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Preface

When I first started using the Internet in 1986, my friends and I were obsessed with
anonymous FTP servers. What a wonderful concept! We could download all sorts of
interesting files, such as FAQs, source code, GIF images, and PC shareware. Of course,

downloading could be slow, especially from the busy sites like the famous WSMR-
SIMTEL20.ARMY.MIL archive.

In order to download files to my PC, I would first ftp them to my Unix account and then use
Zmodem to transfer them to my PC through my 1200 bps modem. Usually, I deleted a file

after downloading it, but there were certain files-like HOSTS.TXT and the "Anonymous FTP
List"-that I kept on the Unix system. After a while, I had some scripts to automatically locate
and retrieve a list of files for later download. Since our accounts had disk quotas, I had to
carefully remove old, unused files and keep the useful ones. Also, I knew that if I had to
delete a useful file, Mark, Mark, Ed, Jay, or Wim probably had a copy in their account.

Although I didn't realize it at the time, I was caching the FTP files. My Unix account provided
temporary storage for the files I was downloading. Frequently referenced files were kept as
long as possible, subject to disk space limitations. Before retrieving a file from an FTP server,
I often checked my friend's "caches" to see if they already had what I was looking for.

Nowadays, the World Wide Web is where it's at, and caching is here too. Caching makes the
Web feel faster, especially for popular pages. Requests for cached information come back
much faster than requests sent to the content provider. Furthermore, caching reduces
network bandwidth, which translates directly into cost savings for many organizations.

In many ways, web caching is similar to the way it was in the Good Ol' Days. The basic ideas
are the same: retrieve and store files for the user. When the cache becomes full, some files
must be deleted. Web caches can cooperate and talk to each other when looking for a
particular file before retrieving it from the source.

Of course, web caching is significantly more sophisticated and complicated than my early
Internet years. Caches are tightly integrated into the web architecture, often without the
user's knowledge. The Hypertext Transfer Protocol was designed with caching in mind. This
gives users and content providers more control (perhaps too much) over the treatment of
cached data.

In this book, you'll learn how caches work, how clients and servers can take advantage of
caching, what issues are important, how to design a caching service for your organization,
and more.
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Audience

The material in this book is relevant to the following groups of people:

Administrators

This book is primarily written for those of you who are, or will be, responsible for the
day-to-day operation of one or more web caches. You might work for an ISP, a
corporation, or an educational institution. Or perhaps you'd like to set up a web cache
for your home computer.

Content providers

I sincerely hope that content providers take a look at this book, and especially Chapter
6, to see how making their content more "cache aware" can improve their users' surfing
experiences.

Web developers

Anyone developing an application that uses HTTP needs to understand how web
caching works. Many users today are behind firewalls and caching proxies. A significant
amount of HTTP traffic is automatically intercepted and sent to web caches. Failure to
take caching issues into consideration may adversely affect the operation of your
application.

Web users

Usually, the people who deploy caches want them to be transparent to the end user.
Indeed, users are often unaware that they are using a web cache. Even so, if you are
"only" a user, I hope that you find this book useful and interesting. It can help you
understand why you sometimes see stale web pages and what you can do about it. If
you are concerned about your privacy on the Internet, be sure to read Chapter 3. If
you want to know how to configure your browser for caching, see Chapter 4.

To benefit from this book, you need to have only a user-level understanding of the Web. You
should know that Netscape Navigator and Internet Explorer are web browsers, that Apache is
a web server, and that http://www.oreilly.com is a URL. If you have some Unix system
administration experience, you can use some of the examples in later chapters.
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What You Will and Won't Find Here

Chapter 1 introduces caching and provides some background material to help the rest of the
book make sense. In addition, companies that provide caching products are listed here. In
Chapter 2, we'll dive into the Hypertext Transfer Protocol and explore its features for
caching. Chapter 3 is relatively nontechnical and discusses some of the controversies that
surround web caching, such as copyrights and privacy.

In Chapter 4, you'll see the various ways to configure user agents (browsers) for caching,
with a focus on Netscape Navigator and Microsoft Internet Explorer. Many administrators
prefer to automatically intercept and divert HTTP connections to a cache. We'll talk about
that in Chapter 5. Then, in Chapter 6, we'll turn to servers and see how content providers
can make their information cache-friendly.

Chapter 7 and Chapter 8 are about cache hierarchies. First we'll talk about them in
general, including why you should or should not participate in a hierarchy. Then you'll learn
about the protocols caches use to communicate with each other. Chapter 9 is a short
chapter about cache clusters. Although clusters have some things in common with cache
hierarchies, it is easier to understand some of the nuances after you've learned about the
intercache protocols.

In Chapter 10, I'll walk you through some of the decisions you'll face in procuring and
building a caching service for your organization. Following that, Chapter 11 offers advice on
monitoring the health of your caches once they are operational. For the Unix-savvy, I'll show
how to set up UCD-SNMPD and RRDTool for this purpose. Chapter 12 is about
benchmarking the performance of caches.

I analyze some logfiles from production caches in Appendix A. Here you can see some
sample file size distributions, content types, HTTP headers, and hit ratio simulations. The
next four appendixes are about intercache protocols. Appendix B describes the technical
details of ICP. Appendix D does the same for HTCP, Appendix C for CARP, and
Appendix E for cache digests. Appendix F is a list of HTTP status codes from RFC 2616.
Appendix G contains the text of a U.S. copyright statute that mentions caching. Finally, in
Appendix H, you'll find definitions for many of the acronyms I use in this book.

The new, hot topics in the caching industry are streaming media and content distribution
networks. This book focuses on HTTP and FTP caching techniques with proven results,
eschewing technology that is still evolving.
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Caching Resources

Here are a few resources you can use to find additional information about caching. Caching
vendors' web sites are listed in Section 1.8.

Web Sites

See the following web sites for more information about web caching:

http://www.web-caching.com

This well-designed site contains a lot of up-to-date information, including product
information, press releases, links to magazine articles online, industry events, and job
postings. The site also has a bulletin board discussion forum. The banner ads at the top
of every page are mildly annoying.

http://www.caching.com

This professional site is full of web caching information in the form of press releases,
upcoming events, vendor white papers, online magazine articles, and analyst
commentaries. The site is apparently sponosred by a number of the caching
companies.

http://www.web-cache.com

At my own site for caching information, you'll find mostly links to other web sites,
including caching vendors and caching-related services. I also try to keep up with
relevant technical documents (e.g., RFCs) and research papers.

http://dmoz.org/Computers/Software/Internet/Servers/Proxy/Caching/

The Open Directory Project has a decent-sized collection of web caching links at the
above URL.

http://www.wrec.org

The Web Replication and Caching (WREC) working group of the IETF is officially dead,
but this site still has some useful information.

http://www.iwcw.org

This site provides information about the series of annual International Web Caching
Workshops.

Mailing Lists

The following mailing lists discuss various aspects of web caching:

http://www.web-caching.com
http://www.caching.com
http://www.web-cache.com
http://dmoz.org/Computers/Software/Internet/Servers/Proxy/Caching/
http://www.wrec.org
http://www.iwcw.org
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isp-caching

Currently the most active caching-related mailing list. Averages about 2–3 messages
per day. Posting here is likely to result in a number of salespeople knocking on your
mailbox. One of the great things about this list is that replies automatically go back to
the list unless the message composer is careful. On many occasions people have
posted messages that they wish they could take back! For more information, visit
http://www.isp-caching.com.

WEBI

WEBI (Web Intermediaries) is a new IETF working group, replacing WREC. The
discussion is bursty, averaging about 1–2 messages per day. This is not an appropriate
forum for discussion of web caching in general; topics should be related to the working
group charter. Currently the group is addressing intermediary discovery (a la WPAD)
and the resource update protocol. For additional information, including the charter and
subscription instructions, visit http://www.ietf.org/html.charters/webi-
charter.html.

HTTP working group

Although the HTTP working group is officially dead, the mailing list still receives a small
amount of traffic. Messages are typically from somebody asking for clarification about
the RFC. For subscription information and access to the archives, visit
http://www.ics.uci.edu/pub/ietf/http/hypermail/.

loadbalancing

The people on this list discuss all aspects of load balancing, including hints for
configuring specific hardware, performance issues, and security alerts. Traffic averages
about 3–4 messages per day. For more more information, visit
http://www.lbdigest.com.

only for RuBoard - do not distribute or recompile  

http://www.isp-caching.com
http://www.ietf.org/html.charters/webi-
http://www.ics.uci.edu/pub/ietf/http/hypermail/
http://www.lbdigest.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

Conventions Used in This Book

I use the following typesetting conventions in this book:

Italic

Used for emphasis and to signify the first use of a term. Italic is also used for URLs,
host names, email addresses, FTP sites, file and directory names, and commands.

Constant width

Used for HTTP header names and directives, such as If-modified-since and no-
cache.
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How To Contact Us

You can contact the author at wessels@packet-pushers.com.

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list examples, errata, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/webcaching/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the
O'Reilly Network, see our web site at:

http://www.oreilly.com
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Chapter 1. Introduction

The term cache has French roots and means, literally, to store. As a data processing term,
caching refers to the storage of recently retrieved computer information for future reference.
The stored information may or may not be used again, so caches are beneficial only when
the cost of storing the information is less than the cost of retrieving or computing the
information again.

The concept of caching has found its way into almost every aspect of computing and
networking systems. Computer processors have both data and instruction caches. Computer
operating systems have buffer caches for disk drives and filesystems. Distributed
(networked) filesystems such as NFS and AFS rely heavily on caching for good performance.
Internet routers cache recently used routes. The Domain Name System (DNS) servers cache
hostname-to-address and other lookups.

Caches work well because of a principle known as locality of reference. There are two flavors
of locality: temporal and spatial. Temporal locality means that some pieces of data are more
popular than others. CNN's home page is more popular than mine. Within a given period of
time, somebody is more likely to request the CNN page than my page. Spatial locality means
that requests for certain pieces of data are likely to occur together. A request for the CNN
home page is usually followed by requests for all of the page's embedded graphics. Caches
use locality of reference to predict future accesses based on previous ones. When the
prediction is correct, there is a significant performance improvement. In practice, this
technique works so well that we would find computer systems unbearably slow without
memory and disk caches. Almost all data processing tasks exhibit locality of reference and
therefore benefit from caching.

When requested data is found in the cache, we call it a hit. Similarly, referenced data that is
not cached is known as a miss. The performance improvement that a cache provides is
based mostly on the difference in service times for cache hits compared to misses. The

percentage of all requests that are hits is called the hit ratio.

Any system that utilizes caching must have mechanisms for maintaining cache consistency.
This is the process by which cached copies are kept up-to-date with the originals. We say

that cached data is either fresh or stale. Caches can reuse fresh copies immediately, but
stale data usually requires validation. The algorithms that are to maintain consistency may be
either weak or strong. Weak consistency means that the cache sometimes returns outdated
information. Strong consistency, on the other hand, means that cached data is always
validated before it is used. CPU and filesystem caches require strong consistency. However,
some types of caches, such as those in routers and DNS resolvers, are effective even if they
return stale information.

http://lib.ommolketab.ir
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We know that caching plays an important role in modern computer memory and disk
systems. Can it be applied to the Web with equal success? Ask different people and you're
likely to get different answers. For some, caching is critical to making the Web usable. Others
view caching as a necessary evil. A fraction probably consider it just plain evil [Tewksbury,
1998].

In this book, I'll talk about applying caching techniques to the World Wide Web and try to
convince you that web caching is a worthwhile endeavor. We'll see how web caches work,
how they interact with clients and servers, and the role that HTTP plays. You'll learn about a
number of protocols that are used to build cache clusters and hierarchies. In addition to
talking about the technical aspects, I also spend a lot of time on the issues and politics. The
Web presents some interesting problems due to its highly distributed nature.

After you've read this book, you should be able to design and evaluate a caching proxy
solution for your organization. Perhaps you'll install a single caching proxy on your firewall, or
maybe you need many caches located throughout your network. Furthermore, you should be
well prepared to understand and diagnose any problems that may arise from the operation or
failure of your caches. If you're a content provider, then I hope I'll have convinced you to
increase the cachability of the information you serve.
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1.1 Web Architecture

Before we can talk more about caching, we need to agree on some terminology. Whenever
possible, I use words and meanings taken from Internet standards documents. Unfortunately,
colloquial usage of web caching terminology is often just different enough to be confusing.

1.1.1 Clients and Servers

The fundamental building blocks of the Web (and indeed most distributed systems) are

clients and servers. A web server manages and provides access to a set of resources. The
resources might be simple text files and images, or something more complex, such as a
relational database. Clients, also known as user agents, initiate a transaction by sending a

request to a server. The server then processes the request and sends a response back to
the client.

On the Web, most transactions are download operations; the client downloads some
information from the server. In these cases, the request itself is quite small (about 200 bytes)
and contains the name of the resource, plus a small amount of additional information from
the client. The information being downloaded is usually an image or text file with an average
size of about 10,000 bytes. This characteristic of the Web makes cable- and satellite-based
Internet services viable. The data rates for receiving are much higher than the data rates for
sending because web users mostly receive information.

A small percentage of web transactions are more correctly characterized as upload
operations. In these cases, requests are relatively large and responses are very small.
Examples of uploads include sending an email message and transferring an image file from
your computer to a server.

The most common web clients are called browsers. These are applications such as
Netscape Navigator and Microsoft Internet Explorer. The purpose of a browser is to render
the web content for us to view and interact with. Because of the myriad of features present in
web browsers, they are really very large and complicated programs. In addition to the GUI-
based clients, there are a few simple command-line client programs, such as Lynx and Wget.

A number of different servers are in widespread use on the Web. The Apache HTTP server
is a popular choice and freely available. Netscape, Microsoft, and other companies also have
server products. Many content providers are concerned with the performance of their servers.
The most popular sites on the Net can receive ten million requests per day with peak request
rates of 1000 per second. At this scale, both the hardware and software must be very
carefully designed to cope with the load. Many sites run multiple servers in parallel to handle
their high request rates and for redundancy.
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Recently, there has been a lot of excitement surrounding peer-to-peer applications, such as
Napster. In these systems, clients share files and other resources (e.g., CPU cycles) directly
with each other. Napster, which enables people to share MP3 files, does not store the files
on its servers. Rather, it acts as a directory and returns pointers to files so that two clients
can communicate directly. In the peer-to-peer realm, there are no centralized servers; every
client is a server.

The peer-to-peer movement is relatively young but already very popular. It's likely that a
significant percentage of Internet traffic today is due to Napster alone. However, I won't
discuss peer-to-peer clients in this book. One reason for this is that Napster uses its own
transfer protocol, whereas here we'll focus on HTTP.

1.1.2 Proxies

Much of this book is about proxies. A proxy is an intermediary in a web transaction. It is an
application that sits somewhere between the client and the origin server. Proxies are often
used on firewalls to provide security. They allow (and record) requests from the internal
network to the outside Internet.

A proxy behaves like both a client and a server. It acts like a server to clients, and like a client
to servers. A proxy receives and processes requests from clients, and then it forwards those
requests to origin servers. Some people refer to proxies as "application layer gateways." This
name reflects the fact that the proxy lives at the application layer of the OSI reference model,
just like clients and servers. An important characteristic of an application layer gateway is that
it uses two TCP connections: one to the client and one to the server. This has important
ramifications for some of the topics we'll discuss later.

Proxies are used for a number of different things, including logging, access controls, filtering,
translation, virus checking, and caching. We'll talk more about these and the issues they
create in Chapter 3.

1.1.3 Web Objects

I use the term object to refer to the entity exchanged between a client and a server. Some

people may use document or page, but these terms are misleading because they imply
textual information or a collection of text and images. "Object" is generic and better describes
the different types of content returned from servers, such as audio files, ZIP files, and C
programs. The standards documents (RFCs) that describe web components and protocols

prefer the terms entity, resource, and response. My use of object corresponds to their use of
entity, where an object (entity) is a particular response generated from a particular resource.
Web objects have a number of important characteristics, including size (number of bytes),
type (HTML, image, audio, etc.), time of creation, and time of last modification.

In broad terms, web resources can be considered either dynamic or static. Responses for
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dynamic resources are generated on the fly when the request is made. Static responses are
pregenerated, independent of client requests. When people think of dynamic responses,
often what comes to mind are stock quotes, live camera images, and web page counters.
Digitized photographs, magazine articles, and software distributions are all static information.
The distinction between dynamic and static content is not necessarily so clearly defined.
Many web resources are updated at various intervals (perhaps daily) but not uniquely
generated on a per-request basis. The distinction between dynamic and static resources is
important because it has serious consequences for cache consistency.

1.1.4 Resource Identifiers

Resource identifiers are a fundamental piece of the architecture of the Web. These are the
names and addresses for web objects, analogous to street addresses and telephone

numbers. Officially, they are called Universal Resource Identifiers, or URIs. They are used by
both people and computers alike. Caches use them to identify and index the stored objects.
According to the design specification, RFC 2396, URIs must be extensible, printable, and
able to encode all current and future naming schemes. Because of these requirements, only
certain characters may appear in URIs, and some characters have special meanings.

Uniform Resource Locators (URLs) are the most common form of URI in use today. The URL
syntax is described in RFC 1738. Here are some sample URLs:

http://www.zoidberg.net
http://www.oasis-open.org/specs/docbook.shtml
ftp://ftp.freebsd.org/pub/FreeBSD/README.TXT

URLs have a very important characteristic worth mentioning here. Every URL includes a
network host address-either a hostname or an IPaddress. Thus, a URL is bound to a

specific server, called the origin server. This characteristic has some negative side effects for
caching. Occasionally, the same resource exists on two or more servers, as occurs with
mirror sites. When a resource has more than one name, it can get cached under different
names. This wastes storage space and bandwidth.

Uniform Resource Names (URNs) are similar to URLs, but they refer to resources in a
location-independent manner. RFC 2141 describes URNs, which are also sometimes called

persistent names. Resources named with URNs can be moved from one server (location) to
another without causing problems. Here are some sample (hypothetical) URNs:

urn:duns:002372413:annual-report-1997
urn:isbn:156592536X

In 1995, the World Wide Web Project left its birthplace at CERN in Geneva, Switzerland, and
became the World Wide Web Consortium. In conjunction with this move, their web site
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location changed from info.cern.ch to www.w3c.org. Everyone who used a URL with the old
location received a page with a link to the new location and a reminder to "update your links
and hotlist."[1] Had URNs been implemented and in use back then, such a problem could
have been avoided.

[1] Many years after this change, accessing info.cern.ch still generated a response with a link to http://www.w3c.org.

Another advantage of URNs is that a single name can refer to a resource replicated at many
locations. When an application processes such a URN request, it must select one of the
locations (presumably the closest or fastest) from which to retrieve the object. RFC 2168
describes methods for resolving URNs.

Unfortunately, URNs have been very slow to catch on. Very few applications are able to
handle URNs, while everyone and everything knows about URLs. Through the remainder of
this book, I'll use both URI and URL somewhat interchangeably. I won't say much more about
URNs, but keep in mind that URI is a generic term that refers to both URLs and URNs.
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1.2 Web Transport Protocols

Clients and servers use a number of different transport protocols to exchange information.
These protocols, built on top of TCP/IP, comprise the majority of all Internet traffic today. The

Hypertext Transfer Protocol (HTTP) is the most common because it was designed

specifically for the Web. A number of legacy protocols, such as the File Transfer Protocol

(FTP) and Gopher, are still in use today. According to Merit's measurements from the
NSFNet, HTTP replaced FTP as the dominant protocol in April of 1995. [2] Some newer

protocols, such as Secure Sockets Layer (SSL) and the Real-time Transport Protocol (RTP),
are increasing in use.

[2] The source of this data is ftp://ftp.merit.edu/nsfnet/statistics/.

1.2.1 HTTP

Tim Berners-Lee and others originally designed HTTP to be a simple and lightweight transfer
protocol. Since its inception, HTTP has undergone three major revisions. The very first
version, retroactively named HTTP/0.9, is extremely simple and almost trivial to implement.
At the same time, however, it lacks any real features. The second version, HTTP/1.0
[Berners-Lee, Fielding and Frystyk, 1996], defines a small set of features and still
maintains the original goals of being simple and lightweight. However, at a time when the
Web was experiencing phenomenal growth, many developers found that HTTP/1.0 did not
provide all the functionality they required for new services.

The HTTP Working Group of the Internet Engineering Task Force (IETF) has worked long
and hard on the protocol specification for HTTP/1.1. New features in this version include
persistent connections, range requests, content negotiation, and improved cache controls.
RFC 2616 is the latest standards track document describing HTTP/1.1. Unlike the earlier
versions, HTTP/1.1 is a very complicated protocol.

HTTP transactions use a well-defined message structure. A message, which can be either a

request or a response, has two parts: the headers and the body. Headers are always
present, but the body is optional. Headers are represented as ASCII strings terminated by
carriage return and linefeed characters. An empty line indicates the end of headers and the
start of the body. Message bodies are treated as binary data. The headers are where we find
information and directives relevant to caching.

An HTTP header consists of a name followed by a colon and then one or more values
separated by commas. Multiword names are separated with dashes. Header names and
reserved words are case-insensitive. For example, these are all HTTP headers:

Host: www.slashdot.org
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Content-type: text/html
Date: Sat, 03 Mar 2001 13:41:06 GMT
Cache-control: no-cache,private,no-store

HTTP defines four categories of headers: entity, request, response, and general. Entity
headers describe something about the data in the message body. For example, Content-
length is an entity header. It describes the length of the message body. Request headers
should appear only in HTTP requests and are meaningless for responses. Host and If-
modified-since are request headers. Response headers, obviously, apply only to HTTP
responses. Age is a response header. Finally, general headers are dual-purpose: they can
be found in both requests and responses. Cache-control is a general header, one that
we'll talk about often.

The first line of an HTTP message is special. For requests, it's called the request line and

contains the request method, a URI, and an HTTP version number. For responses, the first
line is called the status-line, and it includes an HTTP version number and a status code that
indicates the success or failure of the request. Note that most request messages do not have
a body, but most response messages do.

Here's a simple GET request:

GET /index.html HTTP/1.1
Host: www.web-cache.com
Accept: */*

And here's a simple POST request with a message body:

POST /cgi-bin/query.pl HTTP/1.1
Host: www.web-cache.com
Accept: */*
Content-Length: 19

args=foo+bar&max=10

Here's a successful response:

HTTP/1.1 200 Ok
Date: Wed, 21 Feb 2001 09:57:56 GMT
Last-Modified: Mon, 19 Feb 2001 20:45:26 GMT
Server: Apache/1.2.5
Content-Length: 13
Content-Type: text/plain

Hello, world.
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And here's an error response:

HTTP/1.0 404 Not Found
Date: Fri, 23 Feb 2001 00:46:54 GMT
Server: Apache/1.2.5
content-Type: text/html

<HTML><HEAD>
<TITLE>404 File Not Found</TITLE>
</HEAD><BODY>
<H1>File Not Found</H1>
The requested URL /foo.bar was not found on this server.<P>
</BODY></HTML>

RFC 2616 defines the request methods listed in Table 1-1. Other RFCs, such as 2518,

define additional methods for HTTP. Applications may even make up their own extension

methods, although proxies are not required to support them. A proxy that receives a request
with an unknown or unsupported method should respond with a 405 (Method Not Allowed)
message. The descriptions in Table 1-1 are necessarily brief. Refer to Section 9 of RFC
2616 for full details.

Table 1-1. HTTP Request Methods Defined by RFC 2616

Method Description

GET A request for the information identified by the request URI.

HEAD Identical to GET, except the response does not include a message body.

POST A request for the server to process the data present in the message body.

PUT A request to store the enclosed body in the named URI.

TRACE
A "loopback" method that essentially echoes a request back to the client. It is also useful for
discovering and testing proxies between the client and the server.

DELETE A request to remove the named URI from the origin server.

OPTIONS A request for information about a server's capabilities or support for optional features.

CONNECT Used to tunnel certain protocols, such as SSL, through a proxy.

For our purposes, GET, HEAD, and POST are the only interesting request methods. I won't
say much about the others in this book. We'll talk more about HTTP in Chapter 2.

1.2.2 FTP

The File Transfer Protocol (FTP) has been in use since the early years of the Internet (1971).
The current standard document, RFC 959, by Postel, is very different from the original
specification, RFC 172. FTP consumed more Internet backbone bandwidth than any other
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protocol until about March of 1995.

An FTP session is a bit more complicated than an HTTP transaction. FTP uses a control
channel for commands and responses and a separate data channel for actual data transfer.
Before data transfer can occur, approximately six command and reply exchanges take place
on the control channel. FTP clients must "log in" to a server with a username and password.
Many servers allow anonymous access to their publicly available files. Because FTP is
primarily intended to give access to remote filesystems, the protocol supports commands
such as CWD (change working directory) and LST (directory listing). These differences make
FTP somewhat awkward to implement in web clients. Regardless, FTP remains a popular
way of making certain types of information available to Internet and web users.

1.2.3 SSL/TLS

Netscape invented the Secure Sockets Layer (SSL) protocol in 1994 to foster electronic
commerce applications on the Internet. SSL provides secure, end-to-end encryption between
clients and servers. Before SSL, people were justifiably afraid to conduct business online due
to the relative ease of sniffing network traffic. The development and standardization of SSL

has moved into the IETF, where it is now called Transport Layer Security (TLS) and
documented in RFC 2246.

The TLS protocol is not restricted to HTTP and the Web. It can be used for other
applications, such as email (SMTP) and newsgroups (NNTP). When talking about HTTP and
TLS, the correct terminology is "HTTP over TLS," the particulars of which are described in
RFC 2818. Some people refer to it as HTTPS because HTTP/TLS URLs use "https" as the
protocol identifier:

https://secure.shopping.com/basket

Proxies interact with HTTP/TLS traffic in one of two ways: either as a connection endpoint or
as a device in the middle. If a proxy is an endpoint, it encrypts and decrypts the HTTP traffic.
In this case, the proxy may be able to store and reuse responses. If, on the other hand, the
proxy is in the middle, it can only tunnel the traffic between the two endpoints. Since the
communication is encrypted, the responses cannot be cached and reused.

1.2.4 Gopher

The Gopher protocol is slowly becoming all but extinct on the Web. In principle, Gopher is
very similar to HTTP/0.9. The client sends a single request line, to which the server replies
with some content. The client knows a priori what type of content to expect because each
request includes an encoded, Gopher-specific content-type parameter. The extra features
offered by HTTP and HTML made Gopher obsolete.

https://secure.shopping.com/basket
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1.3 Why Cache the Web?

The short answer is that caching saves money. It saves time as well, which is sometimes the same thing if you
believe that "time is money." But how does caching save you money?

It does so by providing a more efficient mechanism for distributing information on the Web. Consider an example
from our physical world: the distribution of books. Specifically, think about how a book gets from publisher to
consumer. Publishers print the books and sell them, in large quantities, to wholesale distributors. The distributors,
in turn, sell the books in smaller quantities to bookstores. Consumers visit the stores and purchase individual
books. On the Internet, web caches are analogous to the bookstores and wholesale distributors.

The analogy is not perfect, of course. Books cost money; web pages (usually) don't. Books are physical objects,
whereas web pages are just electronic and magnetic signals. It's difficult to copy a book, but trivial to copy
electronic data.

The point is that both caches and bookstores enable efficient distribution of their respective contents. An Internet
without caches is like a world without bookstores. Imagine 100,000 residents of Los Angeles each buying one copy
of Harry Potter and the Sorcerer's Stone from the publisher in New York. Now imagine 50,000 Internet users in
Australia each downloading the Yahoo! home page every time they access it. It's much more efficient to transfer
the page once, cache it, and then serve future requests directly from the cache.

In order for caching to be effective, the following conditions must be met:

Client requests must exhibit locality of reference.

The cost of caching must be less than the cost of direct retrieval.

We can intuitively conclude that the first requirement is true. Certain web sites are very popular. Classic examples
are the starting pages for Netscape and Microsoft browsers. Others include searching and indexing sites such as
Yahoo! and Altavista. Event-based sites, such as those for the Olympics, NASA's Mars Pathfinder mission, and
World Cup Soccer, become extremely popular for days or weeks at a time. Finally, every individual has a few
favorite pages that he or she visits on a regular basis.

It's not always obvious that the second requirement is true. We need to compare the costs of caching to the costs
of not caching. Numerous factors enter into the analysis, some of which are easier to measure than others. To
calculate the cost of caching, we can add up the costs for hardware, software, and staff time to administer the
system. We also need to consider the time users save waiting for pages to load (latency) and the cost of Internet
bandwidth.

Let's take a closer look at the three primary benefits of caching web content:

To make web pages load faster (reduce latency)

To reduce wide area bandwidth usage

To reduce the load placed on origin servers
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1.3.1 Latency

Latency refers to delays in the transmission of data from one point to another. The transmission of data over
electrical or optical circuits is limited by the speed of light. In fact, electrical and optical pulses travel at
approximately two-thirds the speed of light in wires and fibers. Theoretically, it takes at least 25milliseconds to send
a packet across the U.S. In practice, it takes a little longer, say about 30milliseconds. Transoceanic delays are in
the 100-millisecond range.

Another source of latency is network congestion. When network links are close to full utilization, packets
experience queuing delays inside routers and switches. Queuing, which can occur at any number of points along a
path, is occasionally a source of significant delay. When a device's queue is full, it is forced to discard incoming (or
outgoing) packets. With reliable protocols, such as TCP, lost packets are eventually retransmitted. TCP's
retransmission algorithms are much too complex to describe here. However, a relatively small amount of packet
loss can result in a dramatic decrease in throughput.

A web cache located close to its users reduces latency for cache hits. Transmission delays are much lower
because the systems are close to each other. Additionally, queuing and retransmission delays are less likely
because fewer routers and links are involved. If the service is designed properly, a cache miss should not be
delayed much longer than a direct transfer between the client and origin server. Thus, cache hits reduce the
average latency of all requests.

To some extent, latency due to congestion can be eliminated by upgrading network links and/or hardware (faster
switches, fatter pipes). In reality, you may find this option too costly. Very fast routers and high-speed, wide-area
data circuits can be prohibitively expensive. Furthermore, you cannot upgrade equipment you do not control. For
example, there is almost nothing a person living in Japan can do to increase the capacity of major exchange points
in the United States. Installing a cache, however, avoids congested parts of the network for some web requests.

Content providers and online shopping companies have an incentive to develop cache-friendly web sites. A 1999
study by Zona Research concluded that e-commerce sites may have been losing up to US$362 million per month
due to page loading delays and network failures [Zona Research, 1999]. In Chapter 6, we'll talk about ways that
content providers can make their servers cache-friendly.

1.3.2 Bandwidth

Another reason to utilize web caches is bandwidth reduction. Every request that results in a cache hit saves
bandwidth. If your Internet connection is congested, installing a cache is likely to improve performance for other
applications (e.g., email, interactive games, streaming audio), because all your network applications compete for
bandwidth. A web cache reduces the amount of bandwidth consumed by HTTP traffic, leaving a larger share for the
others. It is also correct to say that a web cache increases your effective bandwidth. If your network supports 100
users without a cache, you can probably support 150 users with a cache.

Even if your Internet connection has plenty of spare bandwidth, you may still want to use a cache. In the United
States, Internet service is typically billed at flat rates. Many other countries, however, have usage-based billing.
That is, you pay only for the bandwidth you use. Australia and New Zealand were among the first countries to meter
bandwidth usage. Not surprisingly, these countries were also the first to widely deploy web caches.

1.3.3 Server Load

In the same way that caching reduces bandwidth, it also reduces the load imposed upon origin servers. A server's
response time usually increases as the request rate increases. An idle server is faster than a busy one. A very
busy server is slow, regardless of the network conditions between the server and its clients. Banga and Druschel
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show specifically how web server performance degrades when overloaded [Banga and Druschel, 1997].

It seems strange that an ISP should install a caching proxy to reduce the load on content providers. In fact, some
content providers don't want caching proxies to reduce their request rates. As we'll see in Chapter 3, they would
rather receive all requests.

However, more and more content providers are using surrogates (commonly called server accelerators or reverse
caches) to more efficiently distribute their data. Surrogates are used extensively by content distribution network
(CDN) providers such as Akamai and Digital Island. A surrogate is much like a caching proxy, except that it works
on behalf of an origin server rather than a user agent. This means that surrogates interpret some HTTP headers
differently.

CDNs (and surrogates) are a good way for content providers to make their sites faster for end users. However, it's
not the only way. By carefully configuring their web servers, content providers can take full advantage of all the
caching proxies on the Internet. As we'll see in Chapter 6, it's even possible to get accurate access counts while
making most of the content cachable.
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1.4 Why Not Cache the Web?

By now, you may have the impression that web caching is a wonderful solution without any
negative side effects. In fact, there are a number of important issues and consequences to
understand about web caching. I'll mention some of them here, with a deeper discussion to
follow in Chapter 3.

Unlike more tightly coupled systems, it can be difficult for a web cache to guarantee
consistency. This means that a cache might return out-of-date information to a user. Why
should this be the case? One important factor is that web servers provide only weak hints
about freshness. Many responses don't have any hints at all. On-demand validation is the
only way to guarantee a cached response is up-to-date. Given the relatively high latencies
involved (compared to other systems), validation can take a significant amount of time.
Furthermore, the cache may not even be able to reach the server due to a network or server
failure. If a validation request fails, the cache doesn't really know if its response is up-to-date
or not. Some caching products can be configured to intentionally return stale responses.

If you've ever set up and maintained a web server, you understand how good it feels to watch
the access log file and see people visiting your site. Many content providers feel the same
way. They want to know exactly who their users are, which pages they view, and how often.
Caches complicate their analysis. Requests served as cache hits are not logged at the origin
server. Proxies also tend to hide the identity of users. For example, all users behind a
caching proxy come from the same IP address. Furthermore, some products also have
features to remove or modify HTTP request headers that can otherwise identify individual
users.

Copyright has been controversial with respect to caching for quite some time. Some people
feel that caches violate an author's right to control the distribution of her work. The possibility
of being sued for copyright infringement prevents some people from providing caching
services. HTTP does allow content providers to specify if, and how, their information should
be handled and distributed by different types of caches. However, the protocol does not
address copyright directly.

Some people predict that the percentage of web content that is dynamic and personalized is
increasing. Dynamic responses usually should not be cached, because they cannot be
reused for a future request; Jane should not receive a page that was customized for Bob. If
the prediction is true, then caching will become less important over time. However, other
people believe that web content is increasingly static, and that it's becoming easier to
differentiate static and dynamic data. In this case, caching becomes more efficient. (Note that
movies, Java applets, and Macromedia Flash are all static content, even though they can
display changing images on your screen.)
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These problems all highlight the ongoing struggle for control of web content. Users and their
service providers want a high percentage of cache hits, because cache hits save them time
and bandwidth. Some content providers, on the other hand, want fewer hits delivered from
caching proxies. They don't want their content stored in servers they don't control, and they
want to accurately count page accesses and track users throughout their site.

Despite these potential problems, I still feel that web caching is a worthwhile practice. This is
not to say that the problems should be ignored. In fact, we'll continue talking about them
throughout the rest of this book.
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1.5 Types of Web Caches

Web content can be cached at a number of different locations along the path between a
client and an origin server. First, many browsers and other user agents have built-in caches.

For simplicity, I'll call these browser caches. Next, a caching proxy (a.k.a. "proxy cache")
aggregates all of the requests from a group of clients. Lastly, a surrogate can be located in
front of an origin server to cache popular responses. In this book, we'll spend more time
talking about caching proxies than the others.

1.5.1 Browser Caches

Browsers and other user agents benefit from having a built-in cache. When you press the

Back button on your browser, it reads the previous page from its cache. Nongraphical agents,
such as web crawlers, cache objects as temporary files on disk rather than keeping them in
memory.

Netscape Navigator lets you control exactly how much memory and disk space to use for
caching, and it also allows you to flush the cache. Microsoft Internet Explorer lets you control
the size of your local disk cache, but in a less flexible way. Both have controls for how often
cached responses should be validated. People generally use 10–100MB of disk space for
their browser cache.

A browser cache is limited to just one user, or at least one user agent. Thus, it gets hits only
when the user revisits a page. As we'll see later, browser caches can store "private"
responses, but shared caches cannot.

1.5.2 Caching Proxies

Caching proxies, unlike browser caches, service many different users at once. Since many
different users visit the same popular web sites, caching proxies usually have higher hit ratios
than browser caches. As the number of users increases, so does the hit ratio [ Duska,
Marwood and Feely, 1997].

Caching proxies are essential services for many organizations, including ISPs, corporations,
and schools. They usually run on dedicated hardware, which may be an appliance or a
general-purpose server, such as a Unix or Windows NT system. Many organizations use
inexpensive PC hardware that costs less than $1,000. At the other end of the spectrum,
some organizations pay hundreds of thousands of dollars, or more, for high-performance
solutions from one of the many caching vendors. We'll talk more about equipment in
Chapter 10 and performance in Chapter 12.
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Caching proxies are normally located near network gateways (i.e., routers) on the
organization's side of its Internet connection. In other words, a cache should be located to
maximize the number of clients that can use it, but it should not be on the far side of a slow,
congested network link.

As I've already mentioned, a proxy sits between clients and servers. Unlike browser caches,
a caching proxy alters the path of packets flowing through the network. A proxy splits a web
request into two separate TCP connections, one to the client and the other to the server.
Since the proxy forwards requests to origin servers, it hides the client's network address. This
characteristic raises a number of interesting issues that we'll explore in later chapters.

One of the most difficult aspects of operating a caching proxy is getting clients to use the
service. As we'll see in Chapter 4, configuring browsers to use a proxy is a little complicated.
Users might not configure their browsers correctly, and they can even disable the caching
proxy if they feel like it. Many organizations use interception caching to divert their network's
HTTP traffic to a cache. Network administrators like interception caching because it reduces
their administrative burdens and increases the number of clients using the cache. However,
the technique is controversial because it violates and breaks protocols (such as TCP and
HTTP) in subtle ways. I'll cover interception caching extensively in Chapter 5.

1.5.3 Surrogates

Until recently, we didn't have a good name for reverse proxies, server accelerators, and other
devices that pretend to be origin servers. RFC 3040 defines a surrogate:

A gateway co-located with an origin server, or at a different point in the network,
delegated the authority to operate on behalf of, and typically working in close co-
operation with, one or more origin servers. Responses are typically delivered from an
internal cache.

Surrogates are useful in a number of situations. Content distribution networks use them to
replicate information at many different locations. Typically, clients are directed to the nearest
surrogate that has a given resource. In this manner, it seems like all users are closer to the
origin server.

Another common use for surrogates is to "accelerate" slow web servers. Of course, the
acceleration is accomplished simply by caching the server's responses. Some web servers
are slow because they generate pages dynamically. For example, they may use Java to
assemble an HTML page from different components stored in a relational database. If the
same page is delivered to all the clients who visit, a surrogate will accelerate the server. If the
pages are customized to each client, a surrogate would not speed things up significantly.

Surrogates are also often used to decrypt HTTP/TLS connections. Such decryption requires
a fair amount of processing power. Rather than put that burden on the origin server itself, a
surrogate encrypts and decrypts the traffic. Although communication between the surrogate
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and the origin server is unencrypted, there is little risk of eavesdropping because the two
devices are usually right next to each other.

Surrogates that cache origin server responses are not much different from caching proxies.
It's likely that any product sold as a client-side caching proxy can also function as an origin
server surrogate. It may not work automatically, however. You'll probably have to configure it
specifically for surrogate operation.

The workload for a surrogate is generally much different from that of a caching proxy. In
particular, a surrogate receives requests for a small number of origin servers, while client-
side proxies typically forward requests to more than 100,000 different servers. Since the
traffic arriving at the surrogate is focused on a small number of servers, the hit ratio is
significantly higher. In many cases, surrogates achieve hit ratios of 90% or more.
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1.6 Caching Proxy Features

The key feature of a caching proxy is its ability to store responses for later use. This is what
saves you time and bandwidth. Caching proxies actually tend to have a wide range of
additional features that many organizations find valuable. Most of these are things you can
do only with a proxy but which have relatively little to do with caching. For example, if you
want to authenticate your users, but don't care about caching, you might use a caching proxy
product anyway. I'll introduce some of the features here, with detailed discussions to follow in
later chapters of this book.

Authentication

A proxy can require users to authenticate themselves before it serves any requests.
This is particularly useful for firewall proxies. When each user has a unique username
and password, only authorized individuals can surf the Web from inside your network.
Furthermore, it provides a higher quality audit trail in the event of problems.

Request filtering

Caching proxies are often used to filter requests from users. Corporations usually have
policies that prohibit employees from viewing pornography at work. To help enforce the
policy, the corporate proxy can be configured to deny requests to known pornographic
sites. Request filtering is somewhat controversial. Some people equate it with
censorship and correctly point out that filtering schemes are not perfect.

Response filtering

In addition to filtering requests, proxies can also filter responses. This usually involves
checking the contents of an object as it is being downloaded. A filter that checks for
software viruses is a good example. Some organizations use proxies to filter out Java
and JavaScript code, even when it is embedded in an HTML file. I've also heard about
software that attempts to prevent access to pornography by searching images for a
high percentage of flesh-tone pixels.[3]

[3] For example, see http://www.heartsoft.com, http://www.eye-t.com, and http://www.thebair.com.

Prefetching

Prefetching is the process of retrieving some data before it is actually requested. Disk
and memory systems typically use prefetching, also known as "read ahead." For the
Web, prefetching usually involves requesting images and hyperlinked pages referenced
in an HTML file.

Prefetching represents a tradeoff between latency and bandwidth. A caching proxy
selects objects to prefetch, assuming that a client will request them. Correct predictions
result in a latency reduction; incorrect predictions, however, result in wasted bandwidth.

http://www.heartsoft.com
http://www.eye-t.com
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So the interesting question is, how accurate are prefetching predictions? Unfortunately,
good measurements are hard to come by. Companies with caching products that use
prefetching are secretive about their algorithms.

Translation and transcoding

Translation and transcoding both refer to processes that change the content of
something without significantly changing its meaning or appearance. For example, you
can imagine an application that translates text pages from English to German as they
are downloaded.

Transcoding usually refers to low-level changes in digital data rather than high-level
human languages. Changing an image file format from GIF to JPEG is a good example.
Since the JPEG format results in a smaller file than GIF, they can be transferred faster.
Applying general-purpose compression is another way to reduce transfer times. A pair
of cooperating proxies can compress all transfers between them and uncompress the
data before it reaches the clients.

Traffic shaping

A significant number of organizations use application layer proxies to control bandwidth
utilization. In some sense, this functionality really belongs at the network layer, where
it's possible to control the flow of individual packets. However, the application layer
provides extra information that network administrators find useful. For example, the
level of service for a particular request can be based on the user's identification, the
agent making the request, or the type of data being requested (e.g., HTML, Postscript,
MP3).
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1.7 Meshes, Clusters, and Hierarchies

There are a number of situations where it's beneficial for caching proxies to talk to each

other. There are different names for some different configurations. A cluster is a tightly
coupled collection of caches, usually designed to appear as a single service. That is, even if
there are seven systems in a cluster, to the outside world it looks like just one system. The
members of a cluster are normally located together, both physically and topologically. As I
explain in Chapter 9, many people like cache clusters because they provide scalability and
reliability.

A loosely coupled collection of caches is called a hierarchy or mesh. If the arrangement is
tree-like, with a clear distinction between upper- and lower-layer nodes, it is called a
hierarchy. If the topology is flat or ill-defined, it is called a mesh. A hierarchy of caches make
sense because the Internet itself is hierarchical. However, when a mesh or hierarchy spans
multiple organizations, a number of issues arise. We'll talk more about hierarchies in
Chapter 7. Then, in Chapter 8, we'll explore the various protocols and techniques that
caches use to communicate with each other.
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1.8 Products

By now you should have a pretty good view of the web caching landscape. In the rest of this
book, we'll explore many of the topics of this chapter in much greater detail, so you can fully
comprehend all the issues involved. When you finish this book, you'll be able to design and
operate a web cache for your environment. You might even think about writing your own
software. But since I'm sure most of you have other responsibilities, you'll probably want to
use an existing product. Following is a list of caching products that are currently available,
many of which are mentioned throughout this book:

Squid
http://www.squid-cache.org

Squid is an open source software package that runs on a wide range of Unix platforms.
There has also been some recent success in porting Squid to Windows NT. As with
most free software, users receive technical support from a public mailing list. Squid was
originally derived from the Harvest project in 1996.

Netscape Proxy Server
http://home.netscape.com/proxy/v3.5/index.html

The Netscape Proxy Server was the first caching proxy product available. The lead
developer, Ari Luotonen, also worked extensively on the CERN HTTP server during the
Web's formative years in 1993 and 1994. Netscape's Proxy runs on a handful of Unix
systems, as well as Windows NT.

Microsoft Internet Security and Acceleration Server
http://www.microsoft.com/isaserver/

Microsoft currently has two caching proxy products available. The older Proxy Server
runs on Windows NT, while the newer ISA product requires Windows 2000.

Volera
http://www.volera.com

Volera is a recent spin-off of Novell. The product formerly known as Internet Caching
System (ICS) is now called Excelerator. Volera does not sell this product directly.
Rather, it is bundled on hardware appliances available from a number of OEM partners.

Network Appliance Netcache
http://www.netapp.com/products/netcache/

Network Appliance was the second company to sell a caching proxy, and the first to sell
an appliance. The Netcache products also have roots in the Harvest project.

Inktomi Traffic Server
http://www.inktomi.com/products/network/traffic/

http://www.squid-cache.org
http://home.netscape.com/proxy/v3.5/index.html
http://www.microsoft.com/isaserver/
http://www.volera.com
http://www.netapp.com/products/netcache/
http://www.inktomi.com/products/network/traffic/
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Inktomi boasts some of the largest customer installations, such as America Online and
Exodus. Their Traffic Server product has been available since 1997.

CacheFlow
http://www.cacheflow.com

Intelligent prefetching and refreshing features distinguish CacheFlow from their
competitors.

InfoLibria
http://www.infolibria.com

InfoLibria's products are designed for high reliability and fault tolerance.

Cisco Cache Engine
http://www.cisco.com/go/cache/

The Cisco 500 series Cache Engine is a small, low-profile system designed to work with
their Web Cache Control Protocol (WCCP). As your demand for capacity increases,
you can easily add more units.

Lucent imminet WebCache
http://www.lucent.com/serviceprovider/imminet/

Lucent's products offer carrier-grade reliability and active refresh features.

iMimic DataReactor
http://www.imimic.com

iMimic is a relative newcomer to this market. However, their DataReactor product is
already licensed to a number of OEM partners. iMimic also sells their product directly.
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Chapter 2. How Web Caching Works

What makes an object cachable or uncachable? How does a cache know when a request is
a hit or when to revalidate a cached object? This chapter gives you some background on how
web caches work. Many of the topics in this chapter are covered definitively in the HTTP/1.1
draft standard document, RFC 2616. The material here tells you what you need to know; for
all the gory details, you'll need to consult the actual RFC document.

To start, we'll see what a typical HTTP request looks like and how it's different when talking
to a proxy. Next, we'll see how caches decide if they can store a particular response. After
that, we'll talk about cache hits, stale objects, and validation techniques. I'll explain how users
can force caches to return an up-to-date response. Finally, we'll see what happens when a
cache becomes full and must choose to remove some objects.
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2.1 HTTP Requests

Clients always use HTTP when talking to a caching proxy. This is true even when the client
requests an FTP or Gopher URL, as we'll see shortly. A client issues a slightly different
request when it knows it is talking to a proxy server rather than to an origin server.

Occasionally, requests to a cache are referred to as proxy HTTP requests.

2.1.1 Origin Server Requests

First, let's examine a request sent to an origin server. In this example, the user is requesting
the URL http://www.nlanr.net/index.html. When the client is not configured to use a
proxy, it connects directly to the origin server (www.nlanr.net) and writes this request:

GET /index.html HTTP/1.1
Host: www.nlanr.net
Accept: */*
Connection: Keep-alive

In reality, the request includes many more headers than are shown here. Note how the URL

has been split into two parts. The request line (the first line) includes only the pathname
component of the URL, while the hostname part appears later in a Host header. The Host

header is an HTTP/1.1 feature, primarily intended to support virtual hosting of multiple logical
web sites on one physical server (one IP address). If the origin server is not serving virtual
domains, the Host header is redundant. Note that we can rebuild a full URL from the request
line and the Host header. This is an important feature of HTTP/1.1, especially for

interception proxies.

2.1.2 Proxy Requests

When a client talks to a proxy, the request is slightly different. The request line of a proxy
request includes the full URI:

GET http://www.nlanr.net/index.html HTTP/1.1
Host: www.nlanr.net
Accept: */*
Proxy-connection: Keep-alive

The origin server name is in two places: the full URI and the Host header. This may seem
redundant, but when HTTP/1.0 and proxying techniques were invented, the Host header did

not exist.[1]

http://www.nlanr.net/index.html
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[1] Since the hostname exists in two places, it's possible they don't match. When this occurs, the URL hostname takes

precedence. To avoid incorrect operation, a caching proxy must ignore the original Host value and replace it with the URL

hostname.

HTTP provides for the fact that requests and responses can pass through a number of

proxies between a client and origin server. Some HTTP headers are defined as end-to-end

and some as hop-by-hop. The end-to-end headers convey information for the end systems
(client and origin server), and they generally must not be modified by proxies. The Cookie

header is end-to-end. Conversely, the hop-by-hop header information is meant for
intermediate systems, and it must often be modified or removed before being forwarded. The
Proxy-connection and Proxy-authorization headers are hop-by-hop. A client uses
the Proxy-connection request header to ask the proxy to make the TCP connection
"persistent," so that it can be reused for a future request. The Proxy-authorization

header contains credentials for access to the proxy, not the origin server.

2.1.3 Non-HTTP Proxy Requests

Finally, let's look at how proxies handle non-HTTP URIs. Most user-agents have built-in
support for other transfer protocols, such as FTP and Gopher. In other words, these clients
know how to talk directly to FTP and Gopher servers. Most caching proxies, however, do not

emulate FTP and Gopher servers. That is, you can't FTP to a caching proxy. This restriction,
for better or worse, comes about because it's hard to actually proxy these legacy transport
protocols. You might say it's a limitation of their design.

Since HTTP knows about proxies, non-HTTP URIs are proxied as HTTP requests. For
example, the user-agent's request looks something like this:

GET ftp://ftp.freebsd.org/pub/ HTTP/1.1
Host: ftp.freebsd.org
Accept: */*

Because this is an HTTP request, the proxy generates an HTTP response. In other words, it
is the role of the proxy to convert from FTP on one side to HTTP on the other. The proxy acts
like an FTP client when it talks to an FTP server. The response sent to the user-agent,
however, is an HTTP response.

Non-HTTP requests are somewhat difficult for caching proxies in a couple of ways. Both FTP
and Gopher services rely heavily on the use of directory listings. Convention dictates that
directory listings are displayed with cute little icons and hyperlinks to each of the directory
entries. A web client that connects directly to an FTP or Gopher server parses the directory
listing and generates a nice HTML page. HTTP servers, however, work differently. For HTTP,
the HTML page is generated by the server, not the client. Since FTP and Gopher are proxied
via HTTP, it becomes the proxy's responsibility to generate pleasant-looking pages for
directory listings. This causes directory pages to look different, depending on whether you
proxy FTP and Gopher requests.
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Another difficult aspect is that HTTP has certain attributes and features missing from these
older protocols. In particular, it can be hard to get values for the Last-modified and
Content-length headers. Of course, FTP and Gopher servers don't understand anything

about expiration and validation.[2] Usually, the caching proxy just selects an appropriate
freshness lifetime for non-HTTP objects. Because the proxy has little information, it may
return more stale responses for FTP files than for HTTP resources.

[2] Some FTP servers do support nonstandard commands for getting a file's modification time (MDTM) and length (SIZE). These

might be used to implement validation. The IETF is currently considering a document that would finally standardize these

commands.

Determining a response's content type is another hard problem. Proxies and servers often
use the filename extension to determine the content type. For example, URLs that end with
.jpg have the Content-type image/jpeg. For FTP files, the proxy must guess the
Content-type, and it's relatively common to find mysterious filename extensions, such as

.scr. The proxy's choice for a content-type affects the way a browser handles the

response. For text types, the browser displays the data in a window. For others, such as the

catchall application/octet-stream, the browser brings up a "Save as" dialog window. As new
filename extensions and content types are brought into use, caching proxies must be
updated.

Because of problems such as these, many organizations don't bother to cache non-HTTP
requests. As we'll see in Chapter 4, you can easily configure user agents to send or not
send FTP and other types of URLs to a caching proxy.

only for RuBoard - do not distribute or recompile  

http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

2.2 Is It Cachable?

The primary purpose of a cache is to store some of the responses it receives from origin

servers. A response is said to be cachable if it can be used to answer a future request. For
typical request streams, about 75% of responses are cachable.

A cache decides if a particular response is cachable by looking at different components of
the request and response. In particular, it examines the following:

The response status code

The request method

Response Cache-control directives

A response validator

Request authentication

These different factors interact in a somewhat complicated manner. For example, some
request methods are uncachable unless allowed by a Cache-control directive. Some
status codes are cachable by default, but authentication and Cache-control take

precedence.

Even though a response is cachable, a cache may choose not to store it. Many products
include heuristics-or allow the administrator to define rules-that avoid caching certain
responses. Some objects are more valuable than others. An object that gets requested
frequently (and results in cache hits) is more valuable than an object that is requested only
once. Many dynamic responses fall into the latter category. If the cache can identify
worthless responses, it saves resources and increases performance by not caching them.

2.2.1 Status Codes

One of the most important factors in determining cachability is the HTTP server response
code, or status code. The three-digit status code indicates whether the request was
successful or if some kind of error occurred. The status codes are divided into the following
five groups:

1xx

An informational, intermediate status. The transaction is still being processed.

2xx
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The request was successfully received and processed.
3xx

The server is redirecting the client to a different location.

4xx

There is an error or problem with the client's request. For example, authentication is
required, or the resource does not exist.

5xx

An error occurred on the server for a valid request.

Refer to Appendix F for the complete list, or see Section 10 of RFC 2616.

The most common status code is 200 (OK), which means the request was successfully
processed. The 200 code and a number of others shown in Table 2-1 are cachable by
default. However, some other aspect of the request or response can make the response
uncachable. In other words, the status code alone is not enough to make a response
cachable. We'll talk about the other factors shortly.

Table 2-1. Cachable Response Codes

Code Description Explanation

200 OK Request was processed successfully.

203
Non-Authoritative
Information

This is similar to 200, but it can be used when the sender has reason to believe the
given entity headers are different from those that the origin server would send.

206 Partial Content
The 206 response is similar to 200, but it is a response to a range request. A 206
response is cachable if the cache fully supports range requests.[3]

300 Multiple Choices
The response includes a list of appropriate choices from which the user should make
a selection.

301 Moved Permanently
The requested resource has been moved to a new location. The new URL is given in
the response headers.

410 Gone
The requested resource has been intentionally and permanently removed from the
origin server.

[3] HTTP/1.1 defines the range request. It allows clients to request a specific subset of a resource, rather than the entire thing.

For example, a user agent can request specific pages from a large PDF document instead of transferring the whole file.

All other response codes are uncachable by default but can be cached if explicitly allowed by
other means. For example, if a 302 (Moved Temporarily) response also has an Expires

header, it can be cached. In reality, there is relatively little to gain from caching these
uncachable-by-default status responses, even when allowed. These status codes occur
infrequently to begin with. It's even more unlikely that the response also includes Expires or
Cache-control headers to make them cachable. Thus, it is simpler and safer for a cache

never to store one of these responses.
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2.2.2 Request Methods

Another significant factor in determining cachability is the request method. Here, the rules are
somewhat simpler. As shown in Table 2-2, we really have to worry about only three
methods: GET, HEAD, and POST.

Table 2-2. Request Methods and Cachability

Request Method Cachable?

GET Yes, cachable by default

HEAD May be used to update previously cached entry

POST Uncachable by default; cachable if Cache-control headers allow

PUT Never cachable

DELETE Never cachable

OPTIONS Never cachable

TRACE Never cachable

GET is the most popular request method, and responses to GET requests are by default
cachable. Responses to HEAD requests are treated specially. HEAD response messages do
not include bodies, so there is really nothing to cache. However, we can use the response
headers to update a previously cached response's metadata. For example, a HEAD
response can return a new expiration time. Similarly, the response may instead indicate that
the resource has changed, which means the cached copy is now invalid. A POST response
is cachable only if the response includes an expiration time or one of the Cache-control

directives that overrides the default. Cachable POST responses are quite rare in reality.

Responses from all other request methods are always uncachable. In addition, caching
proxies must not reuse responses from unknown ("extension") methods. Some RFCs, such
as 2518 (WEBDAV) define extensions to HTTP including new request methods. It's possible
that such extensions allow responses from new methods to be cached. RFC 2518, however,
does not state that any of the WEBDAV methods are cachable.

2.2.3 Expiration and Validation

HTTP/1.1 provides two ways for caches to maintain consistency with origin servers:
expiration times and validators. Both ensure that users always receive up-to-date information.
Ideally, every cachable response would include one or both; in reality, a small but significant
percentage of responses have neither.

Expiration and validation affect cachability in two important ways. First, RFC 2616 says that
responses with neither an expiration time nor a cache validator should not be cached.
Without these pieces of information, a cache can never tell if a cached copy is still valid.
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Note, however, that this is only a recommendation, not a requirement. Storing and reusing
these types of responses does not violate the protocol. Second, an expiration time turns
normally uncachable responses into cachable ones. For example, responses to POST
requests and 302 status messages become cachable when the origin server provides an
expiration time.

It's very important to understand the subtle difference between expiration and cachability.
Cachable means that the response can be stored in the proxy. Expired responses may still
be cached, but they must be validated before being used again. Even though a response
expires, it does not mean that the resource has changed.

In fact, some web sites send pre-expired responses. This means that the cache must validate
the response the next time someone requests it. Pre-expiration is useful for origin servers
that want to closely track accesses to their site but also want their content to be cachable.
The proper way to pre-expire a response is to set the Expires header equal to the Date

header. For example:

Date: Sun, 01 Apr 2001 18:32:48 GMT
Expires: Sun, 01 Apr 2001 18:32:48 GMT

An alternative method is to send an invalid date or use the value "0":

Expires: 0

Unfortunately, the meaning of an expiration time in the past and an invalid expiration value
has changed over time. Under HTTP/1.0 (RFC 1945), caches are not supposed to store such
responses.[4] However, HTTP/1.1 allows them to be cached. This causes confusion, as well
as problems for people running old HTTP servers, which RFC 2616 recognizes:

[4] Since HTTP/1.0 lacks other cache-specific headers, this was the only way to mark a response as uncachable. Some

HTTP/1.0 agents won't cache a response that includes Pragma: no-cache, but this is not mentioned in RFC 1945.

Many HTTP/1.0 cache implementations treat an Expires value that is less than or equal
to the response Date value as being equivalent to the Cache-Control response directive
"no-cache". If an HTTP/1.1 cache receives such a response, and the response does not
include a Cache-Control header field, it SHOULD consider the response to be non-
cachable in order to retain compatibility with HTTP/1.0 servers.

We'll talk more about expiration in Section 2.3, and about validation in Section 2.5. For
now, the important point is this: in order to be cachable, a response should have an
expiration time, a validator, or both. Responses with neither should not be cached. However,
HTTP/1.1 allows them to be cached anyway without violating the protocol.

2.2.4 Cache-control
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The Cache-control header is a new feature of HTTP/1.1 used to tell caches how to handle

requests and responses. The value of the header is one or more directive keywords, for
example:

Cache-control: private

Cache-control: public,max-age=86400

Although Cache-control appears in both requests and responses, our discussion in this
section focuses only on directives that appear in a response. We're not interested in request
directives yet because, with one exception, they don't affect response cachability.

Note that the Cache-control directives override the defaults for most status codes and
request methods when determining cachability. In other words, some Cache-control

directives can turn a normally cachable GET response into one that is uncachable, and vice-
versa for POST responses.

Here are the Cache-control directives that may appear in an HTTP response and affect

its cachability:

no-cache

The no-cache directive is, unfortunately, somewhat confusing. Its meaning has
changed in a significant way over time. The January 1997 draft standard RFC for
HTTP/1.1, number 2068, says: "no-cache indicates that all or part of the response
message MUST NOT be cached anywhere." This statement is quite clear and matches
what people intuitively think "no-cache" means.

In RFC 2616 (June 1999), however, the directive's meaning has changed. Now,
responses with no-cache can be stored but may not be reused without validation ( "a

cache MUST NOT use the response to satisfy a subsequent request without successful
revalidation with the origin server"). Not only is this counterintuitive, but it seems to
mean the same thing as must-revalidate with max-age=0.

Note that, even though a response with no-cache can be stored, it is not one of the
Cache-control directives that turns uncachable responses into cachable ones. In

fact, it doesn't affect cachability at all. Rather, it instructs a cache to always validate the
response if it has been cached.

The no-cache directive also has a secondary use. When the directive specifies one or
more header names, those headers must not be sent to a client without validation. This
enables origin servers to prevent sharing of certain headers while allowing the response
content to be cached and reused. An example of this usage is:

Cache-control: no-cache=Set-cookie
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private

The private directive gives user agent caches permission to store a response but
prevents shared caching proxies from doing so. The directive is useful if the response
contains content customized for just one person. An origin server might also use it to
track individuals and still allow responses to be cached.

For a shared cache, the private directive makes a normally cachable response

uncachable. However, for a nonshared cache, a normally uncachable response
becomes cachable. For example, a browser may cache a response to a POST request
if the response includes the Cache-control: private directive.

public

The public directive makes normally uncachable responses cachable by both shared

and nonshared caches.

The public directive takes even higher precedence than authorization credentials.
That is, if a request includes an Authorization header, and the response headers
contain Cache-control: public, the response is cachable.

max-age

The max-age directive is an alternate way to specify an expiration time. Recall from the

previous section that some normally uncachable responses become cachable when an
expiration time is given. Also, RFC 2616 recommends that responses with neither a
validator nor an expiration time should not be cached. When a response contains the
max-age directive, the public directive is implied as well.

s-maxage

The s-maxage directive is very similar to max-age, except it only applies to shared
caches. Like its cousin, the s-maxage directive allows normally uncachable responses
to be cached. If both are present in a response, a shared cache uses the s-maxage

value and ignores all other expiration values.

Unlike max-age, s-maxage does not also imply the public directive. It does,
however, imply the proxy-revalidate directive.

must-revalidate

This directive also allows caches to store a response that is normally uncachable. Since
the must-revalidate directive deals with validation, we'll talk about it in the following

section.
proxy-revalidate

The proxy-revalidate directive is similar to must-revalidate, except it applies

only to shared caches. It also allows caches to store a normally uncachable response.
no-store
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The no-store directive causes any response to become uncachable. It may also be
present in a request, in which case the corresponding response is uncachable.

Section 14.9.2 of RFC 2616 describes no-store with relatively strong language.
Requests and responses with this directive must never be written to nonvolatile storage
(i.e., disk), even temporarily. It is a way for paranoid content providers to decrease the
probability that sensitive information is inadvertently discovered or made public.

Now that no-cache has a different meaning, however, no-store becomes very
important. It is the only directive (except private) that prevents a response from
getting cached. Thus, we're likely to see no-store used for many types of responses,
not just super-sensitive data.

