Then the file is closed. This way, the data can be written quickly without
requiring the file to be open while the program is calculating.

Example 9-2. The FibonacciFile program

import java.io.*;
public class FibonacciFile {
 public static void main(String args[]) throws IOException {
 int howMany = 20;
 // To avoid resizing the buffer, calculate the size of the
 // byte array in advance.
 ByteArrayOutputStream bout = new ByteArrayOutputStream(howMany*4);
 DataOutputStream dout = new DataOutputStream(bout);
 // First two Fibonacci numbers must be given
 // to start the process.
 int f1 = 1;
 int f2 = 1;
 dout.writeInt(f1);
 dout.writeInt(f2);
 // Now calculate the rest.
 for (int i = 3; i <= 20; i++) {
 int temp = f2;
 f2 = f2 + f1;
 f1 = temp;
 dout.writeInt(f2);
 }
 FileOutputStream fout = new FileOutputStream("fibonacci.dat");
 try {
 bout.writeTo(fout);
 fout.flush();
 }
 finally {
 fout.close();
 }
 }
}

You can use the FileDumper3 program from the previous chapter with the -i option to view the
output. For example:

$ java FibonacciFile fibonacci.dat
$ java FileDumper3 -i fibonacci.dat
1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1
2
3
5
8
13
21
34
55
...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. Communicating Between Threads Using Piped
Streams

The java.io.PipedInputStream class and java.io.PipedOutputStream classes provide a convenient
means to move data from one thread to another. Output from one thread becomes input for the
other thread, as shown in Figure 9-1.

Figure 9-1. Data moving between threads using piped streams

public class PipedInputStream extends InputStream
public class PipedOutputStream extends OutputStream

The PipedInputStream class has two constructors:

public PipedInputStream()
public PipedInputStream(PipedOutputStream source) throws IOException

The no-argument constructor creates a piped input stream that is not yet connected to a piped
output stream. The second constructor creates a piped input stream that's connected to the piped
output stream source.

The PipedOutputStream class also has two constructors:

public PipedOutputStream(PipedInputStream sink) throws IOException
public PipedOutputStream()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The no-argument constructor creates a piped output stream that is not yet connected to a piped
input stream. The second constructor creates a piped output stream that's connected to the piped
input stream sink.

Piped streams are normally created in pairs. The piped output stream becomes the underlying source
for the piped input stream. For example:

PipedOutputStream pout = new PipedOutputStream();
PipedInputStream pin = new PipedInputStream(pout);

This simple example is a little deceptive because these lines of code will normally be in different
methods and perhaps even different classes. Some mechanism must be established to pass a
reference to the PipedOutputStream into the thread that handles the PipedInputStream. Or you can
create them in the same thread, then pass a reference to the connected stream into a separate
thread. Alternately, you can reverse the order:

PipedInputStream pin = new PipedInputStream();
PipedOutputStream pout = new PipedOutputStream(pin);

Or you can create them both unconnected, then use one or the other's connect() method to link
them:

PipedInputStream pin = new PipedInputStream();
PipedOutputStream pout = new PipedOutputStream();
pin.connect(pout);

Otherwise, these classes just have the usual read(), write(), flush(), close(), and available(
) public methods like all stream classes.

PipedInputStream also has four protected fields and one protected method that are used to
implement the piping:

protected static final int PIPE_SIZE
protected byte[] buffer
protected int in
protected int out
protected void receive(int b) throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PIPE_SIZE is a named constant for the size of the buffer. The buffer is the byte array where the data
is stored, and it's initialized to be an array of length PIPE_SIZE. When a client class invokes a write(
) method in the piped output stream class, the write() method invokes the receive() method in
the connected piped input stream to place the data in the byte array buffer. Data is always written
at the position in the buffer given by the field in and read from the position in the buffer given by the
field out.

There are two possible blocks here. The first occurs if the writing thread tries to write data while the
reading thread's input buffer is full. When this occurs, the output stream enters an infinite loop in
which it repeatedly waits for one second until some thread reads some data out of the buffer and
frees up space. If this is likely to be a problem for your application, subclass PipedInputStream and
make the buffer larger. The second possible block is when the reading thread tries to read and no
data is present in the buffer. In this case, the input stream enters an infinite loop in which it
repeatedly waits for one second until some thread writes some data into the buffer.

Although piped input streams contain an internal buffer, they do not support marking and resetting.
The circular nature of the buffer would make this excessively complicated. You can always chain the
piped input stream to a buffered input stream and read from that if you need marking and resetting.

The following program is a simple and somewhat artificial example that generates Fibonacci numbers
in one thread and writes them onto a piped output stream while another thread reads the numbers
from a corresponding piped input stream and prints them on System.out. This program uses three
classes: FibonacciProducer and FibonacciConsumer, which are subclasses of Thread, and
FibonacciDriver, which manages the other two classes. Example 9-3 shows the FibonacciProducer
class, a subclass of Thread. This class does not directly use a piped output stream. It just writes data
onto the output stream that it's given in the constructor.

Example 9-3. The FibonacciProducer class

import java.io.*;
public class FibonacciProducer extends Thread {
 private DataOutputStream theOutput;
 private int howMany;
 public FibonacciProducer(OutputStream out, int howMany) {
 theOutput = new DataOutputStream(out);
 this.howMany = howMany;
 }
 public void run() {
 try {
 int f1 = 1;
 int f2 = 1;
 theOutput.writeInt(f1);
 theOutput.writeInt(f2);
 // Now calculate the rest.
 for (int i = 2; i < howMany; i++) {
 int temp = f2;
 f2 = f2 + f1;
 f1 = temp;
 if (f2 < 0) { // overflow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;
 }
 theOutput.writeInt(f2);
 }
 }
 catch (IOException ex) { System.err.println(ex); }
 }
}

Example 9-4 is the FibonacciConsumer class. It could just as well have been called the
IntegerConsumer class since it doesn't know anything about Fibonacci numbers. Its run() method
merely reads integers from its input stream until the stream is exhausted. At this point, the other end
of the pipe closes and an IOException is thrown. The only way to tell the difference between this
normal termination and a real exception is to check the exception message.

Example 9-4. The FibonacciConsumer classm

import java.io.*;
public class FibonacciConsumer extends Thread {
 private DataInputStream theInput;
 public FibonacciConsumer(InputStream in) {
 theInput = new DataInputStream(in);
 }
 public void run() {
 try {
 while (true) {
 System.out.println(theInput.readInt());
 }
 }
 catch (IOException ex) {
 if (ex.getMessage().equals("Pipe broken")) {
 // normal termination
 return;
 }
 System.err.println(ex);
 }
 }
}

Example 9-5 is the FibonacciDriver class. It creates a piped output stream and a piped input stream
and uses those to construct FibonacciProducer and FibonacciConsumer objects. These streams are a
channel of communication between the two threads. As data is written by the FibonacciProducer
thread, it becomes available for the FibonacciConsumer tHRead to read. Both the FibonacciProducer
and the FibonacciConsumer are run with normal priority so that when the FibonacciProducer blocks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or is preempted, the FibonacciConsumer runs and vice versa.

Example 9-5. The FibonacciDriver class

import java.io.*;
public class FibonacciConsumer extends Thread {
 private DataInputStream theInput;
 public FibonacciConsumer(InputStream in) {
 theInput = new DataInputStream(in);
 }
 public void run() {
 try {
 while (true) {
 System.out.println(theInput.readInt());
 }
 }
 catch (IOException ex) {
 if (ex.getMessage().equals("Pipe broken")
 || ex.getMessage().equals("Write end dead")) {
 // normal termination
 return;
 }
 ex.printStackTrace();
 }
 }
}

You may be wondering how the piped streams differ from the stream copiers presented earlier in the
book. The first difference is that the piped stream moves data from an output stream to an input
stream. The stream copier always moves data in the opposite direction, from an input stream to an
output stream. The second difference is that the stream copier actively moves the data by calling the
read() and write() methods of the underlying streams. A piped output stream merely makes the
data available to the input stream. It is still necessary for some other object to invoke the piped input
stream's read() method to read the data. If no other object reads from the piped input stream,
after about one kilobyte of data has been written onto the piped output stream, the writing thread
blocks while it waits for the piped input stream's buffer to empty.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Compressing Streams
The java.util.zip package, shown in Figure 10-1, contains six stream classes and another half
dozen assorted classes that read and write data in zip, gzip, and inflate/deflate formats. Java uses
these classes to read and write JAR archives and to display PNG images. The java.util.zip classes
are well-suited for general-purpose compression and decompression.

Figure 10-1. The java.util.zip package hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. Inflaters and Deflaters

The java.util.zip.Deflater and java.util.zip.Inflater classes provide compression and
decompression services for all other classes. These two classes support several related compression
formats, including zlib, deflate, and gzip. Each of these formats is based on the LZ77 compression
algorithm (named after the inventors, Jakob Ziv and Abraham Lempel), though each has a different
way of storing metadata that describes an archive's contents. Since compression and decompression
are extremely CPU-intensive operations, these classes are usually implemented as Java wrappers
around native methods written in C.

zip, gzip, and zlib all compress data in more or less the same way. Repeated bit sequences in the
input data are replaced with pointers back to the first occurrence of that bit sequence. Other tricks
are used, but this is basically how these compression schemes work, and it has certain implications
for compression and decompression code. First, you can't randomly access data in a compressed file.
To decompress the nth byte of data, you must first decompress bytes 1 through n-1 of the data.
Second, a single twiddled bit doesn't just change the meaning of the byte it's part of. It also changes
the meaning of bytes that come after it in the data, since subsequent bytes may be stored as copies
of the previous bytes. Therefore, compressed files are much more susceptible to corruption than
uncompressed files.

10.1.1. Deflating Data

The Deflater class contains methods to compress blocks of data. You can choose the compression
format, the level of compression, and the compression strategy. Deflating data with the Deflater
class requires nine steps:

Construct a Deflater object.1.

Choose the strategy (optional).2.

Set the compression level (optional).3.

Preset the dictionary (optional).4.

Set the input.5.

Deflate the data repeatedly until needsInput() returns true.6.

If more input is available, go back to step 5 to provide additional input data. Otherwise, go to
step 8.

7.

Finish the data.8.

If there are more streams to be deflated, reset the deflater.9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.

9.

More often than not, you don't use this class directly. Instead, you use a Deflater object indirectly
through one of the compressing stream classes like DeflaterInputStream or DeflaterOutputStream.
These classes provide more convenient programmer interfaces for stream-oriented compression than
the raw Deflater methods.

10.1.1.1. Constructing deflaters

Deflater() has three constructors:

public Deflater(int level, boolean useGzip)
public Deflater(int level)
public Deflater()

The most general constructor allows you to set the level of compression and the format used.
Compression level is specified as an int between 0 and 9. 0 is no compression; 9 is maximum
compression. Generally, the higher the compression level, the smaller the output will be and the
longer the compression will take. Four mnemonic constants are available to select particular levels of
compression. These are:

public static final int NO_COMPRESSION = 0;
public static final int BEST_SPEED = 1;
public static final int BEST_COMPRESSION = 9;
public static final int DEFAULT_COMPRESSION = -1;

If useGzip is true, gzip compression format is used. Otherwise, the zlib compression format is used.
(zlib format is the default.) These formats are essentially the same except that zlib includes some
extra header and checksum fields.

The Deflater class supports only a single compression method, deflation. This one method, used by
zip, gzip, and zlib, is represented by the mnemonic constant Deflater.DEFLATED:

public static final int DEFLATED = 8;

10.1.1.2. Choose a strategy

Java supports three compression strategies: filtered, Huffman, and default, represented by the
mnemonic constants Deflater.FILTERED, Deflater.HUFFMAN_ONLY, and Deflater.DEFAULT_STRATEGY,
respectively. The setStrategy() method chooses one of these strategies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void setStrategy(int strategy)

This method throws an IllegalArgumentException if an unrecognized strategy is passed as an
argument. If no strategy is chosen explicitly, the default strategy is used. The default strategy
concentrates primarily on emitting pointers to previously seen data, so it works well in data where
runs of bytes tend to repeat themselves. In files where long runs of bytes are uncommon, but where
the distribution of bytes is uneven, you may be better off with pure Huffman coding. Huffman coding
simply uses fewer bits for more common characters like "e" and more bits for less common
characters like "q." A third situation, common in some binary files, is where all bytes are more or less
equally likely. When dealing with these sorts of files, the filtered strategy provides a good
compromise, with some Huffman coding and some matching of data to previously seen values. Most
of the time, the default strategy will do the best job, and, even if it doesn't, it will compress within a
few percent of the optimal strategy, so it's rarely worth agonizing over which is the best solution.

10.1.1.3. Set the compression level

The deflater compresses by trying to match the data it's looking at now to data it has already seen
earlier in the stream. The compression level determines how far back in the stream the deflater looks
for a match. The farther back it looks, the more likely it is to find a match and the longer the run of
bytes it can replace with a simple pointer. However, looking farther back takes longer. Thus,
compression level is a tradeoff between speed and file size. The tighter you compress, the more time
it takes. Generally, the compression level is set in the constructor, but you can change it after the
deflater is constructed by using the setLevel() method:

public void setLevel(int Level)

As with the Deflater() constructors, the compression level should be an int between 0 and 9 (no
compression to maximum compression) or perhaps -1, signifying the default compression level. Any
other value causes an IllegalArgumentException. It's good coding style to use one of the mnemonic
constants Deflater.NO_COMPRESSION (0), Deflater.BEST_SPEED (1), Deflater.BEST_COMPRESSION (9),
or Deflater.DEFAULT_COMPRESSION (-1) instead of an explicit value.

In limited testing with small files, I haven't found the difference between best speed and best
compression to be noticeable, either in file size or the time it takes to compress or decompress. You
may occasionally want to set the level to no compression (0) if you're deflating already compressed
files such as GIF, JPEG, or PNG images before storing them in an archive. These file formats have
built-in compression algorithms specifically designed for the type of data they contain, and Deflator's
general-purpose deflation algorithm is unlikely to compress them further. It may even increase their
size.

10.1.1.4. Set the dictionary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The deflater builds a dictionary of phrases as it reads the text. The first time it sees a phrase, it puts
the phrase in the dictionary. The second time it sees the phrase, it replaces the phrase with its
position in the dictionary. However, it can't do this until it has seen the phrase at least once, so data
early in the stream isn't compressed very well compared with data that occurs later in the stream.
When you have a good idea that certain byte sequences appear in the data very frequently, you can
preset the dictionary used for compression. You would fill the dictionary with the frequently repeated
data in the text. For instance, if your text is composed completely of ASCII digits and assorted
whitespace (tabs, carriage returns, and so forth), you could put those characters in your dictionary.
This allows the early part of the stream to compress as effectively as later parts.

There are two setDictionary() methods. The first uses as the dictionary the entire byte array
passed as an argument. The second uses the subarray of data starting at offset and continuing for
length bytes.

public void setDictionary(byte[] data)
public void setDictionary(byte[] data, int offset, int length)

Presetting a dictionary is never necessary and requires detailed understanding
of both the compression format used and the data to be compressed. Putting
the wrong data in your dictionary can actually increase the file size. Unless
you're a compression expert and you really need every last byte of space you
can save, I recommend letting the deflater build the dictionary adaptively as
the data is compressed.

I started with a highly compressible 44,392-byte text file (the output of running
FileDumper2.java on itself in decimal mode). Without presetting the dictionary,
it deflated to 3,859 bytes. My first attempt to preset the dictionary to the ASCII
digits, space, and \r\n actually increased that size to 3,863 bytes. After
carefully examining the data and custom-designing a dictionary to fit it, I was
able to deflate the data to 3,852 bytes, saving a whopping 7 extra bytes, or
0.18 percent. Of course, the dictionary itself occupied 112 bytes, so it's
debatable whether I really saved anything.

Exact details are likely to vary from file to file. The only real possible gain is for
very short, very predictable files in which Java may not have enough data to
build a good dictionary before the end of stream is reached. However, Java
uses a pretty good algorithm for building an adaptive dictionary, and you're
unlikely to do significantly better by hand. I recommend that you not worry
about setting a dictionary and simply let the deflater build one for you.

If Inflater.inflate() decompresses the data later, the Inflater.getAdler() method will return
the Adler-32 checksum of the dictionary needed for decompression. However, you'll need some other
means to pass the dictionary itself between the deflater and the inflater. It is not stored with the
deflated file.

10.1.1.5. Set the input

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, you must set the input data to be deflated with one of the setInput() methods:

public void setInput(byte[] input)
public void setInput(byte[] input, int offset, int length)

The first method prepares to deflate the entire array. The second method prepares to deflate the
specified subarray starting at offset and continuing for length bytes.

10.1.1.6. Deflate the data repeatedly until needsInput() returns true

Finally, you're ready to deflate the data. Once setInput() has filled the input buffer with data, it is
deflated through one of two deflate() methods:

public int deflate(byte[] output)
public int deflate(byte[] output, int offset, int length)

The first method fills the output array with the bytes of compressed data. The second fills the
subarray of output beginning at offset and continuing for length bytes. Both methods return the
actual number of compressed bytes written into the array. You do not know in advance how many
compressed bytes will be written into output because you do not know how well the data will
compress. You always have to check the return value. If deflate() returns 0, call needsInput() to
see if more uncompressed input data is needed:

public boolean needsInput()

When more data is needed, the needsInput() method returns true. At this point, you should invoke
setInput() again to feed in more uncompressed input data, call deflate(), and repeat the process
until deflate() returns and there is no more input data to be compressed.

10.1.1.7. Finish the deflation

Finally, when the input data is exhausted, invoke finish() to indicate that no more data is
forthcoming and the deflater should finish with the data it already has in its buffer:

public void finish()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The finished() method returns TRue when the end of the compressed output has been reachedthat
is, when all data stored in the input buffer has been deflated:

public boolean finished()

After calling finish(), invoke deflate() repeatedly until finished() returns true. This flushes out
any data that remains in the input buffer.

10.1.1.8. Reset the deflater and start over

This completes the sequence of method invocations required to compress data. If you'd like to use
the same strategy, compression level, and other settings to compress more data with the same
Deflater, call its reset() method:

public void reset()

Otherwise, call end() to throw away any unprocessed input and free the resources used by the
native code:

public void end()

The finalize() method calls end() before the deflater is garbage-collected, even if you forget to
invoke it explicitly:

protected void finalize()

10.1.1.9. An example

Let's look at a simple program that deflates files named on the command line. First, a Deflater
object, def, is created with the default strategy, method, and compression level. A file input stream
named fin is opened to each file. At the same time, a file output stream named fout is opened to an
output file with the same name plus the three-letter extension .dfl. The program then enters a loop in
which it tries to read 1024-byte chunks of data from fin, though care is taken not to assume that
1024 bytes are actually read. Any data that is successfully read is passed to the deflater's setInput(
) method. The data is repeatedly deflated and written onto the output stream until the deflater
indicates that it needs more input. The process then repeats itself until the end of the input stream is
reached. When no more input is available, the deflater's finish() method is called. Then the
deflater's deflate() method is repeatedly invoked until its finished() method returns true. At this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

point, the program breaks out of the infinite read() loop and moves on to the next file.

Figure 10-2 is a flowchart demonstrating this sequence for a single file. One thing may seem a little
fishy about this chart. After the deflater is finished, a repeated check is made to see if the deflater is,
in fact, finished. The finish() method tells the deflater that no more data is forthcoming and it
should work with whatever data remains in its input buffer. However, the finished() method does
not actually return TRue until the input buffer has been emptied by calls to deflate(). Example 10-1
shows a sample program.

Figure 10-2. The deflation sequence

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-1. The DirectDeflater

import java.io.*;
import java.util.zip.*;
public class DirectDeflater {
 public final static String DEFLATE_SUFFIX = ".dfl";
 public static void main(String[] args) throws IOException {
 Deflater def = new Deflater();
 byte[] input = new byte[1024];
 byte[] output = new byte[1024];
 for (int i = 0; i < args.length; i++) {
 FileInputStream fin = new FileInputStream(args[i]);
 FileOutputStream fout = new FileOutputStream(args[i] + DEFLATE_SUFFIX);
 while (true) { // read and deflate the data
 // Fill the input array.
 int numRead = fin.read(input);
 if (numRead == -1) { // end of stream
 // Deflate any data that remains in the input buffer.
 def.finish();
 while (!def.finished()) {
 int numCompressedBytes = def.deflate(output, 0, output.length);
 if (numCompressedBytes > 0) {
 fout.write(output, 0, numCompressedBytes);
 } // end if
 } // end while
 break; // Exit while loop.
 } // end if
 else { // Deflate the input.
 def.setInput(input, 0, numRead);
 while (!def.needsInput()) {
 int numCompressedBytes = def.deflate(output, 0, output.length);
 if (numCompressedBytes > 0) {
 fout.write(output, 0, numCompressedBytes);
 } // end if
 } // end while
 } // end else
 } // end while
 fin.close();
 fout.flush();
 fout.close();
 def.reset();
 }
 }
}

This program is more complicated than it needs to be because it has to read the file in small chunks.
In Example 10-3 later in this chapter, you'll see a simpler program that achieves the same result
using the DeflaterOutputStream class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1.1.10. Checking the state of a deflater

The Deflater class also provides several methods that return information about the deflater's state.
The getAdler() method returns the Adler-32 checksum of the uncompressed data. This is not a
java.util.zip.Checksum object but the actual int value of the checksum:

public int getAdler()

The getTotalIn() method returns the number of uncompressed bytes passed to the setInput()
method:

public int getTotalIn()

The getTotalOut() method returns the total number of compressed bytes output so far via deflate(
):

public int getTotalOut()

For example, to print a running total of the compression achieved by the Deflater object def, you
might do something like this:

System.out.println((1.0 - def.getTotalOut()/def.getTotalIn())*100.0 +
"% saved");

10.1.2. Inflating Data

The Inflater class contains methods to decompress blocks of data compressed in the zip, gzip, or
zlib formats. This data may have been produced by Java's Deflater class or by some other program
written in another language entirely, such as WinZip or gzip. Using an inflater is a little simpler than
using a deflater since there aren't a lot of settings to pick. (Those were established when the data
was compressed.) There are seven steps to inflating data:

Construct an Inflater object.1.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Set the input with the compressed data to be inflated.2.

Call needsDictionary() to determine if a preset dictionary is required.3.

If needsDictionary() returns TRue, call getAdler() to get the Adler-32 checksum of the
dictionary. Then invoke setDictionary() to set the dictionary data.

4.

Inflate the data repeatedly until inflate() returns 0.5.

If needsInput() returns TRue, go back to step 2 to provide additional input data.6.

The finished() method returns true.7.

If you want to decompress more data with this Inflater object, reset it.

You rarely use this class directly. Instead, you use an inflater indirectly through one of the
decompressing stream classes like InflaterInputStream or InflaterOutputStream. These classes
provide much more convenient programmer interfaces for stream-oriented decompression.

10.1.2.1. Constructing inflaters

Inflater() has two constructors:

public Inflater(boolean zipped)
public Inflater()

By passing TRue to the first constructor, you indicate that data to be inflated has been compressed
using the zip or gzip format. Otherwise, the constructor assumes the data is in the zlib format.

10.1.2.2. Set the input

Once you have an Inflater to work with, you can start feeding it compressed data with setInput():

public void setInput(byte[] input)
public void setInput(byte[] input, int offset, int length)

As usual, the first variant treats the entire input array as data to be inflated. The second uses the
subarray of input, starting at offset and continuing for length bytes.

10.1.2.3. Check whether a preset dictionary was used

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, determine whether this block of data was compressed with a preset dictionary. If it was,
needsDictionary() returns true:

public boolean needsDictionary()

If needsDictionary() does return true, you can get the Adler-32 checksum of the requisite
dictionary with the getAdler() method:

public int getAdler()

This doesn't actually tell you what the dictionary is (which would be a lot more useful), but if you
have a list of commonly used dictionaries, you can probably use the Adler-32 checksum to determine
which of those were used to compress the data.

10.1.2.4. Set the dictionary

If needsDictionary() returns true, you'll have to use one of the setDictionary() methods to
provide the data for the dictionary. The first uses the entire dictionary byte array as the dictionary.
The second uses the subarray of dictionary, starting at offset and continuing for length bytes.

public void setDictionary(byte[] dictionary)
public void setDictionary(byte[] dictionary, int offset, int length)

The dictionary is not generally available with the compressed data. Whoever writes files using a
preset dictionary is responsible for determining some higher-level protocol for passing the dictionary
used by the compression program to the decompression program. One possibility is to store the
dictionary file, along with the compressed data, in an archive. Another possibility is that programs
that read and write many very similar files may always use the same dictionaryone that is built into
both the compression and decompression programs.

10.1.2.5. Inflate the data

Once setInput() has filled the input buffer with data, it is inflated through one of two inflate()
methods:

public int inflate(byte[] output) throws DataFormatException
public int inflate(byte[] output, int offset, int length)
 throws DataFormatException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first method fills the output array with the uncompressed data. The second fills the specified
subarraybeginning at offset and continuing for length byteswith the uncompressed data. inflate()
returns the number of uncompressed bytes written into the array. If this is 0, call needsInput() to
see if you need to call setInput() again to insert more compressed input data:

public boolean needsInput()

When more data is needed, needsInput() returns TRue. At this point, call setInput() again to feed
in more compressed input data, call inflate(), and repeat the process until there is no more input
data to be decompressed. If no more data is needed after inflate() returns zero, it should mean
decompression is finished, and the finished() method should return true:

public boolean finished()

The inflate() methods throw a java.util.zip.DataFormatException if they encounter invalid data,
which generally indicates a corrupted input stream. This is a direct subclass of java.lang.Exception,
not an IOException.

10.1.2.6. Reset the inflater

If you'd like to use the same settings to decompress more data with the same Inflater object, you
can invoke its reset() method:

public void reset()

Otherwise, call end() to throw away any unprocessed input and free the resources used by the
native code:

public void end()

The finalize() method calls end() before the inflater is garbage-collected, even if you forget to
invoke it explicitly:

protected void finalize()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1.2.7. An example

Example 10-2 presents a simple program that inflates files named on the command line. First, an
Inflater object, inf, is created. A file input stream named fin is opened to each file. At the same
time, a file output stream named fout is opened to an output file with the same name minus the
three-letter extension .dfl. The program then enters a loop in which it tries to read 1024-byte chunks
of data from fin, though care is taken not to assume that 1024 bytes are actually read. Any data
that is successfully read is passed to the inflater's setInput() method. This data is repeatedly
inflated and written onto the output stream until the inflater indicates that it needs more input. The
process then repeats itself until the end of the input stream is reached and the inflater's finished()
method returns true. At this point, the program breaks out of the read() loop and moves on to the
next file.

Example 10-2. The DirectInflater

import java.io.*;
import java.util.zip.*;
public class DirectInflater {
 public static void main(String[] args) {
 Inflater inf = new Inflater();
 byte[] input = new byte[1024];
 byte[] output = new byte[1024];
 for (int i = 0; i < args.length; i++) {
 try {
 if (!args[i].endsWith(DirectDeflater.DEFLATE_SUFFIX)) {
 System.err.println(args[i] + " does not look like a deflated file");
 continue;
 }
 FileInputStream fin = new FileInputStream(args[i]);
 FileOutputStream fout = new FileOutputStream(args[i].substring(0,
 args[i].length() - DirectDeflater.DEFLATE_SUFFIX.length()));
 while (true) { // Read and inflate the data.
 // Fill the input array.
 int numRead = fin.read(input);
 if (numRead != -1) { // End of stream, finish inflating.
 inf.setInput(input, 0, numRead);
 } // end if
 // Inflate the input.
 int numDecompressed = 0;
 while ((numDecompressed = inf.inflate(output, 0, output.length))
 != 0) {
 fout.write(output, 0, numDecompressed);
 }
 // At this point inflate() has returned 0.
 // Let's find out why.
 if (inf.finished()) { // all done

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;
 }
 else if (inf.needsDictionary()) { // We don't handle dictionaries.
 System.err.println("Dictionary required! bailing...");
 break;
 }
 else if (inf.needsInput()) {
 continue;
 }
 } // end while
 // Close up and get ready for the next file.
 fin.close();
 fout.flush();
 fout.close();
 inf.reset();
 } // end try
 catch (IOException ex) {System.err.println(ex);}
 catch (DataFormatException ex) {
 System.err.println(args[i] + " appears to be corrupt");
 System.err.println(ex);
 } // end catch
 }
 }
}

Once again, this program is more complicated than it needs to be because of the necessity of reading
the input in small chunks. In Example 10-4, you'll see a much simpler program that achieves the
same result via an InflaterOutputStream.

10.1.2.8. Checking the state of an inflater

The Inflater class also provides several methods that return information about the Inflater object's
state. The getAdler() method returns the Adler-32 checksum of the uncompressed data:

public int getAdler()

The getTotalIn() method returns the number of compressed bytes passed to the setInput()
method:

public int getTotalIn()

The getTotalOut() method returns the total number of decompressed bytes output via inflate():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getTotalOut()

The getremaining() method returns the number of compressed bytes left in the input buffer:

public int getRemaining()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. Compressing and Decompressing Streams

The Inflater and Deflater classes are a little raw. It would be more convenient to write
uncompressed data onto an output stream and have the stream compress, without worrying about
the mechanics of deflation. Similarly, it would be useful to have an input stream class that could read
from a compressed file but return the uncompressed data. Java, in fact, has several classes that do
exactly this. The java.util.zip.DeflaterOutputStream class is a filter stream that compresses the
data it receives in deflated format before writing it out to the underlying stream. The
java.util.zip.InflaterInputStream class inflates deflated data before passing it to the reading
program. java.util.zip.GZIPInputStream and java.util.zip.GZIPOutputStream do the same thing
except using the gzip format.

10.2.1. The DeflaterOutputStream Class

DeflaterOutputStream is a filter stream that deflates data before writing it onto the underlying
stream:

public class DeflaterOutputStream extends FilterOutputStream

Each stream uses a protected Deflater object called def to compress data stored in a protected
internal buffer called buf:

protected Deflater def;
protected byte[] buf;

The same deflater must not be used in multiple streams at the same time, though Java takes no
steps to guarantee that this won't happen.

The underlying output stream that receives the deflated data, the deflater object def, and the length
of the byte array buf are all set by one of the three DeflaterOutputStream constructors:

public DeflaterOutputStream(OutputStream out, Deflater def, int bufferLength)
public DeflaterOutputStream(OutputStream out, Deflater def)
public DeflaterOutputStream(OutputStream out)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The underlying output stream must be specified. The buffer length defaults to 512 bytes, and the
Deflater defaults to the default compression level, strategy, and method. Of course, the
DeflaterOutputStream has all the usual output stream methods such as write(), flush(), and
close(). It overrides three of these methods, but as a client programmer, you don't use them any
differently than you would in any other output stream.

There's also one new method, finish(), which finishes writing the compressed data onto the
underlying output stream but does not close the underlying stream:

public void finish() throws IOException

The close() method finishes writing the compressed data onto the underlying stream and then
closes it:

public void close() throws IOException

Example 10-3 is a simple character-mode program that deflates files. Filenames are read from the
command line. A file input stream is opened to each file; a file output stream is opened to that same
filename with the extension .dfl (for deflated). Finally, the file output stream is chained to a deflater
output stream, and a stream copier pours the data from the input file into the output file.

Example 10-3. The FileDeflater program

import java.io.*;
import java.util.zip.*;
public class FileDeflater {
 public final static String DEFLATE_SUFFIX = ".dfl";
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 FileOutputStream fout = new FileOutputStream(args[i] + DEFLATE_SUFFIX);
 DeflaterOutputStream dos = new DeflaterOutputStream(fout);
 for (int c = fin.read(); c != -1; c = fin.read()) {
 dos.write(c);
 }
 dos.close();
 fin.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

This program is a lot simpler than Example 10-1, even though the two programs do the same thing.
In general, a DeflaterOutputStream is preferable to a raw Deflater object for reasons of simplicity
and legibility, especially if you want the default strategy, algorithm, and compression level. However,
using the Deflater class directly does give you more control over the strategy, algorithm, and
compression level. You can get the best of both worlds by passing a custom-configured Deflater
object as the second argument to the DeflaterOutputStream() constructor.

10.2.2. The InflaterInputStream Class

The InflaterInputStream class is a filter stream that inflates data while reading it from the
underlying stream.

public class InflaterInputStream extends FilterInputStream

Each inflater input stream uses a protected Inflater object called inf to decompress data that is
stored in a protected internal byte array called buf. There's also a protected int field called len that
(unreliably) stores the number of bytes currently in the buffer, as opposed to storing the length of
the buffer itself.

protected Inflater inf;
protected byte[] buf;
protected int len;

The same Inflater object must not be used in multiple streams at the same time.

The underlying input stream from which deflated data is read, the Inflater object inf, and the
length of the byte array buf are all set by one of the three InflaterInputStream() constructors:

public InflaterInputStream(InputStream in, Inflater inf, int bufferLength)
public InflaterInputStream(InputStream in, Inflater inf)
public InflaterInputStream(InputStream in)

The underlying input stream must be specified, but the buffer length defaults to 512 bytes and the
Inflater defaults to an inflater for deflated streams (as opposed to zipped or gzipped streams). Of
course, the InflaterInputStream has all the usual input stream methods such as read(), available(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

), and close(). It overrides the following three methods:

public int read() throws IOException
public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException

For the most part, you use these the same way you'd use any read() or skip() method. However,
it's occasionally useful to know that the read method throws a new subclass of
IOExceptionjava.util.zip.ZipExceptionif the data doesn't adhere to the expected format. You
should also know that read(), skip(), and all other input stream methods count the uncompressed
bytes, not the compressed raw bytes that were actually read.

Example 10-4 is a simple character-mode program that inflates files. Filenames are read from the
command line. A file input stream is opened from each file that ends in .dfl, and this stream is
chained to an inflater input stream. A file output stream is opened to that same file minus the .dfl
extension. Finally, a stream copier pours the data from the input file through the inflating stream into
the output file.

Example 10-4. The FileInflater program

import java.io.*;
import java.util.zip.*;
public class FileInflater {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 if (args[i].toLowerCase().endsWith(FileDeflater.DEFLATE_SUFFIX)) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 InflaterInputStream iis = new InflaterInputStream(fin);
 FileOutputStream fout = new FileOutputStream(
 args[i].substring(0, args[i].length()-4));
 for (int c = iis.read(); c != -1; c = iis.read()) {
 fout.write(c);
 }
 fout.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
 else {
 System.err.println(args[i] + " does not appear to be a deflated file.");
 }
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.3. The GZIPOutputStream Class

Although zip files deflate their entries, raw deflated files are uncommon. More common are gzipped
files. These are deflated files with some additional header information attached. The header specifies
a checksum for the contents, the name of the compressed file, the time the file was last modified,
and other information. The java.util.zip.GZIPOutputStream class is a subclass of
DeflaterOutputStream that understands when and how to write this extra information to the output
stream.

public class GZIPOutputStream extends DeflaterOutputStream

GZIPOutputStream has two constructors. Since GZIPOutputStream is a filter stream, both constructors
take an underlying output stream as an argument. The second constructor also allows you to specify
a buffer size. (The first uses a default buffer size of 512 bytes.)

public GZIPOutputStream(OutputStream out) throws IOException
public GZIPOutputStream(OutputStream out, int size) throws IOException

Data is written onto a gzip output stream as onto any other stream, typically with the write()
methods. However, some of the data may be temporarily stored in the input buffer until more data is
available. At that point, the data is compressed and written onto the underlying output stream.
Therefore, when you are finished writing the data that you want to be compressed onto the stream,
you should call finish():

public void finish() throws IOException

This writes all remaining data in the buffer onto the underlying output stream. It then writes a trailer
containing a CRC value and the number of uncompressed bytes stored in the file onto the stream.
This trailer is part of the gzip format specification that's not part of a raw deflated file. If you're
through with the underlying stream as well as the gzip output stream, call close() instead of
finish(). If the stream hasn't yet been finished, close() finishes it, then closes the underlying
output stream. From this point on, data may not be written to that stream.

public void close() throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-5 is a simple command-line program that reads a list of files from the command line and
gzips each one. A file input stream reads each file. A file output stream chained to a gzip output
stream writes each output file. The gzipped files have the same name as the input files plus the suffix
.gz.

Example 10-5. The GZipper

import java.io.*;
import java.util.zip.*;
public class GZipper {
 public final static String GZIP_SUFFIX = ".gz";
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 try {
 InputStream fin = new FileInputStream(args[i]);
 OutputStream fout = new FileOutputStream(args[i] + GZIP_SUFFIX);
 GZIPOutputStream gzout = new GZIPOutputStream(fout);
 for (int c = fin.read(); c != -1; c = fin.read()) {
 gzout.write(c);
 }
 gzout.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
 }
}

If this looks similar to Example 10-3, that's because it is. All that has changed is the compression
format (gzip instead of deflate) and the compressed file suffix. However, since gzip and gunzip are
available on virtually all operating systemsunlike raw deflateyou can test this code by unzipping the
files it produces with the Free Software Foundation's (FSF) gunzip or some other program that
handles gzipped files.

10.2.4. The GZIPInputStream Class

The java.util.zip.GZIPInputStream class is a subclass of InflaterInputStream that provides a very
simple interface for decompressing gzipped data:

public class GZIPInputStream extends InflaterInputStream

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This class has two constructors:

public GZIPInputStream(InputStream in) throws IOException
public GZIPInputStream(InputStream in, int bufferLength) throws IOException

Since this is a filter stream, both constructors take an underlying input stream as an argument. The
second constructor also accepts a length for the buffer into which the compressed data will be read.
Otherwise, GZIPInputStream has the usual methods of an input stream: read(), skip(), close(),
mark(), reset(), and others. Marking and resetting are not supported. read() and close() are
overridden:

public int read(byte[] data, int offset, int length) throws IOException
public void close() throws IOException

These methods work exactly like the superclass methods they override. The only thing you need to
be aware of is that the read() method blocks until sufficient data is available in the buffer to allow
decompression.

Example 10-6 shows how easy it is to decompress gzipped data with GZIPInputStream. The main()
method reads a series of filenames from the command line. A FileInputStream object is created for
each file and a GZIPInputStream is chained to that. The data is read from the file, and the
decompressed data is written into a new file with the same name minus the .gz suffix. (A more
robust implementation would handle the case where the suffix is not .gz.) You can test this program
with files gzipped by Example 10-5 and with files gzipped by the FSF's gzip program.

Example 10-6. The GUnzipper

import java.io.*;
import java.util.zip.*;
public class GUnzipper {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 if (args[i].toLowerCase().endsWith(GZipper.GZIP_SUFFIX)) {
 try {
 FileInputStream fin = new FileInputStream(args[i]);
 GZIPInputStream gzin = new GZIPInputStream(fin);
 FileOutputStream fout = new FileOutputStream(
 args[i].substring(0, args[i].length()-3));
 for (int c = gzin.read(); c != -1; c = gzin.read()) {
 fout.write(c);
 }
 fout.close();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 catch (IOException ex) {System.err.println(ex);}
 }
 else {
 System.err.println(args[i] + " does not appear to be a gzipped file.");
 }
 }
 }
}

10.2.5. Expanding Output Streams and Compressing Input Streams

You may have noticed that the compression stream classes are not fully symmetrical. You can
expand the data being read from an input stream, and you can compress data being written to an
output stream, but no classes compress data being read from an input stream or expand data being
written to an output stream. Such classes aren't commonly needed. It's possible that you might want
to read compressed data from a file and write uncompressed data onto the network, but as long as
there are an input stream and an output stream, you can always put the compressor on the output
stream or the decompressor on the input stream. In either case, the compressor and decompressor
fall between the two underlying streams, so how they're chained doesn't really matter. Alternatively,
you may have some reason to work with compressed data in memory; for example, your application
might find it more efficient to store large chunks of text in compressed form. In this case, a byte
array output stream chained to a deflater output stream will do the trick.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Zip Files

Gzip and deflate are compression formats. Zip is both a compression and an archive format. This
means that a single zip file may contain more than one uncompressed file, along with information
about the names, permissions, creation and modification dates, and other information about each file
in the archive. This makes reading and writing zip archives somewhat more complex and somewhat
less amenable to a stream metaphor than reading and writing deflated or gzipped files.

The java.util.zip.ZipFile class represents a file in the zip format. Such a file might be created by
zip, PKZip, WinZip, or any of the many other zip programs. The java.util.zip.ZipEntry class
represents a single file stored in such an archive.

public class ZipFile extends Object implements ZipConstants
public class ZipEntry extends Object implements ZipConstants

The java.util.zip.ZipConstants interface that both these classes implement is
a rare, nonpublic interface that contains constants useful for reading and
writing zip files. Most of these constants define the positions in a zip file where
particular information, like the compression method used, is found. You don't
need to concern yourself with it.

The ZipFile class contains two constructors. The first takes a filename as an argument. The second
takes a java.io.File object as an argument. The third takes a File object and a mode indicating
whether or not the file is to be deleted. This mode should be one of the two named constants
ZipFile.READ or ZipFile.DELETE. If you specify ZipFile.DELETE, the file will be deleted automatically
sometime after you open it and before you close it. However, you'll still be able to read its contents
until the application exits. File objects will be discussed in Chapter 17. For now, I'll just use the
constructor that accepts a filename. Functionally, these constructors are similar.

public ZipFile(String filename) throws ZipException, IOException
public ZipFile(File file) throws ZipException, IOException
public ZipFile(File file, int mode) throws IOException

ZipException is a subclass of IOException that indicates the data in the zip file doesn't fit the zip
format. In this case, the zip exception's message will contain more details, like "invalid END header
signature" or "cannot have more than one drive." While these may be useful to a zip expert, in
general they indicate that the file is corrupted, and there's not much that can be done about it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class ZipException extends IOException

Both constructors attempt to open the specified file for random access. If the file is opened
successfully with no exceptions, the entries() method will return a list of all the files in the archive:

public Enumeration entries()

The return value is a java.util.Enumeration object containing one java.util.zip.ZipEntry object for
each file in the archive. In Java 5, this method's signature has been genericized to make that a tad
more obvious:

public Enumeration<? extends ZipEntry> entries()

Example 10-7 lists the entries in a zip file specified on the command line. The toString() method is
used implicitly to provide the name for each zip entry in the list.

Example 10-7. ZipLister

import java.util.*;
import java.util.zip.*;
import java.io.*;

public class ZipLister {
 public static void main(String[] args) throws IOException {
 ZipFile zf = new ZipFile(args[0]);
 Enumeration e = zf.entries();
 while (e.hasMoreElements()) {
 System.out.println(e.nextElement());
 }
 }
}

Here are the first few lines that result from running this program on the classes.jar file (JAR files are
just zip files that contain manifests) from the JDK:

$ java ZipLister /usr/local/java/lib/classes.jar
META-INF/
META-INF/MANIFEST.MF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

com/
com/sun/
com/sun/tools/
com/sun/tools/javac/
com/sun/tools/javac/Main.class
com/sun/tools/javac/v8/
com/sun/tools/javac/v8/CommandLine.class
com/sun/tools/javac/v8/util/
com/sun/tools/javac/v8/util/ListBuffer$Enumerator.class
com/sun/tools/javac/v8/util/ListBuffer.class
...

To get a single entry in the zip file rather than a list of the entire contents, pass the name of the
entry to the getEntry() method:

public ZipEntry getEntry(String name)

Of course, this requires you to know the name of the entry in advance. The name is simply the path
and filename, such as java/io/ObjectInputValidation.class. For example, to retrieve the zip entry for
java/io/ObjectInputValidation.class from the ZipFile zf, you might write:

ZipEntry ze = zf.getEntry("java/io/ObjectInputValidation.class");

You can also get the name with the getName() method of the ZipEntry class, discussed later in this
chapter. This method, however, requires you to have a ZipEntry object already, so there's a little
chicken-and-egg problem here.

Most of the time, you'll want more than the names of the files in the archive. You can get the actual
contents of the zip entry using getInputStream():

public InputStream getInputStream(ZipEntry ze) throws IOException

This returns an input stream from which you can read the uncompressed contents of the zip entry
(file). Example 10-8 is a simple unzip program that uses this input stream to unpack a zip archive
named on the command line.

Example 10-8. Unzipper

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.*;
import java.util.zip.*;
import java.io.*;
public class Unzipper {
 public static void main(String[] args) throws IOException {
 ZipFile zf = new ZipFile(args[0]);
 Enumeration e = zf.entries();
 while (e.hasMoreElements()) {
 ZipEntry ze = (ZipEntry) e.nextElement();
 System.out.println("Unzipping " + ze.getName());
 FileOutputStream fout = new FileOutputStream(ze.getName());
 InputStream in = zf.getInputStream(ze);
 for (int c = in.read(); c != -1; c = in.read()) {
 fout.write(c);
 }
 in.close();
 fout.close();
 }
 }
}

This is not an ideal unzip program. For one thing, it blindly overwrites any files that already exist with
the same name in the current directory. Before creating a new file, it should check to see if one exists
and, if it does, ask whether the user wants to overwrite it. Furthermore, it can unzip files only into
existing directories. If the archive contains a file in a directory that does not exist, a
FileNotFoundException is thrown. Both problems are completely fixable, but fixing them requires the
java.io.File class. You'll learn about this in Chapter 17.

Finally, two utility methods in java.util.zip.ZipFile relate to the "File" part of ZipFile rather than
the "Zip" part:

public String getName()
public void close() throws IOException

The getName() method returns the full path to the filefor example, /usr/local/java/lib/classes.jar.
The close() method closes the zip file. Even after a file is closed, you can still get an entry or an
input stream because the entries are read and stored in memory when the ZipFile object is first
constructed. However, you cannot get the actual data associated with the entry. Attempts to do so
will throw a NullPointerException.

10.3.1. Zip Entries

The java.util.zip.ZipEntry class represents a file stored in a zip archive. A ZipEntry object contains

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information about the file but not the contents of the file. Most ZipEntry objects are created by non-
Java tools and retrieved from zip files using the getEnTRy() or entries() methods of the ZipFile
class. However, if you're writing your own program to write zip files using the ZipOutputStream class,
you'll need to create new ZipEntry objects with this constructor:

public ZipEntry(String name)

Normally, the name argument is the name of the file that's being placed in the archive. It should not
be null, or a NullPointerException will be thrown. It is also required to be less than 65,536 bytes
long (which is plenty long for a filename).

There's also a copy constructor that copies the name, comment, modification time, CRC checksum,
size, compressed size, method, comment, and, indeed, everything except the actual data of the file
from an existing ZipEntry object:

public ZipEntry(ZipEntry e)

Nine methods return information about a specific entry in a zip file:

public String getName()
public long getTime()
public long getSize()
public long getCompressedSize()
public long getCrc()
public int getMethod()
public byte[] getExtra()
public String getComment()
public boolean isDirectory()

The name is simply the relative path and filename stored in the archive, such as
com/sun/tools/javac/v8/CommandLine.class or java/awt/Dialog.class. The time is the last time this
entry was modified. It is given as a long, counting the number of milliseconds since midnight,
January 1, 1970, Greenwich Mean Time. (This is not how the time is stored in the zip file, but Java
converts the time before returning it.) -1 indicates that the modification time is not specified. The
CRC is a 32-bit cyclic redundancy code for the data that's used to determine whether or not the file is
corrupt. If no CRC is included, getCRC() returns -1.

The size is the original, uncompressed length of the data in bytes. The compressed size is the length
of the compressed data in bytes. The getSize() and getCompressedSize() methods both return -1
if the size isn't known.

getMethod() tells you whether or not the data is compressed; it returns 0 if the data is
uncompressed, 8 if it's compressed using the deflation format, and -1 if the compression format is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unknown. 0 and 8 are the mnemonic constants ZipEntry.STORED and ZipEntry.DEFLATED.

Each entry may contain an arbitrary amount of extra data. If so, this data is returned in a byte array
by the getExTRa() method. Similarly, each entry may contain an optional string comment. If it does,
the getComment() method returns it; if it doesn't, getComment() returns null. Finally, the
isDirectory() method returns true if the entry is a directory and false if it isn't.

Example 10-9 is an improved ZipLister that prints information about the files in a zip archive.

Example 10-9. FancyZipLister

import java.util.*;
import java.util.zip.*;
import java.io.*;
public class FancyZipLister {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 try {
 ZipFile zf = new ZipFile(args[i]);
 Enumeration e = zf.entries();
 while (e.hasMoreElements()) {
 ZipEntry ze = (ZipEntry) e.nextElement();
 String name = ze.getName();
 Date lastModified = new Date(ze.getTime());
 long uncompressedSize = ze.getSize();
 long compressedSize = ze.getCompressedSize();
 long crc = ze.getCrc();
 int method = ze.getMethod();
 String comment = ze.getComment();
 if (method == ZipEntry.STORED) {
 System.out.println(name + " was stored at " + lastModified);
 System.out.println("with a size of " + uncompressedSize
 + " bytes");
 }
 else if (method == ZipEntry.DEFLATED) {
 System.out.println(name + " was deflated at " + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }
 else {
 System.out.println(name
 + " was compressed using an unrecognized method at "
 + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }
 System.out.println("Its CRC is " + crc);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (comment != null && !comment.equals("")) {
 System.out.println(comment);
 }
 if (ze.isDirectory()) {
 System.out.println(name + " is a directory");
 }
 System.out.println();
 }
 }
 catch (IOException ex) {System.err.println(ex);}
 }
 }
}

Typical output looks like this:

$ java FancyZipListertemp.zip
test.txt was deflated at Wed Jun 11 15:57:32 EDT 1997
from 187 bytes to 98 bytes, a savings of 52.406417112299465%
Its CRC is 1981281836
ticktock.txt was deflated at Wed Jun 11 10:42:02 EDT 1997
from 1480 bytes to 405 bytes, a savings of 27.364864864864863%
Its CRC is 4103395328

There are also six corresponding set methods, which are used to attach information to each entry
you store in a zip archive. However, most of the time it's enough to let the ZipEntry class calculate
these for you:

public void setTime(long time)
public void setSize(long size)
public void setCrc(long crc)
public void setMethod(int method)
public void setExtra(byte[] extra)
public void setComment(String comment)

10.3.2. The ZipOutputStream Class

The java.util.zip.ZipOutputStream class subclasses DeflaterOutputStream and writes compressed
data in the zip format. ZipOutputStream implements the nonpublic java.util.zip.ZipConstants
interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class ZipOutputStream extends DeflaterOutputStream
 implements ZipConstants

Java supports two zip formats, uncompressed and compressed. These are slightly less well known as
stored and deflated. They correspond to the mnemonic constants ZipOutputStream.STORED and
ZipOutputStream.DEFLATED:

public static final int STORED = ZipEntry.STORED;
public static final int DEFLATED = ZipEntry.DEFLATED;

Deflated files are compressed by a Deflater object using the deflation method. Stored files are
copied byte for byte into the archive without any compression. This is the right format for files that
are already compressed but still need to go into the archive, such as a GIF image or an MPEG movie.

Because zip is not just a compression format like deflation or gzip but an archival format, a single zip
file often contains multiple zip entries, each of which contains a deflated or stored file. Furthermore,
the zip file contains a header with metainformation about the archive itself, such as the location of
the entries in the archive. Therefore, it's not possible to write raw, compressed data onto the output
stream. Instead, zip entries must be created for each successive file (or other sequence of data), and
data must be written into the entries. The sequence of steps you must follow to write data onto a zip
output stream is:

Construct a ZipOutputStream object from an underlying stream, most often a file output stream.1.

Set the comment for the zip file (optional).2.

Set the default compression level and method (optional).3.

Construct a ZipEntry object.4.

Set the metainformation for the zip entry.5.

Put the zip entry in the archive.6.

Write the entry's data onto the output stream.7.

Close the zip entry (optional).8.

Repeat steps 4 through 8 for each entry you want to store in the archive.9.

Finish the zip output stream.10.

Close the zip output stream.11.

Steps 4 and 8, the creation and closing of zip entries in the archive, are new. You won't find anything
like them in other stream classes, but they are necessary. Attempts to write data onto a zip output
stream using only the regular write(), flush(), and close() methods are doomed to failure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.2.1. Constructing and initializing the ZipOutputStream

There is a single ZipOutputStream() constructor that takes as an argument the underlying stream to
which data will be written:

public ZipOutputStream(OutputStream out)

For example:

FileOutputStream fout = new FileOutputStream("data.zip");
ZipOutputStream zout = new ZipOutputStream(fout);

10.3.2.2. Set the comment for the zip file

After the zip output stream has been constructed (in fact, at any point before the zip output stream
is finished), you can add a single comment to the zip file with the setComment() method:

public void setComment(String comment)

The comment is an arbitrary ASCII string comment of up to 65,535 bytes. For example:

zout.setComment("Archive created by Zipper 1.0");

All high-order Unicode bytes are discarded before the comment is written onto the zip output stream.
Attempts to attach a comment longer than 65,535 characters throw IllegalArgumentExceptions.
Each zip output stream can have only one comment (though individual entries may have their own
comments too). Resetting the comment erases the previous comment.

10.3.2.3. Set the default compression level and method

Next, you may wish to set the default compression method with setMethod():

public void setMethod(int method)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can change the default compression method from stored to deflated or deflated to stored. This
default method is used only when the zip entry itself does not specify a compression method. The
initial value is ZipOutputStream.DEFLATED (compressed); the alternative is ZipOutputStream.STORED
(uncompressed). An IllegalArgumentException is thrown if an unrecognized compression method is
specified. You can call this method again at any time before the zip output stream is finished. This
sets the default compression method for all subsequent entries in the zip output stream. For
example:

zout.setMethod(ZipOutputStream.STORED);

You can change the default compression level with setLevel() at any time before the zip output
stream is finished:

public void setLevel(int level)

For example:

zout.setLevel(9);

As with the default method, the zip output stream's default level is only used when the zip entry itself
does not specify a compression level. The initial value is Deflater.DEFAULT_COMPRESSION. Valid levels
range from 0 (no compression) to 9 (high compression); an IllegalArgumentException is thrown if a
compression level outside that range is requested. You can call setLevel() again at any time before
the zip output stream is finished to set the default compression level for all subsequent entries in the
zip output stream.

10.3.2.4. Construct a ZipEntry object and put it in the archive

Data is written into the zip output stream in separate zip entries represented by ZipEntry objects. A
zip entry must be opened before data is written, and each zip entry must be closed before the next
one is opened. The putNextEntry() method opens a new zip entry on the zip output stream:

public void putNextEntry(ZipEntry ze) throws IOException

If a previous zip entry is still open, it's closed automatically. The properties of the ZipEntry argument
ze specify the compression level and method. If ze leaves those unspecified, the defaults set by the
last calls to setLevel() and setMethod() are used. The ZipEntry object may also contain a CRC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checksum, the time the file was last modified, the size of the file, a comment, and perhaps some
optional data with an application-specific meaning (for instance, the resource fork of a Macintosh
file). These properties are set by the setTime(), setSize(), setCrc(), setComment(), and
setExtra() methods of the ZipEntry class. (These properties are not set by the ZipOutputStream
class since they will be different for each file stored in the archive.)

10.3.2.5. Write the entry's data onto the output stream

Data is written into the zip entry using the usual write() methods of any output stream. Only one
write() method is overridden in ZipOutputStream:

public void write(byte[] data, int offset, int length) throws IOException

10.3.2.6. Close the zip entry

Finally, you may want to close the zip entry to prevent any further data from being written to it. For
this, call the closeEntry() method:

public void closeEntry() throws IOException

If an entry is still open when putNextEntry() is called or when you finish the zip output stream, this
method will be called automatically. Thus, an explicit invocation is usually unnecessary.

10.3.2.7. Finish the zip output stream

A zip file stores metainformation in both the header and the tail of the file. The finish() method
writes out this tail information:

public void finish() throws IOException

Once a zip output stream is finished, you cannot write any more data to it. However, data may be
written to the underlying stream using a separate reference to the underlying stream. In other
words, finishing a stream does not close it.

10.3.2.8. Close the zip output stream

Most of the time, you will want to close a zip output stream at the same time you finish it.
ZipOutputStream overrides the close() method inherited from java.util.zip.DeflaterOutputStream.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void close() throws IOException

This method finishes the zip output stream and then closes the underlying stream.

10.3.2.9. An example

Example 10-10 uses a zip output stream chained to a file output stream to create a single zip archive
from a list of files named on the command line. The name of the output zip file and the files to be
stored in the archive are read from the command line. An optional -d command-line flag can set the
level of compression anywhere from 0 to 9.

Example 10-10. The Zipper program

import java.util.zip.*;
import java.io.*;
public class Zipper {
 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.out.println("Usage: java Zipper [-d level] name.zip"+
 " file1 file2...");
 return;
 }
 String outputFile = args[0];
 // Default to maximum compression
 int level = 9;
 int start = 1;
 if (args[0].equals("-d")) {
 try {
 level = Integer.parseInt(args[1]);
 outputFile = args[2];
 start = 3;
 }
 catch (Exception ex) {
 System.out.println("Usage: java Zipper [-d level] name.zip"
 + " file1 file2...");
 return;
 }
 }
 FileOutputStream fout = new FileOutputStream(outputFile);
 ZipOutputStream zout = new ZipOutputStream(fout);
 zout.setLevel(level);
 for (int i = start; i < args.length; i++) {
 ZipEntry ze = new ZipEntry(args[i]);
 FileInputStream fin = new FileInputStream(args[i]);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 System.out.println("Compressing " + args[i]);
 zout.putNextEntry(ze);
 for (int c = fin.read(); c != -1; c = fin.read()) {
 zout.write(c);
 }
 }
 finally {
 fin.close();
 }
 }
 zout.close();
 }
}

10.3.3. The ZipInputStream Class

Zip input streams read data from zip archives. As with output streams, it's generally best not to read
the raw data. (If you must read the raw data, you can always use a bare file input stream.) Instead,
the input is first parsed into zip entries. Once you've positioned the stream on a particular zip entry,
you read decompressed data from it using the normal read() methods. Then the entry is closed, and
you open the next zip entry in the archive. This sequence of steps reads data from a zip input
stream:

Construct a ZipInputStream object from an underlying stream.1.

Open the next zip entry in the archive.2.

Read data from the zip entry using InputStream methods such as read().3.

Close the zip entry (optional).4.

Repeat steps 2 through 4 as long as there are more entries (files) remaining in the archive.5.

Close the zip input stream.6.

Steps 2 and 4, the opening and closing of zip entries in the archive, are specific to zip streams; you
won't find anything like them in other input stream classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You probably noticed that the ZipInputStream class provides a second way to
decompress zip files. The ZipFile class approach shown in the Unzipper
program of Example 10-8 is the first. ZipInputStream uses one input stream to
read from successive entries. The ZipFile class uses different input stream
objects for different entries. Which to use is mainly a matter of aesthetics.
There's not a strong reason to prefer one approach over the other, though the
ZipInputStream is somewhat more convenient in the middle of a sequence of
filters.

10.3.3.1. Construct a ZipInputStream

There is a single ZipInputStream() constructor that takes as an argument the underlying input
stream:

public ZipInputStream(InputStream in)

For example:

FileInputStream fin = new FileInputStream("data.zip");
ZipInputStream zin = new ZipInputStream(fin);

No further initialization or parameter setting are needed. A zip input stream can read from a file
regardless of the compression method or level used.

10.3.3.2. Open the next zip entry

A zip input stream reads zip entries in the order in which they appear in the file. You do not need to
read each entry in its entirety, however. Instead, you can open an entry, close it without reading it,
read the next entry, and repeat until you come to the entry you want. The getNextEnTRy() method
opens the next entry in the zip input stream:

public ZipEntry getNextEntry() throws IOException

If the underlying stream throws an IOException, it's passed along by this method. If the stream data
doesn't represent a valid zip file, a ZipException is thrown.

10.3.3.3. Reading from a ZipInputStream

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once the entry is open, you can read from it using the regular read(), skip(), and available()
methods of any input stream. (Zip input streams do not support marking and resetting.) Only two of
these are overridden:

public int read(byte[] data, int offset, int length) throws IOException
public long skip(long n) throws IOException

The read() method reads and the skip() method skips the decompressed bytes of data.

10.3.3.4. Close the zip entry

When you reach the end of a zip entry, or when you've read as much data as you're interested in,
you may call closeEntry() to close the zip entry and prepare to read the next one:

public void closeEntry() throws IOException

Explicitly closing the entry is optional. If you don't close an entry, it will be closed automatically when
you open the next entry or close the stream.

These three stepsopen the entry, read from the entry, close the entrymay be repeated as many
times as there are entries in the zip input stream.

10.3.3.5. Close the ZipInputStream

When you are finished with the stream, you can close it using the close() method:

public void close() throws IOException

As usual for filter streams, this method also closes the underlying stream. Unlike zip output streams,
zip input streams do not absolutely have to be finished or closed when you're through with them, but
it's polite to do so.

10.3.3.6. An example

Example 10-11 is an alternative unzipper that uses a ZipInputStream instead of a ZipFile. There's
not really a huge advantage to using one or the other. Use whichever you find more convenient or
aesthetically pleasing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-11. Another Unzipper

import java.util.zip.*;
import java.io.*;
public class Unzipper2 {
 public static void main(String[] args) throws IOException {
 for (int i = 0; i < args.length; i++) {
 FileInputStream fin = new FileInputStream(args[i]);
 ZipInputStream zin = new ZipInputStream(fin);
 ZipEntry ze = null;
 while ((ze = zin.getNextEntry()) != null) {
 System.out.println("Unzipping " + ze.getName());
 FileOutputStream fout = new FileOutputStream(ze.getName());
 for (int c = zin.read(); c != -1; c = zin.read()) {
 fout.write(c);
 }
 zin.closeEntry();
 fout.close();
 }
 zin.close();
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Checksums

Compressed files are especially susceptible to corruption. While changing a bit from 0 to 1 or vice
versa in a text file generally affects only a single character, changing a single bit in a compressed file
often makes the entire file unreadable. Therefore, it's customary to store a checksum with the
compressed file so that the recipient can verify that the file is intact. The zip format does this
automatically, but you may wish to use manual checksums in other circumstances as well.

There are many different checksum schemes. A particularly simple example adds a parity bit to the
data, typically 1 if the number of 1 bits is odd, 0 if the number of 1 bits is even. This checksum can
be calculated by summing up the number of 1 bits and taking the remainder when that sum is
divided by two. However, this scheme isn't very robust. It can detect single-bit errors, but in the face
of bursts of errors, as often occur in transmissions over modems and other noisy connections, there's
a 50-50 chance that corrupt data will be reported as correct.

Better checksum schemes use more bits. For example, a 16-bit checksum could sum up the number
of 1 bits and take the remainder modulo 65,536. This means that in the face of completely random
data, there's only 1 in 65,536 chances of corrupt data being reported as correct. This chance drops
exponentially as the number of bits in the checksum increases. More mathematically sophisticated
schemes can reduce the likelihood of a false positive even further.

The java.util.zip.Checksum interface defines four methods for calculating a checksum for a
sequence of bytes. Implementations of this interface provide specific checksum algorithms.

public abstract void update(int b)
public abstract void update(byte[] data, int offset, int length)
public abstract long getValue()
public abstract void reset()

The update() methods calculate the initial checksum and update the checksum as more bytes are
added to the sequence. As bytes increase, the checksum changes. For example, using the parity
checksum algorithm described earlier, if the byte 255 (binary 11111111) were added to the
sequence, the checksum would not change because an even number of 1 bits had been added. If the
byte 7 (binary 00000111) were added to the sequence, the checksum's value would flip (from 1 to 0
or 0 to 1) because an odd number of ones had been added to the sequence.

The getValue() method returns the current value of the checksum. The reset() method returns
the checksum to its initial value. Example 10-12 shows about the simplest checksum class
imaginableone that implements the parity algorithm described here.

Example 10-12. The parity checksum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.zip.*;
public class ParityChecksum implements Checksum {
 private long checksum = 0;
 public void update(int b) {
 int numOneBits = 0;
 for (int i = 1; i < 256; i *= 2) {
 if ((b & i) != 0) numOneBits++;
 }
 checksum = (checksum + numOneBits) % 2;
 }
 public void update(byte data[], int offset, int length) {
 for (int i = offset; i < offset+length; i++) {
 this.update(data[i]);
 }
 }

 public long getValue() {
 return checksum;
 }
 public void reset() {
 checksum = 0;
 }
}

The java.util.zip package provides two concrete implementations of the Checksum interface, CRC32
and Adler32. Both produce 32-bit checksums. The Adler-32 algorithm is not quite as reliable as CRC-
32 but can be computed much faster. Both of these classes have a single no-argument constructor:

public CRC32()
public Adler32()

They share the same five methods, four implementing the methods of the Checksum interface and one
additional update() method that reads an entire byte array:

public void update(int b)
public void update(byte[] data, int offset, int length)
public void update(byte[] data)
public void reset()
public long getValue()

Example 10-13, FileSummer, is a simple program that calculates and prints a CRC-32 checksum for
any file. However, it's structured such that the static getCRC32() method can calculate a CRC-32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checksum for any stream.

Example 10-13. FileSummer

import java.io.*;
import java.util.zip.*;
public class FileSummer {
 public static void main(String[] args) throws IOException {
 FileInputStream fin = new FileInputStream(args[0]);
 System.out.println(args[0] + ":\t" + getCRC32(fin));
 fin.close();
 }
 public static long getCRC32(InputStream in) throws IOException {
 Checksum cs = new CRC32();
 // It would be more efficient to read chunks of data
 // at a time, but this is simpler and easier to understand.
 for (int b = in.read(); b != -1; b = in.read()) {
 cs.update(b);
 }
 return cs.getValue();
 }
}

This isn't as useful as it might appear at first. Most of the time, you don't want to read the entire
stream just to calculate a checksum. Instead, you want to look at the bytes of the stream as they go
past on their way to some other, ultimate destination. You neither want to alter the bytes nor
consume them. The CheckedInputStream and CheckedOutputStream filters allow you to do this.

10.4.1. Checked Streams

The java.util.zip.CheckedInputStream and java.util.zip.CheckedOutputStream classes keep a
checksum of the data they've read or written.

public class CheckedInputStream extends FilterInputStream
public class CheckedOutputStream extends FilterOutputStream

These are filter streams, so they're constructed from an underlying stream and an object that
implements the Checksum interface.

public CheckedInputStream(InputStream in, Checksum cksum)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public CheckedOutputStream(OutputStream out, Checksum cksum)

For example:

FileInputStream fin = new FileInputStream("/etc/passwd");
Checksum cksum = new CRC32();
CheckedInputStream cin = new CheckedInputStream(fin, cksum);

The CheckedInputStream and CheckedOutputStream classes have all the usual read(), write(), and
other methods you expect in a stream class. Externally, these methods behave exactly like those in
the superclass and do not require any special treatment.

Both CheckedOutputStream and CheckedInputStream have a getChecksum() method that returns the
Checksum object for the stream. You can use this Checksum object to get the current value of the
checksum for the stream.

public Checksum getChecksum()

These methods return a reference to the actual Checksum object that's being used to calculate the
checksum. It is not copied first. Thus, if a separate thread is accessing this stream, the value in the
checksum may change while you're working with the Checksum object. Conversely, if you invoke one
of this Checksum object's update() methods, it affects the value of the checksum for the stream as
well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. File Viewer, Part 4

Because of the nature of filter streams, it is relatively straightforward to add decompression services
to the FileDumper program last seen in Chapter 8. Generally, you'll want to decompress a file before
dumping it. Adding decompression does not require a new dump filter. Instead, it simply requires
passing the file through an inflater input stream before passing it to one of the dump filters. We'll let
the user choose from either gzipped or deflated files with the command-line switches -gz and -
deflate. When one of these switches is seen, the appropriate inflater input stream is selected; it is an
error to select both. Example 10-14, FileDumper4, demonstrates.

Example 10-14. FileDumper4

import java.io.*;
import java.util.zip.*;
import com.elharo.io.*;
public class FileDumper4 {
 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;
 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;
 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println("Usage: java FileDumper4 [-ahdsilfx] [-little]"+
 "[-gzip|-deflated] file1...");
 }
 boolean bigEndian = true;
 int firstFile = 0;
 int mode = ASC;
 boolean deflated = false;
 boolean gzipped = false;
 // Process command-line switches.
 for (firstFile = 0; firstFile < args.length; firstFile++) {
 if (!args[firstFile].startsWith("-")) break;
 if (args[firstFile].equals("-h")) mode = HEX;
 else if (args[firstFile].equals("-d")) mode = DEC;
 else if (args[firstFile].equals("-s")) mode = SHORT;
 else if (args[firstFile].equals("-i")) mode = INT;
 else if (args[firstFile].equals("-l")) mode = LONG;
 else if (args[firstFile].equals("-f")) mode = FLOAT;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else if (args[firstFile].equals("-x")) mode = DOUBLE;
 else if (args[firstFile].equals("-little")) bigEndian = false;
 else if (args[firstFile].equals("-deflated") && !gzipped) deflated = true;
 else if (args[firstFile].equals("-gzip") && !deflated) gzipped = true;
 }
 for (int i = firstFile; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode, bigEndian, deflated, gzipped);
 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
 }
 public static void dump(InputStream in, OutputStream out, int mode,
 boolean bigEndian, boolean deflated, boolean gzipped) throws IOException {
 // The reference variable in may point to several different objects
 // within the space of the next few lines. We can attach
 // more filters here to do decompression, decryption, and more.
 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }
 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new IntFilter(din);
 break;
 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:
 in = new DoubleFilter(din);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;
 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;
 default:
 }
 }
 StreamCopier.copy(in, out);
 in.close();
 }
}

Note how little I had to change to add support for compressed files. I simply imported one package
and added a couple of command-line switches and six lines of code (which could easily have been
two) to test for the command-line arguments and add one more filter stream to the chain. Zip and
JAR files would not be hard to support either. You'd just have to iterate through the entries in the
archive and dump each entry onto System.out. That's left as an exercise for the reader.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. JAR Archives
JAR archives are the standard means of packaging and distributing Java software. They are used by
applets, servlets, standalone GUI applications, class libraries, JavaBeans, and more. The content in a
JAR archive can be found by the class loader, regardless of the file's exact location in the filesystem,
as long as it is somewhere in the classpath. This makes JARs a very convenient place to put
configuration data, preferences, lookup tables, localization strings, and other noncode resources that
need to be distributed with an application. In particular, storing such resources in JAR archives
enables you to read them using standard streams without:

Worrying that the user will have moved them. When the application is distributed as a single file
rather than a collection of nested folders, it's harder for one file to be accidentally moved,
deleted, or edited.

Concerning yourself with the detailed filesystem conventions on the local platform. Even if the
local system uses backslashes or colons as path separators or doesn't even have a filesystem
(as is often the case in J2ME environments), the JAR file always uses standard Unix file and
path conventions.

JAR files also improve performance, especially in applications such as applets and Java Web Start-
launched applications that download their code from a server. First of all, the content in the JAR
archive is compressed. More importantly, it is faster for a web browser to download one JAR file than
to download all the individual files the archive contains, since only one HTTP connection is required.
Storing resources in a JAR file makes your applications faster, more robust, harder to accidentally
break, and easier to install.

Sun wisely decided not to define a new archive format for JAR files. Instead, they stuck with the
tried-and-true zip format. However, a JAR file also contains some extra metadata you won't find in a
typical zip file. To a pure zip tool, this metadata just looks like some files and directories in the
archive. However, to a JAR tool, that extra metadata provides key information your programs can
use.

To make the files contained in the archive available to Java, the complete path to the archive itself is
added to the classpath. The JAR file is treated like a directory in the context of the classpath. This is
sensible, because although the archive is a file to the filesystem, it behaves like a directory to Java.
Alternately, you can just put the JAR file in the jre/lib/ext directory or the jre/lib/endorsed directory,
where all class loaders will find it automatically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1. Meta-Information: Manifest Files and Signatures

Aside from the three-letter extension, the only distinction between a zip file and a JAR file is that a
JAR file contains a manifest file that lists the contents of the archive as well as information about
those contents. The manifest file, which provides meta-information about the contents of the archive
in a particular format, is named MANIFEST.MF and is stored in the META-INF directory at the top of
the archive. This directory and file are normally not present in the unarchived collection. Generally, a
manifest is added as part of the archiving process.

At a minimum, a manifest file must contain this opening line:

Manifest-Version: 1.0

A manifest usually contains additional entries for some of the files in the archive. However, the
manifest does not usually contain an entry for every file in the archive.

Blank lines separate entries from each other. Each entry is composed of a list of name/value pairs,
one to a line. Names are separated from values by colons and whitespace, as in email headers. For
example:

Name: com/elharo/awt/Filmstrip.class
Java-Bean: true
Last-modified: 09-07-2005
Depends-On: com/elharo/io/StreamCopier.class
Brad: Majors
Digest-Algorithms: MD5
MD5-Digest: XD4578YEEIK9MGX54RFGT7UJUI9810

This manifest defines an entry with the name com/elharo/awt/Filmstrip.class. This entry has six
attributes: Java-Bean with the value TRue, Last-modified with the value 09-07-2005, Depends-On with
the value com/elharo/io/StreamCopier.class, Brad with the value Majors, and so on. Each of these
has a specific meaning in a particular context. For instance, the Java-Bean attribute with the value
TRue means that this class is a JavaBean that can be loaded into a visual builder tool. Digest-
Algorithms lists the types of message digests computed from the file, and MD5-Digest gives the value
of one particular digest. Most of the attributes have application-specific meanings. Applications
reading a JAR archive that don't understand a particular attribute should simply ignore it.

The files in the JAR archive may be signed using a digital signature algorithm. Different individuals
may sign different files, and more than one person may sign each file. For each file that's signed, the
META-INF directory will also contain a signature file. The signatures can be checked when a file is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

read from a JAR archive. If the signatures no longer match the files, an IOException can be thrown
(though this behavior is configurable at the programmer level). If you're interested, the details are
available in Java Security by Scott Oaks (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. The jar Tool

Sun's JDK contains a simple command-line program called jar that packages a set of files or a
directory structure into a JAR file. Its syntax is modeled after the Unix tar command. For instance, to
verbosely compress the directory com into the file javaio.jar with the manifest file javaio.mf, you
would type the following command line:

% jar cvmf javaio.mf javaio.jar com
added manifest
adding: com/ (in=0) (out=0) (stored 0%)
xsadding: com/elharo/ (in=0) (out=0) (stored 0%)
adding: com/elharo/io/ (in=0) (out=0) (stored 0%)
adding: com/elharo/io/StreamCopier.class (in=887) (out=552) (deflated 37%)
adding: com/elharo/io/NullOutputStream.class (in=374) (out=225) (deflated 39%)
adding: com/elharo/io/RandomInputStream.class (in=792) (out=487) (deflated 38%)
adding: com/elharo/io/NullOutputStream.java (in=263) (out=149) (deflated 43%)
adding: com/elharo/io/StreamCopier.java (in=764) (out=377) (deflated 50%)

This creates a file named javaio.jar. To extract files, change cvmf (c reate v erbose with m anifest f
ile) to xvf (ex tract v erbose f ile). If you don't care to see each file as it's added or extracted, you
can omit the v argument:

% jar xf javaio.jar

You can also use any other zip tool to create or unpack JAR archives. However, you'll have to include
the META-INF/MANIFEST.MF file manually.

The JDK also includes a jarsigner tool that digitally signs JAR archives and verifies JAR archives
signed by others using a public key system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3. The java.util.jar Package

The java.util.jar package, shown in Figure 11-1, contains two stream classes and another half
dozen assorted classes and interfaces that assist in reading from and writing to JAR archives. As you
can see, almost everything in this package is a subclass of a related class in the java.util.zip
package. JAR files are zip files, and they are read and written just like zip files. This package mostly
adds support for reading and writing manifests. You don't have to use the java.util.jar package at
alljava.util.zip and the standard I/O and string classes are enough to do anything you need to
dobut java.util.jar certainly does make your job easier when you need to read manifest entries.

Figure 11-1. The java.util.jar package hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All of the classes in java.util.jar are used much like their superclasses are. For instance, to read a
JAR file, follow these steps:

Construct a JarInputStream object from an underlying stream, most commonly a file

input stream.

1.

Open the next JAR entry in the archive.2.

Read data from the JAR entry using InputStream methods such as read().3.

Close the JAR entry (optional).4.

Repeat steps 2 through 4 as long as there are more entries (files) remaining in the archive.5.

Close the JAR input stream.6.

These are the same six steps you use to read a zip file, only with the java.util.zip classes replaced
by their counterparts in java.util.jar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4. JarFile

The java.util.jar.JarFile class represents a file in the JAR format. It is a subclass of
java.util.zip.ZipFile, and JarFile objects are almost exactly like ZipFile objects.

public class JarFile extends ZipFile

The JarFile class has five constructors:

public JarFile(String filename) throws IOException
public JarFile(String filename, boolean verify) throws IOException
public JarFile(String filename, boolean verify, int mode) throws IOException
public JarFile(File file) throws IOException
public JarFile(File file, boolean verify) throws IOException

The first argument specifies the file to read, either by name or with a java.io.File object. The
optional second argument, verify, is important only for signed JAR files. If verify is true, signatures
will be checked against the file's contents; if verify is false, signatures will not be checked against
the file's contents. The default is to check signatures. An IOException is thrown if an entry does not
match its signature. The optional third argument, mode, should be one of the named constants
ZipFile.OPEN_READ or ZipFile.OPEN_DELETE, to indicate whether the file is opened in read-only or
read-and-delete mode. JAR files cannot be opened for writing.

The JarFile class is so similar in interface and behavior to java.util.zip.ZipFile that I can spare
you a lot of details about most of its methods. It declares only the following five methods (though of
course you shouldn't forget about the others it inherits from its superclass):

public ZipEntry getEntry(String name)
public Enumeration entries()
public InputStream getInputStream(ZipEntry ze) throws IOException
public JarEntry getJarEntry(String name)
public Manifest getManifest() throws IOException

getEntry(), enTRies(), and getInputStream() are used exactly as they are for zip files.
getJarEntry() is used almost exactly like getEntry(), except that it's declared to return an
instance of JarEntry, a subclass of ZipEntry. Some extra work takes place in these methods to read
the manifest file and verify signatures, but unless the signatures don't verify (in which case an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IOException is thrown), none of this is relevant to the client programmer. The one really interesting
new method in this list is getManifest(), which returns an instance of the java.util.jar.Manifest
class. You can use this to read the entries in the manifest file, as described in the section on the
Manifest class later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5. JarEntry

JarEntry objects represent files stored inside a JAR archive. JarEntry is a subclass of
java.util.zip.ZipEntry, and JarEntry objects are almost exactly like ZipEntry objects.

public class JarEntry extends ZipEntry

JarEntry has three constructors:

public JarEntry(String filename)
public JarEntry(ZipEntry entry)
public JarEntry(JarEntry entry)

You might use the first one if you were creating a JAR file from scratch, though that's rare. The other
two are mainly for Java's internal use to allow the internal state of one JarEntry object to be quickly
copied to a new JarEntry object.

JarEntry does not override any methods from ZipEntry. It inherits all of ZipEntry's assorted getter
and setter and utility methods. It also provides two new methods:

public Attributes getAttributes() throws IOException
public Certificate[] getCertificates()

The getAttributes() method returns the attributes for this entry as documented in the manifest file
of the archive. In brief, an Attributes object is a map of the name/value pairs for the entry. This will
be discussed further in the next section. The getCertificates() method returns an array of
java.security.cert.Certificate objects formed from any signature files for this entry stored in the
archive. These can be used to allow some classes more access to the system than they would
normally get.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6. Attributes

The java.util.jar.Attributes class is mostly just a concrete implementation of the java.util.Map
interface from the Collections API.

public class Attributes implements Map, Cloneable

An Attributes object is a container for an entry in a manifest file. Recall that the entry is composed
of name/value pairs; the keys of the map are the names and the values of the entries are the values
of the map. The Attributes class is accessed almost entirely through the methods of the Map
interface and has three public constructors:

public Attributes()
public Attributes(int size)
public Attributes(Attributes a)

However, these constructors are primarily for Java's internal use. Most of the time, you'll simply
retrieve Attributes objects from the getAttributes() method of JarEntry or the getAttributes()
and getMainAttributes() methods of Manifest.

The Attributes class implements all the usual Map methods:

public Object get(Object name)
public Object put(Object name, Object value)
public Object remove(Object name)
public boolean containsValue(Object value)
public boolean containsKey(Object name)
public void putAll(Map attr)
public void clear()
public int size()
public boolean isEmpty()
public Set keySet()
public Collection values()
public Set entrySet()
public boolean equals(Object o)
public int hashCode()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The keys for this map should all be Attributes.Name objects. Attributes.Name is a public inner class
called Name inside the Attributes class. However, it's simplest to just think of it as another class in
java.util.jar with a somewhat funny name. This class has a single constructor:

public Attributes.Name(String name)

The Attributes.Name class represents the name half of the name/value pairs in a manifest file.
Attribute names are restricted to the upper- and lowercase letters AZ, the digits 09, the underscore,
and the hyphen. The Attributes.Name() constructor checks to make sure that the name is legal and
throws an IllegalArgumentException if it isn't.

Attributes.Name overrides the equals(), hashCode(), and toString() methods but has no other
methods. It exists only to be a key in the Attributes map.

The Attributes.Name class defines some mnemonic constants that identify particular attribute names
found in some kinds of JAR files. These are all Attributes.Name objects:

Attributes.Name.MANIFEST_VERSION // "Manifest-Version"
Attributes.Name.SIGNATURE_VERSION // "Signature-Version"
Attributes.Name.CONTENT_TYPE // "Content-Type"
Attributes.Name.CLASS_PATH // "Class-Path"
Attributes.Name.MAIN_CLASS // "Main-Class"
Attributes.Name.SEALED // "Sealed"
Attributes.Name.IMPLEMENTATION_TITLE // "Implementation-Title"
Attributes.Name.IMPLEMENTATION_VERSION // "Implementation-Version"
Attributes.Name.IMPLEMENTATION_VENDOR // "Implementation-Vendor"
Attributes.Name.IMPLEMENTATION_VENDOR_ID // "Implementation-Vendor-Id"
Attributes.Name.IMPLEMENTATION_URL // "Implementation-Vendor-URL"
Attributes.Name.SPECIFICATION_TITLE // "Specification-Title"
Attributes.Name.SPECIFICATION_VERSION // "Specification-Version"
Attributes.Name.SPECIFICATION_VENDOR // "Specification-Vendor"
Attributes.Name.SIGNATURE_VERSION // "Signature-Version"
Attributes.Name.EXTENSION_LIST // "Extension-List"
Attributes.Name.EXTENSION_NAME // "Extension-Name"
Attributes.Name.EXTENSION_INSTALLATION // "Extension-Installation"

Since Attributes implements Cloneable as well as Map, it also provides a clone() method:

public Object clone()

Unlike maps in general, Attributes maps contain only strings, raw strings as values, and strings
embedded in Attributes.Name objects. Therefore, the Attributes class contains three extra map-like
methods for getting and putting strings into the map:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String putValue(String name, String value)
public String getValue(String name)
public String getValue(Attributes.Name name)

The last one takes an Attributes.Name object as an argument. Example 11-1 is a revised version of
the FancyZipLister from Example 10-9. This program works with JAR files and prints the attributes
of each entry as well as the information seen previously.

Example 11-1. JarLister

import java.util.*;
import java.util.zip.*;
import java.util.jar.*;
import java.io.*;
public class JarLister {
 public static void main(String[] args) throws IOException {
 JarFile jf = new JarFile(args[0]);
 Enumeration e = jf.entries();
 while (e.hasMoreElements()) {
 JarEntry je = (JarEntry) e.nextElement();
 String name = je.getName();
 Date lastModified = new Date(je.getTime());
 long uncompressedSize = je.getSize();
 long compressedSize = je.getCompressedSize();
 long crc = je.getCrc();
 int method = je.getMethod();
 String comment = je.getComment();
 if (method == ZipEntry.STORED) {
 System.out.println(name + " was stored at " + lastModified);
 System.out.println("with a size of " + uncompressedSize
 + " bytes");
 }
 else if (method == ZipEntry.DEFLATED) {
 System.out.println(name + " was deflated at " + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }
 else {
 System.out.println(name
 + " was compressed using an unrecognized method at "
 + lastModified);
 System.out.println("from " + uncompressedSize + " bytes to "
 + compressedSize + " bytes, a savings of "
 + (100.0 - 100.0*compressedSize/uncompressedSize) + "%");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Its CRC is " + crc);
 if (comment != null && !comment.equals("")) {
 System.out.println(comment);
 }
 if (je.isDirectory()) {
 System.out.println(name + " is a directory");
 }
 Attributes a = je.getAttributes();
 if (a != null) {
 Object[] nameValuePairs = a.entrySet().toArray();
 for (int j = 0; j < nameValuePairs.length; j++) {
 System.out.println(nameValuePairs[j]);
 }
 }
 System.out.println();
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.7. Manifest

What the java.util.jar classes add to the superclasses in java.util.zip is the ability to read the
attributes of each JAR entry as well as the manifest for the entire JAR archive. Recall that a JAR
archive should have exactly one manifest file. That manifest file has entries that apply to the entire
file as well as entries for some (though perhaps not all) of the files stored in the archive. Although
physically the manifest file belongs to the entire archive, logically parts of it belong to different
entries in the archive. The java.util.jar.Manifest class represents this manifest file.

public class Manifest extends Object implements Cloneable

It has methods to get the entries and attributes of a manifest, to write the manifest onto an output
stream, or to read entries from an input stream, as well as an assortment of utility methods. The
Manifest class has three constructors:

public Manifest()
public Manifest(InputStream in) throws IOException
public Manifest(Manifest manifest)

The first constructor creates an empty manifest (one with no entries), the second reads the manifest
from the given stream, and the third copies the manifest from the Manifest object passed as an
argument. However, all three are mostly for the internal use of Java. Instead, client programmers
use the getManifest() method of JarFile to retrieve the Manifest object for the manifest file in a
particular archive. For example:

JarFile jf = new JarFile("classes.jar");
Manifest m = jf.getManifest();

The Manifest class has three methods that return a map of the entries in the manifest. getEnTRies(
) returns a Map in which the keys are the entry names and the values are the Attributes objects for
the entry:

public Map getEntries()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java 5 genericizes this method to specify that the keys are strings and the values are attributes:

public Map<String,Attributes> getEntries()

The getMainAttributes() method returns an Attributes object representing the attributes in the
manifest file that apply to the file as a whole rather than to any individual entry in the file, such as
Manifest-Version:

public Attributes getMainAttributes()

The getAttributes() method returns an Attributes object containing the name/value pairs of the
named entry. The Name attribute is not included in this list:

public Attributes getAttributes(String entryName)

The clear() method (which client programmers have little reason to call) removes all entries and
attributes from the manifest so that it can be reused:

public void clear()

The Manifest class also contains methods to read a Manifest object from an input stream and write
one onto an output stream. These methods are mostly for Java's private use:

public void write(OutputStream out) throws IOException
public void read(InputStream in) throws IOException

The write() method is particularly useless, since there's no good way to create a Manifest object
and add attributes to it from within Java. I suppose you could write a manifest file on a byte array
output stream, create a byte array input stream from the output stream's byte array, and read it
back in, but that's really a kludge. Much more commonly, you'll simply work with Manifest objects
returned by getManifest().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.8. JarInputStream

JarInputStream is a subclass of ZipInputStream that reads data from JAR archives.

public class JarInputStream extends ZipInputStream

Two constructors chain the JAR input stream to an underlying input stream:

public JarInputStream(InputStream in) throws IOException
public JarInputStream(InputStream in, boolean verify) throws IOException

By default, any signatures present in the JAR archive will be verified, and an IOException will be
thrown if verification fails. However, you can turn off this behavior by passing false as the second
argument to the constructor. For example:

FileInputStream fin = new FileInputStream("javaio.jar");
JarInputStream jin = new JarInputStream(fin, false);

When the JarInputStream object is constructed, the manifest, if present, is read from the stream and
stored inside the class as a Manifest object. You do not get an opportunity to read the manifest from
the stream yourself. However, you can retrieve the Manifest object with the getManifest() method:

public Manifest getManifest()

Otherwise, a JAR input stream is used almost exactly like a zip input stream. You position the stream
on a particular entry in the file and read data from it using the normal read() methods. Any
necessary decompression is performed transparently. When you've finished reading an entry, you
close it and position the stream on the next entry. Two methods, getNextEntry() and read(), are
overridden so that verification of signatures can be performed. A getNextJarEntry() method that
returns a JarEntry instead of a ZipEntry is also available. This method can be used in place of
getNextEnTRy(), if you like:

public ZipEntry getNextEntry() throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int read(byte[] data, int offset, int length) throws IOException
public JarEntry getNextJarEntry() throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.9. JarOutputStream

JarOutputStream is a subclass of ZipOutputStream.

public class JarOutputStream extends ZipOutputStream

You can specify a manifest for the archive in the constructor, but this is optional. If you don't provide
a manifest, none is written onto the stream:

public JarOutputStream(OutputStream out, Manifest man) throws IOException
public JarOutputStream(OutputStream out) throws IOException

This class is even closer to ZipOutputStream than JarInputStream is to ZipInputStream. It overrides
exactly one method, putNextEntry():

public void putNextEntry(ZipEntry ze) throws IOException

This is done in order to store the JAR magic number with each entry, but you don't need to know
this. Other than the constructor invocation, you use this class exactly like you use ZipOutputStream.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.10. JarURLConnection

One of the simplest ways to get information from a JAR file is through the
java.net.JarURLConnection class. This class represents an active connection to a JAR file, generally
via either the HTTP or file protocols.

public abstract class JarURLConnection extends URLConnection

It provides methods to get the URL, name, manifest, JAR entries, attributes, and certificates
associated with the JAR file and its entries. The only constructor in this class is protected. As with
most URLConnection subclasses, you don't instantiate JarURLConnection directly. Instead, you create
a URL object using the string form of a JAR URL and invoke its openConnection() method. For
example:

URL u = new URL(
 "jar:http://www.oreilly.com/javaio.jar!/com/elharo/io/StreamCopier.class");
URLConnection juc = u.openConnection();
// ...

Notice the strange URL. A JAR URL is like a normal HTTP or file URL pointing to a JAR file, with the
prefix "jar:" added to the URL's scheme (i.e., jar:http: or jar:file:). After the hostname, you place the
path to the JAR file on the server. After the JAR filename, you add an exclamation point and a path to
the particular entry you want within the JAR archive. For example, to refer to the file
StreamCopier.class in the com/elharo/io directory of the JAR file javaio.jar located at
http://www.oreilly.com/, you would use the JAR URL
jar:http://www.oreilly.com/javaio.jar!/com/elharo/io/StreamCopier.class. If the entry is omitted, the
URL refers to the JAR archive as a whole (for example, jar:http://www.oreilly.com/javaio.jar!/).

If you only want to read data from the connection using getInputStream() from the URLConnection
superclass, the previous code will suffice. If you want to use the methods of the JarURLConnection
class directly, you should cast the object returned from openConnection() to JarURLConnection. For
example:

URL u = new URL(
 "jar:http://www.oreilly.com/javaio.jar!/com/elharo/io/StreamCopier.class");
JarURLConnection juc = (JarURLConnection) u.openConnection();
// ...

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you've done this, you can use eight methods that provide easy access to various meta-
information about the JAR file and its contents. This meta-information comes from the archive's
manifest or certificate files. The getJarFileURL() method returns the URL of the JAR file for this
connection:

public URL getJarFileURL()

This is most useful if the URL refers to a particular entry in the file. In that instance, the URL returned
by getJarFileURL() refers to the URL of the archive. For example:

URL u = new URL(
 "jar:http://www.oreilly.com/javaio.jar!/com/elharo/io/StreamCopier.class");
JarURLConnection juc = (JarURLConnection) u.openConnection();
URL base = juc.getURL();

The URL object base now refers to http://www.oreilly.com/javaio.jar.

The getEntryName() method returns the name of the JAR entry referred to by this JAR URL:

public String getEntryName()

It returns null if the JAR URL points to a JAR file as a whole rather than to one of the entries in the
file.

The getJarFile() method returns an immutable JarFile object for the JAR archive referred to by
this URL:

public abstract JarFile getJarFile() throws IOException

You can read the state of this object, but you cannot change it. Attempts to do so throw a
java.lang.UnsupportedOperationException. This is a runtime exception, so you do not have to catch
it.

The getJarEntry() method returns an immutable JarEntry object for the JAR entry referred to by
this URL:

public JarEntry getJarEntry() throws IOException

http://www.oreilly.com/javaio.jar
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can read the state of this object, but you cannot change it. Attempts to do so throw a
java.lang.UnsupportedOperationException .

The getManifest() method returns an immutable Manifest object constructed from the manifest file
in the JAR archive:

public Manifest getManifest() throws IOException

It returns null if the archive doesn't have a manifest. Again, you cannot modify this Manifest object,
and any attempt to do so will throw an UnsupportedOperationException.

The getAttributes() method returns an Attributes object representing the attributes of the JAR
entry referred to by this URL:

public Attributes getAttributes() throws IOException
public Attributes getMainAttributes() throws IOException

It returns null if the URL refers to a JAR file rather than a particular entry. To get the attributes of
the entire archive, use the getMainAttributes() method instead.

Finally, the getCertificates() method returns an array of java.security.cert.Certificate objects
containing the certificates for the JAR entry referred to by this URL (if any):

public Certificate[] getCertificates() throws IOException

This method returns null if the URL refers to a JAR file rather than a JAR entry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.11. Pack200

Java 5 introduced a new compression format called Pack200, designed specifically to compress JAR
archives. Pack200 takes advantage of detailed knowledge of the format of JAR files to achieve much
better compression at a lower cost than the general-purpose deflate algorithms used by zip, gzip, and
the like. For example, every Java .class file begins with the 4-byte sequence 0xCAFEBABE (in
hexadecimal). If you know that every .class file begins with these four bytes, you don't actually need
to include them. You can strip them out when compressing and add them back in when
decompressing, automatically saving four bytes per file in the archive. The algorithm has a lot of little
Java-specific tricks like this. Pack200 won't compress War and Peace as well as zip, but it will
compress .class files three to four times smaller than zip will.

The Pack200 format first reorganizes the archive to make it more suitable for compression, for
instance by merging and sorting the constant pools in the different classes in the archive. It then
throws away some details that zip would normally preserve but that aren't important to a JAR (Unix
file permissions, for instance). Next, it compresses this carefully prepared archive with the deflate
algorithm so that it can still be uncompressed with existing tools. Compared to a regular zip
compression, a Pack200 compression is lossy; you don't get the same bytes out of it that went in.
However, all the changes are changes that don't matter in the context of a JAR archive.

There is one problem. Converting an archive into Pack200 format tends to
break digital signatures, because it reorganizes the files stored in the archive
(and the contents of those files) to enable greater compression. To digitally sign
a Pack200 archive, you should first normalize it:

Compress it with Pack200.1.

Decompress it with Pack200.2.

Sign the decompressed archive.3.

Compress it again with Pack200.4.

Of course, use the same options for each compression and decompression. You
may sometimes also need to set the SEGMENT_LIMIT property to -1.

The JDK includes two tools that compress and decompress JARs in the Pack200 format, called, simply
enough, pack200 and unpack200. These tools are customarily used to statically compress documents
on a web server. If a browser indicates willingness to accept this format by including an Accept-
encoding: pack200-gzip field in the HTTP header, the server will send it the .pack.gz form of the file
rather than the original. While it would be possible for the server to compress these files on the fly,
Pack200 compression normally takes more time than it would take to send the uncompressed file.
Precompression with the pack200 tool is preferable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Pack200 format is also available to your programs through the Pack200 class in the
java.util.jar package:

public abstract class Pack200 extends Object

The Pack200 class itself doesn't do anything except provide instances of its inner Packer and Unpacker
interfaces that actually compress and decompress files. These are returned by the static newPacker(
) and newUnpacker() methods:

public static Pack200.Packer newPacker()
public static Pack200.Unpacker newUnpacker()

To convert an existing archive to Pack200 format, you pass it to the pack() method:

public void pack(JarFile in, OutputStream out) throws IOException
public void pack(JarInputStream in, OutputStream out) throws IOException

This packs the existing JAR file or input stream and writes it onto an OutputStream you provide. (Files
are not converted in place.) Close the OutputStream when you're done, as the pack() method does
not close it for you. You can, in fact, pack several JAR files onto the same OutputStream by repeatedly
invoking pack() and not closing the OutputStream until you're done.

Example 11-2 is a simple program that packs an existing JAR file using Pack200. The convention is
that the file is suffixed with .pack (or .pack.gz if the .pack file is subsequently compressed further
with gzip).

Example 11-2. Packing a JAR archive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.util.jar.*;
public class Packer200 {
 public static void main(String[] args) {
 OutputStream out = null;
 try {
 JarFile f = new JarFile(args[0]);
 Pack200.Packer packer = Pack200.newPacker();
 out = new FileOutputStream(args[0] + ".pack");
 packer.pack(f, out);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 finally {
 if (out != null) {
 try {
 out.close();
 }
 catch (IOException ex) {
 System.err.println("Error closing file: " + ex.getMessage());
 }
 }
 }
 }
}

Provided you're using Java 5, decompression of Pack200 archives is mostly automatic. The usual
JARFile and JarInputStream classes can detect that an archive was compressed with Pack200 and
decompress it accordingly. However, you might need to manually convert a Pack200 archive to a
regular JAR archive for use with earlier versions of Java. For this purpose, the Pack200.Unpacker
interface has an unpack() method:

public void unpack(File in, OutputStream out) throws IOException
public void unpack(InputStream in, OutputStream out) throws IOException

The unpack() method does not close its OutputStream either, and you can also unpack several
Pack200 files onto the same OutputStream by repeatedly invoking unpack(). Close the OutputStream
when you're done.

Example 11-3 is a simple program that unpacks a Pack200 file. Unlike Example 11-2, the command-
line pack200 tool bundled with the JDK tends to run a final gzip over the entire packed archive when
it's done to get even more compression. Thus, if the input filename ends in .pack.gz, a chained
GZIPInputStream decompresses the file before passing it to the unpacker.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 11-3. Unpacking a JAR archive

import java.io.*;
import java.util.jar.*;
import java.util.zip.GZIPInputStream;
public class Unpacker200 {
 public static void main(String[] args) {
 String inName = args[0];
 String outName;
 if (inName.endsWith(".pack.gz")) {
 outName = inName.substring(0, inName.length()-8);
 }
 else if (inName.endsWith(".pack")) {
 outName = inName.substring(0, inName.length()-5);
 }
 else {
 outName = inName + ".unpacked";
 }
 JarOutputStream out = null;
 InputStream in = null;
 try {
 Pack200.Unpacker unpacker = Pack200.newUnpacker();
 out = new JarOutputStream(new FileOutputStream(outName));
 in = new FileInputStream(inName);
 if (inName.endsWith(".gz")) in = new GZIPInputStream(in);
 unpacker.unpack(in, out);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 finally {
 if (out != null) {
 try {
 out.close();
 }
 catch (IOException ex) {
 System.err.println("Error closing file: " + ex.getMessage());
 }
 }
 if (in != null) {
 try {
 in.close();
 }
 catch (IOException ex) {
 System.err.println("Error closing file: " + ex.getMessage());
 }
 }
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default options are reasonable, but for extreme tuning you may want to set additional properties.
For both the packer and unpacker, this is controlled by a map of properties. This map is returned by
the properties() method:

public SortedMap<String,String> properties()

The map is live. Modifying a property or adding a property to the map returned by this method
immediately affects the behavior of the corresponding Packer or Unpacker object. For example, this
code fragment tells the packer not to respect the original order of the archive entries:

Map properties = packer.properties();
properties.put(Packer.KEEP_FILE_ORDER, Packer.FALSE);

Both the names and values in this map are strings, even when the strings hold values that are
semantically numbers or Booleans. For instance, Packer.FALSE is the string "false", not
Boolean.FALSE. The names of all the standard properties and some of the possible values are
available as named constants in the Packer class, as follows:

Pack200.Packer.SEGMENT_LIMIT ("pack.segment.limit")

Memory-limited J2ME environments may not be able to load the entire archive at once. The
Pack200 algorithm can split archives into multiple segments, each of which can be
decompressed separately from the other segments, at the cost of a somewhat larger total file
size. The default value is "1000000" (one million bytes). If the archive grows larger than this, it
will be split into multiple segments. You can adjust the segment size to fit the needs of your
device, generally making it smaller for devices with less memory.

Two values are special: "0" stores each file and class in its own segment; "-1" stores the
complete contents in a single segment regardless of size.

Pack200.Packer.KEEP_FILE_ORDER ("pack.keep.file.order")

Set Pack200.Packer.TRUE ("true") if the JAR entries cannot be reordered during packing and
Pack200.Packer.FALSE ("false") if the JAR entries can be reordered during packing. The
default is "true", but "false" should improve the compression.

Pack200.Packer.EFFORT ("pack.effort")

A single digit ("0" to "9") indicating the trade-off between time and compression. "0" is no
compression at all; "9" is maximum compression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pack200.Packer.DEFLATE_HINT ("pack.deflate.hint")

By default each archive entry contains a hint for the decoder indicating how it was stored. If
you set this property to either Pack200.Packer.TRUE or Pack200.Packer.FALSE, individual hints
will not be used for each file in the archive. Instead, the entire archive will be hinted as either
using compression (true) or not (false).

Pack200.Packer.MODIFICATION_TIME ("pack.modification.time")

The default value, Pack200.Packer.KEEP, maintains the last modification time of each entry in
the archive. Setting this to Pack200.Packer.LATEST signals the compressor to set all entries
within each archive segment to the same last modification time, thereby saving a little space.

Pack200.Packer.UNKNOWN_ATTRIBUTE ("pack.unknown.attribute")

This property defines what to do when a .class file being compressed contains an unrecognized
attribute. The default value, Pack200.Packer.PASS, logs a warning and does not attempt to
compress the file. Setting this to Pack200.Packer.STRIP indicates that any such attributes
should be removed and the remaining file should be compressed. Setting this to
Pack200.Packer.ERROR indicates that the entire operation should fail and an exception should be
thrown.

Pack200.Packer.PASS_FILE_PFX ("pack.pass.file.")

All files in the archive whose paths begin with this string are not compressed. For example,
setting this to "com/elharo/io/ui" would exclude all files in the com.elharo.io.ui package and
its subpackages from compression. This can be a complete filename to uniquely identify a file,
as in "com/elharo/io/ui/StreamedTextArea.class".

To exclude multiple prefixes, just set new properties that all begin with
Pack200.Packer.PASS_FILE_PFX ("pack.pass.file."); for example,
Pack200.Packer.PASS_FILE_PFX+1 ("pack.pass.file.1"), Pack200.Packer.PASS_FILE_PFX+2
("pack.pass.file.2"), and so on.

Pack200.Packer.CLASS_ATTRIBUTE_PFX("pack.class.attribute.")
Pack200.Packer.FIELD_ATTRIBUTE_PFX("pack.field.attribute.")
Pack200.Packer.METHOD_ATTRIBUTE_PFX("pack.method.attribute.")
Pack200.Packer.CODE_ATTRIBUTE_PFX("pack.code.attribute.")

These four values are used to specify what the Pack200 algorithm does with particular
attributes in Java .class files. Each of these can be set to Pack200.Packer.PASS,
Pack200.Packer.STRIP, or Pack200.Packer.ERROR to indicate what should happen to a particular
attribute. For example, to remove the coverage table generated for the JCOV profiler, set the
Pack200.Packer.CODE_ATTRIBUTE_PFX+"CoverageTable"

("pack.code.attribute.CoverageTable") property to Pack200.Packer.STRIP.

Besides the three mnemonic constants, you can also set one of these values to a string in a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

special language defined in the Pack200 specification that specifies precisely how each attribute
is laid out in the file. This is really quite advanced and only worth it if you're trying to squeeze
every last byte out of a JAR to fit it into an extremely memory-constrained environment.

Pack200.Packer.PROGRESS ("pack.progress")

This read-only property indicates the approximate percentage of the data that has been
compressed; i.e., it is a number between 0 and 100. If this is "-1", the operation has stalled.
This property applies to unpackers as well as packers.

Nonstandard properties not in this list are mostly ignored. You can set any property you like, but if
it's not in this list, it won't change anything. There are a few undocumented properties that do not
have mnemonic constants. The only one I've encountered is "strip.debug"; when it's set to "true", all
debugging symbols are removed from the packed JAR.

For example, this code fragment sets up a packer for maximum compression, at the possible cost of
taking more time and memory to compress and decompress:

Pack200.Packer packer = Pack200.newPacker();
Map<String, String> p = packer.properties();
p.put(Pack200.Packer.SEGMENT_LIMIT, "-1");
p.put(Pack200.Packer.KEEP_FILE_ORDER, Pack200.Packer.FALSE);
p.put(Pack200.Packer.DEFLATE_HINT, Pack200.Packer.TRUE);
p.put(Pack200.Packer.MODIFICATION_TIME, Pack200.Packer.LATEST);
p.put(Pack200.Packer.UNKNOWN_ATTRIBUTE, Pack200.Packer.STRIP);
p.put(Pack200.Packer.EFFORT, "9");

I'm not sure the extra effort is really worth it, though. When testing this, the default options
compressed the Saxon 8 JAR archive from 2,457,114 bytes to 628,945 bytes, an impressive 74.4%
reduction. Adding these options reduced the final file size to 585,837 bytes, a savings of an additional
1.7%. However, the time to compress jumped dramatically from almost instantaneous to "go get a
soda" territory (if not quite all the way to "brew a pot of coffee"), and this was on quite fast
hardware. It might be worth doing this if you're only compressing once and then distributing the
compressed archive many thousands of times, but I wouldn't try it when compressing archives
dynamically.

Both Packer and Unpacker support PropertyChangeListener if you need to monitor the state of
various properties:

public void addPropertyChangeListener(PropertyChangeListener listener)
public void removePropertyChangeListener(PropertyChangeListener listener)

Mostly, you'll set the properties yourself, so there's little need to listen for changes. However,
monitoring the PROGRESS property does allow you to keep a progress bar or other indicator up to date,
so users can tell whether they've got time to make some coffee or just to grab a soda out of the
fridge. For instance, Example 11-4 is a simple program that shows a progress bar while the packer is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compressing a JAR.

Example 11-4. A ProgressMonitor for packing or unpacking

import java.awt.Component;
import javax.swing.ProgressMonitor;
import java.beans.*;
import java.util.jar.Pack200;
public class PackProgressMonitor extends ProgressMonitor
 implements PropertyChangeListener {
 public PackProgressMonitor(Component parent) {
 super(parent, null, "Packing", -1, 100);
 }
 public void propertyChange(PropertyChangeEvent event) {
 if (event.getPropertyName().equals(Pack200.Packer.PROGRESS)) {
 String newValue = (String) event.getNewValue();
 int value = Integer.parseInt(newValue);
 this.setProgress(value);
 }
 }
}

I'm not sure how useful this is. While the compression can easily take long enough for the progress
bar to pop up, the packing code doesn't seem to call propertyChange() very frequently. In my tests
it was called only three times, once at 0, once at 50, and once at 100. Still, if an operation is going to
take a while, it's better to show the user some sign of progress, even if it's a less than perfectly
accurate one.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.12. Reading Resources from JAR Files

JAR files aren't just for classes. Any other resource a program needs can be stored there as well:
sounds, pictures, text files, property lists, and more. They can be read using the same input streams
and output streams we've been talking about since Chapter 1. The difference is that instead of
getting those streams using constructors connected to the filesystem, you ask a ClassLoader to find
them for you.

For example, my XOM class library (http://www.xom.nu) needs a file called characters.dat to
operate. This file is a 64K lookup table of bit flags XOM consults to test whether various characters
are XML name characters, XML name start characters, and so forth. The file contains just raw binary
data, not a Java class, a serialized object file, or anything else fancy like that.

This lookup table could be distributed as a separate file along with XOM's JAR archive, but then I'd
have to worry about it getting moved from where XOM expected to find it. More likely, the xom.jar
archive would get copied somewhere else but someone would forget to copy characters.dat at the
same time. Instead, I bundle it along with the rest of XOM's classes in the nu/xom directory, along
with all the classes in the nu.xom package. This way, when I load the lookup table, I'm reasonably
certain it'll still be there.

Loading characters.dat requires first finding a ClassLoader. The simplest way is to ask the class that
needs the data for the loader that loaded it. For example, in XOM's case, this is the Verifier class:

ClassLoader loader = Verifier.class.getClassLoader();

Most of the time that's all you need. However, if that ClassLoader doesn't find the resource, you can
ask the current thread for its loader instead:

loader = Thread.currentThread().getContextClassLoader();

Once you have a ClassLoader in hand, the geTResourceAsStream() method will give you an input
stream that reads from that JAR entry:

public InputStream getResourceAsStream(String path)

Pass this method the path to the resource inside the JAR archive starting from the root of the JAR.
For example, XOM looks for nu/xom/characters.dat. This requests the resource named characters.dat

http://www.xom.nu
http://lib.ommolketab.ir
http://lib.ommolketab.ir

located in the xom subdirectory of the nu directory at the top level of the JAR archive.

More accurately, it looks for one such resource found in some JAR file or top-level directory
somewhere in the classpath. Theoretically, there could be more than one. The loader looks through
all the classpath entries until it finds one that matches the path it's looking for. It then returns an
InputStream from which you can read the resource's data. Like other input streams, you don't need
to worry excessively about where the stream comes from. You read this stream just like you'd read a
stream from a file or a network connection. In XOM's case, the InputStream is first chained to a
DataInputStream that stores the entire file in a byte array for later random access:

InputStream raw = loader.getResourceAsStream("nu/xom/characters.dat");
DataInputStream in = new DataInputStream(raw);
byte[] flags = new byte[65536];
in.readFully(flags);

You could do other things with this stream, of course; that's just what XOM happens to need to do.

For robustness, a little error checking never hurts. After all, someone could have unzipped the JAR
file and moved the pieces around, or built her own copy of XOM without using my Ant build.xml file
and left out characters.dat. It's unlikely, but it has been known to happen, so XOM tests for it. If
there is a problem, there's not a lot XOM can do to fix it, so it throws a RuntimeException and gives
up:

DataInputStream in = null;
try {
 InputStream raw = loader.getResourceAsStream("nu/xom/characters.dat");
 if (raw == null) {
 throw new RuntimeException("Broken XOM installation: "
 + "could not load nu/xom/characters.dat");
 }
 in = new DataInputStream(raw);
 flags = new byte[65536];
 in.readFully(flags);
}
catch (IOException ex) {
 throw new RuntimeException("Broken XOM installation: "
 + "could not load nu/xom/characters.dat");
}
finally {
 try {
 if (in != null) in.close();
 }
 catch (IOException ex) {
 // no big deal
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Several other methods in ClassLoader also find data (as opposed to code) resources stored in the
classpath. The getresource() method returns a URL for the resource (or null if the loader can't find
the resource) instead of an InputStream:

public URL getResource(String name)

You can then open a stream from that URL using the usual methods of the URL class:

URL resource = loader.getResource("nu/xom/characters.dat");
InputStream in = resource.openStream();

Normally, I prefer to use getresourceAsStream() and skip the intermediate URL. However, this can
be useful if you need to repeatedly access the same resource, since you can create many different
streams from the same URL.

If you want all copies of a resource in the classpath, rather than just the first one, getresources()
returns an Enumeration containing URL objects for each matching resource:

public Enumeration getResources(String name)

Three static methods, getSystemResource(), getSystemResources(), and
getSystemResourceAsStream(), behave the same, except that they always search using the system
ClassLoader:

public static InputStream getSystemResourceAsStream(String path)
public static URL getSystemResource(String name)
public static Enumeration getSystemResources(String name)

These methods are occasionally useful in a multiclassloader environment such as a servlet container.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Cryptographic Streams
This chapter discusses filter streams for cryptography. The Java core API contains two of these in the
java.security package, DigestInputStream and DigestOutputStream. The javax.crypto package
contains two more, CipherInputStream and CipherOutputStream. All four of these streams use an
engine object to handle the filtering. DigestInputStream and DigestOutputStream use a
MessageDigest object while CipherInputStream and CipherOutputStream use a Cipher object. The
streams rely on the programmer to properly initialize andin the case of the digest streamsclean up
after the engines. Therefore, we'll first look at the engine classes and then at the streams built
around these engines.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1. Hash Functions

Sometimes it's essential to know whether data has changed. For instance, crackers invading Unix
systems often replace crucial files like /etc/passwd or /usr/ucb/cc with their own hacked versions that
enable them to regain access to the system if the original hole they entered through is plugged.
Therefore, if you discover your system has been penetrated, one of the first things you need to do is
reinstall any changed files. Of course, this raises the question of how you identify the changed files,
especially since anybody who's capable of replacing system executables is more than capable of
resetting the last-modified date of the files. You can keep an offline copy of the system files; but this
is costly and difficult, especially since multiple copies need to be stored for long periods of time. If
you don't discover a penetration until several months after it occurred, you may need to roll back the
system files to that point in time. Recent backups are likely to have been made after the penetration
occurred and thus also likely to be compromised.

As a less threatening example, suppose you want to be notified whenever a particular web page
changes. It's not hard to write a robot that connects to the site at periodic intervals, downloads the
page, and compares it to a previously retrieved copy for changes. However, if you need to do this for
hundreds or thousands of web pages, the space to store the pages becomes prohibitive. Peer-to-peer
file sharing applications such as BitTorrent have similar needs. They need to know who's sharing
which files without transferring the complete files. After a file is transferred, it must be checked to
make sure it wasn't corrupted in transit.

All these tasks need a way to compare files at different times without storing the files themselves. A
hash function reads an indefinite number of sequential bytes and assigns a number to that sequence
of bytes. This number is called a hash code or digest. The size of the number depends on the hash
function. It is not necessarily the same size as any Java primitive data type like int or long. For
instance, digests calculated with the SHA algorithm are 20-byte numbers. You can store the digests
of the files, then compare the digests. The digests are generally much smaller than the files
themselves.

Hash functions are also used in digital signatures. To prove that you authored a document, you first
calculate the hash function for the message, then encrypt the hash code with your private key. To
check your signature, the recipient of the message decrypts the hash code with your public key and
compares it to a new hash code they calculate for the document with the same hash function. If the
two codes match, then only someone who knew your private key could have signed the message.
Although you could simply encrypt the entire message with your private key rather than a hash code,
public key algorithms are rather slow, and encrypting a 20-byte hash code is much faster than
encrypting even a short email message. In Java, digital signatures are implemented through the
java.security.Signature class. I won't talk much about that class in this book, but it is dependent
on the MessageDigest classes I will discuss.

12.1.1. Requirements for Hash Functions

There are better and worse hash functions. Strong hash functions make it extremely unlikely that two

http://lib.ommolketab.ir
http://lib.ommolketab.ir

different documents share a hash value. Furthermore, hash functions used for cryptography must be
one-waythat is, given a hash code, you should not be able to create a document with that hash code.
A strong one-way hash function must meet several related criteria. These criteria include:

Determinism

The same document always has the same hash code. The hash code does not depend on the
time it's calculated, a random number, or anything other than the sequence of bytes in the
document. Without this requirement, the same document could have different hash codes at
different times, indicating that documents had changed when in fact they hadn't.

Uniform distribution

Given any sample of the documents you wish to track, all hash codes are equally likely. For
instance, if the hash code is a 64-bit long, even and odd numbers should be equally likely.

Impossible to reverse engineer

There should be no means easier than brute force to produce a document that matches a
certain hash code. For instance, if I know the hash code is 9,423,456,789, I shouldn't be able
to then create a file that happens to have that exact hash code.

No collisions

It should be difficult to find two documents that share a hash code. You cannot easily find two
documents with the same hash code, regardless of what that hash code is. The previous
criterion means that you can't change the document to match a hash code. This criterion says
you can't change two documents to match each other.

Sensitive dependence on initial conditions

Small changes in a document produce large changes in its hash code. Without this
requirement, somebody attempting to create a document with a given hash code could modify
the document a little at a time until the hash code matched, much as you might adjust the hot
and cold water faucets gradually until the water reaches a desired temperature. A hash
function should act more like a faucet that can scald or freeze you after the tiniest nudge.

Randomness

The hash code does not say anything about the document it represents. The one-way hash
function is not even partially invertible. For instance, knowing that the hash code is even should
not suggest that the document being hashed contains an even number of bytes. Nor should it
suggest that the document being hashed is 60% more likely to contain an even number of
bytes than an odd number. While one-way hash functions need to be reproduciblethat is, the
same document always has the same hash codethey should otherwise be completely random.
It is extremely hard, perhaps impossible, to prove that any function meets this criterion.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nonetheless, stronger functions come closer than weaker functions; and years of experience
among cryptographers allow them to make reasonable guesses about what are and are not
strong hash functions, even if their hunches can't be proved to a mathematical certainty.