To summarize, public, max-age, s-maxage, must-revalidate, and proxy-
revalidate turn normally uncachable responses into a cachable ones. no-store and
private turn normally cachable responses into uncachable ones for a (shared) caching
proxy. At the same time, private turns an uncachable response into a cachable one for a

(nonshared) user agent cache.

The HTTP/1.1 standard defines additional cache-control directives for responses that are not
presented here. Section 14.9 of RFC 2616 gives the full specification. Cache-control
directives appear in HTTP requests as well, but since they generally do not affect cachability,
we'll talk about those directives in Section 2.6.

2.2.5 Authentication

Requests that require authentication are not normally cachable. Only the origin server can
determine who is allowed to access its resources. Since a caching proxy doesn't know which
users are authorized, it cannot give out unvalidated hits.

Origin servers typically use a simple challenge-response scheme to authenticate users.
When you first try to access a protected resource, the server returns a message with a 401
(Unauthorized) status code. The response also includes a WWW-Authenticate header,

which contains the challenge. Upon receipt of this response, your user-agent prompts you for
your authorization credentials. Normally this is a username and password. The user-agent
then resubmits the request, this time including an Authorization header. When a caching
proxy finds this header in a request, it knows that the corresponding response is uncachable
unless the origin server explicitly allows it.

The rules for caching authenticated responses are somewhat tricky. Section 14.8 of RFC
2616 talks about the conditions under which shared caches can store and reuse such
responses. They can be cached only when one of the following Cache-control headers is
present: s-maxage, must-revalidate, or public. The public directive alone allows the

response to be cached and reused for any subsequent request, subject to normal expiration.
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The s-maxage directive allows the response to be reused until the expiration time is
reached. After that, the caching proxy must revalidate it with the origin server. The must-
revalidate directive instructs the cache to revalidate the response for every subsequent

request.

The HTTP RFC doesn't say how nonshared (user-agent) caches should handle
authenticated responses. It's safe to assume that they can be cached and reused, since, by
definition, the cache is not shared with other users. However, nonshared caches can actually
be shared by multiple users. For example, consider terminals in university labs or Internet
cafes.

I wouldn't expect many authenticated responses to include public or s-maxage cache
controls. However, the must-revalidate and proxy-revalidate directives can be quite
useful. They provide a mechanism that allows responses to be cached, while still giving the
origin server full control over who can and cannot access the protected information.

There is another issue related to authentication, but not cachability. Origin servers sometimes
use address-based authentication rather than passwords. That is, the client's IP address
determines whether or not the request is allowed. In these cases, it's possible for a caching
proxy to open a back door into a protected server. If the proxy's IP address is in the range of
allowed addresses, and the proxy itself allows requests from anywhere, then anyone can
access the protected server via the proxy.

People are often surprised to discover that HTTP does not have a request header that
specifies the client's IP address. Actually, there was such a header in early versions of
HTTP/1.1, but it was taken out. The problem with such a feature is that there is no way to
validate the correctness of this information. A proxy or other agent that forwards requests can
easily spoof the header. It is a bad idea to use such untrustworthy information for
authentication.

2.2.6 Cookies

A cookie is a device that allows an origin server to maintain session information for individual
users between requests [Kristol and Montulli, 2000]. A response may include a Set-
cookie header, which contains the cookie as a string of random-looking characters. When

user-agents receive a cookie, they are supposed to use it in their future requests to that
server. Thus, the cookie serves as a session identifier.

Cookies are typically used to represent or reference private information (e.g. a "shopping
basket"), and they should not be shared between users. However, in most cases, the cookie
itself is usually the only thing that is private. The object in the body of the reply message may
be public and cachable. Rather than making the entire response uncachable, HTTP has a
way to make only the cookie information uncachable. This is done with the Cache-control:
no-cache directive. For example:
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  Cache-control: no-cache="Set-cookie"

Origin servers can use the no-cache directive to prevent caching of other headers as well.

RFC 2965 actually talks about the Set-cookie2 and Cookie2 headers. Apparently these

new headers are designed to avoid interoperability problems with the older specifications.

2.2.7 Dynamic Content

I mentioned dynamic responses briefly in Chapter 1. RFC 2616 does not directly address
cachability of dynamic content. In terms of the protocol, only the request and reply headers
determine cachability. It does not matter how the content is generated. Dynamic responses
can be cached, subject to the previously described rules. Origin servers usually mark
dynamic content as uncachable, so we have very little to worry about. Even so, it's a good
idea to understand dynamic content in case problems arise. Additionally, you may experience
a slight performance improvement by not caching some responses that would normally be
stored.

Some people worry that a cache will incorrectly handle some dynamic content. For example,
consider stock quotes and weather reports. If users happen to receive out-of-date
information, they can make misinformed decisions with negative consequences. In these
cases, the burden of responsibility is really on the content provider. They need to make sure
their server marks dynamic responses as uncachable, using one of the HTTP headers
described previously. However, rather than trusting servers (and caches) to do the right thing,
some cache administrators feel more comfortable not caching any dynamic content.

Lack of popularity is another reason for not caching dynamic responses. Caches are only
beneficial when the request stream includes repeat requests. An object that is requested only
once has no value for a cache. Rather, it consumes resources (disk space, memory) that can
be more efficiently utilized if allocated to some other object. If we can identify objects that are
unlikely to be requested again, it leaves more space for more valuable objects.

How can we identify dynamic content? The HTTP reply headers provide a good indication.
Specifically, the Last-modified header specifies when the resource was last updated. If

the modification time is close to the current time, the content is probably dynamic.
Unfortunately, about 35% of responses don't include a last-modification timestamp. Another
useful technique is to look for specific strings in URLs. The following usually indicates a
dynamic response:

/cgi-bin/ or .cgi

The presence of /cgi-bin/ or .cgi in a URL path indicates the response was generated
from a CGI script.

/servlet/
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When the URL path includes /servlet/, the response was most likely generated by the
execution of a Java servlet on the origin server.

.asp

ASP pages normally have the .asp extension, for example,
http://www.microsoft.com/default.asp.

.shtml

The .shtml extension indicates an HTML page that is parsed for server-side includes.
These are special tags that the origin server interprets and then replaces with some
dynamically generated content. With Apache, for example, you can include a file's time
of last modification with this bit of HTML:

<--#flastmod-->

Java servlets may also be used this way inside a .shtml file.

Query terms

Another likely indication of dynamic content is the presence of a "?" (question mark) in
a URL. This character delineates the optional query terms, or searchpart, of a URL.
Usually, the query terms are entered by users into HTML forms and then given as
parameters to CGI scripts or database frontends.
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2.3 Hits, Misses, and Freshness

When a cache receives a request, it checks to see if the response has already been cached.
If not, we say the request is a cache miss, and the request is forwarded on to the origin
server. Cache misses occur for objects that have never been requested previously, objects
that are not cachable, or objects that have been deleted to make room for new ones. It's
common for 50–70% of all requests to be cache misses.

If the object is present, then we might have a cache hit. However, the cache must first decide

if the stored response is fresh or stale. A cached response is fresh if its expiration time has
not been reached yet; otherwise, it's stale. Fresh responses are best because they are given
to the client immediately. They experience no latency and consume no bandwidth to the
origin server. I'll call them unvalidated hits. Stale responses, on the other hand, require
validation with the origin server.

The purpose of a validation request is to ask the origin server if the cached response is still
valid. If the resource has changed, we don't want the client to receive a stale response.

HTTP also calls these conditional requests. The reply to a conditional request is either a
small "Not Modified" message or a whole new response. The Not Modified reply, also known
as a validated hit, is preferable because it means the client can receive the cached response,

which saves on bandwidth. A validated miss, where the origin server sends an updated
response, is really equivalent to a regular cache miss. We'll talk more about validation in
Section 2.5.

How does the cache know whether an object is fresh or stale? HTTP/1.1 provides two ways
for servers to specify the freshness lifetime of a response: the Expires header and the
max-age cache control directive. The Expires header has been in use since HTTP/1.0. Its

value is the date and time at which a response becomes stale, for example:

Date: Mon, 19 Feb 2001 01:46:17 GMT

Application developers find dates such as this awkward for a number of reasons. The format
is difficult to parse and prone to slight variations (e.g., "Monday" instead of "Mon").
Additionally, absolute timestamps are susceptible to clock skew problems, when different
systems have different notions of the current time. For these reasons, HTTP/1.1 includes a
number of headers and directives that use relative instead of absolute times. The max-age

cache control directive specifies the number of seconds that the response should be
considered fresh, for example:

Cache-control: max-age=21600
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This states that the response is fresh for six hours after it is generated. Section 13.2.3 of
RFC 2616 describes how to calculate the age of a response.

Even though HTTP provides these two mechanisms, they are not used very often. Recent
measurements suggest that less than 10% of all responses have an expiration time. In these
cases, caches are free to apply local rules to estimate object freshness lifetimes (RFC 2616,
Section 13.2.2). Most products have configuration options that give the administrator control
over these objects. A conservative setting is always to validate responses that don't have an
expiration time. Sites with poor connectivity are likely to use liberal settings that return such
objects as hits without validation.

Many products also utilize an algorithm known as the last-modified factor (LM-factor). It is
based upon the somewhat intuitive principle that young objects, because they have recently
been created or changed, are likely to be changed soon. Similarly, old objects that have not
changed for a long time are less likely to change soon.[5] An object's LM-factor is calculated

as the ratio of the time since the object entered the cache to the object's age when it entered
the cache. The object is presumed to be fresh so long as its LM-factor remains below some
threshold, which is typically a configurable parameter. If the threshold is 0.2, for example, an
object that is 10 days old when it enters a cache remains fresh for the following 2 days. On
the first request after two days have passed, the object is validated with the origin server. If
the object is still valid (not modified), the timestamps are updated. In this case, the age when
entering becomes 12 days, and the age since entering becomes 0. Now, it remains fresh for
the following 2.4 days. Most caching products allow you to set different threshold values for
different types of objects.

[5] Unfortunately, just the opposite is true for objects updated at fixed intervals (e.g., hourly or daily). As they get older, they are

more likely to be updated.

You might find it strange that a cache sometimes returns a hit without validating it first. Given
the option, wouldn't it be better to always make sure the user receives absolutely up-to-date
information? Unfortunately, it isn't that simple. The penalty you pay for cache consistency is
higher latency. In general, validation requests take a significant amount of time compared to
simply returning unvalidated hits. If a cache's fresh versus stale predictions are accurate, the
latency reductions are a big win. By tuning the cache configuration, namely the LM-factor
thresholds, you should be able to find an appropriate balance in the tradeoff between low
latency and cache correctness.

HTTP/1.1 allows caches to intentionally return stale responses in some cases. For example,
a cache that tries to validate a response, but cannot connect to the origin server, may return
the stale response rather than no response at all. The RFC acknowledges that some caching
proxies operate under severe bandwidth constraints, and that these may be configured to
return stale responses rather than attempt a validation request.

Clients can also indicate their willingness to accept stale responses with the max-stale

cache control directive. This directive can be used with or without a numeric value, for
example:
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Cache-control: max-stale

means the client will accept a cached response no matter how stale. On the other hand:

Cache-control: max-stale=7200

means a response that has been stale for 7200 seconds (two hours) or less can be sent to
the client without validation.

HTTP/1.1 does not give caches or clients the final say in stale responses. The must-
revalidate and proxy-revalidate cache control directives override the cache and

client preferences regarding staleness. A response containing this directive must always be
validated when it becomes stale. According to RFC 2616, origin servers should use this
feature "if and only if failure to revalidate a request on the entity could result in incorrect
operation, such as a silently unexecuted financial transaction." proxy-revalidate applies
only to shared (proxy) caches, while must-revalidate applies to all caches.

Whenever a cache returns a stale response for any reason, it must include the following
Warning: header:

Warning: 110 Response is stale

User-agents, in turn, are supposed to alert users when they receive a response with a
Warning: header.
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2.4 Hit Ratios

How can we measure the effectiveness of our caches? One such measurement is called the

cache hit ratio. This is the percentage of requests that are satisfied as cache hits. Usually,
this includes both validated and unvalidated hits. Validated hits can be tricky because these
requests are forwarded to origin servers, incurring slight bandwidth and latency penalties.
Note that the cache hit ratio tells you only how many requests are hits-it doesn't tell you how
much bandwidth or latency has been saved.

The measurement that does tell you about bandwidth is called the byte hit ratio. Instead of
counting only requests, this measure is based on the number of bytes transferred. Cache hits
for large objects contribute more to the byte hit ratio than do small objects. The byte hit ratio
measures how much bandwidth your cache has saved, but there are different ways to
calculate it.

One way is to compare the sum of object sizes for cache hits and cache misses. However,
this technique has a couple of shortcomings. For example, it doesn't include request traffic.
Counting the request traffic probably doesn't matter much because it's relatively small, and
most of the data flows in the other direction (into your network, not out of it). This technique
might not count the small 304 (Not Modified) responses either. However, the bigger problem
is in accounting for requests aborted by the user. Consider a cache miss for a 100KB object.
If the cache downloads the entire response, but the user aborts the transfer at 50KB, we
used more server-side bandwidth than on the client-side. If we instead count bytes
transferred on the network, we'll get a more accurate figure for bandwidth savings.

What sort of cache hit ratio values can you expect to achieve? Any reasonably-sized cache
should be able to reach 30%. Some of the largest and busiest caches deployed today can
make it as high as 70%. Byte hit ratios are normally less than cache hit ratios, often by as
much as 10%. That is, a 50% cache hit ratio usually corresponds to a 40% byte hit ratio.
We'll see the reason for this in Section A.1. Small objects, such as images and HTML
pages, tend to have more cache hits than large objects such as audio and PostScript files.

Three factors affect hit ratios: cache size, number of clients, and freshness heuristics.
Obviously, a larger cache holds more objects. The chance that any given request is a cache
hit increases as the cache size increases, but the relationship is not linear. In other words,
doubling your cache size does not double your hit ratio. Research has shown that the
relationship is pseudologarithmic [Duska, Marwood and Freely, 1997]. I show the same
in Appendix A with cache simulations. Even if your cache size is infinite, there is an upper
limit on the hit ratio you can achieve. Section 10.2, explains how you can determine an
appropriate cache size for your installation.

Empirical evidence and simulation studies have shown that hit ratios also increase as the
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number of cache clients increases [Breslau, Cao, Fan, Phillips and Shenker, 1999]. My
simulations in Appendix A show this behavior as well. The primary reason is related to the
popularity characteristics of web requests. In order for a request to be a cache hit, the same
object must have been requested previously. As the number of cache users (clients)
increases, so does the probability that one of those users has already requested the same
object that you request.

As mentioned in Section 2.3, most web caches allow you to tune their LM-factor thresholds.
Increasing the threshold value causes your cache to return more unvalidated hits. This
means there are fewer validated misses, so your hit ratio improves, but your cache clients
receive more out-of-date objects. Strictly speaking, higher thresholds increase your hit ratio,
but not without a price.
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2.5 Validation

I've already discussed cache validation in the context of cache hits versus misses. Upon
receiving a request for a cached object, the cache may want to validate the object with the
origin server. If the cached object is still valid, the server replies with a short HTTP 304 (Not
Modified) message. Otherwise, the entire new object is sent. HTTP/1.1 provides two
validation mechanisms: last-modified timestamps and entity tags.

2.5.1 Last-modified Timestamps

Under HTTP/1.0, timestamps are the only type of validator. Even though HTTP/1.1 provides
a new technique, last-modified timestamps remain in widespread use. Most HTTP responses
include a Last-modified header that specifies the time when the resource was last
changed on the origin server. The Last-modified timestamp is given in Greenwich Mean

Time (GMT) with one-second resolution, for example:

HTTP/1.1 200 OK
Date: Sun, 04 Mar 2001 03:57:45 GMT
Last-Modified: Fri, 02 Mar 2001 04:09:20 GMT

For objects that correspond to regular files on the origin server, this timestamp is the
filesystem modification time.

When a cache validates an object, this same timestamp is sent in the If-modified-since

header of a conditional GET request.

GET http://www.ircache.net/ HTTP/1.1
If-Modified-Since: Wed, 14 Feb 2001 15:35:26 GMT

If the server's response is 304 (Not Modified), the cache's object is still valid. In this case, the
cache must update the object to reflect any new HTTP response header values, such as
Date and Expires. If the server's response is not 304, the cache treats the server's

response as new content, replaces the cached object, and delivers it to the client.

The use of timestamps as validators has a number of undesirable consequences:

A file's timestamp might get updated without any change in the actual content of the file.
Consider, for example, moving your entire origin server document tree from one disk
partition to another. Depending on the method you use to copy the files, the modification
times may not be preserved. Then, any If-modified-since requests to your server

result in 200 (OK) replies, instead of 304 (Not Modified), even though the content of the
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files has not changed.[6]

[6] On Unix, cp -p and tar -p preserve modification times and other file attributes.

Dealing with timestamps becomes complicated when different systems have different
notions of the current time. Unfortunately, it is not safe to assume that all Internet hosts
are synchronized to the same time. It's easy to find clocks that are off by days, months,
and even years. Thus, we can't really compare an origin server timestamp to the local
time. It should be compared only to other origin server timestamps, such as the Date
and Expires values. All hosts involved in serving web objects, and especially caches,

should synchronize their clocks to known, reliable sources using the Network Time

Protocol (NTP). Unix hosts can use the ntpd or xntpd programs.

If-modified-since values cannot be used for objects that may be updated more

frequently than once per second.

On the other hand, timestamps have some nice characteristics as well:

Timestamps can be stored internally with a relatively small amount of memory (typically
four bytes). The fixed data size simplifies data structures and coding.

We can derive some meaning from the last-modified timestamp. That is, we can use it
for more than just validation. As mentioned in the previous section, last-modified times
are often used in heuristics to estimate expiration times.

2.5.2 Entity Tags

HTTP/1.1 provides another kind of validator known as an entity tag. An entity tag is an
opaque string used to identify a specific instance of an object, for example:

HTTP/1.1 200 OK
ETag: "8cac4-276e-35b36b6a"

A cache uses an entity tag to validate its object with the If-none-match request header:

GET /index.html HTTP/1.1
If-None-Match: "8cac4-276e-35b36b6a"

Upon receiving this request, the origin server examines its metadata for the object. If the
entity tag (8cac4-276e-35b36b6a) is still valid, the server returns a 304 (Not Modified)
reply. Otherwise, the server ignores the If-none-match header and processes the request

normally. Most likely, it returns a 200 (OK) response with the new, updated content.
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The phrase "If-none-match" is a bit difficult to grasp at first. To understand it, you need to
realize that HTTP/1.1 allows an origin server to associate multiple entity tags with a single
resource. A cache can store different versions of the same object (same URI), each with a
unique entity tag. If the cached responses are stale, the cache learns which are still valid by
using the If-none-match header, listing all of its entity tags for that resource:

GET /index.html HTTP/1.1
If-None-Match: "foo","bar","xyzzy"

In essence, a cache says to an origin server, "If none of these entity tags are valid, send me
the new content."

If the origin server's reply is a 304 (Not Modified) message, it must tell the cache which tag is
valid. The valid entity tag is given in the Etag: header of a 304 response:

HTTP/1.1 304 Not Modified
ETag: "xyzzy"

Unlike the Last-modified validator, entity tag validators are opaque to the cache. In other

words, the cache cannot derive any meaning from an entity tag. The only operation a cache
can perform on an entity tag is a test for equality (string comparison). Timestamps, however,
are more useful to caches because they do convey some meaning. A cache can use the
Last-modified timestamp to calculate the LM-factor and apply the heuristics described

previously to identify objects likely to still be fresh. If servers all over the world suddenly
stopped sending last-modified timestamps and sent only entity tags, caches would find it
much more difficult to predict freshness. Fortunately, RFC 2616 (Section 13.3.4) advocates
sending both last-modified timestamps and entity tags whenever possible.

2.5.3 Weak and Strong Validators

RFC 2616 defines two types of validators: weak and strong. Strong validators are used for
exact, byte-for-byte equivalence of the content. Weak validators, on the other hand, are used
for semantic equivalence. Consider, for example, a very simple change to a text document,
such as correcting a spelling error. The correction does not alter the meaning of the
document, but it does change the bits of the file. In this situation, a conditional request with a
strong validator would return the new content, while the same conditional request with a weak
validator would return "not modified."

HTTP/1.1 requires strong comparison in some circumstances and allows weak comparison in
others. When strong comparison is required, only strong validators may be used. When weak
comparison is allowed, either type of validator may be used.

An entity tag is, by default, a strong validator. Thus, even the slightest change to an origin
server resource requires the entity tag to change as well. The Apache server uses a
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checksum over the message body as one component of its entity tags, so this happens
automatically. If an origin server wants to create a weak entity tag, it prefixes the validator
with "w/":

Etag: "w/foo-bar-123"

Last-modified timestamps, by comparison, are implicitly weak, unless a cache can

determine that it is strong according to a complex set of rules. The reason is that the
timestamp provides only single-second resolution. It's possible that an object gets modified
twice (or more) in a one-second interval. If this actually happens, and the protocol requires
strong validation, users could receive the wrong response. A caching proxy that does not
support entity tags is better off forwarding conditional requests to origin servers when strong
comparison is required.

HTTP/1.1 has many rules regarding weak and strong validators. These details are a bit too
overwhelming to cover here, but you can find more information in Section 13.3.3 of RFC
2616.
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2.6 Forcing a Cache to Refresh

One of the tradeoffs of caching is that you may occasionally receive stale data. What can you do if you believe (or
know) that a cache has given you stale data? You need some way to refresh or validate the data received from the
cache. HTTP provides a couple of mechanisms for doing just that. Clients can generate requests with Cache-
control directives, the two most common of which are no-cache and max-age. We'll discuss no-cache first

because it has been around the longest.

2.6.1 The no-cache Directive

The no-cache directive notifies a cache that it cannot return a cached copy. Even if a fresh copy of the

response-with a specific expiration time-is in the cache, the client's request must be forwarded to the origin
server. RFC 2616 calls such a request an "end-to-end validation" (Section 14.9.4). The no-cache directive is sent

when you click on the Reload button on your browser. In an HTTP request, it looks like this:

GET /index.html HTTP/1.1
Cache-control: no-cache

Recall that the Cache-control header does not exist in the HTTP/1.0 standard. Instead, HTTP/1.0 clients use a
Pragma header for the no-cache directive:

Pragma: no-cache

no-cache is the only directive defined for the Pragma header in RFC 1945. For backwards compatibility, RFC
2616 also defines the Pragma header. In fact, many of the recent HTTP/1.1 browsers still use Pragma for the no-
cache directive instead of the newer Cache-control.

Note that the no-cache directive does not necessarily require the cache to purge its copy of the object. The client
may generate a conditional request (with If-modified-since or another validator), in which case the origin

server's response may be 304 (Not Modified). If, however, the server responds with 200 (OK), then the cache
replaces the old object with the new one.

The interaction between no-cache and If-modified-since is tricky and often the source of some confusion.

Consider, for example, the following sequence of events:

You are viewing an HTML page in your browser. This page is cached in your browser and was last modified
on Friday, February 16, 2001, at 12:00:00.

1.

The page author replaces the current HTML page with an older, backup copy of the page, perhaps with this
Unix command:

2.

mv index.html.old index.html

Now there is a "new" version of the HTML page on the server, but it has an older modification timestamp.

3.
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You try to reload the HTML page by using the Reload button. Your browser sends this request:3.

GET http://www.foo.com/index.html
Pragma: no-cache
If-Modified-Since: Fri, 16 Feb 2001 09:46:18 GMT

The origin server sends a 304 (Not Modified) response and your browser displays the same page as before.4.

You could click on Reload until your mouse wears out and you would never get the "new" HTML page. What can
you do to see the correct page?

If you are using Netscape Navigator, you can hold the Shift key down while clicking on Reload. This instructs
Netscape to leave out the If-modified-since header. If you use Internet Explorer, hold down the Ctrl key while

clicking on Reload. Alternatively, you can flush your browser's cache and then press Reload, which prevents the
browser from sending an If-modified-since header in its request. Note that this is a user-agent problem, not a

caching proxy problem.

In addition to the above problem, the Reload button, as implemented in most web browsers, leaves much to be
desired. For example, it is not possible to reload a single inline image object. Similarly, it is not possible to reload
web objects that are displayed externally from the browser, such as sound files and other "application" content
types. If you need to refresh an image, PostScript document, or other externally displayed object, you may need to
ask the cache administrator to do it for you. Some caches may have a web form that allows you to refresh cache
objects. For this you need to know (and type in) the object's full URL.

Another problem with Reload is that it is often misused simply to rerequest a page. When the Web seems slow, we
often interrupt a request as the page is being retrieved. To request the page again, you might use the Reload
button. This, of course, sends the no-cache directive. Browsers do not have a button which requests a page
again without sending no-cache. You can accomplish this by simply moving the cursor to the URL location box

and pressing the Enter key.

As a cache administrator, you might wonder if caches ever can, or should, ignore the no-cache directive. A

person who keeps a close watch on bandwidth usage might have the impression that the Reload button gets used
much more often than necessary. Some products, such as Squid, have features that provide special treatment for
no-cache requests. However, I personally do not recommend enabling these features because they violate the
HTTP/1.1 protocol and leave users unable to get up-to-date information. One Squid option turns a no-cache
request into an If-modified-since request. Another ignores the no-cache directive entirely.

2.6.2 The max-age Directive

The max-age directive specifies in seconds the maximum age of a cached response that the client is willing to
accept. Whereas no-cache means "I won't accept any cached response," max-age says, "I will accept fresh

responses that were last validated within this time period." To specify a limit of one hour, a client sends:

Cache-control: max-age=3600

Note that max-age has lower precedence than an origin server expiration time. For example, if a cached object
became stale five seconds ago, and it is requested with max-age=100000000, the cache must still validate the
object with the origin server. In other words, max-age can cause validation to occur but can never prevent it from

occurring.

RFC 2616 calls a max-age=0 request an end-to-end revalidation, because it forces the cache to revalidate its
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stored response. The client might still get that stored response, unlike with an end-to-end reload (no-cache),
where a cache is not allowed to return a cached response. The use of max-age=0, however, is a request to

validate a cached response. If the client includes its own validator, then it's a specific end-to-end validation.
Otherwise, a caching proxy adds its own validator, if any, and the request is an unspecified end-to-end validation.

So far as I know, max-age is not widely supported in web browsers at this time. This is unfortunate, because a
max-age=0 request is more likely to generate a short 304 (Not Modified) response, whereas a no-cache request
is more likely to generate a full 200 (OK) response. It would be helpful if user agents had an option to set a max-
age value in their requests. Users who prefer faster access over freshness would use a higher max-age setting.

Similarly, those with lots of bandwidth and good response times could use a lower setting to ensure up-to-date
responses.

2.6.3 The min-fresh Directive

In the previous section I talked about the max-stale directive, whereby clients can relax freshness requirements.
Conversely, the min-fresh directive allows clients to specify more stringent freshness conditions. The value of
the min-fresh directive is added to the object's age when performing staleness calculations. For example, if the
client gives a min-fresh value of 3,600 seconds, the cache cannot return a response that would become stale

within the next hour.
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2.7 Cache Replacement

Cache replacement refers to the process that takes place when the cache becomes full and old objects must be
removed to make space for new ones. Usually, a cache assigns some kind of value to each object and removes
the least valuable ones. The actual meaning of "valuable" may vary from one cache to another. Typically, an
object's value is related to the probability that it will be requested again, thus attempting to maximize the hit ratio.
Caching researchers and developers have proposed and evaluated numerous replacement algorithms, some of
which are described here.

2.7.1 Least Recently Used (LRU)

LRU is certainly the most popular replacement algorithm used by web caches. The algorithm is quite simple to
understand and implement, and it gives very good performance in almost all situations. As the name implies, LRU
removes the objects that have not been accessed for the longest time. This algorithm can be implemented with a
simple list. Every time an object is accessed, it is moved to the top of the list. The least recently used objects then
automatically migrate to the bottom of the list.

A strict interpretation of LRU would consider time-since-reference as the only parameter. In practice, web caches
almost always use a variant known as LRU-Threshold, where "threshold" refers to object size. Objects larger than
the threshold size are simply not cached. This prevents one very large object from ejecting many smaller ones.
This highlights the biggest problem with LRU: it doesn't consider object sizes. Would you rather have one large
object in your cache or many smaller ones? Your answer probably depends on what you wish to optimize. If saving
bandwidth is important, you want the large object. However, caching numerous small objects results in a higher hit
ratio.

2.7.2 First In, First Out (FIFO)

A FIFO replacement algorithm is even simpler to implement than LRU. Objects are purged in the same order they
were added. This technique does not account for object popularity and gives lower hit ratios than LRU. FIFO is
rarely, if ever, used for caching proxies.

2.7.3 Least Frequently Used (LFU)

LFU is similar to LRU, but instead of selecting based on time since access, the significant parameter is the number
of accesses. LFU replaces objects with small access counts and keeps objects with high access counts. If the
algorithm does not take time since last access into account, the cache tends to fill up with frequently accessed but
old objects. If the least frequently used object in the cache was accessed twice, a new object (which is accessed
only once) can never be added. LFU implementations are sometimes used in caching products, but not very often.

2.7.4 Size

A size-based algorithm uses the object size as the primary removal criteria. The largest objects in the cache are
removed first. The algorithm really needs an aging mechanism as well. That is, old objects must be removed
eventually, otherwise the cache fills up with only very small objects. Simulations show that, compared to LRU, a
size-based algorithm provides better cache hit ratios but significantly worse byte hit ratios.
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2.7.5 GreedyDual-Size (GDS)

The previously mentioned algorithms tend to optimize one extreme or another. For example, LRU tends to have the
highest byte hit ratios, while Size usually has higher document hit ratios. If you're looking for a middle ground,
GreedyDual-Size is a good alternative.

GDS assigns value to cached objects based on the cost of a cache miss and the size of the object. GDS does not
specify exactly what "cost" means. This offers a lot of flexibility to optimize just what you want. For example, cost
might be latency-the time it takes to receive the response. Cost might also be the number of packets transmitted
over the network or the number of hops between the origin server and the cache. I'll give a brief explanation of the
algorithm here, but for full details on GDS, see [Cao and Irani, 1997].

The GreedyDual-Size algorithm associates a value, H, with each object in the cache. When an object is initially
brought into the cache, its H value is set to the cost of retrieving the object, divided by its size. When the cache is
full, the object with the smallest H value (Hmin) is removed. Then, the H values of all remaining objects are
decreased by Hmin. When a cache hit occurs, the object's H value is reset to its initial value, as though it were being
added for the first time.

Implementation of the algorithm as described is problematic. It's impractical to perform a subtraction for every
cache object each time an object is removed. It works just as well to add an "inflation" value to H for new objects
and cache hits. The inflation value is simply set to Hmin each time an object is removed.

2.7.6 Other Algorithms

Numerous other replacement algorithms have been proposed by web caching researchers. Many of these are
combinations of the algorithms already mentioned. For example, LRU-size uses size as the primary criteria and
LRU as the secondary criteria. The LRU-MIN algorithm attempts to remove an old object of approximately the same
size as the new object. This prevents a new, small object from replacing a large object. Further details are not
given here because these algorithms are not known to be used in caching products available today. Refer to
[Williams, Standridge, Abdulla and Fox, 1996] for more information.

One reason for the relative popularity of the LRU algorithm is its simplicity. Some of the other algorithms proposed
over the years are difficult to implement efficiently. Some require computing a metric for every cached object each
time the replacement procedure runs. This is not practical for really large caches. Other algorithms require keeping
extra metadata for each object. Since memory is usually a scarce resource, programmers are more likely to
implement simpler algorithms.
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Chapter 3. Politics of Web Caching

In this chapter, we will explore some important and difficult-to-solve issues that surround web
caching. The issues pertain to many aspects of caching but are primarily targeted at those of
us who operate a caching proxy. For example, as an administrator, you have access to
information that, if made available to others, can seriously violate the privacy of your users. If
your users cannot trust you to protect their privacy, they will not want to use your cache.
Hopefully, both you and your users will perceive the cache as something that protects, rather
than violates, their privacy.

A particularly thorny issue with web caching involves the rights of content providers to control
the copying and distribution of their works. Some people argue that existing copyright laws
cannot be applied to the Internet, but most people look for ways to coerce the two together.
By some interpretations, web caches are in gross violation of copyright laws. Various rulings
by U.S. courts[1] seem to support this view, although none of them specifically address web
caching. Similar issues surround so-called offensive material and the liability of system
operators whose facilities are used for its transmission.

[1] I'll talk only about U.S. laws here, but other countries' laws are equally vague on the subject of caching.

Other issues explored here include dynamic pages, content integrity, and cache busting.
When properly generated by origin servers, dynamic pages do not present any problems for
web caches. Unfortunately, the problem of ensuring content integrity is not as easy to
dismiss. Without a general-purpose digital signature framework, web users are forced to trust
that they receive the correct content from both proxy and origin servers.

Something that makes caching politically interesting is the fact that many different
organizations are involved in even the simplest web transactions. At one end is the user, and
at the other is a content provider. In between are various types of Internet service providers.
Not surprisingly, different organizations have different goals, which may conflict with one
another. Some users prefer to be anonymous, but some content providers want to collect a
lot of personal information about their customers or visitors. Some ISPs want to sell more
bandwidth, and others want to minimize their bandwidth costs.

In a sense, these differences can lead to an "arms race." Content providers decide their
pages should not be cached, so they add some headers to prevent it. Users and
administrators get upset and configure their caches to store the pages anyway. Next, the
content providers discover their pages are being cached anyway, so they take further, more
extreme steps to prevent caching, and so on. A similar battle exists regarding the information
sent in user requests. Some HTTP headers can reveal personal information or allow
individuals to be tracked as they navigate within and between sites. If users filter these
headers out or alter their values, some sites refuse the requests. Each side, it seems, wants

http://lib.ommolketab.ir
http://lib.ommolketab.ir


to exercise some control over the information in web requests and responses. Who will win?
My fear is that the commerce-driven content providers are already winning.
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3.1 Privacy

"Privacy is the power to control what others can come to know about you" [Lessig, 1999, p.143]. In the U.S., most
people feel they have a right to privacy. Even though the word does not occur in our Constitution, the fourth
amendment comes close when talking about "the right of the people to be secure in their persons, houses, papers,
and effects, against unreasonable searches and seizures..." In at least one famous case, the Supreme Court ruled
that this amendment does provide for an individual's privacy.[2] Also of relevance is Article 12 of the United Nations
Universal Declaration of Human Rights, which states:

[2] Katz v. U.S., 389 U.S. 347 (1967).

No one shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor to
attacks upon his honor and reputation. Everyone has the right to the protection of the law against such
interference or attacks.

Privacy is a very important issue on the Internet as a whole and the Web in particular. Almost everywhere we go in
cyberspace, we leave behind a little record of our visit. Today's computer and networking technology makes it
almost trivial for information providers to amass huge amounts of data about their audience. As users, you and I
might have different feelings about the importance of privacy. As cache operators, however, we have a
responsibility always to protect the privacy of our cache users.

Privacy concerns are found in almost every aspect of our daily lives, not just while surfing the Net. My telephone
company certainly knows which phone numbers I have dialed. The video store where I rent movies knows what
kind of movies I like. My bank and credit card company know where I spend my money. Surveillance cameras are
commonplace in stores, offices, and even some outdoor, public places.

In the United States, a consumer's privacy is protected by federal laws on a case-by-case basis. Video stores are
not allowed to disclose an individual's rental and sales records without that individual's consent or a court order.[3]

However, the law does allow video stores to use detailed personal information for marketing purposes if the
consumer is given an opportunity to opt out. Similarly, telephone companies must protect their customer's private
information, including call records.[4] There are no federal laws, however, that address consumer privacy in the
banking industry. In fact, under the Banking Secrecy Act, banks must report suspicious transactions, such as large
deposits, to federal agencies.[5] The latter is intended to aid in the tracking of money laundering, drug trafficking,
and other criminal activities. Banks may be subject to state privacy laws, but for the most part, they are self-
regulating in this regard.

[3] 18 U.S.C. 2710(b). Visit http://www.law.cornell.edu to read the actual text for this and other citations.

[4] 47 U.S.C. 222(c).

[5] 31 C.F.R. 103.21.

As with banking, there are no U.S. laws that protect an individual's privacy on the Internet. This is unfortunate,
because web transactions can reveal a significant amount of information about an individual user. Internet
companies that specialize in marketing and advertising can determine a person's age, sex, place of residence, and
other information by examining only a handful of requests. In the normal course of administering your cache, you
are going to encounter personal details about your users. You are in a unique position to either strengthen or
weaken your users' privacy. I strongly encourage you to develop and publish a policy that protects the privacy of
your users to the fullest extent possible.
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3.1.1 Access Logs

One way in which users' privacy can be compromised is by cache access logs. Most web caches in operation make
a log entry for each and every request received. A typical log entry includes the time of access, URL requested, the
requesting client's network address, and, in some cases, a username. As a cache operator, you have access to a
large amount of potentially revealing information about your users, who trust you not to abuse it. If you violate that
trust relationship, your users will not want to use your cache.

Note that proxies are not the only applications that can log user requests. A network packet sniffer can produce the
same result. Proxy log files are easier to understand and generate, but a sniffer also logs requests that don't go
through a proxy cache.

As a cache administrator, you are probably free to choose if, and how much, proxy information is logged. Some
operators choose to disable logging, but some may be required to log because of regional laws, company policies,
settlements, or other reasons. At the same time, it is the policy of some organizations to log all requests for security
reasons.

If the choice is yours to make, a number of factors should affect your decision. First of all, log files provide some
amount of accountability. Under normal operation, it is unlikely you will need to examine specific requests. But if
you suspect criminal activity, the log files might prove useful. Also, many organizations like to analyze their log files
to extract certain statistics and trends. Analysis tools can calculate hit ratios, network utilization (bandwidth), and
request service times. Long-term analysis can inform you about growth trends and when your organization may
require additional bandwidth. Debugging reported problems is generally made easier by having log files around. As
many of us know, users often fail to report details important for finding and fixing problems. Your log files might fill
in the missing pieces.

If you decide to keep access logs, it might be sufficient to log partial information, so that users retain some amount
of privacy. For example, instead of logging full client IP addresses, the cache could log only the first three octets (or
any subnetting/netmask scheme). Instead of logging full URLs, the cache might log only the server hostnames.
You should be particularly sensitive to logging the query part of a URL. These appear following a "?", and might
contain sensitive information such as names and account numbers. Here are some slightly edited examples from
my cache logs (with long lines wrapped):

http://komunitas.detik.com/eshare/server/srvgate.dll?action=2&user=XXXP
    &id=68nFdR&rand=975645899050
    &request=248+bye%2Ball%2Bgua%2Bpamit%2Bsebentar 
http://edit.yahoo.com/config/ncclogin?.src=bl
    &login=dream_demon_of_night&passwd=XXXXXXXXXXXXXX&n=1
http://liveuniverse.com/world?type=world&page=ok
    &dig.password=XXXXXXXX&dig.handle=darkforce
http://mercury.beseen.com/chat/rooms/e/17671/Chat.html?handle=lanunk
    &passkey=XXXXXXXXXXXXX
http://msg.edit.yahoo.com/config/ncclogin?.src=bl&login=XXXXXXXXX
    &passwd=XXXXX&n=1
http://www.creditcardsearchengine.com/?AID=115075&6PID=823653
http://64.23.37.140/cgi-bin/muslimemail/me.cgi?read=Refresh&login=XXXX
    &myuid=XXXXXXXX&folder=INBOX&startx=1&endx=15
http://64.40.36.143/cdjoin2.asp?sitename=wetdreams
http://ekilat.com/email_login.php?who=XXXXX@ekilat.com
http://join.nbci.com/authlogin_remote_redir.php?u=be_nink
    &hash=XXX...XXX&targetURL=http%3A%2F%2Fwww%2Eemail%2Ecom%2F%3F...

http://komunitas.detik.com/eshare/server/srvgate.dll?action=2&user=XXXP
http://edit.yahoo.com/config/ncclogin?.src=bl
http://liveuniverse.com/world?type=world&page=ok
http://mercury.beseen.com/chat/rooms/e/17671/Chat.html?handle=lanunk
http://msg.edit.yahoo.com/config/ncclogin?.src=bl&login=XXXXXXXXX
http://www.creditcardsearchengine.com/?AID=115075&6PID=823653
http://64.23.37.140/cgi-bin/muslimemail/me.cgi?read=Refresh&login=XXXX
http://64.40.36.143/cdjoin2.asp?sitename=wetdreams
http://ekilat.com/email_login.php?who=XXXXX@ekilat.com
http://join.nbci.com/authlogin_remote_redir.php?u=be_nink
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Due to their sensitive nature, you should carefully consider who else is able to read your proxy access logs.
Limiting the number of people who can read the log files reduces the risk of privacy invasion and other abuses. If
your cache runs on a multiuser system such as Unix, pay close attention to file ownership, group, and related
permissions. Some caching appliances make log files available for download via FTP. In this case, avoid using a
widely-known administrator password, and also find out if other (e.g., address-based) access controls are available.

If you keep access logs, you should also develop a policy for how long the logs are saved. Keeping access logs for
long periods of time might be useful for the reasons just described. However, situations might also arise where, in
order to protect the privacy of your customers or employees, it would be better to not have the logs at all. In the
U.S., the Freedom of Information Act (FOIA)[6] requires federal agencies to share certain documents and records
with the public upon request. Many state governments have similar laws governing their own agencies. Some
people feel that the access logs of systems owned and/or operated by the government are subject to these laws.

[6] 5 U.S.C. 552.

In order to do long-term analysis, you probably don't need the full log file information. Instead, you can store shorter
data files that summarize the information in such a way that it remains useful but no longer compromises the
privacy of your users.

3.1.2 Making Requests Anonymous

Caching proxies also serve to strengthen, not just weaken, user privacy. Many organizations run web caches on
their firewalls to hide the details of their internal network. External servers see connections coming from only the
firewall host. This makes it harder for outsiders to find out the name, address, or type of user machines. Simply
hiding internal names and addresses is not really sufficient. A good firewall has additional defense mechanisms in
place, but every little bit helps.

Proxies may also protect privacy by filtering outgoing requests. As I alluded to earlier, HTTP requests often include
personal or user-specific information. A request can include the browser software, operating system, IP address,
and the page being viewed when the new request is made. Older browser software was known to send the user's
email address as well, but recent versions should not. Some of this information can be quickly indexed to other
online databases to acquire, for example, the user's telephone number and street address.

Content providers are quite happy to collect as much personal information as they can. Usually, much of this
information can be filtered out without any negative consequences for the user. Some caching proxies, such as
Squid, are able to remove certain HTTP headers before forwarding a request. If you have privacy concerns, you
might want to filter some of the following headers:

From

This header, if present, contains the user's email address. In the past, browsers always sent a From header

if the user had configured that information. These days, the header is rarely seen, probably because of
backlash from privacy advocates. RFC 2616 suggests that user agents should not send the header without
the user's consent.

In my experience, it is always safe to remove the From header in outgoing requests. I have not encountered

or heard of an origin server that requires it to be present.
Referer

The (historically misspelled) Referer header contains the URI from which the requested URI was obtained.

For example, consider a page A that includes a link to page B. When you click on the link for B, the request
looks something like this:
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GET B HTTP/1.1

Referer: A

Content providers love the Referer header because it tells them how people find out about their site. When you
use a search engine such as Altavista and follow one of the links, the Referer header is set to the Altavista query

URL plus your query terms. Thus, the content provider knows what you are searching for when you find their site
through a search engine. The Apache server makes it easy to log Referer headers from requests received. Here

are some examples from my own web site:

http://google.yahoo.com/bin/query?p=%22web+cache%22&hc=0&hs=1 -> /
http://www.google.com/search?q=wpad+rfc&hl=en -> /writings.html
http://www.altavista.com/cgi-bin/query?pg=q&q=linux+cache -> /
http://search.msn.com/spbasic.htm?MT=akamai%20personalization
    -> /services.html
http://www.google.com/search?q=web+cache+proxy&hl=en -> /
http://www.l2g.com/topic/Web_Caching -> /writings.html
http://www.google.com/search?q=what+is+a+web+cache&hl=en -> /
http://www.altavista.com/cgi-bin/query?q=RFC+WPAD -> /writings.html

In the previous examples, the Referer header is on the left, and the requested URI is to the right of the ->

symbol.

The Referer header is useful for fixing broken links. A broken link is a hypertext link to a page or object that
doesn't exist anymore. They are, unfortunately, all too common on the Web. With the Referer header, a content

provider can discover the pages that point to nonexistent documents. Presumably, the content provider can contact
the author of the other document and ask her to update the page or remove the link. However, that's much easier
said than done. Getting the broken links fixed is often quite difficult.

Referer violates our privacy by providing origin servers with a history of our browsing activities. It gives content

providers probably more information than they really need to satisfy a request. In my experience, it is always safe to
filter out Referer headers.

User-agent

The User-agent header contains a string that identifies your web browser, including operating system and
version numbers. Here are some sample User-agent values:

Mozilla/2.0 (compatible; MSIE 3.01; AK; Windows 95)
Mozilla/4.0 (compatible; BorderManager 3.0)
Mozilla/4.51 [en] (X11; I; Linux 2.2.5-15 i686)
NetAnts/1.00
Mozilla/4.0 (compatible; MSIE 5.0; Windows 95; DigExt)
Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)
Wget/1.5.3

User-agent is useful to content providers because it tells them what their users are using to view their site. For

example, knowing that 90% of requests come from browser X, which supports feature Z, makes it easier to design
a site that takes advantage of that feature. User-agent is also sometimes used to return browser-specific

content. Netscape may support some nonstandard HTML tags that Internet Explorer does not, and vice versa.

As you can see in the previous examples, the User-agent field tells the content provider quite a lot about your

http://google.yahoo.com/bin/query?p=%22web+cache%22&hc=0&hs=1 -> /
http://www.google.com/search?q=wpad+rfc&hl=en -> /writings.html
http://www.altavista.com/cgi-bin/query?pg=q&q=linux+cache -> /
http://search.msn.com/spbasic.htm?MT=akamai%20personalization
http://www.google.com/search?q=web+cache+proxy&hl=en -> /
http://www.l2g.com/topic/Web_Caching -> /writings.html
http://www.google.com/search?q=what+is+a+web+cache&hl=en -> /
http://www.altavista.com/cgi-bin/query?q=RFC+WPAD -> /writings.html
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computer system. They know if you run Windows 95 or Windows NT. In the Linux example, we can see that the
system's CPU is an Intel 686 (Pentium II) or newer.

Unfortunately, it is not always safe to filter out the User-agent header. Some sites rely on the header to figure out

if certain features are supported. With the header removed, I have seen sites that return a page saying, "Sorry,
looks like your browser doesn't support Java, so you can't use our site." I have also seen sites (e.g.,
www.imdb.com) that refuse requests from specific user-agents, usually to prevent intense robot crawling.

Cookie

Cookies are used to maintain session state information between HTTP requests. A so-called shopping
basket is a common application of a cookie. However, they may also be used simply to track a person's
browsing activities. The prospect is truly frightening when you consider the way that advertising companies
such as doubleclick.net operate. DoubleClick places ads on thousands of servers. The Cookie and
Referer headers together allow them to track an individual's browsing across all of the servers where they

place ads.

Unfortunately, filtering Cookie headers for all requests is not always practical. Doing so may interfere with

sites that you really want to use. As an alternative, users should be able to configure their browsers to
require approval before accepting a new cookie. There are also client-side programs for filtering and
removing cookies. For more information, visit http://www.cookiecentral.com.

Unfortunately, even some presumably harmless headers can be used to track individuals. Martin Pool uncovered a
trick whereby content providers use the Last-modified and If-modified-since headers to accomplish

exactly that [Pool, 2000]. In this scheme, the cache validator serves the same purpose as a cookie. It's a small
chunk of information that the user-agent receives, probably stores, and then sends back to the server in a future
request. If each user receives a unique validator, the content provider knows when that user revisits a particular
page.

only for RuBoard - do not distribute or recompile  

http://www.cookiecentral.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

3.2 Request Blocking

Request blocking refers to the act of denying certain requests based on some part of the request itself (usually the
URL). Like it or not, a fair amount of the content available on the Web is generally considered to be offensive, the
most obvious example being pornography. Some organizations that connect to the Internet feel it necessary to
prevent their users from accessing these sites. A web cache is a logical place to implement per-request blocking.

The issues surrounding request blocking fall mostly into the political realm. Furthermore, these issues are not new
or unique to the Web. Just as many companies say employees should not make phone-sex calls while at work,
they also say workers should not view pornographic web sites. Similarly, a parent might say that children should not
have easy access to sexually explicit material, whether in the form of a magazine, video, or web site. It is a policy
decision, for employers and parents, whether and to what extent request blocking should be enabled. Classifying
material into offensive or inoffensive categories is a political and ideological issue and far beyond the scope of this
book. Even if the classification is not controversial, it is unlikely that a particular technique or implementation is
perfect. Some legitimate sites may be incorrectly blocked. Similarly, sites that should be blocked may still be
allowed through.

Several request-blocking products and services are available. Some of these are "plug-ins" for web cache
products; others are full proxy implementations that can be used alone or in serial with an existing web cache. The
companies offering these products also provide a list of sites (or URLs) to be blocked. Usually these products
require a subscription fee to receive list updates. However, some allow new sites to be added manually. A typical
blocking list probably includes 100,000 or more entries.

The World Wide Web Consortium ( http://www.w3c.org) has developed a content labeling scheme known as the
Platform for Internet Content Selection. PICS is simply a standard way to label web pages rather than rate them. In
other words, PICS specifies the structure of a label, not what to put inside it. However, PICS is often associated
with content filtering, because that was one of the primary reasons for its development. A PICS-aware web cache
can filter out requests based on one or more rating schemes.

Request blocking has the potential to adversely affect latency. Depending on the type of list and the searching
algorithm, a large list could add noticeable delay to every request. In general, web cache systems are I/O-bound
and do not require top-of-the-line processors. However, checking every requested URL against a blocking list
increases the demand for CPU resources and can change the web cache into a CPU-bound application. The three
most popular methods for blocking requests are exact string matches, substring matches, and regular expressions.
Exact string matching is straightforward and can be implemented easily in an efficient algorithm. However, exact
string matching is essentially useless for blocking URLs. Both substring matching and regular expressions are
much more flexible, but at the same time, they are difficult to implement efficiently. The simple (but inefficient)
algorithm for searching a list of regular expressions involves sequentially checking every entry in the list. If your
cache needs to check requests against a large blocking list, you might want to consider a machine with a fast
processor.

If you do employ request blocking on your caching proxy, it's best to be up-front about it. Tell your users that
access to certain web sites is being blocked and why this is the case. Provide them with a copy of your
organization's policy on appropriate use of your facilities. Periodically (e.g., once per year) remind your users about
the policy and its enforcement. Be sure to tell them what to do in case the software incorrectly blocks legitimate
content. Finally, be sure that you and your colleagues know how to make exceptions in the filtering rules.
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3.3 Copyright

Copyright laws give authors or creators certain rights regarding the copying and distribution of their original works.
These laws are intended to encourage people to share their creative works without fear that they will not receive
due credit or remuneration. Copyrights are recognized internationally through various treaties (e.g., the Berne
Convention and the Universal Copyright Convention). This helps our discussion somewhat, because the Internet
tends to ignore political boundaries.

Digital computers and the Internet challenge our traditional thinking about copyrights. Before computers, we only
had to worry about making copies of physical objects such as books, paintings, and records. The U.S. copyright
statute defines a copy thusly:

Copies are material objects…in which a work is fixed by any method now known or later developed, and from
which the work can be perceived, reproduced, or otherwise communicated, either directly or with the aid of a
machine or device.[7]

[7] 17 U.S.C. 101.

When you memorize a poem, thereby making a copy in your brain, you have not violated a copyright law. Tests for
physicality are difficult to apply to computer systems where information exists only as electrostatic or magnetic
charges representing ones and zeroes.

Copying is a fundamental characteristic of the Internet. An Internet without copying is like a pizza without
cheese-what would be the point? People like the Internet because it lets them share information with each other.
Email, newsgroups, web pages, chat rooms: all require copying information from one place to another. The Internet
also challenges traditional copyrights in another interesting way. Revenue is often the primary reason we establish
and enforce copyrights. I don't want you to copy this book and give it to someone else because I get a bigger
royalty check if your friend buys his own copy. On the Internet, however, paying for information is the exception
rather than the rule. Some sites require subscriptions, but most do not, and a lot of web content is available for
free.

3.3.1 Does Caching Infringe?

The question for us is this: does web caching infringe upon an author's copyright? If so, cache operators are
potentially liable and may be subject to litigation. If not, copyright owners have arguably lost the right to exercise
control over the distribution of their works. We can make good arguments for both sides of this debate.

First, let's examine some arguments that suggest that caching does infringe. The Berne Convention text (Article 9)
states the following:

Authors of literary and artistic works protected by this Convention shall have the exclusive right of authorizing
the reproduction of these works, in any manner or form.

Web caching most certainly qualifies as "reproduction" in this context, and thus the Berne Convention applies. In
fact, judges have already ruled that even relatively transitory and short-term copies of works in computer memory
(RAM) are subject to copyright laws. One grey area is whether we can say that a cache has the authorization to
make a copy. Some people say "no" because such authorization is almost never explicitly granted, especially at the
level of the transfer protocol (HTTP). The author of a web page may write something like "caching of this page is
allowed," say, in an HTML comment, but the proxy wouldn't know that.
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A more credible pro-caching defense states that web publishers implicitly grant a license to create copies, simply
by placing material on a web server. After all, browsers must necessarily copy a page from the server to display it
to the user. Content providers are generally aware that such copying between nodes is a fundamental aspect of the
Internet's operation, and therefore they may accept that their pages are copied and duplicated at various locations.
Furthermore, the laws certainly do not discriminate between caching at a browser versus caching at a proxy. If one
infringes, we must conclude the other does as well.

In the U.S., this issue remained unresolved for a number of years. Although the threat of copyright infringement
claims always existed, that didn't stop most organizations from deploying caching proxies in their networks. The
situation changed dramatically in October of 1998, however, when Congress passed the Digital Millennium
Copyright Act (DMCA). But before getting to that, let's look at some previous case law.

3.3.2 Cases and Precedents

It appears that copyright law relating to caching has not yet been tested in any court. Rumors of such lawsuits do
exist, but, if the rumors are true, the cases were likely dropped or settled before trial. However, U.S. courts have
heard a number of cases alleging copyright infringement by system operators. Eric Schlachter's article in
Boardwatch magazine provides a good summary of some of these cases [Schlachter, 1997]. It is enlightening to
examine a few details from them.

In 1993, Playboy magazine sued a system operator, George Frena, for, among other things, distribution of
copyrighted images. The operator was found guilty of violating Playboy's right of distribution, even though he did
not copy the files himself. The court noted that intent is not required to be found liable.

The following year, Sega sued the operators of a bulletin board for providing unauthorized copies of game
software. The court initially found the operators both directly and contributorily liable. A second hearing of the case
in 1996 found the operators were not directly liable because they did not make the copies. However, they remained
contributorily liable because their system encouraged users to upload the pirated software.

More recently, the Religious Technology Center, a group affiliated with the Church of Scientology, instigated a
lawsuit against system operators (Netcom and Tom Klemesrud) and a user (Dennis Erlich) over some messages
posted to a Usenet newsgroup. One of the claims was copyright infringement of material owned by the Religious
Technology Center. In the end, neither Netcom nor Klemesrud were found liable. However, this case contains an
interesting twist. Both Netcom and Klemesrud were notified that their systems had distributed copyrighted
information. The operators did not attempt to cancel the messages because they felt the copyright claims could not
reasonably be verified. The court agreed. Although not stated explicitly, this ruling implies operators could be liable
if given adequate notice that an infringement has occurred.

The case against Napster is perhaps one of the highest profile copyright lawsuits in recent years. Napster is a
service (and software package) that puts its users in touch with each other so they can share music files. Napster
doesn't store the files on its servers, but the comapny maintains a central database detailing the files that each
user is willing to share. A number of recording industry companies sued Napster in late 1999 for contributory
copyright infringement. One of Napster's defenses is that people can use their system in ways that do not infringe
on copyrights. For example, users may share their own music or music that is free from copying restrictions. Sony
successfully used this line of reasoning in a 1984 Supreme Court case that established that videocassette
recording of television shows qualifies as fair use. After many hearings, the court forced Napster to prevent its
customers from swapping copyrighted music unless they pay a royalty to the music producers.

3.3.3 The DMCA

The Digital Millennium Copyright Act was signed into law in October of 1998. Its goal is to bring U.S. law in line with
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the World Intellectual Property Organization Copyright Treaty and the Performances and Phonograms Treaty. To
many people, the DMCA is a travesty. The Electronic Freedom Foundation (http://www.eff.org) has a number of
anti-DMCA articles on its web site. However, these are all focused on section 1201 of U.S.C. title 17, which makes
it illegal to circumvent copyright protection systems.

For this discussion, we focus on a different part of the DMCA. Title II is called the Online Copyright Infringement
Liability Limitation Act. It exempts service providers from liability for copyright infringement if certain conditions are
met. Surprisingly, this legislation specifically addresses caching! This part of the Act became law as section 512 of
U.S.C. title 17. The text of the first two subsections are included in Appendix G.

Subsection (a) doesn't talk about caching, but it's relevant anyway. It exempts service providers for simply
providing "transitory digital network communications," for example, routing, transmitting packets, and providing
connections through their networks. This language probably applies to proxying (without caching) as well. To avoid
liability, certain conditions must be met.

One condition is that the service provider must not modify the content as it passes through its network. Thus, a
caching proxy that alters web pages, images, etc., may be liable for copyright infringement. Filtering out "naughty"
words from text and changing the resolution or quality of an image both violate this condition. It's not clear to me
whether blocking a request for an embedded image (e.g., an advertisement banner) qualifies as content
modification.

Subsection (b) deals entirely with caching. It says that "intermediate and temporary storage of material" does not
make service providers liable for copyright infringement, but only if the following conditions are met:

The material is made available by somebody other than the ISP.

The material is sent to someone other than the content provider.

The reason for storing the material is to use it in response to future requests from users, subject to a number
of additional conditions.

The additional conditions of subsection (b) are quite long and relate to issues such as modification of content,
serving stale responses, and access to protected information.

Paragraph (2)(A) says that the service provider can't modify cached responses. Since subsection (a) says the
provider can't modify the original response, this implies that all cache hits must be the same as the original.

Paragraph (2)(B) is interesting because it mandates compliance with "rules concerning the refreshing, reloading, or
other updating of the material . . . "-in other words, the HTTP headers. This means that if the caching product is
configured or operates in a way that violates HTTP, the service provider may be guilty of copyright infringement.
What's even more interesting is that this paragraph applies "only if those rules are not used by the [content owner]
to prevent or unreasonably impair" caching. To me it seems that if the origin server is cache busting (see Section
3.7), disobeying HTTP headers does not make the service provider liable for infringement. This is somewhat
surprising, because HTTP gives content owners ultimate control over how caches handle their content. However,
the language in this paragraph is so vague and confusing that it probably makes this condition altogether
worthless.

The next condition, paragraph (2)(C), is tricky as well. It says that service providers cannot interfere with the
content owner's ability to receive access statistics from caches. Again, this condition does not apply if the collection
of such statistics places an undue burden on the service provider. The condition also does not apply if the content
provider somehow uses the cache to collect additional information that it wouldn't normally have if users were
connecting directly.
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The condition in paragraph (2)(D) is relatively straightforward. It says that caches must respect the content
provider's ability to limit access to information. For example, if users must authenticate themselves in order to
receive a certain web page, the cache must not give that page to unauthenticated users. Doing so makes the
service provider liable for copyright infringement. I think there is a small problem with this requirement, however. In
some cases, a caching proxy won't know that the content provider is limiting access. For example, this happens if
access is granted based only on the client's IP address. The law should require origin servers to explicitly mark
protected responses. Otherwise, service providers may be inadvertently violating the owner's copyright.

The final condition, in paragraph (2)(E), is a requirement to remove material (or deny access to it) when someone
makes a claim of copyright infringement. For example, a content provider might place a copyrighted image on its
server without the copyright owner's permission. The copyright owner can demand that the content provider
remove the image from its site. He can also demand that the image be removed from an ISP's caches. Since such
a demand must be made to individual service providers, it's difficult to imagine that the copyright owner will get the
content removed from all caches in operation.

The first time I read this legislation, I thought that prefetching could make service providers liable for copyright
infringement. On closer examination, however, it seems that prefetching is exempt as well. Subsection (a)-which
is about routing, not caching-eliminates liability for material requested by "a person other than the service
provider." Arguably, when a cache prefetches some objects, those requests are initiated by the service provider,
not the user. However, when talking about caching in subsection (b), the exemption covers material requested by a
person other than the content provider. Since the ISP is not the content provider, the exemption applies.

One interesting thing to note about this law is that it only exempts ISPs from liability for copyright infringement. The
service provider may still be guilty of infringement, but the copyright owner is not entitled to compensation for
copies made by caches. Before the Online Copyright Infringement Liability Limitation Act became law, some
service providers were afraid that caching would invite lawsuits. With these new additions, however, ISPs in the
U.S. have nothing to fear as long as they "play nice" and don't violate the rules of HTTP.

3.3.4 HTTP's Role

Even those who feel strongly that caching is a blatant infringement of copyrights generally agree that caching is
necessary for efficient and continued operation of the Web. Because caching is here to stay, we need good
technical solutions to deal appropriately with information that authors want to control tightly. HTTP/1.1 provides a
number of different directives and mechanisms that content authors can use to control the distribution of their
works.

One way is to insert one or more of the Cache-control directives in the response headers. The no-store
directive prevents any cache from storing and reusing the response. The no-cache and must-revalidate

directives allow a response to be cached but require validation with the origin server before each subsequent use.
The private directive allows the response to be cached and reused by a user agent cache but not by a caching

proxy. We'll talk further about these in Section 6.1.4.

Authentication is another way to control the distribution of copyrighted material. To access the information, users
must enter a username and password. By default, caching proxies cannot store and reuse authenticated
responses. Passwords may be a pain to administer, however. Not many organizations can afford the resources to
maintain a database with millions of users.

Encryption is an even more extreme way to control distribution. Recall that end-to-end encryption protocols such as
SSL/TLS are opaque to proxies in the middle. In other words, caching proxies cannot interpret encrypted traffic,
which makes it impossible to cache. User-agents can cache responses received via an encrypted channel. In this
sense, encryption is similar to the private cache control.
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One of the difficulties with Cache-control is that the header must be generated by the server itself; it is not a

part of the content. Modifying the server's behavior probably requires assistance from the server administrator; the
author may not be able to do it alone. Even if the author wants to use Cache-control or other HTTP headers to

control caching, she may not be able to, unless the administrator is willing and able to help out. Apache actually
makes it possible for authors to insert and remove headers after some initial configuration by the administrator.
We'll see how do to this in Chapter 6.

Using the no-store header is not a decision to be made lightly. Though preventing caching gives the provider

greater control over the distribution of the content, it also increases the time that cache users wait to view it.
Anyone who thinks users and cache operators don't notice the difference is wrong. Even if the provider site has
enough capacity to handle the load, the user may be sitting behind a congested and/or high-latency network
connection. Because people have short attention spans, if the latency is too high, they simply abort the request and
move on to another site. Issues relating to servers that don't allow caching are further discussed in Section 3.7.
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3.4 Offensive Content

As I mentioned earlier, pornography and other potentially offensive material comprise a noticeable proportion of
web content.[8] Most national (and some local) governments have laws that address the selling or transportation of
pornography. Could, you, as a cache operator, be liable because your cache stores or distributes such material?
Only one thing is certain: there are no simple answers.

[8] Certainly not everyone finds pornography offensive. Use of the term here is only for convenience and is not meant to suggest

that there is an obvious distinction between offensive and inoffensive material.

In 1996, the U.S. government passed the Communications Decency Act (CDA), which attempted to criminalize the
sending of pornography and other obscene material over "telecommunications facilities." Furthermore, it sought to
make liable anyone who:

knowingly permits any telecommunications facility under [his] control to be used for any activity prohibited
[above] with the intent that it be used for such activity…[9]

[9] 47 U.S.C. 223(d)(2).

This might not be as bad as it initially sounds, especially given the use of the words "knowingly" and "intent." Even
better, the law also seems to provide an exemption for some providers:

No person shall be held [liable] solely for providing access or connection to or from a facility, system, or
network not under that person's control, including transmission, downloading, intermediate storage, access
software, or other related capabilities that are incidental to providing such access or connection that does not
include the creation of the content of the communication.[10]

[10] 47 U.S.C. 223(e)(1).

This is good news for those of us who operate caches. The presence of the phrase "intermediate storage" is
particularly comforting.

However, most of the provisions of the CDA were struck down as unconstitutional by the U.S. Supreme Court in
1997. The CDA was strongly opposed by groups such as the Electronic Freedom Foundation and the American
Civil Liberties Union because it violates some fundamental rights (such as freedom of speech) granted by the Bill of
Rights.

Admittedly, the discussion here has been very U.S.-centric. Laws of other countries are not discussed here, except
to note that the Internet is generally not subject to geopolitical boundaries. The application of local and national
laws to a network that connects millions of computers throughout the world is likely to be problematic.
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3.5 Dynamic Web Pages

Many people worry that caches do not properly deal with what they call "dynamic pages." Such pages are
considered dynamic because the content might be different for every request. Time-sensitive information, such as
stock prices and weather reports, logically fall into the category of dynamic pages. Pages that have been
customized for the user, to include his name or targeted advertisements, are dynamic as well.

Historically, dynamic pages have been problematic because some web caching software had relatively aggressive
caching and refresh policies. Dynamic pages were cached and returned as cache hits when perhaps they should
not have been. Part of the blame lies with the early descriptions and implementations of HTTP. The HTTP/1.0 RFC
[Berners-Lee, Fielding and Frystyk, 1996] was not published until May of 1996, while active development on
web caching had been ongoing since early 1994. Without a stable protocol description, implementors are certainly
prone to make some mistakes. Even when HTTP/1.0 became official, it still lacked a good description of what can
and cannot be cached. Section 1.3 of RFC 1945 states:

Some HTTP/1.0 applications use heuristics to describe what is or is not a "cachable" response, but these
rules are not standardized.

Some of the blame lies with the origin servers, however. Even though HTTP/1.1 has more caching features than
HTTP/1.0, the older protocol does have enough functionality to prevent a compliant proxy from returning hits on
dynamic pages. Unfortunately, confusion arises when an origin server's response leaves out some headers. For
example, consider a reply such as this:

HTTP/1.0 200 OK
Server: MasterBlaster/1.6.9
Date: Mon, 15 Jan 2001 23:01:43 GMT
Content-Type: text/html

How should a cache interpret this? There is no Last-modified date, so the cache has no idea how old the

resource is. Assuming the server's clock is correct, we know how old the response is, but not the resource. There
is no Expires header either, so perhaps the cache can apply local heuristics. Should a cache be allowed to store

this reply? Can it return this as a cache hit? In the absence of rigid standards, some applications might consider
this cachable.

These days, you are unlikely to encounter a caching product that incorrectly handles dynamic pages. HTTP/1.1
allows servers to be very specific regarding how a response is to be treated by a cache (see Section 6.3). Over
the years, people who implement HTTP caching have had a lot of time to "get it right." An application in compliance
with HTTP (1.0 or 1.1) should never cache a response if the origin server does not want it to.

3.5.1 Java Applets

The Java programming language is widely used on the Web for generating dynamic content. Some people wonder
if web caches are designed to properly handle Java applets. The answer is a resounding "yes" because of the way
in which applets work. Rather than executing on the origin server, as CGI programs and Java servlets do, applets
run on the client (usually a browser). Thus, a Java applet file is really static, much like an HTML file, when
downloaded from an origin server. The user sees something dynamic only when the applet code executes on the
client. Java applets are very much like other static objects, such as text files and JPEG images.
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3.6 Content Integrity

Can you trust the information you receive from a cache? How do you know it has not been modified? How do you
know it is what the origin server intends for you to see?

This is an extremely difficult problem, with no known solutions at this time. TCP does not currently provide any form
of end-to-end security, which means this problem is not specific to HTTP or the Web. The Transport Layer Security
protocol (TLS, formerly Secure Sockets Layer) does provide end-to-end security on top of the network transport
protocols. TLS protocols [Dierks And Allen, 1999] are designed to prevent eavesdropping, tampering, and
message forgery. However, the security provided by TLS is in effect only for the duration of the data transfer. It
does not guarantee-especially for cache hits-that the object you receive has not been modified since the origin
server generated it. Unfortunately, we do not have a general purpose digital signature scheme for web objects.
Even if such a thing did exist, to be of any real value it would require out-of-band communication for the key
exchange. In other words, it would be pointless to retrieve signing keys from the cache.

Recent security features being added to DNS [Eastlake, 1999] might be able to support a scheme for
authenticating web objects. For example, lets say you request the URL http://www.monkeybrains.net/index.html.
The response is an HTML page that includes, in comments, a digital signature. To validate the signature, you need
the public key of the author or owner. Such keys can be entered into a DNS zone. Continuing with our example, we
query the DNS for a http.www.monkeybrains.net KEY record. The returned key (if any) and the signature are
enough to prove that the HTML page is authentic.

To date, I am not aware of any caches that have been broken into and had cache content modified. However, on
numerous occasions, origin server security has been compromised, and the perpetrators have replaced the normal
home page content with something else. Usually these pranks are short-lived and not a real problem. If the bogus
pages make it into web caches, though, some users could receive the wrong content even after the origin server
has been restored.

Another way to get bogus content to web users is to attack the DNS. Most networked applications in use today,
including proxy caches, inherently trust the answers to their DNS queries. If my cache asks for the IP address of
www.microsoft.com and gets a wrong answer, it happily connects to that address and retrieves the wrong content.
The best way to prevent this from happening is to remain up-to-date with new releases (and patches) of name
resolver software (e.g., BIND).

Assuming incorrect objects have been loaded into a cache, what can be done to get rid of them? In most cases, it
is sufficient to issue a request with a Pragma:no-cache header. This operation, most easily accomplished by

clicking the Reload button in a browser, replaces the old object with a new one. Occasionally, this may not work, or
you may want to remove an object entirely instead of replacing it. Caching products should provide this functionality
via their management interface. With Squid, you can use the client program to issue a purge request:

client -m PURGE http://ircache.nlanr.net/badobject
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3.7 Cache Busting and Server Busting

Cache busting is a technique that content providers use to prevent their pages from being
served as hits from caches. Often this means making every response uncachable. This issue
is difficult to assess for a number of reasons. First and foremost, owners and publishers have
legal rights to control the distribution of their information. Whether or not we agree with their
decision to defeat caching, the choice is theirs to make. Usually, their reasons are unknown
to us, but the reasons might include the copyright issues discussed previously or the desire
to increase the number and accuracy of their hit counts. Second, some content providers, by
the very nature of their business, might serve only uncachable content. We should not be
surprised to find that sites that exist only to count advertisement impressions do not allow
their responses to be cached. Issues relating to advertising are explored further in the next
section.

How would someone be able to claim that an origin server is cache busting? Cache users
and administrators sometimes expect certain types of objects to be cachable by default.
When users visit a page for the first time and then access it again a short while later, they
expect the page to load very quickly because it should be in the cache. When the page loads
slowly, they wonder why. If a user is curious and savvy enough, she might find a way to
examine the reply headers firsthand. With access to the cache log files, administrators can
easily analyze them and generate reports including hit ratios for individual origin servers.
Those servers that give a lower than average amount of hits, or no hits at all, might be
suspects for cache busting.

On the other side of this issue are the Internet service providers who pay high, or perhaps
metered, tariffs for their bandwidth. They turn to caching as a way to save money. In a sense,
cache-busting web servers represent additional costs for the ISP. When Internet charges are
usage-based, rather than flat-rate, people often feel they have purchased information when
they download it, and they should not have to pay to download it again.

Some caching software allows administrators to override the server's instructions for cache
behavior. A cache configured in this manner blatantly violates the HTTP standard. Server

busting might be an appropriate term for such behavior. This is a dangerous path to start
down, as it essentially leads to an "arms race" between caches and origin servers. If caches
ignore an origin server's requirements, content providers will find new ways to defeat caching.
Instead of working against each other, we should be having a dialogue and finding ways to
cooperate.

The development of a hit-metering mechanism for HTTP [ Mogul and Leach, 1997] is a
step in the right direction. Hit metering works in two ways: by reporting unvalidated cache hits
back to origin servers and by limiting the number of hits before requiring validation. These
mechanisms offer content providers some control over the distribution of their pages, as well
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as better statistics regarding cache hits. Caches are not required to support both reporting
and limiting. For example, a cache can say that it will limit cache hits but not provide hit count
statistics. Unfortunately, there has been little demand for hit metering from content providers.
Without such demand, we may never see hit metering implemented or widely deployed.
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3.8 Advertising

We all know that electronic commerce has been a driving force behind the evolution of the
Web. Advertising, in particular, is important because it generates revenue for a large number
of web sites. Advertising fees are often based on the number of views or impressions. That
is, the advertiser pays the web site some amount for every person who sees their ad. But
how do the site owners and the advertisers know how many people have seen a particular
ad?

The simplest approach is to count the number of accesses logged by the site's HTTP server.
As I'm sure you can guess, with caching in place, some of the requests for an advertisement
never reach the origin server. Thus, the web site counts too few accesses and perhaps
undercharges the advertiser. The advertiser might not mind being undercharged, but it is
probably in everyone's best interest to have accurate access counts. Later, in Section
6.4.2, I suggest some techniques that content providers can use to increase ad counting
accuracy while remaining cache-friendly.

Some people take issue with the notion of counting ad impressions and other page

accesses. The fact that something requests a page or image does not mean a human being
actually views it. Search engines and other web robots can generate a large number of
requests. The User-agent request header normally identifies the entity that issued the

request. Thus, user requests can be differentiated from robot requests. Another tricky aspect
of request counting is related to the Back button found on web browsers. When you follow a
sequence of hypertext links and then work your way back up the chain, your browser might
decide to request some pages or images again. Most people argue that the second request
should not be recounted as an ad impression.

Opponents of brute-force access counting suggest using statistical sampling techniques,
much like those used to rate television programs. Certainly, the traditional broadcast media
(television, radio) and to some extent print publications (newspapers, magazines) have
similar needs to gauge readership. Indeed, a few companies now offer high-quality site
measurement services. Among them are Media Metrix (http://www.mediametrix.com),
Nielson NetRatings (http://www.nielson-netratings.com), and PC Data Online
(http://www.pcdata.com).

Apart from paying for measurement services, what can a web site with advertisements do to
get more accurate access statistics? One way is to make every object uncachable, but this
cache-busting is a bad idea for the reasons described in the previous section. A more
sensible approach is to include a tiny, uncachable inline image in the pages to be counted.
This allows the page itself and large inline images to be cached, yet still delivers a request to
the origin server every time someone views the page.
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Another clever counting technique uses JavaScript embedded in a web page. When the
page is loaded into a browser, the browser executes the JavaScript, which can send a
message back to the origin server to indicate that the page has been loaded. Furthermore,
the JavaScript can select which advertisement to show to the user. For example, the script
can output HTML for an inline image. The nice characteristic of this solution is that both the
web page and the images can be cached, yet the origin server still knows every time the
page is viewed and exactly which ad images appear on the page.

Unfortunately, there is a fine line between counting visitors and tracking individuals. The
Privacy Foundation (http://www.privacyfoundation.org) calls these hidden images "Web
bugs." Though I think simply counting page requests is not so bad, the same technique
allows content providers to closely track your browsing activities. This raises all of the privacy
issues discussed earlier in this chapter. The Privacy Foundation suggests that Web bugs
should be made visible, so users know when they are being tracked. My advice is to always
assume that content providers collect as much information about you as they can.
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3.9 Trust

When viewed in a broader sense, many of the issues surrounding web caching can be
reduced to matters of trust. Cache users must trust administrators not to reveal private
information contained in cache log files. This relationship is analogous to those we have with
banks, telephone service providers, and movie rental companies.

A very informal trust relationship often exists between cache operators and content providers.
In a sense, cache operators trust they will not face litigation, and content providers trust
caches to have reasonable expiration and refresh parameters. Of course, some trust more or
less than others, and when this tenuous relationship breaks down, both parties seek to regain
control. Content providers may turn to cache-busting techniques, and cache administrators to
server-busting.

Perhaps the thing we most take for granted is that our caches deliver correct content to
users. While it is perhaps unfortunate that we must place so much trust in this aspect of web
caching, it is not necessarily unique. As users, we also generally trust that our email
messages are authentic and unmodified. At least with email we have some good solutions to
this problem (e.g., PGP). The Web will catch up eventually.
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3.10 Effects of Proxies

In Chapter 1, I talked briefly about how a proxy sits in between clients and servers. Without
a proxy, clients normally connect directly to origin servers. With a proxy, however, clients
connect only to the proxy. If needed, the proxy connects to origin servers for cache misses.
This characteristic of proxies has two important implications for cache managers: security (of
both web servers and caches) and bandwidth.

Because the server only knows about its TCP connection from the proxy, the client remains
hidden. This can cause problems for origin servers that use address-based access controls.
When a client's request goes through a proxy, the server gets the proxy's address, not the
client's. If the server is configured to allow connections from the client's address and deny all
others, requests forwarded through the proxy are denied.

As a caching proxy administrator, you must pay close attention to access controls on your
web servers and on your proxy. Web servers that authorize connections from your proxy are
effectively authorizing connections from anyone who can connect to your proxy. A proxy that
accepts requests from any client is open to all sorts of mischief. An open-access proxy
creates a back door that enables tricks similar to IP source routing and email relaying. An
outsider may be able to route traffic through your proxy. Such abuse can be as harmless as
consuming some of your bandwidth or as serious as credit card fraud or threatening the
President.

Pay especially close attention to how your caching proxy handles the CONNECT method.
This method exists so user agents can tunnel SSL/TLS and other traffic through a firewall.
The client specifies a hostname and port number that the proxy should connect to. Once the
tunnel is established, it's as though the client has a direct connection to the origin server. The

proxy is usually configured to allow connections only to specific ports (https and snews). If

the proxy allows connections to the smtp ports of remote servers, for example, then
mischievous users can use your proxy as a mail relay, spamming others and leaving you to
blame.

Figure 3-1. How to get some free bandwidth
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Proxies have the power to significantly affect a company's bandwidth. Consider the diagram

in Figure 3-1. Two companies, A and B, receive Internet service from the same ISP. This
ISP has two routers, R1 and R2. R1 exists primarily to collect flow statistics and generate
monthly bills, based on a customer's usage.

Company B has a proxy cache on its network, and the administrator failed to configure the

access controls correctly. Hosts inside company A's network are allowed to use the proxy.

For the cache traffic passing through R1, the destination IP address is B's proxy cache. Thus,

the traffic gets charged to B. Router R1 has no idea the traffic is eventually sent to hosts in

company A. Since the administrators in company B are obviously careless, it's likely they'll
never notice the additional traffic flowing through their network.
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Chapter 4. Configuring Cache Clients

After setting up a caching proxy on your network, you'll need to figure out how to make your
clients (browsers) use it. For many organizations, this is a particularly daunting task. There
are a number of techniques you can use. Your choice is likely to depend on how many users
you have, the client software they use, and whether you can configure that software. For
example, a corporate information systems department usually supports one or two browsers
and has full administrative control over all employee workstations. An ISP's customers, on
the other hand, maintain their own computers and run whatever software they like.

The oldest technique is what we call manual configuration. The clients are given one or more
proxy addresses to use, and, with few exceptions, they forward all requests to the proxy.
Manual configuration is relatively straightforward, but it's not something most users can figure
out on their own. If naive users are to manually configure their browsers, they require detailed
instructions, such as those in the following section. Given the choice, some users won't
bother to configure their browser since it's somewhat of a hassle. Another drawback is that
many user-agents don't handle failures well when manually configured.

The second-generation configuration technique, pioneered by Netscape, is known as proxy
auto-configuration. Instead of a static configuration, the browser executes a JavaScript
function shortly before making each request. This script gives the browser a list of proxy
addresses to which the request is forwarded. The auto-configuration technique also offers
improved failure detection and failover compared to manual configuration. For example, if the
browser believes the first proxy in the list is down, then it fails over to the next one, and so
on.

Although proxy auto-configuration is more flexible, it also requires the user to enter a URL for
the JavaScript file. To eliminate this step, some companies are proposing a web proxy auto-
discovery protocol. When the browser starts up, it uses DHCP and the DNS to locate a proxy
auto-configuration script. If found, the browser automatically loads the script and begins using
the caching proxy.

A recent development, known as interception proxying, delivers client requests to caching
proxies with absolutely no configuration of the client. Instead, you configure your network
equipment (e.g., routers, switches) to divert HTTP traffic to the proxies. In this case, the client
doesn't even know it's talking to a proxy-it thinks it's talking to the origin server. Interception
proxying (a.k.a. transparent proxying) is an interesting and controversial technique; we'll save
it for the next chapter.

Finally, this chapter finishes with a few suggestions for configuring browser caches when the
browser also utilizes a shared cache.
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4.1 Proxy Addresses

As with all other Internet services, such as mail and FTP, a proxy server has an address
comprised of a hostname (or IP address) and a port number. However, unlike most other
services, proxies do not have a standard default port number. While it is generally sufficient

to say, "connect to the FTP server at ftp.isp.net," it is not sufficient to say, "use the proxy at

proxy.isp.net." Thus, proxy addresses always appear with explicit port numbers. Typically,
they are written together, separated by a colon, for example:

172.16.4.1:8080
squid.ircache.net:3128
proxy1.bigisp.net:80

Although there is no default port number, most proxies use one of the following ports: 3128,
8080, 80, or 1080. Most of these are some variation of "80" because that is the default for
HTTP. Port number 3128 was arbitrarily selected as the default for the Harvest software,
from which Squid evolved. Although port 80 is normally associated with origin servers, it is
also popular for proxy servers, probably because the CERN server was able to function
simultaneously as both an origin server and as a proxy server. Today's web caches have the
ability to listen for requests on multiple ports at the same time. I don't recommend using port
80 for proxy servers unless absolutely necessary. Usually, we identify network applications by
port numbers, and the shared approach makes it difficult to separate origin server traffic from
proxy traffic.
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4.2 Manual Proxy Configuration

A manual configuration is generally characterized by a set of proxy addresses, one for each
transfer protocol, and a list of domain names for which the proxies should not be used. The
set of proxyable transfer protocols includes HTTP, FTP, Gopher, SSL, and WAIS. Usually, a
single proxy supports all of these, so the same proxy address is used for all protocols. Some
clients allow you to set a single proxy address rather than requiring you to enter the same
address repeatedly.

Depending on your reasons for using proxies, you may not need or want to configure all
protocols. If your users are behind a firewall, it is probably necessary to proxy all requests. If
not, you might want to proxy only HTTP and FTP. A proxy cannot cache SSL responses
because the content is encrypted. Forwarding SSL requests when the client can make a
direct connection serves only to increase the load upon the proxy. Gopher and WAIS
requests might be cachable, but they typically comprise such a small fraction of total traffic
that the cache provides relatively little benefit.

The manual configuration approach has a number of disadvantages. Primarily, it requires a
significant amount of individual effort to enter all the settings. Knowledgeable users may not
be bothered, but a typical user requires very clear and specific instructions. Additionally, you
may need to provide different instructions for different browsers and different versions of the
same browser. Another annoyance is that the manual configuration results in poor failover
characteristics. When a proxy fails, the browser does not attempt a direct connection or try
an alternate proxy. Arguably, browsers should support this feature, but at the time of this
writing, they do not. Finally, a manual configuration is not flexible enough to accommodate
systems with multiple proxy machines. For example, you might want to forward one class of
requests to one proxy and the remaining traffic to another.

4.2.1 Configuring Microsoft Internet Explorer

To configure Microsoft Internet Explorer Version 5, select View  Internet Options from the

menu. This brings up a new window with six "tabs" along the top. Select the Connection tab

and you will see the window shown in Figure 4-1. The proxy settings are buried under LAN

Settings…, so click on that button and you should see the window shown in Figure 4-2.

Figure 4-1. Microsoft Internet Explorer Internet Options window
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Figure 4-2. Microsoft Internet Explorer LAN Settings window

The LAN Settings window has a subwindow titled Proxy server. Here you can enter an IP
address or hostname and the proxy port number. This configures Internet Explorer to use the
proxy for all transfer protocols.

If you want to use different proxies or no proxy for some protocols (such as FTP or SSL),

click on the Advanced… button. Now you should see the window shown in Figure 4-3. You
can enter hostnames or IP addresses for each transfer protocol separately. Note that

"Secure" refers to SSL. You can enter a list of domain names in the Exceptions subwindow.
URLs that match these domains are not sent to your proxies. With Internet Explorer, you
must separate domains with semicolons instead of commas. When you finish configuring the
proxies, be sure to return to the browser and try a new request.

Figure 4-3. Microsoft Internet Explorer Proxy Settings window
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4.2.2 Configuring Netscape Navigator

Netscape's browser products allow you to set proxy addresses in pop-up windows. To bring
up the configuration window in Netscape Navigator Version 4, select Edit  Preferences…
from the main menu bar. In the Preferences window, click on the small triangle next to

Advanced. This adds two more entries to the menu, one of which is Proxies. Next, select

Manual proxy configuration and click on the View… button. You should now see the window
shown in Figure 4-4.

Figure 4-4. Netscape Navigator manual proxy configuration

Once you have the manual proxy configuration window, you can enter proxy addresses.
Usually, you enter the same proxy address for every protocol (HTTP, FTP, Gopher, Wais).
Security Proxy refers to SSL (a.k.a. HTTPS) requests. SSL requests are never cached by
proxies, so the only reason to configure an SSL proxy is to tunnel through a firewall. Do not

set the SSL proxy if you are not behind a firewall. In the No Proxy for field, you can enter a
comma-separated list of domains that should not be requested through the proxy. When you
are finished, return to the main browser window by clicking the OK button, and then try to
load a new URL.
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Note that Netscape hasn't changed the proxy configuration in the newer versions of
Navigator. The windows may look a little bit different, but the pull-down menus and text boxes
are the same for Version 6.

4.2.3 NCSA Mosaic, Lynx, and Wget

Unix-based clients such as NCSA Mosaic for X, Lynx, and Wget look for proxy addresses in
environment variables. Note that the variable names are lowercase. For historical reasons,
these environment variables look just like URLs:[1]

[1] This is because very early proxies simply prepended these proxy URLs to the original URL and then processed the request

normally.

http_proxy="http://squid.nlanr.net:3128/"
ftp_proxy="http://squid.nlanr.net:3128/"

These clients also look for environment variables named gopher_proxy, https_proxy, and
wais_proxy.

The no_proxy variable holds URL domain names that should not be forwarded to the proxy.
In most cases, this includes your local domain (or domains). To specify multiple domains,
simply separate them with commas. For example:

no_proxy="nlanr.net,sdsc.edu"

Netscape Navigator for Unix actually reads these environment variables as well, but only if
the user's preferences file does not exist.
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4.3 Proxy Auto-Configuration Script

The proxy auto-configuration (PAC) technique is designed to fix many of the manual
configuration problems described previously. Instead of using static proxy addresses, the
browser executes a function for every request. This function returns a list of proxy addresses
that the browser tries until the request is successfully forwarded.

The PAC function is written in JavaScript. In theory, any browser that supports JavaScript
can also support PAC. Netscape invented the PAC feature, and it was first available in
Version 2 of their browser. Microsoft added PAC support to MSIE Version 3.

Both the Netscape and Microsoft browsers retrieve the PAC script as a URL. This is perhaps
the biggest drawback to proxy auto-configuration. Setting the PAC URL requires someone to
enter the URL in a pop-up window, or the browser must be preconfigured with the URL.

The best thing about proxy auto-configuration is that it allows administrators to reconfigure
the browsers without further intervention from the users. If the proxy address changes, the
administrator simply edits the PAC script to reflect the change. The browsers fetch the PAC
URL every time they are started, but apparently not while the browser is running, unless the
user forces a reload.

Another very nice feature is failure detection, coupled with the ability to specify multiple proxy
addresses. If the first proxy in the list is not available, the browser tries the next entry, and so
on until the end of the list. Failure is detected when the browser receives a Connection
Refused error or a timeout during connection establishment.

The PAC script provides greater flexibility than a manual configuration. Instead of forwarding
all HTTP requests to a single proxy address, the auto-configuration script can select a proxy
based on the URI. As mentioned in Section 2.2.7, objects with "cgi" in the URI are usually
not cachable. A proxy auto-configuration script can detect these requests and forward them
directly to origin servers. Unfortunately, the auto-configuration script is not given the request
method, so we cannot have similar checks for POST and PUT requests, which are also rarely
cachable.

The PAC script can also be used creatively to implement load sharing. Without a PAC script,
one way to do load sharing is by entering multiple address records for the cache's hostname
in the DNS. This results in a somewhat random scheme. There is no guarantee that the
same URI always goes to the same proxy cache. If possible, we would rather have requests
for the same URIs always going to the same caches, to maximize our hit ratios. We can
accomplish this by writing a function that always returns the same proxy list for a given URI.
An example of this is shown later in Example 4-1.

4.3.1 Writing a Proxy Auto-Configuration Function
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The proxy auto-configuration function is named FindProxyForURL() and has two arguments:
url and host .[2] The return value is a string specifying how to forward the request. The return
string is one or more of the following, separated by semicolons:

[2] Of course, the url includes host , but it has been extracted for your convenience.

PROXY host:port
SOCKS host:port
DIRECT

For example:

"PROXY proxy.web-cache.net:3128; DIRECT;
 SOCKS socks.web-cache.net:1080;"

When writing FindProxyForURL(), you may want to use some of the built-in functions for
analyzing the URL. The most useful ones are described here. For the full details, see
Netscape's PAC documentation at
http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html.

The isPlainHostName(host ) function returns true if host is a single-component

hostname rather than a fully qualified domain name. If host contains any periods, this
function returns false.

Many PAC scripts are written so that requests with plain hostnames are sent directly to
the origin server. It's likely that such a request refers to an internal server, which
probably doesn't benefit from caching anyway. Also, the caching proxy may not be able
to resolve unqualified hostnames, depending on how the proxy is configured.

The dnsDomainIs(host , domain ) function returns true if host is a member of domain .

For example, foo.bar.com is a member of bar.com, whereas www.foobar.com is not.

The isResolvable(host ) function returns true if a DNS lookup for host results in an IP

address. This function allows the browser, instead of the proxy, to generate error pages
for invalid hostnames. When the browser generates an error message rather than the
proxy, users are less likely to complain that the proxy cache is broken. Fewer
complaints, of course, means less headaches for your support staff.

The shExpMatch(string , pattern ) function performs Unix shell-style pattern matching on
string . For example, to match URLs that end with .cgi, you can write:

shExpMatch(url, "*.cgi")

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
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To match the request protocol at the beginning of the URL, use:

shExpMatch(url, "ftp:*")

Some sample FindProxyForURL() functions are given in the next section.

The PAC script must be placed on a web server, and the server must be configured to return
a specific MIME Content-type header in the response. If Content-type is not set to
application/x-ns-proxy-autoconfig, browsers do not recognize it as a proxy auto-

configuration script. Generally, administrators name the PAC script with a .pac extension and
then instruct the HTTP server to return the desired Content-type for all URIs with that

extension. With Apache, you can add this line to srm.conf:

AddType application/x-ns-proxy-autoconfig .pac

4.3.2 Sample PAC Scripts

First, let's look at a very simple proxy auto-configuration script that returns a single proxy
address for all HTTP and FTP requests. For all other requests, it instructs the browser to
forward the request directly to the origin server:

function FindProxyForURL(url, host)
{
  if (shExpMatch(url, "http:*"))
    return "PROXY proxy.isp.net:8080";
  if (shExpMatch(url, "ftp:*"))
    return "PROXY proxy.isp.net:8080";
  return "DIRECT";
}

Now, let's look at a more complicated example for a company with a firewall. We want to
forward all internal requests directly and all external requests via the firewall proxy. First, we
look for internal hosts. These are single-component hostnames or fully qualified hostnames

inside our domain (company.com). We use the isResolvable() trick so error messages for
invalid hostnames come directly from the browser instead of the proxy. This trick works only if
the internal hosts can look up addresses for external hosts:

function FindProxyForURL(url, host)
{
  if (isPlainHostName(host))
    return "DIRECT";
  if (dnsDomainIs(host, "company.com"))
    return "DIRECT";
  if (!isResolvable(host))
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    return "DIRECT";
  return "PROXY proxy.company.com:8080";
}

Next, let's see how you can use a proxy auto-configuration script for load sharing and
redundancy. Three methods are commonly used for sharing the load between a set of N
caches. One simple approach is to assign N IP addresses to a single hostname. While this
spreads the load, it has the undesirable effect of randomizing mappings from requests to

caches. It is better to have the same request always sent to the same cache. A hash function
accomplishes this effect. A hash function takes a string (e.g., a URL) as input and returns an
integer value. Given the same input, a hash function always returns the same value. We
apply the modulo operator to the hash result to select from the N caches. This scheme works
well, but the mappings change entirely when additional caches are added. The final
technique is to use some aspect of the URL, such as the domain name or perhaps the

filename extension. For example, .com requests can be sent to one cache and all other
domains to another cache. Depending upon the incoming requests, this approach might
result in significantly unbalanced load sharing, however.

Example 4-1 uses the hash function technique. We have four caches, and the hash
function is simply the length of the URL, modulo four. Furthermore, for redundancy, we return
multiple proxy addresses. If the first is unavailable, the browser tries the second. This failover
breaks the partitioning scheme, but the users are more likely to get service.

Example 4-1. Sample PAC Script with Hashing

var N = 4;

function FindProxyForURL(url, host)
{
    var i = url.length % N;
    if (i == 0)
        return "PROXY a.proxy.company.com:8080; "
             + "PROXY b.proxy.company.com:8080; "
             + "DIRECT";
    else if (i == 1)
        return "PROXY b.proxy.company.com:8080; "
             + "PROXY c.proxy.company.com:8080; "
             + "DIRECT";
    else if (i == 2)
        return "PROXY c.proxy.company.com:8080; "
             + "PROXY d.proxy.company.com:8080; "
             + "DIRECT";
    else if (i == 3)
        return "PROXY d.proxy.company.com:8080; "
             + "PROXY a.proxy.company.com:8080; "
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             + "DIRECT";
}

4.3.3 Setting the Proxy Auto-Configuration Script

Once a PAC script has been written and placed on a server, configuring a browser to use it is
relatively simple. All you need to do is enter the PAC script URL in the appropriate
configuration window for your browser.

For Netscape's browser, set the proxy auto-configuration URL in one of the same windows

used for manual proxy configuration. Start by selecting Edit  Preferences… from the main
menu bar. In the Preferences window, click on the small triangle next to Advanced and select

Proxies. Select the "Automatic proxy configuration" option and enter the URL as shown in
Figure 4-5.

Figure 4-5. Netscape Navigator proxy configuration window

If you're using Microsoft Internet Explorer, select View  Internet Options from the main

menu bar. Select the Connection tab; the window shown in Figure 4-1 appears. Again, click
on LAN Settings… and you'll see the window in Figure 4-2. At the top is a subwindow titled

Automatic configuration. If you select "Automatically detect settings," Explorer will try to use
WPAD, which we'll talk about next. To use a PAC script, select "Use automatic configuration

script" and enter its URL in the Address box.

Normally, browsers read the PAC URL only at startup. Thus, if you change the PAC script,
users do not get the changes until they exit and restart their browser. Users can force a
reload of the PAC script at any time by going to the proxy auto-configuration window and
clicking on the Reload or Refresh button. Unfortunately, the Netscape browser does not obey
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the Expires header for PAC replies. That is, you cannot make Netscape Navigator reload
the PAC script by providing an expiration time in the response.

Organizations with hundreds or even thousands of desktop systems may want to
preconfigure browsers with a PAC URL. One way to accomplish this is to use a special kit
from the manufacturer that allows you to distribute and install specially configured browsers.
Microsoft calls theirs the Internet Explorer Administration Kit. Netscape's is the Client
Customization Kit, but it works only on the Microsoft Windows and Macintosh versions of
Netscape Navigator. Both kits are available for download at no charge. [3]

[3] You can download the Internet Explorer Administration Kit from

http://www.microsoft.com/windows/ieak/en/download/default.asp, and Netscape's Client Customization Kit is available

for download at http://home.netscape.com/download/cck.html.

only for RuBoard - do not distribute or recompile  

http://www.microsoft.com/windows/ieak/en/download/default.asp
http://home.netscape.com/download/cck.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

4.4 Web Proxy Auto-Discovery

As I mentioned earlier, proxy auto-configuration usually requires the user to manually enter a
URL in the proxy configuration window. Recent efforts by browser developers seek to
eliminate that step. This new feature is called web proxy auto-discovery, or WPAD. WPAD is
designed to let browsers automatically learn the auto-configuration URL with no assistance
from the user.

WPAD uses a number of protocols and services to find the auto-configuration URL. The
preferred protocol is DHCP (Dynamic Host Configuration Protocol). If DHCP fails, the user-
agent may try the Service Location Protocol (SLP, RFC 2068) next. If SLP fails as well, it
queries the DNS for A, SRV, and TXT records. A client that implements WPAD must support
at least the DHCP and DNS A record queries. Support for SLP is optional.

Using the DNS is likely to be the simplest and most popular approach for network
administrators. The first step is to select an HTTP server and place a proxy auto-
configuration script there under the name /wpad.dat. Then the administrator needs only to

add a DNS entry for a host named wpad. For example, if wpad.company.com is an alias for

company.com's web server, and the wpad.dat file is installed there, all of the company's web
browsers can automatically configure themselves.

WPAD was submitted to the IETF as an Internet Draft in December of 1999. Unfortunately, it
has not yet been updated or moved beyond that stage, and the draft is now expired. Even so,
Microsoft's Internet Explorer (Version 5) already supports WPAD. The protocol authors seem
uninterested in advancing the protocol within the IETF. Their lack of enthusiasm may be due
to some negative reactions to WPAD on various mailing lists and in IETF working-group
meetings. One of the issues is that WPAD refers to (i.e., requires) JavaScript, which is not a
standardized language. The situation is unfortunate because many of us believe WPAD is a
much better way to get clients talking to a caching proxy.
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4.5 Other Configuration Options

Most browsers have two other settings that you may want to consider changing: the browser
cache and the refresh settings. In some cases, a shared proxy cache may make the browser
cache redundant, especially if the browser has good network connectivity to the proxy.

With Netscape Navigator, I recommend setting the disk cache size to 0 and using a memory
cache only. 1–3MB of memory cache should be sufficient. In addition to freeing disk space
for other uses, this configuration has another advantage. The memory cache is not persistent
between browser sessions. If you think you are getting stale responses from the browser
cache, you can just quit and restart. When Netscape Navigator starts again, the browser
cache is empty and the suspicious request is sent to the proxy cache. In Version 4 of

Netscape Navigator, the browser cache settings are found under Edit  Preferences 
Advanced  Cache.

Internet Explorer (Versions 4 and 5) allow you to control the amount of disk space-but not
memory-used for caching. The setting is found under Tools  Internet Options 

Temporary Internet Files  Settings…. Apparently, you can't disable disk caching. Explorer
enforces a minimum cache size. [4] However, there is an option to remove all temporary files
each time Explorer exits.

[4] See Microsoft Knowledgebase article Q145766, http://support.microsoft.com/support/kb/articles/Q145/7/66.asp.

Both Netscape Navigator and Internet Explorer also have settings that control validation of
objects in the browser cache. The three options are to validate the cached object every
request, once per session, or never. Validating every request ensures pages are up-to-date
but may incur additional delays. Choosing never to validate makes cached pages load very
quickly, but at the risk of loading stale pages. However, in my experience, these settings
often do not work as I expect them to. Even when validation is set to never, some requests
are still validated. Sometimes, when it's set to always, cached objects are not validated. Most
likely, the browser's validation algorithm is more complicated than these settings imply. I

recommend using the always setting if you have a good Internet connection and the never
setting if your connection is slow or highly congested.
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4.6 The Bottom Line

If you are thinking about deploying a web caching service for your organization, do not
discount the difficulties of configuring the clients. Small organizations, or those where using
the proxy is optional, might be able to use manual configuration. Large organizations
probably want to use proxy auto-configuration scripts, however. If you do not want your
employees or customers to configure their own browsers, you need to preconfigure them or
use some other technique to change the settings without the user's intervention. Both
Netscape and Microsoft have freely available toolkits that allow organizations to distribute
browsers with customized settings.

The web proxy auto-discovery protocol looks like a very promising method to eliminate that
final, time-consuming configuration hassle. Even so, many organizations are not entirely
comfortable with proxy auto-configuration, and they have instead turned to interception
caching because it requires no browser configuration whatsoever. Furthermore, it works with
all web clients, not just the most popular browsers. Interception caching is becoming
increasingly prevalent because it makes administrator's lives easier, but not everyone
embraces it so openly. The issues and technologies around interception caching are
discussed in Chapter 5.
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Chapter 5. Interception Proxying and Caching

As we discussed in Chapter 4, one of the most difficult problems you might face in
deploying a web caching service is getting users to use your cache. In some cases, the
problem is mostly political; users might resist caching because of privacy concerns or fears
they will receive stale information. But even if users are convinced to use the cache-or have
no choice-administrative hurdles may still be a problem. Changing the configuration of
thousands of installed clients is a daunting task. For ISPs, the issue is slightly different-they
have little or no control over their customers' browser configurations. An ISP can provide
preconfigured browsers to their customers, but that doesn't necessarily ensure that
customers will continue to use the caching proxy.

Because of problems such as these, interception caching has become very popular recently.
The fundamental idea behind interception caching (or proxying) is to bring traffic to your
cache without configuring clients. This is different from a technique such as WPAD (see
Section 4.4), whereby clients automatically locate a nearby proxy cache. Rather, your
clients initiate TCP connections directly to origin servers, and a router or switch on your
network recognizes HTTP traffic and redirects it to your cache. Web caches require only
minor modifications to process requests received in this manner.

As wonderful as this may sound, a number of issues surround interception caching.
Interception caching breaks the rules of the Internet Protocol. Routers and switches are
supposed to deliver IP packets to their intended destination. Diverting web traffic to a cache
is similar to a postal service that opens your mail and reads it before deciding where to send

it or whether it needs to be sent at all.[1] The phrase connection hijacking is often used to
describe interception caching, as a reminder that it violates the Internet Protocol standards.
Interception also leads to problems with HTTP. Clients may not send certain headers, such
as Cache-control, when they are unaware of the caching proxy.

[1] Imagine how much work the postal service could avoid by not delivering losing sweepstakes entries. Imagine how upset

Publisher's Clearinghouse would be if they did!

Interception proxies are also known as transparent proxies. Even though the word
"transparent" is very common, it is a poor choice for several reasons. First of all,
"transparent" doesn't really describe the function. We hope that users remain unaware of
interception caches, and all web caches for that matter. However, interception proxies are
certainly not transparent to origin servers. Furthermore, interception proxies are known to
break both HTTP and IP interoperability. Another reason is that RFC 2616 defines a
transparent proxy to mean something different. In particular, it states, "A `transparent proxy'
is a proxy that does not modify the request or response beyond what is required for proxy
authentication and identification." Thus, to remain consistent with documents produced by
the IETF Web Replication and Caching working group, I use the term interception caching.
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In this chapter, we'll explore how interception caching works and the issues surrounding it.
The technical discussion is broken into three sections, corresponding to different networking
layers. We start near the bottom, with the IP layer. As packets traverse the network, a router
or switch diverts HTTP packets to a nearby proxy cache. At the TCP layer, we'll see how the
diverted packets are accepted, possibly modified, and then sent to the application. Finally, at
the application layer, the cache uses some simple tricks to turn the original request into a
proxy-HTTP request.

only for RuBoard - do not distribute or recompile  
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5.1 Overview

Figure 5-1. Interception proxying schematic diagram

Figure 5-1 shows a logical diagram of a typical interception proxy setup. A client opens a
TCP connection to the origin server. As the packet travels from the client towards the server,
it passes through a router or a switch. Normally, the TCP/IP packets for the connection are
sent to the origin server, as shown by the dashed line. With interception proxying, however,
the router/switch diverts the TCP/IP packets to the cache.

Two techniques are used to deliver the packet to the cache. If the router/switch and cache
are on the same subnet, the packet is simply sent to the cache's layer two (i.e., Ethernet)
address. If the devices are on different subnets, then the original IP packet gets
encapsulated inside another packet that is then routed to the cache. Both of these
techniques preserve the destination IP address in the original IP packet, which is necessary
because the cache pretends to be the origin server.

The interception cache's TCP stack is configured to accept "foreign" packets. In other words,
the cache pretends to be the origin server. When the cache sends packets back to the client,
the source IP address is that of the origin server. This tricks the client into thinking it's
connected to the origin server.

At this point, an interception cache operates much like a standard proxy cache, with one
important difference. The client believes it is connected to the origin server rather than a
proxy cache, so its HTTP request is a little different. Unfortunately, this difference is enough
to cause some interoperability problems. We'll talk more about this in Section 5.6.

You might wonder how the router or switch decides which packets to divert. How does it
know that a particular TCP/IP packet is for an HTTP request? Strictly speaking, nothing in a
TCP/IP header identifies a packet as HTTP (or as any other application-layer protocol, for
that matter). However, convention dictates that HTTP servers usually run on port 80. This is
the best indicator of an HTTP request, so when the device encounters a TCP packet with a

source or destination port equal to 80, it assumes that the packet is part of an HTTP session.
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Indeed, probably 99.99% of all traffic on port 80 is HTTP, but there is no guarantee. Some
non-HTTP applications are known to use port 80 because they assume firewalls would allow
those packets through. Also, a small number of HTTP servers run on other ports (see Table
A-9). Some devices may allow you to divert packets for these ports as well.

Note that interception caching works anywhere that HTTP traffic is found: close to clients,
close to servers, and anywhere in between. Before interception, clients had to be configured
to use caching proxies. This meant that most caches were located close to clients. Now,
however, we can put a cache anywhere and divert traffic to it. Clients don't need to be told
about the proxy. Interception makes it possible to put a cache, or surrogate, close to origin
servers. Interception caches can also be located on backbone networks, although I and
others feel this is a bad idea, for reasons I'll explain later in this chapter. Fortunately, it's not
very common.

only for RuBoard - do not distribute or recompile  
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5.2 The IP Layer: Routing

Interception caching begins at the IP (network) layer, where all sorts of IP packets are routed
between nodes. Here, a router or switch recognizes HTTP packets and diverts them to a
cache instead of forwarding them to their original destination. There are a number of ways to
accomplish the interception:

Inline

An inline cache is a device that combines both web caching and routing (or bridging)
into a single piece of equipment. Inline caches usually have two or more network
interfaces. Products from Cacheflow and Network Appliance can operate in this
fashion, as can Unix boxes running Squid.

Layer four switch

Switching is normally a layer two (datalink layer) activity. A layer four switch, however,
can make forwarding decisions based on upper layer characteristics, such as IP
addresses and TCP port numbers. In addition to HTTP redirection, layer four switches
are also often used for server load balancing.

Web Cache Coordination Protocol

WCCP is an encapsulation protocol developed by Cisco Systems that requires
implementation in both a router (or maybe even a switch) and the web cache. Cisco
has implemented two versions of WCCP in their router products; both are openly
documented as Internet Drafts. Even so, use of the protocol in a product may require
licensing from Cisco.

Cisco policy routing

Policy routing refers to a router's ability to make forwarding decisions based on more
than the destination address. We can use this to divert packets based on destination
port numbers.

5.2.1 Inline Caches

An inline cache is a single device that performs both routing (or bridging) and web caching.
Such a device is placed directly in the network path so it captures HTTP traffic passing
through it. HTTP packets are processed by the caching application, while other packets are
simply routed between interfaces.

Not many caching products are designed to operate in this manner. An inline cache is a
rather obvious single point of failure. Let's face it, web caches are relatively complicated
systems and therefore more likely to fail than a simpler device, such as an Ethernet switch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Most caching vendors recommend using a third-party product, such as a layer four switch,
when customers need high reliability.

You can build an inexpensive inline cache with a PC, FreeBSD or Linux, and Squid. Any Unix
system can route IP packets between two or more network interfaces. Add to that a web
cache plus a little packet redirection (as described in Section 5.3), and you've got an inline
interception cache. Note that such a system does not have very good failure-mode
characteristics. If the system goes down, it affects all network traffic, not just caching. If Squid
goes down, all web traffic is affected. It should be possible, however, to develop some clever
scripts that monitor Squid's status and alter the packet redirection rules if necessary.

InfoLibria has a product that fits best in the inline category. They actually use two tightly
coupled devices to accomplish inline interception caching. The DynaLink is a relatively simple
device that you insert into a 100BaseT Ethernet segment. Two of the DynaLink's ports are for
the segment you are splitting. The other two deliver packets to and from an attached
DynaCache. The DynaLink is a layer one (physical) device. It does not care about Ethernet
(layer two) packets or addresses. When the DynaLink is on, electromechanical switches
connect the first pair of ports to the second. The DynaCache then skims the HTTP packets
off to the cache while bridging all other traffic through to the other side. If the DynaLinks loses
power or detects a failure of the cache, the electromechanical switches revert to the
passthrough position.

If you want to use an inline caching configuration, carefully consider your reliability
requirements and the failure characteristics of individual products. If you choose an
inexpensive computer system and route all your traffic through it, be prepared for the fact that
a failed disk drive, network card, or power supply can totally cut off your Internet traffic.

5.2.2 Layer Four Switches

Recently, a new class of products known as layer four switches[2] have become widely
available. The phrase "layer four" refers to the transport layer of the OSI reference model; it
indicates the switch's ability to forward packets based on more than just IP addresses.
Switches generally operate at layer two (datalink) and don't know or care about IP addresses,
let alone transport layer port numbers. Layer four switches, on the other hand, peek into
TCP/IP headers and make forwarding decisions based on TCP port numbers, IP addresses,
etc. These switches also have other intelligent features, such as load balancing and failure
detection. When used for interception caching, a layer four switch diverts HTTP packets to a
connected web cache. All of the other (non-HTTP) traffic is passed through.

[2] You might also hear about "layer seven" or "content routing" switches. These products have additional features for looking

even deeper into network traffic. Unfortunately, there is no widely accepted term to describe all the smart switching products.

Layer four switches also have very nice failure detection features (a.k.a. health checks). If the
web cache fails, the switch simply disables redirection and passes the traffic through
normally. Similarly, when the cache comes back to life, the switch once again diverts HTTP

http://lib.ommolketab.ir
http://lib.ommolketab.ir


packets to it. Layer four switches can monitor a device's health in a number of ways,
including the following:

ARP

The switch makes Address Resolution Protocol (ARP) requests for the cache's IP
address. If the cache doesn't respond, then it is probably powered off, disconnected, or
experiencing some other kind of serious failure.

Of course, this only works for devices that are "layer two attached" to the switch. The
cache might be on a different subnet, in which case ARP is not used.

ICMP echo

ICMP echo requests, a.k.a. "pings," also test the cache's low-level network
configuration. As with ARP, ICMP tells the switch if the cache is on the network.
However, ICMP can be used when the switch is on a different subnet.

ICMP round-trip time measurements can sometimes provide additional health
information. If the cache is overloaded, or the network is congested, the time between
ICMP echo and reply may increase. When the switch notices such an increase, it may
send less traffic to the cache.

TCP

ARP and ICMP simply tell the switch that the cache is on the network. They don't, for
example, indicate that the application is actually running and servicing requests. To
check this, the switch sends connection probes to the cache. If the cache accepts the
connection, that's a good indication that the application is running. If, however, the
cache's TCP stack generates a reset message, the application cannot handle real
traffic.

HTTP

In some cases, even establishing a TCP connection is not sufficient evidence that the
cache is healthy. A number of layer four/seven products can send the cache a real
HTTP request and analyze the response. For example, unless the HTTP status code is
200 (OK), the switch marks the cache as "down."

SNMP

Layer four switches can query the cache with SNMP. This can provide a variety of
information, such as recent load, number of current sessions, service times, and error
counts. Furthermore, the switch may be able to receive SNMP traps from the cache
when certain events occur.

Load balancing is another useful feature of layer four switches. When the load placed on
your web caches becomes too large, you can add additional caches and the switch will
distribute the load between them. Switches often support numerous load balancing
techniques, not all of which are necessarily good for web caches:
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Round-robin

A counter is kept for each cache and incremented for every connection sent to it. The
next request is sent to the cache with the lowest counter.

Least connections

The switch monitors the number of active connections per cache. The next request is
sent to the cache with the fewest active connections.

Response time

The switch measures the response time of each cache, perhaps based on the time it
takes to respond to a connection request. The next request is sent to the cache with the
smallest response time.

Packet load

The switch monitors the number of packets traversing each cache's network port. The
next request is sent to the cache with the lowest packet load.

Address hashing

The switch computes a hash function over the client and/or server IP addresses. The
hash function returns an integer value, which is then divided by the number of caches.
Thus, if I have three caches, each cache receives requests for one-third of the IP
address space.

URL hashing

Address hashing doesn't always result in a well-balanced distribution of load. Some
addresses may be significantly more popular than others, causing one cache to receive
more traffic than the others. URL hashing is more likely to spread the load evenly.
However, it also requires more memory and CPU capacity.

With address hashing, the forwarding decision can be made upon receipt of the first
TCP packet. With URL hashing, the decision cannot be made until the entire URL has
been received. Usually, URLs are quite small, less than 100 bytes, but they can be
much larger. If the switch doesn't receive the full URL in the first data packet, it must
store the incomplete URL and wait for the remaining piece.

If you have a cluster of caches, URL hashing or destination address hashing are the best
choices. Both ensure that the same request always goes to the same cache. This partitioning
maximizes your hit ratio and your disk utilization because a given object is stored in only one
cache. The other techniques are likely to spread requests around randomly so that, over
time, all of the caches come to hold the same objects. We'll talk more about cache clusters in
Chapter 9.

Table 5-1 lists switch products and vendors that support layer four redirection. The Linux
Virtual Server is an open source solution for turning a Linux box into a redirector and/or load
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balancer.

Table 5-1. Switches and Products That Support Web Redirection

Vendor Product Line Home Page

Alteon, bought by Nortel AceSwitch http://www.alteonwebsystems.com

Arrowpoint, bought by Cisco Content Smart Switch http://www.arrowpoint.com

Cisco Local Director http://www.cisco.com

F5 Labs Big/IP http://www.f5.com

Foundry ServerIron http://www.foundrynet.com

Linux Virtual Server LVS http://www.linuxvirtualserver.org

Radware Cache Server Director http://www.radware.com

Riverstone Networks Web Switch http://www.riverstonenet.com

These smart switching products have many more features than I've mentioned here. For
additional information, please visit the products' home pages or http://www.lbdigest.com.

5.2.3 WCCP

Cisco invented WCCP to support interception caching with their router products. At the time
of this writing, Cisco has developed two versions of WCCP. Version 1 has been documented
within the IETF as an Internet Draft. The most recent version is dated July 2000. It's difficult
to predict whether the IETF will grant any kind of RFC status to Cisco's previously proprietary
protocols. Regardless, most of the caching vendors have already licensed and implemented
WCCPv1. Some vendors are licensing Version 2, which was also recently documented as an
Internet Draft. The remainder of this section refers only to WCCPv1, unless stated otherwise.

WCCP consists of two independent components: the control protocol and traffic redirection.
The control protocol is relatively simple, with just three message types: HERE_I_AM,
I_SEE_YOU, and ASSIGN_BUCKETS. A proxy cache advertises itself to its home router with
the HERE_I_AM message. The router responds with an I_SEE_YOU message. The two
devices continue exchanging these messages periodically to monitor the health of the
connection between them. Once the router knows the cache is running, it can begin diverting
traffic.

As with layer four switches, WCCP does not require that the proxy cache be connected
directly to the home router. Since there may be additional routers between the proxy and the
home router, diverted packets are encapsulated with GRE (Generic Routing Encapsulation,
RFC 2784). WCCP is hardcoded to divert only TCP packets with destination port 80. The
encapsulated packet is sent to the proxy cache. Upon receipt of the GRE packet, the cache
strips off the encapsulation headers and pretends the TCP packet arrived there normally.
Packets flowing in the reverse direction, from the cache to the client, are not GRE-
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encapsulated and don't necessarily flow through the home router.

WCCP supports cache clusters and load balancing. A WCCP-enabled router can divert traffic
to many different caches. [3] In its I_SEE_YOU messages, the router tells each cache about
all the other caches. The one with the lowest numbered IP address nominates itself as the

designated cache. The designated cache is responsible for coming up with a partitioning
scheme and sending it to the router with an ASSIGN_BUCKETS message. The
buckets-really a lookup table with 256 entries-map hash values to particular caches. In
other words, the value for each bucket specifies the cache that receives requests for the
corresponding hash value. The router calculates a hash function over the destination IP
address, looks up the cache index in the bucket table, and sends an encapsulated packet to
that cache. The WCCP documentation is vague on a number of points. It does not specify
the hash function, nor how the designated cache should divide up the load. WCCPv1 can
support up to 32 caches associated with one router.

[3] Each cache can have only one home router, however.

WCCP also supports failure detection. The cache sends HERE_I_AM messages every 10
seconds. If the router does not receive at least one HERE_I_AM message in a 30-second
period, the cache is marked as unusable. Requests are not diverted to unusable caches.
Instead, they are sent along the normal routing path towards the origin server. The
designated cache can choose to reassign the unusable cache's buckets in a future
ASSIGN_BUCKETS message.

WCCPv1 is supported in Cisco's IOS versions 11.1(19)CA, 11.1(19)CC, 11.2(14)P, and later.
WCCPv2 is supported in all 12.0 and later versions. Most IOS 12.x versions also support
WCCPv1, but 12.0(4)T and earlier do not. Be sure to check whether your Cisco hardware
supports any of these IOS versions.

When configuring WCCP in your router, you should refer to your Cisco documentation. Here
are the basic commands for IOS 11.x:

ip wccp enable
!
interface fastethernet0/0
ip wccp web-cache redirect

Use the following commands for IOS 12.x:

ip wccp version 1
ip wccp web-cache
!
interface fastethernet0/0
ip wccp web-cache redirect out

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Notice that with IOS 12.x you need to specify which WCCP version to use. This command is
only available in IOS releases that support both WCCP versions, however. The
fastethernet0/0 interface may not be correct for your installation; use the name of the

router interface that connects to the outside Internet. Note that packets are redirected on

their way out of an interface. IOS does not yet support redirecting packets on their way in to
the router. If needed, you can use access lists to prevent redirecting requests for some origin
server or client addresses. Consult the WCCP documentation for full details.

5.2.4 Cisco Policy Routing

Interception caching can also be accomplished with Cisco policy routing. The next-hop for an
IP packet is normally determined by looking up the destination address in the IP routing table.
Policy routing allows you to set a different next-hop for packets that match a certain pattern,
specified as an IP access list. For interception caching, we want to match packets destined
for port 80, but we do not want to change the next-hop for packets originating from the cache.
Thus, we have to be a little bit careful when writing the access list. The following example
does what we want:

access-list 110 deny   tcp host 10.1.2.3 any eq www
access-list 110 permit tcp any any eq www

10.1.2.3 is the address of the cache. The first line excludes packets with a source address
10.1.2.3 and a destination port of 80 (www). The second line matches all other packets
destined for port 80. Once the access list has been defined, you can use it in a route-map

statement as follows:

route-map proxy-redirect permit 10
match ip address 110
set ip next-hop 10.1.2.3

Again, 10.1.2.3 is the cache's address. This is where we want the packets to be diverted. The
final step is to apply the policy route to specific interfaces:

interface Ethernet0
ip policy route-map proxy-redirect

This instructs the router to check the policy route we specified for packets received on
interface Ethernet0.

On some Cisco routers, policy routing may degrade overall performance of the router. In
some versions of the Cisco IOS, policy routing requires main CPU processing and does not
take advantage of the "fast path" architecture. If your router is moderately busy in its normal
mode, policy routing may impact the router so much that it becomes a bottleneck in your
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network.

Some amount of load balancing can be achieved with policy routing. For example, you can
apply a different next-hop policy to each of your interfaces. It might even be possible to write
a set of complicated access lists that make creative use of IP address netmasks.

Note that policy routing does not support failure detection. If the cache goes down or stops
accepting connections for some reason, the router blindly continues to divert packets to it.
Policy routing is only a mediocre replacement for sophisticated layer four switching products.
If your production environment requires high availability, policy routing is probably not for you.
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5.3 The TCP Layer: Ports and Delivery

Now that we have fiddled with the routing, the diverted HTTP packets are arriving at the
cache's network interface. Usually, an Internet host rejects received packets if the destination
address does not match the host's own IP address. For interception caching to work, the
cache must accept the diverted packet and give it to the TCP layer for processing.

In this section, we'll discuss how to configure a Unix host for interception caching. If you use
a caching appliance, where the vendor supplies both hardware and software, this section
may not be of interest to you.

The features necessary to support interception caching on Unix rely heavily on software
originally developed for Internet firewalls. In particular, interception caching makes use of the
software for packet filtering and, in some cases, network address translation. This software
does two important things. First, it tells the kernel to accept a diverted packet and give it to
the TCP layer. Second, it gives us the option to change the destination port number. The
diverted packets are destined for port 80, but our cache might be listening on a different port.
If so, the filtering software changes the port number to that of the cache before giving the
packet to the TCP layer.

I'm going to show you three ways to configure interception caching: first with Linux, then with
FreeBSD, and finally with the IP Filter package, which runs on numerous Unix flavors. In all
the examples, 10.1.2.3 is the IP address of the cache (and the machine that we are
configuring). The examples also assume that the cache is running on port 3128, and that an
HTTP server, on port 80, is also running on the system.

5.3.1 Linux

Linux has a number of different ways to make interception caching work. Mostly, it depends

on your kernel version number. For Linux-2.2 kernels, you'll probably want to use ipchains;

for 2.4 kernels, you'll want to use iptables (a.k.a. Netfilter).

Most likely, the first thing you'll need to do is compile a kernel with certain options enabled. If
you don't already know how to build a new kernel, you'll need to go figure that out, and then

come back here. A good book to help you with this is Linux in a Nutshell [Siever,
Spainhour, Hekman and Figgins, 2000]. Also check out the "Linux Kernel HOWTO" from
the Linux Documentation Project at http://www.linuxdoc.org.

5.3.1.1 ipchains

To begin, make sure that your kernel has the necessary options enabled. On most systems,
go to the kernel source directory (/usr/src/linux) and type:
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# make menuconfig

Under Networking options, make sure the following are set:

[*] Network firewalls
[*] Unix domain sockets
[*] TCP/IP networking
[*] IP: firewalling
[*] IP: always defragment (required for masquerading)
[*] IP: transparent proxy support

Once the kernel has been configured, you need to actually build it, install it, and then reboot
your system.

After you have a running kernel with the required options set, you need to familiarize yourself
with the ipchains program. ipchains is used to configure IP firewall rules in Linux. Firewall
rules can be complicated and unintuitive to many people. If you are not already familiar with

ipchains , you should probably locate another reference that describes in detail how to use it.

The Linux IP firewall has four rule sets: input, output, forwarding, and accounting. For
interception caching, you need to configure only the input rules. Rules are evaluated in order,
so you need to list any special cases first. This example assumes we have an HTTP server
on the Linux host, and we don't want to redirect packets destined for that server:

/sbin/ipchains -A input -p tcp -s 0/0 -d 10.1.2.3/32 80 -j ACCEPT
/sbin/ipchains -A input -p tcp -s 0/0 -d 0/0 80 -j REDIRECT 3128

The -A input option means we are appending to the set of input rules. The -p tcp option
means the rule matches only TCP packets. The -s and -d options specify source and
destination IP addresses with optional port numbers. Using 0/0 matches any IP address.

The first rule accepts all packets destined for the local HTTP server. The second rule
matches all other packets destined for port 80 and redirects them to port 3128 on this
system, which is where the cache accepts connections.

Finally, you need to enable routing on your system. The easiest way to do this is with the
following command:

echo 1 > /proc/sys/net/ipv4/ip_forward

After you get the ipchains rules figured out, be sure to save them to a script that gets
executed every time your machine boots up.

5.3.1.2 iptables
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In the Linux-2.4 kernel, iptables has replaced ipchains . Unfortunately, I don't have
operational experience with this new software. Setting up iptables is similar to ipchains .

You'll probably need to build a new kernel and make sure the iptables features are enabled.
According to Daniel Kiracofe's "Transparent Proxy with Squid mini-HOWTO," the only
command you need to intercept connections is:

/sbin/iptables -t nat -D PREROUTING -i eth0 -p tcp --dport 80 \
-j REDIRECT --to-port 3128

You'll also need to enable routing, as described previously.

Since iptables is relatively new, the information here may be incomplete. Search for Daniel's
mini-HOWTO or see the Squid FAQ (http://www.squid-cache.org/Doc/FAQ/) for further
information.

5.3.2 FreeBSD

Configuring FreeBSD for interception caching is very similar to configuring Linux. The
examples here are known to work for FreeBSD Versions 3.x and 4.x. These versions have all
the necessary software in the kernel source code, although you need to specifically enable it.
If you are stuck using an older version (like 2.2.x), you should consider upgrading, or have a
look at the IP Filter software described in the following section.

First, you probably need to generate a new kernel with the IP firewall code enabled. If you
are unfamiliar with building kernels, read the config(8) manual page. The kernel configuration

files can usually be found in /usr/src/sys/i386/conf. Edit your configuration file and make sure
these options are enabled:

options         IPFIREWALL
options         IPFIREWALL_FORWARD

Next, configure and compile your new kernel as described in the config(8) manual page. After
your new kernel is built, install it and reboot your system.

You need to use the ipfw command to configure the IP firewall rules. The following rules
should get you started:

/sbin/ipfw add allow tcp from any to 10.1.2.3 80 in
/sbin/ipfw add fwd 127.0.0.1,3128 tcp from any to any 80 in
/sbin/ipfw add allow any from any to any

The first rule allows incoming packets destined for the HTTP server on this machine. The
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second line causes all remaining incoming packets destined for port 80 to be redirected
(forwarded, in the ipfw terminology) to our web cache on port 3128. The final rule allows all
remaining packets that didn't match one of the first two. The final rule is shown here because
FreeBSD denies remaining packets by default.