The proper design of one-way hash functions is a well-studied field. It's easy to create weak one-way
hash functions. However, it is much harder to create truly strong, reliable, one-way hash functions.
Nonexperts tend to make nonobvious but serious mistakes when implementing hash functions.
Therefore, this is a task that's best left to the experts. Fortunately, the Java core API contains some
hash functions designed by experts that the rest of us can use without earning a PhD in applied
mathematics first.

The hash codes used by the java.util.Hashtable class and returned by the
hashCode() method of any Java object are only intended to be used as IDs for
elements of a hash table, not as cryptographically strong digests. These sorts of
hash codes have different requirements for utility. Most of the time, they only
need to meet the first two of the six criteria, and in practice they often don't
meet even those. The hashCode() method is a hash function but not
necessarily a one-way hash function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2. The MessageDigest Class

The java.security.MessageDigest class is an abstract class that represents a hash code and its
associated algorithm. Concrete subclasses (actually concrete subclasses of
java.security.MessageDigestSPI, though the difference isn't relevant from a client's point of view)
implement particular, professionally designed, well-known hash code algorithms. Thus, rather than
constructing instances of this class directly, you ask the static MessageDigest.getInstance() factory
method to provide an implementation of an algorithm with a particular name. Table 12-1 lists the
standard names for several message digest algorithms. A stock installation of the JDK won't have all
of these, but you can install more providers that support additional algorithms.

Table 12-1. Message digest algorithms

Name Algorithm

SHA-1
Produces 20-byte digests; suitable for documents of less than 264 bits; recently
compromised.

SHA

In Java, this is an alias for SHA-1. In other contexts, it refers to SHA-0, a compromised
and withdrawn standard Java has never supported. It sometimes also refers to the
whole family of Secure Hash Algorithms as defined in Secure Hash Standard, NIST FIPS
180-2 Secure Hash Standard (SHS); http://csrc.nist.gov/publications/fips/fips180-
2/fips180-2.pdf.

SHA-256 Produces 32-byte digests; suitable for documents of less than 264 bits.

SHA-384 Produces 48-byte digests; suitable for documents of less than 2128bits.

SHA-512 Produces 64-byte digests; suitable for documents of less than 2128bits.

MD2
RSA Message Digest 2 as defined in RFC 1319 and RFC 1423 (RFC 1423 corrects a
mistake in RFC 1319); produces 16-byte digests; suitable for use with digital
signatures.

MD5
RSA Message Digest 5 as defined in RFC 1321; produces 16-byte digests; quite fast on
32-bit machines.

RipeMD160
RACE Integrity Primitives Evaluation Message Digest; produces 20-byte digests;
designed in the open unlike the NSA-designed SHA formats.

Tiger
An algorithm invented by Ross Anderson and Eli Biham for efficiency on 64-bit
platforms; produces 24-byte digests; used on the Gnutella file sharing network.

Whirlpool
An unpatented algorithm designed by Vincent Rijmen and Paulo S. L. M. Barreto;
produces 64-byte digests; suitable for documents of less than 2256 bits.

SHA-1 is a least common denominator available pretty much anywhere the MessageDigest class is.

http://csrc.nist.gov/publications/fips/fips180-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's also available in many other non-Java software packages and used by numerous protocols
including PGP, SSL, SSH, IPSec, and BitTorrent. It's also used in various proprietary systems such as
the Microsoft XBox.

The last couple of years have seen a flurry of attacks on hash functions. New,
more practical attacks seem to be published every few months; and as an old
NSA saying goes, "Attacks always get better; they never get worse." SHA-1,
MD2, MD4, MD5, RIPEMD-160, and related algorithms are weakening by the
month. New protocols and applications should use one of the more recent,
more secure algorithms such as SHA-256, SHA-512, or Whirlpool. If the attacks
improve, some of the older protocols that depend on SHA-1 may need to be
revised or replaced as well.

12.2.1. Calculating Message Digests

There are four steps to calculating a hash code for a file or other sequential set of bytes with a
MessageDigest object; Figure 12-1 shows a flowchart for this process.

Figure 12-1. The four steps to calculating a message digest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pass the name of the algorithm to the static MessageDigest.getInstance() factory method to
get a new MessageDigest object.

1.

Feed bytes into the update() method.2.

If more data remains, repeat step 2.3.

Invoke a digest() method to complete computation of the digest and return it as an array of
bytes.

4.

Once the digest() method has been invoked, the digest is reset. You can begin again at step 1 to
calculate a new digest, but you cannot update the digest you've already created.

Example 12-1, URLDigest, is a simple program that uses the MessageDigest class to calculate the
SHA-1 hash for a web page named on the command line. The main() method gets the input stream
from a URL as discussed in Chapter 5 and passes it to printDigest(). The printDigest() method
gets an SHA MessageDigest object named sha with the getInstance() factory method. It then
repeatedly reads data from the input stream. All bytes read are passed to sha.update(). When the
stream is exhausted, the sha.digest() method is called; it returns the SHA hash of the URL as an
array of bytes, which is then printed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12-1. URL. Digest

import java.net.*;
import java.io.*;
import java.security.*;
import java.math.*;
public class URLDigest {
 public static void main(String[] args)
 throws IOException, NoSuchAlgorithmException {
 URL u = new URL(args[0]);
 InputStream in = u.openStream();
 MessageDigest sha = MessageDigest.getInstance("SHA");
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = in.read(data);
 if (bytesRead < 0) break;
 sha.update(data, 0, bytesRead);
 }
 byte[] result = sha.digest();
 for (int i = 0; i < result.length; i++) {
 System.out.print(result[i] + " ");
 }
 System.out.println();
 System.out.println(new BigInteger(result));
 }
}

Here's a sample run. The digest is shown both as a list of bytes and as one very long integer. The
java.math.BigInteger class converts the bytes to a decimal integer. This class was added to the core
API precisely to support cryptography, where arithmetic with very large numbers is common.

$ java URLDigest http://www.oreilly.com/
54 9 -70 68 64 109 58 -80 -52 36 -69 51 -13 -90 40 -75 -114 78 59 76
308502434441296110421463252179020572520338045772

This output doesn't really mean anything to a human reader. However, if you were to run the
program again, you'd get a different result if the web page had changed in some way. Even a small
change that would be unlikely to be noticed by a human or an HTML parserfor instance, adding an
extra space to the end of one linewould be picked up by the digest. If you only want to detect
significant changes, you have to first filter the insignificant data from the stream in a predictable
fashion before calculating the message digest.

12.2.2. Creating Message Digests

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are no public constructors in java.security.MessageDigest. Instead, you use one of two
MessageDigest.getInstance() factory methods to retrieve an object configured with a particular
algorithm.

public static MessageDigest getInstance(String algorithm)
 throws NoSuchAlgorithmException
public static MessageDigest getInstance(String algorithm, String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException

For example:

MessageDigest sha256 = MessageDigest.getInstance("SHA-256");
MessageDigest md2 = MessageDigest.getInstance("MD2", "Cryptix");

Each of these methods returns an instance of a MessageDigest subclass that's configured with the
requested algorithm. These subclasses and the associated MessageDigestSPI classes that actually
implement the algorithms are installed when you install a cryptographic provider.

Each provider offers a possibly redundant collection of message digest algorithms. The factory
method design pattern used here allows for the possibility that a particular algorithm may be
provided by different classes in different environments. For instance, the SHA-256 algorithm may be
supplied by the sun.security.provider.SHA256 class on one system and by the
cryptix.jce.provider.md.SHA256 class in another. Some standard algorithm names are listed in
Table 12-1. If you request an algorithm that none of the installed providers can supply, getInstance(
) throws a NoSuchAlgorithmException. Most of the time, you're content to simply request an
algorithm and let any provider that can fulfill your request provide it. However, if you want to specify
a particular provider by name (for instance, because it has an especially fast native-code
implementation of the algorithm), you can pass the provider name as the second argument to
MessageDigest.getInstance(). If the provider you request isn't found, getInstance() throws a
NoSuchProviderException.

12.2.3. Feeding Data to the Digest

Once you have a MessageDigest object, you digest the data by passing bytes into one of three
update() methods. If you're digesting some other form of data, such as Unicode text, you must first
convert that data to bytes.

public void update(byte input)
public void update(byte[] input)
public void update(byte[] input, int offset, int length)
public final void update(ByteBuffer input) // Java 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example:

byte[] data = new byte[128];
int bytesRead = in.read(data);
sha.update(data, 0, bytesRead);

The first update() method takes a single byte as an argument. The second method takes an entire
array of bytes. The third method takes the subarray of input beginning at offset and continuing for
length bytes. All the bytes remaining in the buffer are digested.

In Java 5 and later, you can pass a ByteBuffer instead of an array of bytes. For the moment, you can
think of a ByteBuffer as an object-oriented wrapper around an array that also keeps track of the
current position within the array. We'll explore byte buffers in a couple of chapters. For now, the
methods that operate directly on byte arrays will suffice.

You can call update() repeatedly as long as you have more data to feed it. Example 12-1 passed in
bytes as they were read from the input stream. The only restriction is that the bytes should not be
reordered between calls to update().

12.2.4. Finishing the Digest

Digest algorithms cannot finish the calculation and return the digest until the last byte is received.
When you are ready to finish the calculation and receive the digest, you invoke one of three
overloaded digest() methods:

public byte[] digest()
public byte[] digest(byte[] input)
public int digest(byte[] output, int offset, int length)
 throws DigestException

The first digest() method simply returns the digest as an array of bytes based on the data that was
already passed in through update(). For example:

byte[] result = sha.digest();

The second digest() method receives one last chunk of data in the input array, then returns the
digest. The third digest() method calculates the digest and places it in the array output beginning
at offset and continuing for at most length bytes, then returns the number of bytes in the digest. If
the digest has more than length bytes, this variant throws a DigestException. After you've called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

digest(), the MessageDigest object is reset so it can be reused to calculate a new digest.

12.2.5. Reusing Digests

Creating a new message digest with MessageDigest.getInstance() carries some overhead.
Therefore, when calculating digests for many different streams with the same algorithm, you should
reset the digest and reuse it. The reset() method accomplishes this:

public void reset()

In practice, you rarely call reset() directly because the digest() method invokes the reset()
method after it's through. Once you've reset a message digest, all information you had previously
passed into it through update() is lost.

12.2.6. Comparing Digests

It's not all that hard to loop through two byte arrays to see whether or not they're equal.
Nonetheless, if you do have two MessageDigest objects, the MessageDigest class does provide the
simple static method MessageDigest.isEqual() that does the work for you. As you certainly expect,
this method returns true if the two byte arrays are byte-for-byte identical or false otherwise.

public static boolean isEqual(byte[] digest1, byte[] digest2)

A little surprisingly, MessageDigest does not override equals(). Therefore, md1.equals(md2) returns
true if and only if md1 and md2 are both references to the same MessageDigest object.

Example 12-2 uses this method to compare the byte arrays returned by two MD5 digests, one for an
original web page and one for a mirror copy of the page. The URLs to compare are passed in from the
command line. It would not be hard to expand this to a general program that automatically checked
a list of mirror sites to determine whether they needed to be updated.

Example 12-2. TrueMirror

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.net.*;
import java.io.*;
import java.security.*;
public class TrueMirror {
 public static void main(String[] args)
 throws IOException, NoSuchAlgorithmException {

 if (args.length != 2) {
 System.err.println("Usage: java TrueMirror url1 url2");
 return;
 }
 URL source = new URL(args[0]);
 URL mirror = new URL(args[1]);
 byte[] sourceDigest = getDigestFromURL(source);
 byte[] mirrorDigest = getDigestFromURL(mirror);
 if (MessageDigest.isEqual(sourceDigest, mirrorDigest)) {
 System.out.println(mirror + " is up to date");
 }
 else {
 System.out.println(mirror + " needs to be updated");
 }
 }
 public static byte[] getDigestFromURL(URL u)
 throws IOException, NoSuchAlgorithmException {
 MessageDigest md5 = MessageDigest.getInstance("MD5");
 InputStream in = u.openStream();
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = in.read(data);
 if (bytesRead < 0) { // end of stream
 break;
 }
 md5.update(data, 0, bytesRead);
 }
 return md5.digest();
 }
}

Here's a sample run:

$ java TrueMirror http://www.cafeaulait.org/ http://www.ibiblio.org/javafaq/
http://www.ibiblio.org/javafaq/ is up to date

12.2.7. Accessor Methods

http://www.cafeaulait.org/ http://www.ibiblio.org/javafaq/
http://www.ibiblio.org/javafaq/ is up to date
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The MessageDigest class contains three getter methods that return information about the digest:

public final Provider getProvider()
public final String getAlgorithm()
public final int getDigestLength()

The getProvider() method returns a reference to the instance of java.security.Provider that
provided this MessageDigest implementation. The getAlgorithm() method returns a string containing
the name of the digest algorithm as given in Table 12-1 for example, "SHA" or "MD2". Finally,
getdigestLength() returns the length of the digest in bytes. Digest algorithms usually have fixed
lengths. For instance, SHA-1 digests are always 20 bytes long. However, this method allows for the
possibility of variable length digests. It returns 0 if the length of the digest is not yet available.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.3. Digest Streams

The MessageDigest class isn't particularly hard to use, as I hope Example 12-1 and Example 12-2
demonstrated. It's flexible and can calculate a digest for anything that can be converted into a byte
array, such as a string, an array of floating-point numbers, or the contents of a text area.
Nonetheless, the input data almost always comes from streams. Therefore, the java.security
package contains an input stream and an output stream class that use MessageDigest to calculate a
digest for the stream as it is read or written. These are DigestInputStream and DigestOutputStream.

12.3.1. DigestInputStream

The DigestInputStream class is a subclass of FilterInputStream:

public class DigestInputStream extends FilterInputStream

DigestInputStream has all the usual methods of any input stream, like read(), skip(), and close(
). It overrides two read() methods to do its filtering. Clients use these methods exactly as they use
the read() methods of other input streams.

DigestInputStream does not change the data it reads in any way. However, as each byte or group of
bytes is read, it is fed as input to a MessageDigest object stored in the class as the protecteddigest
field:

protected MessageDigest digest;

The digest field is normally set in the constructor:

public DigestInputStream(InputStream stream, MessageDigest digest)

For example:

URL u = new URL("http://java.sun.com");
DigestInputStream din = new DigestInputStream(u.openStream(),
 MessageDigest.getInstance("SHA-256"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The digest is not cloned inside the class. Only a reference to it is stored. Therefore, the message
digest used inside the stream should only be used by the stream. Simultaneous or interleaved use by
other objects will corrupt the digest.

The setMessageDigest() method changes the MessageDigest object used by the stream:

public void setMessageDigest(MessageDigest digest)

You can retrieve the message digest at any time by calling getMessageDigest():

public MessageDigest getMessageDigest()

After you invoke getMessageDigest(), the digest field of the stream has received all the data read
by the stream up to that point. However, it has not been finished. It is still necessary to invoke
digest() to complete the calculation. For example:

MessageDigest md = dis.getMessageDigest();
md.digest();

On rare occasions, you may only want to digest part of a stream. You can turn digesting off at any
point by passing false to the on() method:

public void on(boolean on)

You can turn digesting back on by passing true to on(). When digest streams are created, they are
on by default.

Finally, there's a toString() method, which is a little unusual in input streams. It simply returns
"[Digest Input Stream]" plus the string representation of the digest.

public String toString()

The body of Example 12-1 could be rewritten to make use of a DigestInputStream like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 URL u = new URL(args[0]);
 InputStream in = u.openStream();
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = din.read(data);
 if (bytesRead < 0) break;
 }
 MessageDigest md = din.getMessageDigest();
 byte[] result = md.digest();
 for (int i = 0; i < result.length; i++) {
 System.out.println(result[i]);
 }

The main purpose of DigestInputStream is to be one of a chain of filters. Otherwise, it doesn't really
make your work any easier. You still need to construct the MessageDigest object by invoking
getInstance(), pass it to the DigestInputStream() constructor, retrieve the MessageDigest object
from the input stream, invoke its digest() method, and retrieve the digest data from that object. I
would prefer the DigestInputStream to completely hide the MessageDigest object. You could pass the
name of the digest algorithm to the constructor as a string rather than as an actual MessageDigest
object. The digest would be made available only after the stream was closed, and then only through
its data, not through the actual object.

12.3.2. DigestOutputStream

The DigestOutputStream class is a subclass of FilterOutputStream that maintains a digest of all the
bytes it has written:

public class DigestOutputStream extends FilterOutputStream

DigestOutputStream has all the usual methods of any output stream, like write(), flush(), and
close(). It overrides two write() methods to do its filtering, but they are used as they would be
for any other output stream. DigestOutputStream does not change the data it writes in any way.
However, as each byte or group of bytes is written, it is fed as input to a MessageDigest object stored
in the class as the protected digest field:

protected MessageDigest digest;

This field is normally set in the constructor:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public DigestOutputStream(OutputStream out, MessageDigest digest)

For example:

FileOutputStream fout = new FileOutputStream("data.txt");
DigestOutputStream dout = new DigestOutputStream(fout,
 MessageDigest.getInstance("SHA"));

The constructor does not copy the MessageDigest object; it just stores a reference to it. Therefore,
the message digest stored inside the stream should only be used by the stream. Interleaved use by
other objects or simultaneous use by other threads will corrupt the digest. You can change the
MessageDigest object used by the stream with the setMessageDigest() method:

public void setMessageDigest(MessageDigest digest)

You can retrieve the message digest at any time by calling getMessageDigest():

public MessageDigest getMessageDigest()

After you invoke getMessageDigest(), the digest field contains the digest of all the data written by
the stream up to that point. However, it has not been finished. It is still necessary to invoke digest(
) to complete the calculation. For example:

MessageDigest md = dout.getMessageDigest();
md.digest();

On rare occasions, you may want to digest only part of a stream. For instance, you might want to
calculate the digest of the body of an email message while ignoring the headers. You can turn
digesting off at any point by passing false to the on() method:

public void on(boolean on)

You can turn digesting back on by passing TRue to on(). When digest output streams are created,
they are on by default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, there's a toString() method, which is a little unusual in output streams. It simply returns
"[Digest Output Stream]" plus the string representation of the digest.

public String toString()

Example 12-3 is a FileDigest class that reads data from a specified URL and copies it into a file on
the local system. As the file is written, its SHA digest is calculated. When the file is closed, the digest
is printed.

Example 12-3. FileDigest

import java.net.*;
import java.io.*;
import java.security.*;
public class FileDigest {
 public static void main(String[] args)
 throws IOException, NoSuchAlgorithmException {
 if (args.length != 2) {
 System.err.println("Usage: java FileDigest url filename");
 return;
 }
 URL u = new URL(args[0]);
 FileOutputStream out = new FileOutputStream(args[1]);
 copyFileWithDigest(u.openStream(), out);
 out.close();
 }
 public static void copyFileWithDigest(InputStream in, OutputStream out)
 throws IOException, NoSuchAlgorithmException {
 MessageDigest sha = MessageDigest.getInstance("SHA-512");
 DigestOutputStream dout = new DigestOutputStream(out, sha);
 byte[] data = new byte[128];
 while (true) {
 int bytesRead = in.read(data);
 if (bytesRead < 0) break;
 dout.write(data, 0, bytesRead);
 }
 dout.flush();
 byte[] result = dout.getMessageDigest().digest();
 for (int i = 0; i < result.length; i++) {
 System.out.print(result[i] + " ");
 }
 System.out.println();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A sample run looks like this:

% java FileDigest http://www.oreilly.com/ oreilly.html
10 -10 103 -27 -110 3 -2 -115 8 -112 13 19 25 76 -120 31 51 116 -94 -58

DigestOutputStream is useful when you need a digest in the middle of a chain of filter streams. For
instance, you could write data onto a data output stream chained to a gzip output stream chained to
a file output stream. When you had finished writing the data onto the data output stream, you could
calculate the digest and write that directly onto the file output stream. When the data was read back
in, you could use a digest input stream chained to a data input stream to check that the file had not
been corrupted in the meantime. If the digest calculated by the digest input stream matched the
digest stored in the file, you'd know the data was OK.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.4. Encryption Basics

In this section, we begin discussing cryptography. The packages, classes, and methods discussed in
this and following sections are part of the Java Cryptography Extension (JCE). As a standard
extension to Java, the JCE cryptography classes live in the javax package rather than the java
package. Several third parties in other countries have published their own implementations of this
API. In particular, the open source implementation from the Legion of the Bouncy Castle
(http://www.bouncycastle.org/) is worth a look.

I frankly don't trust Sun not to have inserted backdoors into its software for the
use of various governments. I recommend using the third-party libraries no
matter where you are if you really care about your privacy.

There are many different kinds of codes and ciphers, both for digital and nondigital data. To be
precise, a code encrypts data at word or higher levels. Ciphers encrypt data at the level of letters or,
in the case of digital ciphers, bytes. Most ciphers replace each byte in the original, unencrypted data,
called plaintext , with a different byte, thus producing encrypted data, called ciphertext . There are
many different possible algorithms for determining how plaintext is transformed into ciphertext
(encryption) and how the ciphertext is transformed back into plaintext (decryption).

12.4.1. Keys

All the algorithms discussed here, and included in the JCE, are key-based. A key is a sequence of
bytes used to parameterize the cipher. The same algorithm encrypts the same plaintext differently
when a different key is used. Decryption also requires a key. Good algorithms make it effectively
impossible to decrypt ciphertext without knowing the right key.

One common attack on cryptosystems is an exhaustive search through all possible keys. As a result,
one popular measure of algorithmic security is key length. Shorter keys (56 bits and less) are
definitely breakable by brute force search with specialized equipment. Keys of 112 bits are considered
to have the minimum key length required for reasonable security. However, remember that a
reasonable key length is only a necessary condition for security. Long key length is far from a
sufficient condition. Long keys do not protect a weak algorithm or implementation.

12.4.2. Secret Key Versus Public Key Algorithms

There are two primary kinds of ciphers: symmetric (secret key) ciphers and asymmetric (public key)
ciphers. Symmetric ciphers such as AES use the same key to encrypt and decrypt the data.
Symmetric ciphers rely on the secrecy of the key for security. Anybody who knows the key can both

http://www.bouncycastle.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

encrypt and decrypt data.

Asymmetric ciphers, also known as public key ciphers, use different keys for encryption and
decryption. This makes the problem of key exchange relatively trivial. To allow people to send you
encrypted messages, you simply send them your encryption (public) key. Even if the key is
intercepted, this only allows the interceptor to send you encrypted messages. It does not allow them
to decode encrypted messages intended for you. Furthermore, you can digitally sign messages by
encrypting either a message or a hash code of the message with your private key, which may then
be decrypted with your public key. Any message that can be successfully decrypted with your public
key may be presumed to have come from you because only you could have encrypted it with your
private key in the first place. (Of course, if someone steals your private key, all bets are off.) The
most famous public key cipher is the RSA cipher, named after its inventors, Ronald L. Rivest, Adi
Shamir, and Leonard M. Adleman. RSA has the particularly nice property that either key can be used
for encryption or decryption.

12.4.3. Block Versus Stream Ciphers

Encryption algorithms may also be divided into block and stream ciphers. A block cipher always
encrypts a fixed number of bytes with each pass. For example, DES encrypts eight-byte blocks. If the
data you're encrypting is not an integral multiple of the block size, the data must be padded with
extra bytes to round up to the block size. Stream ciphers, by contrast, act on each bit or byte
individually in the order it appears in the stream; padding is not required.

Block ciphers can operate in a variety of modes that use various algorithms to determine how the
result of the encryption of one block of data influences the encryption of subsequent blocks. This
ensures that identical blocks of plaintext do not produce identical blocks of ciphertext, a weakness
code breakers could exploit. To ensure that messages that start with the same plaintext (for
example, many email messages or form letters) don't also start with the same ciphertext (also a
weakness code breakers can exploit), these modes require a nonsecret initialization vector, generally
of the same size as a block, in order to begin the encoding. Initialization vectors are not secret and
are generally passed in the clear with the encrypted data.

12.4.4. Key Management

Storing keys securely is a difficult problem. If the key is stored in hardware like a smartcard, it can be
stolen. If the key is stored in a file on a disk, the disk can be stolen. Many basic PC protection
schemes are based on OS- or driver-level operations that refuse to mount the disk without the
proper password, but simply using a new OS (or driver or custom hardware) allows the key or
unencrypted data to be read off the disk.

Ideally, keys should not be stored anywhere except in a human being's memory. Human beings,
however, have a hard time remembering arbitrary 56-bit keys such as 0x78A53666090BCC, much
less more secure 64-, 112-, or 128-bit keys. Therefore, keys humans have to remember are
generally stored as a string of text called a password. Even then, the password is vulnerable to a
rubber hose attack. Truly secure systems like those used to protect bank vaults require separate
passwords remembered by two or more individuals.

A text password is converted into the raw bits of the key according to some well-known, generally

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public, hash algorithm. The simplest such algorithm is to use the bytes of the password as the key,
but this weakens the security because the bits are somewhat predictable. For instance, the bits
01110001 (q) are very likely to be followed by the bits 01110101 (u). The bits 01111111 (the
nonprinting delete character) are unlikely to appear at all. Because of the less than random nature of
text, passwords must be longer than the corresponding keys.

To make matters worse, humans like passwords that are common words or phrases, like "secret,"
"password," or "sex." Therefore, one of the most common attacks on password-based systems is to
attempt decryption with every word in a dictionary. To make these sorts of attacks harder,
passwords are commonly "salted": combined with a random number that's also stored in the
ciphertext. Salting can increase the space that a dictionary-based attack must search by several
orders of magnitude.

Humans also write passwords down, especially when they need to store many different passwords for
different networks, computers, and web sites. These written passwords can then be stolen. The
java.security.KeyStore class is a simple, password-protected digital lockbox for keys of all sorts.
Keys can be stored in the key store, and only the password for the key store needs to be
remembered.

This discussion has been necessarily brief. A lot of interesting details have been
skimmed over or omitted entirely. For the more complete story, see the Crypt
Cabal's Cryptography FAQ at http://www.faqs.org/faqs/cryptography-faq/ or
Java Security by Scott Oaks (O'Reilly).

http://www.faqs.org/faqs/cryptography-faq/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.5. The Cipher Class

The javax.crypto.Cipher class is a concrete class that encrypts arrays of bytes. The default
implementation performs no encryption, but you'll never see this. You'll only receive subclasses that
implement particular algorithms.

public class Cipher extends Object

The subclasses of Cipher that do real encryption are supplied by providers. Different providers can
provide different sets of algorithms. For instance, an authoritarian government might only allow the
installation of algorithms it knows how to crack, and create a provider that provided those algorithms
and only those algorithms. A corporation might want to install algorithms that allow for key recovery
in the event that an employee leaves the company or forgets their password.

JDK 1.3 and earlier only include the Sun provider that supplies no encryption schemes, though it does
supply several digest algorithms. The JCE (which is bundled with Java 1.4 and later) adds one more
provider, SunJCE, which provides DES, triple DES (DESede), and password-based encryption (PBE).
Other vendors may bundle additional providers. For instance, Apple's Java 5 VM includes an Apple-
specific provider that implements DES, Triple DES, AES, Blowfish, PBE, Diffie-Hellman, MD5, and
SHA1. RSA's payware BSafe Crypto-J product has a security provider that implements the RSA, DES,
DESede, RC2, RC4, and RC5 cipher algorithms. The open source JCE provider from the Legion of the
Bouncy Castle supports AES, Blowfish, CAST5, CAST6, DES, Triple DES, IDEA, RC2, RC5, RC6,
Rijndael, Skipjack, Twofish, and Serpent, among others.

Most providers include some unique algorithms. However, providers usually also include some
algorithms already supplied by other providers. At compile time, you do not know which providers will
be installed at runtime. Indeed, different people running your program are likely to have different
providers available, especially if you ship internationally. Therefore, rather than using constructors,
the Cipher class relies on two static getInstance() factory methods that return Cipher objects
initialized to support particular transformations:

public static final Cipher getInstance(String transformation)
 throws NoSuchAlgorithmException, NoSuchPaddingException
public static final Cipher getInstance(String transformation, String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException,
 NoSuchPaddingException

The first argument, TRansformation, is a string that names the algorithm, mode, and padding scheme
to be used to encrypt or decrypt the data. Examples include "DES", "PBEWithMD5AndDES", and
"DES/ECB/PKCS5Padding". The optional second argument to getInstance(), provider, names the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

preferred provider for the requested transformation. If more than one installed provider supports the
transformation, the one named in the second argument is used. Otherwise, an implementation is
selected from any available provider that supports the transformation. If you request a
transformation from getInstance() that the provider does not support, a NoSuchAlgorithmException
or NoSuchPaddingException is thrown. If you request a provider that is not installed, a
NoSuchProviderException is thrown.

The transformation string always includes the name of a cryptographic algorithm: for example, DES.
The standard names for common algorithms are listed in Table 12-2. Not all of these algorithms are
guaranteed to be available.

Sun's JDK 1.4 only bundles DES, DESede, AES, Blowfish, PBEWithMD5AndDES, and
PBEWithMD5AndTripleDES. JDK 1.5 added RC2, ARCFOUR, PBEWithSHA1AndDESede, and
PBEWithSHA1AndRC2_40.

Table 12-2. JCE standard algorithm names

Name Algorithm

AES (a.k.a. Rijndael)

The U.S. Federal government's Advanced Encryption
Standard as defined by NIST in FIPS 197 and invented
by Joan Daemen and Vincent Rijmen; a symmetric 128-
bit block cipher with keys of length 128, 192, or 256
bits; see
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf. There are no known practical attacks on this
algorithm, but a couple of theoretical attacks have been
devised, and cryptographers are nervous that it may
not be as strong as initially thought.

DES

The U.S. Federal government's Data Encryption
Standard as defined by NIST in FIPS 46-1 and 46-2; a
symmetric 64-bit block cipher that uses a 56-bit key;
see http://www.itl.nist.gov/fipspubs/fip46-2.htm. Given
the small key space, this algorithm can be broken by
brute force.

DESede

DES encryption-decryption-encryption; triple DES; like
DES, a 64-bit symmetric block cipher. DES encryption
with one 56-bit key is followed by decryption with a
different 56-bit key, which is followed by encryption
with the first 56-bit key, effectively providing a 112-bit
key space. (However, a known weakness in the
algorithm reduces the effective strength of the key to
roughly 80 bits.) This is one of the slower algorithms in
use.

PBEWithMD5

AndDES

Password-Based Encryption as defined in RSA
Laboratories, "PKCS #5: Password-Based Encryption
Standard," Version 1.5, Nov. 1993; based on DES; also
requires a salt; see

http://csrc.nist.gov/publications/fips/fips197/fips-
http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Algorithm
AndDES

requires a salt; see
http://www.rsasecurity.com/rsalabs/node.asp?
id=2127.

PBEWithMD5

AndTripleDES

Password-Based Encryption as defined in RSA
Laboratories, "PKCS #5: Password-Based Encryption
Standard," version 1.5, Nov. 1993; based on Triple
DES; also requires a salt and an initialization vector;
see http://www.rsasecurity.com/rsalabs/node.asp?
id=2127.

PBEWithSHA1AndDESede
Password-Based Encryption using triple DES encryption
and SHA1 hashing; also requires a salt and an
initialization vector.

PBEWithMD5AndTripleDES
Password-Based Encryption using triple DES encryption
and MD5 hashing; also requires a salt and an
initialization vector.

RSA

The Rivest, Shamir, and Adleman asymmetric cipher
algorithm; RSA encryption as defined in the RSA
Laboratories Technical Note PKCS#1,
http://www.rsasecurity.com/rsalabs/node.asp?
id=2125. It is possible that the NSA cannot penetrate
this algorithm.

IDEA

The International Data Encryption Algorithm developed
and patented by Dr. X. Lai and Professor J. Massey of
the Federal Institute of Technology in Zurich,
Switzerland; a symmetrical 64-bit block cipher with a
128-bit key. The patent expires in 2010 in the U.S.,
2011 in Europe.

RC2

A variable key-size symmetric 64-bit block cipher
designed by Ron Rivest as a drop-in replacement for
DES. The NSA probably doesn't have much trouble
breaking this one; see IETF RFC 2268,
http://www.faqs.org/rfcs/rfc2268.html.

ARCFOUR (a.k.a. RC4)

A weak symmetric stream cipher algorithm designed by
Ron Rivest used in Netscape's Secure Sockets Layer
(SSL), among other products. The name "RC4" is
trademarked, so this algorithm is also referred to by
the untrademarked name ARCFOUR. Used (and broken)
in the Wireless Encryption Protocol (WEP).

Blowfish

An unpatented fast, free, symmetric, variable key
length (32 to 448 bits) 64-bit block cipher designed by
Bruce Schneier as a drop-in replacement for DES; see
http://www.schneier.com/blowfish.html.

Twofish

An unpatented free, symmetric, variable key length
(128, 192 or 256 bits) 128-bit block cipher designed by
Bruce Schneier; see
http://www.schneier.com/twofish.html.

AndDES
requires a salt; see
http://www.rsasecurity.com/rsalabs/node.asp?
id=2127.

PBEWithMD5

AndTripleDES

Password-Based Encryption as defined in RSA
Laboratories, "PKCS #5: Password-Based Encryption
Standard," version 1.5, Nov. 1993; based on Triple
DES; also requires a salt and an initialization vector;
see http://www.rsasecurity.com/rsalabs/node.asp?
id=2127.

PBEWithSHA1AndDESede
Password-Based Encryption using triple DES encryption
and SHA1 hashing; also requires a salt and an
initialization vector.

PBEWithMD5AndTripleDES
Password-Based Encryption using triple DES encryption
and MD5 hashing; also requires a salt and an
initialization vector.

RSA

The Rivest, Shamir, and Adleman asymmetric cipher
algorithm; RSA encryption as defined in the RSA
Laboratories Technical Note PKCS#1,
http://www.rsasecurity.com/rsalabs/node.asp?
id=2125. It is possible that the NSA cannot penetrate
this algorithm.

IDEA

The International Data Encryption Algorithm developed
and patented by Dr. X. Lai and Professor J. Massey of
the Federal Institute of Technology in Zurich,
Switzerland; a symmetrical 64-bit block cipher with a
128-bit key. The patent expires in 2010 in the U.S.,
2011 in Europe.

RC2

A variable key-size symmetric 64-bit block cipher
designed by Ron Rivest as a drop-in replacement for
DES. The NSA probably doesn't have much trouble
breaking this one; see IETF RFC 2268,
http://www.faqs.org/rfcs/rfc2268.html.

ARCFOUR (a.k.a. RC4)

A weak symmetric stream cipher algorithm designed by
Ron Rivest used in Netscape's Secure Sockets Layer
(SSL), among other products. The name "RC4" is
trademarked, so this algorithm is also referred to by
the untrademarked name ARCFOUR. Used (and broken)
in the Wireless Encryption Protocol (WEP).

Blowfish

An unpatented fast, free, symmetric, variable key
length (32 to 448 bits) 64-bit block cipher designed by
Bruce Schneier as a drop-in replacement for DES; see
http://www.schneier.com/blowfish.html.

Twofish

An unpatented free, symmetric, variable key length
(128, 192 or 256 bits) 128-bit block cipher designed by
Bruce Schneier; see
http://www.schneier.com/twofish.html.

http://www.rsasecurity.com/rsalabs/node.asp?
http://www.rsasecurity.com/rsalabs/node.asp?
http://www.rsasecurity.com/rsalabs/node.asp?
http://www.faqs.org/rfcs/rfc2268.html
http://www.schneier.com/blowfish.html
http://www.schneier.com/twofish.html
http://www.rsasecurity.com/rsalabs/node.asp?
http://www.rsasecurity.com/rsalabs/node.asp?
http://www.rsasecurity.com/rsalabs/node.asp?
http://www.faqs.org/rfcs/rfc2268.html
http://www.schneier.com/blowfish.html
http://www.schneier.com/twofish.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Algorithm

Skipjack

A symmetric key block encryption algorithm designed
by the NSA with 80-bit keys. Several as yet impractical
attacks on the algorithm have been found. Regardless
of the algorithm's strength, the key length is too short
to inspire confidence.

Serpent

A symmetric variable key length (128, 192 or 256 bits)
128-bit block cipher designed by Ross Anderson, Eli
Biham, and Lars Knudsen. It is notable for its highly
parallelizable design.

I have a hunch (not necessarily shared by
experts in the field) that RSA and similar
algorithms will be broken someday by
means much less computationally intensive
than brute force search. RSA's strength
rests on the difficulty of factoring a large
number into two large primes. However, it
is not known whether such factorization is
fundamentally hard or whether we just
don't yet know the right factoring
algorithms. It seems obvious to me that
there's a lot of structure in the prime
numbers that has yet to be exploited or
understood by number theorists. For
instance, Goldbach's conjecture and the
number of twin primes are still unsolved
questions. Therefore, I would not be
surprised if far more efficient factorization
algorithms are discovered. Any such
algorithm would severely reduce the
strength of encryption schemes like RSA.
Furthermore, there's been an explosion of
interest and research in quantum
computing, following the discovery that
RSA would be much more easily cracked
by a quantum computer than by a
traditional one. This does not seem to be
the case for public key encryption schemes
based on something other than prime
factorization, for instance, discrete
logarithms or elliptic curves.

When faced with input longer than its block size, a block cipher must divide and possibly reorder that
input into blocks of the appropriate size. The algorithm for doing this is called a mode. A mode name
may be included in the transformation string separated from the algorithm by a slash. If a mode is
not selected, the provider supplies a default. Modes apply to block ciphers in general and DES in
particular, though other block ciphers like Blowfish may use some of these modes as well. The named
modes in the JCE are listed in Table 12-3. All of these modes are supported by the JCE, but modes
are algorithm-specific. If you try to use an unsupported mode or a mode that doesn't match the

Skipjack

A symmetric key block encryption algorithm designed
by the NSA with 80-bit keys. Several as yet impractical
attacks on the algorithm have been found. Regardless
of the algorithm's strength, the key length is too short
to inspire confidence.

Serpent

A symmetric variable key length (128, 192 or 256 bits)
128-bit block cipher designed by Ross Anderson, Eli
Biham, and Lars Knudsen. It is notable for its highly
parallelizable design.

I have a hunch (not necessarily shared by
experts in the field) that RSA and similar
algorithms will be broken someday by
means much less computationally intensive
than brute force search. RSA's strength
rests on the difficulty of factoring a large
number into two large primes. However, it
is not known whether such factorization is
fundamentally hard or whether we just
don't yet know the right factoring
algorithms. It seems obvious to me that
there's a lot of structure in the prime
numbers that has yet to be exploited or
understood by number theorists. For
instance, Goldbach's conjecture and the
number of twin primes are still unsolved
questions. Therefore, I would not be
surprised if far more efficient factorization
algorithms are discovered. Any such
algorithm would severely reduce the
strength of encryption schemes like RSA.
Furthermore, there's been an explosion of
interest and research in quantum
computing, following the discovery that
RSA would be much more easily cracked
by a quantum computer than by a
traditional one. This does not seem to be
the case for public key encryption schemes
based on something other than prime
factorization, for instance, discrete
logarithms or elliptic curves.

When faced with input longer than its block size, a block cipher must divide and possibly reorder that
input into blocks of the appropriate size. The algorithm for doing this is called a mode. A mode name
may be included in the transformation string separated from the algorithm by a slash. If a mode is
not selected, the provider supplies a default. Modes apply to block ciphers in general and DES in
particular, though other block ciphers like Blowfish may use some of these modes as well. The named
modes in the JCE are listed in Table 12-3. All of these modes are supported by the JCE, but modes
are algorithm-specific. If you try to use an unsupported mode or a mode that doesn't match the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

algorithm, a NoSuchAlgorithmException is thrown.

Table 12-3. Block cipher modes

Name Mode

ECB

Electronic CodeBook Mode; the 64-bit blocks are encrypted independently of each other and
may also be decrypted independently of each other, so this mode is useful when you want
random access to an encrypted file but in general is less secure than other modes. It does
not require an initialization vector. See "DES Modes of Operation," National Institute of
Standards and Technology Federal Information Processing Standards Publication 81,
December 1980; http://www.itl.nist.gov/fipspubs/fip81.htm (NIST FIPS PUB 81).

CBC
Cipher Block Chaining Mode, as defined in NIST FIPS PUB 81; best choice for encrypting
files; uses an initialization vector.

CFB
K-bit Cipher FeedBack Mode, as defined in NIST FIPS PUB 81; best choice for real-time
encryption of streaming data such as network connections where each byte must be sent
immediately rather than being buffered; uses an initialization vector.

OFB
K-bit Output FeedBack Mode, as defined in NIST FIPS PUB 81; designed so that a 1-bit error
in the ciphertext only produces a 1-bit error in the plaintext; therefore, the best choice on
noisy, error-prone channels; uses an initialization vector.

PCBC
Propagating Cipher Block Chaining, as used in pre-Version 5 Kerberos; similar to the more
secure CBC mode used in Kerberos Version 5 and later; uses an initialization vector.

If the algorithm is a block cipher like DES, the transformation string may include a padding scheme
that adds extra bytes to the input to fill out the last block. The named padding schemes are shown in
Table 12-4. Algorithms that use modes must generally also specify a padding scheme.

Table 12-4. Padding schemes

Name Scheme

NoPadding Do not add any padding bytes.

ZeroByte Pad with zeros; insecure and not recommended.

PKCS5Padding
RSA Laboratories, "PKCS #5: Password-Based Encryption Standard," Version 1.5,
Nov. 1993; see http://www.rsasecurity.com/rsalabs/node.asp?id=2127.

PKCS7Padding
RSA Laboratories, "PKCS #7: Cryptographic Message Syntax Standard," Version 1.5,
Nov. 1993; see http://www.rsasecurity.com/rsalabs/node.asp?id=2129.

WithCTS
Ciphertext Stealing; really a variant mode of Cipher Block Chaining (CBC) that does
not require any padding; requires at least one full block of data to operate.

SSL3Padding
A slight variation of PKCS5Padding used in Secure Sockets Layer (SSL); see "SSL
Protocol Version 3.0, November 18, 1996, section 5.2.3.2 (CBC block cipher)" at
http://wp.netscape.com/eng/ssl3/ssl-toc.html.

http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.rsasecurity.com/rsalabs/node.asp?id=2127
http://www.rsasecurity.com/rsalabs/node.asp?id=2129
http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Encrypting data with a Cipher object takes six steps:

Create the key for the cipher.1.

Retrieve the transformation you want to use with the Cipher.getInstance() factory method.2.

Initialize the cipher by passing Cipher.ENCRYPT_MODE and the key to the init() method.3.

Feed data to the update() method.4.

While there's more data, repeat step 4.5.

Invoke doFinal().6.

Steps 1 and 2 can be reversed, as is done in the flowchart for this process shown in Figure 12-2.
Decryption is almost an identical process except that you pass Cipher.DECRYPT_MODE to init()
instead of Cipher.ENCRYPT_MODE. The same engine can both encrypt and decrypt data with a given
transformation.

Figure 12-2. Encrypting data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12-4 is a simple program that reads a filename and a password from the command line and
encrypts the file with DES. The key is generated from the bytes of the password in a fairly predictable
and insecure fashion. The cipher is initialized for encryption with the DES algorithm in CBC mode with
PKCS5Padding and a random initialization vector. The initialization vector and its length are written at
the start of the encrypted file so they'll be conveniently available for decryption.

Data is read from the file in 64-byte blocks. This happens to be an integral multiple of the 8-byte
block size used by DES, but that's not necessary. The Cipher object buffers as necessary to handle
nonintegral multiples of the block size. Each block of data is fed into the update() method to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encrypted. update() returns either encrypted data or null if it doesn't have enough data to fill out a
block. If it returns the encrypted data, that's written into the output file. When no more input data
remains, the cipher's doFinal() method is invoked to pad and flush any remaining data. Then both
input and output files are closed.

Example 12-4. File Encryptor

import java.io.*;
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
public class FileEncryptor {
 public static void main(String[] args) {
 if (args.length != 2) {
 System.err.println("Usage: java FileEncryptor filename password");
 return;
 }
 String filename = args[0];
 String password = args[1];
 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters long");
 }
 try {
 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[0] + ".des");
 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/CBC/PKCS5Padding");
 des.init(Cipher.ENCRYPT_MODE, desKey);
 // Write the initialization vector onto the output.
 byte[] iv = des.getIV();
 DataOutputStream dout = new DataOutputStream(fout);
 dout.writeInt(iv.length);
 dout.write(iv);
 byte[] input = new byte[64];
 while (true) {
 int bytesRead = fin.read(input);
 if (bytesRead == -1) break;
 byte[] output = des.update(input, 0, bytesRead);
 if (output != null) dout.write(output);
 }
 byte[] output = des.doFinal();
 if (output != null) dout.write(output);
 fin.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dout.flush();
 dout.close();
 }
 catch (InvalidKeySpecException ex) {System.err.println(ex);}
 catch (InvalidKeyException ex) {System.err.println(ex);}
 catch (NoSuchAlgorithmException ex) {System.err.println(ex);}
 catch (NoSuchPaddingException ex) {System.err.println(ex);}
 catch (BadPaddingException ex) {System.err.println(ex);}
 catch (IllegalBlockSizeException ex) {System.err.println(ex);}
 catch (IOException ex) {System.err.println(ex);}
 }
}

Many different exceptions must be caught. Except for the usual IOException, they are all subclasses
of java.security.GeneralSecurityException. You could save some space simply by catching that.
For example:

 catch (GeneralSecurityException ex) {
 System.err.println(ex);
 ex.printStackTrace();
 }

One exception I'll note in particular (because it threw me more than once while writing this chapter):
if you should see a NoSuchAlgorithmException, it probably means you haven't properly installed a
provider that supports your algorithm.

Decrypting a file is similar, as Example 12-5 shows. The name of the input and output files and the
password are read from the command line. A DES key factory converts the password to a DES secret
key. Both input and output files are opened in file streams, and a data input stream is chained to the
input file. The main reason for this is to read the initialization vector. First, the integer size is read,
and then the actual bytes of the vector. The resulting array is used to construct an IvParameterSpec
object that is used along with the key to initialize the cipher. Once the cipher is initialized, the data is
copied from input to output much as before.

Example 12-5. File Decryptor

import java.io.*;
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
public class FileDecryptor {

 public static void main(String[] args) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (args.length != 3) {
 System.err.println("Usage: java FileDecryptor infile outfile password");
 return;
 }
 String infile = args[0];
 String outfile = args[1];
 String password = args[2];
 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters long");
 }
 try {
 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);
 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Read the initialization vector.
 DataInputStream din = new DataInputStream(fin);
 int ivSize = din.readInt();
 byte[] iv = new byte[ivSize];
 din.readFully(iv);
 IvParameterSpec ivps = new IvParameterSpec(iv);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/CBC/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey, ivps);
 byte[] input = new byte[64];
 while (true) {
 int bytesRead = fin.read(input);
 if (bytesRead == -1) break;
 byte[] output = des.update(input, 0, bytesRead);
 if (output != null) fout.write(output);
 }
 byte[] output = des.doFinal();
 if (output != null) fout.write(output);
 fin.close();
 fout.flush();
 fout.close();
 }
 catch (GeneralSecurityException ex) {
 ex.printStackTrace();
 }
 catch (IOException ex) {System.err.println(ex);}
 }
}

Let's investigate some of the methods used in Example 12-4 and Example 12-5 in more detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.5.1. init()

Before a Cipher object can encrypt or decrypt data, it needs four things:

The mode to operate in (encryption or decryption; not a block cipher mode)

A key

Algorithm parameters, e.g., an initialization vector

A source of randomness

The init() method prepares the cipher by providing these four quantities or reasonable defaults.
There are six overloaded variants:

public final void init(int opmode, Key key) throws InvalidKeyException
public final void init(int opmode, Key key, SecureRandom random)
 throws InvalidKeyException
public final void init(int opmode, Key key, AlgorithmParameterSpec params)
 throws InvalidKeyException, InvalidAlgorithmParameterException
public final void init(int opmode, Key key, AlgorithmParameterSpec params,
 SecureRandom random) throws InvalidKeyException,
 InvalidAlgorithmParameterException
public final void init(int opmode, Key key, AlgorithmParameters params)
 throws InvalidKeyException, InvalidAlgorithmParameterException
public final void init(int opmode, Key key, AlgorithmParameters params,
 SecureRandom random) throws InvalidKeyException,
 InvalidAlgorithmParameterException

You can reuse a cipher object by invoking its init() method a second time. If you do, all previous
information in the object is lost.

12.5.1.1. Mode

The mode determines whether this cipher is used for encryption or decryption. The mode argument
has two possible values, which are both mnemonic constants defined by the Cipher class:
Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE.

public static final int ENCRYPT_MODE
public static final int DECRYPT_MODE

12.5.1.2. Key

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The key is an instance of the java.security.Key interface. Symmetric ciphers like DES use the same
key for both encryption and decryption. Asymmetric ciphers like RSA use different keys for encryption
or decryption. Keys generally depend on the cipher. For instance, an RSA key cannot be used to
encrypt a DES file or vice versa. If the key you provide doesn't match the cipher's algorithm, an
InvalidKeyException is thrown.

To create a key, you first use the bytes of the key to construct a KeySpec for the algorithm you're
using. Key specs are instances of the java.security.spec.KeySpec interface. Algorithm-specific
implementations in the java.security.spec package include EncodedKeySpec, X509EncodedKeySpec,
KCS8EncodedKeySpec, DSAPrivateKeySpec, and DSAPublicKeySpec, RSAPrivateKeySpec,
RSAPrivateCrtKeySpec, RSAMultiPrimePrivateCrtKeySpec, RSAPublicKeySpec, and
X509EncodedKeySpec. Java 5 added ECPrivateKeySpec and ECPublicKeySpec for public key
cryptography based on elliptic curves rather than prime factorization. The javax.crypto spec package
provides a few more including DESKeySpec, DESedeKeySpec, DHPrivateKeySpec, DHPublicKeySpec,
PBEKeySpec. For example, this code fragment creates a DESKeySpec object that can be used to encrypt
or decrypt from a password string using the DES algorithm:

byte[] desKeyData = password.getBytes();
DESKeySpec desKeySpec = new DESKeySpec(desKeyData);

Once you've constructed a key specification from the raw bytes of the key, a key factory generates
the actual key. A key factory is normally an instance of an algorithm-specific subclass of
java.security.KeyFactory. It's retrieved by passing the name of the algorithm to the factory method
javax.crypto.SecretKeyFactory.getInstance(). For example:

SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
SecretKey desKey = keyFactory.generateSecret(desKeySpec);

Providers should supply the necessary key factories and spec classes for any algorithms they
implement.

A few algorithms, most notably Blowfish, use raw bytes as a key without any further manipulations.
In these cases there may not be a key factory for the algorithm. Instead, you simply use the key
spec as the secret key. For example:

byte[] blowfishKeyData = password.getBytes();
SecretKeySpec blowfishKeySpec = new SecretKeySpec(blowfishKeyData,
 "Blowfish");
Cipher blowfish = Cipher.getInstance("Blowfish/ECB/PKCS5Padding");
blowfish.init(Cipher.ENCRYPT_MODE, blowfishKeySpec);

Most of the examples in this book use very basic and not particularly secure passwords as keys.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stronger encryption requires more random keys. The javax.crypto.KeyGenerator class provides
methods that generate random keys for any installed algorithm. For example:

KeyGenerator blowfishKeyGenerator = KeyGenerator.getInstance("Blowfish");
SecretKey blowfishKey = blowfishKeyGenerator.generateKey();
Cipher blowfish = Cipher.getInstance("Blowfish/ECB/PKCS5Padding");
blowfish.init(Cipher.ENCRYPT_MODE, blowfishKey);

Generating random keys opens up the issue of how one stores and transmits the secret keys. To my
way of thinking, random key generation makes more sense in public key cryptography, where all
keys that need to be transmitted can be transmitted in the clear.

12.5.1.3. Algorithm parameters

The third possible argument to init() is a series of instructions for the cipher contained in an
instance of the java.security.spec.AlgorithmParameterSpec interface or an instance of the
java.security.AlgorithmParameters class. The AlgorithmParameterSpec interface declares no
methods or constants. It's simply a marker for more specific subclasses that can provide additional,
algorithm-dependent parameters for specific algorithms and modes (for instance, an initialization
vector). If the algorithm parameters you provide don't fit the cipher's algorithm, an
InvalidAlgorithmParameterException is thrown. The JCE provides several AlgorithmParameterSpec
classes in the javax.crypto.spec package, including IVParameterSpec, which can set an initialization
vector for modes that need it (CBC, CFB, and OFB), and PBEParameterSpec for password-based
encryption.

12.5.1.4. Source of randomness

The final possible argument to init() is a SecureRandom object. This argument is only used when in
encryption mode. It is an instance of the java.security.SecureRandom class, a subclass of
java.util.Random that uses a pseudo-random number algorithm based on the SHA-1 hash algorithm
instead of java.util.Random's linear congruential formula. java.util.Random's random numbers
aren't random enough for strong cryptography. In this book, I will simply accept the default source of
randomness.

12.5.2. update()

Once the init() method has prepared the cipher for use, the update() method feeds data into it,
encrypting or decrypting as it goes. This method has four overloaded variants. The first two return
the encrypted or decrypted bytes:

public final byte[] update(byte[] input) throws IllegalStateException
public final byte[] update(byte[] input, int inputOffset, int inputLength)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws IllegalStateException

They may return null if you're using a block cipher and not enough data has been provided to fill a
block. The input data to be encrypted or decrypted is passed in as an array of bytes. Optional offsets
and lengths may be used to select a particular subarray to be processed. update() tHRows an
IllegalStateException if the cipher has not been initialized or it has already been finished with
doFinal(). In either case, it's not prepared to accept data until init() is called.

The second two variants of update() store the output in a buffer byte array passed in as the fourth
argument and return the number of bytes stored in the buffer:

public final int update(byte[] input, int inputOffset, int inputLength,
 byte[] output) throws IllegalStateException, ShortBufferException
public final int update(byte[] input, int inputOffset, int inputLength,
 byte[] output, int outputOffset) throws IllegalStateException,
 ShortBufferException

You can also provide an offset into the output array to specify where in the array data should be
stored. An offset is useful when you want to repeatedly encrypt/decrypt data into the same array
until the data is exhausted. You cannot, however, specify a length for the output data because it's up
to the cipher to determine how many bytes of data it's willing to provide. The trick here is to make
sure your output buffer is big enough to hold the processed output. Most of the time, the number of
output bytes is close to the number of input bytes. However, block ciphers sometimes return fewer
bytes on one call and more on the next. You can use the getOutputSize() method to determine an
upper bound on the amount of data that will be returned if you were to pass in inputLength bytes of
data:

public final int getOutputSize(int inputLength) throws IllegalStateException

If you don't do this and your output buffer is too small, update() throws a ShortBufferException. In
this case, the cipher stores the data for the next call to update().

Java 5 added an update() method that reads from a ByteBuffer and writes into an output
ByteBuffer:

public final int update(ByteBuffer input, ByteBuffer output)
 throws ShortBufferException, IllegalStateException,
 ReadOnlyBuffer Exception, IllegalArgumentException

Once you run out of data to feed to update(), invoke doFinal() . This signals the cipher that it
should pad the data with extra bytes if necessary and encrypt or decrypt all remaining bytes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.5.3. doFinal()

The doFinal() method is responsible for reading one final array of data, wrapping that up with any
data remaining in the cipher's internal buffer, adding any extra padding that might be necessary, and
then returning the last chunk of encrypted or decrypted data. The simplest implementation of
doFinal() takes no arguments and returns an array of bytes containing the encrypted or decrypted
data. This is used to flush out any data that still remains in the cipher's buffer.

public final byte[] doFinal()
 throws IllegalStateException, IllegalBlockSizeException, BadPaddingException

An IllegalStateException means that the cipher is not ready to be finished; it has not been
initialized; it has been initialized but no data has been fed into it; or it has already been finished and
not yet reinitialized. An IllegalBlockSizeException is thrown by encrypting block ciphers if no
padding has been requested, and the total number of bytes fed into the cipher is not a multiple of the
block size. A BadPaddingException is thrown by a decrypting cipher that does not find the padding it
expects to see.

There are five overloaded variants of doFinal() that allow you to provide additional input data or to
place the result in an output buffer you supply. These variants are:

public final int doFinal(byte[] output, int outputOffset)
 throws IllegalStateException, IllegalBlockSizeException,
 ShortBufferException, BadPaddingException
public final byte[] doFinal(byte[] input)
 throws IllegalStateException, IllegalBlockSizeException, BadPaddingException
public final byte[] doFinal(byte[] input, int inputOffset, int inputLength)
 throws IllegalStateException, IllegalBlockSizeException, BadPaddingException
public final int doFinal(byte[] input, int inputOffset, int inputLength,
 byte[] output) throws IllegalStateException, ShortBufferException,
 IllegalBlockSizeException, BadPaddingException
public final int doFinal(byte[] input, int inputOffset, int inputLength,
 byte[] output, int outputOffset) throws IllegalStateException,
 ShortBufferException, IllegalBlockSizeException, BadPaddingException

All of the arguments are essentially the same as they are for update(). output is a buffer where the
cipher places the encrypted or decrypted data. outputOffset is the position in the output buffer
where this data is placed. input is a byte array that contains the last chunk of data to be encrypted.
inputOffset and inputLength select a subarray of input to be encrypted or decrypted.

12.5.4. Accessor Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As well as the methods that actually perform the encryption, the Cipher class has several getter
methods that provide various information about the cipher. The getProvider() method returns a
reference to the Provider that's implementing this algorithm. This is an instance of a subclass of
java.security.Provider.

public final Provider getProvider()

For block ciphers, getBlockSize()returns the number of bytes in a block. For nonblock methods, it
returns 0.

public final int getBlockSize()

The getOutputSize() method tells you how many bytes of output this cipher produces for a given
number of bytes of input. You generally use this before calling doFinal() or update() to make sure
you provide a large enough byte array for the output, given inputLength additional bytes of data.

public final int getOutputSize(int inputLen) throws IllegalStateException

The length returned is the maximum number of bytes that may be needed. In some cases, fewer
bytes may actually be returned when doFinal() is called. An IllegalStateException is thrown if the
cipher is not ready to accept more data.

The getIV() method returns a new byte array containing this cipher's initialization vector. It's useful
when the system picks a random initialization vector and you need to find out what that vector is so
you can pass it to the decryption program, perhaps by storing it with the encrypted data.

public final byte[] getIV()

getIV() returns null if the algorithm doesn't use initialization vectors or if the initialization vector
isn't yet set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.6. Cipher Streams

The Cipher class is the engine that powers encryption. Example 12-5 showed how this class could be
used to encrypt and decrypt data read from a stream. The javax.crypto package also provides
CipherInputStream and CipherOutputStream filter streams that use a Cipher object to encrypt or
decrypt data passed through the stream. Like DigestInputStream and DigestOutputStream, they
aren't a great deal of use in themselves. However, you can chain them in the middle of several other
streams. For example, if you chain a GZIPOutputStream to a CipherOutputStream that is chained to a
FileOutputStream, you can compress, encrypt, and write to a file, all with a single call to write(), as
shown in Figure 12-3. Similarly, you might read from a URL with the input stream returned by
openStream(), decrypt the data read with a CipherInputStream, check the decrypted data with a
MessageDigestInputStream, and finally pass it all into an InputStreamReader for conversion from
Latin-1 to Unicode. On the other side of the connection, a web server could read a file from its hard
drive, write the file onto a socket with an output stream, calculate a digest with a
DigestOutputStream, and encrypt the file with a CipherOutputStream.

Figure 12-3. The CipherOutputStream in the middle of a chain of filters

12.6.1. CipherInputStream

CipherInputStream is a subclass of FilterInputStream.

public class CipherInputStream extends FilterInputStream

CipherInputStream has all the usual methods of any input stream, like read(), skip(), and close(
). It overrides seven of these methods to do its filtering. These methods are all invoked much as they
would be for any other input stream. However, as the data is read, the stream's Cipher object either
decrypts or encrypts the data. (Assuming your program wants to work with unencrypted data, as is
most commonly the case, the cipher input stream will decrypt the data.)

A CipherInputStream object contains a Cipher object that's used to decrypt or encrypt all data read
from the underlying stream before passing it to the eventual source. This Cipher object is set in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constructor. Like all filter stream constructors, this constructor takes another input stream as an
argument:

public CipherInputStream(InputStream in, Cipher c)

The Cipher object c must be a properly initialized instance of javax.crypto.Cipher, most likely
returned by Cipher.getInstance(). This Cipher object must also have been initialized for either
encryption or decryption with init() before being passed into the constructor. There is also a
protected constructor that might be used by subclasses that want to implement their own, non-JCE-
based encryption scheme:

protected CipherInputStream(InputStream in)

CipherInputStream overrides most methods declared in FilterInputStream. Each of these makes the
necessary adjustments to handle encrypted data. For example, skip() skips the number of bytes
after encryption or decryption, which is important if the ciphertext does not have the same length as
the plaintext. The available() method also returns the number of bytes available after encryption
or decryption. The markSupported() method returns false; you cannot mark and reset a cipher
input stream, even if the underlying class supports marking and resetting. Allowing this would
confuse many encryption algorithms. However, you can make a cipher input stream the underlying
stream of another class like BufferedInputStream, which does support marking and resetting.

Strong encryption schemes have the distinct disadvantage that changing even a single bit in the data
can render the entire file unrecoverable gibberish. Therefore, it's useful to combine encryption with a
digest so you can tell whether a file has been modified. Example 12-6 uses CipherInputStream to
DES-encrypt a file named on the command line, but that's not all. The ciphertext is also digested and
the digest saved so corruption can be detected.

Example 12-6. Digest Encryptor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
public class DigestEncryptor {

 public static void main(String[] args)
 throws IOException, GeneralSecurityException {
 if (args.length != 2) {
 System.err.println("Usage: java DigestEncryptor filename password");
 return;
 }
 String filename = args[0];
 String password = args[1];
 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters long");
 }
 FileInputStream fin = new FileInputStream(filename);
 FileOutputStream fout = new FileOutputStream(filename +".des");
 FileOutputStream digest = new FileOutputStream(filename + ".des.digest");
 // Create the key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.ENCRYPT_MODE, desKey);
 CipherInputStream cin = new CipherInputStream(fin, des);
 // Use SHA digest algorithm.
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(cin, sha);
 byte[] input = new byte[64];
 while (true) {
 int bytesRead = din.read(input);
 if (bytesRead == -1) break;
 fout.write(input, 0, bytesRead);
 }
 digest.write(sha.digest());
 digest.close();
 din.close();
 fout.flush();
 fout.close();
 }
}

The file is read with a file input stream chained to a cipher input stream chained to a digest input

http://lib.ommolketab.ir
http://lib.ommolketab.ir

stream. As the file is read, encrypted, and digested, it's written into an output file. After the file has
been completely read, the digest is written into another file so it can later be compared with the first
file. Because the cipher input stream appears before the digest input stream in the chain, the digest
is of the ciphertext, not the plaintext. If you read the file with a file input stream chained to a digest
input stream chained to a cipher input stream, you would digest the plaintext. In fact, you could even
use a file input stream chained to a digest input stream chained to a cipher input stream chained to a
second digest input stream to get digests of both plain- and ciphertext.

12.6.2. CipherOutputStream

CipherOutputStream is a subclass of FilterOutputStream.

public class CipherOutputStream extends FilterOutputStream

Each CipherOutputStream object contains a Cipher object used to decrypt or encrypt all data passed
as arguments to the write() method before writing it to the underlying stream. This Cipher object is
set in the constructor. Like all filter stream constructors, this constructor takes another input stream
as an argument:

public CipherOutputStream(OutputStream out, Cipher c)

The Cipher object used here must be a properly initialized instance of javax.crypto.Cipher, most
likely returned by Cipher.getInstance(). The Cipher object c should be initialized for encryption or
decryption by calling init() before being passed to the CipherOutputStream() constructor. There is
also a protected constructor that might be used by subclasses that want to implement their own,
non-JCE-based encryption scheme:

protected CipherOutputStream(OutputStream out)

CipherOutputStream has all the usual methods of any output stream, like write(), flush(), and
close(). It overrides five of these methods to do its filtering. Clients use these methods the same
way they use them in any output stream. Before the data is written, the stream's cipher either
decrypts or encrypts the data. Each of these five methods makes the necessary adjustments to
handle encrypted data. For example, the flush() method (which is invoked by the close() method
as well) calls doFinal() on the Cipher object to make sure it has finished padding and encrypting all
the data before it flushes the final data to the underlying stream.

There are no new methods in CipherOutputStream not declared in the superclass. Anything else you
need to do, such as getting the cipher's initialization vector, must be handled by the Cipher object.

Example 12-7 uses CipherOutputStream to decrypt files encrypted by the DigestEncryptor of Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12-6. A digest input stream chained to a file input stream checks the digest of the ciphertext as it's
read from the file. If the digest does not match, an error message is printed. The file is still written
into the output file, sincedepending on the algorithm and mode usedit may be partially legible,
especially if the error does not occur until relatively late in the encrypted data.

Example 12-7. DigestDecryptor

import java.io.*;
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
public class DigestDecryptor {
 public static void main(String[] args)
 throws I OExcedption, GeneralSecurityException {
 if (args.length != 3) {
 System.err.println("Usage: java DigestDecryptor infile outfile password");
 return;
 }
 String infile = args[0];
 String outfile = args[1];
 String password = args[2];
 if (password.length() < 8) {
 System.err.println("Password must be at least eight characters long");
 }
 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);
 // Get the digest.
 FileInputStream digestIn = new FileInputStream(infile + ".digest");
 DataInputStream dataIn = new DataInputStream(digestIn);
 // SHA digests are always 20 bytes long.
 byte[] oldDigest = new byte[20];
 dataIn.readFully(oldDigest);
 dataIn.close();
 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);
 CipherOutputStream cout = new CipherOutputStream(fout, des);
 // Use SHA digest algorithm.
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(fin, sha);
 byte[] input = new byte[64];
 while (true) {
 int bytesRead = din.read(input);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (bytesRead == -1) break;
 cout.write(input, 0, bytesRead);
 }
 byte[] newDigest = sha.digest();
 if (!MessageDigest.isEqual(newDigest, oldDigest)) {
 System.out.println("Input file appears to be corrupt!");
 }
 din.close();
 cout.flush();
 cout.close();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.7. File Viewer, Part 5

Handling a particular form of encryption in the FileDumper program is not hard. Handling the general
case is not. It's not that decryption is difficult. In fact, it's quite easy. However, most encryption
schemes require more than simply providing a key. You also need to know an assortment of
algorithm parameters, like initialization vector, salt, iteration count, and more. Higher level protocols
usually pass this information between the encryption program and the decryption program. The
simplest protocol is to store the information unencrypted at the beginning of the encrypted file. You
saw an example of this in the FileDecryptor and FileEncryptor programs. The FileEncryptor chose
a random initialization vector and placed its length and the vector itself at the beginning of the
encrypted file so the decryptor could easily find it.

For the next iteration of the FileDumper program, I am going to use the simplest available encryption
scheme, DES in ECB mode with PKCS5Padding. Furthermore, the key is simply the first eight bytes of
the password. This is probably the least secure algorithm discussed in this chapter. However, it
doesn't require an initialization vector, salt, or other metainformation to be passed between the
encryptor and the decryptor. Because of the nature of filter streams, it is relatively straightforward to
add decryption services to the FileDumper program, assuming you know the format in which the
encrypted data is stored. Generally, you'll want to decrypt a file before dumping it. This does not
require a new dump filter. Instead, I simply pass the file through a cipher input stream before
passing it to one of the dump filters.

When a file is both compressed and encrypted, compression is usually performed first. Therefore,
we'll always decompress after decrypting. The reason is twofold. Since encryption schemes make
data appear random, and compression works by taking advantage of redundancy in nonrandom data,
it is difficult, if not impossible, to compress encrypted files. In fact, one quick test of how good an
encryption scheme is to compress an encrypted file. If the file is compressible, it's virtually certain
the encryption scheme is flawed and can be broken. Conversely, compressing files before encrypting
them removes redundancy from the data that a code breaker can exploit and thereby may shore up
some weaker algorithms. On the other hand, some algorithms have been broken by taking
advantage of magic numbers and other known plaintext sequences that compression programs insert
into the encrypted data. Thus, there's no guarantee that compressing files before encrypting them
makes them harder to penetrate. The best option is simply to use the strongest encryption available.

We'll let the user set the password with the -password command-line switch. The next argument after
-password is assumed to be the password. Example 12-8, FileDumper5, demonstrates.

Example 12-8. FileDumpers

import java.io.*;
import java.util.zip.*;
import java.security.*;
import javax.crypto.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.crypto.spec.*;
import com.elharo.io.*;
public class FileDumper5 {
 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;
 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;
 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println(
 "Usage: java FileDumper5 [-ahdsilfx] [-little] [-gzip|-deflated] "
 + "[-password password] file1...");
 }
 boolean bigEndian = true;
 int firstFile = 0;
 int mode = ASC;
 boolean deflated = false;
 boolean gzipped = false;
 String password = null;
 // Process command-line switches.
 for (firstFile = 0; firstFile < args.length; firstFile++) {
 if (!args[firstFile].startsWith("-")) break;
 if (args[firstFile].equals("-h")) mode = HEX;
 else if (args[firstFile].equals("-d")) mode = DEC;
 else if (args[firstFile].equals("-s")) mode = SHORT;
 else if (args[firstFile].equals("-i")) mode = INT;
 else if (args[firstFile].equals("-l")) mode = LONG;
 else if (args[firstFile].equals("-f")) mode = FLOAT;
 else if (args[firstFile].equals("-x")) mode = DOUBLE;
 else if (args[firstFile].equals("-little")) bigEndian = false;
 else if (args[firstFile].equals("-deflated") && !gzipped) deflated = true;
 else if (args[firstFile].equals("-gzip") && !deflated) gzipped = true;
 else if (args[firstFile].equals("-password")) {
 password = args[firstFile+1];
 firstFile++;
 }
 }
 for (int i = firstFile; i < args.length; i++) {
 try {
 InputStream in = new FileInputStream(args[i]);
 dump(in, System.out, mode, bigEndian, deflated, gzipped, password);
 if (i < args.length-1) { // more files to dump
 System.out.println();
 System.out.println("--------------------------------------");
 System.out.println();
 }
 }
 catch (IOException ex) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.err.println(ex);
 ex.printStackTrace();
 }
 }
 }
 public static void dump(InputStream in, OutputStream out, int mode,
 boolean bigEndian, boolean deflated, boolean gzipped, String password)
 throws IOException {
 // The reference variable in may point to several different objects
 // within the space of the next few lines.
 if (password != null && password.length() > 0) {
 // Create a key.
 try {
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);
 in = new CipherInputStream(in, des);
 }
 catch (GeneralSecurityException ex) {
 throw new IOException(ex.getMessage());
 }
 }
 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }
 // could really pass to FileDumper3 at this point
 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new IntFilter(din);
 break;
 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in = new DoubleFilter(din);
 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;
 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;
 default:
 }
 }
 for (int c = in.read(); c != -1; c = in.read()) {
 out.write(c);
 }
 in.close();
 }
}

Note how little needed to change. I simply imported two more packages and added a command-line
switch and about a dozen lines of code (which could easily have been half that) to build a Cipher
object and add a cipher input stream to the chain. Other encryption schemes, like password-based
encryption, would not be hard to support either. The main difficulty lies in deciding exactly how the
key would be entered since not all algorithms have keys that map to passwords in a straightforward
way. I leave that as an exercise for the reader.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. Object Serialization
The last several chapters have shown you how to read and write Java's fundamental data types
(byte, int, String, etc.). However, there's been one glaring omission. Java is an object-oriented
language, and yet aside from the special case of strings, you haven't seen any general-purpose
methods for reading or writing objects.

Object serialization, first used in the context of Remote Method Invocation (RMI) and later for
JavaBeans, addresses this need. The java.io.ObjectOutputStream class provides a writeObject()
method you can use to write a Java object onto a stream. The java.io.ObjectInputStream class has
a readObject() method that reads an object from a stream. ObjectInputStream and
ObjectOutputStream implement the DataInput and DataOutput interfaces respectively so they can also
write primitive data types such as ints, floats, and doubles, In this chapter you'll learn how to use
these two classes to read and write objects as well as how to customize the format used for
serialization.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.1. Reading and Writing Objects

Object serialization saves an object's state in a sequence of bytes so that the object can be
reconstituted from those bytes at a later time. Serialization in Java was first developed for use in
RMI. RMI allows an object in one virtual machine to invoke methods in an object in another virtual
machine, possibly in a different computer on the other side of the planet, by sending arguments and
return values across the Internet. This requires a way to convert those arguments and return values
to and from byte streams. It's a trivial task for primitive data types, but you need to be able to
convert objects as well. That's what object serialization provides.

Object serialization is also used in the JavaBeans component software architecture. Bean classes are
loaded into visual builder tools such as NetBeans. The designer then customizes the beans by
assigning fonts, sizes, text, and other properties to each bean and connects them together with
events. For instance, a button bean generally has a label property that is encoded as a string of text.
The designer can change this text.

Once the designer has assembled and customized the beans, the form containing all the beans must
be saved. It's not enough to save the bean classes themselves; the customizations that have been
applied to the beans must also be saved. That's where serialization comes in: it stores the bean as an
object and thus includes any customizations, which are nothing more than the values of the bean's
fields. The customized beans are stored in a .ser file, which is often placed inside a JAR archive. Thus,
instead of having to write long init() methods that create and initialize many different components
and objects, you can assemble the components in a visual tool, assign properties to them, save the
whole group, and then load them back in.

Object serialization provides a predefined format you can use for saving files. For example, suppose
you're writing a chess game with a Board class that stores the locations of all the pieces on the board.
It's not particularly difficult to design a file format that includes the position of every piece on the
board and write the code to write the current state of the board into a file. It is, however, time-
consuming. With object serialization, you can write the entire board into a file with one method call.
All you need to do to save a game is write the Board object onto an object output stream chained to
a file output stream. To restore the game, read the Board object from an object input stream chained
to a file input stream. I don't suggest using object serialization for all your file formats. For one thing,
object serialization is slow and a performance bottleneck for large and complicated files. If you define
your own format, you can save the minimum amount of information you need; serialization saves the
entire object graph for the Board, including lots of things that aren't necessary to restore the state of
the board. Furthermore, while it's quite easy to create simple systems based on object serialization in
two or three lines of code, these simple systems tend to be unreliable, fragile, and insecure. Robust,
reliable, secure serialization is a good deal more complex. Certainly, for small chores, though, object
serialization provides a very convenient predefined file format.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.2. Object Streams

Objects are serialized by object output streams. They are deserialized by object input streams. These
classes are instances of java.io.ObjectOutputStream and java.io.ObjectInputStream, respectively:

public class ObjectOutputStream extends OutputStream
 implements ObjectOutput,
 ObjectStreamConstants
public class ObjectInputStream extends InputStream
 implements ObjectInput, ObjectStreamConstants

The ObjectOutput interface is a subinterface of java.io.DataOutput that adds methods to write
objects. The ObjectInput interface is a subinterface of java.io.DataInput that adds methods to read
objects. By extending DataInput and DataOutput, ObjectInput and ObjectOutput guarantee that their
implementers are able to read and write primitive types like int and double, as well as objects. Since
an object may contain fields of primitive types, anything that has to read or write the state of an
object also has to be able to read or write the primitive fields the object contains.

java.io.ObjectStreamConstants is an unimportant interface that merely declares mnemonic
constants for "magic numbers" used in the object serialization file format. A major goal of the object
stream classes is shielding client programmers from these sorts of details about the format used to
serialize objects.

ObjectOutputStream and ObjectInputStream are filter streams, and thus they are chained to
underlying streams in their constructors:

public ObjectOutputStream(OutputStream out) throws IOException
public ObjectInputStream(InputStream in) throws IOException

To write an object onto a stream, pass the object to the ObjectOutputStream's writeObject()
method:

public final void writeObject(Object o) throws IOException

For example, this code fragment chains an ObjectOutputStream to a FileOutputStream and writes a
java.awt.Point object into that file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Point p = new Point(34, 22);
FileOutputStream fout = new FileOutputStream("point.ser");
ObjectOutputStream oout = new ObjectOutputStream(fout);
oout.writeObject(p);
oout.close();

Later, the object can be read back using the readObject() method of the ObjectInputStream class:

public final Object readObject()
 throws OptionalDataException, ClassNotFoundException, IOException

For example:

FileInputStream fin = new FileInputStream("point.ser");
ObjectInputStream oin = new ObjectInputStream(fin);
Object o = oin.readObject();
Point p = (Point) o;
oin.close();

The reconstituted Point has the same values as the original Point. Its x is 34 and its y is 22, just like
the Point object that was written. However, since readObject() is only declared to return an Object,
you usually need to cast the deserialized object to a more specific type.

Both writeObject() and readObject() tHRow IOException for all the usual reasons an I/O
operation can fail (disk filling up, network connection being severed, etc.). There are also several
object-serialization specific subclasses of IOException. For example, an InvalidClassException
indicates that the data in the stream can't be matched to the corresponding class (for instance,
because the version of the class that was serialized is not the same as the version of the class used in
the VM deserializing the object). The readObject() method also throws a ClassNotFoundException if
a definition for the class of the object read from the input stream is not available in the current VM.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.3. How Object Serialization Works

Objects possess state. This state is stored in the values of the nonstatic, nontransient fields of an
object's class. Consider this TwoDPoint class:

public class TwoDPoint {
 public double x;
 public double y;
}

Every object of this class has a state defined by the values of the double fields x and y. If you know
the values of those fields, you know the value of the TwoDPoint. Nothing changes if you add some
methods to the class or make the fields private, as in Example 13-1.

Example 13-1. The TwoDPoint class

public class TwoDPoint {
 private double x;
 private double y;
 public TwoDPoint(double x, double y) {
 this.x = x;
 this.y = y;
 }
 public double getX() {
 return x;
 }
 public double getY() {
 return y;
 }
 public String toString() {
 return "[TwoDPoint:x=" + this.x + ", y=" + y +"]";
 }
}

The object state, the information stored in the fields, is still the same. If you know the values of x and
y, you know everything there is to know about the state of the object. The methods only affect the
actions an object can perform. They do not change what an object is.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now suppose you wanted to save the state of a particular TwoDPoint object by writing a sequence of
bytes onto a stream. This process is called serialization since the object is serialized into a sequence
of bytes. You could add a writeState() method to your class that looked something like this:

 public void writeState(OutputStream out) throws IOException {
 DataOutputStream dout = new DataOutputStream(out);
 dout.writeDouble(x);
 dout.writeDouble(y);
 }

To restore the state of a Point object, you could add a readState() method like this:

 public void readState(InputStream in) throws IOException {
 DataInputStream din = new DataInputStream(in);
 this.x = din.readDouble();
 this.y = din.readDouble();
 }

Needless to say, this is a lot of work. You would have to define readState() and writeState()
methods for every class whose instances you wanted to serialize. Furthermore, you would have to
track where in the byte stream particular values were stored to make sure that you didn't
accidentally read the y coordinate of one point as the x coordinate of the next. You'd also have to
make sure you could serialize the object's superclasses if the superclass contained a relevant state.
Classes composed of other classes would cause a lot of trouble since you'd need to serialize each
object the first object contained, then each object those objects contained, then the objects those
objects contained, and so forth. Finally, you'd need to avoid circular references that could put you in
an infinite loop.

Fortunately, Sun's done all the work for you. Object streams can access all the nonstatic,
nontransient fields of an object (including the private parts) and write them out in a well-specified
format. All you have to do is chain object output streams to an underlying stream where you want
the object to be written and call writeObject(); you do not have to add any new methods. Reading
objects in from an object input stream is only slightly more complicated; in addition to reading the
object from the stream, you also need to cast the object to the correct type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.4. Performance

Serialization is often the easiest way to save the state of your program. You simply write out the
objects you're using and read them back in when you're ready to restore the document. There is a
downside, however. First of all, serialization is slow. If you can define a custom file format for your
application's documents, using that format is almost certainly much faster than object serialization.

Second, serialization can slow or prevent garbage collection. Every time an object is written onto an
object output stream, the stream holds onto a reference to the object. Then, if the same object is
written onto the same stream again, it can be replaced with a reference to its first occurrence in the
stream. However, this means that your program holds onto live references to the objects it has
written until the stream is reset or closedwhich means these objects won't be garbage-collected. The
worst-case scenario is keeping a stream open as long as your program runs and writing every object
created onto the stream. This prevents any objects from being garbage-collected.

The easy solution is to avoid keeping a running stream of the objects you create. Instead, save the
entire state only when the entire state is available and then close the stream immediately.

If this isn't possible, you have the option to reset the stream by invoking its reset() method:

public void reset() throws IOException

reset() flushes the ObjectOutputStream object's internal cache of the objects it has already written
so they can be garbage-collected. However, this also means that an object may be written onto the
stream more than once, so use this method with caution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.5. The Serializable Interface

Unlimited serialization would introduce security problems. For one thing, it allows unrestricted access
to an object's private fields. By chaining an object output stream to a byte array output stream, a
hacker can convert an object into a byte array. The byte array can be manipulated and modified
without any access protection or security manager checks. Then the byte array can be reconstituted
into a Java object by using it as the source of a byte array input stream.

Security isn't the only potential problem. Some objects exist only as long as the current program is
running. A java.net.Socket object represents an active connection to a remote host. Suppose a
socket is serialized to a file, and the program exits. Later the socket is deserialized from the file in a
new programbut the connection it represents no longer exists. Similar problems arise with file
descriptors, I/O streams, and many other classes.

For these and other reasons, Java does not allow instances of arbitrary classes to be serialized. You
can only serialize instances of classes that implement the java.io.Serializable interface. By
implementing this interface, a class indicates that it may be serialized without undue problems.

public interface Serializable

This interface does not declare any methods or fields; it is a marker interface that serves purely to
indicate that a class may be serialized. However, subclasses of a class that implements a particular
interface also implement that interface. Thus, many classes that do not explicitly declare that they
implement Serializable are in fact serializable. For instance, java.awt.Component implements
Serializable. Therefore, its direct and indirect subclasses, including Button, Scrollbar, TextArea,
List, Container, Panel, Applet, and all Swing components may be serialized. java.lang.Throwable
implements Serializable. Therefore, all exceptions and errors are serializable.

You can glean some general principles about what classes are and are not likely to be serializable. For
instance, exceptions, errors, and other throwable objects are always serializable. Streams, readers
and writers, and most other I/O classes are not serializable. AWT and Swing components, containers,
and events are serializable, but event adapters, image filters, and AWT classes that abstract OS-
dependent features are not. java.beans classes are not serializable. Type wrapper classes are
serializable except for Void; most other java.lang classes are not. Reflection classes are not
serializable. java.math classes are serializable. URL objects are serializable. Socket, URLConnection,
and most other java.net classes are not. Container classes are serializable (though see the next
section). Compression classes are not serializable. Nonstatic inner classes (including your own inner
classes) are almost never serializable.

Overall, there are seven common reasons why a class may not be serializable:

It is too closely tied to native code (java.util.zip.Deflater).1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

The object's state depends on the internals of the virtual machine or the runtime environment
and thus may change from run to run (java.lang.Thread, java.io.InputStream,
java.io.FileDescriptor, java.awt.PrintJob).

2.

Serializing it is a potential security risk (java.lang.SecurityManager,
java.security.MessageDigest).

3.

The class is mostly a holder for static methods without any real internal state
(java.beans.Beans, java.lang.Math).

4.

The class is a nonstatic inner class. Serialization just doesn't work well with nonstatic inner
classes. (Static inner classes have no problem being serialized.)

5.

The programmer who wrote the class simply didn't think about serialization.6.

An alternate serialization format is preferred in a particular context. (XOM node classes are not
serializable because the proper serialization format for XML is XML.)

7.

13.5.1. Classes That Implement Serializable but Aren't

Just because a class may be serialized does not mean that it can be serialized. Several problems can
prevent a class that implements Serializable from actually being serialized. Attempting to serialize
such a class throws a NotSerializableException, a kind of IOException:

public class NotSerializableException extends ObjectStreamException

13.5.1.1. Problem 1: References to nonserializable objects

The first common problem that prevents a serializable class from being serialized is that its graph
contains objects that do not implement Serializable. The graph of an object is the collection of all
objects that the object holds references to, and all the objects those objects hold references to, and
all the objects those objects hold references to, and so on, until there are no more connected objects
that haven't appeared in the collection. For an object to be serialized, all the objects it holds
references to must also be serializable, and all the objects they hold references to must be
serializable, and so on. For instance, consider this skeleton of a class:

import java.applet.*;
import java.net.*;
public class NetworkApplet extends Applet {
 private Socket theConnection;
 //...
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetworkApplet extends Applet, which extends Panel, which extends Container, which extends
Component, which implements Serializable. Thus, NetworkApplet should be serializable. However,
NetworkApplet contains a reference to a java.net.Socket object. Socket is not a serializable class.
Therefore, if you try to pass a NetworkApplet instance to writeObject(), a
NotSerializableException is thrown.

The situation is even worse for container classes like HashMap and Vector. Since serialization performs
a deep copy to the output stream, storing even a single nonserializable class inside a container
prevents it from being serialized. Since the objects stored in a container can vary from program to
program or run to run, there's no sure-fire way to know whether or not a particular instance of a
container class can be serialized, short of trying it.

13.5.1.2. Problem 2: Missing a no-argument constructor in superclass

The second common problem that prevents a serializable class from being deserialized is that a
superclass of the class is not serializable and does not contain a no-argument constructor.
java.lang.Object does not implement Serializable, so all classes have at least one superclass that's
not serializable. When an object is deserialized, the no-argument constructor of the closest
superclass that does not implement Serializable is invoked to establish the state of the object's
nonserializable superclasses. If that class does not have a no-argument constructor, the object
cannot be deserialized. For example, consider the java.io.ZipFile class introduced in Chapter 10. It
does not implement Serializable:

public class ZipFile extends Object implements java.util.zip.ZipConstants

Furthermore, it has only these two constructors, both of which take arguments:

public ZipFile(String filename) throws IOException
public ZipFile(File file) throws ZipException, IOException

Suppose you want to subclass it to allow the class to be serialized, as shown in Example 13-2.

Example 13-2. A SerializableZipFileNot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.util.zip.*;
public class SerializableZipFileNot extends ZipFile
 implements Serializable {
 public SerializableZipFileNot(String filename) throws IOException {
 super(filename);
 }
 public SerializableZipFileNot(File file) throws IOException {
 super(file);
 }
 public static void main(String[] args) {
 try {
 SerializableZipFileNot szf = new SerializableZipFileNot(args[0]);
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 ObjectOutputStream oout = new ObjectOutputStream(bout);
 oout.writeObject(szf);
 oout.close();
 System.out.println("Wrote object!");
 ByteArrayInputStream bin = new
 ByteArrayInputStream(bout.toByteArray());
 ObjectInputStream oin = new ObjectInputStream(bin);
 Object o = oin.readObject();
 System.out.println("Read object!");
 }
 catch (Exception ex) {ex.printStackTrace();}
 }
}

The main() method attempts to create an instance of this class, serialize it to a byte array output
stream, and read it back in from a byte array input stream. However, here's what happens when you
run it:

D:\JAVA> java SerializableZipFileNot test.zip
Wrote object!
java.io.InvalidClassException: java.util.zip.ZipFile; <init>
 at java.io.ObjectInputStream.inputObject(Compiled Code)
 at java.io.ObjectInputStream.readObject(ObjectInputStream.java:363)
 at java.io.ObjectInputStream.readObject(ObjectInputStream.java:226)
 at SerializableZipFileNot.main(SerializableZipFileNot.java:28)

Since the superclass, ZipFile, is not itself serializable and cannot be instantiated with a no-argument
constructor, the subclass cannot be deserialized. It can be serialized, but that isn't much use unless
you can get the object back again. Later, you'll see how to make a SerializableZipFile class that
can be both written and read. However, to do this, you'll have to give up something else, notably the
ZipFile type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.5.1.3. Problem 3: Deliberate throwing of NotSerializableException

A few classes appear to be unserializable out of pure spite (though normally there's more reason to it
than that). Sometimes it's necessary, for security or other reasons, to make a class or even a
particular object not serializable, even though one of its superclasses does implement Serializable.
Since a subclass can't unimplement an interface implemented in its superclass, the subclass may
choose to deliberately throw a NotSerializableException when you attempt to serialize it. You'll see
exactly how this is done shortly.

13.5.1.4. Locating the offending object

When you encounter a class that you think should be serializable but isn't (and this happens all too
frequently, often after you've spent two hours adjusting and customizing several dozen beans in a
builder tool that now can't save your work), you'll need to locate the offending class. The
detailMessage field of the NotSerializableException contains the name of the unserializable class.
This can be retrieved with the getMessage() method of java.lang.Throwable or as part of the string
returned by toString():

try {
 out.writeObject(unserializableObject);
}
catch (NotSerializableException ex) {
 System.err.println(ex.getMessage() + " could not be serialized");
}

It is not always obvious where the offending class sneaked in. For example, if you're trying to
serialize a hash table that contains seven lists, each of which contains many different objects of
different classes, a single nonserializable object in one of the lists causes a
NotSerializableException. You'll need to walk through the object graph in a debugger to determine
which object caused the problem.

13.5.1.5. Making nonserializable fields transient

Once you've identified the problem object, the simplest solution to is to mark the field that contains
the object TRansient. For example, we can mark the Socket field transient in the networking applet:

import java.applet.*;
import java.net.*;
public class NetworkApplet extends Applet {
 private transient Socket theConnection; //...
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The TRansient keyword tells the writeObject() method not to serialize the Socket object
theConnection onto the underlying output stream. Instead, it's just skipped. When the object is
deserialized, you still need to ensure that the state is consistent with what you expect. It may be
enough to make sure theConnection is nonnull before accessing it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.6. Versioning

When an object is written onto a stream, only the state of the object and the name of the object's
class are stored; the byte codes for the object's class are not stored with the object. There's no
guarantee that a serialized object will be deserialized into the same environment from which it was
serialized. It's possible for the class definition to change between the time the object is written and
the time it's read.

There are even more differences when methods, constructors, and static and transient fields are
considered. Not all changes, however, prevent deserialization. For instance, the values of static fields
aren't saved when an object is serialized. Therefore, you don't have to worry about adding or
deleting a static field to or from a class. Similarly, serialization completely ignores the methods in a
class, so changing method bodies or adding or removing methods does not affect serialization.

However, removing an instance field does affect serialization because deserializing an object saved by
the earlier version of the class results in an attempt to set the value of a field that no longer exists.

13.6.1. Compatible and Incompatible Changes

Changes to a class are divided into two groups: compatible changes and incompatible changes.
Compatible changes are those that do not affect the serialization format of the object, like adding a
method or deleting a static field. Incompatible changes are those that do prevent a previously
serialized object from being restored. Examples include changing a class's superclass or changing the
type of a field. As a general rule, any change that affects the signature of the class itself or its
nontransient instance fields of a class is incompatible while any change that does not affect the
signatures of the nontransient instance fields of a class is compatible. However, there are a couple of
exceptions. The following changes are compatible:

Most changes to constructors and methods, whether instance or static. Serialization doesn't
touch the methods of a class. The exceptions are those methods directly involved in the
serialization process, particularly writeObject() and readObject().

All changes to static fieldschanging their type, their names, adding or removing them, etc.
Serialization ignores all static fields.

All changes to transient fieldschanging their type, their names, adding or removing them, etc.
Serialization ignores all transient fields.

Adding or removing an interface (except the Serializable interface) from a class. Interfaces
say nothing about the instance fields of a class.

Adding or removing inner classes.

Changing the access specifiers of a field. Serialization does not respect access protection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Changing a field from static to nonstatic or transient to nontransient. This is the same as adding
a field.

The following changes are incompatible and thus prevent deserialization of serialized objects:

Changing the name of a class.

Changing the type of an instance field.

Changing the superclass of a class. This may affect the inherited state of an object.

Changing the writeObject() or readObject() method (discussed later) in an incompatible
fashion.

Changing a class from Serializable to Externalizable (discussed later) or Externalizable to
Serializable.

Finally, adding, removing, or changing the name of a nontransient instance field is incompatible by
default. However, it can usually be made compatible with a small effort and an SUID.

13.6.2. SUIDs

To help identify compatible or incompatible classes, each serializable class has a stream unique
identifier, SUID for short. When Java deserializes an object, it compares the SUID of the class found
in the stream to the SUID of the class with the same name in the local classpath. If they match, Java
assumes the two versions of the class are compatible. If they don't match, Java assumes the class
has changed in an incompatible way since the object was serialized and throws a
java.io.InvalidClassException:

Exception in thread "main" java.io.InvalidClassException: Test;
 local class incompatible:
stream classdesc serialVersionUID = 5590355372728923878,
 local class serialVersionUID = -1390649424173445192

By default, the SUID is calculated by hashing together all the pieces of a class's interface: the
signature of the class, the signatures of the nonprivate methods in the class, the signatures of the
fields, and so on. If any of these change, the SUID changes. By default, this is fairly strict. Even
compatible changes that don't affect the serialized format such as adding a public method can
prevent a serialized object from being deserialized against the newer version of the class.

Sometimes a normally incompatible change can be made compatible. For instance, if you add a new
int field to a class, it may be OK for deserialization of old instances of that class to just set the field
to 0. If you remove a field from a class, it may be OK for deserialization of old instances to ignore the
value stored for that field. Java will do this, but only if the SUIDs of the two versions of the class
match.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To tell Java that it's OK to ignore removed fields and use default values for added fields, as well as
telling it that other changes don't matter, you can specify the SUID for a class rather than allow it to
be calculated automatically. The SUID you specify is a private final static long field named
serialVersionUID:

public class UnicodeApplet extends Applet {
 private static final long serialVersionUID = 5913267123532863320L;
 // ...

As long as you keep the value of this field constant as you evolve the class, Java will serialize and
deserialize old saved instances into new versions of the class and vice versa. However, it now
becomes your responsibility to make sure that the old and new versions of the class are indeed
compatible. For instance, if you change the name of a field, you'll need to write a little code to make
sure the value for the old field gets put in the new field when deserializing. You can do this in the
readObject() and writeObject() methods to be discussed shortly. If you can't maintain forward
and backward compatibility with the serialization format, you must change the serialVersionUID field
to keep Java from deserializing old instances into the new class version and vice versa.

The serialver tool, included with the JDK, calculates an SUID that fits the class. For example:

% serialver UnicodeApplet
UnicodeApplet: static final long serialVersionUID = 5913267123532863320L;

There's also a GUI interface available with the -show flag, as shown in Figure 13-1.

Figure 13-1. The serialver GUI

This generates the same hash code Java would calculate if no serialVersionUID field were present.
However, unlike the default hash, you can continue using this same value as the class evolves.

You do not have to use the SUID values that serialver calculates. You can use your own version-
numbering scheme. The simplest such scheme would be to give the first version of the class SUID 1,
the next incompatible version SUID 2, and so forth. Whether you use a custom SUID or let serialver
calculate one for you, you are responsible for deciding when a change to a class is compatible with
serialization. The serialver tool does not necessarily generate the same SUID for two compatible but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

different classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.7. Customizing the Serialization Format

The default serialization procedure does not always produce the results you want. Most often, a
nonserializable field like a Socket or a FileOutputStream needs to be excluded from serialization.
Sometimes, a class may contain data in nonserializable fields like a Socket that you nonetheless want
to savefor example, the host that the socket's connected to. Or perhaps a singleton object wants to
verify that no other instance of itself exists in the virtual machine before it's reconstructed. Or
perhaps an incompatible change to a class such as changing a Font field to three separate fields
storing the font's name, style, and size can be made compatible with a little programmer-supplied
logic. Or perhaps you want to compress a large array of image data before writing it to disk. For
these or many other reasons, you can customize the serialization process.

The simplest way to customize serialization is to declare certain fields transient. The values of
transient fields are not written onto the underlying output stream when an object in the class is
serialized. However, this only goes as far as excluding certain information from serialization; it
doesn't help you change the format that's used to store the data or take action on deserialization or
ensure that no more than one instance of a singleton class is created.

For more control over the details of your class's serialization, you can provide custom readObject()
and writeObject() methods. These are private methods that the virtual machine uses to read and
write the data for your class. This gives you complete control over how data in your class is written
onto the underlying stream but still uses standard serialization techniques for all fields of the object's
superclasses.

If you need even more control over the superclasses and everything else, you can implement the
java.io.Externalizable interface, a subinterface of java.io.Serializable. When serializing an
externalizable object, the virtual machine does almost nothing except identify the class. The class
itself is completely responsible for reading and writing its state and its superclass's state in whatever
format it chooses.

13.7.1. The readObject() and writeObject() Methods

By default, serialization takes place as previously described. When an object is passed to an
ObjectOutput's writeObject() method, the ObjectOutput reads the data in the object and writes it
onto the underlying output stream in a specified format. Data is written starting with the highest
serializable superclass of the object and continuing down through the hierarchy. However, before the
data of each class is written, the virtual machine checks to see if the class in question has methods
with these two signatures:

private void writeObject(ObjectOutputStream out) throws IOException
private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(Actually, an ObjectOutput only checks to see if the object has a writeObject() method, and an
ObjectInput only checks for a readObject() method, but it's rare to implement one of these
methods without implementing the other.) If the appropriate method is present, it is invoked to
serialize the fields of this class rather than writing them directly. The object stream still handles
serialization for any superclass or subclass fields.

For example, let's return to the issue of making a SerializableZipFile. Previously it wasn't possible
because the superclass, ZipFile, didn't have a no-argument constructor. In fact, because of this
problem, no subclass of this class can be serializable. However, it is possible to use composition
rather than inheritance to make our zip file serializable. Example 13-3 shows a SerializableZipFile
class that does not extend java.util.zip.ZipFile. Instead, it stores a ZipFile object in a transient
field in the class called zf. The zf field is initialized either in the constructor or in the readObject()
method. Invocations of the normal ZipFile methods, like enTRies() or getInputStream(), are
merely passed along to the ZipFile field zf.

Example 13-3. SerializableZipFile

import java.io.*;
import java.util.*;
import java.util.zip.*;
public class SerializableZipFile implements Serializable {
 private ZipFile zf;
 public SerializableZipFile(String filename) throws IOException {
 this.zf = new ZipFile(filename);
 }
 public SerializableZipFile(File file) throws IOException {
 this.zf = new ZipFile(file);
 }
 private void writeObject(ObjectOutputStream out) throws IOException {
 out.writeObject(zf.getName());
 }
 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 String filename = (String) in.readObject();
 zf = new ZipFile(filename);
 }
 public ZipEntry getEntry(String name) {
 return zf.getEntry(name);
 }
 public InputStream getInputStream(ZipEntry entry) throws IOException {
 return zf.getInputStream(entry);
 }
 public String getName() {
 return zf.getName();
 }
 public Enumeration entries() {
 return zf.entries();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public int size() {
 return zf.size();
 }
 public void close() throws IOException {
 zf.close();
 }
 public static void main(String[] args) {
 try {
 SerializableZipFile szf = new SerializableZipFile(args[0]);
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 ObjectOutputStream oout = new ObjectOutputStream(bout);
 oout.writeObject(szf);
 oout.close();
 System.out.println("Wrote object!");
 ByteArrayInputStream bin = new ByteArrayInputStream(bout.toByteArray());
 ObjectInputStream oin = new ObjectInputStream(bin);
 Object o = oin.readObject();
 System.out.println("Read object!");
 }
 catch (Exception ex) {ex.printStackTrace();}
 }
}

Let's look closer at the serialization parts of this program. What does it mean to serialize ZipFile?
Internally, a ZipFile object is a filename and a long integer that serves as a native file descriptor to
interface with the native zlib library. File descriptors have no state that would make sense across
multiple runs of the same program or from one machine to the next. This is why ZipFile is not itself
declared serializable.

However, if you know the filename, you can create a new ZipFile object that is the same for all
practical purposes.

This is the approach Example 13-3 takes. To serialize an object, the writeObject() method writes
the filename onto the output stream. The readObject() method reads this name back in and
recreates the object. When readObject() is invoked, the virtual machine creates a new
SerializableZipFile object out of thin air; no constructor is invoked. The zf field is set to null.
Next, the private readObject() method of this object is called. The value of filename is read from
the stream. Finally, a new ZipFile object is created from the filename and assigned to zf.

This scheme isn't perfect. In particular, the whole thing may come crashing down if the file that's
referred to isn't present when the object is deserialized. This might happen if the file was deleted in
between the time the object was written and the time it was read, for example. However, this will
only result in an IOException, which the client programmer should be ready for in any case.

The main() method tests this scheme by creating a serializable zip file with a name passed in from
the command line. Then the serializable zip file is serialized. Next the SerializableZipFile object is
deserialized from the same byte array it was previously written into. Here's the result:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D:\JAVA>java SerializableZipFile test.zip
Wrote object!
Read object!

13.7.2. The defaultWriteObject() and defaultReadObject() Methods

Sometimes rather than changing the format of an object that's serialized, all you want to do is add
some additional information, perhaps something that isn't normally serialized, like a static field. In
this case, you can use ObjectOutputStream's defaultWriteObject() method to write the state of the
object and then use ObjectInputStream's defaultReadObject() method to read the state of the
object. After this is done, you can perform any custom work you need to do on serialization or
deserialization.

public final void defaultReadObject()
 throws IOException, ClassNotFoundException, NotActiveException
public final void defaultWriteObject() throws IOException

For example, let's suppose an application that would otherwise be serializable contains a Socket field.
As well as this field, assume it contains more than a few other complex fields, so that serializing it by
hand, while possible, would be onerous. It might look something like this:

public class NetworkWindow extends Frame implements Serializable {
 private Socket theSocket;
 // several dozen other fields and methods
}

You could make this class fully serializable by merely declaring theSocket transient:

private transient Socket theSocket;

Let's assume you actually do want to restore the state of the socket when the object is deserialized.
In this case, you can use private readObject() and writeObject() methods as in the last section.
You can use defaultReadObject() and defaultWriteObject() methods to handle all the normal,
nontransient fields and then handle the socket specifically. For example:

private void writeObject(ObjectOutputStream out) throws IOException {
 out.defaultWriteObject();
 out.writeObject(theSocket.getInetAddress());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.writeInt(theSocket.getPort());
 }
 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.defaultReadObject();
 InetAddress ia = (InetAddress) in.readObject();
 int thePort = in.readInt();
 theSocket = new Socket(ia, thePort);
 }

It isn't even necessary to know what the other fields are to make this work. The only extra work that
has to be done is for the transient fields. This technique applies far beyond this one example. It can
be used anytime when you're happy with the default behavior and merely want to do additional
things on serialization or deserialization. For instance, it can be used to set the values of static fields
or to execute additional code when deserialization is complete. For example, let's suppose you have a
Die class that must have a value between 1 and 6, as shown in Example 13-4.

Example 13-4. A six-sided die

import java.util.*;
import java.io.*;
public class Die implements Serializable {
 private int face = 1;
 Random shooter = new Random();
 public Die(int face) {
 if (face < 1 || face > 6) throw new IllegalArgumentException();
 this.face = face;
 }
 public final int getFace() {
 return this.face;
 }

 public void setFace(int face) {
 if (face < 1 || face > 6) throw new IllegalArgumentException();
 this.face = face;
 }
 public int roll() {
 this.face = (Math.abs(shooter.nextInt()) % 6) + 1;
 return this.face;
 }
}

Obviously, this class, simple as it is, goes to a lot of trouble to ensure that the die always has a value
between 1 and 6. Every method that can possibly set the value of the private field face carefully

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checks to make sure the value is between 1 and 6. However, serialization provides a back door
through which the value of face can be changed. Default serialization uses neither constructors nor
setter methods; it accesses the private field directly. Thus it's possible for someone to manually edit
the bytes of a serialized Die object so that the value of the face field is greater than 6 or less than 1.
To plug the hole, you can provide a readObject() method that performs the necessary check:

private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.defaultReadObject();
 if (face < 1 || face > 6) {
 throw new InvalidObjectException("Illegal die value: " + this.face);
 }
}

In this example, the normal serialization format is perfectly acceptable, so that's completely handled
by defaultReadObject(). It's just that a little more work is required than merely restoring the fields
of the object. If the deserialized object has an illegal value for face, an exception is thrown and the
readObject() method in ObjectInputStream rethrows this exception instead of returning the object.

It's important to distinguish between this readObject() method, which is a
private method in the Die class, and the public readObject() method in the
ObjectInputStream class. The latter invokes the former.

13.7.3. The writeReplace() Method

Sometimes rather than customizing its serialization format, a class simply wants to replace an
instance of itself with a different object. For example, if you were distributing a serialized object for a
class you didn't expect all recipients to have, you might replace it with a more common superclass.
For instance, you might want to replace a quicktime.io.QTFile object with a java.io.File object
because Windows systems usually don't have QuickTime for Java installed. The writeReplace()
method enables this. The signature is normally like this:

private Object writeReplace() throws ObjectStreamException;

The access modifier may be public, protected, private, or not present. That doesn't matter. However,
if a method with this signature is present when another class that has a reference to this object is
writing this object as part of its own serialization strategy, it will write the object returned by this
method rather than this object. Normally, the return type of this method is going to be an instance of
this class or one of its subclasses. You can change this using the readResolve() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.7.4. The readResolve() Method

The readResolve() method allows you to read one object from a stream but replace it with a
different object. The signature of the method is:

private Object readResolve() throws ObjectStreamException

As with writeReplace(), whether the access modifier is public, protected, or private doesn't matter.
You can return any type you like from this method, but it has to be able to substitute for the type
read from the stream in the appropriate place in the object graph.

The classic use case for readResolve() is maintaining the uniqueness of singleton or typesafe enum
objects. For instance, consider a serializable singleton such as Example 13-5.

Example 13-5. A Serializable Singleton class

import java.io.Serializable;
public class SerializableSingleton implements Serializable {
 public final static SerializableSingleton INSTANCE
 = new SerializableSingleton();
 private SerializableSingleton() {}
}

By serializing the instance of this class and then deserializing it, one can create a new instance
despite the private constructor because serialization doesn't rely on constructors. To fix this, you
have to make sure that whenever the class is deserialized, the new object is replaced by the genuine
single instance. This is easy to accomplish by adding this readResolve() method:

 private Object readResolve(){
 return INSTANCE;
 }

13.7.5. serialPersistentFields

You can explicitly specify which fields should and should not be serialized by listing them in a
serialPersistentFields array in a private static field in the class. If such a field is present, only fields
included in the array are serialized. All others are treated as if they were transient. In other words,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TRansient marks fields not to serialize while serialPersistentFields marks fields to serialize.

The components of the serialPersistentFields array are ObjectStreamField objects which are
constructed using the name and the type of each field to serialize. For example, suppose you wanted
the x-coordinate of a TwoDPoint to be serialized but not the y-coordinate. You could mark the y
component transient like this:

public class TwoDPoint {
 private double x;
 private transient double y;
 // ...
}

or you could place the x field and not the y field in the serialPersistentFields array like this:

private static final ObjectStreamField[] serialPersistentFields
 = {new ObjectStreamField("x", double.class)};

The first argument to the ObjectStreamField constructor is the name of the field. The second is the
type of the field given as a Class object. This is normally a class literal such as BigDecimal.class,
Frame.class, int.class, double.class, or double[].class.

The next trick is to use serialPersistentFields to declare fields that don't actually exist in the class.
The writeObject() method then writes these phantom fields, and the readObject() method reads
them back in. Typically this is done to maintain backward compatibility with old serialized versions
after the implementation has changed. It's also important when different clients may have different
versions of the library.

For example, suppose the TwoDPoint class was modified to use polar coordinates instead of Cartesian
coordinates. That is, it might look like this:

public class TwoDPoint {
 private double radius;
 private double angle;
 // ...
}

The serialPersistentFields array could still declare the x and y fields, even though they're no longer
present in the class:

private static final ObjectStreamField[] serialPersistentFields = {
 new ObjectStreamField("x", double.class),
 new ObjectStreamField("y", double.class),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

};

The writeObject() method converts the polar coordinates back to Cartesian coordinates and writes
those fields. This is accomplished with the ObjectOutputStream's PutField object. (PutField is an
inner class in ObjectOutputStream.) You get such an object by invoking the putFields() method on
the ObjectOutputStream. (Confusingly, this method gets the PutField object. It does not put
anything.) You add fields to the PutField object by passing the names and values to the put()
method. Finally, you invoke the ObjectOutputStream's writeFields method to write the fields onto
the output stream. For example, this writeObject() method converts polar coordinates into
Cartesian coordinates and writes them out as the values of the x and y pseudo-fields:

private void writeObject(ObjectOutputStream out) throws IOException {
 // Convert to Cartesian coordinates
 ObjectOutputStream.PutField fields = out.putFields();
 fields.put("x", radius * Math.cos(angle));
 fields.put("y", radius * Math.sin(angle));
 out.writeFields();
}

The readObject() method reverses the procedure using an ObjectInputStream's GetField object.
(GetField is an inner class in ObjectInputStream.) You retrieve the GetField object by invoking the
readFields() method on the ObjectInputStream. You then read the fields by passing the names and
default values to the get() method. (If the field is missing from the input stream, get() returns the
default value instead.) Finally, you store the values of the pseudo-fields you read from the stream
into the object's real fields after performing any necessary conversions. For example, this
readObject() method reads Cartesian coordinates as the values of the x and y pseudo-fields and
converts them into polar coordinates that it stores in the radius and angle fields:

private void readObject(ObjectInputStream in)
 throws ClassNotFoundException, IOException {
 ObjectInputStream.GetField fields = in.readFields();
 double x = fields.get("x", 0.0);
 double y = fields.get("y", 0.0);
 // Convert to polar coordinates
 radius = Math.sqrt(x*x + y*y);
 angle = Math.atan2(y, x);
}

The advantage to using serialPersistentFields instead of merely customizing the readObject()
and writeObject() methods is versioning. A class can be both forward and backward compatible as
long as the SUIDs are the same, even if the old version did not have custom readObject() and
writeObject() methods. If the old class had an explicit serialVersionUID field, just copy that into
the new class. Otherwise, use the serialver tool on the old version of the class to determine its
default SUID and then copy that value into the serialVersionUID field in the new version of the class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The PutField.put() and GetField.get() methods are heavily overloaded to
support all the Java primitive data types as well as objects. For instance, the
get() method has these nine variants:

public abstract boolean get(String name, boolean value)
 throws IOException
public abstract byte get(String name, byte value)
 throws IOException
public abstract char get(String name, char value)
 throws IOException
public abstract short get(String name, short value)
 throws IOException
public abstract int get(String name, int value)
 throws IOException
public abstract long get(String name, long value)
 throws IOException
public abstract float get(String name, float value)
 throws IOException
public abstract double get(String name, double value)
 throws IOException
public abstract Object get(String name, Object value)
 throws IOException

The put() method is equally overloaded.

The object stream uses the type of the value argument to determine the type
of the field. For instance, if the type of value is double, put() puts a double in
the stream and get() looks for a double when reading the stream. The
problem occurs when the type of the argument doesn't match the type of the
field. For instance, I initially wrote my readObject() method like this:

 double x = fields.get("x", 0);
 double y = fields.get("y", 0);

I then proceeded to bang my head against the wall trying to figure out why
Java kept throwing an IllegalArgumentException with the message "no such
field". The problem was that the second argument to this method is an int, not
a double. Therefore Java was trying to read a field named x (which I had) with
a value of type int (which I didn't). Changing these lines to use a double literal
fixed the problem:

 double x = fields.get("x", 0.0);
 double y = fields.get("y", 0.0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About 99% of the time it's safe to use an int literal where a double is intended.
This is one of the 1% of cases where it's not.

13.7.6. Preventing Serialization

On occasion, you need to prevent a normally serializable subclass from being serialized. You can
prevent an object from being serialized, even though it or one of its superclasses implements
Serializable, by throwing a NotSerializableException from writeObject().
NotSerializableException is a subclass of java.io.ObjectStreamException, which is itself a kind of
IOException:

public class NotSerializableException extends ObjectStreamException

For example:

private void writeObject(ObjectOutputStream out) throws IOException {
 throw new NotSerializableException();
}
private void readObject(ObjectInputStream in) throws IOException {
 throw new NotSerializableException();
}

13.7.7. Externalizable

Sometimes customization requires you to manipulate the values stored for the superclass of an
object as well as for the object's class. In these cases, you should implement the
java.io.Externalizable interface instead of Serializable. Externalizable is a subinterface of
Serializable:

public interface Externalizable extends Serializable

This interface declares two methods, readExternal() and writeExternal():

public void writeExternal(ObjectOutput out) throws IOException
public void readExternal(ObjectInput in)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws IOException, ClassNotFoundException

The implementation of these methods is completely responsible for saving the object's state,
including the state stored in its superclasses. This is the primary difference between implementing
Externalizable and providing private readObject() and writeObject() methods. Since some of the
superclass's state may be stored in private or package-accessible fields that are not visible to the
Externalizable object, saving and restoring can be a tricky proposition. Furthermore, externalizable
objects are responsible for tracking their own versions; the virtual machine assumes that whatever
version of the externalizable class is available when the object is deserialized is the correct one. It
does not check the serialVersionUID field as it does for merely serializable objects. If you want to
check for different versions of the class, you must write your own code to do the checks.

For example, suppose you want a list that can be serialized no matter what it contains, one that will
never throw a NotSerializableException even if it contains objects that aren't serializable. You can
do this by creating a subclass of ArrayList that implements Externalizable, as in Example 13-5. The
writeExternal() method uses instanceof to test whether each element is or is not serializable
before writing it onto the output. If the element does not implement Serializable, writeExternal()
writes null in its place.

The key criterion for being able to use Externalizable is that there are enough getter and setter
methods to read and write all necessary fields in the superclasses. If this isn't the case, often your
only recourse is to use the Decorator pattern to wrap a class to which you do have complete access
around the original class. This was the tack taken in Example 13-6 for SerializableZipFile.

Example 13-6. SerializableList

import java.util.*;
import java.io.*;
import java.net.*;
public class SerializableList extends ArrayList
 implements Externalizable {
 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeInt(size());
 for (int i = 0; i < size(); i++) {
 if (get(i) instanceof Serializable) {
 out.writeObject(get(i));
 }
 else {
 out.writeObject(null);
 }
 }
 }
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 int elementCount = in.readInt();
 this.ensureCapacity(elementCount);
 for (int i = 0; i < elementCount; i++) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.add(in.readObject());
 }
 }
 public static void main(String[] args) throws Exception {
 SerializableList list = new SerializableList();
 list.add("Element 1");
 list.add(new Integer(9));
 list.add(new URL("http://www.oreilly.com/"));
 // not Serializable
 list.add(new Socket("www.oreilly.com", 80));
 list.add("Element 5");
 list.add(new Integer(9));
 list.add(new URL("http://www.oreilly.com/"));
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 ObjectOutputStream temp = new ObjectOutputStream(bout);
 temp.writeObject(list);
 temp.close();
 ByteArrayInputStream bin = new ByteArrayInputStream(bout.toByteArray());
 ObjectInputStream oin = new ObjectInputStream(bin);
 List out = (List) oin.readObject();
 Iterator iterator = out.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

One might quibble about the name; ExternalizableList may seem more accurate. However, from
the perspective of a programmer using a class, it doesn't matter whether a class is serializable or
externalizable. In either case, instances of the class are passed to the writeObject() method of an
object output stream or read by the readObject() method of an object input stream. The difference
between Serializable and Externalizable is hidden from the client.

The writeExternal() method first writes the number of elements onto the stream using writeInt(
). It then loops through all the elements in the list, testing each one with instanceof to see whether
or not it's serializable. If the element is serializable, it's written with writeObject(); otherwise, null
is written instead. The readExternal() method reads in the data. First, it ensures capacity to the
length of the list. It then adds each deserialized object (or null) to the list.

The main() method tests the program by serializing and deserializing a SerializableVector that
contains assorted serializable and nonserializable elements. Its output is:

D:\JAVA> java SerializableList
Element 1
9
http://www.oreilly.com/
null
Element 1
9

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.oreilly.com/

This isn't a perfect solution. The list may contain an object that implements Serializable but isn't
serializable, for example, a hash table that contains a socket. However, this is probably the best you
can do without more detailed knowledge of the classes of objects that will be written.