A better approach is to write additional allow rules just for the services running on your

system. Once all the rules and services are working, you can have FreeBSD deny all
remaining packets. If you do that, you'll need some special rules so the interception proxy
works:

/sbin/ipfw add allow tcp from any 80 to any out
/sbin/ipfw add allow tcp from 10.1.2.3 to any 80 out
/sbin/ipfw add allow tcp from any 80 to 10.1.2.3 in established
/sbin/ipfw add deny any from any to any

The first rule here matches TCP packets for intercepted connections sent from the proxy
back to the clients. The second rule matches packets for connections that the proxy opens to
origin servers. The third rule matches packets from the origin servers coming back to the
proxy. The final rule denies all other packets. Note that this configuration is incomplete. It's
likely that you'll need to add additional rules for services such as DNS, NTP, and SSH.

Once you have the firewall rules configured to your liking, be sure to save the commands to a
script that is executed when your system boots up.

5.3.3 Other Operating Systems

If you don't use Linux or FreeBSD, you might still be able to use interception caching. The IP
Filter package runs on a wide range of Unix systems. According to their home page
(http://cheops.anu.edu.au/~avalon/ip-filter.html), IP Filter works with FreeBSD,
NetBSD, OpenBSD, BSD/OS, Linux, Irix, SunOS, Solaris, and Solaris-x86.

As with the previous Linux and FreeBSD instructions, IP Filter also requires kernel
modifications. Some operating systems support loadable modules, so you might not actually
need to build a new kernel. Configuring the kernels of all the different platforms is too
complicated to cover here; see the IP Filter documentation regarding your particular system.

Once you have made the necessary kernel modifications, you can write an IP Filter
configuration file. This file contains the redirection rules for interception caching:

rdr ed0 10.1.2.3/32 port 80 -> 127.0.0.1 port 80 tcp
rdr ed0 0.0.0.0/0 port 80 -> 127.0.0.1 port 3128 tcp

Note that the second field is a network interface name; the name ed0 may not be appropriate
for your system.
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To install the rules, you must use the ipnat program. Assuming that you saved the rules in a

file named /etc/ipnat.rules, you can use this command:

/sbin/ipnat -f /etc/ipnat.rules

The IP Filter package works a little differently than the Linux and FreeBSD firewalls. In

particular, the caching application needs to access /dev/nat to determine the proper
destination IP address. Thus, your startup script should also make sure the caching
application has read permission on the device:

chgrp nobody /dev/ipnat
chmod 644 /dev/ipnat

If you are using Squid, you need to tell it to compile in IP Filter support with the --enable-
ipf-transparent configure option.
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5.4 The Application Layer: HTTP

Recall that standard HTTP requests and proxy-HTTP requests are slightly different (see
Section 2.1). The first line of a standard request normally includes only an absolute
pathname. Proxy-HTTP requests, on the other hand, use the full URL. Because interception
proxying does not require browser configuration, and the browser thinks it is connected
directly to an origin server, it sends only the URL-path in the HTTP request line. The URL-
path does not include the origin server hostname, so the cache must determine the origin
server hostname by some other means.

The most reliable way to determine the origin server is from the HTTP/1.1 Host header.
Fortunately, all of the recent browser products do send the Host header, even if they use
"HTTP/1.0" in the request line. Thus, it is a relatively simple matter for the cache to transform
this standard request:

GET /index.html HTTP/1.0
Host: www.ircache.net

into a proxy-HTTP request, such as:

GET http://www.ircache.net/index.html HTTP/1.0

In the absence of the Host header, the cache might be able to use the socket interface to

get the IP address for which the packet was originally destined. The Unix sockets interface
allows an application to retrieve the local address of a connected socket with the

getsockname() function. In this case, the local address is the origin server that the proxy
pretends to be. Whether this actually works depends on how the operating system
implements the packet redirection. The native Linux and FreeBSD firewall software preserves
the destination IP address, so getsockname() does work. The IP Filter package does not

preserve destination addresses, so applications need to access /dev/nat to get the origin
server's IP address.

If the cache uses getsockname() or /dev/nat, the resulting request looks something like this:

GET http://192.52.106.29/index.html HTTP/1.0

While either a hostname or an IP address can be used to build a complete URL, hostnames
are highly preferable. The primary reason for this is that URLs typically use hostnames
instead of IP addresses. In most cases, a cache cannot recognize that both forms of a URL
are equivalent. If you first request a URL with a hostname, and then again with its IP address,
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the second request is a cache miss, and the cache now stores two copies of the same
object. This problem is made worse because some hostnames have many different IP
addresses.
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5.5 Debugging Interception

Many people seem to have trouble configuring interception caching on their networks. This is
not too surprising, because configuration requires a certain level of familiarity with switches
and routers. The rules and access lists these devices use to match certain packets are
particularly difficult. If you set up interception caching and it doesn't seem to be working,
these hints may help you isolate the problem.

First of all, does the caching proxy receive redirected connections? The best way to

determine this is with tcpdump . For example, you can use:

tcpdump -n port 80

You should see a fair amount of output if the switch or router is actually diverting connections
to the proxy. Note that if you have an HTTP server running on the same machine, it is difficult
to visually differentiate the proxy traffic from the server traffic. You can use additional
tcpdump parameters to filter out the HTTP server traffic:

tcpdump -n port 80 and not dst 10.1.2.3

If you don't see any output from tcpdump , then it's likely your router/switch is incorrectly
configured.

If your browser requests just hang, then it's likely that the switch is redirecting traffic, but the

cache cannot forward misses. Running tcpdump in this case shows a lot of TCP SYN packets
sent out but no packets coming back in. You can also check for this condition by running

netstat -n . If you see a lot of connections in the SYN_SENT state, it is likely that the

firewall/nat rules deny incoming packets from origin servers. Turn on firewall/nat debugging if
you can.

You may also find that your browser works fine, but the caching proxy doesn't log any of the
requests. In this case, the proxy machine is probably simply routing the packets. This could

happen if you forget, or mistype, the redirect/forward rule in the ipchains/ipfw configuration.
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5.6 Issues

Interception caching is still somewhat controversial. Even though it sounds like a great idea
initially, you should carefully consider the following issues before deploying it on your
network.

5.6.1 It's Difficult for Users to Bypass

If for some reason, one of your users encounters a problem with interception caching, he or
she is going to have a difficult time getting around the cache. Possible problems include stale
pages, servers that are incompatible with your cache (but work without it), and IP-based
access controls. The only way to get around an interception cache is to configure a different
proxy cache manually. Then the TCP packets are not sent to port 80 and thus are not
diverted to the cache. Most likely, the user is not savvy enough to configure a proxy
manually, let alone realize what the problem is. And even if he does know what to do, he
most likely does not have access to another proxy on the Internet.

In my role as a Squid developer, I've received a number of email messages asking for help
bypassing ISP settings. The following message is real; only the names have been changed
to protect the guilty:

Duane,

I am Zach Ariah, a subscriber of XXX Internet - an ISP who has
recently installed... Squid/1.NOVM.21. All of my HTTP requests are
now being forced through the proxy(proxy-03-real.xxxxx.net). I really
don't like this, and am wondering if there is anyway around this. Can
I do some hack on my client machine, or put something special into the
browser, which will make me bypass the proxy??? I know the proxy looks
at the headers. This is why old browsers don't work.

Anyway... Please let me know what's going on with this.
Thank you and Best regards,

Zach Ariah

This is a more serious issue for ISPs than it is for corporations. Users in a corporate
environment are more likely to find someone who can help them. Also, corporate users
probably expect their web traffic to be filtered and cached. ISP customers have more to be
angry about, since they pay for the service themselves.

All layer four switching and routing products have the ability to bypass the cache for special
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cases. For example, you can tell the switch to forward packets normally if the origin server is
www.hotmail.com or if the request is from the user at 172.16.4.3. However, only the
administrator can change the configuration. Users who experience problems need to ask the
administrator for assistance. Getting help may take hours, or even days. In some cases,
users may not understand the situation well enough to ask for help. It's also likely that such a
request will be misinterpreted or perhaps even ignored. ISPs and other organizations that
deploy interception caching must be extremely sensitive to problem reports from users trying
to surf the Web.

5.6.2 Packet Transport Service

What exactly is the service that one gets from an Internet service provider? Certainly, we can
list many services that a typical ISP offers, among them email accounts, domain name
service, web hosting, and access to Usenet newsgroups. The primary service, however, is
the transportation of TCP/IP packets to and from our systems. This is, after all, the
fundamental function that enables all the other services.

As someone who understands a little about the Internet, I have certain expectations about
the way in which my ISP handles my packets. When my computer sends a TCP/IP packet to
my ISP, I expect my ISP to forward that packet towards its destination address. If my ISP
does something different, such as divert my packets to a proxy cache, I might feel as though
I'm not getting the service that I pay for.

But what difference does it make? If I still get the information I requested, what's wrong with
that? One problem is related to the issues raised in Chapter 3  . Users might assume that
their web requests cannot be logged because they have not configured a proxy.

Another, more subtle point to be made is that some users of the network expect the network

to behave predictably . The standards that define TCP connections and IP routing do not
allow for connections to be diverted and accepted under false pretense. When I send a
TCP/IP packet, I expect the Internet infrastructure to handle that packet as described in the
standards documents. Predictability also means that a TCP/IP packet destined for port 80
should be treated just like a packet for ports 77, 145, and 8333.

5.6.3 Routing Changes

Recall that most interception caching systems expose the cache's IP address when
forwarding requests to origin servers. This might alter the network path (routing) for the HTTP
packets coming from the origin server to your client. In some cases, the change can be very
minor; in others, it might be significant. It's more likely to affect ISPs than corporations and
other organizations.

Some origin servers expect all requests from a client to come from the same IP address. This
can really be a problem if the server uses HTTP/TLS and unencrypted HTTP. The
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unencrypted (port 80) traffic may be intercepted and sent through a caching proxy; the
encrypted traffic is not intercepted. Thus, the two types of requests come from two different
IP addresses. Imagine that the server creates some session information and associates the
session with the IP address for unencrypted traffic. If the server instructs the client to make
an HTTP/TLS request using the same session, it may refuse the request because the IP
address doesn't match what it expects. Given the high proliferation of caching proxies today,
it is unrealistic for an origin server to make this requirement. The session key alone should be
sufficient, and the server shouldn't really care about the client's IP address.

When an interception cache is located on a different subnet from the clients using the cache,
a particularly confusing situation may arise. The cache may be unable to reach an origin
server for whatever reason, perhaps because of a routing glitch. However, the client is able
to ping the server directly or perhaps even telnet to it and see that it is alive and well. This

can happen, of course, because the ping (ICMP) and telnet packets take a different route
than HTTP packets. Most likely, the redirection device is unaware that the cache cannot
reach the origin server, so it continues to divert packets for that server to the cache.

5.6.4 It Affects More Than Browsers and Users

Web caches are deployed primarily for the benefit of humans sitting at their computers,
surfing the Internet. However, a significant amount of HTTP traffic does not originate from
browsers. The client might instead be a so-called web robot, or a program that mirrors entire
web sites, or any number of other things. Should these clients also use proxy caches?
Perhaps, but the important thing is that with interception proxying, they have no choice.

This problem manifested itself in a sudden and very significant way in June of 1998, when
Digex decided to deploy interception caching on their backbone network. The story also
involves Cybercash, a company that handles credit card payments on the Internet. The
Cybercash service is built behind an HTTP server, thus it uses port 80. Furthermore,
Cybercash uses IP-based authentication for its services. That is, Cybercash requires
transaction requests to come from the known IP addresses of its customers. Perhaps you
can see where this is leading.

A number of other companies that sell merchandise on the Internet are connected through
Digex's network. When a purchase is made at one of these sites, the merchant's server
connects to Cybercash for the credit card transaction. However, with interception caching in
place on the Digex network, Cybercash received these transaction connections from a cache
IP address instead of the merchant's IP address. As a result, many purchases were denied
until people finally realized what was happening.

The incident generated a significant amount of discussion on the North American Network
Operators Group (NANOG) mailing list. Not everyone was against interception caching; many
applauded Digex for being forward-thinking. However, this message from Jon Lewis
(jlewis@fdt.net ) illustrates the feelings of people who are negatively impacted by interception
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caching:

My main gripe with Digex is that they did this (forced our traffic into a transparent proxy)
without authorization or notification. I wasted an afternoon, and a customer wasted
several days worth of time over a 2–3 week period trying to figure out why their
cybercash suddenly stopped working. This customer then had to scan their web server
logs, figure out which sales had been "lost" due to proxy breakage, and see to it that
products got shipped out. This introduced unusual delays in their distribution, and had
their site shut down for several days between their realization of a problem and
resolution yesterday when we got Digex to exempt certain IP's from the proxy.

Others took an even stronger stance against interception caching. For example, Karl
Denninger (karl@denninger.net ) wrote:

Well, I'd love to know where they think they get the authority to do this from in the first
place.... that is, absent active consent. I'd be looking over contracts and talking to
counsel if someone tried this with transit connections that I was involved in. Hijacking a
connection without knowledge and consent might even run afoul of some kind of
tampering or wiretapping statute (read: big trouble).....

5.6.5 No-Intercept Lists

Given that interception caching does not work with some servers, how can we fix it?
Currently, the only thing we can do is configure the switch or router not to divert certain
connections to the cache. This must be a part of the switch/router configuration because, if
the packets are diverted to the cache, there is absolutely nothing the cache can do to
"undivert" them. Every interception technique allows you to specify special addresses that
should not be diverted.

The maintenance of a no-intercept list is a significant administrative headache. Proxy cache
operators cannot really be expected to know of every origin server that breaks with
interception caching. At the same time, discovering the list of servers the hard way makes the
lives of users and technical support staff unnecessarily difficult. A centrally maintained list
has certain appeal, but it would require a standard format to work with products from different
vendors.

One downside to a no-divert list is that it may also prevent useful caching of some objects.
Routers and switches check only the destination IP address when deciding whether to divert
a connection. Any given server might have a large amount of cachable content but only a
small subset of URLs that do not work through caches. It is unfortunate that the entire site
must not be diverted in this case.

5.6.6 Are Port 80 Packets Always HTTP?

I've already made the point that packets destined for port 80 may not necessarily be HTTP.
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The implied association between protocols and port numbers is very strong for low-numbered
ports. Everyone knows that port 23 is telnet, port 21 is FTP, and port 80 is HTTP. However,
these associations are merely conventions that have been established to maximize
interoperation.

Nothing really stops me from running a telnet server on port 80 on my own system. The telnet

program has the option to connect to any port, so I just need to type telnet myhostname 80 .
However, this won't work if there is an interception proxy between my telnet client and the
server. The router or switch assumes the port 80 connection is for an HTTP request and
diverts it to the cache.

This issue is likely to be of little concern to most people, especially in corporate networks.
Only a very small percentage of port 80 traffic is not really HTTP. In fact, some administrators
see it as a positive effect, because it can prevent non-HTTP traffic from entering their
network.

5.6.7 HTTP Interoperation Problems

Interception caching is known to impair HTTP interoperability. Perhaps the worst instance is

with Microsoft Internet Explorer. When you click on Reload , and Explorer thinks it's
connecting to the origin server, it omits the Cache-control: no-cache directive. The

interception cache doesn't know the user clicked on Reload , so it serves a cache hit instead
of forwarding the request to the origin server.[4]

[4] See Microsoft Knowledgebase article Q266121, http://support.microsoft.com/support/kb/articles/Q266/1/21.ASP .

Interception proxies also pose problems for maintaining backwards compatibility. HTTP
allows clients and servers to utilize new, custom request methods and headers. Ideally, proxy
caches should be able to pass unknown methods and headers between the two sides.
However, in practice, many caching products cannot process new request methods. A smart
client can bypass the proxy cache for the unknown methods, unless interception caching is
used.

5.6.8 IP Interoperation Problems

There are a number of ways that interception proxies impact IP interoperability. For example,

consider path MTU [5] discovery. Internet hosts use the IP don't fragment option and ICMP
feedback messages to discover the smallest MTU of all links between them. This technique
is almost worthless when connection hijacking creates two network paths for a single pair of
IP addresses.

[5] The Maximum Transmission Unit is the largest packet size that can be sent in a single datalink-layer frame or cell.

Another problem arises when attempting to measure network proximity. One way to estimate
how close you are to another server is to time how long it takes to open a TCP connection.
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Using this technique with an interception proxy in the way produces misleading results.
Connections to port 80 are established quickly and almost uniformly. Connections to other
ports, however, take significantly longer and vary greatly. A similar measurement tactic times
how long it takes to complete a simple HTTP request. Imagine that you've developed a
service that rates content providers based on how quickly their origin servers respond to your
requests. Everything is working fine, until one day your ISP installs an interception cache.
Now you're measuring the proxy cache rather than the origin servers.

I imagine that as IP security (RFC 2401) becomes more widely deployed, many people will
discover problems caused by interception proxies. The IP security protocols and architecture
are designed to ensure that packets are delivered end-to-end without modification. Indeed,
connection hijacking is precisely one of the reasons to use IP security.
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5.7 To Intercept or Not To Intercept

Interception caching, a.k.a. connection hijacking, is extremely attractive to proxy and network
administrators because it eliminates client configuration headaches. Users no longer need to
know how to configure proxies in their browser. Furthermore, it works with all web clients;
administrators don't need specific instructions for Lynx, Internet Explorer, Netscape
Navigator, and their different versions. With interception caching, administrators have greater
control over the traffic sent to each cache. It becomes very easy to add or remove caches
from a cluster or to disable caching altogether.

A related benefit is the sheer number of users using the cache. When users are given a
choice to use proxies, most choose not to. With interception caching, however, they have no
choice. The larger user base drives up hit ratios and saves more wide-area Internet
bandwidth.

The most significant drawback to interception caching is that users lose some control over
their web traffic. When problems occur, they can't fix the problem themselves, assuming they
even know how. Another important consequence of connection hijacking is that it affects
more than just end users and web browsers. This is clearly evident in the case of Digex and
Cybercash.

Certainly, interception caching was in use long before Digex decided to use it on their
network. Why, then, did the issue with Cybercash never come up until then? Mostly because

Digex was the first to deploy interception caching in a backbone network. Previously,
interception caching had been installed close to web clients, not web servers. There seems
to be growing consensus in the Internet community that interception caching is acceptable at
the edges of the network, where its effects are highly localized. When used in the network
core (i.e., backbones), its effects are widely distributed and difficult to isolate, and thus
unacceptable.

Many people feel that WPAD (or something similar) is a better way to "force" clients to use a
caching proxy. With WPAD, clients at least understand that they are talking to a proxy rather
than the origin server. Of course, there's no reason you can't use both. If you use interception
proxying, you can still use WPAD to configure those clients that support it.

only for RuBoard - do not distribute or recompile  

http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

Chapter 6. Configuring Servers to Work with Caches

This chapter is intended as a guide for web server administrators. I offer some techniques
and advice on how to make your server friendly to web caches.

HTTP-Version 1.1 in particular-provides a number of headers for the exchange of
information between origin servers and caches. For one reason or another, servers often fail
to include these headers in their responses. This is rather unfortunate, because it can lead to
undesirable or even incorrect behavior. The absence of these headers gives caches a lot of
freedom to determine whether and for how long a given response may be cached. In
particular, we are interested in the Date, Last-modified, Expires, Cache-control,
and Content-length headers. You have already been introduced to these HTTP headers

in Chapter 2, but we will explore them in greater detail here.

As a server administrator, you may be forced to choose between control on one hand and
performance on the other. Uncachable objects give you more control and accurate access
counts. Cachable responses take away some of your control but give better performance to
your viewers. I will argue that your servers should be as cache-friendly as possible. This
means carefully identifying which pages can be cached and which cannot. Cachable pages
should include expiration times in keeping with their update frequency.

You will also find information here on how to configure your server to be cache-unfriendly.
Essentially, this means telling the server to generate uncachable responses. As a proponent
of web caching, I personally don't like to find cache-unfriendly servers. Of course, the
decision is yours, not mine. I hope that, in reading this chapter, you come to believe that your
viewers and customers will be better served by a cache-friendly server.

Much of this chapter deals with the HTTP reply headers that affect cachability. Although it is
important to understand these aspects of the protocol, you also need to know how to make
your server send the headers. If you are lucky enough to be using the Apache server, I have
some specific examples you can follow. For other HTTP servers, consult your user's manual.
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6.1 Important HTTP Headers

To understand what makes web objects cachable (or uncachable), you need to know how
HTTP presents certain information to caches. In this chapter, we will discuss five HTTP
headers that are particularly important and useful for web caches: Date, Last-modified,
Expires, Cache-control, and Content-length. Although some of these headers may

appear in requests, for this chapter, we are interested only in response headers.

6.1.1 Date

When an origin server generates an HTTP response, it places the current time in the Date
header. The time is represented in a common format and always as Greenwich Mean Time
(GMT), so clients and servers around the globe do not need to worry about time zone
conversions.

The Date header allows a cache or other agent to derive some useful information about a

response. Obviously, you can determine the age of the response (but not the resource!) from
this header. If the given date is equal to the current time, you probably have a response that
just came from the origin server. On the other hand, if the date is in the past, you probably
have a response that came from a cache.

You can never be absolutely sure about the Date header because you don't know if the
origin server's clock is correct. We call this the clock skew problem. There is no guarantee
that the origin server's clock is synchronized to your own. Either clock may be incorrectly set.
If you find a Date header with a future time, then you know that either your clock or the

server's clock is wrong. If the time is in the past, either a clock is out of sync, or it is a cached
response. A number of new features in HTTP/1.1 are designed to eliminate ambiguities and
reliance on absolute dates. For example, the Age header represents the age (in seconds) of

the response. Previously, caches had to determine the age by calculating the difference
between the Date header and the current time. Even though HTTP/1.1 has these new
headers, you should always use NTP to keep your system clocks synchronized.

The Date header is also important to caches because it provides a basis for comparing the

other timestamp headers in a response. For example, to calculate the resource's age when
the response was generated, caches subtract the Date value from the Last-modified
value. Caches may also need to compare the Expires value to the response date. If they

are equal, or if the expires time is earlier, the response is preexpired and must be revalidated
upon its next request.

RFC 2616 requires origin servers to generate a Date header for every response. In reality, a
Date header is present in about 91% of responses (see Section A.3.2). The RFC also says
that proxies should insert their own Date header if none exists.
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6.1.2 Last-modified

The Last-modified header specifies the time when the resource was most recently

modified. This timestamp is important to web caches because it is used as a cache validator.
A cache says to an origin server, "I have this object with this last-modified timestamp; is it still
current?" The server compares the validator timestamp with the resource's modification time.
If they are the same, the resource has not been modified, and the server returns a 304 (Not
Modified) response. Recall from Section 2.2, that RFC 2616 recommends a response
should not be cached unless it includes either a cache validator or an explicit expiration time.
The last-modified timestamp is not the only type of cache validator, however. With HTTP/1.1,
entity tags (see Section 2.5.2) may be used as well.

Last-modified times are also useful in another way. As I mentioned earlier, by subtracting the
date from the last-modified time, we know how old the resource was when the server

generated the response. We call this the last-modified age, or LM-age. Caches may use the
LM-age to estimate the stability of the resource. A young resource is considered unstable
and more likely to change; an old resource, however, is more stable and less likely to
change. This heuristic is often used for revalidation when a resource does not have a specific
expiration time. The LM-age can also be used in a cache replacement algorithm. When
choosing objects for deletion, it may be better to select the youngest ones because they have
probably changed and need to be transferred again upon the next request anyway.

Unfortunately, we see Last-modified headers in responses less frequently than Date

headers. The statistics in Section A.3.2, show that only about 52 percent of responses have
a last-modified timestamp. RFC 2616 says that an origin server "should send a Last-Modified
value if it is feasible to send one . . . ". For objects stored as plain disk files, it is trivial to
retrieve the modification time from the filesystem. However, responses generated from CGI
scripts, Active Server Pages, and HTML with server-side includes often do not have a last-
modified timestamp.

6.1.3 Expires

The Expires header is great for caches because it tells the cache exactly how long the
response may be considered fresh. A response that includes an Expires header may be

reused without validation (i.e., a cache hit) until the expiration time is reached. This removes
a lot of guesswork from the cache and places responsibility with the origin server. Without an
Expires header, a cache may be to blame for returning an out-of-date (stale) response. By

providing an expiration time, the content provider takes responsibility for ensuring users
receive fresh responses.

The presence of an Expires header can also turn an otherwise uncachable response into a
cachable one. For example, responses to POST requests are uncachable by default, but
they can be cached if there is an Expires line in the reply headers.
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Expires headers appear relatively infrequently in practice. Today, we see expiration values
in about 12% of all responses (see Section A.3.2). Fortunately, the trend is increasing over
time. When I started analyzing cache logs in 1995, only about 5% of responses had
expiration times. But why was this number so low? The most likely reason is that, by default,
web servers never send Expires headers. Another is that it can be very difficult to predict

when a resource will actually change. When will you change your home page next? When
will a product's price go up or down? What if you guess wrong? It is not too difficult to
imagine a situation where an information provider wants or needs to retract a document
before its expiration time is reached. It could be as harmless as a spelling mistake or as
serious as slanderous accusations against an innocent person. Note, however, that this
problem is not unique to the Web. Newspaper, television, and radio also often publish or
broadcast information that later requires a correction.

Another difficult aspect of expiration times is the interface (or lack thereof) between humans
and the HTTP server. Who should set expiration times? The document author or the server
administrator? The answer depends on the actual HTTP server being used. Some, like
Apache, provide ways for authors to insert or modify certain HTTP headers, as we'll see later.
Others require configuration that only the server administrator may perform.

6.1.4 Cache-control

The Cache-control header has a number of directives, all of which are important to

caching in one way or another. In this chapter, we are only concerned with the reply
directives. We already talked about most of these in Section 2.2.4, but we'll go over them
again here:

max-age and s-maxage

max-age is an alternate form of the Expires header. Both specify the amount of time
until a response becomes stale. max-age uses relative values, while Expires uses
absolute times. The max-age directive is preferred for some of the reasons already
described. Another good thing about max-age is that it can change a response from
uncachable to cachable. The s-maxage directive is the same, but it only applies to

shared caches.
public

The public directive designates a response as cachable. Many responses are
cachable by default, so public is not always needed. However, responses that are
uncachable by default become cachable when this Cache-control directive is

present. If you want a particular response to be cached, it is a good idea to add the
public directive just to be safe.

private

When an origin server wants to allow the response to be cached by a browser but not
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by a proxy, it includes the private cache-control directive. Such a response must not
be cached by a shared (proxy) cache, but the user's browser may cache the response
and reuse it if all other standard conditions are met.

no-cache

This directive is somewhat tricky. It is similar to the must-revalidate directive.
Responses that include the no-cache directive can be stored, but they must be
revalidated before reuse. The no-cache directive can also specify a list of header

names, in which case those headers must be removed before storing the response.
no-store

The no-store directive is the best way to make a response uncachable. It is intended
to prevent even temporary storage of information that the owner considers highly
sensitive. RFC 2616 says that "the cache MUST NOT intentionally store the information
in non-volatile storage, and MUST make a best-effort attempt to remove the information
from volatile storage as promptly as possible after forwarding it." Some caching
products might prefer to buffer incoming data on disk, which is especially useful if the
client is slower than the server. This should not happen, however, if the no-store

directive is present.
no-transform

By and large, caching proxies are allowed to change, or transform, the objects they
serve to clients. For example, a proxy might recode images from one format to another
that uses less space and less transmission time. Similarly, a cache might apply
compression to text objects before giving them to clients and storing them on disk.
According to RFC 2616, these sorts of transformations have been known to cause
problems in some cases-for instance, when clients and servers communicate using
SOAP or XML-RPC over HTTP.

To prevent such modifications, the server includes a no-transform directive. With

this directive, a proxy cache cannot change the type, length, or encoding of the object
content.

must-revalidate

RFC 2616 permits caches to intentionally return stale responses in some
circumstances, such as extremely poor network connectivity. The must-revalidate

directive is a way for the server to prevent stale responses in those cases. In other
words, this directive takes higher precedence than the user-agent and/or cache
configuration. Section 14.9.4 of the RFC advises servers to send must-revalidate

"if and only if failure to revalidate a request on the entity could result in incorrect
operation."

must-revalidate and no-cache are quite similar. The difference is that no-cache
supersedes expiration times, but must-revalidate does not. In other words, must-
revalidate responses are validated only after becoming stale, whereas no-cache
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responses are always validated. Both should be used with extreme caution.
proxy-revalidate

proxy-revalidate is just like must-revalidate, except that it applies only to
shared (proxy) caches, not to single-user (browser) caches. A response with proxy-
revalidate may be reused by a browser cache without revalidation. A proxy cache,

on the other hand, is required to revalidate the response before giving it to a client.

6.1.5 Content-length

The Content-length header specifies the size of the HTTP message body in a response.

Knowing the body size allows a cache to determine whether it received a complete response.
If a cache or client doesn't know what the body size should be, it might store a partial
response and believe it received the whole thing. A future request for the object may then
result in the partial response being sent as a cache hit.

There are two ways to find the end of an HTTP message body when the response doesn't
have a Content-length value. The simplest approach is just to close the connection.

However, since HTTP/1.1 wants connections to be persistent, it provides something called
chunked transfer encoding.

Under HTTP/1.0, connections are always closed at the end of a transfer; HTTP/1.1 agents
can do the same when the headers don't include a content length. Unfortunately, this makes
it hard for a client to tell whether it got the whole message successfully or received just part
of the message due to an error. The client doesn't know how big the message body is
supposed to be. Consider the case when a proxy is reading such a response from an origin
server and relaying it to the client. Remember that there are two TCP connections-one to
the client and one to the server. The proxy gets a read error, such as "connection reset by
peer," during the middle of the transfer. The proxy knows the response is most likely
incomplete. But how does it notify the client? HTTP does not provide any way to indicate an
error condition while sending the message body. If we just close the client's connection, the
client is likely to believe the response is complete. The proxy should instead perform an

abortive close so the client also receives a TCP reset packet. [1]

[1] To make an abortive close with Berkeley sockets, use the SO_LINGER option with a linger time of 0, and then close the

socket.

HTTP/1.1 has persistent connections designed to reduce retrieval latencies by eliminating the
TCP connection handshake for every request. Though closing a persistent connection to
indicate end-of-message is allowed, it is not desirable. To support unknown message sizes
and persistent connections together, HTTP/1.1 uses a chunked transfer encoding. The
chunked transfer encoding divides the message body into a sequence of chunks, each of
which includes the chunk size. This allows the server to tell the client, "Here are N more
bytes of data, but it's not the end yet." The server indicates the end-of-message with a chunk
of size of 0. If a client doesn't receive the 0-sized chunk, it should assume the response is
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incomplete.

The Content-length header is useful to caches in a number of other ways as well. It can
be used to preallocate cache storage space or calculate the amount of data left to be
transferred. When a user aborts an HTTP transfer before it has finished, a cache may want
to finish the download anyway. If resources have been used to transfer 95% of an object, the
cache may just as well get the remaining 5%, especially if there is a chance it could result in
a cache hit. The content length is an important factor in deciding whether to finish an aborted
transfer.

only for RuBoard - do not distribute or recompile  
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6.2 Being Cache-Friendly

This section is directed to content providers: I want to convince you to engineer a cache-
friendly web site. If you stick with me through the motivation section, I'll give you some
practical advice and even show you how to implement many of the tips on the Apache server.

6.2.1 Why?

Why should you, as a content provider, care about web caching? For at least the following
three reasons:

When people access your web site, pages will load faster.

Caches isolate clients from network failures.

Caches reduce the load placed on your servers and network connections.

Let's examine each of these reasons in more detail.

6.2.1.1 Latency

It should be pretty obvious that caching objects close to web clients can greatly reduce the
amount of time it takes to access those objects. This is the reason why web browsers have
their own built-in cache. Retrieving an object from the browser cache is almost always faster
than retrieving it over the network. When considering how your web site interacts with
caches, don't forget browser caches!

What if the requested objects are not in the browser cache but might be stored in a proxy
cache? Now the benefits of caching are strongly correlated to relative proximity of the client,
cache, and origin server. Here, proximity refers to network topology rather than geography.
Both latency and throughput characterize network proximity. As an example, let's consider
two different users accessing the www.cnn.com home page. The first user is connected to a
U.S. ISP with a 56K modem, using the ISP's proxy cache. The second is in a classroom on
the campus of a university in Perth, Australia, using the university's proxy cache. The dial-up
user is actually "far away" from the ISP cache because the dial-up connection is a major
bottleneck. Throughput between the user's home computer and the proxy cache is limited to
about 4KB per second. The ISP cache probably does not speed up transfers for the dial-up
user because both cache hits and misses are limited to the modem speed. However, the
Australian student is very close to her cache, probably connected via a local area network. In
her case, the major bottleneck is the transoceanic link between Australia and the United
States. The cache provides a significant speedup because cache hits are transferred much
faster than cache misses.
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When discussing how caches reduce latency, it is very important to include the differences
between validated and unvalidated cache hits (see Section 2.3). While validation requests
can contribute significantly to reducing network bandwidth, they still incur high latency
penalties. In some situations, a validated cache hit takes just about as long as a cache miss.
For users who enjoy high-speed network connections, round-trip delays, rather than
transmission delays, are the primary source of latency. Thus, validated cache hits do not
appear to be significantly faster on high-speed networks. For dial-up users, however,
transmission time is the primary source of delay, and a validated hit from the browser cache
should be faster than a cache miss.

6.2.1.2 Hiding network failures

Most likely, you have experienced a network outage or failure when using the Internet. An
outage may be due to failed hardware (such as routers and switches) or a telecommunication
breakdown (fiber cut). Whatever the cause, network failures are frustrating because they
prevent users from reaching certain web sites.

People who use web caches, however, may still be able to receive your site's pages, even
during a network outage. As long as the user has network connectivity to the cache, pages
already in the cache can be sent to the user. If a cached object is considered fresh, there is
no need to contact the origin server anyway. For an unvalidated cache hit, both the user and
the cache would never even know about the network outage.

For a stale cached object, the cache forwards a validation request to the origin server. If the
validation request fails because of the network outage, the cache may be able to send the
cached copy to the user anyway. HTTP/1.1 generally allows caches to do this, but the cache
must insert a Warning header, which looks like this:

Warning: 111 (cache.foo.com:3128) Revalidation Failed

Note that caches are not required to send stale responses for failed validation requests. This
is up to the caching proxy implementation or is perhaps an option for the cache administrator.
Also recall that if the cached response includes the must-revalidate cache-control

directive, the cache cannot send a stale response to the client.

6.2.1.3 Server load reduction

As a content provider, you probably want your users to receive your information as quickly as
possible. Many people spend a lot of time thinking about and working on ways to optimize
their HTTP servers. The load placed upon an origin server affects its overall performance. In
other words, as the load increases, the average response time increases as well.

Server load is usually measured in terms of requests per second. Numerous factors affect a
server's performance, including network speed, CPU power, disk access times, and TCP
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implementations. At the time of this writing, state-of-the-art web servers can handle about
10,000 requests per second. That's much more than most of us require.

It should be pretty obvious that web caches can reduce the load placed on origin servers, but
it's quite difficult actually to say how much of an origin server's load is absorbed by caches.
Both the site's popularity and cachability affect the percentage of requests satisfied as cache
hits. A more popular site provides more opportunities for cache hits because more clients
request its objects. An object that remains fresh for a long period of time also provides more
opportunities for cache hits.

As fascinating as all this may be, should you really care about the load absorbed by web
caches? Maybe not. Organizations that require heavy-duty web servers can usually afford to
buy whatever they need. Smaller organizations can probably get by with inexpensive
hardware and free software. The most important thing to remember is this: if you're thinking
about making all your content uncachable one day, expect a very large increase in server
load shortly thereafter. If you are not prepared to handle significantly more requests, you
might lose your job!

6.2.2 Ten Ways to be Cache-Friendly

This "Top Ten list" describes the steps you can take to build a cache-friendly web site. Do not
feel like you have to implement all of these. It is still beneficial if you put just one or two into
practice. The most beneficial and practical ideas are listed first:

Avoid using CGI, ASP, and server-side includes (SSI) unless absolutely necessary.

Generally, these techniques are bad for caches because they usually produce dynamic
content. Dynamic content is not a bad thing per se, but it may be abused. CGI and ASP
can also generate cache-friendly, static content, but this requires special effort by the
author and seems to occur infrequently in practice.

The main problem with CGI scripts is that many caches simply do not store a response

when the URL includes cgi-bin or even cgi. The reason for this heuristic is perhaps
historical. When caching was first in use, this was the easiest way to identify dynamic
content. Today, with HTTP/1.1, we probably need to look at only the response headers
to determine what may be cached. Even so, the heuristic remains, and some caches
might be hard-wired never to store CGI responses.

From a cache's point of view, Active Server Pages (ASP) are very similar to CGI scripts.
Both are generated by the server, on the fly, for each request. As such, ASP responses
usually have neither a Last-modified nor an Expires header. On the plus side, it is

uncommon to find special cache heuristics for ASP (unlike CGI) probably because ASP
was invented well after caching was in widespread use.

Finally, you should avoid server-side includes (SSI) for the same reasons. This is a

1.
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feature of some HTTP servers to parse HTML at request time and replace certain
markers with special text. For example, with Apache, you can insert the current date and
time or the current file size into an HTML page. Because the server generates new
content, the Last-Modified header is either absent in the response or set to the

current time. Both cases are bad for caches.

Use the GET method instead of POST if possible. Both methods are used for HTML
forms and query-type requests. With the POST method, query terms are transmitted in
the request body. A GET request, on the other hand, puts the query terms in the URI.
It's easy to see the difference in your browser's Location box. A GET query has all the
terms in the box with lots of & and = characters. This means that POST is somewhat
more secure because the query terms are hidden in the message body.

However, this difference also means that POST responses cannot be cached unless
specifically allowed. POST responses may have side effects on the server (e.g.,
updating a database), but those side effects aren't triggered if the cache gives back a
cached response. Section 9.1 of RFC 2616 explains the important differences between
GET and POST. In practice, it is quite rare to find a cachable POST response, so I
would not be surprised if most caching products never cache any POST responses at
all. If you want to have cachable query results, you certainly should use GET instead of
POST.

2.

Avoid renaming web site files; use unique filenames instead. This might be difficult or
impossible in some situations, but consider this example: a web site lists a schedule of
talks for a conference. For each talk there is an abstract, stored in a separate HTML file.

These files are named in order of their presentation during the conference: talk01.html,

talk02.html, talk03.html, etc. At some point, the schedule changes and the filenames are
no longer in order. If the files are renamed to match the order of the presentation, web
caches are likely to become confused. Renaming usually does not update the file
modification time, so an If-Modified-Since request for a renamed file can have

unpredictable consequences. Renaming files in this manner is similar to cache
poisoning.

In this example, it is better to use a file-naming scheme that does not depend on the
presentation order; a scheme based on the presenter's name would be preferable.
Then, if the order of presentation changes, the HTML file must be rewritten, but the

other files can still be served from the cache. Another solution is to touch the files to
adjust the timestamp.

3.

Give your content a default expiration time, even if it is very short. If your content is
relatively static, adding an Expires header can significantly speed up access to your
site. The explicit expiration time means clients know exactly when they should issue
revalidation requests. An expiration-based cache hit is almost always faster than a
validation-based near hit; see Section A.8. See Section 6.2.4, for advice on choosing
expiration values.

4.

5.
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If you have a mixture of static and dynamic content, you might find it helpful to have a
separate HTTP server for each. This way, you can set server-wide defaults to improve
the cachability of your static content without affecting the dynamic data. Since the entire
server is dedicated to static objects, you need to maintain only one configuration file. A
number of large web sites have taken this approach. Yahoo! serves all of their images

from a server at images.yahoo.com, as does CNN with images.cnn.com. Wired serves

advertisements and other images from static.wired.com, and Hotbot uses a server

named static.hotbot.com.

5.

Don't use content negotiation. Occasionally, people like to create pages that are
customized for the user's browser; for example, Netscape may have a nifty feature that
Internet Explorer does not have. An origin server can examine the User-agent request
header and generate special HTML to take advantage of a browser feature. To use the

terminology from HTTP, an origin server may have any number of variants for a single

URI. The mechanism for selecting the most appropriate variant is known as content

negotiation, and it has negative consequences for web caches.

First of all, if either the cache or the origin server does not correctly implement content
negotiation, a cache client might receive the wrong response. For example, if an HTML
page with content specific to Internet Explorer gets cached, the cache might send the
page to a Netscape user. To prevent this from happening, the origin server is supposed
to add a response header telling caches that the response varies on the User-agent

value:

6.

Vary: User-agent

If the cache ignores the Vary header, or if the origin server does not send it, cache

users can get incorrect responses.

Even when content negotiation is correctly implemented, it reduces the number of cache
hits for the URL. If a response varies on the User-agent header, a cache must store a
separate response for every User-agent it encounters. Note that the User-agent

value is more than just Netscape or MSIE. Rather, it is a string such as Mozilla/4.05 [en]
(X11; I; FreeBSD 2.2.5-RELEASE i386; Nav) . Thus, when a response varies on the
User-agent header, we can get only a cache hit for clients running the same version

of the browser on the same operating system.

Synchronize your system clocks with a reference clock. This ensures that your server
sends accurate Last-modified and Expires timestamps in its responses. Even

though newer versions of HTTP use techniques that are less susceptible to clock skew,

many web clients and servers still rely on the absolute timestamps. xntpd implements
the Network Time Protocol (NTP) and is widely used to keep clocks synchronized on
Unix systems. You can get the software and installation tips from

7.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


http://www.ntp.org/.

Avoid using address-based authentication. Recall that most proxy caches hide the
addresses of clients. An origin server sees connections coming from the proxy's
address, not the client's. Furthermore, there is no standard and safe way to convey the
client's address in an HTTP request. Some of the consequences of address-based
authentication are discussed in Section 2.2.5.

Address-based authentication can also deny legitimate users access to protected
information when they use a proxy cache. Many organizations use a DMZ network for
the firewall between the Internet and their internal systems. [2] A cache that runs on the
DMZ network is probably not allowed to access internal web servers. Thus, the users on
the internal network cannot simply send all of their requests to a cache on the DMZ
network. Instead, the browsers must be configured to make direct connections for the
internal servers.

[2] DMZ stands for de-militarized zone. A DMZ network is considered to be "neutral territory" between your internal

network and the outside world. See [Zwicky, Cooper and Chapman, 2000] for more information.

8.

Think different! Sometimes, those of us in the United States forget about Internet users
in other parts of the world. In some countries, Internet bandwidth is so constrained that
we would find it appalling. What takes seconds or minutes to load in the U.S. may take
hours or even days in some locations. I strongly encourage you to remember bandwidth-
starved users when designing your web sites, and remember that improved cachability
speeds up your web site for such users.

9.

Even if you think shared proxy caches are evil, consider allowing single-user browser
caches to store your pages. There is a simple way to accomplish this with HTTP/1.1.
Just add the following header to your server's replies:

10.

Cache-control: private

This header allows only browser caches to store responses. The browser may then
perform a validation request on the cached object as necessary.

6.2.3 Apache

In the previous section, I gave you a number of recommendations for the responses
generated by your web server. Now, we will see how you can implement those with the
Apache server.

6.2.3.1 The Expires header

Apache has a couple of ways to include an Expires header in HTTP responses. The old

way is actually a legacy from the CERN proxy. It uses .meta directories to hold the header

information. For example, if you want to set a header value for the resource /foo/index.html,
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create a file named /foo/.meta/index.html, in which you put lines such as:

Expires: Wed, 28 Feb 2001 19:52:18 GMT

Before you can use meta files in Apache, you must include the cern_meta module when you
compile the server. This is accomplished with Version 1.3 of Apache by giving the following

command-line option to the configure script:

./configure --add-module=src/modules/extra/mod_cern_meta.c

The CERN meta file technique has a number of shortcomings. First of all, you have to create
a separate meta file for every file on your server. Second, you must specify the headers
exactly. If you do not remember to update the Expires time, responses are served with an

expiration time in the past. It is not possible to have the server dynamically calculate the
expiration time. For these reasons, I strongly discourage you from using the .meta technique.

Apache has a newer module, called mod_expires, that is easier to use and offers much more
flexibility. This module is available in Version1.3 of Apache and later. To add the module to
your server binary, you need to use this command:

./configure --add-module=src/modules/standard/mod_expires.c

This module is nice because it sets the max-age cache control directive, in addition to the
Expires header. Documentation from the Apache web site can be found at

http://www.apache.org/docs/mod/mod_expires.html.

To use the expires module, you must first enable the option for your server with the
ExpiresActive keyword. This option can be set either globally or for a specific subset of

your document tree. The easiest technique is simply to enable it for your whole server by

adding the following line to your httpd.conf file:

ExpiresActive on

If you want to use fine-grained controls with the .htaccess file, you must also add Override

Indexes for the necessary directories in httpd.conf.

The expires module has two directives that specify which objects receive an Expires
header. The ExpiresDefault directive applies to all responses, while ExpiresByType

applies to objects of a specific content type, such as text/html. Unfortunately, you cannot use

wildcards (text/*) in the type specification. These directives may appear in a number of
contexts. They can be applied to the entire server, a virtual domain name, or a subdirectory.
Thus, you have a lot of control over which responses have an expiration time.
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Expiration times can be calculated in two ways, based on either the object's modification time
or its access time. In both cases, the Expires value is calculated as a fixed offset from the

chosen time. For example, to specify an expiration time of one day after the time of access,
you write:

access plus one day

More complex specifications are allowed:

access plus 1 week 2 days 4 hours 7 minutes

The expiration time can also be based on the modification time, using the modification

keyword. For example:

modification plus 2 weeks

The latter approach should be used only for objects that definitely change at regular intervals.
If the expiration time passes and the object does not get updated, any subsequent request
for the object will result in a preexpired response. This hardly improves the cachability of the
object! Furthermore, you should use the modification keyword only for disk files. When a
response is generated dynamically (a CGI script, for example), it does not have a Last-
modified time, and thus Apache cannot include an Expires header.

Now let's see how to put it all together. Let's say you want to turn on Expires headers for
your web server. You want images to expire 3 days after being accessed and HTML pages to
expire after 12 hours. All other content should expire one day after being accessed. The

following configuration lines, placed in httpd.conf, do what you want:

ExpiresActive on
ExpiresByType image/jpeg "access plus 3 days"
ExpiresByType image/gif "access plus 3 days"
ExpiresByType text/html "access plus 12 hours"
ExpiresDefault "access plus 1 day"

If you have a subdirectory that requires special treatment, you can put similar commands in

an .htaccess file. For example, let's say you have a directory called weather that holds
current images from weather satellites. If the images are updated every hour, you can put
these configuration lines in the file named weather/.htaccess:

ExpiresByType image/gif "modification plus 1 hour"

6.2.3.2 General header manipulation
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Apache also has a module that allows you to add arbitrary headers to a response. This
module is called mod_headers, and it is useful for setting headers such as Cache-control.
To add the headers module to your Apache installation, use the following configure option:

./configure --add-module=src/modules/standard/mod_headers.c

The full documentation can be found at
http://www.apache.org/docs/mod/mod_headers.html.

With the headers module, you can easily add, remove, and append almost any HTTP
header. If you are not familiar with the format and structure of HTTP headers, review
Section4.2 of RFC2616. The general syntax for the headers module is:

Header <set|append|add> name value
Header unset name

If the value includes whitespace, it must be enclosed in double quotes. The set keyword
overwrites any existing headers with the same name. The append and add keywords are

similar. Neither overwrites an existing header. The append keyword inserts the value at the
end of an existing header, while add adds a new, possibly duplicate header. The unset
keyword removes the first header with the given name. You can delete only an entire header,

not a single value within a header.

Now we'll see how to include a Cache-control header so some responses are cachable by
browsers but not by shared proxy caches. You can apply header directives for an entire

subdirectory by adding the following to an .htaccess file in that directory:

Header append Cache-control private

Note that we use append instead of set because we don't want to clobber any existing
Cache-control directives in the response.

As an alternative to the expires module described previously, you can use the headers
module to set an expiration time and the max-age directive to define an expiration time. For

example:

Header append Cache-control "max-age=3600"

For HTTP/1.1, this is equivalent to using "access plus 1 hour" in the expires module. The
difference is that here we use Cache-control. An HTTP/1.0 client (or cache) may not
understand the Cache-control header.
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6.2.3.3 Setting headers from CGI scripts

It is also possible to set headers from your CGI scripts without the headers or expires
modules. In particular, you might want to set Last-modified and Expires headers, since

these are normally absent from CGI script responses.

The output of a CGI program consists of reply headers, an empty line, and the reply body.
Some of the reply headers (such as Date and Server) are supplied by the server and not
by the CGI program. However, the CGI script must at least output a Content-type header.

Apache also allows you to pass other reply headers from the script to the server.

I've already mentioned that Apache includes Last-modified only for disk files. CGI scripts
are considered dynamic, so the server does not generate a Last-modified header for

them. You can generate your own from a CGI script with relatively little trouble. While you're
at it, you might as well send an expiration time too. The following Perl code demonstrates
how to correctly generate these headers:

#!/usr/bin/perl -w
use POSIX;

$exp_delta = 300;       # 5 minutes
$lmt = strftime("%a, %d %b %Y %H:%M:%S GMT", gmtime(time));
$exp = strftime("%a, %d %b %Y %H:%M:%S GMT",
    gmtime(time+$exp_delta));

print "Content-type: text/plain\n";
print "Last-modified: $lmt\n";
print "Expires: $exp\n";
print "Cache-control: max-age=$exp_delta\n"; 
print "\n";
print "This demonstrates setting reply headers from a CGI script.\n";

The trickiest part is that we have to use Perl's POSIX module to get the strftime() function.

The magical format string, passed as the first argument to strftime(), is the preferred date
format for HTTP messages, as defined in RFCs 822 and 1123.

When the above script is placed on a server and requested, the output looks something like
this:

HTTP/1.1 200 OK
Date: Wed, 10 Jan 2001 03:13:11 GMT
Server: Apache/1.3.3 (Unix)
Cache-control: max-age=300
Expires: Wed, 10 Jan 2001 03:18:11 GMT
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Last-Modified: Wed, 10 Jan 2001 03:13:11 GMT
Connection: close
Content-Type: text/plain

This demonstrates setting reply headers from a CGI script.

Note that the server included all of the headers we added and even rearranged them a little
bit. The server also added Date, Server, and Connection headers.

Note that the response does not have a Content-length header. This is because Apache
does not know how long the reply body is going to be. You should output a Content-
length header from your CGI scripts if the body length is easy to calculate. As mentioned in
Section 6.1.5, a missing Content-length has certain negative consequences for

persistent connections.

6.2.4 How to Choose Expiration Times

If I have managed to convince you that specific expiration times are a good thing, you might
wonder what sorts of values you should use. Before we can answer that, you'll have to think
about these related questions: how often does your content usually change? How important
is it for your readers/viewers to have absolutely up-to-date content? The answers to the latter
question might vary depending on the type of content.

Generally, people consider HTML pages to be more dynamic and critical than images. Thus,
you can probably give images a longer expiration period than HTML files. This is a good
tradeoff since images comprise about 70% of all web traffic, while HTML accounts for only
15%. For most web sites, I recommend an expiration period of between one hour and one
day for HTML and between one day and one week for images. You may certainly use
expiration times longer than one week, but unless the object is popular, many caches will
delete it before then anyway.

If your HTML content changes daily at specific times (e.g., midnight), obviously you should
use an expiration time of "modification time plus one day." However, if your content changes
daily, but at random times, you'll probably want to use an expiration scheme such as "access
time plus six hours." Then it will take no longer than six hours for your updated page to
propagate through all web caches. If you have time-sensitive information, it is a good idea to
include a timestamp somewhere on the page. For example:

This page was last modified Fri Mar  9 02:50:34 GMT 2001.

This gives your viewers important information when they wonder if the page is up-to-date. If
they believe the page may have been changed, they can ask for the latest version by clicking
on their browser's Reload button.
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6.3 Being Cache-Unfriendly

What if you need (or want) to send cache-unfriendly, uncachable responses? To accomplish
this, it's only a matter of adding a few specific headers.

If you just want to count the requests, you don't need to make the response uncachable.
Instead, you can make caches revalidate the response for each client request. To do this,
use the no-cache , max-age=0 or must-revalidate directives. Of these, no-cache is
the strongest, max-age=0 is the weakest, and must-revalidate is somewhere in the

middle. To insert the no-cache directive with Apache's headers module, use this

configuration line:

Header: append Cache-control no-cache

If you just want to prevent users from sharing a cached response, you can use the private

directive. That still allows the response to be stored in single-user caches.

If your goal is truly to defeat caching, you should use the no-store directive.

Cache-control is an HTTP/1.1 feature; how can you ensure that HTTP/1.0 agents do not

store the response? Unfortunately, this is a little bit confusing, and both of the following
techniques should probably be used.

According to the HTTP/1.0 specification RFC1945, "If the [Expires] date given is equal to or
earlier than the value of the Date header, the recipient must not cache the enclosed entity."
This rule is unfortunate because expiration and cachability are really separate characteristics.
Nonetheless, an HTTP/1.0-compliant cache should not cache a response if the date and
expires values are identical or if the expires value is invalid. Many applications use the
following:

Expires: 0

HTTP/1.0 also defines the Pragma header for both requests and responses. RFC1945
specifically discusses no-cache for requests but not for responses. Even so, it is common

practice to include this directive in a response to mark it as uncachable. So, if you really want
to be sure, also add this header:

Pragma: no-cache

The techniques mentioned above may not be good enough for the really paranoid. Another
way to defeat caching is to make each user's URIs unique. Usually, this approach also
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requires cookies to differentiate individual users. www.globalcomputer.com uses this
technique. If you make a request that doesn't have a valid cookie, you get redirected to a
unique URL such as:

HTTP/1.0 302 Moved Temporarily
Server: Netscape-FastTrack/2.01
Date: Fri, 02 Feb 2001 04:32:45 GMT
Set-Cookie: GlobalOrdernet=TXlN5ajd; expires=Fri, 02-Feb-2001 04:32:45
        GMT; path=/; domain=167.206.148.90
Location: /TXlN5ajd/
Content-Type: text/html

As you can see, the cookie and the URL both contain the string "TXlN5ajd." While this
doesn't prevent caching, it does prevent sharing responses between users.

Finally, another way to prevent sharing is to use encrypted transfers, a la SSL/TLS. Caching
proxies can only tunnel these responses. Only the client can decrypt the message. Once
decrypted, the client can store and reuse the response, however. SSL/TLS requests are also
interesting in that they cannot be diverted to interception caches.
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6.4 Other Issues for Content Providers

As a content provider, you may have concerns regarding how caches deal with your site
content. In particular, many people worry about dynamic responses, advertisements, and
accurate access count statistics. While each of these usually result in uncachable content,
some methods are worse than others. In this section, I talk about some of the tradeoffs and
what you can do to minimize the wait times for users.

6.4.1 What About Dynamic Responses?

Dynamic responses are generally cache-unfriendly. This doesn't mean that dynamic content
is bad. It does mean that caches cannot help to improve users' wait times for dynamic pages.

As a webmaster, this is a tradeoff you must carefully consider. How important is the dynamic
aspect of your content? Is it worth making people wait for it? Is it worth losing some
viewers/customers because the wait is too long? You might say that your customers won't
have to wait because you can build a really big server with really fast hardware. However,
your big, fast server does nothing to alleviate wide-area network congestion. Neither can it
reduce network round-trip delays, nor make someone's dial-up connection faster. You'll have
to decide on a balance between dynamic content and cachability.

6.4.2 What About Advertisements?

Advertisements, ad images in particular, are not necessarily at odds with web caching. It
really depends on how the system is set up. A number of reasonable approaches are
possible. For the following discussion, consider a typical web page with advertisements. Most
likely, there are two or more ad images on the page, and the actual ad images change with
each request.

One approach is to use fixed URLs in a static HTML page. The URLs for the ad images
remain the same but return a different image each time. You can do this with a CGI script
that opens a random image file and writes it to the server. For this to work properly, the
image response must be uncachable. Otherwise, users of a shared cache will probably see
the same advertisement whenever they access that page. Another reason to have the image
uncachable is so it can be counted at the origin server. Then the server knows exactly how
many times a particular ad image was downloaded. Assuming that only humans download
the images, this also corresponds to the number of views of the advertisement. The content
provider can then charge the advertiser based on how many people saw the ad. This
technique is good in that it gives accurate view counts, but it's bad in that it makes people
wait too long for images to download and wastes bandwidth by repeatedly transmitting the
same images.
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An improvement on the previous approach is to turn the ad image URL into a CGI script that
returns an HTTP redirect message. The redirect can point to a static image URL. For
example, the embedded URL might be http://www.host.com/cgi-bin/ad. When requested, the
server returns an HTTP 302 redirect:

HTTP/1.1 302 Moved Temporarily
Location: /ad-images/ad1234.gif

When requested again, the redirect message has a different Location URL for a different

ad image. This technique allows the actual images to be cachable because the dynamic
aspects are handled by the redirect message, which is uncachable by default. It's better for
the redirect message to be uncachable because it is probably about an order of magnitude
smaller than the ad image. The origin server still gets an accurate view count because the
CGI script is executed for every view. Also note that the HTML file can be static and
cachable. Unfortunately, the CGI script and redirect message do add some latency to the
overall page display time because the browser must make two HTTP requests for each
image.

A third option is to make the HTML page dynamic and uncachable, while leaving the images
static and cachable. Each time the HTML page is requested, links and URLs for
advertisements are inserted on the fly. This approach is not a huge loss, because only 15%
of all web requests are for HTML pages. Once again, this technique allows the origin server
to accurately count views.

Note that each of the techniques that give origin servers accurate view counts rely on some
aspect of the page to be uncachable. It could be the images themselves, the underlying
HTML document, or the redirect messages. The best solution is the one which minimizes
both network delays and bytes transferred. In other words, if you have a single small ad
image in a large HTML file, it is better for the image to be uncachable.

6.4.3 Getting Accurate Access Counts

What can you do if you want to be cache-friendly but still want accurate access counts? One
common approach is to insert a tiny, invisible, uncachable image in the HTML page that you
want to count. Every time someone requests the page, even if they got it from a cache, they
should also request the image. Since the image is very small and invisible, people should
never realize it is there. When you insert the image in the HTML page, be sure to specify the
image dimensions so the browser can render the area quickly. For example:

<IMG SRC="/images/counter.gif" WIDTH="1" HEIGHT="1">

Of course, one drawback is that not everyone who views the HTML file also requests the
image. Some people (usually those with low-speed connections) disable the browser option
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to automatically load images. Also, not everyone uses graphical browsers; Lynx users will not
get counted.

You might want to use the <OBJECT> tag instead of <IMG>. Both can be used to place
images in an HTML document. However, browsers won't display the broken image icon when
you use OBJECT and the file can't be loaded. The syntax is:

<OBJECT DATA="/images/counter.png" WIDTH="1" HEIGHT="1"
TYPE="image/png">

For my own web site, I added both cachable and uncachable (invisible) images to the top-
level page. By counting the number of requests for both types, I can approximate the ratio of
requests for cachable and uncachable objects. If I want to know how many people actually
requested my pages, I simply multiply my server's count by the ratio. For my site, the ratio
varies daily from anywhere between 1.5 and 2.5, as shown in Figure 6-1.

Figure 6-1. Ratio of uncachable-to-cachable requests

Finally, I want to mention hit metering. Some members of the IETF's HTTP working group
spent a lot of time on a proposed standard for hit metering. This work has been published as
RFC2227. Hit metering has two components: limiting and reporting, both of which are
optional.

The standard provides mechanisms for limiting how many times a response can be used as
a cache hit until it must be revalidated with the origin server. For example, a server can say,
"You may give out 20 cache hits for this document, but then you must contact me again after
that." Alone, this is a simple scheme; things become complicated, however, with cache
hierarchies (see Chapter 7). If the server gives a cache permission for 20 hits, it must share
those hits with its neighbor caches. In other words, the first cache must delegate its hits down
to lower-level caches in the hierarchy.

Hit metering also provides features for reporting cache hits back to origin servers. The next
time the cache requests a metered resource, it uses the Meter header to report how many

hits were given out. A cache has a number of reasons to re-request the resource from the
origin server, including:
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It ran out of hits according to limits specified by the origin server.

The response has become stale and the cache needs to revalidate it.

A client generated a no-cache request, probably by clicking on the Reload button.

If none of those occur before the cache wants to remove the object, the cache is supposed to
issue a HEAD request to report the hits to the origin server.

Hit reporting also becomes a little complicated with cache hierarchies. Lower layers of the
tree are supposed to report their hits to the upper layers. The upper layers aggregate all the
counts before reporting to the origin server.

While hit metering seems promising, the biggest problem at this time seems to be that no
one is interested in implementing and using it. A chicken-and-egg situation exists, because
neither origin server nor proxy cache developers seem to be willing to implement it unless the
other does as well. Perhaps most importantly, though, the folks who operate origin servers
are not demanding that their vendors implement hit metering.
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Chapter 7. Cache Hierarchies

A cache hierarchy is just what you might expect-an arrangement of caches that cooperate
with each other. In a cache hierarchy, the lower layers forward cache misses up to the higher
layers until a cache hit is found or the request is sent to the origin server. Cache hierarchies
are attractive because they can offer performance improvements. Some of the requests that
are misses in your cache will be hits in your neighbor's caches. This further reduces wide-
area network bandwidth and improves download speeds.

However, you must carefully consider a number of important issues surrounding hierarchies,
such as trust, freshness, scalability, and effects on routing. These are particularly important
when the members of the hierarchy are controlled by different organizations. It's often
awkward and difficult to participate in a hierarchy in the absence of an existing business
relationship. Large organizations, especially, are more comfortable being self-sufficient rather
than relying on others.

In this chapter, we'll talk about hierarchies in general, focusing on definitions and issues. In
Chapter 8, we'll learn about the protocols that make meshes and hierarchies possible.
Caching proxies use these protocols to decide which neighbor, if any, should be the next hop
for a particular request.
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7.1 How Hierarchies Work

Web cache hierarchies can be complicated and amorphous. We use the terms parent, child,
and sibling to describe the relationship between any two caches. Sometimes neighbor or

peer are used to refer to either a parent or a sibling relationship, just to confuse you.

A child cache forwards its cache misses to a parent. The parent cache then provides the
child with a response from its own cache, the origin server, or another cache. A parent cache
may use bandwidth to origin servers to satisfy a child cache's request.

Sibling relationships, on the other hand, are designed to prevent one cache from incurring
costs on behalf of another. All requests sent to a sibling should result in cache hits. The
sibling should never have to fetch an object requested by its peer. If the sibling doesn't have
the object cached, it returns a message that indicates its unwillingness to forward the
request. A cache communicates with its siblings using one of the intercache protocols
described in the next chapter. These protocols allow a cache to find out whether the
neighbors have a particular object in their caches. A request should only be sent to a sibling if
the intercache protocol predicts it will be a cache hit. As we'll see later, hit predictions are not
always accurate, so we need a way to deal with false predictions.

These relationships (parent-child, sibling-sibling) are not fixed. One cache might be a parent
to some caches and a sibling to others. This type of configuration is sometimes used by large
ISPs, which act as a parent for requests to their customer's origin servers and as a sibling for
all other requests.