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.8. Resolving Classes

The readObject() method of java.io.ObjectInputStream only creates new objects from known
classes in the local classpath. If a class for an object can't be found, readObject() tHRows a
ClassNotFoundException. It does not read the class data from the object stream. This is limiting for
some things you might want to do, particularly RMI. Therefore, trusted subclasses of
ObjectInputStream may be allowed to load classes from the stream or some other source like a URL.
Specifically, a class is trusted if, and only if, it was loaded from the local classpath (that is, the
ClassLoader object returned by getClassLoader() is null).

Two protected methods are involved. The first is the annotateClass() method of
ObjectOutputStream :

protected void annotateClass(Class c) throws IOException

In ObjectOutputStream, this is a do-nothing method. A subclass of ObjectOutputStream can provide a
different implementation that provides data for the class. For instance, this might be the byte code of
the class itself or a URL where the class can be found.

Standard object input streams cannot read and resolve the class data written by annotateClass().
For each subclass of ObjectOutputStream that overrides annotateClass(), there will normally be a
corresponding subclass of ObjectInputStream that implements the resolveClass() method:

protected Class resolveClass(ObjectStreamClass c)
 throws IOException, ClassNotFoundException

In java.io.ObjectInputStream, this is a do-nothing method. A subclass of ObjectInputStream can
provide an implementation that loads a class based on the data read from the stream. For instance, if
annotateClass() wrote byte code to the stream, the resolveClass() method would need to have a
class loader that read the data from the stream. If annotateClass() wrote the URL of the class to
the stream, the resolveClass() method would need a class loader that read the URL from the
stream and downloaded the class from that URL.

The resolveClass() method is called exactly once for each class encountered in the stream (not just
those written by annotateClass()). resolveClass() is responsible for knowing what sort of data
needs to be read to reconstruct the class and for reading it from the input stream. resolveClass()
should then load and return the class. If it can't do so, it should throw a ClassNotFoundException. If it
returns a class, but that class's SUID does not match the SUID of the class in the stream, the
runtime throws a ClassNotFoundException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.9. Resolving Objects

Sometimes you may need to replace the objects read from the stream with other, alternative
objects. Perhaps an old version of a program used Franc objects, but the new version of the program
uses Euro objects. The ObjectInputStream can replace each Franc object read with the equivalent
Euro object.

Only trusted subclasses of ObjectInputStream may replace objects. A class is only trusted if it was
loaded from the local classpath. To make it possible for a trusted subclass to replace objects, first
pass true to its enableResolveObject() method:

protected final boolean enableResolveObject(boolean enable)
 throws SecurityException

Generally, you do this in the constructor of any class that needs to replace objects. Once object
replacement is enabled, whenever an object is read, it is passed to the ObjectInputStream subclass's
resolveObject() method before readObject() returns:

protected Object resolveObject(Object o) throws IOException

The resolveObject() method may return the object itself (the default behavior) or return a different
object. Resolving objects is a tricky business. The substituted object must be compatible with the use
of the original object, or errors will soon surface as the program tries to invoke methods or access
fields that don't exist. Most of the time, the replacing object is an instance of a subclass of the class
of the replaced object. Another possibility is that the replacing object and the object it replaces are
both instances of different subclasses of a common superclass or interface, where the original object
was only used as an instance of that superclass or interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.10. Validation

It is not always enough to merely restore the state of a serialized object. You may need to verify that
the value of a field still makes sense, you may need to notify another object that this object has
come into existence, or you may need to have the entire graph of the object available before you can
finish initializing it.

Most obviously, you may need to check the class invariants on an object you deserialize. In Java,
class invariants are normally enforced by explicit code in setters and constructors that checks method
preconditions as well as testing to see that no internal code can violate the invariants given that the
preconditions hold. Object deserialization bypasses this careful infrastructure completely. There's
absolutely nothing to stop someone from reaching right into the serialized bytes of your Clock object
and setting the time to 13:00.

Certainly, this would be a nasty thing to do, but it's possible. Some may object that these sorts of
shenanigans are also enabled by the Reflection API, particularly through the setAccessible()
method. However, at least setAccessible() only functions from code running inside your own VM. If
you're reading a serialized object some other system has passed to you or left sitting around on the
disk, you have no idea what might have been done to it or why. You need to be wary of accepting
arbitrary serialized objects from untrusted sources.

For example, suppose an application maintains a map of Person objects, each of which is identified
primarily by its social security number. Let's further suppose that the application doesn't allow two
Person objects with the same social security number to exist at the same time. You can use an
ObjectInputValidation to check each Person object as its deserialized to make sure it doesn't
duplicate the social security number of a person already in the map.

The ObjectInputStream's registerValidation() method specifies the ObjectInputValidation object
that will be notified of the object after its entire graph has been reconstructed but before readObject(
) has returned it. This gives the validator an opportunity to make sure that the object doesn't violate
any implicit assertions about the state of the system.

public void registerValidation(ObjectInputValidation oiv,
 int priority) throws NotActiveException, InvalidObjectException

This method is invoked inside the readObject() method of the object that needs to be validated.
Every time the readObject() method is called to read an object, that object is registered with the
stream as needing to be validated when the rest of the graph is available. Invoking the
registerValidation() method from anywhere except the readObject() method throws a
NotActiveException. The oiv argument is the object that implements the ObjectInputValidation
interface and that will validate deserialized objects. Most of the time, this is the object that has the
readObject() method; that is, objects tend to validate themselves. The priority argument
determines the order in which objects will be validated if there's more than one registered

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ObjectInputValidation object for the class. Validators with higher priorities are invoked first.

The ObjectInputValidation interface declares a single method, validateObject():

public abstract void validateObject() throws InvalidObjectException

If the object is invalid, validateObject() tHRows an InvalidObjectException.

Example 13-7 demonstrates with a class that implements the previously described scheme for
avoiding duplicate social security numbers.

Example 13-7. Person

import java.util.*;
import java.io.*;
public class Person implements Serializable, ObjectInputValidation {
 static Map thePeople = new HashMap();
 private String name;
 private String ss;
 public Person(String name, String ss) {
 this.name = name;
 this.ss = ss;
 thePeople.put(ss, name);
 }
 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.registerValidation(this, 5);
 in.defaultReadObject();
 }

 public void validateObject() throws InvalidObjectException {
 if (thePeople.containsKey(this.ss)) {
 throw new InvalidObjectException(this.name + " already exists");
 }
 else {
 thePeople.put(this.ss, this.name);
 }
 }
 public String toString() {
 return this.name + "\t" + this.ss;
 }
 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 Person p1 = new Person("Rusty", "123-45-5678");
 Person p2 = new Person("Beth", "321-45-5678");
 Person p3 = new Person("David", "453-45-5678");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Person p4 = new Person("David", "453-45-5678");
 Iterator iterator = thePeople.values().iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 ObjectOutputStream oout = new ObjectOutputStream(bout);
 oout.writeObject(p1);
 oout.writeObject(p2);
 oout.writeObject(p3);
 oout.writeObject(p4);
 oout.flush();
 oout.close();
 ByteArrayInputStream bin = new ByteArrayInputStream(bout.toByteArray());
 ObjectInputStream oin = new ObjectInputStream(bin);
 try {
 System.out.println(oin.readObject());
 System.out.println(oin.readObject());
 System.out.println(oin.readObject());
 System.out.println(oin.readObject());
 }
 catch (InvalidObjectException ex) {
 System.err.println(ex);
 }
 oin.close();
 // now empty the map and try again
 thePeople.clear();
 bin = new ByteArrayInputStream(bout.toByteArray());
 oin = new ObjectInputStream(bin);
 try {
 System.out.println(oin.readObject());
 System.out.println(oin.readObject());
 System.out.println(oin.readObject());
 System.out.println(oin.readObject());
 }
 catch (InvalidObjectException ex) {
 System.err.println(ex);
 }
 oin.close();
 iterator = thePeople.values().iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

Here's the output:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Beth
Rusty
David
java.io.InvalidObjectException: Rusty already exists
Rusty 123-45-5678
Beth 321-45-5678
David 453-45-5678
Beth
Rusty
David
java.io.InvalidObjectException: David already exists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.11. Sealed Objects

The Java Cryptography Extension discussed in the last chapter provides a SealedObject class that
can encrypt objects written onto an object output stream using any available cipher. Most of the
time, I suspect, you'll either encrypt the entire object output stream by chaining it to a cipher output
stream, or you won't encrypt anything at all. However, if there's some reason to encrypt only some
of the objects you're writing to the stream, you can make them sealed objects.

The javax.crypto.SealedObject class wraps a serializable object in an encrypted digital lockbox. The
sealed object is serializable so that it can be written onto object output streams and read from object
input streams as normal. However, the object inside the sealed object can only be deserialized by
someone who knows the key.

public class SealedObject extends Object implements Serializable

The big advantage to using sealed objects rather than encrypting the entire output stream is that the
sealed objects contain all necessary parameters for decryption (algorithm used, initialization vector,
salt, iteration count). All the receiver of the sealed object needs to know is the key; there doesn't
necessarily have to be any prior agreement about these other aspects of encryption.

You seal an object with the SealedObject() constructor. The constructor takes as arguments the
object to be sealed, which must be serializable, and the properly initialized Cipher object with which
to encrypt the object:

public SealedObject(Serializable object, Cipher c)
 throws IOException, IllegalBlockSizeException

Inside the constructor, the object is immediately serialized by an object output stream chained to a
byte array output stream. The byte array is then stored in a private field that is encrypted using the
Cipher object c. The cipher's algorithms and parameters are also stored. Thus, the state of the
original object written onto the ultimate object output stream is the state of the object when it was
sealed; subsequent changes it may undergo between being sealed and being written are not reflected
in the sealed object. Since serialization takes place immediately inside the constructor, the
constructor throws a NotSerializableException if the object argument cannot be serialized. It
throws an IllegalBlockSizeException if c is a block cipher with no padding and the length of the
serialized object's contents is not an integral multiple of the block size.

You unseal an object by first reading the sealed object from an object input stream and then invoking
one of the three getObject() methods to return the original object. All of these methods require you
to supply a key and an algorithm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 13-8 is a very simple program that writes an encrypted java.awt.Point object into the file
point.des. First a file output stream is opened to the file point.des and then chained to the
ObjectOutputStream oin. As in the last chapter, a fixed DES key called desKey is built from a fixed
array of bytes and used to construct a Cipher object called des. des is initialized in encryption mode
with the key. Finally, both the des Cipher object and the Point object tdp are passed into the
SealedObject() constructor to create a SealedObject so. Since SealedObject implements
Serializable, this can be written on the ObjectOutputStream oout as any other serializable object. At
this point, this program closes oout and exits. However, the same Cipher object des could be used to
create more sealed objects from serializable objects, and these could also be written onto the stream
if you had more objects to serialize.

Example 13-8. SealedPoint

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.awt.*;
public class SealedPoint {

 public static void main(String[] args)
 throws GeneralSecurityException, IOException {
 Point tdp = new Point(32, 45);
 FileOutputStream fout = new FileOutputStream("point.des");
 ObjectOutputStream oout = new ObjectOutputStream(fout);
 // Create a key.
 byte[] desKeyData = {(byte) 0x90, (byte) 0x67, (byte) 0x3E, (byte) 0xE6,
 (byte) 0x42, (byte) 0x15, (byte) 0x7A, (byte) 0xA3 };
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.ENCRYPT_MODE, desKey);
 SealedObject so = new SealedObject(tdp, des);
 oout.writeObject(so);
 oout.close();
 }
}

Reading a sealed object from an object input stream is easy. You read it exactly as you read any
other object from an object input stream. For example:

FileInputStream fin = new FileInputStream(filename);
ObjectInputStream oin = new ObjectInputStream(fin);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SealedObject so = (SealedObject) oin.readObject();

Once you've read the object, unsealing it to retrieve the original object is straightforward, provided
you know the key. Three getObject() methods return the original object:

public final Object getObject(Key key) throws IOException,
 ClassNotFoundException, NoSuchAlgorithmException, InvalidKeyException
public final Object getObject(Cipher c) throws IOException,
 ClassNotFoundException, IllegalBlockSizeException, BadPaddingException
public final Object getObject(Key key, String provider) throws IOException,
 ClassNotFoundException, NoSuchAlgorithmException, NoSuchProviderException,
 InvalidKeyException

The first variant is the most useful since it only requires the key. It does not require you to create
and initialize a Cipher object. You will need to know the algorithm in order to know what kind of key
to create, but that information is available from the getAlgorithm() method:

public final String getAlgorithm()

For example:

if (so.getAlgorithm().startsWith("DES")) {
 byte[] desKeyData = {(byte) 0x90, (byte) 0x67, (byte) 0x3E, (byte) 0xE6,
(byte) 0x42, (byte) 0x15, (byte) 0x7A, (byte) 0xA3, };
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 Object o = so.getObject(desKey);
}

Example 13-9 reads the sealed object from the point.des file written by Example 13-8, unseals the
object, and prints it on System.out.

Example 13-9. UnsealPoint

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.security.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.awt.*;
public class UnsealPoint {
 public static void main(String[] args)
 throws IOException, GeneralSecurityException, ClassNotFoundException {
 FileInputStream fin = new FileInputStream("point.des");
 ObjectInputStream oin = new ObjectInputStream(fin);
 // Create a key.
 byte[] desKeyData = {(byte) 0x90, (byte) 0x67, (byte) 0x3E, (byte) 0xE6,
 (byte) 0x42, (byte) 0x15, (byte) 0x7A, (byte) 0xA3 };
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 SealedObject so = (SealedObject) oin.readObject();
 Point p = (Point) so.getObject(desKey);
 System.out.println(p);
 oin.close();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.12. JavaDoc

Documenting the serialized form of a class is important when you need to interoperate with different
implementations of the same API. For instance, the open source GNU Classpath library should be able
to deserialize objects serialized by Sun's class library and vice versa, even though they share no code
and indeed may have quite different private data. JavaDoc has three tags specifically to document
the serialized form of a class: @serial, @serialField, and @serialData. The javadoc application reads
these tags to generate a description of the serialization format of each Serializable class.

13.12.1. @serial

An @serial tag should be attached to each nontransient instance field. The content of this tag should
describe the meaning of the field and the any constraints on its values. For example, this is how you
might document the x and y fields in the TwoDPoint class:

import java.io.Serializable;
public class TwoDPoint implements Serializable {
 /** @serial the X-coordinate of the point;
 * any double value except NaN
 */
 private double x;
 /** @serial the Y-coordinate of the point;
 * any double value except NaN
 */
 private double y;
//...

This is a major violation of data encapsulation, but then serialization pretty much always is. Of
course, there's no rule that says an alternate implementation of this class has to use two double x
and y fields. It could use BigDecimals or doubles expressing polar coordinates. However, for
compatibility when serializing, it should be prepared to write two doubles expressing Cartesian
coordinates. The serialized form ultimately becomes just another part of the class's published
interface, albeit one you can ignore for most operations.

13.12.2. @serialData

A class that customizes the serialization format by implementing writeObject() or writeExternal()
should annotate those methods with an @serialData tag explaining in detail the format written. For
example, the writeObject() method in SerializableZipFile could be documented like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/** @serialData the name of the file is written as a String.
 * No other data is written.
 */
 private void writeObject(ObjectOutputStream out) throws IOException {
 out.writeObject(zf.getName());
 }

This example's quite simple. Of course, the more complex the custom serialization format, the longer
and more complex the comment will be.

13.12.3. @serialField

Finally, if you have a serialPersistentFields array, each ObjectStreamField component of the array
should be documented by @serialField tag. This tag is followed by the name of the field, the type of
the field, and the description of the field. For example, this comment documents a
serialPersistentFields array for the TwoDPoint:

 /**
 * @serialField x double the Cartesian x-coordinate; never NaN
 * @serialField y double the Cartesian y-coordinate; never NaN
 */
 private static final ObjectStreamField[] serialPersistentFields = {
 new ObjectStreamField("x", double.class),
 new ObjectStreamField("y", double.class)
 };

If you're starting to get the idea that object serialization is more complex than
you thought, you're probably right. Doing object serialization properly takes
forethought, care, and effort. It is not just a simple matter of declaring that a
class implements Serializable and writing objects onto streams. Doing object
serialization wrong can lead to brittle code that breaks every time you make
small changes to what look like private parts of a class. It can lock you into a
data structure you'd really rather change.

That's not to say you shouldn't use object serialization. There are many cases
where it fits well, and if you have one of those cases, by all means use it.
However, don't use it lightly. Make sure a class really needs to be serializable
before you type "implements Serializable." In particular, do not make your
classes Serializable out of habit. It's best to default to unserializable classes.
After all, you can always add serialization support later if you find a need for it.
It's much harder to take away a feature, even one that's causing you pain,
after other developers are relying on it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART IV: New I/O
Chapter 14: Buffers

Chapter 15: Channels

Chapter 16: Nonblocking I/O

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. Buffers
Traditional synchronous I/O is designed for traditional applications. Such applications have the
following characteristics:

Files may be large but not huge. It's possible to read an entire file into memory.

An application reads from or writes to only a few files or network connections at the same time,
ideally using only one stream at a time.

The application is sequential. It won't be able to do much until it's finished reading or writing a
file.

As long as these characteristics hold, stream-based I/O is reasonably quick and operates fairly
efficiently. However, if these prerequisites are violated, the standard I/O model begins to show some
weaknesses. For example, web servers often need to service hundreds or thousands of connections
simultaneously. Scientific, engineering, and multimedia applications often need to manipulate
datasets that are gigabytes in size.

Java 1.4 introduced a new model for I/O that is designed more for these sorts of applications and less
for the more traditional applications that don't have to do so much I/O. The classes that make up this
new I/O library are all found in the java.nio package and its subpackages. The new I/O model does
not replace traditional, stream-based I/O. Indeed, several parts of the new I/O API are based on
streams. However, the new I/O model is much more efficient for certain types of I/O-bound
applications.

Whereas the traditional I/O model is based on streams, the new I/O model is based on buffers and
channels. A buffer is like an array (in some implementations it may in fact be an array) that holds the
data to be read and written. However, unlike input and output streamseven buffered input and
output streamsthe same buffer can be used for both reading and writing. Input channels fill a buffer
with data that output channels then drain. Rather than being a part of a channel, a buffer is a neutral
meeting ground in which channels exchange data. Furthermore, because buffers are objects accessed
via methods, they may not really be arrays. They can be implemented directly on top of memory or
the disk for extremely fast, random access. For the right kind of application, the performance gains
can be dramatic.

Different buffers have different element types, just as arrays do. For instance, there are byte buffers,
int buffers, float buffers, and char buffers. The class library doesn't contain any string buffers or
object buffers, but you could write these classes yourself if you found a need. The same basic
operations apply to all these different kinds of buffers:

Allocate the buffer.

Put values in the buffer.

Get values from the buffer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flip the buffer.

Clear the buffer.

Rewind the buffer.

Mark the buffer.

Reset the buffer.

Slice the buffer.

Compact the buffer.

Duplicate the buffer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.1. Copying Files with Buffers

I'm going to begin with a simple example, copying one file to another file. The basic interface to the
program looks like this:

$ java FileCopier original copy

Obviously this program could be written in a traditional way with streams, and that's going to be true
of almost all the programs you use the new I/O (NIO) model to write. NIO doesn't make anything
possible that was impossible before. However, if the files are large and the local operating system is
sophisticated enough, the NIO version of FileCopier might just be faster than the traditional version.

The rough outline of the program is typical:

import java.io.*;
import java.nio.*;
public class NIOCopier {
 public static void main(String[] args) throws IOException {
 FileInputStream inFile = new FileInputStream(args[0]);
 FileOutputStream outFile = new FileOutputStream(args[1]);

 // copy files here...
 inFile.close();
 outFile.close();
 }
}

However, rather than merely reading from the input stream and writing to the output stream, I'm
going to do something a little different. First, I open channels to both files using the getChannel()
methods in FileInputStream and FileOutputStream:

FileChannel inChannel = inFile.getChannel();
FileChannel outChannel = outFile.getChannel();

Next, I create a one-megabyte buffer with the static factory method ByteBuffer.allocate():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ByteBuffer buffer = ByteBuffer.allocate(1024*1024);

The input channel will fill this buffer with data from the original file and the output channel will drain
data out of this buffer to store into the copy.

To read data, you pass the buffer to the input channel's read() method, much as you'd pass a byte
array to an input stream's read() method:

inChannel.read(buffer);

The read() method returns the number of bytes it read. As with input streams, there's no guarantee
that the read() method completely fills the buffer. It may read fewer bytes or no bytes at all. When
the input data is exhausted, the read() method returns -1. Thus, you normally do something like
this:

long bytesRead = inChannel.read(buffer);
if (bytesRead == -1) break;

Now the output channel needs to write the data in the buffer into the copy. Before it can do that,
though, the buffer must be flipped:

buffer.flip();

Flipping a buffer converts it from input to output.

To write the data, you pass the buffer to the output channel's write() method:

outChannel.write(buffer);

However, this is not like an output stream's write(byte[]) method. That method is guaranteed to
write every byte in the array to the target or throw an IOException if it can't. The output channel's
write() method is more like the read() method. It will write some bytes, but perhaps not all, and
perhaps even none. It returns the number of bytes written. You could loop repeatedly until all the
bytes are written, like this:

long bytesWritten = 0;
while (bytesWritten < bytesRead){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bytesWritten += outChannel.write(buffer);
}

However, there's a simpler way. The buffer object itself knows whether all the data has been written.
The hasRemaining() method can check this:

while (buffer.hasRemaining()) outChannel.write(buffer);

This code reads and writes at most one megabyte. To copy larger files, we have to wrap all this up in
a loop:

while (true) {
 ByteBuffer buffer = ByteBuffer.allocate(1024*1024);
 int bytesRead = inChannel.read(buffer);
 if (bytesRead == -1) break;
 buffer.flip();
 while (buffer.hasRemaining()) outChannel.write(buffer);
}

Allocating a new buffer for each read is wasteful and inefficient; we should reuse the same buffer.
Before we do that, though, we must restore the buffer to a fresh state by invoking its clear()
method:

ByteBuffer buffer = ByteBuffer.allocate(1024*1024);
while (true) {
 int bytesRead = inChannel.read(buffer);
 if (bytesRead == -1) break;
 buffer.flip();
 while (buffer.hasRemaining()) outChannel.write(buffer);
 buffer.clear();
}

Finally, both the input and output channels should be closed to release any native resources the
channel object may be holding onto:

inChannel.close();
outChannel.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 14-1 demonstrates the complete program, after taking a couple of common small shortcuts
in the code. Compare this to the equivalent program for copying with streams found in Example 4-2.

Example 14-1. Copying files using NIO

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class NIOCopier {
 public static void main(String[] args) throws IOException {
 FileInputStream inFile = new FileInputStream(args[0]);
 FileOutputStream outFile = new FileOutputStream(args[1]);
 FileChannel inChannel = inFile.getChannel();
 FileChannel outChannel = outFile.getChannel();
 for (ByteBuffer buffer = ByteBuffer.allocate(1024*1024);
 inChannel.read(buffer) != -1;
 buffer.clear()) {
 buffer.flip();
 while (buffer.hasRemaining()) outChannel.write(buffer);
 }
 inChannel.close();
 outChannel.close();
 }
}

In a very unscientific test, copying one large (4.3-GB) file on one platform (a dual 2.5-GHz PowerMac
G5 running Mac OS X 10.4.1) using traditional I/O with buffered streams and an 8192-byte buffer
took 305 seconds. Expanding and reducing the buffer size didn't shift the overall numbers more than
5% and if anything tended to increase the time to copy. (Using a one-megabyte buffer like Example
14-1's actually increased the time to over 23 minutes.) Using new I/O as implemented in Example
14-1 was about 16% faster, at 255 seconds. A straight Finder copy took 197 seconds. Using the Unix
cp command actually took 312 seconds, so the Finder is doing some surprising optimizations under
the hood.

What this suggests is that new I/O doesn't help a great deal for traditional file operations that move
through the file from beginning to end. The new I/O API is clearly not a panacea for all I/O
performance issues. You can expect to see the biggest improvements in two other areas:

Network servers that talk to many clients simultaneously

Repeated random access to parts of large files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.2. Creating Buffers

java.nio has seven basic buffer classes for the seven different primitive data types:

ByteBuffer

ShortBuffer

IntBuffer

CharBuffer

FloatBuffer

DoubleBuffer

LongBuffer

All seven buffer classes have very similar APIs that differ primarily in the return types of their get
methods and the argument types of their put methods. Of these seven classes, ByteBuffer is by far
the most important. For instance, the read() and write() methods in FileChannel will only take a
ByteBuffer as an argument. However, there are ways to create views of a ByteBuffer as one of the
other types so you can still write ints or chars or doubles onto a channel that works only with bytes.
The patterns are very similar to how a DataOutputStream enables you to write ints or chars or doubles
onto a stream that expects to receive bytes.

You create new buffers primarily in two ways: by allocation and by wrapping. Allocation creates a
new buffer backed by memory, whereas wrapping uses a buffer as an interface to an existing array.

Allocation is straightforward. Simply pass the desired capacity of the buffer to the static allocate()
method in the class you want to instantiate. For example, this statement creates a new ByteBuffer
with room for 1024 bytes:

ByteBuffer bBuffer = ByteBuffer.allocate(1024);

This statement creates a new IntBuffer with room for 500 ints:

IntBuffer iBuffer = IntBuffer.allocate(500);

Both of these will be backed by an array. That is, bBuffer contains a byte array of length 1024 and
iBuffer contains an int array of length 500. You can retrieve references to these backing arrays

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using the array() methods:

int[] iData = iBuffer.array();
byte[] bData = bBuffer.array();

If you already have data in an array, you can build a buffer around it using the wrap() methods. For
example:

int[] data = {1, 3, 2, 4, 23, 53, -9, 67};
IntBuffer buffer = IntBuffer.wrap(data);

In both cases, the arrays are not copies. These are the actual internal arrays where the buffer holds
its data. Changing the data in these arrays changes the buffer's contents too, and vice versa.

However, there is another option, and this is where things get very interesting. Not all buffers are
backed by Java arrays. You can allocate an array directly using the allocateDirect() methods
instead of allocate():

ByteBuffer directBuffer = ByteBuffer.allocateDirect(1024);

Direct buffers can also be created by memory mapping a file. In this case, a lot of I/O operations
may be performed directly on the files without copying them to RAM first.

The API to a direct buffer is exactly the same as to an indirect buffer, aside from the factory method
that creates it. However, internally the computer may use different optimization techniques. For
instance, it may map the buffer directly into main memory instead of going through an intermediate
Java array object. Furthermore, it will make extra efforts to store the data in a contiguous memory
block.

Such tricks can dramatically improve performance for large buffers. However, allocating a direct
buffer takes longer than allocating an indirect buffer, so direct buffers are likely to be at best a wash
and at worst significantly slower for smaller buffers than the indirect, array-backed buffers.
Furthermore, the exact implementation details for the direct buffers are highly platform dependent.
On some platforms, direct buffers offer a huge performance boost. On others, performance ranges
from about the same as with streams to substantially worse. If performance is your primary concern,
be sure to measure carefully both before and after using direct buffers.

Should you later need to find out whether a particular buffer has been allocated directly or indirectly,
the isDirect() method will tell you:

public abstract boolean isDirect()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.3. Buffer Layout

The conceptual model of a buffer is a fixed-size array. For example, suppose we allocate an
IntBuffer with a capacity of 8:

IntBuffer buffer = buffer.allocate(8);

Figure 14-1 is a graphical representation of this buffer that I'll use to demonstrate various points. The
slots in the buffer are numbered like arrays, starting with zero and ending with one less than the
total capacity of the buffer.

Figure 14-1. An empty buffer with capacity 8

A buffer's capacity is fixed when it is first created. Buffers do not expand or contract to fit the amount
of data placed in them. Trying to put more data into a buffer than it has room for causes a
BufferOverflowException. This is a runtime exception, since overflowing the buffer normally indicates
a program bug.

As well as a list of indexed values, a buffer also contains a pointer into that list called the position .
The position is the index of the next slot in the buffer that will be read or written. Its value is
somewhere between zero and one less than the buffer's capacity. It is initially set to 0 and
incremented as data is written to or read from the buffer. You can get the buffer's current position
with the position() method:

public final int position()

You can also change the buffer's position by passing the new position to this position() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public final Buffer position(int new Position)

However, most of the time you don't do this explicitly. Instead, the position is updated automatically
as data is put into the buffer or retrieved from the buffer. For example, suppose we put the value 7
into the buffer in Figure 14-1:

buffer.put(7);

The int 7 is put in the buffer at position 0, and the position is incremented to 1, as shown in Figure 14-
2.

Figure 14-2. A buffer with position 1

If the buffer were a more common ByteBuffer instead, you'd also need to cast
the values put in the buffer, like so:

buffer.put((byte) 7);

Next, we'll put the value 65 in the buffer at position 1, so the position is incremented to 2:

buffer.put(65);

The buffer is now in the state shown in Figure 14-3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-3. A buffer with position 2

We'll then put three more values in so the buffer is in the state shown in Figure 14-4:

buffer.put(-32);
buffer.put(116);
buffer.put(65);

Figure 14-4. A buffer with position 5

I've left slots 5, 6, and 7 empty in the figure, but in reality they're filled with
zeros, much as an array is initially filled with zeros.

Now it's time to read the data out of the buffer. There's a get() method that corresponds to the
put() method. However, if we began getting from the current position, we'd read the zeros in slots
5, 6, and 7. Instead, first we rewind the buffer:

buffer.rewind();

This doesn't change any of the data in the buffer, but it resets the position to 0, as shown in Figure
14-5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-5. A rewound buffer with position 0

Now it's ready to be read. Call the get() method once to read the zeroth value from the buffer:

int i1 = buffer.get();

Now the variable i1 has the value 7, and the position has advanced to 1. The buffer is in the state
shown in Figure 14-6.

Figure 14-6. After reading one value

We can read the next values from the buffer the same way:

int i2 = buffer.get();
int i3 = buffer.get();
int i4 = buffer.get();
int i5 = buffer.get();

After this is done, the variable i2 has the value 65, i3 has the value -32, i4 has the value 116, and i5
has the value 65. The position has once again advanced to 5, as shown in Figure 14-7. It's important
to note, however, that the data is still in the buffer. Unlike when writing data to a stream, the data
hasn't vanished, even if we haven't stored what we read anywhere. It's possible to rewind the buffer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and read it all again, any number of times. This capability turns out to be surprisingly useful.

Figure 14-7. The buffer after it's been drained

We could read three more times from the buffer:

int i6 = buffer.get();
int i7 = buffer.get();
int i8 = buffer.get();

Again, although we never put anything in those slots, they are initialized to 0. After reading these
bytes, the position will now be 8, equal to the capacity. Any further gets at this point without first
rewinding the buffer will throw a BufferUnderflowException. This is a runtime exception that usually
indicates a bug in the program.

14.3.1. Limit

Besides position and capacity, each buffer also has a limit pointer. This is initially the same as the
buffer's capacity. That is, a new, empty buffer with eight elements looks like Figure 14-8.

Figure 14-8. A new buffer at position 0 with its limit equal to its capacity

However, the limit can be set to a different value to keep the buffer from being read or written past a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

certain point. You can set the limit explicitly with this limit() method:

public final Buffer limit(int limit)

The no-args version returns the current limit:

public final int limit()

For example, you might initialize a buffer with a very large capacity, perhaps 2 MB, to make room for
any possible data you might want to put there. You'd fill the buffer with as much data as you have.
Then, before draining the data out of the buffer, you'd set the limit to the size of the data actually
stored. For example, if you put five bytes in the buffer, you could set the limit to 5 and then reset the
position back to 0:

buffer.limit(5);
buffer.position(0);

This would allow the process to retrieve elements 0 through 4 from the buffer, but if it tried to read
elements 5 through 7, a BufferUnderflowException would be thrown. Before reading, you'd check
that the position is less than the limit:

while (buffer.position() < buffer.limit()) buffer.get();

In practice, we don't manipulate the buffer quite so directly. Instead, we use the flip() and
hasRemaining() methods:

public final Buffer flip()
public final boolean hasRemaining()

The flip() method sets the limit to the current position and then sets the position to 0. The
hasRemaining() method returns true as long as the position is less than the limit. Using these two
methods, we can make the code a little simpler and more generic:

buffer.flip();
while (buffer.hasRemaining()) buffer.get();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, suppose we put three bytes in the buffer from Figure 14-8, like this:

buffer.put(5);
buffer.put(23);
buffer.put(5);

Figure 14-9 shows the result.

Figure 14-9. A buffer at position 3 with capacity 8 and limit 8

Before draining the data out of it, the buffer is flipped, like so:

buffer.flip();

This puts it in the state shown in Figure 14-10: the data is the same, but now the position is 0 and
the limit is 3. As data is read out of the buffer, the position advances, but the limit stays the same.

Figure 14-10. A flipped buffer

You read from the buffer only as long as the current position is less than the limit:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

while (buffer.hasRemaining()) buffer.get();

After this loop completes, the buffer is in the state shown in Figure 14-11, with the limit equal to the
position.

Figure 14-11. A flipped buffer with the limit equal to the position

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.4. Bulk Put and Get

You've already seen the relative put and get methods, which insert or retrieve data at the current
position. Bulk versions of these methods operate on arrays of the buffer's element type. For instance,
ByteBuffer has these two bulk put methods:

public final ByteBuffer put(byte[] data)
public ByteBuffer put(byte[] data, int offset, int length)

The first puts the entire contents of the array data into the buffer beginning at its current position.
The position is incremented by the length of the array. The second puts only the sub-array of data
beginning at offset and continuing for length bytes. These methods copy the array. Changing the
data array after calling put() does not change the data in the buffer.

For example, this code fragment creates the buffer shown in Figure 14-12:

Figure 14-12. A byte buffer with position 3

ByteBuffer buffer = ByteBuffer.allocate(8)
buffer.put((byte) 5);
buffer.put((byte) 23);
buffer.put((byte) 5);

If we now put a byte array with length 4 in it, the position will move forward to 7, as shown in Figure
14-13:

byte[] data = {(byte) 67, (byte) -23, (byte) -5, (byte) 17};
buffer.put(data);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-13. A byte buffer with position 7

From this point, we can put one more byte in the buffer, flip the buffer and drain it, clear the buffer
and write eight more bytes, or do anything else we want. How the data was put in the bufferwhether
with bulk or single methods, or relative or absolute methodsis irrelevant. All that matters is the state
of the buffer.

Two corresponding bulk get methods copy bytes from the buffer starting at the current position into a
provided array:

public ByteBuffer get(byte[] data)
public ByteBuffer get(byte[] data, int offset, int length)

Both methods update the position by the number of bytes returned.

For both put and get, the array must fit into the available space. If you try to put a larger array (or
sub-array) into the buffer than it has space left for, put() throws a BufferOverflowException. If you
try to get a larger array (or sub-array) than the buffer has data remaining, get() tHRows a
BufferUnderflowException. In both cases, the buffer is left in its original state and no data is
transferred.

Other buffers have these same methods. All that differs are the return and argument types. For
instance, the IntBuffer class has these four methods:

public final IntBuffer put(int[] data)
public IntBuffer put(int[] data, int offset, int length)
public IntBuffer get(int[] data)
public IntBuffer get(int[] data, int offset, int length)

DoubleBuffer has these four methods:

public final DoubleBuffer put(double[] data)
public DoubleBuffer put(double[] data, int offset, int length)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public DoubleBuffer get(double[] data)
public DoubleBuffer get(double[] data, int offset, int length)

The other buffer classes are similar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.5. Absolute Put and Get

The putters and getters you've seen so far have all been relative. That is, they put or got the data at
the current position, and incremented the position accordingly. Some buffers also support absolute
puts and gets. That is, they store or retrieve an element at a particular location in the buffer,
irrespective of the position (though the limit and the capacity are still respected). For example, these
are the absolute put() and get() methods for the ByteBuffer class. Each takes an index that is
used instead of the current position:

public abstract ByteBuffer put(int index, byte b)
public abstract byte get(int index)

If the index is less than zero or greater than or equal to the buffer's limit, these methods throw an
IndexOutOfBoundsException. Otherwise, their use is straightforward. For example, this code fragment
creates the holey buffer shown in Figure 14-14. Notice that these methods have no effect on the
position or the limit:

Figure 14-14. A byte buffer that's been filled out of order

ByteBuffer buffer = ByteBuffer.allocate(8);
buffer.put(3, (byte) 1);
buffer.put(7, (byte) 2);
buffer.put(1, (byte) 3);

The absolute methods for the other six buffer classes are similar, aside from the obvious type
changes. For instance, these are the equivalent methods for DoubleBuffer:

public abstract DoubleBuffer put(int index, double x)
public abstract double get(int index)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are no absolute bulk get and put methods.

The absolute get and put operations are optional. Buffer objects are not guaranteed to support them.
If a particular buffer object does not allow absolute gets or puts, and you attempt one anyway, the
method will throw an UnsupportedOperationException. However, I've never encountered this in
practice, and all buffers included with the JDK do support these methods.

As an example, suppose you've stored a GIF file into a ByteBuffer named gifBuffer, and you want
to find the width and height of the image. The width is always found in the seventh and eighth bytes
of the file (i.e., bytes 6 and 7, since the first byte is byte 0). The height is always found in the ninth
and tenth bytes of the file. Both are unsigned little-endian shorts. We can read those values like this:

byte width1 = gifBuffer.get(6);
byte width2 = gifBuffer.get(7);
byte height1 = gifBuffer.get(8);
byte height2= gifBuffer.get(9);
int width = (width2 << 8) | width1;
int height = (height2 << 8) | height1;

The current position in the buffer is irrelevant. The width and the height are always found in bytes 6
to 9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.6. Mark and Reset

Like input streams, buffers can be marked and reset using the mark() and reset() methods:

public final Buffer mark()
public final Buffer reset() throws InvalidMarkException

Initially, the mark is unset. Invoking the buffer's mark() method places the mark at the buffer's
current position. Resetting returns the position to the previous mark. Unlike with InputStream, there's
no markSupported() method. All buffers support marking and resetting.

The mark is always less than or equal to the position and the limit. If either the limit or the position is
set to a value less than the current mark, the mark is cleared. Resetting when there's no mark
throws an InvalidMarkException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.7. Compaction

Buffers are often used for sequential reading and writing. That is, first some data is read from a file, a
network connection, or some other source and stored in the buffer. Next, data is drained from the
buffer and written into a different file, network connection, or some other destination. However, the
output that drains data from the buffer may not move as quickly as the input that fills the buffer. For
instance, if data is being read from a file and written onto a network connection, input is likely to
substantially outpace output.

To assist in such scenarios, many buffers can be compacted by invoking their compact() methods.
This is the compact() method for ByteBuffer:

public abstract ByteBuffer compact()

Each of the seven buffer classes has its own compact method that differs only in return type. For
example, this is the compact method for DoubleBuffer:

public abstract DoubleBuffer compact()

Compacting removes all the data from the buffer before the current position, then shifts the
remaining data backwards in the buffer to the beginning. Finally, the limit is set to the capacity, and
the position is set to the first empty space. For example, suppose we put five ints into a buffer, like
this:

IntBuffer buffer = IntBuffer.allocate(8);
buffer.put(10).put(20).put(30).put(40).put(50);

The buffer is now in the state shown in Figure 14-15.

We now flip the buffer to prepare it for draining and read three ints from it using a bulk get:

buffer.flip();
int[] data = new int[3]
buffer.get(data);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-15. A partially filled int buffer

Now the buffer is in the state shown in Figure 14-16.

Figure 14-16. The buffer when three ints have been read

If we just want to continue draining from this point, we're good to go. However, if instead we now
want to fill the buffer with more data, we have several problems. First, the position is set to 3, not 5.
If we start putting now, we'll overwrite data that hasn't been processed. We could move the position
to 5 and the limit to 8, but we'd still only have three empty slots left, and we may have more data
than that. We could clear the buffer, but then we'd lose the unread data. Any manipulation of the
position and the limit really isn't going to solve these problems. Instead, we call compact():

 buffer.compact();

This places the buffer in the state shown in Figure 14-17. As you can see, the two remaining ints are
still available, and the position has been updated to allow as much data to be put in the buffer as
possible without losing any unprocessed elements.

Figure 14-17. A compacted buffer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 14-2 demonstrates one possible use of the compact() method. This example copies a file,
like the earlier Example 14-1. However, it uses only a single loop. One read and one write are
performed in each pass through the loop. The flip() method makes the buffer ready for output and
the compact() method makes it ready for input.

Example 14-2. Copying files using NIO

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class NIODuplicator {
 public static void main(String[] args) throws IOException {
 FileInputStream inFile = new FileInputStream(args[0]);
 FileOutputStream outFile = new FileOutputStream(args[1]);
 FileChannel inChannel = inFile.getChannel();
 FileChannel outChannel = outFile.getChannel();
 ByteBuffer buffer = ByteBuffer.allocate(1024*1024);
 int bytesRead = 0;
 while (bytesRead >= 0 || buffer.hasRemaining()) {
 if (bytesRead != -1) bytesRead = inChannel.read(buffer);
 buffer.flip();
 outChannel.write(buffer);
 buffer.compact();
 }
 inChannel.close();
 outChannel.close();
 }
}

If the output tends to block and the input doesn't, this program might be somewhat faster than
Example 14-1, but then again, it might not be. As with any detailed performance analysis, actual
results vary from one system and platform to the next. A better, more reliable solution to this
problem would involve nonblocking I/O, which I'll take up in Chapter 16.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.8. Duplication

It is sometimes helpful to duplicate a buffer. A duplicate is not a copy or a clone. Rather, it is a new
buffer object that has the same internal data as the original buffer, but an independent mark, limit,
and position. Changes to the elements in the original bufferthat is, putting data in the bufferaffect the
duplicate, and vice versa. However, getting data from one buffer, or flipping, resetting, rewinding, or
clearing it, has no effect on the other. Duplicates are often useful when you want to pass the same
fixed content to several different operations that run simultaneously or independently.

This is the duplicate method for ByteBuffer:

public abstract ByteBuffer duplicate()

As usual, each of the seven buffer classes has its own duplicate method that differs primarily in
return type. For example, this is the duplicate method for IntBuffer:

public abstract IntBuffer duplicate()

When the duplicate is created, its position and mark are set to 0 and its limit is set to the capacity,
regardless of the position, mark, and limit in the original buffer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.9. Slicing

A slice is similar to a duplicate. However, rather than including a complete copy of the original's data,
it includes only a subsequence. This subsequence begins at the original's position when the slice is
made and continues until the original's limit. Because the data is shared, changes to the elements in
the original buffer also change the slice, and vice versa. However, the position, limit, and mark in the
slice are all independent of the position, limit, and mark in the original. The slice's capacity will be less
than or equal to the original's capacity. Furthermore, they index differently. Position 5 in the original
might be position 0 in the slice, in which case position 6 in the original is position 1 in the slice,
position 7 is position 2, and so forth.

For example, suppose we put 8 multiples of 10 in an IntBuffer, like so:

IntBuffer original = IntBuffer.allocate(8);
original.put(10).put(20).put(30).put(40).put(50).put(60).put(70).put(80);

The original buffer is now in the state shown in Figure 14-18.

Figure 14-18. A filled int buffer

Now suppose we set the position to 4 and take a slice:

original.position(4);
IntBuffer slice = original.slice();

Now we have two buffers, as shown in Figure 14-19. We can get from either one without changing
the other. However, putting in the slice or putting in the original from position 4 on will affect the
other buffer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Slices are often useful for chopping headers off data. For example, a PNG image consists of an initial
8-byte signature (in hexadecimal), 0x89 0x50 0x4E 0x47 0x0D 0x0A 0x1A 0x0A, followed by three
or more chunks of data. Each chunk consists of four parts:

Figure 14-19. A buffer and a slice of the buffer

A 4-byte big-endian integer giving the length of the data in the chunk. Although unsigned, the
value is between 0 and 231-1.

1.

A 4-byte ASCII signature such as IHDR or tIME identifying the type of the chunk.2.

The chunk data with the length given by field 1. This can be empty. (That is, its length can be
0.)

3.

A 4-byte CRC checksum for the chunk. The checksum is calculated over fields 2 and 3; that is,
the signature and the data but not the length.

4.

Let us suppose that you have memory mapped the entire contents of a PNG image into a read-only
buffer named pngBuffer. The first thing you might do is chop off the 8-byte signature, which is
constant and therefore uninteresting. Slicing accomplishes this:

pngBuffer.position(8);
pngBuffer = buffer.slice();

You might then wish to create separate buffers for each individual chunk of the PNG image. These
separate buffers can be implemented by slicing the buffer at the beginning of each chunk's data and
then setting the limit of the slice to the end of the data. For example, this code fragment will map the
first such chunk's data:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

int i1 = buffer.get();
int i2 = buffer.get();
int i3 = buffer.get();
int i4 = buffer.get();
int size = i1 << 24 | i2 << 16 | i3 << 8 | i4
StringBuffer signature = new StringBuffer(4);
signature.append((char) buffer.get());
signature.append((char) buffer.get());
signature.append((char) buffer.get());
signature.append((char) buffer.get());
ByteBuffer firstChunkData = buffer.slice();
firstChunkData.limit(size);

Subsequent chunks can be sliced similarly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.10. Typed Data

I/O is really about bytesnot ints, not text, not doublesbytes. The bytes that are read and written can
be interpreted in various ways, but as far as the filesystem, the network socket, or almost anything
else knows, they're just bytes. The detailed interpretation is left up to the program that reads and
writes those bytes. Thus, it shouldn't come as any surprise in the next chapter when you discover
that different kinds of channelsTCP channels, UDP channels, file channels, and the likedeal almost
exclusively with byte buffers and almost never with int buffers, char buffers, or anything else.

However, sometimes it's convenient to be able to pretend that I/O is about something else. If a
program were dealing in ints, it would be nice to be able to read and write ints, not bytes. In
traditional I/O, DataInputStream and DataOutputStream fill this gap. In new I/O, view buffers meet
this need.

14.10.1. View Buffers

The ByteBuffer class, and only the ByteBuffer class, can present a view of itself as a buffer of a
different type: an IntBuffer, CharBuffer, ShortBuffer, LongBuffer, FloatBuffer, or DoubleBuffer. A
view buffer is backed by a ByteBuffer. When you write an int such as 1,789,554 into the view buffer,
the buffer writes the four bytes corresponding to that int into the underlying buffer. The encoding
used is the same as that used by DataOutputStream, except for a possible byte order adjustment. The
view buffer has a position, mark, limit, and capacity defined in terms of its type. The underlying
ByteBuffer has a position, mark, limit, and capacity defined in terms of bytes. If the view buffer is an
IntBuffer, the underlying ByteBuffer's position, mark, limit, and capacity will be four times the
position, mark, limit, and capacity of the view buffer, because there are four bytes in an int. If the
view buffer is a DoubleBuffer, the underlying ByteBuffer's position, mark, limit, and capacity will be
eight times the position, mark, limit, and capacity of the view buffer, because there are eight bytes in
a double. (If the buffer's size isn't an exact multiple of the view type's size, excess bytes at the end
are ignored.)

Six methods in ByteBuffer create view buffers:

public abstract ShortBuffer asShortBuffer()
public abstract IntBuffer asIntBuffer()
public abstract LongBuffer asLongBuffer()
public abstract FloatBuffer asFloatBuffer()
public abstract DoubleBuffer asDoubleBuffer()
public abstract CharBuffer asCharBuffer()

In Example 8-3, you saw how a DataOutputStream could write square roots in a file as doubles.
Example 14-3 repeats this example using the new I/O API instead of streams. First, a ByteBuffer big

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enough to hold 1001 doubles is allocated. Next, a DoubleBuffer is created as a view of the
ByteBuffer. The double roots are put into this view buffer. Finally, the underlying ByteBuffer is
written into the file.

Example 14-3. Writing doubles with a view buffer

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class RootsChannel {
 final static int SIZE_OF_DOUBLE = 8;
 final static int LENGTH = 1001;
 public static void main(String[] args) throws IOException {
 // Put 1001 roots into a ByteBuffer via a double view buffer
 ByteBuffer data = ByteBuffer.allocate(SIZE_OF_DOUBLE * LENGTH);
 DoubleBuffer roots = data.asDoubleBuffer();
 while (roots.hasRemaining()) {
 roots.put(Math.sqrt(roots.position()));
 }
 // Open a channel to the file where we'll store the data
 FileOutputStream fout = new FileOutputStream("roots.dat");
 FileChannel outChannel = fout.getChannel();
 outChannel.write(data);
 outChannel.close();
 }
}

Interestingly, the ByteBuffer in this example does not need to be flipped. Because the original buffer
and the view buffer have separate positions and limits, writing data into the view buffer doesn't
change the original's position; it only changes its data. When we're ready to write data from the
original buffer onto the channel, the original buffer's position and limit still have their default values of
0 and the capacity, respectively.

14.10.2. Put Type Methods

View buffers work as long as you want to write only one type of data (for example, all doubles, as in
Example 14-4). However, very often files need to contain multiple types of data: doubles, ints, chars,
and more. For instance, a PNG file contains unsigned integers, ASCII strings, and raw bytes. For this
purpose, ByteBuffer has a series of put methods that take the other primitive types:

public abstract ByteBuffer putChar(char c)
public abstract ByteBuffer putShort(short s)
public abstract ByteBuffer putInt(int i)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public abstract ByteBuffer putLong(long l)
public abstract ByteBuffer putFloat(float f)
public abstract ByteBuffer putDouble(double d)

The formats used to write these types are the same as for DataOutput (modulo byte order).

Each of these advances the position by the size of the corresponding type. For instance, putChar and
putShort increment the position by 2, putInt and putFloat increment the position by 4, and putLong
and putDouble increment the position by 8.

Of course, there are corresponding get methods:

public abstract char getChar()
public abstract short getShort()
public abstract int getInt()
public abstract long getLong()
public abstract float getFloat()
public abstract double getDouble()

These all get from the current position. Each of these methods has an absolute variant that allows
you to specify the position at which to put or get a value:

public abstract ByteBuffer putChar(int index , char c)
public abstract ByteBuffer putShort(int index , short s)
public abstract ByteBuffer putInt(int index , int i)
public abstract ByteBuffer putLong(int index , long l)
public abstract ByteBuffer putFloat(int index , float f)
public abstract ByteBuffer putDouble(int index , double d)
public abstract char getChar(int index)
public abstract short getShort(int index)
public abstract int getInt(int index)
public abstract long getLong(int index)
public abstract float getFloat(int index)
public abstract double getDouble(int index)

The earlier PNG example read the size of a data chunk by getting four bytes and then combining
them into an int using the bitwise operators:

int i1 = buffer.get();
int i2 = buffer.get();
int i3 = buffer.get();
int i4 = buffer.get();
int size = i1 << 24 | i2 << 16 | i3 << 8 | i4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This can now be compressed into a single call to getInt():

int size = buffer.getInt();

Be careful, though. These methods are not quite the same as the equivalent methods in CharBuffer,
ShortBuffer, and so forth. The difference is that the index is into the byte range, not the double
range. For example, consider this code fragment:

ByteBuffer buffer = buffer.allocate(8008);
for (int i = 0; i <= 1000; i++) {
 roots.putDouble(i, Math.sqrt(i));
}

It actually stores only 1,007 bytes in the buffer. Each double overwrites the seven low-order bytes of
the previous double. The proper way to write this code is like this:

final int DOUBLE_SIZE = 8;
ByteBuffer buffer = buffer.allocate(1001 * DOUBLE_SIZE);
for (int i = 0; i <= 1000; i++) {
 roots.putDouble(i* DOUBLE_SIZE, Math.sqrt(i));
}

Despite these methods, a ByteBuffer still just stores bytes. It doesn't know which elements hold a
piece of an int, which hold pieces of doubles, and which hold plain bytes. Your code is responsible for
keeping track of the boundaries. If a buffer doesn't contain fixed types in fixed positions, you'll need
to design some sort of meta-protocol using length and type codes to figure out where the relevant
boundaries are.

Unlike DataOutputStream, there aren't any methods to write strings into a ByteBuffer. However, it's
straightforward to write each char in the string. For example, this code writes the string "Laissez les
bon temps roulez!" into a buffer:

String s = "Laissez les bon temps roulez!";
for (int i = 0; i < s.length(); i++) {
 buffer.putChar(s.charAt(i));
}

Alternately, you could create a CharBuffer view of the ByteBuffer, and then use the write(String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods in CharBuffer:

CharBuffer cb = buffer.asCharBuffer();
cb.put("Laissez les bon temps roulez!");

In both cases it might be helpful to precede the string with its length, since buffers have no notions of
boundaries between subsequent puts. For example:

String s = "Laissez les bon temps roulez!";
buffer.putInt(s.length());
CharBuffer cb = buffer.asCharBuffer();
cb.put(s);

Remember, the CharBuffer view starts at the position of the underlying buffer when the view was
created. Here, this is immediately after the int containing the string's length.

14.10.3. Byte Order

The DataInputStream and DataOutputStream classes in java.io only handle big-endian data. The
buffers in new I/O are a little more flexible. By default, they're configured for big-endian data.
However, they can be changed to little-endian if that's what you need. Usually, you need to specify
byte order. For example, if you're reading or writing astronomy data in the FITS format, you have to
use big-endian. It doesn't matter what platform you're on; FITS files are always big-endian.

Well, not quite always. The FITS spec says numbers are supposed to be big-
endian, but you can in fact find FITS files and software that use little-endian
representations. Either way, given a file in big- or little-endian format, you have
to read it in the order it was written for the data to make sense, regardless of
the native byte order of the host platform.

The order() method lets you specify the required byte order:

public final ByteBuffer order(ByteOrder order)

The current byte order is returned by the no-args version of the method:

public final ByteOrder order()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ByteOrder has exactly two possible values:

ByteOrder.BIG_ENDIAN
ByteOrder.LITTLE_ENDIAN

Sometimes what you want is the native byte order of the host platform. The static
ByteOrder.nativeOrder() method tells you this:

public static ByteOrder nativeOrder()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.11. Read-Only Buffers

Buffers can be read-only. For example, a buffer that's backed by a file on a CD-ROM would be read-
only. Buffers might also be read-only if they're memory mapped to a file you don't have write
permission for, or to the input buffer on a network card. A CharBuffer that wraps a CharSequence is
read-only. If you aren't sure whether you can write to a buffer, you can invoke isReadOnly() before
attempting to do so:

public abstract boolean isReadOnly()

Any attempt to store data into a read-only buffer throws a ReadOnlyBufferException. This is a
runtime exception.

You can create a read-only buffer using the asReadOnly() method:

public abstract ByteBuffer asReadOnlyBuffer()

As usual, there are variants of this for all the different types of buffers that differ only in return type.
For example, this is DoubleBuffer's asReadOnly() method:

public abstract DoubleBuffer asReadOnlyBuffer()

This is essentially a view buffer of the same type that doesn't allow puts. Its mark, limit, position,
capacity, and content are initially the same as those of the buffer from which it was created.
However, from this point forward, the limit, mark, and position can change independently of the
underlying buffer.

For buffers created in this way, "read-only" is a bit of a misnomer. While you cannot put into such a
buffer, you can still put values into the original underlying buffer, and any changes made in that way
will immediately be reflected in the overlaid read-only buffer.

There are no write-only buffers. All buffers can be read.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.12. CharBuffers

A CharBuffer works pretty much the same as an IntBuffer, a DoubleBuffer, a LongBuffer, and any
of the other multibyte buffer types. That is, it has absolute and relative put methods that put chars;
absolute and relative get methods that get chars; bulk put and get methods that put and get arrays
of chars; and methods to flip, clear, rewind, and so forth. CharBuffer also has some convenience
methods that operate on CharSequences (usually Strings, but also StringBuffers, StringBuilders,
and so on). Furthermore, the CharBuffer class itself implements CharSequence, so you can pass it to
methods such as Java 6's Normalizer.isNormalized(), query it with regular expressions, and
generally use it as you would any string.

A CharBuffer can be created in the three usual ways: by allocation, by wrapping a preexisting char[]
array, or as a view of a ByteBuffer. A CharBuffer can also be created by wrapping a CharSequence:

public static CharBuffer wrap(CharSequence sequence)

or from a subsequence beginning at a certain offset and continuing to a certain point:

public static CharBuffer wrap(CharSequence sequence, int start, int end)

Because CharSequence is a read-only interface (i.e., it has no setter methods), the buffers created in
this way are also read-only. You can get from them, but you can't put into them. Attempting to do so
throws a ReadOnlyBufferException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.13. Memory-Mapped I/O

About 12 years ago, I was a grad student working at the National Solar Observatory in Sunspot, New
Mexico. The program I was working on involved three-dimensional Fourier transforms on four-
dimensional data. We had taken snapshots of wind speeds in a particular three-dimensional chunk of
the sun's photosphere, and my job was to try to make sense out of them. Our measurements
covered an area of roughly 200 points by 100 points at 10 different depths over 100 time
increments. This doesn't sound like a lot, but if you multiply it out, and figure we had a 4-byte float
at each point, that's about 75 MB of data. To do the transforms we needed double that amount of
memory. Every time I started running my naïve code to transform this monstrous set, everyone
else's terminals slowed to a crawl as the disks began to thrash madly. Solaris was swapping
everything in and out to try to find enough space to run my program. Within a couple of minutes, our
normally friendly sysadmin would run down the hall yelling, "Rusty, what are you doing now?!"

In 2006 150 MB of working set size is no big deal, but back then it was a lot. Of course, the
telescopes, spectrometers, charge-coupled detectors, and other tools have grown to match the
capacity of today's computers, and grad students are now manipulating datasets that are gigabytes
or more in size, still outpacing the growth of memory capacity.

Fortunately for the sysadmin's sanity and my continued employment, I soon discovered the magic of
memory-mapped I/O. Instead of loading the arrays into memory, I just flipped one little switch in my
program that told IDL (the programming language I was using at the time) to keep those particular
arrays on disk and treat the disk as if it were a block of memory. This wasn't quite as fast as using
real memory, but in this case the real memory wasn't there to be used anyway. It was all going out
to disk sooner or later, and the only question was whether or not it went through Solaris's virtual
memory system first. Memory-mapped I/O was like magic. My programs ran. In fact, they ran faster
than they had before because the disks stopped thrashing, and the sysadmin stopped yelling at me
because I was no longer overloading the server. Everyone was happy.

Memory-mapped I/O is not a solution to all problems. It really applies only when you have datasets
that equal or exceed the available memory. However, in that event, it's a godsend. Programmers
working in C, IDL, Fortran, and many other environments have been able to rely on memory-mapped
I/O for a long time, and finally (as of 1.4) Java programmers can too.

14.13.1. Creating Mapped Byte Buffers

The MappedByteBuffer class maps a file directly into a ByteBuffer. You operate on it using the same
put(), get(), putInt(), getInt(), and other methods for operating on any other ByteBuffer.
However, the puts and gets access the file directly without copying a lot of data to and from RAM.

Mapped byte buffers are created using the map() method in the FileChannel class:

public abstract MappedByteBuffer map(FileChannel.MapMode mode,
 long position, long size) throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Memory mapping can operate in three modes:

FileChannel.MapMode.READ_ONLY

You can get data from the buffer but cannot change the data in the buffer.

FileChannel.MapMode.READ_WRITE

You can both get data from and put data in the buffer.

FileChannel.MapMode.PRIVATE

You can get data from and put data in the buffer. However, data you put is visible only through
this buffer. The file itself is not changed.

For example, this code fragment maps the file test.png in read/write mode:

RandomAccessFile file = new RandomAccessFile("test.png", "rw");
FileChannel channel = file.getChannel();
ByteBuffer buffer = channel.map(
 FileChannel.MapMode.READ_WRITE, 0, file.length());

The position of the buffer is initially equal to 0 and the limit is initially equal to the buffer's capacity.
The capacity is whatever value was passed for the third argument. These are not necessarily the
same as the zero position in and the length of the file itself. You can and often do memory map just a
portion of a large file, if you don't need the while thing. For instance, this code fragment maps the
portion of a PNG file that follows the initial 8-byte signature:

ByteBuffer buffer = channel.map(FileChannel.MapMode.READ_WRITE,
 8, file.length()-8);

The initial position cannot be negative. That is, it cannot precede the beginning of the file. However, if
the file is open for writing, the capacity can exceed the file's length. If so, the file will be expanded to
the requested length.

The available modes depend on the underlying object from which the FileChannel was created.
Random access files can be mapped in read-only or read/write modes. File input streams can be
mapped in read-only mode. File output streams cannot be mapped at all. Normally, a
RandomAccessFile is the source.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java does not specify what happens if another process or even another part of the same program
changes the file while it's mapped. The ByteBuffer object may or may not show the changes. If it
does reflect those changes, the reflection may or may not be immediate. This will vary from one
platform to the next.

14.13.2. MappedByteBuffer Methods

Besides the methods common to all byte buffers, MappedByteBuffer has three methods of its own:
force(), load(), and isLoaded().

The load() method attempts to load the entire buffer into main memory:

public final MappedByteBuffer load()

This may make access to the buffer faster, but then again it may not. If the data is larger than Java's
heap size, this is likely to cause some page faults and disk thrashing. The isLoaded() method tells
you whether a buffer is loaded:

public final boolean isLoaded()

Finally, if you've put data in a MappedByteBuffer, you should flush the buffer when you're done with
it, just like an OutputStream. However, instead of a flush() method, you use the force() method:

public final MappedByteBuffer force()

As with flushing, this may not always be necessary. Data will eventually be written out from the
buffer into the underlying file if the program doesn't crash. However, the force() method enables
you to control when this happens and to make sure it does, at least for local filesystems. Java can't
always immediately force network-mounted disks.

As a final example, let's consider how one might securely overwrite a file. The U.S. Department of
Defense National Industrial Security Program Operating Manual 5220.22 (page 8-3-6) requires that
the erasure of secret data be accomplished by overwriting each location with a 0 byte (0x00), its
complement (0xFF), and then a random byte.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Top-secret data requires a more secure approach, with at least seven passes,
including some overwriting with particular bit patterns. The truly paranoid use
35 passes in random orders. However this example suffices to demonstrate the
points relevant to NIO.

Beyond performing multiple passes over the data, improved security also
requires carefully erasing the file's name and other metadata, as well as any
virtual memory or other locations where copies of the file's contents may
reside.

Example 14-4 maps the entire file to be erased into memory. It then writes zeros into the file, then
ones, then random data produced by a java.util.SecureRandom object. After each run, the buffer is
forced to make sure the data is actually written to the disk. Otherwise, only the last pass might be
committed. Failing to force the data might leave magnetic patterns an adversary could analyze, even
if the actual file contents were the same.

Example 14-4. Erasing a file with a MappedByteBuffer

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.security.SecureRandom;
public class SecureDelete {
 public static void main(String[] args) throws IOException {
 File file = new File(args[0]);
 if (file.exists()) {
 SecureRandom random = new SecureRandom();
 RandomAccessFile raf = new RandomAccessFile(file, "rw");
 FileChannel channel = raf.getChannel();
 MappedByteBuffer buffer
 = channel.map(FileChannel.MapMode.READ_WRITE, 0, raf.length());
 // overwrite with zeros
 while (buffer.hasRemaining()) {
 buffer.put((byte) 0);
 }
 buffer.force();
 buffer.rewind();
 // overwrite with ones
 while (buffer.hasRemaining()) {
 buffer.put((byte) 0xFF);
 }
 buffer.force();
 buffer.rewind();
 // overwrite with random data; one byte at a time
 byte[] data = new byte[1];
 while (buffer.hasRemaining()) {
 random.nextBytes(data);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 buffer.put(data[0]);
 }
 buffer.force();
 file.delete();
 }
 }
}

This program is not especially fast. On fairly impressive hardware, it could erase a little over 100K a
second. Some improvement could be made by overwriting more than a byte at a time, but if you do
this be careful that the final write doesn't write too much and cause a BufferOverflowException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15. Channels
The examples in the last chapter all read and wrote file channels. However, just as streams aren't
limited to files, neither are channels. Like streams, channels can read and write network sockets,
byte arrays, piped data from other threads, and more. The basic methods and patterns for reading
and writing channels don't change from one data source to the next. You drain data from buffers
when writing and fill buffers with data when reading. You can also transfer data directly from one
channel to another. However, some things do change from one channel to the next. For instance,
some channels are read-only and some are write-only. Some scatter data to multiple targets while
some gather data from multiple sources. In this chapter, we take up the details of the various
channel classes found in the java.nio.channels package.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1. The Channel Interfaces

Much of the channel functionality is abstracted into a series of different interfaces. Interfaces are
used rather than abstract classes because there's frequently a need to mix and match different
components. Some channels can be read, some can be written, and some can be both read and
written. Some channels are interruptible and some are not. Some channels scatter and some gather.
In practice, these capabilities appear in almost any combination.

15.1.1. Channel

The key superinterface is java.nio.channels.Channel. This interface defines the only two methods all
channels implement, isOpen() and close():

public boolean isOpen()
public void close() throws IOException

That is, the only things you know you can do with any channel are find out whether or not it's open
and close it. Given this limited functionality, it's rare to work with just a Channel variable instead of
using a more detailed type.

15.1.2. ReadableByteChannel and WritableByteChannel

The next most basic interfaces are ReadableByteChannel and WritableByteChannel, which are used
for channels that read and write bytes, respectively. Some channels can both read and write, but
most channels do one or the other. In theory, channels could work with ints, doubles, strings, and so
on. In practice, though, it's always bytes.

ReadableByteChannel declares a single method that fills a ByteBuffer with data read from the
channel:

public int read(ByteBuffer target) throws IOException

WritableByteChannel declares a single method that drains data from a ByteBuffer and writes it out to
the channel:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int write(ByteBuffer source) throws IOException

These are the two methods you saw used in the examples in the previous chapter. Each returns the
number of bytes read or written, and each advances the position of the buffer argument by the same
amount.

15.1.2.1. ByteChannel

Channels that can both read and write sometimes implement the ByteChannel interface. This is
simply a convenience interface that implements both ReadableByteChannel and WritableByteChannel.
It does not declare any additional methods.

public interface ByteChannel extends ReadableByteChannel, WritableByteChannel

In the core library, this is implemented by SocketChannel, DatagramChannel, and FileChannel. Other
channels implement one or the other.

15.1.2.2. Exceptions

The read() and write() methods are declared to throw IOException, which they do for all the same
reasons a stream might throw an IOException: the disk you're writing to fills up, the remote network
server you're talking to crashes, your cat dislodges the Ethernet cable from the back of the
computer, and so on.

You cannot write to or read from a closed channel; if you try, the method will throw a
ClosedChannelException, a subclass of IOException. If the channel is closed by another thread while
the write or read is in progress, AsynchronousCloseException, a subclass of ClosedChannelException,
is thrown. If another thread interrupts the thread's read or write operation,
ClosedByInterruptException, a subclass of AsynchronousCloseException, is thrown.

The read() and write() methods can also throw runtime exceptions, which usually result from logic
errors in the program. The read() method throws a NonReadableChannelException if you try to read
from a channel that has been opened only for writing. (You'd think such a channel would not be an
instance of ReadableByteChannel in the first place, but sometimes the strictures of API design require
Java to act as if it were weakly typed, static type checking notwithstanding.) Similarly, the write()
method throws a NonWritableChannelException if you try to write to a channel that was opened only
for reading.

15.1.3. Gathering and Scattering Channels

Most classes that implement ReadableByteChannel also implement its subinterface,
ScatteringByteChannel . This interface adds two more read() methods that can use several buffers:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public long read(ByteBuffer[] dsts) throws IOException
public long read(ByteBuffer[] dsts, int offset, int length) throws IOException

After the first buffer fills up, data read from the channel is placed in the second buffer in dsts. After
the second buffer fills up, data is then placed in the third buffer, and so on. The second method is the
same except that it starts with the buffer at offset and continues through length buffers. That is,
offset and length define the subset of buffers to use from the dsts array, not the offset and length
inside each individual buffer.

Similarly, most classes that implement WritableByteChannel also implement its subinterface,
GatheringByteChannel . This interface adds two more write() methods that drain data from an
array of buffers:

public long write(ByteBuffer[] srcs) throws IOException
public long write(ByteBuffer[] srcs, int offset, int length) throws IOException

After the first buffer empties, the channel starts draining the second buffer. After the second buffer is
empty, data is drained from the third buffer, and so on. Again, the three-argument version is the
same except that it starts draining the buffer at offset and continues through length buffers.

This is most useful when the data written to a channel consists of several distinct pieces. For
instance, an HTTP server might store the HTTP header in one buffer and the HTTP body in another,
then write both using a gathering write. If you're writing a file containing individual records, each
record could be stored in a separate buffer.

These methods mostly throw the same exceptions for the same reasons as the
nongathering/scattering read() and write() methods do: IOException, ClosedChannelException,
NonReadableChannelException, and so on. They can also throw an IndexOutofBoundsException if the
offset or the length exceeds the bounds of the array.

As a very simple example, let's suppose you wish to concatenate several files, as you might with the
Unix cat utility. You could map each input file into a ByteBuffer and write all the buffers into a new
File, as Example 15-1demonstrates.

Example 15-1. Gathering channels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class NIOCat {
 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.err.println("Usage: java NIOCat inFile1 inFile2... outFile");
 return;
 }
 ByteBuffer[] buffers = new ByteBuffer[args.length-1];
 for (int i = 0; i < args.length-1; i++) {
 RandomAccessFile raf = new RandomAccessFile(args[i], "r");
 FileChannel channel = raf.getChannel();
 buffers[i] = channel.map(FileChannel.MapMode.READ_ONLY, 0, raf.length());
 }
 FileOutputStream outFile = new FileOutputStream(args[args.length-1]);
 FileChannel out = outFile.getChannel();
 out.write(buffers);
 out.close();
 }
}

Example 15-1 makes one dangerous assumption, though: it only works if the write() method writes
every byte from every buffer. For file channels in blocking mode, this is likely the case and will be
true most of the time. A gathering write tries to write all the bytes possible, and more often than not
it will do so. However, some channels may be limited. For instance, a socket channel operating in
nonblocking mode cannot write more bytes than the local TCP buffer will hold. A more robust solution
would write continuously in a loop until none of the buffers had any remaining data:

outer: while (true) {
 out.write(buffers);
 for (int i = 0; i < buffers.length; i++) {
 if (buffers[i].hasRemaining()) continue outer;
 }
 break;
}

Honestly, this is ugly, and on a nonblocking channel I'd be inclined to just write the buffers
individually instead, like so:

for (int i = 0; i < buffers.length; i++) {
 while (buffers[i].hasRemaining()) out.write(buffers[i]);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.2. File Channels

A java.nio.channels.FileChannel can potentially be both a GatheringByteChannel and a
ScatteringByteChannel. That is, it implements both interfaces. Most of the time, however, each
actual FileChannel object is either readable or writable, not both. FileChannels created by invoking
the getChannel() method of a FileOutputStream are writable. FileChannels created by invoking the
getChannel() method of a FileInputStream are readable. Invoking a write() method on a channel
connected to a FileInputStream tHRows a NonWritableChannelException. Invoking a read() method
on a channel connected to a FileOutputStream throws a NonReadableChannelException. Only a
FileChannel created from a RandomAccessFile can be both read and written.

Besides reading and writing, file channels permit several other file-specific operations:

Data can be transferred from the file to a channel, or from a channel to the file, without your
code reading and writing each individual byte.

The current position in the file can be changed. That is, you don't have to read or write a file
from beginning to end, as with a stream. You can jump around in the file.

File channels can be locked so that other processes cannot access them.

File channels can be flushed to write data to an associated device.

15.2.1. Transferring Data

Example 14-1 in the previous chapter showed you how to copy one file to another using two
FileChannels and a ByteBuffer to hold the data as it is copied from the old file into the new one. You
can simplify the operation by taking advantage of FileChannel's two transfer methods:

public abstract long transferFrom(
 ReadableByteChannel src, long position, long count)
 throws IOException
public abstract long transferTo(
 long position, long count, WritableByteChannel target)
 throws IOException

The first method copies count bytes from the source channel into the file starting at position. The
second method copies count bytes from the file onto the target channel starting at position.

Example 15-2 demonstrates using transferTo() to copy one file to another.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 15-2. Transferring data between channels

import java.io.*;
import java.nio.channels.*;
public class NIOTransfer {
 public static void main(String[] args) throws IOException {
 FileInputStream inFile = new FileInputStream(args[0]);
 FileOutputStream outFile = new FileOutputStream(args[1]);
 FileChannel inChannel = inFile.getChannel();
 FileChannel outChannel = outFile.getChannel();
 inChannel.transferTo(0, inChannel.size(), outChannel);
 inChannel.close();
 outChannel.close();
 }
}

Neither the source nor the target channel has to be a file. These methods can also transfer data from
a file to a network channel or from a network channel into a file. However, in this case, because both
channels are files, the same program could be implemented using transferFrom() instead.

To do this, simply change inChannel.transferTo(0, inChannel.size(), outChannel) to
outChannel.transferFrom(inChannel, 0, inChannel.size()).

Neither transferTo() nor transferFrom() is guaranteed to transfer as many bytes as requested.
However, they're a little more reliable than the multibyte read() methods of InputStream. These
methods will fail to transfer count bytes only if either the input channel doesn't have that many bytes
or the output channel is nonblocking. Neither of those is the case here.

It's possible that this is just a shortcut for moving data from one channel to another through a buffer,
as seen in Example 14-1. However, some platforms can transfer the bytes much more directly and
quickly when using this method. Intermediate buffering might not be used. Thus, when moving data
to and from files, you should use transferTo() or TRansferFrom() whenever possible. They should
never be noticeably slower than manually managing the buffers, and sometimes they may be
significantly faster.

15.2.2. Random Access

Although files are often read by streams, files are not streams. Unlike a network socket, a file does
not have to be read sequentially. The disk controller can easily reposition itself to read or write at any
given position in a file, and file channels can take advantage of this capability.

Each file channel knows its current position within the file. This is measured in bytes and is returned
by the position() function:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public abstract long position() throws ClosedChannelException, IOException

As data is read out of the file or written into the file, the position is updated automatically. However,
you can also change the position manually using this overloaded position() method:

public abstract FileChannel position(long newPosition)
 throws IllegalArgumentException , ClosedChannelException, IOException

For example, this code fragment skips over the next 4K in the file:

channel.position(channel.position()+4096);

You can position the file pointer past the end of the file. Trying to read from this position returns -1 to
signal the end of the file. Of course, unlike with an InputStream, you can reposition the file pointer
and reread from earlier in the file, despite having reached the end of it. Trying to write past the end
of file automatically expands the file. The only things you can't do are read or write before the
beginning of the file. Setting the position to a negative number throws an IllegalArgumentException.

If you set the file pointer past the end of the file and then start writing, the content of the file
between the old end and the new position is system dependent. On some systems this region may be
filled with random data that was left on the disk. In many circumstances this can be a security hole,
since it may expose data that was meant to be deleted. Therefore, you really shouldn't do this unless
you know you're going to go back later and fill in those bytes before closing the file.

You can check the size of the file with the size() method:

public abstract long size() throws IOException

There's no corresponding setter. You can expand a file only by writing more data at the desired end
of the file. You can, however, shorten a file to a specified length using the TRuncate() method:

public abstract FileChannel truncate(long size) throws IOException

This method reduces the file to the specified size. Any bytes after that point are lost.

The truncated bytes still exist on the disk, though, until some process
overwrites them. Security-conscious applications may wish to overwrite them
before truncating the data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.2.3. Threading and Locking

Unlike streams, file channels are safe for access from multiple concurrent threads. Multiple threads
can read from or write to the same FileChannel simultaneously. Reads that use absolute positions in
the file could possibly be genuinely simultaneous. Writes and relative reads queue up behind each
other. Operations block as necessary to keep the file in a well-defined state. Writes are not allowed to
overlap.

Nonetheless, the ordering of writes from different threads can still be unpredictable. This may not
matter for some use cases, such as a log file, where all that matters is that each write is atomic and
the relative order of writes is unimportant. However, much of the time, more control is needed.

Applications sometimes need exclusive access to particular files. For instance, if two different word
processors try to edit the same document at the same time, conflicts are almost inevitable. File
channels allow Java applications to attempt to lock a given file or piece of a file for exclusive access.
The attempt may not always succeed, of course. Another process may have locked the same file
already, but at least you can ask. The method that asks is lock():

public final FileLock lock() throws IOException

This method blocks until it can get the lock on the file. If it can't get the lock on the file, it throws one
of a variety of IOExceptions, depending on exactly why it can't get the lock. Besides the usual
reasons (IOException, ClosedChannelException, etc.), it may also throw a
FileLockInterruptionException if another thread interrupts this one while it's waiting for the lock.

On Windows, locks are mandatory and are enforced by the operating system. Once you've locked a
file, no other program can access it (though another thread in the same VM can). Most of the time on
Unix, though, locks are only advisory. That is, another process is supposed to check to see if the file
is locked, and wait if it is. However, the operating system does not enforce this.

For some use cases, it's not necessary to lock the entire file. You can instead request a lock over only
a piece of it, starting at a specified position and continuing for a certain number of bytes:

public abstract FileLock lock(long position, long size, boolean shared)
 throws IOException

The range bounded by position and size need not be contained within the file. You can lock regions
that go beyond the end of the file or are even completely outside it. If so, the lock is retained if the
file grows. If the file grows beyond the range you've locked, new content past the lock's boundary is
not locked.

Some operating systems, including Windows and Unix, support shared locks. A shared lock allows
multiple applications, all of which have the shared lock, to access the file. However, no one

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application can exclusively lock the file. If the third argument is true, lock() tries to get a shared
lock. However, if the operating system doesn't support this functionality, it just waits for an exclusive
lock instead. Shared locks are allowed only on readable files (i.e., you can't have a shared lock on a
write-only channel). Unshared locks are allowed only on writable files (i.e., you can't have an
unshared lock on a read-only channel).

Both lock() methods can wait for an indefinite amount of time. If you want to lock if possible but
don't want to block the entire thread, use the tryLock() methods instead:

public final FileLock tryLock() throws IOException
public abstract FileLock tryLock(long position, long size, boolean shared)
 throws IOException

These methods act the same as lock(), except that they return immediately. If a file has already
been locked, these two methods return null. If the file can't be locked for some other reason, these
methods throw an IOException.

15.2.4. FileLock

All four lock() and tryLock() methods return a FileLock object that represents the lock on the
file. The primary purpose of this object is to release the lock when you're done with the file:

public abstract void release() throws IOException

A FileLock can also tell you whether it has locked at least part of a given range:

public final boolean overlaps(long position, long size)

This class also has a few getter methods that may occasionally be useful:

public final FileChannel channel()
public final long position()
public final long size()
public final boolean isShared()
public abstract boolean isValid()

They don't follow the usual Java naming conventionsalmost nothing in the new I/O API doesbut they
are all basic getter methods. The channel() method returns the channel that locked the file. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

position() method returns the byte index of the start of the locked range. The size() method
returns the length of the locked range. The isShared() method returns true if the lock is shared and
false otherwise; the isValid() method returns false if the lock has been released or the channel
closed and TRue otherwise.

Example 15-3 demonstrates locking a file before copying data into it. The output channel needs an
unshared lock because it's write-only, so we can use the simple no-args lock() method to lock it.
The input channel needs a shared lock because it's read-only, so we have to use the three-args lock(
) method to lock it from the first byte of the file through the last byte of the file.

Example 15-3. Copying locked files

import java.io.*;
import java.nio.channels.*;

public class LockingCopier {
 public static void main(String[] args) throws IOException {
 FileInputStream inFile = new FileInputStream(args[0]);
 FileOutputStream outFile = new FileOutputStream(args[1]);
 FileChannel inChannel = inFile.getChannel();
 FileChannel outChannel = outFile.getChannel();
 FileLock outLock = outChannel.lock();
 FileLock inLock = inChannel.lock(0, inChannel.size(), true);
 inChannel.transferTo(0, inChannel.size(), outChannel);
 outLock.release();
 inLock.release();
 inChannel.close();
 outChannel.close();
 }
}

Technically, the lock release isn't necessary here. Closing the output channel also releases the locks
on it. However, it's good form and it will definitely be necessary if you're not going to close the file
immediately after finishing the operation for which you locked it in the first place.

15.2.5. Flushing

Like file streams, file channels can be buffered. The actual implementation of the buffer is usually
different, though. In particular, a file channel's buffering most likely reflects the caching of the native
filesystem, while an OutputStream's buffer usually reflects operations inside the VM. However, the
effect in both cases is the same.

To make sure that data is actually written to the disk, it may be necessary to flush it. The method
that flushes a FileChannel is called force() :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public abstract void force(boolean metaData) throws IOException

The single argument specifies whether or not any file metadata changes (e.g., last modified time,
name changes, and so on) should also be committed, in addition to the contents of the file.

For example, in Example 15-3, we could flush the output channel before releasing its lock and closing
it like so:

outChannel.force();
outLock.release();
outChannel.close();

Here are a couple of caveats about forcing:

Forcing is only guaranteed to work on local files. Files on network-mounted disks such as NFS
filesystems may or may not be forced.

Only data written using the FileChannel methods is guaranteed to be forced. Data written using
memory mapping may or may not be written out. For memory-mapped files, use the force()
method in MappedByteBuffer instead, as shown in Chapter 14.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3. Converting Between Streams and Channels

Channels are cool, but streams aren't going away. In many cases, especially with small amounts of
data, streams are just faster. Other times, they're more convenient. And sometimes they're part of a
legacy API. For instance, I've seen a lot of XML libraries for Java. I've even written one or two, but
I've yet to encounter one that uses buffers and channels. They all have deep dependencies on
streams. Thus, even when using channels, you will find cases where you also need to interact with
stream-based I/O.

The java.nio.Channels class provides eight static utility methods for connecting channels to streams
and vice versa. It can also connect channels to readers and writers. (We'll get to those in Chapter
20.)

15.3.1. Converting Channels to Streams

The newInputStream() method converts any ReadableByteChannel, including FileChannels, into an
InputStream:

public static InputStream newInputStream(ReadableByteChannel ch)

You can use the methods of the InputStream class to read from the channel. Most importantly, you
can pass the InputStream object to another method that knows how to work with streams but doesn't
know what to do with a channel. For example, suppose you discover that your XML processing is I/O
bound and you need to speed up the filesystem access. You could try a FileChannel to do that:

XMLReader parser = XMLReaderFactory.createXMLReader();
FileInputStream in = new FileInputStream("document.xml");
FileChannel channel = in.getChannel();

Now say you want to pass this channel to the XML parser. However, the parser will accept only an
InputStream, not a channel, so instead you do this:

in = Channels.newInputStream(channel);
parser.parse(in);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point you may be objecting. You started with an input stream. This was then turned into a
channel. The channel was then turned back into an input stream. What has really been gained? The
difference is that the raw I/O is now done with channels rather than streams. The original
FileInputStream in is only used to create the channel. Its read() methods are never called. The
actual disk reading is done by native file channel code that should be quite fast. Of course, this is all
hypothetical. Whether this strategy would really improve performance would have to be carefully
measured on the particular systems where you planned to run the code.

Sometimes it's an OutputStream that's needed. In this case, the Channels.newOutputStream()
method serves to convert a WritableByteChannel into an OutputStream:

public static OutputStream newOutputStream(WritableByteChannel ch)

One advantage of these streams is that, unlike most streams, they are threadsafe. That is, these
streams can be shared between multiple threads, and Java will ensure that the reads and writes are
atomic and do not interrupt each other. This alone may be sufficient reason to use these methods
instead of just creating the streams directly.

15.3.2. Converting Streams to Channels

Sometimes you need to go the other direction, taking an existing stream and changing it into a
channel. This isn't necessary for file channels or network channels, which have their own special
channel classes. However, it may be necessary to use this approach to get channels from more
obscure streams, such as a GZipInputStream or a ProgressMonitorInputStream, or you may have a
class such as the Apache HTTPClient's InputStreamRequestEntity that gives you a stream that you
want to read or write using new I/O. There are two newChannel() methods, depending on whether
you want a WritableByteChannel for output or a ReadableByteChannel for input:

public static ReadableByteChannel newChannel(InputStream in)
public static WritableByteChannel newChannel(OutputStream out)

Example 15-4 shows how you might decompress a gzipped file by first decompressing it with a
GZipInputStream, then converting this input stream into a ReadableByteChannel. Next, System.out is
converted into a WritableByteChannel. Finally, the decompressed data is copied from one channel to
another through an intermediate buffer.

Example 15-4. Converting streams to channels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.util.zip.*;
import java.nio.*;
import java.nio.channels.*;
public class NIOUnzipper {
 public static void main(String[] args) throws IOException {

 FileInputStream fin = new FileInputStream(args[0]);
 GZIPInputStream gzin = new GZIPInputStream(fin);
 ReadableByteChannel in = Channels.newChannel(gzin);
 WritableByteChannel out = Channels.newChannel(System.out);
 ByteBuffer buffer = ByteBuffer.allocate(65536);
 while (in.read(buffer) != -1) {
 buffer.flip();
 out.write(buffer);
 buffer.clear();
 }
 }
}

The while loop relies on Java's promise that every call to write() will write all of the requested
bytes. While not true of all writable byte channels, this is true of the ones returned by the
Channels.newChannel() method.

15.3.3. Converting Channels to Readers and Writers

The Channels class also has four methods to convert between WritableByteChannels and Writers and
ReadableByteChannels and Readers. We haven't talked about readers and writers yet; that discussion
will start in Chapter 20, but in the meantime these methods aren't hard to understand. They work
much the same as the methods that convert between streams and channels. However, channels are
byte-based and readers and writers are char-based. Therefore, these methods also require you to
provide a CharsetEncoder or CharsetDecoder object that will convert between bytes and Java chars.
Alternatively, instead of providing an encoder or decoder, you can just give the name of the
character set and let Java find the right encoder or decoder object:

public static Reader newReader(ReadableByteChannel channel,
 String characterSetName)
public static Writer newWriter(WritableByteChannel channel,
 String characterSetName)

Unlike the streams returned by Channels.newInputStream() and Channels.newOutputStream(), the
readers and writers returned by Channels.newReader() and Channels.newWriter() are buffered.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can specify a minimum buffer capacity if you like:

public static Reader newReader(ReadableByteChannel channel,
 CharsetDecoder decoder, int minimumBufferCapacity)
public static Writer newWriter(WritableByteChannel channel,
 CharsetEncoder encoder, int minimumBufferCapacity)

We'll talk more about CharsetEncoder and CharsetDecoder in Chapter 19.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.4. Socket Channels

The SocketChannel class provides network input and output. With a few exceptions, most network
protocols are read/write, and the same channel object is used for both reading and writing. However,
you'll probably use different buffers for reading and writing.

SocketChannel implements both ScatteringByteChannel and GatheringByteChannel. You read or write
it using the same methods and patterns you use to read or write a FileChannel. However, a few key
differences between files and sockets are exposed at the level of the API:

Sockets must be explicitly connected.

Sockets can be disconnected.

Sockets can be selected.

Sockets support nonblocking I/O.

The last two points will be the subject of the next chapter. For now, let's explore the simple blocking
style of socket I/O.

There are no constructors in the SocketChannel class. Instead, a new SocketChannel object is
returned by one of the two static open() methods:

public static SocketChannel open() throws IOException
public static SocketChannel open(SocketAddress remote) throws IOException

For example, this statement creates a new SocketChannel that is not yet connected to anything:

SocketChannel channel = SocketChannel.open();

To connect to a remote site, you pass a java.net.SocketAddress (in practice, a
java.net.InetSocketAddress) for the remote site to the channel's connect() method:

public abstract boolean connect(SocketAddress remote) throws IOException

For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SocketAddress remote = new InetSocketAddress("www.google.com", 80);
channel.connect(remote);

To connect immediately, just pass the address directly to the open() method:

SocketAddress remote = new InetSocketAddress("www.google.com", 80);
SocketChannel channel = SocketChannel.open(remote);

However, as often as not, you're going to want to configure the channel after opening it but before
connecting it.

You can check whether a channel is currently connected with the isConnected() method:

public abstract boolean isConnected()

This returns true while the channel is connected and false at other times. Of course, the
SocketChannel also inherits all the usual methods of any channel, such as isOpen() and close().

There are a few more methods in this class, but they're all related to nonblocking I/O, which I'll take
up in the next chapter. In the meantime, this is all you need to write simple network clients. For
instance, it's easy to write a program that downloads the data from any given http URL (including the
HTTP response header) and stores it in a file. The procedure is:

Read the URL and the filename from the command line.1.

Open a FileChannel to the file.2.

Open a SocketChannel to the remote server.3.

Connect the channel.4.

Write the HTTP request header over the socket channel.5.

Transfer the response from the server into the file.6.

Example 15-5 demonstrates.

Example 15-5. The HTTPGrab program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.io.*;
public class HTTPGrab {
 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.err.println("Usage: java HTTPGrab url filename");
 return;
 }
 URL u = new URL(args[0]);
 if (!u.getProtocol().equalsIgnoreCase("http")) {
 System.err.println("Sorry, " + u.getProtocol()
 + " is not supported");
 return;
 }
 String host = u.getHost();
 int port = u.getPort();
 String file = u.getFile();
 if (file == null) file = "/";
 if (port <= 0) port = 80;
 SocketAddress remote = new InetSocketAddress(host, port);
 SocketChannel channel = SocketChannel.open(remote);
 FileOutputStream out = new FileOutputStream(args[1]);
 FileChannel localFile = out.getChannel();
 String request = "GET " + file + " HTTP/1.1\r\n"
 + "User-Agent: HTTPGrab\r\n"
 + "Accept: text/*\r\n"
 + "Connection: close\r\n"
 + "Host: " + host + "\r\n"
 + "\r\n";
 ByteBuffer header = ByteBuffer.wrap(request.getBytes("US-ASCII"));
 channel.write(header);
 ByteBuffer buffer = ByteBuffer.allocate(8192);
 while (channel.read(buffer) != -1) {
 buffer.flip();
 localFile.write(buffer);
 buffer.clear();
 }
 localFile.close();
 channel.close();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.5. Server Socket Channels

The ServerSocketChannel class is where NIO really begins to shine. One server thread using a
ServerSocketChannel can manage many different clients. The key to this is nonblocking I/O,
discussion of which I'll again defer to the next chapter. However, for the moment we can look at the
basics of writing a server using the new I/O API. We'll add selectors in the next chapter.

The basic strategy for writing a server with the new I/O API is:

Open a ServerSocketChannel using the open() method.1.

Retrieve the channel's ServerSocket using the socket() method.2.

Bind the ServerSocket to a port.3.

Accept an incoming connection to get a socket channel.4.

Communicate over the SocketChannel.5.

Close the SocketChannel.6.

Go to step 4.7.

This is very similar to how a server written using traditional I/O works, except that you use buffers
and channels instead of streams to communicate. You could move steps 5 and 6 into a separate
thread to handle multiple connections simultaneously.

More likely, you'd use the nonblocking I/O introduced in the next chapter, but for the moment let's
look at the simpler blocking approach.

There are no public constructors in the ServerSocketChannel class. Instead, a new
ServerSocketChannel object is returned by the static open() method:

public static SocketChannel open() throws IOException

For example, this statement creates a new ServerSocketChannel that is not yet connected to
anything:

ServerSocketChannel channel = ServerSocketChannel.open();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To start listening for incoming connections, you have to bind to the port. This is done not by the
ServerSocketChannel itself, but rather by its associated java.net.ServerSocket object. This object is
returned by the socket() method:

public abstract ServerSocket socket()

For example:

SocketAddress port = new InetSocketAddress(8000);
channel.socket().bind(port);

You can now begin accepting connections with the accept() method:

public abstract SocketChannel accept() throws IOException

This returns a SocketChannel object that you use to communicate with the remote client. The
ServerSocketChannel class itself does not have any read() or write() methods.

Of course, ServerSocketChannel also inherits all the usual methods of any channel, such as isOpen()
and close().

We're now ready to write a simple network server. Let's reproduce the Hello server from Example 15-
4, but this time implement it with the new I/O API rather than the traditional stream-based APIs.
Recall that this server responds to any client that connects with a message like:

Hello titan.oit.unc.edu/152.2.22.14 on port 50361
This is utopia.poly.edu/128.238.3.21 on port 2345

Neither the ServerSocketChannel class nor the SocketChannel class has methods to determine the IP
address of either the local or the remote end of the connection. However, we can use the socket()
methods to get this information from the associated Socket and ServerSocket objects. Example 15-6
demonstrates.

Example 15-6. The new HelloServer program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.net.*;
import java.io.*;
import java.nio.ByteBuffer;
import java.nio.channels.*;

public class NewIOHelloServer {
 public final static int PORT = 2345;
 public static void main(String[] args) throws IOException {
 ServerSocketChannel serverChannel = ServerSocketChannel.open();
 SocketAddress port = new InetSocketAddress(PORT);
 serverChannel.socket().bind(port);
 while (true) {
 try {
 SocketChannel clientChannel = serverChannel.accept();
 String response = "Hello "
 + clientChannel.socket().getInetAddress() + " on port "
 + clientChannel.socket().getPort() + "\r\n";
 response += "This is " + serverChannel.socket() + " on port "
 + serverChannel.socket().getLocalPort() + "\r\n";
 byte[] data = response.getBytes("UTF-8");
 ByteBuffer buffer = ByteBuffer.wrap(data);
 while (buffer.hasRemaining()) clientChannel.write(buffer);
 clientChannel.close();
 }
 catch (IOException ex) {
 // This is an error on one connection. Maybe the client crashed.
 // Maybe it broke the connection prematurely. Whatever happened,
 // it's not worth shutting down the server for.
 }
 } // end while
 } // end main
} // end NewIOHelloServer

Here's some typical output when connecting to this server with telnet:

$ telnet 192.168.254.100 2345
Trying 192.168.254.100...
Connected to 192.168.254.100.
Escape character is '^]'.
Hello /192.168.254.36 on port 4940
This is ServerSocket[addr=/0.0.0.0,localport=2345] on port 2345
Connection closed by foreign host.

To be honest, this is complete overkill for such a simple server. If there's any performance difference
between the original stream-based example and this one, I'd expect the original to be faster. There's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enough constant overhead in setting up the buffers and channels that speedups become apparent
only for larger datasets, and likely then only if you're using nonblocking I/O. However, this example
does enable me to demonstrate the relevant points.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.6. Datagram Channels

Data is sent across the Internet in unreliable packets called IP datagrams . More often than not,
these packets are automatically reassembled into the correct sequence using a higher-level protocol
called TCP. Lost and corrupted packets are retransmitted automatically. The end result is something
that looks very much like a stream or a channel. Indeed, Java's interface to TCP data is through
streams or channels (your choice).

However, some protocols, such as NFS, SIP, and DNS, can send data over UDP instead. UDP still
detects and drops corrupted datagrams, but that's it. UDP does not guarantee that packets arrive in
the order they were sent, or indeed that the packets arrive at all. UDP can be faster than TCP
though, if you can live with or compensate for its unreliability.

UDP data arrives in raw packets of bytes. A packet does not necessarily have any relation to the
previous packet or the next packet. You may get nothing for several seconds, or even minutes, and
then suddenly have to deal with a few hundred packets. Packets arriving close together in time may
be part of the same transmission, two transmissions, or several transmissions.

java.nio.channels includes a DatagramChannel class for UDP. This class does not have any public
constructors. Instead, you create a new DatagramChannel object using the static open() method:

public static DatagramChannel open() throws IOException

For example:

DatagramChannel channel = DatagramChannel.open();

This channel initially listens to and sends from an anonymous (system-selected) port. Servers that
need to listen on a particular port can bind to that port through the channel's peer DatagramSocket
object. This is returned by the socket() method:

public abstract DatagramSocket socket()

For example, this code fragment binds a channel to port 4567:

SocketAddress address = new InetSocketAddress(4567);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatagramSocket socket = channel.socket();
socket.bind(address);

DatagramChannel has both read() and write() methods. That is, it implements both
ReadableByteChannel and WritableByteChannel. It also implements GatheringByteChannel and
ScatteringByteChannel. However, more often than not you read and write data with its two special
methods, send() and receive(), instead:

public abstract SocketAddress receive(ByteBuffer dst) throws IOException
public abstract int send(ByteBuffer src, SocketAddress target) throws IOException

UDP by its nature is connectionless. That is, a single UDP channel can send packets to and receive
packets from multiple hosts. As a result, when sending, you need to specify the address of the
system to which you're sending. When receiving, you'll probably want to know the address of the
system from which the packet originated. Both are provided as java.net.SocketAddress objects. For
example, this code fragment sends a UDP packet containing the byte 100 to the server at
time.nist.gov:

ByteBuffer buffer = ByteBuffer.allocate(512);
buffer.put((byte) 100);
// Don't forget to flip the buffer or nothing will be sent
buffer.flip();
SocketAddress address = new InetSocketAddress("time.nist.gov", 37);
socket.send(buffer, address);

This code fragment receives a packet from some server and then prints the address of the originating
host:

ByteBuffer receipt = ByteBuffer.allocate(8192);
SocketAddress sender = socket.receive(receipt)
System.out.println(address);

If the two code fragments are run in sequence, chances are the second fragment will print the same
address that was used to send the first fragment. That is, the server will have responded with a UDP
packet to the sender. However, that's not guaranteed. If for some reason a different system sent a
UDP packet to this host and port at the right time, that packet would be received instead.

By default, both of these methods block. That is, they do not return until a UDP datagram has been
sent or received. (We'll see how to change this in the next chapter.) For sending, this is normally not
a problem as long as the network hardware is working. For receiving, it can be. Because UDP is
unreliable, there's no warning if the server fails to respond or if its response is lost in transit. If the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

program does anything other than wait for incoming packets, you should either put the call to
receive() in a separate thread or set the socket's SO_TIMEOUT. For instance, this statement sets the
timeout to 3 seconds (3000 milliseconds):

channel.socket().setSoTimeout(3000);

If the specified time passes with no incoming packet, receive() tHRows a
java.net.SocketTimeoutException, a subclass of IOException.

Furthermore, if a datagram arrives with more data than the buffer has space remaining, the extra
data is thrown away with no notification of the problem. There is no BufferOverflowException or
anything similar. UDP is unreliable, after all.

On the other hand, if you try to send more data from a buffer than can fit into a single datagram, the
send() method sends nothing and returns 0. send() will not fragment the data into multiple UDP
packets: it writes everything or nothing. You're probably okay up to 8K of data on a modern system,
and you may be okay somewhat beyond that. However, 64K (indeed, a little less than that when
space for IP headers and such is set aside) is the absolute maximum that can ever fit into one UDP
datagram. If you have more than 8K or so of data, you should probably break it up into multiple calls
to send() and design a higher-level protocol for reassembling and perhaps retransmitting them. You
can use the ByteBuffer's limit() methods to set the limit no more than 8192 bytes ahead of the
position before sending.

Like all channels, a datagram channel should be closed when you're done with it to free up the port
and any other resources it may be using:

public void close() throws IOException

Closing an already closed channel has no effect. Attempting to send data to or receive data from a
closed channel throws a ClosedChannelException. If you're uncertain whether a channel has been
closed, check with isOpen():

public boolean isOpen()

This returns false if the channel is closed, or true if it's open.

Example 15-7 is a complete program that both sends and receives some data over UDP. Specifically,
it sends a request to the time server at time.nist.gov. It then receives a UDP datagram containing
the number of seconds since midnight, January 1, 1900. Of course, with UDP, you're not guaranteed
to get anything back, so it's important to set a timeout on the socket operation. Example 15-7 waits
at most five seconds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 15-7. A UDP time client

import java.io.IOException;
import java.net.*;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.*;
public class UDPTimeClient {
 public static void main(String[] args) throws IOException {
 DatagramChannel channel = null;
 try {
 channel = DatagramChannel.open();
 // port 0 selects any available port
 SocketAddress address = new InetSocketAddress(0);
 DatagramSocket socket = channel.socket();
 socket.setSoTimeout(5000);
 socket.bind(address);
 SocketAddress server = new InetSocketAddress("time.nist.gov", 37);
 ByteBuffer buffer = ByteBuffer.allocate(8192);
 // time protocol always uses big-endian order
 buffer.order(ByteOrder.BIG_ENDIAN);
 // Must put at least one byte of data in the buffer;
 // it doesn't matter what it is.
 buffer.put((byte) 65);
 buffer.flip();
 channel.send(buffer, server);

 buffer.clear();
 buffer.put((byte) 0).put((byte) 0).put((byte) 0).put((byte) 0);
 channel.receive(buffer);
 buffer.flip();
 long secondsSince1900 = buffer.getLong();
 // The time protocol sets the epoch at 1900,
 // the java.util.Date class at 1970. This number
 // converts between them.
 long differenceBetweenEpochs = 2208988800L;
 long secondsSince1970
 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);
 System.out.println(time);
 }
 catch (Exception ex) {
 System.err.println(ex);
 ex.printStackTrace();
 }
 finally {
 if (channel != null) channel.close();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The time protocol encodes the time as an unsigned big-endian 4-byte int. Java doesn't have any such
data type. We could manually read the bytes and form a long from them. However, it's a little more
obvious and informative to use the buffer class in a tricky way. Before receiving the data, I put four
zeros in the buffer's first four positions. Then I receive the next four bytes from the server. A total of
eight bytes, which is the desired value, can then be read as a signed long using getLong().

Here's the output from running the program, along with the output from the Unix date command for
comparison:

$ date;java UDPTimeClient
Wed Oct 15 07:37:40 EDT 2005
Wed Oct 15 07:37:41 EDT 2005

The server-supplied time is only a second off from the time measured by the client computer's clock.
The error is likely a combination of clock drift between the two systems and the time it takes for the
UDP request and response to travel between my local computer in Brooklyn and the server in
Boulder.

Unlike socket-based programs, there's not a huge amount of difference between the UDP server API
and the UDP client API. Example 15-8 shows a UDP server implemented using these same classes
and methods. Here, the server waits for a client to send a datagram rather than initiating the
communication, but the methods and classes are all the same.

Example 15-8. A UDP time server

import java.io.IOException;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;
public class UDPTimeServer {
 public final static int DEFAULT_PORT = 37;
 public static void main(String[] args) throws IOException {
 int port = 37;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[1]);
 if (port <= 0 || port > 65535) port = DEFAULT_PORT;;
 }
 catch (Exception ex){
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByteBuffer in = ByteBuffer.allocate(8192);
 ByteBuffer out = ByteBuffer.allocate(8);
 out.order(ByteOrder.BIG_ENDIAN);
 SocketAddress address = new InetSocketAddress(port);
 DatagramChannel channel = DatagramChannel.open();
 DatagramSocket socket = channel.socket();
 socket.bind(address);
 System.err.println("bound to " + address);
 while (true) {
 try {
 in.clear();
 SocketAddress client = channel.receive(in);
 System.err.println(client);
 long secondsSince1900 = getTime();
 out.clear();
 out.putLong(secondsSince1900);
 out.flip();
 // skip over the first four bytes to make this an unsigned int
 out.position(4);
 channel.send(out, client);
 }
 catch (Exception ex) {
 System.err.println(ex);
 }
 }
 }
 private static long getTime() {
 long differenceBetweenEpochs = 2208988800L;
 Date now = new Date();

 long secondsSince1970 = now.getTime() / 1000;
 long secondsSince1900 = secondsSince1970 + differenceBetweenEpochs;
 return secondsSince1900;
 }
}

This program is blocking and synchronous. This is much less of a problem for UDP-based protocols
than for TCP protocols. The unreliable, packet-based, connectionless nature of UDP means that the
server at most has to wait for the local buffer to clear. It does not have to and does not wait for the
client to be ready to receive data. There's much less opportunity for one client to get held up behind
a slower client.

15.6.1. Connecting

Unlike regular sockets and socket channels, datagram channels can normally send data to and
receive data from any host. However, you can force a DatagramChannel to communicate with only one
specified host using the connect() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public abstract DatagramChannel connect(SocketAddress remote)
 throws IOException

UDP is a connectionless protocol. Unlike the connect() method of SocketChannel, this method does
not actually send or receive any packets across the network. Instead, it simply changes the datagram
socket object so it will refuse to send packets to other hosts (i.e., throw an
IllegalArgumentException) and ignore packets received from other hosts. Thus, this method returns
fairly quickly and never blocks.

The isConnected() method returns true if the DatagramSocket is connected and false otherwise:

public abstract boolean isConnected()

However, this just tells you whether the DatagramChannel is limited to one host. Unlike a
SocketChannel, a DatagramChannel does not have to be connected to transmit or receive data.

Finally, there is a disconnect() method that breaks the connection:

public abstract DatagramChannel disconnect() throws IOException

This doesn't really close anything, because nothing was really open in the first place. It just allows
the channel to once again send data to and receive data from multiple hosts.

15.6.2. Reading

Besides the special-purpose receive() method, DatagramChannel has the usual three read()
methods:

public abstract int read(ByteBuffer dst) throws IOException
public final long read(ByteBuffer[] dsts) throws IOException
public final long read(ByteBuffer[] dsts, int offset, int length)
 throws IOException

However, these methods can be used only on connected channels. That is, before invoking one of
these methods, you must invoke connect() to glue the channel to a particular remote host. This
makes them more suitable for use with clients that know whom they'll be talking to than for servers
that must accept input from multiple hosts at the same time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each of these three methods reads only a single datagram packet from the network. As much data
from that datagram as possible is stored in the ByteBuffer. Each method returns the number of
bytes read, or -1 if the channel has been closed. This method may return 0 for any of several
reasons, including:

The channel is nonblocking and no packet was ready.

A datagram packet contained no data.

The buffer is full.

As with the receive() method, if the datagram packet has more data than the ByteBuffer can hold,
the extra data is thrown away with no notification of the problem. You do not receive a
BufferOverflowException or anything similar.

15.6.3. Writing

Naturally, DatagramChannel has the three write() methods common to all writable, scattering
channels, which can be used instead of the send() method:

public abstract int write(ByteBuffer src) throws IOException
public final long write(ByteBuffer[] dsts) throws IOException
public final long write(ByteBuffer[] dsts, int offset, int length)
 throws IOException

However, these methods can be used only on connected channels; otherwise, they don't know where
to send the packet. Each of these methods sends a single datagram packet over the connection.
None of these methods is guaranteed to write the complete contents of the buffer(s). If the value
returned is less (or more) than the amount of data expected in the packet, you may have sent a
corrupted packet. The protocol needs some way of recognizing and discarding such packets on the
other end. Furthermore, in this case you'll probably want to retransmit the original packet from the
beginning.

The write() method works best for simple protocols such as echo and chargen that accept more or
less arbitrary data in more or less arbitrary order. However, to the extent that packet boundaries
matter, the send() method is more reliable here since it always sends everything or nothing.

Example 15-9 revises the UDP time client program so that it first connects to the server. It sends a
packet to the server using the write() method and gets the result back using the read() method.

Example 15-9. A connected time client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.IOException;
import java.net.*;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.*;
public class ConnectedTimeClient {
 public static void main(String[] args) throws IOException {
 DatagramChannel channel = DatagramChannel.open();
 SocketAddress address = new InetSocketAddress(0);
 DatagramSocket socket = channel.socket();
 socket.bind(address);
 SocketAddress server = new InetSocketAddress("time-a.nist.gov", 37);
 channel.connect(server);
 ByteBuffer buffer = ByteBuffer.allocate(8);
 buffer.order(ByteOrder.BIG_ENDIAN);
 // send a byte of data to the server
 buffer.put((byte) 0);
 buffer.flip();
 channel.write(buffer);
 // get the buffer ready to receive data
 buffer.clear();
 // fill the first four bytes with zeros
 buffer.putInt(0);
 channel.read(buffer);
 buffer.flip();
 // convert seconds since 1900 to a java.util.Date
 long secondsSince1900 = buffer.getLong();
 long differenceBetweenEpochs = 2208988800L;
 long secondsSince1970
 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);
 System.out.println(time);
 }
}

This program is a little simpler than the previous version, mostly because it uses a connected
channel. One other small change: this program calls buffer.putInt(0) to store zeros in the first four
bytes of the buffer rather than putting the byte 0 four times.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 16. Nonblocking I/O
Nonblocking I/O is one of the most important features of the new I/O API. Traditional stream-based
I/O is limited by the speed of whatever it is you're reading or writing: the disk, the network, and so
on. Very often code has to sit and wait for the disk or network to respond. This is especially
problematic if the program has many different things to do. For instance, a network server may need
to service hundreds or thousands of simultaneous clients. It doesn't want one slow connection to hold
back all the others.

The traditional approach to this problem is to place each connection in a separate thread. One
hundred simultaneous connections require one hundred threads. However, although threads are
lighter-weight than processes, they still have nontrivial overhead. It takes time to set up and tear
down each thread, and each one uses a finite quantity of system resources. For instance, in some
versions of Windows, each thread has a megabyte of stack space. Thus, if you try to spawn 2,000
threads on a system with only a gigabyte of memory, you're going to start swapping pretty badly
(and that's not even accounting for all the memory that's needed for anything other than thread
stacks). Thread pools improve the situation, perhaps allowing you to handle twice as many
simultaneous connections as you could otherwise, but not to the point where you can simply ignore
thread overhead.

Fortunately, the new buffer- and channel-based I/O comes to the rescue. In addition to the
synchronous blocking I/O explored in the last two chapters, NIO also supports nonblocking I/O. In
nonblocking I/O, one thread can manage many different connections. Rather than fully processing
each one in turn, the thread asks the channels which one is ready to be read or written without
blocking. It then reads or writes a channel that it knows in advance won't block. Then it repeats the
process. On high-volume servers, this can easily more than triple the number of clients one system
can handle.

Nonblocking I/O is primarily relevant to network connections. Pipe channels that move data between
two threads also support nonblocking I/O. File channels don't support it at all because file access
doesn't block nearly as often as network channels do, and most modern disk controllers can fill a CPU
with data fast enough to keep it satisfied. Furthermore, it's uncommon for one program to read or
write hundreds of files simultaneously. However, on network servers, this usage pattern is the rule,
not the exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1. Nonblocking I/O

Allow me to demonstrate with a very simple network server that might be used for testing routers
and the like. The server accepts a connection from any client. It then sends that client a continuous
stream of bytes beginning with 0 and continuing through 255, at which point it starts again with 0.
The server never closes the connection; it waits for the client to close. You could use this to test the
speed of the server's network connection. Example 16-1 implements this protocol using classic I/O
plus threads.

Example 16-1. DataStuffer implemented with classic I/O

import java.net.*;
import java.io.*;
public class DataStuffer {
 private static byte[] data = new byte[256];
 public static void main(String[] args) throws IOException {
 int port = 9000;
 for (int i = 0; i < data.length; i++) data[i] = (byte) i;
 ServerSocket server = new ServerSocket(port);
 while (true) {
 Socket socket = server.accept();
 Thread stuffer = new StuffThread(socket);
 stuffer.start();
 }
 }
 private static class StuffThread extends Thread {
 private Socket socket;
 public StuffThread(Socket socket) {
 this.socket = socket;
 }
 public void run() {
 try {
 OutputStream out = new BufferedOutputStream(socket.getOutputStream());
 while (!socket.isClosed()) {
 out.write(data);
 }
 }
 catch (IOException ex) {
 if (!socket.isClosed()) {
 try {
 socket.close();
 }
 catch (IOException e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Oh well. We tried.
 }
 }
 }
 }
 }
}

Using channels instead of streams, we can implement this entire program in one thread and support
many more clients to boot. The initial process is as follows:

Open a ServerSocketChannel.1.

Put the channel in nonblocking mode.2.

Open a Selector.3.

Register the ServerSocketChannel with the Selector for accept operations.4.

To create a nonblocking channel, open the server socket in the usual way:

ServerSocketChannel server = ServerSocketChannel.open();

Then pass true to the configureBlocking() method to put it in nonblocking mode:

server.configureBlocking(false);

Next, create a Selector object:

Selector selector = Selector.open();

This object will be responsible for managing all the different channels and deciding which one is ready
to be read or written. Initially, you just have one channel, the server socket channel. When you
register each channel with the Selector, you have to specify the kinds of operations for which you're
registering. There are four kinds, each represented by a named constant in the SelectionKey class:

SelectionKey.ACCEPT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Accept a connection from a client.

SelectionKey.CONNECT

pen a connection to a server.

SelectionKey.READ

Read data from a channel.

SelectionKey.WRITE

Write data to a channel.

The ServerSocketChannel needs to be registered for accepting connections:

server.register(selector, SelectionKey.OP_ACCEPT);

From this point, you enter an infinite loop that selects the ready channels:

while (true) {
 selector.select();
 Set readyKeys = selector.selectedKeys();
 // process each ready key...
}

Initially, the Selector is registered with only one key, so only one key can be selected. However,
we're going to register the Selector with more keys inside the loop as connections are accepted. The
keys themselves are processed in a finite loop, like this:

Iterator iterator = readyKeys.iterator();
while (iterator.hasNext()) {
 SelectionKey key = (SelectionKey) iterator.next();
 iterator.remove();
 // work with the key...
}

It's necessary to remove each key from the set of ready keys before processing it. Should the key
become ready again in the future, it is included in the next set returned by readyKeys().

Different keys may be ready to do different things. Some are ready for reading, some for writing, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some for accepting. When processing a key, the first thing to do is figure out what it's ready for:

if (key.isAcceptable()) {
 // accept the connection and register the Selector
 // with the key for this connection...
}
else if (key.isWritable()) {
 // write to the connection...
}

This example doesn't need to read from the channel, but most applications do this as well.

The first possibility is that the Selector has found a channel ready to accept an incoming connection.
In this case, we tell the server channel to accept the connection. This returns a SocketChannel that is
then configured in nonblocking mode and registered with the same Selector. However, it's registered
as being interested in write operations:

SocketChannel client = server.accept();
client.configureBlocking(false);
SelectionKey key2 = client.register(selector, SelectionKey.OP_WRITE);

The key also needs to know what data is being written to the channel and how much of it has already
been written. This requires some sort of object that contains a reference to the actual data and an
index into that data. For some servers, the data is a file or a stream of some kind. In this case, it's a
constant byte array. In fact, the same byte array is written to all the different channels. However,
different channels are at different positions in that array at different times, so we wrap a ByteBuffer
around the array just for the use of this channel. As long as every connection treats its buffer as
read-only, there won't be any conflicts. This buffer is then attached to the key:

ByteBuffer source = ByteBuffer.wrap(data);
key2.attach(source);

The other possibility is that the key is not ready for accepting. Instead, it's ready for writing. In this
case, the key points to a previously opened SocketChannel. If so, we get the channel for the socket
and write some data onto the channel:

SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
if (!output.hasRemaining()) output.rewind();
client.write(output);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the ByteBuffer that was attached to the key earlier when the channel was accepted is
now retrieved.

This whole process is put together in two nested loops, as shown in Example 16-2.

Example 16-2. DataStuffer implemented with nonblocking I/O

import java.net.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;
public class NewDataStuffer {
 private static byte[] data = new byte[255];
 public static void main(String[] args) throws IOException {
 for (int i = 0; i < data.length; i++) data[i] = (byte) i;
 ServerSocketChannel server = ServerSocketChannel.open();
 server.configureBlocking(false);
 server.socket().bind(new InetSocketAddress(9000));
 Selector selector = Selector.open();
 server.register(selector, SelectionKey.OP_ACCEPT);
 while (true) {
 selector.select();
 Set readyKeys = selector.selectedKeys();
 Iterator iterator = readyKeys.iterator();
 while (iterator.hasNext()) {
 SelectionKey key = (SelectionKey) iterator.next();
 iterator.remove();
 try {
 if (key.isAcceptable()) {
 SocketChannel client = server.accept();
 System.out.println("Accepted connection from " + client);
 client.configureBlocking(false);
 ByteBuffer source = ByteBuffer.wrap(data);
 SelectionKey key2 = client.register(selector, SelectionKey.OP_WRITE);
 key2.attach(source);
 }
 else if (key.isWritable()) {
 SocketChannel client = (SocketChannel) key.channel();
 ByteBuffer output = (ByteBuffer) key.attachment();
 if (!output.hasRemaining()) {
 output.rewind();
 }
 client.write(output);
 }
 }
 catch (IOException ex) {
 key.cancel();
 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 key.channel().close();
 }
 catch (IOException cex) {}
 }
 }
 }
 }
}

That, in a nutshell, is how a nonblocking server is written. Now that you've seen the big picture, let's
drill down and look more closely at the individual classes involved in this system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.2. Selectable Channels

By default, channels (and streams) block. That is, when you write to or read from the channel, the
current thread stops until the writing or reading is complete. (The same is true for connecting and
accepting connections, but I'm just going to say writing and reading from here on and let the
connecting and accepting be understood.) In nonblocking mode, by contrast, the read or write
happens as fast as the hardware allows. It doesn't take absolutely zero time, but it goes as quickly as
it possibly can. If the thread has to wait for more data to arrive from the network, for an Ethernet
card buffer to be released by some other process, or for some other relatively long-lasting operation,
it instead returns having read or written only some or even none of the bytes it was asked to read or
write. Your program needs to keep track of how many bytes have been read or written and try again
with the bytes that haven't been read or written. If the program doesn't have anything else to do, it
might as well operate in blocking mode. However, if the program does have something else it can do
in the meantimefor instance, a network server might process a different connectionthen this is
worthwhile.