The terms parent and sibling map well into a hierarchical topology, as shown in Figure 7-1.
Parents are considered to be one level up from their child caches. Sibling caches are on the
same level with each other. The only way to go up the hierarchy is through a parent cache.
Other topologies, such as the one in Figure 7-2, are not really hierarchical. For these, the

term mesh may be used instead.

Figure 7-1. Parent-sibling hierarchy
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Figure 7-2. Sibling mesh

The relationship between two caches is not necessarily symmetric. In other words, just
because cache A sends requests to cache B, it does not mean that B can also send requests
to A. If requests are to flow both ways, there should be a relationship defined for each
direction. In practice, siblings usually have symmetric, bidirectional relationships. Parents and
children, on the other hand, usually do not. Since there are no strict rules, it is possible to
create some rather strange and complicated topologies. Two caches may have a sibling
relationship in one direction but a parent relationship in the other. Of course, a child cache
may have any number of parents.
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7.2 Why Join a Hierarchy?

As a cache administrator, you might wonder if you should participate in a cache hierarchy.
The decision is not always an obvious one; there are many factors and issues for you to
consider. People are usually motivated to peer with other caches either for improved
performance or to force traffic along a non-default path.

7.2.1 Performance

Performance often motivates people to join a cache hierarchy. However, hierarchical caching
is not a magic bullet; it is not guaranteed to improve your performance. If you seek better
performance, you must first decide what is most important to you. Reduced bandwidth?
Lower latency? In some situations, you may be required to trade one for the other. You
should establish a system for measuring your cache's performance so you can quantitatively
compare one configuration to another.

To realize improved performance with a cache hierarchy, the following points should all be
true:

Some of the objects not found in your cache will be found in your neighbor caches. In
other words, you can get cache hits from your neighbors.

Cache hits from neighbors are delivered more quickly than misses from origin servers.

Cache misses from parent caches are not significantly slower than responses from
origin servers.

If any of these are false, then your cache performance may actually suffer. Whether they are
true or false depends on a number of factors. For example, if a parent cache is heavily
loaded, then it may be slower than a direct connection to the origin server. Also, if your
neighbor cache is far away, then cache hits may not be significantly faster. Furthermore, the
behavior can change over time. One day your parent cache can be very fast but the next day
very slow. Don't assume that conditions will always remain the same. Install some monitoring
tools that can notify you if performance does not stay within certain thresholds.

7.2.2 Nondefault Routing

Parent caches are useful when you need to force web traffic along a specific route in your
network. A common example of this is to get through a firewall. Many corporations and other
organizations use firewalls to protect their internal network from the rest of the Internet. There
are a number of different ways to deploy a firewall. Some do not allow internal users to
communicate directly with external servers; they block outgoing connections for most ports,
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including port 80. In this case, the only way to reach the outside servers is through the
firewall proxy, which is probably also a cache. If you have another caching proxy on the
inside, then the firewall proxy is a parent for all of your requests to the outside.

It is increasingly common for corporations and other organizations to use interception
proxying. Client HTTP connections are automatically diverted to a caching proxy, rather than
blocked. If the client is a caching proxy in this case, the firewall proxy is a parent even though
the child proxy does not realize it.

Organizations that pay metered rates for Internet bandwidth sometimes use multiple parent
caches to send traffic over specific connections. For example, one connection might be less
expensive but more congested. Low-priority requests are sent over the cheap link, while high-
priority traffic goes over the expensive one. In some cases, the rates change depending on
the time of day. Some caches (e.g., Squid) let you forward requests to different locations
based on the current time.
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7.3 Why Not Join a Hierarchy?

Now that you know about the advantages of hierarchical caching, it is also important to
consider carefully some of the disadvantages and potential problems. Any improvements in
performance may be offset by one or more of the following issues.

Some of these issues are significant only when you establish a relationship with caches
outside your own organization. For example, you probably trust a neighbor cache within your
company more than you trust one that belongs to another company. The presence or
absence of a business agreement between two organizations also affects many of these
issues. For instance, when you pay another party for a service, it is much easier to get
problems resolved quickly.

7.3.1 Trust

You may recall that we talked about trust in Chapter 3. That discussion focused on content
integrity and privacy concerns with logfile information. These issues are even more important
when you join a cache hierarchy. Not only must you trust your immediate neighbors, but you
must also trust all of their neighbors, and so on. Again, you are trusting them to protect the
privacy of your web requests and to deliver correct, unmodified documents. Hierarchies can
be quite large. It's possible that your requests and responses pass through five or more
caching proxies between you and the origin server.

When you get a web page, how can you tell if it is authentic? Currently, there is no good way.
Such a scheme would most likely involve digital signatures and public encryption keys in the
manner of PGP. Then it should be possible to prove the content originated with a certain
entity and was not tampered with before reaching you. In practice, this can be very difficult to
implement. Imagine needing to store a PGP-like public key for every web server you visit.
Furthermore, the distribution of such keys requires secure channels of communication.

Since there is no end-to-end mechanism for verifying web content, clients usually have no
choice but to trust that neighbor caches and origin servers deliver the correct data. If a web
page becomes altered, either intentionally or not, it may go undetected. When combined with
the fact that HTTP headers may be altered as well, an invalid response could remain fresh
for a very long time. Since fresh objects are not normally revalidated, many people may
receive the wrong page or incorrect information. Furthermore, this bogus content may spread
through a cache hierarchy.

In Chapter 3, we also talked about the need to protect users' privacy. Of course, when you
use neighbor caches, many of the requests from your users end up in the neighbor's log files.
There are obvious privacy concerns here. The operators of the other cache may easily be
able to determine something about your company or your users that you or your users would
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rather keep secret.

7.3.2 Low Hit Ratios

The hit ratios from parent and sibling caches are normally quite low when compared to a
cache that services end users directly. For example, let's say you have a standalone cache
that has a hit ratio of 35%. The other 65% of your requests are cache misses that must be
forwarded to origin servers. If you establish a parent or sibling relationship with another
cache, you can expect that about 5% of all requests would be found as hits in your neighbor
cache. In other words, you would have 35% local hits, 5% remote hits, and 60% going to
origin servers. There are two primary reasons for low neighbor hit ratios:

A response that passes through two caches, such as a parent and a child, is usually
cached by both. This means, of course, that some responses are duplicated in both
caches. The degree of duplication depends on the size of each cache. If the two caches
have the same size, then all cache hits are satisfied by the first cache. If, on the other
hand, a parent cache is significantly larger than its child cache, objects that quickly get
removed from the child may still be found in the parent.

First-level caches (that service end users directly) usually have more clients than a
parent cache does. A first-level cache may serve hundreds or thousands of users. A
typical parent cache probably serves no more than 20 child caches. More clients means
more cache hits, because there is a smaller probability that any single client is the first to
request a particular URI.

In an ideal parent-child relationship, the parent cache would be about an order of magnitude
larger than the child cache. In practice, it may not be possible to build or find such a large
parent cache. At the minimum, the parent should be at least twice as large as the child. If the
two caches are nearly the same size, then only a small percentage of requests result in
cache hits at the parent.

7.3.3 Effects on Routing

We've already discussed the fact that proxy caches alter the flow of packets through a
network (see Section 3.10). In some cases, this can be advantageous, while at other times,
it causes problems. As a rule of thumb, when neighbor caches are close, there are fewer
problems. As the distance (router hops) increases, so do the effects of routing differences.

As an example, let's say you have a parent cache that has multiple connections to the
Internet. Your own cache uses a different Internet connection. If one of the parent's
connections goes down, it won't be able to reach some origin servers. Requests sent to the
parent may result in "connection timed out" error messages. Since your own cache has a
different route to the Internet, it may still be able to reach those origin servers. If the outage is
severe enough, you may want to terminate the parent relationship, at least temporarily. Squid
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has some features that attempt to detect such failures automatically and work around the
problem.

7.3.4 Freshness

Maintaining consistency and freshness between members of a hierarchy can be difficult.
Consider a child cache with two parents where each cache has saved a copy of a particular
URI and the cached response is still fresh. A user generates a no-cache request by clicking

on her Reload button. This request goes through the child cache and the first parent cache.
The resource has been modified recently, so the origin server returns a response with new
content. The new response is saved in the child cache and the first parent. However, at this
point in time, the second parent has an older version of the resource, which it believes is still
fresh.

How can we avoid this situation? The best way is to use some sort of object invalidation
process. When a cache discovers a resource has been updated, it "broadcasts" invalidation
messages to its neighbors. Some of the protocols that we'll discuss in Chapter 8 have
invalidation features. It seems that relatively few products support invalidation at this time,
however. Mirror Image Internet has a caching service that makes use of invalidation between
nodes. There is currently some interest within the IETF to create a standard invalidation
protocol. You may want to search the IETF pages and databases for "RUP," which stands for
Resource Update Protocol.

7.3.5 Large Families

If you consider a hierarchy like the one in Figure 7-1, you can see that the upper-layer
nodes need to support all the traffic from the lower layers. This is the famous scaling issue
found in many aspects of the Internet. The issue brings a number of questions to mind. Can
a single parent cache support the load from hundreds, thousands, or even more child
caches? How many levels deep should a hierarchy be? At what point do the uppermost
nodes become a bottleneck? I do not have a simple answer to these questions. It will depend
on many factors, such as the performance of your systems and the request rate. Every
product and every architecture has its limits, but finding that limit may be hard. Most likely,
you'll have to take a wait-and-see approach.

A caching proxy can become a bottleneck for a number of reasons. A caching system
consists of many components, each of which has finite resources. Every product has its
limits, but different products have different limits, due to either their design or their particular
hardware. The common bottlenecks include network media bandwidth, disk drives, available
memory, and network state information. (We'll talk more about performance in Chapter 12.)

When the incoming load exceeds a single proxy cache's resources and leads to performance
degradation, steps must be taken to rectify the situation. Typically, you have three options:
upgrade the cache, create a cluster of caches, or reduce the incoming load. Upgrading a
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cache may be as simple as adding disks or replacing a CPU. On the other hand, it may
require the purchase of an entire new system. Cache clusters provide a scalable solution to
this problem. (We'll talk more about clusters in Chapter 9.) Finally, you may want or need to
decrease the load from lower layers. This involves asking the other administrators to stop
using your cache as a parent and instead forward their requests directly to origin servers.

7.3.6 Abuses, Real and Imagined

I've already mentioned in Section 1.5.2, how a caching proxy hides the client's IP address.
Whenever a proxy forwards a request to an origin server, the server logs a connection from
the proxy's IP address. If a content or service provider believes their resources are being
abused, they almost always contact the person or organization associated with the source IP
address. A parent cache that forwards traffic for thousands of users is likely to receive a few
email messages from angry providers complaining about one thing or another. Sometimes
the complaints are legitimate, but usually they are not.

Credit card fraud is a good example of a legitimate complaint. People who buy and sell lists
of stolen credit card numbers use automated software to figure out which are still valid. It
seems that they repeatedly submit orders for products via web sites. If the order is accepted,
the card number is valid. By using a hierarchy of caching proxies, they hide from the
merchant site and force the merchant to deal with the proxy administrator. A deeper
hierarchy is better for the criminals because it's less likely they will be found.

Fortunately, almost all web sites use SSL encryption for credit card transactions. Since
caching proxies cannot store encrypted responses anyway, parent caches should be
configured to deny all SSL requests. The only reason for a caching proxy to tunnel SSL
requests is when the users are behind a firewall. By denying SSL requests, we force users to
connect directly to origin servers instead. If the users are doing something illegal, this makes
it easier to identify them and take appropriate action.

Though it is obvious that cache administrators should intervene to stop illegal activities such
as credit card fraud, there are cases where the appropriate course of action is less obvious.
The example I am thinking of relates to freedom of speech. Message boards and chat rooms
abound on the Web, and many of them are unmoderated. Anyone can post or say whatever
they like. When someone posts a message the other members find offensive, they may be
able to find out that the message "originated" from your parent cache. They may ask you to
do something to prevent further offensive messages. In some cases, they may block all
accesses from your cache's IP address.

The fact that hierarchies aggregate traffic from lower layers is another source of potential
problems. At the upper layers, the traffic intensity is significantly increased compared to a
normal user. In other words, a top-level parent cache has a higher connection rate than we
would expect for a single user. Some content providers interpret such traffic as web robots or

even denial-of-service attacks. The xxx.lanl.gov site is famous for its anti-robot stance. If they
detect apparent robot activity, all subsequent requests from that IP address are denied.
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Fortunately, the LANL folks understand caching proxies and are willing to make exceptions.

7.3.7 Error Messages

Proxy caches, by their nature, must occasionally generate error messages for the end user.
There are some requests that a caching proxy cannot possibly satisfy, such as when the user
enters an invalid hostname. In this case, the proxy returns an HTML page with an error
message stating that the hostname could not be resolved. Unfortunately, the proxy can't
always tell the difference between a DNS name that really doesn't exist and a temporary
failure.

In most cases, neither the caching proxy nor the end user is really smart enough to identify
the real cause of a particular error. If the user is to blame, we don't want them calling the
support staff to complain that the proxy doesn't work. Conversely, we do want users to notify
the support staff if the proxy is misconfigured or malfunctioning. Thus, error pages usually
include an email address or other contact information so users can receive assistance if they
need it.

A tricky situation arises when cache hierarchies cross organizational boundaries.
Downstream users may receive an error message from an upstream cache. In the event of a
problem, the downstream users may contact the upstream provider with support questions.
The support staff from company A is probably not interested in providing assistance to the
users or customers of company B, unless there is some kind of business relationship
between the two.

7.3.8 False Hits

Recall that a sibling relationship requires a hit prediction mechanism, such as one or more of
the intercache protocols described in the following chapter. These predictions are not always
correct, due to various factors and characteristics of the intercache protocols. When a

request is predicted to be a hit but turns out to be a miss, we call it a false hit.

False hits can be a serious problem for sibling relationships. By definition, the sibling
relationship forbids the forwarding of cache misses. False hits are not a problem for parent
relationships because the parent is willing to forward the request. Given that false hits are a
reality, we have two ways to deal with them.

One way is to relax the requirements of a sibling relationship. That is, allow a small
percentage of false hits to be forwarded anyway. This may require configuring the sibling to
always allow misses to be forwarded. If so, the sibling is vulnerable to abuse by its neighbors.

HTTP/1.1 provides a significantly better solution to this problem. The only-if-cached
cache-control directive is used on all requests sent to a sibling. If the request is a cache miss
at the sibling, then it returns a 504 (Gateway Timeout) response. Upon receiving this
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response, the first cache knows that it should retry the request somewhere else.

A false hit followed by a 504 response adds a small delay to the user's request. Checking the
cache for a particular URI should be almost instantaneous. Thus, most of the delay is due to
network transmission and should be approximately equal to two round-trip times. In most
situations, this corresponds to 100 milliseconds or less. Given that sibling hits are rare (say
5%) and among those, false hits are rare as well (say 10%), very few requests overall (0.5%)
experience this delay.

7.3.9 Forwarding Loops

A forwarding loop occurs when a request is sent back and forth between two or more nodes.
Looping also occurs in other systems such as email and IP routing. Normally, a well-behaved
network is free of loops. They may appear, however, due to configuration mistakes or other
errors.

In a proxy cache hierarchy (or a mesh), a forwarding loop can appear when two caches are
configured such that each has a parent relationship with the other. For a request that is a
cache miss, each cache forwards the request to the other. This configuration can result only
from human error. Two caches must not be parents for each other. It is of course possible
that loops appear for other reasons and in more complicated situations. For example, a
group of three or more caches may have a forwarding loop. Loops with sibling caches were
relatively common before the only-if-cached directive became widely used.

Fortunately, it is relatively easy for a proxy cache to detect a loop. The Via request header is

a list of all proxy caches that a request has been forwarded through. By searching this list for
its own hostname, a cache knows whether it has seen a particular request before. If a loop is
detected, it is easily broken by sending the request to the origin server rather than to a parent
cache. Of course, with interception proxying (see Chapter 5), it may not be possible to
connect directly to the origin server. The request could be diverted to a caching proxy
instead.

7.3.10 Failures and Service Denial

A proxy cache, and especially a parent cache, is potentially a single point of failure. There
are a number of techniques designed to work around equipment failures transparently.
Layerfour switching products have the ability to bypass servers that become unavailable.
Many organizations use dual servers in a redundant configuration such that, if one system
fails, the second can take over. Also, applications themselves may be able to detect
upstream failures and stop sending requests to caches that appear to be down.

There are some subtle problems that are more difficult to detect than a total failure. If your
parent cache becomes heavily loaded, your response times increase, but all requests
continue to be serviced. However, increased response times don't necessarily indicate a
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problem with your parent cache. It might instead be due to general Internet congestion or the
failure of a major traffic exchange.

The DNS is another potential source of service denial. If your parent cache's DNS server
fails, it is likely to cause an increase in response times for some of your requests. It may be
enough to annoy a few of your users but not significant enough to detect and quickly
diagnose, especially since failed DNS lookups are an everyday occurrence when surfing the
Web anyway.

The bottom line is that you should carefully consider these and other possibilities when using
a parent cache. If your parent cache is under the administration of a separate organization,
there may be little you can do to get problems fixed quickly. Unless your caching product is
good at detecting failures (and hopefully partial failures as well), you may find yourself
disabling neighbor caches when you observe suspicious behavior or performance.
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7.4 Optimizing Hierarchies

Remember that a primary motivation for cache hierarchies is to find cache hits in your
neighbors. Usually, a cache uses one of the intercache protocols described in Chapter 8 to
predict neighbor hits. In some cases, though, we can identify requests that could not possibly
result in a cache hit. For these, it makes sense to immediately forward the request to the
origin server rather than go through a neighbor cache. In most cases, a direct connection to
the origin server is faster than a cache miss through a parent. In addition to reducing latency
for end users, this technique also reduces the load placed on upper layers of a hierarchy.

Identifying requests that should bypass the hierarchy is relatively straightforward. The most
common case is requests that have uncachable responses. An easy way to find uncachable
responses is by looking at the request method. Recall from Section 2.2 that only GET
method requests are cachable by default. Many of the other methods are never cachable,
and POST is cachable only if specifically allowed. Thus, a common heuristic is to send all
non-GET requests (with one exception) directly to origin servers.

The exception to this rule is the TRACE method. The purpose of the TRACE method is to
enable someone to discover the sequence of caches (or proxies) between the user and an

origin server. It is similar to the traceroute program used to show IP routing paths. Even
though TRACE responses are not cachable, a proxy cache should forward a TRACE request
as though it were a GET, so the proper forwarding path can be shown.

We saw additional heuristics for identifying uncachable requests in Section 2.2.7. Perhaps
the most common is to look for "cgi" or "?" in the URL. Even though there is some small
probability that such a request can be cached, it's probably still better to bypass the
hierarchy. You may lose one cache hit out of 1,000 requests, but you'll gain much more in
better response times.

Requests that require authentication always have uncachable responses, unless the
response includes the proxy-revalidate directive. At the present time, responses to
authenticated requests almost never have the proxy-revalidate directive, so this is

another good way to identify uncachable requests.

We might be tempted to bypass the hierarchy for requests that have a no-cache directive

because they always force a cache miss. Bypassing the hierarchy for these requests is
probably a bad idea. Let's assume that a parent cache has stored a response that is now out

of date but is believed to be fresh. If a user clicks the Reload button, the browser includes the
no-cache directive in its request. If this request doesn't go through the parent, then the out-
of-date response does not get updated. Thus, a no-cache request should still go through a

cache hierarchy, but it must never be sent to a sibling cache.
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Chapter 8. Intercache Protocols

In this chapter, I will cover four different intercache protocols. These specialized protocols are
used between cooperating proxy caches for a number of reasons. Their most important
function is to aid in forwarding decisions. That is, given a request and some number of
neighbor caches, to which cache should the request be sent? Or should it be sent directly to
the origin server? The intercache protocols provide information that a cache may use to
minimize the time to retrieve an object. They may also be used to implement other features,
such as prefetching and metadata updates.

The Internet Cache Protocol, or ICP, was the first intercache protocol invented. This
lightweight query-response protocol probes neighbor caches for would-be hits. ICP is
perhaps the most widely used of the protocols we will discuss in this chapter, mostly because
it has been around the longest. All of the other protocols we will discuss were designed to
improve upon ICP in one way or another. The most common complaint about ICP is the
additional round-trip delay that every request incurs.

The Cache Array Routing Protocol, or CARP, is very different from ICP. It uses a
deterministic algorithm, rather than a real-time query, to select a next-hop cache. CARP
places emphasis on distributing load among a cache cluster rather than finding a cached
copy of a given resource. Unlike some simpler load distribution techniques, CARP nicely
accommodates changes in the number of cluster members. In theory, CARP can also be
implemented in browsers or other user-agents-a proxy autoconfiguration script for example.

The Hypertext Caching Protocol, or HTCP, is similar to ICP in that it is also a UDP-based
query-response protocol. One major difference is that HTCP uses much more information to
determine whether a request would be a hit or a miss. Another significant improvement is the
addition of strong authentication. The downside is that the message format is significantly
more complex.

Cache Digests are compact representations of a cache's contents. The digest provides a way
for a cache to quickly look up an object in its neighbor's directory. Thus, the per-request
delays of ICP and HTCP are eliminated. The tradeoff comes in the form of increased
memory usage and some amount of inaccuracy in the predictions. Overall bandwidth
utilization is probably similar to that of ICP but with different characteristics. Network traffic
due to ICP is proportional to the cache request rate and is relatively smooth over time. Cache
Digests, on the other hand, generate significant bursts in network utilization at regular
intervals.

If you are looking for WCCP here, you won't find it. WCCP is not used between cooperating
caches. Rather, it is a protocol that switches and routers use to divert traffic to a proxy cache.
See Section 5.2.3, for the scoop.
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8.1 ICP

ICP is the original intercache protocol. Its primary purpose is to discover whether any
neighbor caches have a fresh copy of a particular object. The neighbor caches answer with
either yes (HIT) or no (MISS). The querying cache collects a particular number of ICP replies
and then makes a forwarding decision. Even if all neighbors reply with MISS, ICP may
provide additional hints that help to choose the best parent cache.

ICP is far from perfect. But despite its shortcomings, it is still in widespread use today. In
countries where wide-area network bandwidth is both expensive and fully utilized, informal
cache hierarchies offer much better response time than standalone caches. ICP is supported
by almost all of the major caching products. At the time of this writing, products from the
following companies are known to implement ICP: Squid, Network Appliance, Cisco,
CacheFlow, Novell, Netscape, InfoLibria, Inktomi, Novell, iMimic, and Lucent. (See Appendix
B for the low-level details of ICP.)

8.1.1 History

ICP was invented during work on the Harvest project in 1994 [Bowman, Danzig, Hardy,
Manber and Schwartz, 1994 ]. During that time, ICP became increasingly popular because it
allowed people for the first time to create complicated web cache hierarchies. The CERN
proxy supported simple hierarchies where all requests were forwarded to another proxy. With
Harvest, however, you could have multiple parent and sibling caches as neighbors.

The original protocol design included features that were later dropped or never actually
implemented. For example, the earliest surviving ICP documentation describes opcodes for
transmitting cached objects and features that could multiplex numerous responses over a
single TCP connection. Unfortunately, as often happens with research projects, the
implementation changed, but the protocol documentation did not.

Towards the end of 1995, the Harvest project came to a premature end. It was at this time
that the Harvest cache software spawned two new projects. Peter Danzig took the software
and offered it commercially under the name Netcache, which later became a product of
Network Appliance. I took a job with the National Laboratory for Applied Network Research
and developed the Squid Cache as part of a project funded by the National Science
Foundation. Both projects made some changes to ICP.

In the Harvest design, eight octets were to be used for authentication features. The Harvest
code never made use of this field, however. Netcache decided to use this area to hold a pair
of timestamps. My friends at Network Appliance told me that one timestamp is a last-modified
value, and the other, an if-modified-since value. Netcache also decided to increment the
version number for their implementation. To the best of my knowledge, the Netcache
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(Network Appliance) implementation is not formally documented.

Squid also takes advantage of the unused authentication field, but for a different purpose.
The first four octets are option flags that indicate support for new features. The second four
octets may contain option-specific data. On the Squid project, we added a couple of new
features to ICP. (These are covered in the following section.) Squid still uses 2 for the version
number, as did Harvest.

As the number of Squid and Netcache installations continued to increase, more and more
people began to suggest documenting ICP as an Internet RFC. In September 1997, the IETF
adopted two documents describing ICP Version 2 (ICPv2) under the Informational category.
The first, RFC 2186, describes the ICP message format and structure. The second, RFC
2187, outlines the way that web caching applications should actually use the protocol. The
Informational status of these documents carries no recommendation or endorsement by the
IETF. In other words, people don't necessarily think ICP is a good protocol just because it
has been published as an Informational RFC.

RFCs 2168 and 2187 essentially document the implementation of ICP in Squid Version
1.1.10 (April 1997). They are specific to ICPv2 and thus do not include any information about
the Netcache implementation. Harvest, Netcache, and Squid were the only products to
implement ICP when these documents were written.

8.1.2 Features

ICP has a number of interesting features, some of which were added after the initial design.
This section covers only the features of ICPv2 as documented in RFCs 2168 and 2187.
Some new and experimental features have been added since then. These are described in
Section B.4 .

8.1.2.1 Hit prediction

As already mentioned, the primary purpose of ICP is to find out which, if any, of your
neighbor caches have a specific object. This feature is fundamental to the idea of a sibling
relationship. We can request only cache hits from a sibling, so we need some way to predict
whether a given request will be a hit or a miss. ICP's hit predictions are useful for parent
relationships as well. In most cases, a hit from one parent should be faster than a miss from
another.

8.1.2.2 Probing the network

ICP messages are normally sent as UDP packets, which have some useful side effects. The
delay that an ICP transaction experiences tells us something about the status of the network
and the remote cache. For example, if we don't receive a reply message within a certain
period of time, we can conclude that the remote cache is offline or the network is severely
congested. ICP can be used as a tiebreaker when choosing between two or more equivalent
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parents. A parent that is heavily loaded takes longer to process an ICP query, and the
transaction experiences some delay. By selecting the first cache that responds, we do some
basic load balancing.

Even though UDP is used in practice, the protocol specification does not require any
particular transport protocol. In theory, TCP can be used, but it is probably more of a
hindrance. The fact that UDP is unreliable benefits ICP because we don't really want the
messages to be delivered if congestion occurs. Since ICP is used only to provide hints and
never for critical functions, UDP is an ideal choice. I am not aware of any implementations
that use TCP.

8.1.2.3 Object data with hits

While working on the Harvest project, we realized that a lot of cached objects were small
enough to fit inside a UDP packet. According to the statistics in Section A.1  , half of all web
objects are smaller than 4KB, and about 75% are smaller than 9KB. [1] In the case of an ICP
hit reply, we can put the actual object in the ICP message and avoid a subsequent HTTP
request. Since the HTTP request takes at least one or two round-trip times, this feature can
significantly reduce response times for clients. This so-called "HIT_OBJ" feature was added
to a beta version of Squid-1.0.

[1] The maximum size of a UDP packet can vary greatly between systems. 9KB is a conservative estimate.

The initial response to HIT_OBJ was very good. Unfortunately, after a few months, we began
to receive numerous problem reports. One problem is that ICPv2 has no support for object
validation. A client's If-Modified-Since header is not sent in an ICP query, and a stale
response may be sent in the ICP reply payload. Thus, HIT_OBJ results in a stale response
when an HTTP request does not. Generally, the problem is that HTTP has many headers
and features that cannot be conveyed in an ICP query message.

Another issue is the increased UDP packet size. HIT_OBJ messages are significantly larger
than plain HIT messages. A congested network is more likely to drop a large UDP packet
than a small one because the large one must be fragmented. UDP has no retransmission, so
if just one fragment is lost, then the entire UDP packet must be dropped. In this case, it may
be better to have plain HITs delivered rather than losing the HIT_OBJ replies.

For these reasons, I do not recommend the use of the HIT_OBJ feature. Squid has not
supported HIT_OBJ since Version 2.0.

8.1.2.4 Source RTT measurements

Under Harvest, the next-hop cache was chosen based on which reply arrived first. This
algorithm favors near caches over far ones because the near cache replies almost always
arrive first. We address this problem in Squid by assigning weights to each cache. The
measured delay is divided by the weight. Thus, faraway caches may be treated as though
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they were closer. Unfortunately, this is only a partial solution.

The Harvest algorithm considers only distance, not direction. To account for direction, we
also need to know the proximity of each neighbor cache to the origin server. Given the choice
between two parent caches, it makes sense to select the one closest to the origin server.

During the development of Squid Version 1.1, we added the network measurement database
. Squid sends ICMP "pings" to origin servers and tracks their average round-trip times,
aggregated by class C networks. Thus, when Squid sends an ICP miss reply, it may be able
to include its estimated round-trip time to the origin server. This feature utilizes the
ICP_SRC_RTT_FLAG (see Section B.3 ).

8.1.3 Issues

Before rushing off to configure ICP on your caches, you need to be aware of certain issues
and tradeoffs. ICP is not necessarily going to improve your cache's performance. If you're not
careful, it can actually make things worse.

8.1.3.1 Delays

One of the benefits of caching is reduced wait time for web pages. A strange thing about ICP
is that cache misses actually incur an additional delay during an ICP query/reply phase. The
ICP transaction is very similar to gambling. If you get a HIT reply, then the gamble probably
paid off. If, on the other hand, you get all MISS replies, then you lost the bet. The big
question is: does ICP increase or decrease your overall object retrieval times in the long run?
The answer depends on a number of factors, including the network distances to your
neighbor caches and the speeds at which web objects are transferred from neighbors and
origin servers.

If your neighbors are relatively close compared to the rest of the Internet, then the ICP delays
represent a small gamble with a big payoff. If you win, you can perhaps download an object
in 0.5 seconds instead of 5 seconds. If you lose, you've wasted perhaps only 0.05 seconds.
Conversely, if your neighbor caches are not much closer than the rest of the Internet, ICP
probably doesn't make sense. All downloads may still take 5 seconds on average, and the
ICP misses probably add an additional 0.1- or 0.2-second delay.

Another important factor is the percentage of replies that are hits. In essence, this represents
the probability of the gamble paying off. In practice, the ICP hit ratio is quite low-about 5%.
Some caches achieve up to 10%, and some only get around 1%. The reason for this low
percentage is that neighbor caches tend to store the same set of popular objects over time.
The users of one cache request the same web pages as the users of another cache.

We can also approach this problem analytically. Given the following four variables, we can
determine whether an ICP-based peering reduces average response times:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Average HTTP service time from origin servers

Average HTTP service time from neighbor caches

Average ICP service time from neighbor caches

ICP hit ratio

The average service time without ICP is simply:

The average service time with ICP is:

We are interested in the case when:

which reduces to:

In other words, when the ICP hit ratio is larger than the ratio of the ICP service time to the
difference in the HTTP service times, then the benefits of the neighbor hits are greater than
the costs of doing the ICP queries. If the ICP hit ratio is smaller than the service time ratio,
using ICP does not reduce the overall service time for user requests.

Also note that some people use caches primarily for saving bandwidth, not for reducing
service times. They probably don't mind the slight extra delay if it reduces their monthly
bandwidth costs.

8.1.3.2 Bandwidth

Speaking of bandwidth, you may be wondering how much of it ICP consumes. It is quite easy
to calculate the additional bandwidth ICP uses. The size of an ICP query is 24 bytes plus the
length of the URL. The average URL length seems to be about 55 characters, so ICP queries
average about 80 bytes. ICP replies are four bytes smaller than queries.

Taken together, an ICP query/reply transaction uses about 160 bytes per neighbor before
including UDP and IP headers. A cache with 3 neighbors uses 480 bytes for each cache
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miss. To put this in perspective, consider that the average web object size is about 10KB.
Thus, a cache with three ICP neighbors increases its bandwidth consumption by about 5%
on average. Note that this corresponds to a measurement made at the cache's network
interface. Whether ICP increases your wide area bandwidth depends on the location of your
neighbor caches.

8.1.3.3 False hits

Notice that an ICP query contains only a URL and none of the other HTTP headers from a
client request. This is problematic because whether a given HTTP request is a hit or a miss
depends on additional headers such as the Cache-control : max-age , Accept-
language . ICP doesn't include enough information for a cache to make an accurate

determination, which leads to false hits.

For example, consider two sibling caches and one object. The object does not exist in the
first cache but has been cached by the second for the past two days. The following HTTP
request arrives at the first cache:

GET http://www.foo.org/object.html HTTP/1.1
Cache-control: max-age=86400

The first cache sends an ICP query to the second for http://www.foo.org/object.html . The
second cache sends back an ICP HIT reply because it considers the object to be still fresh.
When the first cache forwards the HTTP request to the second, there is a cache miss
because of the max-age directive. The cached object is two days old, but the client is willing

to accept only objects that have been cached for one day or less.

In addition to the solution outlined in Section 7.3.8  , there are two ways to handle ICP-related
false hits:

Configure the sibling cache to allow misses, even though it's not supposed to take them.
This opens the door for potential abuse of the sibling cache.

1.

Ensure that all sibling caches use the same configuration for determining whether a
cached object is fresh or stale. This solution is not perfect, and it may work only with
Squid, which sets the max-age value in outgoing requests based on its refresh_pattern

configuration.

2.

8.1.3.4 UDP

There are certain aspects of the User Datagram Protocol that make people uncomfortable.
First of all, unlike TCP, UDP does not have any end-to-end congestion control. If TCP and
UDP compete for bandwidth, UDP will win because TCP includes algorithms to back off.
There is no built-in feedback mechanism to tell a UDP sender to slow down or stop. Using
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our previous example, 10 ICP messages per second to each of 3 neighbors generates about
38 Kbps (before UDP and IP headers). On medium- to high-capacity networks, ICP should
cause no problems at all.

Another issue with UDP (and TCP) is datagram fragmentation. When a single IP packet
exceeds a particular network's maximum transmission unit (MTU), it must be fragmented into
smaller packets and then reassembled by the next hop or by the remote end. A well-known
paper [Kent and Mogul, 1987 ] makes a strong case that fragmentation leads to inefficient
use of resources such as bandwidth, memory, and processing power.

ICP messages are normally quite small, probably 80 bytes on average, which is well below
any network's MTU size. When the HIT_OBJ feature is used, however, ICP replies may
become quite large-up to 9KB. With an MTU of 1,500 bytes, a 9KB message is split into six
fragments. If any one of these fragments is dropped, the entire ICP message is lost.

8.1.3.5 No request method

You may have noticed that ICP does not have a field for a request method. The GET method
is implied for ICP queries. In other words, when a cache receives an ICP query for
http://www.web-cache.com , it checks for a cached response from a "GET http://www.web-
cache.com" request. This, of course, means that we cannot use ICP to query for cached
responses from other request methods. At the present time, this is not a huge problem,
because non-GET request methods are normally uncachable. If some new cachable request
methods are invented in the future, we won't be able to use ICPv2 with them.

8.1.3.6 Queries for uncachable responses

Some people complain that ICP causes a lot of queries for uncachable objects. My data in
Section A.7 , shows that about 25% of web objects are uncachable. However, nothing about
ICP requires a cache to make queries for these objects. The problem is that the cache
doesn't always know which URLs are cachable and which are not.

Squid's implementation of ICP doesn't make queries for objects it knows are uncachable.
Usually, this includes URLs with "cgi" or "?" in them. If the administrator has configured other
uncachable rules, requests matching these won't be queried either. This is an easy thing to
implement, but it catches only a subset of uncachable responses.

To prevent queries for other uncachable URLs, the cache could remember something about
previously seen objects-in other words, an "uncachable cache." Thus, the cache
remembers which URLs weren't cached before and doesn't make ICP queries for those
URLs again.

Queries for uncachable objects may be desirable in some situations. In addition to providing
hit/miss information, ICP can also help make forwarding decisions, even for uncachable
objects. The source RTT measurement feature can tell a child cache which parent is the best
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choice for a given URL.

8.1.3.7 Interoperation

For the most part, different ICP implementations interoperate very well. The only exception is
with a version that Network Appliance used in their products from 1996 to 2000. Whereas the
majority of caching products use ICPv2 as described in the RFCs, Network Appliance's
implementation was a little different. Primarily, they used 3 for the version number. In
addition, they used the Options and Option Data fields for timestamps. Finally, Network

Appliance's ICP messages always had the Reqnum field set to 0. These differences can
significantly affect interoperation. Even though Network Appliance's current products use
ICPv2, I'll describe how Squid interoperates with their version in case the older products are
still in use.

Dealing with Network Appliance's timestamp fields is very easy. Squid knows those octets

are not Options and Option Data , so it simply ignores them. This probably means that a
Squid cache occasionally returns an ICP_OP_HIT when another Network Appliance cache
would return an ICP_OP_MISS instead. For a parent relationship, that is not a big deal, but
for a sibling relationship, it may cause some problems. Sibling relationships rely on accurate
hit predictions to be effective. Returning an ICP hit instead of a miss in this case leads to
false hits, which we discussed in Section 7.3.8 .

The 0 Reqnum field turns out to be more of a problem for Squid. This is due to how Squid

internally indexes its cache objects. In Squid, an object is either public or private . A public
object has a key that can be found by any cache client, while a private object's key is known
only to a single client. A key is made private by prepending a unique 32-bit integer to the
URL. Only the client that originates the request knows that 32-bit identifier. An object always
starts its life with a private key, but the key is changed to a public key if the response is
cachable. The change is made when we receive the complete response headers. This
scheme prevents a second client from getting a cache hit on a private, uncachable response
while that response is being retrieved.

At the time when an ICP query is sent and the reply received, the cache key is still private. It
won't be changed until after the HTTP request is sent. When the ICP reply arrives, we need
to find the pending cache object to which it belongs. If the object key is private, then we need
to know the 32-bit number to locate it. Not coincidentally, we put the identifier into the
Reqnum field. Thus, a valid ICP reply has both the URL and the private identifier, which
allows us to locate the pending cache entry.

If our cache neighbor is a Network Appliance box, however, the Reqnum is 0 in the ICP reply.
This means Squid cannot find the cache entry corresponding to the reply message because
the 32-bit identifier is missing. Squid has a workaround for this ugly problem. If it ever

receives an ICP reply with a 0 Reqnum , then pending objects start out with a public cache
key. Unfortunately, this means that two or more clients could receive a single response that
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should have been sent to only the first client.

8.1.3.8 Unwanted queries

When other people discover (or are under the false impression) that you have a caching
proxy listening for ICP queries, they may configure your site as a neighbor without your
permission. Your site is now subject to a constant stream of ICP queries from an unknown
neighbor. This traffic is annoying because it consumes your bandwidth and CPU cycles. In
some cases, getting it to stop can be quite difficult.

If you don't want to receive queries from unknown sites, you should configure your cache to
respond with ICP_OP_DENIED messages. RFC 2187 recommends that caches stop sending
queries to a neighbor when 95% or more of the replies are ICP_OP_DENIED. Unfortunately,
it seems that some products do not have this safeguard and continue sending queries
regardless.

You'll certainly know the IP address originating the queries. But how do you get in touch with

a person at that site who will help you out? On most Unix systems, you can use the host
command to find out if the IP address is associated with a hostname. Then you can send
email to the root account at that host or domain. Unfortunately, many addresses don't resolve
to hostnames. Furthermore, many individually run Unix sites aren't configured properly and

root 's mail goes unread. You may need to use tools such as traceroute and the databases
from ARIN (http://www.arin.net ), RIPE (http://www.ripe.net ), and APNIC
(http://www.apnic.net ) to track down persons responsible for that IP address.

If you get desperate, you can try blocking the queries with a filter on your router or an IP
firewall rule on the host. Unfortunately, because ICP uses UDP, the sending site can't tell the
difference between a blocked packet at your end and a network failure somewhere in the
middle. The ICP client will probably continue sending queries under the assumption that the
network is down. It expects the network to be repaired and wants to know immediately when
it can talk to your cache again. In retrospect, the ICP RFCs should have mandated an
exponential backoff algorithm in the event of packet loss.

8.1.4 Multicast ICP

Multicast ICP is a technique for efficient delivery of multireceiver traffic. Its development has
been driven largely by the desire to support multimedia broadcasts on the Internet. Consider
what happens with 100 people listening to an Internet radio station. If the station has to send
data directly to each listener, each packet is transmitted 100 times. The station's bandwidth
requirements increase in proportion to the number of listeners. But if the station uses
multicast, each packet is sent only once on any particular link. The packets are "copied" and
replicated as necessary by the routers between the sender and the receivers.

It turns out that we can use multicast with ICP. You may have noticed that nothing in an ICP
query message depends on the message's destination. A cache with four neighbors sends

http://lib.ommolketab.ir
http://lib.ommolketab.ir


the exact same query to each one. Although ICP messages are not particularly large, some
people would like to eliminate this redundancy. Multicast offers a way for us to reach multiple
neighbors by sending only one message. However, multicasting ICP messages is not as
straightforward as we would like. To better understand how multicast ICP works, let's
consider a group of six caches. Instead of unicasting queries to each other, we want to use
multicast.

One of the first things to do is select a multicast address for the group. The IANA has
reserved a large block of the IPv4 address space (224.0.0.0–239.255.255.255) for multicast.
Some care must be taken when selecting an address because we do not want to select one
already being used by some other application(s) on the global Internet. Unfortunately, it is
currently difficult, if not impossible, to find out which addresses are being used at any given
time. The IETF's Multicast Address Allocation (MALLOC) working group is developing
protocols and procedures to address this issue. Until then, the best approach is to randomly
select an address from the multicast space. Given that there are 2 28 multicast addresses, the
probability of a collision is quite low. Once an address has been selected, we must configure
the cache software to listen to that address so it receives multicast ICP queries.

The next step is to configure the caches to send ICP queries to the multicast group. We
already know the IP address we send messages to. In addition, we need to think about a
multicast time-to-live (TTL) value. This parameter determines how far away our queries can
travel. We'll see why this is important in just a bit. Every multicast link in the Internet has a
nonzero threshold. If a multicast packet's TTL is greater than or equal to a link's threshold,
then the packet may be sent over that link. After a packet is sent, its TTL value is
decremented by 1. Obviously, large TTL values allow packets to travel further than small
ones. A small value, such as 4 or 8, should keep all multicast queries within your
organization's network. The maximum possible TTL value is 128 and probably allows your
queries to be delivered to any host on the Internet that has joined your multicast group. You
can use the mtrace program to see the threshold values for a specific multicast path. In the
following example, a TTL of at least 10 hops is required to reach the destination:

% mtrace -s uc
Mtrace from 141.142.121.5 to 132.249.40.200 via group 224.2.0.1
Querying full reverse path... 
  0  oceana.sdsc.edu (132.249.40.200)
 -1  tigerfish.sdsc.edu (132.249.40.11)  PIM  thresh^ 1   [default]
 -2  medusa.sdsc.edu (132.249.30.10)  PIM/Special  thresh^ 6  
 -3  cs-f-vbns.sdsc.edu (198.17.46.43)  Unknown protocol code 8  thresh^ 0  
 -4  cs-atm0-0-2.ncsa.vbns.net (204.147.129.70)  PIM/Static  thresh^ 0  
 -5  charlie-atm0-5.ncsa.uiuc.edu (141.142.11.2)  No route
 -6  uc.cache.nlanr.net (141.142.121.5)
Round trip time 502 ms; total ttl of 10 required.

Only ICP queries are sent via multicast. ICP replies are sent to unicast addresses for a
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couple of reasons. First, multicasting ICP replies does not reduce the amount of traffic in the
network. ICP queries have a one-to-many property that fits nicely into IP multicast. Replies,
however, are many-to-one, and multicast is of no help. Second, we sometimes rely on ICP to
test the unicast path between a cache and a neighbor cache. Multicast and unicast routing
paths may be significantly different. If there is a unicast routing problem, we would rather
have the reply packet dropped so the neighbor cache is automatically eliminated from the
selection process.

IP multicast does not have any built-in security mechanisms. Anyone connected to the
Internet is allowed to send and receive multicast messages on any group. This has some
interesting consequences for ICP. If your caches send ICP queries with a large TTL value,
and if I know your multicast group address, I may be able to passively "snoop" on your cache
traffic. By receiving all of your ICP queries, I know which web sites your users are visiting. If
my application only receives and never responds, you will probably never know that I am
listening. If I also respond to the multicast queries, then another problem arises. The cache
that originates a query suddenly receives a reply from an unknown neighbor. A cache should
not implicitly trust any host that sends ICP replies; the unknown neighbor's intentions may be
malicious. Caches must accept ICP replies only from known and trusted neighbors.

Because of the above problems, I usually discourage people from using multicast ICP.
Multicast itself is often difficult to work with. In my experience, the infrastructure is fragile; it
works one day but not the next. Debugging is time-consuming. The privacy and security
issues are significant and probably outweigh the bandwidth you'll save. To the best of my
knowledge, multicast ICP is rarely used today.
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8.2 CARP

CARP is an algorithm and not a protocol per se. It was designed to address a particular
problem: how to achieve efficient and scalable load balancing while maximizing hit ratios and
minimizing latency. It is useful in situations where a proxy caching service consists of a
number of machines tightly clustered together. For example, a large ISP may need five web
caches to handle all the traffic from their customers. Given a cache cluster or array, how can
we distribute the load among the members?

One technique is known as DNS round-robin. Each cache has its own IP address, but all are
listed under a single hostname. For example:

$ORIGIN us.ircache.net.
bo                      IN      A       192.52.106.30
                        IN      A       192.52.106.31

A DNS server, such as BIND, cycles the order of the addresses for every lookup. When one

client asks for bo.us.ircache.net, it receives the answer (192.52.106.30, 192.52.106.31). The
next client that asks gets the same addresses in a different order: (192.52.106.31,
192.52.106.30).[2] Clients normally try the first IP address in the list. They'll try the next
address only if there is a failure with the first. With this technique, each cache should receive
about half of the the requests.

[2] You can see this for yourself by running host www.cnn.com on your Unix system.

The drawback to this approach is that client requests are randomly assigned among the
member caches. One client may request http://www.web-cache.com from cache A, while
another requests the same URL from cache B, thereby missing the opportunity for a cache
hit. Of course, the caches can use ICP among themselves to get cache hits from each other,
but this adds some delay. Furthermore, the member caches become nearly identical over
time.

URL hashing, as described in Section 4.3.2, is better than DNS round-robin because it
deterministically partitions all URLs among the set of caches. However, it also has a couple
of annoying problems. It is easy to split the load equally among all caches, but anything more
sophisticated (such as 10%/30%/60%) is awkward to implement. Second, adding or
removing a group member causes a significant readjustment of the URL-to-cache mapping.
Because of the modulo function, adding one cache to a set of N means that the mapping
changes for N out of each N+1 URLs. Increasing the number of caches from four to five
members displaces 80% of all cached objects.

CARP addresses this last problem with a creative, if not complicated, algorithm. For a given
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request, CARP calculates a score for every proxy cache. The request is forwarded to the
proxy with the highest score. If this fails, then the second-highest scoring cache is tried. The
score is a calculation based on a hash of the URL, a hash of the cache's name, and weights
assigned to each cache. The important characteristic is that adding a new cache to the array
does not change the relative ranking of the scores for the other caches; instead, the new
cache creates new scores. Statistically, the new scores will be higher than the existing
caches' scores for a fraction of the URLs that is proportional to the cache's weight within the
array.

CARP also specifies a file format for a Proxy Array Membership Table. This table allows
clients to figure out which caches belong to a group. The table may be accessed via web
protocols (HTTP) so many clients can easily retrieve the information.

The CARP algorithm may be used by any web client, such as a browser or proxy cache, that
needs to choose among a set of caches. Note, however, that it only works for parent
relationships because CARP does not predict cache hits. Another minor problem with CARP
is related to persistent HTTP connections. A client that makes four requests may use more
TCP connections with CARP than it would without. Finally, also note that CARP has linear
scaling properties (similar to ICP) because a score must be calculated for every group
member.

At the time of this writing, CARP is documented only as an Internet draft, which is now
expired. The details of this document are included in Appendix C. Whether CARP advances
to become a more formal standard remains to be seen. The document authors, Vinod
Valloppillil of Microsoft and Keith W. Ross of the University of Pennsylvania, have not been
actively pushing for its adoption recently. Both Squid and the Microsoft Proxy products
implement CARP. The draft document mentions that CARP can be implemented as a proxy
autoconfiguration script (see Section 4.3), but none is provided.
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8.3 HTCP

CARP addresses some of ICP's problems, but it is not an option for everyone. If you want to
have sibling relationships, or even parent relationships with loosely-defined groups, you still
need a way to predict cache hits. HTCP was designed to improve upon ICP's weaknesses.
Both are per-request query/response protocols, and both use UDP for transport. This,
however, is where the similarities end.

Recall from Section 8.1.3.3, that false hits can be a serious problem for ICP, especially in
sibling relationships. HTCP solves this problem by sending full HTTP headers (not just the
URI) in requests and responses. Thus, if the client's HTTP request includes headers such as
Cache-control: max-age, the HTCP server is able to reply correctly with a hit or miss.

HTCP also includes most of the features that are experimental in ICP. For example, with
HTCP one cache can ask another to delete or update a particular object. It also has a
monitoring feature whereby one cache tells another (in real time) about objects added,
refreshed, replaced, and deleted. Unlike ICP, HTCP supports relatively strong authentication
by use of a shared secret key and MD5 hashing. This allows a receiver to be confident that a
message was actually sent by the correct party.

HTCP is documented as an experimental RFC (2756). It is also described in Appendix D.

8.3.1 Issues

If you look at the HTCP specification, you'll see that it is significantly more complex than ICP.
The message structure is relatively rich, and there are numerous variable-size fields in any
given message. The complex message structure necessitates additional system resources,
namely processing power. This may effectively limit the rate at which a cache can send and
receive HTCP queries.

Another potential problem is that an HTCP TST response should include the HTTP response
and entity headers. Unless the headers are stored in memory, it may take a significant
amount of time to read them from disk. An HTCP server implementation must therefore
choose to either return partial headers quickly or full headers with a much higher latency.
Which is more important: accuracy or speed?

Because HTCP also uses UDP for transport, it shares some problems with ICP. UDP is not
congestion-controlled. Small UDP messages cause certain inefficiencies in the network.
Large messages are undesirable too because we don't want them to be fragmented. In
measurements with Squid, the mean size of an HTCP query is 520 bytes, while the median is
475 bytes. HTCP replies, on the other hand, are almost always 20 bytes because Squid does
not store headers in memory. Recall from the previous section that ICP queries and replies
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average about 80 bytes.

only for RuBoard - do not distribute or recompile  

http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

8.4 Cache Digests

Two of the protocols discussed so far, ICP and HTCP, incur a lookup delay for every cache
miss. Before a cache miss can be forwarded, the selection process takes about one network
round-trip time to query the neighbor caches. Depending on the proximity of the neighbor
caches, this could take anywhere from 10 to 300 milliseconds. Such a delay can be
significant, especially for a web page with many embedded images.

The lookup delay exists because a cache doesn't know a priori which neighbors hold a
particular object. Furthermore, it cannot predict which, if any, would return a cache hit for the
object. If we can give a cache this advance knowledge about its neighbors, then we can
eliminate the delays. We want the best of both worlds: hit predictions without delays.

As mentioned previously, CARP has no forwarding delays. However, it does not meet our
requirements because the next-hop cache is chosen based solely on the requested URL.
CARP does not care whether the request will be a cache hit or miss. This means, for
example, that CARP is not usable in a sibling relationship.

To predict hits in a neighbor, a cache needs to know which objects are stored there. A
neighbor's cache contents can be represented as a database or directory. These directories
must be exchanged between neighbors. By looking up objects in the directory, we can predict
cache hits. Since a cache's content changes over time, the directories must also be updated.
A primary goal of our new protocol is to make the transmission and storage of this directory
as efficient as possible.

Probably the worst we could do is use a plain list of cached URLs. The average URL length
is about 55bytes, or 440 bits. The URL list is poor choice for a directory because URLs are
an inefficient representation-they use only printable characters, and some sequences
appear very frequently. In information theory terms, URLs have a low amount of entropy. A
better option is to use a list of hash values of the URLs. With hash values, we may have
collisions where two or more URLs have the same hash value. A collision's probability is
related to the hash value range and the number of URLs in the list. For a cache of about one
million objects, we probably need 24 to 32 bits per object. That's a significant reduction in
directory size compared with 440 bits per object in a URL list. Believe it or not, we can do
even better. With an algorithm known as a Bloom filter, storage is reduced to only a few bits
per object.

8.4.1 Bloom Filters

The Bloom filter algorithm, first described by Burton Bloom in 1970, encodes a set of input
keys with the help of some hash functions. Recall that a hash function is simply an algorithm
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that takes a chunk of data as input (the key) and produces an integer as output. A good hash
function has the characteristic of being random. That is, given a sufficiently large number of
input keys, the output values should have an apparently random distribution. Another hash
function characteristic is the range of its output. Often, the range is expressed as a power of

2, such as 32bits or 232. One of the most often used hash functions is called MD5, which is
short for Message Digest (Version5) [Rivest, 1992]. The MD5 hash function outputs 128-bit
values and is used extensively in the current Cache Digest implementation.

A Bloom filter is defined by two parameters, K independent hash functions and an array of M

bits. The bits of the filter are used to efficiently encode a collection of N items. For a Cache
Digest, the collection is the set of object keys (URIs or URLs) stored in a cache. To construct
a Bloom filter, we iterate over the items in the collection. Applying the K hash functions to

each item gives us K hash values. Each hash value represents a bit position in the filter that

should be turned on. If a hash value is larger than M, we apply the modulus operator to keep
it in range. Note that M should be less than the hash function range; otherwise, some bits can
never be turned on.

After all items have been added, the filter should consist of approximately equal numbers of
1's and 0's. Note that more than one key can turn on the same bit. (Of course, a bit can only
be turned on once. In other words, once a bit is turned on, it remains on.) This property
means that it is not possible to delete an item from the filter. A given bit may be on due to
multiple items. Clearing the bit removes all of these items from the filter.

Let's look at a simple example to get a better handle on Bloom filters. Assume that we have
four hash functions called H1, H2, H3, and H4, and a filter size of 2 20 bits. We want to add an
object, in this case a URL, to the filter. Our sample URL is http://www.squid-cache.org.
Step one is to apply our four hash functions to the URL. Step two is to take the modulus of
each value by 1,048,576. Finally, step three is just to turn on the bits in the corresponding
positions. Table 8-1 shows the values for this example.

Table 8-1. Bloom Filter Example

Hash Function Step 1 Value Step 2 Value

H1 4,107,498,967 226,775

H2 2,692,669,443 974,851

H3 3,532,948,500 295,956

H4 991,683,655 779,335

After the filter has been populated, we can look up specific objects using the same
procedure. We apply the same four hash functions to the URI in question and end up with
four bit positions. If at least one of these bits is off, we know the URI is not present. If all of
the bits are on, then there is some probability that the URI is present.
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We cannot conclude that an item is present even though all K bits are on. Consider the
following contrived example: the key "A" turns on bits 1, 2, 5, and 9. The key "B" turns on bits
3, 6, 7, and 11. Now we test for the presence of key "C," which corresponds to bits 2, 5, 6,
and 11. Even though "C" was not added to the filter, we will find all of C's bits on. This

occurrence, known as a false positive, is the price we pay for the Bloom filter's compact
representation. The probability that a lookup will be a false positive depends on the size of
the filter, the number of hash functions, and the number of items in the collection. Bloom's
paper [Bloom, 1970] gives some formulas that relate all of these parameters. In particular,
this probability is:

For large values of M, this simplifies to:

For example, with  and , the false positive probability is 9.2%. [3]

[3] Bloom's formula requires that K distinct bits are turned on for each input key. In Cache Digests, two or more hash functions

could have the same value for a single input key, and thus fewer than K bits could be turned on. The probability of this occurring

is the inverse of the filter size, i.e., on the order of 10-6 for a typical cache.

8.4.2 Comparing Digests and ICP

How do Cache Digests and ICP compare in terms of network bandwidth? We know that a
Cache Digest is a very efficient encoding of a cache's contents, but that doesn't mean it uses
less bandwidth. The Cache Digest protocol uses bandwidth in proportion to the size of a
cache. ICP, on the other hand, uses bandwidth in proportion to the rate of cache requests.
This means, for example, that ICP uses less bandwidth during idle periods, whereas Cache
Digests probably use the same amount during idle and busy times.

We can do some simple calculations to estimate when it makes sense to switch from ICP to

Cache Digests. First, let's define our parameters: S is the cache size in gigabytes, L is the

mean object size in kilobytes, T is the digest update period in hours, and R is the average

ICP query rate per peer in queries per second. Let's also assume the cache digest is sized at
5 bits per cache object, and the average ICP message size is 80 bytes. Then, the bandwidth
that Cache Digests uses is given in bytes/second as:

The ICP bandwidth is:
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Equating these two, substituting 10KB for L, and solving for R, we get:

Given a cache size S and digest update period T, we can now calculate the ICP query rate
that uses the same amount of bandwidth. For example, a 20GB cache with a 1-hour digest
update period uses the same bandwidth as 2.3 ICP queries per second. If the query rate
exceeds 2.3 ICP queries per second, then Cache Digests uses less bandwidth than ICP.

ICP and Cache Digests also differ significantly in their usage of system resources. For the
most part, ICP requires little CPU processing, except for copying buffers and building
packets. Cache Digests, on the other hand, may require more of the CPU because of the
hash function calculations. The major difference, however, is in memory usage. ICP is
stateless and therefore uses no memory. Digests, of course, require a moderate amount of
memory. A cache may store its own digest on disk, but it must keep all of its neighbors'
digests in memory for fast lookups. Cache Digest memory usage scales linearly with the
number of neighbors.

Cache Digests eliminate the annoying per-request delays from ICP but introduce another
potential source of delay. A sibling relationship that uses Cache Digests experiences some
fraction of false hits. In these cases, the first cache must re-forward its request to another
server. Most likely, the delays due to cache digest false hits are negligible compared to ICP
delays. It may be difficult to quantify the delay caused by a false hit, but we can assume it is
on the order of one network round-trip, just like an ICP query. Since false hits occur in a small
percentage of cases, whereas ICP delays every request, we're already ahead by using
digests. Furthermore, since ICP also may cause false hits, we're even better off with digests.
Finally, remember that digest false hits cause a delay only for sibling relationships.
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8.5 Which Protocol to Use

The four protocols and algorithms presented here each have unique features and
characteristics. Which one you should use depends on numerous factors. The following
guidelines may help to determine the best protocol for your particular situation.

ICP may be a good choice if you need to interoperate with products from different vendors.
Since ICP has been around longer than the others, it is supported in most caching products.
It is also a reasonable choice if you want to build or connect into a small mesh of caches.
You want to avoid having too many neighbors with ICP; try to limit yourself to no more than
five or six. ICP may not be a good choice if you are very concerned about security, and it
may be all but useless on networks with high delays and/or a large amount of congestion.
The protocol has no authentication mechanisms and may be susceptible to address
spoofing. Finally, you probably cannot use ICP if there is a firewall between you and your
neighbor caches because firewalls typically block UDP traffic by default.

CARP is a logical choice if you have multiple parent caches administered by a single
organization. For example, some large service providers may have a cluster of proxy caches
located where they connect to the rest of the Internet. If this applies to you, make sure you
always have up-to-date configuration information. CARP is the only protocol that does not
allow you to create sibling relationships.

HTCP has characteristics similar to ICP. You can use HTCP for small cache meshes and
where network conditions are good. Unlike ICP, HTCP has relatively strong authentication.
This may be particularly important if you need the object deletion features. HTCP should
cause fewer false hits than ICP because hit/miss decisions are based on full HTTP headers
rather than only the URI. Note that HTCP messages are about five times larger than ICP, so
it uses more bandwidth.

You should use Cache Digests if you can afford to trade increased memory usage for lower
forwarding delays. The bandwidth tradeoffs of Cache Digests versus ICP depend on many
factors. You should apply the formulas in Section 8.4.2, to your particular situation. You
cannot really use Cache Digests over slow network connections because the transfer of a
large digest saturates the link. Cache Digests probably result in a higher percentage of false
hits compared to ICP. Even so, overall client response times should be lower, and false hits
are only a concern for sibling relationships.
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Chapter 9. Cache Clusters

A cache cluster is a group of separate caching proxies configured to act like a single server.
In other words, even though there are many machines in the cluster, clients and users
perceive it as a single unit.

A cluster is different from a hierarchy or mesh in some subtle ways. Primarily, the members
of a cluster are typically located together, both physically and topologically, for example, with
servers in the same room and on the same subnet. Since a cluster appears as a single
system, a single organization has administrative control over all the machines. A hierarchy,
on the other hand, often involves multiple locations and multiple organizations.

Why would you need a cluster? Many companies use cache clusters to serve or cache more
pages and provide redundant service. Let's say you're already using a certain caching
product you really like, but your traffic load is increasing, and the service is becoming slow.
You need to upgrade, but you don't want to discard your current product. You can double
your capacity if you buy a second server and create a small cluster. As mentioned earlier, if a
cache is down, users may not be able to surf the Web. In a cache cluster, if one server fails
unexpectedly, the other(s) can absorb the additional load.

This chapter covers three different reasons for clustering. We'll start with ways to provide
redundancy and not worry about additional capacity. Then we'll focus on techniques for
distributing load among multiple machines. Some of the load-sharing methods waste
bandwidth, so we'll also look at ways to optimize a cluster for bandwidth savings.
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9.1 The Hot Spare

One way to provide redundancy is to have a second cache available on standby. In normal
operation, all the traffic goes to the primary cache; if the primary fails, the secondary takes
over. This arrangement is not exactly a cluster, since just one of the caches is active at any
one time. However, the techniques for clustering and redundancy are similar.

You can use the DNS to support a hot spare. Your users configure their browsers with a
hostname for the caching proxy service. You specify the primary cache's IP address in the
DNS zone file. If the primary fails, simply change the DNS file to use the secondary's IP
address. Manually updating the DNS zone files is a big drawback to this technique. If you're
brave enough, you might be able to automate the process with some scripts. For example, if

the primary cache doesn't respond to pings, swap zone files and restart named. Any DNS-
based technique also requires relatively low TTL values (e.g., five minutes) for the cache's
address record. Some user agents will continue using the old address until its TTL expires.
Another drawback is that some users might enter the cache's IP address rather than the
hostname. Those users' traffic always goes to one of the caches, regardless of the DNS
configuration.

Another simple approach is to give two caches the same IP address, but connect only one at
a time to the network. If the primary fails, just unplug its network cable and replace it with the
secondary. Alternatively, for a Unix-based system, you can use ifconfig to enable and disable
interfaces without touching network cables. Again, this method requires manual intervention

or, in the case of ifconfig, some carefully written scripts. There is also an issue with
ARP-the protocol that maps IP addresses to Ethernet addresses. When you enable the
secondary machine, other devices on the subnet won't be able to talk to it until their ARP
caches time out, which usually takes a minute or so.

A number of products are available that can automatically provide faster and smoother
failover to backup systems. These are the same products listed in Table 5-1 (i.e., layer four
switches). You can configure them for interception or with a virtual server address. You also
tell the switch the real IP addresses for the primary and backup caches. Normally, it forwards
all connections to the primary. If the switch determines that the primary is down, it uses the
backup instead. Since users always talk to the virtual server, there are no issues with the
DNS or ARP cache timeouts.

The hot spare technique has some characteristics that make it unpopular. Primarily, the
secondary system probably sits idle most of the time. Those resources (CPU, disk, memory)
are hardly being utilized at all. It's somewhat wasteful to have the box powered up but not
doing anything useful. Another concern is that the secondary cache could fail and the failure
go unnoticed until the secondary was actually needed. For these reasons, many people
prefer a load sharing configuration rather than a hot standby. The remainder of this chapter
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talks about load sharing configurations.
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9.2 Throughput and Load Sharing

A cache cluster with load sharing can improve both throughput and reliability. Throughput is

increased because N caches can handle more traffic than just one. Reliability is increased
because when one cache fails, the other cluster members absorb the increased load.

The really cheap way to implement load sharing is with the DNS. You simply list the IP
addresses of all members under a single host name. Most DNS resolver libraries change the
order of the addresses for each lookup. Thus, requests are sent to the caches in a round-
robin fashion. This technique provides very rudimentary failover when one cache goes down.
When a browser cannot connect to one of the IP addresses, it should try the next one in the
list. Unfortunately, this can take a long time (up to two minutes), and browsers don't usually
remember which addresses don't work.

A more robust approach, if you can afford it, is to use a layer four switch or dedicated load
balancing product (see Table 5-1). These products have a number of load sharing
algorithms (see Section 5.2.2) and generally do a better job of spreading the load among
cluster members. Furthermore, users are less likely to experience delays or other problems if
one member fails.

You may notice that I am intentionally avoiding the word balance. Some of the load sharing
techniques may not distribute the load evenly among caches. The DNS-based approach is
difficult to predict and control. One or two really busy clients could send all their requests to
one of the caches, possibly overloading it. Layer four switches can be configured to partition
requests based on IP addresses-either the source or the destination. A busy client or
popular server can cause one cache to receive many more requests than the others.

Random mapping between clients and caches also causes some problems for session
tracking. A number of web services (origin servers) assume that all requests from a single
user come from the same IP address. They get confused if different HTTP requests that
belong to a single session come from multiple addresses. It seems that these origin servers
are clustered as well. A layer four switch sits in front of them and distributes requests based
on the client's IP address. When the user logs in, its authentication request is sent to one of
the origin servers. This sets up some state information on that server so subsequent requests
are allowed. But if the subsequent requests go to a different server, they are denied. To
accommodate client-side clustering, the server-side layer four switch needs to be aware of

the session information (i.e., cookies). This type of so-called layer seven switching is
increasingly common for distributed servers. However, you may still encounter a service that
uses address-based distribution and won't work with your cache cluster.
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9.3 Bandwidth

Note that with the configurations discussed so far, we haven't talked about sending specific
requests to specific caches. We also haven't talked about using an intercache protocol to
search for cache hits. A simple load sharing configuration results in wasted disk space and
bandwidth. Space is wasted because the same response can be stored in multiple caches.
Bandwidth is wasted because we don't always need to forward a cache miss if we know one
of the other members has a particular response saved.

There are two ways to improve the disk and bandwidth utilization of a cache cluster. One is to
partition requests before they enter the cluster. That is, some device or algorithm makes sure
that the same request always goes to the same member. The second way is to create sibling
relationships between the caches and use an intercache protocol to locate previously cached
responses. In this case, we don't really care which cache initially receives a particular
request.

Recall from Chapter 8 that ICP and HTCP are UDP-based, per-query object location
protocols. They work well for a small cluster with five or fewer members. ICP uses smaller
packets than HTCP at the expense of being less accurate. Both ICP and HTCP add some
latency to cache misses while querying the neighbors. However, this should not be a
significant problem for a highly localized cluster with plenty of local-area bandwidth.

Cache digests are an alternative to ICP and HTCP. They eliminate per-request delays but
require more memory. In a sibling relationship, digests probably consume more local area
bandwidth than ICP, but this is not an issue for most environments.

Note that the intercache protocols do not address the problem of storing a response in more
than one cache. By default, when one cache gets a response from its sibling, the response is
saved in both caches. Some products, such as Squid, have the option never to store
responses received through a sibling or parent.

There are a number of techniques and products that partition requests and assign them to
specific cluster members. Cisco's WCCP is designed to do this. The router applies a hash
function to the destination IP address; the hash value corresponds to one of 256 buckets,
which specifies the cluster member for that address. If the member happens to be down, the
router forwards the request directly to the origin server.

Layer four switches have similar functionality. The destination address is hashed, and the
resulting value is used to select one of the real cache servers. If one of the caches goes
down, the switch can either bypass it or redistribute the load among the remaining caches.

Many products also have URL switching features. Rather than use the destination address,
the switch calculates the hash function over the URL or some other part of an HTTP request.
URL switching should result in a more evenly balanced distribution of load. It also allows you
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to bypass the cache cluster for uncachable responses, such as cgi-bin requests. Since URL
hashing requires more of the switch's resources than address hashing, the peak throughput
for URL hashing may be lower.

CARP is another good way to partition requests throughout a cluster. The best thing about
CARP is that it minimizes the reallocation of requests when you add or subtract a cluster
member. One of the difficult things about CARP is deciding where to implement it. Browsers
can implement CARP directly, with a proxy auto-configuration script, for example. In this
case, only the properly configured JavaScript-capable browsers forward requests based on
CARP. HTTP requests from nonbrowser clients won't know about the cache array. Another
option is to have a number of first-level caching proxies that intercept HTTP connections.
These can forward requests to a cluster of parent caches using CARP.

only for RuBoard - do not distribute or recompile  

http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

Chapter 10. Design Considerations for Caching Services

As someone looking to design or purchase a caching system for your organization, you have
many options and many decisions to make. Numerous companies now offer caching
products, and all of them would love to sell you theirs. The purpose of this chapter is to help
you pick a product that meets your needs. We'll focus on hardware configurations and
product features rather than specific products and vendors.
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10.1 Appliance or Software Solution

For the most part, caching products can be classified into appliances and software solutions.
Choosing an appliance means that the hardware and software come bundled together as a
single product. With a software solution, on the other hand, you buy the hardware from a
different company or perhaps use some equipment you already have. Appliances are usually
designed to run just one application-the web cache. Both types have their advantages and
disadvantages.

10.1.1 Appliances

Many people are attracted to appliances because they tend to be easier to install and
maintain. The software comes preloaded on the hardware. You don't have to think about disk
space, file permissions, startup scripts, etc. Often, the product is up and running after you
provide a few basic configuration details, such as the box's IP address, hostname, default
route, and DNS server.

Appliances usually have a nice graphical interface for administration. That is, you simply use
your web browser to configure and administer the cache. The interface probably also
includes real-time graphs that show you current load, disk usage, and other useful metrics.

Another benefit of an appliance is that you don't have to worry about hardware compatibility
or drivers. You can be sure that all components of the system work together. When buying
your own system, you might end up with the wrong type of memory, for example, or the
operating system may not support your particular network card.

Often, an appliance's operating system is optimized and customized for its particular
hardware or task. For example, the product may use a specialized filesystem specifically
designed for 9GB SCSI LVD disks. Another likely optimization is to have a tighter integration
between the network and the application. Copying data buffers between layers is a potential
source of delay. Eliminating those copies improves the product's performance.

Until recently, it was rare to find an appliance that used ssh for remote access. Telnet was
the only option for a long time. Now it seems like most of the appliance products have
adopted ssh as well. Even so, a general-purpose operating system may give you more

security features than an appliance. With ssh on Unix, for example, you can require or deny
certain types of encryption, key formats, and so on. Additionally, most Unix systems now
have extensive packet filtering capabilities not likely to be found on appliances. On the plus
side, appliance vendors should be very responsive to known security problems. You may not
be able to receive software updates without a support contract, however.

In general, an appliance is more difficult to customize. You won't have access to the
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operating system or be able to run additional services on the cache machine.

You might have a difficult time upgrading an appliance. If you need more disk space, for
instance, any number of problems might surface. Higher capacity disks may not be available
for your particular model. Some appliances are designed to be very small and may not have
open slots for additional network or disk controllers. If you need more processing power, you
may not be able to upgrade just the CPU. Also note that your warranty or license may not
allow you to upgrade the hardware yourself, even if you know how. These issues are perhaps
less important for small, cheap appliances because you can simply add more units to expand
your capacity.

The following companies offer appliances: Network Appliance, InfoLibria, Cisco, CacheFlow,
Lucent, iMimic, IBM, Dell, Compaq, and Inktomi. A number of companies sell appliance
products based on Squid. For a current listing, visit http://www.squid-
cache.org/products.html.

10.1.2 Software

If you decide on a software solution, then you must buy the necessary hardware on your
own. If you're lucky, you may already have some hardware you can use. When buying your
own hardware, there is a risk that some of the components are not well matched. For
example, you might get too much disk space and not enough memory, or you may spend too
much money on an overly powerful CPU. There is also some risk of incompatibility. Your
operating system might not support Gigabit Ethernet cards, or you might get the wrong type
of memory.

The software solution allows you to reuse your hardware for other purposes. If you invest a
lot of money in appliances and later decide you don't like them, you may be stuck with
unusable equipment. Your general-purpose hardware retains some value even if you don't
use it for caching. Also, it might make sense for you to run additional services, such as DNS
and email, on your caching hardware. This reduces the number of boxes you have to
administer.

The software approach allows you to choose hardware and operating systems that you are
comfortable with. Your company may have invested a lot of time and expertise in a specific
platform, such as Digital Unix or Solaris. Furthermore, you may have a good business
relationship with certain vendors. If your company is large enough, then you probably get
good discounts on hardware and support contracts.

A software solution allows you to customize many aspects of the system. For example, you
can write your own scripts to analyze and archive log files. For additional security, you can
utilize packet filtering features of the operating system or use third-party applications.

Open source products such as Squid offer another level of customization. If you are so
inclined, you can add your own features, change some hardcoded values, and even fix some
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bugs.

On the other hand, a general-purpose operating system is probably not tuned and optimized
for proxy caching. Historically, proxy caches that run on Windows or Unix have used the
native filesystems (i.e., NTFS, UFS). Soon we will see more software solutions that have their
own filesystems. Even so, general-purpose operating systems have a lot of code, including
drivers, that could be optimized or simply removed for a system dedicated to proxy caching.

A software solution may be easier to debug because you have full access to the operating
system. You can use native tools to monitor disk performance, CPU utilization, memory

usage, etc. For example, you might find it useful to run tcpdump when debugging network
problems.

You are likely to spend more time administering a software solution than an appliance. With
an appliance, the operating system basically takes care of itself. A software product, on the

other hand, requires you to create users, monitor disk usage, write cron jobs, etc. You also
need to stay up-to-date with bug fixes and security patches from the operating system
provider.

Finally, software products may be easier to expand and upgrade, especially if you use
inexpensive PC hardware. You should have few problems upgrading to a faster CPU, getting
more memory, and adding additional disk drives.

Squid is available as software (source code , although a number of companies sell Squid-
based appliances. The following companies sell software products: Netscape, Microsoft,
Novell (Border Manager), and Inktomi.
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10.2 Disk Space

When buying or building a proxy cache, it is important to have enough disk space. If your disk
size is too small, then your cache replaces valuable objects that otherwise would result in
cache hits. It's okay to have too much disk space, but after some point, adding more space
does not significantly increase your hit ratio. Figuring out the right amount of disk space is
complicated because you must consider a number of parameters and overheads. The
following advice should help you get started.

As a rule of thumb, your cache should take at least three days to fill up. This magic number
of three days comes from empirical observations and analysis of real Web traffic. It is
essentially the average time that particular web objects remain popular and valuable. To find
out how much disk space we can fill in three days, we need to perform a number of
calculations, beginning with the rate that HTTP traffic enters your organization's network.

Ideally, you already have a sense of how much HTTP traffic comes into your network. We're
looking for a number with units of bytes per second, averaged over a 24-hour period. Any
network measurement tool should be able to give you a breakdown by port number. Here,
we're mostly interested in port 80 traffic, although there is likely to be a small amount of
HTTP traffic on other ports as well. If you have no idea, you can use your network connection
speed as an upper limit. For example, lets say that your company has two T1 connections to
the Internet. Together, these can carry about 3Mbps, or 375KB per second. If your company
is typical, then 60% of your total traffic is HTTP. If you suspect your company is not typical in
this regard, then adjust accordingly. Given two (saturated!) T1s, we can assume a 24-hour
average HTTP traffic rate of 225KB/second.

Remember that we're interested in how quickly the cache fills up. Thus, we have to account
for cache hits, which do not cause objects to be written to disk. If your organization is small,
you can expect a 25% byte hit ratio. Medium-sized organizations can expect 35%, and large
ones can expect 45% or higher. To get the HTTP miss traffic rate, we multiply the total rate
by the miss ratio, which is the opposite of the hit ratio. Let's say our two T1s service a
medium-sized organization. Our HTTP miss rate is 225 x 65%, or about 150KB/second.

Next, we also need to account for the fact that some HTTP requests are not cachable. On an
average site, roughly 20% of cache misses are not cachable. Thus, we subtract that 20%
from the HTTP miss rate. In our example, we now have 117KB/second.

Now we know the HTTP cachable miss rate, or the cache fill rate, in terms of bytes/sec. To
find out how much space we need, we simply multiply by 3 days. Continuing our example,
117KB/second x 3 days x 86,400 seconds/day comes out to about 30GB.

If you are specifying a cache for the first time, you probably want to add some extra capacity
for future growth. In most cases, doubling the size estimate based on three days of current
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traffic should provide you with plenty of capacity for the next year or two.

Keep in mind that the formula calculates cache storage size, not physical disk size. This is
particularly important if you are using a software solution. Your software solution may use the
operating system's favorite filesystem, and some of the disk space is lost to overheads such
as inodes, directories, file allocation tables, etc. It's a good idea to increase your estimate by
25% for these overheads. Also remember that hard drive vendors cheat when they tell you
about disk sizes. The vendor may say 20GB, but your operating system reports 18GB, even
before formatting.

Finally, keep these points in mind when going through this calculation:

Bandwidth estimates are averaged over a 24-hour period, which is probably different
from your peak utilization.

These are only guidelines, not requirements. If you can't afford a huge amount of disk
space, a smaller cache is still useful.

Any of the preceding numbers (e.g., hit ratio, cachable ratio) are probably different for
your organization. Unfortunately, you won't have exact figures until you install a proxy
cache and take your own measurements.
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10.3 Memory

Caching products vary greatly in how they use RAM. Some caches, notably Squid, keep a
number of indexes in memory. The indexes have an entry for every cache object, such that
index memory requirements are proportional to cache size. Most caching products also use
memory to store popular or recently requested objects. Storing popular objects entirely in
memory results in a performance improvement. Caches also use memory to pass data to
and from the network. The amount of memory used for network buffers is proportional to the
load on the system.

Memory starvation can be a serious problem. It is certainly serious for Unix-based solutions,
such as Squid. When the application needs more memory than is physically available, some
of the process memory is written to disk. Performance degrades very quickly when swapping
occurs.

If you're thinking about an appliance-based solution, you probably don't have to worry about
memory configurations. The product should come with an appropriate amount of memory,
based on the particular software and other hardware components. If additional memory is
available for your product, it may boost the cache's performance by holding extra objects in
memory.

If you're using a software-based product, you'll need to find out the amount of memory the
vendor recommends. Current versions of Squid require a lot of memory compared to other
products (including appliances). For Squid, I typically recommend 1MB of RAM for every
32MB of disk capacity. A significant amount of Squid's memory usage is for storing pointers
in an index. Some CPUs, such as the DEC Alpha, have 64-bit pointers, which further
increases memory requirements.
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10.4 Network Interfaces

These days, 100-megabit Ethernet is the most common network media in use. Every caching
product supports 100-megabit Ethernet, and it is probably sufficient for most situations. In
tests that I have done, 100baseTX achieves about 90Mbps in both directions (full duplex).
For typical web traffic, this corresponds to a request rate of about 1,000 per second. A 100-
megabit network interface is not going to be a bottleneck for speeds up to dual T3's.

Gigabit Ethernet is available with many caching products as well. In a few years, Gigabit
Ethernet is likely to replace 100-megabit Ethernet as the de facto standard.

Less popular network interfaces, such as FDDI and ATM, may be available as well. If you're
thinking of a software solution, then certainly you can make your own choices for networking
hardware. If you're looking at appliances and don't want to use Ethernet, check with the
vendor to see what else is available.
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10.5 Operating Systems

The operating system may or may not be a deciding factor in your particular situation. With
an appliance, you don't have to worry about the operating system at all. A software product,
however, requires that you manage the operating system yourself. This probably includes
tasks such as adding users, monitoring disk usage, and applying security patches.

Some organizations start with the operating system as a requirement and then look for
products that run on it. For example, if you run Windows NT on all of your systems, you
probably want to find an NT-based caching proxy. In other cases, your hardware determines
your operating system. Sun hardware almost always runs Solaris, SGI hardware runs IRIX,
and so on. A number of choices exist for Intel-based systems, however. You can run one of
many freely available Unix systems, such as FreeBSD, OpenBSD, NetBSD, and Linux. There
are a number of commercial PC Unix systems also, including BSD/OS, SCO, and Solaris.
And, of course, there's always Microsoft Windows.

If you do have a number of operating system choices, you may want to consider some of the
following characteristics:

Robustness

Since your cache is a production service, you don't want the machine to crash at
random times. However, it may be hard to find quantitative robustness data for various
operating systems. Coworkers and mailing lists are a good source for this information.

Security

It goes without saying that your proxy must be as secure as possible at all times. All
operating-system vendors should be good at providing security fixes in a timely manner.
You may want to browse or search the Bugtraq archives
(http://www.securityfocus.com/bugtraq/archive) to see if one is better than the
other. OpenBSD (http://www.openbsd.org) has a strong focus on building a very
secure operating system.

Manageability

You should select an operating system that you find easy to administer. Some people
prefer to use point-and-click tools, while others are perfectly comfortable with command
lines.

Support

You might want to think about how you'll get support for your operating system, such as
answers to technical questions, bug fixes, and updates. In some cases, the operating
system may be sold without any form of support. Freely available operating systems
tend to have self-supporting user communities, but a number of companies provide
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support for Linux and BSD variants as well.
Performance

Operating systems may have slightly different performance characteristics, especially
regarding file systems.
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10.6 High Availability

Unfortunately, computer systems do occasionally fail. If 100% availability is important, you
should build some redundancy into your caching service. Redundancy can be a complicated
business, and many organizations take it to extremes. Because computer systems have so
many different ways to fail, you'll be faced with numerous options.

Power is one of the most obvious and common causes of failure. An uninterruptible power
supply (UPS) is a good idea and relatively inexpensive. Even a small UPS that provides
enough power for a few minutes will get you through most power outages. Many caching
products and general-purpose servers have the option of redundant power supplies. These
help guard against failure of the power supply itself and against power outages if you have
separate power feeds.

Disk drives are also prone to failures. This is especially true for caching proxies that are busy
24 hours a day, 7 days a week. Some people like to use RAID systems to provide high-
availability storage. In my experience, caches perform noticeably worse with RAID than
without. If you really want to use RAID, you should probably use mirroring (RAID level 1)
only. The importance of reliable storage depends on your location and the quality of your
Internet connection. If your connection is good, the loss of a disk is not a big deal. However,
if your connection is poor, the data on disk is very valuable, and RAID makes more sense.

In Chapter 9, I mentioned a number of ways that clusters can improve reliability. These
range from simple DNS tricks to complicated load-balancing configurations. In general, cost
is an important factor here. You can implement DNS-based failover and balancing for free,
but you'll probably spend a lot of time working on it. The layer four switches and related
products are expensive, but they provide better failure detection.

Once you insert a device like a layer four switch into your architecture, you also need to
consider the reliability of that device. What happens if the layer four switch stops working?
Some organizations use multiple switches in complex, cross-connected configurations, such
as the one shown in Figure 10-1. In addition to providing fault tolerance, they also allow you
to upgrade individual components without affecting the overall service. However, the
complexities of these topologies makes them difficult to get "just right." You may find yourself
spending a lot of time working on the configuration, especially when adding or removing
servers.

Figure 10-1. Redundant layer four switches
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If you're using interception caching, you can still provide robustness without redundancy in
everything. Recall that with interception, a network device diverts packets to the cache
instead of sending them to the origin server. If the cache fails, the device can simply send
them to the origin server and pretend the cache doesn't exist. Most of the layer four switching
products (see Table 5-1) have this bypass feature, as does Cisco's WCCP. InfoLibria's
products use a device called the DynaLink that bypasses the cache in the event of a failure,
including power loss. It has physical relays that essentially couple two cables together in the
absence of electrical power.

If you choose one of these techniques to provide high availability, remember to think through
the consequences of a failure. For example, if you have a cluster of caches and one goes
down, can the remaining systems handle the full load? If not, you're likely to see cascading
failures. The failure of one machine may cause another to fail, and so on. If you plan to use
the bypass feature, think about the capacity of your Internet connection. Is there enough
bandwidth to handle all the requests that would normally be served from the cache? Even if
the network becomes severely congested, it's probably better than a complete denial of
service for your users.
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10.7 Intercepting Traffic

I covered the pros and cons of interception caching in Chapter 5. Most, if not all, of the
caching products on the market support interception proxying. Of course, you also need a
network device to divert TCP connections to the cache. For that you can use a router (with or
without WCCP), a layer four switch, or even an inexpensive PC running Unix.

Interception caching offers many benefits. You don't need to configure browsers at all, and
you maximize the amount of traffic that goes through the cache. As described previously,
many of the network devices that support interception caching handle cache failures without
a disruption of service.

The downside is that interception caching may cause problems for some origin servers.
Users who experience problems are usually unable to fix them. You need to configure the
network device to bypass the cache for problem cases.
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10.8 Load Sharing

I covered load sharing in Chapter 9. There are several ways to split the load between
multiple servers:

DNS round-robin

This brute force approach relies on DNS servers to randomize IP addresses in lookup
replies. It is somewhat inefficient because requests are randomly assigned to individual
proxies.

Layer four switches

These products usually have a number of balancing algorithms available (number of
connections, response time, etc.). Alternatively, requests can be partitioned by origin
server IP address.

CARP

CARP partitions requests with a sophisticated algorithm that allows members to be
weighted unequally. It also minimizes the disturbance to the partitioning when members
are added or removed.

ICP and HTCP

These protocols are only used between caches. They can be used to maximize cache
hits within a cluster. This is particularly useful if clients send requests to caches
randomly, as with DNS round-robin.

WCCP

In Cisco's WCCP implementation, the master cache builds an origin server-based
partition and sends it to the router. The router uses the partition to divide the load
among all member caches.

Given these choices, which one should you use? If you're comfortable with traffic
interception, then layer four switches and WCCP are good options. Between the two, it
depends on what type and manufacturer of equipment you are familiar with. Organizations
that already have an investment in Cisco routers are likely to use WCCP. Some
organizations prefer the features offered by layer four switches.

Without traffic interception, you'll probably have to use DNS round-robin or CARP. To
implement CARP, you'll need either CARP-aware user-agents or a hierarchy of caches.
Perhaps the easiest configuration is DNS round-robin for cache selection, with ICP/HTCP
between proxies to maximize cache hits.
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10.9 Location

Where should you place a cache or caches within your network? The answer, of course,
depends on your particular network. Most likely, you should locate your cache near your
firewall or border router-in other words, near the last piece of equipment that you manage
as packets from your network head out to the Internet. This maximizes the number of people
who can use the cache.

With the above approach, the cache does not reduce bandwidth on your internal network.
Both cache hits and misses use internal bandwidth between users and the cache. Also,
response-time benefits from cache hits may be lost if the internal network is congested. If you
have a large internal network, then you may want to build an internal cache hierarchy. Place
child caches on department-level networks and configure them to forward cache misses to a
company-wide parent cache. With caches closer to users, you should observe reduced
internal bandwidth and fast response times for cache hits.

ISPs often have points-of-presence (POPs) in different cities or locations. To reduce wide-
area bandwidth usage, it's a good idea to put a cache in each POP.
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10.10 Using a Hierarchy

I covered the advantages and disadvantages of hierarchical caching in Chapter 7. Though a
hierarchy can improve your cache's performance, it can also create some new problems. In
most cases, the performance improvements are marginal, affecting 5–10% of requests. The
nature and extent of any problems depend mostly on who is operating the other caches. If all
caches in the hierarchy are managed by a single organization, the potential for problems is
significantly diminished. Interorganizational hierarchies, on the other hand, are more
susceptible to issues that outweigh any performance gains.

Performance improvements come in the form of additional cache hits and lower average
response times. The percentage of requests that are hits in neighbor caches depends on the
size of the hierarchy. Cache hits become more common as the hierarchy membership grows.
Hierarchies and meshes also offer better scaling characteristics, which can be critical for
organizations with large networks. In other words, an intraorganizational hierarchy may not
perform significantly better but may be easier to manage.

If you feel that a cache hierarchy will benefit your service, be sure to find out which
intercache protocols the candidate products support. Most products support ICP, which is
good if the other caches in a hierarchy are made by different companies. Don't forget to
consider the effects of the different intercache protocols. ICP and HTCP add delays to cache
misses. Cache Digests may end up using more bandwidth than you save from the extra
cache hits.

When it comes to cache hierarchies, especially those among different organizations, I usually
advise people to be cautious. Carefully consider the issues described in Chapter 7. To what
extent are you willing to rely on your neighbor caches? What if they fail or become
compromised? Do you trust the organizations who operate those caches? What is your
backup plan in case something goes wrong?
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Chapter 11. Monitoring the Health of Your Caches

Active monitoring of your cache is one of the most important steps you can take to providing
a first-rate service. Most caching products provide statistics in real time via SNMP, a web
browser, or some other specific interface. This data is extremely valuable in quickly
diagnosing problems and complaints. When a user calls to complain that the cache is making
things slow, you can tell if it's a real problem or an isolated incident.

I also feel it is important to keep a long history of measurements. If one day you suddenly
notice that your CPU utilization is 80%, you'll wonder if it's always been that way, or if it's a
sudden problem you should investigate. Having a long-term view also makes capacity
planning for the future much easier. By extrapolating bandwidth usage data, you can decide
when to upgrade your Internet connection capacity. Similarly, a long-term analysis of cache
request rates and response times may tell you when your existing solution reaches its
performance limits.

In this chapter, I'll talk about the statistics you should monitor and why you should monitor
them. In addition to the standard measurements, such as request rate and response time, I'll
explain how tracking some of the less obvious parameters can help you diagnose problems
quickly. If you're on a tight budget, you can build a very nice monitoring system with freely
available Unix software. I like to use UCD-SNMP and RRDTool. I'll help you get started along
those lines with some installation tips and quick examples.
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11.1 What to Monitor?

Different caching products provide different statistics and measurements for monitoring
purposes. In general, you should collect as much information as you can. It's better to be on
the safe side, since you never know when some information may come in handy. The
following list describes the parameters you should collect and monitor, if possible.

Client request rate

This is the rate at which clients issue HTTP requests to the cache. In a corporate
environment, you'll probably observe a daily peak that begins in the morning when
people arrive at work and ends when people leave in the evening. ISPs with dial-up
customers usually see an evening peak. University traffic usually has both trends
combined, with one long peak from early morning until late at night.

The shape of the request rate data is less important than how it differs from the normal
pattern. As the administrator, you should be familiar with how the request rate changes
over the course of a day. If you notice a significant change, you should probably
investigate the cause. Less traffic than usual can indicate local network problems. More
requests than usual could mean someone is using prefetching or web crawling
software.

Bandwidth

There is normally a strong correlation between bandwidth and request rate. However,
you may want to monitor it separately. If bandwidth becomes a bottleneck, it might be
more obvious in this data. Also, large file downloads, such as MP3s, show up as spikes
on a bandwidth plot but do not stand out on a request rate plot.

If your cache doesn't give you bandwidth measurements, you can probably get it from
other sources. In fact, you might prefer to take readings from a switch or router. These
should enable you to separate out the internal and external traffic as well.

Client-side response time

Response time is the most important way to measure how well the cache serves your
users. A normal value probably means your users are happy. A high response time
means your users are upset and are probably calling you to complain about it. Any
number of things can affect response time, including upstream network congestion, an
overloaded cache server, a broken DNS server, etc.

Server-side response time

You should monitor server-side response times separately from the client side, if
possible. Server-side requests are sent to origin servers or upstream caches for cache
misses. If you notice an increase in client response times, but no change in server
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response times, it probably indicates a local problem. On the other hand, if both
measurements increase, then you can blame the slowness on upstream Internet
delays.

DNS lookup response time

Resolution of DNS names to addresses is a critical aspect of web caching. Some
caching products have an internal "DNS cache" but use an external DNS server to
resolve unknown names. Tracking the response time for DNS lookups is a good way to
monitor the status of the external DNS server. Because internal DNS caches have very
high hit ratios, a DNS server failure may not show up in the client-side response time
data.

Hit ratio

Monitoring your cache's hit ratio tells you how much bandwidth is being saved. Don't be
too surprised if the hit ratio varies significantly over the course of the day.

Memory usage

If you have an appliance-based product, you may not have access to memory-usage
information. For software products, however, it is important to understand how much
memory the application is using. If it's near the limit, then you'll need to buy more
memory or change the configuration to use less of it. Monitoring memory usage is also
a good way to find some software bugs, such as memory leaks.

Disk usage

Normally, your cache should use a constant amount of disk space. If you notice it
changing significantly over time, then something interesting may be going on. Some
caches may lose their disk contents if the system crashes. Such an event would show
up in this data. Also, it is interesting to see how quickly the disk fills up. As I mentioned
in Section 10.2, a cache that fills very quickly (in less than three days) can benefit
from having more disk space.

CPU usage

Monitoring the system's CPU usage tells you if the CPU is becoming a bottleneck. CPU
usage can be tricky because a high amount of utilization isn't necessarily bad. For
example, if your caching proxy is blocking on disk I/O, the CPU utilization may be quite
low. Removing the disk bottleneck allows the cache to support higher throughput, which
should result in higher CPU utilization as well. I wouldn't worry about upgrading the
CPU until utilization reaches 75% for hours at a time.

Another thing to keep in mind is that some products may use spare CPU cycles to poll
for events more frequently. Even though the CPU appears to be really busy, the
application isn't working as hard as it can. CPU utilization doesn't necessarily increase
in proportion to supported load. Although the system reports 100% utilization, the cache
may be able to handle additional load without negatively affecting overall performance.

File descriptor usage
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Unix-based caches, such as Squid, use file descriptors to read and write disk files and
network sockets. Each file descriptor identifies a different file or TCP connection that is
currently open for reading or writing. Usually, a Unix system places limits on the number
of file descriptors available to a single process and to the system as a whole. Running
out of file descriptors results in service denial for your users, so you probably want to
track the usage. All modern Unix systems let you raise the per-process and systemwide
limits. It's a good idea to be conservative here. Give yourself plenty of extra descriptors
and familiarize yourself with the procedure.

The number of file descriptors in use at any given time is approximately equal to the
average request rate multiplied by the average response time. For most locations, both
request rate and response time increase during the middle of the day. If your Internet
connection goes down, response time becomes essentially infinite, and your cache is
likely to reach its file descriptor limit. Thus, when you see a huge spike in file descriptor
usage, it's usually due to an upstream network failure.

Abnormal requests

My definition of an abnormal request is one that results in an error, is denied access, or
is aborted by the user. You should always expect to see a small percentage of errors,
due to transient network errors, broken origin servers, etc. However, a significant
increase in errors probably indicates a local problem that requires your attention.

Changes in the percentage of requests that are denied access may require
investigation as well. If you normally deny a lot of requests due to request filtering, this
data can assure you it's working properly. A sudden drop in the percentage of denied
requests could mean that the filtering software is broken, and users are visiting sites
that should be blocked. On the other hand, if you usually deny only a small number of
requests, an increase may indicate that outsiders are trying to send requests through
your proxy to hide their tracks.

ICP/HTCP query rate

If you're using ICP or HTCP and acting as a parent or sibling for others, it's a good idea
to track the query rate as well. Often, it's helpful to look at the ratio of HTCP to ICP
requests. A sharp change in this ratio can indicate that your neighbor changed its
configuration. Perhaps it went from a parent-child to a sibling relationship, or maybe it
turned ICP on or off.

TCP connection states

TCP ports are another limited resource, especially for busy servers. If you've ever

looked at netstat output on a Unix system, you probably remember seeing connections

in various states such as ESTABLISHED, FIN_WAIT_1, and TIME_WAIT. Monitoring
connection states can provide you with important information. For example, your
system may be configured with a relatively small number of ephemeral ports. These are
the local port numbers for outgoing connections. If too many of the ephemeral ports are
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in the TIME_WAIT state, your cache won't be able to open new connections to origin
servers. In the rare event that you're the target of a "SYN flood" attack, this would

appear as a spike in the number of connections in the SYN_RCVD state. It's also
interesting to see how enabling or disabling HTTP persistent connections affects these
statistics.

Some caching programs and appliances may not make TCP state information
available. If you're running on Unix, you can get it with a simple shell script. The
following command should be enough to get you started:

netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'
only for RuBoard - do not distribute or recompile  
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11.2 Monitoring Tools

Most caching products provide both custom interfaces and monitoring via SNMP (Simple
Network Monitoring Protocol). The custom interfaces are typically web-based and often use
Java. While these tools can display graphs for some of the parameters just described, they
usually have only volatile storage. When the proxy cache restarts, the historical data is lost.

Although most products support SNMP, there is no standard SNMP proxy MIB (Management
Information Base). Instead, each vendor or product has its own MIB with product-specific
information. If enough customers complain about the lack of a standard MIB, vendors are
likely to develop one within the IETF.

In theory, monitoring a network device via SNMP is relatively simple. You make the MIB file
available to your network management application and tell it which variables to collect and
display. In practice, however, it's often a frustrating process. There are a number of
management applications available for all types of operating systems. As a relatively simple
example, the remainder of this section describes how to install and configure UCD-SNMP
and RRDTool to monitor a Squid cache. To monitor another SNMP-addressable caching
product, you'll need to use its MIB.

11.2.1 UCD-SNMP

The University of California at Davis distributes a suite of SNMP tools for Unix. You can
download the software from their home page, http://ucd-snmp.ucdavis.edu  , or one of the
mirror sites. Hopefully, you'll find the software easy to compile and install. It should be as
easy as this:

% gzip -dc ucd-snmp.tar.gz | tar xf -
% cd ucd-snmp-4.1.1
% ./configure
% make
% su
# make install

During the configure phase, you'll be prompted to enter some information. This information is
used only when you run the snmpd daemon. The snmpd program is not needed to monitor

Squid or any other proxy cache. We are only interested in the snmpget command.

If you watched the install process closely, you noticed that SNMP MIB files are placed in

/usr/local/share/snmp/mibs/ by default. We'll need to copy the Squid MIB to this location:
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# cp squid/src/mib.txt /usr/local/share/snmp/mibs/SQUID-MIB.txt
# chmod 644 /usr/local/share/snmp/mibs/SQUID-MIB.txt

Once the MIB has been installed, we can test everything with the following snmpget
command:

% snmpget -m SQUID-MIB -p 3401 -R webcache.isp.net public \
  squid.cacheConfig.cacheAdmin

The -m option tells snmpget to load the SQUID-MIB file. This is needed to translate the long
identifier name into a sequence of numbers. The -p option specifies the destination port
number for the SNMP query. Squid uses port 3401 by default. The -R option allows us to use

short variable names. Without it, the last argument would need to be much longer. You

should replace webcache.isp.net with the hostname of your own proxy cache. The next
argument, public , specifies the SNMP community string. Essentially, this is a password.
Many applications use public as the default but should allow you to change it if you like.
Finally, squid.cacheConfig.cacheAdmin specifies the MIB variable we want to get. In

this case, we're asking for the email address of the cache administrator. If successful, the
result comes back like this:

enterprises.nlanr.squid.cacheConfig.cacheAdmin = wessels@web-cache.net

If you get an error message, snmpget may not be able to locate the Squid MIB file. If you get
no response or a timeout, Squid might not be configured for SNMP. You'll also get a timeout
if your network has a firewall that blocks UDP packets.

11.2.2 RRDTool

RRDTool is a successor to the highly popular MRTG (Multi Router Traffic Grapher) software.

RRDTool manages data in the form of a round-robin database (RRD). The idea is that data is
archived over time, at different granularities. A database stores the same measurements
consolidated over various time intervals. For example, you can have 24 hours' worth of
measurements taken at 5-minute intervals, a month's worth of measurements consolidated
into 1-hour intervals, and so on. With this structure, RRDTool can store many years' worth of
measurements in a relatively small amount of space. Of course, some information is lost as
old measurements are consolidated over time. You won't be able to go back and compare
two five-minute intervals from a year ago.

You can get the RRDTool software from http://ee-staff.ethz.ch/~oetiker/webtools/rrdtool/  .
After downloading, it should compile and install easily:

% gzip -dc rrdtool-1.0.13.tar.gz | tar xf -
% cd rrdtool-1.0.13
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% ./configure
% make
# make install

The next step is to create a round-robin database to hold and manage the measurements.
To do this, we need to know which values we'll store, their types, and for how long. The

syntax for rrdtool create is somewhat confusing. Since I can't explain everything here, you
may want to read the RRDTool manual before proceeding.

For this example, we'll create a database to hold HTTP and DNS median service times. The

gauge data type is used for values that go up and down, such as temperature:

% rrdtool create svctime.rrd \
  --step 300 \
  DS:http:GAUGE:600:U:U \
  DS:dns:GAUGE:600:U:U \
  RRA:AVERAGE:0.99:1:288 \
  RRA:AVERAGE:0.99:6:336 \
  RRA:AVERAGE:0.99:12:744

The step argument specifies the default interval (in seconds) at which measurements are
collected. The DS lines define the data sources. In this case we have HTTP and DNS request
counters. The RRA lines specify how the data is archived and consolidated.

To collect the data, we use a shell script that runs as a cron job every 5 minutes. The script

uses snmpget to get the data and stores the values with rrdtool update :

#!/bin/sh
SNMPGET="snmpget -q -R -s -m SQUID-MIB -p 3401 webcache.isp.net public"
cd /where/rrd/files/live

http=`$SNMPGET cacheHttpAllSvcTime.5 | awk '{print $2}'`
dns=`$SNMPGET cacheDnsSvcTime.5 | awk '{print $2}'`

rrdtool update svctime.rrd --template http:dns N:$http:$dns

Squid calculates service times averaged over 1-, 5-, and 60-minute time intervals. This
example uses the 5-minute interval, which is what the the .5 following both names refers to.
The N in the last argument of the rrdtool update command stands for the current time (i.e.,

"now").

Finally, let's see how rrdgraph is used to make a graph of the data:

% rrdtool graph svctime.day.png \
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  --start -1day \
  --title "Service times" \
  --vertical-label "seconds" \
  --imgformat PNG \
  DEF:http=/where/rrd/files/live/svctime.rrd:http:AVERAGE \
  DEF:dns=/where/rrd/files/live/svctime.rrd:dns:AVERAGE \
  AREA:http#0000FF:HTTP \
  LINE2:dns#00FF00:DNS

The --start -1day option instructs rrdgraph to show the previous 24 hours' worth of data.
The AREA argument draws the HTTP service time as a filled area with color #0000FF (blue).
The LINE2 argument draws the DNS service time as a solid line with double thickness in
green. Figure 11-1 shows the resulting image.

Figure 11-1. Sample RRD graph

The RRDTool package also includes a program called rrdcgi . It parses HTML files with

special embedded tags that look like rrdgraph commands. Using rrdcgi , you can write HTML

pages that generate RRD graphs on the fly. Unfortunately, setting up rrdcgi is somewhat
complicated. You'll need to refer to the RRDTool documentation for syntax and examples.

11.2.3 Other Tools

Many people use MRTG to collect and display their cache statistics. MRTG is perhaps easier
to install and configure, but it's not nearly as flexible as RRDTool. MRTG also has a number
of performance problems. You can download MRTG from http://www.mrtg.org .

In addition to real-time monitoring, you'll probably want to use some scripts or tools to
analyze your access log files. These can tell you how many requests were served, the cache
hit ratio, bandwidth utilization, and more. Again, I recommend keeping an archive of these
reports and statistics for planning and troubleshooting.
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Any program that analyzes access log files needs to understand the file format. Many
caching products support the HTTP common logfile format. A number of products also
support Squid's format, probably to take advantage of the preexisting analysis tools.
Calamaris (http://calamaris.cord.de ) and Webalyzer (http://www.mrunix.net/webalizer/ ;) are
perhaps the most widely used programs. You can find additional tools listed at
http://www.squid-cache.org/Scripts/ .
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Chapter 12. Benchmarking Proxy Caches

Benchmarking is the process of measuring the performance of a product or service.
Benchmarks are used for many different computer systems and components, such as CPUs,
disk drives, Ethernet switches, and databases. A good benchmark must be stressful,
reproducible, and meaningful. A test or workload that doesn't stress the device under test is
not very interesting. Reproducibility is important for tests that compare different products or
slightly different configurations under the same conditions. A meaningful benchmark is one
that accurately predicts the performance of the device or system under real-world conditions.

Benchmarks are used by engineers, marketers, and customers alike. Product engineers use
benchmarks to evaluate design choices and overall system performance. A good benchmark
identifies bottlenecks and tells them if changing a certain component improves or worsens
the product's performance. Benchmarking results are often used in marketing literature,
especially when one company claims to have a superior product. Even when a particular
product does poorly, marketing departments find some way to put a positive spin on the
results.

Customers use benchmarking results to make buying decisions. Good benchmarks enable
customers to compare different products with each other, find the one that best suits their
needs, and understand the price versus performance tradeoffs. Without published, audited
benchmark results, customers have no way to verify performance claims made by individual
vendors. If you are considering the purchase of a particular product, I highly recommend
asking the vendor for recent published and audited benchmark results first.

In this chapter, I'll talk about benchmarking for caching products. First, I'll introduce you to the
metrics that are important for web caches. Understanding the metrics and how they are
related enables you to interpret published results quickly and correctly. I'll also tell you about
some of the tools you can use to run your own benchmarks. Since executing a benchmark on
a web cache is somewhat complicated, we'll also talk about the common pitfalls and
difficulties others have encountered. The final section provides a basic recipe for how to
benchmark a web cache.

Note that I am heavily involved in benchmarking caching products through my company, The
Measurement Factory (http://www.measurement-factory.com). We organize the
industry "Cache-Offs" and perform private tests for both vendors and customers. We have
been fortunate enough to work with most, but not all, of the companies that sell caching
products.
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12.1 Metrics

There are a number of measurements that relate to proxy cache performance. The most
common are throughput, response time, and hit ratio. For web caches, these metrics are
related and tend to influence each other. For example, a decrease in hit ratio usually results
in an increase in mean response time. To fully understand a benchmark result, you need to
consider all the metrics. Don't look at just the throughput. It's quite possible that two products
can achieve the same throughput but with much different hit ratios.

Some people find multiple metrics confusing because they complicate product comparisons.
Is a product with high throughput and high response time better than one with low throughput
and low response time? The answer depends on individual circumstances and the attributes
most valued by the user. Other types of benchmarks report a single measurement or
combine many measurements into a single value. While this makes it possible to easily rank
products, I feel that doing so for proxy caches does more harm than good. Combining
multiple measurements into a single value makes it difficult for people to evaluate products in
the areas they feel are the most important.

12.1.1 Throughput

Throughput is a metric common to many types of benchmarks. Database benchmarks report
throughput as transactions per second. CPU benchmarks measure instructions per second.
For web caches, it's HTTP responses per second. Some people say "requests per second"
or even "URLs per second" instead. The three phrases are equivalent for most purposes.

Throughput is not always a measured value. For some tests, it is an input parameter. That is,
the workload specifies a particular offered request rate. Instead of asking, "What's the
maximum throughput this product can support?" the question becomes, "What is this
product's response time and hit ratio at X requests per second?"

Peak throughput varies significantly among products. In recent industry Cache-Off tests
[Rousskov and Wessels, 2000], the lowest was 115 responses per second, while the
maximum was about 3,300. A cache's peak throughput determines how much bandwidth and
how many simultaneous users it can support. If you have more traffic than one box can
handle, you can scale the peak throughput linearly by adding additional boxes.

Some network administrators are more comfortable thinking in terms of bandwidth-megabits
per second-rather than responses per second. To convert from response rate to bandwidth,
simply multiply by the mean response size. For example, in the Cache-Off tests mentioned
earlier, the mean response size is 10.9KB. Thus, the lowest tested throughput was 9.7 Mbps,
while the highest was 281 Mbps. Real traffic reply size distributions vary from location to
location. If you're not sure what to use, 10KB is probably a good approximation. Note that
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responses, flowing from servers to clients, account for the majority of bandwidth. Requests
also consume some bandwidth in the other direction, but the amount is almost insignificant
since requests are typically 50 times smaller than responses.

12.1.2 Response Time

Response time measures how quickly a cache responds to requests. For a single request, it's
the amount of time elapsed between sending the request and receiving the end of the
response. Since individual response times vary greatly, it's useful to keep a histogram of
them. From the histogram we can report the mean, median, percentiles, and other statistical
measures.

Response times for cache misses depend largely on network and origin server delays. The
mean response time for real web traffic is typically 2–3 seconds. Cache hits, on the other
hand, have very small response times, usually a few hundred milliseconds. Thus, the cache
hit ratio affects the overall response time. As the hit ratio goes down, more requests result in
cache misses, which drives up the mean response time.

If a proxy cache becomes overloaded, both cache hits and misses can experience additional
delays. In some cases, a cache becomes so busy that hits take longer than misses. When
this happens, you would get better response time with no caching at all. However, even a
slow and busy cache can reduce your network bandwidth usage.

12.1.3 Hit Ratio

Hit ratio measures the effectiveness of the cache and the amount of bandwidth saved. Recall
that there are two hit ratio measurements: cache hit ratio and byte hit ratio. The first refers to
the number of requests made, the latter to the number of bytes transferred. Since small
objects are more popular than large ones, byte hit ratio is normally smaller than cache hit
ratio. When a result says just "hit ratio," it probably refers to cache hit ratio.

A particular workload in a test environment has an upper bound on achievable hit ratio,
based on an ideal cache. An ideal cache has an infinite size, stores all cachable responses,
and returns a hit whenever possible. Of course, real caches are not quite ideal and may not
achieve the maximum hit ratio for a number of reasons. The disk capacity may not be large
enough. The product's rules for caching may be different from what the benchmark software
expects. Some caching products are able to bypass their disk storage (for both reads and
writes) when faced with high loads. A cachable response that doesn't get stored results in a
missed opportunity for a cache hit later on.

12.1.4 Connection Capacity

You might be interested to know how many simultaneous connections a product can handle.
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To get an approximation, simply multiply the throughput by the response time. Connection
capacity is usually not reported as a separate metric because it is rarely a limiting factor.

12.1.5 Cost

It may seem strange to include cost as a metric. However, the cliché "you get what you pay
for" is true for web caches. Certainly, you would expect a $50,000 solution to perform better
than one costing $5,000. The cost of a product is a good way to normalize the performance
metrics, such as throughput. By including cost, you can calculate how many cheap boxes you
need to get the same performance as one expensive box. Some benchmarks, such as the
Transaction Processing Performance Council (TPC) (http://www.tpc.org), which tests
databases, take this a step further and report long-term cost of ownership information. For
example, how much does a support contract cost? What about power and cooling
requirements? How much space does the product need?
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12.2 Performance Bottlenecks

The performance of a proxy cache system depends on numerous factors. Any one of the
system components can become a bottleneck. In some cases, it's possible to use
benchmarking tools to identify the bottlenecks. For example, you can benchmark two
different hardware configurations and compare their results. Does a faster CPU improve
response time? How much does your hit ratio improve if you double the disk space?

12.2.1 Disk Throughput

Disk I/O is often a bottleneck for web caches. Due to the nature of web traffic, web caches
make very heavy use of their disk drives. If you've ever looked at the disk lights on a busy
cache, you probably noticed the lights are almost constantly on.

The performance of disk systems varies greatly between products, and a number of factors
are involved. First, the controller's bus speed limits how quickly chunks of data move from
memory to the disk controller. For SCSI, this limit is usually 20, 40, or 80MB per second. For
IDE controllers, the limit is either 33, 66, or 100MB per second. These rates correspond to
theoretical upper limits. It's rare for a controller to sustain its maximum rate for any length of
time, partly because individual disk drives have much lower limits. When multiple devices are
connected to the bus, as is common with SCSI, then the bus bandwidth limit becomes more
relevant.

Another, and more realistic, limit is how quickly an individual drive can transfer data to and
from its magnetic media. This limit relates to the drive's rotational speed and other
mechanical properties. For most drives, this limit is on the order of 10–20MB per second.
Note that 20MB per second corresponds to about the same as an OC-3 network link (155
megabits/sec). Again, this rate is achievable only under ideal conditions when the disk can
write large chunks of data continuously.

Due the nature of web traffic, cache disk drives are unlikely to achieve sustained data
transfer rates as high as 10MB per second. Cached objects are relatively small (about 10KB),
so a disk spends a lot of time seeking back and forth to different positions. While some
caching products are able to optimize writes into large, contiguous chunks, it's harder to
optimize reads for cache hits. In most cases, the real limit for disk performance is the rate of
disk accesses. In other words, how many reads and writes can the disk handle per second?
The maximum rate for most disks available today is about 100 operations per second. The
determining factor is usually the seek time. To maximize your disk performance, use hard
drives with low average seek times.

It's relatively easy to find out if your disk system is a bottleneck. First, benchmark the cache
with a 100% cachable workload. This should cause the cache to store every response,
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thereby stressing the disks. Next, run another benchmark with 0% cachable responses.
Since disks are probably the slowest devices in the system, chances are you'll see a big
difference in performance.

12.2.2 CPU Power

For the most part, web caches don't require really powerful CPUs. However, an
underpowered CPU can limit a cache's performance. Caching and proxying involves the
movement of data buffers from one place to another (e.g., network and disk). Copying buffers
and scanning for string patterns probably accounts for the majority of CPU time.

One exception is caches that encrypt or decrypt HTTP/TLS traffic. The encryption algorithms
are very CPU-intensive. A number of companies sell "SSL accelerator" cards or devices that
offload encryption processing from the CPU onto a dedicated processor.

Testing for CPU bottlenecks can be difficult. It's probably easiest to use system tools (e.g.,

top and vmstat on Unix) to watch the CPU usage while running the benchmark. Other than
that, you may need simply to try different CPUs in the system with the same workload.

12.2.3 NIC Bandwidth

A cache's network interface may be a limiting factor, although this is unlikely as long as the
NIC is configured properly. Fast Ethernet is quite common today and sufficient for most
available products. A single 100baseTX interface can usually handle 900–1,000 HTTP
requests per second. Products that support higher request rates have Gigabit Ethernet or
multiple 100baseTX interfaces.

To find out if your network interface is a bottleneck, look for a large percentage of collisions.
Many Ethernet hubs and switches have lights on the front that indicate utilization or collisions.
On Unix systems, the netstat -i command reports collision and error counters for each
interface.

12.2.4 Memory

Memory is a precious resource for web caches. It's used to buffer data, index cached objects,
store popular objects, and more. A caching application has two ways to deal with a memory
shortage: swap some pages to disk or postpone certain actions until memory becomes
available. In either case, running out of memory results in a very sudden performance
degradation.

To find out if memory is limiting your performance, you can use system tools (e.g., top and

vmstat on Unix) to monitor memory usage. Alternatively, you may be able to adjust how the
application uses memory. For example, Squid uses less memory if you decrease the cache

size. Lowering Squid's cache_mem parameter may help as well.
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12.2.5 Network State

TCP ports are a limited resource people sometimes forget about. A TCP connection is
defined by a pair of IP addresses and port numbers. Since the TCP port number is a 16-bit
field, there are 65,536 ports available. When a system initiates a new TCP connection, it
must first find an unused port number. When a connection is closed, the endpoint that did not
initiate the close must keep the port in a TIME_WAIT state for a certain amount of time. Most
implementations use one minute, even though the standards specify four minutes.

The number of ports in the TIME_WAIT state is roughly equal to the rate of connection
establishment multiplied by the timeout value. Thus, with 65,536 ports and a 60-second
timeout, a proxy cache can establish no more than about 1,000 connections per second. In
fact, the situation may be worse because some operating systems have fewer ephemeral
ports by default. On FreeBSD, for example, the ephemeral port range is 1,024–5,000. You
can easily increase the limit with the sysctl program.

Persistent HTTP connections may help to achieve a higher throughput if this limit is reached.
However, persistent connections also tie up resources when the connection is idle. Very busy
servers should use a low timeout (such as 1–2 seconds) for idle persistent connections.

Generally, there are three ways to avoid running out of ports: increase the ephemeral port
range, decrease the TCP MSL value, or use additional IP addresses. Decreasing the MSL

value reduces the time spent in the TIME_WAIT state and recycles ports faster, but you
probably shouldn't use an MSL value smaller than 15 seconds on a production server.
Adding more IP addresses effectively increases the number of available ports because
sockets are bound to address/port tuples. Thus, two connections can use the same TCP port

as long as they use different IP addresses. On Unix systems you can use ifconfig to add IP
aliases to an interface.
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12.3 Benchmarking Tools

A number of tools are available for benchmarking proxy caches. Some are self-contained
because they generate all requests and responses internally. Others rely on trace log files for
requests and on live origin servers for responses. Each technique has advantages and
disadvantages.

Using trace files is attractive because the client and server programs are simpler to
implement. A self-contained benchmark is more complicated because it uses mathematical
formulas to generate new requests and responses. For example, a particular request has
some probability of being a cache hit, of being cachable, and of being a certain size. With
trace files, instead of managing complex workload parameters, the client just reads a file of
URLs and sends HTTP requests. In essence, the workload parameters are embedded in the
log files. Another problem is that trace files don't normally record all the information needed
to correctly play back the requests. For example, a log file doesn't normally say if a particular
request was on a persistent connection. It's also unlikely to indicate certain request headers,
such as Cache-control and If-Modified-Since.

Trace log files are usually taken from production proxy caches. This is good because the
trace represents real web traffic on your network, generated by real users. If you want to run
a trace-based benchmark or simulation but don't have any log files, you might be out of luck.
Log files are not usually shared between organizations because of privacy issues.

A benchmark that uses real URLs requested from live origin servers is likely to give
inconsistent and unreproducible results. For example, if you run the same test on two
different days, you may get significantly different results. Live origin servers have different
performance characteristics depending on the time of day, day of the week, and
unpredictable network conditions.

A self-contained benchmark has the advantage of being configurable, and it's also
reproducible when run on dedicated systems. For example, it's easy to change a workload's
hit ratio and other parameters as needed. However, some people find the myriad of workload
parameters daunting. If your goal is to simulate the real traffic on your network, it's less work
to take a trace file than to characterize the traffic and enter the parameters into a
configuration file. Investing the time to characterize your traffic gives you many more options.
Since simulated data sets are essentially infinite, you can run tests for as long as you like.
You don't need to worry if your trace file has enough URLs for the test you want to run.

Another distinguishing feature of benchmarking tools is how they submit new requests. Two
techniques are commonly used: best-effort and constant rate. The best-effort method uses a
finite number of simultaneous client agents. Each agent sends one request at a time, waiting
for the current request to complete before sending the next one. As the name implies, the
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constant rate method submits new requests at a constant, average rate, regardless of the
number of active requests.

The best-effort technique is usually easier to implement. Often, each agent is a separate
thread or process. This leads to a natural feedback mechanism: once all threads become
busy, no new requests are submitted. New requests are sent only as fast as the cache
responds to them. A fixed number of agents may not sufficiently stress a proxy cache.
Furthermore, using too few agents leads to very misleading throughput measurements. For
example, consider a caching proxy that, for whatever reason, delays every request by at least
100 milliseconds. A test with 10 threads can produce no more than 100 requests per second.
However, a test with 100 threads can generate up to 1,000 requests per second.

The constant rate method usually results in a better workload. Even if the cache starts to
slow down (i.e., response time increases), new requests continue to arrive at the same rate.
Note that constant doesn't necessarily mean that requests arrive at perfectly spaced time
intervals (e.g., one request every 10 milliseconds). Real Internet traffic is bursty, with a lot of
variation between consecutive interarrival times. Some benchmarks model interarrival times
with Poisson distributions or self-similar models that have constant average request rates.
This technique also provides a better simulation of real traffic because the total number of
users is usually much larger than the number of concurrent connections. When my browser
submits requests, it doesn't care how many other browsers already have requests pending.

12.3.1 Web Polygraph

Web Polygraph (http://www.web-polygraph.org) is a comprehensive cache
benchmarking tool. It's freely available and distributed as source code that runs on both Unix
and Microsoft Windows. Polygraph is designed to be high-performance and very flexible. It
simulates both HTTP clients and servers based on a rich specification language. (I have a
personal preference for Polygraph because I am involved in its development.)

Polygraph is high-performance because it makes very efficient use of system resources. A
single midrange PC system can easily saturate a fast Ethernet segment, which corresponds
to about 1,000 requests per second. A lot of attention is given to optimizing the Polygraph
source code. You can scale the offered load to very high rates by running Polygraph on many
systems in parallel.

Simulating both clients and servers gives Polygraph a lot of flexibility. For example, clients
and servers can exchange certain state information with each other via custom HTTP
headers. This allows Polygraph to know whether a specific response was generated by the
server or served from the cache. Polygraph can detect false hits, foreign requests, foreign
responses, and other errors.

Polygraph's configuration language allows users to customize the simulated workload. For
example, you can specify mathematical distributions for reply sizes, request popularity, think
time delays, and more.
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Another important part of Web Polygraph is the development of standard workloads. These
workloads allow anyone to run their own tests and compare the results with previously
published data. Workloads are developed and evolved with input from users, caching
vendors, and other interested parties. The standard workloads mimic real web traffic as
closely as possible. The parameters are taken from analyses of real systems, log files, and
published research results.

Polygraph models the following web traffic characteristics:

Request submission

Polygraph supports both constant rate and best-effort request submission. In the best-
effort approach, a finite number of agents each submit one request at a time. When the
agent receives the complete response, it immediately submits another request. The
constant rate model, on the other hand, submits new requests at a constant average
rate. Polygraph allows you to specify an interarrival distribution for the constant rate
model.

As I mentioned previously, the best-effort method may not put much stress on a proxy
cache, especially if a small number of agents are used. New requests are submitted
only as fast as the cache can respond to them. Constant rate submission is more likely
to test the cache under stressful conditions. If the cache cannot keep up with the client,
a significant backlog develops. Polygraph continues to submit new requests until it
reaches a configurable limit or runs out of unused file descriptors.

Popularity

Popularity is an important aspect of web traffic. It determines how often some objects
get requested relative to others. Numerous studies have shown that web access
patterns are best described by a Zipf-like distribution [Breslau, Cao, Fan, Phillips
and Shenker, 1999].

Among other things, the popularity distribution affects memory hit ratios. If the popular
objects are too popular, then too many cache hits are served from memory. In this
case, the workload does not sufficiently exercise the disk system, and the product
achieves better performance than it does with live traffic. Getting the popularity model
and memory hit ratio "just right" is one of the hardest aspects of proxy cache
benchmarking.

Recurrence

The recurrence parameter also determines the hit ratio. It specifies the probability that a
given request is for an object that was previously requested. Recurrence applies both to
cachable and uncachable responses. Repeated requests for uncachable objects do not
contribute to the hit ratio. Note that recurrence determines only whether a particular
request is for a previously requested object. The popularity model actually determines

which object gets requested.
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Server delays

Polygraph supports server-side think time delays as a way to approximate server and
network latencies. Such delays are important because they simulate busy servers and,
to some extent, congested networks. They increase response times and cause the
proxy cache to maintain a large number of open connections.

Content types

Polygraph allows you to specify a distribution of different content types. For example,
you can say that 70% are images, 20% are HTML, and 10% are "other." Each content
type can have different characteristics, such as reply size, cachability, and last-modified
timestamps.

Reply sizes

It's very important to use a realistic distribution of reply sizes. In particular, a product's
disk performance is probably sensitive to the reply size distribution. If the sizes are too
small, the benchmark underestimates the actual performance. As mentioned
previously, Polygraph allows you to assign different reply size distributions to different
content types.

Object lifecycles

In this context, lifecycle refers to the times at which objects are created, modified, and
destroyed. The lifecycle model determines values for a response's Expires and
Last-modified headers and whether these headers are present at all. These
parameters determine how caches and simulated clients revalidate cached responses.
Unfortunately, the lifecycle characteristics of real web content are quite difficult to
characterize.

Persistent connections

HTTP/1.1 defines persistent connections, which enable a client to make multiple
requests over a single TCP connection. Polygraph supports sending a different number
of requests over a connection, as occurs in real traffic.

Embedded objects

The bulk of web traffic consists of images embedded in HTML pages. Although
Polygraph doesn't currently generate HTML, it can model pages with embedded
objects. Furthermore, Polygraph clients mimic graphical browsers by immediately
requesting a small number of embedded objects in parallel.

Uncachable responses

Polygraph marks some percentage of responses as uncachable with the no-cache
and other Cache-control directives. Of course, uncachable responses affect

response time, as well as hit ratio. Polygraph reports an error if it detects a cache hit for
an uncachable response.
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During an experiment, Polygraph measures the following at regular intervals:

Client- and server-side throughput

Cache hit ratio and byte hit ratio

The distribution of response times, separately for hits and misses

The distribution of reply sizes, separately for hits, misses, cachable responses, and
uncachable responses

Persistent connection usage

Number and type of errors

Number of requests and bytes for hits, misses, cachable responses, and uncachable
responses

12.3.2 Blast

The blast software, developed by Jens-S. Vöckler, replays trace log files. Blast launches a
number of child processes in parallel, each one handling one request at a time. In this way,
it's similar to Polygraph's best-effort request submission model.

Blast also includes a simple program called junker that simulates an origin server. Junker
supports the GET method, HTTP/1.1 persistent connections, and If-Modified-Since

validation requests.

You can get Blaster, in the form of Unix source code, from
http://www.cache.dfn.de/DFN-Cache/Development/blast.html.

12.3.3 Wisconsin Proxy Benchmark

WPB was developed at the University of Wisconsin, Madison. Like Polygraph, WPB
generates requests and responses on demand (versus from trace files). As with Blaster,
WPB uses a one-request-per-process approach, which makes it similar to Polygraph's best-
effort mode. WPB supports a configurable think time delay in its server. Many other workload
characteristics, such as popularity and hit ratio, appear to be hardcoded.

You can download the Unix source code for WPB from
http://www.cs.wisc.edu/~cao/wpb1.0.html. Since the project leader recently left the
University of Wisconsin, it is unlikely that WPB development will continue.

12.3.4 WebJamma
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WebJamma is similar to Blaster in that it plays back trace log files and uses best-effort
request submission. One unique feature is the ability to distribute requests to multiple proxy
caches. This allows you to evaluate more than one product at the same time and under the
same conditions. The WebJamma home page is
http://www.cs.vt.edu/~nrg/webjamma.html.