Not all channels support nonblocking I/O. Network channels do, but file channels don't. Those
channels that do support nonblocking I/O are all subclasses of the
java.nio.channels.SelectableChannel class.

All channels are created in blocking mode. To switch a channel to nonblocking mode, you pass false
to the configureBlocking() method:

public abstract SelectableChannel configureBlocking(boolean block)
 throws IOException

This is normally the first thing you do after opening the channel. You can actually change a channel
from blocking to nonblocking or vice versa later in its life if it's not currently associated with any
Selectors, but this is unusual.

Once you've put a channel in nonblocking mode, you don't read or write it immediately. Instead, you
register a Selector with the channel. You then ask the Selector if the channel is ready for reading or
writing. If the Selector says, "Yes, the channel is ready," you go ahead and read it or write it.
Otherwise, you do something else. (A little more accurately, you ask the Selector which of its
channels are ready for some operation and you operate on the channels the Selector says are ready.
You don't ask it about individual channels.)

The register() method registers a Selector with the channel:

public abstract SelectionKey register(Selector selector, int operations)
 throws ClosedChannelException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each channel can be registered only once with any given Selector object. Otherwise, however, there
is a many-to-many relationship between Selectors and channels. Each Selector normally monitors
many different channels, and each channel may be registered with several different Selectors. The
most common usage pattern, though, is that each channel registers only a single Selector.

The second argument specifies the operations for which the Selector should select. There are four:
reading, writing, accepting, and connecting. Server socket channels normally register only for
accepting. Socket channels register for any or all of the other three. These operations are
represented as named constants in the SelectionKey class. These constants follow the usual powers
of two pattern, so you can register for more than one operation using the bitwise or operator. For
example, this statement registers a channel for both reading and writing:

channel.register(selector, SelectionKey.OP_READ | SelectionKey.OP_WRITE);

A second overloaded version of the register() method adds a third argument for an attachment:

public abstract SelectionKey register(
 Selector selector, int operations, Object attachment)
 throws ClosedChannelException

Neither the channel nor the Selector uses the attachment object, and it can be null. It's there for
your own use. Most programs use it to store a ByteBuffer or other object that tracks the data being
written to or read from the channel.

Both register() methods return a SelectionKey object that represents the unique connection
between this channel and this Selector. More often than not, however, the return value is ignored.
The Selector gives you back the key when you need it.

If you need to change the operations of interest (e.g., changing reading to writing, or read-only to
read/write), you can call the register() method a second time. This also changes the attachment,
but it does not change the key. The same key is always returned for a particular
Selector/SelectableChannel pair. If the key has already been cancelled, reregistering throws a
CancelledKeyException.

The register() and configureBlocking() methods are threadsafe, but they may block for a short
period of time when used concurrently. You can also synchronize your own code on the same lock
object, which is returned by the blockingLock() method:

public abstract Object blockingLock()

Several getter methods correspond to the setter methods. The isBlocking() method returns true if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a channel is in blocking mode and false otherwise:

public abstract boolean isBlocking()

The isRegistered() method returns true if one or more Selectors are registered with this channel
and false otherwise:

public abstract boolean isRegistered()

The keyFor() method returns the SelectionKey corresponding to a particular Selector:

public abstract SelectionKey keyFor(Selector sel)

The validOps() method returns a combination of bit flags specifying which operations are and are
not available to this channel:

public abstract int validOps()

It's rare to need any of these. Most of the time your own code creates the SelectableChannel objects
you use, and you know exactly what state they're in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.3. Selectors

The java.nio.channels.Selector class is the crucial component of nonblocking I/O. It is the class
that enables your program to determine which channels are ready to be accessed when. The only
constructor is protected, and subclassing this class yourself would be unusual. Instead, you create a
Selector by opening it with the static Selector.open() method:

public static Selector open() throws IOException

Each Selector may be registered with several SelectableChannels, as discussed in the last section.
Registration is threadsafe and ongoing. You can register the Selector with various channels at any
time.

When your program has a little time to do some work, you ask the Selector which of its channels are
ready, that is, which channels can be read or written without blocking. You do this by invoking one of
these three methods:

public abstract int selectNow() throws IOException
public abstract int select() throws IOException
public abstract int select(long timeout) throws IOException

All three methods return the number of keys whose readiness states were changed by this selection.
Important: this is not necessarily the number of keys that are ready to be operated on! Extra keys
may well have been ready before the selection and may still be ready. You rarely need to know how
many keys' readiness states were changed by the selection, so the return values of these methods
are generally ignored.

The selectNow() method is nonblocking, whereas the other two methods block. selectNow()
returns immediately even if it can't select anything. The other two methods return only after they
select some channel, the thread is interrupted, or the timeout expires. Even in nonblocking I/O, you
tend to use blocking selects if there's nothing for the program to do except I/O. Example 16-2 is a
case in point. However, if your program can do something useful even when no channel is ready, you
might use selectNow() instead of select().

After you've called one of these methods, the selectedKeys() method returns a java.util.Set
containing keys for all the ready channels registered with this Selector:

public abstract Set selectedKeys()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The returned set contains zero or more SelectionKey objects. Like a lot of similar methods, Java 5
retrofits this method's signature with generics to make it a little more typesafe:

public abstract Set<SelectionKey> selectedKeys()

In both Java 1.4 and 5, you normally iterate though this Set using an Iterator and process each key
in turn, as shown in Example 16-2. However, there are other patterns. For instance, you could
reselect after processing one key:

while (true) {
 selector.select();
 Set readyKeys = selector.selectedKeys();
 Iterator iterator = readyKeys.iterator();
 if (iterator.hasNext()) {
 SelectionKey
 key = (SelectionKey) iterator.next();
 iterator.remove();
 // process key...
 }
}

Selectors may use native system resources. Once you're done with one, you should close it by
invoking its close() method:

public abstract void close() throws IOException

Otherwise, your program may leak memory and other resources, though details vary by platform.
Closing a Selector deregisters all its associated keys and wakes up any threads waiting on the
select() methods. Any further attempts to use a closed Selector or one of its keys throws an
exception. If you don't know whether a Selector is closed, you can check with the isOpen()
method:

public abstract boolean isOpen()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Technically, this checks to see only whether the Selector is open. In some rare
cases, this method could return false because the Selector has been created
but not yet opened. However, this is remotely plausible only if you're writing
your own implementation of all these classes.

In a high-volume system, even the blocking select methods are likely to return very quickly. In a
less stressful environment, though, select() can block a thread for some time. Another thread can
wake up a thread blocked by a select() method by invoking the Selector's wakeup() method:

public abstract Selector wakeup()

You can actually wake up a Selector before it selects. In this case, the next call to select() returns
immediately.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.4. Selection Keys

The java.nio.channels.SelectionKey class encapsulates the information about a channel registered
with a Selector. Each SelectionKey object holds the following information:

The channel

The Selector

An arbitrary object attachment, normally used to point to the data the channel is reading or
writing

The operations the channels is interested in performing

The operations the channel is currently ready to perform without blocking (or, more accurately,
was ready to perform when select() was last called)

Most of the methods in the SelectionKey class amount to setters and getters for this information.
There's also one method that cancels the key.

The only constructor in SelectionKey is protected, but it's rare that you yourself extend this class.
Instead, SelectionKey objects tend to be returned by the selectedKeys() method of Selector and
the register() methods of SelectableChannel. The first thing you'll usually want to do with such a
key is find out what its channel is ready to do: read, write, connect, or accept. The readyOps()
method returns a group of bitwise flags inside an int indicating which operations are possible on this
key's channel:

public abstract int readyOps()

The low-order four bits of the return value are 1 or 0, depending on whether the key's channel is
ready for reading, writing, connecting, or accepting. The specific masks to use for the flags are stored
in named constants:

public static final int OP_READ
public static final int OP_WRITE
public static final int OP_CONNECT
public static final int OP_ACCEPT

For example, this code fragment checks to see if the key is ready for reading:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (key.readyOps() & SelectionKey.READ != 0) {
 // read from the key's channel...
}

However, it's usually more convenient to ask about each of the four operations individually with these
four methods:

public final boolean isReadable()
public final boolean isWritable()
public final boolean isConnectable()
public final boolean isAcceptable()

If the channel is ready for reading, read it; if the channel is ready for writing, write it; and so on. Of
course, you can simply ignore operations you aren't interested in performing. Example 16-2 didn't
bother to check if the channel was ready for connecting or reading because it was never going to do
either of those operations. However, in the most general case, a Selector is registered with multiple
channels, some of which are used for reading, some for writing, and some for both. The Selector
only tells you which channels are ready. It does not read or write or accept or connect itself.

The interestOps() methods set and get the operations the key's Selector is interested in
performing:

public abstract int interestOps()
public abstract SelectionKey interestOps(int ops)

They use the same bitwise constants that readyOps() does. The no-args version tells you the
operations for which this key will be tested. The one-arg version lets you change those operations, so
you can change the Selector from checking for reading to checking for writing or vice versa, for
example.

16.4.1. Getters

The Selector returns a set of SelectionKeys to indicate which channels are ready. It does not return
the channels themselves. To read or write (or accept or connect), you have to get the channel from
its key using the channel() method:

public abstract SelectableChannel channel()

You usually cast the result to a more specific subclass of SelectableChannel. In context, it's normally

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obvious what kind of channel is returned. For instance, if you've only registered socket channels with
a Selector for reading, the channel() method of any key that is ready for reading returns a
SocketChannel:

SocketChannel client = (SocketChannel) key.channel();

There's no corresponding setter method. You cannot change the channel with which a key is
associated. One channel may have multiple keys, but each key has only a single channel.

Less commonly, you might need to get the Selector given a key. That is what the selector()
method does:

public abstract Selector selector()

16.4.2. Attachments

Because this is nonblocking I/O, it may not be possible to write or read as much data as you want
with each call. For instance, when reading from a network, a thousand bytes might be waiting for you
in the Ethernet card's buffer that can be read immediately. However, there could be megabytes of
data yet to come. You need some sort of data structure where you can store the data you've read
that keeps track of your place in the stream. Exactly what this data structure is depends on what
you're trying to do. For instance, it might be a byte array, or a file, or a string. Often, this data
structure is represented as some sort of java.nio.Buffer object. This is exactly what buffers are
designed to do.

Whatever this data structure is, it is normally attached to the key using the attach() method (or the
register() method in SelectableChannel) and retrieved from the key using the attachment()
method:

public final Object attach(Object ob)
public final Object attachment()

It would be more conventional to call these methods getAttachment() and
setAttachment(), but the people who designed the NIO API seem to have
really disliked that common convention. It's used almost nowhere in the
java.nio packages.

16.4.3. Canceling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can deregister a Selector from a channel by canceling its key with the cancel() method:

public abstract void cancel()

This is not required as strongly as closing a stream is required. However, it can be a good idea if
you're finished with a channel and do not want the Selector to monitor it any longer.

The isValid() method tells you whether or not the key is still meaningful:

public abstract boolean isValid()

It returns true if the key's channel and Selector are both open and the key has not been cancelled.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.5. Pipe Channels

Pipe channels move data between two threads, one of which writes and one of which reads. The basic
ideas are essentially the same as for piped streams. Data is written onto a Pipe.SinkChannel and
then read from the connected Pipe.SourceChannel.

The details are about as simple as they can be. Pipe.SinkChannel is a subclass of
AbstractSelectableChannel and implements WritableByteChannel and GatheringByteChannel:

public abstract static class Pipe.SinkChannel extends AbstractSelectableChannel
 implements WritableByteChannel, GatheringByteChannel

Pipe.SourceChannel is also a subclass of AbstractSelectableChannel and implements
ReadableByteChannel and ScatteringByteChannel:

public abstract static class Pipe.SinkChannel extends AbstractSelectableChannel
 implements ReadableByteChannel, ScatteringByteChannel

Both are public inner classes in the java.nio.channels.Pipe class. Setting up a pipe between two
threads is accomplished as follows:

Open a pipe with the static Pipe.open() method.1.

Get the SinkChannel from the pipe and pass it to the producing thread.2.

Get the SourceChannel from the pipe and pass it to the consuming thread.3.

The producing thread writes data onto the SinkChannel using the usual WritableByteChannel
channel methods.

4.

The consuming thread reads data from the SourceChannel using the usual ReadableByteChannel
methods.

5.

Of course, since this is multithreaded, steps 4 and 5 happen in parallel. If anything, this is a little
simpler than using PipedInputStream and PipedOutputStream to do the same job. Furthermore,
because both channels can be put into nonblocking mode, each thread can do other things if it's
running ahead of its partner. The speeds of the two channels aren't locked together.

As an example of this, I'll reproduce the Fibonacci producers and consumers from Chapter 9, this
time implemented with channels and buffers instead of streams. To make this a little more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interesting, I'll do it with BigIntegers instead of plain ints, since Fibonacci numbers grow
exponentially. This is going to require a protocol for recognizing number boundaries in the stream.
The protocol I chose is that the producing thread first writes the number of integers it plans to write
onto the stream as a 4-byte int. It then writes the length (in bytes) of each number as a 4-byte int,
then writes the bytes that make up that number.

The consuming thread first reads the number of numbers to read. For each such number, it then
reads the size of the number from the channel, reads exactly that many bytes from the channel, and
converts that to a BigInteger. This does set a theoretical upper limit on the size of the numbers that
can be calculated, but in practice you'd run out of heap space long before you hit that limit.

This program has three classes: FibonacciProducer and FibonacciConsumer, which are subclasses of
THRead, and NewIOFibonacciDriver, which sets up and runs the threads.Example 16-3 shows the
driver class. It opens a pipe and retrieves its source and sink channels, which it uses to construct
FibonacciProducer and FibonacciConsumer objects. It then starts those two threads.

Example 16-3. The NewIOFibonacciDriver class

import java.io.IOException;
import java.nio.channels.*;
public class NewIOFibonacciDriver {
 public static void main (String[] args) throws IOException {
 Pipe pipe = Pipe.open();
 WritableByteChannel out = pipe.sink();
 ReadableByteChannel in = pipe.source();
 FibonacciProducer producer = new FibonacciProducer(out, 200);
 FibonacciConsumer consumer = new FibonacciConsumer(in);
 producer.start();
 consumer.start();
 }
}

Example 16-4 shows the FibonacciProducer class, a subclass of Thread. This class does not directly
use a sink channel; it just writes data onto the channel it's given in its constructor. After it has
finished writing the requested amount of numbers, the channel is closed.

Example 16-4. The FibonacciProducer class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.IOException;
import java.math.BigInteger;
import java.nio.*;
import java.nio.channels.*;
public class FibonacciProducer extends Thread {
 private WritableByteChannel out;
 private int howMany;
 public FibonacciProducer(WritableByteChannel out, int howMany) {
 this.out = out;
 this.howMany = howMany;
 }
 public void run() {
 BigInteger low = BigInteger.ONE;
 BigInteger high = BigInteger.ONE;
 try {
 ByteBuffer buffer = ByteBuffer.allocate(4);
 buffer.putInt(this.howMany);
 buffer.flip();
 while (buffer.hasRemaining()) out.write(buffer);
 for (int i = 0; i < howMany; i++) {
 byte[] data = low.toByteArray();
 // These numbers can become arbitrarily large, and they grow
 // exponentially so no fixed size buffer will suffice.
 buffer = ByteBuffer.allocate(4 + data.length);
 buffer.putInt(data.length);
 buffer.put(data);
 buffer.flip();
 while (buffer.hasRemaining()) out.write(buffer);
 // find the next number in the series
 BigInteger temp = high;
 high = high.add(low);
 low = temp;
 }
 out.close();
 System.err.println("Closed");
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Example 16-5 shows the FibonacciConsumer class. It could just as well have been called the
BigIntegerConsumer class, since it doesn't know anything about Fibonacci numbers. Its run()
method merely reads the size of the BigInteger from the source channel, reads that many bytes,
and converts those bytes into a BigInteger, which it then prints. It repeats this until the channel is
exhausted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 16-5. The FibonacciConsumer class

import java.io.IOException;
import java.math.BigInteger;
import java.nio.channels.*;
import java.nio.*;
public class FibonacciConsumer extends Thread{
 private ReadableByteChannel in;
 public FibonacciConsumer(ReadableByteChannel in) {
 this.in = in;
 }
 public void run() {
 ByteBuffer sizeb = ByteBuffer.allocate(4);
 try {
 while (sizeb.hasRemaining()) in.read(sizeb);
 sizeb.flip();
 int howMany = sizeb.getInt();
 sizeb.clear();
 for (int i = 0; i < howMany; i++) {
 while (sizeb.hasRemaining()) in.read(sizeb);
 sizeb.flip();
 int length = sizeb.getInt();
 sizeb.clear();
 ByteBuffer data = ByteBuffer.allocate(length);
 while (data.hasRemaining()) in.read(data);
 BigInteger result = new BigInteger(data.array());
 System.out.println(result);
 }
 }
 catch (IOException ex) {
 System.err.println(ex);
 }
 finally {
 try {
 in.close();
 }
 catch (Exception ex) {
 // We tried
 }
 }
 }
}

One thing that's a little unusual about this example is the use of two buffers to read the channel. This
is necessary because the first buffer has to read the size of the second buffer. The first buffer can be
reused. However, because the size of the numbers increases as we read further, new buffers are
necessary to read the Fibonacci numbers themselves. It would probably be possible to contrive a way

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to reuse the same buffer repeatedly if it were too small for the numbers, but that seemed
unnecessarily complex for no particular benefit.

There's not a lot of call for nonblocking mode in this example because the producer thread only writes
and the consumer thread only reads, and both on only one channel. If either thread had something
else to do it might make sense to use a Selector and put these channels into nonblocking mode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART V: The File System
Chapter 17: Working with Files

Chapter 18: File Dialogs and Choosers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 17. Working with Files
You've learned how to read and write data in files using file input streams, file output streams, and
file channels, but that's not all there is to files. Files can be created, moved, renamed, copied,
deleted, and otherwise manipulated without respect to their contents. Files are also often associated
with metainformation that's not strictly part of the contents of the file, such as the time the file was
created, the icon for the file, the permissions that determine which users can read or write to the file,
and the name of the file.

While the view of the contents of a file as an ordered sequence of bytes used by file input and output
streams is almost standard across platforms, the metainformation is not. The java.io.File class
attempts to provide a platform-independent abstraction for common file operations and
metainformation. Unfortunately, this class really shows its Unix roots. It works well on Unix, but at
best adequately on Windows and the Macintosh (even Mac OS X). Coming up with something that
genuinely works on all platforms is an extremely difficult problem.

File manipulation is thus one of the real difficulties of cross-platform Java programming. Before you
can hope to write truly cross-platform code, you need a solid understanding of the filesystem basics
on all the target platforms. This chapter tries to cover those basics for the major platforms that
support Java: Unix/Linux, Windows/DOS, and the Mac. It then shows you how to write your file code
so that it's as portable as possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.1. Understanding Files

As far as a Java program knows, a file is a sequential set of bytes stored on a random access medium
such as a hard disk or CD. There is a first byte in the file, a second byte, and so on, until the end of
the file. In this way, a file is similar to a stream. However, a program can jump around in a file,
reading first one part of a file and then another. This isn't possible with a stream.

17.1.1. Filenames

Every file has a name. The format of the filename is determined by the operating system. For
example, in DOS and Windows 3.1, filenames are 8 ASCII characters long with a 3-letter extension.
README.TXT is a valid DOS filename, but Read me before you run this program or your hard drive
will get trashed is not. All ASCII characters from 32 up (that is, noncontrol characters), except for
the 15 punctuation characters (+=/][":;,?*\<>|) and the space character, may be used in filenames.
Filenames are case-insensitive (though generally rendered as all capitals). README.TXT and
readme.txt are the same filename. A period may be used only as a separator between the 8-
character name and the 3-letter extension. Furthermore, the complete path to the file, including the
disk drive and all directories, may not exceed 80 characters in length.

On the other hand, Read me before you run this program or your hard drive will get trashed is a valid
Win32 (Windows 95 and later) filename. On those systems filenames may contain up to 255
characters, though room also has to be left for the path to the file. The full pathname may not
exceed 255 characters. Furthermore, Win32 systems allow any Unicode character with value 32 or
above in filenames, except \/*<>:?" and |. In particular, the +,;=][characters, forbidden in DOS and
Windows 3.1, are legal in Win32 filenames.

Win32 also makes short versions of the filename that conform to the DOS 8.3
format available to non-32-bit applications that don't understand the long
filenames. Java understands the long filenames and uses them in preference to
the short form.

Read me before you run this program or your hard drive will get trashed is not a valid Mac OS 9
filename because on Mac OS 9 file and directory names cannot be longer than 31 bytes. Volume
names cannot be longer than 27 bytes. However, there's no fixed length to a full path name. The
exact number of characters allowed in a name depends on the number of bytes per character used
by the local encoding. Read me or your HD will be trashed only contains 27 bytes in most encodings
and is thus a valid Macintosh file, directory, and volume name. Mac OS 9 filenames can contain
slashes and backslashes (unlike Windows filenames) but may not contain colons. Otherwise, any
ASCII characters, as well as 8-bit MacRoman characters like ® and , can be used in a Mac filename.

Of course today most Mac users are running Mac OS X, which is a version of Unix. Just as Windows
converts names to 8.3 filenames as necessary to support older applications, so too does Mac OS X

http://lib.ommolketab.ir
http://lib.ommolketab.ir

convert really long filenames to shorter ones for older apps. Java programs running on Mac OS X only
see the longer Unix style names.

Pretty much all modern Unix systems including Linux and Mac OS X allow at least 255 characters in a
filename, and none of those 255 characters needs to be left for a path. Just about any ASCII
character except the forward slash (/) and the null character (ASCII 0) are valid in a Unix filename.
However, because Unix makes heavy use of a command line, filenames containing spaces, single
quotation marks, double quotes, hyphens, or other characters interpreted by the Unix shell are often
inconvenient. Underscores (which aren't interpreted by the Unix shell) are safe and often used in
place of problematic characters (for example, Read_me_or_your_HD_will_be_trashed.)

Character sets are an issue for filenames too. Some Unixes use ISO 8859-1, some use ASCII only,
and some use Unicode. Worse yet, the names of the files can change from one user to the next
depending on how they've configured their locale. American Mac OS 9 filenames are given in the 8-bit
MacRoman character set, but internationalized versions of the Mac OS use different character sets.
Mac OS X uses Unicode throughout. However, some bugs in Apple's Java implementation prevent it
from reading or writing files whose names contain characters from outside the Basic Multilingual
Plane. Windows 95 and later, fortunately, use Unicode exclusively, and it pretty much works.
However, the reliable lowest common denominator character set for filenames is still ASCII.

Case sensitivity is a problem too. Readme.txt and README.TXT are the same file on Mac OS 9 and
Windows but represent two different files on Unix. Mac OS X is basically Unix, but in this respect it's
actually more similar to Windows and the classic Mac OS. Mac OS X filenames are case insensitive.
(Actually case sensitive filenames are an option when a disk is formatted, but the default that almost
everyone uses is case insensitive.)

Handling different filename conventions is one of the difficulties of doing real cross-platform work. For
best results:

Use only printable ASCII characters, periods, and underscores in filenames.

Avoid punctuation characters in filenames where possible, especially forward and back slashes.

Never begin a filename with a period, a hyphen, or an @.

Avoid extended character sets and accented characters like ü, ç, and é.

Use mixed-case filenames (since they're easier to read), but do not assume case alone will
distinguish between filenames.

Try to keep your filenames to 32 characters or less.

If a filename can be stored in a DOS-compatible 8.3 format without excessive effort, you might
as well do so. However, Java itself assumes a system on which files have long names with four-
and five-character extensions, so don't go out of your way to do this.

17.1.2. File Attributes

Most operating systems also store a series of attributes describing each file. The exact attributes a
file possesses are platform-dependent. For example, on Unix a file has an owner ID, a group ID, a
modification time, and a series of read, write, and execute flags that determine who is allowed to do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

what with the file. If an operating system supports multiple types of filesystems (and most modern
desktop and server operating systems do), the attributes of a file may vary depending on what kind
of filesystem it resides on.

Many Mac files also have a type code and a creator code as well as a potentially unlimited number of
attributes that determine whether a file is a bundle or not, is an alias or not, has a custom icon or
not, and various other characteristics mostly unique to the Mac platform.

DOS filesystems store a file's last modification date, the actual size of the file, the number of
allocation blocks the file occupies, and essentially boolean information about whether or not a file is
hidden, read-only, a system file, or whether the file has been modified since it was last backed up.

Modern versions of Windows support multiple kinds of filesystems including FAT (the basic DOS-
compatible filesystem) and NTFS (NT File System). Each of these filesystems supports a slightly
different set of attributes. They all support a superset of the basic DOS file attributes, including
creation time, modification time, access time, allocation size, file size, and whether the file is read-
only, system, hidden, archive, or control.

Any cross-platform library like the java.io package is going to have trouble supporting all these
attributes. Java can read a fairly broad cross-section of these possible attributes for which most
platforms have some reasonable equivalent. It does not allow you easy access to platform-specific
attributes, like Mac file types and creator codes, Windows' archive attributes, or Unix group IDs.

17.1.3. Filename Extensions and File Types

Filename extensions often indicate the type of a file. For example, a file that ends with the four-letter
extension .java is presumed to be a text file containing Java source code; a file ending in the five-
letter extension .class is assumed to contain compiled Java byte code; a file ending in the 3-letter
extension .gif is assumed to contain a GIF image.

What does your computer do when you double-click on the file panther.gif? If your computer is a
Macintosh, it opens the file in the program that created the file. That's because the Mac stores a four-
letter creator code for every file on the disk. Assuming the application associated with that creator
code can be found (it can't always, though), the file panther.gif is opened in the creating program. On
the other hand, if your computer is a Windows PC or a Unix workstation, the creating program is not
necessarily opened. Instead, whichever program is registered as the viewer of .gif files is launched
and used to view the file. In command-line environments, like the Unix shell, this isn't really an issue
because you begin by specifying the program to run (that is, you type xv panther.gif, not simply
panther.gif) but in GUI environments, the program that's opened may not be the program you want
to use.

File extensions have the further disadvantage that they do not really guarantee the content type of
their document and are an unreliable means of determining the type of a file. Users can easily change
them. For example, the simple DOS command copy HelloWorld.java HelloWorld.gif causes a text
file to be misinterpreted as a GIF image. Filename extensions are only as reliable as the user who
assigned them. What's more, it's hard to distinguish between files that belong to different
applications that have the same type. For instance, many users are surprised to discover that after
installing Firefox, all their HTML files appear to belong to Firefox instead of Internet Explorer.

The Macintosh solved this problem over two decades ago. Almost every Mac file has a four-letter type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code like "TEXT" and a four-letter creator code like "R*ch". Since each file has both a type code and a
creator code, a Mac can distinguish between files that belong to different applications but have the
same type. Installing Firefox doesn't mean that Firefox suddenly thinks it owns all your Internet
Explorer documents. Software vendors register codes with Apple so that companies don't accidentally
step on each other's toes. Since codes are almost never seen by end users, there's not a huge rush
to snap up all the good ones like "TEXT" and "HTML". Overall, this is a pretty good system that's
worked incredibly well for more than twenty years. Apple actually tried to get rid of it in favor of
Unix/DOS style file extensions when they moved to Mac OS X, but backed down after massive
outcries from developers and users alike. Neither Windows nor Unix has anything nearly as simple
and trouble-free. However, because Windows and Unix have not adopted Mac-style type and creator
codes, Java does not have any standard means for accessing them.

The com.apple.eio.FileManager class included with Apple's port of the JDK 1.4
and 1.5 provides access to Mac-specific type and creator codes and other file
attributes. Steve Roy's open source MRJAdapter library
(https://mrjadapter.dev.java.net/) provides this for almost every version of
Java Apple has ever shipped.

None of these solutions are perfect. On a Mac, you're likely to want to use Photoshop to create GIF
files but Preview or Firefox to view them. Furthermore, it's relatively hard to say that you want all
text files opened in BBEdit. On the other hand, the Windows solution is prone to user error; filename
extensions are too exposed. For example, novice HTML coders often can't understand why their HTML
files painstakingly crafted in Notepad open as plaintext in Internet Explorer. Notepad surreptitiously
inserts a.txt extension on all the files it saves unless the filename is enclosed in double quote marks.
For instance, a file saved as HelloWorld.html actually becomes HelloWorld.html.txt while a file saved
as "HelloWorld.html" is saved with the expected name. Furthermore, filename extensions make it
easy for a user to lie about the contents of a file, potentially confusing and crashing applications. (You
can lie about a file type on a Mac too, but it takes a lot more work.) Finally, Windows provides
absolutely no support for saying that you want one group of GIF images opened in Photoshop and
another group opened in Paint.

Some algorithms can attempt to determine a file's type from its contents, though these are also
error-prone. Many file formats begin with a particular magic number that uniquely identifies the
format. For instance, all compiled Java class files begin with the number 0xCAFEBABE (in
hexadecimal). If the first four bytes of a file aren't 0xCAFEBABE, it's definitely not a Java class file.
Furthermore, barring deliberate fraud, there's only about a one in four billion chance that a random,
non-Java file will begin with those four bytes. Unfortunately, only a few file formats require magic
numbers. Text files, for instance, can begin with any four ASCII characters. You can apply some
heuristics to identify such files. For example, a file of pure ASCII should not contain any bytes with
values between 128 and 255 and should have a limited number of control characters with values less
than 32. But such algorithms are complicated to devise and imperfect. Even if you are able to identify
a file as ASCII text, how would you determine whether it contains Java source code or a letter to
your mother? Worse yet, how could you tell whether it contains Java source code or C source code?
It's not impossible, barring deliberately perverse files like a concatenation of a C program with a Java
program, but it's difficult and often not worth your time.

https://mrjadapter.dev.java.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.2. Directories and Paths

Modern operating systems organize files into hierarchical directories. Directories are also called
folders, especially by Mac users. Each directory contains zero or more files or other directories. Like
files, directories have names and attributes, thoughdepending on the operating systemthose names
and attributes may be different from the attributes allowed for files.

17.2.1. Paths and Separators

To specify a file completely, you don't just give its name. You also give the directory the file lives in.
Of course, that directory may itself be inside another directory, which may be in another directory,
until you reach the root of the filesystem. The complete list of directories from the root to a specified
file plus the name of the file itself is called the absolute path to the file. The exact syntax of absolute
paths varies from system to system. Here are a few examples:

DOS

C:\PUBLIC\HTML\JAVAFAQ\INDEX.HTM
Win32

C:\public\html\javafaq\index.html
Mac OS 9

Macintosh HD:public:html:javafaq:index.html
Unix/Linux/Mac OS X

/Volumes/Macintosh HD/public/html/javafaq/index.html

All of these strings reference a file named index.html on the primary hard drive in the javafaq
directory, which is itself in the html directory, which is in the public directory. One obvious difference
is the file separator character. Unix (including Linux and Mac OS X) use a forward slash (/) to
separate directories. DOS-based filesystems, including the variants of Windows and OS/2, use a
backslash (\). Other platforms may use something completely different.

The separator used on a given system is available from the mnemonic constants
java.io.File.separator and java.io.File.separatorChar. File.separatorChar is the first character
of the string File.separator. All operating systems I'm familiar with use a single character separator
string, so these two variables are essentially the same. The File.separator variable is set from the
system property file.separator:

public static final String separator = System.getProperty("file.separator");
public static final char separatorChar = separator.charAt(0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System Properties

Several system properties provide full paths to directories according to the local
filesystem conventions. The security manager permitting, you can use these to construct
cross-platform filenames. Such properties include:

java.home

The directory where Java is installed, e.g., /usr/local/java on many Unix systems.

java.class.path

The classpath contains many directories separated by the path separator
character.

user.home

The user's home directory.

user.dir

The current working directory.

There are also two related mnemonic constants, File.pathSeparator and File.pathSeparatorChar.
The path separator string is set from the system property path.separator. As with the separator
character, File.pathSeparatorChar is the first character in File.pathSeparator.

public static final String pathSeparator
 = System.getProperty("path.separator");
public static final char pathSeparatorChar = pathSeparator.charAt(0);

The path separator is used to separate two files (generally with complete pathnames) in a list of
paths such as a classpath. For example, with a separator of a slash and a path separator of a colon,
my classpath looks like this:

.:/usr/local/java/lib:/home/users/elharo/:/home/users/elharo/JavaDis/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now the bad news: although Java has a fairly powerful abstraction layer so that programmers don't
need to hardcode explicit separators and path separators, few programmers actually use this. Many
programmers simply assume that the file separator is a slash and the path separator is a colon and
hardcode those constants as "/" and ":". Therefore, to avoid breaking all this third-party code, Java
passes pathnames through a normalization phase that attempts to recognize the separator
conventions and convert those to the conventions of the local platform.

You probably don't need to know about the encoding at this level of detail unless you're trying to
manipulate filenames manuallyfor example, walking directories by looking for separator characters
rather than calling getParent(). The more you let Java do the work for you, the better off you'll be.
As long as you use the methods of the File class rather than parsing pathnames as strings, the
details should be transparent.

17.2.2. Relative versus Absolute Paths

There are two ways to reference a file, relative and absolute. Absolute addressing gives a complete
path to a file, starting with the disk or root of the filesystem and working its way down.
C:\PUBLIC\HTML\JAVAFAQ\INDEX.HTM, Macintosh HD:public:html:javafaq:index.htm, and
/public/html/javafaq/index.htm are all examples of absolute paths. Relative addressing does not use
a complete path to a file; instead, it specifies the path relative to the current working directory. A
relative pathname may point to a file in the current working directory by giving its name alone; other
times it may point to a file in a subdirectory of the current working directory by giving the name of
the subdirectory and the name of the file, and it may point to the parent of the current working
directory with the double period (..).

17.2.2.1. Absolute paths

On Unix, all mounted disks, whether local or mounted over the network, are combined into a single
virtual filesystem. The root of this filesystem is the directory called /. You generally do not need to
concern yourself with which physical disk any particular directory resides on, as long as that disk has
sufficient space. Absolute paths always begin with the root directory, /.

On Windows and Mac OS 9, there is no root directory. Each mounted disk partition or network server
is a separate and independent filesystem. On Windows, these disks are assigned drive letters. A: is
normally the floppy drive. B: is the second floppy drive (uncommon these days), C: is the primary
boot disk. D: is often the CD-ROM, though it can be an additional hard disk or partition as well. E:
through Z: can be used for further disks, partitions, or network servers. A full pathname begins with
the drive letter where the file resides, e.g., C:\PUBLIC\HTML\JAVAFAQ\INDEX.HTM.

Windows can also refer to remote machines on the network by specifying an additional level like this:
\\BIO\C\2PUBLIC\HTML\JAVAFAQ\INDEX.HTM. This path refers to a file called INDEX.HTM in the
directory JAVAFAQ in the directory HTML in the directory PUBLIC on the C drive of the machine BIO.

For these reasons and more, absolute pathnames are a royal pain to work with across platforms. You
should avoid hardcoding them in your programs whenever possible. Instead, you should calculate
them at runtime from system properties and user input.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.2.2.2. Relative paths

The following are some examples of relative paths:

Unix

html/index.html
DOS

HTML\INDEX.HTM
Win32

html\index.html
Mac OS 9

:html:index.html
Unix

index.html
DOS

INDEX.HTM
Win32

index.html
Mac OS 9

index.html

Note that a filename in isolation constitutes a relative path on all platforms.

Generally, the running application identifies one directory as the current working directory. Relative
pathnames are interpreted relative to the working directory. Normally, the current working directory
is the directory in which the application was launched. For example, if you started your program from
the command line in the /home/users/elharo directory, a relative path of classes/juggler.class would
point to a file with the absolute path /home/users/elharo/classes/juggler.class. On the Macintosh, the
current working directory is generally whichever one the application lives in.

The current working directory is fixed once a program starts running. Java provides no means to
change it.

Because the current working directory is unpredictable, you should not hardcode relative pathnames
into your application. A common solution is to distribute your program as a JAR archive, store the
data files in the JAR file, and retrieve them with the various geTResource(), geTResourceAsStream(
), and findResource() methods of java.lang.Class or java.lang.ClassLoader. This works
irrespective of the current working directory as long as the JAR archive has been placed somewhere
in the classpath.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.3. The File Class

Instances of the java.io.File class represent filenames on the local system, not actual files.
Occasionally, this distinction is crucial. For instance, File objects can represent directories as well as
files. Also, you cannot assume that a file exists just because you have a File object for a file.

public class File extends Object implements Serializable, Comparable

Although there are no guarantees that a file named by a File object actually exists, the File class
does contain many methods for getting information about the attributes of a file and for manipulating
those files. The File class attempts to account for system-dependent features like the file separator
character and file attributes.

Each File object contains a single String field called path that contains either a relative or absolute
path to the file, including the name of the file or directory itself:

private String path

Many methods in this class work solely by looking at this string. They do not necessarily look at any
part of the filesystem.

17.3.1. Constructing File Objects

The java.io.File class has three constructors. Each accepts some variation of a filename as an
argument. This one is the simplest:

public File(String path)

The path argument should be either an absolute or relative path to the file in a format understood by
the host operating system. For example, using Unix filename conventions:

File uf1 = new File("25.html");
File uf2 = new File("course/week2/25.html");
File uf3 = new File("/public/html/course/week2/25.html");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Much poorly written Java code implicitly assumes Unix filename conventions, and most VMs take this
into account. Therefore, code that assumes Unix conventions is likely to produce reasonable results
on most operating systems. Windows VMs generally allow you to use Windows conventions instead.
For example:

File wf1 = new File("25.htm");
File wf2 = new File("course\\week2\\25.html");
File wf3 = new File("D:\\public\\html\\course\\week2\\25.htm");

The double backslashes are merely the escape sequence for the single backslash in a string literal.
Otherwise, attempts to compile this code would generate an "Invalid escape character" error
message. Remember that \t is a tab, \n a linefeed, and so on. Here, however, we need a backslash
to simply be a backslash.

The second File constructor specifies an absolute or relative pathname and a filename:

public File(String directory, String filename)

For example:

File f2 = new File("course/week2", "25.html");

This produces a File object with the path field set to course/week2/25.html. The constructor is smart
enough to handle the case of directories with and without trailing separators. The third constructor is
identical to the second, except that the first argument is a File object instead of a string.

public File(File directory, String filename)

This third constructor is the most robust of the lot, provided the filename is only a filename like
readme.txt and not a relative path like cryptozip/readme.txt. The reason is that this constructor
guarantees the use of the local path separator character and is thus more platform-independent. You
can use this to build a file structure that works on all platforms regardless of path separators or
normalization routines. For example, suppose you want to build a File object that points to the file
com/elharo/io/StreamCopier.class. The following four lines do this without reference to the file
separator character:

File temp = new File("com");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

temp = new File(temp, "elharo");
temp = new File(temp, "io");
File scfile = new File(temp, "StreamCopier.class");

None of these constructors throw any exceptions. All the constructor does is set the path field; Java
never checks to see whether the file named by path actually exists or even whether the name passed
to the constructor is a valid filename. For example, the following File object causes problems on
Unix, OS/2, Mac OS 9, Mac OS X, and Windows, but you can still construct it:

File f = new File("-This is not a /nice\\ file:\r\nno it isn't");

Some methods in other classes also return File objects, most notably the java.awt.FileDialog and
javax.swing.JFileChooser methods discussed in the next chapter. Using file dialogs or choosers to
ask the user for a filename is preferable to hardcoding them or reading them from the command line
because file dialogs properly handle cross-platform issues and the distinctions between relative and
absolute paths.

One thing you may not have noticed about these constructors: since a File
object does not represent a file as much as a filename, these constructors do
not actually create files. To create a new file with Java, you can open a file
output stream to the file or invoke the createNewFile() method.

In Java 1.2 and later, construction of a File object includes normalization. This process reads
hardcoded pathnames and attempts to convert them to the conventions of the local platform. This
improves compatibility with code that's making assumptions about filenames. For instance, if a
Windows VM is asked to create a File object with the path
/public/html/javafaq/course/week2/index.html, it actually sets the path field to \public\ html\
javafaq\ course\week2\ index.html. The reverse process happens on Unix; backslashes are
converted to forward slashes. Because it can only really normalize separators, not filesystem roots,
this scheme works better for relative pathnames than absolute ones.

17.3.2. Listing the Roots

The static File.listRoots() method returns an array containing the roots of the filesystem as File
objects:

public static File[] listRoots()

On Unix, this array is likely to have length 1 and contain the single root /. On Windows, it probably
contains all the drive letters mapped to one device or another, whether or not there's actually any

http://lib.ommolketab.ir
http://lib.ommolketab.ir

media in the drive, e.g., A:\, C:\, D:\, E:\, F:\, G:\. If the security manager does not allow the
program to read a particular root, that root is not included in the returned list. If the security
manager does not allow the program to read any root, the returned list will have length zero. Do not
assume the array returned by listRoots() necessarily has any members! null is returned if the list
can't be determined at all. This is not the same thing as a zero-length array.

The list of roots may or may not contain drives that are mounted over the network. If the drive is
mounted in such a fashion that it pretends to be a local drive, it probably will be in the list. If the
filesystem does not look like a local drive, it probably won't appear in the list. For instance, on
Windows, network drives mapped to letters appear, but drives with UNC pathnames do not. Example
17-1 is a very simple program to list the roots and print them.

Example 17-1. RootLister

import java.io.*;
public class RootLister {
 public static void main(String[] args) {

 File[] roots = File.listRoots();
 for (int i = 0; i < roots.length; i++) {
 System.out.println(roots[i]);
 }
 }
}

Here's the output produced by RootLister on my Windows NT system. A: is the floppy drive. This
system doesn't have a second floppy, which would normally be B:. C:, D:, E:, and F: are all partitions
of the primary hard drive that appear to be separate drives. G: is an external hard drive, and H: is
the CD-ROM. I: is a Macintosh drive mounted over the LAN.

D:\JAVA\ioexamples\17>java RootLister
A:\
C:\
D:\
E:\
F:\
G:\
H:\
I:\

The output on Unix (including Mac OS X) is much simpler and is virtually guaranteed to look like this:

$ java RootLister

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/

17.3.3. Listing Information about a File

The File class contains many methods that return particular information about the file. Most of this
information can be gleaned from the path field alone without accessing the filesystem. Therefore,
most of these methods do not throw IOExceptions.

17.3.3.1. Does the file exist? Is it a normal file? Is it a directory?

Since a File object does not necessarily correspond to a real file on the disk, the first question you'll
probably want to ask is whether the file corresponding to the File object actually exists. This is
especially important if you're relying on a user to type a filename rather than select it from a dialog
because users routinely mistype filenames. The exists() method returns true if the file named in
this file object's path field exists or false if it doesn't:

public boolean exists()

There are two other ways to ask this question. The isFile() method returns TRue if the file exists
and is not a directory. On the other hand, the isDirectory() method returns true if the file exists
and is a directory.

public boolean isFile()
public boolean isDirectory()

The isDirectory() method considers Unix symbolic links and Mac aliases to directories to be
directories themselves; it does not consider Windows shortcuts to directories to be directories. All
three of these methods throw a security exception if the security manager does not allow the
specified file to be read. In fact, if the file couldn't be read if it did exist, isDirectory() tHRows an
exception whether the file actually exists or not. Revealing whether certain files exist can be a
security violation.

17.3.3.2. Filename and path

The getName() method takes no arguments and returns the name of the file as a string:

public String getName()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name does not include any part of the directory in which the file lives. That is, you get back
index.html instead of /public/html/javafaq/index.html. If the file is a directory like
/public/html/javafaq/, only the last name is returned (javafaq in this example).

The getPath() method returns the complete path to the file:

public String getPath()

This simply returns the path field. Therefore, the path is relative if the File object was constructed
with a relative path and absolute if the File object was constructed with an absolute path.
Furthermore, this method never throws IOExceptions. Consider Example 17-2. This simple program
constructs two File objects, one with a relative path and one with an absolute path, and prints the
name and path of each object.

Example 17-2. Paths

import java.io.*;
public class Paths {
 public static void main(String[] args) {
 File absolute = new File("/public/html/javafaq/index.html");
 File relative = new File("html/javafaq/index.html");
 System.out.println("absolute: ");
 System.out.println(absolute.getName());
 System.out.println(absolute.getPath());

 System.out.println("relative: ");
 System.out.println(relative.getName());
 System.out.println(relative.getPath());
 }
}

When the program is run on Unix, here's the output:

$ java Paths
absolute:
index.html
/public/html/javafaq/index.html
relative:
index.html
html/javafaq/index.html

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On Windows the output is a little different because the File constructor normalizes the file separator
character to the backslash:

D:\JAVA\ioexamples\17>java Paths
absolute:
index.html
\public\html\javafaq\index.html
relative:
index.html
html\javafaq\index.html

17.3.3.3. Absolute paths

The getAbsolutePath() method returns the complete path to the file starting from a filesystem root:

public String getAbsolutePath()

Examples of absolute paths include /public/html/javafaq/index.html and D:\JAVA\ioexamples\17 but
not html/javafaq/index.html or ioexamples\17. If the File object's path field is already an absolute
path, its value is returned. Otherwise, a separator character and the value of the path field are
appended to the value of the system property user.dir, which refers to the current working
directory. This method throws a security exception when run from untrusted code because untrusted
code cannot normally read the user.dir property.

If you need to know whether a file is specified by a relative or absolute path, you can call
isAbsolute():

public boolean isAbsolute()

This does not throw any security exceptions because it does not need to go outside the class to
determine whether or not a pathname is absolute. Instead, the check is performed by looking at the
first few characters of the path field. On Unix, an absolute path begins with a /. On Windows or OS/2,
an absolute path begins with a capital letter followed by a colon and a backslash, like C:\.

17.3.3.4. Canonical paths

Exactly what a canonical path is, and how it differs from an absolute path, is system-dependent, but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it tends to mean that the path is somehow more real than the absolute path. Typically, if the full path
contains aliases, shortcuts, shadows, or symbolic links of some kind, the canonical path resolves
those aliases to the actual directories they refer to. The canonical path is returned by the
getCanonicalPath() method:

public String getCanonicalPath() throws IOException

For example, suppose /bin/perl is a symbolic link to the real file at /usr/local/bin/perl, and you
construct a File object perlLink like this:

File perlLink = new File("/bin/perl");

perlLink.getAbsolutePath() returns /bin/perl, but perlLink.getCanonicalPath() returns
/usr/local/bin/perl.

getCanonicalPath() only resolves symbolic links. It does not resolve hard
links. That is, it resolves links created with "ln -s file link" but not "ln file
link."

getCanonicalPath() also removes relative references like the double period (..), which refers to the
parent directory in paths. For instance, suppose the current working directory is
/home/elharo/javaio/ioexamples/17.Then you create a File object like this:

File f = new File("../11/index.html");
String absolutePath = f.getAbsolutePath();
String canonicalPath = f.getCanonicalPath();

absolutePath is now /home/elharo/javaio/ioexamples/17/../11/index.html. However, canonicalPath
is /home/elharo/javaio/ioexamples/11/index.html.

On Windows, getCanonicalPath() normalizes the case of two paths so that C:\Documents\Books
and C:\DOCUMENTS\BOOKS are recognized as the same path. Mac OS X also normalizes the case.
Other Unixes with case sensitive filesystems do not. Usually, the normalized form is whatever was
initially provided for the file's name.

One use for canonical paths is to test whether two files are the same. You might need to do this if
you're reading from an input file and writing to an output file. While it might occasionally be possible
to read from and write to the same file, doing so always requires special care. For example, the
FileCopier program from Example 4-2 in Chapter 4 failed when the source and destination were the
same file. Now we can use canonical paths to correct that flaw by testing whether two files are the
same before copying, as shown in Example 17-3. If the files are the same, no copy needs to take

http://lib.ommolketab.ir
http://lib.ommolketab.ir

place.

Example 17-3. Safe FileCopier

import java.io.*;
public class SafeFileCopier {
 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.err.println("Usage: java FileCopier infile outfile");
 }
 else copy(new File(args[0]), new File(args[1]));
 }
 public static void copy(File inFile, File outFile) throws IOException {
 if (inFile.getCanonicalPath().equals(outFile.getCanonicalPath())) {
 // inFile and outFile are the same;
 // hence no copying is required.
 return;
 }
 InputStream in = null;
 OutputStream out = null;
 try {
 in = new BufferedInputStream(new FileInputStream(inFile));
 out = new BufferedOutputStream(new FileOutputStream(outFile));
 for (int c = in.read(); c != -1; c = in.read()) {
 out.write(c);
 }
 }
 finally {
 if (in != null) in.close();
 if (out != null) out.close();
 }
 }
}

I could test the files themselves, but since a single file may have multiple paths through aliases or
parent links, I'm still not guaranteed that the inFile and outFile aren't the same. But each file has
exactly one unique canonical path, so if inFile's canonical path is not equal to outFile's canonical
path, they can't possibly be the same file. Conversely, if inFile's canonical path is equal to outFile's
canonical path, they must be the same file.

The getCanonicalFile() method acts just like getCanonicalPath(), except that it returns a new
File object instead of a string:

public File getCanonicalFile() throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The File object returned has a path field that's the canonical path of the file. Both getCanonicalPath(
) and getCanonicalFile() can throw IOExceptions because both need to read the filesystem to
resolve aliases, shadows, symbolic links, shortcuts, and parent directory references.

17.3.3.5. Parents

The getParent() method returns a string containing everything before the last file separator in the
path field:

public String getParent()

For example, if a File object's path field is /home/users/elharo/javaio/ioexamples/11/index.html,
getParent() returns /home/users/elharo/javaio/ioexamples/11. If a File object's path field is
11/index.html, getParent() returns 11. If a File object's path field is index.html, getParent()
returns null. Filesystem roots have no parent directories. For these files, getParent() returns null.

The getParentFile() method does the same thing, except that it returns the parent as a new File
object instead of a string:

public File getParentFile()

17.3.3.6. File attributes

The File class has several methods that return information about the file, such as its length, the time
it was last modified, whether it's readable, whether it's writable, and whether it's hidden.

The canWrite() method indicates whether the program can write into the file referred to by this File
object. The canRead() method indicates whether the program can read from the file.

public boolean canRead()
public boolean canWrite()

Both these methods perform two checks. The first check determines whether Java's security
manager allows the file in question to be read or written; the second determines whether the
operating system allows the file to be read or written. If Java's security manager disallows the
access, a security exception is thrown. If the OS disallows the access, the method returns false but
does not throw any exceptions. However, attempting to read from or write to such a file will almost
certainly throw an IOException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java 6 adds a canExecute() method that tests whether the current application can execute the file
represented by the File object:

public boolean canExecute() // Java 6

Like canRead() and canWrite(), this method does not merely check the execute bit. The question is
whether the current program can launch the file (e.g., by Runtime's exec() methods).

The isHidden() method returns true if the file exists but is hidden; that is, it does not appear in
normal displays or listings. It returns false if the file isn't hidden or doesn't exist.

public boolean isHidden()

Exactly how a file is hidden varies from platform to platform. On Unix, any file whose name begins
with a period is hidden. On Windows, hidden files are identified by particular attributes. This method
throws a security exception if the security manager doesn't allow the file to be read.

The lastModified() method returns a long indicating the last time this file was modified:

public long lastModified()

The time is the number of milliseconds since midnight, January 1, 1970, Greenwich Mean Time.
However, in older VMs the conversion between this long and a real date is platform-dependent, so
it's only useful for comparing the modification dates of different files, not for determining the absolute
time a file was modified. This method throws a security exception if the security manager doesn't
allow the file to be read. It returns 0 if the file doesn't exist or the last modified date can't be
determined.

Finally, the length() method returns the number of bytes in the file or 0 if the file does not exist:

public long length()

This method throws a security exception if the security manager doesn't allow the file to be read.

17.3.3.7. An example

Example 17-4 is a character-mode program that lists all the available information about files named
on the command line. Names may be given as absolute or relative paths.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 17-4. The FileSpy program

import java.io.*;
import java.util.*;
public class FileSpy {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 if (f.exists()) {
 System.out.println("Name: " + f.getName());
 System.out.println("Absolute path: " + f.getAbsolutePath());
 try {
 System.out.println("Canonical path: " + f.getCanonicalPath());
 }
 catch (IOException ex) {
 System.out.println("Could not determine the canonical path.");
 }

 String parent = f.getParent();
 if (parent != null) {
 System.out.println("Parent: " + f.getParent());
 }
 if (f.canWrite()) System.out.println(f.getName() + " is writable.");
 if (f.canRead()) System.out.println(f.getName() + " is readable.");
 if (f.isFile()) {
 System.out.println(f.getName() + " is a file.");
 }
 else if (f.isDirectory()) {
 System.out.println(f.getName() + " is a directory.");
 }
 else {
 System.out.println("What is this?");
 }
 if (f.isAbsolute()) {
 System.out.println(f.getPath() + " is an absolute path.");
 }
 else {
 System.out.println(f.getPath() + " is not an absolute path.");
 }
 long lm = f.lastModified();
 if (lm != 0) System.out.println("Last Modified at " + new Date(lm));
 long length = f.length();
 if (length != 0) {
 System.out.println(f.getName() + " is " + length + " bytes long.");
 }
 }
 else {
 System.out.println("I'm sorry. I can't find the file " + args[i]);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
}

Here's the result of running FileSpy on itself:

D:\JAVA\ioexamples\17>java FileSpy FileSpy.java
Name: FileSpy.java
Absolute path: D:\JAVA\ioexamples\17\FileSpy.java
Canonical path: D:\Java\ioexamples\17\FileSpy.java
FileSpy.java is writable.
FileSpy.java is readable.
FileSpy.java is a file.
FileSpy.java is not an absolute path.
Last Modified at Fri Sep 11 15:11:24 PDT 1998
FileSpy.java is 1846 bytes long.

17.3.4. Manipulating Files

The File class has methods to create, move, rename, and delete files. A method to copy files is a
noticeable omission.

17.3.4.1. Creating files

The createNewFile() method creates the file referenced by the File object:

public boolean createNewFile() throws IOException

This method checks to see whether the file exists and creates the file if it doesn't already exist. It
returns true if the file was created and false if it wasn't created, either because it couldn't be
created or because the file already existed. For example:

File f = new File("output.dat");
boolean success = f.createNewFile();
if (success) {
 //...
}
else { //...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method throws an IOException if an I/O error occurs. It throws a security exception if the
security manager vetoes the creation of the file.

17.3.4.2. Moving and renaming files

The renameTo() method changes the name of a file:

public boolean renameTo(File destination)

For example, to change the name of the file src.txt in the current working directory to dst.txt, you
would write:

File src = new File("src.txt");
File dst = new File("dst.txt");
src.renameTo(dst);

If a file already exists with the destination name, the existing file may be overwritten or the rename
may fail and return false. This varies from one platform and VM to another.

If the destination file is in a different directory than the source file, the renameTo() may move the
source file from its original directory to the directory specified by the destination argument. For
example, to move a file src to the directory /usr/tmp on a Unix system without changing the file's
name, do this:

File dest = new File("/usr/tmp/" + src.getName());
src.renameTo(dest);

However, this behavior is unreliable and platform-dependent. For instance, renameTo() moves files
if, and only if, the directory structure specified in the dest File object already exists. I've also seen
this code work on some Unix versions with some versions of the JDK and fail on others. It's best not
to rely on this method for more than renaming a file in the same directory.

If src is successfully renamed, the method returns true. If the security manager doesn't allow the
program to write to both the source file and the destination file, renameTo() throws a security
exception. Otherwise, it returns false. Be sure to check this. Renaming is one of the more flaky
areas of Java.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copying Files

There is no copy() method that merely copies a file to a new location without removing
the original. However, you can open a file output stream to the copy, open a file input
stream from the original file, and copy the data byte by byte from the original into the
copy. For example, to copy the file src to the file dst:

FileInputStream in = new FileInputStream(src);
FileOutputStream out = new FileOutputStream(dst);
for (int c = in.read(); c != -1; c = in.read()) {
 out.write(c);
}
in.close();
out.close();

There are some serious problems with this code. First of all, it assumes that both src and
dst refer to files, not directories. Second, it only copies the contents of the files. If the
file is associated with metainformation or extra data, that data is lost.

17.3.4.3. Deleting files

The delete() method removes files from the filesystem permanently:

public boolean delete()

This method returns true if the file existed and was deleted. (You can't delete a file that doesn't
exist.) If the security manager disallows this action, a security exception is thrown. Otherwise,
delete() returns false.

17.3.4.4. Changing file attributes

The setLastModified() method changes a file's last modified time:

public boolean setLastModified(long time)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The time argument is the number of milliseconds since midnight, GMT, January 1, 1970. This is
converted to the format necessary for a particular platform's file modification times. If the platform
does not support millisecond-accurate file modification times, the time is rounded to the nearest time
the host platform does support. This method throws an IllegalArgumentException if time is negative;
it throws a SecurityException if the security manager disallows write access to the file.

The setReadOnly() method marks the file so that writing to the file is disallowed:

public boolean setReadOnly()

Java 6 adds several more methods for changing a file's attributes. You can mark a file readable,
writable, or executable:

public boolean setReadable(boolean executable) // Java 6
public boolean setWritable(boolean executable) // Java 6
public boolean setExecutable(boolean executable) // Java 6

Passing true makes the file readable, writable, and executable by the file's owner; passing false
does the opposite. Changing these attributes may not always be possible. These methods return TRue
if the file now has the requested attribute value or false if it doesn't. These methods can also throw
a SecurityException if the security manager disallows access to the file.

You can pass false as the second argument to these methods to indicate that the file should be
readable, writable, and executable by everyone, not just the file's owner:

public boolean setReadable(boolean executable, boolean ownerOnly) // Java 6
public boolean setWritable(boolean executable, boolean ownerOnly) // Java 6
public boolean setExecutable(boolean executable, boolean ownerOnly) // Java 6

Java has no concept of Unix group access, though.

17.3.5. Temporary Files

The File class provides two methods that create temporary files that exist only as long as the
program runs:

public static File createTempFile(String prefix, String suffix)
 throws IOException
public static File createTempFile(String prefix, String suffix,
 File directory) throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The createTempFile() methods create a file with a name that begins with the specified prefix and
ends with the specified suffix. The prefix is a string used at the beginning of all temporary filenames;
the suffix is appended to the end of all temporary filenames. The suffix may be null. If so, .tmp is
used as the suffix. The same run of the same VM does not create two files with the same name. For
example, consider this for loop:

for (int i=0; i < 10; i++) {
 File.createTempFile("mail", ".tem");
}

When run, it creates files named something like mail30446.tem, mail30447.tem, etc. through
mail30455.tem.

By default, temporary files are placed in the directory named by the java.io.tmpdir property. On
Unix, this is likely to be /tmp or /var/tmp. On Windows, it's probably C:\temp or C:\Windows\Temp.
On Mac OS X, it's probably /private/tmp. You can specify a different directory using the third
argument to createTempFile(). For instance, this code fragment creates a temporary file in the
current working directory:

File cwd = new File(System.getProperty("user.dir"));
File temp = File.createTempFile("rus", ".tmp", cwd);

You often want to delete temporary files when your program exits. You can accomplish this by
passing them to the deleteOnExit() method:

public void deleteOnExit()

For example:

File temp = File.createTempFile("mail", ".tem");
temp.deleteOnExit();

This method works on any File object, not just temporary files. Be careful because there's no good
way to cancel a request to delete files.

Temporary files are useful when you need to operate on a file in place. You can do this in two passes.
In the first pass, read from the file you're converting and write into the temporary file. In the second
pass, read from the temporary file and write into the file you're converting. Here's an example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 File infile = new File(args[2]);
 File outfile = new File(args[3]);
 boolean usingTempFile = false;
 if (infile.getCanonicalPath().equals(outfile.getCanonicalPath())) {
 outfile = File.createTempFile("temp", null);
 outfile.deleteOnExit();
 usingTempFile = true;
 }
 // perform operations as normal, then close both files...
 if (usingTempFile) {
 FileInputStream fin = new FileInputStream(outfile);
 FileOutputStream fout = new FileOutputStream(infile);
 for (int c = fin.read(); c != -1; c = fin.read()) {
 fout.write(c);
 }
 fin.close();
 fout.close();
 }

17.3.6. Checking for Free Space/Java 6

Java 6 adds three methods to inspect the amount of available and used space on a particular
partition. A File object is used to choose the partition but otherwise it has no effect on the value
returned. Two files on the same partition would give the same answers.

The getTotalSpace() method returns the size of the file's partition in bytes:

public long getTotalSpace()

The getFreeSpace() method returns the total amount of empty space on the file's partition in bytes:

public long getFreeSpace()

If the file does not exist, these methods return 0. They do not throw an exception. The number
returned by this method is approximate. Depending on the nature of the filesystem, you may not be
able to use all the bytes for a single file. For instance, some filesystems have maximum file sizes. The
getUsableSpace() method makes a slightly better effort to find out how much space you can actually
use.

public long getUsableSpace()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It accounts for details like read-only filesystems that getFreeSpace() may not. However, the number
it returns is still only approximate.

Even Java 6 doesn't have any reliable means to list all the partitions on a disk or to determine which
partition you're on. If you happen to know the locations of files on each partition, these methods tell
you how much space is left on each one. Normally, you have a single directory where a file will be
saved and what you want to know is how much space is left on that directory's partition.

Example 17-5 is a simple program that lists the total, free, and usable space on the partition that
contains the current working directory:

Example 17-5. Listing available space on the current partition

import java.io.*;
public class CWDSpace {
 public static void main(String[] args) {
 File cwd = new File(".");
 System.out.println("Total space on current partition: "
 + cwd.getTotalSpace() / (1024 * 1024) + " MB\t");
 System.out.println("Free space on current partition: "
 + cwd.getFreeSpace() / (1024 * 1024) + " MB\t");
 System.out.println("Usable space on current partition: "
 + cwd.getUsableSpace() / (1024 * 1024) + " MB");
 }
}

Here's the output when I ran this on my Linux box from a directory in the /home partition:

$ java CWDSpace
Total space on current partition: 6053 MB
Free space on current partition: 2601 MB
Usable space on current partition: 2293 MB

If I had to save a large file in this directory, I could save around two gigabytes. Anything much larger
and I'd have to free up some space first.

17.3.7. Directories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A File object can represent a directory as easily as a file. Most of the File methods like getName(),
canWrite(), and getPath() behave exactly the same for a directory as they do for a file. However,
a couple of methods in the File class behave differently when they operate on directories than they
do when operating on ordinary files.

The delete() method only works on empty directories. If a directory contains even one file, it can't
easily be deleted. If you attempt to delete a nonempty directory, delete() fails and returns false.
No exception is thrown.

The renameTo() method works on both empty and nonempty directories. Howeverwhether a
directory is empty or notrenameTo() can only rename it, not move it to a different directory. If you
attempt to move a directory into another directory, renameTo() fails and returns false. No exception
is thrown.

The File class also has several methods that just work with directories, not with regular files.

17.3.7.1. Creating directories

The createNewFile() doesn't work for directories. For that purpose, the File class has a mkdir()
method:

public boolean mkdir()

The mkdir() method attempts to create a directory with the path specified in the path field. If the
directory is created, the method returns TRue. For example:

File f = new File("tmp/");
f.mkdir();

The trailing slash is optional, but it helps you to remember that you're dealing with a directory rather
than a plain file. If the security manager does not allow the directory to be created, mkdir() throws
a security exception. If the directory cannot be created for any other reason, mkdir() returns false.
The mkdir() method only works for single directories. Trying to create a directory like
com/elharo/io/ with mkdir() only works if com/elharo already exists.

The mkdirs() method creates every directory in a path that doesn't already exist:

public boolean mkdirs()

For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File f = new File("com/elharo/io/");
f.mkdirs();

mkdirs() returns true if all directories in this path are created or already exist and false if only
some or none of them are created. If mkdirs() returns false, you need to test each directory in the
path to see whether it was created because the invocation could have been partially successful.

One reason mkdir() and mkdirs() may return false (fail to create a directory) is that a file already
exists with the name the directory has. Neither mkdir() nor mkdirs() will overwrite an existing file
or directory.

17.3.7.2. Listing directories

The list() method returns an array of strings containing the names of each file in the directory
referred to by the File object:

public String[] list()

This method returns null if the File object doesn't point to a directory. It throws a security exception
if the program isn't allowed to read the directory being listed. An alternative version of list() uses
a FilenameFilter object (discussed later in the chapter) to restrict which files are included in the list:

public String[] list(FilenameFilter filter)

Example 17-6 is a simple character-mode program that recursively lists all the files in a directory,
and all the files in directories in the directory, and all the files in directories in the directory, and so
on. Files are indented two spaces for each level deep they are in the hierarchy.

Example 17-6. The DirList program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.util.*;
public class DirList {
 private File directory;
 private int indent = 2;
 private static List seen = new ArrayList();
 public static void main(String[] args) throws IOException {
 DirList dl = new DirList(args[0]);
 dl.list();
 }
 public DirList(String name) throws IOException {
 this(new File(name), 2);
 }
 public DirList(File f) throws IOException {
 this(f, 2);
 }

 public DirList(File directory, int indent) throws IOException {
 if (directory.isDirectory()) {
 this.directory = new File(directory.getCanonicalPath());
 }
 else {
 throw new IOException(directory.toString() + " is not a directory");
 }
 this.indent = indent;
 String spaces = "";
 for (int i = 0; i < indent-2; i++) spaces += " ";
 System.out.println(spaces + directory + File.separatorChar);
 }
 public void list() throws IOException {
 if (!seen.contains(this.directory)) {
 seen.add(this.directory);
 String[] files = directory.list();
 String spaces = "";
 for (int i = 0; i < indent; i++) spaces += " ";
 for (int i = 0; i < files.length; i++) {
 File f = new File(directory, files[i]);
 if (f.isFile()) {
 System.out.println(spaces + f.getName());
 }
 else { // it's another directory
 DirList dl = new DirList(f, indent + 2);
 dl.list();
 }
 }
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Special care has to be taken to make sure this program doesn't get caught in an infinite recursion. If
a directory contains an alias, shadow, shortcut, or symbolic link that points to one of its own parents,
there's potential for infinite recursion. To avoid this possibility, all paths are converted to canonical
paths in the constructor, and these paths are stored in the static list seen. A directory is listed only if
it has not yet been traversed by this program.

17.3.7.3. The listFiles() methods

The two list() methods return arrays of strings. The strings contain the names of files. You can use
these to construct File objects. Java allows you to eliminate the intermediate step of creating File
objects by providing two listFiles() methods that return arrays of File objects instead of arrays
of strings.

public File[] listFiles()
public File[] listFiles(FilenameFilter filter)
public File[] listFiles(FileFilter filter)

The no-argument variant of listFiles() simply returns an array of all the files in the given
directory. The other two variants return the files that pass through their filters. File and filename
filters will be discussed shortly.

17.3.8. File URLs

File URLs locate a file on the local filesystem. (Very early web browsers used file URLs to refer to FTP
sites. However, that usage has long since disappeared.) They have this basic form:

file://<host>/<path>

<host> should be the fully qualified domain name of the system on which the <path> is found, though
if it's omitted, the local host is assumed. <path> is the hierarchical path to the file, using a forward
slash as a directory separator (regardless of host filename conventions) and URL encoding of any
special characters in filenames that would normally be encoded in a URL. Examples of file URLs
include:

file:///C|/docs/JCE%201.2%20beta%201/guide/API_users_guide.html
file:///D:/JAVA/
file:///usr/local/java/docs/JCE%201.2%20beta%201/guide/API_users_guide.html
file:///D%7C/JAVA/
file:///Macintosh%20HD/Java/Cafe%20%au%20%Lait/course/week4/01.5.html
file:/Users/elharo/Documents/books/Java%20IO%20 2/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many web browsers allow other, nonstandard formats like:

file:///C|/jdk2beta4/docs/JCE 1.2 beta 1/guide/API_users_guide.html
file:///C:\jdk1.2beta4\docs\JCE 1.2 beta 1\guide\API_users_guide.html
file:/D:/Java/ioexamples/17/FileDialogApplet.html
file:/Users/elharo/Documents/books/Java IO 2/

Because of the differences between file and directory names from one computer to the next, the
exact syntax of file URLs is unpredictable from platform to platform and web browser to web browser.
The File class has a toURL() method that returns a file URL that's appropriate for the local
platform:

public URL toURL() throws MalformedURLException

However, this method does not properly escape non-ASCII and non-URL-legal characters such as the
space so it's been deprecated as of Java 1.4 and replaced by the toURI() method:

public URI toURI()

toURI() isn't perfect, but it does a better job than toURL(), and you should use it if it's available.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.4. Filename Filters

You often want to look for a particular kind of filefor example, text files. To do this, you need a
FilenameFilter object that specifies which files you'll accept. FilenameFilter is an interface in the
java.io package:

public interface FilenameFilter

This interface declares a single method, accept():

public abstract boolean accept(File directory, String name);

The directory argument is a File object pointing to a directory, and the name argument is the name
of a file. The method should return true if a file with this name in this directory passes through the
filter and false if it doesn't. Example 17-7 is a class that filters out everything that is not an HTML
file.

Example 17-7. HTMLFilter

import java.io.*;
public class HTMLFilter implements FilenameFilter {
 public boolean accept(File directory, String name) {
 if (name.endsWith(".html")) return true;
 if (name.endsWith(".htm")) return true;
 return false;
 }
}

Files can be filtered using any criteria you like. An accept() method may test modification date,
permissions, file size, and any attribute Java supports. This accept() method tests whether the file
ends with .html and is in a directory where the program can read files:

public boolean accept(File directory, String name) {
 if (name.endsWith(".html") && directory.canRead()) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return true;
 }
 return false;
}

Filename filters are primarily intended for the use of file dialogs, which will be discussed in the next
chapter. However, the listFiles() method can take a FilenameFilter as an argument:

public File[] listFiles(FilenameFilter filter)

This method assumes that the File object represents a directory. The array of File objects returned
by listFiles() only contains those files that passed the filter. For example, the following lines of
code list HTML files in the /public/html/javafaq directory using the HTMLFilter of Example 17-7:

File dir = new File("/public/html/javafaq");
File[] htmlFiles = dir.listFiles(new HTMLFilter());
for (int i = 0; i < htmlFiles.length; i++) {
 System.out.println(htmlFiles[i]);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.5. File Filters

The FileFilter interface is very similar to FilenameFilter:

public abstract interface FileFilter

The accept() method of FileFilter takes a single File object as an argument, rather than two
strings giving the directory and path:

public boolean accept(File pathname)

Example 17-8 is a filter that only passes HTML files. Its logic is essentially the same as the filter of
Example 17-7.

Example 17-8. HTMLFileFilter

import java.io.*;
public class HTMLFileFilter implements FileFilter {
 public boolean accept(File pathname) {
 if (pathname.getName().endsWith(".html")) return true;
 if (pathname.getName().endsWith(".htm")) return true;
 return false;
 }
}

This class appears as an argument in one of the listFiles() methods of java.io.File:

public File[] listFiles(FileFilter filter)

Example 17-9 uses the HTMLFileFilter to list the HTML files in the current working directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 17-9. List HTML files

import java.io.*;
public class HTMLFiles {
 public static void main(String[] args) {
 File cwd = new File(System.getProperty("user.dir"));
 File[] htmlFiles = cwd.listFiles(new HTMLFileFilter());
 for (int i = 0; i < htmlFiles.length; i++) {
 System.out.println(htmlFiles[i]);
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.6. File Descriptors

As I've said several times so far, the existence of a java.io.File object doesn't imply the existence
of the file it represents. A java.io.FileDescriptor object does, however, refer to an actual file:

public final class FileDescriptor extends Object

A FileDescriptor object is an abstraction of an underlying machine-specific structure that represents
an open file. While file descriptors are very important for the underlying OS and filesystem, their only
real use in Java is to guarantee that data that's been written to a stream is in fact committed to disk,
that is, to synchronize between the program and the hardware.

In addition to open files, file descriptors can also represent open sockets. There are also three file
descriptors for the console: System.in, System.out, and System.err. These are available as the three
mnemonic constants FileDescriptor.in, FileDescriptor.out, and FileDescriptor.err:

public static final FileDescriptor in
public static final FileDescriptor out
public static final FileDescriptor err

Because file descriptors are very closely tied to the native operating system, you never construct
your own file descriptors. Various methods in other classes that refer to open files or sockets may
return them. Both the FileInputStream and FileOutputStream classes and the RandomAccessFile
class have a getFD() method that returns the file descriptor associated with the open stream or file:

public final FileDescriptor getFD() throws IOException

Since file descriptors are only associated with open files and sockets, they become invalid as soon as
the file or socket is closed. You can test whether a file descriptor is still valid with the valid()
method:

public native boolean valid()

This returns TRue if the descriptor is still valid or false if it isn't.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The one real use to which a client programmer can put a file descriptor object is to sync a file. This is
accomplished with the aptly named sync() method:

public native void sync() throws SyncFailedException

The sync() method forces the system buffers to write all the data they contain to the actual
hardware. Generally, you'll want to flush the stream before syncing it. Flushing clears out Java's
internal buffers. Syncing clears out the operating system's, device driver's, and hardware's buffers. If
synchronization does not succeed, sync() throws a java.io.SyncFailedException, a subclass of
IOException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.7. Random-Access Files

File input and output streams require you to start reading or writing at the beginning of a file and
then read or write the file in order, possibly skipping over some bytes or backing up but mostly
moving from start to finish. Sometimes, however, you need to read parts of a file in a more or less
random order, where the data near the beginning of the file isn't necessarily read before the data
nearer the end. Other times you need to both read and write the same file. For example, in record-
oriented applications like databases, the actual data may be indexed; you would use the index to
determine where in the file to find the record you need to read or write. While you could do this by
constantly opening and closing the file and skipping to the point where you needed to read, this is far
from efficient. Writes are even worse since you would need to read and rewrite the entire file, even to
change just one byte of data.

Random-access files can be read from or written to or both from a particular byte position in the file.
A single random-access file can be both read and written. The position in the file where reads and
writes start from is indicated by an integer called the file pointer. Each read or write advances the file
pointer by the number of bytes read or written. Furthermore, the programmer can reposition the file
pointer at different bytes in the file without closing the file.

In Java, random file access is performed through the java.io.RandomAccessFile class. This is not a
subclass of java.io.File:

public class RandomAccessFile extends Object implements DataInput, DataOutput

Among other differences between File objects and RandomAccessFile objects, the RandomAccessFile
constructors actually open the file in question and throw an IOException if it doesn't exist:

public RandomAccessFile(String filename, String mode) throws FileNotFoundException
public RandomAccessFile(File file, String mode) throws IOException

The first argument to the constructor is the file you want to access. The second argument is the
mode for access. The mode can be "r" for read-only access or "rw", "rws", or "rwd" for read/write
access. Java does not support write-only access. For example:

RandomAccessFile raf = new RandomAccessFile("29.html", "r");

The rw mode is regular buffered read-write access. Changes may not be immediately written to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file. This can lose data in the event of a system crash. In rws mode, Java writes all data to the disk
immediately and is safer if slower. In rwd mode, Java writes all content immediately but may buffer
changes to the file's metadata (its name, permissions, and so on).

An IllegalArgumentException is thrown if anything other than these four strings is specified as the
mode. (In Java 1.3 and earlier, only "rw" and "r" were allowed.) A security exception is thrown if the
security manager does not allow the requested file to be read. A security exception is also thrown if
you request read/write access, but only read access is allowed. Security checks are made only when
the object is constructed. It is assumed that the security manager's policy won't change while the
program is running. Finally, an IOException is thrown if the operating system doesn't allow the file to
be accessed or some other I/O problem occurs.

The getFilePointer() and seek() methods allow you to query and change the position in the file at
which reads and writes occur. Attempts to seek (position the file pointer) past the end of the file just
move the file pointer to the end of the file. Attempts to write from the end of the file extend the file.

public native long getFilePointer() throws IOException
public native void seek(long pos) throws IOException

Attempts to read from the end of the file throw an EOFException (a subclass of IOException). You can
determine the length of the file with the length() method:

public native long length() throws IOException

The RandomAccessFile class implements both the DataInput and DataOutput interfaces. Therefore,
reads and writes use methods exactly like the methods of the DataInputStream and DataOutputStream
classes, such as read(), readFully(), readInt(), writeInt(), readBoolean(), writeBoolean(),
and so on.

Finally, there are a few miscellaneous methods. The getFD() method simply returns the file
descriptor for this file:

public final FileDescriptor getFD() throws IOException

The skipBytes() method attempts to reposition the file pointer n bytes further in the file from where
it is now. It returns the number of bytes actually skipped, which may be less than n:

public int skipBytes(int n) tHRows IOException

The seek() method jumps to an absolute position in the file starting from 0, whereas skipBytes()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

moves n bytes past wherever the file pointer is now:

public void seek(long position) throws IOException

Finally, the close() method closes the file:

public native void close() throws IOException

Once the file is closed, it may not be read from, though a new RandomAccessFile object that refers to
the same file can be created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.8. General Techniques for Cross-Platform File Access
Code

It's hard to write truly cross-platform file manipulation code. The NIO working group was supposed to
fix this years ago. However, they spent so much time on channels and buffers that they never
fulfilled their mandate to design a decent, platform-independent filesystem API. Now it looks like it's
not going to make it into Java 6 either. Maybe we'll finally get one in Java 7. In the meantime, to
help you achieve greater serenity and overall cross-platform nirvana, I've summarized some basic
rules from this chapter to help you write file manipulation code that's robust across a multitude of
platforms:

Never, never, never hardcode pathnames in your application.

Ask the user to name your files. If you must provide a name for a file, try to make it fit in an
8.3 DOS filename with only pure ASCII characters.

Do not assume the file separator is "/" (or anything else). Use File.separatorChar instead.

Do not parse pathnames to find directories. Use the methods of the java.io.File class instead.

Do not use renameTo() for anything except renaming a file. In particular, do not use it to move
a file.

Try to avoid moving and copying files from within Java programs if at all possible.

Do not use . to refer to the current directory. Use System.getProperty("user.dir") instead.

Do not use .. to refer to the parent directory. Use getParent() instead.

Place any data files your program requires in JAR archives rather than directly in the filesystem
and load them as resources from the classpath.

When in doubt, it never hurts to convert filenames to canonical form.

Do not assume anything about filesystem conventions. Some platform somewhere will surprise
you. (Have you tested your program on BeOS yet?)

Test your code on as many different filesystems as you can get your hands on.

Despite all the problems I've pointed out, it is possible to write robust file access code that works
across all platforms where Java runs, but doing so requires understanding, effort, and thought. You
cannot simply write for Windows or Unix and hope things will work out for the best on other
platforms. You must plan to handle a wide range of filesystems and filename conventions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 18. File Dialogs and Choosers
Filenames are problematic, even if you don't have to worry about cross-platform idiosyncrasies.
Users forget filenames, mistype them, can't remember the exact path to files they need, and more.
The proper way to ask a user to select a file is to show them a list of the files in the current directory
and ask them to select from that list. You also need to allow them to navigate between directories,
insert and remove disks, mount network servers, and more.

Most graphical user interfaces provide standard widgets for selecting a file. In Java the platform's
native file selector widget is exposed through the java.awt.FileDialog class. Like many native peer-
based classes, however, FileDialog doesn't behave exactly the same on all platforms. Therefore,
Swing provides a pure Java implementation of a file dialog, the javax.swing.JFileChooser class.
JFileChooser has much more reliable though less native cross-platform behavior.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1. File Dialogs

File dialogs are the standard open and save dialogs provided by the host GUI. Users use them to pick
a directory and a name under which to save a file or to choose a file to open. The appearance varies
from platform to platform, but the intent is the same. Figure 18-1 shows a standard Save dialog on
the Mac; Figure 18-2 shows a standard open dialog on Linux.

Figure 18-1. The Mac's standard Save dialog

Figure 18-2. Gnome Open dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileDialog is a subclass of java.awt.Dialog that represents the native save and open dialog boxes:

public class FileDialog extends Dialog

A file dialog is almost completely implemented by a native peer. Your program doesn't add
components to a file dialog or handle user interaction with event listeners. It just displays the dialog
and retrieves the name and directory of the file the user chose after the dialog is dismissed.

To ask the user to select a file from a file dialog, perform these four steps:

Construct a FileDialog object.1.

Set the default directory or file for the dialog (optional).2.

Make the dialog visible.3.

Get the name and directory of the file the user chose.4.

File dialogs are modal. While the file dialog is shown, input to the parent frame is blocked, as with the
parent frame of any modal dialog. The parent frame is normally the window from whose menu bar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

File/Open was selected. The parent frame is always set in the constructor:

public FileDialog(Frame parent)

Starting in Java 5, you can use another Dialog as the parent if you prefer:

public FileDialog(Dialog parent) // Java 5

Each FileDialog usually has a title. This is the prompt string for the file dialog, such as "Open File" or
"Save Message As". This is also set in the constructor:

public FileDialog(Frame parent, String title)
public FileDialog(Dialog parent, String title) // Java 5

Finally, each FileDialog is either in open mode or save mode. The default for the previous
constructors is open mode. However, this can be specified with one of these two constructors:

public FileDialog(Frame parent, String title, int mode)
public FileDialog(Dialog parent, String title, int mode) // Java 5

The mode argument is one of the two mnemonic constants FileDialog.LOAD or FileDialog.SAVE:

public static final int LOAD = 0;
public static final int SAVE = 1;

A typical invocation of this constructor might look like this:

FileDialog fd = new FileDialog(framePointer,
 "Please choose the file to open:", FileDialog.LOAD);

In load mode, the user chooses an existing file. In save mode the user can either choose an existing
file or create a new one.

Getter and setter methods allow the mode to be inspected and changed after the dialog is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constructed:

public int getMode()
public void setMode(int mode)

To specify that the file dialog should appear with a particular directory opened or a particular file in
that directory selected, you can invoke the setDirectory() and setFile() methods:

public void setDirectory(String directory)
public void setFile(String file)

For example:

fd.setDirectory("/etc");
fd.setFile("passwd");

You make the file dialog visible by invoking the file dialog's setVisible(true) method, just like any
other window:

fd.setVisible(true);

As soon as the file dialog becomes visible, the calling thread stops and waits for the user to choose a
file. The operating system takes over and handles user interaction until the user chooses a file or
presses the Cancel button. At this point, the file dialog disappears from the screen, and normal
program execution resumes.

Once the dialog has been dismissed, you can find out which file the user chose by using the file
dialog's getdirectory() and getFile() methods:

public String getFile()
public String getDirectory()

For example:

FileDialog fd = new FileDialog(
 new Frame(), "Please choose a file:", FileDialog.LOAD);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fd.setVisible(true);
File f = new File(fd.getDirectory(), fd.getFile());

If the user cancels the file dialog without selecting a file, getFile() and geTDirectory() return
null. You should be ready to handle this, or you'll bump into a NullPointerException in short order.

Example 18-1 is a program that presents an open file dialog to the user and writes the contents of
the file she selected on System.out.

Example 18-1. The FileTyper program

import java.io.*;
import java.awt.*;
public class FileTyper {
 public static void main(String[] args) throws IOException {
 InputStream in = null;
 try {
 File f = getFile();
 if (f == null) return;
 in = new FileInputStream(f);
 for (int c = in.read(); c != -1; c = in.read()) {
 System.out.write(c);
 }
 }
 finally {
 if (in != null) in.close();
 }
 // Work around annoying AWT non-daemon thread bug.
 System.exit(0);
 }

 public static File getFile() {
 // dummy Frame, never shown
 Frame parent = new Frame();
 FileDialog fd = new FileDialog(parent, "Please choose a file:",
 FileDialog.LOAD);
 fd.setVisible(true);
 // Program stops here until user selects a file or cancels.
 String dir = fd.getDirectory();
 String file = fd.getFile();
 // Clean up our windows, they won't be needed again.
 parent.dispose();
 fd.dispose();
 if (dir == null || file == null) { // user cancelled the dialog
 return null;
 }
 return new File(dir, file);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

File dialogs only allow the user to select ordinary files, never directories. To ask users to pick a
directory, you have to ask them to choose a file in that directory and then call getdirectory().
Better yet, you can use a JFileChooser (discussed in the next section) that does allow the user to
choose a directory.

A filename filter can be attached to a file dialog via the dialog's setFilenameFilter() method:

public void setFilenameFilter(FilenameFilter filter)

Once a file dialog's filename filter is set, it should only display files that pass through the filter.
However, filename filters in file dialogs are only reliable on Unix (including Linux and Mac OS X).
Windows is almost congenitally unable to support it because Windows' native file chooser dialog can
only filter by file extension.

Example 18-2 demonstrates a simple filename filter that accepts files ending in .text, .txt, .java, .jav,
.html, and .htm; all others are rejected.

Example 18-2. TextFilter

import java.io.*;
public class TextChooser implements FilenameFilter {
 public boolean accept(File dir, String name) {
 if (name.endsWith(".java")) return true;
 else if (name.endsWith(".jav")) return true;
 else if (name.endsWith(".html")) return true;
 else if (name.endsWith(".htm")) return true;
 else if (name.endsWith(".txt")) return true;
 else if (name.endsWith(".text")) return true;
 return false;
 }
}

This program demonstrates one problem of relying on file extensions to determine file type. Many
other file extensions indicate text files, for example, .c, .cc, .pl, .f, and many more. Furthermore,
many text files, especially those on Macintoshes, have no extension at all. This program completely
ignores all those files.

You do not necessarily have to write a new subclass for each different file filter. Example 18-3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

demonstrates a class that can be configured with different lists of filename extensions. Every file with
an extension in the list passes the filter. Others don't.

Example 18-3. ExtensionFilenameFilter

package com.elharo.io;
import java.awt.*;
import java.util.*;
import java.io.*;
public class ExtensionFilenameFilter implements FilenameFilter {
 ArrayList extensions = new ArrayList();
 public ExtensionFilenameFilter(String extension) {
 if (extension.indexOf('.') != -1) {
 extension = extension.substring(extension.lastIndexOf('.')+1);
 }
 extensions.add(extension);
 }
 public void addExtension(String extension) {
 if (extension.indexOf('.') != -1) {
 extension = extension.substring(extension.lastIndexOf('.')+1);
 }
 extensions.add(extension);
 }
 public boolean accept(File directory, String filename) {
 String extension = filename.substring(filename.lastIndexOf('.')+1);
 if (extensions.contains(extension)) {
 return true;
 }
 return false;
 }
}

This class is designed to filter files by extension. You configure which extensions pass the filter when
you create the object or by calling addExtension(). This avoids excessive proliferation of classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2. JFileChooser

Swing provides a much more sophisticated and useful file chooser component written in pure Java,
javax.swing.JFileChooser :

public class JFileChooser extends JComponent implements Accessible

JFileChooser is not an independent, free-standing window like FileDialog . Instead, it is a
component you can add to your own frame, dialog, or other container or window. You can, however,
ask the JFileChooser class to create a modal dialog just for your file chooser. Figure 18-3 shows a file
chooser embedded in a JFrame window with the Metal look and feel. Of course, like all Swing
components, the exact appearance depends on the current look and feel.

Figure 18-3. A JFileChooser with the Metal look and feel

For the most part, the file chooser works as you expect, especially if you're accustomed to Windows.
(On Mac OS X, it's much more obviously a nonnative dialog, in fact, so much so that you're probably
better off using a java.awt.FileDialog on that platform instead.) You select a file with the mouse.
Double-clicking the filename or pressing the Open button returns the currently selected file. You can
change which files are displayed by selecting different filters from the pop-up list of choosable file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

filters. All the components have tooltips to help users who are a little thrown by an unfamiliar look
and feel.

The JFileChooser class relies on support from several classes in the javax.swing.filechooser
package, including:

public abstract class FileFilter
public abstract class FileSystemView
public abstract class FileView

There are three basic steps for asking the user to choose a file with a JFileChooser :

Construct the file chooser.1.

Display the file chooser.2.

Get the files the user selected.3.

You can also set a lot of options for how files are displayed and chosen, which directory and file are
selected when the file chooser first appears, which files are and are not shown in the choosers, and
several other options. However, these three are your basic operations.

18.2.1. Constructing File Choosers

The JFileChooser class has six constructors. These specify the initial directory and file that appear
when the chooser is shown and the view of the filesystem:

public JFileChooser()
public JFileChooser(String initialDirectoryPath)
public JFileChooser(File initialDirectory)
public JFileChooser(FileSystemView fileSystemView)
public JFileChooser(File initialDirectory, FileSystemView fileSystemView)
public JFileChooser(String initialDirectoryPath,
 FileSystemView fileSystemView)

Most of the time the no-argument constructor is sufficient. The first time a particular JFileChooser
object is shown, it brings up the user's home directory. If you'd like it to appear somewhere else, you
can pass the directory to the constructor. For example, the following two lines construct a file chooser
that appears with the Java home directory shown:

String javahome = System.getProperty("java.home");
JFileChooser chooser = new JFileChooser(javahome);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you reuse the same JFileChooser object repeatedly by showing and hiding it, it initially displays the
last directory where the user chose a file.

18.2.2. Displaying File Choosers

Although JFileChooser is a component, not a window, you usually want to display a modal dialog
containing a JFileChooser component that asks the user to save or open a file. Three methods do
this without requiring you to construct a dialog or frame explicitly:

public int showOpenDialog(Component parent)
public int showSaveDialog(Component parent)
public int showDialog(Component parent, String approveButtonText)

You use all three methods the same way. The only difference is the text shown in the dialog's title bar
and on its approve button. For showOpenDialog() , it is usually the word Open , possibly translated
for the local environment. For showSaveDialog() , it is usually the word Save , possibly translated for
the local environment, and for showDialog() , it is whatever string is passed as the second
argument.

All three methods display a modal dialog that blocks input to the dialog's parent and blocks the
current thread until the user either selects a file or cancels the dialog. If the user does choose a file,
both these methods return JFileChooser.APPROVE_OPTION . If the user does not choose a file, both
these methods return JFileChooser.CANCEL_OPTION .

18.2.3. Getting the User's Selection

If showOpenDialog() or showSaveDialog() returns JFileChooser.APPROVE_OPTION , the
getSelectedFile() method returns a File object pointing to the file the user chose; otherwise, it
returns null :

public File getSelectedFile()

If the file chooser allows multiple selections, getSelectedFiles() returns an array of all the files the
user chose:

public File[] getSelectedFiles()

You can get a File object for the directory in which the selected file lives by calling
getCurrentDirectory() :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public File getCurrentDirectory()

Example 18-4 is a program that uses JFileChooser to ask the user to select a file and then prints the
file's contents on System.out . This example is essentially the same as Example 18-1 , except that it
uses JFileChooser instead of FileDialog .

Example 18-4. JFileTyper

import java.io.*;
import java.lang.reflect.InvocationTargetException;
import javax.swing.*;
public class JFileTyper {
 public static void main(String[] args)
 throws InterruptedException, InvocationTargetException {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 JFileChooser fc = new JFileChooser();
 int result = fc.showOpenDialog(new JFrame());
 if (result == JFileChooser.APPROVE_OPTION) {
 InputStream in = null;
 try {
 File f = fc.getSelectedFile();
 if (f != null) { // Make sure the user didn't choose a directory.
 in = new FileInputStream(f);
 for (int c = in.read(); c != -1; c = in.read()) {
 System.out.write(c);
 }
 }
 in.close();
 }
 catch (IOException e) {System.err.println(e);}
 }
 System.exit(0);
 }
 }
);
 }
}

The dialogs shown by JFileChooser.showOpenDialog() and JFileChooser.showSaveDialog() are still
Swing dialogs, and they are still subject to the usual constraints on Swing dialogs. One of those is
that dialogs should only be shown from the AWT thread and then only by calling
SwingUtilities.invokeLater() , SwingUtilities.invokeAndWait() , or the equivalent methods in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EventQueue .

18.2.4. Manipulating the JFileChooser

The JFileChooser class includes several methods to specify which files and directories are selected
and displayed when the chooser is shown. These include:

public void changeToParentDirectory()
public void rescanCurrentDirectory()
public void ensureFileIsVisible(File f)

The changeToParentDirectory() method simply displays the parent directory of the directory
currently displayed; that is, it moves one level up in the directory hierarchy. The
rescanCurrentDirectory() method refreshes the list of files shown. Use it when you have reason to
believe a file may have been added to or deleted from the directory. ensureFileIsVisible() scrolls
the list up or down until the specified file is shown.

Three methods allow you to specify which directory and file are selected in the file chooser:

public void setSelectedFile(File selectedFile)
public void setSelectedFiles(File[] selectedFiles)
public void setCurrentDirectory(File dir)

You can use these methods to point the user at a particular file. For instance, a Java source code
editor might like to set the filename to the title of the class being edited plus the customary .java
extension. Another common example: if the user opens a file, edits it, and selects Save As... from the
File menu, it's customary to bring up the save dialog with the previous location of the file already
selected. The user can change this if desired.

18.2.5. Custom Dialogs

File choosers support three dialog types: open, save, and custom. The type is indicated by one of
these three mnemonic constants:

FileChooser.OPEN_DIALOG
FileChooser.SAVE_DIALOG
FileChooser.CUSTOM_DIALOG

You set the type with the setDialogType() method or, less commonly, retrieve it with
getdialogType() :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getDialogType()
public void setDialogType(int dialogType)

If you use a custom dialog, you should also set the dialog title, the text of the approve button's label,
the text of the approve button's tool tip, and the approve button mnemonic (shortcut key). Setting
the approve button's text automatically sets the dialog to custom type. Five setter and four getter
methods handle these tasks:

public void setDialogTitle(String dialogTitle)
public String getDialogTitle()
public void setApproveButtonToolTipText(String toolTipText)
public String getApproveButtonToolTipText()
public int getApproveButtonMnemonic()
public void setApproveButtonMnemonic(int mnemonic)
public void setApproveButtonMnemonic(char mnemonic)
public void setApproveButtonText(String approveButtonText)
public String getApproveButtonText()

Use these methods sparingly. If you use them, you'll probably want to store the exact strings you use
in a resource bundle so that your code is easily localizable.

When you're showing a custom dialog, you'll simply use the showDialog() method rather than
showOpenDialog() or showSaveDialog() (since a custom dialog is neither):

public int showDialog(Component parent, String approveButtonText)

Suppose you want a file chooser that allows you to gzip files and exit when the user presses the
Cancel button. You can set the Approve button text to "GZIP," the approve button tooltip to "Select a
file, then press this button to gzip it," the approve button mnemonic to the letter "g" (for gzip), and
the dialog title to "Please choose a file to gzip:," as Example 18-5 demonstrates. The chosen file is
read from a file input stream and copied onto a file output stream chained to a gzip output stream
that compresses the data. After both input and output streams are closed, the directory is rescanned
so the compressed file appears in the list.

Example 18-5. GUIGZipper

import java.io.*;
import java.lang.reflect.InvocationTargetException;
import java.util.zip.*;
import javax.swing.*;
public class GUIGZipper {
 public final static String GZIP_SUFFIX = ".gz";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String[] args)
 throws InterruptedException, InvocationTargetException {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 JFrame parent = new JFrame();
 JFileChooser fc = new JFileChooser();
 fc.setDialogTitle("Please choose a file to gzip: ");
 fc.setApproveButtonMnemonic('g');
 while (true) {
 int result = fc.showDialog(parent,
 "Select a file, then press this button to gzip it");
 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fc.getSelectedFile();
 if (f == null) {
 JOptionPane.showMessageDialog(parent,
 "Can only gzip files, not directories");
 }
 else {
 InputStream in = new FileInputStream(f);
 FileOutputStream fout = new FileOutputStream(f.getAbsolutePath()
 + GZIP_SUFFIX);
 OutputStream gzout = new GZIPOutputStream(fout);
 for (int c = in.read(); c != -1; c = in.read()) {
 gzout.write(c);
 }
 // These next two should be in a finally block; but the multiple
 // nested try-catch blocks just got way too complicated for a
 // simple example
 in.close();
 gzout.close();
 }
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 else {
 System.exit(0);
 } // end else
 } // end while
 } // end run
 } // end Runnable
); // end invokeAndWait
 } // end main
} // end class

To be honest, this interface is a little funny (though not nearly as strange as WinZip). If I were really

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tasked with writing such an application, I probably wouldn't design it like this. At a minimum, the
cancel button text needs to change to "Exit" or "Quit." There's no setCancelButtonText() method
corresponding to setApproveButtonText() . However, you can ask for no buttons at all by passing
false to setControlButtonsAreShown() :

public void setControlButtonsAreShown(boolean b)

This would enable you to manage the chooser through your own buttons in your own frame.
However, some look and feels do not respect this setting and show the approve and cancel buttons
whether you turn this property off or not.

If you do want to manage the file chooser more directly, the action listeners for your buttons need to
control it. They can do this by calling the approveSelection() and cancelSelection() methods:

public void approveSelection()
public void cancelSelection()

These methods have the same effect as pushing the regular approve and cancel buttons.

18.2.6. Filters

A FilenameFilter determines which files a file dialog shows to the user. The user cannot change this
list. For instance, a user can't switch from displaying HTML files to displaying Java source code.
However, a FileFilter in combination with a JFileChooser allows programmers to give users a
choice about which files are filtered by providing users with a series of different file filters. By
choosing a file filter from the pop-up menu in a file chooser dialog, the user can adjust which files are
and are not shown. Figure 18-4 shows a file chooser that allows the user to select text files, all files,
C and C++ files, Perl files, HTML files, or Java source code files.

Figure 18-4. The choosable file filters pop-up in a file chooser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Annoyingly, these file filters are not instances of the java.io.FileFilter interface you're already
familiar with. Instead, they're instances of a new abstract class in the javax.swing.filechooser
package. Because of name conflicts with the java.io.FileFilter interface, any file that imports both
packages has to use the fully qualified name.

public abstract class javax.swing.filechooser.FileFilter

This class declares two methods, both abstract:

public abstract boolean accept(File f);
public abstract String getDescription();

The accept() method returns TRue if the file passes the filter and should be displayed in the chooser
or false if it shouldn't be. Unlike the accept() method in java.io.FilenameFilter , this accept()
method is called to filter directories as well as files. Most filters accept all directories to allow the user
to navigate between directories. The geTDescription() method returns a string describing the filter
to be shown to the user in the chooser's pop-up menu, for example, Text files (*.txt, *.text) .
Example 18-6 is a simple file filter that only passes Java source code files:

Example 18-6. JavaFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
public class JavaFilter extends javax.swing.filechooser.FileFilter {
 public boolean accept(File f) {
 if (f.getName().endsWith(".java")) return true;
 else if (f.getName().endsWith(".jav")) return true;
 else if (f.isDirectory()) return true;
 return false;
 }
 public String getDescription() {
 return "Java source code (*.java)";
 }
}

Each file chooser stores a list of javax.swing.filechooser.FileFilter objects. The JFileChooser class
has methods for setting and getting the list of file filters:

public void addChoosableFileFilter(FileFilter filter)
public boolean removeChoosableFileFilter(FileFilter f)
public FileFilter[] getChoosableFileFilters()

You can add a file filter to the list with addChoosableFileFilter() . You can remove a file filter from
the list with removeChoosableFileFilter() . You can retrieve the current list of file filters with
getChoosableFileFilters() .

At any given time, exactly one file filter is selected and active. In Figure 18-4 , the Java filter is
active. That one file filter is returned by the getFileFilter() method and can be changed by the
setFileFilter() method:

public void setFileFilter(FileFilter filter)
public FileFilter getFileFilter()

By default, a JFileChooser object includes a file filter that accepts all files (*.*). A reference to this
object is returned by the getAcceptAllFileFilter() method:

public FileFilter getAcceptAllFileFilter()

The resetChoosableFileFilters() method removes all file filters from the list, except the *.* filter:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void resetChoosableFileFilters()

To remove the *.* filter from the list, pass false to setAcceptAllFileFilterUsed() :

public void setAcceptAllFileFilterUsed(boolean b)

To remove a specific filter from the list, pass it to removeChoosableFileFilter() :

public boolean removeChoosableFileFilter(FileFilter f)

Example 18-7 uses the JavaFilter class of Example 18-6 to set up a file chooser that passes Java
source code files or all files.

Example 18-7. JavaChooser

import java.io.*;
import java.lang.reflect.InvocationTargetException;
import javax.swing.*;
public class JavaChooser {
 public static void main(String[] args)
 throws InterruptedException, InvocationTargetException {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 JFileChooser fc = new JFileChooser();
 fc.addChoosableFileFilter(new JavaFilter());
 int result = fc.showOpenDialog(new JFrame());
 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fc.getSelectedFile();
 if (f != null) {
 InputStream in = new FileInputStream(f);
 for (int c = in.read(); c != -1; c = in.read()) {
 System.out.write(c);
 }
 in.close();
 }
 }
 catch (IOException ex) {System.err.println(ex);}
 }
 System.exit(0);
 } // end run

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } // end Runnable
); // end invokeAndWait
 } // end main
} // end class

You do not need to construct a new subclass of FileFilter to create a new filter. Often it's more
convenient to encapsulate some algorithm in a subclass than to parameterize the algorithm in
particular objects. For instance, Example 18-8 is an ExtensionFilter that extends FileFilter . It's
similar to the ExtensionFilenameFilter of Example 18-3 . However, this class also needs to store a
description for each extension. Furthermore, the extensions are used one at a time, not all at once.
This reflects the difference between JFileChooser and FileDialog .

Example 18-8. ExtensionFilter

package com.elharo.swing.filechooser;
import java.io.*;
import javax.swing.filechooser.*;
import javax.swing.*;
public class ExtensionFilter extends javax.swing.filechooser.FileFilter {
 private String extension;
 private String description;
 public ExtensionFilter(String extension, String description) {
 if (extension.indexOf('.') == -1) {
 extension = "." + extension;
 }
 this.extension = extension;
 this.description = description;
 }
 public boolean accept(File f) {
 if (f.getName().endsWith(extension)) {
 return true;
 }
 else if (f.isDirectory()) {
 return true;
 }
 return false;
 }
 public String getDescription() {
 return this.description + "(*" + extension + ")";
 }
}

ExtensionFilter is used in several upcoming examples.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2.7. Selecting Directories

FileDialog doesn't provide a good way to select directories instead of files. JFileChooser , by
contrast, can have a selection mode that allows the user to select files, directories, or both. The
selection mode is set by setFileSelectionMode() and returned by getFileSelectionMode() :

public void setFileSelectionMode(int mode)
public int getFileSelectionMode()

The selection mode should be one of the three mnemonic constants JFileChooser.FILES_ONLY ,
JFileChooser.DIRECTORIES_ONLY , or JFileChooser.FILES_AND_DIRECTORIES :

public static final int FILES_ONLY = 0;
public static final int DIRECTORIES_ONLY = 1;
public static final int FILES_AND_DIRECTORIES = 2;

For example:

JFileChooser fc = new JFileChooser();
fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

The isFileSelectionEnabled() method returns TRue if the selection mode allows files to be
selectedthat is, the selection mode is either FILES_ONLY or FILES_AND_DIRECTORIES.

public boolean isFileSelectionEnabled()

The isDirectorySelectionEnabled() method returns TRue if the selection mode allows directories to
be selectedthat is, the selection mode is either DIRECTORIES_ONLY or FILES_AND_DIRECTORIES.

public boolean isDirectorySelectionEnabled()

Example 18-9 is a simple program that lets the user pick a directory from the file chooser. The
contents of that directory are then listed.

Example 18-9. DirectoryChooser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.lang.reflect.InvocationTargetException;
import javax.swing.*;
public class DirectoryLister {
 public static void main(String[] args)
 throws InterruptedException, InvocationTargetException {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 JFileChooser fc = new JFileChooser();
 fc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);
 int result = fc.showOpenDialog(new JFrame());
 if (result == JFileChooser.APPROVE_OPTION) {
 File dir = fc.getSelectedFile();
 String[] contents = dir.list();
 for (int i = 0; i < contents.length; i++) {
 System.out.println(contents[i]);
 }
 }
 System.exit(0);
 }
 }
);
 }
}

18.2.8. Multiple Selections

JFileChooser also enables you to allow users to choose more than one file. Just pass true to
setMultiSelectionEnabled() :

public void setMultiSelectionEnabled(boolean b)

Typically, the user shift-clicks or command-clicks on the different files he wants to select.

The isMultiSelectionEnabled() method returns true if the file chooser allows multiple files to be
selected at one time or false otherwise:

public boolean isMultiSelectionEnabled()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2.9. Hidden Files

Most operating systems have ways of hiding a file. By default, hidden files are not shown in file
choosers. However, you can change this by passing false to the setFileHidingEnabled() method.
You can check whether or not hidden files are shown with the isFileHidingEnabled() method:

public boolean isFileHidingEnabled()
public void setFileHidingEnabled(boolean b)

18.2.10. File Views

The file view determines how information about files is interpreted and displayed to the user. For
instance, you can use a file view to display names but not extensions, icons for files, last-modified
dates of files, file sizes, and more. In general, the more information you choose to display in the file
chooser, the slower the choosers are to appear and the longer it takes to switch directories. This
information is encapsulated in a javax.swing.filechooser.FileView object. This class has five
methods:

public String getName(File f)
public String getDescription(File f)
public String getTypeDescription(File f)
public Icon getIcon(File f)
public boolean isTraversable(File f)

You can get the current view with the getFileView() method:

public FileView getFileView()

Most of the time the default file view is enough. However, you can write your own subclass of
FileView that implements all five of these methods and install it in the file chooser with setFileView(
) :

public void setFileView(fileView)

The getName() method should return the name of the file to be displayed to the user. The
getdescription() method returns a short description of the file, generally not shown to the user.
getTypeDescription() should return a short description of the general kind of file, also generally not
shown to the user. The getIcon() method returns a javax.swing.ImageIcon object for the type of
file, which is generally shown to the user to the left of the filename. Finally, isTraversable() should

http://lib.ommolketab.ir
http://lib.ommolketab.ir

return Boolean.TRUE for directories the user can enter and Boolean.FALSE for a directory the user
can't open. Example 18-10 is a FileView class that describes compressed files.

Example 18-10. CompressedFileView

import java.io.*;
import javax.swing.*;
import javax.swing.filechooser.*;
public class CompressedFileView extends FileView {
 ImageIcon zipIcon = new ImageIcon("images/zipIcon.gif");
 ImageIcon gzipIcon = new ImageIcon("images/gzipIcon.gif");
 ImageIcon deflateIcon = new ImageIcon("images/deflateIcon.gif");
 public String getName(File f) {
 return f.getName();
 }
 public String getTypeDescription(File f) {
 if (f.getName().endsWith(".zip")) return "Zip archive";
 if (f.getName().endsWith(".gz")) return "Gzipped file";
 if (f.getName().endsWith(".dfl")) return "Deflated file";
 return null;
 }
 public Icon getIcon(File f) {
 if (f.getName().endsWith(".zip")) return zipIcon;
 if (f.getName().endsWith(".gz")) return gzipIcon;
 if (f.getName().endsWith(".dfl")) return deflateIcon;
 return null;
 }
 public String getDescription(File f) {
 return null;
 }
 public Boolean isTraversable(File f) {
 return null;
 }
}

Two methods in this class, geTDescription() and isTraversable() , always return null . The other
three methods can return null if they don't recognize the file's extension. Returning null in this
context means that the look and feel should figure out the details for itself. Using this class is easy
once you've written it. Simply pass an instance of it to the file chooser's setFileView() method like
this:

fc.setFileView(new CompressedFileView());

You also need to make sure that the GIF files images/zipIcon.gif , images/gzipIcon.gif , and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

images/deflateIcon.gif exist in the current working directory. In practice, it would probably be more
reliable to place these files in a JAR archive and load them from there using System.getResource() .

18.2.11. FileSystem Views

javax.swing.FileSystemView is an abstract class that connects the filesystem abstraction the
programmer works with to the GUI abstraction an end user works with. For instance, on Windows,
the File class shows a multiply rooted filesystem: C: , D: , etc. However, a file chooser shows a
single root that is actually the C:\Documents and Settings\Username\Desktop directory.
FileSystemView represents this user's view of the filesystem rather than the programmer's view of
the File class.

The details depend on the platform. For example, the FileSystemView has to tell which files are
hidden and which aren't. On Unix, a file whose name begins with a period is hidden. On Windows, it's
not. The getFileSystemView() method returns a FileSystemView object configured for the local
system:

public FileSystemView getFileSystemView()

This class is mostly designed for the internal use of Swing and JFileChooser . However, it contains
some generally useful methods, even if your application has no GUI at all. It's sometimes worth
creating a JFileChooser just to get a FileSystemView :

JFileChooser chooser = new JFileChooser();
FileSystemView view = chooser.getFileSystemView();

However, this launches the AWT thread with the usual consequences, so you may not want to use it
in a non-GUI application.

Once you have such an object, you can learn a lot of details about files and the filesystem that the
regular java.io.File class won't tell you. This is not the intended use of this class, and it's definitely
a hack, but it is useful. For example, the isRoot() method tells you whether a given file appears to
be the root of the filesystem to a user:

public boolean isRoot(File f)

On Windows, this returns TRue for real roots such as C:\ but also returns TRue for the user's Desktop
folder.

The isTraversable() method returns Boolean.TRUE if the user can enter the directory and
Boolean.FALSE if she can't:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public Boolean isTraversable(File f)

I have no idea why this method returns a java.lang.Boolean object instead of a
boolean primitive, but that's what it does.

The isHidden() method returns true if the file is not normally shown to the user or false if it is
normally shown:

public boolean isHiddenFile(File f)

The getFiles() method returns an array of the files within a directory. The second argument
controls whether or not hidden files are included in the list:

public File[] getFiles(File dir, boolean useFileHiding)

The getSystemDisplayName() method returns the name of the file as it should be shown to the user.

public String getSystemDisplayName(File f)

Mostly this is the same as the filename. However, occasionally it's something different. For example,
on Windows, the name of the primary hard disk is C:\ , but the display name is Local Disk (C:) .

The getSystemTypeDescription() method returns a short description of the file you might also want
to show to the user:

public String getSystemTypeDescription(File f)

The getSystemIcon() method returns the file's icon that would typically be shown in the GUI shell:

public Icon getSystemIcon(File f)

The isParent() method returns TRue if the GUI shows the folder as the parent of the specified file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean isParent(File folder, File file)

Again, think of the Desktop on Windows whose parent is really the C:\Documents and
Settings\Username folder but which appears to be the parent of everything else, including all the
disks and network mounts.

The getParentDirectory() method returns the apparent parent directory of a specified file:

public File getParentDirectory(File dir)

For example, on Windows the parent of the C:\ directory is My Computer . (Of course, this isn't the
real name of the directory. That's usually something incomprehensible like ::{20D04FE0-3AEA-1069-
A2D8-08002B30309D})

The getChild() method is the reverse of this:

public File getChild(File parent, String fileName)

This method returns a File object for an apparent child of a specified directory. Almost all the time
this is the same File object you'd get with the usual constructors. However, there are a few special
cases where the GUI shows the parent and child somewhere other than where they actually are. In
this case, getChild() returns the actual location of the child.

The isFileSystemRoot() method returns true if the file is the root of a filesystem or false if it isn't:

public boolean isFileSystemRoot(File f)

For instance, on Windows, C:\ , D:\ , and the like are treated as roots.

The isFileSystem() method returns true if the specified file appears to the user as a file or folder:

public boolean isFileSystem(File f)

It returns false if the file is one of the special files such as the Desktop on Windows that is shown
differently in the GUI than in the filesystem.

The isDrive() method returns TRue if the file represents an entire disk. This usually means it has a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

special disk icon of some kind in the GUI shell.

public boolean isDrive(File dir)

On Windows, this returns true for A:\ , B:\ , C:\ , and so on and false for pretty much everything
else. On Mac OS X, this method is more or less broken and can't be relied on.

The isFloppyDrive() method returns true if the file represents a floppy disk:

public boolean isFloppyDrive(File dir)

On Windows, this is normally true of the A:\ and B:\ directories.

The isComputerNode() method returns true if and only the file represents an entire computer:

public boolean isComputerNode(File dir)

This is normally true of any mounted network servers and false of all other directories.

Example 18-11 is a simple class that calls FileSystemView to list various information about a file as it
might appear to a user.

Example 18-11. User-level file info

import java.io.*;
import javax.swing.JFileChooser;
import javax.swing.filechooser.*;
public class GUIFileSpy {
 public static void main(String[] args) {
 File f = new File(args[0]);
 JFileChooser chooser = new JFileChooser();
 FileSystemView view = chooser.getFileSystemView();
 String name = view.getSystemDisplayName(f);
 if (view.isHiddenFile(f)) System.out.println(name + " is hidden.");
 if (view.isRoot(f)) System.out.println(name + " is a root.");
 if (view.isTraversable(f).booleanValue()) {
 System.out.println(name + " is traversable.");
 }
 System.out.println("The parent of " + name + " is "
 + view.getParentDirectory(f));
 if (view.isFileSystem(f)) System.out.println(name + " is a regular file.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (view.isFileSystemRoot(f)) System.out.println(name + " is the root.");
 if (view.isComputerNode(f)) System.out.println(name + " is the computer.");
 if (view.isDrive(f)) System.out.println(name + " is a disk.");
 if (view.isFloppyDrive(f)) System.out.println(name + " is a floppy disk.");
 }
}

Here's the output when run on the Mac OS X Desktop folder:

Desktop is traversable.
The parent of Desktop is /Users/elharo
Desktop is a regular file.

Here's the output when run on the Windows Desktop folder:

Desktop is a root.
Desktop is traversable.
The parent of Desktop is C:\Documents and Settings\Administrator
Desktop is a regular file.

Compare this output to that from the FileSpy class in Example 17-4 . That class listed information
about a file as a Java program sees it. This class lists information about the file as an end user sees it.
The information is related, but is not the same.

Three methods create files in a specified directory. The createNewFolder() method makes a new
directory:

public abstract File createNewFolder(File containingDir) throws IOException

Typically, this uses whatever name is common for new directories on the host platform, untitled
folder , untitled folder 2 , untitled folder 3 , etc. on the Mac; New Folder , New Folder (2) , etc. on
Windows. (Actually, the current Mac VM gets this wrong. It uses the names NewFolder , NewFolder.1
, etc.)

You can also create a file. However, for this you have to provide a name as well as a directory, or a
full path to the file:

public File createFileObject(File dir, String filename)
public File createFileObject(String path)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, these two methods only create the File object. If the corresponding file does not already
exist, these methods do not create it. To create the file, you have to invoke createNewFile() on the
File object these methods return.

Several methods return information about the entire filesystem rather a particular file. The geTRoots(
) method returns an array containing all the filesystem roots:

public File[] getRoots()

This is not the same as File.listRoots() . The getroots() method returns the apparent root while
File.listRoots() returns the actual roots. For example, on Windows getroots() typically returns a
length one array containing C:\Documents and Setting\Administrator\Desktop . On the same system,
File.listRoots() returns a longer array containing A:\ , C:\ , D:\ , and all other mapped drive
letters.

The getHomeDirectory() method returns the user's home directory:

public File getHomeDirectory()

This is an alternative to System.getProperty("user.home") .

The geTDefaultDirectory() method returns the directory that the file chooser lists by default unless
told otherwise:

public File getDefaultDirectory()

On most platforms, the default directory is either the user's home directory or the current working
directory. Example 18-12 is a simple class that calls FileSystemView to list various information about
the local filesystem as it might appear to a user.