12.3.5 Other Benchmarks

A number of other benchmarks, such as WebStone, SPECweb99, WebBench, and httperf,
have been designed to test origin servers. Although it may be possible to use them with proxy
caches (via layer four redirection, for example), I do not recommend it. The workload for a
single origin server is much different from the workload for a proxy cache.
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12.4 Benchmarking Gotchas

Benchmarking a proxy cache is a complicated endeavor. Problems arise at all layers of the
networking model, from the physical to the application. Bottlenecks or inefficiencies can
appear in many places. The following sections describe some common problems I have
observed while performing benchmarks.

12.4.1 TCP Delayed ACKs

TCP includes a mechanism known as delayed ACKs [Clark, 1982; IETF, 1989]. The idea
is to not immediately acknowledge every data packet. ACK-only packets are very small and
thus not particularly efficient. If the TCP stack waits a little while, there is a chance that a data
packet is headed in the same direction. Piggybacking the ACK with the data is much more
efficient. Most TCP implementations delay ACKs for up to 200 milliseconds. For some, the
timeout is configurable.

Delayed ACKs are a big win for interactive flows (e.g., telnet) where small packets flow in
both directions in bursts. HTTP, however, is largely unidirectional. HTTP requests normally fit
inside a single TCP packet and, therefore, they are not affected by delayed ACKs.
Responses, however, typically require many packets. At the beginning of the transfer, TCP
slow start is also in effect. This means the sender won't transmit the second packet until the
first one is acknowledged. Thus, clients that use delayed ACKs increase the response time of
each request by about 100–200 milliseconds.

Most operating systems allow you to disable delayed ACKs. There is a tradeoff in doing so,
however. Response times improve, but the number of packets in the network increases. I
have seen caching products that achieve a higher throughput (responses per second) with
delayed ACKs enabled because the network interface was handling fewer packets.

In 1999, a magazine attempted to benchmark a handful of proxy caches with a best-effort
workload. They used only 20 agents. Because they did not consider TCP delayed ACKs, the
mean response time was approximately 200 milliseconds. In this environment, none of the
products could achieve higher than 100 requests per second. Many of the same products
had been previously benchmarked at higher than 1,000 requests per second. Even worse,
the delayed ACKs affected different products differently. Slower products actually appeared
to perform better than faster ones.

For more information on TCP delayed ACKs, refer to Section 19.3 of [Stevens, 1994].

12.4.2 Port Number Exhaustion

Port numbers are a limited resource for busy clients and servers. When an application closes
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a connection, TCP requires the host to keep the socket in the TIME_WAIT state for some

amount of time [Stevens, 1994, Section 18.6]. The TIME_WAIT duration is defined as twice
the Maximum Segment Lifetime (MSL). For most TCP implementations, MSL is set to 30

seconds, so the TIME_WAIT value is 60 seconds. During this time, the same port number
cannot be used for a new connection, although Stevens notes some exceptions.

When benchmarking, we usually want to push the limits of our load-generating machines. For
example, a reasonable goal is to have the machine generate 1000 HTTP requests per

second. At this rate, with a 60-second TIME_WAIT, we'll have 60,000 ports in that state after
running for just a minute or so. TCP has only 65,536 ports, some of which we can't use, so
this is dangerously close to the limit. In order to support high request rates, we need to
decrease the Maximum Segment Lifetime (MSL) value on the load-generating hosts. It's
probably safe to use an MSL value as low as three seconds, but only on the load-generating
machines and only in a lab environment. If you change the MSL value on a production
system, you risk receiving incorrect data. TCP may get confused and believe that packets
from an old connection belong to a new connection.

12.4.3 NIC Duplex Mode

Many Ethernet interfaces and switches available today support both 10baseT and
100BaseTX. Furthermore, 100BaseTX supports both half- and full-duplex modes. These
devices tend to have autonegotiation features that automatically determine the speed and
duplex setting. However, autonegotiation doesn't always work as advertised, especially when
it comes to the duplex mode.

A duplex mismatch can be tricky to detect because it probably works properly for very low
bandwidth uses such as telnet and ping . As the bandwidth increases, however, a large
number of errors and/or collisions occur. This is one of the reasons why running simple TCP
throughput tests is very important.

12.4.4 Bad Ethernet Cables

100BaseTX requires high-quality, well-made Ethernet cables. A poorly made cable is likely to

cause problems such as poor throughput, errors, and collisions. Remember that netstat -i
shows error and collision counters on Unix systems. If you observe these conditions on an
interface, replace the cables and try again. Bidirectional TCP throughput tests are useful for
identifying bad cables.

12.4.5 Full Caches

To be really useful, measurements must be made on full caches. A cache that is not full has
a performance advantage because it does not delete old objects. Furthermore, it is able to
write data faster because the filesystem has large amounts of contiguous free space.
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Once the disk becomes full, the cache replaces old objects to make room for new ones. This
affects performance in two ways. The act of deleting an object typically has some impact, for
example, updating a directory to indicate that certain disk blocks are now free. Object
removal also leads to fragmentation; thus, when writing new objects, there are fewer
contiguous free blocks available.

Some products have smarter filesystems than others. Those that have filesystems optimized
for web caching might show roughly similar performance for empty and full caches. However,
many products do exhibit a significant performance decrease over time.

12.4.6 Test Duration

It takes a long time to properly benchmark a proxy cache. Measurements should be taken
when the cache has reached a steady state. Proxy caches usually have very good
performance at the start of a test. As the test progresses, performance decreases slowly.
The longer you run a test, the closer you get to the steady-state conditions. A production
cache handling live traffic can take days or weeks to stabilize. A week-long benchmark is not
usually an option, so we must settle for shorter tests. Personally, I recommend running
benchmarks for at least six hours after the cache is full.

12.4.7 Long-Lived Connections

Long-lived connections are important because they tie up valuable resources in the proxy. By
long-lived, I mean a few seconds, not hours or days. It's easy for a proxy to achieve 1000
requests per second when the mean response time is just 10 milliseconds. Achieving the
same rate when the response time is three seconds is significantly harder. The reason for
simulating long connections is because they exist in real web traffic. Slow modem speeds,
wide area network delays, and loaded servers all contribute to response time.

12.4.8 Small Working Sets

Small working sets overestimate performance. The working set is the set of all objects that
clients can request at any given time. The size of the working set affects memory hit ratios.
Note that the contents of the working set can change over time, but the size remains
approximately the same.

The working set is too small if it can fit entirely in the cache's memory. Since the cache
doesn't need to read from the disk for memory hits, it achieves a higher performance.
Similarly, a working set that is too large results in a very low memory hit ratio and worse
performance.

For a cache to achieve the maximum possible hit ratio for a given workload, the working set
size must be less than the cache size. Otherwise, the cache replaces some objects that are
requested later, resulting in a cache miss.
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12.4.9 Clock Sync

All systems involved in a benchmark should have their clocks synchronized to a single
source. On more than one occasion, I have seen systems clocks differ by more than a year.
Such a difference can cause unexpected behavior. HTTP's date-related headers affect
validation and may affect cachability as well. Thus, clock skew can result in no cache hits or
a decrease in performance due to excessive validations.

12.4.10 MSL (TIME_WAIT) Values

As I described previously, a TCP stack's MSL determines how quickly port numbers are
recycled. When comparing different caching products, you should make sure they all use the

same reasonable MSL values. Web Polygraph includes a program called msl_test that
reports the MSL setting for a remote host.
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12.5 How to Benchmark a Proxy Cache

Proxy cache benchmarking is tricky because many systems are involved, and many things
can go wrong. To ensure we're really measuring the proxy's performance, we need to
eliminate other devices and systems as potential bottlenecks and sources of uncertainty. For
example, all computer systems used to drive the benchmark should be identically configured.
Also, we need to test the networking equipment to guarantee that it's up to the task.

12.5.1 Configure Systems

The first step is to select and configure a number of systems for use as clients and servers.
The number of machines you need depends on the total throughput you intend to achieve.
For Web Polygraph, you can plan on 400–500 requests per second for each client-server
pair. Other benchmarks may have different characteristics. Later, I'll describe how to run a
test that proves your systems can adequately generate the load.

Benchmarking systems should be dedicated to their task. You don't want other processes
running that can interfere with the measurements. For example, a busy server running on the
same machine can use up significant amounts of bandwidth. Even worse, a runaway
program can use significant amounts of memory or CPU time, starving the benchmarking
processes and adversely affecting your results.

Continuing along these lines, any unneeded services or processes should be disabled. For

example, don't run lpd , cron , sendmail , portmap , or even inetd . The standard FreeBSD

installation, as an example, has a nightly cron job that runs find on all mounted filesystems.
This I/O intensive process takes resources away from the benchmark and leads to
unreproducible results.

Be sure to configure and run xntpd on all systems. Having clocks synchronized avoids certain
problems interpreting HTTP headers that have dates. Additionally, it's much easier to
correlate logfiles written on different systems. You might feel it is sufficient to simply
synchronize clocks once, before a test starts, but some system clocks drift significantly over
time. If your test is very long, there is a chance that one system will finish before or after the
others.

Because a benchmark uses a lot of networking resources, you may need to tune your system
or build a new kernel. It's likely you'll need to increase or change the following parameters:

Open file descriptor limit

Maximum number of threads
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TCP delayed ACKs

Socket listen queue length

Number of mbufs or mbuf clusters

Ephemeral port range

12.5.2 Test the Network

Testing and benchmarking the network is critical. You don't want to spend a lot of time
measuring cache performance only to discover later that a NIC was in half-duplex mode or
your switch is a bottleneck.

First of all, use ping to make sure all systems can talk to each other. If you're using a routed
environment, this also ensures you have the routes configured correctly. It's a good idea to

let ping run for a while so it sends 10–20 packets. If you observe any packet loss, investigate
the problem. Bad Ethernet cables are a likely culprit.

Next, run some TCP throughput tests. Good tools for this are netperf
(http://www.netperf.org) and nttcp (http://users.leo.org/~bartel/nttcp/). Be sure to
run throughput tests in both directions on each host at the same time. In other words, make
sure each host is both sending and receiving traffic. I recommend running the throughput test
for about five minutes. For a full-duplex, switched network, each host should achieve 88–94
Mbps in each direction. If you're using a hub instead of a switch, the peak throughput will be
much less, because every host must compete for 100 Mbps total bandwidth, and each NIC
runs in half-duplex mode. A test between two hosts should result in about 37 Mbps in each
direction. If you get significantly lower throughput than you expect, it probably means one of
your Ethernet cables is bad. A measurement slightly lower than expected is more difficult to
diagnose. It may be due to an inefficient NIC driver, inadequate CPU power, or a switch or
router that cannot support the full network bandwidth.

12.5.3 No-Proxy Test

By this point, you should be confident that your network can support a lot of TCP traffic. The
next step is to make sure that the benchmarking systems can generate enough load to drive
the proxy cache under test. To do this, I recommend running a no-proxy test. The no-proxy
test is important for testing the system as a whole, minus the proxy cache. If successful, it
helps to eliminate the client/server machines and networking equipment as a potential
bottleneck. It also helps to establish a worst-case measurement you can use in a before-and-
after comparison. If this test fails, then you know any measurements made against the proxy
cache would be useless.

The no-proxy test uses the same workload you will use on the proxy cache. However, instead
of sending requests to the proxy, they are sent directly from clients to servers. Some
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benchmarking software may not support this mode of operation. With Polygraph, you just
comment out the --proxy command-line option. If you're using a layer four switch to divert

traffic, simply disable the redirection temporarily. The no-proxy test should run for at least 30
minutes. Be sure to save the log files and other results from this test for later comparison with
the proxy cache results.

12.5.4 Fill the Cache

We're almost ready to measure the proxy cache's performance. Before doing that, however,
make sure the cache's disks are full. If the cache is already full, you may be able to skip this
step. However, if reproducible results are really important, you should flush the cache and fill
it again. I have seen considerable evidence that the method used to fill a cache affects
subsequent results.

Ideally, you should fill the cache the same workload characteristics you are measuring with. A
cache filled with really large objects, for example, leads to too few delete operations during
the measurement phase. During the first industry Cache-Off, caches were filled with a best-
effort workload, and the participants were allowed to choose the number of agents to use.
One participant discovered that their product achieved higher throughput during the
measurement phase when the cache was filled with one best-effort agent, while multiple
agents resulted in lower throughput. This is probably because files are written to disk
sequentially under the single-agent workload. When these files are later removed, the disk is
left with relatively large sections of contiguous free space, which in turn results in faster write
times for new objects.

12.5.5 Run the Benchmark

Finally, we're ready to actually benchmark the proxy cache. As I've already mentioned, this
test should run for at least six hours. Longer tests are more likely to achieve, and thus
measure, steady-state conditions.

The benchmark should record performance data as it runs. You may also want to collect your
own statistics from the cache during the benchmark. For example, you can probably use
SNMP tools as described in Chapter 11. It's possible, but unlikely in my experience, that
such SNMP monitoring can adversely affect the cache's performance; if you're planning to
use SNMP on your production caches, you'd probably like to know about this anyway.

Once the test completes, you'll want to analyze the results. Usually this means plotting
graphs of various measurements versus time. By looking at the graphs, you should be able to
tell whether the product's performance meets your expectations. If you observe spikes or
very sudden changes, you may want to investigate these further. Most likely, you'll see
something that's not quite right and will want to run another test after making an adjustment.
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12.6 Sample Benchmark Results

This section contains results from a Web Polygraph benchmark of a Squid cache. The data

shown here is not an official Polygraph result, but it uses the same PolyMix-3 workload that
we used for the third industry Cache-Off.

For this test, Squid is running on a Compaq Proliant system with an Intel Pentium III/450
processor, 1GB of RAM, six 9GB SCSI disks, and an Intel fast Ethernet interface. The
operating system is FreeBSD-4.1 with a kernel specifically tuned for Squid. The Squid
version is 2.4.DEVEL4.

PolyMix-3 has three input parameters: cache size, peak throughput, and fill rate. For this test,
the cache size is 41G B, the peak throughput is 130 requests per second, and the fill rate is
115 requests per second. Another characteristic of the workload is its different phases.
PolyMix-3 has three interesting phases: fill, top1, and top2. There are actually transitional

phases in between, but we won't discuss them. The fill rate is the request rate during the fill

phase, which can be different from the peak throughput for the top phases. During the fill

phase, the hit ratio is only 5%, whereas it is about 57% during the top phases. During the fill
phase, the cache is mostly writing objects to disk, with relatively few reads. Thus, a cache

may be able to support a higher throughput during the top2 phase, when it is reading more
and writing less than it was during the fill phase.

These results were created by running Polygraph's ReportGen scripts. Rather than show all

of the details that ReportGen provides, we'll look only at the three most interesting metrics:

throughput, response time, and hit ratio. If we want to compare this result to another PolyMix-

3 run, we usually look at the metrics averaged during the top2 phase. The ReportGen script
puts this information in an executive summary table as shown in Table 12-1.

Table 12-1. Summary of Polygraph Results

Metric Value

Throughput 130.36 req/sec

Hit response time 0.303 sec

Miss response time 2.802 sec

Overall response time 1.443 sec

Cache hit ratio 57.26%

12.6.1 Throughput

First, let's look at the throughput. Remember that this is an input parameter; that is, I told
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Polygraph what throughput to use. In Figure 12-1, you can see the three phases clearly:
first is the long fill phase followed by the top1 and top2 phases. The PolyMix-3 workload is
designed to fill the cache twice. In other words, it would require twice the cache size to store
every cachable response transferred during the fill phase. In this case, it takes about 25
hours to reach that point.

Figure 12-1. Throughput versus time

You can see that the throughput during the fill phase is 115 requests per second. During the

top1 and top2 phases, Polygraph uses the peak throughput, which is 130 requests per

second. Each top phase lasts for four hours. In between are some short idle phases.

12.6.2 Response Time

The response time trace is shown in Figure 12-2. One of the first things you notice about
this graph is the spikes that occur every four hours. Initially the spikes are small, but they
increase with time. They are caused by a cron job on the Squid box that prevents certain log
files from growing too large. While Squid is cleaning up the logs, it has a hard time keeping
up and some requests are delayed. After about a minute, Squid catches up and response
time returns to normal levels.

Figure 12-2. Response time versus time
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The three lines on the response time graph represent cache hits, cache misses, and all

requests combined. During the fill phase, the All line is just slightly below the Miss line. This
is because 95% of all requests are cache misses, and only 5% are hits. During the top
phases, you can see that the All line drops significantly because about 57% of requests are
now cache hits.

Notice the slight increase in All response times after 10 hours. This corresponds to the point
in time when Squid begins removing cached objects. The delete operations increase disk
activity and affect the time to read and write object data.

12.6.3 Hit Ratio

Figure 12-3 shows the cache hit ratio trace. Here we see both the offered and actual hit
ratios. A particular product may not achieve the ideal hit ratio for any number of reasons,
such as insufficient disk space, overload conditions, and lack of support for certain HTTP
features. In this case, Squid gets pretty close to the offered hit ratio, but not quite. During the

fill phase the two are very close. However, you can see a gap when the hit ratio jumps to
57%. It looks like the gap gets smaller as the test continues after that point.

Figure 12-3. Hit ratio versus time
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12.6.4 Other Results

Most caching vendors recognize the value in publishing benchmark results for their products.
You can find publicly available Polygraph results by visiting http://www.web-
polygraph.org and http://www.measurement-factory.com.
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Appendix A. Analysis of Production Cache Trace Data

In this appendix, we'll look at some interesting characteristics of web traffic, such as reply
size distributions, HTTP headers, and expiration times. Such data is useful for a number of
reasons. First, the information in this appendix backs up some of the statements I made
earlier in the book. For example, when I said that small files are more more popular than
large ones, I wasn't just making that up. Second, this data can help you make decisions
regarding your own caching proxies. The hit ratio analysis demonstrates how increasing your
cache size may result in higher hit ratios.

For these analyses, I use data from two different sources. One is the NLANR/IRCache
project, consisting of nine caches I maintain throughout the U.S. [A] The other is a proxy cache
located at a U.S. university, which I'll call Anon-U. All data comes from production Squid
caches with real users.

[A] The NLANR/IRCache project is funded by the National Science Foundation, grants NCR-9616602 and NCR-9521745.

I use the IRCache data for most analyses because it is significantly larger and includes more
information. The IRCache set includes client access logs, cache "store" logs, and HTTP
header logs. The access logs are from March 5–25, 2000 and contain 216 million responses.
The store logs are from March 8–25, 2000, and contain 71 million entries. The header logs
are from April 2–29, 2000, and contain 268 million request and response entries.

The IRCache proxies are unique in certain ways that can skew the data. In other words, the
data collected from these proxies does not necessarily represent typical web traffic. In
particular, keep the following points in mind while reading this appendix:

Most of the IRCache clients are other caches. In some cases, there are three or more
caches between the user and my cache. Many requests that would be hits are filtered
out by the lower-layer caches. This tends to reduce the caches' hit ratios.

Many clients use ICP or Cache Digests, so they request only cache hits. This tends to
increase the caches' hit ratios.

A number of clients use the IRCache proxies to bypass filtering in their own
organization. Thus, these caches may see a higher percentage of pornography, etc.,
than a typical cache does.

The Anon-U data consists of 21 million access log entries from May 1–31, 1999. To protect
the privacy of that cache's users, both the URLs and client IP addresses have been
randomized. The URLs are sanitized in a way that removes information such as hostnames,
protocols, port numbers, and filename extension.
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When the analysis results in a distribution (e.g., reply sizes), I report both mean and median
values. Many of the distributions have heavy tails that make mean values less interesting. In
these cases, median is a better representation of the average.

When looking at traffic statistics collected from web caches, it's important to understand
where the data comes from and what it represents. I can think of at least four different ways
to collect and analyze caching proxy data:

Per request, as seen on the network between the cache and its clients

Per object (URL) stored in the cache

Per request, as seen on the network between the cache and origin servers

Per object (URL) stored at origin servers

Most of the analyses in this appendix use the first technique: per request between the cache
and its clients. The exceptions are object sizes and cachability, both of which are per object.
In each of the following subsections, I'll explain a little about the procedures used to generate
the results.
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A.1 Reply and Object Sizes

Figure A-1 and Figure A-2 show two size distributions, the first for objects and the second
for reply sizes. The reply size distribution includes all responses sent to clients, and repeated
URLs are counted each time. The object size distribution is meant to represent the size of
objects stored on origin servers. Thus, repeated URLs are filtered out for the object size data
so that each URL is counted just once. The reply size distribution has a mean of 8,419 bytes,
and the median is 1,266 bytes. The object size distribution is quite different, with a mean of
22,499 bytes and a median of 3,372 bytes.

Figure A-1. Distribution of object sizes (IRCache data)

Figure A-2. Distribution of reply sizes (IRCache data)
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Both distributions are derived from the fifth field of Squid's access.log file. For reply sizes, I
include almost every response. I filter out TCP_DENIED responses and certain other Squid-
specific responses (e.g., Cache Digests). After that, I take all the size values and calculate
the mean, median, and a histogram. Calculating the object size distribution is a little trickier.
First, I filter out non-GET requests and non-200 status responses. This is cheating a little bit
because POST requests, for example, have origin server objects, or resources, that aren't
included in this analysis. Second, I filter out repeated URLs. For each URL, I keep the largest
size value seen in the access log. Finally, these values are used to calculate the mean,
median, and histogram.

As you can see, reply sizes tend to be smaller than object sizes. This is because a significant
percentage of the responses in the reply size distribution don't have an HTTP message
body-for example, 304 (Not Modified) responses and 404 (Not Found) error messages. As
we'll see later, about 20% of all responses in the IRCache traces are 304 messages.
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A.2 Content Types

Table A-1 shows the breakdown of responses by content type. As you can see, images
make up about 60% of all web requests by count and 40% by volume. The top three content
types-GIFs, JPEGs, and HTML-account for 95% of all requests and 63% of all traffic
volume.

Table A-1. The Most Popular Content Types (IRCache Data)

Content Type Count % Volume % Mean Size, KB

image/gif 40.8 16.6 3.75

text/html 35.1 23.1 6.07

image/jpeg 19.0 22.9 11.12

text/plain 1.7 2.5 13.45

application/x-javascript 1.5 0.2 1.45

application/octet-stream 0.5 10.2 179.22

application/zip 0.1 8.0 684.14

video/mpeg 0.0 3.4 761.90

application/pdf 0.0 1.3 336.30

audio/mpeg 0.0 2.5 1707.70

video/quicktime 0.0 1.2 1205.42

All others 1.1 8.1 69.60

This data is derived from the fifth and tenth fields of Squid's access.log file. The logs include
many responses without a content type, such as 302 (Found) and 304 (Not Modified). All
non-200 status responses without a content type have been filtered out. I have not eliminated
the effects of popularity. Thus, these numbers represent the percentage of requests made by
clients rather than the percentage of content that lives at origin servers.

Figure A-3 shows some long-term trends of the three most popular content types and
JavaScript. The percentage of JPEG images remains more or less constant at about 20%.
GIF requests seem to have a decreasing trend, and HTML has a corresponding increasing
trend. The GIF and JPEG traces are very periodic. The peaks and valleys correspond to
weekends and weekdays. On weekends, JPEG counts are higher and GIF counts are lower.
A possible explanation is that pornographic images are usually JPEG files, and people view
pornography more on weekends than on weekdays. The JavaScript trace shows a very slight
increasing trend, although it comprises a very small fraction of total traffic.

Figure A-3. Content-type trends over time (IRCache data)
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This data is also derived from Squid's access.log file. To determine the content type, I look at
the Content-type header and, if that's not present, the filename extension. I ignore

responses for which the content type cannot be determined.
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A.3 HTTP Headers

It is interesting to examine the HTTP headers of requests and responses flowing through the
caches. To get this information, I temporarily modified Squid to write a short binary record
that indicates which headers are present. I also tracked the Cache-control directives.

The headers log file does not include URLs, so I cannot eliminate the popularity effects.
There is one entry for each request from and each response to a client, so this data is from
the client's point of view.

A.3.1 Client Request Headers

Table A-2 lists the request headers and their frequency of occurrence. It's important to keep
in mind that most of these requests come from child caches, not from web browsers.
Furthermore, most of the child caches are also running Squid. Evidence of this is seen in the
occurrence of Via and X-Forwarded-For headers. Both of these are added by proxies,

and the latter is an extension header used by Squid. According to this data, around 99% of
all requests come from child caches.

Table A-2. Client Request Headers (IRCache Data)

Header % Occurrence Header % Occurrence

Host 99.91 Range 0.46

User-Agent 99.21 Connection 0.26

Via 98.90 From 0.24

Accept 98.84 Date 0.18

Cache-Control 98.34 Proxy-Authorization 0.07

X-Forwarded-For 98.19 Request-Range 0.06

Accept-Language 91.33 If-Range 0.05

Referer 85.00 Expires 0.02

Accept-Encoding 82.60 Mime-Version 0.01

Proxy-Connection 78.46 Content-Encoding 0.00

Cookie 39.18 Location 0.00

Accept-Charset 28.77 If-Match 0.00

If-Modified-Since 24.83 X-Cache 0.00

Pragma 13.18 Age 0.00

Other 5.82 Last-Modified 0.00

Authorization 1.41 Server 0.00

Content-Type 1.00 ETag 0.00
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Content-Length 0.84 Accept-Ranges 0.00

If-None-Match 0.61 Set-Cookie 0.00

The Referer and From headers are interesting for their privacy implications. Fortunately,
very few requests include the From header. Referer is quite common, but it is less of a

threat to privacy.

The data indicates that about 25% of all requests are cache validations. Most of these are
If-Modified-Since requests, and a small amount are If-None-Match. Note that Squid

does not support ETag-based validation at this time.

Table A-3 lists the Cache-control directives found in the same set of requests. The max-
age directive occurs often because Squid always adds this header when forwarding a
request to a neighbor cache. The only-if-cached directives come from caches configured
in a sibling relationship. (The only-if-cached directive instructs the sibling not to forward
the request if it is a cache miss.)

Table A-3. Cache-control Request Directives (IRCache Data)

Directive % Occurrence

max-age 98.01

only-if-cached 9.63

no-cache 0.09

A.3.2 Client Reply Headers

Table A-4 lists the HTTP reply headers. X-Cache is an extension header that Squid uses

for debugging. Its value is either HIT or MISS to indicate whether the reply came from a
cached response.

Table A-4. Client Reply Headers (IRCache Data)
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Header % Occurrence Header % Occurrence

X-Cache 100.00 Warning 0.03

Proxy-Connection 99.88 Content-Language 0.02

Date 95.20 WWW-Authenticate 0.02

Content-Type 84.94 Title 0.01

Server 82.49 Content-Base 0.01

Content-Length 65.67 Location 0.00

Last-Modified 65.61 Referer 0.00

ETag 53.07 Content-MD5 0.00

Accept-Ranges 48.06 From 0.00

Age 24.28 Host 0.00

Cache-Control 10.36 Public 0.00

Expires 10.30 Upgrade 0.00

Pragma 3.13 X-Request-URI 0.00

Set-Cookie 3.04 Cookie 0.00

Other 2.99 Accept-Charset 0.00

Mime-Version 1.62 User-Agent 0.00

Via 0.80 Retry-After 0.00

Vary 0.66 Accept-Language 0.00

Link 0.53 Authorization 0.00

Content-Location 0.28 Range 0.00

Content-Encoding 0.28 Accept-Encoding 0.00

Allow 0.19 X-Forwarded-For 0.00

Connection 0.12 If-Modified-Since 0.00

Accept 0.04 Content-Range 0.00

The Date header is important for caching. RFC 2616 says that every response must have a
Date header, with few exceptions. Here we see it in about 95% of replies, which is pretty

good.

Content-length occurs in only 65% of responses. This is unfortunate, because when a
client (including proxies) doesn't know how long the message should be, it's difficult to detect
partial responses due to network problems. The missing Content-length header also

prevents a connection from being persistent, unless the agents use chunked encoding.

Table A-5 lists the Cache-control reply directives present in the responses sent to cache
clients. As you can see, no-cache and private are the most popular directives. The fact

that both occur in 4.6% of responses leads me to believe they probably always occur
together. max-age is the only other directive that occurs in more than 1% of responses. The

"Other" entry refers to unknown or nonstandard directives.

Table A-5. Cache-control Reply Directives (IRCache Data)
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Directive % Occurrence Directive % Occurrence

no-cache 4.60 no-store 0.06

private 4.60 no-transform 0.02

max-age 2.69 s-maxage 0.00

must-revalidate 0.23 proxy-revalidate 0.00

Other 0.11 only-if-cached 0.00

public 0.09    

If we want to find the percentage of responses that have an expiration time, we need to know
how often the Expires header and max-age directive occur separately and together. Table

A-6 shows the percentage of responses that have one, the other, neither, and both of these
headers. In these traces, 89.65% of responses have neither header, which means that only
10.35% have an expiration value. You can see that the Expires header is still more popular
than the max-age directive, and that max-age almost never appears alone.

Table A-6. Responses with Explicit Expiration Times (IRCache Data)

Header/Directive % Occurrence

Neither Expires nor max-age 89.65

Expires only 7.65

Both 2.64

max-age only 0.05

The analysis is similar for cache validators, although the results in Table A-7 are more
encouraging. 77.04% of all responses sent to clients have a cache validator. Last-
modified is still more popular than the ETag header, although a significant percentage
(11.43%) of responses carry only the ETag validator.

Table A-7. Responses with Cache Validators (IRCache Data)

Header/Directive % Occurrence

Both 41.64

Last-modified only 23.97

Neither Last-modified nor ETag 22.96

ETag only 11.43
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A.4 Protocols

Table A-8 shows the distribution of the most popular transfer protocols, HTTP and FTP. Not
surprisingly, you can see that on average FTP is used to transfer larger files. Note that this
certainly does not represent the distribution of HTTP and FTP traffic on the Internet as a
whole. This data comes only from proxy cache logs. Many people configure proxying for
HTTP only and connect to FTP servers directly. Furthermore, most FTP clients cannot use
HTTP proxies.

Table A-8. Transfer Protocol Usage (IRCache Data)

Protocol % Requests % Bytes

HTTP 99.9 95.9

FTP 0.1 4.1

This data is derived from a simple analysis of Squid's access.log file. The protocol is taken
from the URL and the size from the fifth field.
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A.5 Port Numbers

Recall that interception caching (Chapter 5) usually diverts only port 80 connections.
However, some HTTP servers use other ports for various reasons. The IRCache data in
Table A-9 shows that only 0.3% of HTTP traffic is not on port 80. However, this is an
underestimation if we assume that many of the IRCache clients use interception proxying to
begin with. The non-port 80 requests won't be intercepted and hence won't reach these
caches.

Table A-9. Server Port Numbers (IRCache Data)

Port % Servers % Requests % Bytes

80 99.705 99.610 99.619

8080 0.003 0.088 0.094

8000 0.003 0.039 0.040

All others 0.289 0.262 0.247
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A.6 Popularity

Figure A-4 shows the Zipf-like distribution of object popularity. The X-axis is the popularity
rank. The most popular object has a rank of 1, the second most popular object a rank of 2,
and so on. The Y-axis is the number of requests for each object. Note that both axes have a
logarithmic scale.

Figure A-4. Popularity distributions (IRCache and Anon-U data)

We say the distribution is Zipf-like because it almost follows Zipf's law. This law, named after
George Kingsley Zipf, describes things such as the frequency of words in English texts and
the populations of cities. It is also useful for characterizing the popularity of web objects.

Specifically, the probability of access for the ith most popular object is proportional to i-a. In
Zipf's law, the exponent a is close to 1. For web traffic, the exponent is typically between 0.6
and 0.8.

This data is derived by counting the number of times each URL occurs in Squid's access.log.
After getting these counts, the particular URLs are unimportant. The values are sorted and
plotted against their rank in the list.

For comparison, I show curves for both the IRCache and Anon-U data sets. The Anon-U plot
is below the IRCache plot because it has significantly fewer accesses. The two appear to be
similar, except that the Anon-U line slopes down much more for the 100 most popular
objects.

A.6.1 Size and Popularity

Back in Section 2.4, and Section 12.1.3, I mentioned that byte hit ratios are typically lower
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than cache hit ratios because small files are more popular than large ones. Here, I back up
that assertion by analyzing the IRCache access logs. We'll look at the data in two slightly
different ways.

Figure A-5 shows the mean number of requests for objects of different sizes. This is a
histogram where the bin number is proportional to the logarithm of the object size. The
histogram value is the mean number of requests for all objects in that bin. In other words, it is
the number of requests divided by the number of unique objects in each bin. Although there
are peaks and valleys, the mean number of requests generally decreases as object size
increases. For example, the largest objects were requested about two times on average,
while the smallest objects were requested hundreds and thousands of times.

Figure A-5. Mean number of requests versus object size (IRCache data)

Figure A-6 is a little more complicated. First, the Y-axis is the total number of requests,
rather than the mean. Second, the bins are constant size. Third, in order to see all of the
data, the plot has three views of the data at three different scales. The first trace is with a bin
size of 1 byte, the second with 100-byte bins, and the third with 10 KB bins. In other words,
the first trace shows file sizes up to 1KB, the second up to 100KB, and the third up to 10MB.

Figure A-6. Total number of requests versus object size (IRCache data)
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In the "1 byte bin" trace, you can see that popularity increases with object size for objects
between 0 and 400 bytes. From 400–600 bytes, the curve is relatively flat, but keep in mind
that the Y-axis is logarithmic. In the other traces with larger bin sizes, the decreasing trend is
quite obvious.

The procedure for generating this data is similar to the one used for reply and object sizes.
Unlike the object size distribution, however, I want to count each request, not each object.
Unlike the reply size data, I want to count the object size, not the reply size. For this data, I
take only GET requests with a status code of 200 or 304 and filter out any Squid-specific
requests. For some objects, the size, as logged by Squid, may change significantly over time.
To account for this, I use the average size for all requests of a particular URL. The 304
responses do not contribute to the size calculation but are counted as a request.
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A.7 Cachability

Table A-10 shows the cachability percentages for different classes of responses. This data

comes from an analysis of Squid's store.log files. Squid writes an entry in this file for every
object saved to disk and every object that is released from the cache. Objects are released
either because they are uncachable or to free up space for new objects. For each URL, I
count the number of times it is successfully written to disk and the number of times it is not
cached. Releases made by the cache replacement algorithm are ignored. If it is cached more
times than not, the object is cachable. If it is not cached more times, it is uncachable. If the
counters are equal, then the object's cachability is unknown.

Table A-10. Response Cachability (IRCache Data)

Type % Cachable % Uncachable % Unknown

All 75.9 23.9 0.2

text/html 36.7 63.1 0.2

image/* 90.9 8.9 0.2

This analysis represents the cachability of an object rather than a response. It does not
include popularity effects. The IRCache data does not lend itself to a response-based
analysis of cachability because the IRCache proxies receive a higher-than-normal
percentage of requests for uncachable objects. The child caches filter out most of the cache
hits but not the cache misses; the misses find their way to the top of the hierarchy. I
compensate for this by looking at unique URLs rather than each request.
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A.8 Service Times

Table A-11 shows the mean and median service times for different types of requests. The

type is taken directly from the fourth field of Squid's access.log file. The three-digit number
following the slash is the HTTP status code. Here I show only 200 (OK) and 304 (Not
Modified) replies.

Table A-11. Mean and Median Service Times by Cache Result (IRCache Data)

Type Mean (sec) Median (sec)

TCP_REFRESH_HIT/200 5.165 0.281

TCP_MISS/200 4.590 0.466

TCP_REFRESH_MISS/200 4.091 0.468

TCP_CLIENT_REFRESH_MISS/200 1.889 0.215

TCP_HIT/200 1.819 0.050

TCP_MISS/304 1.151 0.294

TCP_REFRESH_HIT/304 1.107 0.219

TCP_IMS_HIT/304 0.102 0.042

The string before the slash indicates how the cache handled the request. TCP_MISS means
the object wasn't found in the cache at all. TCP_HIT indicates an unvalidated cache hit.
TCP_IMS_HIT occurs when Squid receives an If-modified-since request and returns a

304 (Not Modified) reply immediately because the response is fresh according to the local
configuration. TCP_CLIENT_REFRESH_MISS means that the user-agent sent the no-
cache directive. TCP_REFRESH_HIT occurs when Squid validates its cached response and
learns that the object hasn't changed. If the client's request includes an If-modified-
since header, Squid returns the 304 message. Otherwise, it sends the entire object, and the
status is 200. Finally, TCP_REFRESH_MISS means Squid sent a validation request to the
origin server, and the cached object was out-of-date.

This data is derived from the second field of Squid's access.log. Squid records the elapsed
time for each HTTP transaction. The timer starts when Squid accepts a new connection or
when it reads the first byte of the request on a persistent connection. The timer stops when
the connection is closed or when the last byte of the response is written on a persistent
connection. Note that Squid's notion of service time is inaccurate for a couple of reasons:

The operating system buffers data as it is written out to the network. It accepts data from
the application, typically up to 32KB, and then transmits it to the other end according to
the TCP/IP protocols. Squid doesn't know when the client actually receives the final
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packet. This is especially significant for cache hits, most of which are smaller than
32KB. TCP packets may be delayed, dropped, and retransmitted without affecting the
service time.

Similarly, when Squid closes a connection, the operating system takes care of the final
handshake. The application doesn't know when the client receives the FIN packet that
closes the connection.

Not too surprisingly, all the 200 (OK) status responses take longer than the 304 (Not
Modified) responses. The 304 responses are smaller, consisting of HTTP headers only. Also,
as we would expect, cache hits (except for TCP_REFRESH_HIT) are sent faster than cache
misses. By comparing the mean and median values, we can conclude that the reply size
distributions have heavy tails.
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A.9 Hit Ratios

In this section, I use the Anon-U trace files in two different simulations. We'll see how the
number of cache clients affects hit ratio and how the hit ratio changes as a function of the
cache size.

For hit ratio versus number of clients, I used one day's access log from the Anon-U data. I
am restricted to a single day because the client IP addresses are not sanitized consistently
between log files. The access log I used has 1.7 million requests from 2,415 different clients.
I can't tell from this data which of the objects are uncachable, so in the simulation all URLs
are uniformly uncachable with a 25% probability.

Given a trace with 2,415 clients, how can we calculate the hit ratio for one, two, or any
particular number of clients? My approach is to first create a random ordering of clients. Then
I run a program that reports the hit ratio for requests from the first client, the first two clients,
the first three clients, and so on, all the way up to the maximum. For small numbers of
clients, the hit ratio varies greatly depending on the ordering of clients. In one case, the first
20 clients might have a 20% hit ratio, while another results in 90%. To improve the precision,
I ran the simulation with 100 different client orderings and averaged the results. Note that, in
these simulations, the cache size is infinite, and there are no If-modified-since or no-
cache requests. The random seed is always the same so that the set of uncachable URLs
remains consistent between runs.

Figure A-7 shows the mean hit ratios with "error bars," which represent the minimum and
maximum cache hit ratio values for the 100 different runs. As the number of clients
increases, the minimum-maximum spread decreases.

Figure A-7. Cache hit ratio versus number of cache clients (Anon-U data)
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The linear scale of the first figure makes it difficult to see the trend for small numbers of
clients. Figure A-8 is a graph of the same data but on a logarithmic scale and without error
bars. Here you can see that the mean hit ratio starts at around 18% and increases in
proportion to the logarithm of the number of clients.

Figure A-8. Cache hit ratio versus number of cache clients, logarithmic scale (Anon-U data)

Figure A-9 gives the results from a simulation with different cache sizes and also shows
how the hit ratio increases with the number of total requests. As with Figure A-8, the hit ratio
increases in proportion to the logarithm of the cache size. For this trace, each order of
magnitude increase in cache size results in an increase in hit ratio of 11%.

Figure A-9. Cache hit ratio versus cache size (Anon-U data)

The different lines in Figure A-9 show the hit ratio trace after reading a certain number of
requests from the log file. For example, the lowest line shows the simulation results after
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reading 10,000 requests. You can see that the hit ratio doesn't change once the cache size
reaches 50MB. In other words, a 50MB cache is sufficient to store every cachable response
from the first 10,000 requests. At the other extreme, all 21 million requests in the Anon-U
logs require a 40GB cache to achieve maximum hit ratio.
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A.10 Object Life Cycle

In this section, I provide a few clues into the temporal characteristics of web objects. By

analyzing Squid's store.log files, we can see how old an object is when it enters the cache,
when it was last modified, and when it expires.

Age, expiration, and modification time calculations depend on the presence of certain HTTP
headers. The Date header is quite common, but the Expires header is rare. If a header is

missing or invalid, the response is not included in the analysis.

Figure A-10. Distribution of object ages, modification, and expiration times (IRCache data)

In Figure A-10, you'll see cumulative distribution (CDF) plots for object age, time since
modification, and time until expiration. Age values are taken from the HTTP Age header or, in
most cases, by subtracting the Date header value from the current time. Whenever a cache

receives a response from an origin server, the object's age should be zero. However, the age
may be nonzero for one or more of the following reasons:

The origin server's clock may be wrong. Even if the response is generated at the current
time, the server's Date header may be in the future or the past by a significant amount.
In this analysis, negative age values are discarded.

The response may have been served from a neighbor cache rather than the origin
server. Most IRCache proxies have neighbors, so it's likely that about 5% of requests
are found in those neighbors.

The origin server may actually be a surrogate. The Akamai content distribution network
falls into this category. When you request an object such as

http://a1.g.a.yimg.com/7/1/31/000/us.yimg.com/i/mail/mailicon.gif, you receive a cached

http://a1.g.a.yimg.com/7/1/31/000/us.yimg.com/i/mail/mailicon.gif
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response, and the Date header is set to a specific time in the past.

Table A-12 shows the same data in tabular form. You can see, for example, that 28% of
responses with valid Date or Age headers are less than 1 second old, and 94% are less than
1 day old.

Table A-12. Object Life Cycle Percentiles

Time Age percentile Expiration percentile LMT percentile

1 second 28 25 4

1 minute 62 31 5

1 hour 86 66 9

1 day 94 73 15

1 week 98 78 24

1 month 99 80 39

1 year 100 83 86

1 decade 100 100 100

The distribution of expiration times is particularly interesting. Unlike the others, it is not very
smooth. The vertical increases correspond to spikes in the histogram. For example, there is a
sudden increase from 30% to 60% right at the 5-minute mark. This means that, of the
responses with an expiration time, 30% were set to expire after 5 minutes. You can also see
"spikes" at 1 minute, 1 hour, 1 day, 1 month, and 1 year.

The Last-modified distribution is shifted farther to the right, indicating that the time since

modification is relatively large. As Table A-12 shows, of the responses entering the cache
that have the Last-modified header, 60% have not changed in the previous month. In

fact, 47% of those responses have a last modification time between 1 month and 1 year ago.
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A.11 Request Methods

Table A-13 lists the distribution of HTTP request methods. This data is skewed because, by
default, Squid does not forward non-GET method requests up to parent caches. Also, the
ICP and Cache Digest protocols work for GET methods only. It is likely that most of the non-
GET methods are forwarded directly to origin servers by the lower layers.

Table A-13. Distribution of Request Methods (IRCache and Anon-U Data)

Method IRCache % Anon-U %

GET 98.78 98.31

POST 0.881 1.634

HEAD 0.293 0.058

PROPFIND 0.041771 -

MOVE 0.002518 -

PROPPATCH 0.002076 -

CONNECT 0.001292 -

DELETE 0.000474 -

OPTIONS 0.000414 -

PUT 0.000095 0.000180

COPY 0.000015 -

MKCOL 0.000007 -

LOCK 0.000007 -

TRACE 0.000001 -

Note that the Anon-U data doesn't have any WEBDAV request methods. Most likely, these
methods were not in use when the Anon-U data was generated (May 1999).
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A.12 Reply Status Code

Table A-14 shows the percentage of requests for different status codes. Only the popular
and possibly interesting status codes are included here.

Table A-14. Reply Status Code Breakdown (IRCache and Anon-U Data)

Status IRCache % Anon-U %

200 OK 59.76 71.35

304 Not Modified 19.31 17.23

302 Found 9.27 8.12

504 Gateway Time-out 5.88 0.22

404 Not Found 1.46 1.21

403 Forbidden 1.39 0.04

301 Moved Permanently 0.50 0.48

500 Internal Server Error 0.37 0.07

401 Unauthorized 0.26 0.10

206 Partial Content 0.08 0.05

Approximately 20% of all responses are for validation requests where the resource has not
changed. Sadly, almost 10% of responses are HTTP redirects (302 status) for pages that
have moved to a new location. The high percentage of 504 responses in the IRCache data is
from sibling requests that would have resulted in a cache miss. The 206 response code is
used for HTTP "range" requests whereby the client requests some subset of the object data.
The small percentage of 206 replies is somewhat surprising but perhaps less so given that
the data was collected in March of 2000.
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Appendix B. Internet Cache Protocol

This appendix describes the message format and opcodes of the Internet Cache Protocol,
Version 2. You may also want to read RFCs 2186 and 2187. The final section of this
appendix describes experimental opcodes not mentioned in the RFCs. Visit
http://icp.ircache.net for up-to-date information on the protocol.
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B.1 ICPv2 Message Format

Figure B-1 shows the structure of an ICP message. The 20-byte header is the same for all
messages. As with all Internet protocols, it is necessary to convert all multi-octet fields to
network byte order before transmission. Each field is discussed in the following sections.

Figure B-1. ICP message format

B.1.1 Opcode

The opcode determines the type of an ICP message. There are three query opcodes:
ICP_OP_QUERY, ICP_OP_SECHO, and ICP_OP_DECHO. All other opcodes are reply
messages. These include ICP_OP_HIT, ICP_OP_MISS, and ICP_OP_ERR. Each opcode is
explained in Section B.2.

B.1.2 Version

ICP includes an 8-bit version field to indicate the protocol version. Currently, two version
numbers are in use: 2 and 3. If there ever was a Version 1 specification or implementation,
nothing is known about it. Harvest and Squid use Version 2 in ICP messages.
Netcache/Network Appliance uses Version 3. Section 8.1.3.7, describes the interoperation
issues between these versions. Note that RFCs 2186 and 2187 describe only ICPv2.

B.1.3 Message Length

This 16-bit field holds the size of the entire ICP message. Its purpose is to verify that a cache
receives the whole message as sent. If the number of bytes read from the network is not
equal to the message length value, the received message must be ignored.

B.1.4 Reqnum

Reqnum is short for request number. This is a 32-bit identifier used to correlate queries and
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replies. Normally, a cache increments its request number counter for every ICP query sent. A
cache that receives an ICP query must use the same request number in its reply message.

Harvest and Network Appliance fail to properly implement ICP request numbers. Both always
set this field to 0 for ICP queries and ICP replies. This causes a minor incompatibility with
Squid installations because it relies on matching request numbers to implement private cache
keys (see Section 8.1.3.7).

B.1.5 Options

The Options field is a 32-bit-wide bitmask of option flags. A cache can set these flags to
indicate support for optional features. See Section B.3, for names and descriptions of the
defined flags.

B.1.6 Option Data

The Option Data field is four octets that can be used to support new features. Currently, only
the SRC_RTT feature uses this field.

B.1.7 Sender Host Address

The Sender Host Address field is a historical legacy from the origins of this protocol. It is
supposed to contain the IPv4 address of the host sending the message. However, this is
redundant information. An application that receives a TCP or UDP packet already knows the
address of the remote host. Current ICP implementations set this field to all 0's in outgoing
messages and should ignore it for all incoming messages.

B.1.8 Payload

The variable-sized Payload field normally contains the URL string. In some cases, the
payload contains other data in addition to a URL. For this reason, the URL must be null-
terminated to indicate where the URL ends and where the next field begins. The median size
of a URL is approximately 45 bytes, so most ICP messages are less than 100 bytes in length.

The opcodes with special payload formats are ICP_OP_QUERY and ICP_OP_HIT_OBJ. The
QUERY payload includes an IPv4 address field, but it is superfluous and unused in practice.
The HIT_OBJ payload includes object data in addition to the URL string.
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B.2 Opcodes

This section describes the nine opcodes defined by RFC 2186. Some experimental opcodes
are discussed in Section B.4. The numeric (decimal) code appears in parentheses following
the opcode name.

ICP_OP_QUERY (1)

A query message that asks a neighbor cache if it has the object with the URL given in
the payload. A cache that receives a QUERY must respond with one of the following
reply opcodes: ICP_OP_HIT, ICP_OP_MISS, ICP_OP_ERR,
ICP_OP_MISS_NOFETCH, ICP_OP_DENIED, or ICP_OP_HIT_OBJ.

The payload of a QUERY message is shown in Figure B-2. The Requester Host

Address is an artifact from the protocol's very early design and remains only for
backwards compatibility. Originally, it was meant to hold the IPv4 address of the client
that initiated the (HTTP) request. Note that this is different from the Sender Host

Address. Instead, it is the address of the sender's client. Apparently, this field was
meant to be used for analyzing the flow of requests through a hierarchy. In practice, it is
always filled with 0's. The variable-sized URL field should be terminated with a null
byte.

Figure B-2. ICP QUERY payload

ICP_OP_SECHO (10)

SECHO is short for Source Echo. This opcode is used for ICP queries sent to the UDP
echo service (port 7) of origin servers. If enabled, the origin server simply sends the
unchanged packet right back to the cache. Thus, ICP_OP_SECHO is also an ICP reply
opcode. The SECHO payload is identical to the QUERY payload. The source echo
feature can be used to tell if an origin server is closer than any parent caches. If so, the
cache may want to forward the request directly to the origin server instead of a neighbor
cache.

Unfortunately, many server administrators do not like to be probed in this manner. To
them, the ICP messages appear as random UDP packets. The echo service is disabled
on many hosts, and those who leave it enabled often misinterpret the ICP SECHO
packets as hacker attacks. The use of source echo is now discouraged.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


ICP_OP_DECHO (11)

This is also an ICP query opcode. DECHO is short for dumb echo, where dumb refers
to a proxy cache that does not understand ICP. As with SECHO, its technique is to
bounce an ICP message off the cache's UDP echo port. A DECHO reply message is
treated just like a MISS. In other words, we assume the dumb proxy does not have the
object cached. The primary purpose of the DECHO message is to measure network
connectivity to the cache. The DECHO payload is identical to the QUERY payload.

ICP_OP_MISS (3)

The MISS reply message indicates that the neighbor cache does not have a fresh copy
of the specified object. Note that the neighbor cache uses its own settings to determine
whether a cached object is fresh or stale. These settings may be different from the
querying cache's, and this causes problems with false hits (see Section 8.1.3.3).

In a parent-child relationship, a MISS reply implicitly grants permission for the child to
request the object from the parent. This is not true, however, for a sibling relationship.
An ICP MISS from a sibling means the querying cache must not forward the request
there.

The payload of an ICP_OP_MISS message includes only the URL from the query, as
shown in Figure B-3. Having the URL in the reply is probably unnecessary, since the
request number is also the same in a query/reply pair. If the ICP_FLAG_SRC_RTT flag
is set in the query message, and the proxy supports this feature, it may include a RTT
measurement for the URL host in the Option Data field.

Figure B-3. ICP MISS payload

ICP_OP_MISS_NOFETCH (21)

This opcode is just like a regular MISS, with one important difference: the
MISS_NOFETCH message tells the querying cache that it should not request this
object from the responding cache at this time. Essentially, this allows the responding
cache to act like a sibling if it wants to. The MISS_NOFETCH payload is identical to the
MISS payload.

The responding cache may not want to handle the request for any number of reasons,
including:

The cache may detect that upstream Internet connectivity is suboptimal.
Connection timeouts and name lookup failures are good indications of this. By
using the MISS_NOFETCH message, a parent cache instructs a child cache to
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use an alternate path, if possible.

The cache may become overloaded with requests. Thus, the MISS_NOFETCH
message tells child caches to back off a little bit, if possible.

In a usage-based charging network, the cache may want to avoid serving cache
misses during peak times.

ICP_OP_HIT (2)

The HIT reply indicates that the neighbor cache holds a fresh copy of the specified
object. RFC 2187 recommends that a HIT be returned only if the object will be fresh for
at least the next 30 seconds. The HIT message payload includes only the URL, just like
the MISS payload.

ICP_OP_HIT_OBJ (23)

This is like a HIT reply, except that the cached HTTP response is also included in the
ICP payload. The HIT_OBJ feature probably does not require its own opcode because
the presence of content in the payload can be indicated with the ICP_FLAG_HIT_OBJ
flag. However, the flag was invented after the opcode, as a means to indicate support
for this feature.

The HIT_OBJ payload is shown in Figure B-4. Note that the object data does not
necessarily begin on a four-octet boundary, as shown in the figure. In other words, the
URL length is not necessarily a multiple of four octets. The object data begins
immediately following the null byte that terminates the URL string.

Figure B-4. ICP HIT_OBJ payload

ICP_OP_ERR (4)

An ERR response indicates that the receiver was unable to process the query because
of a protocol error. ICP_OP_ERR should be sent only in response to a QUERY. Squid
sends this opcode only if the URL string is not really a URL. For other types of errors,
such as an unknown opcode or version, the QUERY message is silently ignored. The
ERR reply payload consists of only the URL, or whatever should have been the URL,
just like the MISS reply.

ICP_OP_DENIED (22)

A DENIED message is sent in response to a query that is disallowed due to access
controls. The DENIED message payload consists of only the URL, just like the MISS

http://lib.ommolketab.ir
http://lib.ommolketab.ir


reply.

ICP queries from unknown sources should always be denied. In theory, ICP can be
used to acquire sensitive information about the contents of your cache. Unfortunately,
ICP has no real security features, so we can't be sure that a message is authentic. The
best we can do is allow or deny based on the source IP address and trust that our hosts
and routers are correctly configured to detect address spoofing.

A large percentage of DENIED messages indicates some sort of misconfiguration
between a pair of caches. A cache that sends or receives a large amount of denied
messages to another should try to get the administrator's attention so the situation can
be remedied. Furthermore, I recommend that an implementation should stop sending
DENIED messages to a neighbor after reaching a certain threshold. It is better just to
ignore the queries than to continue filling the network with DENIED messages that
seem to have no effect.
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B.3 Option Flags

This section describes the flags for the Options field, defined in RFC 2186. Some
experimental option flags are discussed in Section B.4. The flag's hexadecimal value
appears in parentheses following its name.

ICP_FLAG_HIT_OBJ (0x80000000)

When this flag is set in an ICP query, it indicates that the sender supports the HIT_OBJ
feature (see Section 8.1.2.3).

ICP_FLAG_SRC_RTT (0x40000000)

This option is used to include network round-trip time measurements in ICP replies (see
Section 8.1.2.4). The ICP_FLAG_SRC_RTT bit is set in the ICP query message to
indicate that the sender would like to receive the neighbor's RTT measurement to the
origin server. If the recipient has a measured value, it includes the RTT in the low 16
bits of the Option Data field and sets the ICP_FLAG_SRC_RTT bit in the reply. The
RTT value is encoded as a 16-bit integer in milliseconds.
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B.4 Experimental Features

Since the publication of RFC 2186, a number of experimental opcodes and flags have been
added to ICP. These were generally added so specific software developers could implement
new features for their products.

B.4.1 Pointers

ICP_OP_MISS_POINTER (18)
ICP_FLAG_POINTER (0x20000000)

Mirror Image Internet designed a web caching product that operates in a cluster
configuration. Each node in the cluster knows, or remembers, which objects are stored by
each neighbor. Thus, instead of returning an ICP miss message, a cache may be able to say,
"I don't have this object, but I know who does." In other words, a cache provides a pointer to
an object located in a neighbor cache. Mirror Image has proposed some experimental ICP
opcodes and features to implement these features.

To indicate its support for the pointer features, an ICP client sets the ICP_FLAG_POINTER

bit (0x20000000) in the Options field of a query message. An ICP server then sends a
MISS_POINTER message instead of a MISS if the option bit is set and it knows of a
neighbor cache that holds the requested object. The payload of the MISS_POINTER
message is a list of IPv4 addresses, one for each neighbor cache that has the object. The
payload does not include the URL because the ICP client should be able to determine the

URL from the ICP reply's Reqnum field.

ICP pointers and other types of distributed cache directories do not address permission and
authorization issues. A directory may tell client A that cache B has a cached copy of the
response. However, this does not necessarily mean that A is allowed to request it from B. If A
and B have no prior agreement in place, then most likely B would deny any request from A.
In the case of a MISS_POINTER reply with many addresses, it is entirely possible that the
ICP client does not have permission to get the object from any of them.

Researchers at AT&T also developed a centralized directory system, which they call CRISP
[Gadde, Chase and Rabinovich, 1998]. Their implementation, based on Squid, uses ICP
for information exchange but does not use the opcodes described here.

B.4.2 Object Advertisement

ICP_OP_ADVERTISE (19)
ICP_OP_UNADVERTISE (20)
ICP_FLAG_PREADVERTISE (0x10000000)
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A centralized directory requires some method for the group members to inform the directory
when objects are added or removed. The two experimental opcodes, ICP_OP_ADVERTISE
and ICP_OP_UNADVERTISE, provide this functionality. The payload of an ADVERTISE
message is simply the URL, and the recipient does not generate a reply.

When a parent cache also provides a directory service, the ADVERTISE message normally
follows a QUERY. For example, a child cache sends a QUERY to its parent, which sends
back a MISS. The client fetches the URL from somewhere, then sends an ADVERTISE
message to the parent. As an optimization, we can eliminate the advertise message by
setting the ICP_FLAG_PREADVERTISE bit in the QUERY message. The flag indicates that
the sender intends to have the named object in its cache soon.

B.4.3 Request Notification

ICP_OP_NOTIFY (12)

The ICP_OP_NOTIFY opcode and associated flags were added to support prefetching
between Squid and the Wcol proxy. [A] Wcol can be used to prefetch objects through a normal
(nonprefetching) proxy, as shown in Figure B-5. Instead of sending client requests through
Wcol directly, the NOTIFY message is used to tell Wcol that someone requested a particular
resource.

[A] You can find more information on Wcol at http://shika.aist-nara.ac.jp/products/wcol/wcol.html.

The Squid cache sends a NOTIFY message to the prefetching engine (Wcol) for every client
request it receives. The prefetching engine may also elect to request the given URL and
parse it for inline images and referenced links. The format of the NOTIFY message is
identical to the QUERY message. However, the receiver does not send any reply message

back. The following four flags are defined for the Option Data field to provide additional
information about the requested URL:

ICP_NOTIFY_MISS (0x00000008)

The requested URL does not exist in the cache.

ICP_NOTIFY_HIT (0x00000004)

The requested URL exists in the cache.
ICP_NOTIFY_REFRESH (0x00000002)

The client's request includes a no-cache directive.

ICP_NOTIFY_IMS (0x00000001)

The request includes an If-Modified-Since header or other cache validator.

Although NOTIFY was invented to support prefetching, it is not limited to that. It can also be
used for simple remote request logging, for example.
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Figure B-5. ICP NOTIFY usage

B.4.4 Object Removal and Invalidation

ICP_OP_INVALIDATE (13)
ICP_OP_PURGE (14)

In a tightly coupled cache cluster, it may be desirable to propagate object deletions and
invalidations with ICP. The INVALIDATE message requests a cache to mark the named
object as stale, without removing it. The next time the object is requested, it should be
validated with the origin server. Similarly, the PURGE message requests that a cache
remove the named object from its storage. There is no response for either of these
messages. Because ICP messages are normally sent via UDP, there is no guarantee the
message will be received. Even if the message is received, there is no guarantee the other
cache will honor the request.

Remember that ICP provides no authentication mechanism. In theory, this feature could
allow a third party to wipe out entirely a cache's contents. An implementation should probably
accept these requests only from specific IP addresses. Even then, the address may be
spoofed or the machine broken into. It may also be a good idea to limit the number or rate of
delete/invalidate messages that are accepted.

B.4.5 MD5 Object Keys

ICP_FLAG_MD5_KEY (0x08000000)
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At some point in time, product developers considered using MD5 checksums, instead of
URLs, in ICP messages. Although nothing was ever implemented (as far as I know), the
ICP_FLAG_MD5_KEY bit was reserved. Note that there is no standard for calculating an
MD5 checksum for an HTTP request or response.

B.4.6 Eliminating URLs from Replies

ICP_FLAG_DONT_NEED_URL (0x04000000)

The ICP_FLAG_DONT_NEED_URL option bit informs an ICP server that it doesn't need to
include the URL in its reply message. This optimization reduces the size of ICP replies by
about 75%.

B.4.7 Wiretapping

ICP_OP_WIRETAP (15)

The ICP_OP_WIRETAP message is a request to receive a stream of NOTIFY, ADVERTISE,
and UNADVERTISE messages from a neighbor for a certain amount of time. This opcode
was added for Cidera, which uses these ICP messages in its satellite-based cache filling
service. Rather than statically configuring a cache to continually transmit these messages to
its collection service, it wanted something more flexible and dynamic. The WIRETAP payload
holds the amount of time, in seconds, for which the recipient should send the NOTIFY and
ADVERTISE messages back to the sender. The time is encoded as a single, unsigned, 8-bit
value. Thus, the WIRETAP message must be sent at least every 255 seconds, or the flow of
messages will stop.

B.4.8 Prefetching

ICP_FLAG_PREFETCH (0x02000000)

The ICP_FLAG_PREFETCH option, also added for Cidera, is a request for the recipient to
prefetch the named URL if it is not already cached. This is a suggestion only; the recipient
may refuse to prefetch the URL without giving a reason.
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Appendix C. Cache Array Routing Protocol

CARP consists of two different components: a membership table format and an algorithm.
The membership table is one way an agent learns about about the set of parent caches (the
other is manual configuration). The algorithm is how an agent selects the appropriate parent
for a given request.

The information in this appendix is taken from an expired Internet Draft. You can also find
information on CARP by searching Microsoft's web site.
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C.1 Membership Table

The format of the Proxy Array Membership Table is an ASCII text file. It has a global
information section followed by a blank line and a list of caching proxies with various
parameters.

The first line of the global information section identifies the file as a CARP table and includes
the protocol version number, for example:

Proxy Array Information/1.0

The draft document describes only CARP Version 1.0.

The remainder of the global information section consists of the following headers:

ArrayEnabled

The draft states, "This field allows proxies to advertise their implementation of CARP v1
even if they are not members of a Proxy Array." Valid values are 0 and 1. Presumably,
a caching proxy sets this field to 0 if it supports CARP but is not a member of an array.

ConfigID

This is a 32-bit integer identifier for a particular instance of a table. This is not a version

number-you can't use ConfigID to tell if one version of a table is newer than another.
You can use it to find out if two members have the same table. Perhaps the designers
intended it to be something like a cache validator.

ArrayName

This is a purely informational name for the table to help administrators figure out where
it came from.

ListTTL

This header specifies the number of seconds for which the table is valid. After this
amount of time, the agent should update its copy of the table.

Following the global information and a blank line, the table includes one line for each
member of the cache array. These lines have the following nine fields:

Name

The fully qualified domain name of the caching proxy. Downstream agents (i.e., those
that treat this proxy as a parent) should resolve this name when opening a connection.

IP address
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The IP address that other array members should use when opening a connection. This
may be different from the address derived by resolving the hostname in the first field.
Some caching proxies have multiple IP addresses. This field allows the member to
specify which address should be used.

Port

The TCP port where the proxy accepts HTTP connections.

Table URL

A URL where agents can find a current copy of the array table. In most cases, it is the
same URL used to get the table in the first place.

Agent

A string that identifies the vendor and version number of the caching proxy. Its not clear
why the protocol designers think this is useful information. The agent string is not used
by the algorithm; it appears to be purely informational.