Example 18-12. Filesystem info

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import javax.swing.JFileChooser;
import javax.swing.filechooser.*;
public class FileSystemViewer {
 public static void main(String[] args) {
 JFileChooser chooser = new JFileChooser();
 FileSystemView view = chooser.getFileSystemView();
 System.out.println("The home directory is " + view.getHomeDirectory());
 System.out.println("The default directory is " + view.getDefaultDirectory());
 System.out.println("The roots of this filesystem are: ");
 File[] roots = view.getRoots();
 for (int i = 0; i < roots.length; i++) {
 System.out.println(" " + roots[i]);
 }
 }
}

Here's the output when run on Windows while logged in as Administrator:

The home directory is C:\Documents and Settings\Administrator\Desktop
The default directory is C:\Documents and Settings\Administrator\My Documents
The roots of this filesystem are:
 C:\Documents and Settings\Administrator\Desktop

18.2.12. Handling Events

FileDialog is difficult to work with because of its synchronous nature. When a file dialog is shown, it
blocks execution of the calling thread and all input to the parent frame. A raw JFileChooser , by
contrast (not a JFileChooser embedded in a modal dialog by showOpenDialog() , showSaveDialog()
, or showDialog()), is asynchronous. It follows the standard AWT event model and can fire action
and property change events.

18.2.12.1. Action events

When the user hits the Approve button, the chooser fires an action event with the action command
JFileChooser.APPROVE_SELECTION . When the user hits the Cancel button, the chooser fires an action
event with the action command JFileChooser.CANCEL_SELECTION .

public static final String CANCEL_SELECTION = "CancelSelection";
public static final String APPROVE_SELECTION = "ApproveSelection";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You register and remove action listeners with the file chooser in the usual fashion using
addActionListener() and removeActionListener() :

public void addActionListener(ActionListener l)
public void removeActionListener(ActionListener l)

The approveSelection() and cancelSelection() methods are called by the user interface when the
user hits the Approve or Cancel button, respectively. You can call them yourself if you're driving the
selection directly:

public void approveSelection()
public void cancelSelection()

Each of these methods fires an action event to all the registered action listeners by invoking the
fireActionPerformed() method:

protected void fireActionPerformed(String command)

18.2.12.2. Property change events

When the state of a file chooser changes, the file chooser fires a property change event (an instance
of java.beans.PropertyChangeEvent). Property changes are triggered by file selections, changing
directories, hitting the Approve or Cancel button, and many more actions. The event fired has its own
name property set to one of the following constants in the JFileChooser class:

public static final String CANCEL_SELECTION = "CancelSelection";
public static final String APPROVE_SELECTION = "ApproveSelection";
public static final String APPROVE_BUTTON_TEXT_CHANGED_PROPERTY =
 "ApproveButtonTextChangedProperty";
public static final String APPROVE_BUTTON_TOOL_TIP_TEXT_CHANGED_PROPERTY =
 "ApproveButtonToolTipTextChangedProperty";
public static final String APPROVE_BUTTON_MNEMONIC_CHANGED_PROPERTY =
 "ApproveButtonMnemonicChangedProperty";
public static final String DIRECTORY_CHANGED_PROPERTY = "directoryChanged";
public static final String SELECTED_FILE_CHANGED_PROPERTY =
 "ApproveSelection";
public static final String MULTI_SELECTION_ENABLED_CHANGED_PROPERTY =
 "fileFilterChanged";
public static final String FILE_SYSTEM_VIEW_CHANGED_PROPERTY =
 "FileSystemViewChanged";
public static final String FILE_VIEW_CHANGED_PROPERTY = "fileViewChanged";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public static final String FILE_HIDING_CHANGED_PROPERTY =
 "FileHidingChanged";
public static final String FILE_FILTER_CHANGED_PROPERTY =
 "fileFilterChanged";
public static final String FILE_SELECTION_MODE_CHANGED_PROPERTY =
 "fileSelectionChanged";
public static final String ACCESSORY_CHANGED_PROPERTY =
 "AccessoryChangedProperty";
public static final String DIALOG_TYPE_CHANGED_PROPERTY =
 "DialogTypeChangedProperty";
public static final String CHOOSABLE_FILE_FILTER_CHANGED_PROPERTY =
 "ChoosableFileFilterChangedProperty";

You listen for and respond to property change events through an instance of the
java.beans.PropertyChangeListener interface. This interface declares a single method,
propertyChange() . However, it's relatively rare to use a property change listener with a file chooser.
Most of the time, you don't need to do anything as a result of a state change in the file chooser. You
might want to respond to a property change event fired by a file chooser if you're using an accessory
to preview the selected file. In this case, you'll watch for changes in the
SELECTED_FILE_CHANGED_PROPERTY , as demonstrated in the next section.

18.2.13. Accessory

An accessory is an optional component you can add to the JFileChooser . The most common use of
an accessory is to show a preview of the file. For example, a file chooser for selecting an image file
might provide an accessory that shows a thumbnail of the picture. The setAccessory() method adds
an accessory to the file chooser while the getAccessory() method returns a reference to it:

public JComponent getAccessory()
public void setAccessory(JComponent newAccessory)

A JFileChooser object can have at most one accessory and does not need to have any.

Example 18-13 is a chooser that uses a JTextArea as an accessory to show the first few lines of the
selected text file. This TextFilePreview class extends JTextArea so that it can easily display text. It
implements the PropertyChangeListener interface so that it can be notified through its
propertyChange() method when the user changes the selected file and the preview needs to be
changed. The loadText() method reads in the first few hundred bytes of the selected file and stores
that data in the preview field. Finally, the main() method tests this class by displaying a file chooser
with this accessory. Figure 18-5 shows the result.

Figure 18-5. A JFileChooser with a TextFilePreview accessory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 18-13. TextFilePreview

import javax.swing.*;
import java.beans.*;
import java.io.*;
import java.lang.reflect.InvocationTargetException;
import java.awt.*;
public class TextFilePreview extends JTextArea
 implements PropertyChangeListener {

 private File selectedFile = null;
 private String preview = "";
 private int previewLength = 250;
 public TextFilePreview(JFileChooser fc) {
 super(10, 20);
 this.setEditable(false);
 this.setPreferredSize(new Dimension(150, 150));
 this.setLineWrap(true);
 fc.addPropertyChangeListener(this);
 }
 private void loadText() {
 if (selectedFile != null) {
 try {
 FileInputStream fin = new FileInputStream(selectedFile);
 byte[] data = new byte[previewLength];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int bytesRead = 0;
 for (int i = 0; i < previewLength; i++) {
 int b = fin.read();
 if (b == -1) break;
 bytesRead++;
 data[i] = (byte) b;
 }
 preview = new String(data, 0, bytesRead);
 fin.close();
 }
 catch (IOException ex) {
 // File preview is not an essential operation so
 // we'll simply ignore the exception and return.
 }
 }
 }
 public void propertyChange(PropertyChangeEvent evt) {
 if (evt.getPropertyName().equals(
 JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)) {
 selectedFile = (File) evt.getNewValue();
 if(isShowing()) {
 loadText();
 this.setText(preview);
 }
 }
 }
 public static void main(String[] args)
 throws InterruptedException, InvocationTargetException {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 JFileChooser fc = new JFileChooser();
 fc.setAccessory(new TextFilePreview(fc));
 int result = fc.showOpenDialog(new JFrame());
 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fc.getSelectedFile();
 if (f != null) {
 InputStream in = new FileInputStream(f);
 for (int c = in.read(); c != -1; c = in.read()) {
 System.out.write(c);
 }
 in.close();
 }
 }
 catch (IOException ex) {System.err.println(ex);}
 }
 System.exit(0);
 } // end run
 } // end Runnable
); // end invokeAndWait
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3. File Viewer, Part 6

We now have the tools needed to put a graphical user interface onto the FileViewer application
we've been developing. The back end doesn't need to change at all. It's still based on the same filter
streams we've used for the last several chapters. However, instead of reading filenames from the
command line, we can get them from a file chooser. Instead of dumping the files on System.out, we
can display them in a text area. And instead of relying on the user remembering a lot of confusing
command-line switches, we can provide simple radio buttons for the user to choose from. This has
the added advantage of making it easy to repeatedly interpret the same file according to different
filters.

Figure 18-6 shows the finished application. This gives you some idea of what the code is aiming at.
Initially, I started with a pencil-and-paper sketch, but I'll spare you my inartistic renderings. The
single JFrame window is organized with a border layout. The west panel contains various controls for
determining how the data is interpreted. The east panel contains the JFileChooser used to select the
file. Notice that the Approve button has been customized to say "View File" rather than "Open".
Ideally, I'd like to make the Cancel button say "Quit" instead, but the JFileChooser class doesn't
allow you to do that without using resource bundles, a subject I would prefer to leave for another
book. The south panel contains a scroll pane. Inside the scroll pane is a streamed text area.

Figure 18-6. The FileViewer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's begin the exegesis of the code where I began writing it, with the user interface. The main driver
class is FileViewer, shown in Example 18-14. This class extends JFrame. Its constructor doesn't do a
lot. Most of the work is relegated to the init() method, which sets up the user interface composed
of the three parts previously described and centers the whole frame on the primary display.

Example 18-14. FileViewer

import javax.swing.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.elharo.io.ui.JStreamedTextArea;
public class FileViewer extends JFrame implements ActionListener {
 private JFileChooser chooser = new JFileChooser();
 private JStreamedTextArea theView = new JStreamedTextArea();
 private ModePanel mp = new ModePanel();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public FileViewer() {
 super("FileViewer");
 }
 public void init() {
 chooser.setApproveButtonText("View File");
 chooser.setApproveButtonMnemonic('V');
 chooser.addActionListener(this);
 this.getContentPane().add(BorderLayout.CENTER, chooser);
 JScrollPane sp = new JScrollPane(theView);
 sp.setPreferredSize(new Dimension(640, 400));
 this.getContentPane().add(BorderLayout.SOUTH, sp);
 this.getContentPane().add(BorderLayout.WEST, mp);
 this.pack();
 // Center on display.
 Dimension display = getToolkit().getScreenSize();
 Dimension bounds = this.getSize();
 int x = (display.width - bounds.width)/2;
 int y = (display.height - bounds.height)/2;
 if (x < 0) x = 10;
 if (y < 0) y = 15;
 this.setLocation(x, y);
 }
 public void actionPerformed(ActionEvent evt) {
 if (evt.getActionCommand().equals(JFileChooser.APPROVE_SELECTION)) {
 File f = chooser.getSelectedFile();
 if (f != null) {
 theView.reset();
 try {
 InputStream in = new FileInputStream(f);
 in = new ProgressMonitorInputStream(this, "Reading...", in);
 OutputStream out = theView.getOutputStream();
 FileDumper5.dump(in, out, mp.getMode(), mp.isBigEndian(),
 mp.isDeflated(), mp.isGZipped(), mp.getPassword());
 }
 catch (IOException ex) {
 JOptionPane.showMessageDialog(this, ex.getMessage(),
 "I/O Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }
 else if (evt.getActionCommand().equals(JFileChooser.CANCEL_SELECTION)) {
 this.setVisible(false);
 this.dispose();
 }
 }

 public static void main(String[] args) {
 FileViewer viewer = new FileViewer();
 viewer.init();
 // This is a single window application
 viewer.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 viewer.setVisible(true);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

FileViewer implements the ActionListener interface. However, the action events that its
actionPerformed() method responds to are fired by the file chooser, indicating that the user pressed
the View File button.

When the user presses the View File button, the mode panel is read to determine exactly how the file
is to be interpreted. These parameters and the selected file are fed to the static
FileDumper5.dumpFile() method from Chapter 12.

The next new class in this application is the ModePanel, shown in Example 18-15. This class provides
a simple user interface to allow the user to specify the format the file is in, whether and how it's
compressed, and the password, if any. This part of the GUI is completely contained inside this class.
Other methods that need access to this information can query the ModePanel for it through any of
several public getter methods. They do not need to concern themselves with the internal details of
the ModePanel GUI.

Example 18-15. ModePanel

import java.awt.*;
import javax.swing.*;
public class ModePanel extends JPanel {
private JCheckBox bigEndian = new JCheckBox("Big Endian", true);
 private JCheckBox deflated = new JCheckBox("Deflated", false);
 private JCheckBox gzipped = new JCheckBox("GZipped", false);
 private ButtonGroup dataTypes = new ButtonGroup();
 private JRadioButton asciiRadio = new JRadioButton("ASCII");
 private JRadioButton decimalRadio = new JRadioButton("Decimal");
 private JRadioButton hexRadio = new JRadioButton("Hexadecimal");
 private JRadioButton shortRadio = new JRadioButton("Short");
 private JRadioButton intRadio = new JRadioButton("Int");
 private JRadioButton longRadio = new JRadioButton("Long");
 private JRadioButton floatRadio = new JRadioButton("Float");
 private JRadioButton doubleRadio = new JRadioButton("Double");
 private JTextField password = new JPasswordField();
 public ModePanel() {
 this.setLayout(new GridLayout(13, 1));
 this.add(bigEndian);
 this.add(deflated);
 this.add(gzipped);
 this.add(asciiRadio);
 asciiRadio.setSelected(true);
 this.add(decimalRadio);
 this.add(hexRadio);
 this.add(shortRadio);
 this.add(intRadio);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.add(longRadio);
 this.add(floatRadio);
 this.add(doubleRadio);
 dataTypes.add(asciiRadio);
 dataTypes.add(decimalRadio);
 dataTypes.add(hexRadio);
 dataTypes.add(shortRadio);
 dataTypes.add(intRadio);
 dataTypes.add(longRadio);
 dataTypes.add(floatRadio);
 dataTypes.add(doubleRadio);
 this.add(password);
 }
 public boolean isBigEndian() {
 return bigEndian.isSelected();
 }
 public boolean isDeflated() {
 return deflated.isSelected();
 }
 public boolean isGZipped() {
 return gzipped.isSelected();
 }
 public int getMode() {
 if (asciiRadio.isSelected()) return FileDumper6.ASC;
 else if (decimalRadio.isSelected()) return FileDumper6.DEC;
 else if (hexRadio.isSelected()) return FileDumper6.HEX;
 else if (shortRadio.isSelected()) return FileDumper6.SHORT;
 else if (intRadio.isSelected()) return FileDumper6.INT;
 else if (longRadio.isSelected()) return FileDumper6.LONG;
 else if (floatRadio.isSelected()) return FileDumper6.FLOAT;
 else if (doubleRadio.isSelected()) return FileDumper6.DOUBLE;
 else return FileDumper6.ASC;
 }
 public String getPassword() {
 return password.getText();
 }
}

And there you have it: a graphical file viewer application. The I/O code hasn't changed at all, but the
resulting application is much easier to use. One final piece remains before we can say the file viewer
is complete. Chapter 20 adds support for many additional text encodings besides the ASCII used
here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART VI: Text
Chapter 19: Character Sets and Unicode

Chapter 20: Readers and Writers

Chapter 21: Formatted I/O with java.text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 19. Character Sets and Unicode
We live on a planet on which many languages are spoken. I can walk out my front door in Brooklyn
and hear people conversing in English, French, Creole, Hebrew, Arabic, Spanish, and languages I
don't even recognize. The Internet is even more diverse than Brooklyn. A local doctor's office that
sets up a storefront on the Web to sell vitamins may soon find itself shipping to customers whose
native languages are Chinese, Gujarati, Turkish, German, Portuguese, or something else. There's no
such thing as a local business on the Internet.

However, the first computers and the first programming languages were mostly designed by English-
speaking programmers in countries where English was the native language. These programmers
designed character sets that worked well for English text, though not much else. The preeminent
such set is ASCII. Since ASCII is a 7-bit character set, each ASCII character can be represented as a
single byte, signed or unsigned. Thus, it's natural for ASCII-based programming languages, such as
C, to equate the character data type with the byte data type. In these languages, the same
operations that read and write bytes also read and write characters.

Unfortunately, ASCII is inadequate for almost all non-English languages. It contains no cedillas,
umlauts, betas, thorns, or any of the other thousands of non-English characters used around the
world. Fairly shortly after the development of ASCII there was an explosion of extended character
sets, each of which encoded the basic ASCII characters plus the additional characters needed for
another language, such as Greek, Turkish, Arabic, Chinese, Japanese, or Russian. Many of these
character sets are still used today, and much existing data is encoded in them.

However, these character sets are still inadequate for many needs. For one thing, most assume that
you only want to encode English plus one other language. This makes it difficult for a Russian
classicist to write a commentary on an ancient Greek text, for example. Furthermore, documents are
limited by their character sets. Email sent from Morocco may become illegible in India if the sender is
using an Arabic character set but the recipient is using Devanagari.

The Unicode character set is the end result of an ongoing international effort to create a single
character set that everyone can use. Unicode supports the characters needed for English, Arabic,
Cyrillic, Greek, Devanagari, and many other languages. Unicode isn't perfectthere are some
omissions and redundanciesbut it is the most comprehensive character set yet devised for all the
languages of planet Earth.

Java adopts Unicode as its native character set. Java chars and strings are Unicode (more
specifically, the UTF-16 encoding of the Unicode character set). However, since there's also a lot of
non-Unicode legacy text in the world, in a dizzying array of encodings, Java provides classes to read
and write text in those encodings as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1. The Unicode Character Set

The Unicode character set maps characters to integer code points. For instance, the Latin letter A is
assigned the code point 65. The Greek letter is assigned the code point 931. The musical symbol

 is assigned the code point 119,074. Unicode has room for over one million characters, which
is enough to hold every character from all the world's scripts. The current version of Unicode (4.1)
defines 97,655 different characters from many languages, including English, Russian, Arabic, Hebrew,
Greek, Korean, Chinese, Japanese, and Sanskrit.

The first 128 Unicode characters (characters 0 through 127) are identical to the ASCII character set.
The ASCII space is 32; therefore, 32 is the Unicode space. The ASCII exclamation point is 33, so 33
is the Unicode exclamation point, and so on. Table A-1 in Appendix A shows this character set. The
next 128 Unicode characters (characters 128 through 255) have the same values as the equivalent
characters in the Latin-1 character set defined by ISO standard 8859-1. Latin-1, a slight variation of
which is used by Windows, adds the various accented characters, umlauts, cedillas, upside-down
question marks, and other characters needed to write text in most Western European languages.
Table A-2 shows these characters. The first 128 characters in Latin-1 are identical to the ASCII
character set.

Unicode is divided into blocks. For example, characters 0 through 127 are the Basic Latin block and
contain ASCII. Characters 128 through 255 are the Latin Extended-A block and contain the upper
128 characters of the Latin-1 character set. Characters 9984 through 10,175 are the Dingbats block
and contain the characters in the popular Zapf Dingbats font. Characters 19,968 through 40,959 are
the unified Chinese-Japanese-Korean ideograph block.

For complete lists of all the Unicode characters and associated glyphs, the
canonical reference is The Unicode Standard, Version 4.0 by the Unicode
Consortium (ISBN 0-321-18578-1). Online versions of the character tables can
be found at http://unicode.org/charts/.

Although internally Java can handle full Unicode data (code points are just numbers, after all), not all
Java environments can display all Unicode characters. The biggest problem is the lack of fonts. Few
computers have fonts for all the scripts Java supports. Even computers that possess the necessary
fonts can't install a lot of them because of their size. A normal, 8-bit outline font ranges from about
3060K. A Unicode font that omits the Han ideographs will be about 10 times that size. A Unicode font
that includes the full range of Han ideographs will occupy between 5 and 7 MB. Furthermore, text
display algorithms based on English often break down when faced with right-to-left languages like
Hebrew and Arabic, vertical languages like the traditional Chinese used in Taiwan, or context-
sensitive languages like Arabic.

http://unicode.org/charts/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.2. UTF-16

The integers to which Unicode maps characters can be encoded in a variety of ways. The simplest
approach is to write each integer as a normal big-endian 4-byte int. This encoding scheme is called
UCS-4. However, it's rather inefficient because the vast majority of characters seen in practice have
code points less than 65,535, and in English text most are less than 127.

In practice, most Unicode text is encoded in either UTF-16 or UTF-8. UTF-16 uses two bytes for
characters with code points less than or equal to 65,535 and four bytes for characters with code
points greater than 65,535. It comes in both big-endian and little-endian formats. The endianness is
normally indicated by an initial byte order mark. That is, the first character in the file is the zero-
width nonbreaking space, code point 65,279. In big-endian UTF-16, this is the two bytes 0xFEFF (in
hexadecimal). In little-endian UTF-16, this is the reverse, 0xFFFE.

UTF-16 encodes characters with code points from 0 to 65,535 (the Basic Multilingual Plane, or BMP
for short) as 2-byte unsigned ints. Characters from beyond the BMP are encoded as surrogate pairs
made up of four bytes: first a high surrogate, then a low surrogate. The Java char data type is really
a big-endian UTF-16 code point, not a Unicode character, though the difference is significant only for
characters from outside the BMP.

To see how this works, consider a character from outside the BMP in a typical UCS-4 (4-byte) big-
endian representation. This is composed of four bytes of eight bits each. I will label the bits as x0
through x31:

x31
x30
x29
x28
x27
x26
x25
x24
x23
x22
x21
x20
x19
x18
x17
x16
x15
x14
x13
x12
x11
x10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x9
x8
x7
x6
x5
x4
x3
x2
x1
x0

In reality, the high-order byte is always 0. The first three bits of the second byte are also always 0,
so these don't need to be encoded. Only bits x0 through x20 need to be encoded. These are encoded
in four bytes, like this:

1
1
0
1
1
0
w1
w2
w3
w4
x15
x14
x13
x12
x11
x10
1
1
0
1
1
1
x9
x8
x7
x6
x5
x4
x3
x2
x1
x0

Here, w1w2w3w4 is the 4-byte number formed by subtracting 1 from the 5-bit number
x20x19x18x17x16. There are simple, efficient algorithms for breaking up non-BMP characters into
these surrogate pairs and recomposing them. Most of the time you'll let the Reader and Writer
classes do this for you automatically. The main thing you need to remember is that a Java char is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

really a UTF-16 code point, and while 99% of the time this is the same as one Unicode character,
there are cases where it takes two chars to make a single character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.3. UTF-8

UTF-8 is the preferred encoding of Unicode for most scenarios that don't require fast random
indexing into a string. It has a number of nice characteristics, including robustness and compactness
compared to other Unicode encodings.

UTF-8 encodes the ASCII characters in a single byte, characters between 128 and 2,047 in two
bytes, other characters in the BMP in three bytes, and characters from outside the BMP in four bytes.
Java .class files use UTF-8 to store string literals, identifiers, and other text data in compiled byte
code.

To better understand UTF-8, consider a typical Unicode character from the Basic Multilingual Plane as
a sequence of 16 bits:

x15
x14
x13
x12
x11
x10
x9
x8
x7
x6
x5
x4
x3
x2
x1
x0

Each ASCII character (each character between 0 and 127) has its upper nine bits equal to 0:

0
0
0
0
0
0
0
0
0
x6
x5
x4
x3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x2
x1
x0

Therefore, it's easy to encode an ASCII character as a single byte. Just drop the high-order byte:

0
x6
x5
x4
x3
x2
x1
x0

Now consider characters between 128 and 2,047. These all have their top five bits equal to 0, as
shown here:

0
0
0
0
0
x10
x9
x8
x7
x6
x5
x4
x3
x2
x1
x0

These characters are encoded into two bytes, but not in the most obvious fashion. The 11 significant
bits of the character are broken up like this:

1
1
0
x10
x9
x8
x7
x6
1
0
x5
x4
x3
x2
x1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x0

Neither of the bytes that make up this number begins with a 0 bit. Thus, you can distinguish between
bytes that are part of a 2-byte character and bytes that represent 1-byte characters (which all begin
with 0).

The remaining characters in the BMP have values between 2,048 and 65,535. Any or all of the bits in
these characters may take on the value of either 0 or 1. Thus, they are encoded in three bytes, like
this:

1
1
1
0
x15
x14
x13
x12
1
0
x11
x10
x9
x8
x7
x6
1
0
x5
x4
x3
x2
x1
x0

Within this scheme, any byte beginning with a 0 bit must be a 1-byte ASCII character between 1 and
127. Any byte beginning with the three bits 110 must be the first byte of a 2-byte character. Any
byte beginning with the four bits 1110 must be the first byte of a 3-byte character. Finally, any byte
beginning with the two bits 10 must be the second or third byte of a multibyte character.

The DataOutputStream class provides a writeUTF() method that encodes a string in a slight variation
of UTF-8. It first writes the number of encoded bytes in the string (as an unsigned short), followed by
the UTF-8-encoded format of the string:

public final void writeUTF(String s) throws IOException

The DataInputStream class provides two corresponding readUTF() methods to read such a string
from its underlying input stream:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public final String readUTF() throws IOException
public static final String readUTF(DataInput in) throws IOException

Each of these first reads a 2-byte unsigned short that tells it how many more bytes to read. These
bytes are then read and decoded into a Java Unicode string. An EOFException is thrown if the stream
ends before all the expected bytes have been read. If the bytes read cannot be interpreted as a valid
UTF-8 string, a UTFDataFormatException is thrown.

However, DataInputStream and DataOutputStream diverge from the official UTF-8 format in one
respect: they encode the null character (0x00) in two bytes rather than one. This makes it slightly
easier for C code that expects null-terminated strings to parse Java .class files. On the other hand, it
makes the data written by writeUTF() incompatible with most other libraries. The Reader and Writer
classes discussed in the next chapter read and write true UTF-8 with 1-byte nulls, and these should
be preferred for almost all use cases other than parsing Java byte code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.4. Other Encodings

Unicode support is growing, but there will doubtless be legacy data in other encodings that must be
read for centuries to come. Such encodings include ASCII and Latin-1, as well as less common
encoding schemes such as EBCDIC and MacRoman. There are multiple encodings in use for Arabic,
Turkish, Hebrew, Greek, Cyrillic, Chinese, Japanese, Korean, and many other languages and scripts.
The Reader and Writer classes allow you to read and write data in these different character sets. The
String class also has a number of methods that convert between different encodings (though a
String object itself is always represented in Unicode).

Modern desktop and server Java environments are pretty well guaranteed to have these six character
sets available:

US-ASCII

ISO-8859-1

UTF-8

UTF-16BE

UTF-16LE

UTF-16

All other encodings are optional and may not be supported in any given VM. Most VMs will have many
more encodings as well, but only these six are almost certain to be present. They're likely to be more
interoperable, not just with Java but with other programs written in other languages. Some VMs,
especially on Windows, omit some of the more obscure or larger encodings to save space. J2ME VMs
will likely include many fewer to save space, and they don't have the java.nio.charsets package at
all.

If you've installed Sun's JRE/JDK, a basic set of encodings is included in the standard rt.jar file along
with all the other classes from the Java class library. There may also be a charsets.jar file that
includes several dozen additional encodings, such as MacRoman and SJIS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.5. Converting Between Byte Arrays and Strings

I/O is about bytes. Disks and networks understand bytes, not characters. Nonetheless, much actual
programming is modeled in terms of characters and text. When reading in data, it's generally
necessary to convert the bytes into characters. When writing out data, it's necessary to convert the
characters into bytes. The Reader and Writer classes can perform the conversions implicitly, which is
normally the simplest approach when you only need to work on text. However, when working with
mixed formats such as FITS, GIF, or XOP that contain both text and binary data, it's normally
necessary to explicitly convert the text to or from bytes in some encoding.

19.5.1. The String Class

The java.lang.String class has several constructors that form a string from a byte array and several
methods that return a byte array corresponding to a given string. There's no unique way to do this.
There are multiple encodings of characters into bytes. Anytime a string is converted to bytes or vice
versa, that conversion happens according to a certain encoding. The same string can produce
different byte arrays when converted into different encodings.

Six constructors form a new String object from a byte array:

public String(byte[] ascii, int highByte)
public String(byte[] ascii, int highByte, int offset, int length)
public String(byte[] data, String encoding)
 throws UnsupportedEncodingException
public String(byte[] data, int offset, int length, String encoding)
 throws UnsupportedEncodingException
public String(byte[] data)
public String(byte[] data, int offset, int length)

The first two constructors, the ones with the highByte argument, are leftovers from Java 1.0 that are
deprecated in Java 1.1 and later. These two constructors do not accurately translate non-Latin-1
character sets into Unicode. Instead, they read each byte in the ascii array as the low-order byte of
a 2-byte character and fill in the high-order byte with the highByte argument. For example:

byte[] isoLatin1 = new byte[256];
for (int i = 0; i < 256; i++) isoLatin1[i] = (byte) i;
String s = new String(isoLatin1, 0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Frankly, this is a kludge. It's deprecated for good reason. This scheme works quite well for Latin-1
data with a high byte of 0. However, it's extremely difficult to use for character sets where different
characters need to have different high bytes, and it's completely unworkable for character sets like
MacRoman that also need to adjust bits in the low-order byte to conform to Unicode. The only
approach that genuinely works for the broad range of character sets Java programs may be asked to
handle is table lookup. Each supported character encoding requires a table mapping characters in the
set to Unicode characters. These tables are hidden inside the sun.io package, but they are present,
and they are how the next four constructors translate from various encodings to Unicode.

The third and fourth constructors allow the client programmer to specify not only the byte data but
also the encoding table to be used when converting these bytes to Unicode chars. The third
constructor converts the entire array from the specified encoding into Unicode. The fourth one
converts only the specified subarray of data starting at offset and continuing for length bytes.
Otherwise, they're identical. The first argument is the data to be converted. The final argument is the
encoding scheme to be used to perform the conversion. For example:

byte[] isoLatin1 = new byte[256];
for (int i = 0; i < 256; i++) isoLatin1[i] = (byte) i;
String s = new String(isoLatin1, "8859_1");

The fifth and sixth constructors are similar to the third and fourth. However, they always use the host
platform's default encoding, as specified by the system property file.encoding. If this is ISO 8859-1,
you may write:

byte[] isoLatin1 = new byte[256];
for (int i = 0; i < 256; i++) isoLatin1[i] = (byte) i;
String s = new String(isoLatin1);

This code fragment produces different results on platforms with different default encodings.

The three getBytes() methods go the other direction, converting the Unicode string into an array of
bytes in a particular encoding:

public void getBytes(int srcBegin, int srcEnd, byte[] dst, int dstBegin)
public byte[] getBytes()
public byte[] getBytes(String encoding) throws UnsupportedEncodingException

Once again, the first method is deprecated. The byte array it returns contains only the low-order
bytes of the 2-byte characters in the string (starting at srcBegin and continuing through srcEnd).
This works well enough for ASCII and Latin-1 but fails miserably for pretty much all other character
sets. The no-arg getBytes() method properly converts the Unicode characters in the string into a
byte array in the platform's default encodingassuming a full conversion is possible (and it isn't
always; you cannot, for example, convert a string of Chinese ideographs into Latin-1). The byte array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returned contains the converted characters. The third and final getBytes() method specifies the
encoding to be used to make the conversion. For example, this statement converts the Greek word

 (man) into its byte equivalent using the MacGreek encoding:

byte[] man = " ".getBytes("MacGreek");

This method throws an UnsupportedEncodingException if the Java virtual machine does not supply
the requested encoding.

19.5.2. The Charset Class

Char-to-byte conversion through the String class is relatively indirect and not always as efficient as
one would like. In Java 1.4, the java.nio.charsets package provides classes for efficient conversion
of large chunks of text to and from any encoding Java supports. This is in fact a more direct interface
to the character conversion code that's used by the String class and has been present in the JDK
since Java 1.1.

Charset is an abstract class that represents a character set such as US-ASCII, ISO-8859-1, or SJIS.
Each Charset object defines a mapping between the characters in that set and some subset of
Unicode. The mapping is sometimes implemented algorithmically, sometimes as simple table lookup,
and sometimes as a combination of both, but the details need not concern you. The Charset
abstraction hides all this.

19.5.2.1. Retrieving Charset objects

The one constructor in the Charset class is protected:

protected Charset(String canonicalName,String[] aliases)

While you might invoke this if adding support for an encoding Java doesn't support out of the box,
that usage is rare. Much more commonly, you'll call the Charset.forName() factory method to ask
Java for one of the encodings it supports:

public static Charset forName(String charsetName)
 throws IllegalCharsetNameException, UnsupportedCharsetException

For example, this statement requests the Charset object for the Big5 encoding for Chinese:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Charset big5 = Charset.forName("Big5");

Character set names are case insensitive. Charset.forName("BIG5") returns the same Charset object
as Charset.forName("Big5").

If the local JDK supports the requested encoding, Charset.forName() returns a Charset object.
Otherwise, it throws an UnsupportedCharsetException. This is a runtime exception, so you don't need
to explicitly handle it as long as you're confident the runtime contains the requested character set.
Charset.forName() may also throw an IllegalCharsetNameException if the name contains spaces,
non-ASCII characters, or punctuation marks other than the hyphen, period, colon, and underscore.

Java 5 adds one more way to get a Charset. The static Charset.defaultCharset() method returns
the current system's default character set:

public static Charset defaultCharset()

This code prints the name of the platform's default character set:

System.out.println(Charset.defaultCharset());

When I tested this, the default on Mac OS X was MacRoman, on Windows it was windows-1252, and
on Linux it was UTF-8. These were all U.S.-localized systems. Systems localized for other countries,
especially outside Western Europe and the Americas, would probably show something different.

19.5.2.2. Character set info

The static Charset.isSupported() method checks whether an encoding is available in the current
VM:

public static boolean isSupported(String charsetName)

For example, if you wanted to use Big5 if possible but fall back to UTF-8 if it wasn't, you might write
code like this:

Charset cs;
if (Charset.isSupported("Big5") cs = Charset.forName("Big5");
else cs = Charset.forName("UTF-8");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The static Charset.availableCharsets() method enables you to inquire which character sets are
installed in the local VM:

public static SortedMap availableCharsets()

The keys in the returned method are the character set names. The values are the Charset objects
themselves. In Java 5, a genericized signature makes this more explicit:

public static SortedMap <String, Charset> availableCharsets()

Example 19-1 is a simple program to list all the available character sets:

Example 19-1. List available character sets

import java.nio.charset.*;
import java.util.*;
class CharsetLister {
 public static void main(String[] args) {
 Map charsets = Charset.availableCharsets();
 Iterator iterator = charsets.keySet().iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

When run on the Apple Java VM 1.4, it found 64 character sets, including the following:

$ java CharsetLister
Big5
Big5-HKSCS
EUC-JP
EUC-KR
GB18030
GBK
ISO-2022-JP
ISO-2022-KR
ISO-8859-1
ISO-8859-13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ISO-8859-15
ISO-8859-2
...
x-MS950-HKSCS
x-mswin-936
x-windows-949
x-windows-950

The Java 5 VM has 85 more. Character set availability varies from one VM vendor and version to the
next. In general, I recommend sticking to UTF-8 if at all possible for new data. UTF-8 should always
be supported. Legacy protocols, formats, and data may require occasional use of US-ASCII, ISO-
8859-1, or other encodings, but new text data should be encoded in UTF-8.

Many character sets are commonly known by more than one name. For instance, UTF-8 is also
referred to as UTF8 and unicode-1-1-utf-8. The names shown in the program's output are the
canonical names of the character sets. The name() instance method returns the canonical name of a
given Charset object:

public String name()

The aliases() method returns all the aliases for a given character set, not including its canonical
name:

public final Set aliases()

The values in the set are strings. In Java 5, a genericized signature makes this more explicit:

public final Set<String> aliases()

Character sets may also have display names that can be localized and may contain non-ASCII
characters:

public String displayName()

The display name is usually the same as the canonical name, but specific implementations may
instead return a localized value that can contain spaces and non-ASCII characters. The display name
is meant for showing to people, not for looking up character sets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For interoperability, character set names and aliases should be registered with the Internet Assigned
Number Authority (IANA) and listed in the registry at http://www.iana.org/assignments/character-
sets. The isRegistered() method returns true if the character set has been so registered:

public final boolean isRegistered()

Many of the character sets shipped with the JDK have not been registered. You may need to use
these character sets to decode existing data, but you should not generate any new data in an
unregistered character set.

Example 19-3 is a slightly more complex program that lists all the available character sets by their
display names, canonical names, and aliases.

Example 19-2. List different names for character sets

import java.nio.charset.*;
import java.util.*;
class AliasLister {
 public static void main(String[] args) {
 Map charsets = Charset.availableCharsets();
 Iterator iterator = charsets.values().iterator();
 while (iterator.hasNext()) {
 Charset cs = (Charset) iterator.next();
 System.out.print(cs.displayName());
 if (cs.isRegistered()) {
 System.out.print(" (registered): ");
 }
 else {
 System.out.print(" (unregistered): ");
 }
 System.out.print(cs.name());
 Iterator names = cs.aliases().iterator();
 while (names.hasNext()) {
 System.out.print(", ");
 System.out.print(names.next());
 }
 System.out.println();
 }
 }
}

Here's a sample of the output from the Apple Java VM 1.4:

http://www.iana.org/assignments/character-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

$ java AliasLister
Big5 (registered): Big5, csBig5
Big5-HKSCS (registered): Big5-HKSCS, big5-hkscs, Big5_HKSCS, big5hkscs
EUC-JP (registered): EUC-JP, eucjis, x-eucjp, csEUCPkdFmtjapanese, eucjp,
Extended_UNIX_Code_Packed_Format_for_Japanese, x-euc-jp, euc_jp
EUC-KR (registered): EUC-KR, ksc5601, 5601, ksc5601_1987, ksc_5601, ksc5601-1987,
euc_kr, ks_c_5601-1987, euckr, csEUCKR
GB18030 (registered): GB18030, gb18030-2000
...
x-MS950-HKSCS (unregistered): x-MS950-HKSCS, MS950_HKSCS
x-mswin-936 (unregistered): x-mswin-936, ms936, ms_936
x-windows-949 (unregistered): x-windows-949, windows949, ms_949, ms949
x-windows-950 (unregistered): x-windows-950, windows-950, ms950

19.5.2.3. Encoding and decoding

Of course, the primary purpose of a Charset object is to encode and decode text. The encode() and
decode() methods do this:

public final CharBuffer decode(ByteBuffer buffer)
public final ByteBuffer encode(CharBuffer buffer)
public final ByteBuffer encode(String s)

You can encode either a String or a CharBuffer. Decoding operates on a ByteBuffer and produces a
CharBuffer. These methods do not throw exceptions. If they encounter a character they cannot
convert, they replace it with the replacement character (normally a question mark).

All character sets support decoding, and most but not all support encoding. The canEncode() method
returns true if the Charset supports encoding and false if it doesn't:

public boolean canEncode()

A few special sets automatically detect the encoding of an incoming stream and set the decoder
appropriately. In the VM I use, there are exactly two such nonencoding charsets: csISO2022CN and
JISAutoDetect. If you try to encode text with a Charset that does not support encoding, the encode(
) method throws an UnsupportedOperationException.

Example 19-5 is a simple program that reads a stream in one encoding and writes it out in another
encoding. A Charset object converts between the two encodings. The user interface implemented in
the main() method simply reads the names of the encodings to convert to and from the command-
line arguments. Input is read from System.in and written to System.out, mostly because I didn't want
to spend a lot of lines parsing command-line arguments. However, the convert() method is more
general and can operate on any streams you pass in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 19-3. Converting encodings

import java.io.*;
import java.nio.charset.*;
import java.nio.*;
import java.nio.channels.*;
public class Recoder {
 public static void main(String[] args) {
 if (args.length != 2) {
 System.err.println(
 "Usage: java Recoder inputEncoding outputEncoding <inFile >outFile");
 return;
 }
 try {
 Charset inputEncoding = Charset.forName(args[0]);
 Charset outputEncoding = Charset.forName(args[1]);
 convert(inputEncoding, outputEncoding, System.in, System.out);
 }
 catch (UnsupportedCharsetException ex) {
 System.err.println(ex.getCharsetName() + " is not supported by this VM.");
 }
 catch (IllegalCharsetNameException ex) {
 System.err.println(
 "Usage: java Recoder inputEncoding outputEncoding <inFile >outFile");
 }
 catch (IOException ex) {
 System.err.println(ex.getMessage());
 }
 }
 private static void convert(Charset inputEncoding, Charset outputEncoding,
 InputStream inStream, OutputStream outStream) throws IOException {
 ReadableByteChannel in = Channels.newChannel(inStream);
 WritableByteChannel out = Channels.newChannel(outStream);
 for (ByteBuffer inBuffer = ByteBuffer.allocate(4096);
 in.read(inBuffer) != -1;
 inBuffer.clear()) {
 inBuffer.flip();
 CharBuffer cBuffer = inputEncoding.decode(inBuffer);
 ByteBuffer outBuffer = outputEncoding.encode(cBuffer);
 while (outBuffer.hasRemaining()) out.write(outBuffer);
 }
 }
}

The convert() method wraps a channel around the InputStream and another channel around the
OutputStream. Data is read from the input channel into a ByteBuffer. Next, this buffer is flipped and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

decoded into a CharBuffer using the input Charset. That CharBuffer is then reencoded into a new
ByteBuffer using the output encoding. Finally, this byte buffer is written onto the output channel.

Example 19-5 is simple, but it has one inobvious bug. What if the input data in the buffer does not
contain a complete multibyte character? That is, what if it reads in only the first byte of a 2-byte or
longer character? In this case, that character is replaced by the replacement character (usually a
question mark). However, suppose you have a long stream that requires multiple reads from the
channel into the bufferthat is, say the entire stream can't fit into the buffer at once. Or suppose the
channel is nonblocking and the first couple of bytes of a 3- or 4-byte character have arrived, but the
last bytes haven't. In other words, suppose the data in the buffer is malformed, even though the
stream itself isn't. The encode() method does not leave anything in the buffer. It will drain the
buffer completely and use replacement characters at the end if necessary. This has the potential to
corrupt good data, and it can be a very hard bug to diagnose because 99% of the time you're not
going to hit the fencepost condition that triggers the bug. (One way to make it a little more likely to
show up is to reduce the size of the buffer to something quite small, even three or four bytes.)

You can avoid this problem by using a CharsetDecoder object directly to fill the buffer with data
repeatedly, and decode it only once all the data has been placed in the buffer.

19.5.3. CharsetEncoder and CharsetDecoder

The decode() and encode() methods suffice for most simple use cases (as do the String
constructors and the getBytes() method). However, for more sophisticated needs, you may wish to
use an explicit CharsetEncoder or CharsetDecoder. These aren't as simple as the previous methods,
but they allow greater customization. For example, you can configure them to throw an exception if
they encounter an unencodable character rather than replacing it with a question mark. Let's address
the encoder first. The decoder is similar, except it runs in the opposite direction.

19.5.3.1. Encoding

The constructor in the CharsetEncoder class is protected. Encoders are created by first getting a
Charset object for the encoding and then invoking its newEncoder() method:

public abstract CharsetEncoder newEncoder()
 throws UnupportedOperationException

This method throws an UnupportedOperationException if this is one of those uncommon character
sets that does not support encoding. For example:

Charset utf8 = Charset.forName("UTF-8");
CharsetEncoder encoder = utf8.newEncoder();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The encoder encodes bytes from a CharBuffer into a ByteBuffer:

public final CoderResult encode(CharBuffer in, ByteBuffer out,
 boolean endOfInput)

encode() reads as much data as possible from the CharBuffer and writes the encoded bytes into the
ByteBuffer. You normally call this method repeatedly, passing in more data each time. All but the
last time, you pass false as the final argument, indicating that this is not the end of the input data.
The last time you call encode(), you pass true. (If necessary, you can encode until there are no
bytes remaining while passing false and then encode zero bytes while passing TRue, but you do need
to pass TRue the last and only the last time you call the method.) Finally, you invoke the flush()
method to write any last bytes that need to be written. The output buffer can then be flipped and
drained somewhere else.

For example, this method converts a string into a ByteBuffer containing the UTF-8 encoding of the
string:

public static ByteBuffer convertToUTF8(String s) {
 CharBuffer input = CharBuffer.wrap(s);
 Charset utf8 = Charset.forName("UTF-8");
 CharsetEncoder encoder = utf8.newEncoder();
 ByteBuffer output = ByteBuffer.allocate(s.length()*3);
 while (input.hasRemaining()) {
 encoder.encode(input, output, false);
 }
 encoder.encode(input, output, true);
 encoder.flush(output);
 output.flip();
 return output;
}

In UTF-8, each char in the string is encoded into at most three bytes in the output array, so there's
no possibility of underflow or overflow. However, there is a small chance of the data being malformed
if surrogate characters are used incorrectly in the input string. Java doesn't check for this. To check
for it (and you should, or this code could get caught in an infinite loop), you need to inspect the
return value from encode(). The return value is a CoderResult object that has five methods to tell
you what happened:

public boolean isError()
public boolean isUnderflow()
public boolean isOverflow()
public boolean isMalformed()
public boolean isUnmappable()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(There's no result for success. If the encoding succeeded, these five methods each return false.)
Inspecting the result, and throwing an error if the encoding failed for any reason, the convertToUTF8(
) method now becomes this:

public static ByteBuffer convertToUTF8(String s) throws IOException {
 CharBuffer input = CharBuffer.wrap(s);
 Charset utf8 = Charset.forName("UTF-8");
 CharsetEncoder encoder = utf8.newEncoder();
 ByteBuffer output = ByteBuffer.allocate(s.length()*3);
 while (input.hasRemaining()) {
 CoderResult result = encoder.encode(input, output, false);
 if (result.isError()) throw new IOException("Could not encode " + s);
 }
 encoder.encode(input, output, true);
 encoder.flush(output);
 output.flip();
 return output;
}

CharsetEncoder also has a convenience method that encodes all the remaining text in a character
buffer and returns a ByteBuffer of the necessary size:

public final ByteBuffer encode(CharBuffer in) throws CharacterCodingException

This avoids problems with underflow and overflow. However, if the data is malformed or a character
cannot be converted into the output character set, it may throw a CharacterCodingException. (This is
configurable with the onMalformedInput() and onUnmappableCharacter() methods.)

You can use a single CharsetEncoder object to encode multiple buffers in sequence. If you do this,
you will need to call the reset() method between buffers:

public final CharsetEncoder reset()

This returns the same CharsetEncoder object to enable method invocation chaining.

19.5.3.2. Decoding

The CharsetDecoder class is almost a mirror image of CharsetEncoder. It converts from bytes to
characters rather than from characters to bytes. The constructor in the CharsetDecoder class is
protected too. Instead, an encoder for a character is created by first getting a Charset object for the
encoding and then invoking its newDecoder() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Charset utf8 = Charset.forName("UTF-8");
CharsetDecoder decoder = utf8.newDecoder();

The decoder decodes bytes from a ByteBuffer into a CharBuffer:

public final CoderResult decode(ByteBuffer in, CharBuffer out, boolean endOfInput)

As much data as possible is read from the ByteBuffer, converted into chars, and written into the
CharBuffer. You call this method repeatedly, passing in more data each time. All but the last time,
you pass false as the final argument. The last time you call decode(), pass TRue. Finally, invoke the
flush() method to clear any last state. At this point, the final data is flushed into the output buffer,
which can be flipped and drained somewhere else. For example, this method converts a byte array
containing UTF-8 text into a string:

public static String convertFromUTF8(byte[] data) throws IOException {
 ByteBuffer input = ByteBuffer.wrap(data);
 Charset utf8 = Charset.forName("UTF-8");
 CharsetDecoder decoder = utf8.newDecoder();
 CharBuffer output = CharBuffer.allocate(data.length);
 while (input.hasRemaining()) {
 CoderResult result = decoder.decode(input, output, false);
 if (result.isError()) throw new IOException();
 }
 decoder.decode(input, output, true);
 decoder.flush(output);
 output.flip();
 return output.toString();
}

CharsetDecoder also has a convenience method that decodes all the remaining data in a byte buffer
and returns a CharBuffer of the necessary size:

public final CharBuffer decode(ByteBuffer in) throws CharacterCodingException

This avoids problems with underflow and overflow. However, if the data is malformed or a character
cannot be converted into the output character set, it may throw a CharacterCodingException. (This is
configurable with the onMalformedInput() and onUnmappableCharacter() methods.)

You can reuse a single CharsetDecoder object to decode multiple buffers in sequence. If you do this,
you will need to call the reset() method between buffers:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public final CharsetDecoder reset()

19.5.3.3. Error handling

Each call to encode() or decode() returns a CoderResult object. This object tells you whether the
encoding succeeded, and, if so, how many bytes were encoded. Normally, all you care about is
whether the encoding succeeded or not. This is revealed by the isError() method:

public boolean isError()

However, if you care about why the encoding failed, several more methods in CoderResult reveal the
reason. Encoding can fail because there were insufficient characters to encode into bytes:

public boolean isUnderflow()

This might happen if only the first half of a surrogate pair were supplied at the end of the input
buffer.

Encoding or decoding can fail because there are too many characters to encode into the output
buffer:

public boolean isOverflow()

Decoding can fail because the data is malformed in some way:

public boolean isMalformed()

For instance, this might happen in UTF-8 if the bytes of a multibyte character were shuffled.

Encoding can fail because the character you're trying to encode is unmappable:

public boolean isUnmappable()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For instance, this would happen if you were trying to encode the Greek letter using the ISO-8859-1
character set because this character set does not contain the letter .

Some charsets may also tell you the length of the bad data that caused the encoding or decoding to
fail:

public int length() throws UnsupportedOperationException

However, not all will, and this method may throw an UnsupportedOperationException.

The whole idea of returning a special object to specify the error is a little strange for Java. This is
exactly what exceptions were designed to replace. If you like, you can cause the CoderResult to
throw an equivalent exception instead, using the throwException() method:

public void throwException() throws CharacterCodingException

Depending on the type of the error, this throws a BufferUnderflowException,
BufferOverflowException, MalformedInputException, or UnmappableCharacterException. For
example:

CoderResult result = decoder.decode(input, output, false);
if (result.isError()) result.throwException();

Sometimes you want to throw the exception and then stop reading or writing. For example, this
would be appropriate if you were feeding data to an XML parser. However, if you're in the less
draconian world of HTML, you might want to just keep on trucking. To loosen up this way, you can
set the action for malformed input and/or unmappable characters to CodingErrorAction.IGNORE or
CodingErrorAction.REPLACE with onUnmappableCharacter() and onMalformedInput():

public final CharsetEncoder onMalformedInput(CodingErrorAction action)
public final CharsetEncoder onUnmappableCharacter(CodingErrorAction action)

Ignoring simply drops bad data while replacing changes the bad data to a specified replacement
character (usually the question mark, by default). There's no separate method for overflow and
underflow errors. They count as malformed input. For example, these statements tell a
CharsetEncoder to drop malformed input and to replace unmappable characters:

encoder.onMalformedInput(CodingErrorAction.IGNORE);
encoder.onUnmappableCharacter(CodingErrorAction.REPLACE);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also set the action to CodingErrorAction.REPORT. This is usually the default and simply
indicates that the encoder or decoder should return an error in a CoderResult or throw a
CharacterCodingException.

The replaceWith() method changes the replacement bytes the encoder uses when it encounters an
unmappable character while operating in replace mode:

public final CharsetEncoder replaceWith(byte[] replacement)
 throws IllegalArgumentException

Not all byte sequences are legal here. The replacement array must contain characters allowed in the
encoding. If not, this method throws an IllegalArgumentException.

There's also a getter method for this value:

public final byte[] replacement()

The CharsetDecoder class has similar methods, except that it uses a string replacement value instead
of a byte replacement value:

public final CharsetDecoder replaceWith(String newReplacement)
public final String replacement()

19.5.3.4. Measurement

A CharsetEncoder can estimate the number of bytes that will be required for each char that's
encoded:

public final float averageBytesPerChar()

This may be exact for some encodings, but for variable-width encodings such as UTF-8 it's only
approximate. Java estimates UTF-8 as averaging 1.1 bytes per character, but the exact ratio can
vary widely from one string to the next.

A CharsetEncoder can also tell you the theoretical maximum number of bytes that will be needed for
each character:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public final float maxBytesPerChar()

Both of these values can be useful in choosing the size of the ByteBuffer to encode into.

19.5.3.5. Encodability

Encoders have the useful ability to tell whether or not a particular character, string, or character
sequence can be encoded in a given encoding:

public boolean canEncode(char c)
public boolean canEncode(CharSequence cs)

For example, this is very useful for XML serializers writing non-Unicode encodings. These need to
know whether any given string can be written directly or needs to be escaped with a numeric
character reference such as or . Serializers that operate in Java 1.3 and earlier have to
either use undocumented classes in the sun packages, use really ugly hacks where they first convert
the bytes into a string and then look to see if a replacement character was used, or implement their
own lookup tables for all this data. In Java 1.4 and later, by contrast, serializers can just create an
appropriate encoder and then call canEncode().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 20. Readers and Writers
You're probably going to experience a little déjà vu in this chapter. The java.io.Writer class is
modeled on the java.io.OutputStream class. The java.io.Reader class is modeled on the
java.io.InputStream class. The names and signatures of the methods of the Reader and Writer
classes are similar (sometimes identical) to the names and signatures of the methods of the
InputStream and OutputStream classes. The patterns these classes follow are similar as well. Filtered
input and output streams are chained to other streams in their constructors. Filtered readers and
writers are chained to other readers and writers in their constructors. InputStream and OutputStream
are abstract superclasses that identify common functionality in the concrete subclasses. Likewise,
Reader and Writer are abstract superclasses that identify common functionality in the concrete
subclasses. The difference between readers and writers and input and output streams is that streams
are fundamentally byte-based while readers and writers are fundamentally character-based. Where
an input stream reads a byte, a reader reads a character. Where an output stream writes a byte, a
writer writes a character.

While bytes are a more or less universal concept, characters are not. As you learned in the last
chapter, the same character can be encoded differently in different character sets, and different
character sets include different characters. Characters can even have different sizes in different
character sets. For example, ASCII and Latin-1 use 1-byte characters. UTF-8 uses characters of
varying width between one and four bytes.

A language that supports international text must separate the reading and writing of raw bytes from
the reading and writing of characters. Classes that read characters must be able to parse a variety of
character encodings, not just ASCII, and translate them into the language's native character set.
Classes that write characters must be able to translate the language's native character set into a
variety of formats and write those. In Java, this task is performed by the InputStreamReader and
OutputStreamWriter classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.1. The java.io.Writer Class

The Writer class is abstract, just like OutputStream is abstract. You won't have any pure instances of
Writer that are not also instances of some concrete subclass of Writer. However, many of the
subclasses of Writer differ primarily in the targets of the text they write, just as many concrete
subclasses of OutputStream differ only in the targets of the data they write. Most of the time you
don't care about the difference between FileOutputStream and ByteArrayOutputStream. Similarly,
most of the time you won't care about the difference between FileWriter and StringWriter. You'll
just use the methods of the common superclass, java.io.Writer.

You use a writer almost exactly like you use an output stream. Rather than writing bytes, you write
chars. The write() method writes a subarray from the char array text starting at offset and
continuing for length characters:

public abstract void write(char[] text, int offset, int length)
 throws IOException

For example, given some Writer object w, you can write the string Testing 1-2-3 like this:

char[] test = {'T', 'e', 's', 't', 'i', 'n', 'g', ' ',
 '1', '-', '2', '-', '3'};
w.write(test, 0, test.length);

This method is abstract. Concrete subclasses that convert chars into bytes according to a specified
encoding and write those bytes onto an underlying stream must override this method. An
IOException may be thrown if the underlying stream's write() method throws an IOException. You
can also write a single character, an entire array of characters, a string, or a substring:

public void write(int c) throws IOException
public void write(char[] text) throws IOException
public void write(String s) throws IOException
public void write(String s, int offset, int length) throws IOException

The default implementations of these four methods convert their first argument into an array of
chars and pass that to write(char[] text, int offset, int length). Specific subclasses may
provide more efficient implementations of these methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is one of the few instances where the general structure of the Writer and
the OutputStream classes diverge, though not in a very significant way. In
OutputStream, the fundamental, abstract method that must be overridden by
subclasses is the write() method that writes a single byte. OutputStream's
multibyte write() methods are implemented in terms of the single-byte
write() method whereas Writer's single-character write() method is
implemented in terms of a multicharacter write() method.

Beginning in Java 5, the Writer class implements the Appendable interface. This gives it three more
methods:

public W0riter append(char c) throws IOException // Java 5
public Writer append(CharSequence sequence)throws IOException // Java 5
public Writer append(CharSequence sequence,int start,int end)// Java 5
 throws IOException

The append(char) method behaves the same as write(char) with the single difference that it returns
this Writer object to allow method invocation chaining. The other two methods behave the same as
the equivalent write(String) and write(String, int, int) methods. However, they accept any
class that implements CharSequence, not just String.

Like output streams, writers may be buffered. To force the write to take place, call flush():

public abstract void flush() throws IOException

The close() method closes the writer and releases any resources associated with it:

public abstract void close() throws IOException

This flushes the writer and closes the underlying output stream.

In Java 5, Writer implements Flushable and Closeable. However, it still has
these two methods in 1.4 and earlier.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.2. The OutputStreamWriter Class

java.io.Writer is an abstract class. Its most basic concrete subclass is OutputStreamWriter:

public class OutputStreamWriter extends Writer

Its constructor connects a character writer to an underlying output stream:

public OutputStreamWriter(OutputStream out)
public OutputStreamWriter(OutputStream out, String encoding) throws
 UnsupportedEncodingException

The first constructor configures the writer to encode text in the platform's default encoding. The
second constructor specifies an encoding. For example, this code attaches an OutputStreamWriter to
System.out with the default encoding:

OutputStreamWriter osw = new OutputStreamWriter(System.out);

On U.S. and Western European systems, the default encoding is usually Cp1252 on Windows, ISO
8859-1 (Latin-1) on Unix and Linux, and MacRoman on Macs. More recent Linuxes may use UTF-8
everywhere. Whatever the default is, you can read it from the system property file.encoding:

String defaultEncoding = System.getProperty("file.encoding");

On the other hand, if you want to write a file encoded in ISO 8859-7 (ASCII plus Greek) you'd have
to do this:

FileOutputStream fos = new FileOutputStream("greek.txt");
OutputStreamWriter greekWriter = new OutputStreamWriter(fos, "8859_7");

You should almost never use the default encoding. It's likely to cause problems as files are moved

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between platforms and countries, especially if the document format contains no means of indicating
the encoding. If the file format does not specify a different encoding, choose UTF-8:

FileOutputStream fos = new FileOutputStream("data.txt");
OutputStreamWriter utfWriter = new OutputStreamWriter(fos, "UTF-8");

There are reasons to pick other encodings, especially when dealing with legacy software and formats
that mandate something else. However, unless specified otherwise, you should choose UTF-8. It has
the best mix of interoperability, robustness, compactness, and script support.

The write() methods convert characters to bytes according to the specified character encoding and
write those bytes onto the underlying output stream:

public void write(int c) throws IOException
public void write(char[] text, int offset, int length) throws IOException
public void write(String s, int offset, int length) throws IOException

Once the Writer is constructed, writing the characters is easy:

String arete = "\u03B1\u03C1\u03B5\u03C4\u03B7";
greekWriter.write(arete, 0, arete.length());

The String variable arete contains the Unicode-escaped encoding of , the Greek word for
excellence. The second line writes this word in the ISO 8859-7 character set. In this encoding, these
five Unicode characters (10 bytes) become the five bytes 225, 241, 229, 244, 231. You don't have to
worry about exactly how this conversion is performed. You just have to construct the writer, write
the string, and let Java do the grunt work of figuring out which Unicode characters map to which
8859-7 characters.

Unicode is a fairly large character set. Most other character sets don't have all the characters in
Unicode. Writing a character that doesn't exist in the current character set produces a substitution
character, usually a question mark.

The getEncoding() method returns a string containing the name of the encoding used by this writer:

public String getEncoding()

Example 20-1 loops through every nonsurrogate, defined character in the Basic Multilingual Plane
(BMP) and writes each one into the file given on the command line, using the specified character
encoding. If no character encoding is specified, the platform's default encoding is used. If no file is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specified, System.out is used.

Example 20-1. Printing all the BMP characters

import java.io.*;
public class UnicodeBMPTable {
 public static void main(String[] args) throws IOException {
 // Use platform default with a fallback to Latin-1 if necessary
 String encoding = System.getProperty("file.encoding", "ISO-8859-1");
 String lineSeparator = System.getProperty("line.separator", "\r\n");
 OutputStream target = System.out;
 if (args.length > 0) target = new FileOutputStream(args[0]);
 if (args.length > 1) encoding = args[1];
 OutputStreamWriter out = null;
 try {
 out = new OutputStreamWriter(target, encoding);
 }
 catch (UnsupportedEncodingException ex) {
 // use platform default encoding
 out = new OutputStreamWriter(target);
 }
 try {
 for (int i = Character.MIN_VALUE; i <= Character.MAX_VALUE; i++) {
 // Skip undefined code points; these are not characters
 if (!Character.isDefined(i)) continue;
 char c = (char) i;
 // Surrogates are not full characters so skip them;
 // this requires Java 5
 if (Character.isHighSurrogate(c) || Character.isLowSurrogate(c)) continue;
 out.write(i + ":\t" + c + lineSeparator);
 }
 }
 finally {
 out.close();
 }
 }
}

Here's a sample of the file this program writes when the MacRoman encoding is specified:

213: Õ
214: Ö
215: ?
216: Ø
217: Ù
218: Ú

http://lib.ommolketab.ir
http://lib.ommolketab.ir

219: û
220: Ü
221: ?
222: ?
223: ß
224: à

MacRoman is a one byte encoding so it can only hold about 256 different characters. The remaining
characters are all replaced by the substitution character, a question mark. Unicode characters 215,
221, and 222 just don't exist in this character set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3. The java.io.Reader Class

You use a reader almost exactly as you use an input stream. Rather than reading bytes, you read
characters. The basic read() method reads a specified number of characters from the underlying
input stream into an array starting at a given offset:

public abstract int read(char[] text, int offset, int length)
 throws IOException

This read() method returns the number of characters actually read. As with input streams reading
bytes, there may not be as many characters available as you requested. Also like the read() method
of an input stream, it returns -1 when it detects the end of the data.

This read() method is abstract. Concrete subclasses that read bytes from some source must
override this method. An IOException may be thrown if the underlying stream's read() method
throws an IOException or an encoding error is detected.

You can also fill an array with characters using this method:

public int read(char[] text) throws IOException

This is equivalent to invoking read(text, 0, text.length). Thus, it also returns the number of
characters read and throws an IOException when the underlying stream throws an IOException or
when an encoding error is detected. The following method reads a single character and returns it:

public int read() throws IOException

Although an int is returned, this int is always between 0 and 65,535 and may be cast to a char
without losing information. All three read() methods block until some input is available, an I/O error
occurs, or the end of the stream is reached.

In Java 5, Reader implements the java.lang.Readable interface which requires the ability to read
directly into a CharBuffer starting at the buffer's current position:

public int read(CharBuffer target) // Java 5
 throws IOException, NullPointerException, ReadOnlyBufferException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like the other read() methods, this method returns the number of characters read, or -1 on end of
stream.

You can skip a certain number of characters. This method also blocks until some characters are
available. It returns the number of characters skipped or -1 if the end of stream is reached.

public long skip(long n) throws IOException

The ready() method returns TRue if the reader is ready to be read from or false if it isn't. Generally,
this means the underlying stream has available data.

public boolean ready() throws IOException

This is not quite the same as InputStream's available() method. available() returns an int
specifying how many bytes are available to be read. However, it's not always possible to tell how
many characters are available in a stream without actually reading them, particularly with encodings
that use characters of different widths (such as UTF-8, where a character may be one, two, three, or
four bytes long).

Like input streams, some readers support marking and resetting, and some don't. The
markSupported() method returns true if the Reader supports marking and resetting or false if it
doesn't.

public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException

The close() method closes the Reader and releases any resources the reader held:

public abstract void close() throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.4. The InputStreamReader Class

The most important concrete subclass of Reader is InputStreamReader:

public class InputStreamReader extends Reader

The constructor connects a character reader to an underlying input stream:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
 throws UnsupportedEncodingException

The first constructor uses the platform's default encoding, as given by the system property
file.encoding. The second one uses the specified encoding. For example, to attach an
InputStreamReader to System.in with the default encoding:

InputStreamReader isr = new InputStreamReader(System.in);

If you want to read a file encoded in Latin-5 (ASCII plus Turkish, as specified by ISO 8859-9), you
might do this:

FileInputStream fin = new FileInputStream("turkish.txt");
InputStreamReader isr = new InputStreamReader(fin, "8859_9");

In Java 1.4 and later, you can specify the encoding as a Charset or CharsetDecoder object instead:

public InputStreamReader(InputStream in, Charset encoding) // Java 1.4
public InputStreamReader(InputStream in, CharsetDecoder decoder) // Java 1.4

The read() methods read bytes from an underlying input stream and convert those bytes to
characters according to the specified encoding:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int read() throws IOException
public int read(char[] text, int offset, int length) throws IOException
public int read(CharBuffer target) // Java 5
 throws IOException, NullPointerException, ReadOnlyBufferException

The getEncoding() method returns a string containing the name of the encoding used by this
reader:

public String getEncoding()

The remaining two methods just override methods from java.io.Reader but behave identically from
the perspective of the programmer:

public boolean ready() throws IOException
public void close() throws IOException

The close() method does close the underlying input stream.

InputStreamReader does not itself support marking and resetting, though it can be chained to a
reader that does.

Example 20-2 uses an InputStreamReader to read a file in a user-specified encoding. The
FileConverter reads the name of the input file, the name of the output file, the input encoding, and
the output encoding. Characters that are not available in the output character set are replaced by the
substitution character.

Example 20-2. CharacterSetConverter

import java.io.*;
public class StreamRecoder {
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println(
 "Usage: java StreamRecoder "
 + "infile_encoding outfile_encoding infile outfile");
 return;
 }
 InputStreamReader isr = null;
 OutputStreamWriter osw = null;
 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 File infile = new File(args[2]);
 File outfile = new File(args[3]);
 if (outfile.exists()
 && infile.getCanonicalPath().equals(outfile.getCanonicalPath())) {
 System.err.println("Can't convert file in place");
 return;
 }
 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);
 isr = new InputStreamReader(fin, args[0]);
 osw = new OutputStreamWriter(fout, args[1]);
 while (true) {
 int c = isr.read();
 if (c == -1) break; // end of stream
 osw.write(c);
 }
 osw.close();
 isr.close();
 }
 catch (IOException ex) {
 System.err.println(ex);
 ex.printStackTrace();
 }
 finally {
 if (isr != null) {
 try {
 isr.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 if (osw != null) {
 try {
 osw.close();
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
 }
}

Since this is just a simple example, I haven't put a lot of effort into the user interface. A more
realistic command-line interface would provide a set of flags and sensible defaults. Even better would
be a graphical user interface. I'll demonstrate that at the end of the chapter, when we return to the
file viewer program.

Example 20-2 is very similar to the Recoder class in Example 19-3 in the previous chapter. However,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that class accessed the CharsetEncoder and CharsetDecoder more directly. This is a higher level
approach that hides a lot of the implementation detail, which makes it much simpler and easier to
understand. Most of the time in streaming situations, it's going to be a lot easier to use
InputStreamReader and/or OutputStreamWriter than Charset or CharsetEncoder/CharsetDecoder.
Charset, CharsetEncoder, and CharsetDecoder fit better when you have one large block of text or
bytes to encode or decode rather than an ongoing stream. Charset, CharsetEncoder, and
CharsetDecoder also offer a few more configuration options, especially for handling encoding errors in
the input data. However, usually the way InputStreamReader and OutputStreamWriter handle this
(replacing each malformed byte with the default substitution character) is fine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.5. Encoding Heuristics

There's no 100% guaranteed way to determine the encoding of an arbitrary file or stream. However,
you can make some reasonable guesses that are likely to be more correct than not.

Unicode files are especially easy to detect because most such files begin with a byte order mark. This
is the Unicode zero-width nonbreaking space character that has code point 0xFEFF. The byte-
swapped character 0xFFFE is never a legal Unicode character. Furthermore the single bytes 0xFF and
0XFE are uncommon in most single-byte encodings like Latin-1 and MacRoman, unlikely to occur in
sequence, and unlikely to occur at the beginning of a stream. Therefore, a stream that begins with
the two bytes 0XFF and 0xFE in that order is almost certainly encoded in big-endian UTF-16. A
stream that starts with the opposite order (0XFE and 0xFF) is almost certainly encoded in little-
endian UTF-16.

In UTF-8, the zero-width nonbreaking space is represented by the three bytes 0xEF 0xBB 0xBF,
always in that order. Thus, any file that begins with these three bytes is almost certainly UTF-8.
However, not all UTF-8 files begin with a byte order mark, but UTF-8 is a very picky standard, and
it's unlikely that any non-UTF-8 file will accidentally parse correctly as UTF-8. If you think a file might
be UTF-8, try reading a few hundred characters as UTF-8. If there are no exceptions, chances are
very good it is UTF-8.

Some other encodings of Unicode such as UTF-32 can be also be detected by inspecting the byte
order mark. However, these are mostly of theoretical interest. I've never encountered one in the
wild.

If a file isn't Unicode, life is tougher. Most single-byte character sets are supersets of ASCII, so even
if you guess wrong, the majority of the text is likely to come through unchanged. Latin-1 misread as
MacRoman or vice versa isn't pretty. However, it is intelligible in most cases.

If you have some idea of the file type, there may be other ways to guess the encoding. For instance,
all XML documents that are not written in Unicode must begin with an XML declaration that includes
an encoding declaration:

<?xml version="1.0" encoding="SJIS"?>

Other than Unicode and EBCDIC, most character sets are supersets of ASCII so you can assume the
encoding is ASCII, read far enough in the stream to find the encoding declaration, then back up and
reread the document with the correct encoding. To detect Unicode, look for a byte order mark. To
detect EBCDIC-encoded XML, look for the initial four bytes 0x4C 0x6F 0xA7 0x94 in that order. This
is "<?xm" in all EBCDIC variants.

HTML is similar. You treat the file as ASCII or EBCDIC just long enough to read the encoding meta
tag:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<meta http-equiv="content-type" content="text/html; charset=sjis" />

However unlike XML, HTML is case-insensitive, so you also need to look for variants like this:

<META Http-equiv="content-type" Content="text/html; charset=sjis" />

Either way, once you've found the meta element, you back up and start over once you know the
encoding. (mark() and reset() are very helpful here.)

Sometimes there's metadata outside the file or stream that can help you. For instance, HTTP servers
normally send a Content-type header that may include a charset parameter like this one:

Content-type: text/html; charset=sjis

If there's no explicit parameter, the protocol may give you enough information. For instance, HTTP
specifies that all text/* documents are assumed to be Latin-1 (ISO-8859-1) unless explicitly specified
otherwise.

Following these rules along with a smattering of local knowledge will probably suffice most of the
time. If it's not enough, there are still more sophisticated tricks you can try. For instance, you can
spellcheck a document in a variety of encodings and see which one generates the fewest errors for
words containing non-ASCII characters. Of course, this requires you to know or make a reasonable
guess at the language. That too can be done based on the stream contents if necessary. Honestly,
though, very few programs need to make this level of effort.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.6. Character Array Readers and Writers

The ByteArrayInputStream and ByteArrayOutputStream classes use stream methods to read and write
arrays of bytes. The CharArrayReader and CharArrayWriter classes use Reader and Writer methods to
read and write arrays of chars. Since char arrays are purely internal to Java, this is one of the few
uses of readers and writers where you don't need to concern yourself with conversions between
different encodings. If you want to read arrays of text encoded in some non-Unicode encoding, you
should chain a ByteArrayInputStream to an InputStreamReader instead. Similarly, to write text into a
byte array in a non-Unicode encoding, just chain an OutputStreamWriter to a ByteArrayOutputStream.

20.6.1. The CharArrayWriter Class

A CharArrayWriter maintains an internal array of chars into which successive characters are written.
The array is expanded as needed. This array is stored in a protected field called buf:

protected char[] buf

The no-argument constructor creates a CharArrayWriter object with a 32-character buffer. This is on
the small side, so you can expand it with the second constructor:

public CharArrayWriter()
public CharArrayWriter(int initialSize)

The write() methods write their characters into the buffer. If there's insufficient space in buf to hold
the characters, it's expanded to at least the amount necessary to hold the extra text.

The buffer can be read in several ways. The writeTo() method copies the text in the buffer onto
another Writer object:

public void writeTo(Writer out) throws IOException

The toCharArray() method returns a copy of the text in the buffer:

public char[] toCharArray()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Changes to the copy do not affect the CharArrayWriter's internal data and vice versa.

The toString() method returns a string initialized from the characters stored in the buffer:

public String toString()

The size() method returns the number of characters currently stored in the buffer:

public int size()

Finally, the reset() method empties the buffer so that the writer can be reused for new data:

public void reset()

However, the internal buffer is not freed and still occupies memory. It will only be garbage collected
when the writer itself is.

There is a close() method, but it's a no-op. In fact, you can continue writing to a CharArrayWriter
after it's been closed. This should probably be classified as a bug.

For example, the following code fragment fills a char array with the Unicode Basic Multilingual Plane:

CharArrayWriter caw = new CharArrayWriter(65536);
for (int i = 0; i < 65536; i++) {
 caw.write(i);
}
caw.close();
char[] unicode = caw.toCharArray();

20.6.2. The CharArrayReader Class

A CharArrayReader uses an array of chars as the underlying source of text to read. It is one of the
few readers that does not have an underlying input stream; it has an underlying char array instead.
This array is set in the constructor. Either an entire array may be used or a specified subarray
beginning at offset and continuing for length characters:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public CharArrayReader(char[] text)
public CharArrayReader(char[] text, int offset, int length)

The CharArrayReader class stores a reference to the text array in a protected field called buf. A
separate copy is not made. Modifying this array from outside the class can violate data encapsulation
and potentially cause thread synchronization problems. The reader also stores the current position in
the array (the index of the next array component that will be returned by read()), the number of
chars in the array, and the current mark, if any.

protected char[] buf
protected int pos
protected int count
protected int markedPos

The read() methods read text from the buf array, updating the pos field as they do so. These
methods behave like any other reader's read() methods. If the end of the array is reached, they
return -1.

CharArrayReaders support marking and resetting to the limit of the length of the array.
markSupported() returns true. mark() marks the current position in the stream by setting
markedPos equal to pos. The readAheadLimit argument is for compatibility; its value is ignored. The
reset() method sets pos equal to markedPos.

Finally, the close() method sets buf to null so that the array can be garbage collected. Attempts to
read from a CharArrayReader after it's been closed throw IOExceptions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.7. String Readers and Writers

The java.io.StringReader and java.io.StringWriter classes allow programmers to use Reader and
Writer methods to read and write strings. Like char arrays, Java strings are composed of pure
Unicode characters. Therefore, they're good sources of data for readers and good targets for writers.
This is the other common case where readers and writers don't need to convert between different
encodings.

20.7.1. String Writers

This class would more accurately be called StringBufferWriter, but StringWriter is more poetic. A
StringWriter maintains an internal StringBuffer to which it appends characters. This buffer can
easily be converted to a string as necessary. StringWriter has a no-args constructor:

public StringWriter()

There is also a constructor that allows you to specify the initial size of the internal string buffer. This
isn't too important because string buffers (and, by extension, string writers) are expanded as
necessary. Still, if you can estimate the size of the string in advance, it's more efficient to select a
size big enough to hold all characters that will be written:

public StringWriter(int initialSize)

The StringWriter class has the usual collection of write() methods, all of which just append their
data to the StringBuffer.

There are flush() and close() methods, but both have empty method bodies, as string writers
operate completely internal to Java and do not require flushing or closing. You can continue to write
to a StringWriter even after it's been closed. This should probably be classified as a bug, and I don't
recommend that you write code that relies on this behavior.

There are two ways to get the current contents of the StringWriter's internal buffer. The toString()
method returns it as a new String object while the getBuffer() method returns the actual buffer:

public String toString()
public StringBuffer getBuffer()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Strings are immutable, but changes to the buffer object returned by getBuffer() change the state
of the StringWriter.

The following code fragment creates a string containing the printable ASCII character set:

StringWriter sw = new StringWriter(128);
for (int i = 32; i < 127; i++) {
 sw.write(i);
}
String ascii = sw.toString();

20.7.2. String Readers

A StringReader uses the methods of the Reader class to get characters from a string. This is useful
when you want to process each character in a string in sequential order. This class replaces the
deprecated StringBufferInputStream class:

public class StringReader extends Reader

The single constructor sets the string that's the source of data for this reader:

public StringReader(String s)

Since string objects are immutable, the data in the string may not be changed after the StringReader
is constructed.

Of course, the class has the usual read() methods, all of which read as many characters as
requested from the string. These methods return -1 if the end of the string has been reached. They
throw an IOException if the reader has been closed.

The ready() method returns TRue. Strings are always ready to be read.

String readers support marking and resetting to the limit of the string's length. markSupported()
returns TRue. mark() marks the current position in the stream. (The readAheadLimit argument is for
compatibility only; its value is ignored.) The reset() method moves backward in the string to the
marked position.

Finally, the close() method sets the internal string data to null. Attempts to read from a
StringReader after it's been closed throw IOExceptions.

Here's a simple method that uses StringReader to break a string into its separate characters and
print them:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public static void printCharacters(String s) {
 StringReader sr = new StringReader(s);
 try {
 int c;
 while ((c = sr.read()) != -1) {
 System.out.println((char) c);
 }
 }
 catch (IOException ex) {
 // should not happen; StringReaders do not throw exceptions
 }
 return;
 }

Admittedly, this is a contrived example. If you really needed to do this, you could just loop through
the string itself using its charAt() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.8. Reading and Writing Files

You've already learned how to chain an OutputStreamWriter to a FileOutputStream and an
InputStreamReader to a FileInputStream. Although this isn't hard, Java provides two simple utility
classes that take care of the details, java.io.FileWriter and java.io.FileReader .

20.8.1. FileWriter

The FileWriter class is a subclass of OutputStreamWriter that writes text files using the platform's
default character encoding and buffer size. If you need to change these values, construct an
OutputStreamWriter on a FileOutputStream instead.

public class FileWriter extends OutputStreamWriter

This class has four constructors:

public FileWriter(String fileName) throws IOException
public FileWriter(String fileName, boolean append) throws IOException
public FileWriter(File file) throws IOException
public FileWriter(FileDescriptor fd)

The first constructor opens a file and positions the file pointer at the beginning of the file. Any text in
the file is overwritten. For example:

FileWriter fw = new FileWriter("36.html");

The second constructor allows you to specify that new text is appended to the existing contents of
the file rather than overwriting it by setting the second argument to TRue. For example:

FileWriter fw = new FileWriter("36.html", true);

The third and fourth constructors use a File object and a FileDescriptor, respectively, instead of a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

filename to identify the file to be written to. Any preexisting contents in a file so opened are
overwritten.

You use the standard Writer methods like write(), flush(), and close() to write the text in the
file.

20.8.2. FileReader

The FileReader class is a subclass of InputStreamReader that reads text files using the platform's
default character encoding. If you need to change the encoding, construct an InputStreamReader
chained to a FileInputStream instead.

public class FileReader extends InputStreamReader

This class has three constructors that differ only in how the file to be read is specified:

public FileReader(String fileName) throws FileNotFoundException
public FileReader(File file) throws FileNotFoundException
public FileReader(FileDescriptor fd)

Only the constructors are declared in this class. You use the standard Reader methods like read(),
ready(), and close() to read the text in the file.

FileReader and FileWriter always use the local default encoding for converting
characters to and from bytes. This is rarely what you want. You should almost
always specify the encoding explicitly, or perhaps autodetect it. FileReader and
FileWriter are a minor convenience at most. Instead of using them, you can
easily chain an InputStreamReader to a FileInputStream or an
OutputStreamWriter to a FileOutputStream. Even if you know you want the
default encoding, you're better off requesting it explicitly to make your
intention clear.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.9. Buffered Readers and Writers

Input and output can be time-consuming operations. It's often quicker to read or write text in large
chunks rather than in many separate smaller pieces, even when you only process the text in the
smaller pieces. The java.io.BufferedReader and java.io.BufferedWriter classes provide internal
character buffers. Text that's written to a buffered writer is stored in the internal buffer and only
written to the underlying writer when the buffer fills up or is flushed. Likewise, reading text from a
buffered reader may cause more characters to be read than were requested; the extra characters
are stored in an internal buffer. Future reads first access characters from the internal buffer and only
access the underlying reader when the buffer is emptied.

Even if the underlying stream is buffered, it still pays to buffer the reader or
writer too. Many character conversions can be done more quickly in blocks than
they can on individual characters, irrespective of I/O speed. That is, for
maximum performance use a BufferedReader and a BufferedInputStream or a
BufferedWriter and a BufferedOutputStream.

20.9.1. Buffering Writes

The java.io.BufferedWriter class is a subclass of java.io.Writer that you chain to another Writer
class to buffer characters. This allows more efficient writing of text.

public class BufferedWriter extends Writer

There are two constructors. One has a default buffer size (8192 characters); the other lets you
specify the buffer size:

public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int size)

For example:

BufferedWriter bw = new BufferedWriter(new FileWriter("37.html"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BufferedWriter overrides most of its superclass's methods, but all changes are purely internal.
write(), flush(), close(), etc. are all used exactly as they are for any writer object.

There is one new method in this class, newLine(). This method writes a platform-dependent line
terminator string: \n on Unix, \r on the Mac, \r\n on Windows. The value of this string is taken from
the system property line.separator.

public String newLine() throws IOException

Do not use the newLine() method if you're writing network code such as an
HTTP server. Instead, explicitly write the carriage return/linefeed pair. Most
network protocols specify a \r\n line separator, regardless of host-platform
conventions.

Example 20-3 is a revised version of Example 20-1 that uses a BufferedWriter to increase efficiency
and handle platform-dependent line separators.

Example 20-3. BufferedUnicodeTable

import java.io.*;
public class BufferedBMPTable {
 public static void main(String[] args) throws IOException {
 // Use platform default with a fallback to Latin-1 if necessary
 String encoding = System.getProperty("file.encoding", "ISO-8859-1");
 String lineSeparator = System.getProperty("line.separator", "\r\n");
 OutputStream target = System.out;
 if (args.length > 0) target = new FileOutputStream(args[0]);
 if (args.length > 1) encoding = args[1];
 BufferedWriter out = null;
 try {
 out = new BufferedWriter(new OutputStreamWriter(target, encoding));
 }
 catch (UnsupportedEncodingException ex) { // platform default encoding
 out = new BufferedWriter(new OutputStreamWriter(target));
 }
 try {
 for (int i = Character.MIN_VALUE; i <= Character.MAX_VALUE; i++) {
 if (!Character.isDefined(i)) continue;
 char c = (char) i;
 if (Character.isHighSurrogate(c) || Character.isLowSurrogate(c)) continue;
 out.write(i + ":\t" + c);
 out.newLine();
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 finally {
 out.close();
 }
 }
}

This is actually not the fastest you can go. BufferedWriter is internally synchronized. Each call to one
of its methods is atomic. If two threads try to write onto the same BufferedWriter at the same time,
one of them blocks. This prevents the threads from corrupting the data. However, this
synchronization has a performance cost, even when only one thread has access to the writer. You
can often improve performance by replacing the stock BufferedWriter from java.io with an
unsynchronized version such as shown in Example 20-4. When you don't need to worry about
synchronization, this version can increase speed by 30-50%, though as always exact performance
gains are likely to vary from one VM to the next.

Example 20-4. UnsynchronizedBufferedWriter

package com.elharo.io;
import java.io.*;
public class UnsynchronizedBufferedWriter extends Writer {
 private final static int CAPACITY = 8192;
 private char[] buffer = new char[CAPACITY];
 private int position = 0;
 private Writer out;
 private boolean closed = false;
 public UnsynchronizedBufferedWriter(Writer out) {
 this.out = out;
 }
 public void write(char[] text, int offset, int length) throws IOException {
 checkClosed();
 while (length > 0) {
 int n = Math.min(CAPACITY - position, length);
 System.arraycopy(text, offset, buffer, position, n);
 position += n;
 offset += n;
 length -= n;
 if (position >= CAPACITY) flushInternal();
 }
 }
 public void write(String s) throws IOException {
 write(s, 0, s.length());
 }
 public void write(String s, int offset, int length) throws IOException {
 checkClosed();
 while (length > 0) {
 int n = Math.min(CAPACITY - position, length);
 s.getChars(offset, offset + n, buffer, position);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 position += n;
 offset += n;
 length -= n;
 if (position >= CAPACITY) flushInternal();
 }
 }
 public void write(int c) throws IOException {
 checkClosed();
 if (position >= CAPACITY) flushInternal();
 buffer[position] = (char) c;
 position++;
 }
 public void flush() throws IOException {
 flushInternal();
 out.flush();
 }
 private void flushInternal() throws IOException {
 if (position != 0) {
 out.write(buffer, 0, position);
 position = 0;
 }
 }
 public void close() throws IOException {
 closed = true;
 this.flush();
 out.close();
 }
 private void checkClosed() throws IOException {
 if (closed) throw new IOException("Writer is closed");
 }
}

All characters are first written into an internal byte array of length 8192. Only when that buffer fills
up is it flushed to the underlying writer. The java.io.BufferedWriter class is organized very much
like this, except that it also has a number of synchronized blocks to permit threadsafe usage.

20.9.2. Buffering Reads

BufferedReader is a subclass of Reader that is chained to another Reader class to buffer input. This
allows more efficient reading of characters and lines.

public class BufferedReader extends Reader

For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BufferedReader br = new BufferedReader(new FileReader("37.html"));

There are two constructors. One has a default buffer size (8192 characters); the other requires the
programmer to specify the buffer size:

public BufferedReader(Reader in, int buffer_size)
public BufferedReader(Reader in)

In a BufferedReader, the two multicharacter read() methods try to completely fill the specified array
or subarray of text by reading repeatedly from the underlying reader. They return only when the
requested number of characters have been read, the end of the data is reached, or the underlying
reader would block. This is not the case for most readers which attempt only one read from the
underlying data source before returning.

BufferedReader does support marking and resetting, at least up to the length of the buffer. Another
reason to use a BufferedReader is to enable marking and resetting on a reader that otherwise
wouldn't support it, such as an InputStreamReader.

Besides buffering, BufferedReader is notable for its readLine() method that allows you to read text
a line at a time. This replaces the common but deprecated readLine() method in DataInputStream.

public String readLine() throws IOException

This method returns a string that contains a line of text from a text file. \r, \n, and \r\n are assumed
to be line breaks and are not included in the returned string. This method is often used when reading
user input from System.in since most platforms only send the user's input to the running program
after the user has typed a full line (that is, hit the Enter key).

readLine() can hang if the last character of the stream is not a carriage return
or a linefeed and the sender does not close the stream. This problem tends to
arise on network connections where the client or server keeps a socket open for
a response after sending its data. For this reason, readLine() should not be
used in network programming.

Example 20-5 uses a BufferedReader and readLine() to read all files named on the command line,
line by line, and copy them to System.out. In essence it implements the Unix cat or the DOS type
utility.

Example 20-5. The cat program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
class Cat {
 public static void main (String[] args) {
 String thisLine;
 for (int i=0; i < args.length; i++) {
 try {
 BufferedReader br = new BufferedReader(new FileReader(args[i]));
 while ((thisLine = br.readLine()) != null) {
 System.out.println(thisLine);
 } // end while
 } // end try
 catch (IOException ex) {System.err.println(ex);}
 } // end for
 } // end main
}

20.9.3. Line Numbering

LineNumberReader is a subclass of BufferedReader that keeps track of which line it's currently reading.
It also has methods to get and set the line number. This class replaces the deprecated
LineNumberInputStream class.

public class LineNumberReader extends BufferedReader

This class has two constructors. Both chain this reader to an underlying reader; the second also sets
the size of the buffer.

public LineNumberReader(Reader in)
public LineNumberReader(Reader in, int size)

LineNumberReader has all the methods of BufferedReader, including readLine(). These are
overridden to keep track of the line number. The behavior of these methods is not changed.

LineNumberReader also introduces two methods for inspecting and changing the line number:

public int getLineNumber()
public void setLineNumber(int lineNumber)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The setLineNumber() method does not change the line that you're reading in the file. It just changes
the value getLineNumber() returns. For example, it would allow you to start counting from -5 if you
knew there were six lines of header data, and you wanted line 1 to be the first line of the body text.

Example 20-6 uses a LineNumberReader and readLine() to read all files named on the command
line, line by line, and copy them to System.out, prefixing each line with its line number.

Example 20-6. The LineCat Program

import java.io.*;
class LineCat {
 public static void main (String[] args) {
 String thisLine;
 for (int i=0; i < args.length; i++) {
 try {
 LineNumberReader br = new LineNumberReader(new FileReader(args[i]));
 while ((thisLine = br.readLine()) != null) {
 System.out.println(br.getLineNumber() + ": " + thisLine);
 } // end while
 } // end try
 catch (IOException ex) {System.err.println(ex);}
 } // end for
 } // end main
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.10. Print Writers

The java.io.PrintWriter class is a subclass of java.io.Writer that contains the familiar print()
and println() methods from System.out and other instances of PrintStream. In Java 5 and later, it
also has all the format() and printf() methods introduced in Chapter 7. It's deliberately similar to
the java.io.PrintStream class.

The main difference between PrintStream and PrintWriter is that PrintWriter handles multiple-byte
and other non-Latin-1 character sets properly. The other, more minor difference is that automatic
flushing is performed only when println() is invoked, not every time a newline character is seen.
Sun would probably like to deprecate PrintStream and use PrintWriter instead, but that would break
too much existing code. (In fact, Sun did deprecate the PrintStream() constructors in Java 1.1, but
they undeprecated them in 1.2.)

There are four constructors in this class:

public PrintWriter(Writer out)
public PrintWriter(Writer out, boolean autoFlush)
public PrintWriter(OutputStream out)
public PrintWriter(OutputStream out, boolean autoFlush)

The PrintWriter can send text either to an output stream or to another writer. If autoFlush is set to
true, the PrintWriter is flushed every time println() is invoked.

The PrintWriter class implements the abstract write() method from java.io.Writer and overrides
five other methods:

public void write(int c)
public void write(char[] text)
public void write(String s)
public void write(String s, int offset, int length)
public void flush()
public void close()

These methods are used almost identically to their equivalents in any other Writer class. The one
difference is that none of them throw IOExceptions; in fact, no method in the PrintWriter class ever
throws an IOException. If the underlying output stream or writer throws an IOException, it's caught
inside PrintWriter and an error flag is set. Read the status of this flag with the checkError()
method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean checkError()

Since checkError() returns a boolean, it only tells you that an I/O error has occurred; it does not
tell you what that error was. Furthermore, once an error has occurred, checkError() always returns
truethere is no way to reset it so you can test for later errors.

The main advantages of the PrintWriter class are the 9-way overloaded print() method and the
10-way overloaded println() method. Any Java object, variable, or literal can be printed by passing
it to a print() or println() method. The println() method follows its argument with a platform-
dependent line separator (such as \r\n) and then flushes the output if autoFlush is enabled. The
print() method does not. Otherwise, these methods are the same.

public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object 0)
public void println()
public void println(boolean b)
public void println(char c)
public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] text)
public void println(String s)
public void println(Object o)

You should never use println(), either the PrintWriter or the PrintStream version, in networking
code. Most network protocols like HTTP expect to see a carriage return/linefeed pair as the line
separator character. If you use println(), your network programs may run on Windows, but they'll
have problems on most other platforms. Furthermore, these problems can be hard to diagnose
because some servers and clients are more forgiving of improper line-ending conventions than
others.

Java 5 adds two format() and two printf() methods:

public PrintWriter printf(String format, Object... args)
 throws IllegalFormatException, NullPointerException
public PrintWriter printf(Locale l, String format, Object... args)
 throws IllegalFormatException, NullPointerException
public PrintWriter format(String format, Object... args)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws IllegalFormatException, NullPointerException
public PrintWriter format(Locale l, String format, Object... args)
 throws IllegalFormatException, NullPointerException

These methods have the same behavior as the similarly named methods in the PrintStream class
discussed in Chapter 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.11. Piped Readers and Writers

Piped readers and writers do for character streams what piped input and output streams do for byte
streams: they allow two threads to communicate. Character output from one thread becomes
character input for the other thread:

public class PipedWriter
 extends Writer
public class PipedReader
 extends Reader

The PipedWriter class has two constructors. The first constructs an unconnected PipedWriter object.
The second constructs one that's connected to the PipedReader object sink:

public PipedWriter()
public PipedWriter(PipedReader sink) throws IOException

The PipedReader class also has two constructors. Again, the first constructor creates an unconnected
PipedReader object. The second constructs one that's connected to the PipedWriter object source:

public PipedReader()
public PipedReader(PipedWriter source) throws IOException

Piped readers and writers are normally created in pairs. The piped writer becomes the underlying
source for the piped reader. This is one of the few cases where a reader does not have an underlying
input stream. For example:

PipedWriter pw = new PipedWriter();
PipedReader pr = new PipedReader(pw);

This simple example is a little deceptive because these lines of code will normally be in different
methods and perhaps even different classes. Some mechanism must be established to pass a
reference to the PipedWriter into the thread that handles the PipedReader, or you can create them in
the same thread and pass a reference to the connected stream into a separate thread.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Alternatively, you can start with a PipedReader and then wrap it with a PipedWriter:

PipedReader pr = new PipedReader();
PipedWriter pw = new PipedWriter(pr);

Or you can create them both unconnected and use one or the other's connect() method to link
them:

public void connect(PipedReader sink) throws IOException
public void connect(PipedWriter source) throws IOException

PipedWriter's connect() method takes as an argument the PipedReader to connect to.
PipedReader's connect() argument takes as an argument the PipedWriter to connect to:

PipedReader pr = new PipedReader();
PipedWriter pw = new PipedWriter();
pr.connect(pw);

or:

PipedReader pr = new PipedReader();
PipedWriter pw = new PipedWriter();
pw.connect(pr);

Neither a PipedWriter nor a PipedReader can be connected to more than one reader or writer.
Attempts to do so throw IOExceptions. Furthermore, once connected, a PipedWriter/PipedReader pair
may not be disconnected. Otherwise, these classes have the usual read(), write(), flush(),
close(), and ready() methods like all reader and writer classes.

When characters are written on the PipedWriter, that text becomes available as input to be read by
the connected PipedReader. If a PipedReader tries to read characters, but its connected PipedWriter
hasn't yet provided it with any, the PipedReader blocks.

Closing either a PipedReader or a PipedWriter also closes the reader or writer it's connected to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.12. Filtered Readers and Writers

The java.io.FilterReader and java.io.FilterWriter classes are abstract classes that read
characters and filter them in some way before passing the text along. You can imagine a
FilterReader that converts all characters to uppercase.

public abstract class FilterReader extends Reader
public abstract class FilterWriter extends Writer

Although FilterReader and FilterWriter are modeled after java.io.FilterInputStream and
java.io.FilterOutputStream, they are much less commonly used than those classes. There are no
concrete subclasses of FilterWriter in the java packages and only one concrete subclass of
FilterReader (PushbackReader). These classes exist so you can write your own filters.

20.12.1. The FilterReader Class

FilterReader has a single constructor, which is protected:

protected FilterReader(Reader in)

The in argument is the Reader to which this filter is chained. This reference is stored in a protected
field called in from which text for this filter is read and is null after the filter has been closed.

protected Reader in

Since FilterReader is an abstract class, only subclasses can be instantiated. Therefore, it doesn't
matter that the constructor is protected since it may only be invoked from subclass constructors.

FilterReader provides the usual collection of read(), skip(), ready(), markSupported(), mark(),
reset(), and close() methods. These all simply invoke the equivalent method in the in field with
the same arguments. For example, the skip() method works like this:

public long skip(long n) throws IOException {
 return in.skip(n);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Each subclass usually overrides at least these two read() methods to perform the filtering:

public int read() throws IOException
public int read(char[] text, int offset, int length) throws IOException

In FilterReader, neither method invokes the other. You must override each of them, even if it's only
to call the other one.

Java source code can include Unicode escapes for characters not available in the current character
set. An escape sequence is a \u followed by the four-hexadecimal-digit equivalent of the Unicode
character. As an example, I'll write a FilterReader subclass that reads a \u-escaped file and converts
it to pure Unicode. This is a much trickier problem than it first appears. First, there's not a fixed ratio
between the number of bytes and number of chars. Most of the time one byte is one char, but some
of the time five bytes are one char. The second difficulty is ensuring that \u09EF is recognized as
Unicode escape while \\u09EF is not. In other words, only a u preceded by an odd number of slashes
is a valid Unicode escape. A u preceded by an even number of slashes should be passed along
unchanged. Example 20-7 shows a solution.

Example 20-7. SourceReader

package com.elharo.io;
import java.io.*;
public class SourceReader extends FilterReader {
 public SourceReader(Reader in) {
 super(in);
 }
 private int buffer = -1;
 public int read() throws IOException {
 if (this.buffer != -1) {
 int c = this.buffer;
 this.buffer = -1;
 return c;
 }
 int c = in.read();
 if (c != '\\') return c;
 int next = in.read();
 if (next != 'u') { // This is not a Unicode escape
 this.buffer = next;
 return c;
 }
 // Read next 4 hex digits
 // If the next four chars do not make a valid hex digit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // this is not a valid .java file.
 StringBuffer sb = new StringBuffer();
 sb.append((char) in.read());
 sb.append((char) in.read());
 sb.append((char) in.read());
 sb.append((char) in.read());
 String hex = sb.toString();
 try {
 return Integer.valueOf(hex, 16).intValue();
 }
 catch (NumberFormatException ex) {
 throw new IOException("Bad Unicode escape: \\u" + hex);
 }
 }

 private boolean endOfStream = false;
 public int read(char[] text, int offset, int length) throws IOException {
 if (endOfStream) return -1;
 int numRead = 0;
 for (int i = offset; i < offset+length; i++) {
 int temp = this.read();
 if (temp == -1) {
 this.endOfStream = true;
 break;
 }
 text[i] = (char) temp;
 numRead++;
 }
 return numRead;
 }
 public long skip(long n) throws IOException {
 char[] c = new char[(int) n];
 int numSkipped = this.read(c);
 return numSkipped;
 }
}

20.12.2. The FilterWriter Class

The FilterWriter class has a single constructor and no other unique methods:

protected FilterWriter(Writer out)

The out argument is the writer to which this filter is chained. This reference is stored in a protected
field called out to which text sent through this filter is written.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

protected Writer out

Since FilterWriter is an abstract class, only subclasses may be instantiated. Therefore, it doesn't
matter that the constructor is protected since it may only be invoked from subclass constructors
anyway. FilterWriter provides the usual collection of write(), close(), and flush() methods.
These all simply invoke the equivalent method in the out field with the same arguments. For
example, the close() method works like this:

public void close() throws IOException {
 out.close();
}

Each subclass has to override at least these three write() methods to perform the filtering:

public void write(int c) throws IOException
public void write(char[] text, int offset, int length) throws IOException
public void write(String s, int offset, int length) throws IOException

In FilterWriter, these methods do not invoke each other. You must override each of them, even if
it's only to call one of the other two.

There are no subclasses of FilterWriter in the core API. Example 20-8, SourceWriter, is an example
of a FilterWriter that converts Unicode text to \u-escaped ASCII. The big question is what to do if
the input text contains an unescaped backslash. The simplest and most robust solution is to replace it
with \u005C, the Unicode escape for the backslash itself.

Example 20-8. SourceWriter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io;
import java.io.*;
public class SourceWriter extends FilterWriter {
 public SourceWriter(Writer out) {
 super(out);
 }
 public void write(char[] text, int offset, int length) throws IOException {
 for (int i = offset; i < offset+length; i++) {
 this.write(text[i]);
 }
 }
 public void write(String s, int offset, int length) throws IOException {
 for (int i = offset; i < offset+length; i++) {
 this.write(s.charAt(i));
 }
 }
 public void write(int c) throws IOException {
 // We have to escape the backslashes below.
 if (c == '\\') out.write("\\u005C");
 else if (c < 128) out.write(c);
 else {
 String s = Integer.toHexString(c);
 // Pad with leading zeroes if necessary.
 if (c < 256) s = "00" + s;
 else if (c < 4096) s = "0" + s;
 out.write("\\u");
 out.write(s);
 }
 }
}

20.12.3. PushbackReader

The PushbackReader class is a filter that provides a pushback buffer around a given reader. This
allows a program to "unread" the last character it read. It's similar to PushbackInputStream discussed
in Chapter 6, but instead of pushing back bytes, it pushes back chars. Both PushbackReader and
BufferedReader use buffers, but only PushbackReader allows unreading and only BufferedReader
allows marking and resetting. The first difference is that pushing back characters allows you to
unread characters after the fact. Marking and resetting requires you to mark in advance the location
you want to reset to. The second difference is that you can push back a character that was never on
the stream in the first place. Marking and resetting only allows you to reread the same characters,
not add new characters to the stream.

PushbackReader has two constructors, both of which take an underlying reader as an argument. The
first uses a one-character pushback buffer; the second sets the pushback buffer to a specified size:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public PushbackReader(Reader in)
public PushbackReader(Reader in, int size)

The PushbackReader class has the usual collection of read() methods. These methods first try to
read the requested characters from the pushback buffer and only read from the underlying reader if
the pushback buffer is empty or has too few characters.

PushbackReader also has ready(), markSupported(), and close() methods. The ready() and
close() methods merely invoke the ready() and close() methods of the underlying reader. The
markSupported() method returns false; pushback readers do not support marking and resetting.

Three unread() methods push back specific characters. The first pushes back the character c, the
second pushes back the text array, and the third pushes back the subarray of text beginning at
offset and continuing for length chars.

public void unread(int c) throws IOException
public void unread(char[] text) throws IOException
public void unread(char[] text, int offset, int length) throws IOException

The unread characters aren't necessarily the same as the characters that were read. The client
programmer can insert text as the stream is read. The number of characters you can push back onto
the stream is limited by the size of the buffer set in the constructor. Attempts to unread more
characters than can fit in the buffer throw an IOException. An IOException is also thrown if you try to
unread a closed reader; once a PushbackReader has been closed, it can be neither read nor unread.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.13. File Viewer Finis

As a final example of working with readers and writers, we return for the last time to the FileDumper
application last seen in Chapter 18. At that point, we had a GUI program that allowed any file to be
opened and interpreted in one of several formats, including ASCII, decimal, hexadecimal, short,
regular, and long integers in both big- and little-endian formats, floating point, and double-precision
floating point.

In this section, we expand the program to read many different text formats besides ASCII. The user
interface must be adjusted to allow a binary choice of whether the file contains text or numeric data.
If a user chooses text, a reader reads the file instead of an input stream. We also need a way for the
user to pick the text encoding (e.g., MacRoman, Latin-1, Unicode, etc). Since there are several dozen
text encodings, the best choice is a list box. All of this can be integrated into the mode panel. Figure
20-1 shows the revised TextModePanel class. The code is given in Example 20-9. I've added two new
public methods, isText() and getEncoding(). The rest of the changes are fairly minor ones to set
up the GUI.

Figure 20-1. A mode panel with a list box for encodings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 20-9. TextModePanel

import java.awt.*;
import javax.swing.*;
import java.nio.charset.*;
import java.util.*;
public class TextModePanel extends JPanel {
private JCheckBox bigEndian = new JCheckBox("Big Endian", true);
private JCheckBox deflated = new JCheckBox("Deflated", false);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

private JCheckBox gzipped = new JCheckBox("GZipped", false);
private ButtonGroup dataTypes = new ButtonGroup();
private JRadioButton asciiRadio = new JRadioButton("Text");
private JRadioButton decimalRadio = new JRadioButton("Decimal");
private JRadioButton hexRadio = new JRadioButton("Hexadecimal");
prviate JRadioButton shortRadio = new JRadioButton("Short");
private JRadioButton intRadio = new JRadioButton("Int");
private JRadioButton longRadio = new JRadioButton("Long");
private JRadioButton floatRadio = new JRadioButton("Float");
private JRadioButton doubleRadio = new JRadioButton("Double");
private JTextField password = new JPasswordField();
private JList encodings = new JList();
 public TextModePanel() {
 Map charsets = Charset.availableCharsets();
 encodings.setListData(charsets.keySet().toArray());
 this.setLayout(new GridLayout(1, 2));
 JPanel left = new JPanel();
 JScrollPane right = new JScrollPane(encodings);
 left.setLayout(new GridLayout(13, 1));
 left.add(bigEndian);
 left.add(deflated);
 left.add(gzipped);
 left.add(asciiRadio);
 asciiRadio.setSelected(true);
 left.add(decimalRadio);
 left.add(hexRadio);
 left.add(shortRadio);
 left.add(intRadio);
 left.add(longRadio);
 left.add(floatRadio);
 left.add(doubleRadio);
 dataTypes.add(asciiRadio);
 dataTypes.add(decimalRadio);
 dataTypes.add(hexRadio);
 dataTypes.add(shortRadio);
 dataTypes.add(intRadio);
 dataTypes.add(longRadio);
 dataTypes.add(floatRadio);
 dataTypes.add(doubleRadio);
 left.add(password);
 this.add(left);
 this.add(right);
 }
 public boolean isBigEndian() {
 return bigEndian.isSelected();
 }
 public boolean isDeflated() {
 return deflated.isSelected();
 }
 public boolean isGZipped() {
 return gzipped.isSelected();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public boolean isText() {
 if (this.getMode() == FileDumper6.ASC) return true;
 return false;
 }
 public String getEncoding() {
 return (String) encodings.getSelectedValue();
 }
 public int getMode() {
 if (asciiRadio.isSelected()) return FileDumper6.ASC;
 else if (decimalRadio.isSelected()) return FileDumper6.DEC;
 else if (hexRadio.isSelected()) return FileDumper6.HEX;
 else if (shortRadio.isSelected()) return FileDumper6.SHORT;
 else if (intRadio.isSelected()) return FileDumper6.INT;
 else if (longRadio.isSelected()) return FileDumper6.LONG;
 else if (floatRadio.isSelected()) return FileDumper6.FLOAT;
 else if (doubleRadio.isSelected()) return FileDumper6.DOUBLE;
 else return FileDumper6.ASC;
 }
 public String getPassword() {
 return password.getText();
 }
}

Next we should fix an unrecognized bug in the earlier program. It used an OutputStream to stream
data into the text area. It converted the bytes to chars simply by casting them as if they were Latin-
1. This works for the simple ASCII output needed to represent numbers, but the whole point of this
chapter has been that this hack just doesn't work for more realistic text that can include content
from many different languages. Thus we need to revise the JStreamedTextArea to stream to a Writer
rather than an OutputStream. If anything, this is more straightforward. Example 20-10 demonstrates.

Example 20-10. The JWritableTextArea

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.elharo.io.ui;
import javax.swing.*;
import java.awt.Font;
import java.io.*;
public class JWritableTextArea extends JTextArea {

 private Writer writer = new BufferedWriter(new TextAreaWriter());
 public JWritableTextArea() {
 this("", 0, 0);
 }
 public JWritableTextArea(String text) {
 this(text, 0, 0);
 }
 public JWritableTextArea(int rows, int columns) {
 this("", rows, columns);
 }
 public JWritableTextArea(String text, int rows, int columns) {
 super(text, rows, columns);
 setFont(new Font("Monospaced", Font.PLAIN, 12));
 setEditable(false);
 }
 public Writer getWriter() {
 return writer;
 }
 public void reset() {
 this.setText("");
 writer = new BufferedWriter(new TextAreaWriter());
 }
 private class TextAreaWriter extends Writer {
 private boolean closed = false;
 public void close() {
 closed = true;
 }
 public void write(char[] text, int offset, int length) throws IOException {
 if (closed) throw new IOException("Write to closed stream");
 JWritableTextArea.this.append(new String(text, offset, length));
 }
 public void flush() {}
 }
}

Next we need to expand the FileDumper class to read and write text in a variety of encodings. This is
straightforward and only requires one new overloaded dump() method, as shown in Example 20-11.

Example 20-11. FileDumper6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import java.util.zip.*;
import java.security.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import com.elharo.io.*;
public class FileDumper6 {
 public static final int ASC = 0;
 public static final int DEC = 1;
 public static final int HEX = 2;
 public static final int SHORT = 3;
 public static final int INT = 4;
 public static final int LONG = 5;
 public static final int FLOAT = 6;
 public static final int DOUBLE = 7;
 public static void dump(InputStream in, Writer out, int mode,
 boolean bigEndian, boolean deflated, boolean gzipped, String password)
 throws IOException {
 // The reference variable in may point to several different objects
 // within the space of the next few lines.
 if (password != null && !password.equals("")) {
 // Create a key.
 try {
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);
 in = new CipherInputStream(in, des);
 }
 catch (GeneralSecurityException ex) {
 throw new IOException(ex.getMessage());
 }
 }
 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }
 if (bigEndian) {
 DataInputStream din = new DataInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case INT:
 in = new IntFilter(din);
 break;
 case SHORT:
 in = new ShortFilter(din);
 break;
 case LONG:
 in = new LongFilter(din);
 break;
 case DOUBLE:
 in = new DoubleFilter(din);
 break;
 case FLOAT:
 in = new FloatFilter(din);
 break;
 default:
 }
 }
 else {
 LittleEndianInputStream lin = new LittleEndianInputStream(in);
 switch (mode) {
 case HEX:
 in = new HexFilter(in);
 break;
 case DEC:
 in = new DecimalFilter(in);
 break;
 case INT:
 in = new LEIntFilter(lin);
 break;
 case SHORT:
 in = new LEShortFilter(lin);
 break;
 case LONG:
 in = new LELongFilter(lin);
 break;
 case DOUBLE:
 in = new LEDoubleFilter(lin);
 break;
 case FLOAT:
 in = new LEFloatFilter(lin);
 break;
 default:
 }
 }
 for (int c = in.read(); c != -1; c = in.read()) {
 out.write(c);
 }
 in.close();
 }
 public static void dump(InputStream in, Writer out,
 String inputEncoding, String outputEncoding, boolean deflated,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boolean gzipped, String password) throws IOException {
 if (inputEncoding == null || inputEncoding.equals("")) {
 inputEncoding = "US-ASCII";
 }
 if (outputEncoding == null || outputEncoding.equals("")) {
 outputEncoding = System.getProperty("file.encoding", "8859_1");
 }
 // Note that the reference variable in
 // may point to several different objects
 // within the space of the next few lines.
 if (password != null && !password.equals("")) {
 try {
 // Create a key.
 byte[] desKeyData = password.getBytes();
 DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
 SecretKey desKey = keyFactory.generateSecret(desKeySpec);
 // Use Data Encryption Standard.
 Cipher des = Cipher.getInstance("DES/ECB/PKCS5Padding");
 des.init(Cipher.DECRYPT_MODE, desKey);
 in = new CipherInputStream(in, des);
 }
 catch (GeneralSecurityException ex) {
 throw new IOException(ex.getMessage());
 }
 }
 if (deflated) {
 in = new InflaterInputStream(in);
 }
 else if (gzipped) {
 in = new GZIPInputStream(in);
 }
 InputStreamReader isr = new InputStreamReader(in, inputEncoding);
 int c;
 while ((c = isr.read()) != -1) {
 out.write(c);
 }
 }
}

There's one new method in this class. An overloaded variant of dump() can be invoked to dump a
text file in a particular encoding. This method accepts an input encoding string and an output
encoding string as arguments. These are used to form readers and writers that interpret the bytes
read from the file and written onto the output stream. Output encoding is optional. If it's omitted, the
platform's default encoding is used.

The FileViewer2 class is straightforward. Aside from using a TextModePanel instead of a ModePanel,
the only change it really requires is in the actionPerformed() method. Here you have to test
whether the format is text or numeric and select the dump() method accordingly. Example 20-12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

illustrates.

Example 20-12. FileViewer2

import javax.swing.*;
import java.io.*;
import com.elharo.io.ui.*;
import java.awt.*;
import java.awt.event.*;
public class FileViewer2 extends JFrame implements ActionListener {
 JFileChooser chooser = new JFileChooser();
 JWritableTextArea theView = new JWritableTextArea();
 TextModePanel mp = new TextModePanel();
 public FileViewer2() {
 super("FileViewer");
 }
 public void init() {
 chooser.setApproveButtonText("View File");
 chooser.setApproveButtonMnemonic('V');
 chooser.addActionListener(this);
 this.getContentPane().add(BorderLayout.EAST, chooser);
 JScrollPane sp = new JScrollPane(theView);
 sp.setPreferredSize(new Dimension(640, 400));
 this.getContentPane().add(BorderLayout.SOUTH, sp);
 this.getContentPane().add(BorderLayout.WEST, mp);
 this.pack();
 // Center on display
 Dimension display = getToolkit().getScreenSize();
 Dimension bounds = this.getSize();
 int x = (display.width - bounds.width)/2;
 int y = (display.height - bounds.height)/2;
 if (x < 0) x = 10;
 if (y < 0) y = 15;
 this.setLocation(x, y);
 }
 public void actionPerformed(ActionEvent evt) {
 if (evt.getActionCommand().equals(JFileChooser.APPROVE_SELECTION)) {
 File f = chooser.getSelectedFile();
 if (f != null) {
 theView.reset();
 try {
 InputStream in = new FileInputStream(f);
 // This program was really slow until I buffered the stream.
 in = new BufferedInputStream(in);
 in = new ProgressMonitorInputStream(this, "Reading...", in);
 if (!mp.isText()) {
 FileDumper6.dump(in, theView.getWriter(), mp.getMode(),
 mp.isBigEndian(),
 mp.isDeflated(), mp.isGZipped(), mp.getPassword());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 else {
 FileDumper6.dump(in, theView.getWriter(), mp.getEncoding(), null,
 mp.isDeflated(), mp.isGZipped(), mp.getPassword());
 }
 }
 catch (IOException ex) {
 JOptionPane.showMessageDialog(this, ex.getMessage(),
 "I/O Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }
 else if (evt.getActionCommand().equals(JFileChooser.CANCEL_SELECTION)) {
 this.setVisible(false);
 this.dispose();
 // This is a single window application
 System.exit(0);
 }
 }
 public static void main(String[] args) {
 FileViewer2 viewer = new FileViewer2();
 viewer.init();
 viewer.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 viewer.setVisible(true);
 }
}

Figure 20-2 shows the completed FileViewer application displaying a file full of Unicode text.

Figure 20-2. The final FileViewer application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This completes this program, at least as far as it will be taken in this book. You could certainly extend
it further. For example, it would be a nice touch to add support for various image formats and
perhaps even formatted text like HTML files. However, this would take us too far afield from the topic
of this book, so I leave further improvements as exercises for the motivated reader.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 21. Formatted I/O with java.text
Java 1.4 and earlier have no equivalent of printf(). Even Java 6 has no equivalent of scanf() .
Part of the reason is that Java didn't support the variable-length argument lists on which these
functions depend until Java 5. However, the real reason Java didn't have equivalents to C's formatted
I/O routines is a difference in philosophy. C's printf(), scanf(), and related functions combine
number formatting and parsing with I/O in an inflexible manner. Java separates number formatting
and I/O into separate packages and by so doing produces a much more general and powerful
system.

Of course, starting in version 5, Java does have variable-length argument lists
and printf(), as you saw in Chapter 7 (though scanf() is still missing). The
printf() functionality introduced in Java 5 is really just a thin layer on top of
the classes discussed in this chapter. To be honest, I'm not convinced this is an
improvement.

More than one programmer has attempted to recreate printf() and scanf() in Java. However,
overloading the + signs for string concatenation is easily as effective, probably more so, since it
doesn't share the problems of mismatched argument lists. For example, which is clearer to you? This:

System.out.printf("%s worked %d hours at $%d per/hour for a total of %d dollars.\n",
 hours, salary, hours*salary);

or this:

System.out.println(employee + " worked " + hours + " hours at $" + salary
 + "per/hour for a total of $" + hours*salary);

I'd argue that the second is clearer. Among other advantages, it avoids problems with mismatched
format strings and argument lists. (Did you notice that an argument is missing from the previous
printf() statement?) On the flip side, the format string approach is a little less prone to missing
spaces. (Did you notice that the println() statement would print pay scales as "$5.35per/hour"
rather than "$5.35 per/hour"?) However, this is only a cosmetic problem and is easily fixed.