State time

The amount of time, in seconds, that the caching proxy has been a member of the
array in its current state. This field also appears to be informational. It is not used in the
algorithm to select an array member.

Status

Describes the cache's current state and its ability to accept requests. Legal values are
UP and DOWN.

Load factor

An integer value that defines how much of the total load this cache should receive,
relative to the whole array. The relative load factor is calculated by dividing a cache's
load factor by the sum of all load factors in the array.

Cache size

The maximum size, in megabytes, of this cache. Cache size is purely informational and
not used in the routing function calculations.
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C.2 Routing Function

The routing function is an algorithm that calculates a score for each member of the cache
array. In other words, when forwarding a request, an agent calculates a score for each
parent, then routes the request to the cache with the highest score.

A score is calculated from three values: a hash of the URI, a hash of the proxy name, and a
load factor multiplier. The proxy name hashes and multipliers don't change over time, so they
are calculated just once. The URI hash is computed for each request that needs to be routed.

I will use a simple implementation of CARP in C to explain how the algorithm works. This is a
complete program, but I'll explain it in chunks. The program consists of the following
functions:

CalcHostHash calculates a hash value for a proxy host name.

CalcMultipliers calculates the load factor multipliers for all members of the array.

CalcURIHash calculates a hash value for a URI request.

CalcScore calculates a score for a (URI, cache) tuple.

The main function reads URIs and finds the cache with the highest score.

The program begins with some basic header files:

#include <stdio.h>   
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

We also need to define a data structure and an array that holds information about the proxy
caches:

/* a structure to hold information about the parent caches */
struct _peer {
    char *name;
    unsigned int LF;     /* integer load factor */
    unsigned int hash;
    double RLF;          /* relative load factor */
    double LFM;          /* load factor multiplier */
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    int reqs;
};

/* a hardcoded list of parents */
#define N_MEMBERS 4
static struct _peer Peers[N_MEMBERS] =
{
    {"cache1.carp.net", 1},
    {"cache2.carp.net", 2},
    {"cache3.carp.net", 3},
    {"cache4.carp.net", 4}
};

Note that this code initializes the array with proxy names and integer load factors. In this
case, all the load factors add up to 10, so cache1 should get 1/10; of all requests, cache2

2/10, cache3 3/10, and cache4 4/10. We'll need to convert these integer load factors into
floating point values later.

The algorithm uses bitwise left rotation when computing hash values. This operation rotates
the set of bits from right to left by a certain number of positions. Bits that fall off the left side
are wrapped back around to the right side. The following C macro implements left rotation for
32-bit integers:

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

The following is the function that calculates a hash value for a proxy hostname:

unsigned int
CalcHostHash(const char *hostname)
{
    unsigned int HostHash = 0;
    char *c;    
    for (c = hostname; *c != 0; c++)
        HostHash += ROTATE_LEFT(HostHash, 19) + (unsigned int) *c;
    HostHash += (HostHash * 0x62531965);
    HostHash = ROTATE_LEFT(HostHash, 21);
    return HostHash;
}

We also need to calculate a load factor multiplier for each member of the cache array. The
load factor multiplier is based on the integer load factor values specified previously. The first
step is to convert the integer load factors into floating point relative load factors (RLF) so they
all add up to 1. In other words, divide each factor by the sum of all factors:
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void
CalcMultipliers(void)
{
    int i;
    unsigned int load_sum = 0;    /* sum of all integer load factors */
    double ProdLFM;
    
    for (i = 0; i < N_MEMBERS; i++)
        load_sum += Peers[i].LF;
    for (i = 0; i < N_MEMBERS; i++)
        Peers[i].RLF = (double) Peers[i].LF / (double) load_sum;

Next comes the trickiest part of the algorithm. The load factor multipliers (LFM) are calculated
iteratively. For this reason, they must be calculated in order from the smallest to the largest
RLF. I cheated here by initializing the array with ascending load factors. Here's the rest of the
function:

    Peers[0].LFM = pow((Peers[0].RLF * N_MEMBERS), (1.0 / N_MEMBERS));
    ProdLFM = Peers[0].LFM;
    for (i = 1; i < N_MEMBERS; i++) {
        double j = N_MEMBERS - i;
        Peers[i].LFM = (j * (Peers[i].RLF - Peers[i - 1].RLF)) / ProdLFM;
        Peers[i].LFM += pow(Peers[i - 1].LFM, j);
        Peers[i].LFM = pow(Peers[i].LFM, 1.0 / j);
        ProdLFM *= Peers[i].LFM;
    }
}

The URI hash function is similar to the proxy name hash function, but simpler:

unsigned int
CalcURIHash(const char *uri)
{
    unsigned int URIHash = 0;
    const char *c;
    for (c = uri; *c != 0; c++)
        URIHash += ROTATE_LEFT(URIHash, 19) + (unsigned int) *c;
    return URIHash;
}

Now that we know how to calculate each value, we can write the function that combines them
to calculate a score:

double
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CalcScore(unsigned int URIHash, unsigned int HostHash, double multiplier)
{
    /* multiplier is a peer->LFM */
    unsigned int CombinedHash = (URIHash ^ HostHash);
    CombinedHash += (CombinedHash * 0x62531965);

    CombinedHash = ROTATE_LEFT(CombinedHash, 21);
    return (multiplier * CombinedHash);
}

Now we have everything needed to actually implement CARP. The following main function
reads URIs from standard input and determines the best proxy cache for each. Before
exiting, it prints the distribution of requests among the array members:

int
main(int argc, char *argv[])
{   
    char uri[512];   
    int n = 0;
    int i;

    for (i = 0; i < N_MEMBERS; i++)
        Peers[i].hash = CalcHostHash(Peers[i].name);
    CalcMultipliers();

    while (NULL != fgets(uri, 512, stdin)) {
        unsigned int URIHash;
        double score;
        double high_score = 0.0;
        int high_index = 0;
        strtok(uri, "\r\n");     /* truncate end-of-line characters */
        URIHash = CalcURIHash(uri);
        for (i = 0; i < N_MEMBERS; i++) {
            score = CalcScore(URIHash, Peers[i].hash, Peers[i].LFM);
            if (score > high_score) {
                high_score = score;
                high_index = i;
            }
        }
        Peers[high_index].reqs++;
        n++;
    }
    for (i = 0; i < N_MEMBERS; i++) {
        printf("%20.20s %d reqs, %f%%\n",
            Peers[i].name,
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            Peers[i].reqs,
            (double) Peers[i].reqs / (double) n);
    }
    return 0;
}
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C.3 Examples

The following is a fictitious CARP membership table that shows the global information section
followed by the list of array members. The three array members should each appear on one
line. These lines are too long to fit on the page, so they are wrapped around and indented:

Proxy Array Information/1.0
ArrayEnabled: 1
ConfigID: 12345
ArrayName: My-Array
ListTTL: 3600

proxy1.isp.net 10.2.3.4 3128 http://proxy.isp.net/carp.txt
    SmartCache-v1 21600 UP 1 2048
proxy2.isp.net 10.2.3.5 3128 http://proxy.isp.net/carp.txt
    SmartCache-v1 20127 UP 1 2048
proxy3.isp.net 10.2.3.6 3128 http://proxy.isp.net/carp.txt
    SmartCache-v1 22928 UP 1 2048

The following tables may be useful to developers who want to verify their implementation.
Table C-1 is a list of proxy names and load factors. I took the program described previously

and added printf statements to print the hash values, RLF, and LFM.

Table C-1. Proxy Array Values

Hostname Hash Value Load Factor RLF LFM

test1.ircache.net 0x96010320 1 0.142857 0.869442

test2.web-cache.com 0x84965f0f 1 0.142857 0.869442

test3.squid-cache.org 0x4f5d7332 2 0.285714 1.064844

test4.packet-pushers.com 0xa79af670 3 0.428571 1.242318

Table C-2 consists of hash values and Table C-3 shows CARP scores for five different
URIs. The four scores correspond to the four proxy names given earlier. The score values
are truncated (not rounded) after the decimal point to improve the readability of this table.

Table C-2. URI Hash Values
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URI Hash Value

http://www.squid-cache.org 0x16073a01

http://www.ircache.net 0xae0af388

http://www.web-cache.com 0xd6b2152d

http://www.oreilly.com 0x31952fdd

ftp://ftp.microsoft.com 0x50cc09bf

Table C-3. URI Scores

URI Score 1 Score 2 Score 3 Score 4

http://www.squid-cache.org 1937807807 737946946 3043043329 4019296969

http://www.ircache.net 1372682590 2237060277 2349863321 543856355

http://www.web-cache.com 2885259455 1656192339 4204309062 2705367480

http://www.oreilly.com 843623848 2648286094 3561199409 5289183760

ftp://ftp.microsoft.com 1098649645 993566466 675513163 2319331913
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Appendix D. Hypertext Caching Protocol

I introduced you to HTCP in Section 8.3. That section mostly talked about how HTCP
compares to ICP, as well as some of its other characteristics. The information in this
appendix is primarily written for developers who want to implement HTCP in their own
products. It might also be useful to someone trying to debug an HTCP-related problem. In the
following sections, we'll look at the structure of HTCP messages and values for all the fields.
RFC 2756 is the authoritative specification of HTCP Version 0.0.
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D.1 Message Format and Magic Constants

An HTCP message consists of three sections: HEADER, DATA, and AUTH. All multioctet
fields are encoded in network byte order.

D.1.1 HEADER

Figure D-1 shows the four-octet, fixed-size HTCP HEADER section. The LENGTH field
specifies the size of the UDP message, and it should be equal to the number of octets written
to and read from the network. MAJOR and MINOR specify the protocol version the sender is
using. A change in the minor version number must not affect compatibility. In particular, when
a reserved field is placed into service, the minor version number is incremented. When new
fields or identifiers are added, the major version number is incremented.

Figure D-1. HTCP HEADER format

D.1.2 DATA

The DATA section, shown in Figure D-2, is where all the interesting stuff happens. It
consists of eight fixed-format octets followed by a variable-sized OP-DATA field.

Figure D-2. HTCP DATA format

These are the DATA section fields:

LENGTH

This LENGTH field, not to be confused with the HEADER section LENGTH field,
specifies the number of octets comprising the DATA section. This is needed, of course,
because the OP-DATA field varies in size.
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OPCODE

HTCP Version 0.0 defines five opcodes: NOP, TST, MON, SET, and CLR. These are
fully discussed in Section D.3. Note that the OPCODE field is only 4 bits wide, which
allows for up to 16 opcodes.

RESPONSE

RESPONSE is a numeric error code set for response messages only. Furthermore, this
field is only meaningful when the F1 flag is set. This field must be ignored for query
messages (RR=0) and when F1 equals 0.

When F1 is set, RESPONSE codes are interpreted as given in Table D-1. When F1 is
not set, the RESPONSE code has an opcode-specific meaning, as described in
Section D.3.

Table D-1. HTCP Overall Response Codes

Code Description

0 AUTHENTICATION wasn't used but is required.

1 AUTHENTICATION was used but unsatisfactorily.

2 OPCODE not implemented.

3 MAJOR version not supported.

4 MINOR version not supported (MAJOR version is okay).

5 Inappropriate, disallowed, or undesirable OPCODE.

RESERVED

In HTCP/0.0, these 6 bits are reserved for future use.

F1

F1 is a single-bit flag whose meaning is different for requests and responses. In a
request, F1 indicates whether a response is desired. Certain opcodes, such as TST,
are meaningless unless F1 is set. For other opcodes, such as CLR, the response is
optional.

When F1 is set in a response message, the RESPONSE code refers to the overall
message. F1 is set only when an error occurs. If the operation succeeds, F1 is not set
and RESPONSE takes on an opcode-specific meaning, which may indicate some other
kind of error.

RR

The RR bit simply indicates whether a particular message is a request or a response.
The bit is not set for requests and set for responses.

MSG-ID
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This is a 32-bit identifier that uniquely identifies an HTCP transaction. The MSG-ID
value must be copied from a request message into the corresponding response.
Usually, there is a one-to-one pairing between requests and responses. The MON
request, however, may result in numerous MON responses. Thus, many MON
responses may have the same MSG-ID.

OP-DATA

The content of the OP-DATA field is opcode-specific and usually different for requests
and responses. These are fully explained in Section D.3.

D.1.3 AUTH

Figure D-3 shows the AUTH section, which is optional in HTCP/0.x. Its purpose is to provide
some level of assurance that a particular message has not been spoofed by a third party.

Figure D-3. HTCP AUTH format

The following list describes the AUTH section fields:

LENGTH

The LENGTH field specifies the number of octets in the entire AUTH section. If
authentication is not to be used for a particular message, then the LENGTH field is set
to 2, and the remaining fields are dropped.

SG-TIME

SIG-TIME is the time at which the SIGNATURE is generated. The time is expressed as
the number of seconds since midnight on January 1, 1970 UTC (also known as "Unix
time").

SIG-EXPIRE

This is the time at which the SIGNATURE expires. It is also expressed as the number
of seconds since midnight on January 1, 1970.

KEY-NAME
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This field is the name of a shared secret key. It is only a name used to identify a key
and not the key itself. The secret key named by this field is used in the HMAC-MD5
algorithm.

SIGNATURE

The SIGNATURE is an HMAC-MD5 digest [Krawczyk, Bellare and Canetti, 1997]
of the concatenation of the ten fields shown in Figure D-4.

Figure D-4. HTCP SIGNATURE format

only for RuBoard - do not distribute or recompile  

http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

D.2 HTCP Data Types

HTCP messages are built on a simple hierarchy of data types. I'll start with the most simple
and finish with the complex ones.

D.2.1 COUNTSTR

A COUNTSTR is a string of ISO8859-1 (Latin-1) characters preceded by the length of the
string. The string length is encoded (in network byte order) using two octets. The string is not
necessarily null-terminated. For example, the following hexadecimal values encode the string
"Cache" as a COUNTSTR:

00 05 43 61 63 68 65
    5  C  a  c  h  e

D.2.2 SPECIFIER

Figure D-5. HTCP SPECIFIER format

A SPECIFIER, shown in Figure D-5, encodes an HTTP request using four COUNTSTRs. It
is used in TST, SET, and CLR requests, and in MON responses. METHOD, URL, and
VERSION are all taken from the first line of an HTTP request. REQ-HDRS consists of all the
remaining request headers.

D.2.3 DETAIL

Figure D-6 shows the DETAIL type, which is used in TST response messages. It provides
the information about a cached response. These are all HTTP-style headers with CRLF line
termination. RESP-HDRS is the set of HTTP response headers, as defined in Section 6.2 of
RFC 2616. These include Etag, Age, and others. ENTITY-HDRS is the set of HTTP headers
defined in Section 7.1 of RFC 2616. These include Expires, Last-modified, and others.

CACHE-HDRS, on the other hand, are defined by HTCP, rather than HTTP. They are used
to convey additional information about a resource that may prove to be useful. For example,
the Cache-Location header is a list of other proxy caches that are likely to hold a copy of

the object. Refer to Section 4 of RFC 2756 for the full details.
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Figure D-6. HTCP DETAIL format

D.2.4 IDENTITY

As you can see in Figure D-7, IDENTITY is just a combination of SPECIFIER and DETAIL.
It is used for the MON and SET opcodes.

Figure D-7. HTCP IDENTITY format

only for RuBoard - do not distribute or recompile  

http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile  

D.3 HTCP Opcodes

HTCP/0.0 defines five opcodes: NOP, TST, MON, SET, and CLR. Note that ICP has different
opcodes for queries and replies-for example, ICP_OP_QUERY and ICP_OP_MISS. HTCP,
however, uses the same opcode for both messages. The previously described RR flag
indicates whether a given message is a request or a response. The following sections
describe each opcode, including how each one uses the OP-DATA field.

D.3.1 NOP

The NOP (null operation) opcode is similar to an ICMP echo or a "ping" message. It can be
used to measure network delays between caches, as well as simply to find out if they are
alive.

There is no OP-DATA for either NOP queries or responses, and the RESPONSE code is
always zero.

D.3.2 TST

The TST (test) opcode is similar to the ICP query operation. It tests for the existence of a
cached response in a neighbor cache.

D.3.2.1 TST request

For a TST request, the OP-DATA is a SPECIFIER. Recall that a SPECIFIER includes the
HTTP request method, URI, HTTP version, and the client's request headers. The request
headers are important because the client may have certain freshness requirements (Cache-
control: max-age or max-stale).

D.3.2.2 TST response

Table D-2 shows the RESPONSE codes defined for a TST response when F1 is not set.

Table D-2. HTCP TST Response Codes

Code Description

0 Entity is present in responder's cache.

1 Entity is not present in responder's cache.

Note that the RESPONSE code indicates only the presence or absence of the object and

http://lib.ommolketab.ir
http://lib.ommolketab.ir


says nothing about its freshness. If the cached object is stale, the server may set the
RESPONSE code to either 1 or 0. Setting RESPONSE to 1 forces the client to predict a
cache miss for the request. Setting it to 0, however, causes the client to make its own
hit/miss prediction based on the HTTP reply headers included in the TST response. In other
words, the client cannot predict a cache hit simply because the RESPONSE code is 0.

When the RESPONSE code is 0, the TST response OP-DATA is a DETAIL that describes
the cached response. In particular, it includes the HTTP entity headers (Expires, Last-
modified, Content-length, etc.) and the HTTP response headers (Age, Vary, etc.). The

HTCP client must check the entity headers for freshness information. It may want to collect a
number of responses and then choose the cache that has the most recent copy of the object.
The DETAIL may also include various cache headers, which are potentially useful bits of
information a cache has learned about the resource.

When the RESPONSE code is 1, the TST response OP-DATA consists of CACHE-HDRS (a
COUNTSTR) only. Even though the other cache doesn't have a copy of the resource, it might
have information that can help to minimize the time to fetch the object.

D.3.3 MON

The MON (monitor) opcode allows caches to inform each other about the objects they add,
delete, and update. It is similar to the WIRETAP, ADVERTISE, and UNADVERTISE opcodes
of ICP. With the MON opcode, a cache knows which objects its neighbor has stored and
therefore may be able to avoid per-request delays caused by TST messages.

The monitoring feature has the potential to expose private information about a cache to third
parties. Imagine a clever person being able to find out which web sites the cache users visit.
Although authentication is optional with HTCP/0.0, implementations should require
authentication for the MON opcode, or at least support address-based access controls.

D.3.3.1 MON request

The MON request message initiates a monitoring session with another cache. That is, the
sender asks the receiver to send back a stream of MON responses for some amount of time.

The MON request OP-DATA is simply a one-octet (8 bits) time field. It specifies the duration,
in seconds, for the monitoring session. Given the size of this field, the maximum possible
value is 255 seconds.

D.3.3.2 MON response

Table D-3 lists the two possible RESPONSE codes for a MON response.

Table D-3. HTCP MON Response Codes

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Code Description

0 Request accepted; the OP-DATA field contains useful data.

1 Request refused because too many MON sessions are already active.

When the RESPONSE code is 0, the OP-DATA field has the structure shown in Figure D-8.

Figure D-8. HTCP MON OP-DATA format

These are the parts of the OP-DATA field:

TIME

TIME is the number of seconds remaining for the current monitoring session (identified
by the MSG-ID field).

ACTION

ACTION is a numeric code that indicates the action taken on the given object. The valid
ACTION codes are given in Table D-4.

Table D-4. HTCP ACTION Values

Code Description

0 The object has been added to the cache.

1
The object in the cache has been refreshed. This corresponds to receiving a 304 Not Modified reply from a
validation request.

2
The object in the cache has been replaced. This corresponds to receiving a full response for a cached
object. The new response may or may not be different that the cached response. This can occur from a no-
cache reload, or from a validation request that returns 200 (OK).

3 An entity in the cache has been deleted.

REASON

A numeric code that indicates the reason for the ACTION taking place. The valid
reason codes are shown in Table D-5.

Table D-5. HTCP MON Reason Codes
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Code Description

0 A reason not covered by any of the other REASON codes.

1 A proxy client requested this resource.

2 A proxy client requested this resource, but caching is disallowed.

3 The proxy prefetched this resource.

4 The resource expired, per the reply headers.

5 The resource was purged because of the cache's storage limits.

D.3.4 SET

The SET opcode allows one cache to push certain updates to another. For example, when a
cache issues a validation request and receives a 304 (Not Modified) response, some of the
reply headers (Age, Expires) are updated. Pushing these updated headers to neighbor

caches with a SET message obviates the need for the neighbors to issue validation requests.

SET requests must be handled carefully because they may modify the information stored by
a cache. A SET request that incorrectly extends a response's expiration time may cause
users to receive a stale page for a long time. Therefore, trust is very important for SET
messages. An HTCP server is free to ignore any SET request, for any reason whatsoever.
Although not required, an HTCP implementation really should ignore any SET request that
does not have a valid AUTH section.

D.3.4.1 SET request

The OP-DATA for a SET request is an IDENTITY structure, which is simply a SPECIFIER
and a DETAIL. The SPECIFIER holds information such as the request method, URI, and
request headers. The DETAIL contains the updated reply headers.

If the F1 flag is not set, the receiver must not send back a response.

SET requests should be generated due to HTTP transactions only. Caches should not pass
SET requests on to their own neighbors due to the strong possibility of flooding a hierarchy
with HTCP messages.

D.3.4.2 SET response

A SET response is very simple since it does not include any OP-DATA. Only the RESPONSE
code is significant. Table D-6 lists the defined SET response codes.

Table D-6. HTCP SET Response Codes
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Code Description

0 IDENTITY was accepted.

1 IDENTITY was ignored; no reason given.

D.3.5 CLR

The CLR (clear) opcode is used to suggest that a neighbor remove an object from its cache
storage. This feature may be useful if one cache determines that an object has been updated
or removed at the origin server.

As with SET, the CLR opcode is dangerous because it modifies the cache storage. In the
worst case, a malicious person could delete most or all of the objects stored in a cache. An
HTCP agent may choose to ignore any CLR request for any reason. CLR requests without
valid AUTH sections should definitely be ignored.

D.3.5.1 CLR request

A CLR request has the OP-DATA structure shown in Figure D-9. REASON is a 4-bit
numeric code that explains why the sender wants the object (specified by the SPECIFIER) to
be removed. The allowed reason codes are shown in Table D-7.

Table D-7. HTCP CLR Reasons

Code Description

0 Some reason not better specified by another code.

1 The origin server says the object no longer exists.

Figure D-9. HTCP CLR OP-DATA format

D.3.5.2 CLR response

The CLR response also does not include an OP-DATA section. Only the RESPONSE code is
important. Table D-8 describes the defined values and their meanings.

Table D-8. HTCP CLR Response Codes
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Code Description

0 I had the object, and I just deleted it.

1 I have the object, and I'm not deleting it.

2 I don't have the object.
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Appendix E. Cache Digests

We talked about Cache Digests and Bloom filters in Section 8.4. This appendix provides
further information on the implementation. The discussion here is targeted towards
developers and gets a little technical at times. Since interoperation is important, I include an
example that developers can use to verify their implementations.
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E.1 The Cache Digest Implementation

Since digests are designed to be shared between cooperating caches, all implementations
must agree on (or have some way to determine) how many and which hash functions to use,
the format of the digest key, and the size of the Bloom filter. This section describes Cache
Digests Version 5, as implemented in Squid. Currently, there is no other formal
documentation for Cache Digests, apart from some pages on the Squid web site.

E.1.1 Keys

Let's start with the digest key. This is the chunk of data to which we apply the hash functions.
The key is simply a unique identifier for each object in the cache. The URI alone is not a
good cache key. Cached responses are identified by a request method, a URI, and possibly
additional request fields. A Cache Digest key consists of the request method, encoded as an
8-bit value, followed by the URI string (see Figure E-1). The null byte that terminates the
URI string is not included in the key. The values used to encode the request method are
listed in Table E-1.

Table E-1. Cache Digest Request Method Encodings

Value Method

0 NONE

1 GET

2 POST

3 PUT

4 HEAD

5 CONNECT

6 TRACE

7 PURGE

8 OPTIONS

Not all of these request methods are cachable, and thus not all are appropriate for a Cache
Digest, but the full list is included here for completeness. This encoding scheme leaves much
to be desired. New request methods cannot be supported in a Cache Digest until they are
assigned a value.

Figure E-1. Cache Digest key
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Strictly speaking, there are numerous other attributes that should probably be included in a
cache key. For example, the client may specify a language preference. If a resource (HTML
page) is available in different languages, the response can vary on the client's Accept-
language request header.

E.1.2 Hash Functions

Recall that the Bloom filter design uses K independent hash functions to produce K bit
locations. The Cache Digest implementation uses four hash functions. Intuitively four feels
like about the right number, but the decision is somewhat arbitrary. As computer scientists,
we like powers of two. Two hash functions are probably not enough, and eight are probably
too many.

The number four works well because it evenly divides 128-the number of bits in an MD5
hash. The four Cache Digest hash functions are really just four chunks of the MD5
checksum. That is, we take the 128 bits and chop them into four 32-bit pieces. The first hash
function is bits 1–32, the second is bits 33–64, etc.

When converting a 32-bit MD5 chunk into an integer, the result depends on the byte ordering
of the CPU architecture. Since Cache Digests are exchanged between all types of systems,

we must enforce a consistent conversion for this step. We use the htonl() function to interpret
the MD5 chunk in network byte order. This code snippet from Squid demonstrates the
necessary conversion:

unsigned int *
cacheDigestHashKey(const CacheDigest * cd, const MD5 * md5)
{
    const unsigned int nbits = cd->mask_size * 8;
    unsigned int tmp_vals[4];
    static unsigned int hashed_vals[4];
    memcpy(tmp_vals, md5, sizeof(tmp_vals));
    hashed_vals[0] = htonl(tmp_vals[0]) % nbits;
    hashed_vals[1] = htonl(tmp_vals[1]) % nbits;
    hashed_vals[2] = htonl(tmp_vals[2]) % nbits;
    hashed_vals[3] = htonl(tmp_vals[3]) % nbits;
    return hashed_vals;
}

E.1.3 Sizing the Filter
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Determining the optimal filter size is an interesting problem. If the filter is too small, there are
too many false positives. If it's too large, most of the bits will be 0, which results in wasted
space. Bloom says that the filter has an optimal size when exactly half the bits are on. Recall

from Section 8.4.1, that M is the number of bits in the filter, N is the number of objects in

the cache, and K is the number of hash functions. Now we can calculate the optimal number
of bits per item that should turn on half of the bits.

According to these formulas, we should use 5.77 bits per entry with four hash functions. The
ratio of M/N is a local decision only. A digest user does not need to know what the ratio is; it

only needs to know M, the number of bits in the digest. Thus, the digest creator determines
the false-hit probability for his own digest.

The previous formulas are for the so-called optimal digest size, which, according to Bloom, is
when exactly half the bits are on. This requirement determines the ratio of M/N and the false-
hit probability. We might like to specify the false-hit probability first and then determine the

bits per entry ratio. Solving the previous equation for M/N in terms of the probability, p, and K,
we have:

For example, if we want a false-hit probability of 1%, then we need 10.5 bits per entry.
Figure E-2 is a graph of all probabilities.

Figure E-2. Bits per entry versus false hit probability for four hash functions
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E.1.4 Selecting Objects for the Digest

A cache need not, and probably should not, add every cached object to its digest. Any object
that, when requested, would result in a cache miss should not be added. Obviously this
includes uncachable objects, which might temporarily be in the cache. It also includes objects
that are likely to become stale, or even removed in the near future. We'll talk more about
these objects in the following section.

Generally, there are no rules for determining which objects should be put in the digest. The
digest essentially advertises the objects that a cache is willing to serve to its neighbors. The
cache may choose to advertise only a subset of its cache. For example, we may want to
serve only small objects to our neighbors. Thus, objects that are larger than a certain
threshold should not be added to the digest. In theory, a cache can have more than one
digest it gives to neighbors. One digest could be given to child caches and a different one to
parents.

E.1.5 False Hits and Digest Freshness

When using cache digests, a false hit can occur for one of two reasons: when a digest lookup
is a false positive or when an object added to the digest becomes stale or is removed from
the cache. As described previously, the false-hit probability can be controlled by adjusting the
Bloom filter parameters (increasing the filter size, for example). Limiting false hits due to the
second factor requires a little more work.

A Cache Digest represents a cache's contents at a single point in time. Obviously, the
contents change with time, so the digest must be updated. The current implementation does
not support incremental updates because we cannot remove entries from a Bloom filter.
Instead, the cache rebuilds its own digest from scratch at regular intervals. In Squid, the
rebuild interval defaults to one hour. In addition, a cache must update its copies of its
neighbor's digests. A neighbor's digest is refreshed when its expiration time is reached. Thus,
a copy of a neighbor's digest represents the state of the cache within the last hour.

In conjunction with the update interval, we can use the following heuristics to minimize false
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hits:

Do not add objects that will become stale before the next digest update, according to
response headers or the local freshness rules. Unfortunately, a client's Cache-
control request header may still cause freshness-based cache misses.

Do not add objects that are likely to be removed quickly due to the cache replacement
policy. For example, with an LRU replacement policy, we can identify objects that will be
removed if they are not accessed before the next digest update.

E.1.6 Exchanging Digests

Digests are transferred using HTTP. A cache periodically requests its neighbor's digest with a
well-known URL. The Cache Digest protocol does not specify how or under what URL a
digest is requested. Thus, each product must currently choose its own naming scheme. In

Squid, the digest URL consists of the cache's hostname and port number followed by /squid-

internal-periodic/store_digest, for example:

http://squid.ircache.net:3128/squid-internal-periodic/store_digest

The digest's response header includes valid Expires and Last-modified values. As you
would expect, the Last-modified value indicates when the digest was created. Similarly,
the Expires value indicates when the digest becomes stale and a new version is available.
The update period is set by local policy. In Squid, the default value is one hour. A digest must
not be used after it becomes stale. Instead, the digest user (i.e., a neighbor cache) should
fetch a fresh digest.
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E.2 Message Format

A Cache Digest message consists of a fixed 128-octet header (see Figure E-3 followed by a
variable-sized Bloom filter. The header definitions are as follows:

Figure E-3. Cache Digest header

CURRENT

This is the version number of the digest. The CURRENT version number is
incremented whenever a significant feature is added to the Cache Digest protocol.
When the digest recipient decodes a message, the CURRENT value indicates which
protocol features are included.

REQUIRED

This is the minimum version number required to correctly interpret the digest message.
In other words, this specifies the last version this message is backward-compatible with.
It can also be used to "eliminate" serious bugs. If a bug is found with the Version X
implementation, a sender can set the REQUIRED value to X+1. Then, all buggy
implementations that support only Version X are forced to ignore the cache digest
message.

CAPACITY

This is an estimate of the number of objects for which the digest was built. It is in the
header for informational purposes only. A digest user does not need to know the
CAPACITY to decode the digest.

COUNT

This is the actual number of objects encoded by this digest. It may be larger or smaller
than CAPACITY. This value also is not needed to decode the digest.

DEL_COUNT

This is a counter that tracks the number of objects removed from the cache since the

http://lib.ommolketab.ir
http://lib.ommolketab.ir


digest was last created. Deletions are not supported in the current implementation, so
this value is always 0.

MASK_SIZE

This is the number of octets comprising the Bloom filter. In other words, the message
includes this many octets immediately following the header.

BPE

BPE is an abbreviation for bits-per-entry. This value is used to size the Bloom filter,
based on the CAPACITY. In any Cache Digest header, the following equation must be
true:

The bits-per-entry value really doesn't belong in the Cache Digest header because it is
not needed to use the digest. Furthermore, bits-per-entry is not necessarily an integer
value.

HFC

HFC is an abbreviation for hash function count. It specifies the number of hash
functions used by the Bloom filter. Note, however, that it does not specify which hash
functions are used. In the current implementation, HFC is always set to 4.

RESERVED

The remaining 106 octets are currently unused and reserved for future growth. All
RESERVED areas must be zero-filled.
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E.3 An Example

If you find yourself in the position of implementing Cache Digests, you can use the following
two tables to verify your code. Table E-2 shows three sample URIs and their MD5 hash
values. Table E-3 lists the same three URIs with the bit positions for four hash functions
based on the MD5 column in Table E-2. This example uses a MASK_SIZE of 625,000
bytes, or 5,000,000 bits.

Table E-2. Cache Digest Example: URIs and Hash Values

Method URI MD5

GET http://www.squid-cache.org 69677C33244C8D776D1ED1210E07C120

GET http://www.oreilly.com 4DC8FAFB9B5B0A4C08D992E453059333

GET ftp://ftp.ircache.net F36FB917F5D687629A6E2BEB6BB569FF

Table E-3. Cache Digest Example: URIs and Bit Positions

Method URI B1 B2 B3 B4

GET http://www.squid-cache.org 3,389,683 3,996,727 736,161 389,216

GET http://www.oreilly.com 17,083 1,434,892 3,476,644 2,874,291

GET ftp://ftp.ircache.net 4,185,367 4,477,282 911,467 2,051,263
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Appendix F. HTTP Status Codes

This list of HTTP status codes is meant to be a quick, albeit incomplete, reference. Many of
these codes are not mentioned elsewhere in this book. However, you may encounter them
when examining log files or debugging HTTP problems. Refer to Section 10 of RFC 2616 for
complete and official definitions.
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F.1 1xx Intermediate Status

100 Continue

This code informs the client that it should proceed with its request. This is useful when
the client is sending a large message body. After sending the headers, the client waits
for the 100 response and then sends the message body.

101 Switching Protocols

This code allows clients and servers to negotiate the use of an alternate transfer
protocol or a different version of HTTP.
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F.2 2xx Successful Response

200 OK

This code indicates the request was successful. For GET requests, the body of a 200
response contains the entire object requested.

201 Created

This code informs the client that its request resulted in the successful creation of a new
resource, which can now be referenced.

202 Accepted

This code means that the client's request was accepted and scheduled for further
processing. The request may or may not be successful when eventually acted upon.

203 Non-Authoritative Information

This code may be used in place of 200 when the sender has reason to believe the
information in the response's entity headers is different from what the origin server
would send.

204 No Content

This code is used in cases where the request was successfully processed, but the
response doesn't have a message body.

205 Reset Content

This code is similar to 204. The request was successful and the response doesn't
include a message body. Furthermore, this code instructs the client to reset the
document view-for example, by clearing the fields of an HTML form.

206 Partial Content

This code may be used in response to a range request (a.k.a. partial GET), whereby
the client requests only a subset of the object data.
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F.3 3xx Redirects

300 Multiple Choices

This code informs users and user agents that the resource is available at multiple
locations, perhaps in different representations.

301 Moved Permanently

This code redirects clients to a new location for the requested resource. This happens
often when people relocate files on their servers or when content is moved from one
server to another. Because the redirection is permanent, clients and caches can
remember the new location and automatically redirect future requests.

302 Moved Temporarily

This code is a temporary redirect to a new location. Apparently, many user agents
always issue GET requests for the new URI, regardless of the original request method.
This action violates even the older HTTP RFCs (1945 and 2068) but has become the
expected behavior. RFC 2616 added two new status codes, 303 and 307, to "fix" this
problem.

303 See Other

This code is the same as 302, except that the client should make a GET request for the
new URI, regardless of the original request method.

304 Not Modified

This code is used when the client makes a conditional GET request (e.g., If-
modified-since) and the resource has not changed.

305 Use Proxy

This code allows origin servers to redirect requests through a caching proxy. The
proxy's address is given in the Location header.

306 (Unused)

A search of the HTTP working group archives reveals that, at one time, this code was

named Switch Proxy.

307 Temporary Redirect

This code is similar to 302, indicating a temporary new location for the resource.
However, clients must not use a different request method when requesting the new
URI.
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F.4 4xx Request Errors

400 Bad Request

This code indicates that the server could not understand the client's request or found it
to be incorrect in some way.

401 Unauthorized

This code is used when access to a resource is protected and the client did not provide
valid authentication credentials. Often, the 401 response includes information that
causes the user agent to prompt the user for a username and password.

402 Payment Required

This code is reserved but not yet described in the HTTP/1.1 specifications.
403 Forbidden

This code indicates that the resource cannot be accessed, regardless of any
authentication credentials. For example, this happens if a directory or file is unreadable
due to file permissions.

404 Not Found

This code indicates that the requested resource does not exist on the server. It may
also be used in place of 403 if the server doesn't want to acknowledge that the
resource exists but cannot be accessed.

405 Method Not Allowed

This code indicates that the request method is inappropriate for the given URI. The
response should include a list of methods that are allowed.

406 Not Acceptable

This code is used when the client's requirements, as given in the Accept header,
conflict with the server's capabilities. For example, the client may indicate it will accept
a GIF image, but the server is only able to generate JPEG images.

407 Proxy Authentication Required

This code is similar to 401 but is only returned by proxies. A proxy returns a 407
message upon receipt of a client request that doesn't have valid authentication
credentials.

408 Request Time-out

This code is used when a server times out waiting for the client's request.
409 Conflict
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This code indicates that the server's resource is in a state of conflict, such that it cannot
satisfy the request. Presumably, the user will be able to resolve the conflict after
receiving this response.

410 Gone

This code is used when an origin server knows that the requested resource has been
permanently removed.

411 Length Required

This code is used when the server requires, but did not receive, a Content-length
header in the client's request. Requests for some methods, such as POST and PUT,
have message bodies by default and therefore require Content-length headers.

412 Precondition Failed

This code indicates that the request was unsuccessful because one of the client's
conditions was not met. For example, the client can tell the server, "Only update this
resource if the current version is X." If the current version is not X, the server returns a
412 response.

413 Request Entity Too Large

This code is used when a client's request is larger than the server is willing to accept.
414 Request-URI Too Large

This code indicates that the requested URI exceeds the server's limits. Although
servers should accept URIs of any length, practical considerations may require actual
limits.

415 Unsupported Media Type

This code is returned when a server refuses a request because the message body is in
an inappropriate format.

416 Requested Range Not Satisfiable

This code indicates that the server could not process the client's partial GET request.

417 Expectation Failed

This code indicates that the client's expectation, given in an Expect header, cannot be
met. HTTP/1.1 clients typically use the Expect header to tell the server they expect to

receive a 100 (Continue) status line.
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F.5 5xx Server Errors

500 Internal Server Error

This code is the default for an error condition when none of the other 5xx codes apply.

501 Not Implemented

This code indicates that the server does not implement the necessary features to
satisfy the request.

502 Bad Gateway

This code indicates that the server received an invalid response from an upstream
server.

503 Service Unavailable

This code indicates that the server is temporarily unable to process the client's request.
A server that becomes overloaded may use this code to let the client know that it can
retry the request later.

504 Gateway Time-out

This code is used by proxies and some servers to indicate a timeout when forwarding
the client's request. It's also used when a request with the only-if-cached directive

would result in a cache miss.

505 HTTP Version Not Supported

This code indicates that the server refuses to handle this request because of the HTTP
version in the request line.
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Appendix G. U.S.C. 17 Sec. 512. Limitations on Liability

Relating to Material Online

Below is the text of the United States Code, title 17, Section 512, subsections (a) and (b).
These regulations relate to a service provider's liability for copyright infringement due to
network transmission and caching.

Transitory Digital Network Communications.

A service provider shall not be liable for monetary relief, or, except as provided in
subsection (j), for injunctive or other equitable relief, for infringement of copyright by
reason of the provider's transmitting, routing, or providing connections for, material
through a system or network controlled or operated by or for the service provider, or by
reason of the intermediate and transient storage of that material in the course of such
transmitting, routing, or providing connections, if-

the transmission of the material was initiated by or at the direction of a person other
than the service provider;

a.

the transmission, routing, provision of connections, or storage is carried out through
an automatic technical process without selection of the material by the service
provider;

b.

the service provider does not select the recipients of the material except as an
automatic response to the request of another person;

c.

no copy of the material made by the service provider in the course of such
intermediate or transient storage is maintained on the system or network in a
manner ordinarily accessible to anyone other than anticipated recipients, and no
such copy is maintained on the system or network in a manner ordinarily accessible
to such anticipated recipients for a longer period than is reasonably necessary for
the transmission, routing, or provision of connections; and

d.

the material is transmitted through the system or network without modification of its
content.

e.

a.

System Caching.

Limitation on liability.

A service provider shall not be liable for monetary relief, or, except as provided in

a.

b.
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subsection (j), for injunctive or other equitable relief, for infringement of copyright by
reason of the intermediate and temporary storage of material on a system or
network controlled or operated by or for the service provider in a case in which-

the material is made available online by a person other than the service
provider;

a.

the material is transmitted from the person described in subparagraph (A)
through the system or network to a person other than the person described in
subparagraph (A) at the direction of that other person; and

b.

the storage is carried out through an automatic technical process for the
purpose of making the material available to users of the system or network
who, after the material is transmitted as described in subparagraph (B),
request access to the material from the person described in subparagraph (A),
if the conditions set forth in paragraph (2) are met.

c.

a.

Conditions.

The conditions referred to in paragraph (1) are that-

the material described in paragraph (1) is transmitted to the subsequent users
described in paragraph (1)(C) without modification to its content from the
manner in which the material was transmitted from the person described in
paragraph (1)(A);

a.

the service provider described in paragraph (1) complies with rules concerning
the refreshing, reloading, or other updating of the material when specified by
the person making the material available online in accordance with a generally
accepted industry standard data communications protocol for the system or
network through which that person makes the material available, except that
this subparagraph applies only if those rules are not used by the person
described in paragraph (1)(A) to prevent or unreasonably impair the
intermediate storage to which this subsection applies;

b.

the service provider does not interfere with the ability of technology associated
with the material to return to the person described in paragraph (1)(A) the
information that would have been available to that person if the material had
been obtained by the subsequent users described in paragraph (1)(C) directly
from that person, except that this subparagraph applies only if that
technology-

does not significantly interfere with the performance of the provider's
system or network or with the intermediate storage of the material;

i.

ii.

c.

b.
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i.

is consistent with generally accepted industry standard communications
protocols; and

ii.

does not extract information from the provider's system or network other
than the information that would have been available to the person
described in paragraph (1)(A) if the subsequent users had gained access
to the material directly from that person;

iii.

if the person described in paragraph (1)(A) has in effect a condition that a
person must meet prior to having access to the material, such as a condition
based on payment of a fee or provision of a password or other information, the
service provider permits access to the stored material in significant part only to
users of its system or network that have met those conditions and only in
accordance with those conditions; and

d.

if the person described in paragraph (1)(A) makes that material available
online without the authorization of the copyright owner of the material, the
service provider responds expeditiously to remove, or disable access to, the
material that is claimed to be infringing upon notification of claimed
infringement as described in subsection (c)(3), except that this subparagraph
applies only if-

the material has previously been removed from the originating site or
access to it has been disabled, or a court has ordered that the material
be removed from the originating site or that access to the material on the
originating site be disabled; and

i.

the party giving the notification includes in the notification a statement
confirming that the material has been removed from the originating site or
access to it has been disabled or that a court has ordered that the
material be removed from the originating site or that access to the
material on the originating site be disabled.

ii.

e.
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Appendix H. List of Acronyms

I've used many acronyms throughout this book, in some cases without explanation. This
glossary provides brief descriptions for acronyms only. Although the definitions aren't very
detailed, they should be enough to get you started in the right direction on your search for
more information.
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Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Web Caching is a rock thrush. Rock thrushes belong to the order

Passeriformes, the largest order of birds, containing 5,700 species, or over half of all living
birds. Passerines, as birds of this order are called, are perching birds with four toes on each
foot, three that point forward and one larger one that points backward. Rock thrushes belong
to either the genus Monticola or the genus Petrocossyphus, such as Monticola solitarius, the

blue rock thrush, and Petrocossyphus imerinus, the littoral rock thrush.

Leanne Soylemez was the production editor and copyeditor for Web Caching. Matt
Hutchinson was the proofreader, and Jeff Holcomb provided quality control. Brenda Miller
wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century engraving
from the Dover Pictorial Archive. Emma Colby produced the cover layout with
Quark™XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. The
print version of this book was created by translating the DocBook XML markup of its source
files into a set of gtroff macros using a filter developed at O'Reilly & Associates by Norman
Walsh. Steve Talbott designed and wrote the underlying macro set on the basis of the GNU
troff -gs macros; Lenny Muellner adapted them to XML and implemented the book design.
The GNU groff text formatter version 1.11.1 was used to generate PostScript output. The text
and heading fonts are ITC Garamond Light and Garamond Book; the code font is Constant
Willison. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was
written by Leanne Soylemez.
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

A
 abuses, hierarchies and

 access logs , 2nd

access.log file
 content types and

 protocols and

 reply size and object size distributions and

 service times and

 ACKs, delayed

 acronyms used in this book (list)

 Active Server Pages (ASP), uncachable

 address hashing, layer four switches and

 address-based authentication, cachability and

 ADVERTISE opcode (ICP)

 advertising, access statistics and

 algorithms for cache replacement

 Apache module, manipulating headers with

 Apache server

    See : products for caching appliances

 application layer, interception caching and

 ARP requests, layer four switches and

 ASP (Active Server Pages), uncachable

 AUTH header (HTCP)

 authentication

 address-based, cachability and

 responses and

 auto-configuration technique for proxies

 availability of computer systems, designing a caching system and
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

A
 abuses, hierarchies and

 access logs , 2nd

access.log file
 content types and

 protocols and

 reply size and object size distributions and

 service times and

 ACKs, delayed

 acronyms used in this book (list)

 Active Server Pages (ASP), uncachable

 address hashing, layer four switches and

 address-based authentication, cachability and

 ADVERTISE opcode (ICP)

 advertising, access statistics and

 algorithms for cache replacement

 Apache module, manipulating headers with

 Apache server

    See : products for caching appliances

 application layer, interception caching and

 ARP requests, layer four switches and

 ASP (Active Server Pages), uncachable

 AUTH header (HTCP)

 authentication

 address-based, cachability and

 responses and

 auto-configuration technique for proxies

 availability of computer systems, designing a caching system and
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

B
bandwidth
 considering for different users worldwide

 ICP and

 improving with cache clusters

 monitoring

 NIC

 reducing

benchmarking
 bottlenecks/problems with , 2nd

caching proxies
 tools for

 duration of

 bibliography

 bits-per-entry field (Cache Digests)

 Blast benchmarking tool

 Bloom filters

 sizing

 body (of HTTP message)

 bottlenecks , 2nd

 BPE field (Cache Digests)

 browser caches

 browsers

configuring
 other options for

 interception caching and

 byte hit ratio , 2nd
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

C
 cachability, data analysis of

 cachable responses

 codes for

 vs. expiration time

    See : CARP Cache Array Routing Protocol

 cache busting

 cache clusters

 cache consistency

 Cache Digests , 2nd

 message formats for

 version 5, as implemented in Squid

 vs. ICP

 cache hit ratio , 2nd

 cache replacement

Cache-control header
 copyrighted material and

 directives of , 2nd

 cache-friendliness

 illustrated with Apache server

 ten steps in building

 CacheFlow products

    See : caching proxies caches

 caching

 controversies surrounding

 copyrights and

 design considerations for

 how it works

 HTTP headers important for

 products for (software or appliances) , 2nd

 reasons for performing , 2nd

 reasons not to perform

 resources for further information

 caching proxies , 2nd  , 3rd

benchmarking
 tools for

 clustered
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 designated (WCCP)

 forcing to refresh

 full, measurements and

 inline

 measurements of

 monitoring

 products for , 2nd

 replacement algorithms for

 where to place them on network

 Calamaris utility

 CAPACITY field (Cache Digests)

 CARP (Cache Array Routing Protocol) , 2nd

membership table for
 examples of

 routing function for

 CDA (Communications Decency Act)

 CDN providers

CGI scripts
 avoiding

 setting headers from

 child caches

 Cidera , 2nd

 Cisco Cache Engine

 Cisco policy routing

 Cisco, Web Cache Control Protocol and

 clear opcode (HTCP)

 client request rate, monitoring

 client-side response time, monitoring

    See : browsers clients

 clocks, synchronizing , 2nd

 CLR opcode (HTCP)

 clusters

 Communications Decency Act (CDA)

 computer systems, availability of

 conditional requests

configuring
browsers
 other options for

interception caching
 with Linux

Internet Explorer
 manually

Netscape Navigator
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 manually

proxies
 manually

 servers, to work with caches

 CONNECT method

 connection capacity

 connection hijacking

connections
 long-lived

 persistent, measuring with Web Polygraph

content
 assigning default expiration time to

 static mixed with dynamic, providing separate HTTP servers for

 content distribution network (CDN) providers

 content integrity

 Content-length header (HTTP)

 content negotiation, avoiding

content types
 data analysis of

 measuring with Web Polygraph

 control channels

 Cookie header

 copyrights

 caching and

 liability for infringement of, outlined in U.S. Code

 cost, as benchmarking metric

 COUNT field (Cache Digests)

 COUNTSTR data type (HTCP)

 CPU power

 CPU usage, monitoring

 CURRENT field (Cache Digests)
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

D
 data

 analysis of

 data channels

 DATA section (HTCP)

 data types for HTCP

 Date header

 DECHO opcode (ICP)

 DEL_COUNT field (Cache Digests)

 delayed ACKs

delays
 ICP and

 server, measuring with Web Polygraph

 DENIED opcode (ICP)

 designated caching proxies (WCCP)

 DETAIL data type (HTCP)

 Digital Millennium Copyright Act (DMCA)

disk space
 designing a caching system and

 monitoring

 disk throughput

 DMCA (Digital Millennium Copyright Act)

 DNS response time, monitoring

 DNS round-robin

 documents vs. objects

 dumb echo opcode (ICP)

 dynamic content, mixed with static content

 dynamic resources

 dynamic responses

 dynamic web pages
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

E
 electronic commerce

 Electronic Freedom Foundation

 embedded objects, modeling with Web Polygraph

 end-to-end headers

 end-to-end revalidation

 entity tags

 ERR opcode (ICP)

 error messages, hierarchies and

Ethernet
 bad cables and

 designing a caching system and

 Excelerator product

 expiration times

 Expires header , 2nd

 extension methods
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

F
 failures

 false hits , 2nd

 Cache Digests and

 ICP and

 false positive

 FIFO (first-in first-out)

 file descriptor usage, monitoring

 file size, popularity and

    See : FTP transport protocol File Transfer Protocol

 file types, data analysis of

 filtering requests/responses

 forwarding loops

 fraud, hierarchies and

 FreeBSD, configuring for interception caching

 fresh responses , 2nd  , 3rd

 From header

 FTP transport protocol , 2nd

 data analysis of
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

G
 GDS (GreedyDual-Size)

GET method
 ICP and

 using instead of POST method

 Gopher transport protocol

 GreedyDual-Size (GDS)
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

H
 Harvest project

 hash functions , 2nd

 Cache Digests and

 HEADER section (HTCP)

 headers (of HTTP messages)

 manipulating with Apache module

 HFC field (Cache Digests)

 hierarchies , 2nd

 designing a caching system and

 freshness between members of

 optimizing

 reasons for joining

 reasons not to join

 HIT opcode (ICP)

 hit ratios

 as benchmarking metric

 data analysis of

 low, hierarchies and

 monitoring

 popularity and

 sample benchmarking results for

 HIT_OBJ feature (ICP)

 HIT_OBJ opcode (ICP)

    See : false hitshits
 false

 predicting, ICP and

 validated vs. unvalidated

 hop-to-hop headers

 hot spare

 HTCP (Hypertext Caching Protocol) , 2nd

 data types

 message format for

 opcodes for

 query rate of, monitoring

HTTP headers
 data analysis of
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 important for caching

 HTTP requests

 layer four switches and

    See : status codes HTTP server response codes/HTTP status codes

 HTTP transport protocol

 data analysis of

 interoperation problems with

 HTTP/1.1 draft standard document

 copyrights and

 httperf benchmarking tool

    See : HTCP Hypertext Caching Protocol

    See : entries at HTTP Hypertext Transfer Protocol
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

I
 ICMP echo requests, layer four switches and

 ICP (Internet Cache Protocol) , 2nd

 advantages/disadvantages of

 background of

 features of

 implementations of, interoperation and

 message format of

 multicasting

 opcodes of

 query rate of, monitoring

 uncachable responses and

 unwanted queries and

 vs. Cache Digests

 ICP_FLAG_DONT_NEED_URL experimental opcode

 ICP_FLAG_HIT_OBJ option flag

 ICP_FLAG_MD5_KEY experimental opcode

 ICP_FLAG_POINTER experimental opcode

 ICP_FLAG_PREADVERTISE experimental opcode

 ICP_FLAG_PREFETCH experimental opcode

 ICP_FLAG_SRC_RTT option flag

 ICP_NOTIFY_HIT experimental opcode

 ICP_NOTIFY_IMS experimental opcode

 ICP_NOTIFY_MISS experimental opcode

 ICP_NOTIFY_REFRESH experimental opcode

 ICP_OP_ADVERTISE experimental opcode

 ICP_OP_DECHO opcode

 ICP_OP_DENIED messages

 ICP_OP_DENIED opcode

 ICP_OP_ERR opcode

 ICP_OP_HIT opcode

 ICP_OP_HIT_OBJ opcode

 ICP_OP_INVALIDATE experimental opcode

 ICP_OP_MISS opcode

 ICP_OP_MISS_NOFETCH opcode

 ICP_OP_MISS_POINTER experimental opcode

 ICP_OP_PURGE experimental opcode

 ICP_OP_QUERY opcode
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 ICP_OP_SECHO opcode

 ICP_OP_UNADVERTISE experimental opcode

 ICP_OP_WIRETAP experimental opcode

 ICS (Internet Caching System) software

 IDENTITY data type (HTCP)

 images, data analysis of

 iMimic DataReactor product

 InfoLibria products

 Inktomi Traffic Server product

 inline caching proxies

 intercache protocols

 which to use

 interception caching (or proxying) , 2nd

 advantages/disadvantages of

 at application layer

 at IP layer

 at TCP layer

configuring
 with Linux

 controversies surrounding

 debugging

 designing a caching system and

 using policy routing

 Internet

    See : ICP Internet Cache Protocol

 Internet Caching System (ICS) software

Internet Explorer, configuring
 automatically, with PAC script

 manually

 INVALIDATE opcode (ICP)

 IP Filter package, configuring for interception caching

 IP multicast

 IP network layer, interception caching and

 IP security, interoperation problems and

 ipchains

 iptables
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

J
 Java programming language, dynamic content and
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

L
 L-M factor

 last-modified factor

 Last-modified header

 last-modified timestamps

 latency

 reduced through caching

 layer four redirection

 layer four switches

 least connections technique, layer four switches and

 least recently used (LRU)

 LFU (least frequently used)

 lifecycles (of objects), simulating with Web Polygraph

 Linux, configuring for interception caching

 load balancing, layer four switches and

 load reduction for servers

 load sharing

 designing a caching system and

 locality of reference

    See : entries at access.log file log files , 2nd

 loops, in request forwarding

 LRU (least recently used)

 Lucent imminet WebCache product

 Lynx
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

M
 mailing lists about caching

 MASK_SIZE field (Cache Digests)

 max-age directive , 2nd  , 3rd

 MD5 hash function , 2nd

memory
 caching and

 designing a caching system and

 performance bottlenecks and

 usage, monitoring

 meshes , 2nd

 message format of ICP

 messages (HTTP), parts of

 metrics for performance

    See : Internet Explorer, configuring Microsoft Internet Explorer

 Microsoft Internet Security and Acceleration Server software

 min-fresh directive

 MISS opcode (ICP)

 MISS_NOFETCH opcode (ICP)

 MISS_POINTER opcode (ICP)

 misses, validated

 MON opcode (HTCP)

 monitor opcode (HTCP)

 MRTG utility

 MSL value (ICP) , 2nd

 multicast ICP

 must-revalidate directive , 2nd
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

N
 Napster , 2nd

 NCSA Mosaic for X

 neighbors

Netscape Navigator, configuring
 automatically, with PAC script

 manually

 Netscape Proxy Server software

 Network Appliance Netcache product

 network interfaces, designing a caching system and

 network layer, interception caching and

 network state, performance bottlenecks and

    See : NTP Network Time Protocol

networks
 failures of, isolating clients from

 probing, ICP and

 testing/benchmarking

 NIC bandwidth

 NIC duplex mode

 no-cache directive , 2nd  , 3rd

 no-intercept lists

 no-proxy test

 no-store directive

 no-transform directive

 non-default routing

 non-HTTP proxy requests

 NOP opcode (HTCP)

 NOTIFY opcode (ICP)

 NTP (Network Time Protocol), synchronizing clocks and

 null operation opcode (HTCP)
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

O
 object lifecycles, simulating with Web Polygraph

 object sizes, data analysis of

 objects

 cachability analysis and

 Cache Digests and

 embedded, modeling with Web Polygraph

 life cycle, data analysis of

 offensive content

 Online Copyright Infringement Liability Limitation Act

opcodes
 for HTCP

 of ICP

 operating systems, designing a caching system and

 option flags (ICP)

 origin server requests

 origin servers
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

P
 PAC (proxy auto-configuration) script

 setting

 packet loads, layer four switches and

 packet transport service

 pages vs. objects

 parents

 peer-to-peer applications

 peers

performance
 bottlenecks

 hierarchies and

 persistent connections, measuring with Web Polygraph

    See : URNs persistent names

 policy routing

    See : Web Polygraph Polygraph

popularity
 data analysis of

 simulating with Web Polygraph

 pornography

 port 80 traffic

 port number exhaustion

 port numbers, data analysis of

 ports, network state and

 POST method, using GET method instead of

 prefetching

 privacy

 Privacy Foundation (The)

 private directive , 2nd  , 3rd

 products for caching (software or appliances) , 2nd

protocols
 data analysis of

intercache
 which to use

 transport

 proxies

configuring
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 manually

 effects of

 proximity

 proxy addresses

    See : PAC proxy auto-configuration

 proxy HTTP requests

 proxy requests

 proxy-revalidate directive , 2nd

 public directive

 PURGE opcode (ICP)

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir


only for RuBoard - do not distribute or recompile

Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

Q
 QUERY opcode (ICP)

 query terms, in URLs

 question mark (?) in URLs
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Web Caching

[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

R
 RAM, designing a caching system and

 recurrence, simulating with Web Polygraph

 Referer header

 reply directives

reply sizes
 data analysis of

 measuring with Web Polygraph

 request filtering

 request line , 2nd

 request methods , 2nd

 data analysis of

 ICP and

 request submission, measuring with Web Polygraph

 request traffic

 requests

 abnormal, monitoring

 blocking

 conditional

 data analysis of

 HTTP

 HTTP header data analysis and

 making anonymous

 service times for, data analysis of

 REQUIRED field (Cache Digests)

 Resource Update Protocol (RUP)

 resources

resources for further information
 bibliography

 caching

    See : status codes response codes

 response filtering

 response time

 layer four switches

 sample benchmarking results for

 responses

 authenticated
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 cachable

 dynamic

 fresh vs. stale , 2nd

 HTTP header data analysis and

uncachable
 measuring with Web Polygraph

 RFC 2186

 opcodes/option flags and

 RFC 2187

 RFC 2616

 round-robin technique, layer four switches and

routing
 changes in, interception caching and

 hierarchies and

 non-default

 RRDTool

 RUP (Resource Update Protocol)
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

S
 s-maxage directive , 2nd

 SECHO opcode (ICP)

 Secure Sockets Layer (SSL)

    See : surrogates server accelerators

 server busting

 server delays, simulating with Web Polygraph

 server load

 server-side includes (SSI)

 avoiding

 server-side response time, monitoring

 servers

 configuring to work with caches

 load reduction for

 origin

 service denials

 services times for requests, data analysis of

 SET opcode (HTCP)

 siblings

 size, cache replacement algorithm based on

 SNMP, layer four switches and

    See : products for caching software

 Source Echo opcode (ICP)

 source RTT measurements (ICP)

 specific vs. unspecified end-to-end validation

 SPECIFIER data type (HTCP)

 SPECweb99 benchmarking tool

 Squid software

 Cache Digests implemented in

    See : server-side includes SSI

 SSL transport protocol

 stale responses , 2nd  , 3rd

 static content, mixed with dynamic content

 static resources

 statistics

 access logs and
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 advertising and

 DMCA and

 monitoring

 utilities for monitoring

 status codes , 2nd

 data analysis of

 list of

 status-line

store.log files
 cachability and

 object life cycle and

 strong validators

 surrogates , 2nd

 system clocks, synchronizing , 2nd
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

T
TCP connections
 layer four switches and

 states of, monitoring

 TCP delayed ACKs

 TCP network layer, interception caching and

 test opcode (HTCP)

 throughput

 disk

 improving with cache clusters

 sample benchmarking results for

 TIME_WAIT state , 2nd

 timestamps

 TLS transport protocol

 traceroute utility

traffic
 large families and

 port 80

 request

 traffic shaping

 transcoding

 translation

 transparent proxies

 Transport Layer Security (TLS)

 transport protocols , 2nd

 data analysis of

trust
 caching and

 hierarchies and

 TST opcode (HTCP)
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

U
 U.S. Code on liability for copyright infringement

 UCD-SNMP utilities

 UDP (User Datagram Protocol)

 uncachable responses, simulating with Web Polygraph

    See : URLs Uniform Resource Locators

 Uniform Resource Names (URNs)

 Universal Resource Identifiers (URIs)

 unspecified end-to-end validation

 unvalidated hits

 hit ratios and

 URIs

 URL hashing, layer four switches and

 URLs

 APNIC

 ARIN

 Blast

 CacheFlow

 caching

 Calamaris

 Cisco Cache Engine

 cookies

 Electronic Freedom Foundation

 iMimic DataReactor

 InfoLibria

 Inktomi Traffic Server

 IP Filter package

 layer four redirection, vendors supporting

 Lucent imminet WebCache

 Microsoft Internet Security and Acceleration Server

 MRTG utility

 Netscape Proxy Server

 Network Appliance Netcache

 RIPE

 RRDTool

 Squid

 The Privacy Foundation

http://lib.ommolketab.ir
http://lib.ommolketab.ir


 UCD-SNMP

 Volera

Web Polygraph
 results from published on the Internet

 Webalyzer

 WebJamma

 Wisconsin Proxy Benchmark

 URNs

    See : clients user agents

 User Datagram Protocol (UDP)

 User-agent header

users
 bandwidth and

 interception caching and , 2nd

utilities
 for benchmarking

 for monitoring statistics

 traceroute
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

V
 validated hits

 hit ratios and

 validated misses

 validation , 2nd

 validators

 weak vs. strong

 variants

 Vöckler, Jens-S.

 Volera
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[A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W]

W
 WCCP (Web Cache Control Protocol)

 weak validators

Web
 architecture of

 reasons for caching

 reasons not to cache

 transport protocols for

    See : browsers web browsers

 Web Cache Control Protocol (WCCP)

    See : caching web caching

 web pages, dynamic

 Web Polygraph

 measurements made by at regular intervals

 results from published on the Internet

 sample results from

 web proxy auto-discovery (WPAD)

 web sites

 files of, avoiding renaming

making cache-friendly
 ten steps in

 Webalyzer

 WebBench benchmarking tool

 WebJamma benchmarking tool

 WebStone benchmarking tool

 Wget

 WIRETAP opcode (ICP)

 Wisconsin Proxy Benchmark (WPB) benchmarking tool

 working sets

    See : Web World Wide Web

 WPAD (web proxy auto-discovery)

 WPB (Wisconsin Proxy Benchmark) benchmarking tool
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