The real advantage of the printf()/scanf() family of functions is not the format string. It's
number formatting:

printf(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"%s worked %4.1d hours at $%6.2d per/hour for a total of %8.2d dollars.\n",
 employee, hours, salary, hours*salary);

Java's been able to format numbers like this since version 1.1. However, it's done so with the
java.text.NumberFormat class rather than with embedded control codes in format strings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.1. The Old Way

Traditional computer languages have combined input of text with the parsing of numeric strings. For
example, to read a decimal number into the variable x, programmers are accustomed to writing C
code like this:

scanf("%d", &x);

In C++, that line would become:

cin >> x;

In Pascal:

READLN (X);

In Fortran:

READ 2, X
 2 FORMAT (F5.1)

Similarly, formatting numeric strings for output tends to be mixed up with writing the string to the
screen. For instance, consider the simple task of writing the double variable salary with two decimal
digits of precision. In C, you'd write this:

printf("%.2d", salary);

In C++:

cout.precision(2);
cout << salary;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Fortran:

PRINT 20, SALARY
 20 FORMAT(F10.2)

This conflation of basic input and output with number formatting is so ingrained in many
programmers that we rarely stop to think whether it actually makes sense. What, precisely, does the
formatting of numbers as text strings have to do with input and output? It's certainly true that you
often need to format numbers to print numbers on the console, but you also need to format numbers
to write data in files, to include numbers in text fields and text areas, and to send data across the
network. What makes the console so special that it has to have a group of number-formatting
routines all to itself? In C, the printf() and scanf() functions are supplemented by fprintf() and
fscanf() for formatted I/O to files and by sprintf() and sscanf() for formatted I/O to strings.
Perhaps the conflation of I/O with number formatting is really a relic of a time when command-line
interfaces were a lot more important than they are today, and it's simply that nobody thought to
challenge this assumption, at least until Java. When you think about it, there's no fundamental
connection between converting a binary number like 11010100110110100100011101011011 to a
text string like " -7.500E+12" and writing that string onto an output stream. These are two different
operations, and in Java they're handled by separate classes. Input and output are handled by all the
streams and readers and writers I've been discussing while number formatting is handled by a few
NumberFormat classes from the java.text package I'll introduce in this chapter.

In Java you don't say, "Print the double variable salary 12 places wide with three decimal places of
precision." Instead, you say "First, make a string from the double variable salary 12 places wide with
three decimal places of precision. Then print that string." Similarly, when doing input, you first read
the string, then convert it to a number. You don't read the number directly. This really isn't very
different from the programs you're used to writing in other languages; it adds a step, but the benefit
is enhanced flexibility, particularly in regard to internationalization. It's easy to add new NumberFormat
classes and locales that handle different kinds of formatting.

In this chapter, we'll explore how to use the java.text.NumberFormat and java.text.DecimalFormat
classes to format integers and floating-point numbers. You'll also learn how the java.util.Locale
class lets you select number formats matched to different languages, cultures, and countries. There's
more in the java.text package I won't cover. In particular, java.text includes classes for formatting
dates, and sorting and collating text. These classes can also be customized to different locales. The
date formats in particular work very similarly to the number formats discussed in this chapter and
should be easy to pick up from the API documentation once you understand NumberFormat.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.2. Choosing a Locale

Number formats are dependent on the locale, that is, the country/language/culture group of the local
operating system. Most English-speaking Americans are accustomed to use a period as a decimal
point, a comma to separate every three orders of magnitude, a dollar sign for currency, and numbers
in base 10 that read from left to right. In this locale, Bill Gates's personal fortune, in Microsoft stock
alone as of September 12, 2006, is represented as $27,075,657,331. However, in Egypt this number
could be written as $

.

The primary difference here is that Egyptians use a different set of glyphs for the digits 0 through 9.

For example, in Egypt zero is a and the glyph

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 means two. There are other differences in how Arabic and
English treat numbers, and these vary from country to country. In most of the rest of North Africa,
this number would be $27,075,657,331 as it is in the U.S. These are just two different scripts; there
are several dozen more to go!

Java encapsulates many of the common differences between language/script/culture/country
combinations in a loosely defined group called a locale. There's really no better word for it. You can't
just rely on language or country or culture alone. Many languages are shared between countries
(English is only the most obvious example) but with subtle differences in how they are used in
different places: Do commas and periods belong inside or outside of quotation marks? Is green a
color or a colour? Many countries have no clearly dominant tongue: Is Canada an English- or a
French-speaking nation? Switzerland has four official languages. Almost all countries have significant
minority populations with their own languages. The New York City public school system has to hire
teachers fluent in over 100 different languages.

Locales are identified by a language and an optional country and variant which are supplied to the
constructors in java.util.Locale:

public Locale(String languageCode, String countryCode)
public Locale(String languageCode, String countryCode, String variantCode)

The language is specified by a case insensitive two-letter ISO-639 language code such as EN for
English or FR for French. The country is specified by a case insensitive two-letter ISO-3166 country
code such as US for the United States or TT for Trinidad and Tobago. You can also pass the empty
string to request a locale for a language independent of location. Finally, the variant can be pretty
much anything. For example, you can ask for the locale for generic, standard French as spoken in
France, French in the U.S., or French in the U.S. in New Orleans:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Locale french = new Locale("fr", "");
Locale parisian = new Locale("fr", "FR");
Locale french-US = new Locale("fr", "US");
Locale creoleFrench = new Locale("fr", "US", "NO");

There's no guarantee that the VM supports any of these, though the first two are likely available. The
variant code for New Orleans in the last line is completely nonstandard, but legal. When encountering
this locale, Java will almost certainly fall back to a generic French locale. In fact, it will probably fall
back to that for the fr-US locale too. However, the fr-FR locale will probably be recognized and won't
be quite the same as the fr-CA locale for Canadian French. The exact set of locales varies from one
Java version and VM vendor to the next. However, these days the total number of available locales is
usually well over a hundred.

The Locale class does include about twenty named constants for the most economically significant
locales:

Locale.ENGLISH
Locale.FRENCH
Locale.GERMAN
Locale.ITALIAN
Locale.JAPANESE
Locale.KOREAN
Locale.CHINESE
Locale.SIMPLIFIED_CHINESE
Locale.TRADITIONAL_CHINESE
Locale.FRANCE
Locale.GERMANY
Locale.ITALY
Locale.JAPAN
Locale.KOREA
Locale.CHINA
Locale.PRC
Locale.TAIWAN
Locale.UK
Locale.US
Locale.CANADA
Locale.CANADA_FRENCH

However, not every available locale has such a constant.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3. Number Formats

To print a formatted number in Java, perform these two steps:

Format the number as a string.1.

Print the string.2.

Simple, right? Of course, this is a little like the old recipe for rabbit stew:

Catch a rabbit.1.

Boil rabbit in pot with vegetables and spices.2.

Obviously, step 1 is the tricky part. Fortunately, formatting numbers as strings is somewhat easier
than catching a rabbit. The key class that formats numbers as strings is java.text.NumberFormat.
This is an abstract subclass of java.text.Format.

public abstract class NumberFormat extends Format implements Cloneable

Concrete subclasses such as java.text.DecimalFormat implement formatting policies for particular
kinds of numbers. The static NumberFormat.getAvailableLocales() method returns a list of all
installed locales that provide number formats. (There may be a few locales that only provide date or
text formats, not number formats.)

public static Locale[] getAvailableLocales()

You can request a NumberFormat object for the default locale of the host computer or for a locale
using the static NumberFormat.getInstance() method. For example:

NumberFormat myFormat = NumberFormat.getInstance();
NumberFormat canadaFormat = NumberFormat.getInstance(Locale.CANADA);
Locale turkey = new Locale("tr", "");
NumberFormat turkishFormat = NumberFormat.getInstance(turkey);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The number format returned by NumberFormat.getInstance() should do a reasonable job of
formatting most numbers. However, there's at least a theoretical possibility that the instance
returned will format numbers as currencies or percentages. Therefore, it wouldn't hurt to use
NumberFormat.getNumberInstance() instead:

public static final NumberFormat getNumberInstance()
public static NumberFormat getNumberInstance(Locale inLocale)

For example:

NumberFormat myFormat = NumberFormat.getNumberInstance();
NumberFormat canadaFormat = NumberFormat.getNumberInstance(Locale.CANADA);

21.3.1. Formatting Numbers

A NumberFormat object converts integers and floating-point numbers into formatted strings using one
of five overloaded format() methods:

public final String format(long number)
public final String format(double number)
public abstract StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition pos)
public abstract StringBuffer format(double number, StringBuffer toAppendTo,
 FieldPosition pos)
public final StringBuffer format(Object number, StringBuffer toAppendTo,
 FieldPosition pos)

These methods all return a string or a string buffer form of the number argument using the format's
default formatting rules. These rules specify:

Maximum and minimum integer width

Maximum and minimum fraction width (precision, number of decimal places)

Whether or not digits are grouped (e.g., 2,109,356 versus 2109356)

For any given number format, these rules can be quite complex. For instance, they may or may not
take into account different digit characters, exponential or scientific notation, Roman numerals, or
more. By creating new subclasses of NumberFormat, you can specify arbitrarily complex rules for
converting binary numbers into strings. Regardless of exactly how a number format formats

http://lib.ommolketab.ir
http://lib.ommolketab.ir

numbers, they are all manipulated the same way.

The last three format() methods append the string to the specified StringBuffer toAppendTo. They
then return that modified string buffer. They use a java.text.FieldPosition object to provide
information to the client programmer about where the different parts of the number fall. This will be
discussed later. The final format() method formats instances of the numeric type wrapper classes,
that is, java.lang.Double, java.lang.Float, java.lang.Long, java.lang.Integer, java.lang.Short,
java.lang.Character, and java.lang.Byte. Some (but not all) NumberFormat objects may be able to
format other kinds of numbers, like java.math.BigDecimal and java.math.BigInteger as well.

Example 21-1 is about the simplest use of NumberFormat imaginable. It uses the default number
format for the default locale to print multiples of . For comparison, both the formatted and
unformatted numbers are printed.

Example 21-1. Multiples of pi

import java.text.*;
public class FormatTest {
 public static void main(String[] args) {
 NumberFormat nf = NumberFormat.getInstance();
 for (double x = Math.PI; x < 100000; x *= 10) {
 String formattedNumber = nf.format(x);
 System.out.println(formattedNumber + "\t" + x);
 }
 }
}

On my U.S. English system, the results look like this:

3.141 3.14159265358979
31.415 31.4159265358979
314.159 314.159265358979
3,141.592 3141.5926535897897
31,415.926 31415.926535897896

The formatted numbers don't use a ridiculous number of decimal places and group the integer part
with commas when it becomes large. Of course, the exact formatting depends on the default locale.
For instance, when I changed the locale to French, I got this output:

3,141 3.14159265358979
31,415 31.4159265358979
314,159 314.159265358979
3 141,592 3141.5926535897897

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31 415,926 31415.926535897896

The French locale uses a decimal comma instead of a decimal point and separates every three digits
in the integer part with a space. This may be confusing to an American, but seems perfectly normal
to a Parisian. One of the advantages of number formats is that by using the default number format
for the system, much of your program is automatically localized. No extra code is required to do the
right thing on French systems, on Canadian systems, on Japanese systems, and so on. However, if
you know you want output in a particular locale, regardless of what the locale is on the current
system, just pass the locale you desire to the getInstance() method. For instance, this requests a
French NumberFormat:

NumberFormat format = NumberFormat.getInstance(Locale.FRENCH);

If no such format is installed, you'll end up with the default locale anyway, but if a French locale is
available you can now use it.

21.3.2. Specifying Precision

Number formats have both a maximum and a minimum number of integer and fraction digits. For
instance, in the number 31.415, there are two integer digits and three fraction digits. If the
maximum number of digits in a part is less than the number actually present, the number is
truncated (integer part) or rounded (fraction part). If the minimum is greater than the number of
digits actually present, extra zeros are added to the beginning of the integer part or the end of the
fraction part. For example, with a minimum of three integer digits and a maximum of two fraction
digits, 31.415 would be formatted as 031.42.

You specify the minimum and maximum of each type you want in each number using these four
methods:

public void setMaximumIntegerDigits(int newValue)
public void setMinimumIntegerDigits(int newValue)
public void setMaximumFractionDigits(int newValue)
public void setMinimumFractionDigits(int newValue)

For example, to specify that myFormat should format numbers with at least 10 digits before the
decimal point and at most 3 digits after, you would type:

myFormat.setMinimumIntegerDigits(10);
myFormat.setMaximumFractionDigits(3);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Setting the minimum digits guarantees that those digits will be printed, filled with zeros if necessary.
Setting the maximum digits allows the digits to be printed if they're nonzero or a place-holding zero
(i.e., not the leftmost or rightmost digit). Leftmost and rightmost zeros will only be printed if
necessary to fill the minimum number of digits. If you try to set a maximum below a minimum or a
minimum above a maximum, the last one set takes precedence. Java raises the maximum to meet
the minimum or lowers the minimum to meet the maximum.

Specifying the number of digits is useful when printing many columns of numbers in a tabular format
to the console or in a monospaced font. Example 21-2 prints a three-column table of the angles
between 0 and 360 degrees in degrees, radians and grads without any formatting.

Example 21-2. Ugly Table

public class UglyTable {
 public static void main(String[] args) {
 System.out.println("Degrees \tRadians \tGrads");
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 double radians = Math.PI * degrees / 180.0;
 double grads = 400 * degrees / 360;
 System.out.println(degrees + "\t" + radians + "\t" + grads);
 }
 }
}

Its output looks like this (not very pretty):

300.0 5.2359877559829835 333.3333333333333
301.0 5.253441048502927 334.44444444444446
302.0 5.27089434102287 335.55555555555554
303.0 5.288347633542813 336.6666666666667
304.0 5.305800926062757 337.77777777777777
305.0 5.3232542185827 338.8888888888889
306.0 5.340707511102643 340.0

Example 21-3 prints the same table with each number formatted to at least three integer digits and
exactly two fraction digits (both minimum and maximum set to 2).

Example 21-3. Pretty Table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.text.*;
public class PrettyTable {
 public static void main(String[] args) {
 System.out.println("Degrees Radians Grads");
 NumberFormat myFormat = NumberFormat.getInstance();
 myFormat.setMinimumIntegerDigits(3);
 myFormat.setMaximumFractionDigits(2);
 myFormat.setMinimumFractionDigits(2);
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 String radianString = myFormat.format(Math.PI * degrees / 180.0);
 String gradString = myFormat.format(400 * degrees / 360);
 String degreeString = myFormat.format(degrees);
 System.out.println(degreeString + " " + radianString
 + " " + gradString);
 }
 }
}

Its output looks like this (much nicer):

300.00 005.23 333.33
301.00 005.25 334.44
302.00 005.27 335.55
303.00 005.28 336.66
304.00 005.30 337.77
305.00 005.32 338.88
306.00 005.34 340.00
...

Note that the extra integer digits are padded with zeros rather than spaces. You'll learn how to fix
that shortly.

There are getMinimumIntegerDigits() and getMaximumIntegerDigits() methods that let you
inspect the minimum and maximum number of digits provided by any number format, including the
default:

public int getMaximumIntegerDigits()
public int getMinimumIntegerDigits()
public int getMaximumFractionDigits()
public int getMinimumFractionDigits()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3.3. Grouping

How big is 299792500? You can't easily tell because the number is hard to read. It's obviously a
pretty big number, but at a glance you don't know whether it's in the ballpark of 3 million, 30 million,
300 million, or 3 billion. On the other hand, if it's written as 299,792,500, it's a lot more obvious that
the number is about 300 million. The commas group different parts of the number. By counting the
groups, you get a quick idea of the number's order of magnitude.

Like other aspects of text formatting, different locales use different grouping conventions. In Belgium,
Denmark, Holland, Spain, and Germany, a period groups thousands, and a comma is used as the
"decimal point." Thus, the U.S. number 2,365,335.32 is equivalent to the Danish/Dutch number
2.365.335,32. Finnish uses an English-style decimal point but separates characters with a space
rather than a comma. Thus, 2,365,335.32 is, in Finnish, 2 365 335.32. France, Sweden, and Norway
also separate thousands with spaces but use a decimal comma: 2 365 335,32. Francophone Canada
follows France's convention, but Canadian Anglophones use the American-British convention. And in
Switzerland, an apostrophe separates thousands in all four of its official languages: 2'365'335.32

Most number formats support grouping, and some use it by default. You may inquire whether a
particular NumberFormat uses grouping with the isGroupingUsed() method:

public boolean isGroupingUsed()

This method returns true if the format groups numbers or false if it doesn't. You can turn grouping
on or off for a number format with the setGroupingUsed() method:

public void setGroupingUsed(boolean groupNumbers)

Passing TRue turns grouping on. Passing false turns it off. You'll usually want to use grouping in
strings that will be read by human beings and not use grouping in strings that will be parsed by
computers.

21.3.4. Currency Formats

It's not hard to tack on a dollar sign before a decimal number with two digits of precision. The
NumberFormat class does a little more, handling international currencies with relative ease. For money,
you can request the default locale's currency formatter with the static
NumberFormat.getCurrencyInstance() method:

public static final NumberFormat getCurrencyInstance()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To get a currency formatter for a different locale, pass the locale to
NumberFormat.getCurrencyInstance():

public static NumberFormat getCurrencyInstance(Locale inLocale)

Example 21-4 calculates the annual earnings of a worker making minimum wage in U.S. dollars. A
currency format returned by NumberFormat.getCurrencyInstance(Locale.ENGLISH) formats the
monetary quantities.

Example 21-4. Currency Formats

import java.text.*;
import java.util.*;
public class MinimumWage {
 public static void main(String[] args) {
 NumberFormat dollarFormat = NumberFormat.getCurrencyInstance(Locale.ENGLISH);
 double minimumWage = 5.15;
 System.out.println("The minimum wage is "
 + dollarFormat.format(minimumWage));
 System.out.println("A worker earning minimum wage and working for forty");
 System.out.println("hours a week, 52 weeks a year, would earn "
 + dollarFormat.format(40*52*minimumWage));
 }
}

This program prints:

The minimum wage is $5.15
A worker earning minimum wage and working for forty
hours a week, 52 weeks a year, would earn $10,712.00

Notice how nicely the numbers are formatted. Nowhere did I add dollar signs, say that I wanted
exactly two numbers after the decimal point, or say that I wanted to separate the thousands with
commas. The NumberFormat class took care of that.

There are limits to how far currency formatting goes. Currency formats may change the currency
sign in different locales, but they won't convert values (between U.S. and Canadian dollars or
between U.S. dollars and British pounds, for example). Since conversion rates float from day to day
and minute to minute, that's a bit much to ask of a fixed class. If you want to do this, you need to
provide some source of the conversion rate information, either from user input or pulled off the
network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3.5. Percent Formats

Number formats can also handle percentages in a variety of international formats. In grammar school
you learned that a number followed by a percent sign is really one-hundredth of its apparent value.
Thus, 50% is really decimal 0.5, 100% is 1.0, 10% is 0.1, and so on. Percent formats allow you to
use the actual decimal values in your code but print out the hundred-times larger percent values in
the output. You request the default locale's percentage formatter with the static method
NumberFormat.getPercentInstance():

public static final NumberFormat getPercentInstance()

To get a percentage formatter for a different locale, pass the locale to
NumberFormat.getPercentInstance():

public static NumberFormat getPercentInstance(Locale inLocale)

Example 21-5 prints a table of percents between 1% and 100%. Notice that doubles are used in the
code, but integral percents appear in the output.

Example 21-5. PercentTable

import java.text.*;
import java.util.*;
public class PercentTable {
 public static void main(String[] args) {
 NumberFormat percentFormat = NumberFormat.getPercentInstance(Locale.ENGLISH);
 for (double d = 0.0; d <= 1.0; d += 0.005) {
 System.out.println(percentFormat.format(d));
 }
 }
}

Here's some of the output:

0%
0%

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1%
1%
2%
2%
3%
3%
4%
4%
...

Notice that all percentage values are rounded to the nearest whole percent. This could be a problem
if you need to format something like a tax rate. There is no 0.5% or 8.25% such as you might need
when describing sales tax. To include fractional percents, call setMinimumFractionDigits() and
setMaximumFractionDigits(). For example:

NumberFormat percentFormat = NumberFormat.getPercentInstance(Locale.ENGLISH);
percentFormat.setMaximumFractionDigits(2);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.4. Specifying Width with FieldPosition

The Java core API does not include any classes that pad numbers with spaces like the traditional I/O
APIs in Fortran, C, and other languages. Part of the reason is that it's no longer a valid assumption
that all output is written in a monospaced font on a VT-100 terminal. Therefore, spaces are
insufficient to line up numbers in tables. Ideally, if you're writing tabular data in a GUI, you can use a
real table component such as javax.swing.JTable. If that's not possible, you can measure the width
of the string using a FontMetrics object and offset the position at which you draw the string. And if
you are outputting to a terminal or a monospaced font, you can manually prefix the string with the
right number of spaces.

The java.text.FieldPosition class separates strings into their component parts, called fields. (This
is another unfortunate example of an overloaded term. These fields have nothing to do with the fields
of a Java class.) For example, a typical date string can be separated into 18 fields including era, year,
month, day, date, hour, minute, second, and so on. Of course, not all of these may be present in any
given string. For example, 2006 CE includes only a year and an era field. The different fields that can
be parsed are represented as public final static int fields (there's that annoying overloading
again) in the corresponding format class. The java.text.DateFormat class defines these kinds of
fields as mnemonic constants:

public static final int ERA_FIELD
public static final int YEAR_FIELD
public static final int MONTH_FIELD
public static final int DATE_FIELD
public static final int HOUR_OF_DAY1_FIELD
public static final int HOUR_OF_DAY0_FIELD
public static final int MINUTE_FIELD
public static final int SECOND_FIELD
public static final int MILLISECOND_FIELD
public static final int DAY_OF_WEEK_FIELD
public static final int DAY_OF_YEAR_FIELD
public static final int DAY_OF_WEEK_IN_MONTH_FIELD
public static final int WEEK_OF_YEAR_FIELD
public static final int WEEK_OF_MONTH_FIELD
public static final int AM_PM_FIELD
public static final int HOUR1_FIELD
public static final int HOUR0_FIELD
public static final int TIMEZONE_FIELD

Number formats are a little simpler. They are divided into only two fields, the integer field and the
fraction field. These are represented by the mnemonic constants NumberFormat.INTEGER_FIELD and
NumberFormat.FRACTION_FIELD:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public static final int INTEGER_FIELD
public static final int FRACTION_FIELD

The integer field is everything before the decimal point. The fraction field is everything after the
decimal point. For instance, the string "-156.32" has an integer field of "-156" and a fraction field of
"32".

The java.text.FieldPosition class identifies the boundaries of each field in the numeric string. You
can then manually add the right number of monospaced characters or pixels to align the decimal
points in a column of numbers. You create a FieldPosition object by passing one of these numeric
constants into the FieldPosition() constructor:

public FieldPosition(int field)

For example, to get the integer field:

FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);

There's a getField() method that returns this constant:

public int getField()

Next you pass this object into one of the format() methods that takes a FieldPosition object as an
argument:

NumberFormat nf = NumberFormat().getNumberInstance();
StringBuffer sb = nf.format(2.71828, new StringBuffer(), fp);

When format() returns, the FieldPosition object contains the start and end index of the field in the
string. These methods return those items:

public int getBeginIndex()
public int getEndIndex()

You can subtract getBeginIndex() from getEndIndex() to find the number of characters in the field.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you're working with a monospaced font, this may be all you need to know. If you're working with a
proportionally spaced font, you'll probably use java.awt.FontMetrics to measure the exact width of
the field instead. Example 21-6 shows how to work in a monospaced font. This is essentially another
version of the angle table. Now a FieldPosition object is used to figure out how many spaces to add
to the front of the string; the getSpaces() method is simply used to build a string with a certain
number of spaces.

Example 21-6. Prettier Table

import java.text.*;
public class PrettierTable {
 public static void main(String[] args) {
 NumberFormat myFormat = NumberFormat.getNumberInstance();
 FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
 myFormat.setMaximumIntegerDigits(3);
 myFormat.setMaximumFractionDigits(2);
 myFormat.setMinimumFractionDigits(2);
 System.out.println("Degrees Radians Grads");
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 String radianString = myFormat.format(
 radianString = getSpaces(3 - fp.getEndIndex()) + radianString;
 String gradString = myFormat.format(
 gradString = getSpaces(3 - fp.getEndIndex()) + gradString;
 String degreeString = myFormat.format(
 degrees, new StringBuffer(), fp).toString();
 degreeString = getSpaces(3 - fp.getEndIndex()) + degreeString;
 System.out.println(degreeString + " " + radianString + " " + gradString);
 }
 }
 public static String getSpaces(int n) {
 StringBuffer sb = new StringBuffer(n);
 for (int i = 0; i < n; i++) sb.append(' ');
 return sb.toString();
 }
}

Here's some sample output. Notice the alignment of the decimal points:

$ java PrettierTable
Degrees Radians Grads
 0.00 0.00 0.00
 1.00 0.02 1.11
 2.00 0.03 2.22
 3.00 0.05 3.33
 4.00 0.07 4.44
 5.00 0.09 5.56

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6.00 0.10 6.67
 7.00 0.12 7.78
 8.00 0.14 8.89
 9.00 0.16 10.00
 10.00 0.17 11.11
 11.00 0.19 12.22
 12.00 0.21 13.33
 13.00 0.23 14.44

This technique only works with monospaced fonts. In GUI environments, you'll need to work with
pixels instead of characters. Instead of prefixing a string with spaces, you adjust the position where
the pen starts drawing each string. The getBeginIndex() and getEndIndex() methods, along with
substring() in java.lang.String can be used to get the actual field, and the stringWidth()
method in the java.awt.FontMetrics class can tell you how wide the field is.

Example 21-7 is yet another variant of the angle table. This one draws the angles in an applet. Figure
21-1 shows a screenshot of the running applet. This technique works equally well in a panel, frame,
scroll pane, canvas, or other drawing environment with a paint() method.

Figure 21-1. The PrettiestTable applet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 21-7. Prettiest Table applet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.text.*;
import java.applet.*;
import java.awt.*;
public class PrettiestTable extends Applet {
 NumberFormat myFormat = NumberFormat.getNumberInstance();
 FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
 public void init() {
 this.setFont(new Font("Serif", Font.BOLD, 12));
 myFormat.setMaximumIntegerDigits(3);
 myFormat.setMaximumFractionDigits(2);
 myFormat.setMinimumFractionDigits(2);
 }
 public void paint(Graphics g) {
 FontMetrics fm = this.getFontMetrics(this.getFont()) ;
 int xmargin = 5;
 int lineHeight = fm.getMaxAscent() + fm.getMaxDescent();
 int y = lineHeight;
 int x = xmargin;
 int desiredPixelWidth = 3 * fm.getMaxAdvance();
 int fieldWidth = 6 * fm.getMaxAdvance();
 int headerWidth = fm.stringWidth("Degrees");
 g.drawString("Degrees", x + (fieldWidth - headerWidth)/2, y);
 headerWidth = fm.stringWidth("Radians");
 g.drawString("Radians", x + fieldWidth + (fieldWidth - headerWidth)/2, y);
 headerWidth = fm.stringWidth("Grads");
 g.drawString("Grads", x + 2*fieldWidth + (fieldWidth - headerWidth)/2, y);
 for (double degrees = 0.0; degrees < 360.0; degrees++) {
 y += lineHeight;
 String degreeString = myFormat.format(degrees, new StringBuffer(),
 fp).toString();
 String intPart = degreeString.substring(0, fp.getEndIndex());
 g.drawString(degreeString, xmargin + desiredPixelWidth
 - fm.stringWidth(intPart), y);
 String radianString = myFormat.format(Math.PI*degrees/180.0,
 new StringBuffer(), fp).toString();
 intPart = radianString.substring(0, fp.getEndIndex());
 g.drawString(radianString,
 xmargin + fieldWidth + desiredPixelWidth - fm.stringWidth(intPart), y);
 String gradString = myFormat.format(400 * degrees / 360,
 new StringBuffer(), fp).toString();
 intPart = gradString.substring(0, fp.getEndIndex());
 g.drawString(gradString,
 xmargin + 2*fieldWidth + desiredPixelWidth - fm.stringWidth(intPart), y);
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.5. Parsing Input

Number formats also handle input. When used for input, a number format converts a string in the
appropriate format to a binary number, achieving more flexible conversions than you can get with the
methods in the type wrapper classes (like Integer.parseInt()). For instance, a percent format
parse() method can interpret 57% as 0.57 instead of 57. A currency format can read (12.45) as -
12.45.

There are three parse() methods in the NumberFormat class. All do roughly the same thing:

public Number parse(String text) throws ParseException
public abstract Number parse(String text, ParsePosition parsePosition)
public final Object parseObject(String source, ParsePosition parsePosition)

The first parse() method attempts to parse a number from the given text. If the text represents an
integer, it's returned as an instance of java.lang.Long. Otherwise, it's returned as an instance of
java.lang.Double. If a string contains multiple numbers, only the first one is returned. For instance,
if you parse "32 meters" you'll get the number 32 back. Java throws away everything after the
number finishes. If the text cannot be interpreted as a number in the given format, a ParseException
is thrown.

The second parse() method specifies where in the text parsing starts. The position is given by a
ParsePosition object. This is a little more complicated than using a simple int but does have the
advantage of allowing one to read successive numbers from the same string. The third parse()
method merely invokes the second. It's declared to return Object rather than Number so that it can
override the method of the same signature in java.text.Format. If you know you're working with a
NumberFormat rather than a DateFormat or some other nonnumeric format, there's no reason to use it.

The java.text.ParsePosition class has one constructor and two public methods:

public ParsePosition(int index)
public int getIndex()
public void setIndex(int index)

This whole class is just a wrapper around a position, which is set by the constructor and the
setIndex() method and returned by the getIndex() method. As a NumberFormat parses a string, it
updates the associated ParsePosition's index. Thus, when passed into a parse() method, the
ParsePosition contains the index where parsing will begin. When the parse() method returns, the
ParsePosition contains the index immediately after the last character parsed. If parsing fails, the
parse position is unchanged.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some number formats can only read integers, not floating-point numbers. The isParseIntegerOnly(
) method returns TRue if this is the case or false otherwise.

public boolean isParseIntegerOnly()
public void setParseIntegerOnly(boolean value)

The setParseInteger() method lets you specify that the format should only parse integers. If a
decimal point is encountered, parsing should stop.

Example 21-8 is a simple program of the sort that's common in CS 101 courses. The assignment is to
write a program that reads a number entered from the command line and prints its square root.
Successive numbers are read until a negative number is entered, at which point the program halts.
Although this is a very basic exercise, it's relatively complex in Java because Java separates string
parsing from basic I/O. Nonetheless, while it may not be suitable for the first week's homework,
students should be able to handle it by the end of the semester.

Example 21-8. RootFinder

import java.text.*;
import java.io.*;
public class RootFinder {
 public static void main(String[] args) {
 Number input = null;
 try {
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 NumberFormat nf = NumberFormat.getInstance();
 while (true) {
 System.out.println("Enter a number (-1 to quit): ");
 String s = br.readLine();
 try {
 input = nf.parse(s);
 }
 catch (ParseException ex) {
 System.out.println(s + " is not a number I understand.");
 continue;
 }
 double d = input.doubleValue();
 if (d < 0) break;
 double root = Math.sqrt(d);
 System.out.println("The square root of " + s + " is " + root);
 }
 }
 catch (IOException ex) {System.err.println(ex);}
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's a sample run:

$ java RootFinder
Enter a number (-1 to quit):
87
The square root of 87 is 9.327379053088816
Enter a number (-1 to quit):
3.151592
The square root of 3.151592 is 1.7752723734683644
Enter a number (-1 to quit):
2,345,678
The square root of 2,345,678 is 1531.5606419596973
Enter a number (-1 to quit):
2.998E+8
The square root of 2.998E+8 is 1.7314733610425546
Enter a number (-1 to quit):
299800000
The square root of 299800000 is 17314.733610425545
Enter a number (-1 to quit):
0.0
The square root of 0.0 is 0.0
Enter a number (-1 to quit):
four
four is not a number I understand.
Enter a number (-1 to quit):
4
The square root of 4 is 2.0
Enter a number (-1 to quit):
(12)
(12) is not a number I understand.
Enter a number (-1 to quit):
-1

These results tell you a few things about Java's default number format in the locale where I ran it
(U.S. English). First, it doesn't understand exponential notation. The square root of 2.998E+8 is not
1.7314733610425546; it's 1.7314733610425546E+4. The number format parsed up to the first
character it didn't recognize (E) and stopped, thus returning the square root of 2.998 instead. You
can also see that this number format doesn't understand negative numbers represented by
parentheses or words like "four." On the other hand, it can parse numbers with thousands separators
like 2,345,678. This is more than the I/O libraries in most other languages can do. With the
appropriate, nondefault number format, Java could parse (12), four, and 2.998E+8 as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.6. Decimal Formats

The java.text.DecimalFormat class provides even more control over how floating-point numbers are
formatted:

public class DecimalFormat extends NumberFormat

Most number formats are in fact decimal formats. Generally, you can simply cast any number format
to a decimal format, like this:

DecimalFormat df = (DecimalFormat) NumberFormat.getCurrencyInstance();

At least in theory, you might encounter a nondecimal format. Therefore, you should use instanceof
to test whether or not you've got a DecimalFormat:

NumberFormat nf = NumberFormat.getCurrencyInstance();
if (nf instanceof DecimalFormat) {
 DecimalFormat df = (DecimalFormat) NumberFormat.getCurrencyInstance();
 //...
}

Alternatively, you can place the cast and associated operations in a TRy/catch block that catches
ClassCastExceptions:

try {
 DecimalFormat df = (DecimalFormat) NumberFormat.getCurrencyInstance();
 //...
}
catch (ClassCastException ex) {System.err.println(ex);}

21.6.1. Decimal Format Patterns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Every DecimalFormat object has a pattern that describes how numbers are formatted and a list of
symbols that describes with which characters they're formatted. This allows the single DecimalFormat
class to be parameterized so that it can handle many different formats for different kinds of numbers
in many locales. The pattern is given as an ASCII string. The symbols are provided by a
DecimalFormatSymbols object. These are accessed and manipulated through the following six
methods:

public DecimalFormatSymbols getDecimalFormatSymbols()
public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols)
public String toPattern()
public String toLocalizedPattern()
public void applyPattern(String pattern)
public void applyLocalizedPattern(String pattern)

The decimal format symbols specify the characters or strings used for the zero digit, the grouping
separator, the decimal sign, the percent sign, the mille percent sign, infinity (IEEE 754 Inf), not a

number (IEEE 754 NaN), and the minus sign. In American English these are 0, ,, ., %, , Inf, NaN,
and -, respectively. They may be other things in different locales.

The pattern specifies whether leading and trailing zeros are printed, whether the fractional part of
the number is printed, the number of digits in a group (three in American English), and the leading
and trailing suffixes for negative and positive numbers.

For instance, #,##0.### is the decimal format pattern for U.S. English and most other non-Arabic-
speaking locales. The notable exceptions are the Arabic-speaking countries and Macedonia. The
primary difference between locales comes in the decimal format symbols, not the pattern. The
currency formats have more variation because most countries have their own currencies with their
own unique symbols.

The # mark means any digit character except a leading or trailing zero. The comma is the grouping
separator, the period is the decimal point separator, and the 0 is a digit that will be printed even if it's
a nonsignificant zero. Interpret this pattern as follows:

The integer part contains as many digits as necessary.1.

These are separated every three digits with the grouping separator.2.

If the integer part is zero, there is a single zero before the decimal separator.3.

Up to three digits are printed after the decimal separator. However, they are not printed if they
are trailing zeros.

4.

No separate pattern is included for negative numbers. Therefore, they will be printed the same
as a positive number but prefixed with a minus sign.

5.

You can apply your own patterns to support different formats. For example, the pattern 0.00000000E0
specifies a number will be formatted in exponential notation with exactly one digit before the decimal
separator and exactly eight digits after the decimal separator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's relatively painful to work with this grammar directly. Fortunately, there are methods that allow
you to get and set the values of these individual pieces directly, and I recommend that you use
them:

public String getPositivePrefix()
public void setPositivePrefix(String newValue)
public String getPositiveSuffix()
public void setPositiveSuffix(String newValue)
public String getNegativePrefix()
public void setNegativePrefix(String newValue)
public String getNegativeSuffix()
public void setNegativeSuffix(String newValue)
public int getMultiplier()
public void setMultiplier(int newValue)
public int getGroupingSize()
public void setGroupingSize(int newValue)
public boolean isDecimalSeparatorAlwaysShown()
public void setDecimalSeparatorAlwaysShown(boolean newValue)

The positive prefix is the string prefixed to positive numbers. Most of the time, this is the empty
string, but in some circumstances you might want to use a plus sign (+). In currency formats, the
positive prefix is often set to the currency sign, like $ or £, depending on the locale. You can also set
a positive suffix; that is, a string that is appended to all positive numbers. This is used to attach the
percent sign to percentage formats. The negative prefix is the minus sign (-). However, in accounting
and other financial applications it may be an open parenthesis instead. In these applications, there's
also a negative suffix, generally a closing parenthesis. Thus, -12 might be formatted as (12).

The multiplier is an integer by which the number is multiplied before being formatted. This is
commonly used in percent formats. This allows a number like 0.85 to be formatted as 85% instead of
0.85%. 1, 100, and 1000 are the only common values of this number. Grouping size is the number of
digits between grouping separators, commas in English. This is how 75365 becomes 75,365. Most
locales, including English, break every three digits; a few break every four, formatting 75365 as
7,5365. Finally, you can specify whether or not the decimal separator (decimal point) is shown in
numbers without fractional parts. By default, a number like 1999 does not have a decimal point.
However, there are situations (C source code, for example) where the difference between 1999 and
1999. is significant.

You also have access to the following methods, inherited from java.text.NumberFormat, which allow
you to set and get the minimum and maximum number of integer and fraction digits and control
whether or not grouping is used at all. These work just as well with decimal formats as they do with
regular number formats:

public boolean isGroupingUsed()
public void setGroupingUsed(boolean useGrouping)
public int getMaximumIntegerDigits()
public void setMaximumIntegerDigits(int maxDigits)
public int getMinimumIntegerDigits()
public void setMinimumIntegerDigits(int minDigits)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getMaximumFractionDigits()
public void setMaximumFractionDigits(int maxDigits)
public int getMinimumFractionDigits()
public void setMinimumFractionDigits(int minDigits)

21.6.2. DecimalFormatSymbols

Each DecimalFormat object has a DecimalFormatSymbols object that contains a list of the different
symbols used by decimal number formats in a particular locale. The decimal format symbols specify
the characters or strings used for the zero digit, the grouping separator, the decimal sign, the
percent sign, the mille percent sign, infinity (IEEE 754 Inf), not a number (IEEE 754 NaN), and the
minus sign. DecimalFormatSymbols has two constructors, but they're rarely used:

public DecimalFormatSymbols()
public DecimalFormatSymbols(Locale locale)

Instead, the DecimalFormatSymbols object is retrieved from a particular DecimalFormat object using
its getdecimalFormatSymbols() method:

public DecimalFormatSymbols getDecimalFormatSymbols()

If you create your own DecimalFormatSymbols object, perhaps for a locale Java doesn't support, you
can make a DecimalFormat use it by passing it to DecimalFormat's setDecimalFormatSymbols()
method:

public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols)

The DecimalFormatSymbols class contains mostly getter and setter methods for inspecting and setting
the values of the different symbols:

public char getZeroDigit()
public void setZeroDigit(char zeroDigit)
public char getGroupingSeparator()
public void setGroupingSeparator(char groupingSeparator)
public char getDecimalSeparator()
public void setDecimalSeparator(char decimalSeparator)
public char getMonetaryDecimalSeparator()
public void setMonetaryDecimalSeparator(char decimalSeparator)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public char getPercent()
public void setPercent(char percent)
public char getPerMill()
public void setPerMill(char perMill)
public String getInfinity()
public void setInfinity(String infinity)
public String getNaN()
public void setNaN(String NaN)
public char getMinusSign()
public void setMinusSign(char minusSign)

The zero digit is the character used for zero. This is 0 in most Western languages but is different in
Arabic and a few other locales. The grouping separator is the character used to split groups; a
comma is used in the U.S., but a period is used in some other countries that use a comma as the
decimal separator. The decimal separator is a decimal point (a period) in English but a comma in
some other locales. Most of the time regular numbers and money numbers use the same decimal
separator, but in a few cases they're different. (Pre-Euro Portugal is one case.) The monetary
separator specifies the decimal separator for currency formats. The percent and per mille characters
are % and ? in English, occasionally other things in other locales. The infinity and not-a-number
strings are rarely changed. They're Inf and NaN as specified by IEEE 754, generally even in non-
English languages like German, where the word for infinity is Unbegrenztheit and "not a number"
translates as "nicht eine Zahl." Finally, the minus sign is the default character used for negative
numbers that do not have a specific prefix. It's a hyphen (-) in English. This character is not used if
the associated pattern has set a negative prefix.

In Java 1.2 and later, there are methods to get and set the currency symbol and code:

public String getCurrencySymbol()
public void setCurrencySymbol(String symbol)
public String getInternationalCurrencySymbol()
public void setInternationalCurrencySymbol(String code)
public Currency getCurrency() // Java 1.4
public void setCurrency(Currency currency) // Java 1.4

The currency symbol is the actual currency character(s) that prefix a monetary value such as $, ,
or £. The currency symbol is the ISO 4217 three-letter ASCII code for that currency such as USD,
EUR, or GBP. The Currency object is a Java 1.4 typesafe enum that encapsulates the available
currencies. These three values should be in sync. Setting the currency or the currency symbol will
also set the other two properties to corresponding values. For example, changing the international

currency symbol to EUR, changes the currency symbol to . You don't have to explicitly call
setCurrencySymbol() and setCurrency(). The reverse procedure does not work, however.
Changing the currency symbol does not change the currency and the international currency symbol.

21.6.3. Constructing Decimal Formats with Patterns and Symbols

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most of the time, you use the factory methods in NumberFormat to get DecimalFormat instances.
However, there are three public DecimalFormat constructors you can use to create DecimalFormat
instances directly:

public DecimalFormat()
public DecimalFormat(String pattern)
public DecimalFormat(String pattern, DecimalFormatSymbols symbols)

The no-argument constructor creates a decimal format that uses the default pattern and symbols for
the default locale. The second constructor creates a decimal format that uses the specified pattern
and the default symbols for the default locale. The third constructor creates a decimal format that
uses the specified pattern and the specified symbols for the default locale. These are useful for
special cases that aren't handled by the default patterns and symbols.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART VII: Devices
Chapter 22: The Java Communications API

Chapter 23: USB

Chapter 24: The J2ME Generic Connection Framework

Chapter 25: Bluetooth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 22. The Java Communications API
This chapter covers the Java Communications API, a standard extension that can send data to and
receive data from RS-232 serial ports and IEEE 1284-parallel ports. This allows Java programs to talk
to essentially any device connected to a serial or parallel port, like a printer, a scanner, a modem, a
tape backup unit, and so on. The Communications API operates at a very low level. It only
understands how to send and receive bytes to these ports. It does not understand anything about
what these bytes mean. Doing useful work generally requires not only understanding the Java
Communications API (which is actually quite simple) but also the protocols spoken by the devices
connected to the ports (which can be almost arbitrarily complex).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.1. The Architecture of the Java Communications API

Because the Java Communications API is a standard extension, it is not installed by default with the
JDK. You have to download it from http://java.sun.com/products/javacomm/ and install it separately.
The current version is 3.0. However. this is only available for Linux and Solaris. Version 2.0 was also
available on Windows. However, Sun recently retired that version. At the time of this writing you can
find it at http://javashoplm.sun.com/ECom/docs/Welcome.jsp?StoreId=22&PartDetailId=7235-
javacomm-2.0-spec-oth-JSpec&SiteId=JSC&TransactionId=noreg but I wouldn't count on that URL
lasting forever. If you can find a copy, the difference between 2.0 and 3.0 is not huge (with the
exception of Windows support), just a couple of extra methods here and there.

There are a couple of third-party implementations of the Java Communications
API for the Mac. However, since it's been almost ten years since any Macs
shipped with serial ports and no Mac has ever had a parallel port, this probably
isn't too big a deal. These days attaching a serial port device to a Mac requires
a USB adapter or PCI card.

The Java Communications API contains a single package, javax.comm, which holds a baker's dozen of
classes, exceptions, and interfaces. Because the Comm API is a standard extension, the javax prefix
is used instead of the java prefix. The Comm API also includes a DLL or shared library containing the
native code to communicate with the ports, and a few driver classes in the com.sun.comm package
that mostly handle the vagaries of Unix or Wintel ports. Other vendors may need to muck around
with these if they're porting the Comm API to another platform (e.g., the Mac or Pocket PC), but as a
user of the API, you'll only concern yourself with the documented classes in javax.comm.

javax.comm is divided into high-level and low-level classes. High-level classes are responsible for
controlling access to and ownership of the communication ports and performing basic I/O. The
CommPortIdentifier class lets you find and open the ports available on a system. The CommPort class
provides input and output streams connected to the ports. Low-level classesSerialPort and
ParallelPort, for examplemanage interaction with particular kinds of ports and help you read and
write the control wires on the ports. They also provide event-based notification of changes to the
state of the port.

http://java.sun.com/products/javacomm/
http://javashoplm.sun.com/ECom/docs/Welcome.jsp?StoreId=22&PartDetailId=7235-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.2. Identifying Ports

The CommPortIdentifier class is the controller for the ports on a system. It has methods that list the
available ports, figure out which program owns them, take control of a port, and open a port so you
can perform I/O with it. The actual I/O, stream-based or otherwise, is performed through an instance
of CommPort that represents the port in question. The purpose of CommPortIdentifier is to mediate
between different programs, objects, or threads that want to use the same port.

22.2.1. Finding the Ports

Before you can use a port, you need an identifier for the port. Because the possible port identifiers
are closely tied to the physical ports on the system, you cannot simply construct an arbitrary
CommPortIdentifier object. Instead, you use one of several static methods in CommPortIdentifier
that find the right port. These include:

public static Enumeration getPortIdentifiers()
public static CommPortIdentifier getPortIdentifier(String portName)
 throws NoSuchPortException
public static CommPortIdentifier getPortIdentifier(CommPort port)
 throws NoSuchPortException

The most general of these is CommPortIdentifier.getPortIdentifiers(), which returns a
java.util.Enumeration containing one CommPortIdentifier for each of the ports on the system.
Example 22-1 uses this method to list all the ports on the system.

Example 22-1. PortLister

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.comm.*;
import java.util.*;
public class PortLister {
 public static void main(String[] args) {
 Enumeration e = CommPortIdentifier.getPortIdentifiers();
 while (e.hasMoreElements()) {
 System.out.println((CommPortIdentifier) e.nextElement());
 }
 }
}

To compile this and the other programs in this chapter, you need the JAR file containing the API. In
Sun's implementation, this file is named comm.jar. For example,

$ javac -classpath .:jar/comm.jar PortLister.java

To run the program, you'll need the native libraries and a javax.comm.properties file. The native
libraries are found in the lib directory. To link to these on Linux or Solaris, you need to add the lib
directory to the LD_LIBRARY_PATH environment variable like so:

$ export LD_LIBRARY_PATH= lib

If $LD_LIBRARY_PATH has already been defined, you need to redefine it like this instead:

$ export LD_LIBRARY_PATH= lib :$ LD_LIBRARY_PATH

This assumes the lib directory is found in the current working directory. Otherwise, specify the
complete path to where it is found.

Finally, you'll need to place the javax.comm.properties file in your classpath. Confusingly, Sun
distributes this file in the docs directory. If your serial and parallel ports are not in the usual locations,
or you have extra ports, customize this file to tell Java where they are.

Here's the output I got when I ran PortLister on my fairly stock Wintel PC:

D:\JAVA\22\>java PortLister
javax.comm.CommPortIdentifier@be3c9581
javax.comm.CommPortIdentifier@be209581

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.comm.CommPortIdentifier@be489581
javax.comm.CommPortIdentifier@be4c9581

This shows you that my system has four ports, though it doesn't tell you what those ports are. Of
course, the output varies depending on how many serial and parallel ports the system possesses. I
also ran PortLister on the same hardware but this time running Linux and here's the output:

$ java -classpath .:jar/comm.jar PortLister
javax.comm.CommPortIdentifier@19f953d
javax.comm.CommPortIdentifier@1fee6fc

Surprisingly, only two ports were found now. The problem is that the default javax.comm.properties
file specifies the serial ports at /dev/ttyS0 and /dev/ttyS1 and the parallel ports at /dev/parport0 and
/dev/parport1. However, the version of Debian I'm running maps the parallel ports to /dev/par0 and
/dev/par1. After I edited the javax.comm.properties file to recognize this, Java found all four ports:

$ java -classpath .:jar/comm.jar PortLister
javax.comm.CommPortIdentifier@19f953d
javax.comm.CommPortIdentifier@1fee6fc
javax.comm.CommPortIdentifier@1eed786
javax.comm.CommPortIdentifier@187aeca

Clearly, a better toString() method is needed. (CommPortIdentifier merely inherits
java.lang.Object's toString() method.) You'll see how to work around this in the next section.

You can also get a CommPortIdentifier by using the static method getPortIdentifier() to request a
port identifier, either by name or by the actual port object. The latter assumes that you already have
a reference to the relevant port, which usually isn't the case. The former allows you to choose from
Windows names like "COM1" and "LPT2" or Unix names like "Serial A" and "Serial B." The exact
format of a name is highly platform- and implementation-dependent. If you ask for a port that
doesn't exist, a NoSuchPortException is thrown. Example 22-2 looks for serial and parallel ports by
starting with COM1 and LPT1 and counting up until one is missing. Be warned that this code is highly
platform-dependent and probably won't work on Unix or the Mac.

Example 22-2. NamedPortLister

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.comm.*;
public class NamedPortLister {
 public static void main(String[] args) {
 // List serial (COM) ports.
 try {
 int portNumber = 1;
 while (true) {
 CommPortIdentifier.getPortIdentifier("COM" + portNumber);
 System.out.println("COM" + portNumber);
 portNumber++;
 }
 }
 catch (NoSuchPortException ex) {
 // Break out of loop.
 }
 // List parallel (LPT) ports.
 try {
 int portNumber = 1;
 while (true) {
 CommPortIdentifier.getPortIdentifier("LPT" + portNumber);
 System.out.println("LPT" + portNumber);
 portNumber++;
 }
 }
 catch (NoSuchPortException ex) {
 // Break out of loop.
 }
 }
}

Once again, here's the output from a stock Wintel box:

D:\JAVA\22>java NamedPortLister
COM1
COM2
LPT1
LPT2

Now you can see that I have two serial and two parallel ports. However, this same program wouldn't
find any ports on a Unix box because Unix uses different port names.

22.2.2. Getting Information about a Port

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you have a CommPortIdentifier, you can discover information about the port by calling several
accessor methods. These include:

public String getName()
public int getPortType()
public String getCurrentOwner()
public boolean isCurrentlyOwned()

The getName() method returns the platform-dependent name of the port, such as "COM1"
(Windows) or "Serial A" (Solaris). The getPortType() method returns one of the two mnemonic
constants CommPortIdentifier.PORT_SERIAL or CommPortIdentifier.PORT_PARALLEL:

public static final int PORT_SERIAL = 1;
public static final int PORT_PARALLEL = 2;

The isCurrentlyOwned() method returns true if some other Java process, thread, or application
currently has control of the port. It returns false otherwise. If a port is owned by another Java
program, the getCurrentOwner() returns the name supplied by the program that owns it; otherwise,
it returns null. This isn't too useful because it doesn't handle the much more likely case that a non-
Java program like Dial-Up Networking or PPP is using the port. Example 22-3 is a revision of the
PortLister in Example 22-1 that uses these four accessor methods to provide information about
each port rather than relying on the inherited toString() method.

Example 22-3. PrettyPortLister

import javax.comm.*;
import java.util.*;
public class PrettyPortLister {
 public static void main(String[] args) {
 Enumeration e = CommPortIdentifier.getPortIdentifiers();
 while (e.hasMoreElements()) {
 CommPortIdentifier com = (CommPortIdentifier) e.nextElement();
 System.out.print(com.getName());
 switch(com.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 System.out.print(", a serial port, ");
 break;
 case CommPortIdentifier.PORT_PARALLEL:
 System.out.print(", a parallel port, ");
 break;
 default:
 System.out.print(" , a port of unknown type, ");
 break;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 if (com.isCurrentlyOwned()) {
 System.out.println("is currently owned by "
 + com.getCurrentOwner() + ".");
 }
 else {
 System.out.println("is not currently owned.");
 }
 }
 }
}

Here's the output when run on a stock Wintel box:

D:\JAVA\22>java PrettyPrintLister
COM1, a serial port, is not currently owned.
COM2, a serial port, is not currently owned.
LPT1, a parallel port, is not currently owned.
LPT2, a parallel port, is not currently owned.

This output originally confused me because I expected one of the COM ports to be occupied by the
Dial-Up Networking PPP connection on the internal modem (COM2). However, the isCurrentlyOwned(
) method only notices other Java programs in the same VM occupying ports. To detect whether a
non-Java program is controlling a port, you must try to open the port and watch for
PortInUseExceptions, as discussed in the next section.

22.2.3. Opening Ports

Before you can read from or write to a port, you have to open it. Opening a port gives your
application exclusive access to the port until you give it up or the program ends. (Two different
programs should not send data to the same modem at the same time, after all.) Opening a port is
not guaranteed to succeed. If another program (Java or otherwise) is using the port, a
PortInUseException will be thrown when you try to open the port. Surprisingly, this is not a subclass
of IOException.

public class PortInUseException extends Exception

CommPortIdentifier has two open() methods; they each return a CommPort object you can use to
read data from and write data to the port. The first variant takes two arguments, a name and a
timeout value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public CommPort open(String name, int timeout) throws PortInUseException

The name argument is a name for the program that wants to use the port and is returned by
getCurrentOwner() while the port is in use. The timeout argument is the maximum number of
milliseconds this method blocks while waiting for the port to become available. If the operation does
not complete within that time, a PortInUseException is thrown. Example 22-4 is a variation of the
PortLister program that attempts to open each unowned port.

Example 22-4. PortOpener

import javax.comm.*;
import java.util.*;
public class PortOpener {
 public static void main(String[] args) {
 Enumeration thePorts = CommPortIdentifier.getPortIdentifiers();
 while (thePorts.hasMoreElements()) {
 CommPortIdentifier com = (CommPortIdentifier) thePorts.nextElement();
 System.out.print(com.getName());
 switch(com.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 System.out.print(", a serial port, ");
 break;
 case CommPortIdentifier.PORT_PARALLEL:
 System.out.print(", a parallel port, ");
 break;
 default:
 System.out.print(" , a port of unknown type, ");
 break;
 }
 try {
 CommPort thePort = com.open("PortOpener", 10);
 System.out.println("is not currently owned.");
 thePort.close();
 }
 catch (PortInUseException ex) {
 String owner = com.getCurrentOwner();
 if (owner == null) owner = "unknown";
 System.out.println("is currently owned by " + owner + ".");
 }
 }
 }
}

Here's the output:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D:\JAVA\22>java PortOpener
COM1, a serial port, is not currently owned.
COM2, a serial port, is currently owned by Port currently not owned.
LPT1, a parallel port, is not currently owned.
LPT2, a parallel port, is currently owned by Port currently not owned.

In this example, you see that COM2 is occupied, though by a non-Java program that did not register
its name. You also see that LPT2 is occupied, which was something of a surprise to meI didn't think I
was using any parallel ports.

On Linux, the results were a little different:

elharo@cafe:~/comm$ java -classpath .:jar/comm.jar PortOpener
/dev/ttyS0, a serial port,
Exception in thread "main" java.lang.RuntimeException:
 Error opening "/dev/ttyS0"
 Permission denied
 at com.sun.comm.LinuxDriver.getCommPort(LinuxDriver.java:66)
 at javax.comm.CommPortIdentifier.open(CommPortIdentifier.java:368)
 at PortOpener.main(PortOpener.java:27)

Linux and Unix often require root access to open ports. Since I didn't have it, they threw a rather
nasty RuntimeException. This really should be an IOException or a SecurityException. After I su'd to
root, I was able to run the program as expected and open the ports:

/opt/java/j2sdk1.4.2_04/bin/java -classpath .:jar/comm.jar PortOpener
/dev/ttyS0, a serial port, is not currently owned.
/dev/ttyS1, a serial port, is not currently owned.
/dev/par0, a parallel port, is not currently owned.
/dev/par1, a parallel port,
Exception in thread "main" java.lang.RuntimeException:
 Error opening"/dev/par1"
 No such device or address
 at com.sun.comm.LinuxDriver.getCommPort(LinuxDriver.java:66)
 at javax.comm.CommPortIdentifier.open(CommPortIdentifier.java:368)
 at PortOpener.main(PortOpener.java:27)

That final exception came because this hardware only had one parallel port, even though there were
entries for more in the /dev directory.

The second open() method takes a file descriptor as an argument:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public CommPort open(FileDescriptor fd) throws UnsupportedCommOperationException

This may be useful on operating systems like Unix, where all devices, serial ports included, are
treated as files. On all other platforms, this method throws an UnsupportedCommOperationException:

public class UnsupportedCommOperationException extends Exception

There is no corresponding close() method in the CommPortIdentifier class. The necessary close()
method is included in the CommPort class itself. You should close all ports you've opened when you're
through with them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.3. Communicating with a Device on a Port

The open() method of the CommPortIdentifier class returns a CommPort object. The CommPort class
has methods for getting input and output streams from a port and for closing the port. There are also
a number of driver-dependent methods for adjusting the properties of the port.

22.3.1. Communicating with a Port

There are five basic steps to communicating with a port:

Open the port using the open() method of CommPortIdentifier. If the port is available, this
returns a CommPort object. Otherwise, it throws a PortInUseException.

1.

Get the port's output stream using the getOutputStream() method of CommPort.2.

Get the port's input stream using the getInputStream() method of CommPort.3.

Read and write data onto those streams as desired.4.

Close the port using the close() method of CommPort.5.

Steps 2 through 4 are new. However, they're not particularly complex. Once the connection has been
established, you simply use the normal methods of any input or output stream to read and write
data. The getInputStream() and getOutputStream() methods of CommPort are similar to the
methods of the same name in the java.net.URL class. The primary difference is that with ports,
you're completely responsible for understanding and handling the data that's sent to you. There are
no content or protocol handlers that perform any manipulation of the data. If the device attached to
the port requires a complicated protocolfor example, a fax modemyou'll have to handle the protocol
manually.

public abstract InputStream getInputStream() throws IOException
public abstract OutputStream getOutputStream() throws IOException

Some ports are unidirectional. In other words, the port hardware only supports writing or reading,
not both. For instance, early PC parallel ports allowed the computer to send data to the printer but
could only send a small number of precisely defined signals back to the computer. This was fine for a
printer, but it meant that the parallel port wasn't useful for a device like a CD-ROM or a Zip drive. If
the port you've opened doesn't allow writing, getOutputStream() returns null. If the port doesn't
allow reading, getInputStream() returns null.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 22-5 is a simple character-mode program that allows you to type back and forth with a
port. If a modem is attached to the port, you can use it as an extremely rudimentary terminal
emulator. Two separate threads handle input and output so that input doesn't get blocked waiting for
output and vice versa.

Example 22-5. PortTyper

import javax.comm.*;
import java.util.*;
import java.io.*;
public class PortTyper {
 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println("Usage: java PortTyper portName");
 return;
 }
 try {
 CommPortIdentifier com = CommPortIdentifier.getPortIdentifier(args[0]);
 CommPort thePort = com.open("PortOpener", 10);
 CopyThread input = new CopyThread(System.in, thePort.getOutputStream());
 CopyThread output = new CopyThread(thePort.getInputStream(), System.out);
 input.start();
 output.start();
 }
 catch (Exception ex) {System.out.println(ex);}
 }
}
class CopyThread extends Thread {
 private InputStream theInput;
 private OutputStream theOutput;
 CopyThread(InputStream in) {
 this(in, System.out);
 }
 CopyThread(OutputStream out) {
 this(System.in, out);
 }

 CopyThread(InputStream in, OutputStream out) {
 theInput = in;
 theOutput = out;
 }
 public void run() {
 try {
 byte[] buffer = new byte[256];
 while (true) {
 int bytesRead = theInput.read(buffer);
 if (bytesRead == -1) break;
 theOutput.write(buffer, 0, bytesRead);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 catch (IOException ex) {System.err.println(ex);}
 }
}

Here's a sample session where I used this program to connect to my ISP. After I logged out, the
incoming line rang three times, which you also see:

D:\JAVA\22java PortTyper COM2
at&f
at&f
OK
atdt 321-1444
atdt 321-1444
CONNECT 9600/ARQ
Welcome to Cloud 9 Internet!
If you're already a user, please login below.
To sign up for an account, type 'new', with no password.
If you have trouble logging in, please call (914)696-4000.
login: elharo
elharo
Password: **********
Password: **********
Last login: Thu May 28 18:26:14 from 168.100.253.71
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
 The Regents of the University of California. All rights reserved.
FreeBSD 2.2.6-RELEASE (EARL-GREY) #0: Tue May 19 10:39:36 EDT 1998
You have new mail.
> logout
logo
Connection closed.
NO CARRIER
RING
RING
RING

This program would have been state of the art in 1978. These days, it's rather crude, and you'd have
to do a lot of work to develop it further. For one thing, local echo mode should be turned off in the
modem so that you don't see duplicates of everything you type. (Even my password originally
appeared on the screen in clear text. I replaced it with asterisks manually.) And no effort at all is
made to perform terminal emulation of any sort. Furthermore, there's no way to exit the program
and close the port. Terminating it with a Ctrl-C forces abnormal execution that fails to release control
of the port. Nonetheless, it's amazing just how quick and easy it is to write a program that
communicates with a simple serial port device. Communicating with a basic daisy-wheel printer would
be no harder.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.3.2. Port Properties

The CommPort class has a number of driver-dependent methods for adjusting the properties of the
port. These properties are mostly generic characteristics such as buffer size that can be implemented
in software. More specific properties of a particular type of port, like the baud rate of a serial port or
the mode of the parallel port, must be set using a more specific subclass, like SerialPort or
ParallelPort.

The five generic properties are receive threshold, timeout value, receive framing byte, input buffer
size, and output buffer size:

The receive threshold specifies the number of bytes that must be available before a call to read(
) returns.

The receive timeout specifies the number of milliseconds that must pass before a call to read()
returns.

If receive framing is enabled, and the port does not have any data ready, read() returns a
supplied dummy byte rather than blocking. Receive framing is disabled by default.

The input buffer size requests a certain size buffer for input from serial port. If the buffer fills
up, the read() method returns. This value is only a suggestion, and implementations are free
to ignore it.

The output buffer size requests a certain size buffer for output to the serial port. This is
important because it's easy for a fast program to write data faster than the port can send it out.
Buffer overruns are a common problem, especially on older PCs with slower serial ports. This
value is only a suggestion, and implementations are free to ignore it.

Together, the receive threshold and the receive timeout determine exactly how long the input stream
will wait for incoming data. For instance, if the receive threshold is set to 5, read() won't return until
at least 5 bytes are available. If the receive timeout is set to 10 milliseconds, read() will wait 10
milliseconds before returning. However, if data becomes available before 10 milliseconds are up,
read() returns immediately. For example, if the receive threshold is set to 5 bytes and the receive
timeout is set to 10 milliseconds, read() will wait until either 10 milliseconds pass or 5 bytes are
available before returning. Finally, if receive framing is enabled, all reads return immediately,
regardless of the other values. However, you need to check each read and discard any dummy bytes
in the input stream.

Each of these properties has four methods: one enables the property, one disables it, one checks
whether the property is enabled, and one returns the current value. For instance, the receive
threshold is adjusted by these four methods:

public abstract void enableReceiveThreshold(int size)
 throws UnsupportedCommOperationException
public abstract void disableReceiveThreshold()
public abstract boolean isReceiveThresholdEnabled()
public abstract int getReceiveThreshold()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The other three properties follow the same naming conventions. These four methods adjust the
receive timeout:

public abstract void enableReceiveTimeout(int ms)
 throws UnsupportedCommOperationException
public abstract void disableReceiveTimeout()
public abstract boolean isReceiveTimeoutEnabled()
public abstract int getReceiveTimeout()

These four methods adjust the receive framing property:

public abstract void enableReceiveFraming(int dummyByte)
 throws UnsupportedCommOperationException
public abstract void disableReceiveFraming()
public abstract boolean isReceiveFramingEnabled()
public abstract int getReceiveFramingByte()

These four methods adjust the input and output buffer sizes:

public abstract void setInputBufferSize(int size)
public abstract int getInputBufferSize()
public abstract void setOutputBufferSize(int size)
public abstract int getOutputBufferSize()

All drivers must support input and output buffers, so there are no isInputBufferEnabled() or
disableOutputBuffer() methods. However, other than the input and output buffer sizes, drivers are
not required to support these properties. If a driver does not support the given property, attempting
to enable it throws an UnsupportedCommOperationException. You can determine whether or not a
driver supports a property by trying to enable it and seeing whether an exception is thrown. Example
22-6 uses this scheme to test the properties for the ports of the host system.

Example 22-6. PortTester

import javax.comm.*;
import java.util.*;
public class PortTester {
 public static void main(String[] args) {
 Enumeration thePorts = CommPortIdentifier.getPortIdentifiers();
 while (thePorts.hasMoreElements()) {
 CommPortIdentifier com = (CommPortIdentifier) thePorts.nextElement();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.print(com.getName());
 switch(com.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 System.out.println(", a serial port: ");
 break;
 case CommPortIdentifier.PORT_PARALLEL:
 System.out.println(", a parallel port: ");
 break;
 default:
 System.out.println(" , a port of unknown type: ");
 break;
 }
 try {
 CommPort thePort = com.open("Port Tester", 20);
 testProperties(thePort);
 thePort.close();
 }
 catch (PortInUseException ex) {
 System.out.println("Port in use, can't test properties");
 }
 System.out.println();
 }
 }
 public static void testProperties(CommPort thePort) {
 try {
 thePort.enableReceiveThreshold(10);
 System.out.println("Receive threshold supported");
 }
 catch (UnsupportedCommOperationException ex) {
 System.out.println("Receive threshold not supported");
 }
 try {
 thePort.enableReceiveTimeout(10);
 System.out.println("Receive timeout not supported");
 }
 catch (UnsupportedCommOperationException e) {
 System.out.println("Receive timeout not supported");
 }
 try {
 thePort.enableReceiveFraming(10);
 System.out.println("Receive framing supported");
 }
 catch (UnsupportedCommOperationException e) {
 System.out.println("Receive framing not supported");
 }
 }
}

Here's the results for both serial and parallel ports from a Windows NT box running the Comm API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.0:

D:\JAVA\22>java PortTester
COM1, a serial port:
Receive threshold supported
Receive timeout supported
Receive framing supported
COM2, a serial port:
Port in use, can't test properties
LPT1, a parallel port:
Receive threshold supported
Receive timeout supported
Receive framing supported
LPT2, a parallel port:
Port in use, can't test properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.4. Serial Ports

The SerialPort class is an abstract subclass of CommPort that provides various methods and
constants useful for working with RS-232 serial ports and devices. The main purposes of the class are
to allow the programmer to inspect, adjust, and monitor changes in the settings of the serial port.
Simple input and output is accomplished with the methods of the superclass, CommPort. SerialPort
has a public constructor, but that shouldn't be used by applications. Instead, you should call the
open() method of a CommPortIdentifier that maps to the port you want to communicate with, then
cast the result to SerialPort. For example:

CommPortIdentifier cpi = CommPortIdentifier.getPortIdentifier("COM2");
 if (cpi.getType() == CommPortIdentifier.PORT_SERIAL) {
 try {
 SerialPort modem = (SerialPort) cpi.open();
 }
 catch (PortInUseException ex) {}
 }

Methods in the SerialPort class fall into roughly three categories:

Methods that return the state of the port

Methods that set the state of the port

Methods that listen for the changes in the state of the port

22.4.1. Control Functions

At the lowest level, wires are analog, not digital. Issues, like timing, noise, and the fundamentally
analog nature of electronics have to be considered. Therefore, there's a host of layered protocols so
that the receiving end can recognize when data is being sent, whether the data was received
correctly, and more.

Serial communication uses some very basic, simple protocols. Sending between 3 and 15 volts across
the serial cable for a number of nanoseconds inversely proportional to the baud rate of the
connection is a zero bit. Sending between -3 and -15 volts for the same amount of time is a one bit.
(Sending between 3 and -3 volts is a hardware error.)

These bits are grouped into serial data units, SDUs for short. Common SDU lengths are 8 (used for
binary data) and 7 (used for basic ASCII text). Most modern devices use eight data bits per SDU.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, some older devices use seven, six, or even five data bits per SDU. Once an SDU is begun,
the rest of the SDU follows in close order. However, there may be gaps of indeterminate length
between SDUs.

One of the problems faced by asynchronous serial devices is determining SDU boundaries. If a
modem receives eight data bits, how is it to tell whether that's an entire SDU or the last four bits of
one SDU and the first four bits of another, especially if the connection has some noise and isn't
particularly reliable? To assist with this, each SDU is preceded by a single start bit that's always 0,
and followed by between one and two stop bits. Stop bits last longer than data bits so they can
always be identified.

In addition to the data and the start and stop bits, an SDU may have a parity bit. Parity is a very
simple error detection scheme that can detect (but not correct) single bit errors in an SDU. There are
two basic parity schemes. Even parity adds an extra one bit to the end of the SDU if there are an
even number of one bits in the data. Odd parity adds an extra one bit to the end of the SDU if there
are an odd number of one bits in the data.[*] No parity simply omits the parity bit. The combination
of data bits, parity scheme, and stop bits is abbreviated in forms like 8N1 or 7E1. 8N1 means a
connection uses eight data bits, no parity, and one stop bit; 7E1 means seven data bits, even parity,
and one stop bit. Virtually all modern systems use 8N1.

[*] There are two more parity schemes you may hear about. Mark parity always adds a one bit for the parity; space parity always

adds a zero bit. These convey no useful information and are almost never used.

The baud rate is the number of times per second the state of the communication channel changes.
This is not the same as bits per second. Modern modems send multiple bits per baud. Most U.S.
phone lines, configured primarily for voice calls, have a maximum baud rate of 3200. Modems that
send higher bit rates send multiple bits with each baud. A 28,800 bps modem is a 3200 baud modem
with nine states, for example.

The Java Communications API lets you set all of these parameters, including baud rate, data bits,
stop bits, and parity. They should all be familiar to anyone who's struggled with modem init strings
and terminal software in the bad old days before the Internet separated connectivity from content.
Four methods in the SerialPort class return the values of these settings. They are:

public abstract int getBaudRate()
public abstract int getDataBits()
public abstract int getStopBits()
public abstract int getParity()

A little surprisingly, you can't set these values independently. Instead, all four values (baud, data
bits, stop bits, and parity) are set at once with the setSerialPortParams() method:

public abstract void setSerialPortParams(int baud, int dataBits, int
 stopBits, int parity) throws UnsupportedCommOperationException

If the requested values are not supported by the driver (e.g., a 240,000 baud connection), an
UnsupportedCommOperationException is thrown. Except for the baud rate, these arguments should be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

one of several mnemonic constants in the SerialPort class:

SerialPort.DATABITS_5 // 5 data bits per byte
SerialPort.DATABITS_6 // 6 data bits per byte
SerialPort.DATABITS_7 // 7 data bits per byte
SerialPort.DATABITS_8 // 8 data bits per byte
SerialPort.STOPBITS_1 // 1 stop bit
SerialPort.STOPBITS_2 // 2 stop bits
SerialPort.STOPBITS_1_5 // 1.5 stop bits[*]

SerialPort.PARITY_NONE // no parity
SerialPort.PARITY_ODD // odd parity
SerialPort.PARITY_EVEN // even parity

22.4.2. Flow Control

Serial ports and the devices connected to them need a protocol to determine when the port is
sending and the device is receiving, when the device is sending and the port is receiving, and how to
switch between the two states. The two most common protocols are XON/XOFF and RTS/CTS. They
are not mutually exclusive, though it's rare to use both at the same time, and nothing is gained by
doing so. XON/XOFF is a software-based protocol; it sends special characters down the
communication line to tell the other end when to stop and start sending. RTS/CTS is implemented in
hardware and requires a special hardware handshaking cable that supports it. Almost all modern
hardware, including all modems faster than 2400 bps, support hardware flow control.

The Java Communications API contains two methods to get and set the flow-control protocol:

public abstract int getFlowControlMode()
public abstract void setFlowControlMode(int protocol)
 throws UnsupportedCommOperationException

The int returned by getFlowControlMode() and the argument passed to setFlowControlMode()
should be a bitwise OR of the following constants:

SerialPort.FLOWCONTROL_NONE // no flow control
SerialPort.FLOWCONTROL_RTSCTS_IN // RTS/CTS for input
SerialPort.FLOWCONTROL_RTSCTS_OUT // RTS/CTS for output
SerialPort.FLOWCONTROL_XONXOFF_IN // XON/XOFF for input
SerialPort.FLOWCONTROL_XONXOFF_OUT // XON/XOFF for output

To set the flow control of the SerialPort object com1 to RTS/CTS for both input and output, you
would write:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

com1.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN
 | SerialPort.FLOWCONTROL_RTSCTS_OUT);

22.4.3. Control Wires

A serial port sends data one bit at a time, but it actually uses eight wires to do it. One wire is used for
sending, one for receiving, and the other six for various control information. One or two more pins
are connected to ground. Modern serial ports generally come in a nine-pin configuration that reflects
this, though most modems and some PCs and terminals use a 25-pin connector. Table 22-1 shows
the "pin-outs" of the standard 9-pin serial port you're likely to find on the back of a PC. Table 22-2
shows the "pin-outs" of the standard 25-pin serial port you're likely to find on a modem.

Table 22-1. 9-Pin serial port pin-outs

Pin Name Code Direction

1 Carrier Detect CD Device Computer

2 Receive Data RD Device Computer

3 Transmit Data TD Computer Device

4 Data Terminal Ready DTR Computer Device

5 Signal Ground GND

6 Data Set Ready DSR Device Computer

7 Request To Send RTS Computer Device

8 Clear To Send CTS Device Computer

9 Ring Indicator RI Device Computer

Table 22-2. 25-pin serial port pin-outs

Pin Name Code Direction

1 Chassis ground

2 Transmit Data TD Computer Device

3 Receive Data RD Device Computer

4 Request To Send RTS Computer Device

5 Clear To Send CTS Device Computer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pin Name Code Direction

6 Data Set Ready DSR Device Computer

7 Signal Ground GND

8 Carrier Detect CD Device Computer

20 Data Terminal Ready DTR Computer Device

22 Ring Indicator RI Device Computer

The 15 extra pins on the 25-pin port are generally not connected to anything; Java does not provide
methods for manipulating them even if they are.

On a straight DB-25-to-DB-25 connection, about the simplest connection imaginable, used on some
early PCs and Unix workstations, the serial cable that connects the PC to the modem runs wires
between the corresponding pins. That is, the CD pin is connected to the CD pin, the TD pin is
connected to the TD pin, and so forth. Figure 22-1 shows the connection from a PC DB-25 serial port
to a DB-25 modem.

Figure 22-1. PC DB-25 serial port to a DB-25 modem

The computer and the modem communicate with each other by raising or lowering voltages on these
lines. Each line is one-way. A device reads from or writes to that line but never both. The computer
sends data to the modem across the TD line. The modem sends data to the computer across the RD
line. The computer tells the modem it's ready to send by raising the voltage on the RTS line. The
modem says it's OK for the PC to send using the CTS line. The modem indicates to the computer it's
ready using the DSR line and that it's detected a carrier by using the DCD line. If the modem loses
the carrier signal (i.e., the phone hangs up), it lowers the voltage on the DCD line. Finally, the
computer indicates it's ready by raising the voltage on the DTR line.

These cables can get a little more complicated as different kinds of ports get connected. However, the
main reason for the complexity is that not all ports put the same pins in the same positions. For
example, Figure 22-2 shows a standard DB-9 PC port connected to a standard DB-25 modem port. It
looks hairier, but if you look closer, you'll see that all that happened was that the pins swapped
positions, taking their connections with them. The TD pin is still connected to the TD pin, the RD pin

6 Data Set Ready DSR Device Computer

7 Signal Ground GND

8 Carrier Detect CD Device Computer

20 Data Terminal Ready DTR Computer Device

22 Ring Indicator RI Device Computer

The 15 extra pins on the 25-pin port are generally not connected to anything; Java does not provide
methods for manipulating them even if they are.

On a straight DB-25-to-DB-25 connection, about the simplest connection imaginable, used on some
early PCs and Unix workstations, the serial cable that connects the PC to the modem runs wires
between the corresponding pins. That is, the CD pin is connected to the CD pin, the TD pin is
connected to the TD pin, and so forth. Figure 22-1 shows the connection from a PC DB-25 serial port
to a DB-25 modem.

Figure 22-1. PC DB-25 serial port to a DB-25 modem

The computer and the modem communicate with each other by raising or lowering voltages on these
lines. Each line is one-way. A device reads from or writes to that line but never both. The computer
sends data to the modem across the TD line. The modem sends data to the computer across the RD
line. The computer tells the modem it's ready to send by raising the voltage on the RTS line. The
modem says it's OK for the PC to send using the CTS line. The modem indicates to the computer it's
ready using the DSR line and that it's detected a carrier by using the DCD line. If the modem loses
the carrier signal (i.e., the phone hangs up), it lowers the voltage on the DCD line. Finally, the
computer indicates it's ready by raising the voltage on the DTR line.

These cables can get a little more complicated as different kinds of ports get connected. However, the
main reason for the complexity is that not all ports put the same pins in the same positions. For
example, Figure 22-2 shows a standard DB-9 PC port connected to a standard DB-25 modem port. It
looks hairier, but if you look closer, you'll see that all that happened was that the pins swapped
positions, taking their connections with them. The TD pin is still connected to the TD pin, the RD pin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is still connected to the RD pin, and so forth. The only changes are the numbers of the pins and the
omission of one ground pin from the DB-9 port.

Figure 22-2. PC DB-9 serial port to a DB-25 modem

A standard modem cable connects the same pin on one end of the wire to the corresponding pin on
the other end of the wire (e.g., DTR to DTR), as shown in Figure 22-1 and Figure 22-2. Cables for
connecting other kinds of devices often deliberately cross or split wires. For instance, a null modem
cable, shown in Figure 22-3 and used for direct connections between PCs, connects the TD pins to
the RD pins, the RTS pin to the CTS pin, and the DTR pin to the DCD and DSR pins. This allows two
PCs to communicate using a communications program and a direct serial connection without any
modem. This is why not all serial cables are created equal, and the cable that works for one device
may not work for another.

Figure 22-3. PC null modem cable

Data is sent from computer to device across the TD line and from device to computer across the RD
line. You access these lines through the output and input streams returned by CommPort's
getOutputStream() and getInputStream() methods.

You do not directly manipulate these pins. The ground pins only maintain a common reference
voltage between the devices. No program ever sends voltage over these lines. This leaves six pins to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

read or write. These are:

DTR

RTS

CTS

DSR

RI

CD

Each of these has an effectively boolean value: true if it's showing voltage relative to ground or false
if it isn't. The SerialPort class provides methods to read the current state of all these pins. It
provides methods to write to those pins that would normally be written to by the computer end of the
connection.

22.4.3.1. DTR

Data Terminal Ready, DTR, means the computer is ready to send or receive data. CR, Computer
Ready, would be more likely true nowadays, but the RS-232 standard was developed in the days of
dumb terminals, when personal computers were still an oddity.

public abstract void setDTR(boolean dtr)
public abstract boolean isDTR()

22.4.3.2. RTS

Request To Send, RTS, is one-half of hardware handshaking. The computer raises voltage on the RTS
line to tell the modem it's waiting to send.

public abstract void setRTS(boolean rts)
public abstract boolean isRTS()

22.4.3.3. CTS

Clear To Send, CTS, is the other half of hardware handshaking. The modem raises the voltage on this
wire to tell the computer that it's ready to receive data. It drops the voltage when it's no longer
ready to receive data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public abstract boolean isCTS()

You cannot set the Clear To Send wire directly. Only the serial device can tell you when it is ready to
receive. You cannot force it to be ready.

22.4.3.4. DSR

The modem raises the voltage on the DSR line, Data Set Ready, to indicate that it's turned on and
operating. This line is also read-only.

public abstract boolean isDSR()

22.4.3.5. RI

The modem raises the voltage on the RI wire, Ring Indicator, to tell the computer that the phone is
ringing.

public abstract boolean isRI()

You cannot set the Ring Indicator bit directly. This is used only for one-way communication from the
device back to the computer, not for the computer to send information to the device. (In other
words, the computer can't tell the modem the phone is ringing.)

22.4.3.6. CD

The modem uses the CD wire, Carrier Detect, to tell the computer that it has successfully negotiated
the low-level modem protocols with the modem on the other end of the connection.

public abstract boolean isCD()

You cannot set the Carrier Detect bit directly. This is also a one-way communication from the device
back to the computer.

22.4.4. Serial Port Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The examples so far all depend on the computer taking the initiative. The computer tells the modem
when to dial, the printer when to print, and so on. By analogy with network programming, this is
client-based. However, there's another model for port programs, the server-based program. Just as
an Internet server waits for an incoming connection, a program can wait for incoming faxes through
a fax modem, incoming BBS connections through a modem, notifications of impending shutdown
from an uninterruptible power supply, paper-empty messages from a printer on a parallel port, and
more. However, unlike the abstract network ports of Chapter 5, computers have no concept of
binding to a serial port. Although you can check the various pins used to send information from a
modem or other serial port device to the computer whenever you want to, it's more convenient to do
it asynchronously.

Incoming port access relies on an event-based model. When the runtime detects a change in state at
a monitored serial port, it fires a serial port event to the registered serial port listener.

22.4.4.1. SerialPortEventListener

There are three steps to respond to serial port events:

Implement the SerialPortEventListener interface.1.

Register your SerialPortEventListener object with the SerialPort object representing the
serial port you want to monitor.

2.

Tell the SerialPort object the types of events you want to be notified of.3.

Step 1

As you might guess, you listen for serial port events with a SerialPortEventListener:

public interface SerialPortEventListener extends EventListener

This interface declares a single method, serialEvent():

public abstract void serialEvent(SerialPortEvent spe)

Inside this method, the getEventType() method of SerialPortEvent determines exactly what caused
the serial port event and responds appropriately.

Step 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you've constructed a SerialPortEventListener, you pass it to the SerialPort object's
addEventListener() method:

public abstract void addEventListener(SerialPortEventListener listener)
 throws TooManyListenersException

You are limited to one event listener per port. Adding a second event listener throws a
java.util.TooManyListenersException. If this is a problem, you can install an intermediate event
listener directly with the SerialPort object. This listener could keep a list of other
SerialPortEventListener objects and dispatch the events it receives to the other event listeners.

Should you need to, you can remove a listener from the port with the SerialPort object's
removeEventListener() method. This method takes no arguments because there's never more than
one event listener registered directly with the port.

public abstract void removeEventListener()

Step 3

In many circumstances, you may not be interested in some or all of these events. By default,
none of these events are fired unless you first enable them with one of the 10 notify methods
in SerialPort:

public abstract void notifyOnDataAvailable(boolean enable)
public abstract void notifyOnOutputEmpty(boolean enable)
public abstract void notifyOnCTS(boolean enable)
public abstract void notifyOnDSR(boolean enable)
public abstract void notifyOnRingIndicator(boolean enable)
public abstract void notifyOnCarrierDetect(boolean enable)
public abstract void notifyOnOverrunError(boolean enable)
public abstract void notifyOnParityError(boolean enable)
public abstract void notifyOnFramingError(boolean enable)
public abstract void notifyOnBreakInterrupt(boolean enable)

By default, no events are fired when the serial port's state changes. If you pass true to any of these
methods, the VM fires a serial port event when the matching state changes.

22.4.4.2. SerialPortEvent

The VM creates and fires serial port events to indicate a change on one of the standard serial port
lines. The SerialPortEvent class declares these three public methods:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getEventType()

public boolean getNewValue()
public boolean getOldValue()

The getEventType() method returns a named constant from the SerialPortEvent class that specifies
what caused the event to be fired. There are 10 possibilities:

SerialPortEvent.DATA_AVAILABLE // Data has arrived at the port.
SerialPortEvent.OUTPUT_BUFFER_EMPTY // Output buffer on the port is empty.
SerialPortEvent.CTS // The Clear To Send pin has changed state.
SerialPortEvent.DSR // The Data Set Ready pin has changed state.
SerialPortEvent.RI // The Ring Indicator pin has changed state.
SerialPortEvent.CD // The Carrier Detect pin has changed state.
SerialPortEvent.OE // An overrun error occurred.
SerialPortEvent.PE // A parity error occurred.
SerialPortEvent.FE // A framing error occurred.
SerialPortEvent.BI // A break interrupt was detected.

SerialPortEvent.DATA_AVAILABLE and SerialPortEvent.OUTPUT_BUFFER_EMPTY are enough information
all by themselves. The other eight possible types, however, represent a boolean change from one
state to another, from on to off or off to on. Therefore, there are also getNewValue() and
getOldValue() methods to tell you what the state of the pin was before and after the event:

public boolean getNewValue()
public boolean getOldValue()

Example 22-7 activates the Ring Indicator and prints a message on System.out when the modem tells
the computer the phone is ringing.

Example 22-7. PhoneListener

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.comm.*;
import java.util.TooManyListenersException;
public class PhoneListener implements SerialPortEventListener {
 public static void main(String[] args) {
 String portName = "COM1";
 if (args.length > 0) portName = args[0];
 PhoneListener pl = new PhoneListener();
 try {
 CommPortIdentifier cpi = CommPortIdentifier.getPortIdentifier(portName);
 if (cpi.getPortType() == CommPortIdentifier.PORT_SERIAL) {
 SerialPort modem = (SerialPort) cpi.open("Phone Listener", 1000);
 modem.notifyOnRingIndicator(true);
 modem.addEventListener(pl);
 }
 }
 catch (NoSuchPortException ex) {
 System.err.println("Usage: java PhoneListener port_name");
 }
 catch (TooManyListenersException ex) {
 // shouldn't happen in this example
 }
 catch (PortInUseException ex) {System.err.println(ex);}
 }
 public void serialEvent(SerialPortEvent evt) {
 System.err.println(evt.getEventType());
 if (evt.getEventType() == SerialPortEvent.RI) {
 System.out.println("The phone is ringing");
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.5. Parallel Ports

Parallel ports are most common on PCs. Many Sun workstations from the Sparc V on also have them.
However, Macs do not have them nor do many non-x86 workstations. Parallel ports are sometimes
called printer ports because their original purpose was to support printers. The names of the parallel
ports "LPT1," "LPT2," etc.stand for "line printer," reflecting this usage. Nowadays, parallel ports are
also used for Zip drives, tape drives, and various other devices. However, parallel ports are still
largely limited by their original goal of providing a simple connector for printers. A parallel port sends
data eight bits at a time on eight wires. These bits are sent at the same time in parallel, hence the
name. The original parallel ports only allowed data to flow one way, from the PC to the printer. The
printer could only respond by sending a few standard messages on other wires. Each return wire
corresponded to a particular message, like "Out of paper" or "Printer busy." Modern parallel ports
allow full, bidirectional communication.

The ParallelPort class is a concrete subclass of CommPort that provides various methods and
constants useful for working with parallel ports and devices. The main purposes of the class are to
allow the programmer to inspect, adjust, and monitor changes in the settings of the parallel port.
Simple input and output are accomplished with the methods of the superclass, CommPort.
ParallelPort has a single public constructor, but that shouldn't be used by applications. Instead, you
should simply call the open() method of a CommPortIdentifier that maps to the port you want to
communicate with and then cast it to ParallelPort:

 CommPortIdentifier cpi = CommPortIdentifier.getPortIdentifier("LPT2");
 if (cpi.getType() == CommPortIdentifier.PORT_PARALLEL) {
 try {
 ParallelPort printer = (ParallelPort) cpi.open ();
 }
 catch (PortInUseException ex) {
 System.err.println(ex);
 }
 }

Methods in the ParallelPort class fall into roughly four categories:

Methods that adjust the port mode

Methods to control the port

Methods to inspect the state of the port

Methods that listen for changes in the state of the port

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.5.1. Parallel Port Modes

Like most other computer hardware, parallel ports have evolved over the last two decades. Modern
parallel ports support bidirectional communication and other features never envisioned for the
original parallel port that was only supposed to send data to a daisy-wheel printer. However, older
peripherals may not work with newer parallel ports, so they can, if necessary, be downgraded to any
of several various compatibility modes. All of these are available as named int constants in the
ParallelPort class:

ParallelPort.LPT_MODE_ANY // Use the most advanced mode possible.
ParallelPort.LPT_MODE_SPP // Original lineprinter mode. Unidirectional
 // transfer from PC to printer. Most compatible
 // with older peripherals.
ParallelPort.LPT_MODE_PS2 // Byte at a time, bidirectional mode as
 // introduced in the IBM PS/2 family.
ParallelPort.LPT_MODE_EPP // Extended parallel port.
ParallelPort.LPT_MODE_ECP // Enhanced capabilities port.
ParallelPort.LPT_MODE_NIBBLE // Nibble (4 bits, half a byte) at a time mode,
 // bidirectional, used by some Hewlett Packard
 // equipment.

The mode the parallel port uses is returned by the getMode() method and set by passing the
appropriate constant to the setMode() method:

public abstract int getMode()
public abstract int setMode(int mode) throws UnsupportedCommOperationException

Attempts to set the port to an unsupported mode throw an Unsupported-CommOperationException.

22.5.2. Controlling the Parallel Port

Data is sent to the parallel port and its attached device using the output stream returned by the
CommPort class's getOutputStream() method. You can interrupt this data by sending the appropriate
signals out the parallel port to the printer. The suspend() and restart() methods send these
signals:

public abstract void restart()
public abstract void suspend()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These methods are generally interpreted as stopping and restarting printing. You normally suspend
and restart printing if the printer reports an error. These methods do not automatically start a print
job over from the beginning. You are still responsible for sending the printer whatever data it needs
to print from whatever point it was printing or from the point where you want to restart printing.

22.5.3. Checking the State of the Port

The original parallel port allowed printers to send only a few predefined messages. Each message was
sent by raising the voltage on a specific wire connecting the port to the printer. These messages are
always sent from the printer to the CPU, never in the other direction. Therefore, Java only allows you
to check the state of each of these pins, not to set them. The methods are:

public abstract boolean isPaperOut()
public abstract boolean isPrinterBusy()
public abstract boolean isPrinterSelected()
public abstract boolean isPrinterTimedOut()
public abstract boolean isPrinterError()

Each of these methods returns true if the matching wire is showing voltage relative to ground or
false if it isn't.

There is also a getOutputBufferFree() method that returns the number of bytes currently available
in the parallel port's output bufferin other words, the number of bytes you can write before the buffer
fills up:

public abstract int getOutputBufferFree()

22.5.4. Parallel Port Events

Although you can check the various pins used to send information from a printer to the computer
whenever you want to, it's more convenient to do it asynchronously. The model used for notification
is the same one used for JavaBeans, the AWT, and serial port events: when the runtime detects a
change in state at a monitored parallel port, it fires a parallel port event to the registered parallel
port listener. A parallel port event signals some sort of activity on the parallel port, either an error or
an empty output buffer.

22.5.4.1. Parallel Port Event Listeners

There are three steps to respond to parallel port events:

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implement the ParallelPortEventListener interface.1.

Register your ParallelPortEventListener object with the ParallelPort object representing the
parallel port you want to monitor.

2.

Tell the parallel port the types of events you want to be notified of.3.

This is the same pattern as a SerialPortEventListener.

Step 1

As you would probably guess, you listen for parallel port events with a
ParallelPortEventListener:

public interface ParallelPortEventListener extends EventListener

This interface declares a single method, parallelEvent():

public abstract void parallelEvent(ParallelPortEvent ppe)

Inside this method, you generally use the getEventType() method of Parallel-PortEvent to
determine exactly what caused the parallel port event:

public int getEventType()

This should return ParallelPortEvent.PAR_EV_BUFFER to signal an empty output buffer or
ParallelPortEvent.PAR_EV_ERROR to signal some other sort of error.

Step 2

Once you've constructed a ParallelPortEventListener, you need to pass it to the ParallelPort
object's addEventListener() method:

public abstract void addEventListener(ParallelPortEventListener listener)
 throws TooManyListenersException

You are limited to one event listener per port. Attempting to add a second event listener throws a
java.util.TooManyListenersException.

Should you need to, you can remove a listener from the port with the ParallelPort object's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

removeEventListener() method:

public abstract void removeEventListener()

This method takes no arguments because there's never more than one event listener registered
directly with the port.

Step 3

In many circumstances, you may not be interested in both of these events. By default, neither
of these events is fired unless you first enable them with the right notify method in
ParallelPort:

public abstract void notifyOnError(boolean notify)
public abstract void notifyOnBuffer(boolean notify)

By default, no events are fired when the parallel port's state changes. However, if you pass true to
either of these methods, it fires a parallel port event when the matching state changes.

22.5.4.2. ParallelPortEvent

Parallel port events are represented by instances of the ParallelPortEvent class, a subclass of
java.util.EventObject:

public class ParallelPortEvent extends EventObject

The getEventType() method returns a named constant from the ParallelPortEvent class that
specifies what caused the event to be fired. There are two possibilities: an error and an empty output
buffer. Each parallel port event has an eventType field; its value should be one of these mnemonic
constants:

ParallelPortEvent.PAR_EV_ERROR // An error occurred on the port.
ParallelPortEvent.PAR_EV_BUFFER // The output buffer is empty.

These represent a change from one state to another, from on to off or off to on. Therefore, there are
also getNewValue() and getOldValue() methods to tell you the state of the pin before and after the
event:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean getNewValue()
public boolean getOldValue()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 23. USB
RS-232 serial ports are one of the oldest I/O technologies still in use today. They really haven't
changed a lot in the last 20 years. RS-232 serial ports work reliably and work well, but a 20-year-old
technology designed for 300-baud modems, daisy-wheel printers, and 16-bit processors with 4.77-
MHz clock rates doesn't suffice for digital video, DVD burners, and optical mice. Consequently, more
modern computers have switched to a different serial protocol known as Universal Serial Bus (USB).

Hardware-wise, USB is much faster and thus better suited for the data transfer needs of today's
more bandwidth-hungry devices. USB also uses a different connector that's much easier to plug in
and unplug and less susceptible to bent pins and broken ports. USB cables carry power as well as
data, so small USB devices that don't draw a lot of current don't need separate power cords.
However, to a Java programmer there are two key differences:

Many different devices can be connected to the same USB port. Indeed, up to 127 different
devices may be daisy chained to a single USB controller.

1.

Data is sent to and received from USB devices in individual I/O request packets (IRPs). The
stream classes are not used.

2.

This makes communicating with USB devices more complex than reading and writing the streams
from the single device on a serial port.

There are several extant versions of USB. The basic architecture and APIs are the same regardless of
version. As a software developer or end user, the primary difference is speed. USB 1.0 and 1.1
support low-speed 1.5-Mbps connections and full-speed 12 Mbps connections.[*]USB 2.0 adds
support for high-speed 480-Mbps connections. High-speed devices can normally fall back to full speed
when attached to a USB 1.1 hub or controller. Furthermore, not all USB 2.0 devices are high speed.
My typing speed is 30 words per minute at best. A low-speed USB keyboard is more than adequate.

[*] That's megabits per second, Mbts, not megabytes per second, MBps.

USB communication is not a standard part of the JDK. It is available as a standard extension in the
javax.usb package. IBM has published an open source implementation of this API for Linux that can
be downloaded from http://javax-usb.org. While, like most things Java, this API is at least
theoretically platform independent, currently this is the only available implementation. It has not yet
been ported to the Mac, Windows, or other platforms.

The Java USB API is a very low-level API that closely mirrors the actual USB hardware and protocols.
It involves a lot of bit-twiddling and byte manipulation. A number of higher-level protocols, such as
the Human Interface Device (HID) class and the Mass Storage Driver, sit on top of the raw USB API.
The Java USB API does not support these higher-level protocols. They can be implemented on top of
the low-level USB API Java does support, but this is a decidedly nontrivial undertaking.

http://javax-usb.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's worth noting that many USB devices are already available to Java through
native system drivers. Java treats a mouse connected via USB the same as it
does one plugged in through the serial port or wirelessly with Bluetooth. A
digital camera looks like any other mounted filesystem. The Java Printing API
works the same whether the printer is connected via Ethernet, parallel cable, or
USB. However, if you want to talk to a device that's a little different, that isn't
just another kind of mouse or filesystem or printer, you'll need to use the Java
USB API. For instance, Java does not have an API for controlling scanners.
However, if the scanner is connected via USB, the USB API enables you to send
the scanner commands and receive data from it. (This is much more important
for custom laboratory equipment than it is for typical off-the-shelf consumer
products.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.1. USB Architecture

A USB-enabled computer has one or more USB controllers . The controller is attached to the root
hub. Devices, including other hubs, are also attached to the root hub. Additional devices and hubs
can be attached to these hubs in a tree topology. The devices can be quite diverse and typically
include mice, keyboards, digital cameras, CD burners, microphones, speakers, iPods, and more.
Devices are divided into separately addressable functions . Most devices have only one function, but
some may have more than one. For instance, the Epson Stylus CX5200 is both a printer and a
scanner.

Functions are connected to the host controller through unidirectional pipes. Each function can support
up to 32 pipes, 16 going into the host controller and 16 coming out of the host controller. The pipes
in each direction are numbered from 0 to 15. However, most functions don't use all their pipes. The
zero pipe in both directions is reserved for the controller to manage the bus topology. You can often
ignore this pipe and just use pipes 1 to 15. Data is transferred across the pipes in packets sized as
powers of two: 8 bytes, 16 bytes, 32 bytes, 64 bytes, and so on. The number of pipes and the sizes
of the packets vary from one device to another.

There are four kinds of transfers:

Control

Commands that control and configure the USB device and bus.

Isochronous

Fast data transfers at a guaranteed speed that may lose data.

Interrupt

Requests from the device to the host. The host periodically polls each device to see if it has any
of these ready to go.

Bulk

Reliable transfers that guarantee all bytes are transferred but do not guarantee the speed.

The type of transfer used depends on the needs of the device. For instance, mice and keyboards
mostly use interrupt transfers, microphones and speakers mostly use isochronous transfers, and CD
burners and PDAs mostly use bulk transfers.

USB has special device classes for certain common device types, including:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Human interface devices, such as keyboards and mice

Mass storage devices, such as hard drives, iPods, and PDAs

Communications devices, such as telephones, modems, and network adapters

Printer devices

More often than not, these devices are exposed to Java through some other abstraction. For
example, a USB hard drive can be accessed through the FileInputStream, FileOutputStream, and
File classes like any other hard drive. Most of the time you don't know or care that the files are on a
USB hard drive instead of an IDE or ATA hard drive. The USB APIs are for talking to the weird devices
that don't have standard classes, such as uninterruptible power supplies (UPSs) or laboratory data
acquisition hardware. Later in this chapter, we'll demonstrate communicating with a USB-enabled
temperature probe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.2. Finding Devices

Many different devices can be connected to a single computer through one USB port. The computer's
built-in USB hub provides power for about four not particularly power-hungry devices. However,
additional powered hubs can be daisy chained to enable a single system to have up to 127 different
USB devices (though some of these devices must be hubs). This means the first question a
programmer will ask is which devices are on the bus where.

Enumerating the currently attached USB devices is not hard. In fact, it's considerably easier than
enumerating the mounted disks. Most applications begin by using the static
UsbHostManager.getUsbServices() method to return a UsbServices object:

UsbServices services = UsbHostManager.getUsbServices();

This method can throw a SecurityException if the program is not allowed to access the USB port. It
can also throw a more specific UsbException if there's any sort of problem on the USB bus that
prevents the query.

You then ask this object to give you the root UsbHub:

UsbHub root = services.getRootUsbHub();

Now you can ask the hub for a list of all the devices connected to it:

List devices = root.getAttachedUsbDevices();

Each object in this list is an instance of the javax.usb.UsbDevice interface. This interface provides
various methods for sending data to and receiving data from the device. I'll have more to say about
those shortly. However, for now I'll just need one method from this interface: isUsbHub(), to tell if
the device is itself another USB hub. Using these methods, Example 23-1 demonstrates a simple
program that lists all the USB devices attached to a computer.

Example 23-1. Enumerating attached USB devices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.*;
import javax.usb.*;
public class USBLister {
 public static void main(String[] args) throws UsbException {
 UsbServices services = UsbHostManager.getUsbServices();
 UsbHub root = services.getRootUsbHub();
 listDevices(root);
 }
 public static void listDevices(UsbHub hub) {
 List devices = hub.getAttachedUsbDevices();
 Iterator iterator = devices.iterator();
 while (iterator.hasNext()) {
 UsbDevice device = (UsbDevice) iterator.next();
 System.out.println(device);
 if (device.isUsbHub()) {
 listDevices((UsbHub) device);
 }
 }
 }
}

To compile this and any other program that uses the Java USB API, you'll need the JAR file containing
the API. You can download this and the other files you'll need from http://javax-usb.org. This file is
named jsr80-1.0.0.jar. (The USB API was defined in Java Specification Request 80.) When you
compile USBLister.java, you'll need to include jsr80-1.0.0.jar in the classpath:

$ javac -classpath jsr80-1.0.0.jar USBLister.java

To run it, you'll need four more files in addition to jsr80-1.0.0.jar: the reference implementation JAR,
a platform-specific JAR, a native library, and a javax.usb.properties file. These can be downloaded
from the same location. The JARs are installed in the classpath like any other JARs. The native library
is currently distributed with the name libJavaxUsb-1.0.0.so, but you'll need to rename it to
libJavaxUsb.so before it will work. For example, on Linux the directory containing libJavaxUsb-
1.0.0.so must be included in the LD_LIBRARY_PATH environment variable:

$ export LD_LIBRARY_PATH=/where/you/put/libJavaxUsb.so

If LD_LIBRARY_PATH has already been defined, you need to redefine it like this instead:

$ export LD_LIBRARY_PATH=/where/you/put/libJavaxUsb.so:$ LD_LIBRARY_PATH

http://javax-usb.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that this variable points to the parent directory, not to the libJavaxUsb.so file itself. For
instance, I put libJavaxUsb.so in /home/elharo/jsr80, so I set the library path like this:

$ export LD_LIBRARY_PATH=/home/elharo/jsr80

Running on my Linux box, here's what I saw:

$ java -cp jsr80-1.0.0.jar:.:jsr80_ri-1.0.0.jar:jsr80_linux-1.0.0.jar USBLister
$

After I remembered my Linux box was a server and didn't have any USB devices connected, I
plugged my digital camera into my desktop workstation, which already had a USB mouse, and tried
running Example 23-1 there. The results were exactly the same. It turns out that this program
requires root access to talk to the USB ports at such a low level. So I su'd to root, set root's
LD_LIBRARY_PATH environment variable, and ran it again. This time it found the devices:

java -cp jsr80-1.0.0.jar:.:jsr80_ri-1.0.0.jar:jsr80_linux-1.0.0.jar USBLister
com.ibm.jusb.UsbHubImp@ec16a4
com.ibm.jusb.UsbDeviceImp@1c29ab2
com.ibm.jusb.UsbHubImp@13a328f
com.ibm.jusb.UsbDeviceImp@1cd8669

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.3. Controlling Devices

Data is written to and read from USB devices in IRPs. More complex devices send IRPs in either bulk
transfer, isochronous, or interrupt mode. However, the simplest low-speed devices operate with just
the control channel and send a special kind of control IRP. Before we delve into the details of talking
over other kinds of channels, let's go over preparing and submitting IRPs over the control channel.

Four methods in the UsbDevice send control IRPs to a device:

public void syncSubmit(UsbControlIrp irp)
 throws UsbException, IllegalArgumentException, UsbDisconnectedException
public void asyncSubmit(UsbControlIrp irp)
 throws UsbException, IllegalArgumentException, UsbDisconnectedException
public void syncSubmit(List list)
 throws UsbException, IllegalArgumentException, UsbDisconnectedException
public void asyncSubmit(List list)
 throws UsbException, IllegalArgumentException, UsbDisconnectedException

The choice of method depends on whether you want to send the IRPs in blocking or nonblocking
mode, and how many you want to send. The syncSubmit() methods submit the IRPs and wait for
the device to respond. The asyncSubmit() methods submit the IRPs and return immediately. You
can submit either one IRP at a time, or a list of IRPs to be used in sequence.

Each IRP has a header and a data buffer. In Java, the data buffer appears to be a byte array. If
you're writing to the device, you'll set the header, put the information you want to send in the IRP's
data buffer, and submit it. If you're reading data from the device, you'll set the header, put an empty
array in the data buffer, submit a packet, wait for the device to put some data in the buffer, and then
read the values out of the array.

These methods each throw a UsbDisconnectedException if the device you're sending to has been
removed from the bus. This is a runtime exception, so you don't have to catch it, but you probably
should anyway since it's an external condition beyond the control of your program.

These methods can all throw a UsbException if the bus is having trouble and can't respond quickly or
correctly. This can be caused by a misbehaving device, an overloaded bus without enough bandwidth
for all the connected devices, an underpowered bus, or any of several other reasons. This is a
checked exception, so you have to catch it or declare that you throw it. These methods also throw an
IllegalArgumentException if you pass a malformed IRP to one of them.

For each control IRP you must provide five pieces of information:

bmRequestType

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A 1-byte bitmap that classifies the request as follows:

Bit 7 is the direction of the packet: 0 for host to device, 1 for device to host.

Bits 5-6 are a 2-bit little-endian int that specifies the type of the control packet: 0 for
standard, 1 for class, and 2 for vendor (3 is unused at the current time).

Bits 0-4 are a 5-bit int indicating the recipient for which the packet is intended: 0 is a
device, 1 is an interface, 2 is an endpoint, 3 is "other," and all other values are reserved.
(We'll get to devices, interfaces, and endpoints shortly.)

bRequest

A 1-byte request code. The USB spec outlines standard request codesfor instance, the value 3
sets a featureas well as device-specific request codes. For example, in HID devices, request
code 2 means get the idle rate and request code 3 means set the idle rate. (The idle rate is the
amount of time that the device waits before repeating data if nothing has changed.)

wValue

A 2-byte little-endian short whose meaning depends on the request.

wIndex

Also a 2-byte little-endian short whose meaning depends on the request. However, this one
points to the actual data found elsewhere in the packet.

data

A byte array containing the content of this request (output) or a buffer into which the device
places its response (input). You can also set an offset and a length to select a slice of this
array.

IRPs sent over the control channel are represented by instances of the UsbControlIrp interface. You
can implement this interface yourself if you like, or you can construct an instance of the
javax.usb.util.DefaultUsbControlIrp class, but it's normally simplest to ask the UsbDevice to create
a control IRP for you with its createUsbControlIrp() method. This factory method requires you to
specify the first four values:

public UsbControlIrp createUsbControlIrp(byte bmRequestType, byte bRequest,
 short wValue, short wIndex)

The data array is then supplied using the setData() methods inherited from the superinterface,
UsbIrp. If you're sending data to the device, you'll put the data in the array before setting it. If you're
reading data from the device, you'll put an empty array in the device and then read the data the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

device put in the IRP from that same array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.4. Describing Devices

Each USB device provides a hierarchy of descriptive information about the device and its capabilities.
Each device has one or more configurations (though in practice most devices have just one
configuration). Each configuration has one or more interfaces. Each interface has one or more
endpoints, and each endpoint has exactly one pipe. Each level in this expanding hierarchy is
represented by a different interface in the javax.usb package, which provides different information
about the device. Figure 23-1 summarizes.

Figure 23-1. The device hierarchy

To get to the pipe that actually allows you to perform I/O, you need to start at the top and work your
way down. That is, first you find the device. You ask the device to give you the active configuration,
then you ask the configuration to give you the interfaces. Next, you choose an interface and ask it for
its endpoints. Finally, you ask the endpoint for its pipe, and you then submit IRPs to this pipe to read
or write data.

Thus, before writing software to talk to any particular device, you'll need to know its configurations,
interfaces, and endpoints. In an ideal world, this information would be provided in the device's
technical documentation. However, the vast majority of devices don't have any decent technical
documentation, so it's fortunate that the USB specification requires devices to tell you how they're
organized when asked politely.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some devices don't correctly follow the USB specification. In particular, many
devices that only suck power from the USB port, such as reading lamps and cell
phone chargers, do not respond to any USB commands. Aside from their power
drain, they're effectively invisible to the USB bus.

23.4.1. UsbDevice

The UsbDevice interface sits at the top of the hierarchy. This interface declares three getter methods
that query the attached devices for information about their serial numbers, manufacturers, and
names:

public String getSerialNumberString()
 throws UsbException, UnsupportedEncodingException, UsbDisconnectedException
public String getManufacturerString()
 throws UsbException, UnsupportedEncodingException, UsbDisconnectedException
public String getProductString()
 throws UsbException, UnsupportedEncodingException, UsbDisconnectedException

All three methods may return null if the device does not provide the requested information. To get
this information, the object needs to talk to the deviceit does not cache the information the first time
it talks to the deviceso various exceptions can occur. A UsbDisconnectedException is thrown if the
device you're querying has been removed from the bus. A UsbException is also thrown if the bus is
having trouble. These methods are also declared to throw an UnsupportedEncodingException , which
is a checked exception, so you have to handle it. However, this really shouldn't happen. USB strings
are little-endian UTF-16, and this encoding is supposed to be supported by all Java VMs.

Example 23-2 expands on Example 23-1 by using these three methods to print more information
about each attached device.

Example 23-2. Enumerating attached USB devices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.UnsupportedEncodingException;
import java.util.*;
import javax.usb.*;
public class PrettyUSBDeviceLister {
 public static void main(String[] args)
 throws UsbException, UnsupportedEncodingException {
 UsbServices services = UsbHostManager.getUsbServices();
 UsbHub root = services.getRootUsbHub();
 listDevices(root);
 }
 public static void listDevices(UsbHub hub)
 throws UnsupportedEncodingException, UsbException {
 List devices = hub.getAttachedUsbDevices();
 Iterator iterator = devices.iterator();
 while (iterator.hasNext()) {
 UsbDevice device = (UsbDevice) iterator.next();
 System.out.println(device.getProductString());
 System.out.println(device.getSerialNumberString());
 System.out.println(device.getManufacturerString());
 System.out.println();
 if (device.isUsbHub()) {
 listDevices((UsbHub) device);
 }
 }
 }
}

Here's the output I got by running this program as root on my Linux workstation:

java -cp jsr80-1.0.0.jar:.:jsr80_ri-1.0.0.jar PrettyUSBDeviceLister
Silicon Integrated Systems [SiS] USB 1.0 Controller
0000:00:02.2
Linux 2.6.10-5-386 ohci_hcd

USB-PS/2 Optical Mouse
null
Logitech
Silicon Integrated Systems [SiS] USB 1.0 Controller (#2)
0000:00:02.3
Linux 2.6.10-5-386 ohci_hcd
DMC-FZ5
null
Panasonic

Now you can see that this computer has two USB hubs from Silicon Integrated Systems. A Logitech

http://lib.ommolketab.ir
http://lib.ommolketab.ir

optical mouse with no serial number is attached to the first hub. A Panasonic DMC-FZ5 camera, also
with no serial number, is plugged into the second hub. Interestingly, the manufacturer string for the
controllers appears to be usurped by the native operating system (Linux, in this case) rather than
coming from the devices themselves.

Devices may contain custom strings beyond these three standard strings. All the strings in a device
are indexed by numbers from 0 to 255. (Few, if any, devices have all 256 entries in their tables,
though.) You can enumerate the strings with the getString() method:

public String getString(byte index) throws UsbStallException, UsbException,
 UnsupportedEncodingException, UsbDisconnectedException

If you ask for a string index that's not in the table, getString() returns null . If you exceed the
bounds of the table, getString() throws a UsbStallException , a subclass of UsbException that
usually indicates that a device cannot perform the requested operation.

Example 23-3 is a program to dump the string tables of all currently attached devices.

Example 23-3. Listing all device strings

import java.io.UnsupportedEncodingException;
import java.util.*;
import javax.usb.*;
public class USBStringLister {
 public static void main(String[] args)
 throws UsbException, UnsupportedEncodingException {
 UsbServices services = UsbHostManager.getUsbServices();
 UsbHub root = services.getRootUsbHub();
 listDevices(root);
 }
 public static void listDevices(UsbHub hub)
 throws UnsupportedEncodingException, UsbException {
 List devices = hub.getAttachedUsbDevices();
 Iterator iterator = devices.iterator();
 while (iterator.hasNext()) {
 UsbDevice device = (UsbDevice) iterator.next();
 listStrings(device);
 if (device.isUsbHub()) {
 listDevices((UsbHub) device);
 }
 }
 }
 public static void listStrings(UsbDevice device)
 throws UnsupportedEncodingException, UsbException {
 for (int i = 0; i <= 255; i++) {
 try {
 String s = device.getString((byte) i);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println(" " + i + ":\t" + s);
 }
 catch (UsbStallException ex) {
 // We've reached the end of the table for this device.
 break;
 }
 }
 System.out.println();
 }
}

When run on my usual test system, this program found only the same strings previously exposed as
the manufacturer, product, and serial number:

java -cp jsr80_ri-1.0.0.jar:jsr80-1.0.0.jar:.:jsr80_linux-1.0.0.jar USBStringLister
 0: null
 1: 0000:00:02.2
 2: Silicon Integrated Systems [SiS] USB 1.0 Controller
 3: Linux 2.6.10-5-386 ohci_hcd
 4: null
 5: null
...
 127: null
 0: null
 1: Logitech
 2: USB-PS/2 Optical Mouse
 0: null
 1: 0000:00:02.3
 2: Silicon Integrated Systems [SiS] USB 1.0 Controller (#2)
 3: Linux 2.6.10-5-386 ohci_hcd
 4: null
 5: null
...
 127: null

What else can we tell about the hubs and devices? First of all, there are several versions of USB: 1.0,
1.1, and 2.0. USB 1.x operates at a maximum speed of 12 Mbps. USB 2.0 can operate at up to 480
Mbps. However, not all USB 2.0 devices actually need to transfer that much data. For instance, 12
Mbps is more than enough for a mouse or a keyboard (though not nearly enough for a DVD burner).

USB devices operate at either 1.5 Mbps (low speed), 12 Mbps (full speed), or 480 Mbps (high speed,
USB 2.0 only). Higher-speed devices can generally throttle back to lower speeds as necessary, but
with a corresponding loss of performance. The getSpeed() method tells you the speed at which a
given device operates:

public java.lang.Object getSpeed()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The object it returns is one of these three constants:

UsbConst.DEVICE_SPEED_UNKNOWN

UsbConst.DEVICE_SPEED_LOW

UsbConst.DEVICE_SPEED_FULL

The Java USB API only officially supports USB 1.1, so there's no
UsbConst.DEVICE_SPEED_HIGH constant for 480-Mbps devices. Such USB 2.0
devices do work with the Java USB API, but they'll return
UsbConst.DEVICE_SPEED_FULL as their speed.

The getParentUsbPort() method returns the port to which the device is connected on the hub:

public UsbPort getParentUsbPort() throws UsbDisconnectedException

The isUsbPort() method returns TRue if the device is a hub or false if it isn't:

public boolean isUsbHub()

23.4.2. UsbDeviceDescriptor

For more detailed and technical information about a device, you can request its device descriptor:

public UsbDeviceDescriptor getUsbDeviceDescriptor()

The UsbDeviceDescriptor interface is very closely tied to the USB hardware and tends to return
information whose interpretation requires reading the USB specification (available at
http://www.usb.org/developers/docs/). First, three methods get the indexes of the manufacturer,
product, and serial number strings in the string table:

public byte iManufacturer()
public byte iProduct()
public byte iSerialNumber()

http://www.usb.org/developers/docs/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The getSerialNumberString() , getManufacturerString() , and getProductString() methods in
UsbDevice are convenience methods that basically do something like this:

public String getProductString() throws UsbException,
 UnsupportedEncodingexception {
 byte index = getUsbDeviceDescriptor().iProduct();
 return getString(index);
}

These strings are meant for display to end users. Computers recognize devices by vendor ID and
product ID:

public short idVendor()
public short idProduct()

The USB Implementers Forum assigns vendor IDs, after the payment of the appropriate four-figure
fees. The vendors then choose the product IDs. For example, Hewlett-Packard's assigned vendor ID is
0x03f0. The product ID for HP's DeskJet 895c printer is 0x0004. The vendor ID for the DeskJet 880c
is the same, but its product ID is 0x0104. Some vendors don't bother to change product IDs if two
devices are similar enough to be supported by the same software and drivers. For example, the HP
DeskJet 970c also has the product ID 0x104, same as the DeskJet 880c.

USB devices are organized into device classes. These classes are quite broad. For instance, the
Human Interface Device class covers mice, keyboards, UPSs, and quite a bit more. What unifies the
devices in a class is that they have similar data transfer requirements and can use the same basic
drivers. For example, audio devices use isochronous transfers, and HID devices use control and
interrupt transfers.

Classes are further subdivided into subclasses. Devices in a class or subclass speak a certain protocol.
Each of these threeclass, subclass, and protocolis represented by an unsigned byte code. The next
three methods return the device's USB class, subclass, and protocol codes:

public byte bDeviceClass()
public byte bDeviceSubClass()
public byte bDeviceProtocol()

The USB Implementers Forum maintains a list of device class codes (currently available at
http://www.usb.org/developers/defined_class/). Table 23-1 lists some common device class codes.

Table 23-1. USB device class codes

http://www.usb.org/developers/defined_class/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class code Meaning

0 Class information at the interface level

2 Communications devices: fax machines, phones, modems, etc.

9 USB hubs

220 Diagnostic devices

224 Wireless adapters

239 Miscellaneous

255 Vendor specific

Subclass and protocol codes depend on the class. For example, in class 224, a subclass of 1 indicates
a radiofrequency controller and a protocol of 1 indicates that the controller uses Bluetooth. In class
224, a subclass of 1 indicates a reprogrammable diagnostic device, and in this subclass protocol 1
indicates USB2 diagnostics.

Not all devices have class codes at this level, though. For instance, HID and mass storage devices
don't. That is, the class code of an HID device such as a mouse or a mass storage device such as a
hard drive is 0.

The bcdDevice() method returns the device's release number:

public short bcdDevice()

The short returned is not really a short. Rather, it's the two bytes of a binary-coded decimal (BCD)
number. The high-order byte is a number between 0 and 255 that represents the major version. The
low-order byte is divided into two nibbles. The top nibble represents the minor version and the low-
order nibble represents the revision. For instance, Version 2.5.7 would be encoded as the byte
00000010 (2) followed by the nibble 0101 (5) followed by the nibble 0111 (7).

The bcdUSB() method returns the version of the USB specification the device adheres to, again
encoded as a BCD:

public short bcdUSB()

For example, Version 1.1 of the USB spec is a 1 byte, followed by a 1 nibble, followed by a 0 nibble;
that is, 00000001 0001 0000 in binary or 272 in decimal. In other words, 1.1 is the same as 1.1.0.
Version 2.0 is a 2 byte followed by a 0 byte; that is, 00000010 00000000 in binary or 512 in decimal.

The bMaxPacketSize0() method returns the maximum packet size for endpoint 0, the control channel
endpoint:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public byte bMaxPacketSize0()

This value should always be 8 , 16 , 32 , or 64 because these are the only packet sizes the USB spec
allows on the control channel.

The bNumConfigurations() method returns the number of different configurations the device has:

public byte bNumConfigurations()

It's a very rare device that has more than one configuration.

Example 23-4 is a program that uses this interface to describe the devices attached to the USB
controller. It also demonstrates how to decode binary-coded decimal strings.

Example 23-4. Listing all device strings

import java.io.UnsupportedEncodingException;
import java.util.*;
import javax.usb.*;
public class USBDeviceDescriber {
 public static void main(String[] args)
 throws UsbException, UnsupportedEncodingException {
 UsbServices services = UsbHostManager.getUsbServices();
 UsbHub root = services.getRootUsbHub();
 listDevices(root);
 }
 public static void listDevices(UsbHub hub)
 throws UnsupportedEncodingException, UsbException {
 List devices = hub.getAttachedUsbDevices();
 Iterator iterator = devices.iterator();
 while (iterator.hasNext()) {
 UsbDevice device = (UsbDevice) iterator.next();
 describe(device);
 if (device.isUsbHub()) {
 listDevices((UsbHub) device);
 }
 }
 }
 public static void describe(UsbDevice device)
 throws UnsupportedEncodingException, UsbException {
 UsbDeviceDescriptor descriptor = device.getUsbDeviceDescriptor();
 byte manufacturerCode = descriptor.iManufacturer();
 System.out.println("Manufacturer index: " + manufacturerCode);
 System.out.println("Manufacturer string: "
 + device.getString(manufacturerCode));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 byte productCode = descriptor.iProduct();
 System.out.println("Product index: " + productCode);
 System.out.println("Product string: " + device.getString(productCode));
 byte serialCode = descriptor.iSerialNumber();
 System.out.println("Serial number index: " + serialCode);
 System.out.println("Serial Number string: " + device.getString(serialCode));
 System.out.println("Vendor ID: 0x"
 + Integer.toHexString(descriptor.idVendor()));
 System.out.println("Product ID: 0x"
 + Integer.toHexString(descriptor.idProduct()));
 System.out.println("Class: " + descriptor.bDeviceClass());
 System.out.println("Subclass: " + descriptor.bDeviceSubClass());
 System.out.println("Protocol: " + descriptor.bDeviceProtocol());
 System.out.println("Device version: " + decodeBCD(descriptor.bcdDevice()));
 System.out.println("USB version: " + decodeBCD(descriptor.bcdUSB()));
 System.out.println("Maximum control packet size: "
 + descriptor.bMaxPacketSize0());
 System.out.println("Number of configurations: "
 + descriptor.bNumConfigurations());
 System.out.println();
 }
 public static String decodeBCD(short bcd) {
 int upper = (0xFF00 & bcd) >> 8;
 int middle = (0xF0 & bcd) >> 4;
 int lower = 0x0F & bcd;
 return upper + "." + middle + "." + lower;
 }
}

For example, here's the description this program prints for my Lumix FZ-5 camera:

Manufacturer index: 1
Manufacturer string: Panasonic
Product index: 2
Product string: DMC-FZ5
Serial number index: 0
Serial Number string: null
Vendor ID: 0x4da
Product ID: 0x2372
Class: 0
Subclass: 0
Protocol: 0
Device version: 0.1.0
USB version: 1.1.0
Maximum control packet size: 8
Number of configurations: 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This device has one configuration, it supports USB 1.1, and the camera itself is only Version 0.1. Its
class is 0, which means we'll have to look at the interface to figure out what class it really is.

23.4.3. USB Configurations

Each USB device has at least one and possibly several configurations . The configuration specifies how
much power the device uses, how many interfaces the device has, and whether the device draws
power from the USB bus or has its own power supply. Since some devices have more than one
possible configurationfor instance, both self powered and bus poweredthe UsbDevice interface has
several methods to find out which configurations are available and determine which is currently
active. In practice, though, most devices have only one configuration.

The getUsbConfigurations() method returns a list of all possible configurations for a given device:

public List getUsbConfigurations()

The objects in this list are instances of the UsbConfiguration interface. There will be at least one.

Each configuration is identified by a byte value between 1 and 255. The getUsbConfiguration()
method returns a specific configuration:

public UsbConfiguration getUsbConfiguration(byte number)

This method returns null if the device does not have the requested configuration. 0 stands for the
unconfigured state.

The containsUsbConfiguration() method returns true if the device has the requested configuration
or false if it doesn't:

public boolean containsUsbConfiguration(byte number)

The getActiveUsbConfigurationNumber() returns the index of the device's current configuration:

public byte getActiveUsbConfigurationNumber()

It returns 0 if the device is unconfigured.

The getActiveUsbConfiguration() method returns the current configuration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public UsbConfiguration getActiveUsbConfiguration()

It returns null if the device is unconfigured.

The isConfigured() method returns true if a device is configured or false if it isn't:

public boolean isConfigured()

In practice, I've never seen an unconfigured device when working with Java. I suspect either the
device autoconfigures itself, or the operating system does this before Java ever sees it.

Example 23-5 is an example method for enumerating all the configurations of a device, as well as
identifying the active configuration and its number.

Example 23-5. Listing device configurations

public static void listConfigs(UsbDevice device)
 throws UsbDisconnectedException, UsbException {
 try {
 if (device.isConfigured()) {
 System.out.println(device.getProductString() + " is configured.");
 System.out.println("The active configuration is "
 + device.getActiveUsbConfiguration());
 System.out.println("The active configuration is number "
 + device.getActiveUsbConfigurationNumber());
 }
else {
 System.out.println(device.getProductString() + " is not configured.");
 }
 }
 catch (UnsupportedEncodingException ex) {
 throw new RuntimeException("This really shouldn't happen");
 }
 System.out.println("Available configurations include: ");
 List configs = device.getUsbConfigurations();
 Iterator iterator = configs.iterator();
 while (iterator.hasNext()) {
 UsbConfiguration config = (UsbConfiguration) iterator.next();
 System.out.println(" " + config);
 }
}

The typical output from this method looks like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

USB-PS/2 Optical Mouse is configured.
The active configuration is com.ibm.jusb.UsbConfigurationImp@1027b4d
The active configuration is number 1
Available configurations include:
 com.ibm.jusb.UsbConfigurationImp@1027b4d

23.4.4. UsbConfigurationDescriptor

You can find out more details about the configuration, such as whether it supports remote wakeup
and whether or not the device is bus powered, using the UsbConfiguration and
UsbConfigurationDescriptor interfaces. The getUsbConfigurationDescriptor() method in
UsbConfiguration returns a UsbConfigurationDescriptor object:

public UsbConfigurationDescriptor getUsbConfigurationDescriptor()

This interface has five getter methods that describe the device as it operates in that particular
configuration. The simplest of these is bMaxPower() :

public byte bMaxPower()

This method returns an unsigned byte between 0 and 255. (b stands for byte.) That is, -1 is 255, -2 is
254, and so forth.

The javax.usb.util.UsbUtil class has a static unsignedInt() method that
converts a signed byte in the range -128 to 127 to an unsigned int in the range
0 to 255.

This number is half the number of milliamps the device draws at maximum usage. In other words,
convert the return value to an unsigned int and double it to get the number of milliamps the device
draws. For example, given a UsbConfiguration object config , this code fragment prints the device's
maximum power draw:

UsbConfigurationDescriptor descriptor = config.getUsbConfigurationDescriptor();
byte power = descriptor.bMaxPower();
int milliamps = 2 * UsbUtil.unsignedInt(power);
System.out.println("Max power draw: " + milliamps + "mA");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It turns out my wired optical mouse can draw up to 98 milliamps (mA), and my global positioning
system (GPS) receiver can draw a hefty 200 mA. On the other hand, USB devices are supposed to go
to sleep after three milliseconds of inactivity, in which state they're not supposed to draw more than
500 microamps (half a milliamp) from the bus. Thus, bMaxPower() returns the maximum draw, not
what a device pulls all the time. A bus can normally supply about half an amp, and a single device is
allowed to draw up to the full 500 mA from the bus, if it's available. However, buses have limits,
especially on already low-powered devices such as PDAs and laptops running on battery power. In
these situations, a much more conservative 100-mA maximum is a good idea. (My 200-mA GPS
receiver is quite greedy.) Even at that level, a device may need its own battery or power cord if many
devices are on the bus. In practice, quite a few devices exceed the power maximums (especially
devices such as USB-powered lights and cell phone chargers that just suck power without actually
doing anything else).

Anyway, enough hardware. What about the other methods? The bNumInterfaces() method returns
the number of interfaces this configuration has. Most devices have one interface.

public byte bNumInterfaces()

As with bMaxPower() , this value should be interpreted as an unsigned byte between 0 and 255.
(Honestly, this API is exposing far more of the hardware implementation details than it should. Just
because the USB device returns an unsigned byte does not mean the API can't or shouldn't return an
int.)

The bConfigurationValue() method returns the index of this configuration:

public byte bConfigurationValue()

This is the value you'd use to request this configuration by sending the appropriate control IRP to the
device.

The iConfiguration() method returns the index of the string descriptor describing this configuration
in the device's string table:

public byte iConfiguration()

The bmAttributes() method returns a single byte containing two bit flags:

public byte bmAttributes()

The fifth bit (counting from 0) is on if the device supports remote wakeup, and off if it doesn't.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(Remote wakeup means the device can wake up a suspended host if it has something to tell it.) The
sixth bit is on if the device has its own power source (though it might still draw some power from the
bus), and off if it doesn't. The other six bits are not used in USB 2.0 and earlier.

23.4.5. UsbInterface

Besides printing out information about configurations, the main thing you'll want to do with a
configuration is get the interfaces to the USB device. The getUsbInterfaces() method returns a list
of all the interfaces for that configuration:

public List getUsbInterfaces()

The objects in this list are instances of the UsbInterface interface. There will be at least one, and a
multifunction device may have more than one. For example, a combination printer/scanner/copier
could use one interface for each of those three tasks, all of which could be active simultaneously.
However, most simple devices have exactly one interface per configuration.

Each USB interface is identified by a byte value between 0 and 255. The first interface will be 0, the
second 1, the third 2, and so on. (All the devices I have handy start and stop with 0.) The
getUsbInterface() method returns a specific interface:

public UsbConfiguration getUsbInterface(byte number)

This method returns null if the configuration does not have the requested interface.

The containsUsbInterface() method returns true if the configuration has the requested interface
and false if it doesn't:

public boolean containsUsbConfiguration(byte number)

The UsbInterface interface itself has methods to control the interface. Specifically, it has methods to:

Inspect and change the settings of the interface.

Determine which setting is active.

Claim and release the interface.

Get the endpoints for the interface.

23.4.5.1. Settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each interface may have alternate settings , also represented as UsbInterface objects. Only one such
setting for an interface is active at a time (though several different interfaces may be active
simultaneously). The isActive() method returns TRue if this UsbInterface object is the active setting
and false if it isn't:

public boolean isActive()

The getNumSettings() method tells you how many different settings the interface has. This will
normally be one or two:

public int getNumSettings()

Settings are numbered sequentially, starting at zero. Zero is the default setting. You can look up
settings by their numbers using getSetting() :

public UsbInterface getSetting(byte number)

This method returns null if there is no setting with the specified number. The containsSetting()
method checks whether a numbered setting exists on this interface:

public boolean containsSetting(byte number)

The getSettings() method returns a list of all the settings for this interface:

public List getSettings()

The objects in this list are UsbInterface objects.

Finally, you can request the active setting or its number specifically using these two methods:

public UsbInterface getActiveSetting() throws UsbNotActiveException
public byte getActiveSettingNumber() throws UsbNotActiveException

This is important because only the active setting can be claimed and used for I/O operations. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method throws a UsbNotActiveException if the configuration to which this setting belongs is not
active. That is, you can get an active setting only from an active configuration.

To change the active setting, you use the setInterface() method in the
javax.usb.util.StandardRequest class.

23.4.5.2. Claiming

Before writing to or reading from the active interface, it is necessary to claim it so that your program
has exclusive access to it. This is similar to locking a file to prevent reading or writing while your
program is working with it.

public void claim() throws UsbClaimException, UsbException,
 UsbNotActiveException, UsbDisconnectedException

If another program has already claimed this device, this method throws a UsbClaimException . In that
case, the other program will need to release it before you can go any further. For example, you may
be able to see the system's mouse or keyboard, but you probably won't be able to control it unless
you can convince the operating system to give it up.

In practice, this almost always happens. That is, the operating system grabs the device before Java
has a chance to claim it and your program fails with a UsbClaimException . In this case, you'll need to
force the claim. I don't know why this couldn't be done with a simple Boolean, but it can't. Instead,
you need to supply an instance of the UsbInterfacePolicy interface that returns true from
forceClaim() . It's easiest to do this with an anonymous inner class:

theInterface.claim(new UsbInterfacePolicy() {
 public boolean forceClaim(UsbInterface usbInterface) {
 return true;
 }
});

This step is not guaranteed to succeed, but it worked for me. If it fails there's not much else you can
do, although you might try uninstalling or quitting any other running programs that try to grab the
USB device before you see it.

The isClaimed() method checks whether a device is already claimed:

public boolean isClaimed()

When you're done with a device, you should give up your claim with the release() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void release() throws UsbClaimException, UsbException,
 UsbNotActiveException, UsbDisconnectedException

You'll need to close any pipes you've opened to the device before releasing it.

23.4.6. UsbInterfaceDescriptor

The UsbInterfaceDescriptor interface offers more details about the interface. The
getUsbInterfaceDescriptor() method in UsbInterface returns a UsbInterfaceDescriptor object:

public UsbInterfaceDescriptor getUsbInterfaceDescriptor()

This interface has seven methods that describe the interface in that particular setting. Three of these
return the numeric identifiers for the interface's class, subclass, and protocol:

public byte bInterfaceClass()
public byte bInterfaceSubClass()
public byte bInterfaceProtocol

When the bDeviceClass is zero in the device descriptor (i.e., the value returned by bDeviceClass() in
UsbDeviceDescriptor), you look at these three values to determine the device's class, subclass, and
protocol.

The other information in this descriptor is rarely needed. bInterfaceNumber() returns this setting's
number amongst its alternate settings:

public byte bInterfaceNumber()

bAlternateSetting() returns the number of this interface's current alternate setting:

public byte bAlternateSetting()

iInterface() returns the index of a string in the string table that provides a human-readable
description of this interface:

public byte iInterface ()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method returns 0 if there is no such string.

bNumEndpoints() returns the number of endpoints this interface has, not counting endpoint 0:

public byte bNumEndpoints()

23.4.7. UsbEndpoints

Tired yet? Don't worry. We're almost done. Interfaces have endpoints. Full- and high-speed devices
can have up to 16 endpoints (8 in each direction). Low-speed devices have only two, one in each
direction. Each endpoint is a memory buffer where incoming or outgoing data is put. For data flowing
from the host to the device (input to the device, output from the host), the host places the data in the
endpoint, and the device's microprocessor is interrupted to work on the data. When data is moving
from the device to the host, the device's microprocessor puts the data into the endpoint and waits for
the host to collect it.

The getUsbEndpoints() method in UsbInterface returns a list of all the non-control endpoints of that
interface:

public List getUsbEndpoints()

The objects in this list are instances of the UsbEndpoint interface. Some devices only have control
endpoints; for these devices, this method returns an empty list.

Each non-control endpoint has an address between 1 and 255. These addresses do not necessarily
start at 1, though. Some of my devices with only one or two non-control endpoints have endpoint
addresses such as 129 and 130. The getUsbEndpoint() method returns a specific endpoint:

public UsbConfiguration getUsbEndPoint(byte number)

This method returns null if the configuration does not have the requested endpoint.

Endpoint 0 is reserved for the control channel. This is accessed through the
UsbDevice and UsbControlIrp interfaces rather than UsbEndpoint and UsbPipe .

The containsUsbEndpoint() method returns true if the interface has the requested endpoint and
false if it doesn't:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean containsUsbEndpoint(byte number)

The UsbEndpoint interface itself has methods to query the endpoint for its type (control, bulk,
interrupt, or isochronous); direction (in or out); parent interface; and descriptor. The
getUsbInterface() method returns the parent interface of this endpoint:

public UsbInterface getUsbInterface()

The getdirection() method tells you whether data is going into the device through this endpoint or
coming out of the device:

public byte getDirection()

The return value should be either UsbConst.ENDPOINT_DIRECTION_IN or
UsbConst.ENDPOINT_DIRECTION_OUT . This is from the perspective of the host. That is, in is into the host
and out from the device, and out is out from the host and into the device.

The getType() method tells you whether the endpoint is for control, bulk, interrupt, or isochronous
transfers:

public byte getType()

The return value should be one of these four constants:

UsbConst.ENDPOINT_TYPE_CONTROL

UsbConst.ENDPOINT_TYPE_BULK

UsbConst.ENDPOINT_TYPE_INTERRUPT

UsbConst.ENDPOINT_TYPE_ISOCHRONOUS

Finally, the getUsbEndpointDescriptor() method returns a UsbEndpointDescriptor for the endpoint:

public UsbEndpointDescriptor getUsbEndpointDescriptor()

This interface has four getter methods to find out the maximum packet size for this endpoint, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

actual endpoint address, the bmAttributes , and the bInterval :

package javax.usb;
public interface UsbEndpointDescriptor {
 public byte bEndpointAddress();
 public byte bmAttributes();
 public short wMaxPacketSize();
 public byte bInterval();
}

The bmAttributes determine whether this is a control, bulk, interrupt, or isochronous endpoint
(though it's easier to use getType() in UsbEndpoint). The bInterval is the amount of time that
elapses between successive polls of the endpoint. It applies only to isochronous endpoints (for which it
should always be 1) and interrupt endpoints. For high-speed bulk and control out endpoints,
bInterval specifies the maximum NAK rate . NAK is the signal a device sends when it can't accept a
packet it previously told the host it would be able to accept. It has no particular meaning for low- and
full-speed control and bulk endpoints or high-speed bulk and control in endpoints. The units vary
depending on the device speed. For low-speed devices, this measures milliseconds. For full-speed
devices, it measures eighths of a millisecond (125 microseconds). For high-speed devices, the
measure is exponential rather than linear.

The code in Example 23-6 collects all the endpoints from a UsbInterface and prints various details
about them.

Example 23-6. Enumerating device endpoints

public static void listEndpoints(UsbInterface theInterface) {
 List endpoints = theInterface.getUsbEndpoints();
 System.out.println(endpoints.size() + " endpoints");
 Iterator iterator = endpoints.iterator();
 while (iterator.hasNext()) {
 UsbEndpoint endpoint = (UsbEndpoint) iterator.next();
 listEndpointInfo(endpoint);
 }
}
public static void listEndpointInfo(UsbEndpoint endpoint) {
 int direction = endpoint.getDirection();
 int type = endpoint.getType();
 if (direction == UsbConst.ENDPOINT_DIRECTION_OUT) {
 System.out.println("Out endpoint");
 }
 else {
 System.out.println("In endpoint");
 }
 switch(type) {
 case UsbConst.ENDPOINT_TYPE_CONTROL:
 System.out.println("Control endpoint");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;
 case UsbConst.ENDPOINT_TYPE_BULK:
 System.out.println("Bulk endpoint");
 break;
 case UsbConst.ENDPOINT_TYPE_INTERRUPT:
 System.out.println("Interrupt endpoint");
 break;
 case UsbConst.ENDPOINT_TYPE_ISOCHRONOUS:
 System.out.println("Isochronous endpoint");
 break;
 default:
 System.out.println("Unrecognized type");
 }
 UsbEndpointDescriptor descriptor = endpoint.getUsbEndpointDescriptor();
 System.out.println("Endpoint address: "
 + UsbUtil.unsignedInt(descriptor.bEndpointAddress()));
 System.out.println("Maximum packet size: "
 + UsbUtil.unsignedInt(descriptor.wMaxPacketSize()) + " bytes");
 // The meaning of bInterval depends on the speed of the device
 // and the type of the endpoint
 double interval = UsbUtil.unsignedInt(descriptor.bInterval());
 UsbDevice device
 = endpoint.getUsbInterface().getUsbConfiguration().getUsbDevice();
 boolean highSpeed = false;
 if (device.getSpeed() == UsbConst.DEVICE_SPEED_FULL) {
 interval = interval * 0.125;
 }
 else if (device.getSpeed() == UsbConst.DEVICE_SPEED_LOW) {
 interval = interval * 1;
 }
 else { // might be a high-speed device
 highSpeed = true;
 interval = Math.pow(2, interval-1) * 0.125;
 }
 if (type == UsbConst.ENDPOINT_TYPE_INTERRUPT
 || type == UsbConst.ENDPOINT_TYPE_ISOCHRONOUS) {
 System.out.println("Maximum latency: " + interval + "ms");
 }
 else if (highSpeed
 && endpoint.getDirection() == UsbConst.ENDPOINT_DIRECTION_OUT) {
 System.out.println("Maximum NAK rate: " + interval + "ms");
 }
 // bInterval means nothing for control endpoints
}

Here are the results of using this on a Go!Temp probe, a typical interrupt-based device:

1 endpoints

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In endpoint
Interrupt endpoint
Endpoint address: 129
Maximum packet size: 8 bytes
Maximum latency: 10.0ms

This device has a single interrupt endpoint for input. It also has two control endpoints, but these
aren't listed here.

And here are the results for my Panasonic Lumix camera, a typical mass storage device:

2 endpoints
Out endpoint
Bulk endpoint
Endpoint address: 1
Maximum packet size: 64 bytes
In endpoint
Bulk endpoint
Endpoint address: 130
Maximum packet size: 64 bytes

You can see that it has two endpoints, both bulk, one for input and one for output. It also has two
control endpoints, but these aren't listed here. They're managed at a lower level.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.5. Pipes

The absolute last piece where you finally get to send some non-control data is the USB pipe. This is
represented by an instance of the UsbPipe interface. The getUsbPipe() method in UsbEndpoint
returns the single pipe associated with that endpoint:

public UsbPipe getUsbPipe()

USB I/O is packet-based like UDP, not stream-based like TCP. You do not get an InputStream or an
OutputStream from a pipe. Instead, you send or receive IRPs. In Java, IRPs are represented by the
javax.usb.UsbIrp class. This is a wrapper around a byte array containing the actual data sent to or
received from the device.

You cannot send arbitrarily large byte arrays to a device. A low-speed device can accept at most
eight bytes in each packet. A full-speed device can accept up to 1,023 bytes. A high-speed device can
accept up to 1,024 bytes per packet.

This can be further restricted depending on the type of transfer: low-speed control transfers always
use 8-byte packets; high-speed control transfers use 8-, 16-, 32-, or 64-byte packets; and full-speed
control transfers always use 64-byte packets.

Writing to an output pipe to move data from the host to the device follows these steps:

Open the pipe by calling the open() method.1.

Stuff a data array into a UsbIrp.2.

Send the IRP down the pipe, either synchronously with syncSubmit() or asynchronously with
asyncSubmit().

3.

Close the pipe with the close() method.4.

Steps 2 and 3 may be repeated as many times as desired.

Reading from an input pipe to collect data from the device for the host follows these steps:

Open the pipe by calling the open() method.1.

Create a new empty UsbIrp to hold data received from the device.2.

Put an IRP on the pipe to receive the data from the device either synchronously with3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

syncSubmit() or asynchronously with asyncSubmit().
3.

Read the data out of the IRP you created in step 2.4.

Close the pipe with the close() method.5.

Steps 2 through 4 can be repeated as many times as necessary. A completed IRP can be reused
provided you call setComplete(false) on each IRP before you resubmit it.

Before you can write to a pipe, you must open it by invoking the open() method:

public void open() throws UsbException, UsbNotActiveException,
 UsbNotClaimedException, UsbDisconnectedException

The interface the pipe belongs to must be both active and claimed. Otherwise, this method throws a
UsbNotActiveException or a UsbNotClaimedException, respectively.

You send the IRPs to the device either synchronously (blocking) or asynchronously (nonblocking):

public void syncSubmit(UsbIrp irp) throws UsbException, UsbNotActiveException,
 IllegalArgumentException, UsbDisconnectedException
public void asyncSubmit(UsbIrp irp) throws UsbException, UsbNotActiveException,
 UsbNotOpenException, IllegalArgumentException, UsbDisconnectedException

You can also submit a list of IRPs to be used in sequence:

public void syncSubmit(List list) throws UsbException, UsbNotActiveException,
 UsbNotOpenException, IllegalArgumentException, UsbDisconnectedException
public void asyncSubmit(List list) throws UsbException, UsbNotSctiveException,
 UsbNotOpenException, IllegalArgumentException, UsbDisconnectedException

To keep data flowing at a brisk pace, you'll normally want to make sure enough
IRPs are available for any incoming data. Streaming applications such as audio
recording or anything that transfers large data buffers should submit multiple
buffers in a block.

Finally, you can just submit the data array and let the pipe build the IRP for you. This is probably the
simplest approach:

public void syncSubmit(byte[] data) throws UsbException, UsbNotActiveException,
 UsbNotOpenException, IllegalArgumentException, UsbDisconnectedException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void asyncSubmit(byte[] data) throws UsbException, UsbNotActiveException,
 UsbNotOpenException, IllegalArgumentException, UsbDisconnectedException

However, this does not give you all the options working with an actual UsbIrp object does.

All six variants throw a UsbNotOpenException if the pipe has not yet been opened. All six throw an
IllegalArgumentException if the IRP or list of IRPs is not properly prepared for the pipe.

When you're finished with a pipe you should close it. This takes three steps:

Cancel all pending submissions.1.

Close the pipe.2.

Release the interface you claimed.3.

For example:

pipe.abortAllSubmissions();
pipe.close();
theInterface.release();

It seems to be necessary to call abortAllSubmissions() even if you don't have any pending
submissions. I'm not sure why, but when I skipped this step, I always got a UsbException with the
message "Cannot close pipe with pending submissions."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.6. IRPs

Whether reading or writing, the first thing you need to do is create an IRP. IRPs are instances of the
UsbIrp interface. You can implement this interface directly or instantiate the
javax.usb.util.DefaultUsbIrp class, but it's normally simpler to use the createUsbIrp() factory
method in the UsbPipe class:

public UsbIrp createUsbIrp()

For an IRP created by this method, you only have to set the data storage array using setData():

public void setData(byte[] data);
public void setData(byte[] data, int offset, int length);

The size of the array should match the endpoint's maximum packet size:

int maxPacketSize = endpoint.getUsbEndpointDescriptor().wMaxPacketSize();
byte[] buffer = new byte[maxPacketSize];
UsbIrp irp = pipe.createUsbIrp();
irp.setData(buffer);

The offset is set to 0 and the length is the size of the data array. If you would prefer to use one larger
array to support multiple IRPs, you can set the offset and the length appropriately to select slices of
the array for each IRP, either in the constructor or with the setOffset() and setLength() methods:

public void setOffset(int offset);
public void setLength(int length);

For example:

int maxPacketSize = endpoint.getUsbEndpointDescriptor().wMaxPacketSize();
byte[] buffer = new byte[8192];
UsbIrp irp1 = pipe.createUsbIrp();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

irp1.setData(buffer);
irp1.setOffset(0);
irp1.setLength(maxPacketSize);
UsbIrp irp2 = pipe.createUsbIrp();
irp2.setData(buffer);
irp2.setOffset(maxPacketSize);
irp1.setLength(maxPacketSize);
UsbIrp irp3 = pipe.createUsbIrp();
irp3.setData(buffer);
irp3.setOffset(3*maxPacketSize);
irp3.setLength(maxPacketSize);

Because packets tend to be so small, you'll often need to stuff your content into multiple successive
IRPs. However, the last one won't always have exactly the amount of data needed to fill a packet.
Most devices recognize a shorter than expected packet as indicating the end of the data. You can use
the setActualLength() method to specify that only a subset of the normal data array contains real
data:

public void setActualLength(int length);

This is not the same as selecting a subarray with setLength(). The entire array is still sent; it's just
that the actual IRP is modified so that the device knows not to consider some of it. If it happens that
the data does exactly fill an integral number of IRPs, you may need to send a zero-length packet to
tell the device that no more data is forthcoming. Details are device and protocol dependent.

Conversely, when receiving a packet, you may not get back quite as many bytes as you expected.
The getActualLength() method tells you how many bytes the device actually sent:

public int getActualLength();

If this is less than the length of the data array or subarray, the device has finished sending data. By
default, most devices allow these short packets. However, a few devices require all IRPs to be full. If
you're dealing with such a device, set the short packet policy to false:

public boolean getAcceptShortPacket();
public void setAcceptShortPacket(boolean accept);

It's also possible that a problem has occurred on the bus or in the device and the data is not
necessarily good. If so, the IRP is flagged with an exception. You can check for this condition with the
isUsbException() method and retrieve the actual exception with getUsbException():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean isUsbException();
public UsbException getUsbException();
public void setUsbException(UsbException usbException);

Yes, this is a very weird way of handling errorsnot very Java-like at all.

Before you read data out of an IRP you submitted asynchronously, you need to check that it's
complete; that is, that the device is finished with it. You do this with the isComplete() method:

public boolean isComplete();

Alternatively, you can block until an IRP is complete with the waitUntilComplete() methods:

public void waitUntilComplete();
public void waitUntilComplete(long timeout);

The first blocks indefinitely; the second blocks for a specified number of milliseconds. Neither
approach is necessary for IRPs submitted synchronously, since that method always blocks as soon as
the IRP is submitted.

You can also set the completion state of an IRP:

public void setComplete(boolean complete);
public void complete();

As you'll see in the next example, this is useful if you want to reuse the same UsbIrp object since it
allows you to uncomplete an IRP by passing false to setComplete().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.7. Temperature Sensor Example

As an example that puts all this together, I'm going to demonstrate a program that talks to the
simplest off-the-shelf USB device I could find, a Vernier Go!Temp thermometer. This device, shown in
Figure 23-2, is a laboratory sensor used in primary and secondary schools. More complex devices use
the same basic USB principles but have more complicated protocols to control them. This device has
the advantage of being simple and relatively cheap. All you have to do is plug it in and then read the
data it sends back over the interrupt pipe.

Figure 23-2. The Vernier Go!Temp next to a non-USB thermometer

When writing software to communicate with a specific device, you have to determine the vendor and
product ID in order to find the device. Fortunately, Example 23-4, USBDeviceDescriber, lists exactly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this information. After plugging in the probe and running Example 23-4, we find that the vendor ID
for Vernier is 0x08F7 and the product ID is 0x2. Let's store these in named constants:

public final static int VERNIER_VENDOR_ID = 0x08F7;
public final static int GOTEMP_PRODUCT_ID = 2;

These are the same for all devices of this type. Each probe also has a unique serial number that
varies from one instrument to the next, but you don't need it.

The first thing the program needs to do is search the bus for the device with this ID. How this is done
is very similar to some of the earlier examples: recursively traverse the USB tree looking for a device
with the right vendor and product ID, and when it's found, return it, or return null if no such device
is attached. Example 23-7 lists the program code.

Example 23-7. Locating a device

private static UsbDevice findProbe() throws UsbException {
 UsbServices services = UsbHostManager.getUsbServices();
 UsbHub root = services.getRootUsbHub();
 return searchDevices(root);
}
private static UsbDevice searchDevices(UsbHub hub)
 throws UsbException, IOException {
 List devices = hub.getAttachedUsbDevices();
 Iterator iterator = devices.iterator();
 while (iterator.hasNext()) {
 UsbDevice device = (UsbDevice) iterator.next();
 UsbDeviceDescriptor descriptor = device.getUsbDeviceDescriptor();
 int manufacturerCode = descriptor.idVendor();
 int productCode = descriptor.idProduct();
 if (manufacturerCode == VERNIER_VENDOR_ID
 && productCode == GOTEMP_PRODUCT_ID) {
 return device;
 }
 else if (device.isUsbHub()) {
 UsbDevice found = searchDevices((UsbHub) device);
 if (found != null) return found;
 }
 }
 return null; // didn't find it
}

This code assumes there's only one such probe on the bus. It would be simple enough to extend it to
handle multiple probes, but for now I kept it simple by choosing the first one found and ignoring any

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subsequent devices.

The Go!Temp has a single configuration, a single interface, and a single input pipe from the device to
the host that sends the temperature data. The next step is to find the single interface and claim it.
From the device, we get the active configuration. From the configuration, we get the single interface:

UsbConfiguration config = probe.getActiveUsbConfiguration();
UsbInterface theInterface = (UsbInterface) config.getUsbInterfaces().get(0);

The interface number on this device should always be 0, so you could ask for it by number instead:

UsbInterface theInterface = config.getUsbInterface((byte) 0);

Now that we have the interface, we need to claim it. As usual, simple claiming does not work because
the operating system has already grabbed hold of the device. We have to force the claim, like so:

theInterface.claim(new UsbInterfacePolicy() {
 public boolean forceClaim(UsbInterface usbInterface) {
 return true;
 }
});

Once the interface is claimed, we can ask it for its endpoint. For this device, there should be only
one:

UsbEndpoint endpoint = (UsbEndpoint) theInterface.getUsbEndpoints().get(0);

In general, at this point you would check whether the endpoint was an in or out endpoint. However,
as the Go!Temp has only a single in endpoint, we can skip that check.

The endpoint has a single pipe:

UsbPipe pipe = endpoint.getUsbPipe();

Normally here you'd check whether you have a control, bulk, isochronous, or interrupt pipe. Again,
the Go!Temp probe is so simple that you know what you've got without asking: an interrupt pipe.

Now it's time to read from the pipe. First, create an IRP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UsbIrp irp = pipe.createUsbIrp();

You can use any implementation of the UsbIrp interface here, but it's best to let the pipe object do it
so it can optimize the IRP for the pipe.

The IRP should probably come with an appropriately sized data array. However, it doesn't, so make
one and stuff it. For this device I happen to know that eight bytes is the right size:

byte[] input = new byte[8];
irp.setData(input);

If you don't know the size in advance, you can ask the UsbEndpointDescriptor for its
wMaxPacketSize. If you send an incorrectly sized IRP, you'll get a UsbBabbleException when you
submit it.

Next, we open the pipe and submit the IRP to the pipe. For this program we might as well submit
synchronously, since we don't have anything else to do until the device responds:

pipe.open();
pipe.syncSubmit(irp);

When this method returns, the array is filled with binary data. There are no particular rules for how
this data is interpreted. That's up to the device manufacturer. In this case, the Go!Temp stores the
number of measurements it's taken as an unsigned integer in the first byte, a rolling sequence
counter in the second byte, and 2-byte little-endian shorts in the last six spaces in this array. These
shorts are the temperature measurements in 1/128ths of a degree Celsius. That looks suspiciously
like a number chosen for convenience in binary arithmetic. I doubt the instrument is accurate beyond
a tenth of a degree or so. In any case, dividing these shorts by 128 gives the temperature in degrees
Celsius. This code finds the first temperature measurement returned:

int result = UsbUtil.toShort(data[3], data[2]);
double degreesCelsius = result / 128.0;

If the device has had time to make two measurements, the second temperature is in data[5] and
data[4]. If it's had time to make three, the third is in data[7] and data[6]. You have to check the
first byte to see how many measurements it took. Subsequent measurements require additional IRPs
to be submitted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FYI, I figured out how to interpret the data sent back by reading the C source
code for a Linux device driver for the Go!Temp. I have no idea how the Linux
hackers figured that out. They certainly didn't read the technical
documentation, because there isn't any.

In practice, one of the hardest parts of writing software to interface with USB
devices is getting quality documentation for the messages the devices send and
receive. Reverse engineering with an expensive USB protocol analyzer is too
often necessary. Some devicesmice, keyboards, mass storage devices, and the
likehave fairly standard interfaces. Ironically, these are precisely the devices
you don't need to write your own USB code to support.

To finish up, we wrap this in a loop that continuously reads from the pipe and prints the results to
System.out. The loop can reuse the same IRP as long as it calls setComplete(false) on each pass and
is careful not to read vestigial data from previous runs if the IRP is not completely refilled each time.
I also added a little code to check whether the probe was being operated outside its advertised
temperature range (-10°C to 110°C). Example 23-8 demonstrates.

Example 23-8. Reading temperatures from a Go!Temp probe

import java.util.*;
import javax.usb.*;
import javax.usb.util.*;
import java.io.*;
public class Thermometer {
 public final static int VERNIER_VENDOR_ID = 0x8F7;
 public final static int GOTEMP_PRODUCT_ID = 2;

 public static void main(String[] args) throws UsbException, IOException {
 UsbDevice probe = findProbe();
 if (probe == null) {
 System.err.println("No Go!Temp probe attached.");
 return;
 }
 UsbConfiguration config = probe.getActiveUsbConfiguration();
 UsbInterface theInterface = config.getUsbInterface((byte) 0);
 theInterface.claim(new UsbInterfacePolicy() {
 public boolean forceClaim(UsbInterface usbInterface) {
 return true;
 }
 });
 UsbEndpoint endpoint = (UsbEndpoint) theInterface.getUsbEndpoints().get(0);
 UsbPipe pipe = endpoint.getUsbPipe();
 // set up the IRP
 UsbIrp irp = pipe.createUsbIrp();
 byte[] data = new byte[8];
 irp.setData(data);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pipe.open();
 outer: while (true) {
 pipe.syncSubmit(irp);
 int numberOfMeasurements = data[0];
 for (int i = 0; i < numberOfMeasurements; i++) {
 int result = UsbUtil.toShort(data[2*i+3], data[2*i+2]);
 int sequenceNumber = UsbUtil.unsignedInt(data[1]);
 double temperature = result / 128.0;
 if (temperature > 110.0) {
 System.err.println("Maximum accurate temperature exceeded.");
 break outer;
 }
 else if (temperature < -10) {
 System.err.println("Minimum accurate temperature exceeded.");
 break outer;
 }
 System.out.println("Measurement " + sequenceNumber + ": "
 + temperature + "°C");
 }
 // get ready to reuse IRP
 irp.setComplete(false);
 }
 pipe.abortAllSubmissions();
 pipe.close();
 theInterface.release();
 }
 private static UsbDevice findProbe() throws UsbException, IOException {
 UsbServices services = UsbHostManager.getUsbServices();
 UsbHub root = services.getRootUsbHub();
 return searchDevices(root);
 }
 private static UsbDevice searchDevices(UsbHub hub)
 throws UsbException, IOException {
 List devices = hub.getAttachedUsbDevices();
 Iterator iterator = devices.iterator();
 while (iterator.hasNext()) {
 UsbDevice device = (UsbDevice) iterator.next();
 UsbDeviceDescriptor descriptor = device.getUsbDeviceDescriptor();
 int manufacturerCode = descriptor.idVendor();
 int productCode = descriptor.idProduct();
 if (manufacturerCode == VERNIER_VENDOR_ID
 && productCode == GOTEMP_PRODUCT_ID) {
 return device;
 }
 else if (device.isUsbHub()) {
 UsbDevice found = searchDevices((UsbHub) device);
 if (found != null) return found;
 }
 }
 return null; // didn't find it
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's some output from when I ran it. The probe started collecting data just sitting on my desk, but
then I dunked it in ice water. You can see it started with three measurements in one packet at room
temperature. However, because the program was running faster than the probe could retrieve the
temperature, each subsequent packet contained only a single measurement. Initially, the
temperature was slowly rising, but as soon as I dunked it in the ice water it began dropping rapidly,
stabilizing at around 6°C. If I let the ice melt and left the program running for an hour or so, it would
heat back up to room temperature.

java -classpath jsr80_ri-1.0.0.jar:jsr80-1.0.0.jar:.:jsr80_linux-1.0.0.jar Probe
Measurement 247: 18.9375 °C
Measurement 248: 18.9375 °C
Measurement 249: 18.9375 °C
Measurement 250: 18.9375 °C
Measurement 251: 18.9375 °C
Measurement 252: 18.9375 °C
Measurement 253: 18.9375 °C
Measurement 254: 18.9375 °C
Measurement 255: 19.0 °C
Measurement 0: 19.0625 °C
Measurement 1: 16.0625 °C
Measurement 2: 13.6875 °C
Measurement 3: 12.1875 °C
Measurement 4: 11.1875 °C
Measurement 5: 10.5 °C
Measurement 6: 10.0 °C
Measurement 7: 9.625 °C
Measurement 8: 9.25 °C
Measurement 9: 8.9375 °C
Measurement 10: 8.625 °C
Measurement 11: 8.375 °C
Measurement 12: 8.1875 °C
Measurement 13: 8.0 °C
Measurement 14: 7.8125 °C
Measurement 15: 7.6875 °C
Measurement 16: 7.5 °C
Measurement 17: 7.375 °C
Measurement 18: 7.25 °C
Measurement 19: 7.125 °C
Measurement 20: 7.0625 °C
Measurement 21: 6.9375 °C
Measurement 22: 6.875 °C
Measurement 23: 6.75 °C
Measurement 24: 6.6875 °C
Measurement 25: 6.625 °C
Measurement 26: 6.5625 °C
Measurement 27: 6.5 °C
Measurement 28: 6.5 °C
Measurement 29: 6.4375 °C

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Measurement 30: 6.375 °C
Measurement 31: 6.375 °C
Measurement 32: 6.3125 °C
Measurement 33: 6.3125 °C
Measurement 34: 6.25 °C
Measurement 35: 6.25 °C
Measurement 36: 6.25 °C
Measurement 37: 6.1875 °C
Measurement 38: 6.1875 °C

Example 23-8 reads continuously. It should provide the user with a way to quit the program. When it
does so, the program should release the device.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.8. Hot Plugging

The javax.usb.event.UsbServicesListener interface can notify your program whenever a USB
deviceeven one you've never seen beforeis plugged into or unplugged from the bus. This interface
has two callback methods. usbDeviceAttached() is called when a device is plugged in, and
usbDeviceDetached() is called when a device is unplugged (or turned off, which amounts to the
same thing):

package javax.usb.event;
public interface UsbServicesListener extends java.util.EventListener {

 public void usbDeviceAttached(UsbServicesEvent event);
 public void usbDeviceDetached(UsbServicesEvent event);
}

Each of these methods receives a UsbServicesEvent object as an argument. This interface has a
getUsbDevice() method that returns the device that was connected or disconnected:

public UsbDevice getUsbDevice()

Example 23-9 is a simple implementation of this interface that prints the manufacturer string and
other info for each device added to or removed from the bus.

Example 23-9. A listener for USB devices plugged in and unplugged

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.usb.*;
import javax.usb.event.*;
public class HotplugListener implements UsbServicesListener {
 public void usbDeviceAttached(UsbServicesEvent event) {
 UsbDevice device = event.getUsbDevice();
 System.out.println(getDeviceInfo(device) + " was added to the bus.");
 }
 public void usbDeviceDetached(UsbServicesEvent event) {
 UsbDevice device = event.getUsbDevice();
 System.out.println(getDeviceInfo(device) + " was removed from the bus.");
 }
 private static String getDeviceInfo(UsbDevice device) {
 try {
 String product = device.getProductString();
 String serial = device.getSerialNumberString();
 if (product == null) return "Unknown USB device";
 if (serial != null) return product + " " + serial;
 else return product;
 }
 catch (Exception ex) {
 }
 return "Unknown USB device";
 }
}

You register your listeners with a javax.usb.UsbServices object using the customary add and remove
methods:

public void addUsbServicesListener(UsbServicesListener listener)
public void removeUsbServicesListener(UsbServicesListener listener)

This object then calls back to your listener to notify it of devices added and removed.

Example 23-10 is a simple program that uses the listener in Example 23-9 to notify the user when
devices are plugged in and unplugged.

Example 23-10. A program that tells the user when USB devices are
plugged in and unplugged

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.usb.*;
import javax.usb.event.*;
public class Hotplugger {
 public static void main(String[] args)
 throws UsbException, InterruptedException {
 UsbServices services = UsbHostManager.getUsbServices();
 services.addUsbServicesListener(new HotplugListener());
 // Keep this program from exiting immediately
 Thread.sleep(500000);
 }
}

Here's the output as I repeatedly connected and disconnected a couple of different devices from the
bus:

Silicon Integrated Systems [SiS] USB 1.0 Controller 0000:00:02.2
was added to the bus.
USB-PS/2 Optical Mouse was added to the bus.
Silicon Integrated Systems [SiS] USB 1.0 Controller (#2) 0000:00:02.3
was added to the bus.
Unknown device was added to the bus.
Unknown device was removed from the bus.
Unknown device was added to the bus.
Unknown device was removed from the bus.
Unknown device was added to the bus.
Unknown device was removed from the bus.
DMC-FZ5 was added to the bus.
Unknown device was removed from the bus.
DMC-FZ5 was added to the bus.

Interestingly, when the program starts, usbDeviceAttached() is called once for each already
attached device, including each of the USB controllers. You'll also notice that you can't get much info
when a device is detached. All the usual methodsgetProductString(), getSerialNumberString(),
etc.require the device to be connected to work. Otherwise, they throw an exception. However, the
same object is returned when the device is detached as when it is attached, so you can load up all
the information the first time, store it somewhere, and then retrieve it locally when the device is
detached. Example 23-11 uses a HashMap to do this.

Example 23-11. A USB listener that remembers devices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.usb.*;
import javax.usb.event.*;
import java.util.*;
public class ImprovedHotplugListener implements UsbServicesListener {
 private Map devices = new HashMap();

 public void usbDeviceAttached(UsbServicesEvent event) {
 UsbDevice device = event.getUsbDevice();
 String deviceInfo = getDeviceInfo(device);
 devices.put(device, deviceInfo);
 System.out.println(deviceInfo + " was added to the bus.");
 }
 public void usbDeviceDetached(UsbServicesEvent event) {
 UsbDevice device = event.getUsbDevice();
 String deviceInfo = (String) devices.get(device);
 System.out.println(deviceInfo + " was removed from the bus.");
 }
 private static String getDeviceInfo(UsbDevice device) {
 try {
 String product = device.getProductString();
 String serial = device.getSerialNumberString();
 if (product == null) return "Unknown USB device";
 if (serial != null) return product + " " + serial;
 else return product;
 }
 catch (Exception ex) {
 }
 return "Unknown USB device";
 }
}

This only goes so far. The Java USB API does not recognize devices that are plugged in again: it
creates a new UsbDevice object for a reconnected device.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 24. The J2ME Generic Connection
Framework
While Windows running on X86 processors still commands more than 90% of the desktop market and
more than half of the server space, the embedded device market is far more diverse. The small
device ecosystem contains hundreds of different processors and dozens of operating systems. To
some extent this is a reflection of the diversity of the devices themselves. There's not all that much
difference between a laptop and a desktop and a blade server. They're pretty much all rectangular
boxes with the same basic hardware, give or take a couple of ports. By contrast, embedded devices
cover everything from cell phones to PDAs to watches to car ignition systems to hotel door locks to
televisions to jewelryvery different devices with very different needs. A CPU and operating system
that work well for an iPod may be completely unsuitable for the hard real-time requirements of
avionics controls. Still, even among similar devices such as cell phones, the market is far more
diverse than it is in personal computers.

Java's platform agnosticism makes it an obvious choice for the diverse embedded marketplace. It
offers developers the hope of writing one piece of code that can run more or less reliably on many
different vendors' hardware. The fit is not always perfect, but it's better than anything that has come
before.

There are over two and a half billion Java-enabled devices on the planet today, and about 75% of
those are embedded devices. These devices vary widely in capability. On the high end, an iPod might
have a 60-GB hard drive and dual 100-MHz CPUs. On the low end, a hotel door lock might have no
disk space, a few kilobytes of memory, and an 8-bit 1-MHz processor. In between, a cheap cell phone
might have 300K of memory and a 30-MHz processor. Weak battery power and inadequate heat
dissipation exacerbate these limits. While it might be possible to put a 1-GHz processor in a cell
phone, you couldn't power it for more than a few minutes without running out of juice and burning a
hole in the user's pocket.

Even at the high end, embedded devices are very limited compared to modern PCs. In particular, the
memory requirements can be extremely tight. While desktop and server programmers stopped
worrying about memory footprint years ago, embedded programmers still find themselves making
gut-wrenching choices between functionality and features. Every extra byte carries a cost that must
be weighed. Every class must be considered for the trade-off between programmer convenience and
end user space. For instance, to a micro-programmer the Java habit of creating a new class for every
tiny variation of an exception seems extremely wasteful.

Simply put, Java 2 Standard Edition (J2SE) is too big for most small devices. The sheer number of
classes in the Java class library can be an obstacle to embedding standard Java. Consequently, Sun,
Nokia, Motorola, and others have defined a different, incompatible version of Java tailored to the
needs of small devices, called Java 2 Micro Edition (J2ME). In fact, they've defined several variants
and versions for devices of different sizes and capabilities. At the very bottom is the Connected
Limited Device Configuration (CLDC) 1.0. This platform is designed for battery-powered,
intermittently connected devices with as little 160K of memory, most of which has to be used by the
VM itself. The Connected Device Configuration (CDC) is targeted at slightly larger devices such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDAs and settop boxes. These devices have at least 2 MB of memory and faster and more reliable
network connectivity. The Mobile Information Device Profile (MIDP) adds features on top of a basic
CLDC or CDC implementation, with an emphasis on user interface classes. The different profiles
provide different subsets of and additions to the standard Java class library.

This is not the Java you know and love. The language is the same, but the library is quite different. In
particular, it is much smaller and comes with greatly restricted functionality. Most programs are
implemented as MIDlets rather than standalone applications with main() methods. Most interestingly
for the purposes of this book, the I/O classes in J2ME are not just cut-back versions of the classes
available in the standard java.io package. Instead, they are a completely different set of classes in
the javax.microedition.io package, which is not available in regular Java. This is called the Generic
Connection Framework (GCF).

The GCF offers two interfaces, five exceptions, and 11 classes from java.io. More specifically, it
includes:

The InputStream and OutputStream abstract classes

The ByteArrayInputStream and ByteArrayOutputStream classes

The DataInputStream and DataOutputStream classes

The DataInput and DataOutput interfaces

The PrintStream class

The Reader and Writer abstract classes

The InputStreamReader and OutputStreamWriter classes

IOException and four subclasses: EOFException, InterruptedIOException,
UnsupportedEncodingException, and UTFDataFormatException

However, that's all. Other classes from java.io and java.net are completely absent, and even the
included classes are set up differently than they are in regular desktop Java, to avoid an explosion of
classes for each different kind of stream.

These classes may not have all the methods you're accustomed to, either. For instance, in CLDC 1.0,
DataInput and DataInputStream are missing readLine(), readFloat(), and readDouble().
DataOutput and DataOutputStream are missing writeFloat() and writeDouble(). DataOutputStream
is also missing size(). PrintStream is missing all the methods that print doubles and floats. CLDC
1.1 devices contain the floating-point methods, though they're still missing the deprecated methods,
such as readLine(). The Reader and Writer classes are complete, but they don't support all the
encodings desktop Java versions do.

The CDC does provide a full implementation of java.io and java.net at the level of Java 1.3 for CDC
1.0.1 and 1.4 for CDC 1.1 (java.nio is still omitted). It also includes the Generic Connection
Framework.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.1. The Generic Connection Framework

The Generic Connection Framework is the standard means of performing I/O, especially network I/O,
in all profiles of J2ME. It is available in the CLDC, the MIDP, the Information Module Profile (IMP), and
all CDC-derived profiles, including the Foundation Profile, the Personal Basis Profile, and the Personal
Profile. As a result, I'm not going to worry a lot about exactly which profile you're using. For our
purposes, they're equivalent.

What's not equivalent are the kinds of I/O the different devices support. Most embedded devices
don't have filesystems, but some of the larger ones, such as the iPod, do. Some devices have no
network access at all; some have full, unrestricted IP stacks; and some have access to some sort of
proprietary network. Devices can have serial ports, parallel ports, USB ports, FireWire ports, and/or
Bluetooth capabilities. Much like streams, the GCF is designed to allow particular devices to support
all the different forms of I/O the devices have, but none of the ones they don't. This rules out classes
like URL, Socket, FileInputStream, and UsbDevice that are closely tied to one particular kind of I/O
service. No one wants to waste precious space on a FileInputStream class for a device that doesn't
have a filesystem.

The GCF is based on an abstract Connection interface, which supports two basic kinds of connections:
packet and stream. Packet connections are used for UDP and Bluetooth L2CAP. Stream connections
are used for TCP, files, serial ports, and Bluetooth RFCOMM. Streams are read and written using the
regular InputStream and OutputStream classes.

Reading input using the GCF follows these three steps:

Pass the URL of the resource you want to read to the static Connector.openInputStream()
method. This returns an InputStream object.

1.

Read from the InputStream in the usual way.2.

Close the InputStream when you're done.3.

For example, this code fragment opens a connection to Google:

InputStream in = Connector.openInputStream("http://www.google.com/");
// read from in like you would any other InputStream...
in.close();

Output is similar, except you open an OutputStream instead of an InputStream:

OutputStream out = Connector.openOutputStream("socket://ftp.example.com:8979");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// write to out as you would any other OutputStream...
out.close();

So far this looks a lot like the URL class, but with three key differences:

Behind the scenes, this does not involve the heavyweight protocol handler mechanism that
supports URL, URLConnection, HttpURLConnection, and associated classes.

The Connector class in any particular environment may recognize nonstandard URLs that
represent sockets, Bluetooth connections, serial ports, and more.

The Connector class may not recognize standard URL schemes including file and http if the local
device does not support them.

For example, if you wanted to open a socket to Google to read the headers of the page instead of
just the body, you would use the nonstandard socket protocol, like this:

InputStream in = Connector.openInputStream("socket://www.google.com:80/");
// read from in like you would any other InputStream...
in.close();

As in applets, access to the network is restricted to signed, trusted MIDlets. Untrusted MIDlets
prompt the user for authorization before each potentially dangerous operation.

Example 24-1 shows a simple MIDlet program that displays the current time. It does this by
connecting to the National Institute of Standards time server in Boulder, Colorado on the daytime
port (13) and displaying the result. The daytime protocol sends a one-line ASCII string that is easy to
display on most small MIDP 1.0 devices.

Example 24-1. A MIDlet daytime client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import java.io.*;

public class Daytime extends MIDlet {
 public Daytime() {
 Form form = new Form("Network Time");
 InputStream in = null;
 try {
 in = Connector.openInputStream("socket://time-a.nist.gov:13");
 StringBuffer sb = new StringBuffer();
 for (int c = in.read(); c != -1; c = in.read()) {
 sb.append((char) c);
 }
 form.append(sb.toString());
 }
 catch (IOException ex) {
 form.append(ex.getMessage());
 }
 finally {
 try {
 if (in != null) in.close();
 }
 catch (IOException ex) { /* Oh well. We tried.*/ }
 }
 Display.getDisplay(this).setCurrent(form);
 }
 public void startApp() {}
 public void pauseApp() {}
 public void destroyApp(boolean unconditional) {}
}

Figure 24-1 shows this program displaying in the J2ME emulator bundled with the Sun Java Wireless
Toolkit. When running this MIDlet, the phone prompts the user to allow the network connection.
These prompts can be eliminated, but normally only if you can cut a deal with the phone company.
Cell phones tend to be locked-down devices that do not allow arbitrary hacking.

Figure 24-1. The daytime MIDlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note the lack of a main() method. A MIDlet is conceptually more like an applet
than an application. It cannot be compiled and run like a typical standalone
Java application. I'm assuming here you know how to compile and run MIDlets.
If not, you can consult any number of good books on the topic, including J2ME
in a Nutshell by Kim Topley (O'Reilly).

The socket protocol used here is available on some, but not all, MIDP devices. It is not turned on in
the emulator by default. To enable it, set the Java system property
com.sun.midp.io.enable_extra_protocols to TRue. You can do this with the -D command-line option
or by editing the $(MIDP_HOME)/lib/internal.config file, where the emulator reads its configuration
information.

24.1.1. The Connector Class

The Connector class contains all the static utility methods needed to open connections, regardless of
what kinds of connections they are. You've already seen the openInputStream() and
openOutputStream() methods:

public static InputStream openInputStream(String url)
 throws ConnectionNotFoundException, IOException, IllegalArgumentException
public static OutputStream openOutputStream(String url)
 throws ConnectionNotFoundException, IOException, IllegalArgumentException

These methods throw an IllegalArgumentException if the URL is malformed, a
ConnectionNotFoundException (a subclass of IOException) if the remote is unreachable or the
protocol is not supported, and an IOException if the stream can't be opened for any other reason.

Other methods open DataInputStreams and DataOutputStreams instead:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public static DataInputStream openDataInputStream(String url)
 throws ConnectionNotFoundException, IOException, IllegalArgumentException
public static DataOutputStream openDataOutputStream(String url)
 throws ConnectionNotFoundException, IOException, IllegalArgumentException

However, these four are the only kinds of streams you have. There are no object streams, piped
streams, cipher streams, or any other kinds of filter streams in J2ME. Indeed, there's no
FilterInputStream or FilterOutputStream class at all. In J2ME, DataInputStream and
DataOutputStream extend InputStream and OutputStream directly:

public class DataInputStream extends InputStream implements DataInput
public class DataOutputStream extends OutputStream implements DataOutput

Another difference worth noting: the DataInputStream class has removed the deprecated readLine()
method. In CLDC 1.0, readFloat() and readDouble() are also omitted, though these are present in
CLDC 1.1 and CDC devices.

Instead of requesting a stream directly, you can ask the connector for a Connection object using one
of its three open() methods:

public static Connection open(String url) throws IOException
public static Connection open(String url, int mode) throws IOException
public static Connection open(String url, int mode, boolean timeouts)
 throws IOException

There are two kinds of Connections: InputConnections and OutputConnections. The InputConnection
interface has openInputStream() and openDataInputStream() methods. The OutputConnection
interface has openOutputStream() and openDataOutputStream() methods. Once you have a
connection, you'll have to cast it to one of these types to use it. For example, this code fragment
opens a connection to Google and reads from it:

Connection conn = Connector.open("http://www.google.com/");
InputConnection input = (InputConnection) c;
InputStream in = input.openInputStream();
// read from in like you would any other InputStream...
conn.close();

Some, though not all, objects implement both InputConnection and OutputConnection. Some objects
implement only one or the other. If you know which you want, pass the appropriate constant
(Connector.READ, Connector.WRITE, or Connector.READ_WRITE) to the open() method. For example,
this line opens a read-only connection to Google:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connection c = Connector.open("http://www.google.com/", Connector.READ);

If a mode the protocol does not support is passed, open() throws an IllegalArgumentException.

Your final option is to pass true for the third argument. This indicates that the program is ready to
handle timeouts and that the connection should throw a java.io.InterruptedIOException if the
connection times out. (In practice, this doesn't have a lot of effect. While theoretically a connection
might hang forever without this, in practice some exception is likely to be thrown sometime. It just
won't be an InterruptedIOException.)

None of this is very different from just calling openInputStream() or openOutputStream() and
working with that stream. What, then, is the point of open()? If you know what kind of connection
you're opening (file, HTTP, socket, etc.)and you normally do know thisyou can cast the returned
InputConnection or OutputConnection to a more specific type: ContentConnection , HttpConnection,
SocketConnection, and so on. Then you can use the extra methods of these classes to do interesting
things.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.2. ContentConnection

Most connections are stream connections. StreamConnection is a convenience interface that
implements both InputConnection and OutputConnection:

public interface StreamConnection extends InputConnection, OutputConnection

StreamConnection declares no additional methods of its own, just the five it inherits from its
superinterfaces: openInputStream(), openOutputStream(), openDataInputStream(),
openDataOutputStream(), and close().

Most stream connections are also instances of its subinterface, ContentConnection:

public interface ContentConnection extends StreamConnection

ContentConnection does add three methods for getting the length, content encoding, and MIME
media type of the content in the stream:

public String getType()
public String getEncoding()
public long getLength()

getType() usually returns a MIME media type such as text/html or application/xml. However, it
may return null if the content type can't be determined.

The getEncoding() method returns a string indicating which (if any) additional encodings have been
applied to the content. For instance, if the content has been gzipped, it returns the string "gzip". This
method is mostly meant for HTTP, where it returns the value of the Content-encoding header. In
most other protocols, it will likely return null.

Finally, getLength() returns the length of the content in bytes. For HTTP, this is the value in the
Content-length header. It returns -1 if the content length is not known.

These three methods are mostly designed for HTTP, but they can sometimes work for file streams or
other kinds of streams as well. Example 24-2 is a simple MIDlet that displays this information for a
user-supplied URL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 24-2. A MIDlet for showing the type and length of data

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import java.io.IOException;
public class ContentInfo extends MIDlet implements CommandListener {
 private Display display;
 private TextBox textBox;
 public void startApp() {
 display = Display.getDisplay(this);
 if (textBox == null) {
 textBox = new TextBox("URL", "http://", 255, TextField.URL);
 }
 display.setCurrent(textBox);
 Command getInfo = new Command("Get Info", Command.OK, 10);
 textBox.addCommand(getInfo);
 textBox.setCommandListener(this);
 }
 public void commandAction(Command command, Displayable displayable) {
 // Network operations should not run in this same thread
 Thread t = new Thread(
 new Runnable() {
 public void run() {
 display.setCurrent(getInfo());
 }
 }
);
 t.start();
 }
 private Form getInfo() {
 Form form = new Form("Content Info");
 ContentConnection conn = null;
 try {
 conn = (ContentConnection) Connector.open(textBox.getString());
 String type = conn.getType();
 String encoding = conn.getEncoding();
 long length = conn.getLength();
 form.append("Media type: " + type + "\r\n");
 if (encoding != null) form.append("Encoding: " + encoding + "\r\n");
 form.append("Length: " + String.valueOf(length));
 }
 catch (IOException ex) {
 form.append(ex.getMessage());
 }
 finally {

 try {
 if (conn != null) conn.close();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 catch (IOException ex) { /* Oh well. we tried.*/ }
 }
 return form;
 }
 public void pauseApp() {}
 public void destroyApp(boolean unconditional) {}
}

When the MIDlet starts up, it displays a text box in which the user can enter a URL. Once the user
enters the URL and activates the Get Info command, the MIDlet changes display to a form showing
the content info. It does this in a separate thread to avoid a potential deadlock condition. The
getInfo() method reads the URL from the text box and connects to it (after checking with the user
to make sure the connection is allowed). It then displays the media type, content length, and content
encoding (if any). Figure 24-2 shows this program in a J2ME emulator.

Figure 24-2. The content info MIDlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.3. Files

The most basic kind of StreamConnection is a javax.microedition.io.file.FileConnection :

public interface FileConnection extends StreamConnection

In J2ME, the FileConnection class takes the place of java.io.File in J2SE. Thus, as well as methods
to open streams, it has methods to get information about the file. Do be careful here. Every warning
in Chapter 17 about cross-platform file access goes triple for J2ME. Some small device filesystems
look like Windows, but many more look like DOS, right down to a maximum 8.3 filename. Others look
like Unix (in fact, some are Unix), and still others look nothing like any common desktop operating
system.

FileConnection is not a standard part of any J2ME profile, but devices that have filesystems are likely
to include it. Filesystems include not only built-in filesystems on internal hard drives and flash
memory, but also various types of removable memory, such as SmartMedia cards, CompactFlash
cards, or Sony memory sticks. For instance, you'll find FileConnection on Nokia phones that
implement the S60 Platform 2nd Edition or later, including the N80, N92, and N71. If you're not
developing for a specific platform with known capabilities, you can check for its presence by testing
the microedition.io.file.FileConnection.version system property:

if (System.getproperty("microedition.io.file.FileConnection.version")
 != null) {
 // file connections are available
}

This property is set only on platforms where you can open a FileConnection.

To open a FileConnection, just use a standard file URL such as
file:///C:/Nokia/Images/Image(007).jpg. Some devices also define virtual filesystem roots that don't
expose the entire filesystem, such as /Images. For example, on many recent Nokia phones, this
statement opens the file at file:///C:/Nokia/Images/Image(007).jpg:

InputStream in
 = Connector.openInputStream("file:///Images/Image(007).jpg ");

As in applets, access to the filesystem is restricted to signed, trusted MIDlets. Untrusted MIDlets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prompt the user for authorization before reading or writing files. Even trusted MIDlets are normally
prevented from accessing or even seeing certain sensitive parts of the filesystem, such as Record
Management System (RMS) databases or operating system files. For instance, a Linux-based PDA
shouldn't allow access to /vmlinuz, and a MIDlet shouldn't need it. MIDlets are meant for basic user-
level programs, after all, not device drivers and system software.

If you want to do more than just read from or write to the file, open a connection and cast it to
FileConnection rather than opening an input or output stream directly:

FileConnnection fc = (FileConnection) Connector.open(
 "file:///Volumes/Birds/Contacts/ipod_created_instructions.vcf ");;

You can then call FileConnnection's openInputStream(), openOutputStream(),
openDataInputStream(), and openDataOutputStream() methods to get the streams you use to read
and write:

public static InputStream openInputStream(String url)
 throws IOException, IllegalModeException, SecurityException
public static OutputStream openOutputStream(String url)
 throws IOException, IllegalModeException, SecurityException
public static DataInputStream openDataInputStream(String url)
 throws IOException, IllegalModeException, SecurityException
public static DataOutputStream openDataOutputStream(String url)
 throws IOException, IllegalModeException, SecurityException

Each FileConnection can have only one InputStream and one OutputStream open at a time, though
you can open a new stream after closing the old one. Unlike sockets, closing the associated stream
does not close the FileConnection. To close a FileConnection, you must explicitly call the
connection's close() method.

A SecurityException is thrown if the user vetoes the file access. An IllegalModeException is thrown
if the connection was opened in write-only mode. These are runtime exceptions. A checked
IOException is thrown if anything else goes wrong.

Usually, you begin writing at the beginning of a file and overwrite any existing data in the file.
FileConnection does not support random access. However, it adds one extra method that enables
you to start writing at a specified position in the file rather than at the beginning:

public OutputStream openOutputStream(long byteOffset) throws IOException,
 IllegalArgumentException, IllegalModeException, SecurityException

You can also cut off the end of the file, truncating it to a certain length in bytes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void truncate(long byteOffset) throws IOException,
 IllegalArgumentException, IllegalModeException, ConnectionClosedException

In both cases, the byteOffset must be nonnegative, or an IllegalArgumentException is thrown.

As with java.io.File, having a FileConnection object does not guarantee that the file actually
exists. Thus, before trying to read or write to a file, you should first check whether the file exists:

public boolean exists() throws IllegalModeException, SecurityException,
 ConnectionClosedException

You should also check whether the file is a really a file, or if it's a directory. exists() returns TRue in
both cases, but the isDirectory() method tells you. It returns true if the file exists and is a
directory or false otherwise:

public boolean isDirectory() throws SecurityException,
 IllegalModeException, ConnectionClosedException

If a file does not exist, you can use the create() method to create it:

public void create() throws IOException, IllegalModeException,
 SecurityException, ConnectionClosedException

For example, this code tries to create the file newfile.txt in the directory /CFCard if it doesn't already
exist:

FileConnection fc = (FileConnection) Connector.open("file:///CFCard/newfile.txt");
if (!fc.exists()) fc.create();

Unlike with java.io.FileOutputStream, merely opening an OutputStream to a file with FileConnection
is not sufficient to create it. You must explicitly call create() before opening an OutputStream with
FileConnection.

To create a directory, use the mkdir() method instead:

public void mkdir() throws IOException, IllegalModeException,
 SecurityException, ConnectionClosedException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also change the name of an existing file or directory using the rename() method:

public void rename(String newName) throws IOException,
 NullPointerException, IllegalArgumentException, IllegalModeException,
 SecurityException, ConnectionClosedException

The new name must not contain any slashes, or an IllegalArgumentException is thrown. Unlike the
rename() method in java.io.File, this method never moves a file to a different directory.
FileConnection has no methods to move or copy a file. This method also has the side effect of
closing all currently open streams to the file, though the connections to the file remain open.

You can delete a file or directory, permissions permitting of course, with the delete() method:

public void delete() throws IOException, IllegalModeException,
 SecurityException, ConnectionClosedException

The getName() method takes no arguments and returns the name of the file as a string:

public String getName()

The name does not include any part of the directory in which the file lives. That is, you get back
something like index.html instead of /public/html/javafaq/index.html. If the file is a directory, the
name ends with a forward slash (/).

The getPath() method returns an absolute path to the file's parent directory, as initially provided in
the file URL:

public String getPath()

For example, if the URL was file:///a/b/c/d.jpg, getPath() would return /a/b/c/. If the URL was
file:///a/b/c/, getPath() would return /a/b/. Forward slashes are always used, even on FAT and
other DOS/Windows filesystems. The full absolute path to the file is getPath() + getFile().

Root directories are treated specially. For a root directory, getPath() always returns the empty
string.

Finally, the getURL() method returns the complete file URL that was used to open the
FileConnection:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String getURL()

24.3.1.

24.3.1.1. File attributes

The FileConnection class has several methods that return information about the file, such as its
length, the time it was last modified, whether it's readable, whether it's writable, and whether it's
hidden.

The canWrite() method indicates whether the program can write into the file referred to by this
FileConnection object, while the canRead() method indicates whether the program can read from
the file:

public boolean canRead() throws SecurityException,
 ConnectionClosedException IllegalModeException,
public boolean canWrite() throws SecurityException,
 IllegalModeException, ConnectionClosedException

You can sometimes change the readability of a file using the setReadable() method or the writability
using setWritable():

public boolean setReadable(boolean readable) throws IOException,
 SecurityException, IllegalModeException, ConnectionClosedException
public boolean setWritable(boolean writable) throws IOException,
 SecurityException, IllegalModeException, ConnectionClosedException

More often than not, though, if a file isn't already readable or writable, you can't make it so; trying to
do it anyway simply results in one exception or another.

The isOpen() method returns TRue if the file is open and false if it isn't:

public boolean isOpen() throws SecurityException,
 IllegalModeException, ConnectionClosedException

The isHidden() method returns TRue if the file exists but is hidden:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean isHidden() throws SecurityException,
 IllegalModeException, ConnectionClosedException

Exactly what "hidden" means varies from one platform to the next, but you probably shouldn't show
a hidden file to the user by default. isHidden() returns false if the file isn't hidden or doesn't exist.

You can hide a file by passing true to setHidden() or unhide it by passing false:

public void setHidden(boolean hidden) throws IOException,
 IllegalModeException, SecurityException, ConnectionClosedException

The lastModified() method returns a long indicating the last time this file was modified:

public long lastModified() throws SecurityException,
 IllegalModeException, ConnectionClosedException

The time is the number of milliseconds since midnight, January 1, 1970, Greenwich Mean Time.
lastModified() returns 0 if for any reason the last modified date can't be determined.

The fileSize() method returns the number of bytes in the file:

public long fileSize() throws IOException,
 IllegalModeException, SecurityException, ConnectionClosedException

fileSize() returns -1 if the file doesn't exist or can't be read. It throws an IOException if you invoke
it on a directory. However, the directorySize() method returns the sum of the sizes of all the files
in the directory:

public long directorySize(boolean includeSubDirs) throws IOException,
 IllegalModeException, SecurityException, ConnectionClosedException

If includeSubDirs is TRue, this sum includes the sizes of all files in all subdirectories, applied
recursively. Otherwise, it just returns the cumulative size of the files directly contained in this
directory. Invoking directorySize() on a FileConnection object that represents a file throws an
IOException.

Finally, you can use the totalSize(), usedSize(), and availableSize() methods to determine the
size in bytes of the filesystem where this FileConnection object is found, the number of bytes used

http://lib.ommolketab.ir
http://lib.ommolketab.ir

on the filesystem, and the number of free bytes, respectively:

public long totalSize() throws IllegalModeException,
 SecurityException, ConnectionClosedException
public long availableSize() throws IllegalModeException,
 SecurityException, ConnectionClosedException
public long usedSize

24.3.1.2. Listing directories

The list() method returns an enumeration of strings containing the names of each nonhidden file
in the directory referred to by the FileConnection object:

public Enumeration list() throws IOException,
 IllegalModeException, SecurityException, ConnectionClosedException

This method throws an IOException if the FileConnection object doesn't point to an accessible
directory. It throws a SecurityException if the program isn't allowed to read the directory being
listed. An overloaded version of list() can optionally display hidden files and filter the files
displayed:

public Enumeration list(String filter, boolean includeHidden)
 throws IOException, IllegalModeException, SecurityException,
 ConnectionClosedException

J2ME has no FileFilters or FilenameFilters. Instead, the filter is a simple string pattern for the files
to be displayed. The asterisk (*) is a wildcard. For instance, the pattern "*.jpg" finds all files whose
names end with .jpg. To find all JPEG files, you'd pass "*.jpg" as the first argument and true as the
second argument:

fc.list("*.jpg", true);

Mostly, this all mirrors what you've already seen in the java.io.File class. However, FileConnection
does have one unique ability File doesn't. The setFileConnection() method changes this object so
it points to another file:

public void setFileConnection(String fileName) throws IOException,
 IllegalArgumentException, NullPointerException,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SecurityException, ConnectionClosedException

This method is intended for directory traversal, and it has a number of prerequisites. The current
FileConnection must point to a directory, not a file. Also, you can set the FileConnection only to a
file or directory in the same directory, or to the parent directory (..).

24.3.2. Filesystem Listeners

The FileSystemRegistry class and the FileSystemListener interface enable a J2ME program to learn
about new filesystems as they're mounted or unmounted. This is important because many embedded
devices still use removable media such as smart cards and memory sticks. On some devices, those
may be the only filesystems a MIDlet can see.

The FileSystemListener interface declares a single method, rootChanged():

public void rootChanged(int state, String rootName)

The first argument is either FileSystemListener.ROOT_ADDED or FileSystemListener.ROOT_REMOVED.
Such listeners are added to or removed from the FileSystemRegistry class using these two static
methods:

public static boolean addFileSystemListener(FileSystemListener listener)
 throws SecurityException, NullPointerException
public static boolean removeFileSystemListener(FileSystemListener listener)
 throws NullPointerException

You can also use FileSystemRegistry to enumerate all the currently mounted filesystem roots, with
the listRoots() method:

public static Enumeration listRoots() throws SecurityException

These roots are the logical roots exposed to the client program, not necessarily the real roots of the
filesystem. Normally, the true root or roots are inaccessible for security reasons. Thus, even Unix-
based devices may have several logical roots.

Example 24-3 demonstrates a simple program that recursively lists all the files in a directory, and all
the files in directories in the directory, and so on. Files are indented two spaces for each level deep
they are in the hierarchy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 24-3. The DirLister MIDlet

import java.io.*;
import java.util.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;
import javax.microedition.io.file.*;
import javax.microedition.lcdui.*;
public class DirLister extends MIDlet {
 private int level = 0;
 public void startApp() {
 Form form = new Form("File Roots");
 Enumeration roots = FileSystemRegistry.listRoots();
 while (roots.hasMoreElements()) {
 Object next = roots.nextElement();
 String url = "file:///" + next;
 System.out.println(url);
 try {
 FileConnection connection = (FileConnection) Connector.open(url);
 getInfo(connection, form);
 }
 catch (IOException ex) {
 form.append(ex.getMessage() +"\n");
 }
 }
 Display.getDisplay(this).setCurrent(form);
 }
 public void pauseApp() {}

 public void destroyApp(boolean condition) {
 notifyDestroyed();
 }
 private void getInfo(FileConnection connection, Form form) throws IOException {
 if (connection.isDirectory()) form.append("------\n");
 for (int i = 0; i < level; i++) form.append(" ");
 form.append(connection.getPath() + connection.getName() + "\n");
 if (connection.isDirectory()) {
 level++;
 Enumeration list = connection.list();
 String path = connection.getPath() + connection.getName();
 while (list.hasMoreElements()) {
 Object next = list.nextElement();
 String url = "file://" + path + next ;
 try {
 FileConnection child = (FileConnection) Connector.open(url);
 getInfo(child, form);
 }
 catch (Exception ex) {
 form.append(ex.getMessage() +"\n");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 level--;
 }
 }
}

Figure 24-3 shows this MIDlet running in the J2ME Wireless Toolkit Emulator. You can see that there
are two roots on this system, /CFCard1 and /CFCard2. /CFCard1 contains three directories, movs,
pix, and snds. movs and snds are empty, but pix contains two files, _dukeok2.png and
_dukeok8.png. /CFCard2 contains only a single file, secrets.txt.

Figure 24-3. The DirLister MIDlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.4. HTTP

Some of the most interesting opportunities for small mobile devices involve web services in one form
or another. For instance, a bidder could use her mobile phone to keep tabs on an auction through the
eBay SOAP API, or a commuter could browse his weblog subscriptions on a wireless PDA on the train
ride to work. Of course, this requires the devices to support HTTP, and many do.

To download data from a web server, simply use the Connector or InputConnection class to open a
regular HTTP URL:

InputConnection connection = (InputConnection) Connector.open(
 "http://www.google.com/search?q=xom");

The specific InputConnection returned is an HttpConnection:

public interface HttpConnection extends ContentConnection

It may also be an HttpsConnection, but that's a subinterface of HttpConnection that you normally
use polymorphically as an instance of the superclass:

public interface HttpsConnection extends HttpConnection

In J2ME, HttpConnection fills in for several J2SE classes, including URL, URLConnection, and
HttpURLConnection. Some of its methods are familiar from those classes, with occasionally subtle
differences.

Of course, HttpConnection has the usual openInputStream(), openOutputStream(),
openDataInputStream(), openDataOutputStream(), and close() methods common to any
StreamConnection. It also has the getEncoding(), getLength(), and getType() methods of any
ContentConnection. For basic uses such as downloading the latest sports scores or stock quotes, this
is enough. However, more complex interactive applications will want to cast the Connection object
returned by Connector.open() to HttpConnection so that they can use its additional methods. This is
especially important if you want to send data back to the server via POST as well as simply GETting
data from the server.

At any given time, a connection object is in one of three states:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Setup (not yet connected)

Connected

Closed

When the object is first created, it is unconnected. At this point, you can call setRequestMethod()
and setRequestProperty() to configure the HTTP header that is sent to the server.

There is no explicit connect() method. Instead, the connection is made and the header sent as soon
as you invoke one of the methods that needs to read data from or send data to the server. These
include obvious methods, such as openInputStream() and openOutputStream(), as well as methods
that read from the HTTP header, such as getHeaderField() and getLastModified().

Finally, the connection can be closed with the close() method. At this point, you can no longer read
from the connection.

Which methods work depends on the connection's state. For instance, you can't use a method that
sets a property in the HTTP request header after the connection has already been opened and the
header sent. Nor can you reopen a closed connection. Calling the wrong method at the wrong time
generally throws an IOException.

24.4.1. Getter Methods

Every Connection object begins with a URL. However, the HttpConnection interface adds several
methods that split that URL into its component parts. Generally speaking, URLs are composed of five
pieces:

The scheme, also known as the protocol

The authority

The path

The fragment identifier, also known as the ref

The query string

For example, in the URL http://www.example.com:8000/foo/bar/index.html? hl=en&q=test#p3, the
scheme is http, the authority is www.example.com:8000, the path is /foo/bar/index.html. the
fragment identifier is p3, and the query string is hl=en&q=test. The authority is often subdivided into
a host and a port, and the port is often omitted.

However, not all URLs have all these pieces. For instance, the URL
http://www.faqs.org/rfcs/rfc3986.html has a scheme, an authority, and a path but no fragment
identifier and no query string.

Five public methods provide read-only access to these parts of a URL: getFile(), getHost(),
getPort(), getProtocol(), geTRef(), and getQuery().

http://www.example.com:8000/foo/bar/index.html? hl=en&q=test#p3
http://www.faqs.org/rfcs/rfc3986.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The getProtocol() method returns a String containing the scheme of the URL. For example, this
fragment sets the protocol variable to "http":

HttpInputConnection connection = (HttpInputConnection)
 Connector.open("http://www.google.com/");
String protocol = connection.getProtocol();

In practice, this value is always "http" or "https", because no other URL scheme creates an
HttpConnection object.

The getHost() method returns a String containing the hostname of the URL. For example, in this
case, the host is www.google.com:

HttpInputConnection connection =
 (HttpInputConnection) Connector.open("http://www.google.com:80/");
String host = connection.getProtocol();

The getPort() method returns the port number specified in the URL as an int. If no port was
specified in the URL, getPort() returns 80 for HTTP and 443 for HTTPS.

The getFile() method returns a String that contains the path portion of a URL, not including the
fragment identifier or query string. For example, here the path is /Top/News/:

HttpInputConnection connection =
 (HttpInputConnection) Connector.open("http://www.google.com/Top/News/");
String path = connection.getFile();

If the URL does not have a path part, this method returns null.

The getref() method returns the fragment identifier. If the URL doesn't have a fragment identifier,
it returns null. In the following code, geTRef() returns the string aw2:

InputConnection connection = Connector.open(
 "http://www.google.com/search?hl=en&lr=&q=test#aw2");
String fragment = connection.getRef();

The getQuery() method returns the query string. If the URL doesn't have a query string, it returns
null. In the following code, getQuery() returns the string hl=en&lr=&q=test:

InputConnection connection = Connector.open(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "http://www.google.com/search?hl=en&lr=&q=test#aw2");
String query = connection.getQuery());

24.4.2. Configuring the HTTP Request Header

An HTTP request header precedes each request a browser sends to a server. For GET and HEAD
requests, this is the only content. POST requests are followed by the body of the request. A typical
GET request sent by HttpConnection looks like this:

GET /blog/feed HTTP/1.1
Host: www.elharo.com
Content-length: 0

For simple GET requests, the default header HttpConnection sends is fine. However, to POST data to
a web server, you'll need to change the method using setRequestMethod():

public void setRequestMethod(String method) throws IOException

You then use the connection's output stream to write the data.

DELETE, PUT, and other methods are not supported. This is a major hassle for
implementing RESTful systems like the Atom Publishing Protocol (APP) that
depend critically on PUT and DELETE.

The following code fragment connects to the service at http://www.example.org/cgi/postquery and
submits the query string color=blue&n=7. This is written onto the body of the HTTP request:

HttpConnection connection = null;
try {
 connection = (HttpConnection) Connector.open(
 "http://www.example.org/cgi/postquery");
 connection.setRequestMethod("POST");
 DataOutputStream out = connection.openDataOutputStream();
 out.writeUTF("color=blue&n=7");
 out.flush();
 InputStream in = connection.openInputStream();
 // read and process the response...
}
catch (Exception ex) {

http://www.example.org/cgi/postquery
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // handle exception...
}
finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) { /* Oh well. We tried.*/ }
}

Even if you're just using GET, you may need to modify the HTTP header to supply cookies, specify the
languages the user prefers to read, or indicate how fresh a cached copy is. This is done with the
setRequestProperty() method:

public void setRequestProperty(String key, String value)
 throws IOException
public String getRequestProperty(String key)

For example, this request sets the Accept header to indicate that XML is preferred but HTML is
accepted:

conn.setRequestProperty("Accept", "application/xml; text/xml; text/html");

There can be at most one header with any given key. Adding a second header with the same name
changes the value rather than adding a new value. It is the client's responsibility to make sure that
the strings passed here satisfy the requirements for HTTP headers (e.g., no line breaks in the name
or value). The HttpConnection class does not check for illegal values.

24.4.3. Reading the HTTP Response Header

HTTP servers provide a substantial amount of information in the header that precedes each response.
For example, here's a typical HTTP header returned by an Apache web server:

HTTP/1.1 200 OK
Date: Sun, 04 Dec 2005 16:15:16 GMT
Server: Apache/2.0.55 (Unix) mod_ssl/2.0.55 OpenSSL/0.9.7d PHP/5.0.5
X-Powered-By: PHP/5.0.5
Last-Modified: Sat, 03 Dec 2005 21:32:30 GMT
ETag: "f8dd0d8d4d24dc754b6a8aeab63ea0ac"
X-Pingback: http://www.elharo.com/blog/xmlrpc.php
Transfer-Encoding: chunked

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Content-Type: text/xml; charset=UTF-8

There's a lot of information there. In general, an HTTP header may include the content type of the
requested document, the length of the document in bytes, the character set in which the content is
encoded, the current date and time, the date the content expires, the date the content was last
modified, cookies, Etags, and more. However, the information depends on the server. Some servers
send all this information for each request, others send only some information, and a few don't send
anything. The methods discussed in this section allow you to query an HttpConnection to find out
what metadata the server provided.

The zeroth line of the response header is the status line. In this example, that's:

HTTP/1.1 200 OK

This consists of the HTTP version (HTTP/1.1), the response code (200), and the response message
(OK). The geTResponseCode() and getresponseMessage() methods return the response code and the
response message:

public int getResponseCode() throws IOException
public String getResponseMessage() throws IOException

These methods throw an IOException if the connection to the server failed.

Codes between 200 and 299 indicate success, codes between 300 and 399 indicate redirection, codes
between 400 and 499 indicate a client error, and codes between 500 and 599 indicate a server error.
The HttpConnection class provides named constants for many of these codes, such as
HttpConnection.HTTP_OK (200) and HttpConnection.HTTP_NOT_FOUND (404).

After the status line, the remainder of the header contains name/value pairs. The various
getHeaderFieldKey() methods return the names of the fields, and the getHeaderField() methods
return their values. You can iterate through these starting at zero:

public String getHeaderField(int n) throws IOException
public String getHeaderFieldKey(int n) throws IOException

If you know the name of the field you're looking for, you can ask for it directly:

public String getHeaderField(String name) throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If no such field is present in the response header, this method returns null.

Some fields have obvious interpretations as integers (Content-length, Age) or dates (Retry-after,
Last-modified). These two methods read the string value of the named field and convert it to the
desired type:

public int getHeaderFieldInt(String name, int default) throws IOException
public long getHeaderFieldDate(String name, long default) throws IOException

If the field is not present in the header or a conversion error occurs, these methods return the
second argument instead.

Three convenience methods read particularly common and useful headers (the date the document
was sent, the expiration date, and the last modified time):

public long getDate() throws IOException
public long getExpiration() throws IOException
public long getLastModified() throws IOException

Each returns a long measuring milliseconds since midnight, January 1, 1970. You can convert this
value to a java.util.Date. For example:

Date documentSent = new Date(connection.getDate());

This is the time the document was sent as seen from the server. It often won't match the time on the
client. If the HTTP header does not include the corresponding field, these methods return 0.

Example 24-4 displays the complete headers from a user-specified URL. The startApp() method
asks the user for a URL using a TextBox widget. Once the user enters one and activates the
corresponding command, getInfo() spawns threads that connect to the server, download the
headers, and display them. Networking, which may block, should not be done in the command
thread. Doing so can deadlock the MIDlet (and in fact did in one of my tests before I added the
separate thread).

Example 24-4. Display the HTTP response header

import java.io.IOException;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class HTTPInfo extends MIDlet implements CommandListener {
 private Display display;
 private TextBox textBox;
 private Form getInfo(String url) {
 Form form = new Form("HTTP Info");
 HttpConnection connection = null;
 try {
 connection = (HttpConnection) Connector.open(url);
 connection.setRequestMethod("HEAD");
 for (int i = 0; ; i++) {
 String key = connection.getHeaderFieldKey(i);
 String value = connection.getHeaderField(i);
 if (value == null) break;
 if (key != null) form.append(key + ": " + value + "\n");
 else form.append("***" + value + "\n");;
 }
 }
 catch (Exception ex) {
 form.append(ex.getMessage() +"\n");
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) { /* Oh well. we tried.*/ }
 }
 return form;
 }
 public void startApp() {
 display = Display.getDisplay(this);
 if (textBox == null) {
 textBox = new TextBox("URL", "http://", 255, TextField.URL);
 }
 display.setCurrent(textBox);
 Command getInfo = new Command("HTTP Headers", Command.OK, 10);
 textBox.addCommand(getInfo);
 textBox.setCommandListener(this);
 }
 public void commandAction(Command command, Displayable displayable) {
 Thread t = new Thread (
 new Runnable() {
 public void run() {
 display.setCurrent(getInfo(textBox.getString()));
 }
 }
);
 t.start();
 }
 protected void pauseApp() {}
 protected void destroyApp(boolean unconditional) {}
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 24-4 shows the headers from http://www.google.com. The content type of the file at
http://www.google.com is text/html. No content encoding was used, but the transfer encoding was
chunked. A cookie that expires more than three decades in the future was fed to the phone. The
server is Google Web Server 2.1. (Google uses its own custom web server to support its very high-
volume site.)

Figure 24-4. The header MIDlet

http://www.google.com
http://www.google.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.5. Serial I/O

Serial ports are older technology. However, they're still found on a lot of equipment that might want
to run or communicate with J2ME devices, such as multimeters, GPS receivers, printers, ham radios,
and more. Furthermore, sometimes other less standard ports are made to look like serial ports to the
operating system. For instance, some i-mate smart phones have an SDIO port that's mapped to a
virtual serial port on COM7. IRDA infrared devices are also often treated as RS-232 serial ports.

MIDP 2.0 includes a CommConnection subinterface of StreamConnection suitable for talking to devices
hooked up to serial ports. It is actually quite a bit easier to use than the Java Communications API
discussed in Chapter 22.

public interface CommConnection extends StreamConnection

Not all small devices have serial ports, so not all support CommConnection even if they support MIDP
2.0. You can test for the presence of CommConnection by checking the microedition.commports
system property. If it is nonnull, comm connections are supported:

if (System.getProperty("microedition.commports") != null) {
 //...
}

There's no standard form for a serial port URL, so one was invented. The scheme is comm, followed
by the port number, followed by any parameters. For example, these are all serial port URLs:

comm:1

comm:1;baudrate=9600

comm:7;baudrate=19200;parity=even;autorts=on;blocking=off;bit_value=7

comm:irda;baudrate=19200

The host device defines the logical port names that follow the scheme. More often than not, these are
just simple numbers: 1 for COMM port 1, 2 for COMM port 2, and so on. However, some devices may
use more descriptive names. Sometimes COM1, COM2, and so forth are used for genuine RS-232
ports while IR1, IR2, and so on are used for IRDA ports. The microedition.commports system
property contains a comma-separated list of all the identifiers valid for the current host.

The name/value parameters that follow the port name are just the standard serial port options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discussed previously in Chapter 22. Table 24-1 summarizes them.

Table 24-1. Serial port URL parameters

Parameter Default Description Values

baudrate
Device
dependent

Port speed in bits per second.
300 to
238400

bitsperchar 8 Bits per character. 7 or 8

stopbits 1 Stop bits per character. 1 or 2

parity none
An extra bit in each byte used as a simple error-detection
mechanism.

odd, even,
or none

blocking on Wait for a full buffer when reading. on or off

autocts on Wait for the CTS line to be on before writing. on or off

autorts on
Ask for permission to send by turning on the RTS line
before writing; normally used in conjunction with autocts.

on or off

To open a connection to a serial port-attached external device, just pass a URL configured with the
necessary parameters to the usual Connector.open() method. For example, this opens a connection
to the device attached to serial port 0 with a 9,600-baud rate:

Connection conn = Connector.open("comm:0;baudrate=9600");

Mostly, you just use the input streams and output streams returned by openInputStream() and
openOutputStream() to talk to serial ports. CommConnection adds only two methods beyond those
defined in StreamConnection, getBaudRate() and setBaudRate():

public int getBaudRate()
public int setBaudRate(int baudrate)

If the URL did not specify a baud rate, getBaudRate() lets you determine the default speed for the
device. setBaudRate() lets you change this speed. Not all speeds are available for any given device.
If you try to set an unsupported speed, setBaudRate() may throw an exception, or it may pick a
supported speed instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.6. Sockets

SocketConnection is a basic StreamConnection for network communications. It works much like
HttpConnection. However, it has no particular understanding of HTTP or any other protocol. It just
opens a standard TCP socket to a specified host and relies on your code to tell it what to do with the
input and output from that host.

Socket URLs look like this:

socket://server.example.com:13

This indicates a TCP connection to server.example.com on port 13.

Opening SocketConnection is straightforward and works much like opening any other sort of
connection:

Connection connection = Connector.open("socket://rama.poly.edu:13");

If you don't need to set any special socket options, you can use one of the four open stream
methods, and proceed as you would with any other connection. Example 24-1 used the socket
protocol.

Most of the time that's all you need. However, SocketConnection does have six unique methods of its
own. To use these, you must first cast the connection object returned by open() to
SocketConnection:

SocketConnection socket = (SocketConnection) connection;

24.6.1. Getters

First, there are four getter methods that return the address and port of the remote and local hosts
the socket connects:

public String getAddress() throws IOException
public int getPort() throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getLocalPort() throws IOException
public String getLocalAddress() throws IOException

J2ME doesn't include the InetAddress class, so the host addresses are all returned as strings like
"192.168.254.100" or "FEDC::DC:0:7076:10". There's no method to get the hostname, because
devices where J2ME runs are unlikely to have hostnames.

These methods all throw an IOException if the socket has been closed.

24.6.2. Socket Options

J2ME devices often have different network characteristics than typical desktop and server systems.
They may have very limited, unreliable, or sporadic bandwidth. As a result, it may be important to
change socket options to better fit the characteristics of the network. The getSocketOption() and
setSocketOption() methods enable this:

public void setSocketOption(byte option, int value)
 throws IllegalArgumentException, IOException
public int getSocketOption(byte option)
 throws IllegalArgumentException, IOException

Socket options must be set before the socket is connected; that is, before you ask a connection for
its input or output stream.

J2ME recognizes five socket options, each referenced as a named constant in the SocketConnection
class:

SocketConnection.DELAY

Nonzero to enable Nagle's algorithm; zero to disable Nagle's algorithm

SocketConnection.LINGER

Number of seconds to wait before closing a connection with pending data to write

SocketConnection.KEEPALIVE

Nonzero to enable keepalive; zero to disable keepalive

SocketConnection.SNDBUF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Size in bytes of the send buffer

SocketConnection.RCVBUF

Size in bytes of the receive buffer

Picking an option not in this list throws an IllegalArgumentException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.7. Server Sockets

While PDAs, cell phones, and MP3 players are more likely to act as clients than servers, the opposite
is true for refrigerators, laboratory sensors, hotel door locks, and similar embedded devices. The
natural mode of operation for these devices is to run a server providing their current status
information that interested clients can query. The ServerSocketConnection class meets these needs.

Server socket URLs look like socket://:13. All you have to specify is the port to listen on (13, in this
example).

The fundamental operation of a server socket is to listen for and accept incoming connections. Server
sockets themselves do not send or receive data. The ServerSocketConnection class does not extend
StreamConnection, and you cannot use Connector's open stream methods to open one. You must
open the connection and cast it to ServerSocketConnection:

ServerSocketConnection server
 = (ServerSocketConnection) Connector.open("socket://:37");

Next, you invoke the acceptAndOpen() method to receive an incoming connection:

public StreamConnection acceptAndOpen() throws IOException

You can then use the methods of StreamConnection to communicate with the remote client.

The acceptAndOpen() method blocks while waiting for incoming connections. You probably want to
put it in a separate thread.

Example 24-5 demonstrates with a simple J2ME time server. The time protocol responds to each
incoming connection by sending it the current time at the server. The time is measured in seconds
since midnight, January 1, 1900. It is represented as a 4-byte big-endian unsigned int. Java doesn't
have unsigned data types, so the program has to do the calculations using longs and then select the
low-order four bytes of the resulting number manually. There's no local interface here. The startApp(
) method spawns a thread that constantly listens for incoming connections, responds to each one,
and then closes the connections.

Example 24-5. A J2ME time server client using the
ServerSocketConnection class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import java.io.*;
import java.util.Date;
public class TCPTimeServer extends MIDlet {
 private ServerSocketConnection server;
 // The time protocol sets the epoch at 1900,
 // the java Date class at 1970. This number
 // converts between them.
 private long differenceBetweenEpochs = 2208988800L;
 protected void startApp() {
 try {
 server = (ServerSocketConnection) Connector.open("socket://:37");
 Runnable r = new Runnable() {
 public void run() {
 while (true) {
 try {
 StreamConnection conn = server.acceptAndOpen();
 Date now = new Date();
 long msSince1970 = now.getTime();
 long secondsSince1900 = msSince1970/1000L + differenceBetweenEpochs;
 DataOutputStream out = conn.openDataOutputStream();
 // write the low-order four bytes
 out.write((int) ((secondsSince1900 >>> 24) & 0xFFL));
 out.write((int) ((secondsSince1900 >>> 16) & 0xFFL));
 out.write((int) ((secondsSince1900 >>> 8) & 0xFFL));
 out.write((int) (secondsSince1900 & 0xFFL));
 out.close();
 }
 catch (IOException ex) {
 }
 }
 }
 };
 Thread t = new Thread(r);
 t.start();
 }
 catch (IOException ex) {
 // not much we can do about this here
 }
 }
 protected void pauseApp() {}
 protected void destroyApp(boolean unconditional) {
 try {
 server.close();
 }
 catch (IOException ex) {
 // We tried
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can omit the port in the connector URL. That is, socket://: is an acceptable URL to open a server
socket. If you omit the port, Java picks any available port to start listening on. You can find out which
port it chose with the getLocalPort() method:

public int getLocalPort() throws IOException

You can also find out the local IP address using the getLocalAddress() method:

public String getLocalAddress() throws IOException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.8. Datagrams

The connections we've talked about up to now have all been stream connections. However, just as in
J2SE, UDP is a notable exception. UDP, whether implemented through standard I/O or the Generic
Connection Framework, just isn't suited to a stream metaphor. In GCF, UDP is handled through the
DatagramConnection and Datagram classes. These take the place of DatagramSocket and
DatagramPacket in J2SE. Like the socket protocol, support for UDP and the datagram protocol is
optional. Some devices support it; some don't.

24.8.1. Datagram URLs

Datagram URLs take two forms. Client URLs for sending data look like this:

datagram://server.example.com:2546

This indicates a UDP connection to server.example.com on port 2546.

Datagram server URLs for receiving data look like this:

datagram://:2546

This indicates a server listening for incoming UDP datagrams on port 2546. Datagram URLs do not
have any path or parameters. In theory, other schemes could be used to support different kinds of
datagrams, such as raw IP or USB datagrams. However, I'm unaware of any such implementations.

Opening a DatagramConnection is straightforward and works much like opening any other sort of
connection:

Connection connection = Connector.open("datagram://rama.poly.edu:13");

This method will throw a ConnectionNotFoundException if the device does not support UDP.

You cannot use Connector.openInputStream() and Connector.openOutputStream() methods with
datagram URLs because these protocols don't support streaming. For the same reason, the
connection returned by open() is neither an input nor an output connection. Instead, it should be
cast to DatagramConnection:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatagramConnection dgramConnection = (DatagramConnection) connection;

The DatagramConnection interface provides methods for creating new datagrams and for sending and
receiving datagrams:

public void send(Datagram dgram) throws IOException
public void receive(Datagram dgram) throws IOException
public Datagram newDatagram(int size) throws IOException
public Datagram newDatagram(int size, String address) throws IOException
public Datagram newDatagram(byte[] buffer, int size) throws IOException
public Datagram newDatagram(byte[] buffer, int size, String address)
 throws IOException

It also has two methods that return the maximum and expected length of each datagram:

public int getMaximumLength() throws IOException
public int getNominalLength() throws IOException

To send datagrams to a server:

Open a connection with a datagram URL such as datagram://server.example.com:13.1.

Cast the connection object to DatagramConnection.2.

Pass the data to send, the length of the data, and the address to newDatagram(). Check
getMaximumLength() to make sure you don't overflow the datagram.

3.

Pass the resulting Datagram object to the send() method.4.

To receive datagrams sent by a server:

Open a connection with a datagram URL such as datagram://:13.1.

Cast the connection object to DatagramConnection.2.

Pass the length of the data to receive to newDatagram().3.

Pass the resulting Datagram object to the receive() method. This method blocks until some
data is received.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Read the content received out of the Datagram.5.

In both server and client mode, datagrams are represented by instances of the Datagram interface
summarized below. This interface includes methods for putting data in a datagram to send and
getting data out of a received datagram. Besides the ones listed here, it has all the methods of
DataInput and DataOutput, such as readInt(), writeInt(), readChar(), writeChar(), and so
forth.

public interface Datagram extends DataInput, DataOutput {
 public String getAddress()
 public byte[] getData()
 public int getLength()
 public int getOffset()
 public void setAddress(String address) throws IOException
 public void setAddress(Datagram reference)
 public void setLength(int lenght)
 public void setData(byte[] buffer, int offset, int length)
 public void reset()
}

Example 24-6 is a UDP time client. This needs to function as both a sender and a receiver. First it
sends a packet of data to the server at time-a.nist.gov on port 37. (The contents of this packet don't
matter.) The server responds with the current time represented as a 4-byte unsigned big-endian
integer. Of course, since UDP is unreliable, there's no guarantee the server response will arrive.
Consequently, I set a timer that grabs the time from the local clock and shuts down the MIDlet if no
response is received within 60 seconds.

Example 24-6. A J2ME UDP time client

import java.io.IOException;
import java.util.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
public class TimeClient extends MIDlet {

 private Form form;
 private final String server = "datagram://time-a.nist.gov:37";
 public TimeClient() {
 form = new Form("TimeClient");
 form.append("The time is\n");
 Display.getDisplay(this).setCurrent(form);
 }
 protected void startApp() {
 Timer timer = new Timer();
 TimerTask task = new TimerTask() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void run() {
 form.append(new Date().toString());
 destroyApp(true);
 TimeClient.this.notifyDestroyed();
 }
 };
 timer.schedule(task, 60000); // 60 seconds from now
 byte[] ping = {(byte) 50}; // any byte will do
 DatagramConnection connection = null;
 try {
 connection = (DatagramConnection) Connector.open(server);
 Datagram dgram = connection.newDatagram(ping, ping.length);
 Datagram response = connection.newDatagram(4);
 connection.send(dgram);
 connection.receive(response);
 byte[] result = response.getData();
 if (result.length != 4) {
 form.append("Unrecognized response format");
 return;
 }
 long differenceBetweenEpochs = 2208988800L;
 long secondsSince1900 = 0;
 for (int i = 0; i < 4; i++) {
 secondsSince1900 = (secondsSince1900 << 8) | (result[i] & 0x000000FF);
 }
 long secondsSince1970 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);
 form.append(time.toString() + "\n");
 }
 catch (IOException ex) {
 Alert alert = new Alert("UDP Error");
 alert.setTimeout(Alert.FOREVER);
 alert.setString(ex.getMessage());
 Display.getDisplay(this).setCurrent(alert, form);
 }
 finally {
 timer.cancel();
 try {
 if (connection != null) connection.close();
 }
 catch (IOException ex) {
 }
 }
 }
 protected void pauseApp() {}
 protected void destroyApp(boolean unconditional) {}
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have trouble getting this program to show the time, make sure your firewall is not blocking
UDP traffic or try using a time server on your local subnet instead.

A server is no harder to implement. The primary difference is that it simply waits for incoming
packets and then responds to each one immediately. It doesn't need to worry about timeouts.
Example 24-7 demonstrates.

Because this example listens on a port below 1024, it may need root privileges
to run on Unix-derived systems such as Linux and Mac OS X, even in an
emulator. It should run without trouble on most actual MIDP devices and
Windows.

Example 24-7. A J2ME UDP time server

import java.io.IOException;
import java.util.Date;
import javax.microedition.io.*;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.Display;
import javax.microedition.midlet.*;
public class TimeServer extends MIDlet {
 protected void startApp() {
 DatagramConnection connection;
 try {
 connection = (DatagramConnection) Connector.open("datagram://:37");
 Datagram incoming = connection.newDatagram(128);
 Datagram response = connection.newDatagram(4);
 while (true) {
 try {
 connection.receive(incoming);
 response.reset();
 response.setAddress(incoming);
 response.setData(getTime(), 0, 4);
 connection.send(response);
 incoming.reset();
 }
 catch (IOException ex) {
 // As long as it's just an error on this one connection
 // we can ignore it
 }
 }
 }
 catch (IOException ex) {
 // If we can't open the channel, put up an Alert
 Alert alert = new Alert("UDP Error");
 alert.setTimeout(Alert.FOREVER);
 alert.setString("Could not connect to port 37. Needs root privileges?");
 Display.getDisplay(this).setCurrent(alert);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 private byte[] getTime() {
 byte[] result = new byte[4];
 Date now = new Date();
 // The time protocol uses an unsigned 4-byte int, so we have
 // to do all the arithmetic with longs and then extract the
 // four low-order bytes
 long secondsSince1970 = now.getTime()/1000;
 long differenceBetweenEpochs = 2208988800L;
 long secondsSince1900 = differenceBetweenEpochs + secondsSince1970;
 result[0] = (byte) ((secondsSince1900 & 0xFF000000) >>> 24);
 result[1] = (byte) ((secondsSince1900 & 0xFF0000) >>> 16);
 result[2] = (byte) ((secondsSince1900 & 0xFF00) >>> 8);
 result[3] = (byte) (secondsSince1900 & 0xFF);
 return result;
 }
 protected void pauseApp() {}
 protected void destroyApp(boolean unconditional) {}
}

This example is perhaps not as artificial as it might seem at first glance. I could easily see adding a
time server to a digital clock or a smart appliance that includes a clock, such as a microwave. It could
then provide time services to other devices on the LAN. This would be a very nice use for J2ME.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 25. Bluetooth
Nothing's so dated as yesterday's futurism. In 1993, naming a high-tech magazine "Wired" must
have seemed really hip. Today, "wired" devices are yesterday's tech. No one wants a mess like the
one in Figure 25-1, but everyone's got one...although slowly that's starting to change. Network,
speaker, microphone, mouse, and keyboard connections are already going wireless. Disks, cameras,
and monitors will follow soon. By the end of this decade, most systems should have a power cord and
nothing more. By 2020, even the power cord might vanish. It's obvious the future belongs to
wireless. After all, every cable you can remove from your system is one less leash tethering you to
your desk. 802.11 is de rigueur for notebooks and increasingly common in desktops. Cell phones let
us communicate from anywhere. Infrared gave rise to the clicker and freed us from commercials.
Bluetooth is rapidly becoming the preferred way to connect computers to low-bandwidth peripherals
like keyboards, mice, and remote controls.

Figure 25-1. A typical wired system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.1. The Bluetooth Protocol

Bluetooth connects devices wirelessly in ranges of 1 to 100 meters, depending on power. There are
several versions of Bluetooth: 1.0, 1.1, 1.2, and 2.0. (The Java API for accessing a Bluetooth device
is the same regardless of version.) Bluetooth 1.0, 1.1, and 1.2 devices can reach speeds of 723
kilobits per second. Version 2.0 accelerates this to 2.1 megabits per second. In other words,
Bluetooth is fast enough for network devices, but not fast enough for disk drives and monitors.

Because Bluetooth is wireless, it is less secure than wired alternatives such as USB connections
(which themselves aren't as secure as is often thought). With the right equipment, it's possible to
sniff Bluetooth communications one isn't meant to access. To prevent this, pairs of devices may
require a shared secret passkey and may encrypt data passed back and forth between them.
However, many devices don't bother to do this.

Each Bluetooth controller can talk to up to seven different Bluetooth devices in a "master/slave"
configuration. Among the eight devices, each device takes a turn at being the master while the other
seven are slaves, in rotating order. The master is responsible for picking frequencies on which to
communicate and deciding when to change them. The group of devices, one master and up to seven
slaves, is called a piconet . In the future, it may be possible for piconets to be joined in larger
scatternets . However, this is not yet possible.

Each Bluetooth device has a fixed 6-byte address, such as 00-13-c2-00-0d-23 or 00-0a-95-09-5a-
59. Theoretically this address is unique, but conflicting addresses have shipped in real products. Each
device also has a more human-friendly name, such as "elharo's mouse" or "WACOM pen tablet."
Users and manufacturers can change the names, and name conflicts are possible.

Every device also has a 3-byte class identifier that is divided into four parts, as shown in Figure 25-2:

The first two bits are always 0.

The next six bits are a little-endian int for the minor device class.

The next five bits are a little-endian int for the major device class.

The final 11 bits are flags identifying the type of the device. For instance, if bit 22 is 1, it's a
telephony device. If it's 0, it isn't.

Figure 25-2. Bluetooth class identifier layout, in big-endian form as seen
by Java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The currently defined major device class codes are shown in Table 25-1. Note that the numbers given
are as Java reports them. Bits 812 define the major class. However, rather than interpreting this as a
5-bit number, Java represents it as a 13-bit number in which the low-order eight bits are always 0.
(If you prefer, you can think of this as a 32-bit number in which all bits except 812 are 0.)

Other Bluetooth APIs in other languages can and do provide different
representations of the bit patterns in the class identifier shown in Figure 25-2.
For instance, the Apple System Profiler presents major device classes as
numbers from 0 to 31 (5-bit unsigned ints) instead of numbers from 0 to 7936.
The following tables are valid for the Java Bluetooth API. They may not be valid
in other environments.

Table 25-1. Bluetooth major device classes

Decimal Hexadecimal Device type

0 0x0000 Miscellaneous devices

256 0x0100 Computers and PDAs

512 0x0200 Phones, including modems and faxes

768 0x0300 LAN adapters, routers, and network access points

1024 0x0400 Audio/video devices (headsets, speakers, televisions, DVRs, etc.)

1280 0x0500 Input peripherals (mice, joysticks, keyboards, graphics tablets, etc.)

1536 0x0600 Imaging devices (printers, scanners, cameras, monitors, etc.)

1792 0x0700 Wearable devices

2048 0x0800 Toys

7936 0x1F00
Uncategorized: anything for which the Bluetooth Special Interest Group
(SIG) has not yet defined a standardized code (e.g., GPS locators or
laboratory probes)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Minor device class codes depend on the major code. For example, the peripherals class has the 10
minor device classes shown in Table 25-2. Although the minor device class code is logically a 6-bit
number, Java represents it as a 1-byte number, the first two bits of which are always 0.

Table 25-2. Bluetooth peripheral minor device classes

Decimal Hexadecimal Type

0 0x00 Uncategorized

4 0x04 Joystick

8 0x08 Gamepad

12 0x0C Remote control

16 0x10 Sensing device

20 0x14 Digitizer tablet

24 0x18 Card reader

64 0x40 Keyboard

128 0x80 Pointing device (mouse, trackball, etc.)

192 0xC0 Keyboard/mouse combination (0x80 | 0x40)

While each device has exactly one major class and exactly one minor class, a device may support
multiple services. For instance, a combination cell phone/PDA might be both a telephony device and
an object transfer device. Table 25-3 lists the service classes and their associated bit fields. Each
service a device supports is indicated a by a single bit in the class identifier. Java reports this as a 24-
bit number in which the first 13 bits are always 0.

Table 25-3. Bluetooth service classes

Bit Decimal Hexadecimal Service class

13 8192 0x2000 Reserved

14 16384 0x4000 Reserved

15 32768 0x8000 Reserved

16 65536 0x10000 Positioning

17 131072 0x20000 Networking

18 262144 0x40000 Rendering

19 524288 0x80000 Capturing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bit Decimal Hexadecimal Service class

20 1048576 0x100000 Object Transfer

21 2097152 0x200000 Audio

22 4194304 0x400000 Telephony

23 8388608 0x800000 Information

For example, a GPS-enabled cell phone would have the major class 0x0200 and the minor class 0x04
and would support the positioning (0x10000) and telephony (0x400000) services. Therefore, its class
ID would be 0x0200 | 0x04 | 0x10000 | 0x400000, or 0x410204.

Many devices support one or more standard profiles that offer particular types of services. These
include the Serial Port Profile for streaming connections, the Basic Printing, Video Conferencing, File
Transfer, Cordless Telephony, Fax, and Personal Area Network Profiles, and several dozen more.

Each profile communicates using a specified protocol. The lowest-level protocol is a packet-based
protocol called the Logical Link Control and Adaptation Protocol (L2CAP). This is analogous to IP in
the TCP stack. That is, other higher-level protocols are built on top of L2CAP and provide additional
services. For instance, the RFCOMM protocol assembles L2CAP packets into input and output
streams. If L2CAP is like IP, RFCOMM is like TCP. The Object Exchange (OBEX) protocol is a still
higher-level protocol for exchanging binary data over RFCOMM. Stretching the analogy to the
breaking point, if L2CAP is IP and RFCOMM is TCP, OBEX is HTTP. Different profiles and devices can
plug into this stack wherever they find convenient, as shown in Figure 25-3. The Java Bluetooth API
supports all three. There are also several additional protocols the Java Bluetooth API does not
support, such as Bluetooth Network Encapsulation (BNEP) and the A/V Control Protocol.

Figure 25-3. Bluetooth protocol stack

20 1048576 0x100000 Object Transfer

21 2097152 0x200000 Audio

22 4194304 0x400000 Telephony

23 8388608 0x800000 Information

For example, a GPS-enabled cell phone would have the major class 0x0200 and the minor class 0x04
and would support the positioning (0x10000) and telephony (0x400000) services. Therefore, its class
ID would be 0x0200 | 0x04 | 0x10000 | 0x400000, or 0x410204.

Many devices support one or more standard profiles that offer particular types of services. These
include the Serial Port Profile for streaming connections, the Basic Printing, Video Conferencing, File
Transfer, Cordless Telephony, Fax, and Personal Area Network Profiles, and several dozen more.

Each profile communicates using a specified protocol. The lowest-level protocol is a packet-based
protocol called the Logical Link Control and Adaptation Protocol (L2CAP). This is analogous to IP in
the TCP stack. That is, other higher-level protocols are built on top of L2CAP and provide additional
services. For instance, the RFCOMM protocol assembles L2CAP packets into input and output
streams. If L2CAP is like IP, RFCOMM is like TCP. The Object Exchange (OBEX) protocol is a still
higher-level protocol for exchanging binary data over RFCOMM. Stretching the analogy to the
breaking point, if L2CAP is IP and RFCOMM is TCP, OBEX is HTTP. Different profiles and devices can
plug into this stack wherever they find convenient, as shown in Figure 25-3. The Java Bluetooth API
supports all three. There are also several additional protocols the Java Bluetooth API does not
support, such as Bluetooth Network Encapsulation (BNEP) and the A/V Control Protocol.

Figure 25-3. Bluetooth protocol stack

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.2. The Java Bluetooth API

The Java Bluetooth API is designed to run in J2ME environments: cell phones, PDAs, and the like. In
particular, it requires the Connected Limited Device Configuration (CLDC) with at least 512K of
memory available to Java. It also requires vendor support. Currently, almost all the devices that
support the Java Bluetooth API are mobile phones. At the time of this writing, they include the
Motorola A1000; several Nokia phones, including the 6260; the Sony Ericsson P900, P908, and P910;
and the Siemens S65, S66, and SK65.

The Java Bluetooth API supports four (out of a couple of dozen) Bluetooth profiles:

Generic Access Profile (GAP)

Supplies the bare minimum of functionality all other services require

Service Discovery Application Profile (SDAP)

Enables clients to find out which services the device supports

Serial Port Profile (SPP)

Uses the RFCOMM protocol to emulate an RS-232 serial port

Generic Object Exchange Profile (GOEP)

Uses OBEX to transfer data such as contact databases, pictures, and phone logs between
devices

These primarily enable networking use cases such as uploading pictures from camera phones and
downloading games to phones. The Java Bluetooth API doesn't support any of the other profiles, such
as the Advanced Audio Distribution Profile or the Basic Printing Profile. However, many of these
services may be available through other APIs and the host operating system.

In many cases, Java doesn't care whether a device is connected via Bluetooth,
USB, the network, or something else. Java treats a Bluetooth mouse or
keyboard the same as it does one plugged into the serial port or a USB hub. A
Bluetooth LAN adapter can be accessed via the Generic Connection Framework
(GCF). A Bluetooth printer may be accessible through the Java Printing API.
Direct Bluetooth connections are usually necessary only for relatively special-
purpose devices, like GPS receivers and laboratory thermometers that don't
have existing Java drivers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.2.1. UUIDs

Bluetooth uses Universal Unique Identifiers (UUIDs) to identify protocols and service classes. A UUID
is a 128-bit number that is almost certainly unique among other 128-bit numbers, barring deliberate
attempts to create clashes. For example, the UUID for the RFCOMM protocol is
0x0000000300001000800000805F9B34FB.

Because space is at a premium in many Bluetooth devices, many services are identified with only 16
or 32 bits rather than the full 128 a UUID requires. For example, the 16-bit UUID for the RFCOMM
protocol is 0x0003. The Bluetooth specification converts these shortened UUIDs into full 128-bit
UUIDs by starting with the 16-byte base address 0000-0000-0000-1000-8000-0080-5F9B-34FB (in
hexadecimal) and then replacing the third and fourth bytes with the two bytes of the 16-bit UUID.

The javax.bluetooth.UUID class recognizes all three widths of UUID (16-bit, 32-bit, and 128-bit) and
can convert between them as necessary. Most methods in the Bluetooth API that take a UUID as an
argument expect to see it in the form of a UUID object rather than a string or a number.

Java 5 added a java.util.UUID class that conflicts with this class. Normally,
Bluetooth applications should use only javax.bluetooth.UUID. If it's necessary
to use both types in the same class, be sure to use fully qualified package
names for both.

To create a Bluetooth-savvy UUID, just use one of these two constructors:

public UUID(long uuidValue)
public UUID(String uuidValue, boolean shortUUID)

The first constructor is used for the 16- and 32-bit short forms of UUIDs. A long is ironically not long
enough (at 64 bits) for a full 128-bit UUID, so just pass a String argument containing its
hexadecimal form to the second constructor instead and pass false for the second argument. Pass
TRue for the second argument if the first argument uses the short form.

Other than these constructors, this UUID class merely defines the usual equals(), hashCode(), and
toString() methods, which are used to properly compare the short and long UUIDs.

25.2.2. The Bluetooth Control Center

One of the least well-defined parts of the Java Bluetooth API is the Bluetooth Control Center (BCC).
The BCC is a class, program (possibly native), default set of properties, or something that enables
the user, vendor, or developer to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specify security preferences.

List previously known remote Bluetooth devices.

List trusted remote Bluetooth devices.

Pair two devices.

Authorize connection requests.

Some BCCs offer additional functionality, such as changing the Bluetooth device name, setting
timeouts, resetting devices, initializing the stack, and listing the services on the local device.

The Java Bluetooth API specification deliberately doesn't say much about what the BCC really is. It
varies from one implementation to the next. It can even be a fixed set of unchangeable defaults
compiled into the implementation-specific code.

25.2.3. Initialization

There are many different implementations of the Java Bluetooth API from many different vendors.
Atinav has one. Rococo has one. Blue Cove has an open source implementation, and there are
others. Some run on PDAs and cell phones. Some run on standard desktop hardware. They are
available for a variety of operating systems, including Linux, Windows, Mac OS X, Palm OS, PocketPC,
and Symbian OS. While working on this chapter, I mostly used Avetana GMBH's implementation from
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml. An open source version of this
stack for Linux can be found at http://sourceforge.net/projects/avetanabt/.

Some of these implementations require initialization before any of the classes and methods discussed
in this chapter will work. This initialization is normally done once in any given program. For example,
if you're using Atinav's aveLink BT SDK for Java, you have to place the following static initializer block
in the class that starts the application:

static {
 BCC.setPortNumber("COM1");
 BCC.setBaudRate(57600);
 BCC.setConnectable(true);
 BCC.setDiscoverable(DiscoveryAgent.GIAC);
}

In this implementation, BCC is the class that represents the Bluetooth Control Center. However, this
part varies from one implementation to the next. You'll need to consult the documentation for your
implementation. (One of the nice features of the Avetana implementation is that it's self-initializing.
No explicit initialization is required.) This means most code you write will have at least some
platform-dependent details.

http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
http://sourceforge.net/projects/avetanabt/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.3. The Local Device

Most systems you're likely to encounter have at most one Bluetooth controller. This is represented by
the singleton class javax.bluetooth.LocalDevice :

public class LocalDevice extends java.lang.Object

The static LocalDevice.getLocalDevice() method returns the single LocalDevice object that
represents the host controller:

public static LocalDevice getLocalDevice() throws BluetoothStateException

This method never returns null. If the local system does not have a Bluetooth device, or if the
Bluetooth hardware cannot be initialized, this method throws a BluetoothStateException, a subclass
of IOException.

The LocalDevice class has a number of getter methods to query the controller and two methods for
making the device discoverable (or not) and updating the device's service records.

The getBluetoothAddress() method returns a String containing the 6-byte Bluetooth address of the
controller:

public String getBluetoothAddress()

The address is a string of 12 hex digits, such as 000D930D11B3. This isn't very nice for display to the
end user, so there's also a getFriendlyName() method that returns a more human-legible name:

public String getFriendlyAddress()

Example 25-1 is a simple program that uses these two methods to list information about the host
system.

Example 25-1. Talking to the Bluetooth controller

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.bluetooth.*;
public class BluetoothTest {
 public static void main(String[] args) throws Exception {
 LocalDevice device = LocalDevice.getLocalDevice();
 System.out.print(device.getFriendlyName() + " at ");
 System.out.print(device.getBluetoothAddress());
 System.exit(0);
 }
}

Loading the Bluetooth libraries sometimes spawns a nondaemon thread, so it's necessary to call
System.exit() to force the program to quit (much the same as when using AWT classes).

Example 25-1 won't run with just the standard JDK. You'll need to have a JSR 82 implementation in
your classpath. For example, here's how I compile and run this program on my PowerMac G5:

$ javac -classpath .:avetanaBluetooth.jar BluetoothTest.java
$ java -classpath .:avetanaBluetooth.jar BluetoothTest
avetanaBluetooth version 1.3.1
Local name eliza
Local address 00-0d-93-0d-11-b3
Device class 0
Possibilities array 3F
License-ID 1498
eliza at 000D930D11B3

The first six lines are just random junk the particular JSR 82 implementation I'm using spews. The
last line is the actual output from the program. In upcoming examples, I'll omit Avetana's
initialization info.

A word to library vendors everywhere: libraries should never talk to the end
user unless the client application tells them to, whether via System.out, a GUI,
or any other mechanism. The client application should have complete control of
the computer's interaction with the end user.

25.3.1. Properties

LocalDevice's getProperty() method returns a named Bluetooth property:

public static String getProperty(String property)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These 10 properties are defined in all devices:

bluetooth.api.version

The version of the Java API for Bluetooth wireless technology (currently 1.0)

bluetooth.master.switch

Whether slaves and masters can exchange roles (either TRue or false)

bluetooth.sd.attr.retrievable.max

The maximum number of service attributes in each service record

bluetooth.connected.devices.max

The maximum number of simultaneously connected devices

bluetooth.l2cap.receiveMTU.max

The maximum receive MTU size in L2CAP

bluetooth.sd.trans.max

The maximum number of simultaneous service discovery transactions

bluetooth.connected.inquiry.scan

Whether inquiry scanning is allowed during connection (either true or false)

bluetooth.connected.page.scan

Whether page scanning is allowed during connection (either true or false)

bluetooth.connected.inquiry

Whether inquiry is allowed during connection (either true or false)

bluetooth.connected.page

Whether a connection can be established to a device that is already connected to another

http://lib.ommolketab.ir
http://lib.ommolketab.ir

device (either TRue or false)

If this were primarily a J2SE API, each of these values might well be a separate method call.
However, since space is at premium in the J2ME environments for which the Java Bluetooth API was
designed, it pays to compress them all into one method. This approach is also more extensible, since
particular JSR 82 implementations may define additional properties as well.

Example 25-2 is a simple program that prints the values of the 10 standard properties of the local
system.

Example 25-2. Listing the properties of the local device

import javax.bluetooth.*;
public class BluetoothProperties {
 public static void main(String[] args) throws Exception {
 LocalDevice device = LocalDevice.getLocalDevice();
 System.out.println("API version: "
 + device.getProperty("bluetooth.api.version"));
 System.out.println("bluetooth.master.switch: "
 + device.getProperty("bluetooth.master.switch"));
 System.out.println("Maximum number of service attributes: "
 + device.getProperty("bluetooth.sd.attr.retrievable.max"));
 System.out.println("Maximum number of connected devices: "
 + device.getProperty("bluetooth.connected.devices.max"));
 System.out.println("Maximum receive MTU size in L2CAP: "
 + device.getProperty("bluetooth.l2cap.receiveMTU.max"));
 System.out.println(
 "Maximum number of simultaneous service discovery transactions: "
 + device.getProperty("bluetooth.sd.trans.max"));
 System.out.println("Inquiry scanning allowed during connection: "
 + device.getProperty("bluetooth.connected.inquiry.scan"));
 System.out.println("Page scanning allowed during connection: "
 + device.getProperty("bluetooth.connected.page.scan"));
 System.out.println("Inquiry allowed during connection: "
 + device.getProperty("bluetooth.connected.inquiry"));
 System.out.println("Page allowed during connection: "
 + device.getProperty("bluetooth.connected.page"));
 System.exit(0);
 }
}

Here's the output from running this on my PowerMac G5 using the Avetana implementation:

API version: 1.0
bluetooth.master.switch: true
Maximum number of service attributes: null

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Maximum number of connected devices: 1
Maximum receive MTU size in L2CAP: null
Maximum number of simultaneous service discovery transactions: 1
Inquiry scanning allowed during connection: false
Page scanning allowed during connection: false
Inquiry allowed during connection: false
Page allowed during connection: false

It looks like the Avetana implementation fails to recognize the bluetooth.sd.attr.retrievable.max
and bluetooth.l2cap.receiveMTU.max properties. It recognizes the rest.

25.3.2. Device Class

The getdeviceClass() method tells you what kind of Bluetooth device the program is running on:

public DeviceClass getDeviceClass()

The information is encapsulated in a DeviceClass object. This class has three getter methods to
describe the major class, minor class, and service classes:

public int getMajorDeviceClass()
public int getMinorDeviceClass()
public int getServiceClasses()

These methods all return ints. The values of these ints are defined by the Bluetooth specification.
Table 25-1 listed the currently defined major device classes, but more classes may be added in the
future. Each device has exactly one major and one minor class. However, it can have several service
classes, in which case the constants for each such class are combined with the bitwise or operator.

25.3.3. Discoverability

Bluetooth devices may be discoverable. A discoverable device can be paired with another Bluetooth
device so that the two can exchange data. For security reasons, devices often have personal
identification numbers (PINs) that have to be entered from the discovering device in order to connect
to the discovered device. This makes it harder for an unauthorized person to extract information from
your Bluetooth devices.

The geTDiscoverable() method returns an int indicating whether and how a device is discoverable:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getDiscoverable()

The return value can be:

DiscoveryAgent.NOT_DISCOVERABLE

Device cannot be discovered by a remote device

DiscoveryAgent.GIAC

Device can be discovered by any remote device

DiscoveryAgent.LIAC

Device can be discovered by other LIAC devices for a limited period of time (more on LIAC in a
moment)

Some devices may allow you to make them discoverable or not discoverable by passing the
appropriate mode to the setDiscoverable() method:

public boolean setDiscoverable(int mode) throws BluetoothStateException

This method returns TRue if the device state was set as requested or false if it wasn't. It throws an
IllegalArgumentException if you pass an illegal state. It throws a BluetoothStrateException if the
device is in a state that cannot be changed right now.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.4. Discovering Devices

Of course, there's only so much you can do with just the local device. Soon you're going to want to
find out what other devices are out there. This is the purpose of the DiscoveryAgent class. There is
one DiscoveryAgent per LocalDevice, and since there's exactly one LocalDevice, there's exactly one
DiscoveryAgent. This is retrieved by the geTDiscoveryAgent() method in LocalDevice:

public DiscoveryAgent getDiscoveryAgent()

For example:

DiscoveryAgent agent = LocalDevice.getLocalDevice().getDiscoveryAgent();

The startInquiry() method scans the airwaves for discoverable remote devices:

public boolean startInquiry(int accessCode, DiscoveryListener listener)
 throws BluetoothStateException

This search can take about a minute. To avoid blocking and tying up the user interface or other
important operations, this scan can run asynchronously. When the local device finds a remote device,
it tells the DiscoveryListener passed as the second argument.

The first argument, accessCode, controls the type of the inquiry. It is either DiscoveryAgent.GIAC
(General/Unlimited Inquiry Access Code) or DiscoveryAgent.LIAC (Limited Dedicated Inquiry Access
Code). Most of the time, you should use DiscoveryAgent.GIAC. Some implementations do not support
LIAC mode.

You can prematurely terminate an inquiry by passing the listener to the cancelInquiry() method:

public boolean cancelInquiry(DiscoveryListener listener)

The retrieveDevices() method returns a list of the Bluetooth devices the agent already knows
about (that is, it does not find any newly added devices):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public RemoteDevice[] retrieveDevices(int option)

The option argument should be DiscoveryAgent.CACHED or DiscoveryAgent.PREKNOWN. Cached devices
are those discovered in previous inquiries. Preknown devices are specially configured before the
application starts up. If none of the requested devices exists, this method returns null. If any
devices are preknown or cached, retrieving them is quite a bit faster than launching a new inquiry
over the air.

The DiscoveryListener interface has four callback methods that are invoked to signal a device. It
actually supports two kinds of searches, one for devices and one for services. Which methods are
called back depends on what type of search it is.

The deviceDiscovered() method is called when the search uncovers a new device:

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)

When the agent has given up on finding new devices, it calls inquiryCompleted():

public void inquiryCompleted(int discoveryType)

The discoveryType argument indicates how the search completed. It is one of three constants:
DiscoveryListener.INQUIRY_COMPLETED, DiscoveryListener.INQUIRY_TERMINATED, or
DiscoveryListener.INQUIRY_ERROR.

The servicesDiscovered() method is called when the search uncovers one or more new services on
a device:

public void servicesDiscovered(int transactionID, ServiceRecord[] serviceRecord)

The TRansactionID argument identifies the search that found the service. The service records provide
details about what the device can do and how it operates.

When the agent has given up on finding new services, it calls serviceSearchCompleted():

public void serviceSearchCompleted(int transactionID, int responseCode)

This search has five possible responses:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DiscoveryListener.SERVICE_SEARCH_COMPLETED

DiscoveryListener.SERVICE_SEARCH_TERMINATED

DiscoveryListener.SERVICE_SEARCH_ERROR

DiscoveryListener.SERVICE_SEARCH_NO_RECORDS

DiscoveryListener.SERVICE_SEARCH_DEVICE_NOT_REACHABLE

However, a search started by startInquiry() won't find any services just yet, so you can implement
these methods as do-nothings if you're looking for devices. Once you've found a remote device, you
can search it for services. I'll have more to say about that shortly.

Example 25-3 is a simple program that searches for and enumerates all the Bluetooth devices it can
find. For each device, it prints the name; the address; the major, minor, and service classes; and the
combined 3-byte class identifier, printed in both hexadecimal and binary. This information is useful
when you're first trying to figure out how to talk to an undocumented device.

Example 25-3. Finding Bluetooth devices

import java.io.IOException;
import javax.bluetooth.*;
public class BluetoothSearch implements DiscoveryListener {
 private DiscoveryAgent agent;
 public static void main(String[] args) throws Exception {
 BluetoothSearch search = new BluetoothSearch();
 search.agent = LocalDevice.getLocalDevice().getDiscoveryAgent();
 search.agent.startInquiry(DiscoveryAgent.GIAC, search);
 }
 public void deviceDiscovered(RemoteDevice device, DeviceClass type) {
 int major = type.getMajorDeviceClass();
 int minor = type.getMinorDeviceClass();
 int services = type.getServiceClasses();
 int classIdentifier = major | minor | services;
 try {
 System.out.println("Found " + device.getFriendlyName(false)
 + " at " + device.getBluetoothAddress());
 }
 catch (IOException ex) {
 System.out.println("Found unnamed device "
 + " at " + device.getBluetoothAddress());
 }
 System.out.println(" Major class: 0x" + Integer.toHexString(major));
 System.out.println(" Minor class: 0x" + Integer.toHexString(minor));
 System.out.println(" Service classes: 0x" + Integer.toHexString(services));
 System.out.println(" Class identifier: 0x"
 + Integer.toHexString(classIdentifier));
 System.out.println(" Class identifier: "
 + Integer.toBinaryString(classIdentifier));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public void inquiryCompleted(int discoveryType) {
 switch (discoveryType) {
 case DiscoveryListener.INQUIRY_TERMINATED:
 System.out.println("Search cancelled");
 break;
 case DiscoveryListener.INQUIRY_ERROR:
 System.out.println("Bluetooth error");
 break;
 case DiscoveryListener.INQUIRY_COMPLETED:
 System.out.println("Device search complete");;
 break;
 default:
 System.out.println("Unanticipated result: " + discoveryType);
 }
 System.exit(0);
 }
 // This search is only looking for devices and won't discover any services,
 // but we have to implement these methods to fulfill the interface
 public void servicesDiscovered(int transactionID, ServiceRecord[] record) {}
 public void serviceSearchCompleted(int transactionID, int arg1) {}
}

For this program to find a device, the device must be turned on, be in discoverable mode, and not
already have been grabbed by the host operating system. Otherwise, you may not see it. Here's the
output from running this on my PowerMac G5:

$ java -classpath .:avetanaBluetooth.jar BluetoothSearch
Found WACOM Pen Tablet at 0013C2000D23
Major class: 0x500
 Minor class: 0x80
 Service classes: 0x1
 Class identifier: 0x581
 Class identifier: 10110000001
Found elharo's mouse at 000A95095A59
 Major class: 0x500
 Minor class: 0x80
 Service classes: 0x1
 Class identifier: 0x581
 Class identifier: 10110000001
Found Earthmate Blue Logger GPS at 00904B2A88D6
 Major class: 0x1f00
 Minor class: 0x0
 Service classes: 0x0
 Class identifier: 0x1f00
 Class identifier: 1111100000000
Found elharo's keyboard at 000A953AFB0B
 Major class: 0x500

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Minor class: 0x40
 Service classes: 0x1
 Class identifier: 0x541
 Class identifier: 10101000001
Device search complete

From this we can see that this system has four devices in discoverable mode: a mouse, an Earthmate
Blue Logger GPS unit, a WACOM tablet, and an unspecified keyboard. The keyboard and the mouse
have the same major class but different minor classes. The graphics tablet and the mouse have the
same major, minor, and service classes. The GPS unit has the uncategorized major class 0x1F00,
since the Bluetooth SIG hasn't gotten around to defining an appropriate major class for this sort of
device.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.5. Remote Devices

The RemoteDevice class represents a Bluetooth device with a certain address. Such devices may or
may not be accessible at any given time. They are remote, so they can crash, move, be turned off,
run out of battery power, or otherwise disappear from view independently of the local system. There
is one protected constructor in this class:

protected RemoteDevice(String address)

However, it is not normally used. Instead, you discover devices as explained in the previous section.
If you already have an open connection to the device you want to query, you can use the static
RemoteDevice.getRemoteDevice() method to retrieve the RemoteDevice object representing the
actual device:

public static RemoteDevice getRemoteDevice(Connection conn) throws IOException

You've now found the remote devices. What are you going to do with them? Of course, this depends
on the type of the device. The RemoteDevice class tells you this. Although LocalDevice and
RemoteDevice do not have a common superclass, they do share many methods that do pretty much
the same thing. There is, however, one crucial difference: queries to the remote device go out over
the air whereas queries to the local device stay within the system. This means remote queries are
slower, less secure, and less reliable than local queries.

The getBluetoothAddress() method returns a String containing the 12-hex-digit Bluetooth address
of the controller:

public final String getBluetoothAddress()

The getFriendlyName() method returns a more human-legible name:

public String getFriendlyName() throws IOException

Bluetooth connections can be authorized, authenticated, and/or encrypted, though not all devices
support all these options. The latter is particularly uncommon because of the CPU cost of high-quality

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encryption. Nonetheless, the RemoteDevice class provides methods to inquire whether any particular
connection is authorized, authenticated, or encrypted and to request such services.

A device is authenticated if it has successfully exchanged a 128-bit key with the host. Normally this
requires entering the same PIN code on both the host and the device. The host or device may
randomly generate a key and corresponding PIN and ask you to enter it on the other end of the
connection. Java programs use the Bluetooth Control Center to do this. The isAuthenticated()
method returns true if the device is authenticated and false if it isn't:

public boolean isAuthenticated()

The authenticate() method attempts to authenticate a device by exchanging the secret key derived
from the shared PIN code:

public boolean authenticate() throws IOException

This method returns TRue if authentication succeeds and false if it doesn't. It throws an IOException
if there's no current connection between the local and the remote device. Authentication needs to be
performed only once per device. After a device has successfully authenticated, all further connections
are automatically authenticated.

A device is authorized if the user has given permission for this remote device to use the local service.
The isAuthorized() method returns true if the device is authorized and false if it isn't:

public boolean isAuthorized()

The authorize() method asks the user to authorize the device for a particular connection:

public boolean authorize(Connection conn) throws IOException

This method returns TRue if authorization succeeds and false if it doesn't. It throws an IOException if
there's no current connection between the local and remote devices. Authentication is a prerequisite
for authorization. Before authorizing, this device attempts to authenticate itself.

Some devices can be permanently authorized. Such devices are called trusted. Java programs use
the Bluetooth Control Center to identify a device as trusted. The isTrustedDevice() returns TRue if
the device is trusted and false if it isn't:

public boolean isTrustedDevice()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, a few devices support encrypted communication. The isEncrypted() method returns TRue if
the device encrypts connections and false if it doesn't:

public boolean isAuthenticated()

The encrypt() method instructs a device to turn encryption on or off:

public boolean encrypt(Connection conn, boolean on) throws IOException

This method returns true if the device is now in encrypted mode and false if it isn't.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.6. Service Records

Each Bluetooth device supports one or more services, such as basic printing or generic telephony.
Each service is identified by a UUIDsometimes a custom one, sometimes a standardized one. For
example, the UUID for the basic printing service is 0x1122. (Normally, these are written using their
short forms rather than the full 128-bit forms.)

Devices publish service records to tell other devices how to communicate with them. The Bluetooth
specification lays out the exact structure and meaning of a service record in excruciating detail, but as
usual Java encapsulates this in a much easier-to-use interface, javax.bluetooth.ServiceRecord .

A service record is essentially an indexed list of attributes. Attributes do not have names, only values.
Given a ServiceRecord object, the getAttributeIDs() method returns an array of all the IDs of the
attributes in the service record:

public int[] getAttributeIDs()

You can then iterate through this list, passing each ID in turn to the getAttributeValue() method to
retrieve each attribute:

public DataElement
 getAttributeValue(int attrID)

25.6.1. The DataElement Class

Bluetooth attributes can have a variety of types, such as string, UUID, boolean, URL, sequence, null,
and several signed and unsigned integer types. Java represents each of these as a DataElement
object. These types, and the Java types they map to, are summarized in Table 25-4 .

Table 25-4. Bluetooth attribute types

Bluetooth type Java type Java constant

NULL null DataElement.NULL

U_INT_1 1-byte unsigned long from 0 to 255 DataElement.U_INT_1

U_INT_2 2-byte unsigned long from 0 to 65,535 DataElement.U_INT_2

U_INT_4 4-byte unsigned long from 0 to 4,294,967,296 DataElement.U_INT_4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bluetooth type Java type Java constant

U_INT_8 8-byte byte[] array DataElement.U_INT_8

U_INT_16 16-byte byte[] array DataElement.U_INT_16

INT_1 1-byte signed long from -128 to 127 DataElement.INT_1

INT_2 2-byte signed long from -32,768 to 32,767 DataElement.INT_2

INT_4
4-byte signed long from -2,147,483,647 to
2,147,483,647

DataElement.INT_4

INT_8 8-byte unsigned long from -263 to 263 -1 DataElement.INT_8

INT_16 16-byte byte[] array DataElement.INT_16

URL java.lang.String DataElement.URL

UUID javax.bluetooth.UUID DataElement.UUID

BOOL boolean DataElement.BOOL

STRING java.lang.String DataElement.STRING

DATSEQ java.util.Enumeration DataElement.DATSEQ

DATALT java.util.Enumeration DataElement.DATALT

Most of these types do not map precisely onto Java primitive types, so the Java Bluetooth API
encapsulates them all in the javax.bluetooth.DataElement class. This class has three methods to read
the value out of a DataElement as a long , boolean , or Object :

public long getLong()
public boolean getBoolean()
public Object getValue()

The getdataType() method tells you the Bluetooth type of the DataElement object:

public int getDataType()

The return value is one of the named constants found in the third column of Table 25-4 . Once you
know the type of value to expect, you can use one of the three getter methods to return the value as
the corresponding Java object or primitive type. If you try to get a mismatched typefor example, an
INT_4 as a boolean or a URL as a long these methods throw a ClassCastException .

Data elements can also wrap two list types. DATSEQ is an ordered sequence of values. DATALT is a list
of values from which any one should be chosen. For either of these two types, getValue() returns a
java.util.Enumeration . In this case, the getSize() method returns the number of items in that
enumeration:

U_INT_8 8-byte byte[] array DataElement.U_INT_8

U_INT_16 16-byte byte[] array DataElement.U_INT_16

INT_1 1-byte signed long from -128 to 127 DataElement.INT_1

INT_2 2-byte signed long from -32,768 to 32,767 DataElement.INT_2

INT_4
4-byte signed long from -2,147,483,647 to
2,147,483,647

DataElement.INT_4

INT_8 8-byte unsigned long from -263 to 263 -1 DataElement.INT_8

INT_16 16-byte byte[] array DataElement.INT_16

URL java.lang.String DataElement.URL

UUID javax.bluetooth.UUID DataElement.UUID

BOOL boolean DataElement.BOOL

STRING java.lang.String DataElement.STRING

DATSEQ java.util.Enumeration DataElement.DATSEQ

DATALT java.util.Enumeration DataElement.DATALT

Most of these types do not map precisely onto Java primitive types, so the Java Bluetooth API
encapsulates them all in the javax.bluetooth.DataElement class. This class has three methods to read
the value out of a DataElement as a long , boolean , or Object :

public long getLong()
public boolean getBoolean()
public Object getValue()

The getdataType() method tells you the Bluetooth type of the DataElement object:

public int getDataType()

The return value is one of the named constants found in the third column of Table 25-4 . Once you
know the type of value to expect, you can use one of the three getter methods to return the value as
the corresponding Java object or primitive type. If you try to get a mismatched typefor example, an
INT_4 as a boolean or a URL as a long these methods throw a ClassCastException .

Data elements can also wrap two list types. DATSEQ is an ordered sequence of values. DATALT is a list
of values from which any one should be chosen. For either of these two types, getValue() returns a
java.util.Enumeration . In this case, the getSize() method returns the number of items in that
enumeration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getSize()

The addElement() method appends a new item of one of the 18 Bluetooth types to a DATSEQ or
DATALT :

public void addElement(DataElement element)

The insertElementAt() method inserts a new data element into the specified position in a DATSEQ or
DATALT :

public void insertElement(DataElement element, int position)

The removeElement() removes the first occurrence of the specified new data element from the DATSEQ
or DATALT :

public void removeElement(DataElement element)

The same element may appear in the list more than once. These methods all throw a
ClassCastException if you attempt to use them on a DataElement that does not represent a DATALT or
DATSEQ .

25.6.2. Finding Service Records

Like the remote devices themselves, the service records for a device are obtained via the
DiscoveryAgent class. The simplest way to find a known service is to ask for it by UUID using the
selectService() method:

public String selectService(UUID uuid, int security, boolean master)
 throws BluetoothStateException

This returns a connection string with the URL used to connect to the service, such as:

btspp://00904B2A88D6:1;authenticate=false;encrypt=false;master=false

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The security argument is usually one of these three named constants, depending on what
combination of authentication and encryption you desire:

ServiceRecord.NOAUTHENTICATE_NOENCRYPT

ServiceRecord.AUTHENTICATE_NOENCRYPT

ServiceRecord.AUTHENTICATE_ENCRYPT

Finally, the master argument is TRue if the client insists on being the master of the connection and
false if it can act as the master or the slave.

For example, suppose you want to find a basic printing service. The UUID for this is 0x1122, so this
code fragment locates one if there's one to be found:

UUID printingID = new UUID(0x1122);
String url = agent.selectService(
 printingID, ServiceRecord.AUTHENTICATE_NOENCRYPT, false);

If it can't locate the requested service, it returns null .

What if there's more than one available device that supports the relevant service? In this case, the
results are implementation dependent, but usually one or another is returned. (The Avetana stack
actually throws a custom checked exception here, which is not conformant with the specification.)

The searchServices() method asks a specific device what services it supports:

public int searchServices(int[] attrSet, UUID[] uuidSet, RemoteDevice device,
 DiscoveryListener listener) throws BluetoothStateException

This approach is somewhat more reliable if you might have more than one device that offers a given
service. The uuidSet argument contains the UUIDs for all the protocols you're looking for. Table 25-5
lists the UUIDs (in 2-byte form) of the services you can request. The attrSet argument contains the
list of attributes (in addition to the default attributes) whose information should be provided. device is
the specific device to query for services, and listener is the listener to tell about any services that
are found. The method returns an ID you can use if you later need to cancel the search, which you
can do with the following method:

public boolean cancelServiceSearch(int transID)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method does not work in the Avetana stack. That product cannot cancel an
ongoing search.

Table 25-5. Bluetooth service UUIDs

Name UUID Protocol

SDP 0x0001 Service Discovery Protocol

UDP 0x0002 UDP/IP

RFCOMM 0x0003 Serial port emulation

TCP 0x0004 Telephony Control Protocol

TCS-BIN 0x0005 Telephony Control Service

TCS-AT 0x0006 Modems (i.e., AT command sequences)

OBEX 0x0008 Object Exchange protocol

IP 0x0009 Internet Protocol

FTP 0x000A
Bluetooth File Transfer Protocol; based on OBEX; not the same as
the usual Internet FTP protocol

HTTP 0x000C Web

WSP 0x000E Wireless Session Protocol

BNEP 0x000F Bluetooth Network Encapsulation Protocol

UPNP 0x0010 Universal Plug and Play

HIDP 0x0011
Human Interface Device Profile (same as the USB HID, but over
Bluetooth instead of USB)

HardcopyControlChannel 0x0012 Wireless printing control channel (device to printer)

HardcopyDataChannel 0x0014 Wireless printing data channel (data being printed)

HardcopyNotification 0x0016 Wireless printing notification channel (printer to device)

AVCTP 0x0017 Audio/Video Control Transport Protocol, Bluetooth SIG

AVDTP 0x0019 Audio/Video Distribution Transport Protocol, Bluetooth SIG

CMTP 0x001B Common ISDN API (CAPI) Message Transport Protocol

UDI_C-Plane 0x001D Unrestricted Digital Information Profile

L2CAP 0x0100 Logical Link Control and Adaptation Protocol

Table 25-6 lists some of the attributes you can request. The first fiveServiceRecordHandle ,
ServiceClassIDList , ServiceRecordState , ServiceID , and ProtocolDescriptorList are always
returned. The others need to be specifically requested.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 25-6. Bluetooth service attribute IDs

Name ID Type

ServiceRecordHandle 0x0000 4-byte unsigned integer

ServiceClassIDList 0x0001 DATSEQ of UUIDs

ServiceRecordState 0x0002 4-byte unsigned integer

ServiceID 0x0003 UUID

ProtocolDescriptorList 0x0004 DATSEQ of DATSEQ of UUID and optional parameters

BrowseGroupList 0x0005 DATSEQ of UUIDs

LanguageBasedAttributeIDList 0x0006 DATSEQ of DATSEQ triples

ServiceInfoTimeToLive 0x0007 4-byte unsigned integer

ServiceAvailability 0x0008 1-byte unsigned integer

BluetoothProfileDescriptorList 0x0009 DATSEQ of DATSEQ pairs

DocumentationURL 0x000A URL

ClientExecutableURL 0x000B URL

IconURL 0x000C URL

VersionNumberList 0x0200 DATSEQ of 2-byte unsigned integers

ServiceDatabaseState 0x0201 4-byte unsigned integer

Some of these IDs may vary depending on the profile. For instance, 0x0301 means "external
network" in the Cordless Telephony Profile but "supported data stores" in the Synchronization Profile.

25.6.3. The ServiceRecord Interface

The ServiceRecord interface provides a number of setter and getter methods for inspecting and
updating service records. By far the most important thing you'll need from a ServiceRecord object is
the connection string. This is the URL you'll use to open a connection to the device:

public String getConnectionURL(int requiredSecurity, boolean mustBeMaster)

The security argument is one of these three named constants, depending on what combination of
authentication and encryption you desire:

ServiceRecord.NOAUTHENTICATE_NOENCRYPT

ServiceRecord.AUTHENTICATE_NOENCRYPT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServiceRecord.AUTHENTICATE_ENCRYPT

The master argument is true if the client insists on being the master of the connection or false if it
can act as the master or the slave.

The value you get back is a complete GCF Bluetooth URL, such as:

btspp://00904B2A88D6:1;authenticate=false;encrypt=false;master=false

Once you have the URL, you can talk to the device using the methods of the last chapter.

You can add or remove parameters from the URL using substring operations. For instance, you could
change the above URL to:

btspp://00904B2A88D6:1;authenticate=false;encrypt=false;master=true

However, getConnectionURL() is the only way to get the necessary protocol, address, and channel for
the device.

The getAttributeIDs() method returns an array of the IDs of all the attributes this service
possesses:

public int[] getAttributeIDs()

You can retrieve one of these attributes with the getAttributeValue() method:

public DataElement getAttributeValue(int attrID)

This returns a DataElement object that wraps the Bluetooth object in a Java class, as described in
Table 25-4 .

Example 25-4 is a program that searches for all L2CAP (UUID 0x0100) services. When it finds one, it
lists its URL. Notice that you have to explicitly start a search for each device's services. That is,
Example 25-4 first starts a search for devices as previously seen in Example 25-3 . When a device is
found, it searches that device for services using searchServices() . For each service, it requests all
attributes that might be present.

Example 25-4. Finding all L2CAP services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.IOException;
import javax.bluetooth.*;
public class BluetoothServicesSearch implements DiscoveryListener {
 private DiscoveryAgent agent;
 private final static UUID L2CAP = new UUID(0x0100);
 public static void main(String[] args) throws Exception {
 BluetoothServicesSearch search = new BluetoothServicesSearch();
 search.agent = LocalDevice.getLocalDevice().getDiscoveryAgent();
 search.agent.startInquiry(DiscoveryAgent.GIAC, search);
 }
 public void deviceDiscovered(RemoteDevice device, DeviceClass type) {
 try {
 System.out.println("Found " + device.getFriendlyName(false)
 + " at " + device.getBluetoothAddress());
 }
 catch (IOException ex) {
 System.out.println("Found unnamed device "
 + " at " + device.getBluetoothAddress());
 }
 searchServices(device);
 }
 public final static int SERVICE_RECORD_HANDLE = 0X0000;
 public final static int SERVICE_CLASSID_LIST = 0X0001;
 public final static int SERVICE_RECORD_STATE = 0X0002;
 public final static int SERVICE_ID = 0X0003;
 public final static int PROTOCOL_DESCRIPTOR_LIST = 0X0004;
 public final static int BROWSE_GROUP_LIST = 0X0005;
 public final static int LANGUAGE_BASED_ATTRIBUTE_ID_LIST = 0X0006;
 public final static int SERVICE_INFO_TIME_TO_LIVE = 0X0007;
 public final static int SERVICE_AVAILABILITY = 0X0008;
 public final static int BLUETOOTH_PROFILE_DESCRIPTOR_LIST = 0X0009;
 public final static int DOCUMENTATION_URL = 0X000A;
 public final static int CLIENT_EXECUTABLE_URL = 0X000B;
 public final static int ICON_URL = 0X000C;
 public final static int VERSION_NUMBER_LIST = 0X0200;
 public final static int SERVICE_DATABASE_STATE = 0X0201;
 private void searchServices(RemoteDevice device) {
 UUID[] searchList = {L2CAP};
 int[] attributes = {SERVICE_RECORD_HANDLE, SERVICE_CLASSID_LIST,
 SERVICE_RECORD_STATE, SERVICE_ID,
 PROTOCOL_DESCRIPTOR_LIST, BROWSE_GROUP_LIST,
 LANGUAGE_BASED_ATTRIBUTE_ID_LIST,
 SERVICE_INFO_TIME_TO_LIVE, SERVICE_AVAILABILITY,
 BLUETOOTH_PROFILE_DESCRIPTOR_LIST, DOCUMENTATION_URL,
 CLIENT_EXECUTABLE_URL, ICON_URL, VERSION_NUMBER_LIST,
 SERVICE_DATABASE_STATE};
 try {
 System.out.println("Searching " + device.getBluetoothAddress()
 + " for services");
 int trans = this.agent.searchServices(attributes, searchList, device, this);
 System.out.println("Service Search " + trans + " started");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 catch (BluetoothStateException ex) {
 System.out.println("BluetoothStateException: " + ex.getMessage());
 }
 }
 public void servicesDiscovered(int transactionID, ServiceRecord[] record) {
 for (int i = 0; i < record.length; i++) {
 System.out.println("Found service " + record[i].getConnectionURL(
 ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false));
 }
 }
 public void serviceSearchCompleted(int transactionID, int responseCode) {
 switch (responseCode) {
 case DiscoveryListener.SERVICE_SEARCH_DEVICE_NOT_REACHABLE:
 System.out.println("Could not find device on search " + transactionID);
 break;
 case DiscoveryListener.SERVICE_SEARCH_ERROR:
 System.out.println("Error searching device on search " + transactionID);
 break;
 case DiscoveryListener.SERVICE_SEARCH_NO_RECORDS:
 System.out.println("No service records on device on search "
 + transactionID);
 break;
 case DiscoveryListener.SERVICE_SEARCH_TERMINATED:
 System.out.println("User cancelled search " + transactionID);
 break;
 case DiscoveryListener.SERVICE_SEARCH_COMPLETED:
 System.out.println("Service search " + transactionID + " complete");
 break;
 default:
 System.out.println("Unexpected response code " + responseCode
 + " from search " + transactionID);
 }
 }
 public void inquiryCompleted(int transactionID) {
 System.out.println("Device search " + transactionID + " complete");
 }
}

Most other Bluetooth protocols are built on top of L2CAP, so this program will probably find all the
accessible devices. Here's what I got when I ran it on my system after making sure all devices were
discoverable:

Found Earthmate Blue Logger GPS at 00904B2A88D6
Searching 00904B2A88D6 for services
Service Search 1 started
Found service btspp://00904B2A88D6:1;authenticate=false;encrypt=false;master=false
Service search 1 complete
Found elharo's mouse at 000A95095A59

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Searching 000A95095A59 for services
Service Search 2 started
Found service btl2cap://000A95095A59:11;authenticate=false;encrypt=false;master=false
Found service btl2cap://000A95095A59:1;authenticate=false;encrypt=false;master=false
Service search 2 complete
Found WACOM Pen Tablet at 0013C2000D23
Searching 0013C2000D23 for services
Service Search 3 started
Found service btl2cap://0013C2000D23:11;authenticate=false;encrypt=false;master=false
Found service btl2cap://0013C2000D23:1;authenticate=false;encrypt=false;master=false
Service search 3 complete
Device search 0 complete

You can see there are three devices on this system: a GPS unit, a pen tablet, and a mouse. The GPS
unit has a single serial port (RFCOMM) connection, which we'll make use of in the next section. The
mouse and the graphics tablet each have two L2CAP URLs, one for the control channel and one for
the interrupt channel. This is the common pattern for HID devices.

More often, you'll want to look for a particular service with a particular UUID. This normally happens
asynchronously, but there's a maximum number of searches you can run at once. (The exact number
varies from device to device but can be read from the bluetooth.sd.trans.max property.)
Consequently, you need to keep track of the searches and cancel the ongoing searches when you've
found what you're looking for. Example 25-5 demonstrates. The static
BluetoothServiceFinder.getConnectionURL() method finds a service with a specified UUID. We'll use
this class again shortly.

Example 25-5. A utility class to find a specified service

import javax.bluetooth.*;
import java.util.Vector;
public class BluetoothServiceFinder implements DiscoveryListener {
 public static String getConnectionURL(String uuid)
 throws BluetoothStateException {
 BluetoothServiceFinder finder
 = new BluetoothServiceFinder(BluetoothReceiver.UUID);
 return finder.getFirstURL();
 }
 private DiscoveryAgent agent;
 private int serviceSearchCount;
 private ServiceRecord record;
 // I'd rather use ArrayList, but Vector is more
 // commonly available in J2ME environments
 private Vector devices = new Vector();
 private String uuid;
 // Every search has an ID that allows it to be cancelled.
 // We need to store these so we can tell when all searches
 // are complete.
 private int[] transactions;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private BluetoothServiceFinder(String serviceUUID)
 throws BluetoothStateException {
 this.uuid = serviceUUID;
 agent = LocalDevice.getLocalDevice().getDiscoveryAgent();
 int maxSimultaneousSearches = Integer.parseInt(
 LocalDevice.getProperty("bluetooth.sd.trans.max"));
 transactions = new int[maxSimultaneousSearches];
 // We need to initialize the transactions list with illegal
 // values. According to spec, the transaction ID is supposed to be
 // positive, and thus nonzero. However, several implementations
 // get this wrong and use zero as a transaction ID.
 for (int i = 0; i < maxSimultaneousSearches; i++) {
 transactions[i] = -1;
 }
 }
 private void addTransaction(int transactionID) {
 for (int i = 0; i < transactions.length; i++) {
 if (transactions[i] == -1) {
 transactions[i] = transactionID;
 return;
 }
 }
 }
 private void removeTransaction(int transactionID) {
 for (int i = 0; i < transactions.length; i++) {
 if (transactions[i] == transactionID) {
 transactions[i] = -1;
 return;
 }
 }
 }
 private boolean searchServices(RemoteDevice[] devices) {
 UUID[] searchList = { new UUID(uuid, false) };
 for (int i = 0; i < devices.length; i++) {
 if (record != null) {
 return true;
 }
 try {
 // don't care about attributes
 int transactionID = agent.searchServices(null, searchList, devices[i],
 this);
 addTransaction(transactionID);
 }
 catch (BluetoothStateException ex) {
 }
 synchronized (this) {
 serviceSearchCount++;
 if (serviceSearchCount == transactions.length) {
 try {
 this.wait();
 }
 catch (InterruptedException ex) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // continue
 }
 }
 }
 }
 while (serviceSearchCount > 0) { // unfinished searches
 synchronized (this) {
 try {
 this.wait();
 }
 catch (InterruptedException ex) {
 // continue
 }
 }
 }
 if (record != null) return true;
 else return false;
 }
 private String getFirstURL() {
 try {
 agent.startInquiry(DiscoveryAgent.GIAC, this);
 synchronized (this) {
 try {
 this.wait();
 }
 catch (InterruptedException ex) {
 }
 }
 }
 catch (BluetoothStateException ex) {
 System.out.println("No devices in range");
 }
 if (devices.size() > 0) {
 RemoteDevice[] remotes = new RemoteDevice[devices.size()];
 devices.copyInto(remotes);
 if (searchServices(remotes)) {
 return record.getConnectionURL(
 ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
 }
 }
 return null;
 }
 // DiscoveryListener methods
 public void deviceDiscovered(RemoteDevice device, DeviceClass type) {
 devices.addElement(device);
 }
 public void serviceSearchCompleted(int transactionID, int responseCode) {
 removeTransaction(transactionID);
 serviceSearchCount--;
 synchronized (this) {
 this.notifyAll();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public void servicesDiscovered(int transactionID, ServiceRecord[] records) {
 if (record == null) {
 record = records[0];
 for (int i = 0; i < transactions.length; i++) {
 if (transactions[i] != -1) {
 agent.cancelServiceSearch(transactions[i]);
 }
 }
 }
 }
 public void inquiryCompleted(int discType) {
 synchronized (this) {
 this.notifyAll();
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.7. Talking to Devices

Bluetooth devices are talked to via the Generic Connection Framework. If you know the address of
the device you're going to talk to, you may not even need to use any of the other classes in this
chapter. Bluetooth URLs for the GCF look like this:

btspp://00904B2A88D6:1;authenticate=false;encrypt=false;master=false
btspp://localhost:3B9FA89520078C303355AAA694238F07;authenticate=true;encrypt=true
btspp://localhost:102030405060708090A1B1C1D1D1E100;name=SPPEx
btl2cap://localhost:3B9FA89520078C303355AAA694238F08;name=Aserv
btspp://localhost:3B9FA89520078C303355AAA694238F08
btgoep://0050C000321B:12
btgoep://localhost:3B9FA89520078C303355AAA694238F08

The URLs that begin with btspp are for devices that use the Bluetooth Serial Port Profile. These are
streaming connections. URLs that begin with btl2cap are for devices that use the Bluetooth L2CAP
protocol to exchange packetized data. Some higher-level protocols, such as RFCOMM, are built on top
of L2CAP. Some devices use it more directly as well. URLs with the scheme btgoep are for devices
that use the OBEX protocol to exchange binary data. For example, OBEX is used to synchronize
contact lists between desktop computers and cell phones by exchanging binary representations of
those lists.

The GCF can act as either a server or a client. The URLs that contain the word localhost are for
servers. That is, they wait for incoming connections and respond to them. The URLs that don't contain
the word localhost are for clients. They initiate connections to the specified Bluetooth address. For a
server, the long string of hex digits is the UUID of the service. For a client, it's the address of the
device you're talking to.

The address is sometimes followed by a colon and a channel number. This is analogous to a port in
TCP protocols; that is, it is an extra number attached to each packet to help sort out which service on
a given device a stream or packet is intended for. It has no particular meaning; devices that use only
a single channel normally omit it.

Finally, up to five name=value optional parameters can configure the connection:

name

For server URLs only, the value for the service name attribute in the service record

master

true if this client must act as the master device; false if it can be a slave

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encrypt

true if the connection is to be encrypted; false if it isn't

authorize

true if the connection is to be authorized; false if it isn't

authenticate

true if the connection is to be authenticated; false if it isn't

Not all combinations are possible. For instance, you cannot have authenticate=false and
encrypt=true .

As with USB devices or serial port devices, the details of communication are device dependent. Some
devices share protocols. For example, one Bluetooth mouse is pretty much the same as another. You
don't need different drivers for each brand. A Bluetooth modem can more or less use the raw
Bluetooth Serial Port Protocol along with the customary Hayes command set. For less standard
devices, you'll need to read the technical documentation (if any), communicate with the device
vendors (if they'll talk to you), or reverse engineer the protocols the devices speak. A Bluetooth
protocol analyzer that can sniff packets from the air is invaluable.

25.7.1. RFCOMM Clients

RFCOMM devices are some of the simplest Bluetooth devices out there. Each has an output stream
and an input stream. You write commands onto the output stream and read responses from the input
stream. Some devices use a lockstep protocol (one command, one response). Others are
asynchronous, and some don't even require any commands.

I'm going to demonstrate talking to the DeLorme Earthmate Blue Logger GPS receiver shown in
Figure 25-4 . Unlike some fancier and larger GPS units, it doesn't have an LCD display. Its input is
limited to a single button and its output to a couple of LEDs. This device just sends a constant stream
of GPS data to whoever's interested in listening.

Figure 25-4. The DeLorme Earthmate Blue Logger

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Blue Logger formats data in the industry-standard NMEA 183 protocol supported by most GPS
devices. This protocol outputs real-time position, velocity, and time information in line-by-line ASCII
text that looks like this:

7.8524,W,1,07,1.1,27.2,M,-34.3,M,30.0,0000*46
$GPRMC,204449.378,A,4040.2990,N,07357.8524,W,0.00,184.22,300106,,*14
$GPVTG,184.22,T,,M,0.00,N,0.0,K*6D
$GPGGA,204450.378,4040.2986,N,07357.8523,W,1,07,1.1,28.6,M,-34.3,M,30.0,0000*45
$GPGSA,A,3,10,06,05,07,04,30,02,,,,,,2.2,1.1,1.9*3A
$GPGSV,3,1,09,10,67,234,44,02,64,054,43,07,34,154,37,04,33,083,31*78
$GPGSV,3,2,09,30,24,271,37,06,21,313,32,05,21,242,41,13,19,043,21*78
$GPGSV,3,3,09,29,13,175,00*4A
$GPRMC,204450.378,A,4040.2986,N,07357.8523,W,0.00,184.22,300106,,*1C
$GPVTG,184.22,T,,M,0.00,N,0.0,K*6D
$GPGGA,204451.378,4040.2982,N,07357.8522,W,1,07,1.1,29.5,M,-34.3,M,30.0,0000*43
$GPRMC,204451.378,A,4040.2982,N,07357.8522,W,0.00,184.22,300106,,*18

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The NMEA 0183 specification (http://www.nmea.org/pub/0183/) is published
by the National Marine Electronics Association, which is stuck in the bad old
days of pay-to-play specifications. You can buy the spec from them for $340
(and at that price, you don't even get overnight shipping!). It is not available
online. You can read more about NMEA in the NMEA FAQ at http://vancouver-
webpages.com/peter/nmeafaq.txt .

In NMEA terminology, each line of text is called a sentence . The sentence begins with a dollar sign
and ends with a carriage return linefeed pair. Sentences should contain no more than 82 characters
(including the carriage return linefeed pair). Each sentence is self-contained and independent of the
other sentences. Standard GPS sentences all begin with GP .

The first sentence in the above output looks suspect. It does not begin with a $
and an NMEA code. In fact, what's happened is that the program has hooked
into the device in the middle of a sentence. NMEA devices normally send
promiscuously and continuously, without considering whether anyone is
listening. You should simply discard any line you receive that does not begin
with a dollar sign. Similarly, if you want only some of the data, you just wait
until it shows up in the output stream and ignore any sentences that aren't
relevant to you.

Vendor-specific sentences begin with the letter P and a three-letter manufacturer code. For instance,
Garmin-specific sentences all begin with PGRM . The next three letters determine the type of the
sentence. I've seen the Blue Logger send four sentences:

GPGGA

Fix information. Essentially everything needed to determine a three-dimensional location and
the accuracy thereof.

GPRMC

Recommended minimum data. This is basic time and position information.

GPVTG

Vector track and speed over ground. This includes the speed in both knots and kilometers per
hour, as well as the direction of travel relative to true north and magnetic north.

GPGSA

General satellite data. This tells you which of the 28 GPS satellites the unit can currently see
and how well it can see them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A couple of dozen more sentences are emitted by various other GPS devices. For basic applications,
the most interesting (and simplest) data is found in the GPRMC sentences. These give you the time,
status, latitude, longitude, speed, angle, date, magnetic variation, and a checksum, in that order.
Consider this GPRMC line:

$GPRMC,204449.378,A,4040.2990,N,07357.8524,W,0.00,184.22,300106,,*14

Within a sentence, commas separate the individual fields. The second field, 204449.378 , is the time.
Specifically, it is 20:44:49.378 seconds UTC; that is, 49.378 seconds after 8:44 PM, Greenwich Mean
Time.

The third field, containing the letter A , is the status. This should be either A for Active or V for Void.
Active units have found the GPS satellites. Void ones are not currently receiving GPS information,
usually due to interference from buildings, canyons, and trees, and thus cannot be relied on.

4040.2990 is the latitude. Specifically, it is 40° 40.2990'. Four-digit accuracy is not guaranteed, and it
may not even be reported by some units. My tests suggest that a hundredth of a minute is about the
best accuracy you can hope for, and that may vary depending on your location and satellite positions.
The next field, the single letter N , says that this is North latitude. Similarly, the next two fields,
07357.8524,W , indicate that this is 73° 57.8524' West longitude.

The next field is the speed in knots . (Remember, this protocol was designed for boats, which still
haven't converted to sensible metric units.) In this case, the GPS reading was taken from a fixed
location, so the speed is 0.00 . The next field, with the value 184.22 , is the angle of movement
direction relative to true north. For a fixed location, this doesn't mean a lot.

The next field, with the value 300106 , is the date in the format DDMMYY. This date is January 30,
2006. Yes, there's a looming Y2K/Y2100 problem here. Most software assumes that 9099 map to
19901999 and 0089 map to 20002089. One hopes that this will be fixed sometime in the next 83
years.

The GPS satellites themselves don't have a specific Y2K/Y2100 problem.
Instead, they use atomic clocks accurate to within a microsecond. These clocks
count time elapsed since midnight, January 6, 1980, GMT. They roll over every
1,024 weeks. The first such rollover happened on August 22, 1999. The next
will happen on April 7, 2019. It's just the NMEA text format that is limited to
two digits for the year.

The next field is empty in this example. If it were present it would include the magnetic variation, in
the form 003.1,W .

The last field contains a checksum. This sum is formed by taking the bitwise exclusive or of all the
bytes in the line between the $ and * , exclusive (that is, the $ and the * are not included when
calculating the checksum).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Yes, I'm skipping over a lot of technical detail here. People get PhDs in this
stuff. Mapping is a lot more involved than your seventh-grade social studies
teacher told you.

You can control some (not all) GPS receivers by writing similar sentences over the connection's
output stream. For example, this enables you to download the track logs, upload waypoints and
routes, or turn off the device. However, this is all completely proprietary. Every device family has its
own sentences for doing this, and some features, such as uploading maps, are completely
undocumented and may even be actively hidden. Details vary from one device to the next. Sad to
say, most GPS vendors have yet to catch the open source bug. For the time being, if you want to
send data to a GPS unit, whether over Bluetooth, USB, or a classic serial port, you first have to
reverse engineer the protocol it speaks. For many devices it may be the case that an open source
Linux driver already exists in some other language, such as Python or C. Although a straight port may
not be possible, this is often enough to show you what commands you need to send.

The NMEA protocol is actually designed for devices that have serial ports, but that's where the
Bluetooth Serial Port Profile comes into play. You can pretend that the device is a serial port device
(though you will have to use the Generic Connection Framework instead of the Java Communications
API).

The first step is hardware: make sure the device is turned on, discoverable, and in range. Details vary
from device to device, but to turn on the Blue Logger and make it discoverable you just hold down its
one button until it starts flashing blue. You can use your system's usual Bluetooth control panel to
make sure that the host's Bluetooth controller is turned on and can see the device. However, don't
actually pair with the device. If you have previously paired with it, you'll need to delete the pairing
first so that it can be seen by Java.

The second step is to find the device. This is a little tricky. You'd normally search by major class,
minor class, and service classes. However, there's no standard class for GPS devices. In such a case,
the major class is set to 0x1FFF (i.e., five 1 bits in the major device class part of the class ID), and
the minor class and service class bits are all 0s. Because this is a catch-all class ID for any
unclassified device, there's no guarantee that the first one you find with that ID is actually a Blue
Logger. Instead, we'll look for the friendly name "Earthmate Blue Logger." To be honest, this
approach makes me a little nervous, but it seems to work. Example 25-6 demonstrates.

Example 25-6. Finding the first Blue Logger in range

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.IOException;
import javax.bluetooth.*;
public class BlueLoggerFinder implements DiscoveryListener {
 private DiscoveryAgent agent;
 private RemoteDevice device;
 public static RemoteDevice find()
 throws BluetoothStateException {
 BlueLoggerFinder search = new BlueLoggerFinder();
 search.agent = LocalDevice.getLocalDevice().getDiscoveryAgent();
 search.agent.startInquiry(DiscoveryAgent.GIAC, search);
 // wait for inquiry to finish
 synchronized(search){
 try {
 search.wait();
 }
 catch (InterruptedException ex) {
 // continue
 }
 }
 return search.device;
 }
 public void deviceDiscovered(RemoteDevice device, DeviceClass type) {
 int major = type.getMajorDeviceClass();
 try {
 if (device.getFriendlyName(false).startsWith("Earthmate Blue Logger")) {
 this.device = device;
 // stop looking for other devices
 agent.cancelInquiry(this);
 // wake up the main thread
 synchronized(this){
 this.notify();
 }
 }
 }
 catch (IOException ex) {
 // hopefully this isn't the device we're looking for
 }
 }
 public void inquiryCompleted(int discoveryType) {}
 // This search is only looking for devices and won't discover any services,
 // but we have to implement these methods to fulfill the interface
 public void servicesDiscovered(int transactionID, ServiceRecord[] record) {}
 public void serviceSearchCompleted(int transactionID, int arg1) {}
}

The BlueLogger.find() method returns a RemoteDevice object for the first operating Blue Logger it
sees. If it can't find one, it returns null . What you need from this object is the unique address of that
particular Blue Logger as returned by the getBluetoothAddress() method. Once you have this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address you can form the necessary URL to pass to the Generic Connection Framework. For example:

btspp://00904B2A88D6:1;authenticate=false;encrypt=false;master=false

Once you have the URL, you can talk to the device. This is actually quite simple. As shown in the last
chapter, open a connection to the URL and get an InputStream from the connection:

StreamConnection conn = (StreamConnection) Connector.open(url);
InputStream in = conn.openInputStream();

This stream feeds you as much NMEA data as you want. Read this stream line by line. Look at the
first six characters of each line. If they are $GPRMC , parse the line into individual components.
Otherwise, ignore it and read the next line.

The easiest way to parse a comma-delimited line of this nature is to split the string along the
commas. This is a little easier than parsing comma-delimited text normally is, because there's no
possibility of a field containing the delimiter character or a line break.

Example 25-7 puts this together in a complete program that finds a Blue Logger and prints the time
and location to System.out . Of course, this requires a desktop environment that has a console to
write to. In a J2ME program, you'd have to adjust the program to output the content using
javax.microedition.lcdui , as described in Chapter 24 .

Example 25-7. A Blue Logger client that monitors current position and
time

import java.io.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
public class BluetoothTracker {
 public static void main(String[] args) throws IOException {
 RemoteDevice logger = BlueLoggerFinder.findBlueLogger();
 String address = logger.getBluetoothAddress();
 String url = "btspp://" + address
 + ":1;authenticate=false;encrypt=false;master=false";
 StreamConnection conn = (StreamConnection) Connector.open(url);
 InputStream in = conn.openInputStream();
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(in, "US-ASCII"));
 try {
 while (true) {
 String s = reader.readLine();
 if (s == null) break;
 if (s.startsWith("$GPRMC,")) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String[] fields = s.split(",");
 String time = getTime(fields[1]);
 String latitude = getPosition(fields[3], fields[4]);
 String longitude = getPosition(fields[5], fields[6]);
 String date = getDate(fields[9]);
 System.out.println(time + "\t" + date + "\t"
 + latitude + "\t" + longitude);
 }
 }
 }
 catch (IOException ex) {
 // device turned off or out of range
 }
 reader.close();
 }
 private static String getDate(String ddmmyy) {
 String year = "20" + ddmmyy.substring(4);
 String month = ddmmyy.substring(2, 4);
 String day = ddmmyy.substring(0, 2);
 return month + "-" + day + "-" + year;
 }
 // I'm not sure how robust this code is. There could well be some
 // StringIndexOutOfBoundsExceptions waiting to trip up the unwary.
 // I have not tested it at every possible location on the planet.
 private static String getPosition(String number, String direction) {
 // need to handle two-digit and three-digit longitudes
 int point = number.indexOf('.');
 String degrees = number.substring(0, point-2);
 String minutes = number.substring(degrees.length(), point);
 String seconds = String.valueOf(
 Double.parseDouble(number.substring(point)) * 60);
 return degrees + "°" + minutes + "'" + seconds + "\"" + direction;
 }
 private static String getTime(String in) {
 String hours = in.substring(0, 2);
 String minutes = in.substring(2, 4);
 String seconds = in.substring(4, 6);
 return hours + ":" + minutes + ":" + seconds;
 }
}

Here's some typical output:

20:42:05 01-30-2006 40°40'17.832"N 073°57'51.378"W
20:42:06 01-30-2006 40°40'17.844"N 073°57'51.312"W
20:42:07 01-30-2006 40°40'17.855999999999998"N 073°57'51.234"W
20:42:08 01-30-2006 40°40'17.874"N 073°57'51.162"W
20:42:09 01-30-2006 40°40'17.898"N 073°57'51.096000000000004"W

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20:42:10 01-30-2006 40°40'17.922"N 073°57'51.036"W
20:42:11 01-30-2006 40°40'17.945999999999998"N 073°57'50.994"W
20:42:12 01-30-2006 40°40'17.976"N 073°57'50.958000000000006"W
20:42:13 01-30-2006 40°40'18.006"N 073°57'50.946"W
20:42:14 01-30-2006 40°40'18.03"N 073°57'50.952"W
20:42:15 01-30-2006 40°40'18.048000000000002"N 073°57'50.976"W
20:42:16 01-30-2006 40°40'18.06"N 073°57'51.03"W
20:42:17 01-30-2006 40°40'18.06"N 073°57'51.096000000000004"W
20:42:18 01-30-2006 40°40'18.06"N 073°57'51.150000000000006"W
20:42:19 01-30-2006 40°40'18.066"N 073°57'51.192"W
20:42:20 01-30-2006 40°40'18.084"N 073°57'51.21"W
20:42:21 01-30-2006 40°40'18.108"N 073°57'51.19799999999999"W
20:42:22 01-30-2006 40°40'18.132"N 073°57'51.168"W
20:42:23 01-30-2006 40°40'18.162000000000003"N 073°57'51.126"W
20:42:24 01-30-2006 40°40'18.186"N 073°57'51.09"W
20:42:25 01-30-2006 40°40'18.21"N 073°57'51.048"W

The difference from one reading to the next is attributable to jitter in the GPS. It's not accurate to
more than a meter at best anyway. At this location, one second of latitude is roughly 30 meters, and
a second of longitude is roughly 24 meters, so this works out to about 1.5-meter accuracy for latitude
and about 10-meter accuracy for longitude. That's acceptable error for many applications.

I cut this off early because I wasn't really moving when I took these readings. If you were driving or
running with a PDA, it would produce somewhat more variable output. (I don't own a car, and
running through the streets of Brooklyn carrying a laptop in one hand and a GPS receiver in the other
did not strike me as a wise thing to try.) You could also easily set up a program to log the data once a
minute or once every tenth of a mile. The device sends continuously, but you're free to ignore most
of the readings.

25.7.2. L2CAP Devices

L2CAP devices are a little more complex. The details of finding one, determining its URL, and opening
a connection to it are essentially the same as they are for RFCOMM. However, L2CAP is based on
packets rather than streams: instead of reading and writing streams, you send and receive packets.
This is much like the difference between TCP and UDP on IP networks.

When given a btl2cap URL, Connector.open() returns an L2CAPConnection object. For example:

L2CAPConnection conn = (L2CAPConnection) Connector.open(
 "btl2cap:// 3B9FA89520078C303355AAA694238F08 ;ReceiveMTU=512;TransmitMTU=512");

This interface has methods to determine the Maximum Transmit Unit (MTU), tell whether the
connection is ready to receive packets, and send and receive packets.

The MTU is normally set by the ReceiveMTU and transmitMTU parameters when you first open the
connection. This is the maximum number of bytes you can put in each packet. Wireless connections

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are much less reliable and normally use smaller packet sizes than wired connections. You can check
the MTU size with these two methods:

public int getTransmitMTU() throws IOException
public int getReceiveMTU() throws IOException

Once you know the transmit MTU, you can send up to that amount of data at once using the send()
method:

public void send(byte[] data) throws IOException

If you try to send more than the MTU, the extra data is discarded without warning.

To receive data coming in off the air, you pass a byte array to the receive() method:

public int receive(byte[] buffer) throws IOException

Data is placed in the array starting with the first component. This method blocks until data arrives off
the air. To avoid that, you can first check with ready() before calling receive() :

public boolean ready() throws IOException

ready() returns true if and only if receive() can read a packet without blocking.

I'll demonstrate this protocol with a dual example. First, I'll show a server that receives and prints out
lines of ASCII text. Then I'll add a client that sends packets of ASCII text to the server. In this
example, my code is controlling both ends of the connection on two different systems, so I can define
any protocol I like on top of L2CAP. I'll keep it about as simple as imaginable, but this should still
demonstrate the basic techniques for talking between two systems. Run this in both directions, and
you'd have a basic chat program.

The server listens on the local host, so first you need a service URL. You need to pick a UUID for this.
I used the java.util.UUID class in Java 5 to generate a random one. The UUID it gave me was
7140b25b-7bd7-41d6-a3ad-0426002febcd. You'll also need a name. L2CAPExampleServer works as
well as any. With these two pieces in place, the local URL for the service is:

btl2cap://localhost:7140b25b7bd741d6a3ad0426002febcd;name=L2CAPExampleServer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use GCF's Connector class to open a connection to this URL. This returns an L2CAPConnectionNotifier
object, but you'll need to cast it to restore the type:

Connection conn = Connector.open(
 "btl2cap://localhost: 7140b25b7bd741d6a3ad0426002febcd;name=L2CAPExampleServer");
L2CAPConnectionNotifier notifier = (L2CAPConnectionNotifier) conn;

You now accept an incoming connection much like you would for a TCP server socket, except that for
Bluetooth the method is called acceptAndOpen() instead of merely accept() :

L2CAPConnection client = notifier.acceptAndOpen();

You then receive packets from the connection and put them into a buffer. Size the buffer to match
the client's maximum transmission size:

byte[] buffer = new byte[client.getTransmitMTU()];

Most protocols define some packet that indicates the end of the transaction. I'll use a packet that
contains a single null . Example 25-8 receives packets and copies them onto System.out until such a
packet is seen.

Example 25-8. A very simple L2CAP server

import java.io.IOException;
import javax.bluetooth.*;
import javax.microedition.io.*;
public class BluetoothReceiver {
 public final static String UUID = "7140b25b7bd741d6a3ad0426002febcd";
 public static void main(String[] args) {
 try {
 LocalDevice device = LocalDevice.getLocalDevice();
 // make sure other devices can find us
 device.setDiscoverable(DiscoveryAgent.GIAC);
 String url = "btl2cap://localhost:" + UUID + ";name=L2CAPExampleServer";
 L2CAPConnectionNotifier notifier
 = (L2CAPConnectionNotifier) Connector.open(url);
 L2CAPConnection client = notifier.acceptAndOpen();
 byte[] buffer = new byte[client.getTransmitMTU()];
 while (true) {
 int received = client.receive(buffer);
 if (received == 1 && buffer[0] == 0) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Exiting");
 break;
 }
 System.out.write(buffer, 0, received);
 }
 }
 catch (BluetoothStateException ex) {
 System.err.println("Could not initialize Bluetooth."
 + " Please make sure Bluetooth is turned on.");
 }
 catch (IOException ex) {
 System.err.println("Could not start server");
 }
 System.exit(0);
 }
}

Obviously, this program handles only one connection at a time, but it would not be hard to extend it
to handle multiple simultaneous connections by spawning a thread for each. Because the maximum
number of Bluetooth devices in one piconet is eight, you don't have to worry excessively about the
sort of scaling issues that led to the new I/O API for network sockets.

Now let's look at the client. The first step is to discover a service with the specified UUID. Example
25-4 does this as long as we give it the necessary UUID. Of course, it would also be possible to have
it return a list of all the URLs for each device with the requested service, but a single URL is all we
need for the moment.

If you have trouble getting this program to work, make sure the server is
discoverable. It may also help to verify that you can establish a Bluetooth
connection between the client and the server for some other purpose, such as
file transfer.

From there, we simply read each line read from the console into a byte array and send it over the air
to the server. As is customary for console applications, if the user types a period on a line by itself,
this is interpreted as the signal to stop sending and exit the program. The trickiest bit is making sure
that the user can't send a line longer than the transmit MTU. If that's attempted, we have to split the
data into multiple packets. Example 25-9 demonstrates.

Example 25-9. A very simple L2CAP client

import java.io.*;
import javax.bluetooth.*;
import javax.microedition.io.*;
public class BluetoothTransmitter {
 public static void main(String[] args) {
 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String url = BluetoothServiceFinder.getConnectionURL(BluetoothReceiver.UUID);
 if (url == null) {
 System.out.println("No receiver in range");
 return;
 }
 System.out.println("Connecting to " + url);
 L2CAPConnection conn = (L2CAPConnection) Connector.open(url);
 int mtu = conn.getTransmitMTU(); // maximum packet length we can send
 // use safe???
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(System.in));
 while (true) {
 String line = reader.readLine();
 if (".".equals(line)) {
 byte[] end = {0};
 conn.send(end);
 break;
 }
 line += "\r\n";
 // now we need to make sure this fits into the MTU
 byte[][] packets = segment(line, mtu);
 for (int i = 0; i < packets.length; i++) {
 conn.send(packets[i]);
 }
 }
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 System.exit(0);
 }
 private static byte[][] segment(String line, int mtu) {
 int numPackets = (line.length()-1)/mtu + 1;
 byte[][] packets = new byte[numPackets][mtu];
 try {
 byte[] data = line.getBytes("UTF-8");
 // the last packet will normally not fill a complete MTU
 for (int i = 0; i < numPackets-1; i++) {
 System.arraycopy(data, i*mtu, packets[i], 0, mtu);
 }
 System.arraycopy(data, (numPackets-1)*mtu, packets[numPackets-1],
 0, data.length - ((numPackets-1)*mtu));
 return packets;
 }
 catch (UnsupportedEncodingException ex) {
 throw new RuntimeException("Broken VM does not support UTF-8");
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This combination of three classes allows one-way communication from the client to the server.
Extending it to enable full bidirectional chat is not especially difficult, though, and is left as an exercise
for the reader. (I'm not sure how useful such a chat program would be, since Bluetooth's reliable
range is limited to about 10 meters, but I can think of a few uses for such short-range
communications.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part PART VIII: Appendix
Character Sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix. Character Sets

The first 128 Unicode charactersthat is, characters 0 through 127are identical to the ASCII character
set. 32 is the ASCII space; therefore, 32 is the Unicode space. 33 is the ASCII exclamation point;
therefore, 33 is the Unicode exclamation point, and so on. Table A-1 lists this character set.

Table A-1. The first 128 Unicode characters and the ASCII character set

Code Character Code Character Code Character Code Character

0 NUL (null) 32 space 64 @ 96 `

1 SOH (start of header) 33 ! 65 A 97 a

2 STX (start of text) 34 " 66 B 98 b

3 ETX (end of text) 35 # 67 C 99 c

4 EOT (end of transmission) 36 $ 68 D 100 d

5 ENQ (enquiry) 37 % 69 E 101 e

6 ACK (acknowledge) 38 & 70 F 102 f

7 BEL (bell) 39 ` 71 G 103 g

8 BS (backspace) 40 (72 H 104 h

9 TAB (tab) 41) 73 I 105 i

10 LF (linefeed) 42 * 74 J 106 j

11 VTB (vertical tab) 43 + 75 K 107 k

12 FF (formfeed) 44 , 76 L 108 l

13 CR (carriage return) 45 - 77 M 109 m

14 SO (shift out) 46 . 78 N 110 n

15 SI (shift in) 47 / 79 O 111 o

16 DLE (data link escape) 48 0 80 P 112 p

17 DC1 (device control 1, XON) 49 1 81 Q 113 q

18 DC2 (device control 2) 50 2 82 R 114 r

19 DC3 (device control 3, XOFF) 51 3 83 S 115 s

20 DC4 (device control 4) 52 4 84 T 116 t

21 NAK (negative acknowledge) 53 5 85 U 117 u

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Character Code Character Code Character Code Character

22 SYN (synchronous idle) 54 6 86 V 118 v

23 ETB (end of transmission block) 55 7 87 W 119 w

24 CAN (cancel) 56 8 88 X 120 x

25 EM (end of medium) 57 9 89 Y 121 y

26 SUB (substitute) 58 : 90 Z 122 z

27 ESC (escape) 59 ; 91 [123 {

28 IS4 (file separator) 60 < 92 \ 124 |

29 IS3 (group separator) 61 = 93] 125 }

30 IS2 (record separator) 62 > 94 ^ 126 ~

31 is1 (unit separator) 63 ? 95 _ 127 del (delete)

In the first column, characters 0 through 31 are referred to as control characters because they're
traditionally entered by holding down the control key and a letter key (on at least some dumb
terminals). For instance, Ctrl-H is often ASCII 8, backspace. Ctrl-S is often mapped to ASCII 19,
DC3, or XOFF. Ctrl-Q is often mapped to ASCII 17, DC1, or XON. Generally, each control character is
entered by pressing the Control key and the printable character whose ASCII value is the ASCII value
of the character you want plus 64 (or 96, if you count from the capitals). Character 127, delete, is
also a control character.

The common abbreviation for the character is given first, followed by its common meaning. Some of
these codes are pretty much obsolete. For instance, I'm not aware of any modern system that
actually uses characters 28 through 31 as file, group, record, and unit separators. Those control
codes that are still used often have different meanings on different platforms. For example, character
10, the linefeed, originally meant move the platen on the printer up one line, while character 13, the
carriage return, meant return the print-head to the beginning of the line. On paper-based teletype
terminals, this could be used to position the print-head anywhere on a page and perhaps overtype
characters that had already been typed. This no longer makes sense in an era of glass terminals and
GUIs, so linefeed has come to mean a generic end-of-line character.

The next 128 Unicode charactersthat is, 128 through 255have the same values as the equivalent
characters in the Latin-1 character set defined in ISO standard 8859-1. Latin-1, a slight variation of
which is used by Windows, adds the various accented characters, umlauts, cedillas, upside-down
question marks, and other characters needed to write text in most Western European languages.
shows these characters. The first 128 characters in Latin-1 are the ASCII characters shown in Table
A-2.

Table A-2. Unicode characters between 128 and 255, also the second half
of the ISO 8859-1 Latin-1 character set

Code Character Code Character Code Character Code Character

22 SYN (synchronous idle) 54 6 86 V 118 v

23 ETB (end of transmission block) 55 7 87 W 119 w

24 CAN (cancel) 56 8 88 X 120 x

25 EM (end of medium) 57 9 89 Y 121 y

26 SUB (substitute) 58 : 90 Z 122 z

27 ESC (escape) 59 ; 91 [123 {

28 IS4 (file separator) 60 < 92 \ 124 |

29 IS3 (group separator) 61 = 93] 125 }

30 IS2 (record separator) 62 > 94 ^ 126 ~

31 is1 (unit separator) 63 ? 95 _ 127 del (delete)

In the first column, characters 0 through 31 are referred to as control characters because they're
traditionally entered by holding down the control key and a letter key (on at least some dumb
terminals). For instance, Ctrl-H is often ASCII 8, backspace. Ctrl-S is often mapped to ASCII 19,
DC3, or XOFF. Ctrl-Q is often mapped to ASCII 17, DC1, or XON. Generally, each control character is
entered by pressing the Control key and the printable character whose ASCII value is the ASCII value
of the character you want plus 64 (or 96, if you count from the capitals). Character 127, delete, is
also a control character.

The common abbreviation for the character is given first, followed by its common meaning. Some of
these codes are pretty much obsolete. For instance, I'm not aware of any modern system that
actually uses characters 28 through 31 as file, group, record, and unit separators. Those control
codes that are still used often have different meanings on different platforms. For example, character
10, the linefeed, originally meant move the platen on the printer up one line, while character 13, the
carriage return, meant return the print-head to the beginning of the line. On paper-based teletype
terminals, this could be used to position the print-head anywhere on a page and perhaps overtype
characters that had already been typed. This no longer makes sense in an era of glass terminals and
GUIs, so linefeed has come to mean a generic end-of-line character.

The next 128 Unicode charactersthat is, 128 through 255have the same values as the equivalent
characters in the Latin-1 character set defined in ISO standard 8859-1. Latin-1, a slight variation of
which is used by Windows, adds the various accented characters, umlauts, cedillas, upside-down
question marks, and other characters needed to write text in most Western European languages.
shows these characters. The first 128 characters in Latin-1 are the ASCII characters shown in Table
A-2.

Table A-2. Unicode characters between 128 and 255, also the second half
of the ISO 8859-1 Latin-1 character set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Character Code Character Code Character Code Character

128 PAD (padding character) 160
non-breaking
space

192 À 224 à

129 HOP (high octet preset) 161 ¡ 193 Á 225 á

130 BPH (break permitted here) 162 ¢ 194 Â 226 â

131 NBH (no break here) 163 £ 195 Ã 227 ã

132 IND (index) 164 ¤ 196 Ä 228 ä

133 NEL (next line) 165 ¥ 197 Å 229 å

134 SSA (start of selected area) 166 | 198 Æ 230 æ

135 ESA (end of selected area) 167 § 199 Ç 231 ç

136 HTS (character tabulation set) 168 ¨ 200 È 232 è

137
HTJ (character tabulation with
justification)

169 © 201 É 233 é

138 VTS (line tabulation set) 170 ª 202 Ê 234 ê

139 PLD (partial line forward) 171 « 203 Ë 235 ë

140 PLU (partial line backward) 172 ¬ 204 Ì 236 ì

141 RI (reverse line feed) 173
soft (optional)
hyphen

205 í 237 í

142 SS2 (single-shift two) 174 ® 206 Î 238 î

143 SS3 (single-shift three) 175 ¯ 207 Ï 239 ï

144 DCS (device control string) 176 ° (degree) 208 240

145 PU1 (private use one) 177 ± 209 Ñ 241 ñ

146 PU2 (private use two) 178 2 210 Ò 242 ò

147 STS (set transmit state) 179 3 211 Ó 243 ó

148 CCH (cancel character) 180 ´ 212 Ô 244 ô

149 MW (message waiting) 181 213 Õ 245 õ

150 SPA (start of guarded area) 182 ¶ 214 Ö 246 ö

151 EPA (end of guarded area) 183 · 215 x 247 ÷

152 SOS (start of string) 184 , (cedilla) 216 Ø 248

153
SGI (single graphic character
introducer)

185 1 217 Ù 249 ù

154
SCI (single character
introducer)

186 º 218 Ú 250 ú

155
CSI (control sequence
introducer)

187 » 219 û 251 Û

156 ST (string terminator) 188 1/4 220 Ü 252 ü

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Character Code Character Code Character Code Character

157
OSC (operating system
command)

189 1/
2 221 Ý 253

158 PM (privacy message) 190 3/
4 222 254

159
APC (application program
command)

191 ¿ 223 ß 255 ÿ

Characters 128 through 159 are nonprinting control characters, much like characters 0 through 31 of
the ASCII set. Unicode does not specify any meanings for these 32 characters, but their common
interpretations are listed in the table. On Windows, most of these positions are used for noncontrol
characters not included in Latin-1. These alternate interpretations are given in Table A-3.

Table A-3. Windows characters between 128 and 159

Code Character Code Character Code Character Code Character

128 136 ^ 144 undefined 152 ~

129 undefined 137 145 ` 153 ™

130 , 138 146 ' 154

131 f 139 < 147 " 155 >

132 , 140 Œ 148 " 156 œ

133 ... 141 undefined 149 · 157 undefined

134 142
a

150 - 158

135 143 undefined 151 159 ÿ

Values beyond 255 encode characters from various other character sets. Where possible, character
blocks describing a particular group of characters map onto established encodings for that set of
characters by simple transposition. For instance, Unicode characters 884 through 1011 encode the
Greek alphabet and associated characters like the Greek question mark (;). This is a direct
transposition by 720 of characters 128 through 255 of the ISO 8859-7 character set, which is in turn
based on the Greek national standard ELOT 928. For example, the small letter delta, , Unicode
character 948, is ISO 8859-7 character 228. A small epsilon, , Unicode character 949, is ISO 8859-7
character 229. In general, the Unicode value for a Greek character equals the ISO 8859-7 value for
the character plus 720. Other character sets are included in Unicode in a similar fashion whenever
possible.

As much as I'd like to include complete tables for all Unicode characters, if I did so, this book would
be little more than that table. For complete lists of all the Unicode characters and associated glyphs,
the canonical reference is The Unicode Standard Version 4.0 by the Unicode Consortium, ISBN 0-

157
OSC (operating system
command)

189 1/
2 221 Ý 253

158 PM (privacy message) 190 3/
4 222 254

159
APC (application program
command)

191 ¿ 223 ß 255 ÿ

Characters 128 through 159 are nonprinting control characters, much like characters 0 through 31 of
the ASCII set. Unicode does not specify any meanings for these 32 characters, but their common
interpretations are listed in the table. On Windows, most of these positions are used for noncontrol
characters not included in Latin-1. These alternate interpretations are given in Table A-3.

Table A-3. Windows characters between 128 and 159

Code Character Code Character Code Character Code Character

128 136 ^ 144 undefined 152 ~

129 undefined 137 145 ` 153 ™

130 , 138 146 ' 154

131 f 139 < 147 " 155 >

132 , 140 Œ 148 " 156 œ

133 ... 141 undefined 149 · 157 undefined

134 142
a

150 - 158

135 143 undefined 151 159 ÿ

Values beyond 255 encode characters from various other character sets. Where possible, character
blocks describing a particular group of characters map onto established encodings for that set of
characters by simple transposition. For instance, Unicode characters 884 through 1011 encode the
Greek alphabet and associated characters like the Greek question mark (;). This is a direct
transposition by 720 of characters 128 through 255 of the ISO 8859-7 character set, which is in turn
based on the Greek national standard ELOT 928. For example, the small letter delta, , Unicode
character 948, is ISO 8859-7 character 228. A small epsilon, , Unicode character 949, is ISO 8859-7
character 229. In general, the Unicode value for a Greek character equals the ISO 8859-7 value for
the character plus 720. Other character sets are included in Unicode in a similar fashion whenever
possible.

As much as I'd like to include complete tables for all Unicode characters, if I did so, this book would
be little more than that table. For complete lists of all the Unicode characters and associated glyphs,
the canonical reference is The Unicode Standard Version 4.0 by the Unicode Consortium, ISBN 0-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

321-18578-1. Updates to that book can be found at http://www.unicode.org/. Online charts can be
found at http://unicode.org/charts.

http://www.unicode.org/
http://unicode.org/charts
http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

Elliotte Rusty Harold is originally from New Orleans, to which he returns periodically in search of a
decent bowl of gumbo. However, he currently resides in the Prospect Heights neighborhood of
Brooklyn with his wife, Beth, and cats Charm (named after the quark) and Marjorie (named after his
mother-in-law). He's an adjunct professor of computer science at Polytechnic University, where he
teaches Java, XML, and object oriented programming. His Cafe au Lait web site
(http://www.cafeaulait.org) is one of the most popular independent Java sites on the Internet, and
his spin-off site, Cafe con Leche (http://www.cafeconleche.org), has become one of the most popular
XML sites. He's currently working on the XOM library for XML, the Jaxen XPath engine, and the
Amateur media player. His previous books include Java Network Programming (O'Reilly) and
Processing XML with Java (Addison-Wesley).

http://www.cafeaulait.org
http://www.cafeconleche.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Colophon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal appearing on the cover of Java I/O, Second Edition, is the cottontail rabbit, American
cousin to the European or "true" rabbit. Cottontails are stocky compared to hares and have short,
fluffy tails. Their long, coarse coats vary in color from reddish-brown to black or grayish-brown. In
the summer, they feed almost entirely on tender grasses, herbs, and farm crops, including peas,
beans, and lettuce; in the winter, they eat bark, twigs, and buds of shrubs. Rabbits live in thickets,
forests, meadows, woods, and rabbit cages. Some other interesting things about rabbits are that
they can't see directly in front of them, and they can't vomit even if they want to.

Breeding occurs from March through early fall, with a gestation period of about 28 days. Cottontails
normally produce between two and four litters per year, with three to eight bunnies per litter. Due to
predation, weather, habitat destruction, disease, and parasites, only about 15 percent of the young
survive their first year.

Wild rabbits live in many parts of the world, but typically prefer moderate climates, which is one
reason why about half of the world's rabbits live in North America. In general, rabbits stay busy
fulfilling various human expectations (as pets, food, and pests), as well as maintaining their
reputation as both innocent and sexy. The notion of the rabbit's innocence may be due to its place in
the food chain as an animal of prey, while its prolific breeding has made it a symbol of playful
sexuality. The rabbit is also a common folklore archetype of the trickster, and in Japanese tradition,
rabbits live on the Moon where they make mochi (mashed sticky rice).

The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. This colophon was
written by Lydia Onofrei.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

absolute paths

accept() method

accessor methods, Cipher class

accessories, JFileChooser

allocate() method

Appendable interface

arguments

 host

 index, Formatter class

 localAddress

 localPort

arguments)

 port

arrays

 byte arrays

 number written

 skipping

 bytes, writing

 serialPersisentFields

ASCII

 character set 32

ASCII data

assignment conversion

asymmetric ciphers, encryption

Attributes class, JAR files

attributes, files

available bytes

available() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

baud rate

BCC (Bluetooth Control Center)

big-endian integers

big-endian order

block ciphers, encryption

blocks

Bluetooth

 BCC

 CLDC

 controller

 devices

 classes

 communication, GCF and

 discoverability

 discovering

 profiles

 RFCOMM

 libraries, loading

 local device

 properties

 protocol

 remote devices

 service records

 UUIDS

Bluetooth API

 initialization

 profiles

book organization

book's user

Boolean types, converting

buffered streams

BufferedInputStream class

BufferedOutputStream class

BufferedReader class

BufferedWriter class

buffers

 byte order

 capacity

 CharBuffers

 classes

 compacting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 creating

 duplication

 file channels

 files, copying

 get method

 absolute

 bulk

 layout

 limit pointer

 mark() method

 position

 put method

 absolute

 bulk

 read-only

 readers

 reset() method

 slicing

 view buffers

 writers

bulk transfers, USB

byte array input streams

byte array output streams

byte array streams

 byte array input streams

 byte array output streams

byte arrays

 number written

 skipping

 strings, converting between

byte order, buffers

byte.shorts integer

ByteArrayInputStream class

ByteArrayOutputStream class

ByteBuffer class, views

bytes

 arrays, writing

 available

 skipping

 writing to output streams

bytes integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

canExecute() method

canonical paths

canRead() method

canWrite() method 2nd

capacity of buffers

case sensitivity in filenames

casts, integers

Channel interface

channels

 datagram channels

 connections

 reading packets

 writing packet

 file channels

 buffers

 data transfer

 random access

 threading

 FileChannels

 data transfer

 gathering

 interfaces

 NIO, selectable

 nonblocking

 pipe channels

 ReadableByteChannel interface

 readers, converting to

 scattering

 streams, converting from

 streams, converting to

 WritableByteChannel interface

 writers, converting to

char data type

character conversion, Formatter class

character data

 ASCII

 Latin-1

 Unicode

character sets

 filenames

 Unicode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CharArrayReader class

CharArrayWriter class

CharBuffers

Charset class

 decoder() method

 encoder() method

 error handling

CheckedInputStream class

CheckedOutputStream class

checkError() method

 IOException and

Checksum interface

checksums

Cipher class

 accessor methods

 doFinal() method

 ini() method

 object encryption

 padding schemes

 update() method

CipherInputStream class

CipherOutputStream class

ciphertext

classes

 BufferedInputStream

 BufferedOutputStream

 BufferedReader

 BufferedWriter

 buffers

 ByteInputStream

 ByteOutputStream

 CharArrayReader

 CharArrayWriter

 CheckedInputStream

 CheckedOutputStream

 Cipher

 CipherInputStream

 CipherOutputStream

 CommPortIdentifier

 Connector

 data streams

 DataInput interface

 DataOutput interface

 DataElement

 Datagram

 DatagramConnection

 DataInputStream

 DataOutputStream

 DecimalFormat

 DecimalFormatSymbols

 Deflater

 state

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DigestInputStream

 DigestOutputStream

 FieldPosition

 File

 FileConnection

 FileReader

 FIleSystemView

 FileWriter

 filter streams

 FilterReader

 FilterWriter

 GZIPInputStream

 GZIPOutputStream

 Inflater

 constructors

 InflaterInputStream

 Inflator

 input

 InputStream

 subclassing

 InputStreamReader

 JarFile

 JarURLConnection

 java.io.FileInputStream

 java.io.FilterInputStream

 java.io.FilterOutputStream

 java.io.InputStream

 java.io.OutputStream

 java.io.PrintStream

 java.io.Reader

 java.io.Writer

 java.lang.Console

 java.net.ServerSocket

 java.net.Socket

 java.net.URL

 java.net.URLConnection

 LocalDevice

 Manifest

 MappedByteBuffer

 methods

 MessageDigest

 NumberFormat

 OutputStream, subclassing

 OutputStreamWriter

 ParallelPort

 PipedInputStream

 PipedReader

 PipedWriter

 PrintStream

 ProgressMonitorInputStream

 PushbackInputStream 2nd

 PushbackReader

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RandomAccessFile

 RemoteDevice

 resolving, serialization

 SealedObject

 SelectableChannel

 SelectionKey

 Selector

 SerialPort

 ServerSocketChannel

 SocketChannel

 stream classes

 StreamCopier

 String

 StringReader

 subclasses, filter streams

 ZipInputStream

 ZipOutputStream

classesPrintWriter

CLDC (Connected Limited Device Configuration)

close() method 2nd

Closeable interface

closing input streams

closing output streams

command-line

 jar

CommPortIdentifier class

compact() method

compacting buffers

compression

 checksums

 default

 Deflater class 2nd

 Deflater() class, constructors

 dictionary

 filtered

 Huffman

 Inflater class

 input

 input streams

 level

 needsInput() method

 strategies

 streams

 GZIPInputStream class

 GZIPOutputStream class

 streamsDeflaterOutputStream class

 zip files

 ZipEntry objects

 ZipInputStream class

 ZipOutputStream class

Connection interface, GCF

connections

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 datagram channels

 URLs

 reading data

 writing data

Connector class

 HTTP and

constructors 2nd

 Deflater() method

 File class

 Inflater() class

 JarFile class

 JarInputStream class

 JFileChooser

 Manifest class

 PipedReader class

 PIpedWriter class

 SealedObject class

ContentConnection interface

controls, USB transfers

conventions in book

copy() method

copying

 files

 buffers and

 streams

counting available bytes

createNewFile() method

createTempFile() method

cross-platform file manipulation

cryptographic algorithms

CTS (Clear To Send)

currency format

current working directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

data streams

 byte arrays

 number written

 skipping

 classes

 DataInput interface

 DataOutput interface

 constructors

 floating-point numbers

 Booleans

 reading

 writing

 integers

 char formats

 formats

 reading

 writing

 reading text

 readLine() method

 strings, writing

 thread safety

Data Terminal Ready (DTR)

data transfer

 file channels

 FileChannels

DataElement class

datagram channels

 connections

 reading packets

 writing packets

Datagram class

datagram URLs

DatagramConnection class

datagrams 2nd

DataInput interface

DataInputStream

 byte arrays

 number written

 skipping

 constructors

 floating-point numbers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Booleans

 reading

 writing

 integers

 char formats

 formats

 reading

 writing

 reading text

 readLine() method

DataInputStream class

DataOutput interface

DataOutputStream

 constructors

 floating-point numbers

 Booleans

 reading

 writing

 integers

 char formats

 formats

 reading

 writing

 writing text

DataOutputStream class

date and time integers, converting

decimal formats

decimal formats, patterns

DecimalFormat class

DecimalFormatSymbols class

decompression

 Inflater class

 output streams

 streams

 InflaterInputStream class

default compression

defaultReadObject() method

defaultWriteObject() method

Deflater class

 state

Deflater() method constructors

DeflaterOutputStream class

delete() method

deleteOnExit() method

deleting files

devices, Bluetooth

dictionaries

 compression

 Inflater()

digest streams

 DigestInputStream class

 DigestOutputStream

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DigestInputStream class

DigestOutputStream class

digital signatures, hash functions and

directories

 creating

 listing 2nd

 selecting

 working, current

discoverable devices, Bluetooth

discovering Bluetooth devices

DiscoveryAgent

doFinal() method

DTR (Data Terminal Ready)

duplication, buffers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

EBCDIC

Egyptian numbers

encoder() method

encoding

encryption

 asymmetric ciphers

 block ciphers

 ciphertext

 File Viewer

 JCE

 keys

 managing

 plaintext

 public keys

 secret keys

 stream ciphers

 symmetric ciphers

error handling

 Formatter class

 print streams and

event handling

 JFileChooser class

events

 parallel ports

 serial ports

examples in book

exists() method

Externalizable interface, serialization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

FieldPosition class

 number width

file channels

 buffers

 data transfer

 FileLock object

 flushing

 locking

 random access

 threading

file choosers

 displaying

 filters

 JFileChooser

 user selection

File class

 constructors

 listRoots() method

 paths (example)

file dialogs

 file selection

file input streams

file output streams

file streams

 file viewer

 reading

 writing files

File Viewer 2nd 3rd

 compression

 decompression

 encryption

 GUI

 readers

 writers

FileChannels

 data transfer

FileConnection class

 file attributes

FileDumper

FileFilter interface

FileLock object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FilenameFilter

filenames

 case sensitivity

 character sets

 extensions

 disadvantages

 filters

 hardcoded

 platform dependence

FileOutputStream() method

FileReader class

files

 attributes 2nd

 changing

 copying

 buffers and

 creating

 cross-platform 2nd

 delete

 descriptors

 directories

 exists() method

 filters

 formats, magic number

 free space

 getAbsolutePath() method

 getCanonicalPath() method

 getName() method

 hidden

 information,listing

 metainformation

 moving

 parents

 paths

 canonical

 separators 2nd

 random-access

 read-only

 reading 2nd 3rd 4th

 renaming

 roots

 temporary

 types

 URLs

 views

 writing

 writing to

FileSystemListener interface

FileSystemView class

FileWriter class

filter streams

 buffered streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 classes

 File Viewer

 output streams, multitarget

 subclasses

filtered compression

FilterReader class

filters

 filenames

 files

 readers

 writers

FilterWriter class

flags, formatting and

floating-point numbers

 Booleans

 reading

 writing

floating-point types, converting

flush() method

Flushable interface

flushing output streams

fonts, Unicode

force() method

format specifiers, Formatter class

format() method

formats, numbers

 precision

 printing

Formattable interface

Formatter class

 argument index

 Boolean conversion

 character conversion

 character sets

 date and time, converting

 error handling

 flags

 floating-point types, converting

 format specifiers

 integers, converting

 width and

Formatter constructor

formatting numbers

 currency

 decimal

 FieldPosition class

 grouping

 percent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

gathering channels

GatheringByteChannel interface

GCF (Generic Connection Framework)

 Bluetooth device communication

 Connection interface

 Connector class

 ContentConnection interface

 datagrams

 FileConnection class

 HTTP

 serial I/O

 server sockets

 sockets

getAbsolutePath() method

getCanonicalPath() method

getChannel() method

getContent() method

getEventType() method

getLocalPort() method

getMaximumDigits() method

getMinimumDigits() method

getName() method

getParent() method

getValue() method

grouping numbers

GUI (graphical user interface)

 FileViewer

 output streams

GZIPInputStream class

GZIPOutputStream class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

hardcoded filenames

hash codes

hash functions, requirements

headers, MIME

hidden files

host argument

hot plugging, USB

HTTP

 Connector class

 getter methods

 InputConnection class

 request headers

 response header

HTTP servers, MIME headers

Huffman compression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

I/O

 memory-mapped

 put type methods

 security

 typed data

I/O libraries

indexes, arguments (Formatter class)

Inflater class

 constructors

 input

InflaterInputStream class

init() method, Cipher class

input

 compression

 numbers, parsing

input streams

 bytes

 available

 skipping

 closing

 marking position

 read() method

 resetting position

InputConnection class, HTTP and

InputStream class, subclassing

InputStreamReader class

integers

 asssignment conversion

 byte.shorts

 bytes

 casts

 converting

 Formatter class

 formats 2nd

 long

 reading

 short

 writing

interfaces

 Appendable

 Channel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 channels

 Checksum

 Closeable

 ContentConnection

 DataInput

 DataOutput

 FileFilter

 FileSystemListener

 Flushable

 GatheringByteChannel

 ObjectOutput

 ReadableByteChannel

 ScatteringByteChannel

 serializable interface

 ServiceRecord

 SocketConnection

 UsbConfigurationDescriptor

 UsbDevice

 UsbDeviceDescriptor

 UsbEndpoints

 UsbInterface

 UsbInterfaceDescriptor

 UsbServicesListener

 WriteByteChannel

interrupts, USB

IOException

IP datagrams

IRPs, USB

isDirectory() method

isHidden() method 2nd

isModified() method

isochronous transfers, USB

isOpen() method

isReadOnly() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

JAR archive

JAR files

 Attributes class

 JarLister (example)

 Manifest class

 manifest file

 Pack200

 reading from

 signature files

 zip files, versus

jar package

jar tool

JarEntry subclass

JarFile class

JarInputStream subclass

JarOutputStream subclass

JarURLConnection class

Java 6

 Console class

 IOError class

Java 6, free space

Java Communications API

 architecture

 CommPortIdentifier class

 ports

 communication

 identifying

 information

 locating

 opening

 properties

Java Cryptography Extension (JCE)

java.io package

java.io.File class

java.io.FileInputStream class

java.io.FilterInputStream class

java.io.FilterOutputStream class

java.io.InputStream class

java.io.OutputStream class 2nd

java.io.PrintStream class

java.io.Reader class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

java.io.Writer class

java.lang.Console class

java.net.ServerSocket class

java.net.Socket class

java.net.URL class

java.net.URLConnection class

java.nio package

java.security

java.util.jar

java.util.security package

 filter streams

java.util.zip

java.util.zip package

 filter stream classes

javadoc, serialization and

javax.crypto package

JCE (Java Cryptography Extension) 2nd

JFileChooser class

 accessories

 constructors

 custom dialogs

 directory selection

 displaying file choosers

 event handling

 file views

 FilenameFilter

 FileSystemView class

 hidden files

 methods

 multiple selections

 user selection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

keys

 encryption

 management

 init() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

L2CAP devices, Bluetooth

lastModified() method

Latin-1 data

layout of buffers

libraries, I/O (see I/O libraries)

limit pointer, buffers

line breaks

LineNumberInputStream class

list() method 2nd

listFiles() method

listing directories

listRoots() method

little-endian numbers

localAddress argument

LocalDevice class

locales, number formats

localPort argument

lock() method

locking file channels

long integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

magic number, file formats

Manifest class

manifest files (JAR files)

MANIFEST.MF

MappedByteBuffer class

 methods

mark() method 2nd

marking position, input stream

markSupported() method

memory-mapped I/O

message digests

 calculating

 comparing

 creating

 data input

 reusing

MessageDigest class

 accessor methods

META-INF directory

methods 2nd 3rd

 accept()

 allocate()

 available()

 ByteBuffer class

 canExecute()

 canRead()

 canWrite()

 close() 2nd

 compact()

 copy()

 createNewFile()

 createTempFile()

 DataInput interface

 DataOutput interface

 decoder()

 defaultReadObject()

 defaultWriteObject() method

 delete()

 deleteOnExit()

 doFinal()

 encoder()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 exists()

 FileOutputStream()

 flush()

 force()

 format()

 getAbsolutePath()

 getCanonicalPath()

 getChannel()

 getContent()

 getEventType()

 getLocalPort()

 getMaximumDigits()

 getMinimumDigits()

 getName()

 getParent()

 init()

 isDirectory()

 isHidden() 2nd

 isModified()

 isOpen()

 isReadOnly()

 JFileChooser class

 lastModified()

 list() 2nd

 listFiles()

 listRoots()

 lock()

 MappedByteBuffer class

 mark() 2nd

 markSupported()

 mkdir()

 newChannel()

 newInputStream()

 openConnection()

 openStream()

 out.close()

 print()

 printf()

 println() 2nd

 read() 2nd 3rd

 readBoolean()

 readChar()

 readDouble()

 readFloat()

 readObject()

 readResolve()

 register()

 renameTo()

 reset() 2nd

 Selector.open()

 setDictionary()

 setLastModified()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 setReadOnly()

 skip()

 skipBytes()

 transferFrom()

 transferTo()

 tryLock()

 update()

 write() 2nd 3rd 4th 5th

 writeBytes() 2nd 3rd

 writeChar()

 writeChars()

 writeDouble()

 writeFloat()

 writeIn()

 writeObject() method

 writeReplace()

 writeUTF()

mkdir() method

mode, init() method

multitarget output streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

needsInput() method, compression and

network streams

 sockets

 server sockets

 URLs

 connections

 URLViewer

newChannel() method

newInputStream() method

NIO (nonblocking I/O) 2nd

 channels, selectable

 demonstration

number formats

 currency

 decimal

 patterns

 input

 parsing

 percent

 percents

 precision

 width, FieldPosition class

NumberFormat class

 currency

numbers

 Egyptian

 formatting

 grouping

 printing

 little-endian numbers

numeric data, integers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

object streams

ObjectOutput interface

objects

 sealed

 ServerSocket

 streams, writing objects to

 URL objects

 URLConnection

openConnection() method

openStream() method

organization of book

out.close() method

output streams

 closing

 expanding

 flushing

 GUI

 java.io.OutputStream class

 multitarget

 writing bytes to

OutputStream class

OutputStreamWriter class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

Pack200

packages

 java.io

 java.nio

padding schemes

parallel ports

 controlling

 events

 modes

 state

ParallelPort class

parents, files

parse() method

parsing number formats

paths

 absolute

 canonical

 example

 relative

 separators 2nd

percent number formats 2nd

performance, serialization and

piconet

pipe channels

piped readers/writers

piped streams

PipedInputStream classes

PipedReader class

PipedWriter class

pipes, USB

plaintext

port argument

ports

 baud rate

 communication

 identifying

 information

 locating

 opening

 parallel

 controlling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 events

 modes

 state

 properties

 serial ports

 control functions

 events

position, input stream

 marking

 repositioning

precision in number formats

preventing serialization

print streams

 character sets

 error handling

 format() method

 Formatter constructor

 line breaks

 printf() method

 println() method

 write() method

print writers

print() method

printf() method 2nd

println() method

 print streams

PrintStream class

 IOException and

PrintWriter class

 IOException and

ProgressMonitorInputStream class

PushbackInputStream class 2nd

PushbackReader class

put type methods, I/O

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

random access file channels

random-access files

RandomAccessFile class

read() method

 reading from streams

read-only buffers

read-only method

ReadableByteChannel interface

readBoolean() method

readChar() method

readDouble() method

readers

 buffers

 channels, converting from

 filtered

 piped

 strings

 writers

readFloat() method

reading data, URL connections

reading files 2nd

reading from files, JAR files

reading from streams

reading objects

reading text

readLine() method

readObject() method

readResolve() method

register() method

relative paths

remote devices, Bluetooth

RemoteDevice class

renameTo() method

Request To Send (RTS)

reset() method 2nd

resetting position, input stream

resolveClass()

resolving classes, serialization

resolving objects, serialization

RFCOMM devices, Bluetooth

root hub, USB controller

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RTS (Request To Send)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

scanf()

scattering channels

ScatteringByteChannel interface

scatternets

SDU

sealed objects

SealedObject class

security

selectable channels, NIO

SelectableChannel class

SelectionKey class

Selector class

Selector.open() method

sequence

SequenceInputStream

serial I/O, GCF

serial ports

 control functions

 control wires

 DTR

 events

 flow control

 parity

 RTS

 SerialPort class

serializable interface

serialization

 class resolution

 defaultReadObject() method

 defaultWriteObject() method

 Externalizable interface

 format, custom

 javadoc

 object resolution

 objects, sealed

 overview

 performance and

 preventing

 reading objects

 readObject() method

 readResolve() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 serialPersistentFields

 validation and

 versioning and

 changes

 SUIDs

 writeObject() method

 writeReplace() method

 writing objects

serialPersistentFields array

SerialPort class

SerialPortEvent

SerialPortEventListener

server sockets 2nd

ServerSocket object

ServerSocketChannel class

service records, Bluetooth

ServiceRecord interface

setDictionary() methods

setFilenameFilter()

setLastModified() method

setReadOnly() method

short integer

skip() method

skipBytes() method

skipping bytes

slicing buffers

SocketChannel class

SocketConnection interface

sockets 2nd

 getters

 options

 server sockets 2nd

stream ciphers, encryption

StreamCopier class

streams

 byte array input streams

 byte array output streams

 byte array streams

 byte array input streams

 byte array output streams

 channels

 converting from

 converting to

 checksums

 compression

 DeflaterOutputStream class

 GZIPInputStream class

 GZIPOutputStream class

 copying

 decompression

 InflaterInputStream class

 definition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 digest streams

 file input

 file output

 input, compression

 network connections

 object streams

 objects, writing to stream

 origins

 output, expanding

 piped streams

 reading from

streams classes

String class

 byte arrays and

 Charset class

StringBufferInputStream class

StringReader class

strings

 arrays, converting between

 readers

 writers

subclasses, filter streams

subclassing

SUIDs (stream unique identifiers)

SunJCE

Swing

symmetric ciphers, encryption

system properties

System.err 2nd 3rd

 redirection

System.in 2nd 3rd

 redirection

System.out 2nd 3rd

 redirection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

temperature sensor example, USB

temporary files

text

 reading

 writing

thread safety

threading, file channels

transferFrom() method

transferTo() method

tryLock() method

typed data, I/O

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

UDP data, packets

Unicode

 blocks

 characters (0127)

 fonts

Unicode data

update() method

 checksums

 Cipher class

URL objects

URLConnection object

URLs

 connections

 reading data

 writing data

 datagram URLs

 HTTP, getter methods

URLViewer

USB

 architecture

 controller, root hub

 devices

 configuration

 controlling

 describing

 locating

 hot plugging

 IRPs

 pipes

 temperature sensor example

USB (Universal Serial Bus)

USB API

USB controllers

 functions

UsbConfigurationDescriptor interface

UsbDevice interface

UsbDeviceDescriptor interface

UsbEndpoints interface

UsbInterface interface

UsbInterfaceDescriptor interface

UsbServicesListener interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UTF-16

UTF-8

UUIDs (Universal Unique Identifiers), Bluetooth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

validation, serialization and

versioning, serialization and

 changes

 SUIDs

view buffers

viewing files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

width, Formatter class

Win32 systems

 file attributes

 paths, separators

working directory, current

WritableByteChannel interface

write() method 2nd 3rd 4th

 print streams

writeBytes() method 2nd 3rd

writeChar() method

writeChars()

writeChars() method 2nd

writeDouble() method

writeFloat() method

writeIn() method

writeObject() method

writeReplace() method

writers

 buffers

 channels, converting from

 filtered

 piped

 print writers

 strings

writeUTF() method

writing

 arrays of bytes

 bytes to output streams

 to files

writing data, URL connections

writing objects

writing text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Z]

zip files

 JAR files, versus

ZipEntry objects

ZipInputStream class

 JarInputStream subclass

ZipOutputStream class

 JarOutputStream subclass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Java™ I/O, 2nd Edition
	Table of Contents
	Copyright
	Preface

	Part PART I: Basic I/O
	Chapter 1. Introducing I/O
	Section 1.1. What Is a Stream?
	Section 1.2. Numeric Data
	Section 1.3. Character Data
	Section 1.4. Readers and Writers
	Section 1.5. Buffers and Channels
	Section 1.6. The Ubiquitous IOException
	Section 1.7. The Console: System.out, System.in, and System.err
	Section 1.8. Security Checks on I/O

	Chapter 2. Output Streams
	Section 2.1. Writing Bytes to Output Streams
	Section 2.2. Writing Arrays of Bytes
	Section 2.3. Closing Output Streams
	Section 2.4. Flushing Output Streams
	Section 2.5. Subclassing OutputStream
	Section 2.6. A Graphical User Interface for Output Streams

	Chapter 3. Input Streams
	Section 3.1. The read() Method
	Section 3.2. Reading Chunks of Data from a Stream
	Section 3.3. Counting the Available Bytes
	Section 3.4. Skipping Bytes
	Section 3.5. Closing Input Streams
	Section 3.6. Marking and Resetting
	Section 3.7. Subclassing InputStream
	Section 3.8. An Efficient Stream Copier

	Part PART II: Data Sources
	Chapter 4. File Streams
	Section 4.1. Reading Files
	Section 4.2. Writing Files
	Section 4.3. File Viewer, Part 1

	Chapter 5. Network Streams
	Section 5.1. URLs
	Section 5.2. URL Connections
	Section 5.3. Sockets
	Section 5.4. Server Sockets
	Section 5.5. URLViewer

	Part PART III: Filter Streams
	Chapter 6. Filter Streams
	Section 6.1. The Filter Stream Classes
	Section 6.2. The Filter Stream Subclasses
	Section 6.3. Buffered Streams
	Section 6.4. PushbackInputStream
	Section 6.5. ProgressMonitorInputStream
	Section 6.6. Multitarget Output Streams
	Section 6.7. File Viewer, Part 2

	Chapter 7. Print Streams
	Section 7.1. Print Versus Write
	Section 7.2. Line Breaks
	Section 7.3. Error Handling
	Section 7.4. printf()
	Section 7.5. Formatter
	Section 7.6. Formattable

	Chapter 8. Data Streams
	Section 8.1. The Data Stream Classes
	Section 8.2. Integers
	Section 8.3. Floating-Point Numbers
	Section 8.4. Booleans
	Section 8.5. Byte Arrays
	Section 8.6. Strings and chars
	Section 8.7. Little-Endian Numbers
	Section 8.8. Thread Safety
	Section 8.9. File Viewer, Part 3

	Chapter 9. Streams in Memory
	Section 9.1. Sequence Input Streams
	Section 9.2. Byte Array Streams
	Section 9.3. Communicating Between Threads Using Piped Streams

	Chapter 10. Compressing Streams
	Section 10.1. Inflaters and Deflaters
	Section 10.2. Compressing and Decompressing Streams
	Section 10.3. Zip Files
	Section 10.4. Checksums
	Section 10.5. File Viewer, Part 4

	Chapter 11. JAR Archives
	Section 11.1. Meta-Information: Manifest Files and Signatures
	Section 11.2. The jar Tool
	Section 11.3. The java.util.jar Package
	Section 11.4. JarFile
	Section 11.5. JarEntry
	Section 11.6. Attributes
	Section 11.7. Manifest
	Section 11.8. JarInputStream
	Section 11.9. JarOutputStream
	Section 11.10. JarURLConnection
	Section 11.11. Pack200
	Section 11.12. Reading Resources from JAR Files

	Chapter 12. Cryptographic Streams
	Section 12.1. Hash Functions
	Section 12.2. The MessageDigest Class
	Section 12.3. Digest Streams
	Section 12.4. Encryption Basics
	Section 12.5. The Cipher Class
	Section 12.6. Cipher Streams
	Section 12.7. File Viewer, Part 5

	Chapter 13. Object Serialization
	Section 13.1. Reading and Writing Objects
	Section 13.2. Object Streams
	Section 13.3. How Object Serialization Works
	Section 13.4. Performance
	Section 13.5. The Serializable Interface
	Section 13.6. Versioning
	Section 13.7. Customizing the Serialization Format
	Section 13.8. Resolving Classes
	Section 13.9. Resolving Objects
	Section 13.10. Validation
	Section 13.11. Sealed Objects
	Section 13.12. JavaDoc

	Part PART IV: New I/O
	Chapter 14. Buffers
	Section 14.1. Copying Files with Buffers
	Section 14.2. Creating Buffers
	Section 14.3. Buffer Layout
	Section 14.4. Bulk Put and Get
	Section 14.5. Absolute Put and Get
	Section 14.6. Mark and Reset
	Section 14.7. Compaction
	Section 14.8. Duplication
	Section 14.9. Slicing
	Section 14.10. Typed Data
	Section 14.11. Read-Only Buffers
	Section 14.12. CharBuffers
	Section 14.13. Memory-Mapped I/O

	Chapter 15. Channels
	Section 15.1. The Channel Interfaces
	Section 15.2. File Channels
	Section 15.3. Converting Between Streams and Channels
	Section 15.4. Socket Channels
	Section 15.5. Server Socket Channels
	Section 15.6. Datagram Channels

	Chapter 16. Nonblocking I/O
	Section 16.1. Nonblocking I/O
	Section 16.2. Selectable Channels
	Section 16.3. Selectors
	Section 16.4. Selection Keys
	Section 16.5. Pipe Channels

	Part PART V: The File System
	Chapter 17. Working with Files
	Section 17.1. Understanding Files
	Section 17.2. Directories and Paths
	Section 17.3. The File Class
	Section 17.4. Filename Filters
	Section 17.5. File Filters
	Section 17.6. File Descriptors
	Section 17.7. Random-Access Files
	Section 17.8. General Techniques for Cross-Platform File Access Code

	Chapter 18. File Dialogs and Choosers
	Section 18.1. File Dialogs
	Section 18.2. JFileChooser
	Section 18.3. File Viewer, Part 6

	Part PART VI: Text
	Chapter 19. Character Sets and Unicode
	Section 19.1. The Unicode Character Set
	Section 19.2. UTF-16
	Section 19.3. UTF-8
	Section 19.4. Other Encodings
	Section 19.5. Converting Between Byte Arrays and Strings

	Chapter 20. Readers and Writers
	Section 20.1. The java.io.Writer Class
	Section 20.2. The OutputStreamWriter Class
	Section 20.3. The java.io.Reader Class
	Section 20.4. The InputStreamReader Class
	Section 20.5. Encoding Heuristics
	Section 20.6. Character Array Readers and Writers
	Section 20.7. String Readers and Writers
	Section 20.8. Reading and Writing Files
	Section 20.9. Buffered Readers and Writers
	Section 20.10. Print Writers
	Section 20.11. Piped Readers and Writers
	Section 20.12. Filtered Readers and Writers
	Section 20.13. File Viewer Finis

	Chapter 21. Formatted I/O with java.text
	Section 21.1. The Old Way
	Section 21.2. Choosing a Locale
	Section 21.3. Number Formats
	Section 21.4. Specifying Width with FieldPosition
	Section 21.5. Parsing Input
	Section 21.6. Decimal Formats

	Part PART VII: Devices
	Chapter 22. The Java Communications API
	Section 22.1. The Architecture of the Java Communications API
	Section 22.2. Identifying Ports
	Section 22.3. Communicating with a Device on a Port
	Section 22.4. Serial Ports
	Section 22.5. Parallel Ports

	Chapter 23. USB
	Section 23.1. USB Architecture
	Section 23.2. Finding Devices
	Section 23.3. Controlling Devices
	Section 23.4. Describing Devices
	Section 23.5. Pipes
	Section 23.6. IRPs
	Section 23.7. Temperature Sensor Example
	Section 23.8. Hot Plugging

	Chapter 24. The J2ME Generic Connection Framework
	Section 24.1. The Generic Connection Framework
	Section 24.2. ContentConnection
	Section 24.3. Files
	Section 24.4. HTTP
	Section 24.5. Serial I/O
	Section 24.6. Sockets
	Section 24.7. Server Sockets
	Section 24.8. Datagrams

	Chapter 25. Bluetooth
	Section 25.1. The Bluetooth Protocol
	Section 25.2. The Java Bluetooth API
	Section 25.3. The Local Device
	Section 25.4. Discovering Devices
	Section 25.5. Remote Devices
	Section 25.6. Service Records
	Section 25.7. Talking to Devices

	Part PART VIII: Appendix
	Character Sets

	About the Author
	Colophon
	Colophon

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

